
Redpaper

In partnership with
IBM Academy of Technology

Front cover

Security Implementation with Red Hat
OpenShift on IBM Power Systems

Dino Quintero

John Adegbile

Faraz Ahmad

Sambasiva Andaluri

Agustin Barreto

Olavo Borges

Ivaylo Bozhinov

Daniel Casali

Gayathri Gopalakrishnan

Nilabja Haldar

Abhishek Jain

Josephine Eskaline Joyce

Youssef Largou

Amrita Maitra

David Pearson

João André Pellizzari

Dennis Riemenschneider

Tim Simon

IBM Redbooks

Security Implementation with Red Hat OpenShift on
IBM Power Systems

April 2023

REDP-5690-00

© Copyright International Business Machines Corporation 2023. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (April 2023)
This edition applies to the following software versions:
� Red Hat OpenShift Container Platform 4.9 for IBM Power
� Red Hat OpenShift Container Platform 4.10 for IBM Power
� Red Hat OpenShift Container Platform 4.11 for IBM Power
� Red Hat Advanced Cluster Security for Kubernetes (K8s) 3.72.1
� Red Hat OpenShift Data Foundation 4.10.7
� Red Hat OpenShift Data Foundation 4.11
� Red Hat OpenShift APIs for Data Protection 4.11
� Red Hat OpenShift Pipelines 1.8.0
� Red Hat OpenShift File Integrity Operator 0.1.32
� IBM Cloud Shell 1.0.67
� Red Hat OpenShift Compliance Operator 0.1.57.
� IBM Security Guardium Data Encryption 5.0.
� OpenSCAP Scanner 1.3.4.
� IBM Spectrum Virtualize 8.5
� IBM Spectrum Protect Plus 10.1.10
� Velero 1.9
� Aqua Starboard 0.15.8
� Aqua Trivy v0.36
� Aqua Security 2022.4.196
� IBM PowerVM 3.1.3
� IBM PowerVM 3.1.4

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors. ix
Now you can become a published author, too! . xii
Comments welcome. xii
Stay connected to IBM Redbooks . xiii

Chapter 1. Introduction. 1
1.1 Purpose. 2
1.2 Scope . 2
1.3 Audience . 2
1.4 Challenges in the cloud-native world . 3

1.4.1 Understanding cloud-native security challenges. 3
1.4.2 IBM Power10 unique security features for containers. 5

Chapter 2. Building blocks and IBM Power capabilities . 7
2.1 IBM Power capabilities and features. 8

2.1.1 IBM PowerVM hypervisor . 9
2.2 Storage . 12

2.2.1 Container Storage Interface . 13
2.2.2 IBM Spectrum Fusion . 14
2.2.3 Red Hat OpenShift Data Foundation . 15
2.2.4 Enabling data encryption for IBM FlashSystem and IBM Spectrum Virtualize . . . 16
2.2.5 IBM Spectrum Scale CSI driver security considerations. 20

2.3 Orchestrators and K8s . 20
2.3.1 Security best practices for containers . 22

2.4 Ingress Controller . 22
2.5 Container registry . 23
2.6 Red Hat OpenShift on IBM Power Virtual Server . 24
2.7 IBM Cloud Paks . 25

2.7.1 IBM Cloud Pak for Applications. 27

Chapter 3. Security framework and attack vectors . 29
3.1 Defining a threat . 30
3.2 Seven layer security model . 30
3.3 Assessing your security posture . 33
3.4 Layered defense approach . 34
3.5 Distributed application vulnerabilities . 35

3.5.1 Security challenges in a microservices architecture . 35
3.5.2 Understanding multi-region active-active architecture . 36
3.5.3 Requirements for a multi-region active-active architecture 36
3.5.4 Common vulnerabilities affecting distributed applications. 37
3.5.5 Best practices for securing distributed applications in Red Hat OpenShift 38

3.6 Container vulnerabilities . 39
3.6.1 Recent security breaches . 39
3.6.2 Risks, vulnerabilities, and mitigation steps . 40
© Copyright IBM Corp. 2023. iii

Chapter 4. Designing and implementing Red Hat OpenShift with security first 43
4.1 Approach to making Red Hat OpenShift secure by design. 44

4.1.1 Container Host OS, IBM PowerVM Hypervisor, and multi-tenancy 44
4.1.2 Red Hat OpenShift trusted sources . 45
4.1.3 Red Hat OpenShift secure container orchestration. 45
4.1.4 Red Hat OpenShift deployment on IBM Power Systems Virtual Server 45
4.1.5 Red Hat OpenShift build process security . 46
4.1.6 Red Hat OpenShift deployment process security . 47
4.1.7 Network isolation and API endpoint security. 47
4.1.8 Security consideration for federation of containerized applications 47

4.2 Securing Red Hat OpenShift building blocks . 48
4.2.1 Hardware . 48
4.2.2 Networking . 49
4.2.3 Hyperconverged infrastructure and cloud . 51
4.2.4 Supported operating systems and hypervisors . 60
4.2.5 Red Hat OpenShift operators . 61
4.2.6 Cloud-native applications . 62
4.2.7 Ingress Controller . 62
4.2.8 Storage back end . 63
4.2.9 Secret management systems . 64
4.2.10 Code repository. 64
4.2.11 Container registry . 76
4.2.12 Vulnerability scanners. 78
4.2.13 Enhanced data resilience and security by using IBM Spectrum Protect Plus. . . 93

Chapter 5. Authentication and authorization . 101
5.1 Understanding authentication . 102

5.1.1 Users. 102
5.1.2 Groups . 103
5.1.3 API authentication. 103
5.1.4 Red Hat OpenShift Container Platform OAuth server. 104
5.1.5 Defining more identity providers . 104
5.1.6 Authentication metrics for Prometheus . 105

5.2 RBAC setup for users and service accounts. 106

Chapter 6. Data and application security . 113
6.1 Credential rotation for application to application communication 114
6.2 Central secrets management: Single source of truth . 114
6.3 Container security considerations . 115
6.4 Data at rest encryption . 117

6.4.1 Application persistence layer . 117
6.4.2 Red Hat OpenShift and Kubernetes API Server . 120
6.4.3 IBM Security Guardium for File and Database Encryption 121
6.4.4 IBM Security Guardium for Container Data Encryption. 122

Chapter 7. Logging and monitoring . 125
7.1 Monitoring containers and Red Hat OpenShift Container Storage security 126

7.1.1 Challenges of monitoring containers. 126
7.1.2 How to effectively monitor containers . 126
7.1.3 Benefits of monitoring containers . 127
7.1.4 Red Hat OpenShift Container Platform Monitoring . 127
7.1.5 Observability and application performance monitoring with IBM Instana 128

7.2 Audit logs . 129
7.2.1 Logging operator . 129
iv Security Implementation with Red Hat OpenShift on IBM Power Systems

7.2.2 Installing the logging subsystem for Red Hat OpenShift. 129
7.2.3 Using the logging subsystem for Red Hat OpenShift . 133

7.3 Red Hat OpenShift File Integrity Operator monitoring . 133
7.3.1 Installing Red Hat OpenShift File Integrity Operator . 134
7.3.2 Configuring Red Hat OpenShift File Integrity Operator. 135

Chapter 8. Compliance and regulation . 139
8.1 Regulations and compliance . 140

8.1.1 Introduction . 140
8.1.2 Security and compliance in the cloud . 140
8.1.3 Infrastructure as a service. 141
8.1.4 Platform as a service . 141
8.1.5 Private cloud . 142
8.1.6 Public cloud. 142
8.1.7 Hybrid cloud . 142
8.1.8 Compliance posture . 142

8.2 IBM Cloud Security and Compliance Center. 143
8.2.1 How IBM Cloud Security and Compliance Center works 143
8.2.2 Connecting Red Hat OpenShift Compliance Operator . 145

8.3 OpenSCAP for Red Hat OpenShift . 145
8.4 Red Hat OpenShift Compliance Operator . 152

8.4.1 Installing the Red Hat OpenShift Compliance Operator 152
8.5 Red Hat OpenShift Machine Config Operator . 158

8.5.1 Applying remediation when using customized machine config pools 158
8.6 IBM Hyper Protect Crypto Services . 160

8.6.1 Universal Key Orchestrator . 161
8.6.2 IBM HPCS with Unified Key Orchestrator . 161
8.6.3 Use cases and scenarios . 161

Chapter 9. Security Site Reliability Engineer . 167
9.1 Introducing the Site Reliability Engineer . 168
9.2 Security scoring. 168

9.2.1 Security scoring example . 168
9.2.2 Security scoring in IBM Cloud Security and Compliance Center 171

9.3 Service levels to apply to security . 171
9.4 Security runbooks . 172

Chapter 10. Aqua. 173
10.1 Cloud-Native Application Protection Platform . 174
10.2 Aqua for cloud-native application protection . 174
10.3 Container security lifecycle and risk areas . 174
10.4 Container security lifecycle . 176
10.5 The Cloud-Native Application Protection Platform . 177
10.6 Aqua support for Red Hat OpenShift on IBM Power. 179

10.6.1 Installing Aqua Security operator . 179
10.6.2 Scanning for vulnerabilities by using Aqua Trivy and Starboard. 181

Glossary . 187

Abbreviations and acronyms . 189

Related publications . 191
IBM Redbooks . 191
Online resources . 191
 Contents v

Help from IBM . 192
vi Security Implementation with Red Hat OpenShift on IBM Power Systems

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2023. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

AIX®
Cognos®
Db2®
DS8000®
Guardium®
IBM®
IBM Cloud®
IBM Cloud for Financial Services®
IBM Cloud Pak®

IBM Consulting™
IBM FlashSystem®
IBM Security®
IBM Spectrum®
IBM Watson®
Instana®
OS/400®
Power Architecture®
POWER8®

POWER9™
PowerHA®
PowerVM®
QRadar®
Rational®
Redbooks®
Redbooks (logo) ®
Spectrum Fusion™
WebSphere®

The following terms are trademarks of other companies:

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Red Hat, Ansible, Ceph, Fedora, Red Hat OpenShift, are trademarks or registered trademarks of Red Hat,
Inc. or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

VMware, and the VMware logo are registered trademarks or trademarks of VMware, Inc. or its subsidiaries in
the United States and/or other jurisdictions.

Other company, product, or service names may be trademarks or service marks of others.
viii Security Implementation with Red Hat OpenShift on IBM Power Systems

http://www.ibm.com/legal/copytrade.shtml

Preface

Red Hat OpenShift is a powerful and flexible container orchestration platform that enables
organizations to build, deploy, and manage applications in a cloud-native environment. As
with any production system, you must ensure the security of an Red Hat OpenShift
deployment, which includes secure deployment and configuration of the Red Hat OpenShift
components, and ongoing maintenance and monitoring to ensure the continued security of
the environment.

This IBM® Redpaper publication provides a comprehensive overview of the security best
practices for deploying Red Hat OpenShift on IBM Power. It covers the essential steps to
secure your Red Hat OpenShift environment and ensure the confidentiality, integrity, and
availability of your data and applications.

Authors

This paper was produced by a team of specialists from around the world working at
IBM Redbooks, Poughkeepsie Center.

Dino Quintero is a Systems Technology Architect with IBM Redbooks®. He has 28 years of
experience with IBM Power technologies and solutions. Dino shares his technical computing
passion and expertise by leading teams developing technical content in the areas of
enterprise continuous availability, enterprise systems management, high-performance
computing (HPC), cloud computing, artificial intelligence (AI) (including machine and deep
learning), and cognitive solutions. He is a Certified Open Group Distinguished Technical
Specialist. Dino is formerly from the province of Chiriqui in Panama. Dino holds a Master of
Computing Information Systems degree and a Bachelor of Science degree in Computer
Science from Marist College.

John Adegbile is an independent middleware consultant with a focus on enterprise
messaging and Enterprise Service Bus (ESB) technologies such as IBM MQ, IBM Integration
Bus, IBM App Connect Enterprise, and Kafka. For the last 14 years, he has worked with
clients in Canada, the US, and Europe in various industries, such as insurance, rail, banking,
retail, media, and advertising. Before becoming a freelance consultant, John worked for
13 years as an IT Specialist with IBM Global Services UK.

Faraz Ahmad is an IBM Power Systems solution architect working at IBM Technology
Services, India. Faraz has experience in various areas of IT, including software development,
solution design, and IT consultation. He specializes in cybersecurity, and in his current role,
he designs security solutions for IBM customers. He is a geography lead and mentors
security consultants in Central and Eastern Europe, the Middle East, and Africa regions. His
other areas of expertise include IBM PowerHA®, IBM AIX®, Linux, networking, and
virtualization. He is the author of multiple patents and recognized as an Invention Plateau
holder. He has a degree in Computer Science from the Birla Institute of Technology, Ranchi,
India.
© Copyright IBM Corp. 2023. ix

Sambasiva Andaluri (Sam) is an experienced developer turned Solution Architect Leader
with over 30 years of experience. For the past decade, he has been a pre- and post-sales
solution architect for trading systems at Fidessa, a pre-sales solution architect at AWS, and a
Site Reliability Engineer (SRE) for onboarding ISVs for Google Marketplace at a Business
Partner. He brings multifaceted experience to the table, and is a continuous learner and a
strong supporter of STEM.

Agustin Barreto is a cloud architect who holds the position of Chief Technology Officer at
Inco S.A., one of the top IBM vendors in Uruguay. His work is focused on discovering new
technologies and helping customers with their modernization process. He is studying system
engineering at Universidad de la República. He has worked on several open-source projects
as a cloud-native developer consultant. He has the role of door opener within the company,
delegating responsibilities and consolidating departmental structures to expand the service
portfolio. Most recently, he works on Lift and Shift modernization projects for migrating
services to the cloud.

Olavo Borges has more than 20 years of experience in the IT industry. He works at IBM
supporting large financial services and public sector customers. He holds over
30 certifications in the IT industry, including technical certifications from cloud providers like
IBM, Microsoft, AWS, and Google; certifications in technologies like Red Hat OpenShift; and
management and soft-skills certifications like Project Management Professional (PMP). He is
a continuous learner and a Georgia Tech Cybersecurity Master’s student.

Ivaylo Bozhinov is a Technical Support Professional SME for Flexible Service Processor
(FSP), Hypervisor, and enterprise Baseboard Management Controller (eBMC)) for the
IBM Power hardware division in Sofia, Bulgaria. He has been with IBM since 2015 and
participated in numerous educational and client-related workshops and presentations. He
holds a bachelor's degree in Information Technology from the State University of Library and
Information Technology and a master's degree in Cybersecurity from New Bulgarian
University. He supports many clients in the banking industry and telecom and retail sector.

Daniel Casali is a Thought Leader Information Technology Specialist who has been working
at IBM for 15 years in the IBM Power, HPC, big data, and storage areas. His role at IBM is
realizing solutions that address client’s needs by exploring new technologies for different
workloads. He explores multi-cloud implementations to abstract and simplify the new
challenges of the heterogeneous architectures of this model for both on-premises and in the
public cloud.

Gayathri Gopalakrishnan works at IBM India, and has over 22 years of experience as a
technical solution and IT architect, working primarily in consulting. She is a results-driven IT
Architect with extensive working experience in spearheading the management, design,
development, implementation, and testing of solutions. She is a recognized leader that
applies high-impact technical solutions to major business objectives with capabilities
transcending boundaries. She is adept at working with management to prioritize activities and
achieve defined project objectives with an ability to convert business requirements into
technical solutions.

Nilabja Haldar is an experienced Cloud Architect and SRE, and a certified AWS, Google
Cloud Platform (GCP), Azure, IBM Cloud®, and Red Hat OpenShift solution Architect, with
15 years of experience in various IT domains like public and hybrid multicloud, technical
consultation, solution design, design, implementation, transformation and migration, and data
center consolidation for organizations world wide. He works in IBM Consulting™ as an
Infrastructure and Cloud architect, DevOps, and SRE. He has BTech degree in Computer Sc,
and his technical skills cover hybrid cloud, GCP, Azure, IBM Cloud, Kubernetes (K8s),
Red Hat OpenShift, DevOps, security, observability, integration, and open-source software.
x Security Implementation with Red Hat OpenShift on IBM Power Systems

Abhishek Jain is an IBM Master Inventor and an Automation Architect with IBM Systems
Development Labs, India. He has more than 10 years of experience working on various
storage technologies, such as scale-out file systems, and block and object and container
native storage. In his current role as Test Architect, he leads a quality process for
IBM Container Native Storage Access and IBM Spectrum® Scale CSI Driver deliveries. He
holds a Bachelor of Technology degree in Computer Engineering.

Josephine Eskaline Joyce is an IBM Master Inventor and Cloud Architect at IBM India
Software Labs, with 20+ years of experience in the IT industry. She has extensive experience
in enterprise application architectures, designing various customer solutions, and developing
many IBM products. She has several patents and paper presentations to her credit. She
authored a book on mobile application development, and is a research scholar in cloud
computing.

Youssef Largou is the founding director of PowerM, a platinum IBM Business Partner in
Morocco. He has 21 years of experience in systems, HPC, middleware, and hybrid cloud,
including IBM Power, IBM Storage, IBM Spectrum, IBM WebSphere®, IBM Db2®,
IBM Cognos®, IBM WebSphere Portal, IBM MQ, ESB, IBM Cloud Pak®, and Red Hat
OpenShift. He has worked within numerous industries with many technologies. Youssef is an
IBM Champion 2020, 2021, and 2022, an IBM Redbooks Gold Author, and has designed
many reference architectures. He has been recognized as an IBM Beacon Award Finalist in
Storage, Software-Defined Storage, and LinuxONE five times. He holds an engineer degree
in Computer Science from the Ecole Nationale Supérieure des Mines de Rabat and Excecutif
MBA from EMLyon.

Amrita Maitra is a certified Application Architect who specializes in the migration of client
workloads to AWS. She is an expert in .NET technologies and extensively uses design
thinking in customer deliverables. She works with clients from various sectors, predominantly
the finance domain. Designing for resiliency, infrastructure sizing, costs, and high availability
are some of the key areas of her work.

David Pearson works for IBM UK and has over 25 years' experience as a technical solution
and enterprise architect, working in both pre-sales and consulting roles throughout his career.
He provides technical leadership to clients, helping them align their business goals and
technical challenges with open-source software and cloud technologies that are focused on
the IBM and Red Hat platforms. He is a Chartered Engineer (CEng), and his technical skills
cover social software, mobile, hybrid cloud, K8s, security, integration, and open-source
software. He has deep expertise with architectural frameworks and design thinking
approaches, and has delivered hundreds of consulting engagements globally during his
career.

João André Pellizzari is a certified senior architect with over a decade of experience in the
field. He has a wealth of knowledge in architectural thinking, enterprise architecture, and
technical leadership, and expertise in IBM Cloud, Docker, K8s, and Red Hat OpenShift. In his
most recent role as the chief architect of the Configure to Order subdomain, he is responsible
for transforming a portfolio to leverage IBM Cloud and AI. Before taking this role, he served as
the lead architect of a global transformation initiative that aimed to simplify and transform the
end-to-end selling process for IBM Systems hardware. He also previously worked as a
Solutions Architect, where he worked on the first internal IBM Watson® implementation in
Latin America, where he was recognized for his technical achievements.
 Preface xi

Dennis Riemenschneider works for IBM Germany. He has 22 years of experience in IT.
After his IBM apprenticeship, he started with IBM Hardware Support Services, followed by
Software Support Services, IT Consulting, and Platform Engineering. He is an IT software
specialist and solution architect. His extensive and fundamental hardware knowledge of
servers, storage, and networking is complemented with deeper knowledge of open-source
software, Linux, automation, and his current fields of expertise: Infrastructure as Code (IaC),
cloud computing, K8s, and Red Hat OpenShift.

Tim Simon is an IBM Redbooks Project Leader in Tulsa, Oklahoma, US. He has over
40 years of experience with IBM, primarily in a technical sales role working with customers to
help them create IBM solutions to solve their business problems. He holds a BS degree in
Math from Towson University in Maryland. He has worked with many IBM products and has
extensive experience creating customer solutions by using IBM Power, IBM Storage, and
IBM zSystems throughout his career.

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies. Your
efforts will help to increase product acceptance and customer satisfaction, as you expand
your network of technical contacts and relationships. Residencies run from two to six weeks
in length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xii Security Implementation with Red Hat OpenShift on IBM Power Systems

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xiii

http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xiv Security Implementation with Red Hat OpenShift on IBM Power Systems

Chapter 1. Introduction

This publication is intended for readers of all levels. The reader should understand containers,
Kubernetes (K8s), IBM Power Systems Virtual Server (IBM PowerVS) and Red Hat
OpenShift. The typical targeted audiences of this publication are developers, security
consultants, architects, and technical project managers.

This chapter describes the following topics:

� Purpose

� Scope

� Audience

� Challenges in the cloud-native world

1

© Copyright IBM Corp. 2023. 1

1.1 Purpose

It is a business imperative for many organizations to improve their cybersecurity stance. With
the increasing trend toward hybrid cloud, application modernization, automation, and many
more workload scenarios, leveraging the existing abilities of the IBM Power platform along
with modern containerization solutions such as Red Hat OpenShift is critical to success.
There are many considerations when planning, designing, deploying, and managing a secure
K8s or Red Hat OpenShift architecture:

� Evaluating security frameworks

� Assessing your security stance

� Understanding the nature of attacks and approaches that attackers use to compromise
your environment

� Understanding the technical building blocks

� Understanding how to define a secure architecture

These critical aspects must be addressed as you implement a “security first” approach.

The purpose of this publication is to provide insight, education, and guidance into the range of
considerations for the optimal design, implementation, and secure operation of a K8s or
Red Hat OpenShift environment when using IBM Power servers.

This publication aims to provide an insight into IBM Power capabilities that you can use to
successfully enable a secure hosting environment for your business-critical applications on a
K8s or Red Hat OpenShift architecture.

1.2 Scope

In this publication, we focus on Red Hat OpenShift 4 on the IBM POWER9™ and
IBM Power10 platforms. We provide an overview of the architectural building blocks, along
with an explanation of security frameworks and attack vectors so that you can develop a
layered defense approach when designing and implementing your environment.

We cover the usage of IBM PowerVS capabilities including monitoring and logging
capabilities, and provide insight into the aspects of regulations and compliance requirements
that your architecture might need to address.

1.3 Audience

This publication is intended for readers of all levels. The reader should understand containers,
K8s, IBM PowerVS, and Red Hat OpenShift. The typical targeted audience of this publication
is developers, security consultants, architects, and technical project managers. For novice
users, understanding the information at the following links provides a basis for better
understanding the contents of this publication:

� What are containers?

� What is Kubernetes?

� IBM Power Systems Virtual Server

� Red Hat OpenShift
2 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.ibm.com/cloud/learn/containers
https://www.ibm.com/in-en/products/power-virtual-server
https://www.redhat.com/en/topics/containers/what-is-kubernetes

� IBM Developer

� IBM Developer at YouTube

1.4 Challenges in the cloud-native world

For large customers to survive and thrive in an era of constant change, they must redesign
many of their processes and platforms. Current business models and systems are not
designed to respond to marketplace shifts and regulatory demands with the speed and agility
that are required to stay relevant, competitive, and compliant.

1.4.1 Understanding cloud-native security challenges

A corresponding combination of measures focusing on trust, service, and economics is
needed to counteract the forces of cybercrime while still providing a strong ecosystem that
empowers organizations to use their resources to provide better business outcomes.
Together, these initiatives can be enabled by shifting of existing business models from
discrete offerings to the automated orchestration of a secure, experience-based ecosystem of
new and existing products.

To achieve this change, consumer experiences that were previously provided by people and
physical locations and helped by technology must now be provided by technology. IT
infrastructure underpins this transformation. Business strategy and technology have become
inseparable, and architectural decisions are now critical business decisions.

Here are the major disruptive trends for any customer embracing a digital transformation
journey:

� Customer behaviors and expectations: Competitors raised the bar with innovative
business models in the battle to win the customer. Business to business and business to
customers providers are responding with massive investments to understand and
enhance the user experience by offering self-service options and unbundling products to
improve choice.

� Digital competition: New and existing competitors are leveraging new digital technologies
to deploy non-traditional business, operating, and technology models that are user-centric,
data-intensive, and cloud-native.

� Competition for talent: Fewer customers and institutions believe that their organization
offers their employees the resources or skill-development opportunities that they need to
thrive in a digital environment. Digital behaviors create the environment so that firms can
do business digitally by providing agility, collaboration, distributed organizational
structures, a bolder risk appetite, and true customer centricity.

� Regulatory compliance: Regulatory compliance activities continue to be complex and
costly. The sheer volume and growth of compliance regulation, when combined with the
costs that are related to non-compliance, make this area a continued focus.

� Security and fraud: Expanding channels and partner ecosystems, cloud-based solutions,
digital platforms, and 24x7 services drive increased security risks and threats, and
increase the opportunity for fraud, which raises the need to address security.

� Data, analytics, AI and cognitive: The industry has access to vast amounts of rich data
about its clients. The new and winning customer business models of tomorrow will
succeed by delivering on insights from their vast stores of data, which are enabled through
intelligent analytics, and driven by cognitive processes at the core of their models.
Chapter 1. Introduction 3

https://developer.ibm.com
https://www.youtube.com/user/developerworks

As cloud platforms become the technical backbone of any core modernization project
including digital transformation and compliance initiatives for a customer, the following
challenges and concerns have exponentially increased:

� Cloud-native: Customers require flexible computing with consistent development,
deployment, management, orchestration, and automation. Enabling a hybrid cloud
enterprise is key to improving internal operations and efficiency, retaining and growing
clients, and reducing costs. Cloud-native helps by automating labor-intensive work,
expanding the ecosystem through cloud-based interaction with core systems, and
capturing high business value insights from customer data.

� Encryption everywhere: As customers expand their touch points, channels, and business
partners, they expose themselves to bigger risks for security breaches, fraud, and
cybercrime, which leads to a lack of customer trust and can decrease your profitability.
Customers are demanding security for their whole hybrid cloud enterprise. Customers
must ensure the privacy of their data 100% of the time wherever it is across the cloud
infrastructure.

� Cyber resilience: Because more customers are operating on “Always On Mode” and
continue to expand, they must have systems that are reliable, especially for their security
updates and planned outages. They must move from manual to predictive innovations in
risk and compliance while investing in consulting services to keep them ahead of new
regulations.

Unfortunately, rapid adoption and fast upstream development of open-source projects can
sometimes prevent necessary and newly introduced security protections from being applied.

Containers are popular because they make it simple to bundle an application with all of its
dependencies into a single image that can be deployed consistently and without requiring any
change from development, test, QA, and then to production. Containers can be deployed on
heterogeneous targets while providing the following benefits:

� Portability: The lightweight nature of containers can make them easy to move.

� Faster start: Containers can start and restart in seconds.

� Lower resources: Containers consume less CPU and memory.

� Management cost: Container management is streamlined with K8s.

� Hybrid multi architecture support: The lightweight nature of containers enables an
application to be moved quickly between hybrid multi-cloud environments.

Using containers can provide flexibility and security benefits compared to traditional,
monolithic software platforms. However, there are extra complications that are involved in
maintaining everything securely, including the underlying infrastructure and microservices.

According to the National Security Agency (NSA),1 the threats that are shown in Table 1-1 on
page 5 represent the most likely sources of compromise for containers.

1 https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220
829.PDF
4 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF

Table 1-1 NSA identified threats

By leveraging IBM Power security features, Red Hat OpenShift Container Platform can deliver
hardened security across the entire stack, from chip to application, for cloud-native and
containerized workloads.

1.4.2 IBM Power10 unique security features for containers

IBM Power10 servers protect sensitive data by leveraging the latest pervasive encryption
capabilities across hybrid cloud deployments. The Power10 processor introduces full memory
encryption at scale. Transparent memory encryption is designed to simplify encryption and
support end-to-end security without impacting performance by leveraging hardware features
for a seamless user experience.

Additionally, workloads on Power10 servers benefit from cryptographic algorithm acceleration
hardware so that algorithms like AES, SHA2, and SHA3 to run faster on Power10 servers
compared to other platforms.

To be prepared for the quantum era, IBM Power10 servers are built to efficiently support
upcoming cryptography techniques such as quantum-safe cryptography and Fully
Homomorphic Encryption (FHE).

Supply chain

Container or application
level

Container run time Infrastructure

A malicious third-party
container or program might
give cybercriminals access to
the cluster.

Inadequate container
separation might result from a
flaw in the container run time.

Cybercriminals might get
access to the cluster if
systems that are employed as
worker nodes or as part of the
control plane are
compromised.

Malicious threat actor

Control plane Worker nodes Containerized applications

Cybercriminals commonly
exploit unprotected control
plane components with
insufficient access constraints.

Worker nodes are present
outside of the secured control
plane and can be more
accessible to online criminals.

Using an exposed
application's internally
accessible resources, an actor
can switch from a pod that has
already been compromised or
increase their privileges within
the cluster.

Insider threat

Administrator User Cloud service or
infrastructure provider

System or hypervisor
administrators frequently have
physical access to these
items, which might be
leveraged to undermine the
container’s environment.

Users of containerized
applications might have
access to containerized
services. This degree of
access might offer adequate
tools to compromise the
application or other
containers’ elements.

A container’s environment
might be compromised by
using physical access to
systems or hypervisors that
control a K8s node.
Chapter 1. Introduction 5

According to the European Telecommunications Standards Institute (ETSI), “Quantum-safe
cryptography refers to efforts to identify algorithms that are resistant to attacks by both
classical and quantum computers to keep information assets secure even after a large-scale
quantum computer has been built.”2

For more information about Quantum-Safe Cryptography, see this IBM Blog.

IBM Power servers offer the most secure workload isolation in cloud deployments, with
integrity engineered into every layer of the system. All components of the stack are fully
integrated and co-optimized, and they are provided from IBM as a single vendor, which
makes the stack more secure.

IBM PowerVM®, which is the built-in hypervisor, has an outstanding track record. It has
orders of magnitude fewer vulnerabilities than competitive hypervisors. Power10 servers have
advanced firmware integrity with extra measures to isolate the CPU from service processors
for better defense against attacks on management systems.

Power10 servers introduce innovations to address emerging threats, with extra features and
enhancements to defend against application domain vulnerabilities such as return-oriented
programming (ROP) attacks.

A global zero trust security strategy is essential, and container security starts with Linux
security:

� Security in the Red Hat Enterprise Linux (RHEL) and CoreOS host applies to the
container.

� IBM Power10 with Linux hosts (worker nodes) offer industry leading integrity and isolation.

� The correct configuration of SELinux and seccomp along with the usage of namespaces
strengthens isolation.

� SELinux mitigates container runtime vulnerabilities.

� You must protect the host from container escape and the containers from each other.

� RHEL and CoreOS offer minimized attack surface.

IBM Enterprise Protected Containers (EPC) offer isolated, secure, and integrity protected
Red Hat OpenShift containers that offer the same level of security as logical partitions
(LPARs):

� EPC provides the same strength of isolation to containers that is afforded by virtual
machines (VMs) or LPARs.

� EPC containers act as lightweight VMs, which use hybrid virtualization that is co-optimized
in Power10 servers and PowerVM.

� EPC provides end-to-end protection of code and data, including when in use (confidential
computing).

� EPC can simplify workload regulatory compliance, especially in multi-tenant
environments.

� At the time of writing, PowerVM has no CVEs, and has an orders of magnitude lower
number of CVEs than other hypervisors.

For more information, see IBM Power Systems Cloud Security Guide: Protect IT
Infrastructure In All Layers, REDP-5659.

2 https://www.etsi.org/technologies/quantum-safe-cryptography
6 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://www.etsi.org/technologies/quantum-safe-cryptography
https://www.ibm.com/cloud/blog/what-is-quantum-safe-cryptography-and-why-do-we-need-it

Chapter 2. Building blocks and IBM Power
capabilities

This chapter introduces the security features that can be used to secure your cloud
environment when it is running on IBM Power servers. We describe both hardware and
software features to help you provide the security that is required to run your cloud-ready
applications.

This chapter describes the following topics:

� IBM Power capabilities and features

� Storage

� Orchestrators and K8s

� Ingress Controller

� Container registry

� Red Hat OpenShift on IBM Power Virtual Server

� IBM Cloud Paks

2

© Copyright IBM Corp. 2023. 7

2.1 IBM Power capabilities and features

Power servers are designed for security. Security is designed into the processor, hypervisor,
operating system, communications, storage, and applications. Built-in cryptography hardware
enables better scalability and an improved user experience.

Power10 servers include security features to help users comply with security-related
regulatory requirements, such as:

� Identity and Access Management (IAM)

� Hardware and software encryption

� Communication security capabilities

� Extensive logging and reporting of security events

Cloud-native security complements the security that is provided as standard to virtual
machines (VMs) by the IBM Power10 processor-based infrastructure.

Power10 security enables the following features:

� Cryptographic performance acceleration and main memory encryption

IBM introduced transparent memory encryption, which is handled in the hardware to avoid
performance degradation. This new memory encryption is a key security feature for
containers, which are increasingly popular, particularly when it comes to cloud computing.
There is support for quantum-safe cryptography and Fully Homomorphic Encryption
(FHE). Power10 servers also have more crypto accelerators per core, which deliver faster
AES crypto performance.

� Performance-enhanced, side-channel avoidance

� Protection against service processor vulnerabilities

� Defense against application vulnerabilities

Power servers incorporate the hardware and software that provide industry-leading defense
against ransomware attacks by providing the following features:

� Prevention features:

– Power servers provide industry-leading isolation and integrity that help prevent
ransomware from being installed.

– Host and firmware secure and trusted boot.

– Guest OS secure boot.

– Built-in OS runtime integrity: Linux Integrity Measurement Architecture (IMA).

– A secure multi-tenant environment with orders of magnitude lower number of CVEs.

– Simplified patching with IBM PowerSC.

– Multi-factor authentication (MFA) with PowerSC MFA.

� Early detection:

– Integrated security and compliance management with PowerSC makes it harder to
misconfigure, and easier to detect anomalies.

– Offerings such as IBM Security® QRadar® or Aqua Security enhance inherent security
with early anomaly detection.
8 Security Implementation with Red Hat OpenShift on IBM Power Systems

� Fast and efficient recovery:

– Deploy data resiliency strategies with PowerHA and IBM Storage Safeguarded Copy.

– Collaboration with IBM Storage and Security Services for fast detection and automated
recovery of affected data.

� A multi-layered approach to security:

– Base IBM Power platform integrity:

• Secure and trusted boot.

• Power10 enhanced CPU with Flexible Service Processor (FSP) and Baseboard
Management Controller (BMC) isolation.

• Power10 main memory encryption.

– Workload security enablement:

• Cryptographic algorithm acceleration.

• Secure Key Storage (Platform Key Store).

• Support for post-quantum cryptography (PQC) and FHE crypto algorithms.

– End-to-end data encryption (bring-your-own-key (BYOK)):

• Integration with IBM Hyper Protect Crypto Services (IBM HPCS) Cloud Key Mgmt
Services.

• Hybrid cloud enablement facilitates secure data transfer to and from an enterprise
and the cloud.

– Container Security Ecosystem: ISV: Aqua (Container Native Security).

For more information, see IBM Power Systems Cloud Security Guide: Protect IT
Infrastructure In All Layers, REDP-5659.

2.1.1 IBM PowerVM hypervisor

The PowerVM hypervisor is a standard component of the system firmware, and it is
considered the foundation for PowerVM. The PowerVM hypervisor provides an abstraction
layer between the physical hardware resources and the logical partitions (LPARs) that use
them. The PowerVM hypervisor can divide physical system resources into isolated LPARs. It
can assign dedicated processors, memory, and I/O resources that can be dynamically
reconfigured as needed to each LPAR. The PowerVM hypervisor can also assign shared
processors to each LPAR.

Here are the main functions of the PowerVM hypervisor:

� Virtual Memory Management.

� Virtual Processor Management.

� Provides security and isolation between partitions.

� Provides virtual console support.
Chapter 2. Building blocks and IBM Power capabilities 9

Starting with new Power10 Scale-Out Systems and Enterprise 9043-MRX (excluding
9080-HEX), all Power servers use enterprise Baseboard Management Controllers (eBMCs)
instead of FSP. Power servers with eBMC use the Virtualization Management Interface (VMI),
as shown in Figure 2-1.

Figure 2-1 Power server with eBMC

Figure 2-2 shows a Power server that uses FSP.

Figure 2-2 FSP-based Power server

For more information about how to configure VMI or eBMC and HMC, see IBM Power
Community.

IBM has a corporate policy that products that are produced by IBM follow the IBM Security
and Privacy by Design. The PowerVM and Power hardware teams put “security always” on
the top of the list of priorities. Protection of client data is of paramount importance. For more
information, including the target of evaluation (TOE) that is covered in Virtual I/O Server
(VIOS) and PowerVM hypervisor, see PowerVM Common Criteria Certification.
10 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://community.ibm.com/community/user/power/blogs/hariganesh-muralidharan1/2022/07/27/whats-new-in-hmc-10110200
https://community.ibm.com/community/user/power/blogs/hariganesh-muralidharan1/2022/07/27/whats-new-in-hmc-10110200
https://community.ibm.com/community/user/power/blogs/veena-ganti1/2022/08/23/common-criteria-power9-power10?CommunityKey=71e6bb8a-5b34-44da-be8b-277834a183b0
https://www.ibm.com/trust/security-spbd
https://www.ibm.com/trust/security-spbd

The security benefits of PowerVM compared to other virtualization technologies are shown in
Table 2-1 by the significantly lower number of CVEs that are reported.

Table 2-1 Virtualization CVE comparison

Similarly, the security benefits of AIX and IBM i as shown by the significantly lower number of
CVEs that are reported against them is shown in Table 2-2. Even for Linux, the number of
CVEs that are reported is about 40% fewer than the number that is reported for Windows.

Table 2-2 OS-level CVE comparison

There are other advantages to using PowerVM when securing customer data and workloads:

� Enhanced defenses against return-oriented programming (ROP) attacks:

– A new in-core hardware architecture with a low hardware footprint and a
standard-based cryptographic solution to protect the integrity of the return stack.

– Four new instructions in the Power ISA 3.1B.

– The defenses are controlled by the Dynamic Execution Control Register (DEXCR),
which provides per-thread mechanisms to control features with security or
performance tradeoffs or speculation.

� Enhanced CPU isolation from service processors: Extend IBM POWER9 capabilities that
limit the CPU resources that BMC and FSPs can access, such as combining the allowlist
and blocklist built-in hypervisor approaches.

� Performance-enhanced side-channel avoidance: Enhanced handling of automatic thread
isolation from speculation-based attacks.

� Secure and trusted boot for host and guest LPARs for the following operating systems:

– AIX.

– Linux that is available in Red Hat Enterprise Linux (RHEL) 8.5 with static keys.

� Using Trusted Platform Module (TPM) for the following features:

– Root of Trust for Measurement (RTM) Measure (compute hashes) of firmware software
components to create a hardware-based immutable record of what is loaded on a
system. The record can be presented to remote systems for attestation.

– Local Key Management and Storage keys can be generated, signed, and sealed for
specific measurements or policies (allows controlled access to keys):

• Physical TPM: Used by a physical host.

• Virtual TPM Software emulation of TPM is offered by the hypervisor to guest
partitions (LPARs).

CVE type PowerVM VMWare ESX Microsoft
Hyper-V

KVM

Virtualization
Technology
CVEs

PowerVM: 9
VIOS: 53

448 176 193

CVE type IBM AIX IBM i Windows Linux

Operating sys-
tems CVEs

378 IBM i: 35
IBM OS/400® 13

10191 6480
Chapter 2. Building blocks and IBM Power capabilities 11

2.2 Storage

Persistent storage for “stateful” containerized applications is difficult for the industry. Unlike
monolithic applications. which reserve storage resources once, containers and microservices
come in and out of existence, sometimes migrating between machines at breakneck speeds.
The repeating cycle of coding and testing, which is followed by agile production deployment,
further exacerbates the data storage challenges for containerized applications. Data services
that are fashioned for traditional application architectures must serve a new, transient data
paradigm.

By default, when a container is created from its master image, an ephemeral read/write layer
is created that handles all written data. When the container stops, whether intentionally
terminated, unintentionally terminated, or because the underlying pod failed, that read/write
data layer disappears with the container. Any writes that are performed to the container are
limited to that container’s lifetime. Even if a container is restarted by the orchestrator, the
storage that is written to the ephemeral layer in the old container is lost. However, not all
storage for containers must be ephemeral. The nature of some applications, for example,
databases, need some persistent storage for work that is done by non-trivial containers.

Volumes and persistent volumes
The fundamental difference between a volume and a persistent volume (PV) is that a volume
exists for the lifetime of the pod. If the pod persists, the volume also persists. When the pod
ceases to exist, its volumes also cease to exist. Multiple volumes and classes of volume can
be used by a pod simultaneously, but volumes are managed as non-persistent data that is
bound to the lifecycle of the pod.

PVs are pieces of storage that are provisioned by the system administrator or are dynamically
provisioned by using a storage class. PVs are defined to persist longer than the lifecycle of
any pod.

Kubernetes (K8s) treats PVs as a cluster resource, much like it treats a node as a cluster
resource. A cluster resource is available for a process to call and use, and it is maintained
independent of any individual pod that uses the resource, which in this case is the PV.

Here is a couple of use cases for allocating persistent block storage:

� Database applications, such as IBM Db2 and MySQL

� Continuous integration and continuous delivery (CI/CD) products, such as Jenkins

A consideration for data volumes in a containerized environment is the access mode of the
storage volume:

� ReadWriteOnce (RWO)

The volume can be mounted as read/write by a single pod.

� ReadOnlyMany (ROX)

The volume can be mounted as read-only by many pods.

� ReadWriteMany (RWX)

The volume can be mounted as read/write by many pods.

PVs in K8s are allocated by a persistent volume claim (PVC), which defines the volume
access mode. Although a volume may be mounted in multiple ways, it can be mounted in only
one mode at any time.
12 Security Implementation with Red Hat OpenShift on IBM Power Systems

Challenges for data storage for containers
Manageability is one significant challenge for clients running containers. Clients are looking
for tools to manage their containerized applications and the required data. These tools should
provide capabilities to deploy, manage, monitor, and scale applications while providing access
to the data that is required by those applications.

Data protection is another challenge for clients. Containers can be running business-critical
applications, and the data that is used by those applications needs robust backup and
disaster recovery routines and should include contingency planning for protecting the state of
the cluster, container image registries, and runtime information.

2.2.1 Container Storage Interface

The Container Storage Interface (CSI) driver was created to provide a vendor-neutral
interface to block and file storage for use in a containerized environment. Before its
introduction, if a vendor wanted to attach external storage to the container environment, they
had to build code into the base K8s code, which was difficult to maintain and had to be done
for each storage product. The CSI was designed with the objective of being an open
specification for exposing block and file storage systems to container orchestration systems,
K8s being one of them. The CSI is maintained on GitHub.

The fundamental benefit of the CSI driver is that it allows K8s to dynamically provision
storage to bind to PVs for use by stateful containers. Otherwise, storage is allocated before
the environment, volumes are created, and then claims are made by PVs to bind those
volumes. The autonomy that CSI brings provides greater response, scalability, and
management of the platform as a whole, including better usage of the underlying
infrastructure.

In addition to dynamic provisioning, the CSI driver brings such capabilities as creating a
snapshot of a volume, which can be attached to a new ReplicaSet. The CSI driver supports
dynamic deprovisioning, and the ability to define thinly or thickly provisioned volumes.

All CSI drivers can perform the following tasks by using the defined CSI application
programming interface (API):

� Dynamically provision or deprovision a volume.
� Enable local storage device mapping, for example, lvm or device mapper.
� Attach or detach a volume from a node.
� Mount or unmount a volume from a node.
� Consume block and mountable volumes (the latter for CSI file drivers).
� Create or delete a snapshot.
� Provision a volume from a snapshot.

IBM features the following written CSI driver families:

� The IBM block storage CSI driver, which is used by K8s for PVs, dynamic provisioning of
block storage, and volume snapshots.1

This driver supports the following storage systems:

– IBM DS8000® family
– IBM FlashSystem® A9000/R family
– IBM Spectrum Virtualize based block storage, which includes IBM FlashSystem and

SAN Volume Controllers

� IBM Spectrum Scale CSI driver for file-based storage.2

1 https://www.ibm.com/docs/en/stg-block-csi-driver/1.10.0?topic=overview
Chapter 2. Building blocks and IBM Power capabilities 13

https://www.ibm.com/docs/en/stg-block-csi-driver/1.10.0?topic=overview
https://github.com/container-storage-interface/

For more information, see IBM Storage for Red Hat OpenShift Blueprint, REDP-5565 and
Using the IBM Block Storage CSI Driver in a Red Hat OpenShift Environment, REDP-5613.

2.2.2 IBM Spectrum Fusion

IBM Spectrum Fusion™ is a container-native data services platform for Red Hat OpenShift.
The solution helps bring applications to production faster by providing data services that are
simple, reliable, consistent, and strategic. IBM Spectrum Fusion helps organizations to
achieve the cloud-native agility and speed that they seek while mitigating the risks that are
associated with the introduction of new technology.

As an enterprise data fabric, IBM Spectrum Fusion unlocks the ability to innovate and operate
at full speed. From application development to data science to infrastructure modernization,
IBM Spectrum Fusion helps organizations navigate cloud-native technologies with a simple,
highly scalable and protected platform.

Figure 2-3 provides an overview of IBM Spectrum Fusion.

Figure 2-3 IBM Spectrum Fusion

IBM Spectrum Fusion delivers support for nearly all types of structured or unstructured data.
IBM Spectrum Fusion has advanced data mobility features that help ensure that data is
available on a global basis. When combined with advanced data discovery and cataloging,
IBM Spectrum Fusion enables organizations to find the right data at the right time and
present it anywhere globally.

IBM Spectrum Fusion is built on a market-leading technology that provides global access to
data transparently to a container application. The application sees the data as another local
file structure. The data can be physically placed in another data source up to thousands of
miles away. This global data access includes S3 object data from the cloud or on-premises,
Network File System (NFS) data from Dell/EMC, Netapp, or other vendors, and any
IBM Spectrum Scale compatible storage system.

For more information about IBM Spectrum Fusion, see the IBM Spectrum Fusion website.

2 https://www.ibm.com/docs/en/spectrum-scale-csi?topic=spectrum-scale-container-storage-interface-driv
er-26
14 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://www.ibm.com/docs/en/spectrum-scale-csi?topic=spectrum-scale-container-storage-interface-driver-26
https://www.ibm.com/docs/en/spectrum-scale-csi?topic=spectrum-scale-container-storage-interface-driver-26
https://www.ibm.com/products/spectrum-fusion

2.2.3 Red Hat OpenShift Data Foundation

Red Hat OpenShift Data Foundation (previously known as Red Hat OpenShift Container
Storage) is a software-defined storage orchestration platform for container environments that
is provided by Red Hat. Red Hat now includes Red Hat OpenShift Data Foundation
Essentials with Red Hat OpenShift Platform Plus. With this addition, Red Hat OpenShift
Platform Plus provides an end-to-end solution with all the tools that organizations need. In
addition to Red Hat OpenShift Container Platform, Red Hat OpenShift Platform Plus also
includes Red Hat OpenShift Advanced Cluster Management for K8s, Red Hat OpenShift
Advanced Cluster Security for K8s, Red Hat Quay container registry platform, and Red Hat
OpenShift Data Foundation for persistent data services.

Red Hat OpenShift Data Foundation Essentials abstracts the details of the storage
infrastructure while delivering data services that organizations need. Organizations can
upgrade to Red Hat OpenShift Data Foundation Advanced to add more sophisticated data
services functions.

Table 2-3 contrasts the capabilities that are provided by the two Red Hat OpenShift Data
Foundation options.

Table 2-3 Red Hat OpenShift Data Foundation capabilities

Red Hat OpenShift Data Foundation uses a technology stack that consists of Red Hat Ceph
Storage, Rook.io as a storage operator, and NooBaa as a storage gateway, behind which
storage systems are knitted into a fabric design. Red Hat OpenShift Data Foundation uses
CSI so that it can serve storage to platforms from pre-allocated storage and dynamically
provision from storage subsystems that can use a CSI driver, such as the IBM FlashSystem
family.

Red Hat OpenShift Data Foundation is packaged as an operator, and it is available through
the Red Hat OpenShift Container Platform Service catalog to allow for deployment and
management. Red Hat OpenShift Data Foundation can be deployed by using two methods:
an internal storage cluster, and an external storage cluster.

The platform provides the following types of storage services, which are exposed through
storage classes:

� Block storage: Primarily for database, logging, and monitoring workloads.

� Shared and distributed file: For CI/CD tools, messaging, and data aggregation workloads.

� Object storage: Provides a lightweight S3 API endpoint through NooBaa for abstraction of
storage and retrieval from multiple object stores, which is ideal for cloud-native workloads
or archival and backup data.

Red Hat OpenShift Data Foundation Essentials Red Hat OpenShift Data Foundation
Advanced

� K8s RWO (block and file)
� K8s RWX (shared file and shared block)
� Object storage (S3-compatible)
� Internal mode storage (on-cluster)
� Volume snapshots
� Cluster-wide encryption
� Multicloud Object Gateway (MCG)

� External mode storage (shared cluster)
� Mixed usage patterns (off-cluster

workloads)
� Volume-level encryption with BYOK

support
� Metro disaster recovery
� Regional disaster recovery
Chapter 2. Building blocks and IBM Power capabilities 15

The Red Hat OpenShift Data Foundation platform uses the same stateful, declarative nature
of K8s. It codifies administrative tasks and custom resources, which improves th automation
of tasks and resources. Administrators can define the wanted state of the cluster, and Red
Hat OpenShift Data Foundation operators can ensure that the cluster is in that state or
approaching it while minimizing manual intervention.

For general-purpose persistent storage or dynamic provision requirements, Red Hat
OpenShift Data Foundation is suitable for workloads like data science and data analytics,
artificial intelligence (AI), machine learning, and Internet of Things workloads.

2.2.4 Enabling data encryption for IBM FlashSystem and IBM Spectrum
Virtualize

To enable data encryption for block storage when creating Red Hat OpenShift Data
Foundation Cluster for external IBM FlashSystem storage, complete the following steps:

1. In the Red Hat OpenShift Web Console, select Operators → OperatorHub to search for
and install Red Hat OpenShift Data Foundation Operator, as shown in Figure 2-4.

Figure 2-4 Installing Red Hat OpenShift Data Foundation Operator

2. The next window opens, as shown in Figure 2-5 on page 17. Select the update channel
and other options and then click Install.
16 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 2-5 Red Hat OpenShift Data Foundation Operator settings

3. Check the Installed Operators, as shown in Figure 2-6.

Figure 2-6 Checking the Red Hat OpenShift Data Foundation Operator installation

4. Click Red Hat OpenShift Data Foundation and then click Create StorageSystem, as
shown in Figure 2-7.

Figure 2-7 Create StorageSystem
Chapter 2. Building blocks and IBM Power capabilities 17

5. In the Backing storage window, Select Connect an external storage platform from the
available options and select IBM FlashSystem Storage from the Storage platform list, as
shown in Figure 2-8.

Figure 2-8 Connecting to external storage

6. In the Create storage class window, provide the name for the storage class, IP address,
User name, Password, and Pool name of the IBM FlashSystem connection and select
thick or thin for the Volume mode, as shown in Figure 2-9.

Figure 2-9 IBM FlashSystem information details

7. In the Capacity and nodes window, provide the necessary capacity details. Select at least
three nodes in three different zones.

8. In the Security and network window, provide the necessary details, as shown in
Figure 2-10 on page 19.
18 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 2-10 Red Hat OpenShift Data Foundation Operator security settings

a. To enable encryption, select Enable data encryption for block and file storage.

b. Choose any one or both encryption levels:

• Cluster-wide encryption

• StorageClass encryption

a. Select the Connect to an external key management service checkbox. This choice
is optional for cluster-wide encryption.

i. Key Management Service Provider is set to Vault by default.

ii. Enter Vault Service Name, host Address of Vault server ('https://<hostname or ip>'),
Port number, and Token.

iii. Expand Advanced Settings to enter more settings and certificate details based on
your Vault configuration.

iv. Enter the Key Value secret path in the Backend Path that is dedicated and unique to
Red Hat OpenShift Data Foundation.

v. Optional: Enter TLS Server Name and Vault Enterprise Namespace.

vi. Provide CA Certificate, Client Certificate, and Client Private Key by uploading the
respective PEM encoded certificate file.

For more information, see Chapter 2, “Deploy OpenShift Data Foundation using local storage
devices”, of Deploying OpenShift Data Foundation using IBM Power.

Note: Red Hat OpenShift Data Foundation Essentials supports device-level encryption.
Red Hat OpenShift Data Foundation Advanced supports encryption at the PV level and
supports volume-level encryption with BYOK.
Chapter 2. Building blocks and IBM Power capabilities 19

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/deploying_openshift_data_foundation_using_ibm_power/deploy-using-local-storage-devices-ibm-power

2.2.5 IBM Spectrum Scale CSI driver security considerations

Here are the security best practices when using IBM Spectrum Scale CSI:

� Use separate IBM Spectrum Scale Cluster networks for metadata, data traffic, and
administration.

� Ensure that only Red Hat OpenShift infrastructure nodes have access to the
IBM Spectrum Scale GUI that uses the administration network. The following security
parameters should be set for secure communication between the CSI plug-in and the
IBM Spectrum Scale GUI:

– Secure SSL Mode: Set to true.

– Certificate: Specify a certificate authority (CA) certificate for the GUI server.

– User credential: Specify IBM Spectrum Scale GUI “username” and “Password” as
base64 encoded values.

� Ensure that adequate ownership is set for the PVs.

� Ensure that the pod security context is set properly.

� Use Federal Information Processing Standards (FIPS)-compliant secure data at rest that
is supported by IBM Spectrum Scale by using key managers such as IBM Security
Guardium® Key Lifecycle Manager.

� Encrypt all communications between the IBM Spectrum Scale clients and servers, which
include data from containers or pods by setting the security mode to one of the following
levels:3

– AUTHONLY: The sending and receiving nodes authenticate each other with a TLS
handshake and then close the TLS connection. Communication continues in the clear.
The nodes do not encrypt transmitted data and do not check data integrity.

– Cipher: The sending and receiving nodes authenticate each other with a TLS
handshake. A TLS connection is established. The transmitted data is encrypted with
the specified cipher and is checked for data integrity.

For more information, see IBM Spectrum Scale CSI Driver for Container Persistent Storage,
REDP-5589.

2.3 Orchestrators and K8s

K8s is a container orchestrator platform, which orchestrates and manages the container
lifecycle is an automated way, either on-premises or in the cloud.

In the era of digital transformation, enterprises are embracing modern and open-source
technologies to overcome modern development issues. Due to the business demands for
speed and agility in delivering products, developers adopted application modernization tools
by using containerization to modernize their monolithic applications into microservices. In this
transformation journey, K8s plays an important role because it offers various benefits for
running and managing containerized services and applications in a cluster of nodes. K8s can
be deployed across various deployment platforms, such as on-premises or in cloud, including
private cloud, public cloud, and hybrid multicloud scenarios.

3 https://www.ibm.com/docs/en/spectrum-scale/5.1.5?topic=cluster-security-mode
20 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://www.ibm.com/docs/en/spectrum-scale/5.1.5?topic=cluster-security-mode

While enterprises are adopting K8s, architects, developers, Site Reliability Engineers (SREs),
and administrators must be vigilant about one of the most important aspects of K8s, that is, its
security. The K8s environment, whether it is on-premises or in the cloud, can be prone to
attack if not properly hardened.

Here are some of the security loopholes that can be exploited by hackers to attack the K8s
environment:

� Images in the registry are infected

� Unauthorized access to the apiserver

� Compromised cluster nodes

� Compromised containers

� Excessive or full access permission to service accounts or users

� Inappropriate usage of TLS and the firewall for the apiserver, load balancer, or Ingress
Controller

� Public access to the cluster

Figure 2-11 shows some of the major attack vectors.

Figure 2-11 Security threat matrix

The security threat matrix that is shown in Figure 2-11 was published by Microsoft to define
what it considers as the major attack vectors assembled into a threat matrix, which is
discussed in this Microsoft Security Blog.
Chapter 2. Building blocks and IBM Power capabilities 21

https://www.microsoft.com/en-us/security/blog/2021/03/23/secure-containerized-environments-with-updated-threat-matrix-for-kubernetes/

2.3.1 Security best practices for containers

K8s can be a complex environment. There are several aspects to consider as you configure
the environment to properly configure and manage a secure K8s environment:

� Secure container images in the container registry: Developers must adapt the process of
creating a secure image that is built on the secure application code. They must implement
a security and vulnerability scanner in the CI/CD pipeline. If the code is not secure and
contains vulnerabilities, then the container can be vulnerable and prone to attacks.

� Node security: Secure the K8s nodes. Apply patches for the OS. Configure firewalls. Use
the principle of least privilege. Block public access to the nodes. Follow the best practices
that are mentioned in the Center for Internet Security (CIS) benchmarks. For the
benchmarks for the Kubernetes download, see CIS Benchmarks.

� Secure apiserver: Because all communication to the K8s containers and in the K8s cluster
go through the API server, implement TLS for apiserver communication.

� Role-base access control (RBAC): Limit the access to the cluster with K8s RBAC. For
more information about an RBAC setup, see 5.2, “RBAC setup for users and service
accounts” on page 106.

� Principle of least privilege: Provide the required minimum and limited access to service
accounts and users.

� Network security: Implement proper ingress and egress rules and Container Network
Interface (CNI) network policies for K8s workloads in the cluster. Implement a service
mesh, if appropriate.4 Leverage side-car proxy and mutual Transport Layer Security
(mTLS) for secure communication between microservices in the cluster. For more
information, see this IBM Cloud document.

� Pod security: Configure an appropriate pod security standards policy. Pod security is
managed by Pod Security Admission policies in the current version of Red Hat OpenShift.
For more information, see this Red Hat blog.

� Secrets: Do not use a configmap to keep a password or other authentication tokens;
instead, use secrets. If appropriate, use a third-party vault to inject a secret into the pod.

� Version control: Keep K8s up to date.

� Monitor: Set up monitoring and observability in your environment. For more information,
see 7.1, “Monitoring containers and Red Hat OpenShift Container Storage security” on
page 126.

2.4 Ingress Controller

Within a K8s or Red Hat OpenShift architecture, each service that represents a cluster of
pod's has its own IP address to enable communication with other pods and services, but not
external clients that are outside of the cluster. To enable HTTP/S access from clients, an
HAProxy-based Ingress Controller should be used, which provides a rules-based highly
available and load-balanced service with routing capability.

There are two aspects to the Ingress Controller:

� Ingress: Traffic (requests) inbound to a service from users.
� Egress: Traffic (responses) sent back from the service to the users.

Figure 2-12 on page 23 shows an example of a cluster with an Ingress Controller.

4 https://www.techtarget.com/searchitoperations/definition/service-mesh
22 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://www.cisecurity.org/cis-benchmarks
https://learn.cisecurity.org/benchmarks?_gl=1*etnfhs*_ga*NzgxOTgxMDAzLjE2ODIzNzUzNTI.*_ga_N70Z2MKMD7*MTY4MjM3NTM1Mi4xLjEuMTY4MjM3NTM4OC4yNC4wLjA
https://www.techtarget.com/searchitoperations/definition/service-mesh
https://cloud.ibm.com/docs/containers?topic=containers-network_policies
https://cloud.redhat.com/blog/pod-security-admission-in-openshift-4.11

Figure 2-12 Ingress Controller with three worker nodes

The cluster has three worker nodes, and there are two services (service A and service B),
each with their own IP address or DNS name that is configured to enable the Ingress
Controller to provide bidirectional access to the application pod that was deployed across the
three nodes. Traffic is routed to and from each multi-node pod within a service. The Ingress
Controller is a critical component of the K8s and Red Hat OpenShift architecture because it
enables and manages bidirectional traffic from users outside the K8s and Red Hat OpenShift
architecture.

By default, the Ingress Controller replica is set to two pods and can be scaled as needed. The
Ingress Controller is a reverse proxy. Without an Ingress Controller, the services (HTTP
protocol only) would need to be exposed with the service type NodePort or LoadBalancer with
an extra cluster external reverse proxy connecting to these node ports or load-balancers.
Because the Ingress Controller can and should terminate TLS, it is a best practice to use it.
Otherwise, each service that is exposed to other service types would need its own
implementation of TLS termination.

2.5 Container registry

Red Hat OpenShift provides a unified image registry that is on the infrastructure nodes of the
cluster. This setup allows organizations to avoid third-party hosting services and public image
storage services such as Docker Hub. By keeping all required images within the cluster,
organizations can avoid reliance on third-party services and associated outages.

The container registry stores container images for the following reasons:

� Make images accessible to other users.

� Organize images in repositories that can contain multiple versions of images.

� Restrict access to images based on different authentication methods.

Here are some best practices to use securely container registries:

� Scan and track the contents of downloaded container images and add a layer of protection
by using only trusted sources that are known to be free of vulnerabilities in all layers.

� Use immutable containers:

– Rebuild and redeploy updated container images instead of changing them.

– Use Red Hat certified images.
Chapter 2. Building blocks and IBM Power capabilities 23

� Use Red Hat Security Advisories to alert you to any newly discovered issues in Red Hat
certified container images and direct you to the updated image.

� Check the Red Hat Ecosystem Catalog to look up security-related issues for each Red Hat
image.

� Use RBACs to manage who can pull and push each container image.

� Use private Red Hat OpenShift Container Platform registries such as Red Hat Quay, as
described in 4.2.12, “Vulnerability scanners” on page 78.

� Use Portieris to enforce image security policies in IBM Cloud Container Registry. Portieris
is a K8s admission controller that verifies your container images before you deploy them to
your cluster in IBM Cloud Kubernetes Service. Use Portieris to enforce policies on image
signatures and on vulnerabilities that are detected by Vulnerability Advisor. If an image
does not meet your policy requirements, the resource that contains the pod is not
deployed to your cluster.

� Integrate CI/CD pipelines and image registries with Red Hat Advanced Cluster Security for
Kubernetes for continuous scanning and assurance, as described on 4.2.12, “Vulnerability
scanners” on page 78.

2.6 Red Hat OpenShift on IBM Power Virtual Server

Enterprise users might discover that moving Power workloads out of a secure and “known”
on-premises environment to an “unknown” virtual environment to be counterintuitive for
security reasons. But, IBM Power Systems Virtual Server (IBM PowerVS) combines all the
security capabilities of physical Power servers with robust IBM Cloud security capabilities,
including IAM.

At the time of writing, IBM PowerVS is available in almost 15 IBM data centers around the
world. IBM PowerVS fully supports mission-critical workload environments, such as:

� SAP HANA and traditional SAP workloads

� Custom AIX and IBM i applications

� Red Hat OpenShift

� IBM Cloud Pak

IBM PowerVS includes comprehensive governance compliance, including HIPAA, multiple
SOC designations, General Data Protection Regulation (GDPR), and ISO 27K.

The IBM and Red Hat hybrid multicloud strategy is built on open standards that are hardened
for the enterprise by combining Red Hat OpenShift Container Platform on the IBM IT
infrastructure.

Existing Power customers can retain their data-intensive workloads running on-premises or in
private clouds while leveraging the speed and flexibility of public cloud deployments. The
move to an IBM hybrid cloud architecture is enabled by the following actions:

� Adopting Red Hat OpenShift as the open hybrid cloud platform that can orchestrate
applications flexibly in any environment, such as Power servers, zSystems, x86
architectures, and across all clouds.

� Building modern scalable applications that can be deployed anywhere in the hybrid cloud
with IBM Cloud Pak and Red Hat OpenShift.
24 Security Implementation with Red Hat OpenShift on IBM Power Systems

The deployment of Red Hat OpenShift on IBM PowerVS is based on a Bring Your Own
License model with a valid license entitlement for Red Hat OpenShift and Red Hat Linux on
Power.

Here are best practices to use securely Red Hat OpenShift on IBM PowerVS.

� Use IBM Cloud Direct Link from the applications that are deployed on Red Hat OpenShift
in IBM PowerVS to access IBM Cloud services. The IBM Cloud Direct Link service allows
access to IBM Cloud resources by using a private network from the IBM PowerVS
instance.

� To strengthen the security of cloud-based deployments, secure web applications with
CA-signed certificates instead of self-signed certificates by replacing the default
self-signed certificates with custom CA-signed certificates.

� Back up the Red Hat OpenShift cluster's etcd data regularly and store it in a secure
location outside the Red Hat OpenShift Container Platform environment, such as
IBM Cloud Object Storage with integration capabilities with IBM Cloud Key Management
Services like IBM Key Protect and IBM HPCS.

2.7 IBM Cloud Paks

IBM Cloud Paks offer a simplified, enterprise-grade IBM technology stack in a containerized
image. They are pre-certified and are built on Red Hat OpenShift. IBM Cloud Paks are
production-ready and come bundled with management and governance tools that cater to the
following services:

� Monitoring and logging

� Version upgrades and rollbacks

� Identity management

� Security and vulnerability scanning

Figure 2-13 shows some of the benefits of IBM Cloud Paks.

Figure 2-13 IBM Cloud Paks
Chapter 2. Building blocks and IBM Power capabilities 25

IBM Cloud Paks provide a set of tools to help you build your cloud-native application
environment. They also provide a high level of security for applications and data. Here are a
few reasons why they do so:

� Built on Red Hat OpenShift: IBM Cloud Paks are built on top of the Red Hat OpenShift
container orchestration platform, which provides a secure and robust foundation for
running applications. Red Hat OpenShift includes built-in security features such as RBAC,
network segmentation, and secrets management.

� Built-in security features: IBM Cloud Paks include various built-in security features, such
as encryption, authentication, and access control. These features help to protect
applications and data from unauthorized access and tampering.

� Compliance: IBM Cloud Paks help meet compliance requirements, such as those related
to data privacy and security. IBM Cloud Paks include features that help to comply with
regulations such as PCI-DSS, HIPAA, and SOC2.

� Built-in threat protection: IBM Cloud Paks include built-in threat protection features, such
as firewall, intrusion detection and prevention systems, and security incident and event
management (SIEM). These features are designed to protect applications and data from
cyberthreats such as malware, hackers, and other types of malicious activities.

� Multi-cloud management: IBM Cloud Paks can be used to manage and secure
applications across multiple clouds and on-premises environments so that you can
leverage the security features that are provided by different clouds and use IBM Cloud
Paks to centrally manage security policies and compliance requirements.

IBM Cloud Paks use cases
There are many IBM Cloud Paks that are available, each designed to meet a set of business
requirements in your enterprise. Figure 2-14 gives an overview of some of the IBM Cloud
Paks that are available and their use cases.

Figure 2-14 IBM Cloud Paks overview
26 Security Implementation with Red Hat OpenShift on IBM Power Systems

2.7.1 IBM Cloud Pak for Applications

IBM Cloud Pak for Applications is built on the IBM WebSphere stack and Red Hat OpenShift.
It is a containerized solution that provides developers with a choice of languages and
frameworks to build cloud-native applications. The IBM Cloud Pak comes with best practice
advice and guidance. Products and components that are included with IBM Cloud Pak for
Applications are as follows:

� IBM WebSphere Application Server
� IBM Mobile Foundation
� Red Hat OpenShift Container Platform
� Red Hat Runtimes
� IBM Cloud Transformation Advisor

Figure 2-15 shows the benefits by using IBM Cloud Pak for Applications.

Figure 2-15 IBM Cloud Pak for Applications

Notes: IBM Cloud Pak for Applications can be installed on a supported version of Red Hat
OpenShift Container Platform in any public or private cloud. It can be run on-premises
behind a corporate firewall. Before installing the IBM Cloud Pak, you must have an
IBM Cloud Pak License and configured a Red Hat OpenShift cluster.

For more information, see Getting started with IBM Cloud Pak for Applications.
Chapter 2. Building blocks and IBM Power capabilities 27

https://cloud.ibm.com/docs/cloud-pak-applications?topic=cloud-pak-applications-getting-started
https://cloud.ibm.com/docs/cloud-pak-applications?topic=cloud-pak-applications-getting-started

28 Security Implementation with Red Hat OpenShift on IBM Power Systems

Chapter 3. Security framework and attack
vectors

This chapter provides an overview of areas in your environment that can be used as entry
points for entities, either internal or external, who want to instigate an attack on your
applications and data. We describe a foundational framework that can be used to keep those
attacks from being successful.

This chapter describes the following topics:

� Defining a threat

� Seven layer security model

� Assessing your security posture

� Layered defense approach

� Distributed application vulnerabilities

� Container vulnerabilities

3

© Copyright IBM Corp. 2023. 29

3.1 Defining a threat

It is a common occurrence that different enterprises are being attacked, which results in
business disruption and possibly data loss. As a result, you must act to avoid and thwart
those attacks on your IT infrastructure.

According to the National Institute of Standards and Technology (NIST), a threat is defined as
follows:1

“Any circumstance or event with the potential to adversely impact organizational operations
(including mission, functions, image, or reputation), organizational assets, or individuals
through an information system via unauthorized access, destruction, disclosure, modification
of information, and/or denial of service. Also, the potential for a threat-source to successfully
exploit a particular information system vulnerability.”

This chapter helps you understand areas of your IT infrastructure that are vulnerable and
provide a framework to help you build in the proper protections in your applications and
operations. Having a valid and complete inventory of your IT assets facilitates your planning
process.

3.2 Seven layer security model

There have been many reports of data breaches and cyberattacks over several years.
Security practices, countermeasures, tools, and methodologies are getting better and more
sophisticated, but so are the techniques of cyberattackers. The attacks continue unabated
even in 2023, the year that this book was written.

In October 2022, hackers released data from the Los Angeles Unified School District. In
September 2022, Optus, an Australian telecoms company with 9+ million subscribers,
suffered a data breach that affected 1.2 million of their customers. In August 2022, Greece's
largest natural gas distributor, DESFA, suffered a limited scope data breach and system
outage that was caused by a cyberattack. For more information about these cyberattacks, see
Data Breaches That Have Happened in 2022 and 2023 So Far.

This sample is a tiny one of cyberattacks and data breaches. From the geographical
distribution of these attacks, it is clear that the problem is worldwide. Additionally, with the
paradigm shift following the COVID-19 pandemic where more business and activities were
conducted digitally, there is a larger attack surface with the potential of being subject to
malicious cyberactivity.

Understanding the 7 layers of security, as shown in Figure 3-1 on page 31, helps
organizations to construct a multi-faceted approach when developing defense plans and
measures to keep their systems safe. The following sections describe each of these layers.

Mission-critical assets
A mission-critical asset is anything without which a business cannot survive. The challenge is
that each business must tailor this layer to their own business. What is critical for one
business might not be critical for another business. When the assets at this layer are correctly
identified, an organization can work backwards through the other six layers to build a security
policy that comprehensively protects what they consider most precious.

1 https://csrc.nist.gov/glossary/term/threat
30 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://tech.co/news/data-breaches-2022-so-far
https://csrc.nist.gov/glossary/term/threat

Figure 3-1 Seven layers of cybersecurity

Data security
This layer is about security controls to protect storage, transfer, backups, and data loss. The
IBM Security Guardium Portfolio enables security teams to protect data at rest and in transit.
For more information about IBM Security Guardium, see IBM Power Systems Cloud Security
Guide: Protect IT Infrastructure In All Layers, REDP-5659 and IBM Security Guardium.

Application security
Web applications are the main target of hackers, and security at this level should clearly
define whether an application is internally or externally facing. Security measures should
account for these factors, and address access to the applications and how the applications
access data.

Endpoint security
It is increasingly common for organizations to allow and encourage employees to install
authentication apps on their personal mobile devices so that they can use them for
multi-factor authentication (MFA) to corporate systems. Therefore, it is important that there
are controls in place to protect the connections between user devices and enterprise
systems. Security should be robust enough to make sure that user devices cannot be
exploited to breach corporate systems and vice versa.

Network security
The goal here is to prevent unauthorized access to a business’s network. Security should not
stop after a legitimate user gains access to the network. Network security policies should
continue to ensure that the legitimate user can access only what they are meant to access.
Keeping current with security patches is vital in keeping networks protected. Offerings such
as IBM Cloud Pak for Security2 can form part of the arsenal in keeping networks secure.

2 https://cloud.ibm.com/docs/cloud-pak-security?topic=cloud-pak-security-getting-started
Chapter 3. Security framework and attack vectors 31

https://cloud.ibm.com/docs/cloud-pak-security?topic=cloud-pak-security-getting-started
https://www.ibm.com/guardium

Perimeter security
This outer layer of the network is the point at which all devices access company data. The
outer layer does not necessarily stop at the office building, the data center, or even the city or
country in which the business is located. With Internet of Things devices, such as railway
wayside instruments, and other remote monitoring equipment, the perimeter is now global.

The first step in keeping this layer safe is to understand what comprises the perimeter and
catalog and identify the groups of devices that connect to the network.

The human layer
In the latest Privacy Incident Benchmark Report (PIBR) for 2022 from RadarFirst,3 it is made
clear that unintentional human error is still the biggest cause of privacy data reaches. As
shown in Figure 3-2, the report goes on to highlight that 95% of data privacy breaches are
caused by human error. A further 3% of privacy breaches are caused by people that snoop to
get unauthorized access to personal data but with no intent to cause harm to the enterprise.
According to the report, only approximately 2% of all 55,000 assessments from 150
jurisdictions was malicious.

Figure 3-2 Privacy Incident Benchmark Report: human error impact

Education and training of personnel are some of the best ways to reduce the dangers that are
posed by the human factor. In most medium and large organizations, training in cybersecurity
is mandatory as part of the employee recertification process. It is common across
organizations that employees and consultants take an annual re-certification on cybersecurity
training.

3 https://www.radarfirst.com/resources/2022-privacy-incident-benchmark-report/
32 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://www.radarfirst.com/resources/2022-privacy-incident-benchmark-report/

3.3 Assessing your security posture

Security posture is a measure of an organization’s overall cybersecurity status. It is a
measure of how vulnerable an organization is to cyberattacks or data breaches. Another
important facet of security posture is how an organization reacts to cyberattacks and threats.

Figure 3-3 shows some of the various components of an organization’s security posture. The
following sections summarize what the diagram represents. For more information and a
detailed explanation, see What is Security Posture.

Figure 3-3 Attack vectors4

Inventory of assets
As mentioned in 3.2, “Seven layer security model” on page 30, at the core of establishing a
security posture is having an accurate catalog of all IT assets and using it as a foundation for
building a security posture.

Note: The PIBR is an annual publication by RadarFirst that collates and summarizes the
risks of harm to individuals through the exposure of sensitive data. For more information,
see The RadarFirst Story.

4 Source: https://www.balbix.com
Chapter 3. Security framework and attack vectors 33

https://www.radarfirst.com/about/
https://www.balbix.com/insights/what-is-cyber-security-posture
https://www.balbix.com

Security controls
Security controls are about evaluating and understanding the efficacy of security controls that
have been and will be implemented. Some controls prevent attacks, others detect attacks,
and others are designed to help you recover from attacks.

Attack vectors
Attack vectors are the methods that attackers use to intrude into the network.

Attack surface
An attack surface is the amalgamation of asset inventories and attack vectors. The attack
surface is a representation of all the ways attackers attempt to gain unauthorized access to
the network.

3.4 Layered defense approach

Because IT security risks can occur at different levels, security measures must be put in place
to provide a layered defense approach. Using a layered approach means that an attacker who
gets through one layer of defense will be obstructed and blocked by the next layer.

In 3.2, “Seven layer security model” on page 30, we outlined the main components of a
layered defense approach. System-level security is the last line of defense against attacks
that originate from the internet. As such, be careful when building system-level security.

The IBM Power10 family of servers comes with a number of features, which help in building a
strategy for a layered defense approach. Here are two of the most relevant features:

� Side-channel mitigation performance

� End-to-end encryption

Side-channel mitigation performance
Side-channel attacks (such as Spectre and Meltdown) allow unauthorized read access by
malicious processes to the contents of protected kernel or host memory. CPU vendors
introduced several features to protect against these kinds of attacks, but they can cause
performance degradation in some cases. The Power10 processor is designed to improve
side-channel mitigation performance.

End-to-end encryption
The Power10 processor supports Fully Homomorphic Encryption (FHE) and quantum-safe
cryptography.

Note: For more information about how Power10 servers can be used as part of a multi-lay-
ered defense approach, see A multilayered approach to security with IBM Power.
34 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://www.ibm.com/it-infrastructure/power/resources/multilayer-security-approach

3.5 Distributed application vulnerabilities

A distributed application in the context of Red Hat OpenShift is a software application that is
designed to run on multiple regions and servers, connected over multiple networks, and
deployed and managed by using the Red Hat OpenShift platform.

Red Hat OpenShift is a cloud-based platform for developing and deploying containerized
applications. It provides several features and tools to help developers build, deploy, and
manage distributed applications:

� Container orchestration: Red Hat OpenShift uses Kubernetes (K8s) to manage and
orchestrate containers, which allows developers to easily scale and deploy their
applications across multiple nodes in a cluster.

� Auto-scaling: Red Hat OpenShift automatically can scale applications based on demand,
which helps ensure that applications have the resources that they need to meet user
demand.

� Deployment pipelines: Red Hat OpenShift provides a deployment pipeline feature that
allows developers to automate the build, test, and deployment process for their
applications.

� Monitoring and logging: Red Hat OpenShift provides built-in monitoring and logging
capabilities to help developers track the performance and health of their applications.

� Security: Red Hat OpenShift provides several security features, including network policies,
pod security policies, and image scanning to help secure distributed applications.

By using Red Hat OpenShift, developers can easily build, deploy, and manage distributed
applications in a secure and scalable manner. Distributed applications can be vulnerable to a
range of security threats, including network-based attacks, data breaches, and malicious
actors attempting to exploit vulnerabilities in the application itself. Common vulnerabilities in
distributed applications include weak authentication and access controls, lack of input
validation, and poor exception handling. For more information, see 3.5.4, “Common
vulnerabilities affecting distributed applications” on page 37.

3.5.1 Security challenges in a microservices architecture

A microservices architecture provides a methodology to design and build software
applications as a set of small, independent services that communicate with each other
through well-defined interfaces. This approach has several benefits, including improved
scalability, flexibility, and maintainability.

However, a microservices architecture also introduces some security challenges that must be
addressed:

� Complexity: With microservices, it is more difficult to secure the entire system as a whole
because it is divided into multiple, independent services, which can make it harder to
identify and address vulnerabilities or threats.

� Communication: Microservices communicate with each other through application
programming interfaces (APIs), which can increase the attack surface and make it easier
for attackers to exploit vulnerabilities. It is important to secure the communication between
microservices with measures such as encryption and authentication.

� Visibility: It can be challenging to monitor and detect threats or vulnerabilities in a
microservices environment because of the distributed nature of the system.

� Access control: With microservices, it is important to implement granular access controls
to ensure that only authorized users and services have access to specific resources.
Chapter 3. Security framework and attack vectors 35

To address these challenges, it is important to implement a robust security strategy that
includes measures such as encryption, authentication, access control, and monitoring. It is
also important to regularly test and assess the security of the microservices environment to
ensure that it is adequately protected.

3.5.2 Understanding multi-region active-active architecture

A multi-region active-active architecture is a type of distributed application architecture that is
designed to provide high availability and scalability by running in multiple regions
simultaneously.

In this architecture, the application is deployed in multiple regions, and users can access the
application from any of the regions. The application is configured to synchronize data
between regions in real time, which allows users to access the same data regardless of which
region from which they are accessing the application.

The benefits of a multi-region active-active architecture include the following ones:

� High availability: By running in multiple regions, the application is less likely to experience
outages due to regional failures or maintenance.

� Scalability: The application can scale horizontally by adding more regions and vertically by
adding more resources in each region.

� Improved performance: By running in multiple regions, the application can be closer to
users, which can improve performance and reduce latency.

� Disaster recovery: If a region experiences a disaster, users can still access the application
from other regions.

However, building and maintaining a multi-region active-active architecture can be complex
because it requires coordinating data synchronization between regions and managing
multiple instances of the application. It is typically more expensive than other types of
architectures due to the extra infrastructure and resources that are required.

3.5.3 Requirements for a multi-region active-active architecture

There are several requirements that must be considered when building a multi-region
active-active architecture:

� Data synchronization: One of the main challenges of a multi-region active-active
architecture is ensuring that data is synchronized between regions in real time. This task
requires a reliable and efficient data synchronization mechanism, such as a database
replication or message queuing system.

� Network connectivity: To ensure that users can access the application from any region, the
application must communicate with other regions over a reliable and high-bandwidth
network.

� Load-balancing: To distribute traffic evenly across regions, the application should use a
load-balancing mechanism, such as a global load-balancer or traffic manager to route
users to the appropriate region.

� Disaster recovery: The application should be able to handle regional failures or disasters,
such as data centers going offline or natural disasters. This task might require
implementing backup systems and processes, such as redundant data centers or data
replication across regions.
36 Security Implementation with Red Hat OpenShift on IBM Power Systems

� Security: To ensure the security of the application and its data, the application should use
secure communication channels and implement strong authentication and authorization
mechanisms. It should follow general security best practices, such as using strong
passwords and enforcing least privilege principles.

� Compliance: Depending on the industry and location of the application, it might be subject
to various compliance requirements, such as data privacy regulations. Ensure that the
application meets these requirements, which might require implementing extra controls
and processes.

By considering these requirements and implementing appropriate mechanisms and controls,
you can build a robust and scalable multi-region active-active architecture.

3.5.4 Common vulnerabilities affecting distributed applications

There are several common vulnerabilities that can affect distributed applications:

� Injection attacks: These attacks involve injecting malicious code or data into the
application, which can be used to run unauthorized actions or access sensitive data.
Examples include SQL injection and cross-site scripting (XSS) attacks.

� Broken authentication and authorization: Weak or improperly implemented authentication
and authorization mechanisms can allow unauthorized users to gain access to the
application or its data.

� Cross-site request forgery (CSRF): This vulnerability allows an attacker to trick a user into
making a request to the application on the attacker's behalf, potentially allowing the
attacker to run unauthorized actions. In the context of Red Hat OpenShift, a CSRF
vulnerability might allow an attacker to perform actions on behalf of a user without the
user's knowledge or consent. For example, an attacker might use a CSRF attack to create,
modify, or delete resources within the Red Hat OpenShift environment.

� Insecure communication channels: If communication between distributed components is
not encrypted, it can be intercepted and tampered with, potentially allowing an attacker to
access sensitive data or run unauthorized actions.

� Improper error handling: If the application does not properly handle errors, it might reveal
sensitive information, such as stack traces or database details, which can be used by an
attacker to exploit the application.

� Lack of input validation: If the application does not properly validate input, it might be
vulnerable to injection attacks or other types of malicious input.

� Lack of security patches: If the application and its components are not kept up to date with
the latest security patches, it might be vulnerable to known vulnerabilities that are
addressed in newer versions.
Chapter 3. Security framework and attack vectors 37

3.5.5 Best practices for securing distributed applications in Red Hat
OpenShift

Here are best practices to secure distributed applications in Red Hat OpenShift:

� Use secure communication channels: Ensure that all communication between distributed
components is encrypted to prevent eavesdropping and tampering:

– Use Transport Layer Security (TLS) to encrypt communication between components.
Red Hat OpenShift includes a built-in certificate authority (CA) to issue certificates to
components and secure communication between them.

– Enable mutual Transport Layer Security (mTLS) to require all components to present a
valid certificate before they can communicate with each other.

– Use network segmentation and firewall rules to restrict communication between
components to only the necessary ports and protocols.

– Use an external load balancer or Ingress Controller to terminate TLS connections and
forward traffic to the appropriate component.

� Validate input: Validate all input to prevent malicious data from being processed by the
application. This action includes sanitizing user input, verifying the authenticity of data that
is received from other components, and verifying that data meets the expected format and
constraints.

� Use secure authentication and authorization: Implement secure authentication and
authorization mechanisms to ensure that only authorized users and components can
access the application and its data. Red Hat OpenShift provides several authentication
and authorization options, such as OAuth, OpenID Connect (OIDC), and LDAP, which can
be used to secure your application.

� Implement proper error handling: Proper error handling can help prevent vulnerabilities by
ensuring that the application gracefully handles unexpected input or errors and does not
reveal sensitive information.

� Regularly update and patch: Keep all components of the distributed application up to date
with the latest security patches to fix known vulnerabilities. Red Hat OpenShift provides
automatic updates and patching capabilities to help you keep your application secure.

� Use security testing tools: Regularly use security testing tools, such as penetration testing
and vulnerability scanners to identify and address vulnerabilities in the application.

� Enable role-based access control (RBAC): Define which users and groups can access
specific components and resources within Red Hat OpenShift.

� Use Pod Security Policies: Define the security context for pods and containers in Red Hat
OpenShift.

� Enable auditing and logging: Track and monitor access to components and resources
within Red Hat OpenShift.

� Implement security best practices: Follow general security best practices, such as using
strong passwords, disabling unnecessary services, and enforcing least privilege principles
to help prevent vulnerabilities in the application.

In addition to these best practices, you also can use Red Hat OpenShift security features,
such as network policies, pod security policies, and image scanning to further secure your
application.
38 Security Implementation with Red Hat OpenShift on IBM Power Systems

3.6 Container vulnerabilities

Container technology transformed dramatically the way that many organizations run their
businesses. With containers, an enterprise (whether large or small) can now leverage the
usage of containers so that the enterprise can become more agile and deliver solutions and
benefits to their customers more quickly. For developers working within the enterprise, they
can test their solutions end-to-end by deploying firewalls, LDAP instances, databases, and
Enterprise Service Buses (ESBs) within containers running on their own laptops before
deploying to a shared integration environment. This kind of agility and flexibility means that
performance issues, bugs, and bottlenecks are identified and captured more quickly, which
enables teams to deliver more robust solutions to the customer in a shortened period.

Figure 3-4 shows some of the main benefits of containerization.

Figure 3-4 Containerization benefits

3.6.1 Recent security breaches

There are security risks and vulnerabilities that are associated with most new technologies,
which does not mean that we should avoid containerization; it means that we must be aware
of the risks and implement security best practices.

There have been several documented container and K8s attacks. One example5 was how
attackers exploited a misconfigured Docker API to run crypto mining software. The malware
was designed to escape from the container to the host and then spread to other containers
and hosts. Crypto currency mining requires the purchase of expensive hardware or GPUs,
which consume a great deal of electricity. The creators of this malware effectively had
unlimited use of electricity and expensive mining hardware to mine crypto currencies for
profit.

5 https://blog.aquasec.com/threat-alert-kinsing-malware-container-vulnerability
Chapter 3. Security framework and attack vectors 39

https://blog.aquasec.com/threat-alert-kinsing-malware-container-vulnerability

Figure 3-5 shows how this attack was done.

Figure 3-5 Hacker attack on a poorly configured Docker server6

3.6.2 Risks, vulnerabilities, and mitigation steps

Just as Docker and K8s became the standard for containerization and orchestration, there
was a document that was published by NIST in September 20177 that laid out the major risks
for container technologies and countermeasures for these risks.

Some of the risks, vulnerabilities, and associated countermeasures that were laid out in the
publication are highlighted below:

� Image vulnerabilities: An image can be up to date with security patches at the time that the
image is released but then falls behind as new vulnerabilities are discovered. Rather than
using traditional vulnerability management tools, organizations should use
container-specific vulnerability management tools. Traditional tools might not be able to
detect accurately vulnerabilities within containers.

� Image configuration defects: An image might not have been correctly configured with the
principle of “least privilege”, so a container with fully up-to-date security patches might still
be vulnerable to an attack.

� Embedded malware: Malware might be purposefully, accidentally, or inadvertently added
to a container image. Organizations must have measures and processes in place to
ensure that images are continuously monitored for embedded malware.

� Unbounded network access from containers: The default configuration in most container
run times is to allow containers to communicate with each other and the host. A
compromised container might put other resources on the network at risk. Organizations
must control and monitor network traffic that is sent from containers.

6 https://www.bleepingcomputer.com/news/security/teamtnt-hackers-target-your-poorly-configured-docker-
servers/

7 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

The Docker and K8s partnership: In 2017 at DockerCon Europe 2017, Docker
announced that they would support K8s. This announcement signaled that Docker was
becoming a mature technology that provided enterprises with a choice of using either K8s
or Swarm to orchestrate and coordinate containers and services.
40 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://www.bleepingcomputer.com/news/security/teamtnt-hackers-target-your-poorly-configured-docker-servers/
https://www.bleepingcomputer.com/news/security/teamtnt-hackers-target-your-poorly-configured-docker-servers/
https://youtu.be/_HrLs4pdyeM?t=3905
https://www.youtube.com/watch?v=_HrLs4pdyeM&t=3905s
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

� Insecure container runtime configurations: A container running in privileged mode has
access to all devices, resources, and containers that are running on the host.
Organizations should have a robust automated process in place for ensuring compliance
with security best practice standards.

� Large attack surface: General-purpose operating systems contain many libraries to allow
them to be used for various applications. Container-specific operating systems are
designed with fewer libraries and a smaller attack surface.

Interestingly, most of the countermeasures that were highlighted in 2017 are still the
measures that are currently proposed by the Open Web Application Security Project
(OWASP) in their OWASP Docker Security Cheat Sheet Rules:

� Rule #0 - Keep Host and Docker up to date.

� Rule #1 - Do not expose the Docker daemon socket.

� Rule #2 - Configure a container to use an unprivileged user.

� Rule #3 - Grant only specific capabilities that are needed by a container.

� Rule #4 - Run Docker images with the no-new-privileges flag to prevent an escalation of
privileges.

� Rule #5 - Disable inter-container communication.

� Rule #6 - Use Linux Security Module.

� Rule #7 - Limit machine resources.

� Rule #8 - Run containers with a read-only file system.

� Rule #9 - Use tools to detect container vulnerabilities, secrets in images, and
misconfiguration in K8s and Docker.

� Rule #10 - Set the Docker daemon with a logging level of at least info.

� Rule #11 - Use Lint on the Dockerfile8 at build time (Lint, or a linter, is a static code
analysis tool that is used to flag programming errors, bugs, stylistic errors, and suspicious
constructs).

8 https://en.wikipedia.org/wiki/Lint_(software)

Tip: The OWASP Cheat Sheet Series was created to provide a concise collection of
high-value information about specific application security topics. These cheat sheets were
created by various application security professionals who have expertise in specific topics.
Chapter 3. Security framework and attack vectors 41

https://en.wikipedia.org/wiki/Lint_(software)
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html

42 Security Implementation with Red Hat OpenShift on IBM Power Systems

Chapter 4. Designing and implementing Red
Hat OpenShift with security first

Containerized applications ensure consistency of development, testing, and deployment
across physical servers, virtual machines (VMs), and public and private clouds.

This chapter describes the key elements to securing a Red Hat OpenShift environment.
These elements encompass each layer of the container's solution stack from before you
deploy and run your container to the lifecycle of the containerized application after it is placed
into production.

This chapter describes the following topics:

� Approach to making Red Hat OpenShift secure by design

� Securing Red Hat OpenShift building blocks

4

© Copyright IBM Corp. 2023. 43

4.1 Approach to making Red Hat OpenShift secure by design

This section describes the key elements to securing a Red Hat OpenShift environment.
These elements encompass each layer of the container's solution stack starting before you
deploy and run your container and through the lifecycle of the containerized application after it
is placed into production.

This section describes the best practices for securing containerized applications. The
following environments are addressed:

� Container Host OS, IBM PowerVM Hypervisor, and multi-tenancy

� Red Hat OpenShift trusted sources

� Red Hat OpenShift secure container orchestration

� Red Hat OpenShift deployment on IBM Power Systems Virtual Server

� Red Hat OpenShift build process security

� Red Hat OpenShift deployment process security

� Network isolation and API endpoint security

� Security consideration for federation of containerized applications

4.1.1 Container Host OS, IBM PowerVM Hypervisor, and multi-tenancy

Secure the shared OS that hosts all the containers and containerized applications:

� The host operating system kernel should be able to secure the host kernel from container
vulnerabilities.

� The host operating system should be able to isolate containers and keep them from
interacting with each other.

Red Hat Enterprise Linux (RHEL) and Red Hat OpenShift are positioned to secure the Linux
operating system through Red Hat exclusive Security Enhanced Linux (SELinux):

� Red Hat SELinux isolates containers from the host kernel, and containers from each other.

� Administrators should enforce mandatory access controls (MACs) for every user,
application, process, or file.

� Control groups (cgroups) should place limitations on the resources that a container may
consume from the host system.

� Namespaces provide a level of abstraction inside a container to make an application
appear as though it is running its own operating system inside the container with its own
dedicated allocation of resources from the global pool.

Cloud-native security complements the security that is provided as standard to VMs by the
Power10 infrastructure. IBM Power10 processors enable the following features:

� Cryptographic performance acceleration

� Main memory encryption

� Performance-enhanced side-channel avoidance

� Protection against service processor vulnerabilities

� Defense against application vulnerabilities (Return-Oriented Programming (ROP)
Protection)
44 Security Implementation with Red Hat OpenShift on IBM Power Systems

4.1.2 Red Hat OpenShift trusted sources

Ensure that third-party container registry images will not compromise an existing
infrastructure or contaminate other containers that are running in the same environment:

� Check whether the application layer of the container has known vulnerabilities.

� Check how frequently the container image is updated.

� Check the author’s container image updates.

Use Red Hat packaged certified containers for the following actions:

� Use the Red Hat Quay registry to validate certified-secure container images, which are
ready for use with Red Hat OpenShift.

� Red Hat Container Health Index scores and rates any container for security and
vulnerabilities.

� Red Hat Security Advisories alert you to any newly discovered vulnerabilities in certified
container images, with pointers to the updated images so that you can secure your
application layer.

� You can use your own container scanning tools to check for vulnerabilities. You also can
leverage thee RHEL and Red Hat OpenShift pluggable application programming interface
(API) to integrate scanners such as OpenSCAP1 with your continuous integration and
continuous delivery (CI/CD) pipeline.

4.1.3 Red Hat OpenShift secure container orchestration

Modern microservices-based applications are made possible because of orchestration
services like Kubernetes (K8s), which handle the complexities of deploying multiple
containerized applications across distributed hosts or nodes. Ensure that the installation,
deployment, hardening, and operations of orchestrators follow best practices.

Red Hat OpenShift is designed around K8s to deliver container orchestration, scheduling
automation, and application management at the scale that is needed for the enterprise.

Red Hat OpenShift adds enterprise security options that often are missing from open-source
K8s distributions:

� Access to the master nodes uses Transport Layer Security (TLS).

� Apiserver access is based on X.509 certificates or OAuth access tokens.

� The keystore etcd is no longer exposed directly to the cluster. Using encryption provides
an extra layer of security. Red Hat OpenShift apiserver and K8s apiserver resources,
Secrets, routes, OAuth access, and authorize tokens also should be encrypted.

� Runs on Red Hat exclusive Security Enhanced Linux (SELinux).

4.1.4 Red Hat OpenShift deployment on IBM Power Systems Virtual Server

IBM Power servers help clients respond faster to business demands, protect data from core to
cloud, and streamline insights and automation while maximizing reliability in a sustainable
way. IBM Power Systems Virtual Server (IBM PowerVS) can modernize applications and
infrastructure with a frictionless hybrid cloud experience to provide the agility that companies
need.

1 https://www.open-scap.org/
Chapter 4. Designing and implementing Red Hat OpenShift with security first 45

https://www.open-scap.org/

The IBM and Red Hat hybrid multi-cloud strategy is built on open standards that are hardened
for the enterprise. This strategy combines Red Hat OpenShift Container Platform with the
IBM infrastructure.

By deploying Red Hat OpenShift on IBM PowerVS in IBM Cloud, you gain the following
benefits:

� IBM Cloud, which is the most open and secure public cloud for business.

� Red Hat OpenShift, which is the most secure K8s platform for operationalizing container
workloads remotely or as a hosted service.

� IBM Power, which is the most reliable mainstream server platform for innovation. You can
use it to get to market faster with comprehensive end-to-end security at every layer of the
stack.

� The highest level of encryption, which is Federal Information Processing Standards (FIPS)
140-2 Level 4.

� Isolation for cloud-native Red Hat OpenShift Kubernetes Service (ROKS) and containers
on IBM Power servers.

� Integrated infrastructure as a service (IaaS) and platform as a service (PaaS) enhanced
availability service-level agreements (SLAs) with a high availability of 99.99%.

� Security leadership:

– Highest compliance for data encryption
– Configurable so that even IBM cannot see customer data
– Edge-to-cloud threat management with IBM security integration

4.1.5 Red Hat OpenShift build process security

For containers, the “Build phase” of an application's lifecycle occurs when application code is
integrated with runtime libraries and other dependencies. Defining the Build process is critical
to securing a container that might be deployed many times over its lifecycle.

Red Hat OpenShift uses the “Source-2-Image” (S2I)2 open-source framework for build
management and image security. As developer code is built and committed to a repository
through S2I, Red Hat OpenShift can trigger CI/CD processes to assemble automatically a
new container image by using the freshly committed code, deploy that image for testing, and
promote the tested image to full production status.

As a best practice, integrate automated security testing into the CI/CD pipelines by using
Red Hat OpenShift. Leveraging the platform's RESTful APIs, you can integrate Static
Application Security Testing (SAST) or Dynamic Application Security Testing (DAST) tools like
IBM Rational® AppScan.3

Ultimately, this approach of securing the software build process allows operations teams to
manage base images, architects to manage middleware and software that needed by the
application layer, and developers to focus on writing better code.

2 https://docs.openshift.com/container-platform/3.11/creating_images/s2i.html
3 https://www.ibm.com/docs/en/rbd/9.7?topic=application-rational-appscan
46 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://docs.openshift.com/container-platform/3.11/creating_images/s2i.html
https://www.ibm.com/docs/en/rbd/9.7?topic=application-rational-appscan

4.1.6 Red Hat OpenShift deployment process security

Tools for automated, policy-based deployments can further secure containers beyond the
software Build process, and into the production Deployment phase.

Red Hat OpenShift comes with Security Context Constraints (SCCs)4 that define a set of
conditions that must be met before a collection of containers can be deployed.

Using SCCs, you can control the following items:

� Running of privileged containers.
� Capabilities that a running container may request.
� Allow or deny access to volumes.
� Container user ID.
� Security Enhanced Linux (SELinux) context of the container.

4.1.7 Network isolation and API endpoint security

When working with containerized applications that are deployed across multiple distributed
hosts or nodes, it becomes critical to secure the network topology.

Network namespaces usually assign a port range and IP address to a collection of
containers, which help to distinguish and isolate pods from each other. By default, pods of
different namespaces cannot send or receive data packets unless exceptions are made by
the system administrator.

Red Hat OpenShift uses software-defined networking (SDN)5 to provide a unified cluster
networking approach:

� Namespaces for container collections simplify network security architectures.
� The platform controls egress traffic by using a router or firewall so that clients can conduct

IP whitelisting.

Red Hat OpenShift comes with many API authentication and authorization services that
customers can readily integrate throughout application and platform endpoints. The most
prominent one is Red Hat Single Sign-On (RH-SSO), which provides Security Assertion
Markup Language (SAML) 2.0 and OpenID Connect (OIDC)-based authentication.

4.1.8 Security consideration for federation of containerized applications

Federation is invaluable when deploying and accessing applications that are running across
multiple distributed data centers or clouds. Red Hat OpenShift and K8s orchestration
supports and facilitates federation in two different ways:

� Federated secrets automatically create and manage all authentication and authorization
“secrets” across all clusters that belong to the federation.

� Federated namespaces ensure that K8s pods (groups of containers) have consistent IP
addresses and port ranges that are assigned to them.

4 https://docs.openshift.com/container-platform/4.10/authentication/managing-security-context-constrai
nts.html#security-context-constraints-about_configuring-internal-oauth

5 https://docs.openshift.com/container-platform/3.11/architecture/networking/sdn.html
Chapter 4. Designing and implementing Red Hat OpenShift with security first 47

https://docs.openshift.com/container-platform/4.10/authentication/managing-security-context-constraints.html#security-context-constraints-about_configuring-internal-oauth
https://docs.openshift.com/container-platform/4.10/authentication/managing-security-context-constraints.html#security-context-constraints-about_configuring-internal-oauth
https://docs.openshift.com/container-platform/3.11/architecture/networking/sdn.html

4.2 Securing Red Hat OpenShift building blocks

In this section, we describe best practices to secure all Red Hat OpenShift environment
building blocks.

4.2.1 Hardware

IBM Power10 servers protect sensitive data by leveraging the latest pervasive encryption
capabilities across hybrid cloud deployments. These enhancements introduce full memory
encryption at scale, and provide end-to-end encryption without affecting performance.

Also, workloads on Power10 servers benefit from cryptographic algorithm acceleration so that
algorithms like AES, SHA2, and SHA3 run faster on Power10 servers than they did on
POWER9 processor-based systems (on a per-core basis). This performance acceleration
allows features like Volume Encryption to be turned on with low performance impact.

To be prepared for the quantum era, Power10 servers are built to support efficiently upcoming
cryptography techniques such as Quantum-safe Cryptography and Fully Homomorphic
Encryption (FHE). Quantum-safe Cryptography refers to the efforts to identify algorithms that
are resistant to attacks by both classical and quantum computers in preparation for the time
when large-scale quantum computers are built.

Power10 servers offer also secure workload isolation in cloud deployments with integrity that
is engineered into every layer of the system. All components of the stack are fully integrated
and co-optimized, and they are provided from IBM as a single vendor, which makes it more
secure.

IBM PowerVM, the built-in hypervisor, has an outstanding track record, with orders of
magnitude fewer vulnerabilities than competitive x86 hypervisors. Power10 servers have
advanced firmware integrity with extra measures to isolate the CPU from service processors
for better defense against attacks on management systems.

Power10 servers introduce innovations to address emerging threats, with extra features and
enhancements to defend against application domain vulnerabilities, such as ROP attacks (a
security exploit technique that is used by attackers to run code on a target system).

Figure 4-1 on page 49 shows how cloud-native security complements the security that is
provided as standard to logical partitions (LPARs) by the Power10 infrastructure, which
provides more depth of defense across the infrastructure, VMs, and workloads.
48 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 4-1 IBM Power10 LPAR and cloud-native security

4.2.2 Networking

As we describe networking in K8s, it can be applied to Red Hat OpenShift because it is an
implementation of K8s.

A K8s cluster is composed of a master node and several worker nodes, each of which are
virtual or physical machines, which all have their own IP addresses. When applications are
deployed on this cluster in pods, each pod is assigned an IP address. Each pod can be
running different applications. For example, a pod might be running a database server while
another pod is running a web server, as shown in Figure 4-2.

Figure 4-2 Example network configuration
Chapter 4. Designing and implementing Red Hat OpenShift with security first 49

The pods must communicate with each other, so they must be on a network that is configured
for that communication, and each pod must have a unique IP address. In Red Hat OpenShift,
the SDN is responsible for assigning and making sure that each pod has a unique IP address
and ensure that routes are in place to direct traffic between worker nodes. The Red Hat
OpenShift SDN creates a virtual network that spans across multiple nodes in the cluster. This
virtual network is called an overlay network, and it is created by using the Open vSwitch
standard.6

In K8s, the smallest unit is a pod. One pod always contains at least one main container. Every
pod has a unique IP address, and the IP address is reachable from all other pods in the K8S
cluster.

One challenge in a distributed infrastructure with multiple servers is allocating ports to
services and applications running on servers without conflicts because a port can be
allocated only once on a single host. Every container in a pod shares the network
namespace, including the IP address and network ports. Inside a pod, the containers that
belong to the pod can communicate with each other by using localhost. When containers in
the pod communicate with entities outside the pod, they must coordinate how they use the
shared network resources, like ports. Giving each pod its own IP address means that pods
can be treated like physical hosts or VMs in terms of port allocation, networking, naming,
service discovery, load-balancing, application configuration, and migration.

Red Hat OpenShift Container Platform uses an SDN to implement connectivity. The Red Hat
OpenShift SDN separates the network into a control plane and a data plane.

The SDN meets five requirements:

� Manages network traffic and resources as software so that they can be programmed by
the application owner.

� Communicates among containers running within the same project.

� Communicates among pods within and beyond project boundaries.

� Manages network communication from a pod to a service.

� Manages network communication from an external network to a service.

Red Hat OpenShift network resources include the following items:

� Services provide load-balancing to replicated pods in an application, which are essential
in providing access to applications. Services connect to endpoints, which are individual
pod IP addresses.

� Ingress is a K8s resource that exposes services to external users:

– Ingress adds URLs, load-balancing, and access rules.

– Ingress is not used this way in Red Hat OpenShift.

� Red Hat OpenShift routes are an alternative to Ingress.

To facilitate multiple services, such as front-end and back-end services while using
multiple pods, use environment variables for usernames, service IP addresses, and more,
so that front-end pods can communicate with back-end services.

6 https://docs.openshift.com/container-platform/4.11/welcome/index.html

Note: Open vSwitch is a distributed virtual switch that is used to interconnect VMs in a
hypervisor. Some of it is features include VLAN tagging, trunking, LACP, and port
mirroring.
50 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://docs.openshift.com/container-platform/4.11/welcome/index.html

The network is managed by the Red Hat OpenShift Cluster Network Operator (CNO). CNO
deploys and manages the cluster network components on a Red Hat OpenShift Container
Platform cluster, including the Container Network Interface (CNI) default network provider
plug-in that is selected for the cluster during installation.

The DNS operator implements CoreDNS. The internal CoreDNS server is used by pods for
DNS resolution, which means that we do not need to set the DNS name server on our pods
because it is automatically set to the IP address of CoreDNS.

Services are K8s API resources that are used in Red Hat OpenShift:

� Services are used as a load-balancer that provides access to a group of pods that is
addressed by using a label as the selector.

� Services are needed for pod access because pods are added and removed dynamically.

� Services use labels and selectors to address dynamically pods.

� If you use oc new-app, a service resource is automatically added to expose access to the
application.

There are different types of services, for example, ClusterIP, NodePort, LoadBalancer, and
ExternalName.

We should also understand how network policies work.

� By default, there are no restrictions for network traffic in K8s.

� Pods always can communicate, even if they are in other namespaces.

� To limit communication, use network policies.

� If there is no match in a policy, traffic is denied.

� If no network policy is used, all traffic is allowed.

There are three different identifiers that can be used in the network policies:

� Pods (podSelector): The pod cannot block access to itself.

� Namespace (namespaceSelector): Grants access to a specific namespace.

� IP blocks (ipBlock): Notices that traffic to and from the node where a pod is running is
always allowed.

When defining a pod or namespace-based network policy, a selector label is used to specify
what traffic is allowed.

4.2.3 Hyperconverged infrastructure and cloud

National Institute of Standards and Technology (NIST) SP 800-145, what was written by Peter
Mell and Tim Grance (2011),7 defines cloud computing as:

“A model for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources.”

7 https://csrc.nist.gov/publications/detail/sp/800-145/final
Chapter 4. Designing and implementing Red Hat OpenShift with security first 51

https://csrc.nist.gov/publications/detail/sp/800-145/final

Cloud computing is a key enabler of digital transformation that provides developers with the
solutions and tools that they need to create modern applications and rapidly respond to
business changes. Red Hat OpenShift plays a vital role by being a cloud-native container
orchestrator platform that enables the main cloud essential characteristics that are defined by
NIST:

� On-demand self-service: With Red Hat OpenShift, you can provision quickly resources by
using the console, APIs, or the Red Hat OpenShift command-line interface (CLI).

� Broad network access: Red Hat OpenShift leverages K8s network capabilities.

� Resource pooling: Red Hat OpenShift enables the usage of a broad spectrum of
hardware, so you can have different types and models of worker nodes, for example, you
can build a regular pool of common workers and another pool of specialized GPU
enabled-hardware worker pool for specific workloads. You also can use different types of
storage. Combined with the flexibility of the Power platform, you obtain a plethora of
available options.

� Rapid elasticity: Red Hat OpenShift enables workloads to increase or decrease quickly
their capabilities on-demand. Pods can be configured to answer quickly to peaks in
demand and increase their replicas, and decommission those pods after demand returns
to a normal state. You also can use Red Hat OpenShift Serverless to provide a serverless
solution, where your app remains with zero container running and scales only to 1 or more
when necessary, freeing resources for other applications.

� Measured service: Red Hat OpenShift provides full observability of the resources being
used, with native dashboards showing the consumption of CPU, memory, network, disk,
and much more.

Now, let us explore, in a hands-on approach, how Red Hat OpenShift addresses these
characteristics.

Important: These next steps assume that you have administrator access to your Red Hat
OpenShift environment on your Power platform.

Note: We show only how Red Hat OpenShift fulfills the cloud-computing characteristics.
We provide a hands-on example for each one of those characteristics, but be aware that
the platform has many other features that also are examples on how such characteristics
are met.
52 Security Implementation with Red Hat OpenShift on IBM Power Systems

On-demand self-service
This section describes how a developer can easily deploy an application by using Red Hat
OpenShift in a self-service fashion without provisioning an infrastructure or help from the
operations team.

In our example, the developer deploys a sample quarkus hello world application by
completing the following steps:

1. In the Developer perspective, create a project that is named “devproject”, as shown in
Figure 4-3.

Figure 4-3 Create Project
Chapter 4. Designing and implementing Red Hat OpenShift with security first 53

2. Select Basic Quarkus in the “Create applications using samples” category, as shown in
Figure 4-4.

Figure 4-4 Creating an application: step 1

3. Use the suggested code-with-quarkus name, and click Create, as shown in Figure 4-5.

Figure 4-5 Creating an application: step 2
54 Security Implementation with Red Hat OpenShift on IBM Power Systems

4. The developer provisioned the app and it is ready to go. Click Open URL and see the app,
as shown in Figure 4-6 and Figure 4-7.

Figure 4-6 Quarkus Hello world application

Figure 4-7 Hello world
Chapter 4. Designing and implementing Red Hat OpenShift with security first 55

Resource pooling
Red Hat OpenShift is about resource pooling. Your cluster hosts different workloads from
different people that share the underlying infrastructure, like CPUs, memory, and storage.

To allocate storage for the cloud environment, complete the following steps:

1. In the Administrator perspective, select Storage → PersistentVolumeClaims, as shown
in Figure 4-8.

Figure 4-8 Creating a persistent volume claim

2. Create a persistent volume claim (PVC). You have a persistent volume (PV) available or
can provision one. In our example, we are using IBM Cloud, so we leverage resource
pooling even more: IBM Cloud natively provides (among others) a storage class that is
called ibm-vpc-block-10iops-tier, which we use to provision a block storage PVC to our
project. Select Create PersistentVolumeClaim, as shown in Figure 4-9.

Figure 4-9 PersistentVolumeClaims
56 Security Implementation with Red Hat OpenShift on IBM Power Systems

3. Complete the Claim name and size. In the volume mode, select Block, and then select
Create, as shown in Figure 4-10.

Figure 4-10 PVC details

4. Select Events. You see the details of the creation of the PVC, as shown in Figure 4-11.

Figure 4-11 PVC results

An external provider that is named vpc.block.csi.ibm.io was requested to create the
volume, which was successful. The PVC was created on top of this volume with the
following name:

vpc.block.csi.ibm.io_ibm-vpc-block-csi-controller-0_4f231fd3-c4f0-4b11-9754-17f
f5a0d27c7
Chapter 4. Designing and implementing Red Hat OpenShift with security first 57

5. Repeat the process. Create a PV that will be used for another workload, and then repeat
steps 2 on page 56 and 3 on page 57 to create a PVC that is named my-second-volume.
Make sure to select the same storage class and Block volume mode, as shown in
Figure 4-12.

Figure 4-12 Second PVC request

6. Go to the Events menu. Figure 4-13 shows the results.

Figure 4-13 Second PVC request results
58 Security Implementation with Red Hat OpenShift on IBM Power Systems

7. You see resource pooling in action, that is, the new PVC was created on top of the same
PV we had before:

vpc.block.csi.ibm.io_ibm-vpc-block-csi-controller-0_4f231fd3-c4f0-4b11-9754-17f
f5a0d27c7

Rapid elasticity
To explore quickly the rapid elasticity characteristic, go to the sample quarkus application that
we deployed in “On-demand self-service” on page 53, and then complete the following steps:

1. Go to devproject and click the deployment icon, as shown in Figure 4-14.

Figure 4-14 Deployment example

2. The app is running in one pod. You can increase or decrease capacity by clicking the
arrows. Scale to 10, as shown in Figure 4-15.

Figure 4-15 Scale pods
Chapter 4. Designing and implementing Red Hat OpenShift with security first 59

Red Hat OpenShift ensures that traffic to your app is balanced between those new instances.
This example is a simple one for exploring the topic. In real-world scenarios, you have triggers
that are linked to specific conditions (like CPU usage, as shown in Figure 4-16) that
automatically scale your pods.

Figure 4-16 Health conditions

4.2.4 Supported operating systems and hypervisors

Red Hat OpenShift supports many operating systems for use as the base operating system
for containers. Some of the supported operating systems include the following ones:

� RHEL

RHEL is a widely used enterprise-grade Linux distribution that is supported by Red Hat
OpenShift. It is designed for mission-critical workloads and optimized for performance and
security. To secure RHEL, see Red Hat Enterprise Linux 8 Security hardening guide and
IBM Power Systems Cloud Security Guide: Protect IT Infrastructure In All Layers,
REDP-5659.

� SUSE Linux Enterprise Server

SUSE Linux Enterprise Server is a widely used enterprise-grade Linux distribution that is
supported by Red Hat OpenShift. It is designed for mission-critical workloads and
optimized for performance and reliability. To secure SUSE Linux Enterprise Server, see
SUSE Linux Enterprise Server 12 SP4 Security Guide.

� CentOS

CentOS is a community-supported distribution of RHEL that is supported by Red Hat
OpenShift. It is based on the same source code as RHEL, and designed to be fully
compatible with it.

� Fedora

Fedora is a community-supported Linux distribution that is sponsored by Red Hat. It is
known for its fast release cycle and often used as a platform for testing new technologies.

� Oracle Linux

Oracle Linux is a Linux distribution that is optimized for running Oracle applications that is
supported by Red Hat OpenShift.
60 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/pdf/security_hardening/red_hat_enterprise_linux-8-security_hardening-en-us.pdf
https://documentation.suse.com/sles/12-SP4/html/SLES-all/book-security.html

Red Hat OpenShift on Power servers can be deployed only on the PowerVM hypervisor. Here
are some best practices to secure a Virtual I/O Server (VIOS):

� Set the security level to specify the security hardening rules for your VIOS system by using
the viosecure command, as shown in Example 4-1.

Example 4-1 Securing VIOS

viosecure -level high -apply

� Enable the VIOS firewall to control IP address activity by using the viosecure command
with the -firwall option, as shown in Example 4-2.

Example 4-2 VIOS firewall

viosecure -firwall allow | deny -port number

� You can configure a Kerberos client on the VIOS to enhance security in communications
across the internet, as shown in Example 4-3.

Example 4-3 Configuring a Kerberos client

mkkrb5clnt -c KDC_server -r realm_name \ -s Kerberos_server -d Kerberos_client

� Use role-based access control (RBAC) to define roles for users in the VIOS, as described
at Using role-based access control with the Virtual I/O Server.

4.2.5 Red Hat OpenShift operators

A Red Hat OpenShift operator is a method of packaging, deploying, and managing a K8s
application that provides autonomous management by exposing a configuration natively
through K8s objects to automate repeatable tasks.8

Here are security best practices for using Red Hat OpenShift operators:

� Use carefully cluster-scope and namespace-scope permissions. Use namespace-scope
permissions by using RBAC, as shown in 5.2, “RBAC setup for users and service
accounts” on page 106.

� Avoid deploying operators in a shared namespace, especially one that allows
non-privileged users access.

� Check RBAC roles that can leverage themselves to gain extra privileges when performing
code reviews.

Note:

� Starting with RHEL 8.4, using KVM virtualization on IBM power hardware is
deprecated. As a result, currently certified IBM Power servers with KVM are still
supported by RHEL 8. The KVM virtualization function was removed with the release of
RHEL 9 for the IBM Power Architecture®. In addition, future IBM Power servers will not
be certified to use KVM virtualization technology with any RHEL release.

� If you are using KVM with IBM POWER8® or IBM POWER9 systems on RHEL 8, you
may continue to do so until 31 May 2029.

For more information, see Deprecation of KVM on Red Hat Enterprise Linux for IBM Power.

8 https://www.redhat.com/en/technologies/cloud-computing/openshift/what-are-openshift-operators
Chapter 4. Designing and implementing Red Hat OpenShift with security first 61

https://access.redhat.com/articles/6005061
https://www.redhat.com/en/technologies/cloud-computing/openshift/what-are-openshift-operators
https://www.ibm.com/docs/en/power10?topic=security-using-role-based-access-control

� Use the Container Security Operator, which provides vulnerability reporting for images
that are added to selected namespaces.

� Use security context for containers to control all privileges of the processes running inside
the container.

� Use pod security policies that enable the administrator to configure policies to enforce
security on every container running on the cluster.

4.2.6 Cloud-native applications

There are several approaches that can be taken to scan vulnerabilities on a cloud-native
application:

� Use a vulnerability scanner: There are many tools that are available that can scan a
cloud-native application for vulnerabilities, such as Aqua Security's Cloud Native Security
Platform.9 These tools can scan container images, K8s clusters, and other cloud-native
infrastructure for known vulnerabilities.

� Use a static code analysis tool: Static code analysis tools can analyze the source code of
an application and identify potential vulnerabilities.

� Use a DAST tool: DAST tools can test an application by sending it various inputs and
analyzing the responses. DAST is a type of security testing that involves evaluating the
security of an application by interacting with it in a dynamic manner, simulating real-world
attacks and attempting to exploit vulnerabilities. During a DAST test, the application is ran
and tested in a live environment, typically by using a tool that sends various inputs to the
application and analyzes the responses. The tool looks for signs of vulnerabilities, such as
cross-site scripting (XSS) attacks, SQL injection attacks, and other types of security
issues.

� Use a penetration testing tool: Penetration testing tools, such as Kali Linux,10 can be used
to simulate attacks against a cloud-native application and identify vulnerabilities.

� Perform manual code reviews: Manually reviewing the code of a cloud-native application
also can help identify vulnerabilities. This task can be done by a team of security experts
or by using automated tools to help with the review.

4.2.7 Ingress Controller

There are several best practices to secure the Red Hat OpenShift Ingress Controller:

� Use a TLS security profile to define which TLS ciphers are required by various Red Hat
OpenShift Container Platform components.

� Red Hat OpenShift platform components use routes for communication and must trust
other components' certificates to interact with them. If you are using a public key
infrastructure (PKI), you should configure it so that its privately signed certificate authority
(CA) certificates are recognized across the entire cluster.

� Configure the Ingress Controller to enable access logs and forward them to a custom
syslog endpoint.

� Configure the Ingress Controller to use a custom certificate with a certificate and key pair
in PEM-encoded files (signed by a trusted CA or by a PKI).

� Use the Ingress Controller to implement access controls that are based on a client IP
address or hostname.

9 https://www.aquasec.com
10 https://www.kali.org
62 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://www.aquasec.com
https://www.kali.org

� Use rate limiting to prevent denial of service attacks against the Ingress Controller.

� Monitor the Ingress Controller for unusual traffic patterns or other signs of potential
security issues.

� Use the Red Hat OpenShift router or a third-party load balancer to distribute traffic to the
Ingress Controller and provide extra security features.

For more information, see Setting the Ingress Controller maximum connections.

4.2.8 Storage back end

Red Hat OpenShift supports the following types of storage:

� PVs: Volumes that can be used by applications to store data. They are persistent, which
means that the data that is stored on them is not lost when the pod or container that is
using the volume is deleted or restarted.

� Ephemeral volumes: Volumes that are created and destroyed along with the pod or
container that is using them. They are not persistent, which means that the data that is
stored on them is lost when the pod or container is deleted or restarted.

� ConfigMaps: Key-value pairs that can be used to store configuration data for applications.
They are stored in etcd, which is the cluster-wide configuration store, and they can be
accessed by pods through the apiserver.

� Secrets: Sensitive data, such as passwords or API keys that are stored in etcd and can be
accessed by pods through the apiserver. They are encrypted at rest and can be accessed
only by pods with the appropriate permissions.

� Downward API volumes: Special volumes that allow pods to access certain attributes of
their own configuration, such as environment variables or labels, through a special
file system.

� EmptyDir volumes: Temporary volumes that are created when a pod is scheduled to a
node and deleted when the pod is terminated. They are useful for storing files that do not
need to be persisted across pod restarts.

Here are some best practices for securing PVs in Red Hat OpenShift:

� Use encrypted PVs for sensitive data. Many storage back ends support encryption at rest.
Enable this feature to protect your data from unauthorized access. For more information,
see 2.2, “Storage” on page 12.

� Use ephemeral volumes only for non-sensitive data. Use them for data that does not need
to be persistent.

� Use EmptyDir volumes. Use these volumes only for non-sensitive data that does not need
to be persistent.

� Enable encryption for etcd to protect data at rest and in transit. For more information, see
6.4, “Data at rest encryption” on page 117 and 4.2.13, “Enhanced data resilience and
security by using IBM Spectrum Protect Plus” on page 93.

� Use access controls to limit access to PVs. Use RBACs to limit access to volumes to only
those users and pods who need it.
Chapter 4. Designing and implementing Red Hat OpenShift with security first 63

https://docs.openshift.com/container-platform/4.11/networking/ingress-operator.html#nw-ingress-setting-max-connections_configuring-ingress

4.2.9 Secret management systems

Secret management is a feature that enables administrators to securely store, manage, and
use sensitive data, such as passwords, API keys, and encryption keys. Secrets are stored in a
secure location within the Red Hat OpenShift environment and are encrypted at rest.

Secrets can be used by applications, pods, and other resources within the Red Hat OpenShift
environment to access sensitive data or services. For example, an application might use a
secret to access a database or to authenticate with an external API.

Secrets can be created and managed through the Red Hat OpenShift web console or by
using the Red Hat OpenShift CLI. Administrators can control access to secrets through
RBAC, ensuring that only authorized users or resources can access them.

Red Hat OpenShift provides several built-in secret types, including generic secrets, TLS
secrets, and Docker registry secrets. Administrators can create custom secret types
as needed.

Using secret management can help organizations ensure the security and integrity of
sensitive data within their Red Hat OpenShift environment. It is an important part of a
comprehensive security strategy for any Red Hat OpenShift deployment.

Here are some best practices for secret management:

� Use the Red Hat OpenShift web console or CLI to manage secrets rather than storing
them in source code or configuration files.

� Regularly review and revoke access for any users who no longer need it.

� Use access controls to limit access to secrets to only those users who need them.

� Regularly rotate secrets, such as passwords and encryption keys to reduce the risk
of compromise.

� Implement security monitoring and alerting to detect and respond to potential
security breaches.

� Conduct regular security audits to identify and address vulnerabilities in your secret
management system.

For more information, see 6.2, “Central secrets management: Single source of truth” on
page 114.

4.2.10 Code repository

A code repository is where all your computer source assets are stored. With a good code
repository solution, you can unlock collaboration and innovation by enabling features like
code sharing, code reuse, and automation.

Code repositories are not something new: in The earliest days of the internet, people used
software archives that were available through FTP or websites like SourceForge.11

One main driving force of the mass adoption of code repositories was the creation of Git. Git
was written by Linus Torvalds in 2005 to improve the development of the Linux kernel. Git is
open-source software and was widely adopted. Many commercial companies built
commercial solutions based on Git, like GitHub12 or GitLab,13 and today it is hard to find a
DevOps toolchain without some Git-based components.

11 https://sourceforge.net/
12 https://github.com/
64 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://sourceforge.net/
https://github.com/

Code repositories can be public or private. Public repositories are the place where
open-source code and freely available software are published. By enabling the whole internet
to see, download, change, and improve your software, developers foster innovation and
obtain the required help to keep their creations updated and relevant. Public code repositories
are mined by researchers to study how to improve bug-finding techniques, improve AI, and so
on. Private repositories are available for companies, organizations, and individuals who want
to leverage Git capabilities but keep access to their intellectual property restricted.

Red Hat OpenShift works well with both scenarios. You can connect your Red Hat OpenShift
environment with any Git-based code repository solution, public or private, and use it as the
source of the deployment of your applications. In this publication, we explore the usage of
IBM Cloud Git Repos and Issue Tracking, but other solutions work as well by following a
similar approach.

Git Repos and Issue Tracking is the IBM Cloud solution to store and manage your code. It
also provides protection by using granular permissions, and enables collaboration and
tracking features. An IBM Cloud Git Repo is inside a construct that is called a Toolchain,
which is a software-defined space that integrates your DevOps solutions and pipelines.

Complete the following steps:

1. Create the toolchain by going to the IBM Cloud Toolchain creation page and selecting
Build your own toolchain, as shown in Figure 4-17.

Figure 4-17 Building your own toolchain

13 https://about.gitlab.com/
Chapter 4. Designing and implementing Red Hat OpenShift with security first 65

https://about.gitlab.com/
https://cloud.ibm.com/devops/create

2. In the “Build your toolchain” page, give your toolchain a unique name, and select the
IBM Cloud region where it will be and its resource group. Click Create, as shown in
Figure 4-18.

Figure 4-18 Building your own toolchain

3. The toolchain is created. Add your code repository by clicking Add, as shown in
Figure 4-19.

Figure 4-19 Adding your toolchain

4. The “Add tool integration” window shows many different artifacts that you can use inside
your toolchain solution. In this example, click Git Repos and Issue Tracking,” as shown in
Figure 4-20 on page 67.
66 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 4-20 Git Repos and Issue Tracking

5. Now, in the “Configure Git Repos and Issue Tracking” window, you create a repository. You
have many options. If required, you can, for example, create a repository that is based on
an existing one by forking or cloning the repository. Because you are in a “green field” and
are doing a fresh deployment, click New and give your repository a unique name.

6. Select Make this repository private to use a private repository.

7. Complete the fields, and then select Create Integration, as shown in Figure 4-21.

Figure 4-21 Create Integration

Note: Regarding Issue Tracking, the DevOps for IBM Cloud based their code repository
solution on the GitLab open core, and they use the Issues features so that developers
and managers have the visibility and flexibility to manage their repositories.
Chapter 4. Designing and implementing Red Hat OpenShift with security first 67

https://gitlab.com/gitlab-org

You return to your toolchain dashboard. You see that the repository was created. Click the
new URL to access the repository, as shown in Figure 4-22.

Figure 4-22 Repository successfully created

Now, create two simple files in your repository that you use to provision a Node.js
demonstration application by completing the following steps:

1. Create a file that is named app.js with the content that is shown in Example 4-4.

Example 4-4 Creating the app.js content

http.createServer(function (request, response) {
 response.writeHead(418);See
 response.end('Hello, I\'m a teapot\n');
}).listen(8080);

2. Create a file that is named package.json with the content that is shown in Example 4-5.

Example 4-5 Creating the package.json content

{
 "name": "app",
 "version": "1.0.0",
 "description": "my test app",
 "main": "app.js",
 "scripts": {
 "start": "node app.js"
 },
 "author": "reader",
 "license": "MIT"
}

3. The repository is empty. Click Upload, as shown in Figure 4-23 on page 69.
68 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 4-23 Uploading objects

4. Click Upload and select app.js, as shown in Figure 4-24.

Figure 4-24 Choosing the files to upload
Chapter 4. Designing and implementing Red Hat OpenShift with security first 69

5. Leave the default message and target branch and click Upload File, as shown in
Figure 4-25.

Figure 4-25 Uploading the files

6. Repeat steps 4 on page 69 and 5 to upload package.json.

7. Because the code repository is private, create a Personal Access Token so that your
Red Hat OpenShift environment can access the repository. Select Settings → Access
Tokens, as shown in Figure 4-26 on page 71.
70 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 4-26 Access token creation

8. Define a unique name for your token and an expiration date for it.

For the role, select “Developer”. Because you need only read access to the repository,
select only the read_repository scope. Click Create project access token, as shown in
Figure 4-27.

Figure 4-27 Project Access Token definition
Chapter 4. Designing and implementing Red Hat OpenShift with security first 71

9. Copy the project access token so that you can use it later, as shown in Figure 4-28.

Figure 4-28 Copying the access token

10.Copy your repository URL to use it later, as shown in Figure 4-29. Click Clone, and then
click Clone with HTTPS. Save the copied text.

Figure 4-29 Cloning with HTTPS

11.Go to your Red Hat OpenShift environment and configure the secret, which you use to
access your Git repository.

12.Create a project. In the Developer perspective, create a project that is named “myproject”,
as shown in Figure 4-30 on page 73. Click Create.

Important: Now, you can see your new project access token. Because it is the only time
that you see it, copy it and store securely. If you do not copy it and store it, you will not be
able to use it, and must delete it and create a new one.

Note: The next steps assume that you are logged in to your Red Hat OpenShift
environment and have the proper permissions to create a project.
72 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 4-30 Create Project

13.In the Secrets window, and create a source secret, as shown in Figure 4-31.

Figure 4-31 Creating a secret
Chapter 4. Designing and implementing Red Hat OpenShift with security first 73

14.Enter a unique name for the secret. Make sure that Basic authentication is selected, and
for the username, enter the name of the token that you created. The token value itself is
entered in the password field. Click Create, as shown in Figure 4-32.

Figure 4-32 Create source secret

15.Use your code repository as the source of a new application that you will create inside
your new project. Click +Add, and then click Import from Git inside the Git Repository
pane, as shown in Figure 4-33.

Figure 4-33 Adding a project
74 Security Implementation with Red Hat OpenShift on IBM Power Systems

16.In the Git Repo URL field, type the name of your code repository. Because IBM Cloud
code repositories are based on GitLab, you must select GitLab in the Git type field.

Your repository is read. The wizard detects that the repository must use a Node.js builder
image. Leave everything else as default and click Create, as shown in Figure 4-34.

Figure 4-34 Import from Git

17.Your new app is created from your code repository. Click the expand icon to open your
new teapot app, which is shown in Figure 4-35.

Figure 4-35 Application
Chapter 4. Designing and implementing Red Hat OpenShift with security first 75

4.2.11 Container registry

In a container orchestration platform like Red Hat OpenShift, container registries play an
important role. They are responsible both for storing and managing the containers in your
environment. Although you can build your own container registry, there is a plethora of
ready-to-use options that are available for use in all major cloud providers. These options
offer container registry as a service, and they often include extra services like high availability
and vulnerability scanning. These options integrate nicely with Red Hat OpenShift.

Red Hat OpenShift comes with an internal container registry that is managed by the
Infrastructure Operator. When you are building a secure enterprise-grade infrastructure, you
must leverage solutions that go beyond what the internal container registry delivers.

IBM Cloud Container Registry provides a ready-to-use container platform where you can
store private and public images; define access policies so only authorized systems and
applications can access the images; and manage the security of the images by using
Vulnerability Advisor. IBM Cloud Container Registry also provides high availability by
leveraging the IBM Cloud worldwide infrastructure so that you can connect your central image
repository with as many Red Hat OpenShift clusters as you have, whether they are
on-premises in your Power environment or spread across various cloud providers or other
infrastructures.

Creating your first IBM Cloud Container Registry
The following procedure assumes that you have an IBM Cloud account. If you do not have an
account, create one at https://cloud.ibm.com.

Complete the following steps:

1. Log in to your IBM Cloud account, and in the upper right (Figure 4-36), select the
IBM Cloud Shell icon to open a shell session. With IBM Cloud Shell, you can manage your
environment with the already configured IBM CLI tools.

Figure 4-36 IBM Cloud Shell

2. To interact with the container registry service, first configure the container registry region.
In this example, we use Dallas (us-south). Run the following command:

ibmcloud crregion-set us-south

The results are shown in Figure 4-37.

Figure 4-37 Cloud region set results

3. Create a namespace. In this example, we name it ‘myfirst-ns’. We use the default
resource group. Run the following command:

ibmcloud cr namespace-add myfirst-ns

The results are shown in Figure 4-38 on page 77.
76 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://cloud.ibm.com

Figure 4-38 Namespace added results

4. Push your custom image to the container registry. However, because you are
experimenting, first download an image that you can use for learning purposes and use it
as your “custom image”.

In this example, we use the default Apache HTTP container image from Docker Hub for
this task. To download it locally, use the following command:

docker pull httpd

The results are shown in Figure 4-39.

Figure 4-39 Docker image pull results

5. To create a repository, first tag your image and then push it:

a. First, tag your image. Run the following command:

docker tag httpd us.icr.io/myfirst-ns/my-repo

b. Log in to the container registry by running the following command:

ibmcloud cr login

The results are shown in Figure 4-40.

Figure 4-40 Container registry login results

c. Push the image by running the following command:

docker push us.icr.io/myfirst-ns/my-repo
Chapter 4. Designing and implementing Red Hat OpenShift with security first 77

The results are shown in Figure 4-41.

Figure 4-41 Pushing the image to the registry results

6. The image is now inside your new repository and ready to use. You can browse the menu
and see the many options that the solution provides.

If you go to the Images menu, for example, you see that the image was scanned by the
IBM Cloud Vulnerability Advisor and that no security issues were found, as shown in
Figure 4-42.

Figure 4-42 Container registry results

4.2.12 Vulnerability scanners

Red Hat OpenShift vulnerability scanning is an important process to identify and remediate
security gaps in Red Hat OpenShift deployments. The process involves updating Red Hat
OpenShift itself when vulnerabilities are discovered in the open-source project; scanning
container images and open-source elements within them for vulnerabilities; and ensuring that
the Red Hat OpenShift configuration meets best practices and compliance requirements.

Here are the key elements of Red Hat OpenShift vulnerability scanning:

� Vulnerabilities in Red Hat OpenShift itself

� Container image scanning

Exploring Vulnerability Advisor
Vulnerability Advisor is one of the best features of IBM Cloud Container Registry. By using it,
you can scan your images before making them available to your environments so that any
issues are reported beforehand. You also can integrate it into your DevOps pipeline so that
detected security vulnerabilities in images are reported, which triggers automated tasks or
blocks the deployment.

Vulnerability Advisor offers a dashboard to learn more about your image's security posture, as
shown in Figure 4-43 on page 79.
78 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 4-43 Vulnerability Advisor dashboard

As an enterprise-grade solution, you can use IBM Cloud Container Registry to customize
policies, define exceptions, and configure the solution to work for your specific needs.

Scanning pods for vulnerabilities by using Red Hat Quay
Red Hat Quay is a private container registry that stores, builds, and deploys container
images. It analyzes your images for security vulnerabilities to identify potential issues and
mitigate security risks.

Red Hat Quay Container Security Operator provides access to vulnerability scan results from
Red Hat OpenShift Container Platform for container images that are used in active pods on
the cluster.

Red Hat Quay Container Security Operator performs the following functions:

� Watches containers that are associated with pods on all or specified namespaces.

� Queries the container registry where the containers came from for vulnerability information
(if an image’s registry is running image scanning).

� Exposes vulnerabilities through the Manifestation object in the K8s API.

For more information, see Security and compliance overview.
Chapter 4. Designing and implementing Red Hat OpenShift with security first 79

https://docs.openshift.com/container-platform/4.11/security/index.html

Scanning pod images with the Container Security Operator
Complete the following steps:

1. Check that the Red Hat Quay Container Security Operator is installed by selecting
Operators → Installed Operators, as shown in Figure 4-44.

Figure 4-44 Installed Operators page

2. Under the Red Hat OpenShift Dashboard, there is a link to Image Security under the
status section that lists the number of vulnerabilities that were found, as shown in
Figure 4-45. To see more details, select the link to the vulnerability.

Figure 4-45 Vulnerabilities list page

Figure 4-46 on page 81 shows an example of detected vulnerabilities.
80 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 4-46 Example of a detected vulnerability

Querying image vulnerabilities by using the CLI
To display information about vulnerabilities that are detected by the Red Hat Quay Container
Security Operator by using the CLI, run the following commands:

1. Connect to IBM Cloud Shell and use the oc command, as shown in Example 4-6.

Example 4-6 Connecting to IBM Cloud Shell and checking the oc version

Welcome to IBM Cloud Shell!
Image version: 1.0.66

Note: Your Cloud Shell session is running in Frankfurt (eu-de). Your workspace
includes 500 MB of temporary storage. This session will close after an hour of
inactivity. If you don't have any active sessions for an hour or you reach the
50-hour weekly usage limit, your workspace data is removed. To track your usage,
go to Usage quota in the Cloud Shell menu.

Tip: Enter 'ibmcloud' to use the IBM Cloud CLI. The Frankfurt (eu-de) region is
targeted by default. You can switch the region by running 'ibmcloud target -r
<region-name>'.

y_largou@cloudshell:~$ oc version
Client Version: 4.8.24

2. Log in with your token, as shown in Example 4-7.

Example 4-7 Logging in with a token

y_largou@cloudshell:~$ oc login
--token=sha256~muHF9j90-BP3DIE7d1-OpZQVAHdYt54HKnBvYcKUrQY
--server=https://c108-e.eu-gb.containers.cloud.ibm.com:32759
Logged in to "https://c108-e.eu-gb.containers.cloud.ibm.com:32759" as
"IAM#y.largou@powerm.ma" using the token provided.
Chapter 4. Designing and implementing Red Hat OpenShift with security first 81

You have access to 65 projects. The list has been suppressed. You can list all
projects with 'oc projects'

Using project "default".
Welcome! See 'oc help' to get started.

3. Display the query for the detected container image vulnerabilities, as shown in
Example 4-8.

Example 4-8 Querying a detected container image CVE

y_largou@cloudshell:~$ oc get vuln --all-namespaces
NAMESPACE NAME AGE
openshift-cluster-node-tuning-operator
sha256.6f27078a90cb735b853447f75b0f33753c9a1412b76f73bdf86dad3e9cf72500 6h39m
openshift-cluster-samples-operator
sha256.ca2d1349a605d575b4c0c1ba9b5a7f77f806fea0d38cd5e319fce21716209f69 6h39m
openshift-cluster-storage-operator
sha256.1fd0804e7b69d5b5ba0fb5551a7fafd0624fc67b9e0ed3f78b5e7070cef0cf33 6h40m
openshift-cluster-storage-operator
sha256.3a9f0b56c58b5418fb920c69b7e9ffcb83ff569b6a60fdc51a65dd3b8ea000b5 6h40m
openshift-cluster-storage-operator
sha256.9cbd1a970a20c02c130117ea066fafd418404313c2bd84ff5ff0352d7aa44597 6h39m
openshift-cluster-storage-operator
sha256.c90f3233bf4d6a62c6276cd2dbff1671f9a07f20928b6c756b768434233e89db 6h39m
openshift-console-operator
sha256.0ef47bb656bc815321ab553b55c8a491e728a2699f5f6308db7de097055d3bc9 6h39m
openshift-console
sha256.2a8fba9dda24eb4a6ddd3ed7904291d6a8194f04443795d5f96c73c5ad633d6a 6h39m
openshift-console
sha256.6b296eb495c0bc44be45901cd86840bf71f97769f755a612de9d68356bc17202 6h40m
openshift-dns-operator
sha256.68f4064ea9725887f1adc61ee3c54a03816ac0d6e216288676b6f94d7560911d 6h39m
openshift-dns-operator
sha256.eb4689ba4b82e603bcd43ecddb2ad492358e1eb8cc773b52674684ef25d05eaa 6h39m
openshift-dns
sha256.2d3851b378f0ac7f9d65ef5b5773aede9e0fe1e31904d6154a36c45b57851697 6h39m
openshift-dns
sha256.4abe7f48249b4c580ec22bfe9d1612b4994c1dedfc081e74a7ca454bd1165a23 6h39m
openshift-dns
sha256.eb4689ba4b82e603bcd43ecddb2ad492358e1eb8cc773b52674684ef25d05eaa 6h39m
openshift-image-registry
sha256.911753c860d418b743eb83d7abe06690ecba448bf151bd1e84a5030cb56613b1 6h39m
openshift-image-registry
sha256.e25da438ab61fe32a4adc7a265ea66492c825e3ba5e296f568cc38d86d7c43d4 6h39m
openshift-ingress-canary
sha256.0858da96a5ef69714910e4564e37d30b137f942ac8845a49e9eb62f796f4c6f0 6h39m
openshift-ingress-operator
sha256.0858da96a5ef69714910e4564e37d30b137f942ac8845a49e9eb62f796f4c6f0 6h39m
openshift-ingress-operator
sha256.eb4689ba4b82e603bcd43ecddb2ad492358e1eb8cc773b52674684ef25d05eaa 6h39m
openshift-ingress
sha256.4f322f7c459883f44d1a3bd7dc03f634d3b0d63198cea47aa41d851c9887836e 6h39m
openshift-kube-proxy
sha256.e489cc0498d7a68daeb91437c8979fdb8d60d3a02eeff4073984bfd129fc4f91 6h39m
82 Security Implementation with Red Hat OpenShift on IBM Power Systems

openshift-kube-proxy
sha256.eb4689ba4b82e603bcd43ecddb2ad492358e1eb8cc773b52674684ef25d05eaa 6h39m
openshift-kube-storage-version-migrator-operator
sha256.905a15539183385d346fea04cdd1ec4333ee335cef97b762a2dd40bc47c933b3 6h39m
openshift-kube-storage-version-migrator
sha256.0fcc6b95130e47c5144e5df7f398754c6e665d100f084dec3a4ba976d14d054d 6h39m
openshift-marketplace
sha256.22f1d6d0d3a5c0e53d705bf8f57e0d8f8bacd4b44ab3694a17a4e5c4a6b77836 6h39m
openshift-monitoring
sha256.09c45bb7f897b44e599f7f79959ca67b2b48145810bb1054dcca9c28e2e086a1 6h39m
openshift-monitoring
sha256.1929247501d11208a9bf36b1716f71b631df21a5209980152c6a5a18039e1b8b 6h39m
openshift-monitoring
sha256.25d4752df835bf37ff44e9c39d52a9df2d33f86bb552257c5a999bb77f1273f1 6h39m
openshift-monitoring
sha256.4ea395a3e84d2dadb00a499f253fb06aaeb5f8124e40ef8ed4bdcf8cc68b1a04 6h39m
openshift-monitoring
sha256.5649cb30106601e6932770c3c5df40dd09bc72f33adcf805a5d50e3bdd43b288 6h39m
openshift-monitoring
sha256.73718270eaa0ec5e70d6ca4abceba819ff43a05e0d6c01ce2ae861bf51d9b0b4 6h39m
openshift-monitoring
sha256.81217df9a0c4d235ce24294c89f982fcb07bc50bb03ae57c8734e09185873f54 6h39m
openshift-monitoring
sha256.82182248234d42228906e959e81134c094f9d134f4be9ea74d75667151970891 6h39m
openshift-monitoring
sha256.85ae72cd6081a1bd0877d9ad8a07a6cdae885a2509db1b99d53b865e8a6d9d4e 6h39m
openshift-monitoring
sha256.b2b092b5086f113550569c2844501ee52b3312a75c849f526c6e53d3a1f621c8 6h39m
openshift-monitoring
sha256.b9871fcd6fb02452c273c09d4d67032bd598fec2201cb95cf6616ac3d0a4192a 6h39m
openshift-monitoring
sha256.d33fd2ec339842e439169928b1331d165fc6866fa06f3198bcaea9561540e2ea 6h39m
openshift-monitoring
sha256.d3c3fa01291702621902ad24d2d63b945704952315718f9771165ba56d3c1290 6h39m
openshift-monitoring
sha256.eb4689ba4b82e603bcd43ecddb2ad492358e1eb8cc773b52674684ef25d05eaa 6h39m
openshift-monitoring
sha256.fb0d7eb7232992902c296531423c54fc4eaa54ad39ee12b3f697f4fcee2058af 6h39m
openshift-multus
sha256.24f33c4258d6177a3bdb1a7c859b1c199a7afffa4e04f5c7dc21149b9c2dc9d8 6h39m
openshift-multus
sha256.5096e4451e496e8eadee2a190928a00dc816d348e4a9126aaaf6425e6b56ed36 6h39m
openshift-multus
sha256.6f5422a05b49d68451debb485ec429351e78c8b200a44eded7b3d739a7ce3693 6h40m
openshift-multus
sha256.eb4689ba4b82e603bcd43ecddb2ad492358e1eb8cc773b52674684ef25d05eaa 6h40m
openshift-network-diagnostics
sha256.130ff7ce1fd91a71929d40832f8045c233070b0518a51c311f16a46126127383 6h39m
openshift-network-operator
sha256.130ff7ce1fd91a71929d40832f8045c233070b0518a51c311f16a46126127383 6h39m
openshift-operator-lifecycle-manager
sha256.acf9b47d66445709e9a3061c1b12f83e9104cf0e4ec4c3e2cb1c460a8430bcdc 6h39m
openshift-service-ca-operator
sha256.c2b9c99b65c949e9599fd5e61c4ac0c6a0ef9faa27811a97908028fdcebd3be4 6h39m
Chapter 4. Designing and implementing Red Hat OpenShift with security first 83

openshift-service-ca
sha256.c2b9c99b65c949e9599fd5e61c4ac0c6a0ef9faa27811a97908028fdcebd3be4 6h39m
y_largou@cloudshell:~$

4. Display the details for a specific vulnerability by using the command that is shown in
Example 4-9.

Example 4-9 Displaying the details for a specific VCE

y_largou@cloudshell:~$ oc describe vuln --namespace openshift-dns
sha256.2d3851b378f0ac7f9d65ef5b5773aede9e0fe1e31904d6154a36c45b57851697
Name: sha256.2d3851b378f0ac7f9d65ef5b5773aede9e0fe1e31904d6154a36c45b57851697
Namespace: openshift-dns
Labels: openshift-dns/dns-default-5ghqv=true
 openshift-dns/dns-default-6t6xd=true
 openshift-dns/dns-default-rtm92=true
Annotations: <none>
API Version: secscan.quay.redhat.com/v1alpha1
Kind: ImageManifestVuln
Metadata:
 Creation Timestamp: 2022-11-01T16:56:32Z
 Generation: 7
 Managed Fields:
 API Version: secscan.quay.redhat.com/v1alpha1
 Fields Type: FieldsV1
 fieldsV1:
 f:metadata:
 f:labels:
 .:
 f:openshift-dns/dns-default-5ghqv:
 f:openshift-dns/dns-default-6t6xd:
 f:openshift-dns/dns-default-rtm92:
 f:spec:
 .:
 f:features:
 f:image:
 f:manifest:
 Manager: security-labeller
 Operation: Update
 Time: 2022-11-01T16:56:57Z
 API Version: secscan.quay.redhat.com/v1alpha1
 Fields Type: FieldsV1
 fieldsV1:
 f:status:
 .:
 f:affectedPods:
 .:
 f:openshift-dns/dns-default-5ghqv:
 f:openshift-dns/dns-default-6t6xd:
 f:openshift-dns/dns-default-rtm92:
 f:fixableCount:
 f:highCount:
 f:highestSeverity:
 f:lastUpdate:
 f:lowCount:
 f:mediumCount:
84 Security Implementation with Red Hat OpenShift on IBM Power Systems

 Manager: security-labeller
 Operation: Update
 Subresource: status
 Time: 2022-11-01T16:56:57Z
 Resource Version: 246734
 UID: ecfa3294-d2b8-408b-b451-e25cf456e32c
Spec:
 Features:
 Name: bind-libs-lite
 Version: 32:9.11.26-4.el8_4
 Vulnerabilities:
 Description: The Berkeley Internet Name Domain (BIND) is an implementation of the Domain
Name System (DNS) protocols. BIND includes a DNS server (named); a resolver library (routines
for applications to use when interfacing with DNS); and tools for verifying that the DNS server
is operating correctly.

Security Fix(es):

* bind: memory leak in ECDSA DNSSEC verification code (CVE-2022-38177)

* bind: memory leaks in EdDSA DNSSEC verification code (CVE-2022-38178)

For more details about the security issue(s), including the impact, a CVSS score,
acknowledgments, and other related information, refer to the CVE page(s) listed in the
References section.
 Fixedby: 32:9.11.26-4.el8_4.1
 Link: https://access.redhat.com/errata/RHSA-2022:6779
https://access.redhat.com/security/cve/CVE-2022-38177
https://access.redhat.com/security/cve/CVE-2022-38178
 Metadata: {"UpdatedBy": "RHEL8-rhel-8.4-eus", "RepoName":
"cpe:/a:redhat:rhel_eus:8.4::appstream", "RepoLink": null, "DistroName": "Red Hat Enterprise
Linux Server", "DistroVersion": "8", "NVD": {"CVSSv3": {"Vectors":
"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H", "Score": 7.5}}}
 Name: RHSA-2022:6779: bind security update (Important)
 Namespace Name: RHEL8-rhel-8.4-eus
 Severity: High
 Name: python3-bind
 Version: 32:9.11.26-4.el8_4
 Vulnerabilities:
 Description: The Berkeley Internet Name Domain (BIND) is an implementation of the Domain
Name System (DNS) protocols. BIND includes a DNS server (named); a resolver library (routines
for applications to use when interfacing with DNS); and tools for verifying that the DNS server
is operating correctly.

Security Fix(es):

* bind: memory leak in ECDSA DNSSEC verification code (CVE-2022-38177)

* bind: memory leaks in EdDSA DNSSEC verification code (CVE-2022-38178)

For more details about the security issue(s), including the impact, a CVSS score,
acknowledgments, and other related information, refer to the CVE page(s) listed in the
References section.
 Fixedby: 32:9.11.26-4.el8_4.1
Chapter 4. Designing and implementing Red Hat OpenShift with security first 85

 Link: https://access.redhat.com/errata/RHSA-2022:6779
https://access.redhat.com/security/cve/CVE-2022-38177
https://access.redhat.com/security/cve/CVE-2022-38178
 Metadata: {"UpdatedBy": "RHEL8-rhel-8.4-eus", "RepoName":
"cpe:/a:redhat:rhel_eus:8.4::appstream", "RepoLink": null, "DistroName": "Red Hat Enterprise
Linux Server", "DistroVersion": "8", "NVD": {"CVSSv3": {"Vectors":
"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H", "Score": 7.5}}}
 Name: RHSA-2022:6779: bind security update (Important)
 Namespace Name: RHEL8-rhel-8.4-eus
 Severity: High
 Name: openshift4/ose-coredns
 Version: v4.10.0-202208241855.p0.g3ec1ee7.assembly.stream
 Vulnerabilities:
 Description: Non-random values for ticket_age_add in session tickets in crypto/tls
before Go 1.17.11 and Go 1.18.3 allow an attacker that can observe TLS handshakes to correlate
successive connections by comparing ticket ages during session resumption.
 Fixedby: v4.11.0-202208031306.p0.g7fe212f.assembly.stream
 Link: https://access.redhat.com/errata/RHSA-2022:6103
https://access.redhat.com/security/cve/CVE-2022-30629
 Metadata: {"UpdatedBy": "rhel-container-updater", "RepoName": "Red Hat Container
Catalog", "RepoLink": "https://catalog.redhat.com/software/containers/explore", "DistroName":
"", "DistroVersion": "", "NVD": {"CVSSv3": {"Vectors":
"CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:N/A:N", "Score": 3.1}}}
 Name: RHSA-2022:6103
 Namespace Name: rhel-container-updater
 Severity: Low
 Name: bind-libs
 Version: 32:9.11.26-4.el8_4
 Vulnerabilities:
 Description: The Berkeley Internet Name Domain (BIND) is an implementation of the Domain
Name System (DNS) protocols. BIND includes a DNS server (named); a resolver library (routines
for applications to use when interfacing with DNS); and tools for verifying that the DNS server
is operating correctly.

Security Fix(es):

* bind: memory leak in ECDSA DNSSEC verification code (CVE-2022-38177)

* bind: memory leaks in EdDSA DNSSEC verification code (CVE-2022-38178)

For more details about the security issue(s), including the impact, a CVSS score,
acknowledgments, and other related information, refer to the CVE page(s) listed in the
References section.
 Fixedby: 32:9.11.26-4.el8_4.1
 Link: https://access.redhat.com/errata/RHSA-2022:6779
https://access.redhat.com/security/cve/CVE-2022-38177
https://access.redhat.com/security/cve/CVE-2022-38178
 Metadata: {"UpdatedBy": "RHEL8-rhel-8.4-eus", "RepoName":
"cpe:/a:redhat:rhel_eus:8.4::appstream", "RepoLink": null, "DistroName": "Red Hat Enterprise
Linux Server", "DistroVersion": "8", "NVD": {"CVSSv3": {"Vectors":
"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H", "Score": 7.5}}}
 Name: RHSA-2022:6779: bind security update (Important)
 Namespace Name: RHEL8-rhel-8.4-eus
 Severity: High
 Name: pip
86 Security Implementation with Red Hat OpenShift on IBM Power Systems

 Version: 9.0.3
 Vulnerabilities:
 Description: The pip package before 19.2 for Python allows Directory Traversal when a
URL is given in an installation command because a Content-Disposition header can have ../ in a
file name, as demonstrated by overwriting the /root/.ssh/authorized_keys file. This occurs in
_download_http_url in _internal/download.py.
 Metadata: {"UpdatedBy": "pyupio", "RepoName": "pypi", "RepoLink":
"https://pypi.org/simple", "DistroName": "", "DistroVersion": "", "NVD": {"CVSSv3": {"Vectors":
"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N", "Score": 7.5}}}
 Name: pyup.io-38765 (CVE-2019-20916)
 Namespace Name: pyupio
 Severity: High
 Description: Pip 21.1 updates its dependency 'urllib3' to v1.26.4 due to security
issues.
 Metadata: {"UpdatedBy": "pyupio", "RepoName": "pypi", "RepoLink":
"https://pypi.org/simple", "DistroName": "", "DistroVersion": "", "NVD": {"CVSSv3": {"Vectors":
"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N", "Score": 6.5}}}
 Name: pyup.io-40291 (CVE-2021-28363)
 Namespace Name: pyupio
 Severity: Medium
 Description: A flaw was found in python-pip in the way that it handled Unicode
separators in Git references. A remote attacker could possibly use this issue to install a
different revision on a repository. The highest threat from this vulnerability is to data
integrity. This is fixed in python-pip version 21.1.
 Metadata: {"UpdatedBy": "pyupio", "RepoName": "pypi", "RepoLink":
"https://pypi.org/simple", "DistroName": "", "DistroVersion": "", "NVD": {"CVSSv3": {"Vectors":
"CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:U/C:N/I:H/A:N", "Score": 5.7}}}
 Name: pyup.io-42559 (CVE-2021-3572)
 Namespace Name: pyupio
 Severity: Medium
 Name: bind-utils
 Version: 32:9.11.26-4.el8_4
 Vulnerabilities:
 Description: The Berkeley Internet Name Domain (BIND) is an implementation of the Domain
Name System (DNS) protocols. BIND includes a DNS server (named); a resolver library (routines
for applications to use when interfacing with DNS); and tools for verifying that the DNS server
is operating correctly.

Security Fix(es):

* bind: memory leak in ECDSA DNSSEC verification code (CVE-2022-38177)

* bind: memory leaks in EdDSA DNSSEC verification code (CVE-2022-38178)

For more details about the security issue(s), including the impact, a CVSS score,
acknowledgments, and other related information, refer to the CVE page(s) listed in the
References section.
 Fixedby: 32:9.11.26-4.el8_4.1
 Link: https://access.redhat.com/errata/RHSA-2022:6779
https://access.redhat.com/security/cve/CVE-2022-38177
https://access.redhat.com/security/cve/CVE-2022-38178
 Metadata: {"UpdatedBy": "RHEL8-rhel-8.4-eus", "RepoName":
"cpe:/a:redhat:rhel_eus:8.4::appstream", "RepoLink": null, "DistroName": "Red Hat Enterprise
Linux Server", "DistroVersion": "8", "NVD": {"CVSSv3": {"Vectors":
"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H", "Score": 7.5}}}
Chapter 4. Designing and implementing Red Hat OpenShift with security first 87

 Name: RHSA-2022:6779: bind security update (Important)
 Namespace Name: RHEL8-rhel-8.4-eus
 Severity: High
 Name: urllib3
 Version: 1.24.2
 Vulnerabilities:
 Description: urllib3 before 1.25.9 allows CRLF injection if the attacker controls the
HTTP request method, as demonstrated by inserting CR and LF control characters in the first
argument of putrequest(). NOTE: this is similar to CVE-2020-26116.
 Metadata: {"UpdatedBy": "pyupio", "RepoName": "pypi", "RepoLink":
"https://pypi.org/simple", "DistroName": "", "DistroVersion": "", "NVD": {"CVSSv3": {"Vectors":
"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:L/A:N", "Score": 7.2}}}
 Name: pyup.io-38834 (CVE-2020-26137)
 Namespace Name: pyupio
 Severity: High
 Description: Urllib3 1.26.5 includes a fix for CVE-2021-33503: An issue was discovered
in urllib3 before 1.26.5. When provided with a URL containing many @ characters in the authority
component, the authority regular expression exhibits catastrophic backtracking, causing a denial
of service if a URL were passed as a parameter or redirected to through an HTTP redirect.
https://github.com/advisories/GHSA-q2q7-5pp4-w6pg
 Metadata: {"UpdatedBy": "pyupio", "RepoName": "pypi", "RepoLink":
"https://pypi.org/simple", "DistroName": "", "DistroVersion": "", "NVD": {"CVSSv3": {"Vectors":
"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H", "Score": 7.5}}}
 Name: pyup.io-43975 (CVE-2021-33503)
 Namespace Name: pyupio
 Severity: High
 Name: bind-license
 Version: 32:9.11.26-4.el8_4
 Vulnerabilities:
 Description: The Berkeley Internet Name Domain (BIND) is an implementation of the Domain
Name System (DNS) protocols. BIND includes a DNS server (named); a resolver library (routines
for applications to use when interfacing with DNS); and tools for verifying that the DNS server
is operating correctly.

Security Fix(es):

* bind: memory leak in ECDSA DNSSEC verification code (CVE-2022-38177)

* bind: memory leaks in EdDSA DNSSEC verification code (CVE-2022-38178)

For more details about the security issue(s), including the impact, a CVSS score,
acknowledgments, and other related information, refer to the CVE page(s) listed in the
References section.
 Fixedby: 32:9.11.26-4.el8_4.1
 Link: https://access.redhat.com/errata/RHSA-2022:6779
https://access.redhat.com/security/cve/CVE-2022-38177
https://access.redhat.com/security/cve/CVE-2022-38178
 Metadata: {"UpdatedBy": "RHEL8-rhel-8.4-eus", "RepoName":
"cpe:/a:redhat:rhel_eus:8.4::appstream", "RepoLink": null, "DistroName": "Red Hat Enterprise
Linux Server", "DistroVersion": "8", "NVD": {"CVSSv3": {"Vectors":
"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H", "Score": 7.5}}}
 Name: RHSA-2022:6779: bind security update (Important)
 Namespace Name: RHEL8-rhel-8.4-eus
 Severity: High
 Name: expat
88 Security Implementation with Red Hat OpenShift on IBM Power Systems

 Version: 2.2.5-4.el8_4.3
 Vulnerabilities:
 Description: Expat is a C library for parsing XML documents.

Security Fix(es):

* expat: a use-after-free in the doContent function in xmlparse.c (CVE-2022-40674)

For more details about the security issue(s), including the impact, a CVSS score,
acknowledgments, and other related information, refer to the CVE page(s) listed in the
References section.
 Fixedby: 0:2.2.5-4.el8_4.4
 Link: https://access.redhat.com/errata/RHSA-2022:6831
https://access.redhat.com/security/cve/CVE-2022-40674
 Metadata: {"UpdatedBy": "RHEL8-rhel-8.4-eus", "RepoName":
"cpe:/a:redhat:rhel_eus:8.4::appstream", "RepoLink": null, "DistroName": "Red Hat Enterprise
Linux Server", "DistroVersion": "8", "NVD": {"CVSSv3": {"Vectors":
"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "Score": 9.8}}}
 Name: RHSA-2022:6831: expat security update (Important)
 Namespace Name: RHEL8-rhel-8.4-eus
 Severity: High
 Image: quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256
 Manifest: sha256:2d3851b378f0ac7f9d65ef5b5773aede9e0fe1e31904d6154a36c45b57851697
Status:
 Affected Pods:
 openshift-dns/dns-default-5ghqv:
 cri-o://5005f4a4aa27685d2c4cb4d018f0475abb801967f6779a413a766e27a4f46dd8
 openshift-dns/dns-default-6t6xd:
 cri-o://5598633bb47c26fe5945c8807029238d97a4243fd2d9e49d337115abad82a3b0
 openshift-dns/dns-default-rtm92:
 cri-o://8fc2ac16f021cb339b862fbaa7fa83d898bbcc61cbb752aba2961da7574135d3
 Fixable Count: 7
 High Count: 9
 Highest Severity: High
 Last Update: 2022-11-01 23:26:48.135845459 +0000 UTC
 Low Count: 1
 Medium Count: 2
Events: <none>
y_largou@cloudshell:~$

Using Red Hat Advanced Cluster Security for Kubernetes
Building on the foundation of security that Red Hat OpenShift provides, Red Hat Advanced
Cluster Security for K8s helps to automate DevOps so the developers can mitigate security
issues such as image vulnerabilities early in the container lifecycle; identify workload
misconfiguration like excessive access permissions to further reduce the attack surface and
risk profile; and help security teams controlling runtime security to detect and respond to
threats, such as unauthorized access and privilege escalation.

For more information, see Red Hat Advanced Cluster Security for Kubernetes.

In the following use case, we add extra tasks to an existing pipeline by using the pipeline
builder to run a full vulnerability image scan task.
Chapter 4. Designing and implementing Red Hat OpenShift with security first 89

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_security_for_kubernetes/3.72
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_security_for_kubernetes/3.72

Complete the following steps:

1. Verify that the Red Hat Advanced Cluster Security for Kubernetes Operator is installed by
selecting Operators → Installed Operators, as shown in Figure 4-47.

Figure 4-47 Verifying Installed Operators

2. Ensure that the Red Hat Advanced Cluster Security for Kubernetes Operator Central and
Secured Cluster custom resources are configured as described in the Red Hat
documentation.14

3. In the web console, go to Pipelines → Pipelines, as shown in Figure 4-48.

Figure 4-48 Pipelines page

4. Select the spring-boot pipeline, and then select Actions → Edit Pipeline, as shown in
Figure 4-49 on page 91.

14 https://docs.openshift.com/acs/3.72/installing/install-ocp-operator.html
90 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://docs.openshift.com/acs/3.72/installing/install-ocp-operator.html

Figure 4-49 Selecting a pipeline

5. Add a sequential task after the build task, as shown in Figure 4-50.

Figure 4-50 Adding a sequential task

6. Select the rhacs-image-scan task, click Add, as shown in Figure 4-51, and then click
Save.

Figure 4-51 Adding the rhacs-image-scan task
Chapter 4. Designing and implementing Red Hat OpenShift with security first 91

This task returns full vulnerability scan results for an image in JSON, CSV, or Pretty
format.

Add the following information when you create this task:

– rox_central_endpoint

– rox_api_token

– image

7. Select Actions → Start, as shown in Figure 4-52.

Figure 4-52 Starting the pipeline

8. Monitor the pipeline, as shown in Figure 4-53.

Figure 4-53 Pipeline run details

You can check Policy violation by severity, images, and deployments at most risk by
accessing the Red Hat Advanced Cluster Security For Kubernetes dashboard, as shown in
Figure 4-54 on page 93.
92 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 4-54 Red Hat Advanced Cluster Security For Kubernetes dashboard

4.2.13 Enhanced data resilience and security by using IBM Spectrum Protect
Plus

Data protection requirements have evolved from standard data backup and recovery solutions
to a new data resilience approach that provides continuous access to data and applications
while protecting critical information from a system or application failure, human error, a
security breach, or a catastrophic disaster. Organizations are struggling with the cost and
complexity of protecting their data as they embrace the new digital transformation, manage
massive data growth, and tackle the requirements of always-on services. Moreover, VMs and
containerized workloads are more prevalent. Thus, modern data resilience solutions must be
designed to explicitly operate both on-premises and in the cloud, and these solutions are
essential.

IBM Spectrum Protect Plus is a data resilience solution that provides data protection,
recovery, replication, and reuse for VMs, databases, applications, file systems, software as a
service (SaaS) workloads, containers, and cloud environments.

IBM Spectrum Protect Plus 10.1.10 delivers support across multiple container-based
environments:

� K8s and Container Storage Interface (CSI) snapshots

� Red Hat OpenShift Container Platform

� Red Hat OpenShift Data Foundation

� Red Hat OpenShift Virtualization (providing VM support in a Red Hat environment)

� Red Hat OpenShift both on-premises and in the cloud

IBM Spectrum Protect Plus protects PVs along with etcd data and metadata in the container
and uses in-place storage snap copies for instant recovery of containers. When leveraging
IBM Spectrum Scale, you can create application and crash-consistent backup copies of
the data.

For more information, see IBM Spectrum Protect Plus: Protecting Red Hat OpenShift
Containerized Environments, REDP-5636.
Chapter 4. Designing and implementing Red Hat OpenShift with security first 93

Here are best practices to secure container backups when using IBM Spectrum Protect Plus:

� Enable data at rest encryption to protect all sensitive data, including the copy backup data
and Container Backup Support secrets.

� Ensure that secrets are encrypted when stored in the cluster etcd database.

� Deploy an IBM Spectrum Protect Plus vSnap server to enable encryption.

� Create backup requests that specify encryption-enabled SLAs so that data can be
directed to a vSnap server for encryption if the vSnap server is enabled for encryption of
data at rest.

� Starting from IBM Spectrum Protect Plus 10.1.9, container backups can go directly to
object storage or cloud storage without requiring an IBM Spectrum Protect Plus vSnap
server.

Backups on object storage are encrypted by default, and the encryption password is
stored as an attribute of the SLA policy.

� Verify that the Container Backup Support installation files signature that is included with
the installation package against the suitable signature and certificates.

Using an IBM Spectrum Protect Plus SLA policy to encrypt backups to
IBM Cloud Object Storage
In this scenario, we use an IBM Spectrum Protect Plus SLA policy to encrypt backups to
IBM Cloud Object Storage. The Red Hat OpenShift cluster is deployed on IBM PowerVS.

Complete the following steps:

1. Before configuring IBM Spectrum Protect Plus, gather information, such as IBM Cloud
Object Storage endpoints, the access key, the secret key, and the certificate, from the
IBM Cloud console.

2. Log in to the IBM Cloud console by using your credentials, select Resource List →
Storage, and choose the cloud storage object, as shown in Figure 4-55.

Figure 4-55 Selecting the cloud storage object

3. Go to Service Credentials and select access_key_id and secret_access_key, as shown
in Figure 4-56 on page 95.

Note: The only supported object store types are IBM Cloud Object Store, Microsoft
Azure Blob Storage, and AWS S3.
94 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 4-56 Selecting the access and secret keys

4. Verify that the IBM Spectrum Protect Plus Operator is installed, as shown in Figure 4-57.

Figure 4-57 Verifying the IBM Spectrum Protect Plus Operator installation

5. Verify the Containers and pods topology, as shown in Figure 4-58.

Figure 4-58 Pods topology
Chapter 4. Designing and implementing Red Hat OpenShift with security first 95

6. Verify the PVs and PVCs that define the data locations, as shown in Example 4-10.

Example 4-10 Verifying the PVs and PVCs

y_largou@cloudshell:~$ oc project spp-powertst-ysl
Already on project "spp-powertst-ysl" on server "https://c108-e.eu-gb.containers.cloud.ibm.com:31539".

y_largou@cloudshell:~$ oc get pv |grep -E "NAME|spp"
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
pvc-03eb59a1-1391-47cf-8e97-ea02d323141a 20Gi RWO Delete Bound
spp-powertst-ysl/postgresql 18h
pvc-08b215d3-2ae3-4c43-b652-93af2aeece50 50Gi RWO Delete Bound
spp-powertst-ysl/sppdbmongo-spp-powertst-ysl-claim 13h
pvc-16b6718f-142c-4e19-909e-38ec9cfd2258 20Gi RWO Delete Bound
spp-powertst-ysl/sppvadp-spp-powertst-ysl-claim 13h
pvc-30f4dc30-6ed0-4964-8766-9a2e2fb28027 100Gi RWO Delete Bound
spp-powertst-ysl/sppdbmongo2-spp-powertst-ysl-claim 13h
pvc-8c41f60d-3fd9-47f2-b938-d81eb0b1fc5c 150Gi RWO Delete Bound
spp-powertst-ysl/virgo-lucene-spp-powertst-ysl-claim 13h
pvc-ca48d7fe-1c5f-4860-93bb-153c2f7cab03 20Gi RWO Delete Bound
spp-powertst-ysl/sppnodejs-spp-powertst-ysl-claim 13h
pvc-cd12f108-7939-4361-afac-acd1a67114fb 20Gi RWO Delete Bound
spp-powertst-ysl/sppdbpostgres-spp-powertst-ysl-claim 13h
pvc-f0a45b12-5443-44e1-bc82-0c209a7bc123 20Gi RWO Delete Bound
spp-powertst-ysl/spp-log-spp-powertst-ysl-claim

7. Validate that the services were created and are running for an IBM Spectrum Protect Plus
server deployment. The services are shown in Example 4-11.

Example 4-11 List of IBM Spectrum Protect Plus services

y_largou@cloudshell:~$ oc get services | grep spp
spp ClusterIP 172.21.191.7 <none> 8082/TCP,5672/TCP,5671/TCP 13h
spp-operator-metrics ClusterIP 172.21.114.34 <none> 8686/TCP,8383/TCP 13h
sppmanager ClusterIP 172.21.133.8 <none> 80/TCP 13h
sppproxy ClusterIP 172.21.226.140 <none> 80/TCP 13h

8. Verify the routes that access the containerized application from outside the cluster. An
example output is shown in Example 4-12.

Example 4-12 Verifying the routes

y_largou@cloudshell:~$ oc get routes
NAME HOST/PORT
PATH SERVICES PORT TERMINATION WILDCARD
devfile-sample-git
devfile-sample-git-spp-powertst-ysl.itzroks-505k3w1ukq-6v7zcp-6ccd7f378ae819553d37d5f2ee142bd6-0
000.eu-gb.containers.appdomain.cloud devfile-sample-git 3001 None
maroute
httpd-sample-spp-powertst-ysl.itzroks-505k3w1ukq-6v7zcp-6ccd7f378ae819553d37d5f2ee142bd6-0000.eu
-gb.containers.appdomain.cloud sppproxy 8080 None

9. Login to IBM Spectrum Protect Plus Admin console by using the following URL, as shown
in Figure 4-59 on page 97:

httpd-sample-spp-powertst-ysl.itzroks-505k3w1ukq-6v7zcp-6ccd7f378ae819553d37d5f
2ee142bd6-0000.eu-gb.containers.appdomain.cloud
96 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 4-59 IBM Spectrum Protect Plus login page

10.Add cloud storage by selecting System Configuration → Storage, as shown in
Figure 4-60.

Figure 4-60 Adding cloud storage

11.Select IBM Cloud Object Storage, as shown in Figure 4-61.

Figure 4-61 Selecting IBM Cloud Object Storage
Chapter 4. Designing and implementing Red Hat OpenShift with security first 97

12.Specify the IBM Cloud Object name and key name, and then provide the access and
secret keys from step 3 on page 94, as shown in Figure 4-62.

Figure 4-62 Creating a cloud object

13.Enter the endpoint to update the buckets, and choose the backup storage bucket and
additional copy buckets, as shown in Figure 4-63.

Figure 4-63 Choosing the backup storage buckets

14.Create an SLA policy by completing the following steps:

a. In the navigation pane, select Manage Protection → Policy Overview, as shown in
Figure 4-64 on page 99.
98 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 4-64 IBM Spectrum Protect Plus Policy Overview window

b. Click Add SLA Policy.

c. The New SLA Policy pane opens. Complete the following steps:

• In the Name field, enter a name, for example, redbookgold.

• Select Kubernetes → OpenShift.

The SLA policy options for K8s or Red Hat OpenShift clusters are displayed.

• In the Snapshot Protection section, set the following options for snapshot
operations: Retention, Disable Schedule, Repeats, Start Time, and
Snapshot Prefix.

• In the Backup Policy section, set the following options for copy backup operations to
cloud storage: Backup Storage, Retention, Disable Schedule, Repeats Start Time.
For Target Site, select Object Storage, and for Target, select sppcloudobject.

d. Complete the following fields:

• Use existing backup encryption passphrase.

• Backup encryption passphrase name.

• Backup encryption passphrase.

e. Click Save. The SLA policy that you created is displayed in the table in the
SLA Policies pane.

With this configuration, you can back up the IBM Spectrum Protect Plus Server Catalog and
restore data that has been backed up to IBM Cloud Object Storage.
Chapter 4. Designing and implementing Red Hat OpenShift with security first 99

100 Security Implementation with Red Hat OpenShift on IBM Power Systems

Chapter 5. Authentication and authorization

A significant part of security management is understanding who is accessing your
environment and controlling what that user can do. You must securely validate and
authenticate the user, and limit that user to only functions to which they are authorized.

This chapter describes the following topics:

� Understanding authentication

� RBAC setup for users and service accounts

5

© Copyright IBM Corp. 2023. 101

5.1 Understanding authentication

For users to interact with Red Hat OpenShift Container Platform, first they must authenticate
to the cluster. The authentication layer identifies the user that is associated with requests to
the Red Hat OpenShift Container Platform application programming interface (API). The
authorization layer uses information about the requesting user to determine whether the
request is allowed. The cluster administrator is responsible for configuring authentication for
Red Hat OpenShift Container Platform.

5.1.1 Users

A user in Red Hat OpenShift Container Platform is an entity that can make requests to the
Red Hat OpenShift Container Platform API. A Red Hat OpenShift Container Platform User
object represents an actor that can be granted permissions in the system by adding roles to
them or to their groups. Typically, this object represents the account of a developer or
administrator that is interacting with Red Hat OpenShift Container Platform.

Several types of users can exist:

� Regular users

� System users

� Service accounts

Regular users
Regular users are how the most interactive Red Hat OpenShift Container Platform users are
represented. Regular users are created automatically in the system on first login, or they can
be created by using the API. Regular users are represented with the User object.

An example of a regular user is joe alice.

System users
Many system users are created automatically when the infrastructure is defined, mainly for
enabling the infrastructure to interact with the API securely. They include a cluster
administrator (with access to everything), a per-node user, users for use by routers and
registries, and various others. Finally, there is an anonymous system user that is used by
default for unauthenticated requests.

An example of a system user is system:admin system:openshift-registry
system:node:node1.example.com.

Service accounts
Service accounts are special system users that are associated with projects. Some of these
users are created automatically when the project is created. Project administrators can create
more of these users to define access to the contents of each project. Service accounts are
represented with the ServiceAccount object.

An example of service account is system:serviceaccount:default:deployer
system:serviceaccount:foo:builder.
102 Security Implementation with Red Hat OpenShift on IBM Power Systems

5.1.2 Groups

A user can be assigned to one or more groups, each of which represent a certain set of users.
Groups are useful when managing authorization policies to grant permissions to multiple
users at once, for example, granting access to objects within a project versus granting them to
users individually.

In addition to explicitly defined groups, there are also system groups, or virtual groups, that
are automatically provisioned by the cluster.

The default virtual groups that are shown in Table 5-1 are important.

Table 5-1 Virtual groups defined in Red Hat OpenShift

5.1.3 API authentication

Requests to the Red Hat OpenShift Container Platform API are authenticated by using the
following methods:

� OAuth access tokens

� X.509 client certificates

OAuth access tokens
� Obtained from the Red Hat OpenShift Container Platform OAuth server by using the

<namespace_route>/oauth/authorize and <namespace_route>/oauth/token endpoints.

� Sent as an authorization.

� Sent as a websocket subprotocol header in the form
base64url.bearer.authorization.k8s.io.<base64url-encoded-token> for
websocket requests.

X.509 client certificates
� Requires an HTTPS connection to the apiserver.

� Verified by the apiserver against a trusted certificate authority (CA) bundle.

� The apiserver creates and distributes certificates to controllers to
authenticate themselves.

Any request with an invalid access token or an invalid certificate is rejected by the
authentication layer with a 401 error.

If no access token or certificate is presented, the authentication layer assigns the
system:anonymous virtual user and the system:unauthenticated virtual group to the request.
With these designations, the authorization layer can determine which requests, if any, an
anonymous user might make.

Virtual group Description

system:authenticated Automatically associated with all authenticated users.

system:authenticated:oau
th

Automatically associated with all users that are authenticated with an
OAuth access token.

system:unauthenticated Automatically associated with all unauthenticated users.
Chapter 5. Authentication and authorization 103

5.1.4 Red Hat OpenShift Container Platform OAuth server

The Red Hat OpenShift Container Platform master includes a built-in OAuth server. Users
obtain OAuth access tokens to authenticate themselves to the API.

When a person requests a new OAuth token, the OAuth server uses the configured identity
provider to determine the identity of the person making the request. Then, it determines what
user to which the identity maps, creates an access token for that user, and returns the token
for use.

Every request for an OAuth token must specify the OAuth client that will receive and use the
token. The following OAuth clients are automatically created when starting the Red Hat
OpenShift Container Platform API:

� The openshift-browser-client client

� The openshift-challenging-client client

The openshift-browser-client client
Requests tokens at <namespace_route>/oauth/token/request with a user-agent that can
handle interactive logins. <namespace_route> refers to the namespace route, which you can
find by running the following command:

oc get route oauth-openshift -n openshift-authentication -o json | jq .spec.host

The openshift-challenging-client client
Requests tokens with a user-agent that can handle WWW-Authenticate challenges.

You can configure default options for the internal OAuth server’s token duration. The default
setting is 24 hours, after which existing sessions expire. If the default time is insufficient, then
it can be modified (for more information, see Configuring the internal OAuth server). You can
set an inactivity timeout for tokens. By default, no inactivity timeout is set.

5.1.5 Defining more identity providers

The Red Hat OpenShift Container Platform master includes a built-in OAuth server.
Developers and administrators obtain OAuth access tokens to authenticate themselves to the
API. As an administrator, you can configure OAuth to specify an identity provider after you
install your cluster.

You can configure the following types of identity providers:

� htpasswd

� Keystone

� LDAP

� Basic authentication

� Request header

� GitHub or GitHub Enterprise

� GitLab

� Google

� OpenID Connect
104 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://docs.openshift.com/container-platform/4.11/authentication/configuring-internal-oauth.html

htpasswd
Configure the htpasswd identity provider to validate usernames and passwords against a flat
file that is generated by using htpasswd.

Keystone
Configure the keystone identity provider to integrate your Red Hat OpenShift Container
Platform cluster with Keystone to enable shared authentication with an OpenStack Keystone
v3 server that is configured to store users in an internal database.

LDAP
Configure the LDAP identity provider to validate usernames and passwords against an
LDAPv3 server by using simple bind authentication.

Basic authentication
Configure a basic-authentication identity provider for users to log in to Red Hat OpenShift
Container Platform with credentials that are validated against a remote identity provider.
Basic authentication is a generic back-end integration mechanism.

Request header
Configure a request-header identity provider to identify users from request header values,
such as X-Remote-User. A request header typically is used with an authenticating proxy,
which sets the request header value.

GitHub or GitHub Enterprise
Configure a GitHub identity provider to validate usernames and passwords against GitHub or
the GitHub Enterprise OAuth authentication server.

GitLab
Configure a GitLab identity provider to use any GitLab instance as an identity provider.

Google
Configure a Google identity provider by using Google OpenID Connect (OIDC) integration.

OpenID Connect
Configure an OIDC identity provider to integrate with an OIDC identity provider by using an
Authorization Code Flow.

When an identity provider is defined, you can use role-based access control (RBAC) to define
and apply permissions. For more information about RBAC, see 5.2, “RBAC setup for users
and service accounts” on page 106.

5.1.6 Authentication metrics for Prometheus

Red Hat OpenShift Container Platform captures the following Prometheus system metrics
during authentication attempts:

� openshift_auth_basic_password_count counts the number of oc login username and
password attempts.

� openshift_auth_basic_password_count_result counts the number of oc login username
and password attempts by result, success, or error.

� openshift_auth_form_password_count counts the number of web console login attempts.
Chapter 5. Authentication and authorization 105

� openshift_auth_form_password_count_result counts the number of web console login
attempts by result, success, or error.

� openshift_auth_password_total counts the total number of oc login and web console
login attempts.

5.2 RBAC setup for users and service accounts

To grant users the minimum required permissions, use RBAC objects.

Here are the main components of RBAC:

� Subjects: Users, administrators, processes, and processes in a pod

� Resources: Pod, services, Node, namespace, persistent volumes (PVs), secrets, Ingress,
persistent volumes claims (PVCs), and deployment

� Verbs: Get, create, list, and delete

Red Hat OpenShift RBAC Hierarchy is composed of the following objects, as shown in
Figure 5-1.

� Role: Contains a list of rules, each of which is built from a verb and an API resource. The
rule specifies a list of operations that may be performed on a specific resource.

� RoleBinding: Creates the association between a “Subject” and a “Role” that specifies the
permissions themselves.

� ClusterRoles: Roles that are cluster-scoped associated with any user in the cluster. They
are created once.

� ClusterRoleBinding: Binds the ClusterRole to the Subject in the entire cluster.

Figure 5-1 RBAC objects
106 Security Implementation with Red Hat OpenShift on IBM Power Systems

To manage fewer roles with more associations, define ClusterRoles globally and associate
them to subjects locally by using RoleBinding.

To create Roles and RoleBinding by using the Red Hat OpenShift GUI, complete the
following steps:

1. Select User Management → Role, and then select Create Role, as shown in Figure 5-2.

Figure 5-2 Create Role
Chapter 5. Authentication and authorization 107

2. Go to RoleBindings and click Create binding, as shown in Figure 5-3.

Figure 5-3 Create RoleBindings

Red Hat OpenShift Container Platform includes the following default cluster roles that you can
bind to users and groups cluster-wide or locally:1

� admin

� basic-user

� cluster-admin

� cluster-status

� cluster-reader

� edit

� self-provisioner

� view

1 https://docs.openshift.com/container-platform/4.11/authentication/using-rbac.html
108 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://docs.openshift.com/container-platform/4.11/authentication/using-rbac.html

Using RBAC to apply permission examples
Complete the following steps:

1. To view local roles and bindings, run the command that is shown in Example 5-1.

Example 5-1 Viewing local roles and bindings for a project sample

$ oc describe rolebinding.rbac -n powervm-rmc
Name: system:deployers
Labels: <none>
Annotations: openshift.io/description:
 Allows deploymentconfigs in this namespace to rollout pods in this namespace. It is
auto-managed by a controller; remove subjects to disa...
Role:
 Kind: ClusterRole
 Name: system:deployer
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount deployer powervm-rmc

Name: system:image-builders
Labels: <none>
Annotations: openshift.io/description:
 Allows builds in this namespace to push images to this namespace. It is auto-managed
by a controller; remove subjects to disable.
Role:
 Kind: ClusterRole
 Name: system:image-builder
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount builder powervm-rmc

Name: system:image-pullers
Labels: <none>
Annotations: openshift.io/description:
 Allows all pods in this namespace to pull images from this namespace. It is
auto-managed by a controller; remove subjects to disable.
Role:
 Kind: ClusterRole
 Name: system:image-puller
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:serviceaccounts:powervm-rmc

Name: system:openshift:scc:privileged
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: system:openshift:scc:privileged
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount powervm-rmc powervm-rmc

2. To manage the roles and bindings, run the command that is shown in Example 5-2.

Example 5-2 Adding a role to a user for specific project

$ oc adm policy add-role-to-user admin y.largou -n powervm-rmc
clusterrole.rbac.authorization.k8s.io/admin added: "ylargou"
Chapter 5. Authentication and authorization 109

3. Verify local roles and bindings by running the command that is shown in Example 5-3
(after adding user ylargou to the admins RoleBinding).

Example 5-3 Verifying local roles and binding

./oc describe rolebinding.rbac -n powervm-rmc
Name: admin
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: admin
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 User ylargou
Name: system:deployers
Labels: <none>
Annotations: openshift.io/description:
 Allows deploymentconfigs in this namespace to rollout pods in this namespace. It is
auto-managed by a controller; remove subjects to disa...
Role:
 Kind: ClusterRole
 Name: system:deployer
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount deployer powervm-rmc

Name: system:image-builders
Labels: <none>
Annotations: openshift.io/description:
 Allows builds in this namespace to push images to this namespace. It is auto-managed
by a controller; remove subjects to disable.
Role:
 Kind: ClusterRole
 Name: system:image-builder
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount builder powervm-rmc

Name: system:image-pullers
Labels: <none>
Annotations: openshift.io/description:
 Allows all pods in this namespace to pull images from this namespace. It is
auto-managed by a controller; remove subjects to disable.
Role:
 Kind: ClusterRole
 Name: system:image-puller
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:serviceaccounts:powervm-rmc

Name: system:openshift:scc:privileged
Labels: <none>
Annotations: <none>
Role:
 Kind: ClusterRole
 Name: system:openshift:scc:privileged
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount powervm-rmc powervm-rmc
110 Security Implementation with Red Hat OpenShift on IBM Power Systems

4. To create a cluster role, run the command that is shown in Example 5-4.

Example 5-4 Creating a cluster role sample

$ oc create clusterrole powertstviewonly --verb=get --resource=pod
clusterrole.rbac.authorization.k8s.io/powertstviewonly created

5. To create a cluster admin, run the command that is shown in Example 5-5.

Example 5-5 Creating a cluster admin

$ oc adm policy add-cluster-role-to-user cluster-admin wlargou

6. To create a local role for a project and then bind it to a user, complete the following steps:

a. Create a local role by running the command that is shown in Example 5-6, where
powertst-role is the local role name and powertst-deploy is the project name.

Example 5-6 Creating a local role

$ oc create role powertst-role --verb=get --resource=pod -n powertst-deploy
role.rbac.authorization.k8s.io/powertst-role created

b. Bind a local role to a user by running the command that is shown in Example 5-7.

Example 5-7 Binding a local role to a user

$ oc adm policy add-role-to-user powertst-role ylargou --role-namespace=powertst-deploy -n
powertst-deploy
role.rbac.authorization.k8s.io/powertst-role added: "ylargou"

7. To check the accessibility to a resource, run the command that is shown in Example 5-8.

Example 5-8 Checking the accessibility to a resource

$ oc adm policy who-can get pod

resourceaccessreviewresponse.authorization.openshift.io/<unknown>

Namespace: default
Verb: get
Resource: pods

Users: ylargou
 system:admin
 system:kube-scheduler
 system:serviceaccount:default:deployer
 system:serviceaccount:kube-system:deployment-controller
 system:serviceaccount:kube-system:endpoint-controller
 system:serviceaccount:kube-system:endpointslice-controller
 system:serviceaccount:kube-system:ephemeral-volume-controller
 system:serviceaccount:kube-system:generic-garbage-collector
 system:serviceaccount:kube-system:namespace-controller
 system:serviceaccount:kube-system:persistent-volume-binder
 system:serviceaccount:kube-system:pvc-protection-controller
 system:serviceaccount:kube-system:statefulset-controller
 system:serviceaccount:openshift-apiserver-operator:openshift-apiserver-operator
 system:serviceaccount:openshift-apiserver:openshift-apiserver-sa
 system:serviceaccount:openshift-authentication-operator:authentication-operator
 system:serviceaccount:openshift-authentication:oauth-openshift
 system:serviceaccount:openshift-cluster-node-tuning-operator:cluster-node-tuning-operator
 system:serviceaccount:openshift-cluster-storage-operator:cluster-storage-operator
 system:serviceaccount:openshift-cluster-storage-operator:csi-snapshot-controller-operator
 system:serviceaccount:openshift-cluster-version:default
 system:serviceaccount:openshift-config-operator:openshift-config-operator
Chapter 5. Authentication and authorization 111

system:serviceaccount:openshift-controller-manager-operator:openshift-controller-manager-operator
 system:serviceaccount:openshift-controller-manager:openshift-controller-manager-sa
 system:serviceaccount:openshift-dns-operator:dns-operator
 system:serviceaccount:openshift-etcd-operator:etcd-operator
 system:serviceaccount:openshift-etcd:installer-sa
 system:serviceaccount:openshift-image-registry:cluster-image-registry-operator
 system:serviceaccount:openshift-image-registry:pruner
 system:serviceaccount:openshift-infra:build-controller
 system:serviceaccount:openshift-infra:default-rolebindings-controller
 system:serviceaccount:openshift-infra:deployer-controller
 system:serviceaccount:openshift-infra:pv-recycler-controller
 system:serviceaccount:openshift-infra:template-instance-controller
 system:serviceaccount:openshift-infra:template-instance-finalizer-controller
 system:serviceaccount:openshift-ingress-operator:ingress-operator
 system:serviceaccount:openshift-insights:gather
 system:serviceaccount:openshift-kube-apiserver-operator:kube-apiserver-operator
 system:serviceaccount:openshift-kube-apiserver:installer-sa
 system:serviceaccount:openshift-kube-apiserver:localhost-recovery-client

system:serviceaccount:openshift-kube-controller-manager-operator:kube-controller-manager-operator
 system:serviceaccount:openshift-kube-controller-manager:installer-sa
 system:serviceaccount:openshift-kube-controller-manager:localhost-recovery-client
 system:serviceaccount:openshift-kube-scheduler-operator:openshift-kube-scheduler-operator
 system:serviceaccount:openshift-kube-scheduler:installer-sa
 system:serviceaccount:openshift-kube-scheduler:localhost-recovery-client
 system:serviceaccount:openshift-kube-scheduler:openshift-kube-scheduler-sa

system:serviceaccount:openshift-kube-storage-version-migrator-operator:kube-storage-version-migrator-o
perator
 system:serviceaccount:openshift-kube-storage-version-migrator:kube-storage-version-migrator-sa
 system:serviceaccount:openshift-machine-api:cluster-autoscaler
 system:serviceaccount:openshift-machine-api:machine-api-controllers
 system:serviceaccount:openshift-machine-config-operator:default
 system:serviceaccount:openshift-machine-config-operator:machine-config-daemon
 system:serviceaccount:openshift-monitoring:cluster-monitoring-operator
 system:serviceaccount:openshift-monitoring:prometheus-adapter
 system:serviceaccount:openshift-monitoring:prometheus-k8s
 system:serviceaccount:openshift-multus:metrics-daemon-sa
 system:serviceaccount:openshift-multus:multus
 system:serviceaccount:openshift-network-diagnostics:network-diagnostics
 system:serviceaccount:openshift-network-operator:default
 system:serviceaccount:openshift-oauth-apiserver:oauth-apiserver-sa
 system:serviceaccount:openshift-operator-lifecycle-manager:olm-operator-serviceaccount
 system:serviceaccount:openshift-ovn-kubernetes:ovn-kubernetes-controller
 system:serviceaccount:openshift-ovn-kubernetes:ovn-kubernetes-node
 system:serviceaccount:openshift-service-ca-operator:service-ca-operator
 system:serviceaccount:openshift-storage:ibm-spectrum-scale-csi-operator
 system:serviceaccount:openshift-storage:ibm-spectrum-scale-csi-resizer
 system:serviceaccount:openshift-storage:ocs-operator
 system:serviceaccount:openshift-storage:rook-ceph-system
Groups: system:cluster-admins
 system:cluster-readers
system:masters
112 Security Implementation with Red Hat OpenShift on IBM Power Systems

Chapter 6. Data and application security

In this chapter, we explore the different aspects of data and application security in the
Red Hat OpenShift environment.

This chapter describes the following topics:

� Credential rotation for application to application communication

� Central secrets management: Single source of truth

� Container security considerations

� Data at rest encryption

6

© Copyright IBM Corp. 2023. 113

6.1 Credential rotation for application to application
communication

As a best practice, rotate credentials to safeguard them, and to mitigate damage that is done
from credentials leakage. Leaked credentials can lead to costly breaches, loss of data, and
loss of trust.

Rotate credentials at the following times (no downtime is needed):

� All credentials are rotated at least annually, and it is better to rotate them every 90 days.

� In an emergency such as a malicious attack, the credentials should be rotated within
4 hours.

� When someone leaves the organization, rotate the credential within 24 hours
of separation.

Rotating credentials involves the following steps:

1. Generate new credentials.

2. Distribute the new credentials to the applications.

3. Ensure that the applications use the new keys.

4. Validate that the applications are working as expected.

5. Delete or disable the old keys.

The rotation of credentials is complex and should not be done manually. To help with rotation,
consider the following solutions:

� Hashicorp Vault, which is no-charge, open-source product that enables automatic rotation.
It helps integrate applications with Hashicorp Vault and improves secret management.

� IBM Cloud Secrets Manager helps to automatically rotate credentials. You also can use it
to schedule rotation. IBM Cloud Secrets Manager also helps to restore secrets that are
accidentally replaced.

Here are best practices for automatic secrets rotation:

� Define a rotation strategy and determine the frequency of the rotation.

� Set up alerts for the expiring secrets according to the determined frequency.

� Plan and enable automatic secret rotation by using services like IBM Cloud
Secrets Manager.

� Avoid application outages by locking the secrets to avoid accidental deletion.

6.2 Central secrets management: Single source of truth

Secrets management refers to the tools and methods that are used to manage the digital
authentication credentials. Secrets are used to unlock protected resources or data. Secrets
can be of any type, such as passwords, certificates, application programming interface (API)
keys, Secure Shell or Secure Socket Shell (SSH) keys, and encryption keys. Secrets
mismanagement is one of the biggest cybersecurity concerns.
114 Security Implementation with Red Hat OpenShift on IBM Power Systems

Here are the best practices for secrets management:

� Centralize the secrets.
� Use access-control-based secret access.
� Use end-to-end encryption to protect secrets when they are transmitted over the network.
� Avoid storing secrets in environment variables.
� Never write secrets to disk or any persistent storage.
� Monitor and audit activity for secrets.

Mature, production-grade systems should maintain centralized secrets, and centralized
secrets management should address the following challenges:

� Management of secrets, including creation, secure storage, rotation, and access control
� Single source of secrets for both humans and machines
� Encryption management
� Providing governance for accessing the secrets

To help with secrets management, consider the following solutions:

� Hashicorp Vault is a no-charge, open-source product that centrally manages and enforces
access to secrets and systems by using trusted sources of application and user identity.

� IBM Cloud Secrets Manager is a centralized secret manager that can dynamically create
secrets and lease them to applications while access is controlled from a single location.

IBM Cloud Secrets Manager helps with the following tasks:

– Data isolation
– Implementing the principle of least privilege
– Encrypting the backups of secrets
– Lifecycle management of secrets
– Building your own public key infrastructure (PKI) system

For application secrets that need a higher level of control that relies on highly secure,
customer controlled cryptographic hardware, use the IBM Key Protect for IBM Cloud service,
which helps you provision and store encrypted keys for applications across IBM Cloud
services so that you can see and manage data encryption and the entire key lifecycle from
one central location.

6.3 Container security considerations

For security, there are the standard regulatory bodies, such as National Institute of Standards
and Technology (NIST), PCI-DSS, TSA, and HIPAA, which define the security requirements.
Based on their specific directives, each organization designs its security requirements.

In a container, there are various layers. Security must be implemented in each layer to make it
secure.

Consider the following tasks when you are setting the criteria for platform and
application-level security in containers:

� Integrate with Global Authentication:

– Use Security Assertion Markup Language (SAML), OpenID Connect (OIDC), or OAuth.

– Apply multi-factor authentication (MFA).

– Use native- and federation-based authorization to evaluate user attributes, groups, and
roles to grant user-specific access to applications.
Chapter 6. Data and application security 115

� Enforce and manage least privilege for all users:

– Use standardized user roles and accounts or subscription-level policies to enforce
access control.

– Avoid using local accounts or long-lived credentials.

� Use Infrastructure as Code (IaC) and DevOps processes that include security testing and
scanning:

– Deploy all changes in system integration and the production environment by using IaC.

– All IaC deployments should be scanned for security weakness, errors, vulnerabilities,
and overly permissive policies.

� Adopt native encryption for data at rest:

– All databases, file storage, block storage, message queuing, and other systems that
store data at rest must be encrypted according to security policies by using the
standard key management or Hardware Security Module (HSM) services.

– Encryption keys must not be shared among accounts, subscriptions, different
applications, or across environments.

– A single key may be used to encrypt components of the same application in the same
environment.

� Adopt native encryption in transit for all traffic:

– All traffic in the cloud, API traffic, and traffic between on-premises and cloud must be
encrypted with TLS 1.2.

– Certificates for encrypted traffic in the cloud must use the standard certificate
management service. No manual certificate management should be done.

– Certificates must not be shared among accounts, subscriptions, or different
applications, or across environments.

– A common certificate may be used for components of the same application in the same
environment.

– Self-signed certificates should not be used.

� Structure the usage of cloud components into a segmented network model:

– Traffic should not be permitted between accounts or subscriptions except as needed
for cross-application functions.

– All inter-application traffic must be private and not over the internet.

– For components and services that support micro-segmentation, apply the principle
“Deny All, Permit by Exception”.

� Log application and platform actions and ensure integration with Security Incident and
Event Manager (SIEM):

– Platform-level and service-level logging must be used, and these log contents must be
sent to the SIEM.

– Application-level logging must be enabled for high-risk transactions and activities, and
these events should be sent to the SIEM.
116 Security Implementation with Red Hat OpenShift on IBM Power Systems

� Ensure compliance with standard cloud platform architectures and controls:

– All accounts, services, platforms, and application configurations must adhere to the
Center for Internet Security (CIS) benchmarks.

– All services and accounts must be tagged and have security controls that are enforced
based on environmental needs and data classification.

– Use only approved and standardized configurations.

6.4 Data at rest encryption

Data encryption is a pillar of application security. It controls which entities have access to the
data. Data can be at rest, in use, and in transit. To protect against data leakage, the data must
be encrypted at every stage.

This section focuses on data at rest.

To enable encryption for Red Hat OpenShift Container Platform and Kubernetes (K8s)
components, you must know which components contain data that is necessary to encrypt.
There are two major components to consider:

� One component is the application persistence layer, which stores the application data.
� The other component is the Red Hat OpenShift and Kubernetes API Server, which has the

application configuration.

The application configuration also can contain data with sensitive information. It can be a
definition of a pod, a deployment, a secret, a configmap, and other items.

6.4.1 Application persistence layer

Application data can be stored on different back ends. Here are some storage back ends:

� Databases (relational, NoSQL, TSDB, and others)

� Key-value stores (etcd, Redis, and others)

� Object storages (Ceph, MinIO, AWS S3, Azure Blob Storage, Google Cloud Object
Storage, and others)

� File shares (Network File System (NFS), CIFS, and others)

� Block devices (disks)

Databases and key-value stores are applications that store the data as files on a block device
or a file share. The major storage back ends that are used by pods are shown in the following
list:

� Block devices

� File shares

� Object storage

Red Hat OpenShift Data Foundation Advanced provides these three types of storage.
Depending on the environment where the Red Hat OpenShift Container Platform cluster is
installed and which data storage back ends you are using, the data encryption might not be
available, and if it is available, it might have different methods of implementation. This section
focuses on running Red Hat OpenShift Data Foundation on IBM Power.
Chapter 6. Data and application security 117

Figure 6-1 shows the encryption options of Red Hat OpenShift Data Foundation.

Figure 6-1 Storage encryption

Object encryption
The Multicloud Object Gateway (MCG) is a layer between the application and the object
storage where the data is stored. MCG provides the standard S3 API for your applications
and can store data on various on-premises and cloud object storage, for example, Ceph
Object Storage, MinIO, Google Cloud Object Storage, Azure Blob, or AWS S3. MCG also
provides extra features like an object bucket claim and an object bucket, which can be
compared with a physical volume claim (PVC) and a physical volume (PV).

For more information about these capabilities, see this Red Hat document.

All stored objects are encrypted by default. The encryption keys are stored in a Key
Management System (KMS). Creating an object bucket claim leads to a new object bucket
and the creation of a new object bucket account with its own credentials. Every object bucket
is accessible only by its dedicated account.

Cluster-wide encryption
Red Hat OpenShift Data Foundation Advanced creates a storage cluster. The underlying
technology is Ceph that is operated by the Rook-Ceph operator. The storage cluster provides
block, file, and object storage.

Cluster-wide encryption can be enabled at the time of the deployment of the storage cluster,
and encryption cannot be enabled on an existing storage cluster after it is deployed. All data
that is stored on the cluster, whether through block, file, or object protocol, is transparently
encrypted on the underlying disks. The encryption keys can be stored on a KMS.

For more information, see the following documentation:

� Data encryption options (Planning your deployment)

� Enabling cluster-wide encryption with KMS (Deploying Red Hat OpenShift Data
Foundation by using IBM Power)
118 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/managing_hybrid_and_multicloud_resources/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/planning_your_deployment/security-considerations_rhodf#data-encryption-options_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/deploying_openshift_data_foundation_using_ibm_power/deploy-using-local-storage-devices-ibm-power#enabling-cluster-wide-encryprtion-with-the-token-authentication-using-kms_local-ibm-power
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/deploying_openshift_data_foundation_using_ibm_power/deploy-using-local-storage-devices-ibm-power#enabling-cluster-wide-encryprtion-with-the-token-authentication-using-kms_local-ibm-power

Storage class encryption
The Red Hat OpenShift Data Foundation Advanced storage cluster also provides
storage-class encryption. This encryption option is available only for persistent volumes (PVs)
that are based on block devices with ReadWriteOnce (RWO) access. Shared PVs with
ReadWriteMany (rwx) access cannot be encrypted with that option. This type of encryption
ensures tenant isolation because the encryption keys can be accessed only within a project.
The encryption keys are stored on a KMS.

It is not a best practice to use both cluster-wide and storage class encryption concurrently
because this configuration doubles the encryption and consumes compute resources.
Consider both options at planning time to avoid this situation.

For more information, see the following documentation:

� Data encryption options (Planning your deployment)

� Storage class for persistent volume encryption (Managing and allocating storage
resources)

Key Management System
Each type of encryption that is described in 6.4.1, “Application persistence layer” on page 117
provides for the usage of a KMS. For cluster-wide encryption, KMS is optional, but for
storage-class and object encryption, KMS is mandatory. The KMS that is supported by
Red Hat OpenShift Data Foundation is Hashicorp Vault.

Whether it is optional or mandatory, it is a best practice to use a KMS that runs outside of the
Red Hat OpenShift Container Platform cluster to ensure that the encryption keys are not
stored inside the Red Hat OpenShift Container Platform cluster, which can prevent the
encryption keys from getting lost. A KMS also provides key rotation, which increases security.

Figure 6-2 shows a best practice for a KMS implementation.

Figure 6-2 Key Management System

Application backup
Red Hat OpenShift Data Foundation Advanced provides encrypted block, file, and object
storage for applications, but there is an extra layer of data storage to consider, which is the
backup of your application data. To prevent data loss at the backup layer, store this data
encrypted.
Chapter 6. Data and application security 119

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/planning_your_deployment/security-considerations_rhodf#storage_class_encryption
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/planning_your_deployment/security-considerations_rhodf#storage_class_encryption
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/managing_and_allocating_storage_resources/storage-classes_rhodf#storage-class-for-persistent-volume-encryption_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/managing_and_allocating_storage_resources/storage-classes_rhodf#storage-class-for-persistent-volume-encryption_rhodf

Red Hat OpenShift Platform provides Red Hat OpenShift APIs for Data Protection Operator,
which leverages Velero and its APIs for making backups of your application data, which
includes all related K8s resource objects, PVs, and internal images. The backups of the PVs
are done by snapshots by using the standard Container Storage Interface (CSI) that is
provided by Red Hat OpenShift Data Foundation Advanced. The PV snapshots are encrypted
the same way as the source PVs. Restoration of PV snapshots is done by using the same
storage class as the source PVs, and the snapshots are automatically encrypted in the same
way. Every other resource except the PV is backed up to an object storage. One solution is to
use a bucket that is defined with the MCG because this data is also encrypted by default. It is
also possible to back up the PVs to object storage. Here, the same rule applies when using
the MCG as the backup location, that is, all data is encrypted by default.

If your applications have their own backup solution, consider using the MCG as the backup
location.

For more information, see the following documentation:

� Installing and configuring Red Hat OpenShift APIs for Data Protection with MCG

� Installing and configuring Red Hat OpenShift APIs for Data Protection with Red Hat
OpenShift Data Foundation

� Velero Documentation

6.4.2 Red Hat OpenShift and Kubernetes API Server

Red Hat OpenShift and Kubernetes API Server holds the application configuration, which can
be any API object. These objects are created by applying the declarative YAML files against
Red Hat OpenShift and Kubernetes API Server. Red Hat OpenShift and Kubernetes API
Server stores its data in the highly available key-value store etcd, which persists its data on a
local volume on the host on which it runs.

Figure 6-3 shows the Red Hat OpenShift and Kubernetes API Server storage functions.

Figure 6-3 Red Hat OpenShift and Kubernetes API Server storage

The data that is stored in etcd is not encrypted by default. To perform a disaster recovery, as
a best practice, run repetitive snapshots of etcd and make a backup of the snapshots to a
secure storage that is different from the host etcd on which it is running.
120 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://docs.openshift.com/container-platform/4.11/backup_and_restore/application_backup_and_restore/installing/installing-oadp-mcg.html
https://docs.openshift.com/container-platform/4.11/backup_and_restore/application_backup_and_restore/installing/installing-oadp-ocs.html
https://docs.openshift.com/container-platform/4.11/backup_and_restore/application_backup_and_restore/installing/installing-oadp-ocs.html
https://velero.io/docs/v1.9/
https://velero.io/docs/v1.9

To keep the data containing sensitive information (for example, usernames and passwords)
secure even at the backup location, encrypt it so that if an unauthorized person gains access
to the backups, the sensitive information cannot be read.

You can enable etcd encryption in Red Hat OpenShift Container Platform. For more
information, see Encrypting etcd data.

The weekly rotated encryption keys can be found in the namespaces openshift-apiserver
and openshift-kube-apiserver as a secret with the name encryption-config. They are
necessary for disaster recovery, and should also be stored securely on a repetitive basis.

6.4.3 IBM Security Guardium for File and Database Encryption

IBM Security Guardium for File and Database Encryption is an enterprise-grade solution
that protects data by encrypting files (including database files) and folders by predefining
policies for who and which processes can access the data.

Implementation of encryption and decryption and key management is transparent and
automated. In addition, IBM Security Guardium for File and Database Encryption supports
scheduled automatic key rotation, helping with compliance to cryptoperiod recommendations
that are mandated by NIST and other security guidelines.

IBM Security Guardium for Container Data Encryption is a file and database encryption
extension that enforces traditional transparent encryption to on container environments. For
more information about IBM Security Guardium for Container Data Encryption, see 6.4.4,
“IBM Security Guardium for Container Data Encryption” on page 122.

Important: The etcd encryption encrypts the apiserver resources: Secrets, Config Maps,
Routes, OAuth Access Tokens, and OAuth Authorize Tokens. All other resources are not
encrypted. When you create resources like deployments, follow best practices and never
use sensitive information in their declarations. Instead, refer to related Secrets, for
example, with volumes from a Secret with the ‘volumes[].secret.secretName’ notation or
environment variables with the ‘env[].valueFrom.secretKeyRef.{name,key}’ notation.
Chapter 6. Data and application security 121

https://docs.openshift.com/container-platform/4.11/security/encrypting-etcd.html
https://docs.openshift.com/container-platform/4.11/security/encrypting-etcd.html

Figure 6-4 shows how IBM Security Guardium for File and Database Encryption provides
basic image-level protection by securing and controlling access to container images and
instances.

From a container perspective, IBM Security Guardium for File and Database Encryption
provides the following basic image-level protection:

� Encrypts containers.

� A policy restricts container access and usage to Red Hat OpenShift environments.

� Restricts usage of containers to only authorized (signed) environment instances.

� Restricts access to data resources that are used by containers to the container
environment.

� Requires no operational impact on Red Hat OpenShift environments.

� There is no need to change container images.

� Reports unauthorized access attempts.

Figure 6-4 IBM Security Guardium for File and Database Encryption

6.4.4 IBM Security Guardium for Container Data Encryption

IBM Security Guardium for Container Data Encryption protects databases and unstructured
files on Linux, UNIX, and Windows (LUW) platforms, and it provides security for container
environments.

As modern application and data store architectures embrace container-based platforms, data
protection policies must enforce container security. Certain containers might require more
restrictive access policies than others, and IBM Security Guardium for Container Data
Encryption helps achieve and enforce policies for those containers.
122 Security Implementation with Red Hat OpenShift on IBM Power Systems

The IBM Security Guardium for Container Data Encryption extension to IBM Security
Guardium for File and Database Encryption delivers container-aware data protection and
encryption capabilities for granular data access controls and data access logging in
containerized environments for both Red Hat OpenShift hosts and images.

Figure 6-5 shows how IBM Security Guardium for Container Data Encryption extends the
security controls of IBM Security Guardium for File and Database Encryption.

Figure 6-5 IBM Security Guardium for Container Data Encryption

This solution enables security teams to modify encryption, access controls, and data access
audit logging on a per-container basis, both the data inside the containers and to external
storage that is accessible from the container. This solution secures container volumes;
protects against root, privileged, or unauthorized user access within containers; and prevent
privilege escalation attacks from other containers.

Users can isolate data access between containers and establish granular access policies that
are based on specific users, process, and resource sets.

IBM Security Guardium for Container Data Encryption extends the security controls of
IBM Security Guardium for File and Database Encryption by providing the following features:

� Highly granular security controls that work within Red Hat OpenShift containers.

� Meeting compliance regulations for encryption, access control, and container-level access
auditing.

� Per-container encryption, access control, and security intelligence.
Chapter 6. Data and application security 123

� Encrypts data that is generated by applications and stored locally in containers or on
linked external storage.

� Adds container-specific, fine-grained access control for internal container users (container
administrators, users, processes, and resource sets) to existing systems.

� Requires no container changes.

� Provides protection from access by root, privileged, or unauthorized users inside
containers.

� Provides data protection against privilege escalation attacks from other containers.

� Provides access isolation between containers.

Here are some use cases to encrypt Red Hat OpenShift containers, data, and images by
using IBM Security Guardium Container Data Encryption:

� Encrypt a Red Hat OpenShift container with an empty GuardPoint. Any new data that is
written into the GuardPoint is encrypted with an encryption key that is specified in the GDE
Policy.

� Encrypt a Red Hat OpenShift image with an empty GuardPoint.

� Encrypt data in a Red Hat OpenShift image with existing data to protect a directory in a
Red Hat image that already contains data. All Red Hat OpenShift containers that are
started from this guarded Red Hat OpenShift image are applied with the same GDE policy
with encrypted data.

For more information, see the IBM Guardium GDE documentation:

� Product Documentation for IBM Guardium Data Encryption

� IBM Guardium Data Encryption Administrator’s Guide Release v.4.0.0.2
124 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://www.ibm.com/support/pages/product-documentation-ibm-guardium-data-encryption
https://www.ibm.com/support/pages/system/files/inline-files/GDE_DSM_Administrators_Guide_v4.0.0.2.pdf
https://www.ibm.com/support/pages/system/files/inline-files/GDE_DSM_Administrators_Guide_v4.0.0.2.pdf

Chapter 7. Logging and monitoring

Logging and monitoring enable earlier detection of vulnerabilities in Red Hat OpenShift
Container Platform because you can understand the context of security incidents during an
active investigation and postmortem analysis; pro-actively monitor security-related activities;
and confirm the effectiveness and integrity of the existing security configuration.

This chapter describes the following topics:

� Monitoring containers and Red Hat OpenShift Container Storage security

� Audit logs

� Red Hat OpenShift File Integrity Operator monitoring

7

© Copyright IBM Corp. 2023. 125

7.1 Monitoring containers and Red Hat OpenShift Container
Storage security

An important aspect of managing a containerized environment is monitoring what is occurring
in the containers. Container monitoring involves tracking and measuring various key
performance indicators (KPIs) of a containerized environment. Monitoring containers is a
continuous process to ensure that decoupled applications (and often, a microservices
environment) are performing at their best.

7.1.1 Challenges of monitoring containers

� Containers are designed to be provisioned and terminated quickly. As such, it can be a
challenge to track changes in environments where dozens of containers (and their
instances) can be continuously provisioned and terminated.

� Because containers are temporary, their metrics, logs, and other data disappear
immediately after they close. You must collect the data before the containers terminate
and store it in a central location for analysis.

� Containers share resources such as memory, CPU, and operating systems, so it can be
challenging to measure container performance.

� Many traditional monitoring tools are often inadequate when used to monitor containerized
environments.

7.1.2 How to effectively monitor containers

You can effectively monitor containers in the following ways:

� Monitoring the entire stack

� Granular visibility

� Contextualized alerting

Monitoring the entire stack
The whole stack must be monitored to get full application visibility. Monitoring must cover
containers, clusters, networking, and inter-container communications.

Granular visibility
Multiple levels of granularity are required to get a complete picture. Drilling down by degrees
of granularity help to pinpoint where exactly the problems are.

Contextualized alerting
In a containerized environment, an alert in one container might be related to its interaction
with another container. Pay careful attention when creating alerts to ensure that the alert
contains relevant context information.
126 Security Implementation with Red Hat OpenShift on IBM Power Systems

7.1.3 Benefits of monitoring containers

Monitoring containers provide the following benefits:

� Determine the cause of a problem, solve it, and catalog the “lessons learned” for future
reference.

� Analyze how containerized applications use cloud resources and how to apportion costs.

� Helps organizations to plan future computing resource requirements by using historical
monitoring data.

7.1.4 Red Hat OpenShift Container Platform Monitoring

Red Hat OpenShift Container Monitoring Platform1 overcomes most of the challenges that
are outlined in 7.1.2, “How to effectively monitor containers” on page 126. It includes a
pre-configured and automatically updating monitoring stack that provides monitoring for core
components. Red Hat OpenShift Container Monitoring Platform is based on Prometheus,
Grafana, and Alert Manager, and has intergrated best practices. Figure 7-1 shows the
components that are installed by the Red Hat OpenShift Container Monitoring Platform.

� Prometheus is used as a back end to store time-series data. It is an open-source solution
that is the de facto standard for cloud-native architecture monitoring.

� Alertmanager is used to handle alarms and send notifications.

� Grafana is used for displaying data in graph format.

Figure 7-1 Red Hat OpenShift Container Platform Monitoring components installed by default

1 https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html/monitoring/moni
toring-overview
Chapter 7. Logging and monitoring 127

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html/monitoring/monitoring-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html/monitoring/monitoring-overview

A set of alerts are included by default that immediately notify administrators about issues with
a cluster. Default dashboards in the Red Hat OpenShift Container Platform web console
include visual representations of cluster metrics to help you to quickly understand the state of
your cluster. With the Red Hat OpenShift Container Platform web console, you can view and
manage metrics, alerts, and review monitoring dashboards.

In the Observe section of Red Hat OpenShift Container Platform web console, you can
access and manage monitoring features, such as metrics, alerts, monitoring dashboards, and
metrics targets.

After installing Red Hat OpenShift Container Platform, cluster administrators can optionally
enable monitoring for user-defined projects. By using this feature, cluster administrators,
developers, and other users can specify how services and pods are monitored in their own
projects.

7.1.5 Observability and application performance monitoring with IBM Instana

As cloud-native applications continue to grow in scale and complexity, companies rely on
application performance monitoring (APM) observability to provide constant visibility into the
health of the app and its infrastructure. APM observability provides the key capabilities that
are required by highly distributed and scalable cloud-native and hybrid apps to provide
optimum performance and resiliency. APM observability must scale with cloud-native apps to
ensure that all the components and their dependencies are visible always.

IBM Instana® is a tool that can be used to elevate the observability and APM functions that
are provided by the default Red Hat OpenShift container monitoring tools. Instana is an
automated system and APM service. It allows visualization of performance through graphs
that are generated from machine learning algorithms. Instana increases application
performance and reliability though deep observability and applied intelligence to what is being
observed. It excels in cloud-based microservice architectures, enabling development teams
to iterate more quickly and get in front of issues before they impact customers.

Figure 7-2 provides an overview of the IBM Instana Enterprise Observability Platform.

Figure 7-2 IBM Instana Enterprise Observability Platform

For more information about Instana, see Instana.
128 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://www.instana.com/

7.2 Audit logs

Red Hat OpenShift Container Platform Audit provides a chronological record of
security-relevant events that documents the sequence of activities that affect every
component of the Red Hat OpenShift Cluster.

The following Red Hat OpenShift Container Platform Audit logs can be viewed:

� The Red Hat OpenShift application programming interface (API) server logs, by running
the command that is shown in Example 7-1.

Example 7-1 Viewing the apiserver logs

$ oc adm node-logs --role=master --path=openshift-apiserver/

� The Kubernetes apiserver logs, by running the command that is shown in Example 7-2.

Example 7-2 Viewing the Kubernetes apiserver logs

$ oc adm node-logs --role=master --path=kube-apiserver/

� The Red Hat OpenShift OAuth apiserver logs, by running the command that is shown in
Example 7-3.

Example 7-3 Viewing the OAuth apiserver logs

$ oc adm node-logs --role=master --path=oauth-apiserver/

7.2.1 Logging operator

The logging subsystem aggregates the following logs from the Red Hat OpenShift cluster:

� Node system audit logs

� Application container logs

� Infrastructure logs

The logging subsystem components include a collector (implemented by Fluentd) that
collects logs from Red Hat OpenShift infrastructure, a secured log store (implemented by
Elasticsearch), and a visualization UI (implemented by Kibana).

The installation of the logging subsystem for Red Hat OpenShift is done by deploying the
following operators:

� Red Hat OpenShift Elasticsearch Operator

� Red Hat OpenShift Logging Operator

7.2.2 Installing the logging subsystem for Red Hat OpenShift

To install the logging subsystem for Red Hat OpenShift, complete the following steps:

1. Configure persistent storage for Elasticsearch with the required space and performance
that is described in Configuring persistent storage for the log store.

2. Ensure that the vm.max_map_count setting is at least 262144 on all nodes.

If you must change the vm_max_count setting, see Red Hat OpenShift Container Platform
configuration for foundational services.
Chapter 7. Logging and monitoring 129

https://docs.openshift.com/container-platform/4.11/logging/config/cluster-logging-log-store.html#cluster-logging-elasticsearch-storage_cluster-logging-store
https://www.ibm.com/docs/en/cpfs?topic=SSHKN6/installer/3.x.x/openshift_config.htm
https://www.ibm.com/docs/en/cpfs?topic=SSHKN6/installer/3.x.x/openshift_config.htm

3. In the Red Hat OpenShift Container Platform web console, select Operators →
OperatorHub.

4. Select and install Red Hat OpenShift Elasticsearch Operator, as shown in Figure 7-3.

Figure 7-3 Installing Red Hat OpenShift Elasticsearch Operator

5. Select and install Red Hat OpenShift Logging Operator (select Enable Operator
recommended cluster monitoring on this Namespace), as shown in Figure 7-4.

Figure 7-4 Installing Red Hat OpenShift Logging Operator

6. Ensure that Red Hat OpenShift Logging and Red Hat OpenShift Elasticsearch are listed in
the Installed Operators with a Status of Succeeded, as shown in Figure 7-5 on page 131.
130 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 7-5 Verifying the installed operators

7. Create an Red Hat OpenShift Logging instance:

a. Select Administration → Custom Resource Definitions, go to the Custom Resource
Definitions page, and click ClusterLogging. On the ClusterLogging page, click Create
ClusterLogging.

b. In the YAML field, replace the code with the code that is shown in Example 7-4. Click
Create.

Example 7-4 Sample YAML file for a ClusterLogging instance

apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
 name: "instance"
 namespace: "openshift-logging"
spec:
 managementState: "Managed"
 logStore:
 type: "elasticsearch"
 retentionPolicy:
 application:
 maxAge: 1d
 infra:
 maxAge: 7d
 audit:
 maxAge: 7d
 elasticsearch:
 nodeCount: 3
 storage:
 storageClassName: "storage-block-gold"
 size: 200G
 resources:
 limits:
 memory: "16Gi"
 requests:
 memory: "16Gi"
 proxy:
 resources:
 limits:
 memory: 256Mi
 requests:
 memory: 256Mi
Chapter 7. Logging and monitoring 131

 redundancyPolicy: "SingleRedundancy"
 visualization:
 type: "kibana"
 kibana:
 replicas: 1
 collection:
 logs:
 type: "fluentd"
 fluentd: {}

8. Verify the pods, as shown in Figure 7-6.

Figure 7-6 Verifying the pods

9. Verify the persistent volumes (PVs), as shown in Figure 7-7.

Figure 7-7 Verifying the persistent volumes
132 Security Implementation with Red Hat OpenShift on IBM Power Systems

7.2.3 Using the logging subsystem for Red Hat OpenShift

To explore and visualize log data, you can use Kibana. To do so, complete the following steps:

1. Select Developer → Topology, and click the kibana pod, as shown in Figure 7-8.

Figure 7-8 Pod topology

2. Create the index and use Kibana, as shown in Figure 7-9.

Figure 7-9 Using Kibana

7.3 Red Hat OpenShift File Integrity Operator monitoring

Red Hat OpenShift File Integrity Operator continuously examines the cluster nodes’ file
integrity. On each node, it starts a daemon set that runs privileged Advanced Intrusion
Detection Environment (AIDE) containers and provides a record of files that were modified
since the DaemonSet initially ran.

Red Hat OpenShift File Integrity Operator creates a database that is based on regular
expression rules that are in a configuration file. When the database is initialized, it can be
used to verify the integrity of files. It has several message digest algorithms for checking file
integrity, and file attributes also can be checked for inconsistencies.
Chapter 7. Logging and monitoring 133

For more information, see the integrity operator release notes.

7.3.1 Installing Red Hat OpenShift File Integrity Operator

To install Red Hat OpenShift File Integrity Operator, complete the following steps:

1. Under the Red Hat OpenShift Dashboard (select Operators → OperatorHub), search for
File Integrity Operator, as shown in Figure 7-10.

Figure 7-10 OperatorHub page

2. Install Red Hat OpenShift File Integrity Operator with the default parameters, as shown in
Figure 7-11.

Figure 7-11 Installing Red Hat OpenShift File Integrity Operator
134 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://docs.openshift.com/container-platform/4.11/security/file_integrity_operator/file-integrity-operator-release-notes.html
https://docs.openshift.com/container-platform/4.11/security/file_integrity_operator/file-integrity-operator-release-notes.html

3. Under the Red Hat OpenShift Dashboard (select Operators → Installed Operators),
check that Red Hat OpenShift File Integrity Operator is correctly installed, as shown in
Figure 7-12.

Figure 7-12 Verifying the installed operators

7.3.2 Configuring Red Hat OpenShift File Integrity Operator

To configure Red Hat OpenShift File Integrity Operator, complete the following steps:

1. Under the Red Hat OpenShift Dashboard (select Operators → Installed Operators),
select File Integrity Operator and click Create Instance, as shown in Figure 7-13.

Figure 7-13 File Integrity Operator Page
Chapter 7. Logging and monitoring 135

2. Create a FileIntegrity CR that is named worker-fileintegrity.yaml to enable scans on worker
nodes, as shown in Example 7-5.

Example 7-5 The worker-fileintegrity.yaml file

apiVersion: fileintegrity.openshift.io/v1alpha1
kind: FileIntegrity
metadata:
 name: worker-fileintegrity
 namespace: openshift-file-integrity
spec:
 config:
 gracePeriod: 900
 maxBackups: 5
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
 operator: Exists
 debug: true

3. Apply the YAML file to the openshift-file-integrity namespace, as shown in Example 7-6.

Example 7-6 Applying the YAML file to the openshift-file-integrity namespace

y_largou@cloudshell:~$ oc apply -f worker-fileintegrity.yaml -n
openshift-file-integrity

4. Under the File Integrity column, check that the FileIntegrity instance is correctly
configured, as shown in Figure 7-14.

Figure 7-14 The FileIntegrities page

5. Under the FileIntegrityNodeStatus column, check that the status of FileIntegrityNode, as
shown in Figure 7-15 on page 137.
136 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 7-15 The FileIntegrityNodeStatus page

When a node scan fails, an event is created with the add, changed, removed, and configmap
information. To get the list of events, run the command that is shown in Example 7-7.

Example 7-7 Applying the YAML file to the openshift-file-integrity namespace

y_largou@cloudshell:~$ oc get events --field-selector reason=FileIntegrityStatus -n
openshift-file-integrity
LAST SEEN TYPE REASON OBJECT MESSAGE
16m Normal FileIntegrityStatus fileintegrity/worker-fileintegrity Pending
16m Normal FileIntegrityStatus fileintegrity/worker-fileintegrity Initializing
16m Normal FileIntegrityStatus fileintegrity/worker-fileintegrity Active

y_largou@cloudshell:~$ oc get events --field-selector reason=NodeIntegrityStatus -n
openshift-file-integrity
LAST SEEN TYPE REASON OBJECT MESSAGE
57s Normal NodeIntegrityStatus fileintegrity/worker-fileintegrity no changes to node
10.136.233.189
52s Normal NodeIntegrityStatus fileintegrity/worker-fileintegrity no changes to node
10.136.233.138
44s Normal NodeIntegrityStatus fileintegrity/worker-fileintegrity no changes to node
10.136.233.188
Chapter 7. Logging and monitoring 137

138 Security Implementation with Red Hat OpenShift on IBM Power Systems

Chapter 8. Compliance and regulation

Regulations about how an enterprise handles data and security are present worldwide. These
regulations can be complex and subject to change over time based on actions by different
governing bodies.

This chapter describes some of the methods and tools that can be used to ensure that your
enterprise is in compliance with those regulations.

This chapter describes the following topics:

� Regulations and compliance

� IBM Cloud Security and Compliance Center

� OpenSCAP for Red Hat OpenShift

� Red Hat OpenShift Compliance Operator

� Red Hat OpenShift Machine Config Operator

� IBM Hyper Protect Crypto Services

8

© Copyright IBM Corp. 2023. 139

8.1 Regulations and compliance

Today, there is a huge focus on data privacy, and new regulations are being enacted around
the world that affect the way that enterprises handle privacy and security. These regulations
drive how private and public organizations must handle and protect personal data. There are
other critical regulations in place to guide the same considerations for health data, military
information, and other data such as financial data. An enterprise’s compliance posture in
terms of these various regulations can be the difference between success and failure.

8.1.1 Introduction

The number of standards and regulations with which a company must comply is huge and
variable, depending on the industry. Some of these standards and regulations are common
like General Data Protection Regulation (GDPR) in Europe and Lei Geral de Proteção de
Dados (LGPD) in Brazil. They aim to protect personal data by defining how companies handle
data and how they must comply with the preferences regarding your personal data. Although
this situation might not seem to be directly related to security, it must be a consideration for
organizations that collect and store personal data. The organization must protect the data and
ensure that the data is not used for purposes to which the data owner did not agree to or for
criminal purposes.

There is not a line separating compliance and security requirements because sometimes they
can be thought of as the same thing, and in fact are complementary:

� Security encompasses technical requirements and technologies that are used to protect
either an application or its data from external and internal threats.

� Compliance is related to standards and rules to which the infrastructure and application
must comply.

In general, security practices must be implemented to help comply with a certain standard,
such as GDPR. Compliance with the standard might dictate where a certain type of data must
reside physically, and the architecture in place must ensure that the rule is met while
providing the users with the capabilities that are expected from that application. These needs
are met by using security techniques that involve data stores, data management, and
encryption.

8.1.2 Security and compliance in the cloud

Security is one of the top concerns in cloud computing adoption. To help customers feel more
comfortable with moving to the cloud, IBM recently announced IBM Cloud for Financial
Services®, which is designed to provide an environment that is ready to host the most critical
workloads in the financial world on IBM Cloud.

IBM Cloud for Financial Services is designed to help clients mitigate risk and accelerate cloud
adoption for even their most sensitive workloads. Security and controls are built in to the
platform to enable financial institutions to automate their security and compliance posture and
demonstrate their regulatory compliance posture, and for their clients to simplify their risk
management.
140 Security Implementation with Red Hat OpenShift on IBM Power Systems

Cloud computing has different service and deployment models, which means security and
compliance must adapt to those different perspectives by matching the requirements of the
scenario to be adopted. As is true with many IT environments, there is no one-size-fits-all
solution. This paper is focused on infrastructure as a service (IaaS) and platform as a service
(PaaS) by using public cloud, private cloud, and hybrid cloud for deployment models.

8.1.3 Infrastructure as a service

On this service model, the cloud provider owns the hardware, networking, and storage, and
they provide the virtualization techniques that are required to enable multiple customers to
share an environment. In a private cloud, the scenario is the same, and the only difference is
the customers, which in this case are going to be different departments within the same
organization.

The common security challenges for IaaS normally are around the following items:

� Environment misconfiguration: Misconfiguration results in virtual machines (VMs) or
logical partitions (LPARs) that might have some exposure to other external users who
were not originally included by the cloud consumer.

� Data encryption: Considering how data flows from and to the cloud environment means
that you must protect the data. The data may be encrypted at the source and flow to the
cloud encrypted, or it may be encrypted in the cloud. Most of modern solutions today rely
on encryption mechanisms for data transmission, like HTTPS and Secure FTP. Most cloud
database services offer encryption at rest, which is required by different standards dealing
with sensitive personal information.

8.1.4 Platform as a service

On this service model, the cloud provider owns the infrastructure as in IaaS, but they also own
the databases and run times. This model is targeted at software developers so that they can
spend most of their time developing new solutions instead of maintaining the environment.
There are pros and cons of this scenario because security must be part of the development
lifecycle to ensure that delivered solutions in production comply with applicable standards,
and that the company is secured against malicious threats and bad users.

Some best practices to be considered are as follows:

� Check the cloud provider's ability to offer the security mechanisms that are required by the
company by using benchmarks, external audits, and contract reviews by legal SMEs.

� Threat modeling, in a simplified view, consists of analyzing and documenting potential
threats and deciding how to deal with them to avoid any exposure. This task can be done
for applications, infrastructure, networking, and even business processes, so it is not
exclusive to PaaS solutions, but it is important to be done here because it adds the
security and compliance mindset to the development team while giving them the freedom
of not having to handle cloud infrastructure, databases, and runtime configurations. Thus,
it is critical that the solution is developed to be secure in its design.

� Software vulnerabilities must be identified and re-mediated as soon as possible.
Chapter 8. Compliance and regulation 141

8.1.5 Private cloud

All of a private cloud infrastructure is used by a single consumer. A private cloud can be
owned by a cloud provider and physically located outside the consumer's building. It is private
because the cloud is not accessible by anyone else but the consumer that contracted for it.

There are some security advantages because the cloud environment is isolated from external
access (integration points must be carefully exposed). The consumer has greater control over
the resources, which can help with compliance and security requirements, for example, data
encryption demands.

8.1.6 Public cloud

A public cloud is the opposite of a private cloud. The infrastructure is shared among different
organizations, which are called cloud consumers. The environment is accessible through the
internet, which brings some concerns and more security requirements, for example, the need
to intercept a distributed denial-of-service (DDoS) attack.

8.1.7 Hybrid cloud

Hybrid comes from the fact that a software solution often encompasses components that are
hosted in more than one cloud environment. There are mechanisms to offer the cloud
consumer a view of all their components that are hosted in different environments, which
means security is one aspect to be monitored. Security challenges are centered on the data
exchange among different cloud environments and integration points among the components
working together.

8.1.8 Compliance posture

The compliance posture of an organization consists of the technologies, manual and
automated procedures, applicable regulations, and training that is offered to its employees to
ensure that everyone that is involved in the product development and management is focused
on keeping the infrastructure, application, and the data safe from malicious intruders. Again, it
is worth mentioning that “compliance” here is referring to the combination of external and
internal regulations plus security requirements.

A breakdown of a compliance posture includes the following items:

� Preparation:

– Threat-modeling or similar methods can be used to assess the security and regulatory
risks that are involved for a new or changed infrastructure, or a software component.

– Select a training roadmap for all IT personnel, including, for example, Open Web
Application Security Project (OWASP) concepts and references.

– Map the tools and frameworks that are used to develop and maintain the IT
department, like programming languages, core libraries, build platforms, and
dependencies.

– Add security checks to the continuous integration and continuous delivery (CI/CD)
pipelines.
142 Security Implementation with Red Hat OpenShift on IBM Power Systems

� Protect:

– Define the approved repositories for source code.

– Protect the development and build environments to prevent access by people without a
valid business need.

– Use a static code scan and an open-source vulnerabilities scan.

– Automatically check for secrets or passwords in the source code and keep them from
being saved in the repository.

– Perform security tests before putting a new release into production.

– Whenever possible, digitally sign the container images.

– Foster a culture of removing unused code and libraries from software in production.

This list depends on the security requirements of different levels of software and
infrastructure. Section 3.2, “Seven layer security model” on page 30 covers seven layers of
cybersecurity, which identifies the most important aspects of a security posture. Chapter 4,
“Designing and implementing Red Hat OpenShift with security first” on page 43 covers
specific aspects that are related to Red Hat OpenShift.

There are many ways for an enterprise to manage security and compliance. For more
information about how IBM handles its IT security for internal operations, see IBM Enterprise
IT Security.

8.2 IBM Cloud Security and Compliance Center

Compliance and security requirements span multiple layers of software and hardware,
including the hardware itself and physical location of the servers. The number of variables is
significant and complex. Cloud providers invest in tools and processes to automate and help
security and compliance leaders make sure that the compliance posture is implemented.
Companies might rely on some components running on-premises, some components in
public clouds with different providers, and some components in a private cloud.

With IBM Cloud Security and Compliance Center, you can manage a hybrid cloud by
converting your compliance posture definitions to goals, which are assessed during
automated scans of all the IT resources1 and then shown in a dashboard. Detailed reports
also can be downloaded and used, for example, audit purposes. For more information, see
Getting started with IBM Cloud Security and Compliance Center.

8.2.1 How IBM Cloud Security and Compliance Center works

There must be a collector to run the assessments, and that collector depends on other
components to work. The scope that is analyzed, for example, covers the IBM Cloud Account
as the target, the goals that represent the security and compliance requirements, and the
credentials that are required to complete the scan. When the setup is complete, a schedule is
defined for running the assessments, and then the results are available from a dashboard.

1 Available for IBM Cloud, Amazon Web Services, Microsoft Azure, Google Cloud Platform (GCP), and on-premises
environments.
Chapter 8. Compliance and regulation 143

https://www.ibm.com/trust/security
https://www.ibm.com/trust/security
https://cloud.ibm.com/docs/security-compliance?topic=security-compliance-getting-started

Figure 8-1, from IBM Cloud documentation,2 shows how these elements work together.

Figure 8-1 IBM Security and Compliance Center

The collector is a module that is installed on an infrastructure that has access to the IT
resources to are analyzed by following the schedule that is defined by the user in IBM Cloud
Security and Compliance Center.

When it is time, the collector receives a signal to trigger the new assessment against the
scope by using the credentials that are provided and the security and compliance
requirements that are determined as goals belonging to a profile. The results are
consolidated in a dashboard.

There are two types of collectors:

� The IBM managed collector is installed on the IBM infrastructure as a Universal Base
Image (UBI),3 which means that IBM is responsible for the lifecycle of the collector. There
are some limitations, such as one collector per account, and no access to on-premises
environments.

� There is an alternative collection option that is called a customer-managed collector. It can
be installed as an UBI or as an Ubuntu image.

Managing collectors provides more information about the following items:

� Collectors and how data is collected and analyzed.
� More considerations for IBM managed collectors versus customer-managed collectors.
� How communication works between collectors and IBM Cloud Security and Compliance

Center and between collectors and the IT resources that are analyzed.

2 https://cloud.ibm.com/docs-content/v1/content/a72a51ea6aec7e72e86cea5d12415b10061aee44/security-comp
liance/images/posture.svg

3 https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image

Note: The Ubuntu image is not compliant with Federal Information Processing Standards
(FIPS).
144 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://cloud.ibm.com/docs-content/v1/content/a72a51ea6aec7e72e86cea5d12415b10061aee44/security-compliance/images/posture.svg
https://cloud.ibm.com/docs-content/v1/content/a72a51ea6aec7e72e86cea5d12415b10061aee44/security-compliance/images/posture.svg
https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image
https://cloud.ibm.com/docs/security-compliance?topic=security-compliance-collector

8.2.2 Connecting Red Hat OpenShift Compliance Operator

Red Hat OpenShift Compliance Operator, when deployed to a Red Hat OpenShift on
IBM Cloud cluster, can be integrated in to IBM Cloud Security and Compliance Center so that
the scan results are available in a central location along with the results of other clusters that
are configured in the IBM Cloud Security and Compliance Center.

Figure 8-2 is taken from IBM Cloud documentation4 and shows the steps that required to
implement the integration.

Figure 8-2 Red Hat OpenShift integration for IBM Cloud Security and Compliance

For more information about how to install and configure Red Hat OpenShift Compliance
Operator, see 8.3, “OpenSCAP for Red Hat OpenShift” on page 145. When Red Hat
OpenShift Compliance Operator is ready to use, the next step is to register it as a new
integration in IBM Cloud Security and Compliance Center so that you can create a scan the
Red Hat OpenShift cluster as the target. For more information about instructions to complete
this setup, see IBM Cloud documentation.

8.3 OpenSCAP for Red Hat OpenShift

Security Content Automation Protocol (SCAP) is a line of specifications that is managed by
the National Institute of Standards and Technology (NIST) for maintaining systems security.

SCAP is implemented by the OpenSCAP application, and it is available for Red Hat
OpenShift as an operator. Red Hat OpenShift Compliance Operator keeps the cluster
compliant with the required security benchmarks and provides remediations for the issues
that are found.

For more information about OpenSCAP, see OpenSCAP.

Red Hat OpenShift uses core OS by default, which has an immutable Red Hat Enterprise
Linux (RHEL) kernel that is SELinux Enforced. To help secure containerized workloads,
Red Hat also provides a UBI, which is an OCI-compliant secure foundation for cloud-native
microservices.

4 https://cloud.ibm.com/docs-content/v1/content/a72a51ea6aec7e72e86cea5d12415b10061aee44/security-comp
liance/images/osco.svg
Chapter 8. Compliance and regulation 145

https://cloud.ibm.com/docs-content/v1/content/a72a51ea6aec7e72e86cea5d12415b10061aee44/security-compliance/images/osco.svg
https://cloud.ibm.com/docs-content/v1/content/a72a51ea6aec7e72e86cea5d12415b10061aee44/security-compliance/images/osco.svg
https://cloud.ibm.com/docs/security-compliance?topic=security-compliance-setup-osco
https://www.open-scap.org

Scan each cloud-native application for vulnerabilities by using Red Hat Quay. Figure 8-3
illustrates how Red Hat Quay flags vulnerable containers before being deployed.

Figure 8-3 OpenSCAP and Red Hat OpenShift security highlights

OpenSCAP is available in a Git Repo as an Operator, and it is used to audit, log, and
re-mediate the Red Hat OpenShift Infrastructure.

Configuring and using Red Hat OpenShift Compliance Operator
To use OpenSCAP for infrastructure scanning and remediation, complete the following steps:

1. Connect to IBM Cloud Shell and connect to Red Hat OpenShift Cluster on IBM Power
Systems Virtual Server (IBM PowerVS), as shown in Example 8-1.

Example 8-1 Verifying the cluster version

Welcome to IBM Cloud Shell!
Image version: 1.0.67

Note: Your Cloud Shell session is running in Frankfurt (eu-de). Your workspace includes 500 MB of
temporary storage. This session will close after an hour of inactivity. If you don't have any active
sessions for an hour or you reach the 50-hour weekly usage limit, your workspace data is removed. To
track your usage, go to Usage quota in the Cloud Shell menu.

Tip: Enter 'ibmcloud' to use the IBM Cloud CLI. The Frankfurt (eu-de) region is targeted by default.
You can switch the region by running 'ibmcloud target -r <region-name>'.

y_largou@cloudshell:~$ oc login --token=sha256~8_46cNOPg0d84vS6c3MBSbjeFeqHe-wxh6M9n1pTOEM
--server=https://c102-e.eu-de.containers.cloud.ibm.com:30907
Logged into "https://c102-e.eu-de.containers.cloud.ibm.com:30907" as "IAM#y.largou@powerm.ma" using
the token provided.

You have access to 70 projects, the list has been suppressed. You can list all projects with 'oc
projects'

Using project "default".

Welcome! See 'oc help' to get started.
146 Security Implementation with Red Hat OpenShift on IBM Power Systems

2. Clone The OpenSCAP Git Repository, as shown in Example 8-2.

Example 8-2 Cloning the OpenSCAP Git Repository

y_largou@cloudshell:~$ mkdir openscap
y_largou@cloudshell:~$ cd openscap
y_largou@cloudshell:~/openscap$ git clone https://github.com/openshift/compliance-operator
Cloning into 'compliance-operator'...
remote: Enumerating objects: 22817, done.
remote: Total 22817 (delta 0), reused 0 (delta 0), pack-reused 22817
Receiving objects: 100% (22817/22817), 30.46 MiB | 9.57 MiB/s, done.
Resolving deltas: 100% (11928/11928), done.
Updating files: 100% (4877/4877), done.
y_largou@cloudshell:~/openscap$

3. Create the openshift-compliance namespace, as shown in Example 8-3.

Example 8-3 Creating the namespace

y_largou@cloudshell:~/openscap$ cd openscap/compliance-operator/deploy
y_largou@cloudshell:~/openscap/compliance-operator/deploy$ oc create -f ns.yaml
namespace/openshift-compliance created

4. Create an OpenSCAP operator, as shown in Example 8-4.

Example 8-4 Creating an OpenSCAP operator

y_largou@cloudshell:~/openscap$ cd openscap/compliance-operator/deploy/crd
y_largou@cloudshell:~/openscap/compliance-operator/deploy/crds$ for i in $(ls -1 *crd.yaml); do oc
create -f $i ; done

customresourcedefinition.apiextensions.k8s.io/compliancecheckresults.compliance.openshift.io created
customresourcedefinition.apiextensions.k8s.io/complianceremediations.compliance.openshift.io created
customresourcedefinition.apiextensions.k8s.io/compliancescans.compliance.openshift.io created
customresourcedefinition.apiextensions.k8s.io/compliancesuites.compliance.openshift.io created
customresourcedefinition.apiextensions.k8s.io/profilebundles.compliance.openshift.io created
customresourcedefinition.apiextensions.k8s.io/profiles.compliance.openshift.io created
customresourcedefinition.apiextensions.k8s.io/rules.compliance.openshift.io created
customresourcedefinition.apiextensions.k8s.io/scansettingbindings.compliance.openshift.io created
customresourcedefinition.apiextensions.k8s.io/scansettings.compliance.openshift.io created
customresourcedefinition.apiextensions.k8s.io/tailoredprofiles.compliance.openshift.io created
customresourcedefinition.apiextensions.k8s.io/variables.compliance.openshift.io created
y_largou@cloudshell:~/openscap/compliance-operator/deploy/crds$

5. Deploy the OpenSCAP operator (ignore the latest error because the namespace
openshift-compliance already exists). Example 8-5 shows the results.

Example 8-5 Deploying the OpenSCAP operator

y_largou@cloudshell:~/openscap/compliance-operator$ oc create -f deploy/
deployment.apps/compliance-operator created
role.rbac.authorization.k8s.io/compliance-operator created
clusterrole.rbac.authorization.k8s.io/compliance-operator created
role.rbac.authorization.k8s.io/resultscollector created
role.rbac.authorization.k8s.io/api-resource-collector created
role.rbac.authorization.k8s.io/resultserver created
role.rbac.authorization.k8s.io/remediation-aggregator created
clusterrole.rbac.authorization.k8s.io/remediation-aggregator created
role.rbac.authorization.k8s.io/rerunner created
role.rbac.authorization.k8s.io/profileparser created
clusterrole.rbac.authorization.k8s.io/api-resource-collector created
rolebinding.rbac.authorization.k8s.io/compliance-operator created
clusterrolebinding.rbac.authorization.k8s.io/compliance-operator created
rolebinding.rbac.authorization.k8s.io/resultscollector created
Chapter 8. Compliance and regulation 147

rolebinding.rbac.authorization.k8s.io/remediation-aggregator created
clusterrolebinding.rbac.authorization.k8s.io/remediation-aggregator created
clusterrolebinding.rbac.authorization.k8s.io/api-resource-collector created
rolebinding.rbac.authorization.k8s.io/api-resource-collector created
rolebinding.rbac.authorization.k8s.io/rerunner created
rolebinding.rbac.authorization.k8s.io/profileparser created
rolebinding.rbac.authorization.k8s.io/resultserver created
serviceaccount/compliance-operator created
serviceaccount/resultscollector created
serviceaccount/remediation-aggregator created
serviceaccount/rerunner created
serviceaccount/api-resource-collector created
serviceaccount/profileparser created
serviceaccount/resultserver created
Error from server (AlreadyExists): error when creating "deploy/ns.yaml": namespaces
"openshift-compliance" already exists

6. Change default project to openshift-compliance, as shown in Example 8-6.

Example 8-6 Changing the project

y_largou@cloudshell:~/openscap/compliance-operator$ oc project openshift-compliance
Now using project "openshift-compliance" on server
"https://c102-e.eu-de.containers.cloud.ibm.com:30907".

7. Select a scan YAML file from the crds directory, as shown in Example 8-7.

Example 8-7 Verifying the cluster version

Welcome to IBM Cloud Shell!
Image version: 1.0.67
y_largou@cloudshell:~/openscap/compliance-operator/deploy/crds$ ls
compliance.openshift.io_compliancecheckresults_crd.yaml compliance.openshift.io_rules_crd.yaml
compliance.openshift.io_v1alpha1_compliancesuite_cr.yaml
compliance.openshift.io_complianceremediations_crd.yaml
compliance.openshift.io_scansettingbindings_crd.yaml
compliance.openshift.io_v1alpha1_profilebundle_cr.yaml
compliance.openshift.io_compliancescans_crd.yaml compliance.openshift.io_scansettings_crd.yaml
compliance.openshift.io_v1alpha1_scansettingbinding_cr.yaml
compliance.openshift.io_compliancesuites_crd.yaml
compliance.openshift.io_tailoredprofiles_crd.yaml
compliance.openshift.io_v1alpha1_scansetting_cr.yaml
compliance.openshift.io_profilebundles_crd.yaml
compliance.openshift.io_v1alpha1_compliancescan_node_cr.yaml
compliance.openshift.io_v1alpha1_tailoredprofile_cr.yaml
compliance.openshift.io_profiles_crd.yaml
compliance.openshift.io_v1alpha1_compliancescan_platform_cr.yaml
compliance.openshift.io_variables_crd.yaml

In this example, we use the
compliance.openshift.io_v1alpha1_compliancesuite_cr.yaml file, as shown in
Example 8-8.

Example 8-8 The compliance.openshift.io_v1alpha1_compliancesuite_cr.yaml file

apiVersion: compliance.openshift.io/v1alpha1
kind: ComplianceSuite
metadata:
 name: example-compliancesuite
spec:
 autoApplyRemediations: false
 schedule: "0 1 * * *"
 scans:
 - name: workers-scan
148 Security Implementation with Red Hat OpenShift on IBM Power Systems

 profile: xccdf_org.ssgproject.content_profile_moderate
 content: ssg-rhcos4-ds.xml
 contentImage: quay.io/compliance-operator/compliance-operator-content:latest
 nodeSelector:
 node-role.kubernetes.io/worker: ""
 - name: platform-scan
 scanType: Platform
 profile: xccdf_org.ssgproject.content_profile_moderate
 content: ssg-ocp4-ds.xml
 contentImage: quay.io/compliance-operator/compliance-operator-content:latest

8. Start the scan, as shown in Example 8-9.

Example 8-9 Starting the scan

y_largou@cloudshell:~/openscap/compliance-operator/deploy/crds$ oc create -f
compliance.openshift.io_v1alpha1_compliancesuite_cr.yaml
compliancesuite.compliance.openshift.io/example-compliancesuite created

9. Monitor the cluster scan, as shown in Example 8-10.

Example 8-10 Monitoring the cluster scan

y_largou@cloudshell:~/openscap/compliance-operator/deploy/crds$ oc get pods -w
NAME READY STATUS RESTARTS AGE
compliance-operator-76cd8fbdd-gmwck 1/1 Running 1 (2m43s ago) 2m53s
example 1/1 Running 0 16h
httpd-example-1-build 0/1 Completed 0 16h
httpd-example-1-deploy 0/1 Completed 0 16h
httpd-example-1-n4m6c 1/1 Running 0 16h
ocp4-default-pp-784f4d456-6d8xn 1/1 Running 0 2m33s
ocp4-openshift-compliance-pp-7c58985c75-5gmbl 1/1 Running 0 2m33s
platform-scan-api-checks-pod 0/2 Init:1/2 4 (58s ago) 2m23s
platform-scan-rs-785c7d7b66-j672x 0/1 ContainerCreating 0 2m23s
rhcos4-default-pp-54d894695d-xjt4n 1/1 Running 0 2m33s
rhcos4-openshift-compliance-pp-bd74cd8d7-x6g4z 1/1 Running 0 2m33s
spring-boot-954f64c46-dwxdj 0/1 ImagePullBackOff 0 16h
workers-scan-10.136.233.138-pod 1/2 NotReady 0 2m23s
workers-scan-10.136.233.188-pod 1/2 NotReady 0 2m23s
workers-scan-10.136.233.189-pod 1/2 NotReady 0 2m23s
workers-scan-rs-548667f98-xcj25 0/1 ContainerCreating 0 2m23s
platform-scan-rs-785c7d7b66-j672x 0/1 ContainerCreating 0 2m28s
platform-scan-rs-785c7d7b66-j672x 0/1 ContainerCreating 0 2m28s
platform-scan-rs-785c7d7b66-j672x 1/1 Running 0 2m30s
workers-scan-rs-548667f98-xcj25 0/1 ContainerCreating 0 2m41s
workers-scan-rs-548667f98-xcj25 0/1 ContainerCreating 0 2m41s
platform-scan-api-checks-pod 0/2 Init:CrashLoopBackOff 4 (15s ago) 2m43s
workers-scan-rs-548667f98-xcj25 1/1 Running 0 2m43s
workers-scan-10.136.233.138-pod 0/2 Completed 0 2m46s
workers-scan-10.136.233.188-pod 0/2 Completed 0 2m47s
workers-scan-10.136.233.138-pod 0/2 Completed 0 2m47s
spring-boot-954f64c46-dwxdj 0/1 ImagePullBackOff 0 16h
workers-scan-10.136.233.188-pod 0/2 Completed 0 2m48s
workers-scan-10.136.233.138-pod 0/2 Completed 0 2m48s
workers-scan-10.136.233.188-pod 0/2 Completed 0 2m49s
workers-scan-10.136.233.189-pod 0/2 Completed 0 3m9s
workers-scan-10.136.233.189-pod 0/2 Completed 0 3m11s
workers-scan-10.136.233.189-pod 0/2 Completed 0 3m13s
aggregator-pod-workers-scan 0/1 Pending 0 0s
aggregator-pod-workers-scan 0/1 Pending 0 0s
aggregator-pod-workers-scan 0/1 Init:0/1 0 0s
aggregator-pod-workers-scan 0/1 Init:0/1 0 1s
aggregator-pod-workers-scan 0/1 Init:0/1 0 1s
aggregator-pod-workers-scan 0/1 PodInitializing 0 3s
aggregator-pod-workers-scan 1/1 Running 0 4s
aggregator-pod-workers-scan 0/1 Completed 0 18s
aggregator-pod-workers-scan 0/1 Completed 0 19s
aggregator-pod-workers-scan 0/1 Completed 0 20s
workers-scan-10.136.233.189-pod 0/2 Terminating 0 3m41s
workers-scan-10.136.233.189-pod 0/2 Terminating 0 3m41s
workers-scan-10.136.233.138-pod 0/2 Terminating 0 3m41s
workers-scan-10.136.233.138-pod 0/2 Terminating 0 3m41s
workers-scan-10.136.233.188-pod 0/2 Terminating 0 3m41s
workers-scan-10.136.233.188-pod 0/2 Terminating 0 3m41s
Chapter 8. Compliance and regulation 149

aggregator-pod-workers-scan 0/1 Terminating 0 25s
aggregator-pod-workers-scan 0/1 Terminating 0 25s
workers-scan-rs-548667f98-xcj25 1/1 Terminating 0 3m41s
workers-scan-rs-548667f98-xcj25 1/1 Terminating 0 3m41s
workers-scan-rs-548667f98-xcj25 0/1 Terminating 0 3m42s
workers-scan-rs-548667f98-xcj25 0/1 Terminating 0 3m42s
workers-scan-rs-548667f98-xcj25 0/1 Terminating 0 3m42s
aggregator-pod-workers-scan 0/1 Pending 0 0s
aggregator-pod-workers-scan 0/1 Pending 0 0s
aggregator-pod-workers-scan 0/1 Init:0/1 0 0s
aggregator-pod-workers-scan 0/1 Init:0/1 0 1s
aggregator-pod-workers-scan 0/1 Init:0/1 0 1s
aggregator-pod-workers-scan 0/1 PodInitializing 0 3s
aggregator-pod-workers-scan 1/1 Running 0 4s
aggregator-pod-workers-scan 0/1 Completed 0 7s
aggregator-pod-workers-scan 0/1 Completed 0 8s
aggregator-pod-workers-scan 0/1 Completed 0 9s
aggregator-pod-workers-scan 0/1 Terminating 0 10s
aggregator-pod-workers-scan 0/1 Terminating 0 10s
platform-scan-api-checks-pod 0/2 Init:1/2 5 (93s ago) 4m1s

10.Check the Compliance Remediations that were found, as shown in Example 8-11.

Example 8-11 Checking the compliance remediations that were found

y_largou@cloudshell:~/openscap/compliance-operator$ oc get -n openshift-compliance
complianceremediations
NAME STATE
workers-scan-auditd-name-format NotApplied
workers-scan-coredump-disable-backtraces NotApplied
workers-scan-coredump-disable-storage NotApplied
workers-scan-disable-ctrlaltdel-burstaction NotApplied
workers-scan-disable-users-coredumps NotApplied
workers-scan-grub2-audit-argument NotApplied
workers-scan-grub2-audit-backlog-limit-argument NotApplied
workers-scan-grub2-page-poison-argument NotApplied
workers-scan-no-direct-root-logins NotApplied

11.To apply a remediation, edit that object and set its Apply attribute to true, as shown in
Example 8-12.

Example 8-12 Applying remediation

y_largou@cloudshell:~/openscap/compliance-operator/deploy/crds$ oc edit -n
complianceremediation/workers-scan-no-direct-root-logins

12.Monitor the node status (after the nodes restart, run another suite to ensure that the
remediation fixed the issue) by running the command in Example 8-13.

Example 8-13 Monitoring the node status

y_largou@cloudshell:~/openscap$oc get nodes -w

13.List the persistent volumes (PVs) that store the OpenSCAP logs, as shown in
Example 8-14.

Example 8-14 Listing the persistent volumes

y_largou@cloudshell:~$ oc get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
pvc-0dfa5c03-abd9-4409-9539-70a2119a9582 20Gi RWO Delete Bound
openshift-compliance/platform-scan 36m
pvc-129f02fe-1020-428c-8375-f82a7def30ad 20Gi RWO Delete Bound
yslpowertst/pvc-2e9e0ecd58 43h
pvc-15d63eb9-7ef6-469a-aeba-d08f22d41988 20Gi RWO Delete Bound
yslpowertst/pvc-667273726e 43h
150 Security Implementation with Red Hat OpenShift on IBM Power Systems

pvc-2a034385-8dc8-4006-815f-c42f9720b695 20Gi RWO Delete Bound
yslpowertst/pvc-1e4a57b316 47h
pvc-38ef8c05-c94e-4528-9162-9ab98acfcd1d 100Gi RWO Delete Bound
yslpowertst/stackrox-db 47h
pvc-4ef86b8d-3736-4f9d-8dba-78bbf34f39c2 20Gi RWO Delete Bound
openshift-compliance/pvc-4a4d6ceaa9 16h
pvc-66ca0be0-bd1d-4316-b192-2e31b4398e92 20Gi RWO Delete Bound
openshift-compliance/pvc-f2a04d3894 16h
pvc-9eac44e9-b521-48a2-a6d2-4fe825eceb1c 20Gi RWO Delete Bound
yslpowertst/pvc-faf4bdc7d4 43h
pvc-e6c44da5-a91e-40ab-bb95-8759ed788540 20Gi RWO Delete Bound
openshift-compliance/workers-scan 37m
pvc-fdcf9d08-23cb-40ab-95ed-f428bdb649c1 100Gi RWX Delete Bound
openshift-image-registry/image-registry-storage ibmc-file-gold 47h

y_largou@cloudshell:~$ oc get pvc
NAME STATUS VOLUME CAPACITY ACCESS
MODES STORAGECLASS AGE
example-compliancescan-node Bound pvc-c25bf5ff-8563-488a-b97a-4a2c3a12f69f 20Gi RWO
ibmc-block-gold 8m52s
platform-scan Bound pvc-0dfa5c03-abd9-4409-9539-70a2119a9582 20Gi RWO
ibmc-block-gold 51m
pvc-4a4d6ceaa9 Bound pvc-4ef86b8d-3736-4f9d-8dba-78bbf34f39c2 20Gi RWO
ibmc-block-gold 17h
pvc-f2a04d3894 Bound pvc-66ca0be0-bd1d-4316-b192-2e31b4398e92 20Gi RWO
ibmc-block-gold 17h
workers-scan Bound pvc-e6c44da5-a91e-40ab-bb95-8759ed788540 20Gi RWO
ibmc-block-gold 51m

y_largou@cloudshell:~$ oc get pvc/workers-scan
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
workers-scan Bound pvc-e6c44da5-a91e-40ab-bb95-8759ed788540 20Gi RWO
ibmc-block-gold 52m

14.Start a pod that mounts the PV, as shown in Figure 8-4.

Figure 8-4 Running a pod
Chapter 8. Compliance and regulation 151

15.Extract the files to get the raw Assessment Results Format (ARF) files, as shown in
Example 8-15.

Example 8-15 Extracting the raw ARF files

y_largou@cloudshell:~$ oc exec pods/pv-extract -- ls /workers-scan-results/0
workers-scan-10.136.233.138-pod.xml.bzip2
workers-scan-10.136.233.188-pod.xml.bzip2
workers-scan-10.136.233.189-pod.xml.bzip2
y_largou@cloudshell:~$ bunzip2 -c workers-scan-10.136.233.138-pod.xml.bzip2 >
workers-scan-10.136.233.138-pod.xml

16.Extract the XCCDF results from the files, as shown in Example 8-16.

Example 8-16 Extracting the XCCDF results

y_largou@cloudshell:~$ oc get cm -l=compliance.openshift.io/scan-name=masters-scan
NAME DATA AGE
workers-scan-10.136.233.138-pod 1 45m
workers-scan-10.136.233.138-pod 1 44m
workers-scan-10.136.233.138-pod 1 46m

$ oc extract cm/workers-scan-10.136.233.138-pod

8.4 Red Hat OpenShift Compliance Operator

With Red Hat OpenShift Compliance Operator, an administrator can run compliance scans
and provide remediations for found anomalies in a Red Hat OpenShift cluster and the worker
machines (nodes) running the cluster. Red Hat OpenShift Compliance Operator leverages
OpenSCAP and community-based compliance content that is developed in the
ComplianceAsCode/content project. This content project provides a bundle of security
policies, default profiles for various operating system platforms, and security standards such
as the Center for Internet Security (CIS) benchmark, HIPPA, NIST 800-53 Moderate, and
Australian Cyber Security Centre (ACSC) Essential Eight.

8.4.1 Installing the Red Hat OpenShift Compliance Operator

To install the Red Hat OpenShift Compliance Operator, complete the following steps.

1. In the Red Hat OpenShift Container Platform web console, select Operators →
OperatorHub.

2. Search for the Red Hat OpenShift Compliance Operator, as shown in Figure 8-5 on
page 153.

Prerequisites: You must have cluster admin privileges.
152 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 8-5 Searching for the Red Hat OpenShift Compliance Operator

3. Click Compliance Operator, and then click Install, as shown in Figure 8-6.

Figure 8-6 Red Hat OpenShift Compliance Operator Installation page

Note: Keep the default selection of Installation mode and namespace to ensure that the
operator is installed to the openshift-compliance namespace.
Chapter 8. Compliance and regulation 153

4. Click Install, as shown in Figure 8-7.

Figure 8-7 Installing Red Hat OpenShift Compliance Operator

5. To confirm that the installation is successful, complete the following steps:

a. Select Operators → Installed Operators.

b. Check that the Red Hat OpenShift Compliance Operator is installed in the
openshift-compliance namespace and that its status is Succeeded, as shown in
Figure 8-8.

Figure 8-8 Verifying the Red Hat OpenShift Compliance Operator installation

Running Red Hat OpenShift Compliance Operator scans
After installation, Red Hat OpenShift Compliance Operator creates default ScanSetting
objects with default settings for your convenience. You can run a compliance scan by using
the default CIS profiles, as shown in Figure 8-9 on page 155.
154 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 8-9 Verifying the ScanSetting objects

Complete the following steps:

1. To start the scan, create a ScanSettingBinding object that binds to the default ScanSetting
object and cis and cis-node profiles, as shown in Figure 8-10.

Figure 8-10 Creating a scan

2. After creating the ScanSettingBinding object, check that ScanSettingBinding object status
is Condition:Ready, as shown in Figure 8-11.

Figure 8-11 Checking the ScanSettingBinding object status
Chapter 8. Compliance and regulation 155

3. When the ScanSettingBinding object is in the Ready state, it automatically generates the
ComplianceSuite object with the same name as the ScanSettingBinding object, as shown
in Figure 8-12.

.

Figure 8-12 Verifying the ComplianceSuite object creation

4. The ComplianceSuite object automatically generates the ComplianceScans objects,
which are based on the Compliance Suite definition, as shown in Figure 8-13.

Figure 8-13 Verifying the ComplianceScans objects creation

5. After a successful compliance scan run, Red Hat OpenShift Compliance Operator
generates the following object types:

– ComplianceCheckResult

Represents the state of the scan results against each Rule object in the scan profile, as
shown in Figure 8-14 on page 157.
156 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 8-14 Checking the scan results state

– ComplianceRemediation

These objects show how to apply the fix for the rule. The apply value shows whether a
fix should be applied, and the object value indicates what is expected to be applied on
the node or cluster, as shown in Figure 8-15.

Figure 8-15 ComplianceRemediation page

Reviewing ComplianceRemediation
When you create a custom MachineConfigPool, add a label to MachineConfigPool so that the
machineConfigPoolSelector that is present in KubeletConfig can match the label with
MachineConfigPool.
Chapter 8. Compliance and regulation 157

8.5 Red Hat OpenShift Machine Config Operator

Red Hat OpenShift Machine Config Operator is a Kubernetes (K8s) operator that provides an
automated way to manage the configuration of the operating system on nodes in a cluster.
You use it to create and manage MachineConfig objects, which specify the wanted state of
the operating system configuration on a node.

You can use Red Hat OpenShift Machine Config Operator for the following tasks:

� Updating the kernel or other system packages on nodes in the cluster

� Changing system-level configuration options

� Applying patches or security updates to the operating system

� Managing the configuration of cloud-init or other initialization systems

8.5.1 Applying remediation when using customized machine config pools

To accomplish this task, you need the following information:

� The failed compliance results, which are shown in Example 8-17.

Example 8-17 Compliance results

root@api.powercsi.ibm.com ~]# oc get ccr -lcompliance.openshift.io/check-status=FAIL
NAME STATUS SEVERITY
ocp4-cis-api-server-encryption-provider-cipher FAIL medium
ocp4-cis-api-server-encryption-provider-config FAIL medium
ocp4-cis-audit-log-forwarding-enabled FAIL medium
ocp4-cis-configure-network-policies-namespaces FAIL high
ocp4-cis-idp-is-configured FAIL medium
ocp4-cis-kubeadmin-removed FAIL medium
ocp4-cis-node-master-kubelet-configure-event-creation FAIL medium
ocp4-cis-node-master-kubelet-configure-tls-cipher-suites FAIL medium
ocp4-cis-node-master-kubelet-enable-iptables-util-chains FAIL medium
ocp4-cis-node-master-kubelet-enable-protect-kernel-defaults FAIL medium
ocp4-cis-node-master-kubelet-enable-protect-kernel-sysctl FAIL medium
ocp4-cis-node-master-kubelet-enable-streaming-connections FAIL medium
ocp4-cis-node-master-kubelet-eviction-thresholds-set-hard-imagefs-available FAIL medium
ocp4-cis-node-master-kubelet-eviction-thresholds-set-hard-imagefs-inodesfree FAIL medium
ocp4-cis-node-master-kubelet-eviction-thresholds-set-hard-memory-available FAIL medium
ocp4-cis-node-master-kubelet-eviction-thresholds-set-hard-nodefs-available FAIL medium
ocp4-cis-node-master-kubelet-eviction-thresholds-set-hard-nodefs-inodesfree FAIL medium
ocp4-cis-node-master-kubelet-eviction-thresholds-set-soft-imagefs-available FAIL medium
ocp4-cis-node-master-kubelet-eviction-thresholds-set-soft-imagefs-inodesfree FAIL medium
ocp4-cis-node-master-kubelet-eviction-thresholds-set-soft-memory-available FAIL medium
ocp4-cis-node-master-kubelet-eviction-thresholds-set-soft-nodefs-available FAIL medium
ocp4-cis-node-master-kubelet-eviction-thresholds-set-soft-nodefs-inodesfree FAIL medium
ocp4-cis-node-worker-kubelet-configure-event-creation FAIL medium
ocp4-cis-node-worker-kubelet-configure-tls-cipher-suites FAIL medium
ocp4-cis-node-worker-kubelet-enable-iptables-util-chains FAIL medium
ocp4-cis-node-worker-kubelet-enable-protect-kernel-defaults FAIL medium
ocp4-cis-node-worker-kubelet-enable-protect-kernel-sysctl FAIL medium
ocp4-cis-node-worker-kubelet-eviction-thresholds-set-hard-imagefs-available FAIL medium
ocp4-cis-node-worker-kubelet-eviction-thresholds-set-hard-imagefs-inodesfree FAIL medium
ocp4-cis-node-worker-kubelet-eviction-thresholds-set-hard-memory-available FAIL medium
ocp4-cis-node-worker-kubelet-eviction-thresholds-set-hard-nodefs-available FAIL medium
ocp4-cis-node-worker-kubelet-eviction-thresholds-set-hard-nodefs-inodesfree FAIL medium
ocp4-cis-node-worker-kubelet-eviction-thresholds-set-soft-imagefs-available FAIL medium
ocp4-cis-node-worker-kubelet-eviction-thresholds-set-soft-imagefs-inodesfree FAIL medium
ocp4-cis-node-worker-kubelet-eviction-thresholds-set-soft-memory-available FAIL medium
ocp4-cis-node-worker-kubelet-eviction-thresholds-set-soft-nodefs-available FAIL medium
ocp4-cis-node-worker-kubelet-eviction-thresholds-set-soft-nodefs-inodesfree FAIL medium
ocp4-cis-scc-limit-container-allowed-capabilities FAIL medium
158 Security Implementation with Red Hat OpenShift on IBM Power Systems

� The current kubeletconfigs machineconfig objects, which are shown in Example 8-18.

Example 8-18 The kubeletconfigs machineconfig objects

[root@api.powercsi5.cp.fyre.ibm.com ~]# oc get kubeletconfigs.machineconfiguration.openshift.io
NAME AGE
01-master-ibm-spectrum-scale-increase-pid-limit 24h
01-worker-ibm-spectrum-scale-increase-pid-limit 14h

� Example 8-19 shows a kubeletconfig machineconfig object that helps to fix some of the
compliance failures.

Example 8-19 Example of kubeletconfigs machineconfig

[root@api.powercsi5.cp.fyre.ibm.com ~]# cat complaince.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cis-hardening-workerpool
spec:
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: ""
 kubeletConfig:
 eventRecordQPS: 5
 tlsCipherSuites:
 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 - TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 - TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 protectKernelDefaults: false
 evictionSoftGracePeriod:
 memory.available: "5m"
 nodefs.available: "5m"
 nodefs.inodesFree: "5m"
 imagefs.available: "5m"
 evictionHard:
 memory.available: "100Mi"
 nodefs.available: "10%"
 nodefs.inodesFree: "5%"
 imagefs.available: "15%"
 evictionSoft:
 memory.available: "100Mi"
 nodefs.available: "10%"
 nodefs.inodesFree: "5%"
 imagefs.available: "15%"
[root@api.powercsi5.cp.fyre.ibm.com ~]# cat complaincemaster.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cis-hardening-masterpool
spec:
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/master: ""
 kubeletConfig:
 eventRecordQPS: 5
 tlsCipherSuites:
 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 - TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 - TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 protectKernelDefaults: false
 evictionSoftGracePeriod:
 memory.available: "5m"
Chapter 8. Compliance and regulation 159

 nodefs.available: "5m"
 nodefs.inodesFree: "5m"
 imagefs.available: "5m"
 evictionHard:
 memory.available: "100Mi"
 nodefs.available: "10%"
 nodefs.inodesFree: "5%"
 imagefs.available: "15%"
 evictionSoft:
 memory.available: "100Mi"
 nodefs.available: "10%"
 nodefs.inodesFree: "5%"
 imagefs.available: "15%"

Apply the above kubelet machineconfigs in Example 8-19 on page 159 and perform a
successful compliance rerun. You can see that the results of the previous failed compliance
rule show as passed (they are not listed in Example 8-20).

Example 8-20 Passed results

[root@api.powercsi5.cp.fyre.ibm.com ~]# oc get ccr-l
compliance.openshift.io/check-status=FAIL
NAME STATUS SEVERITY
ocp4-cis-api-server-encryption-provider-cipher FAIL medium
ocp4-cis-api-server-encryption-provider-config FAIL medium
ocp4-cis-audit-log-forwarding-enabled FAIL medium
ocp4-cis-configure-network-policies-namespaces FAIL high
ocp4-cis-idp-is-configured FAIL medium
ocp4-cis-kubeadmin-removed FAIL medium
ocp4-cis-node-master-kubelet-enable-iptables-util-chains FAIL medium
ocp4-cis-node-master-kubelet-enable-protect-kernel-defaults FAIL medium
ocp4-cis-node-master-kubelet-enable-protect-kernel-sysctl FAIL medium
ocp4-cis-node-master-kubelet-enable-streaming-connections FAIL medium
ocp4-cis-node-master-kubelet-eviction-thresholds-set-hard-imagefs-inodesfree FAIL medium
ocp4-cis-node-master-kubelet-eviction-thresholds-set-soft-imagefs-inodesfree FAIL medium
ocp4-cis-node-worker-kubelet-enable-iptables-util-chains FAIL medium
ocp4-cis-node-worker-kubelet-enable-protect-kernel-defaults FAIL medium
ocp4-cis-node-worker-kubelet-enable-protect-kernel-sysctl FAIL medium
ocp4-cis-node-worker-kubelet-enable-streaming-connections FAIL medium
ocp4-cis-node-worker-kubelet-eviction-thresholds-set-hard-imagefs-inodesfree FAIL medium
ocp4-cis-node-worker-kubelet-eviction-thresholds-set-soft-imagefs-inodesfree FAIL medium
ocp4-cis-scc-limit-container-allowed-capabilities FAIL medium

8.6 IBM Hyper Protect Crypto Services

For public key cryptography, X509 certificates have been the standard since it was first issued
in 1988.5 With the advent of the internet, the popularity of x509 certificates increased
exponentially. The certificates are used for securing websites, Internet of Things objects,
software, and container orchestrators like K8s and Red Hat OpenShift.

Speaking from experience with our customers, we see on an average that each enterprise
deals with hundreds if not thousands of certificates. For a security or system administration
staff, rotating them and keeping them up to date is a significant challenge.

To help with this problem, IBM created the IBM Hyper Protect Crypto Services6
(IBM HPCS) offering to help enterprises manage their keys in a multicloud environment.

5 https://en.wikipedia.org/wiki/X.509#History_and_usage
160 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://en.wikipedia.org/wiki/X.509#History_and_usage

8.6.1 Universal Key Orchestrator

There might be billions of certificates in use. Even at the enterprise level, there are hundreds
or even thousands of keys to maintain. The certificates are helpful in securing communication
channels, but they require maintenance. Generally, certificates expire every 2 - 3 years, the
old certificates and their associated keys are rotated, and new certificates and keys
are issued.

The Universal Key Orchestrator (UKO) provides a central control plane for managing
certificates regardless of their location. It is a software as a service (SaaS) application that,
when configured, can store the certificates securely, rotate them at a frequency of the
customer's choice, and integrate them into all major cloud providers, such IBM Cloud, AWS,
GCP, and Microsoft Azure.

UKO is built on top of IBM HPCS. IBM HPCS is the only single tenant keep-your-own-key
(KYOK) encryption technology that uses an FIPS 140-2 Level 4 hardware Hardware Security
Module (HSM) device that is single tenant. With KYOK, a customer manages the key vaults
with their own key that is accessible only by the customer. IBM HPCS is the only product that
is NIST certified for FIPS 140-2 Level 4. For more information, see Announcing Multicloud
Key Management with IBM Cloud Hyper Protect Crypto Services.

8.6.2 IBM HPCS with Unified Key Orchestrator

IBM HPCS is a single-tenant, regional service that supports complete tenant-based workload
isolation. It is formed by a dedicated key management service that is based on HSM on
IBM Cloud. IBM HPCS is used to perform cryptographic operations and orchestrate all keys
from a multi-cloud environment. Unified Key Orchestrator provides the only cloud-native,
single point of control of encryption keys across hybrid multi-cloud environments, including
on-premises environments.

Hardware Security Module
An HSM provides secure key storage and cryptographic operations within a tamper-resistant
hardware device for sensitive data. It uses all key material without exposing it outside the
cryptographic boundary of the hardware. Many IBM Cloud services support data encryption
by using customer-managed keys, also known as bring-your-own-key (BYOK). An example of
BYOK is using IBM Key Protect to deliver encryption keys from internal solutions to
environments on the cloud. IBM Key Protect is a multi-tenant solution that uses an FIPS
140-2 Level 3 HSM that you can integrate with multiple services running on IBM Cloud, such
as database, storage, container, and computing services.

IBM HPCS features KYOK encryption capabilities that ensure full control of the entire key
hierarchy where no IBM Cloud administrators have access to your keys.

8.6.3 Use cases and scenarios

Here are some illustrative use cases and scenarios:

� Pervasively protecting data at rest in the cloud

� Using Universal Key Orchestrator for multicloud key orchestration

� Using IBM HPCS for Public Key Cryptography Standards #11 HSMs

6 https://www.ibm.com/cloud/hyper-protect-crypto
Chapter 8. Compliance and regulation 161

https://www.ibm.com/cloud/hyper-protect-crypto
https://www.ibm.com/cloud/blog/announcements/unified-key-orchestrator
https://www.ibm.com/cloud/blog/announcements/unified-key-orchestrator

Pervasively protecting data at rest in the cloud
One of the most common problems we must deal with is encrypting cloud data at the highest
security level with your own keys. IBM HPCS uses the same key-provider application
programming interface (API) as IBM Key Protect to provide a consistent envelope encryption
and file system encryption approach to adopting IBM Cloud services. Encryption keys that
are generated by IBM HPCS can be used to provide application record-level or field-level
encryption to avoid insider threats such as database administrator access. You can benefit
from the cryptographic capabilities of IBM HPCS built on top of a FIPS 140-2 Level 4 Certified
HSM for both your new and existing workloads. Figure 8-16 shows data at rest encryption.

Figure 8-16 Data at rest encryption with KYOK

Organizations that use VMware Solutions on IBM Cloud to process and store personal data
require the highest level of security. With the Key Management Interoperability Protocol for
VMware component, the VMware environment can store and use keys from IBM HPCS.
IBM HPCS extends the family of key management services in the IBM Cloud toward
single-tenant instances with dedicated hardware secret control, as shown in Figure 8-17.

Figure 8-17 VMware image protection
162 Security Implementation with Red Hat OpenShift on IBM Power Systems

Using Universal Key Orchestrator for multicloud key orchestration
UKO can be used to securely create and manage keys and internal keystores across multiple
environments, such as different cloud providers. Figure 8-18 shows how UKO can be used.

Doing this integration brings multiple functions, such as centralized key management, which
use Identity and Access Management (IAM) to provide control access to the vault, granting
access to keys and keystore that are assigned to the vault. Also, user interfaces can be used
to create, manage, and delete cryptographic keys so that key lifecycle management can be
fully audited. This approach avoids reinstalling keys if you deploy services on a different
environment is needed because all keys are backed up and easy to recover if a unrecoverable
error occurs.

Figure 8-18 Key management

Using IBM HPCS for Public Key Cryptography Standards #11 HSMs
IBM HPCS provides the Public Key Cryptography Standards (PKCS) #11 API that is defined
as one of the PKCS. All cryptographic operations are run in an HSM in the cloud. Application
programmers can design and develop applications with a standard PKCS #11 API to request
encryption or sign the application data without programmers needing to become encryption
experts. Applications can use the IBM HPCS PKCS #11 library to modernize business
process and use a digital workflow with private data and digital reviews, approvals, and
signatures that are secure and trustworthy.
Chapter 8. Compliance and regulation 163

The IBM HPCS PKCS #11 library can be used to encrypt data between clouds with a wide list
of cryptographic operations: signing, signature validation, message authentication codes, and
more advanced encryption schemes, as shown in Figure 8-19.

Figure 8-19 Encryption applications

The library also can be used for database encryption, for example, with IBM HPCS, an Oracle
or Db2 database can be encrypted by using Transparent Data Encryption (TDE). Using TDE,
sensitive data on database storage media can be encrypted like table spaces and files. The
database system automatically and transparently encrypts and decrypts data when it is used
by authorized users and applications.

Database users and applications do not need to be aware of implementing or adapting TDE.
TDE uses a two-tiered key hierarchy that is composed of both a TDE data encryption key to
encrypt data and a TDE master encryption key for encrypting and decrypting a data
encryption key, as shown in Figure 8-20.

Figure 8-20 Database encryption

In the context of web servers, with Transport Layer Security (TLS) and Secure Sockets Layer
(SSL), a website establishes its identity. IBM HPCS provides a way to offload cryptographic
operations that are done during a TLS handshake to establish a secure connection to the web
server while it keeps the private key securely stored in the dedicated HSM. Offloading to
IBM HPCS enables data in transit protection for web, API, and mobile transactions by using
the standard PKCS #11 API.
164 Security Implementation with Red Hat OpenShift on IBM Power Systems

Figure 8-21 shows how TLS and SSL can be managed.

Figure 8-21 TLS/SSL management
Chapter 8. Compliance and regulation 165

166 Security Implementation with Red Hat OpenShift on IBM Power Systems

Chapter 9. Security Site Reliability Engineer

Enterprise customers have been adopting a DevOps culture over the past decade. The Site
Reliability Engineer (SRE) function employs a data-driven approach to balance new feature
development and customer experiences. In a fast-paced, cloud-native development
environment with automated continuous integration and continuous delivery (CI/CD)
processes, SREs play a key role in determining whether to deploy a new feature to production
or halt deployment to ensure that the existing software in production continues to perform well
according to service contracts and obligations.

This chapter describes the following topics:

� Introducing the Site Reliability Engineer

� Security scoring

� Service levels to apply to security

� Security runbooks

9

© Copyright IBM Corp. 2023. 167

9.1 Introducing the Site Reliability Engineer

Over the past few years, there has been a surge of data breaches, security lapses, and
problems in the security of the software supply chain. There is now a renewed focus on
DevSecOps, which integrates security controls and best practices into the DevOps workflow.
DevSecOps means building security into application development from end to end. This
integration into the pipeline requires a new organizational mindset and new tools. DevOps
teams should automate security to protect the overall environment and data, and the
continuous integration/continuous delivery process, which is a goal that includes the security
of microservices in containers.

One of the new roles in DevSecOps is the SRE. The SRE creates a bridge between
development and IT operations by taking on the tasks that are done typically by operations.
Instead, such tasks are given to SREs, who use automation tools to solve problems by
creating scalable and reliable software systems. In this paper, we present examples of
container security, code scanning and signing tools, and practices to enable the SRE function
and ensure proper security in the containerized environment. The rest of this chapter revisits
some fundamental concepts because they can be applied to security.

In the mainstream SRE practice, the operations teams working together with development
should teams define the service-level indicators (SLIs), service-level objectives (SLOs),
service-level agreements (SLAs), and Error Budgets that are used to manage their
application environment. We can organize the same concepts as a security theme for use in
your SRE practice.

For more information about the basics of SRE, see What is site reliability engineering (SRE)?

For more information about how SREs can benefit from Artificial Intelligence for IT Operations
(AIOps), see An SRE journey to AIOps.

9.2 Security scoring

A service's security footprint is the sum of its parts that are spread across software code; its
dependencies (open-source or commercial libraries); and its testing methods, deployment
methods, and runtime environment. This section describes many of those components.

9.2.1 Security scoring example

Red Hat OpenShift Compliance Operator on Red Hat OpenShift runs scans and produces
compliance reports. You can obtain the reports by running a pod to mount the volumes and
extract the reports. Figure 9-1 shows an example of a security scoring output.

Figure 9-1 Security scoring output
168 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://www.ibm.com/cloud/learn/site-reliability-engineering
https://www.ibm.com/cloud/resources/sre-journey-to-aiops

These results were created by using the YAML file that is shown in Example 9-1.

Example 9-1 Running security scoring reports

cat <<EOF | kubectl apply -f -
apiVersion: "v1"
kind: Pod
metadata:
 name: pv-extract
spec:
 containers:
 - name: pv-extract-pod
 image: registry.access.redhat.com/ubi8/ubi
 command: ["sleep", "3000"]
 volumeMounts:
 - mountPath: "/workers-scan-results"
 name: workers-scan-vol
 volumes:
 - name: workers-scan-vol
 persistentVolumeClaim:
 claimName: ocp4-cis
EOF

To gather these results, complete the following tasks:

1. Find the persistent volume claims (PVCs) that are created in the openshift-compliance
project (openshift-compliance is the default project name that Red Hat OpenShift
Compliance Operator uses). In this example, we use ocp4-cis as an example PVC that
we want to mount into a dummy pod that is named pv-extract.

2. When the pod runs, you can copy and extract the files by using the command that is
shown in Example 9-2.

Example 9-2 Finding persistent volume claims

oc -n openshift-compliance cp pv-extract:workers-scan-results .
bunzip2 <arf output files>

The files contain reports in Assessment Results Format (ARF),1 which is an open-source
specification that is based on XML that is compressed in a bzip2 format. This data can be
consumed by other tools that can render the report in a user-readable format, such as HTML.
One example of such a tool is oscap-report.

Example 9-3 shows an example about how to install the tool and convert the reports to
HTML.

Example 9-3 Installing the OSCAP report

pip install openscap-report
oscap-report < ocp4-cis-api-checks-pod.xml.bzip2.out > ocp4-report.html

1 For more information about ARF, see ARF.
Chapter 9. Security Site Reliability Engineer 169

https://measurablesecurity.mitre.org/incubator/arf/

Figure 9-2 shows an example HTML report that shows the results of the Center for Internet
Security (CIS) rules that scanned a demonstration cluster. The results provide information
about whether the scan passed or failed, reports on the severity of any issues, and provides
the compliance score.

Figure 9-2 OSCAP scan result

In one of the failed rule scans, as shown in Figure 9-3, you can see the rule reference-id, the
related references in CIS, and other specifications along with a clear rationale for the rule and
its importance.

Figure 9-3 Details for a failed scan
170 Security Implementation with Red Hat OpenShift on IBM Power Systems

9.2.2 Security scoring in IBM Cloud Security and Compliance Center

At the time of writing, IBM Cloud Security and Compliance Center offers a collector tool that
can aggregate ARF reports from on-premises or IBM Cloud resources into a single
dashboard. Tanium, an IBM Business Partner, offers tools for collecting the data from AWS,
Google Cloud Platform (GCP), and Azure, and showing those results in a dashboard in IBM
Cloud Security and Compliance Center.

The Open Source Security Foundation (OpenSSF) provides thought leadership and projects
for increasing security for open-source projects. One of their projects, Security Score Cards,
provides tools and integration (for example, GitHub) to scan the code and publish a score
card for open-source projects. OpenSSF publishes a list of 864+ open-source projects that
have at least a passing score (for more information, see BadgeApp). Commonly used tools
such as curl have a Gold score, and Node.js have a passing score. This list helps developers
to choose appropriate projects in the open-source ecosystem to improve their security
posture.

For the scope of this paper, we explore how you can use the metrics from the ARF reports
and incorporate those metrics into SRE practice. For a specific implementation, see
Chapter 10, “Aqua” on page 173.

9.3 Service levels to apply to security

There are many concepts in service-level management that can be applied directly to
security.

Security focused SLIs
A SLI is a quantitative measurement of a service level, such as latency or availability. For a
security focused SLI, we might measure the number of vulnerabilities in a container, or
measure a compliance score of a cluster or node in an Red Hat OpenShift environment.

Security focused SLOs
A SLO is a target for an SLI. For example, a service that serves http requests, 95% percentile
latency less than 5 ms, as the target or objective that the SRE wants to achieve. For a security
focused SLO, this target might be the percentage of high-risk vulnerabilities that must be less
than 5% for the service to be deemed secure. This target might vary based on the industry
vertical. Customers in regulated industries such as financial services or health care might
have more stringent requirements for compliance or security targets.

Security focused SLA
SLAs are guarantees for a certain level of service beyond which the service provider provides
a discount or payout when SLAs are breached. If there is a security breach that results in data
loss, it might cost a business $4.35 million dollars as of 2022.2 Hence, enterprises have a
rationale to institute internal SLAs for security issues such that risk mitigation measures might
be deployed to set the security within the limits that are set by the security SLA standards.

2 https://newsroom.ibm.com/2022-07-27-IBM-Report-Consumers-Pay-the-Price-as-Data-Breach-Costs-Reach-Al
l-Time-High
Chapter 9. Security Site Reliability Engineer 171

https://newsroom.ibm.com/2022-07-27-IBM-Report-Consumers-Pay-the-Price-as-Data-Breach-Costs-Reach-All-Time-High
https://newsroom.ibm.com/2022-07-27-IBM-Report-Consumers-Pay-the-Price-as-Data-Breach-Costs-Reach-All-Time-High
https://securityscorecards.dev/
https://bestpractices.coreinfrastructure.org/en/projects?gteq=100

9.4 Security runbooks

Runbooks are a tool that helps the operations team define a set of repeatable instructions that
are run to solve an issue when it occurs. These instructions originate from the corrective
actions that were deployed previously. Security runbooks address a set of pretested steps
that can be followed even by an entry level engineer.

However, runbooks are not an answer if an issue repeats in the same way multiple times in
each period, which might be due to a bug or an architectural or design flaw.

Although runbooks themselves are an excellent tool, as a best practice, automate the
runbook execution when an event occurs. By automating the runbook, you get a faster and
more consistent approach to security issues when they are discovered.

For more information about a runbook automation architecture pattern that implements this
principle, see Runbooks - IBM Cloud Architecture Center.
172 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://www.ibm.com/cloud/architecture/architectures/sm-incident-management-runbooks-solution/

Chapter 10. Aqua

This chapter provides an overview of Aqua, which is a tool for securing your workload that is
running on Red Hat OpenShift on IBM Power. Aqua is a security tool from an IBM Business
Partner that runs on IBM Power servers and provides security from development to a full
container run time.

This chapter describes the following topics:

� Cloud-Native Application Protection Platform

� Aqua for cloud-native application protection

� Container security lifecycle and risk areas

� Container security lifecycle

� The Cloud-Native Application Protection Platform

� Aqua support for Red Hat OpenShift on IBM Power

10
© Copyright IBM Corp. 2023. 173

10.1 Cloud-Native Application Protection Platform

If you are embarking on a journey to a hybrid cloud and you have successfully tested Red Hat
OpenShift on Power servers, you are thinking about how you are going to secure this new
environment that is so different from the traditional paradigm. In the new paradigm,
development and operations are combining to create a fast-paced software delivery platform
(DevOps) that decreases time-to-market for new features.

To make DevOps work, new frameworks are used, and open-source packages are integrated
into the code. Concerns about the security of the code itself, as a part of the inherent
cloud-native environment, are forcing companies to change the way that they implement
security. This approach contrasts with the traditional approach for applications, where the
security for the software was provided by the software vendors through errata and
security bulletins.

10.2 Aqua for cloud-native application protection

Cloud-native application protection requires shifting security from patching deployed
applications to patching and fixing security issues before the software is packaged, and
maintaining that security through deployment and run time.

There are three major parts of the platform where you ensure security:

1. Infrastructure

2. Cloud-native build

3. Workload run time

Aqua can help address all three parts with a unique solution that works for Red Hat OpenShift
on Power servers, and other Kubernetes (K8s) clusters and different cloud providers.

10.3 Container security lifecycle and risk areas

Regarding cloud-native applications, you want options. Although lowering your total coast of
operation (TCO) on an on-premises Power infrastructure makes sense for continuous
workloads, the public cloud might make sense for workloads that are seasonal or for a new
project fast start.

With this hybrid approach and possibly multiple cloud providers, you need to span across
clouds and K8s platforms.

Aqua can help you in this process in the following ways:

1. Manage Kubernetes security.

2. Manage the cloud security posture.

3. Manage hybrid and multi-cloud environments.

4. Help demonstrate compliance.

Because you are focusing on Red Hat OpenShift on Power servers, start looking into the
features that can help you keep the Red Hat OpenShift infrastructure secure by applying K8s
security techniques.
174 Security Implementation with Red Hat OpenShift on IBM Power Systems

Aqua Security delivers a secure container platform by providing a comprehensive set of
security features for securing the entire container lifecycle from build to run time. These
features include the following ones:

� Image scanning: Aqua Security can scan container images for vulnerabilities and
malware, both before and after deployment. This task can be done both on-demand and
as part of the continuous integration and continuous delivery (CI/CD) pipeline. Aqua uses
both open-source scanning tools and its own proprietary engine to scan images for known
vulnerabilities, malware, and other security issues.

� Runtime protection: Aqua Security can protect running containers from threats such as
privilege escalation, network attacks, and malicious processes. This task can be done by
using runtime-protection policies such as network security rules, access controls, and
process-level isolation.

� Compliance and governance: Aqua Security can enforce compliance policies and provide
detailed auditing and reporting to meet regulatory and compliance requirements.

� Centralized management: The Aqua Security platform can be managed centrally, which
provides a unified view of security across multiple clusters and namespaces. This task can
be done by using the Aqua web-based console, application programming interfaces
(APIs), and integrations with external security incident and event managers (SIEMs).

� Secrets Management: Aqua Security can protect and manage secrets, credentials, and
sensitive data in the container environment by providing secure storage, encryption, and
access controls.

Aqua Security integrates with Red Hat OpenShift by installing an Aqua Enforcer container on
each node in the cluster. This container communicates with the Aqua Security Control Plane
to enforce security policies and provide visibility into the security status of the cluster.

Also, Aqua Security offers the Cloud-Native Application Protection Platform (CNAPP), which
is built to work natively with Red Hat OpenShift and provide a security-focused, API-driven,
and automation-friendly platform for automating and streamlining the application security
process.

Aqua Security augments Red Hat OpenShift native security controls to ensure compliance
and visibility over container workloads, as shown in Figure 10-1.

Figure 10-1 Augmented Red Hat OpenShift security with Aqua
Chapter 10. Aqua 175

10.4 Container security lifecycle

Security for containers must be built in initially and then maintained throughout the lifecycle of
the container. Here are the main stages of the container security lifecycle:

� Development and Build: This stage is focused on ensuring that the container images that
are used to run the application are secure and free of vulnerabilities or malware. This
stage can include practices such as writing secure code, testing for vulnerabilities, and
scanning images for known vulnerabilities. The container images are built from the code
and prepared for deployment. This task can include practices such as verifying the
authenticity of the base images that are used to build the container images, and ensuring
that only trusted images are used.

� Deployment: This stage is focused on deploying the container images and ensuring that
they are running securely in the production environment. This stage can include practices
such as network segmentation, runtime protection, and access controls.

� Run: During this stage, the containerized applications are monitored, updated, and
managed throughout their lifecycle. This stage can include practices such as vulnerability
management, monitoring, and compliance.

Figure 10-2 illustrates the container security lifecycle and highlights major risk areas.

Figure 10-2 Container security lifecycle with risk areas
176 Security Implementation with Red Hat OpenShift on IBM Power Systems

Risks from the container image, the registry, the orchestration process, the container itself,
and from the host operating system introduce a new set of threat vectors, as shown in
Table 10-1.

Table 10-1 Threat vectors in container environments

10.5 The Cloud-Native Application Protection Platform

CNAPP is a security solution that provides comprehensive security for cloud-native
applications and the infrastructure on which they run. CNAPP works natively with cloud-native
technologies such as K8s, Red Hat OpenShift, and Docker, and provides security throughout
the entire application lifecycle, from development to production.

CNAPP provides several features that help secure the containerized applications lifecycle:

� Image scanning and vulnerability management

� Network segmentation

� Runtime protection

� Compliance and governance

� Secrets management

� Centralized management and visibility

� Automation and integration with the DevOps pipeline

Container risk areas Threat vectors

Images � Image vulnerabilities
� Configuration defects
� Embedded malware
� Embedded clear text secrets
� Untrusted images

Registry � Insecure connections to registries
� Stale images in registries
� Insufficient authentication and authorization

restrictions

Orchestration � Unbounded administrative access
� Unauthorized access
� Poorly separated inter-container network

traffic
� Mixing of workload sensitivity levels and

orchestrator node trust

Container � Vulnerabilities within the runtime software
� Unbounded network access from containers
� Insecure container runtime configurations
� App vulnerabilities
� Rogue containers

Host operating system � Large attack surface
� Shared kernel
� Host operating system component

vulnerabilities
� Improper user access rights and host

operating system file system tampering
Chapter 10. Aqua 177

CNAPP also helps to secure the runtime environment of containers by implementing security
policies on the orchestration platform to monitor the containers and alert on potential threats.
Also, the solution can integrate with other tools that are used in the development pipeline,
such as CI/CD tools, which enable security to be built in to the development process rather
than being an afterthought.

CNAPP solutions can help organizations to address security concerns that are associated
with the deployment and operation of cloud-native applications to reduce the attack surface,
mitigate risks, and improve overall security posture, without impacting the speed or flexibility
of the development process.

Aqua addresses the unique set of security risks that are introduced when container
environments are created, whether by using containers to build applications from the ground
up or porting existing monolithic apps.

Aqua secures the full container stack and lifecycle:

Trust code: As developers pull together source code and base images to
build their containers, Aqua scanning tools check for
misconfiguration, vulnerabilities, or malware to ensure the
integrity of the CI/CD pipeline.

Harden infrastructure: Aqua checks the deployment environment to ensure that there
is no misconfiguration and that the environment complies with
any industry or territory regulations, and then categorizes any
issues that are detected for resolution.

Protect workloads: When the application is deployed and running in the production
environment, Aqua continues to monitor for malicious or
unexpected activity.

Figure 10-3 shows how Aqua provides a comprehensive set of tools to support CNAPP so
that you regain visibility and reduce the risk to your business.

Figure 10-3 Cloud-Native Application Protection Platform
178 Security Implementation with Red Hat OpenShift on IBM Power Systems

10.6 Aqua support for Red Hat OpenShift on IBM Power

The Aqua security platform is the recommended, integrated cloud-native security solution to
run on the Red Hat OpenShift on IBM Power combined platform. It provides a consistent view
of risk across each part of the lifecycle.

Here are Aqua supported features for Red Hat OpenShift on IBM Power:

� Scan for vulnerabilities: With this feature, you can scan images on Red Hat OpenShift on
IBM Power with integration to a Red Hat OpenShift Container Platform registry.

� Aqua Trivy is a supported vulnerability scanner for container images that can scan for
vulnerabilities in the operating system packages and libraries in a container image and
also in the application itself. It can be integrated with a CI/CD pipeline to detect
vulnerabilities early in the development process. For more information, see 10.6.2,
“Scanning for vulnerabilities by using Aqua Trivy and Starboard” on page 181.

� Workload assurance through Aqua Starboard by using auto-discovery of Red Hat
OpenShift resources and evaluating workloads for security risks. Aqua Starboard is a
runtime security solution that provides real-time security visibility and protection for
Red Hat OpenShift applications. It provides an agent that runs within the host and
monitors all the containers running on the host, and it detects and mitigates security
threats in real time. It also can identify malicious activities like privilege escalation and
network attacks, and report them to a central management console. Aqua Starboard also
integrates with Aqua Trivy to provide a comprehensive security solution for Red Hat
OpenShift applications. For more information, see 10.6.2, “Scanning for vulnerabilities by
using Aqua Trivy and Starboard” on page 181.

� Risk posture management: Aqua Risk Explorer displays risk insights and enables
vulnerability management prioritization.

� Runtime protection through Aqua KubeEnforcer: Use the Admission controller to validate
a workload configuration, and block non-compliant workloads and unregistered images.
For more information, see Aqua KubeEnforcer.

� Center for Internet Security (CIS) benchmark compliance checks: Use CIS K8s
benchmark checks through kube-bench, which is validated on Red Hat OpenShift on
IBM Power.

� Drift prevention for safeguarding against misuse or abuse of resources with container
immutability enforcement.

� Scan Red Hat OpenShift hosts running on IBM Power Architecture for malware and
vulnerabilities.

� Enforce network segmentation to restrict blast radius and protect against IP addresses
and DNS domains with bad reputations and crypto-mining attacks.

10.6.1 Installing Aqua Security operator

To install Aqua Security Operator by using Red Hat OpenShift OperatorHub, complete the
following steps. For more information, see Deploy Red Hat OpenShift Operator. Ensure that
you have a valid Aqua Security license.

1. Create a project for Aqua by running the command that is shown in Example 10-1.

Example 10-1 Creating an Aqua project

oc new-project aqua
Chapter 10. Aqua 179

https://support.aquasec.com/support/solutions/articles/16000128641-getting-started-with-aqua-platform
https://github.com/aquasecurity/aqua-operator/blob/master/docs/DeployOpenShiftOperator.md

2. Create the secret for the Aqua Database password by running the command that is shown
in Example 10-2.

Example 10-2 Creating a secret for Aqua

oc create secret generic aqua-database-password
-from-literal=db-password=<password> -n aqua

3. Install Aqua from Red Hat OpenShift OperatorHub, as shown in Figure 10-4.

Figure 10-4 Installing Aqua Security Operator

4. Verify the Aqua Operator applications, as shown in Figure 10-5.

Figure 10-5 Verifying the Aqua Security Operator applications

Note: To obtain an Aqua license, contact Aqua Security Services and bring IBM Security
Services into the conversation for implementation and managed security services.
180 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://www.aquasec.com/about-us/contact-us/

10.6.2 Scanning for vulnerabilities by using Aqua Trivy and Starboard

You can scan for vulnerabilities by using the following tools:

� Using Aqua Trivy

� Using Aqua Starboard

Using Aqua Trivy
In this scenario, you scan a container image to detect vulnerabilities and misconfiguration in a
GitLab runner operator on an IBM Power server. For more information, see the
documentation at Aqua Trivy.

Complete the following steps:

1. Install and build Aqua Trivy by running the commands that are shown in Example 10-3.

Example 10-3 Installing and building Aqua Trivy

$ git clone https://github.com/aquasecurity/trivy.git

Cloning into 'trivy'...
remote: Enumerating objects: 62358, done.
remote: Counting objects: 100% (524/524), done.
remote: Compressing objects: 100% (225/225), done.
remote: Total 62358 (delta 209), reused 429 (delta 165), pack-reused 61834
Receiving objects: 100% (62358/62358), 793.41 MiB | 16.99 MiB/s, done.
Resolving deltas: 100% (32003/32003), done.
Updating files: 100% (1326/1326), done.

$ cd trivy

$ docker build -t quay.io/snehakpersistent/trivy:ppc64le .

2. Scan the container image by running the command that is shown in Example 10-4.

Example 10-4 Scanning a container image to detect vulnerabilities in a GitLab runner operator

$ trivy image
registry.gitlab.com/skanekar1/gitlab-runner-operator/gitlab-runner-operator:linux-ppc64le-v0.0.1-25940
2c6

2023-01-15T12:21:11.433+0100INFONeed to update DB
2023-01-15T12:21:11.434+0100INFODB Repository: ghcr.io/aquasecurity/trivy-db
2023-01-15T12:21:11.434+0100INFODownloading DB...
36.06 MiB / 36.06 MiB
[--]
100.00% 6.32 MiB p/s 5.9s
2023-01-15T12:21:18.683+0100INFOVulnerability scanning is enabled
2023-01-15T12:21:18.683+0100INFOSecret scanning is enabled
2023-01-15T12:21:18.683+0100INFOIf your scanning is slow, try '--security-checks vuln' to disable
secret scanning
2023-01-15T12:21:18.683+0100INFOSee also
https://aquasecurity.github.io/trivy/v0.36/docs/secret/scanning/#recommendation for faster secret
detection
2023-01-15T12:21:28.664+0100INFODetected OS: Red Hat
2023-01-15T12:21:28.665+0100INFODetecting RHEL/CentOS vulnerabilities...
2023-01-15T12:21:28.685+0100INFONumber of language-specific files: 1
2023-01-15T12:21:28.685+0100INFODetecting gobinary vulnerabilities...

registry.gitlab.com/skanekar1/gitlab-runner-operator/gitlab-runner-operator:linux-ppc64le-v0.0.1-25940
2c6 (Red Hat 8.4)
Chapter 10. Aqua 181

https://aquasecurity.github.io/trivy/v0.36/

Total: 189 (UNKNOWN: 0, LOW: 55, MEDIUM: 123, HIGH: 11, CRITICAL: 0)
manager (gobinary)

Total: 14 (UNKNOWN: 0, LOW: 0, MEDIUM: 4, HIGH: 10, CRITICAL: 0)

Part of the output from the Aqua Trivy scan is a list of known vulnerabilities for container
contents. An example of this output is shown in Table 10-2 and Table 10-3 on page 183.

Table 10-2 Vulnerabilities discovered

Library Vulnerability Severity Installed
version

Fixed version Title

bzip2-libs CVE-2019-12900 Low 1.0.6-26.el8 bzip2: out-of-bounds write
in function BZ2_decompress
https://avd.aquasec.com/nvd
/cve-2019-12900

curl CVE-2021-22876 Medium 7.61.1-18.el8 7.61.1-22.el8 curl: Leak of
authentication credentials
in URL via automatic
Referer
https://avd.aquasec.com/nvd
/cve-2021-22876

CVE-2021-22922 7.61.1-18.el8_4.1 curl: Content not matching
hash in Metalink is not
being discarded
https://avd.aquasec.com/nvd
/cve-2021-22922

CVE-2021-22923 curl: Metalink download
sends credentials
https://avd.aquasec.com/nvd
/cve-2021-22923

CVE-2021-22924 curl: Bad connection reuse
due to flawed path name
checks
https://avd.aquasec.com/nvd
/cve-2021-22924

CVE-2021-22946 7.61.1-18.el8_4.2 curl: Requirement to use
TLS not properly enforced
for IMAP,POP3, and...
https://avd.aquasec.com/nvd
/cve-2021-22946

CVE-2021-22947 curl: Server responses
received before STARTTLS
processed after TLS
handshake
https://avd.aquasec.com/nvd
/cve-2021-22947

CVE-2022-22576 7.61.1-22.el8_6.3 curl: OAUTH2 bearer bypass
in connection re-use
https://avd.aquasec.com/nvd
/cve-2022-22576

CVE-2022-27774 curl: credential leak on
redirect
https://avd.aquasec.com/nvd
/cve-2022-27774
182 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://avd.aquasec.com/nvd/cve-2019-12900
https://avd.aquasec.com/nvd/cve-2019-12900
https://avd.aquasec.com/nvd/cve-2021-22876
https://avd.aquasec.com/nvd/cve-2021-22922
https://avd.aquasec.com/nvd/cve-2021-22923
https://avd.aquasec.com/nvd/cve-2021-22924
https://avd.aquasec.com/nvd/cve-2021-22946
https://avd.aquasec.com/nvd/cve-2021-22947
https://avd.aquasec.com/nvd/cve-2022-22576
https://avd.aquasec.com/nvd/cve-2022-27774

Table 10-3 Additional vulnerabilities discovered

curl CVE-2022-27776 Medium 7.61.1-18.el8 7.61.1-22.el8_6.3 curl: auth/cookie leak on
redirect
https://avd.aquasec.com/nvd
/cve-2022-27776

CVE-2022-27782 curl: TLS and SSH
connection too eager reuse
https://avd.aquasec.com/nvd
/cve-2022-27782

CVE-2022-32206 7.61.1-22.el8_6.4 curl: HTTP compression
denial of service
https://avd.aquasec.com/nvd
/cve-2022-32206

CVE-2022-32208 curl: FTP-KRB bad message
verification
https://avd.aquasec.com/nvd
/cve-2022-32208

xz-libs CVE-2022-1271 High 5.2.4-3.el8 5.2.4-4.el8_6 gzip: arbitrary-file-write
vulnerability
https://avd.aquasec.com/nvd
/cve-2022-1271

zlib CVE-2018-25032 1.2.11-17.el8 1.2.11-18.el8_5 zlib: A flaw found in zlib
when compressing (not
decompressing) certain
inputs...
https://avd.aquasec.com/nvd
/cve-2018-25032

CVE-2022-37434 Medium 1.2.11-19.el8_6 zlib: heap-based buffer
over-read and overflow in
inflate() in inflate.c via
a...
https://avd.aquasec.com/nvd
/cve-2022-37434

Library Vulnerability Severity Installed
version

Fixed
version

Title

github.com/gogo/protobuf CVE-2021-3121 High v1.3.1 1.3.2 gogo/protobuf:
plugin/unmarshal/unmarsh
al.go lacks certain
index validation
https://avd.aquasec.com/
nvd/cve-2021-3121

github.com/prometheus/cl
ient_golang

CVE-2022-21698 v1.0.0 1.11.1 prometheus/client_golang
: Denial of service
using
InstrumentHandlerCounter

k8s.io/client-go CVE-2020-8565 Medium v0.18.6 0.20.0-alpha.2 K8s: Incomplete fix
for CVE-2019-11250
allows for token leak
in logs when...
https://avd.aquasec.c
om/nvd/cve-2020-8565

Library Vulnerability Severity Installed
version

Fixed version Title
Chapter 10. Aqua 183

https://avd.aquasec.com/nvd/cve-2022-27776
https://avd.aquasec.com/nvd/cve-2022-27782
https://avd.aquasec.com/nvd/cve-2022-32206
https://avd.aquasec.com/nvd/cve-2022-32206
https://avd.aquasec.com/nvd/cve-2022-32208
https://avd.aquasec.com/nvd/cve-2022-32208
https://avd.aquasec.com/nvd/cve-2022-1271
https://avd.aquasec.com/nvd/cve-2022-1271
https://avd.aquasec.com/nvd/cve-2018-25032
https://avd.aquasec.com/nvd/cve-2018-25032
https://avd.aquasec.com/nvd/cve-2022-37434
https://avd.aquasec.com/nvd/cve-2021-3121
https://avd.aquasec.com/nvd/cve-2021-3121
https://avd.aquasec.com/nvd/cve-2020-8565

Using Aqua Starboard
In this scenario, you use the Vulnerability Scanner to generate vulnerability reports on the
ngnix pod by using Aqua Starboard. For more information, see Aqua Starboard.

Complete the following steps:

1. Install and build Aqua Starboard by running the commands that are shown in
Example 10-5.

Example 10-5 Installing and building Aqua Starboard

$ git clone https://github.com/snehakpersistent/starboard.git

Cloning into 'starboard'...
remote: Enumerating objects: 7214, done.
remote: Total 7214 (delta 0), reused 0 (delta 0), pack-reused 7214
Receiving objects: 100% (7214/7214), 60.62 MiB | 14.79 MiB/s, done.
Resolving deltas: 100% (4168/4168), done.

$ cd starboard

$ make

CGO_ENABLED=0 go build -o ./bin/starboard ./cmd/starboard/main.go
go: downloading k8s.io/client-go v0.24.4
go: downloading k8s.io/klog/v2 v2.70.1
go: downloading github.com/spf13/cobra v1.5.0
go: downloading github.com/spf13/pflag v1.0.5
go: downloading k8s.io/api v0.24.4
go: downloading k8s.io/apiextensions-apiserver v0.24.2
go: downloading k8s.io/apimachinery v0.24.4
go: downloading k8s.io/cli-runtime v0.24.1
go: downloading k8s.io/utils v0.0.0-20220706174534-f6158b442e7c
go: downloading sigs.k8s.io/controller-runtime v0.12.3
go: downloading github.com/google/go-containerregistry v0.11.0
go: downloading github.com/go-logr/logr v1.2.3
go: downloading github.com/emirpasic/gods v1.18.1
go: downloading github.com/google/uuid v1.3.0
go: downloading github.com/davecgh/go-spew v1.1.1
go: downloading github.com/hashicorp/go-version v1.5.0
go: downloading github.com/gogo/protobuf v1.3.2
go: downloading github.com/google/gofuzz v1.2.0
go: downloading github.com/liggitt/tabwriter v0.0.0-20181228230101-89fcab3d43de
go: downloading sigs.k8s.io/yaml v1.3.0
go: downloading github.com/evanphx/json-patch v5.6.0+incompatible
go: downloading sigs.k8s.io/structured-merge-diff/v4 v4.2.1
go: downloading github.com/gorhill/cronexpr v0.0.0-20180427100037-88b0669f7d75
go: downloading github.com/opencontainers/go-digest v1.0.0
go: downloading github.com/caarlos0/env/v6 v6.10.0
go: downloading github.com/open-policy-agent/opa v0.44.0
go: downloading github.com/golang/protobuf v1.5.2
go: downloading github.com/google/gnostic v0.6.9
go: downloading golang.org/x/net v0.0.0-20220906165146-f3363e06e74c
go: downloading golang.org/x/time v0.0.0-20220609170525-579cf78fd858
go: downloading gopkg.in/inf.v0 v0.9.1
go: downloading github.com/valyala/quicktemplate v1.7.0
go: downloading github.com/Azure/go-autorest/autorest v0.11.24
go: downloading github.com/Azure/go-autorest v14.2.0+incompatible
go: downloading github.com/Azure/go-autorest/autorest/adal v0.9.18
go: downloading golang.org/x/oauth2 v0.0.0-20220718184931-c8730f7fcb92
go: downloading sigs.k8s.io/json v0.0.0-20220525155127-227cbc7cc124
go: downloading gopkg.in/yaml.v2 v2.4.0
go: downloading github.com/pkg/errors v0.9.1
go: downloading golang.org/x/text v0.3.8
go: downloading sigs.k8s.io/kustomize/api v0.11.4
go: downloading sigs.k8s.io/kustomize/kyaml v0.13.6
go: downloading github.com/gregjones/httpcache v0.0.0-20190611155906-901d90724c79
go: downloading github.com/peterbourgon/diskv v2.0.1+incompatible
go: downloading github.com/imdario/mergo v0.3.13
go: downloading golang.org/x/term v0.0.0-20220526004731-065cf7ba2467
go: downloading github.com/prometheus/client_golang v1.13.0
go: downloading k8s.io/kube-openapi v0.0.0-20220627174259-011e075b9cb8
go: downloading github.com/json-iterator/go v1.1.12
go: downloading github.com/OneOfOne/xxhash v1.2.8
go: downloading gomodules.xyz/jsonpatch/v2 v2.2.0
go: downloading google.golang.org/protobuf v1.28.1
go: downloading gopkg.in/yaml.v3 v3.0.1
go: downloading github.com/google/go-cmp v0.5.8
go: downloading github.com/valyala/bytebufferpool v1.0.0
184 Security Implementation with Red Hat OpenShift on IBM Power Systems

https://aquasecurity.github.io/starboard/v0.15.8/

go: downloading github.com/Azure/go-autorest/logger v0.2.1
go: downloading github.com/Azure/go-autorest/tracing v0.6.0
go: downloading github.com/Azure/go-autorest/autorest/date v0.3.0
go: downloading github.com/golang-jwt/jwt/v4 v4.2.0
go: downloading golang.org/x/crypto v0.0.0-20220622213112-05595931fe9d
go: downloading cloud.google.com/go v0.99.0
go: downloading github.com/google/btree v1.0.1
go: downloading golang.org/x/sys v0.0.0-20220728004956-3c1f35247d10
go: downloading k8s.io/component-base v0.24.2
go: downloading github.com/prometheus/client_model v0.2.0
go: downloading github.com/prometheus/common v0.37.0
go: downloading github.com/golang/groupcache v0.0.0-20210331224755-41bb18bfe9da
go: downloading github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd
go: downloading github.com/modern-go/reflect2 v1.0.2
go: downloading github.com/xeipuuv/gojsonreference v0.0.0-20180127040603-bd5ef7bd5415
go: downloading github.com/rcrowley/go-metrics v0.0.0-20201227073835-cf1acfcdf475
go: downloading github.com/ghodss/yaml v1.0.0
go: downloading github.com/gobwas/glob v0.2.3
go: downloading github.com/tchap/go-patricia/v2 v2.3.1
go: downloading github.com/yashtewari/glob-intersection v0.1.0
go: downloading github.com/munnerz/goautoneg v0.0.0-20191010083416-a7dc8b61c822
go: downloading github.com/beorn7/perks v1.0.1
go: downloading github.com/cespare/xxhash/v2 v2.1.2
go: downloading github.com/prometheus/procfs v0.8.0
go: downloading github.com/matttproud/golang_protobuf_extensions v1.0.2-0.20181231171920-c182affec369
go: downloading github.com/fsnotify/fsnotify v1.5.4
go: downloading github.com/xeipuuv/gojsonpointer v0.0.0-20190905194746-02993c407bfb
go: downloading github.com/agnivade/levenshtein v1.1.1
go: downloading github.com/emicklei/go-restful/v3 v3.8.0
go: downloading github.com/go-openapi/swag v0.21.1
go: downloading github.com/go-openapi/jsonreference v0.20.0
go: downloading github.com/google/shlex v0.0.0-20191202100458-e7afc7fbc510
go: downloading github.com/monochromegane/go-gitignore v0.0.0-20200626010858-205db1a8cc00
go: downloading github.com/stretchr/testify v1.8.0
go: downloading github.com/xlab/treeprint v0.0.0-20181112141820-a009c3971eca
go: downloading github.com/go-errors/errors v1.0.1
go: downloading github.com/mailru/easyjson v0.7.7
go: downloading github.com/go-openapi/jsonpointer v0.19.5
go: downloading github.com/josharian/intern v1.0.0
go: downloading go.starlark.net v0.0.0-20200306205701-8dd3e2ee1dd5
go: downloading github.com/pmezard/go-difflib v1.0.0

CGO_ENABLED=0 GOOS=linux go build -o ./bin/starboard-operator ./cmd/starboard-operator/main.go
go: downloading github.com/go-logr/zapr v1.2.3
go: downloading go.uber.org/zap v1.21.0
go: downloading go.uber.org/atomic v1.9.0
go: downloading go.uber.org/multierr v1.8.0
CGO_ENABLED=0 GOOS=linux go build -o ./bin/starboard-scanner-aqua ./cmd/scanner-aqua/main.go

$ cd bin

$./starboard init -v 3

I0115 15:29:02.427038 4704 installer.go:410] Creating CRD "vulnerabilityreports.aquasecurity.github.io"
I0115 15:29:02.478507 4704 installer.go:410] Creating CRD "clustervulnerabilityreports.aquasecurity.github.io"
I0115 15:29:02.516438 4704 installer.go:410] Creating CRD "ciskubebenchreports.aquasecurity.github.io"
I0115 15:29:02.548759 4704 installer.go:410] Creating CRD "kubehunterreports.aquasecurity.github.io"
I0115 15:29:02.590130 4704 installer.go:404] Updating CRD "configauditreports.aquasecurity.github.io"
I0115 15:29:02.625052 4704 installer.go:404] Updating CRD "clusterconfigauditreports.aquasecurity.github.io"
I0115 15:29:02.818666 4704 request.go:533] Waited for 192.558459ms due to client-side throttling, not priority and
fairness, request:
PUT:https://c100-e.eu-de.containers.cloud.ibm.com:30428/apis/apiextensions.k8s.io/v1/customresourcedefinitions/cluste
rconfigauditreports.aquasecurity.github.io
I0115 15:29:03.018043 4704 request.go:533] Waited for 169.457821ms due to client-side throttling, not priority and
fairness, request:
GET:https://c100-e.eu-de.containers.cloud.ibm.com:30428/apis/apiextensions.k8s.io/v1/customresourcedefinitions/cluste
rcompliancereports.aquasecurity.github.io
I0115 15:29:03.032517 4704 installer.go:410] Creating CRD "clustercompliancereports.aquasecurity.github.io"
(….)
I0115 15:29:13.457135 4704 installer.go:427] Creating compliance spec "nsa"
I0115 15:29:13.516531 4704 installer.go:342] Creating Namespace "starboard"
I0115 15:29:13.931599 4704 installer.go:357] Creating ServiceAccount "starboard/starboard"
I0115 15:29:13.975981 4704 installer.go:374] Creating ClusterRole "starboard"
I0115 15:29:14.029941 4704 installer.go:392] Creating ClusterRoleBinding "starboard"

Starboard is an Aqua Security open source project.
Learn about our open source work and portfolio on https://www.aquasec.com/products/open-source-projects/.
Chapter 10. Aqua 185

2. Use the Vulnerability Scanner to generate vulnerability reports on the ngnix pod by using
Aqua Starboard. Run the commands that are shown in Example 10-6.

Example 10-6 Generating vulnerability reports on the ngnix image

$ kubectl get deployment --namespace yslpowertst

NAME READY UP-TO-DATE AVAILABLE AGE
aqua-kube-enforcer 0/1 1 0 66m
aqua-operator 1/1 1 1 5h31m
aqua-scanner 0/1 1 0 66m
nginx-git 1/1 1 1 30m
starboard-operator 1/1 1 1 66m

Generate vulnerability reports:

$./starboard scan vulnerabilityreports deployment/nginx-git --namespace yslpowertst -v 3

Retrieve the vulnerability report:

$./starboard get vulnerabilities deployment/nginx-git -o yaml --namespace yslpowertst -v 3
186 Security Implementation with Red Hat OpenShift on IBM Power Systems

Glossary

alerting rules Alerting rules contain a set of conditions
that outline a state within a cluster. Alerts are triggered
when those conditions are true. An alerting rule can be
assigned a severity that defines how the alerts are routed.

Alertmanager Handles alerts that are received from
Prometheus. Alertmanager also is responsible for sending
the alerts to external notification systems.

continuous integration and continuous deployment
(CI/CD) A CI/CD pipeline is a set of automated processes
that manage the flow of code changes from development
to production.

cloud-native Refers to an application that is designed to
reside in the cloud from the start. Cloud-native involves
cloud technologies like microservices, container
orchestrators, and auto scaling.

Cluster Monitoring Operator (CMO) A central
component of the monitoring stack. It deploys and
manages Prometheus instances, such as the Thanos
Querier, the Telemeter Client, and metrics targets to
ensure that they are up to date. The CMO is deployed by
the Cluster Version Operator (CVO).

Cloud-Native Application Protection Platform
(CNAPP) A set of security tools and services to protect
applications running in cloud environments, such as a
public cloud or private cloud infrastructure.

configmap Provides a way to inject configuration data
into pods. You can reference the data that is stored in a
config map in a volume of type ConfigMap. Applications
running in a pod can use this data.

Container Storage Interface (CSI) A plug-in for
Kubernetes (K8s) and other container orchestrators that
allow storage suppliers to expose their products to
containerized applications as persistent storage.

container A container is a lightweight and executable
image that includes software and all its dependencies.
Containers virtualize the operating system. As a result,
you can run containers anywhere from a data center to a
public or private cloud, or a developer’s laptop.

custom resource (CR) An extension of the K8s
application programming interface (API). You can create
custom resources.

common vulnerabilities and exposures (CVEs) The
database of publicly disclosed information on security
issues. All organizations use CVEs to identify and track
vulnerabilities.
© Copyright IBM Corp. 2023.
distributed application A software application that is
designed to run on multiple regions and servers that are
connected over multiple networks. Distributed
applications can provide scalability and high availability for
an application.

Elasticsearch A distributed, no-charge, and open search
and analytics engine for all types of data, including textual,
numerical, geospatial, structured, and unstructured.

enterprise Baseboard Management Controller (eBMC)
A specialized service processor that monitors the physical
state of the system by using sensors. A system
administrator or service representative can communicate
with the eBMC through an independent connection. The
eBMC is used instead of the Flexible Service Processor
(FSP) starting with IBM Power10 servers.

etcd The key-value store for Red Hat OpenShift Container
Platform, which stores the state of all resource objects.

Flexible Service Processor (FSP) An always-on
management processor that helps to manage a server
out-of-band. The FSP is the external face of a Power
server that provides various platform management
interfaces.

Fluentd Gathers logs from nodes and feeds them to
Elasticsearch.

Kibana A no-charge and open front-end application that
sits on top of the Elastic Stack that provides search and
data visualization capabilities for data that is indexed in
Elasticsearch. Commonly known as the charting tool for
the Elastic Stack (previously referred to as the ELK Stack
after Elasticsearch, Logstash, and Kibana), Kibana also
acts as the user interface for monitoring, managing, and
securing an Elastic Stack cluster

kubelets Runs on nodes and reads the container
manifests. Ensures that the defined containers started
and are running.

Kubernetes API server Validates and configures data for
the API objects.

labels Key-value pairs that you can use to organize and
select subsets of objects, such as a pod.

Logstash An open-source data collection engine with
real-time pipelining capabilities. Logstash can
dynamically unify data from disparate sources and
normalize the data into destinations of your choice.
 187

metering A general-purpose data analysis tool that
enables you to write reports to process data from different
data sources.

node A worker machine in the Red Hat OpenShift
Container Platform cluster. A node is either a virtual
machine (VM) or a physical machine.

observability In K8s, the continuous process of using the
metrics, events, logs, and trace data that a K8s system
generates to identify, understand, and optimize its health
and performance.

operator The preferred method of packaging, deploying,
and managing a K8s application in an Red Hat OpenShift
Container Platform cluster. An operator takes human
operational knowledge and encodes it into software that is
packaged and shared with customers.

persistent storage Stores the data even after the device
is shut down. K8s uses persistent volumes to store the
application data.

persistent volume claim (PVC) You can use a PVC to
mount a persistent volume into a pod. You can access the
storage without knowing the details of the cloud
environment.

Pod The pod is the smallest logical unit in K8s. A pod is
composed of one or more containers that run in a worker
node.

Prometheus The monitoring system on which the
Red Hat OpenShift Container Platform monitoring stack is
based. Prometheus is a time-series database and a rule
evaluation engine for metrics. Prometheus sends alerts to
Alertmanager for processing.

security posture A measure of an organization’s overall
cybersecurity status. It also is a measure of how
vulnerable an organization is to cyberattacks or data
breaches.

service-level agreement (SLA) A commitment between
a service provider and a customer. Aspects of the service
(quality, availability, and responsibilities) are agreed
between the service provider and the service user.

service-level indicator (SLI) A specific metric that helps
companies measure some aspect of the level of services
to their customers. SLIs are a smaller subsection of
service-level objectives (SLOs), which are part of an SLA
that impacts overall service reliability.

service-level objective (SLO) An agreement within an
SLA about a specific metric like uptime or response time.
So, if the SLA is the formal agreement between you and
your customer, SLOs are the individual promises that you
are making to that customer.

storage class Provides a way for administrators to
describe the “classes” of storage that they offer. Different
classes might configmap to quality of service (QoS)
levels, backup policies, or arbitrary policies that are
determined by the cluster administrators.

Thanos Ruler A rule evaluation engine for Prometheus
that is deployed as a separate process. In Red Hat
OpenShift Container Platform, Thanos Ruler provides rule
and alerting evaluation for the monitoring of user-defined
projects.

Trusted Platform Module (TPM) Enables remote
attestation of the code stack on a running system. The
chain of trust firmware records the hash of the loaded
firmware and stores the records in the network of
processor TPMs.

web console A user interface (UI) to manage Red Hat
OpenShift Container Platform.

YAML A data serialization language that often is used for
writing configuration files. YAML is a popular programming
language because it is human-readable and easy to
understand. Because of its flexibility and accessibility,
YAML is used by the Ansible automation tool to create
automation processes.
188 Security Implementation with Red Hat OpenShift on IBM Power Systems

ronyms
ACSC Australian Cyber Security Centre

AI artificial intelligence

AIDE Advanced Intrusion Detection
Environment

AIOps Artificial Intelligence for IT
Operations

API application programming interface

APM application performance monitoring

ARF Assessment Results Format

BIND Berkeley Internet Name Domain

BYOK bring-your-own-key

CA certificate authority

CEng Chartered Engineer

CI/CD continuous integration and
continuous delivery

CIS Center for Internet Security

CLI command-line interface

CNAPP Cloud Native Application Protection
Platform

CNI Container Network Interface

CNO Cluster Network Operator

CSI Container Storage Interface

CSRF cross-site request forgery

DAST Dynamic Application Security
Testing

DDoS distributed denial-of-service

DEXCR Dynamic Execution Control
Register

DNS Domain Name System

eBMC enterprise Baseboard Management
Controller

EPC Enterprise Protected Containers

ESB Enterprise Service Bus

ETSI European Telecommunications
Standards Institute

FHE Fully Homomorphic Encryption

FIPS Federal Information Processing
Standards

FSP Flexible Service Processor

GCP Google Cloud Platform

GDPR General Data Protection Regulation

HPC high-performance computing

HPCS IBM Hyper Protect Crypto Services

Abbreviations and ac
© Copyright IBM Corp. 2023.
HSM Hardware Security Module

IaaS infrastructure as a service

IaC Infrastructure as Code

IAM Identity and Access Management

IBM International Business Machines
Corporation

IBM PowerVS IBM Power Systems Virtual Server

IMA Integrity Measurement Architecture

K8s Kubernetes

KMS Key Management System

KPI key performance indicator

KYOK keep your own key

LGPD Lei Geral de Proteção de Dados

LPAR logical partition

LUW Linux, UNIX, and Windows

MAC mandatory access control

MCG Multicloud Object Gateway

MFA multi-factor authentication

mTLS mutual Transport Layer Security

NFS Network File System

NIST National Institute of Standards and
Technology

NSA National Security Agency

OIDC OpenID Connect

OpenSSF Open Source Security Foundation

OWASP Open Web Application Security
Project

PaaS platform as a service

PIBR Privacy Incident Benchmark Report

PKCS Public Key Cryptography Standards

PKI public key infrastructure

PMP Project Management Professional

PQC post-quantum cryptography

PV persistent volume

PVC persistent volume claim

RBAC role-based access control

RHEL Red Hat Enterprise Linux

ROKS Red Hat OpenShift Kubernetes
Service

ROP return-oriented programming

ROX ReadOnlyMany
 189

RWO ReadWriteOnce

RWX ReadWriteMany

S2I Source-2-Image

SaaS software as a service

SAML Security Assertion Markup
Language

SAST Static Application Security Testing

SCAP Security Content Automation
Protocol

SCC Security Context Constraints

SDN software-defined networking

SIEM Security Incident and Event
Manager

SLA service-level agreement

SLI service-level indicator

SLO service-level objective

SRE Site Reliability Engineer

SSH Secure Socket Shell

SSL Secure Sockets Layer

TDE Transparent Data Encryption

TLS Transport Layer Security

TOE target of evaluation

TPM Trusted Platform Module

UBI Universal Base Image

UKO Universal Key Orchestrator

VIOS Virtual I/O Server

VM virtual machine

VMI Virtualization Management
Interface
190 Security Implementation with Red Hat OpenShift on IBM Power Systems

Related publications

The publications that are listed in this section are considered suitable for a more detailed
description of the topics that are covered in this paper.

IBM Redbooks

The following IBM Redbooks publications provide more information about the topics in this
document. Some publications that are referenced in this list might be available in softcopy
only.

� IBM Power Systems Cloud Security Guide: Protect IT Infrastructure In All Layers,
REDP-5659

� IBM Spectrum Protect Plus: Protecting Red Hat OpenShift Containerized Environments,
REDP-5636

� IBM Spectrum Scale CSI Driver for Container Persistent Storage, REDP-5589

� IBM Storage for Red Hat OpenShift Blueprint, REDP-5565

� Using the IBM Block Storage CSI Driver in a Red Hat OpenShift Environment,
REDP-5613

You can search for, view, download, or order these documents and other Redbooks,
Redpapers, web docs, drafts, and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� Getting started with Security and Compliance Center

https://cloud.ibm.com/docs/security-compliance?topic=security-compliance-gettin
g-started

� Installing and configuring the Red Hat OpenShift API for Data Protection with Multicloud
Object Gateway

https://docs.openshift.com/container-platform/4.11/backup_and_restore/applicati
on_backup_and_restore/installing/installing-oadp-mcg.html

� Installing and configuring the Red Hat OpenShift API for Data Protection with Red Hat
OpenShift Data Foundation

https://docs.openshift.com/container-platform/4.11/backup_and_restore/applicati
on_backup_and_restore/installing/installing-oadp-ocs.html

� Kubernetes (K8s) Documentation / Concepts / Security

https://kubernetes.io/docs/concepts/security/
© Copyright IBM Corp. 2023. 191

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://cloud.ibm.com/docs/security-compliance?topic=security-compliance-getting-started
https://cloud.ibm.com/docs/security-compliance?topic=security-compliance-getting-started
https://docs.openshift.com/container-platform/4.11/backup_and_restore/application_backup_and_restore/installing/installing-oadp-mcg.html
https://docs.openshift.com/container-platform/4.11/backup_and_restore/application_backup_and_restore/installing/installing-oadp-mcg.html
https://docs.openshift.com/container-platform/4.11/backup_and_restore/application_backup_and_restore/installing/installing-oadp-mcg.html
https://docs.openshift.com/container-platform/4.11/backup_and_restore/application_backup_and_restore/installing/installing-oadp-mcg.html
https://cloud.ibm.com/docs/security-compliance?topic=security-compliance-getting-started
https://cloud.ibm.com/docs/security-compliance?topic=security-compliance-getting-started
https://docs.openshift.com/container-platform/4.11/backup_and_restore/application_backup_and_restore/installing/installing-oadp-ocs.html
https://kubernetes.io/docs/concepts/security/

� Red Hat OpenShift Data Foundation: Data Encryption Options

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation
/4.11/html/planning_your_deployment/security-considerations_rhodf#data-encrypti
on-options_rhodf

� Red Hat OpenShift Data Foundation: Enabling Cluster-Wide Encryption

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation
/4.11/html/planning_your_deployment/security-considerations_rhodf#storage_class
_encryption

� Red Hat OpenShift Data Foundation: Managing Hybrid and Multicloud Resources

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation
/4.11/html/managing_hybrid_and_multicloud_resources/index

� Red Hat OpenShift Data Foundation: Persistent Volume Encryption

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation
/4.11/html/managing_and_allocating_storage_resources/storage-classes_rhodf#stor
age-class-for-persistent-volume-encryption_rhodf

� Red Hat OpenShift Container Platform: Encrypting etcd data

https://docs.openshift.com/container-platform/4.11/security/encrypting-etcd.htm
l

� Security for Red Hat OpenShift on IBM Cloud

https://cloud.ibm.com/docs/openshift?topic=openshift-security

� Velero Documentation

https://velero.io/docs/v1.9/

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
192 Security Implementation with Red Hat OpenShift on IBM Power Systems

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/planning_your_deployment/security-considerations_rhodf#storage_class_encryption
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/managing_hybrid_and_multicloud_resources/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/managing_hybrid_and_multicloud_resources/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/managing_hybrid_and_multicloud_resources/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/managing_hybrid_and_multicloud_resources/index
https://cloud.ibm.com/docs/openshift?topic=openshift-security
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/planning_your_deployment/security-considerations_rhodf#data-encryption-options_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/planning_your_deployment/security-considerations_rhodf#data-encryption-options_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/planning_your_deployment/security-considerations_rhodf#data-encryption-options_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/planning_your_deployment/security-considerations_rhodf#data-encryption-options_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html/managing_and_allocating_storage_resources/storage-classes_rhodf#storage-class-for-persistent-volume-encryption_rhodf
https://docs.openshift.com/container-platform/4.11/security/encrypting-etcd.html
https://velero.io/docs/v1.9/

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738461075

REDP-5690-00

®

https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Audience
	1.4 Challenges in the cloud-native world
	1.4.1 Understanding cloud-native security challenges
	1.4.2 IBM Power10 unique security features for containers

	Chapter 2. Building blocks and IBM Power capabilities
	2.1 IBM Power capabilities and features
	2.1.1 IBM PowerVM hypervisor

	2.2 Storage
	2.2.1 Container Storage Interface
	2.2.2 IBM Spectrum Fusion
	2.2.3 Red Hat OpenShift Data Foundation
	2.2.4 Enabling data encryption for IBM FlashSystem and IBM Spectrum Virtualize
	2.2.5 IBM Spectrum Scale CSI driver security considerations

	2.3 Orchestrators and K8s
	2.3.1 Security best practices for containers

	2.4 Ingress Controller
	2.5 Container registry
	2.6 Red Hat OpenShift on IBM Power Virtual Server
	2.7 IBM Cloud Paks
	2.7.1 IBM Cloud Pak for Applications

	Chapter 3. Security framework and attack vectors
	3.1 Defining a threat
	3.2 Seven layer security model
	3.3 Assessing your security posture
	3.4 Layered defense approach
	3.5 Distributed application vulnerabilities
	3.5.1 Security challenges in a microservices architecture
	3.5.2 Understanding multi-region active-active architecture
	3.5.3 Requirements for a multi-region active-active architecture
	3.5.4 Common vulnerabilities affecting distributed applications
	3.5.5 Best practices for securing distributed applications in Red Hat OpenShift

	3.6 Container vulnerabilities
	3.6.1 Recent security breaches
	3.6.2 Risks, vulnerabilities, and mitigation steps

	Chapter 4. Designing and implementing Red Hat OpenShift with security first
	4.1 Approach to making Red Hat OpenShift secure by design
	4.1.1 Container Host OS, IBM PowerVM Hypervisor, and multi-tenancy
	4.1.2 Red Hat OpenShift trusted sources
	4.1.3 Red Hat OpenShift secure container orchestration
	4.1.4 Red Hat OpenShift deployment on IBM Power Systems Virtual Server
	4.1.5 Red Hat OpenShift build process security
	4.1.6 Red Hat OpenShift deployment process security
	4.1.7 Network isolation and API endpoint security
	4.1.8 Security consideration for federation of containerized applications

	4.2 Securing Red Hat OpenShift building blocks
	4.2.1 Hardware
	4.2.2 Networking
	4.2.3 Hyperconverged infrastructure and cloud
	4.2.4 Supported operating systems and hypervisors
	4.2.5 Red Hat OpenShift operators
	4.2.6 Cloud-native applications
	4.2.7 Ingress Controller
	4.2.8 Storage back end
	4.2.9 Secret management systems
	4.2.10 Code repository
	4.2.11 Container registry
	4.2.12 Vulnerability scanners
	4.2.13 Enhanced data resilience and security by using IBM Spectrum Protect Plus

	Chapter 5. Authentication and authorization
	5.1 Understanding authentication
	5.1.1 Users
	5.1.2 Groups
	5.1.3 API authentication
	5.1.4 Red Hat OpenShift Container Platform OAuth server
	5.1.5 Defining more identity providers
	5.1.6 Authentication metrics for Prometheus

	5.2 RBAC setup for users and service accounts

	Chapter 6. Data and application security
	6.1 Credential rotation for application to application communication
	6.2 Central secrets management: Single source of truth
	6.3 Container security considerations
	6.4 Data at rest encryption
	6.4.1 Application persistence layer
	6.4.2 Red Hat OpenShift and Kubernetes API Server
	6.4.3 IBM Security Guardium for File and Database Encryption
	6.4.4 IBM Security Guardium for Container Data Encryption

	Chapter 7. Logging and monitoring
	7.1 Monitoring containers and Red Hat OpenShift Container Storage security
	7.1.1 Challenges of monitoring containers
	7.1.2 How to effectively monitor containers
	7.1.3 Benefits of monitoring containers
	7.1.4 Red Hat OpenShift Container Platform Monitoring
	7.1.5 Observability and application performance monitoring with IBM Instana

	7.2 Audit logs
	7.2.1 Logging operator
	7.2.2 Installing the logging subsystem for Red Hat OpenShift
	7.2.3 Using the logging subsystem for Red Hat OpenShift

	7.3 Red Hat OpenShift File Integrity Operator monitoring
	7.3.1 Installing Red Hat OpenShift File Integrity Operator
	7.3.2 Configuring Red Hat OpenShift File Integrity Operator

	Chapter 8. Compliance and regulation
	8.1 Regulations and compliance
	8.1.1 Introduction
	8.1.2 Security and compliance in the cloud
	8.1.3 Infrastructure as a service
	8.1.4 Platform as a service
	8.1.5 Private cloud
	8.1.6 Public cloud
	8.1.7 Hybrid cloud
	8.1.8 Compliance posture

	8.2 IBM Cloud Security and Compliance Center
	8.2.1 How IBM Cloud Security and Compliance Center works
	8.2.2 Connecting Red Hat OpenShift Compliance Operator

	8.3 OpenSCAP for Red Hat OpenShift
	8.4 Red Hat OpenShift Compliance Operator
	8.4.1 Installing the Red Hat OpenShift Compliance Operator

	8.5 Red Hat OpenShift Machine Config Operator
	8.5.1 Applying remediation when using customized machine config pools

	8.6 IBM Hyper Protect Crypto Services
	8.6.1 Universal Key Orchestrator
	8.6.2 IBM HPCS with Unified Key Orchestrator
	8.6.3 Use cases and scenarios

	Chapter 9. Security Site Reliability Engineer
	9.1 Introducing the Site Reliability Engineer
	9.2 Security scoring
	9.2.1 Security scoring example
	9.2.2 Security scoring in IBM Cloud Security and Compliance Center

	9.3 Service levels to apply to security
	9.4 Security runbooks

	Chapter 10. Aqua
	10.1 Cloud-Native Application Protection Platform
	10.2 Aqua for cloud-native application protection
	10.3 Container security lifecycle and risk areas
	10.4 Container security lifecycle
	10.5 The Cloud-Native Application Protection Platform
	10.6 Aqua support for Red Hat OpenShift on IBM Power
	10.6.1 Installing Aqua Security operator
	10.6.2 Scanning for vulnerabilities by using Aqua Trivy and Starboard

	Glossary
	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

