
Redpaper

Front cover

Db2 for z/OS Utilities in
Practice

Craig Friske

Hendrik Mynhardt

International Technical Support Organization

Db2 for z/OS Utilities in Practice

June 2018

REDP-5503-00

© Copyright International Business Machines Corporation 2018. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (June 2018)

This edition applies to Version 12 of IBM DB2 for z/OS.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors. ix
Now you can become a published author, too . ix
Comments welcome. .x
Stay connected to IBM Redbooks .x

Chapter 1. Loading Db2 data . 1
1.1 Usability functions . 2

1.1.1 CONSTANT and CONSTANTIF . 2
1.1.2 IGNORE keyword . 3
1.1.3 DATE and TIMESTAMP formats. 4
1.1.4 NUMRECS specification . 5

1.2 Availability considerations . 5
1.2.1 RESUME BACKOUT YES . 5
1.2.2 REPLACE SHRLEVEL REFERENCE . 6
1.2.3 SHRLEVEL CHANGE. 6
1.2.4 RESUME YES copy support . 7

1.3 Performance considerations . 7
1.3.1 Partition parallelism: Multiple input data sets . 7
1.3.2 SHRLEVEL NONE or REFERENCE Partition Parallelism: Single DS 8
1.3.3 Index parallelism . 9
1.3.4 SHRLEVEL CHANGE Partition Parallelism: Single input data set 10
1.3.5 FORMAT INTERNAL . 10
1.3.6 DRDA fast load . 10
1.3.7 zIIP offload . 10

Chapter 2. Reorganizing Db2 data. 11
2.1 Availability considerations . 12

2.1.1 Batch windows . 12
2.1.2 Switching phase during batch window . 12
2.1.3 Switch phase while applications are running . 13
2.1.4 The DRAIN_WAIT, RETURN, and RETRY_DELAY keywords. 14
2.1.5 Minimizing application failures proper REORG settings . 16
2.1.6 Recommendation for settings . 18
2.1.7 Mapping table control (locking contention) . 19

2.2 Performance considerations . 19
2.2.1 Parallelism . 19
2.2.2 SORTNPSI . 21
2.2.3 Inline copies and flash copies . 21
2.2.4 CPU and zIIP offload . 21
2.2.5 DISCARDING rows during REORG . 21
2.2.6 Sort products. 22

2.3 Disk space usage and considerations. 22
2.3.1 Avoiding sorting by unloading by the cluster index . 22
2.3.2 Avoiding sorting with RECLUSTER NO . 22
2.3.3 Smaller sorts by reorganizing subsets of partitions. 22
© Copyright IBM Corp. 2018. All rights reserved. iii

2.4 Partition by growth table space considerations. 23
2.4.1 REORG of a part range . 23
2.4.2 Dropping partitions . 24

2.5 Partition by range table space considerations . 24
2.6 Recovery considerations. 24
2.7 Materialization of pending schema changes . 25

2.7.1 Converting to universal table spaces . 25
2.8 Changing a partition boundary . 26
2.9 Inserting a new partition . 27
2.10 Altering column data types of lengths . 28

Chapter 3. Db2 backup and recovery . 29
3.1 Using the COPY utility. 30

3.1.1 Sequential copies . 30
3.1.2 FlashCopy Image Copy – non-sequential . 32

3.2 Using BACKUP SYSTEM . 34
3.2.1 FLASHCOPY_PPRCP option . 35

3.3 Db2 Recovery . 36
3.3.1 RECOVER using the SCOPE keyword. 36
3.3.2 MODIFY RECOVERY enhancements . 37

3.4 BACKUP considerations and tips . 37
3.4.1 COPY INDEXES . 37
3.4.2 FlashCopy IC . 38
3.4.3 CONCURRENT COPY . 38
3.4.4 Split off active versus non-active objects . 38
3.4.5 To QUIESCE or not to QUIESCE . 38
3.4.6 OPTIONS EVENT(ITEMERROR,SKIP) . 38

Chapter 4. Statistics collection (RUNSTATS) . 39
4.1 Functional improvements . 40

4.1.1 Inline statistics parity . 40
4.1.2 RESET keyword . 40

4.2 Availability . 40
4.2.1 INVALIDATECACHE. 40

4.3 Performance . 41
4.4 Usability. 41

4.4.1 PROFILE keyword . 42
4.4.2 PROFILE keyword and LISTDEF . 43

Chapter 5. Db2 Real Time Statistics (RTS) . 45
5.1 RTS overview . 46

5.1.1 How RTS is collected . 46
5.1.2 How RTS is externalized. 46
5.1.3 Where RTS information is stored . 47

5.2 RTS table SYSIBM.SYSTABLESPACESTATS . 48
5.2.1 SYSTABLESPACESTATS: Incremental statistics . 48
5.2.2 SYSTABLESPACESTATS – Columns affected by the REORG utility 50
5.2.3 SYSTABLESPACESTATS – Columns affected by the LOAD utility 51
5.2.4 SYSTABLESPACESTATS – Columns affected by the COPY utility. 51
5.2.5 SYSTABLESPACESTATS – columns affected by RUNSTATS utility 52

5.3 RTS table SYSIBM.SYSINDEXSPACESTATS . 52
5.3.1 SYSINDEXSPACESTATS columns affected by the COPY utility. 54
5.3.2 SYSINDEXSPACESTATS columns affected by the REORG INDEX utility 54
5.3.3 SYSINDEXSPACESTATS columns affected by the LOAD utility 55
iv Db2 for z/OS Utilities in Practice

5.3.4 SYSINDEXSPACESTATS columns affected by the REBUILD INDEX utility 55
5.3.5 SYSINDEXSPACESTATS columns affected by RUNSTATS. 55

Chapter 6. Repairability and REPAIR CATALOG . 57
6.1 REPAIR CATALOG TEST . 59
6.2 Multi-table tablespaces and version wrapping . 61

6.2.1 Single table tablespaces . 61
6.2.2 Multi-table tablespaces . 62

Chapter 7. Db2 DSNZPARMs for utilities . 63
7.1 ZPARMs affecting dynamic allocation of data sets . 64
7.2 ZPARMs affecting utility timeout operations . 64
7.3 ZPARMs affecting SORT operations . 65
7.4 ZPARMS affecting RUNSTATS operations . 65
7.5 ZPARMS affecting IBM FlashCopy operations . 66
7.6 ZPARMS affecting BACKUP and RESTORE SYSTEM . 68
7.7 ZPARMS affecting the RECOVER utility. 69
7.8 ZPARMS affecting the CHECK utility . 69
7.9 ZPARMS affecting the REORG utility . 70
7.10 ZPARM affecting object conversion . 71
 Contents v

vi Db2 for z/OS Utilities in Practice

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2018. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Db2®
DB2®
Distributed Relational Database

Architecture™

FlashCopy®
IBM®
Redbooks®
Redpaper™

Redbooks (logo) ®
z Systems®
z/OS®

The following terms are trademarks of other companies:

Evolution, are trademarks or registered trademarks of Kenexa, an IBM Company.

Other company, product, or service names may be trademarks or service marks of others.
viii Db2 for z/OS Utilities in Practice

http://www.ibm.com/legal/copytrade.shtml

Preface

As IBM® continues to enhance the functionality, performance, and availability of IBM Db2®
for z/OS, the utilities have made significant strides towards self-management.

IBM Db2 for z/OS utilities is leading the trend towards autonomics. During the last couple of
versions of Db2 for z/OS, and through the maintenance stream, new features and
enhancements have been delivered to further improve the performance and functionality of
the Db2 for z/OS utilities.

The intent of this IBM Redpaper™ publication is to help Db2 Database Administrators, Db2
System Programmers, and anyone who runs Db2 for z/OS utilities implement best practices.
The intent of this paper is not to replicate the Db2 Utilities Reference Guide or the Db2
Installation Guide.

This paper describes and informs you how to apply real-life practical preferred practices for
the IBM Db2 for z/OS Utilities Suite. The paper concentrates on the enhancements provided
by Db2 utilities, regardless of the version, albeit some functions and features are available
only in Db2 12 for IBM z/OS®.

Authors

This paper was produced by a team of specialists from around the world.

Craig Friske has over 25 years of development experience with IBM DB2® for z/OS at the
Silicon Valley Lab. He has led or worked on numerous utility projects including statistics
gathering enhancements, partition independence, data compression, and online utilities
(REORG, CHECK, and REBUILD). Craig has also worked on many availability enhancements for
Online Schema Evolution®.

Hendrik "Hennie" Mynhardt is an Executive IT Specialist based in the USA. He has lead
and worked on various technical projects for database customers in the USA and overseas.
His special interests are systems performance tuning and backup/recovery. He currently
provides technical consulting, pre-sales support, and post-sales support for Db2 and related
tooling for the Analytic space. Hennie has co-authored Securing and Auditing Data on DB2
for z/OS, SG24-7720, Optimizing Restore and Recovery Solutions with DB2 Recovery Expert
for z/OS V2.1, SG24-7606, DB2 Recovery Expert for z/OS User Scenarios, SG24-7226, DB2
9 for z/OS and Storage Management, SG24-7823, and Modernize Your IBM DB2 for IBM
z/OS Maintenance with Utility Autonomics, SG24-8304.

Thanks to Karen Wilkins for her contributions in reviewing this paper.

Now you can become a published author, too

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time. Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
© Copyright IBM Corp. 2018. All rights reserved. ix

network of technical contacts and relationships. Residencies run 2- 6 weeks in length, and
you can participate either in person or as a remote resident working from your home base.

Find out more about the residency program, browse the residency index, and apply online:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us.

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM® Redbooks® publications in one of the following ways:

� Use the online Contact us review Redbooks form:

ibm.com/redbooks

� Send your comments in an email:

redbooks@us.ibm.com

� Mail your comments:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
x Db2 for z/OS Utilities in Practice

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. Loading Db2 data

The LOAD utility is a fast way to bring data into Db2 tables from flat files, a delimited stream, or
even directly from other systems through IBM Distributed Relational Database Architecture™
(DRDA) fast loading. In the last few years there have been numerous enhancements for
improved functional usability, availability, and performance, so that is the focus of this section.

1

© Copyright IBM Corp. 2018. All rights reserved. 1

1.1 Usability functions

This section addresses considerations related to usability functions.

1.1.1 CONSTANT and CONSTANTIF

The CONSTANT and CONSTANTIF keywords of the LOAD utility allow columns to be populated with
a specific constant values when loading a data row instead of populating the column from
data values in the input stream.

Consider the following LOAD statement and input (Example 1-1).

Example 1-1 LOAD statement and input

//SYSIN DD *
LOAD DATA REPLACE COPYDDN(SCOPY1)
 INTO TABLE TB1(
 ID POSITION(43:46) INTEGER EXTERNAL,
 NAME POSITION(1:15),
 CITY POSITION(17:28)
 CONSTANTIF(ZIP='95037')
 CONSTANT('Morgan Hill'),
 STATE POSITION(30:31)
 CONSTANTIF(STATE=' ')
 CONSTANT('CA'),
 ZIP POSITION(34:38),
 DEPT POSITION(40:41) INTEGER EXTERNAL
 CONSTANTIF(DEPT=X'F4F0')
 CONSTANT(X'F3F0'),
 MGR POSITION(48:57)
 CONSTANTIF(DEPT=X'F4F0')
 CONSTANT('DWIDAR'),
 EDATE CONSTANT(CURRENT DATE))

//SYSREC DD *
Patrick Malone Campbell 95008 50 2500 LEUNG
Ellen Zhao Cupertino 94087 30 3000 DWIDAR
Craig Friske CA 95037 10 1000 HEGLAR
/*

+--+
| NAME | CITY | STATE | ZIP | DEPT | MGR | EDATE |
+--+
Patrick Malone	Campbell	CA	95008	30	DWIDAR	2018-02-27
Ellen Zhao	Cupertino	CA	94087	30	DWIDAR	2018-02-27
Craig Friske	Morgan Hill	CA	95037	10	HEGLAR	2018-02-27
+--+

The CITY column was filled in with the appropriate city for the single zip code city of 95037. In
addition, we know that all the data is being loaded for the state of California, although the
input isn’t consistently marked as such. Department 50 was eliminated and combined with
Department 30, so those changes were handled as well. Finally, the effective date is set to the
date on which the rows were loaded.
2 Db2 for z/OS Utilities in Practice

1.1.2 IGNORE keyword

LOAD processing generally expects all data rows to be good rows from the input stream that is
loaded into the table, so there shouldn’t be many errors. However, if errors occur, there is the
ability to detect them and discard them into a data set for further handling after the LOAD job
finishes. The DISCARD N keyword recognizes that there might be a limit as to how many errors
can be examined and processed in the discard data set, so at some point with too many
errors this parameter allows processing to stop.

IGNORE gives a lot more flexibility with the handling of different error situations that may occur
with the input data. Now with IGNORE and DISCARD, there is even better control for handling
errors and filtering out input data rows so they are ignored instead of treated as errors.
Figure 1-1 shows a list of the options that can be used to ignore input records.

Figure 1-1 Options to ignore input records

The WHEN clause is one that can be used with IGNORE for filtering of input data. Suppose that
there is a single data set or stream of input records, but we are only interested in loading a
subset of rows (for example, entries for Californians). The following conditions could be
specified (Example 1-2).

Example 1-2 WHEN clause

//SYSIN DD *
LOAD DATA REPLACE COPYDDN(SCOPY1)
 IGNORE(WHEN)
 INTO TABLE TB1
 WHEN STATE = 'CA' (
 (Same as previous example)
)
/*

//SYSREC DD *
Patrick Malone Campbell 95008 50 2500 LEUNG
Ellen Zhao Cupertino 94087 30 3000 DWIDAR
Craig Friske CA 95037 10 1000 HEGLAR
/*

For this example, there is 1 entry for 'CA', but two don’t satisfy the WHEN criteria with a value of
blanks. Without IGNORE, the rows not satisfying the criteria would be discarded and written to
the DISCARD data set (if specified). However, with IGNORE(WHEN), the rows not satisfying the
criteria will be bypassed. The messages during LOAD describing the actions are as follows:

DSNU304I - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=1 FOR TABLE SYSADM.TB1
DSNU1150I - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS NOT LOADED=2
Chapter 1. Loading Db2 data 3

1.1.3 DATE and TIMESTAMP formats

Until recently, the LOAD utility only supported four different formats: the International Standards
Organization standard, the IBM United States standard, the IBM European standard, and the
Japanese industrial standard. In addition, one could define a local format during installation.

The original supported formats are shown in Example 1-3.

Example 1-3 Original date and time formats

Date Time
dd.mm.yyyy hh.mm.ss (ISO standard)
mm/dd/yyyy hh.mm AM or PM (US standard)
yyyy-mm-dd hh.mm.ss (EU standard)
dd.mm.yyyy hh:mm:ss (JIS standard)
Any local format defined when DB2 was installed

Today there are a lot more formats being specified by these standards, so it was incumbent
on LOAD to expand the accepted list of formats so that data can be easily ingested into Db2
without first massaging it. As a result, starting in V11, the following formats are now supported
(Example 1-4).

Example 1-4 Supported date and time formats

DATE_A mm-dd-yyyy DATE_I mmddyyyy
DATE_B mm-dd-yy DATE_J mmddyy
DATE_C yyyy-mm-dd DATE_K yyyymmdd
DATE_D my-mm-dd DATE_L yymmdd
DATE_E dd-mm-yyyy DATE_M ddmmyyyy
DATE_F dd-mm-yy DATE_N ddmmyy
DATE_G yyyy-ddd DATE_O yyyyddd
DATE_H yy-ddd DATE_P yyddd

In addition, there is an array of time and time-stamp formats that are accepted as well
(Example 1-5).

Example 1-5 Other accepted date and time formats

TIME_A hh.mm.ss TIMESTAMP_A yyyy-mm-dd-hh.mm.ss
TIME_B hh.mm TIMESTAMP_B yyyy-mm-dd-hh.mm.ss.nnnnnn
TIME_C hh.mm AM or TIMESTAMP_C yyyymmddhhmmss

hh.mm PM
TIME_D hhmmss TIMESTAMP_D yymmddhhmmss
TIME_E hhmm TIMESTAMP_E yyyymmddhhmmssnnnnnn

TIMESTAMP_F yymmddhhmmssnnnnnn

With all the different formats available, there are many representations that have the same
semantic, as shown by the many ways to represent May 14th, 2017 (Figure 1-2 on page 5).
Note that on the LOAD input statement, the column will have DATE, TIME, or TIMESTAMP
specified as external, along with the specific type of external format that is being used.
4 Db2 for z/OS Utilities in Practice

Figure 1-2 Example format usage

1.1.4 NUMRECS specification

For optimal space and memory allocation, it’s important to know how much work is being
done, and this is a function of the number of input records. Because it’s not always easy to
estimate from the source of the LOAD utility, NUMRECS is a way to provide a good “guesstimate”.
This specification is especially critical if the input is from tape, or if the source SYSREC has
varying length records. In other cases, LOAD can come up with a reasonable estimate based
on the size of the input data set.

1.2 Availability considerations

This section addresses considerations related to availability.

1.2.1 RESUME BACKOUT YES

A new keyword in Db2 V11 for LOAD RESUME YES is BACKOUT YES. The purpose is to improve
availability if a LOAD SHRLEVEL NONE RESUME YES job fails with errors while loading in data rows.

Before this feature, errors during the loading of data rows would leave both the table space
and indexes in a recovery pending and rebuild pending state, so there was unavailability for
all the tables in the table space until after a RECOVER TABLESPACE and REBUILD INDEX were run.

Now upon failure, BACKOUT YES results in removing the data rows that were loaded, so upon
completion, the table is in the same state as before the LOAD job was started. See an example
in Figure 1-3.

Figure 1-3 RESUME BACKOUT YES example
Chapter 1. Loading Db2 data 5

1.2.2 REPLACE SHRLEVEL REFERENCE

For reference tables or read-only tables that are replaced with a new set of data rows on a
periodic basis, specifying LOAD with SHRLEVEL REFERENCE is a good way to maximize
availability, especially if there are errors for data that is loaded. That is because the target
table remains available for read access while the LOAD processes and adds data rows and
index keys to shadow data sets. The only unavailability period, similar to REORG SHRLEVEL
REFERENCE or CHANGE, is during the SWITCH phase, when the shadow objects are switched over
to become the active objects. See Figure 1-4.

LOAD SHRLEVEL REFERENCE has many of the same controls found with REORG to help control
availability and the switching of data sets. This includes the DRAIN_WAIT, RETRY, RETRY_DELAY,
and SWITCH keywords. The operation of those keywords and tuning is discussed in the REORG
section on availability.

In addition, the NOCHECKPENDING keyword allows the LOAD to complete loading rows that are
children within a referential constraint without going through the ENFORCE phase, and without
leaving the table space in a check pending (CHKP) state. This option is only allowed when
ENFORCE NONE is specified, and of course, care should be taken that this option should only be
specified if it’s known that there are no referential integrity constraint violations with the
loaded data.

For SHRLEVEL REFERENCE, the LOG NO option will always be enforced.

Figure 1-4 REPLACE SHRLEVEL REFERENCE

Clone Tables or SHRLEVEL REFERENCE?
The function provided by LOAD SHRLEVEL REFERENCE is similar to using clone tables, then
executing the EXCHANGE statement. Some of the differences between these two options
include the following aspects:

� The input for a clone table is more flexible. It can be done using the LOAD utility or by SQL
INSERTs, and the format of the incoming data may need that flexibility.

� Clone tables can be populated independently over time, and then the switch is done
independent of the time it is populated, if needed. With LOAD REPLACE the loading of the
data and switchover are tightly coupled within the same utility job.

� LOAD has more options to deal with contention by allowing the DRAIN, DRAIN_RETRY, RETRY,
and SWITCHTIME specifications.

� Some Db2 functions, such as RENAME, are not allowed for Clone tables.

1.2.3 SHRLEVEL CHANGE

The SHRLEVEL CHANGE option of LOAD provides for superior availability while running
concurrently with applications, but there is a tradeoff when compared with SHRLEVEL NONE or
REFERENCE.
6 Db2 for z/OS Utilities in Practice

Here are some considerations:

� Advantages

– Availability as a claim writer, which does inserts and serializes with other applications
that are running concurrently.

– Availability by not needing an image copy because LOG YES processing is recoverable.
Without SHRLEVEL CHANGE, an inline image copy is an option for LOAD REPLACE and,
more recently, RESUME YES.

– Avoidance of space required for an external sort.

� Disadvantages

– Performance won’t be as good for loading lots of data. In addition to logging overhead,
INSERTs are done instead of LOADs of the data rows, and index key processing can be
extremely slow if keys are out of order, because of searching for key insertions and
index page splitting.

– LOAD failures result in a rollback to the last commit point. These commit points are
determined internally by the utility, so it may be difficult to determine what rows were
successfully added, and which rows were missed.

1.2.4 RESUME YES copy support

LOAD RESUME SHRLEVE NONE will create inline image copy after LOAD processing if COPYDDN or
RECOVERYDDN was specified.

This is supported if BACKOUT YES is specified and the LOAD fails as well. This improves
availability by not leaving a LOG NO job in a copy pending (COPY) state.

The copies can be at the table space level, or at the partition level. In addition, the FLASHCOPY
and FLASHCOPY CONSISTENT allows a flash copy to be taken at the end of LOAD for SHRLEVEL
NONE, SHRLEVEL REFERENCE, or SHRLEVEL CHANGE.

1.3 Performance considerations

The best elapsed time for a LOAD job is achieved when parallelism is used. LOAD is designed to
have parallelism for loading the data rows (also known as partition parallelism), and
parallelism for building index keys, or index parallelism. Other parallel tasks for creating
image copies and gathering statistics might be spawned as well. This section focuses on
understanding how partition and index parallelism can be exploited.

1.3.1 Partition parallelism: Multiple input data sets

If the target table space is partitioned with limit keys, such as non-UTS or Partitioned By
Range, the most optimal form of partition parallelism can occur. This occurs if there are
separate data sets or input streams, one for each partition. LOAD can then allocate separate
task sets for each data partition to read the input records, convert the data to Db2 internal
format, and load the rows into the appropriate partitions. Figure 1-5 on page 8 shows an
example with two data partitions.
Chapter 1. Loading Db2 data 7

Figure 1-5 Two data partitions

When LOAD detects multiple input data sets or streams, partition parallelism is automatically
activated. Details are shown with the following messages:

DSNU364I - PARTITIONS WILL BE LOADED IN PARALLEL, NUMBER OF TASKS = 2
DSNU3345I - MAXIMUM PARTITION PARALLELISM IS 2 BASED ON NUMBER OF INPUT FILES

1.3.2 SHRLEVEL NONE or REFERENCE Partition Parallelism: Single DS

LOAD SHRLEVEL NONE and SHRLEVEL REFERENCE support partition-level parallelism from a single
data set or input stream. In this scenario, the records for all partitions are mixed together in no
particular order. Parallelism involves a single read task passing rows to a number of multiple
tasks converting to internal format, and then passing them back to a single task that loads the
rows into the appropriate partitions, as shown in Figure 1-6.

Figure 1-6 SHRLEVEL NONE or REFERENCE partition parallelism

For classic partitioned or partitioned by range table spaces, the rows are loaded in the
appropriate partitions according to each row’s partitioning key. For partitioned-by-growth table
spaces, the rows are loaded in the current partition until filling it, and then move to the next
partition.

Partition parallelism for a single data set is enabled by specifying the PARALLEL n keyword,
where n is a constraint for the maximum number of tasks. Specify PARALLEL 0 to request the
maximum parallelism possible given the number of CPUs, memory, and DD statements
specifications. The DSNU1177I message indicates that partition parallelism is activated with
the number of conversion tasks shown.

DSNU1177I - TABLE SPACE WILL BE LOADED IN PARALLEL , NUMBER OF TASKS = 7
8 Db2 for z/OS Utilities in Practice

1.3.3 Index parallelism

For LOAD SHRLEVEL NONE or REFERENCE index parallelism is also supported when there are two
or more indexes. This is supported for all table space types partitioned or non-partitioned.

Figure 1-7 shows the index parallelism, which ties in with the partition parallel diagram
(above) with the single load task. In addition to the single LOAD task write data rows to
each partition, it will also extract keys and send to the appropriate internal pipes for building
parallel indexes.

Figure 1-7 Index parallelism

The parallel index build is enabled if SORTDEVT is specified, and when LOAD can estimate the
number of keys from the number of input records. If the source file is on disk, the number can
be estimated. If the source is on tape, in the JCL stream, or remote via DRDA, NUMRECS n
must be provided.

When activated, there will be a SORTBLD phase as shown, and the DSNU3345I message is
issued showing the actual degree of parallelism used. In addition, DSNU397I messages will be
issued indicating what resource is constraining parallelism, if any (Example 1-6). Sometimes
it is possible to identify the constraint, and then make appropriate changes to exploit a higher
degree of parallelism.

Example 1-6 Messages showing degree of parallelism and constraints

DSNU3345I - MAXIMUM UTILITY PARALLELISM IS 55 BASED ON NUMBER OF PARTITIONS AND
INDEXES
DSNU397I - NUMBER OF TASKS CONSTRAINED BY MISSING SORTDEVT TO 51
DSNU397I - NUMBER OF TASKS CONSTRAINED BY CPUS TO 13
DSNU397I 340 15:52:23.82 DSNURPIB - NUMBER OF TASKS CONSTRAINED BY PARALLEL
KEYWORD TO 10
DSNU395I - INDEXES WILL BE BUILT IN PARALLEL, NUMBER OF TASKS =
Chapter 1. Loading Db2 data 9

1.3.4 SHRLEVEL CHANGE Partition Parallelism: Single input data set

When LOAD SHRLEVEL CHANGE is used for partition-level parallelism with a single input data set
or stream, there is a single read task that pipes the input records to a number of parallel
conversion tasks. These conversion tasks will do INSERTs for the input rows directly into the
appropriate partitions.

For classic partitioned and partitioned-by-growth table spaces, the partition key is used to
directly insert the row into the proper partition according to the limit keys for each partition.
For partition by growth table spaces, the inserts will all insert into the first partition until full,
and then they will start inserting in parallel to the next partition.

1.3.5 FORMAT INTERNAL

The FORMAT INTERNAL option is a fast method of loading rows into a Db2 table. It’s fast
because it avoids the overhead of data conversion from external to internal format because
the data is already in internal format. Typically, the source of internal format data is generated
from a source table using the UNLOAD utility for FORMAT INTERNAL; however, it is possible to
format the source data internally as well.

1.3.6 DRDA fast load

Db2 12 introduces DRDA fast load, which enables quick and easy loading of data from files
residing on distributed clients. The Db2 Call Level Interface (CLI) APIs and Command Line
Processor (CLP) have been enhanced to support remote loading of data to Db2 for z/OS.
This new feature is supported in all Db2 client packages.

This new method of loading from distributed clients is much faster; however this option should
be used very carefully, because error conditions during LOAD may be difficult to resolve.

1.3.7 zIIP offload

The LOAD utility supports zIIP offload for the RELOAD, SORT, BUILD, and SORTBLD phases. LOAD
has supported zIIP offload for sorting and building indexes for quite a while, but with the more
recent zIIP offload for loading the data rows in the RELOAD phase, an additional 50% or more
of general CPU can be offloaded.
10 Db2 for z/OS Utilities in Practice

Chapter 2. Reorganizing Db2 data

REORG is a utility for the maintenance of application data and indexes. There are a number of
reasons for running this utility, but some of the most common include keeping data organized
for application performance, applying changes to the table space schema, formatting data
rows, or redistributing and discarding of data rows. These functions are all expected to be
done with little disruption of application availability. Here’s a more detailed list:

� Materialization of schema changes:

– Adding columns
– Altering column data types or sizes
– Converting to Universal Table Spaces
– Converting to use Relative Page Numbering
– Page size alteration
– Resizing of page sets or partitions
– Segment size alteration
– Converting to or from hash page set format
– Resizing hash space

� Data formatting:

– BRF to RRF conversion
– Inlining of existing LOB data
– Extended page format conversion
– Compressing data rows (or decompressing)

� Redistribution and removal of data rows:

– Rebalancing rows across partitions
– Changing partition limit keys
– Discarding rows to a data set

� Maintaining application performance:

– Re-establish data clustering
– Re-establish free space
– Consolidate pointer-overflow records
– Remove deleted and pseudo-deleted records
– Reorder index leaf pages and remove pseudo-deleted entries
– Re-chunk LOB data

2

© Copyright IBM Corp. 2018. All rights reserved. 11

2.1 Availability considerations

The availability of applications while running reorganizations depends on how well the REORG
can run concurrently with those applications. If there is an extended batch window when
applications are not active, REORGs with any SHRLEVEL option may be able to start and finish
within the window without impacting applications. However, that’s not usually the case, so the
suggested REORG is with SHRLEVEL CHANGE for maximum concurrency and application
availability. The following sections describe some considerations for successful coexistence.

2.1.1 Batch windows

Many data centers have a small period of time every week or month when applications are
stopped. If every Saturday night there is a window (for example, between 10 PM and 2 AM),
any REORG running less than four hours could conceivably be run during that period and
complete without any impact to applications. However, because of the large number of
objects needing reorganization, shrinking batch windows, and the elapsed time of large REORG
jobs, this has very limited use (Figure 2-1).

Figure 2-1 Batch windows

2.1.2 Switching phase during batch window

With SHRLEVEL CHANGE REORGs, there is only contention between reorganizations and
applications at the end of the REORG, in a time spanning a bit longer than the SWITCH phase.
Therefore, if the SWITCH outage can be scheduled to occur either in a batch window or in a
way that doesn’t disrupt the application, full availability can be achieved (Figure 2-2).

Figure 2-2 Switching phase during batch window
12 Db2 for z/OS Utilities in Practice

As illustrated in Figure 2-2 on page 12, availability is blocked when drains are acquired (1)
and the objects are set into a UTUT state to block access in the case of any failures where the
utility ABENDs. Unavailability continues until the objects are set back to UTRW and the drains
are released (3). The object is available during most of the UTILTERM phase when statistics
are updated in the catalog and data sets are deleted. Note that there is no quiesce or drain
needed during UTILINIT phase.

SWITCHTIME keyword
The SWITCH phase outage can be controlled so that it occurs within the batch window by
specifying the SWITCHTIME keyword. For example, a REORG could be started well before our
batch window Saturday evening. It would remain in the LOG phase applying logs until the batch
begins, which in our example is 10 PM. This would be specified with "MAXRO DEFER
SWITCHTIME 22:00". When that time is reached, REORG will DRAIN and apply the last bit of logs,
then SWITCH. Here is the syntax of the keyword allowing a NEWMAXRO to be specified
(Figure 2-3).

Figure 2-3 SWITCHTIME keyword

Because the time to complete the SWITCH phase is usually seconds to at most minutes, these
techniques with SWITCHTIME should be very reliable for almost any REORG scenario.

2.1.3 Switch phase while applications are running

In the typical case, one can’t depend on having a batch window, so completing the switch
phase depends on applications being “well behaved”, and REORGs using the proper settings for
minimum interferences with applications.

“Well behaved” applications claiming and locking
For availability while REORGs are running, applications should be designed in such a way as to
maximize the ability for concurrency. We call these applications well behaved. Here are some
areas that should be considered to be well behaved:

� Commit often. Held locks will prohibit successful draining in the SWITCH phase, and even if
locking isn’t done, and is a held claim, will prohibit REORG from breaking in.

� Close an open CURSOR WITH HOLD ahead of commit.

� Implement retry logic, allowing a failed transaction due to timeout to be retried one or more
times. If coded within an application, it might behave much like the DRAIN_WAIT and RETRY
options for REORG.

In addition, ZPARM settings can help concurrency and allow REORG to break in a successful
switch. The following ZPARMs can be adjusted for tuning.
Chapter 2. Reorganizing Db2 data 13

Long-running reader (LRDRTHLD)
The LRDRTHLD parameter on the DSNTIPE1 panel controls help identify readers that don’t
commit within a period of time. It can be set from 0 - 1439 minutes, with the default being 10
minutes. Any uncommitted reader that exceeds the specified threshold will be identified with a
DSNB260 message on the console, so it’s possible to terminate them (if warranted).
Example 2-1 shows an example of a rogue reader.

Example 2-1 Rouge reader

DSNB260I -DB2A DSNB1PCK WARNING - A READER HAS BEEN RUNNING FOR 10 MINUTES
CORRELATION NAME=SEL01

CONNECTION ID=BATCH
LUWID=DB2A.SYEC1DB2.D37A899CF3A3=28
PLAN NAME=DSNTEP3
AUTHID=SYSADM
END USER ID=SYSADM
TRANSACTION NAME=SEL01
WORKSTATION NAME=BATCH

Resource Timeout field (IRLMRWT)
The IRLMRWT parameter on the DSNTIPE panel controls the number of seconds to wait for an
unavailable resource before “timing out” and failing. The default is 30 seconds. Essentially, the
unavailability or SWITCH outage time must be less than this value, or the application
transaction will fail.

Therefore, if the value is increased, more REORGs can complete their switch phases without
application timeouts occurring. For example, if SEL01 couldn’t acquire a claim on table space
DBB.TS01 within the required timeout threshold, the following failure would be output to the
console (Example 2-2).

Example 2-2 Correlation-ID of SEL01

CORRELATION-ID=SEL01
CONNECTION-ID=BATCH
LUW-ID=DB2A.SYEC1DB2.D37A96041AE9=48
REASON 00C900BA
TYPE 00002000
NAME DBB .TS01

The failing transaction would receive the following failure:

DSNT408I SQLCODE = -911, ERROR: THE CURRENT UNIT OF WORK HAS BEEN ROLLED BACK DUE
TO DEADLOCK OR TIMEOUT. REASON 00C900BA, TYPE OF RESOURCE 00002000, AND RESOURCE
NAME DBB .TS01

2.1.4 The DRAIN_WAIT, RETURN, and RETRY_DELAY keywords

The REORG for a table space object (or indexes) has various keywords that can help tune the
utility for success without application availability. The DRAIN_WAIT, RETRY, and RETRY_DELAY
keywords allow tuning of a particular REORG that is run on a specific table space or index.
14 Db2 for z/OS Utilities in Practice

DRAIN_WAIT integer
The keyword specifies the number of seconds REORG will wait trying to acquire drains before
timeout (similar to IRLMWAIT for applications). The default is the IRLMWAIT value. If REORG can’t
break in and acquire the needed drains for the SWITCH within the specified number of seconds,
it will fail with a DSNU1122I message on the console, and any drains held are released so the
application has full availability.

RETRY integer
This is the number of times REORG with attempt to acquire the drains if there is a failure or
timeout because the DRAIN_WAIT time was exceeded. The default is the UTIMOUT value (which
defaults to 6).

RETRY_DELAY integer
This is the number of seconds REORG waits before attempting to retry acquiring drains on all
objects again. The default is the smaller of the following two values: DRAIN_WAIT value x
RETRY value, DRAIN_WAIT value x 10.

An example of an application (perhaps not well behaved) holding claims so that REORG can’t
break in follows (Figure 2-4).

Figure 2-4 Application holding claims

In this case, T4 never commits, and REORG is trying to obtain drains, and T5 is waiting behind
REORG’s request. With DRAIN_WAIT specified, REORG will back out of the way deferring to T4 and
T5. The follow message is issued on the console (Example 2-3).

Example 2-3 Console message

DSNU1122I -DB2A DSNURSWD - JOB REORGJOB PERFORMING
REORG WITH UTILID REORGJ1 UNABLE TO DRAIN DBB.TS01.
 RETRY 1 OF 6 (i.e. retry) WILL BE ATTEMPTED IN 30 (retry_delay) SECONDS

When this message is received on the console, the following message will be written to the
job output indicating the holder of the resource that prohibited REORG from obtaining it
(Example 2-4).

Example 2-4 Job output message

NAME TYPE PART STATUS CONNID CORRID CLAIMINFO
-------- ---- ----- ----------------- -------- ------------ --------
TS01 TS RW,UTRO BATCH SEL01 (CS,C)
Chapter 2. Reorganizing Db2 data 15

The highest availability can be achieved when applications and REORGs are designed to work
in concert. For applications, this means RELEASE COMMIT applications that are well behaved
because commits are done immediately after transactions complete, generally within
seconds, which allows REORG to more easily break in. On the REORG side, DRAIN_WAIT must be
a small enough value so that REORG allows applications to wait for or hold locks without
extending beyond the IRLMWAIT value, therefore timing out.

2.1.5 Minimizing application failures proper REORG settings

The total outage for the REORG job is approximately the time needed to 1) obtain drains, 2)
complete the log apply, 3) complete the inline image copy, and 4) Update the catalog and
directory I/J entries to switch over to the shadow data sets. Therefore, this total time should
be less than the ILRMWAIT value. This is illustrated in Figure 2-5.

Figure 2-5 Application transactions with REORG job

As shown in Figure 2-5, a REORG is running currently with an application that has five
transactions (T1 - T5). Transactions. T1, T2, and T3 run without any interference from the
REORG because it is unloading, reloading, sorting, and building indexes without any drains.
However, when at the end of the log apply phase, the decision is made to DRAIN objects for
the switch. The drain request takes time because T4 hasn’t completed and committed.

However, the time waiting is less than the DRAIN_RETRY, so the drain is acquired. After REORG
obtains all the drains, T5 is blocked until REORG releases the drains again at the beginning of
the UTILTERM phase. The Drain, Logapply, Inline Copy, Switch I/J, and de-DRAIN happens
within the IRLMWAIT period, so there is no disruption in application availability.

The key to success is completing all four SWITCH phase components in less than the IRLMWAIT
time. This can be measured for any REORG job by specifying DIAGNOSE TYPE(101,102) before
the REORG statement. This will print out elapsed time measurements in very granular details
during the critical SWITCH phase.

DRAIN time
This is controlled by the DRAIN_WAIT parameter. The smaller the value, the less time taken.
However, with large numbers of concurrent transactions happening in parallel, the smaller this
value, the less likely REORG can “break in” and acquire all of the drains. Instead of waiting for
just T4 to commit, all active transactions on all partitions must commit for REORG to break in.
16 Db2 for z/OS Utilities in Practice

DRAIN depends on the number of objects needing drains, and how long it takes to acquire
each drain. The advice is to always use DRAIN ALL (not DRAIN WRITERS), because experience
has shown little value using DRAIN WRITERS when trying to maximize availability.

If a subset of partitions is reorganized for a table space that has non-partitioned secondary
indexes (NPSIs), then it is suggested that DRAIN_ALLPARTS be specified. This helps avoid
undetected deadlock conditions when an application can claim a logical partition of an NPSI
before accessing the data while the REORG drains in a different order.

When all partitions are reorganized, one drain lock on all partitions is obtained. After the table
space is drained, the indexes are easily drained with no contention, because applications with
indexes always do data-first claiming of the table space, even if they are doing index-only
access.

When a subset of partitions is reorganized, the drain requests are done in parallel, but no
drains are needed.

This time can be obtained from DIAGNOSE TYPE(101,102) under this entry:

INTERVAL = LOG DRAIN ALL ELAPSED TIME (SEC) = nnnn.nnnn

Logapply time
This is controlled by the MAXRO keyword parameter specification for REORG. MAXRO is a bit of a
misnomer going back to the original implementation, technically standing for Maximum RO
time. MAXRO really represents the amount of time that REORG estimates it will need to
complete log processing. This estimate comes from the utility remembering the log apply rate
during each log iteration. A MAXRO value of n indicates that REORG believes it can apply all
existing log records left to apply within n seconds.

This value can be raised or lowered. A low value ensures that a shorter total SWITCH phase
outage as seen by our diagram; however, the flip side is that too small a value results in never
attempting to drain because there are always too many logs to apply to finish within the MAXRO
time specified, so the LOG phase will continue forever.

This time can be obtained from DIAGNOSE TYPE(101,102) under the entries for the following
intervals:

� INTERVAL = READ LOG RECORDS
� INTERVAL = SORT LOG RECORDS OLD
� INTERVAL = TRANSLATE LOG RECORDS
� INTERVAL = SORT LOG RECORDS NEW
� INTERVAL = DATALOGnn, where nn represents parallel log apply tasks

Final Inline Copy time
The inline copy is constantly being done (non-FlashCopy) during the reload phase and each
log iteration. However, after the DRAIN is acquired and the last bit of logs are applied, the final
set of changed pages that are part of the inline copy must be captured and written out.

This time can be obtained from DIAGNOSE TYPE(101,102) under the following entry:

INTERVAL = FINAL INCREMENTAL

SWITCH I/J time
This is the updating of the catalog and directory with all the new SYSTABLEPART PREFIX and
SYSINDEXPART PREFIX values of I and J representing the shadow data sets becoming the
active data sets. This will vary according to the number of data sets that are processed.
Chapter 2. Reorganizing Db2 data 17

For a table space with a large number of objects processed (for example, 4096 data partitions
and a partitioned index), this will be at least 8192 updates. The elapsed time can be reduced
by breaking the REORG into multiple reorganizations, each handling a subset of the partitions.

This time can be obtained from DIAGNOSE TYPE(101,102) under the entry for the following
interval:

INTERVAL = SWITCH ELAPSED TIME (SEC) = n.nnn

In Db2 V11, attention was given to reducing switch duration. Internal measurements show
that the SWITCH I/J duration in our environment to rename 100 objects is about 2 seconds,
and for 1000 objects is about 16 seconds (Figure 2-6).

Figure 2-6 REORG drain duration and switch time

2.1.6 Recommendation for settings

In summary, if the components of the REORG SWITCH outage are less than the application
timeout value, there should be full availability. It can be represented as follows:

DRAIN_WAIT + MAXRO + IC + SWITCH duration < IRLMRWT

The IRLMRWT has typically been tuned for applications and probably not easily changed, so the
other variables can be measured and adjusted as needed, and as described previously. For
the majority of objects and environments, full availability should be achieved when running
applications on Db2 V11 and V12.

There can be certain applications where there are spikes of update and insert activity that are
so heavy that the DRAIN_WAIT and MAXRO can’t be set low enough to break in. In this case,
there will be periodic lulls in activity, so a judicious setting of RETRY and RETRY_DELAY can
usually break in.
18 Db2 for z/OS Utilities in Practice

2.1.7 Mapping table control (locking contention)

REORG SHRLEVEL CHANGE requires the use of a mapping table. As of Db2 V11, this can
automatically be created and dropped for usability. However, this feature does implicit DDL
operations, and the locks acquired on the Data Base Descriptor may result in contention.This
is especially true with REORG jobs running concurrently, unless attention is given to where the
mapping table is created.

The default is to create the table in the same data base as the object being reorganized. To
provide more flexibility in placement of this table, the following specifications are available:

� Zparm REORG_MAPPING_DATABASE: Specifies the database where the table is to be created
for any REORG job if MAPPING_DATABASE is not specified.

� REORG keyword MAPPINGDATABASE: Specifies the database where the mapping table will be
created.

� REORG keyword MAPPINGTABLE: Specifies a predefined mapping table to be used. This is
less usable, but it does allow specific parameters if object placement is important.

2.2 Performance considerations

This section discusses the following performance considerations:

� Parallelism
� SORTNPSI
� Inline copies and flash copies
� CPU and zIIP offload
� DISCARDING rows during REORG
� Sort products

2.2.1 Parallelism

The REORG utility uses parallelism of tasks to reduce the elapsed time for completion of the
job. For Partitioned by Range table spaces, unloading, sorting, and reloading of data rows
uses partition parallelism. Building indexes uses parallelism for sorting and building indexes.
The log apply process also has parallelism, as well as inline statistics collection.

Each task used for parallelism requires space in memory, so there are limits to the amount of
parallelism when reorganizing an object. The unload, sorting, and loading of data rows is
restricted to a task per partition. The sorting and building of index keys is restricted to a task
per index. The number of available CPUs and memory are other factors that limit the amount
of parallelism possible. Note that partition parallelism is only supported for classic and PBR
table spaces.

The amount of parallelism for a REORG is shown with the DSNU397I message, and this message
also identifies the restricting resource, whether it is memory, CPUS, JCL DD specifications,
and so on. The DSNU3345I message shows the maximum parallelism possible if there weren’t
any restricting resources.

Parallelism can also be capped with a high value using the PARALLEL keyword, or by
specifying the zparm PARAMDEG_UTIL. This restriction increases the elapsed time for the REORG
to complete, but it helps govern the amount of CPU taken by a single REORG utility so that
applications don’t become resource starved for CPUs. Figure 2-7 on page 20 shows a
sample of a REORG job with 25 partitions and a single partitioned index.
Chapter 2. Reorganizing Db2 data 19

Figure 2-7 REORG join with 25 partitions and a single partition index

SORTDEVT is missing, so parallelism really isn’t activated. The total number of tasks specified
with the PARALLEL specifications are approximations, because sometimes a set of tasks must
be started together in pairs or in triplets to function properly. The problem of no parallelism is
remedied by adding the missing keyword SORTDEVT, and now the job and output looks like
Figure 2-8.

Figure 2-8 Adding SORT DEVT

The number of tasks has now substantially increased, and the parallelism is constrained from
the maximum possible of 29 for this table space and indexes because of the number of CPUs.
However, because we don’t want REORG to use too much of the CPU resources, we can
choose to limit the job using the PARALLEL keyword, as follows (Figure 2-9).

Figure 2-9 PARALLEL keyword
20 Db2 for z/OS Utilities in Practice

Parallelism is now exploited to improve elapsed time, but it’s also constrained with PARALLEL
16 to not spawn too many concurrent tasks.

2.2.2 SORTNPSI

If a subset of partitions is specified for the REORG TABLESPACE with the PART(n:m) specification,
and if the table has any non-partitioned indexes, there is the option to consider using the
SORTNPSI specification:

� SORTNPSI YES merges the keys extracted for reorganized data partitions with the keys for
the data partitions not reorganized into a single sort to build the non-partitioned secondary
index. This involves sorting more keys (that is, all NPSI keys), but it can be faster if a large
enough percentage of the entire table space is being reorganized.

� SORTNPSI NO unloads and builds the NPSI keys for the partitions not participating in the
REORG, and then insert the sorted keys for the partitions being reorganized into that NPSI.
This results in a smaller number of keys to sort. It can be faster when the original NPSI is
not disorganized and the percentage of the table space data rows being reorganized is
small compared with the entire table space.

The default is that the SORTNPSI option is determined by zparm REORG_PART_SORTNPSI, which
can be set to YES, NO, or AUTO. The initial value is AUTO, which means that REORG uses Real
Time Statistics to choose the option (YES or NO) that is estimated to take the least amount of
elapsed time.

Before Db2 V11, REORG always used to use the SORTNPSI NO technique. With the
implementation of SORTNPSI YES, some scenarios reorganizing 40% of a table space’s
partitions have showed an elapsed time improvement of 55%, with an additional CPU cost of
22%.

2.2.3 Inline copies and flash copies

The recommended practice using SHRLEVEL CHANGE requires that the REORG also produce an
image copy while reorganizing. This can take the form of an inline copy, where pages of the
reorganized table space and log apply are written out when changed, or a FLASHCOPY can be
taken at the end. The IBM FlashCopy® technique is suggested as the better option for
reducing elapsed time.

2.2.4 CPU and zIIP offload

The CPU usage can be a “performance” concern because of cost issues, especially if REORG
is run during prime time. This CPU factor is substantially reduced because REORG supports
zIIP offload for the UNLOAD, RELOAD, SORT, BUILD, and INLINE Statistics phases, and these
phases comprise the bulk of REORG CPU processing.

2.2.5 DISCARDING rows during REORG

For the best performance, use the NOPAD keyword when discarding rows.
Chapter 2. Reorganizing Db2 data 21

2.2.6 Sort products

The Db2 utilities come with the DFSORT product, but IBM Db2 Sort is an alternative. While
DFSORT improvements to zIIP offload, elapsed time, and memory usage have been made over
time, the best REORG performance is usually obtained by using Db2 Sort with the Db2 utilities.

2.3 Disk space usage and considerations

One of the limiting factors for reorganizations can be the amount of disk space needed during
reorganization. On one hand, piping of data and keys from one task to another in memory has
reduced the requirements for temporary data sets during the execution of REORG compared
with earlier releases.

However, the reliance of building shadow table spaces and indexes for availability with the
SHRLEVEL CHANGE or SHRELVEL REFERENCE options double the space used for those objects
during REORG compared with SHRLEVEL NONE. This is another area that can consume much
temporary disk space when external sort products like DFSORT or Db2 Sort are used.

2.3.1 Avoiding sorting by unloading by the cluster index

One method to save space used by sorting is to not sort. REORG with the SORTDATA NO option
unloads using the clustering index to get data in clustering order without sorting. This is an
option to save disk space during reorganization, but it’s also typically much slower than a
table space scan followed by a sort used for SORTDATA YES, especially if the clustering index is
disorganized.

2.3.2 Avoiding sorting with RECLUSTER NO

The keyword RECLUSTER NO indicates that the ordering of data rows in clustering order doesn’t
matter when reorganizing. When combined with SORTDATA NO, REORG will simply unload the
data and reload it without respecting the clustering order, and this will avoid sorting. This
makes sense for data that might already be well clustered, or in the case where the reason for
a REORG TABLESPACE is only to apply schema changes rather than to recluster data rows for
application performance reasons.

2.3.3 Smaller sorts by reorganizing subsets of partitions

Another method to use less disk space during REORG is to divide and conquer by reorganizing
a classic or PBR table space with multiple steps, each specifying a subset range of partitions.
For example, a table space with 25 partitions can be reorganized with three REORGs, each
covering up to 10 partitions. This reduces the amount of data and keys sorted significantly for
each REORG.

However, if there are non-partitioned secondary indexes (NPSIs), there will be more overall
work done than when a single REORG is done for all partitions. With this case, the SORTNPSI
option is relevant for managing the tradeoffs with space requirements and performance
(Figure 2-10 on page 23).
22 Db2 for z/OS Utilities in Practice

Figure 2-10 Reorganizing with three REORGs

2.4 Partition by growth table space considerations

This section introduces two considerations for partition by growth (PBG) table spaces.

2.4.1 REORG of a part range

When a subset of partitions for a PBG is reorganized, it’s possible that the reloaded data no
longer fits into the reorganized partition or partitions. With Db2 V12, when REORG is run,
instead of failing, a new PBG partition is added, and the overflow data rows are put into this
newly added partition.

In Figure 2-11, a PBG table space has n partitions, but only partition 2 is being reorganized.
When the data can’t be reloaded fully into partition 2, a new partition is added (if
MAXPARTITIONS is not exceeded) to receive the extra rows.

Figure 2-11 REORG of a part range
Chapter 2. Reorganizing Db2 data 23

2.4.2 Dropping partitions

If a PBG table space has much less data than in the past, there might be many empty
partitions left after a REORG of the entire table space. To eliminate these extra partitions, the
keyword DROP_PART YES can be added to the REORG specification in Db2 V12. To set this
behavior as the default for any REORG of a PBG table space, the zparm DROP_PBG_PARTS can be
set in Db2 V11 and later releases.

2.5 Partition by range table space considerations

One of the common issues with Partitioned By Range table spaces (or non-UTS partitioned)
is that partitions populate at different rates and can tend to fill and run out of space. In order to
alleviate that problem and avoid outages because a partition has no more room, data can be
moved to other partitions that aren’t as full. There are two techniques available in Db2 V11 to
do this:

� REORG REBALANCE allows REORG to redistribute data rows across multiple partitions. A range
of logical partitions must be specified, and REORG tries to balance the data rows evenly,
then update the new partition limit keys according to the data in each partition.

� REORG of a logical partition range redistributes data according to ALTER TABLE ALTER
PARTITION ENDING AT statements are specified as pending DDL changes. With this
technique, the new limit key is pre-specified, and REORG honors the new specification.

In cases where the limit key is meaningful so that it cannot be changed, increasing the
partition size should be considered instead of repartitioning. For a Partition By Range table
space, this can be done with the ALTER TABLESPACE ALTER DSSIZE specification.

2.6 Recovery considerations

REORG requires that an image copy be taken as a base for recovery. This can be taken for the
entire object being reorganized, or an inline copy can be taken for each partition involved
during the REORG. If a TEMPLATE is specified for the inline copy, an &PA or &PART specification as
part of the data set name results in a separate data set for each partition. Example 2-5 shows
a sample.

Example 2-5 TEMPLATE specification

TEMPLATE SCOPY1 UNIT(SYSDA) DISP(MOD,CATLG,CATLG)
DSN(KB.&SN..D&JDATE..T&TIME..P&PART.)

COPY TABLESPACE DBREP.TSREPS
COPYDDN(SCOPY1)

 SHRLEVEL CHANGE

The advantage of partition-level copies is improved performance if a RECOVER TABLESPACE of a
single partition or subset of partitions is ever needed. During the RESTORE phase of RECOVER,
the data set containing pages for the partition is immediately located, which gives a
performance advantage over scanning an image copy containing all partitions to find the
partition requested.

Performance measurements (Figure 2-12 on page 25) have shown a 28% elapsed time
improvement and 49% CPU improvement can be attained with the recovery of a single
partition within a twenty partition table space.
24 Db2 for z/OS Utilities in Practice

Figure 2-12 Improved elapsed and CPU times

If tape is used for inline copies, the part level TEMPLATES should be avoided unless there are
as many available tape drives as there are partitions being reorganized.

2.7 Materialization of pending schema changes

One of the powerful functions of the REORG utility is the ability to apply or materialize various
schema changes with minimal outage to applications. In the past, many of these schema
changes required long periods of unavailability, and that was because the process to make
these changes was to unload all data, drop all existing objects, create new objects with the
appropriate schema definitions, and reload the data.

However, many changes can now be implemented using what is called deferred changes or
pending changes. This comprises a DDL ALTER statement being done on an object to define
the schema change, remembering this in the SYSPENDINGDDL table in the catalog, and then
having it picked up and actually applied when the next applicable online REORG for that object
is done.

2.7.1 Converting to universal table spaces

Universal Table Spaces are strategic and have advantages over non-UTS, so many users are
running reorganizations to convert classic partitioned or segmented table spaces to UTS.
Converting to UTS requires that a REORG for the entire table space be specified. Here are
some considerations when doing these one-time conversions.

Classic to PBR or PBR with Relative Page Numbering
A classic partitioned table space can be converted to Partitioned By Range by adding
segments, and in Db2 V12, it can also be changed to specify that PBRs use Relative Page
Numbering (RPN). PBR RPN gives superior handling for active partitions that can become
full, so it’s advised for PBR table spaces. Here are the steps taken for conversion from classic
partitioned to PBR RPN:

ALTER TABLESPACE DB1.TSPBR SEGSIZE n - for PBR
ALTER TABLESPACE DB1.TSPBR PAGENUM RELATIVE - for PBR RPN
Chapter 2. Reorganizing Db2 data 25

Segmented to Partitioned By Growth
A segmented table space can be converted to Partition By Growth by adding the maximum
number of partitions as follows:

ALTER TABLESPACE DB1.TSPBR MAXPARTITIONS n - for PBG

REORG Materialization
After the ALTER statements have been issued, the table space is in an Advisory REORG state
(AREO state). The changes will be applied when the entire table space is reorganized. Here
is a sample REORG statement that might provide for minimal elapsed time and total work.

As specified, the REORG points out different options that can be used (Figure 2-13). SORTDEVT
ensures not restricting partition parallelism for conversion to PBR. Note that this partition
parallelism isn’t supported for conversion to PBG.

Figure 2-13 REORG options

SORTDATA NO avoids sorting the data rows, thus avoiding the resource usage of a sort. When
that is combined with RECLUSTER NO, the ordering doesn’t matter, so a fast (partition
parallelism for PBR conversion) unload is done instead of unloading from the clustering index.

When using RECLUSTER NO, beware of the Real Time Statistics (RTS) settings changing.
REORGUNCLUSTINS, REORGINSERTS, and REORGUNCLUSTINS will be set to 0 even though no data
rows have been re-clustered. Therefore, you should only use RECLUSTER NO on table spaces
that are well clustered, or else capture the RTS values and reset them after the REORG.

KEEPDICTIONARY avoids the extra resources required to rebuild new dictionaries.

STATISTICS actually does less than leaving it out. For conversions to UTS, STATISTICS for the
table space and indexes is the default with UPDATE YES, so include it here with a minimum
sample size.

2.8 Changing a partition boundary

For a classic partitioned table space or for a Partitioned By Growth table space, rows may be
inserted and updated unevenly across the table space such that certain partitions begin to fill
to maximum capacity. To avoid an outage because of a full partition, re-balancing of data rows
by moving them from a full partition to an adjacent with empty space is one option.

For example, in a three-partition table space, partition two has almost filled. The limit key
boundaries for the partitions are 10,000, 20,000, and 30,000. Partition three is less than half
filled, so rows can be moved from partition 2 to partition 3 by lowering the limit key for partition
2, and then the rows no longer fitting within the boundary will be moved to partition 3. This is
done by moving the limit key for partition two to a value of 15,000.
26 Db2 for z/OS Utilities in Practice

After the ALTER, partitions two and three are in an Advisory REORG state, and the ALTER
doesn’t take effect until those partitions are reorganized (Figure 2-14).

Figure 2-14 Before and after REORG

After the REORG of partition range of 2 - 3, rows have been moved so that neither partition is in
immediate danger of filling to capacity (Figure 2-15).

Figure 2-15 After REORG

2.9 Inserting a new partition

The solution to redistribute the data between partitions 2 and 3 works in our example, but
notice that partition three is filled much closer to capacity. What could have been done if
partition 3 didn’t have enough extra space to take rows from partition 2? In Db2 V12, a new
feature to split that data from partition 2 into two half full partitions without affecting partitions
1 or 3 is possible by inserting a new partition.

With our original table space with a full partition 2, a new partition can be “inserted” by adding
it before partition 2. In the following example, note that the range of values from 10,000 -
20,000 can be split in half with a new partition having a limit key of 15,000.
Chapter 2. Reorganizing Db2 data 27

This is specified with the following ALTER statement (Figure 2-16).

Figure 2-16 ALTER statement

After the ALTER, partition 2 is in advisory REORG pending because the new partition added has
an ending limit key that puts it within the range of partition 2. A REORG of partition 2
smaterializes the new partition. Notice that the new partition added is physical partition 4, but
because of its limit key, it is logical partition 2. With the extra space, the rows from partition
two are redistributed between two partitions (logical partitions 2 and 3), so each will have
plenty of room (Figure 2-17).

Figure 2-17 New partition

2.10 Altering column data types of lengths

Before Db2 V12, the ALTER of a column to a different data type, or the extending of a length for
a column, would be considered an “immediate” ALTER because the next data row inserted or
updated would have the new data row format immediately upon being modified. While this
works well in isolation, sometimes many ALTERs to a table and table space need to be done
together, and there are restrictions in mixing immediate and pending ALTERs.

In Db2 V12, a new zparm, DDL_MATERIALIZATION specifies that an ALTER to a column to
change the column data type or length will be treated as a pending change, so the data won’t
assume the new format until the new REORG.

A table space can then stack a number of ALTER statements to make all of the changes within
one reorganization.
28 Db2 for z/OS Utilities in Practice

Chapter 3. Db2 backup and recovery

This section describes how to apply best practices related to backup and recovery. The intent
is not to repeat what is covered in the Db2 for z/OS Utility Guide and Reference manual,
SC27-8860.

We first describe and show the best backup options using the COPY utility with all its versions
and facets to meet your needs. We will include sequential, track-based, IBM FlashCopy®
based and volume-based methods. After that we show and describe the best way to use the
RECOVER utility.

We look first at the COPY utility and the methods used by the COPY utility. There are many
options available to you to copy (or back up) your Db2 assets. The COPY utility provides many
options to meet your needs. In addition to the traditional methods, using fast replication (as
an example) can save you a lot of host I/O and CPU usage, should that be an option that you
can use.

In Figure 3-1 on page 30 we show the different ways that the utility driver program, DSNUTILB,
can drive the different backup programs. We then describe the options depicted.

3

© Copyright IBM Corp. 2018. All rights reserved. 29

Figure 3-1 Using DSNUTILB to drive utility programs

3.1 Using the COPY utility

The COPY utility can be used to drive different types of backups. We briefly describe each
method with best use cases to meet your needs.

3.1.1 Sequential copies

This tried and tested way of backing up your table space data has been used since Db2 v1. It
copies all of the pages in a table space: header pages, data pages, and so on. The output is
sequential in nature, and offline utilities like DSN1PRNT can read it. It can also be used as input
to the UNLOAD utility.

There are different ways to create sequential copies:

� COPY TABLESPACE with options:

– FULL
– INCREMENTAL
– SHRLEVEL REFERENCE and CHANGE

� DSN1COPY

� CONCURRENT COPY

DSNUTILB

COPY BACKUP SYSTEM

DB1.TS1.COPY

DB1.TS2.COPY

• Sequential COPY

• CONCURRENT COPY

• FLASHCOPY IC

by OBJECT

SYSCOPY

• All Volumes as a group

• By DFSMShsm COPYPOOL *

DSN$DB2$DB

by VOLUME

HSM

*

DSN$DB2$LG

BSDS DBD01
30 Db2 for z/OS Utilities in Practice

COPY TABLESPACE is shown in Figure 3-2.

Figure 3-2 COPY TABLESPACE

You can use the output as input to offline utilities such as DSN1COMP.-COPY and -PRNT. The
sequential output is in a format that represents the header and data pages per the object
copied.

The following list includes newer enhancements to the COPY utility, as far as sequential copies
are concerned:

� Changes how &ICTYPE functions, when using TEMPLATE on the COPY utility. Now, starting
with Db2 12, you can identify the actual type of the image copy that was taken. Db2 11 and
prior used to set the type to 'C' when the data set name was allocated TEMPLATE with
CHANGELIMIT. However, users were not able to differentiate if it was a Full or Incremental
copy. In Db2 12, when &ICTYPE usage on the TEMPLATE will reflect the actual type of the
image copy, when CHANGELIMIT is specified:

– &ICTYPE = 'F', when a full image copy will be generated
– &ICTYPE = 'I', when an incremental image copy will be generated

An example of a FULL copy in the DSN in the output (Figure 3-3).

Figure 3-3 FULL copy

Tip: For TEMPLATE GDGLIMIT, The default value is 99. The minimum value is 0, and for
z/OS V2R1 it has a maximum value of 255. With z/OS V2R2 and later, the maximum
value is 999. If you want to use a value greater than 255, verify that GDGEXTENDED is set to
YES in member IGGCATxx in SYS1.PARMLIB.
Chapter 3. Db2 backup and recovery 31

� Another way to use the COPY utility for a sequential type output is using the CONCURRENT
method (Figure 3-4). This option of the COPY utility enables you to make full image copies
using DFSMSdss (using the utility ADRDSSU) Concurrent COPY.

The copy process is initiated by the Db2 COPY utility when you specify the CONCURRENT
keyword on the COPY statement. The image copy is recorded in SYSCOPY with ICTYPE = F
and STYPE = C (for example, node I00012 and STYPE = J for instance node J0001). When a
recoverable point that indicates that a DFSMSdss Concurrent COPY is found in SYSCOPY,
the RECOVER utility invokes a DFSMSdss RESTORE command to restore from the copy.

Figure 3-4 CONCURRENT method

� With SHRLEVEL REFERENCE, the objects are not available for update until the copy operation
is logically completed:

– All writes are drained, and the objects being copied have a restrictive state of UTRO.

– The objects are quiesced to ensure that all updated buffers are written to disk before
DFSMSdss Concurrent COPY is invoked. The SYSCOPY records with ICTYPE=Q are
inserted to indicate that the objects are successfully quiesced.

– As soon as the DFSMSdss Concurrent COPY is logically complete, the objects are
drained and the restrictive state is changed from UTRO to UTRW.

A good use or business case for using this kind of copy is should you desire better
improvement as far as availability is concerned (FlashCopy IC as described in the next
section is still the fastest method). Because this is a track-based copy, but still sequential
in nature, it does not process the header pages and space page map pages the way that
DB2 image copy processes it. It is also typically less “expensive” to run.

3.1.2 FlashCopy Image Copy – non-sequential

FlashCopy image copies are output to VSAM data sets (a VSAM ESDS Cluster type. The
traditional copy methods that are used by the utilities output to a non-VSAM sequential format
data set. FlashCopy creates a separate VSAM data set for each partition or piece of the
object that is being copied. the FlashCopy function that is provided by z/OS DFSMS and the
IBM DS8880 storage subsystems.
32 Db2 for z/OS Utilities in Practice

FlashCopy can reduce both the unavailability of data during the copy operation and the
amount of time that is required for backup and recovery operations. the FlashCopy image
copy is allocated by DFSMSdss and is always cataloged. The I/O “cost” is offloaded to the
storage arrays, saving you resources on the processor. See Figure 3-5.

Figure 3-5 FLASHCOPY YES

In this example, we see how DFSMSdss (through the ADRDSSU messages ADR101x) is used to
perform the actual copy. FlashCopy image copies are output to VSAM data sets. The
traditional copy methods that are used by the utilities output to a non-VSAM sequential format
data set. FlashCopy creates a separate VSAM data set for each partition or piece of the
object that is being copied.

When creating a FlashCopy image copy, the following utilities can also create 1 - 4 additional
sequential format image copies in a single execution:

� COPY

� LOAD with the REPLACE option specified

� REORG TABLESPACE

The COPYTOCOPY utility can create sequential format image copies by using an existing
FlashCopy image copy as input.

Restrictions to note
A data-set-level FlashCopy has certain operational restrictions that can cause a utility to
resort to traditional I/O methods to complete a copy operation. This behavior can occur even
when you explicitly request FlashCopy support in either the subsystem parameter or the utility
control statement. In some cases, the utility aborts the copy operation.

The circumstances in which the utilities might not be able to complete a copy operation by
using FlashCopy include the following situations. In these situations, the term data set refers
to a Db2 table space or index space, or a FlashCopy image copy:

� FlashCopy Version 2 disk volumes are not available.

� The source data set is already the target of a FlashCopy relationship.

� The target data set is already the source of a FlashCopy relationship.
Chapter 3. Db2 backup and recovery 33

� The source data set is already participating in the maximum number of FlashCopy
relationships.

� The CISIZE, CASIZE, physical record size, or physical block size of the target data set is
different from that of the source data set. The CASIZE of the target data set can be different
from the source data set if the source data set is less than one cylinder.

� The source data set and the target data set are not both fully contained on the same
physical control unit (controller).

3.2 Using BACKUP SYSTEM

As mentioned previously, FlashCopy image is an instantaneous copy of a DASD volume
taken at a particular point in time. It is possible to keep several versions if resources are
available and the data can be maintained on disk or tape.

To take a FlashCopy, you must first establish a relationship between the Copy Pool (source)
and the backup Copy Pool (target). Volumes are logically associated so that a physical copy
of each volume can be made. At the point that the relationship is established, the BACKUP
SYSTEM or RESTORE SYSTEM is considered logically complete.

For example, when doing a BACKUP SYSTEM, the unavailability period for access to the system
only lasts until the BACKUP SYSTEM is logically complete, so it is very fast. When it is logically
complete, a background copy is started so that the target will look like the source did at the
time the operation was logically complete.

If any applications cause changes to tables so that tracks on the source volume must be
updated before they are copied to the target, the source track with the change is first copied
to the target before it is updated. When the copy of each volume is complete, the logical
relationship can be terminated.

The previous DB2 releases can use up to only two copy pools, one for the database and one
for logs. These copy pools define the storage groups to copy and the backup storage groups
to store the copies. In the DB2 12, the system level backup supports multiple copy pools in
which you can keep extra system level backups on disk during upgrades. Also, an alternate
copy pool includes the same defined set of storage groups as the standard copy pool,
however different backup storage groups are specified.

To use an alternate copy pool, specify the ALTERNATE_CP option and the related backup
storage group options (DBBSG and LGBSG) on the BACKUP SYSTEM utility control statement:

� DBBSG refers to the backup storage group name for the database copy pool. It can be up to
eight characters and must be defined to DFSMS with the COPY POOL BACKUP attribute.

� LGBSG refers to the backup storage group name for the log copy pool. It can be up to eight
characters and must be defined to DFSMS with the COPY POOL BACKUP attribute.

Note: Use the storage class attribute ACCESSIBILITY=REQUIRED or
ACCESSIBILITY=PREFERRED for the source data set and for the target data set. If the
storage class that is associated with a data set has this attribute, DFSMS attempts to
select volumes such that the data set is contained on volumes within a single physical
control unit.
34 Db2 for z/OS Utilities in Practice

3.2.1 FLASHCOPY_PPRCP option

In DB2 12, the FLASHCOPY_PPRCP keyword is added to the RESTORE SYSTEM and RECOVER
utilities, enabling you to control the preserve mirror option for the DB2 production volumes
during FlashCopy operations when the recovery base is a system-level backup.
FLASHCOPY_PPRCP also applies to the RECOVER utility that uses a FlashCopy image copy as its
recovery base.

Table 3-1, Table 3-2, and Table 3-3 are some reference tables that you can refer to which
pertain to RECOVER in a fast replication setup (FlashCopy).

Table 3-1 Options for the RECOVER utility from FCIC

Table 3-2 Options for the RECOVER utility from SLB

Table 3-3 Options for the RECOVER utility from RESTORE SYSTEM

Preserve mirror behavior FlashCopy usage

 ZPARM FLASHCOPY_PPRC REC_FASTREPLICATION

 Default REQUIRED PREFERRED

 RECOVER keyword FLASHCOPY_PPRCP n/a

ADRDSSU keyword FCTOPPRCP FASTREPLICATION

Preserve mirror behavior FlashCopy usage

 ZPARM FLASHCOPY_PPRC REC_FASTREPLICATION

 Default REQUIRED PREFERRED

 RECOVER keyword FLASHCOPY_PPRCP n/a

FRRECOV ALLOWPPRCP FR(=FASTREPLICATION)

ADRDSSU keyword FCTOPPRCP FASTREPLICATION

Control options before Db2
12

ISMF COPYPOOL ISPF panels SETSYS
FASTREPLICATION
(DATASETRECOVERY(..))

Preserve mirror behavior FlashCopy usage

 ZPARM FLASHCOPY_PPRC

 Default REQUIRED

 RESTORE SYSTEM keyword FLASHCOPY_PPRCP

FRRECOV ALLOWPPRCP

ADRDSSU keyword FCTOPPRCP FASTREPLICATION

Control options before Db2 12 ISMF COPYPOOL ISPF panels
Chapter 3. Db2 backup and recovery 35

3.3 Db2 Recovery

In this section, we describe some best practices and new enhancements that pertain to data
set and volume-based recovery. This is summarized in Figure 3-6.

Figure 3-6 Data set and volume-based recovery

3.3.1 RECOVER using the SCOPE keyword

To meet your recovery time objectives (RTO), you need to have a sound backup strategy.
When you have a decent backup process in place, Db2 provides some newer options to help
you speed up your object recovery. These options are for planned and unplanned recoveries.

Db2 12 introduced the SCOPE keyword. It is applied when the RECOVER utility uses the TORBA
option or the TOLOGPOINT option. SCOPE has two variations:

� SCOPE UPDATED
� SCOPE ALL

The SCOPE UPDATED option can potentially improve recovery time because it indicates which
objects in the specified LISTDEF list are to be recovered. The objects in the list that have not
changed since the recovery point are skipped by the RECOVER utility. In this way, it does not
waste time processing objects that have not changed and therefore do not need to be
recovered.

The exception is for the following objects that are recovered even if they have not changed
since the specified recovery point:

� Indexes in information COPY-pending status
� Table spaces in COPY-pending status
� Any objects in RECOVER-pending status

When DB2 skips the objects in which the recovery is not required, a new message is issued:

DSNU1322I PROCESSING SKIPPED FOR dbname.tsname DSNUM n BECAUSE THE OBJECT DOES NOT
NEED TO BE RECOVERED.
36 Db2 for z/OS Utilities in Practice

The SCOPE ALL option indicates that all objects in the list are recovered, even if they have not
been updated.

3.3.2 MODIFY RECOVERY enhancements

Starting in Db2 12, two new options were added to the MODIFY RECOVERY utility:

� DELETEDS
� NOCOPYPEND

DELETEDS option
The DELETEDS option drives the deletion of z/OS cataloged image copy data sets on disk, or
those migrated by DFSMShsm tape when corresponding SYSCOPY records are deleted. The
IDCAMS program is invoked to perform the deletion with DELETE commands.

This is an optional feature because it increases the elapsed time, and some users keep the
image copy data sets even when no longer recorded in SYSCOPY.

The restart restrictions for DELETEDS are as follows:

� MODIFY abends after the deletion of the SYSCOPY records have been committed in the
MODIFY phase and the job is restarted. In this case, the DELETEDS phase will be skipped and
no image copy data sets will be deleted.

� MODIFY abends in the DELETEDS phase and the job is restarted. In this case, the phase will
be changed to UTILTERM, and the image copy data sets that were not deleted in the first
invocation will not be deleted.

NOCOPYEND option
The NOCOPYPEND option is added. It instructs MODIFY RECOVERY to not set COPY pending
restricted status even if all backups were deleted from SYSCOPY. This feature was developed
because MODIFY RECOVERY places objects in COPY-pending when all backups have been
deleted from SYSCOPY. In this case, up to Db2 11, you were not able to update the data
because of the restricted status.

3.4 BACKUP considerations and tips

In this section, we share some best practices that you can use in your environment. It is our
intention to share how you can apply these suggestions, or to consider implementing them as
and when it makes sense for you.

3.4.1 COPY INDEXES

Whether you recover or restore your data (both unplanned and planned), getting your index
spaces back can be very costly. There are many ways to determine whether indexes are used
or how active they are. See Chapter 5, “Db2 Real Time Statistics (RTS)” on page 45 to
determine index activity and usage.

Consider COPYing your indexes. Db2 has the Fast Log Apply (FLA) to assist here. Use RTS
and RTS history to determine which indexes (you can copy all of them if you have enough
space) are candidates for COPY. If you have the IBM DB2 Sort tool available, it can also
help you.
Chapter 3. Db2 backup and recovery 37

You can also consider index candidates for backup based upon size or update activity: use
RTS history.

3.4.2 FlashCopy IC

If you have the DASD storage and you need to back up your table spaces quickly without
incurring resource use on the host, FlashCopy IC (FCIC) is something you should consider.
To identify which table spaces are prime candidates for using FCIC, use RTS and RTS
History. Customers who have started to use data set FCIC, started by copying the largest
objects based upon size.

Newer advice is to back up the most active objects, regardless of size. The rationale here is to
speed recovery to meet your RTO. Again, using RTS and RTS History, you can consider the
following actions:

� Backing up the most active objects (to reduce log processing at recover time) using FCIC
� Backing up the most active objects using Incremental Copy and then Merge Copy.

3.4.3 CONCURRENT COPY

This track-based copy is very useful for speeding up your backups because it is typically
cheaper and faster to run. However, this backup type is for recovery purposes only, and not
available for use for unload processing and so on. Nevertheless, it is a consideration.

3.4.4 Split off active versus non-active objects

Revise your LISTDEFs or grouping. Also consider using the SCOPE function to not recover
unchanged objects.

3.4.5 To QUIESCE or not to QUIESCE

In earlier times, customers used QUIESCE to establish a common point of recovery for a set or
sets of objects, From a recovery point of view and with the introduction of using the BACKOUT
function of the RECOVER utility, this might not be necessary anymore. If you still need to have a
relative byte address (RBA) or log record sequence number (LRSN) created in SYSCOPY, you
can run a QUIESCE on DSNDB06.SYSEBCDC. In addition, use WRITE NO unless you absolutely must
have pages written out.

3.4.6 OPTIONS EVENT(ITEMERROR,SKIP)

Revise your grouping of objects based upon your requirements (for example, size versus
activity). If you have many objects in your LISTDEF, and availability is a requirement, use this
option. It may increase some resource use. However, it helps with setting your objects in UTRW
only for the duration of the copy for that object. the read claim class is held only while the
object is being copied.

If you do not specify OPTIONS EVENT(ITEMERROR,SKIP), all of the objects in the list are placed
in UTRW status and the read claim class is held on all objects for the entire duration of the COPY.
38 Db2 for z/OS Utilities in Practice

Chapter 4. Statistics collection (RUNSTATS)

The RUNSTATS utility has had many enhancements for new functionality, usability, and
availability over the years. Statistics can be collected by running the RUNSTATS utility, or they
can be collected with inline statistics while running either a REORG, LOAD, or REBUILD INDEX
utility and specifying STATISTICS.

4

© Copyright IBM Corp. 2018. All rights reserved. 39

4.1 Functional improvements

This section discusses the functional improvements of inline statistics parity and the RESET
keyword.

4.1.1 Inline statistics parity

Enhancements to statistics gathering over the years tended to be first implemented in the
RUNSTATS utility, but they weren’t always also implemented with inline statistics for REORG, LOAD,
or REBUILD INDEX at the same time.

As of V11, the functional capability (parity) for inline statistics gathering is available so that a
separate RUNSTATS utility doesn’t have to be run after a utility with inline statistics to fill in the
statistics gap. The following list describes more recent improvements:

� The ability to collect inline histogram statistics with HISTOGRAM
� Distribution statistics with COLGROUP and FREQVAL
� NPI statistics when SORTNPSI is specified

Some keywords are still limited to being used with the RUNSTATS utility (for example, REGISTER
NO and RESET), but these don’t restrict the actual statistics gathering capability.

It’s now possible to eliminate the extra overhead of a separate RUNSTATS jobs run by REORG,
LOAD, or REBUILD INDEX.

4.1.2 RESET keyword

Many of the gathered statistics update existing columns in catalog tables, while other
gathered statistics (for example, distribution stats and histograms) insert new rows into the
catalog. In many cases, the inserted statistics can become obsolete and clutter up the
catalog. With the RESET keyword, it’s possible to clear out all of these extra unused statistics
for an object, and then start over again collecting only what is needed.

RESET clears all statistics, not just those with timestamps earlier than a certain point in time.
Therefore, it’s important to follow a RUNSTATS that does a RESET with a RUNSTATS or inline
statistics that collects the needed statistics, including those that are deleted with RESET.

4.2 Availability

This section discusses considerations related to availability.

4.2.1 INVALIDATECACHE

In the past, when gathering statistics, the dynamic cache was invalidated for the objects for
which statistics were collected. However, this could prove disruptive to applications that
depend on that cache in memory. By specifying INVALIDATECACHE NO, you can collect statistics
without being disruptive. New statistics can then be picked up later when it is more convenient
to PREPARE and possibly get a new access path.

It should be pointed out that in Db2 V12, the enhancement for dynamic plan stability (DPS)
also helps manage plans to enable more stable, predictable performance when using cached
access path.
40 Db2 for z/OS Utilities in Practice

DPS protects against access path changes and disruptions across these types of events:

� Release migration
� Function level activation
� System maintenance and DB2 bouncing
� System parameter changes
� Statistics gathering (when not using INVALIDATECACHE)

4.3 Performance

There have been various enhancements to improve performance by cutting the code path
length, and CPU resource usage has been reduced with IBM z® Systems® Integrated
Information Processor (zIIP) offload. In addition, if there are duplicate distribution statistics
specified because a COLGROUP specified is the same as for the column of an index, the
duplicate COLGROUP is ignored while the index stats are gathered once (Db2 V12).

Sampling is the recommended practice when there are millions or billions of rows. There are
two methods for sampling: specifying either SAMPLE SYSTEM or TABLESAMPLE SYSTEM. SAMPLE
results in looking at only every nth row, then extrapolating to get statistics. TABLESAMPLE
randomly accesses rows when doing sampling. The TABLESPACE AUTO option is advised
because it adapts to the amount of data in the table, so it balances the performance benefits
with the accuracy without user intervention.

For Data Sharing environments when using RUNSTATS SHRLVEL CHANGE, use REGISTER NO
to avoid registration of the accessed data in the coupling facility. This saves resources
because the statistics are an approximation, so the serialization and blocking from updates on
other members can be avoided without the differences in the statistics varying to any
significant degree.

The RUNSTATS utility is zIIP off-loadable for the standard TABLESPACE scan and INDEX scan
processing. As of Db2 V11, distribution statistics are 80% off-loadable to zIIP.

4.4 Usability

Statistics are classified into the two categories of access path statistics and space statistics.

In general terms, space statistics can track trends and point out characteristics which help
determine when to schedule various maintenance activities:

� REORGs
� Backups with COPYs
� Gathering new statistics with RUNSTATS
� Determining when to build new dictionaries
� A host of other uses

These types of statistics are relatively inexpensive to gather because Real Time Statistics
(RTS) gathers many of these in real-time, so it relieves the need for RUNSTATS or inline stats to
collect these space statistics.

Alternatively, access path statistics are used by the optimizer to pick the best access path.
These statistics include column cardinality and frequencies, histogram statistics, and
information about available indexes. These can be very time-consuming and costly to gather,
so there is a tradeoff.
Chapter 4. Statistics collection (RUNSTATS) 41

Collecting statistics that aren’t needed, or collecting them too often, is a waste of time and
resources. However, if you do not collect enough statistics, or they become “stale,” the optimal
access path might be missed, and application performance suffers. As a solution to this
delicate balance, the PROFILE keyword was introduced in V11, and in V12 it can make the
decision process with this statistics gathering dilemma dramatically easier.

4.4.1 PROFILE keyword

The suggested practice for statistics gathering is to use the PROFILE keyword. This enables
RUNSTATS or inline statistics to easily keep the proper set of keywords and options for
gathering, table space, table, and index statistics in the catalog rather than explicitly specified
with the SYSIN statement of JCL for the RUNSTATS job.

As of Db2 V11, a PROFILE can be created for a given table and indexes, as shown in
Example 4-1.

Example 4-1 Creating a PROFILE

RUNSTATS TABLESPACE DB1.TS1
 TABLE(TB1) SET PROFILE
 COLGROUP(CITY,ZIPCODE) FREQVAL COUNT 3
 HISTOGRAM NUMQUANTILES 5
 INDEX(IX2) KEYCARD FREQVAL NUMCOLS 1 COUNT 5

The keyword options specified for TB1 and its indexes are stored into the catalog table
SYSIBM.SYSTABLES_PROFILE. They are then picked up and used so that the following statement
is equivalent to the original specification if SET PROFILE had not be specified:

RUNSTATS TABLESPACE DB1.TS1 TABLE(TB1)
USE PROFILE

In addition to just supporting profiles, whenever the optimizer determines the access path for
an SQL action, it uses the available statistics available in the catalog, but it also looks to see if
additional statistics might enable it to choose a better access path. If this is the case, and if
the ZPARMS value STATFDBK_SCOPE is set up appropriately to give feedback, the optimizer
populates the SYSSTATFEEDBACK table in the catalog table describing the additional statistics it
desires to examine.

This SYSSTATFEEDBACK table identifies the object for gathering more statistics, and then the
TYPE column identifies the type of statistics to be gathered, as shown in Table 4-1.

Table 4-1 SYSSTATFEEDBACK table

In V12, PROFILE usage was extended for support with INLINE statistics, and LISTDEF
processing was improved to add defaults.

Type Distribution

‘C’ Cardinality values

‘F’ Frequency values

‘H’ Histogram values

‘I’ Index statistics

‘T’ Table statistics
42 Db2 for z/OS Utilities in Practice

With V12, the profiles stored in the catalog are automatically maintained during BIND or
PREPARE processing with direct updates by the Db2 optimizer. These updates are made to the
profiles to ask for statistics that it thinks could be used to possibly pick a better access path.

For example, if an index exists on a column, but no statistics are found for that index, it will
add the INDEX(isname) specification to the profile. Likewise, if distribution or histogram
statistics are determined to be needed, the appropriate keywords (for example, HISTOGRAM)
and parameters are added to the profile in the catalog.

If the following DDL operations are run, the appropriate updates are made to the profile
specification so that it stays consistent:

� Drop Index
� Rename Index
� Drop Column
� Rename Column
� Rename Table

It also can removed unneeded distribution statistics

The feedback mechanism between the optimizer and RUNSTATS (or inline stats) can be
represented as shown in Figure 4-1.

Figure 4-1 Optimizer and RUNSTATS feedback mechanism

Essentially, when profiles are set up with the SET PROFILE request during RUNSTATS, the profile
table in the catalog table is used to gather statistics. The statistics gathered by RUNSTATS are
used by BIND, REBIND, and PREPARE operations where the optimizer determines the access
path.

The optimizer (or DDL statements), can make changes to an existing profile in the catalog. An
automation tool examining the column PROFILE_UPDATE, so see if any profiles have changed,
therefore requiring RUNSTATS to be run to gather the new statistics requested in the profile.

4.4.2 PROFILE keyword and LISTDEF

As of V12, a LISTDEF of utilities such as REORG or RUNSTATS can also use profiles for gathering
statistics. If there is an object that doesn’t have a profile in the catalog, then default statistics
are gathered.
Chapter 4. Statistics collection (RUNSTATS) 43

44 Db2 for z/OS Utilities in Practice

Chapter 5. Db2 Real Time Statistics (RTS)

To maintain an efficient Db2 can require continuous and periodic monitoring of Db2 objects.
Db2 object monitoring is an essential component due to the dynamic changes (growth,
access), application behavior due to fluctuations in business activity, changes in data access
patterns, and so on. Db2 deep technical skills are also becoming scarcer as experienced
DBAs retire. Db2s running ERP-based applications may have more than 100,000 page sets
to manage.

It is nearly impossible to manually monitor these objects for maintenance, such as REORGs. A
lack of a proper maintenance strategy can indirectly cause performance problems, including
running utilities without getting any real benefits.

Db2 Real Time Statistics (RTS) is an integral part of Db2’s journey towards self-managing
utilities. By having real-time statistics available, the Db2 utilities can automatically size work
and temporary data set allocations. This benefits all tasks related to sort as far as the utilities
are concerned.

RTS is used more extensively to determine which Db2 objects require maintenance for
utilities, such as REORG, RUNSTATS, or COPY. The Db2 Stored Procedure, DSNACCOX, helps you to
obtain recommendations for when to reorganize, copy, or update statistics for both table and
index spaces.

You can define your own threshold to let DSNACCOX identify object maintenance (REORGs,
RUNSTATS), but also use it to revisit your backup (COPY) strategy vis-à-vis object update activity.
In addition, there are many other supplied thresholds to identify maintenance. DSNACCOX can
be scheduled to run using the Db2 Administration Console, or your own Job Scheduler.

5

© Copyright IBM Corp. 2018. All rights reserved. 45

5.1 RTS overview

This section contains the following sections:

� How RTS is collected
� How RTS is externalized
� Where RTS information is stored

5.1.1 How RTS is collected

When Db2 is started, RTS is collected by the DBM1 address space. The component of DB2
responsible for RTS functions is the RTS manager. The RTS manager runs as a subtask in
the DBM1 address space. For each object there is only one row in the relevant Catalog table. A
size of approximately 140 bytes per pageset or partition is kept above the bar for each block.
The RTS manager ensures that its active statistics blocks are kept in clustering order, and all
inserts and updates to the rows in the RTS tables are accomplished through the clustering
index.

In a data sharing environment, each member starts collecting statistics. Db2 generates
in-memory statistics for each table space and index space, including catalog objects.

A control block is allocated in memory for each table and index page set as follows:

� For a tablespace, this control block is allocated the first time that the object is first updated.

� For an indexspace, it is different. A control block is allocated at the time of opening the
index.

5.1.2 How RTS is externalized

Db2 periodically writes these real-time statistics to the two RTS catalog tables. It is done via
an interval which is specified in DSNPARM. The system parameter, STATSINT, controls this with a
default of 30 minutes. You can change this system parameter dynamically without recycling
Db2.

The following list describes other ways that RTS is externalized:

� During the INIT phase of the Db2 utilities: DSNUTILB

� Using the Db2 command -ACCESS DB(*) SP(*) MODE(STATS)

� Stopping the table and indexspace

� Stopping RTS database -STOP DATABASE(DSNDB06) SPACENAM(SYSTSTSS)

� Stopping the Db2 subsystem

Note: offline utilities (those that are named DSN1*) do not have an INIT phase and
subsequently do not flush the RTS information.

Important: DB2 does not maintain RTS for RTS objects. If you run a utility that includes
RTS objects, RTS is not externalized for any of the objects in the utility list. DB2 does
not maintain incremental counters for RTS against SYSLGRNX and its indexes during
utility run. DB2 only maintains statistics for these objects during non-utility operations.
46 Db2 for z/OS Utilities in Practice

5.1.3 Where RTS information is stored

Db2 stores the RTS information in two Db2 Catalog tables:

� SYSIBM.SYSTABLESPACESTATS: Contains RTS statistics on table spaces and table space
partitions

� SYSIBM.SYSINDEXSPACESTATS: Contains RTS statistics on index spaces and index space
partitions

Capturing RTS history can provide you with many benefits, such as capacity planning (see
how your objects are growing), partition strategy planning (where are my partitions growing),
redefining your maintenance strategy (when do reorgs take place, and why do you run them),
and so on. You can also use it for object activity for your backup strategy.

Db2 12 provides RTS history in two new Catalog tables. They have the same columns and
same data types. These are temporal tables and you need to enable the relationship yourself,
should you want to implement RTS history. The two RTS history tables are:

� SYSIBM.SYSTABLESPACESTATS_H

� SYSIBM.SYSTABLEIDEXSPACE_H

To enable the temporal relationship between the RTS Catalog table and the history table, you
need to issue a Db2 ALTER statement. Example 5-1 shows the DDL to achieve that.

Example 5-1 ALTER statement

ALTER TABLE SYSIBM.SYSINDEXSPACESTATS
 ADD VERSIONING
 USE HISTORY TABLE SYSIBM.SYSIXSPACESTATS_H;
ALTER TABLE SYSIBM.SYSTABLESPACESTATS
 ADD VERSIONING
 USE HISTORY TABLE SYSIBM.SYSTABSPACESTATS_H;

If you want to remove RTS history, or you disconnect the temporal relationship as follows,
remember that you can always turn off historical RTS collection by severing the temporal
relationship. This is accomplished by issuing ALTER TABLE with the DROP VERSIONING clause
(Example 5-2).

Example 5-2 ALTER TABLE

ALTER TABLE SYSIBM.SYSTABLESPACESTATS
 DROP VERSIONING;

By turning on RTS history, you should plan for some additional capacity (depending on how
much history you want to maintain) and plan your maintenance and a purging (archiving) of
historical information. Note that at each externalization (STATSINT 30-minute default), “old”
information will be written to the system temporal tables. As the history table grows over time,
plan to manage that growth. Customers typically aggregate this data on a weekly or monthly
basis for up to a year and then go to a yearly basis when greater than a year.

It is always advised to establish a baseline for RTS. You might find missing statistics and it is
typically due to some objects that never had a REORG utility run. Very old objects (before RTS)
can also have missing statistics. For newly created objects, there is no need to establish a
base value, because Db2 maintains the counters from the beginning.
Chapter 5. Db2 Real Time Statistics (RTS) 47

5.2 RTS table SYSIBM.SYSTABLESPACESTATS

The RTS table SYSIBM.SYSTABLESPACESTATS contains real time statistics for table spaces. It
resides in database DSNDB06 in tablespace SYSTSTSS. It contains 48 columns in Db2 12. See
the Db2 12 for z/OS SQL Reference, SC27-8859, for a complete description of each column
and related data type.

In the following tables, we show the columns and provide information to use them for your
maintenance tasks.

Table 5-1 depicts incremental statistics which are written to the RTS tables. This occurs when
STATSINT (default 30 minutes) is reached. After the base values are established, the delta is
recorded by DB2 and kept in memory. The following table has some practical use case
examples in the “Usage” column. The usage does not contain an exhaustive list of examples.

5.2.1 SYSTABLESPACESTATS: Incremental statistics

Incremental statistics are added or updated during the operation against the table.

Table 5-1 and Table 5-2 on page 49 denote how DML activities affect the RTS counters.

Table 5-1 DML effects against SYSIBM.SYSTABLESPACESTATS

Operation End Result

INSERT Increment REORGINSERTS, STATSINSERTS, TOTALROWS, and
COPYCHANGES. Can update NACTIVE, SPACE, EXTENTS,
REORGUNCLUSTERINS, distinct PAGES, COPYUPDATELRSN,
UPDATESTATSTIME, and DATASIZE.

UPDATE Increment REORGUPDATES, STATSUPDATES, COPYUPDATEDPAGES,
and COPYCHANGES counters. Can update REORGNEARINDREF,
REORGFARINDREF, NACTIVE, SPACE, EXTENTS for VARCHAR tables,
distinct NPAGES, COPYUPDATELRSN, UPDATESTATSTIME, and
DATASIZE.

DELETE Increment REORGDELETEs, STATSDELETES, COPYCHANGES, and
DATASIZE.

DELETE without WHERE clause Increment the MASSDELETE/DROPs counter.

ROLLBACK – after INSERT Decrement the INSERT counters.

ROLLBACK – after DELETE Decrement the DELETES counter.

ROLLBACK – after UPDATE Decrement the UPDATE counters.

ROLLBACK – after MASS DELETE Will not decrement the MASSDELETES counter.

ROLLBACK – after DROP TABLE Will not decrement the DROPs counter.

TRIGGERS Statistics counters will not be updated.

Db2 RESTART May cause statistics to be updated for other objects.
48 Db2 for z/OS Utilities in Practice

Table 5-2 SYSIBMSYSTABLESPACESTATS: Incremental

Column name Short description Usage example

DBID Internal identifier of the database Use when you need to perform DBID translations.

PSID Internal identifier of the page set Use when you need to perform PSID translations.

PARTITION The partition number Use together with SIZE and SPACE to determine
partition strategy.

INSTANCE Data set instance of the object Use with PSID and DBID for reporting.

DBNAME Name of database

NACTIVE Number of actual active pages Use to see how PAGEFREE affects size. Can also be
used when using MAXROWS per page and sizing.

NPAGES Number of distinct pages containing
row data

Use to calculate estimate of LOB data. Also, use to
see how PBR is affecting part sizes.

EXTENTS Number of extents for the space If a data set is striped this value denotes the logical
extents. The column is typically used for REORG
planning. Can be looked at when using EA (Extended
Addressability – pagesets > 4GB) effects.

SPACE In KB, the amount of space Use to revise your LISTDEF groupings for COPY utility
and many more.

TOTALROWS Total # of rows or LOBS Use to determine PBR efficiency.

DATASIZE Size in byes for row data Use to estimate FREEPAGE and/or compression
considerations.

UNCOMPRESSED Not used – always zero

HASHLASTUSED A date column – when last used by
DML

DRIVETYPE Device type – HDD or SSD Use with your PBG strategy – Can be used to
determine where to place most volatile / most active
pagesets – SSD or HDD.

LPFACILITY 1 Byte (Y/N) indicator disk control unit
has high performance list prefetch

Use with DRIVETYPE – stale pagesets on slower
disks and highly reference pagsesets on SSD with
high performance prefetch.

UPDATESIZE # of bytes updated since last creation,
last REORG or LOAD REPLACE

Can be used to revise your backup strategy based on
activity and not just size.

LASTDATACHANGE Time RTS was last updated due to
data modification

Consider using this counter to determine of a TS is
opened for read only or update. Can be used with your
BP planning too.

SYS_START System-period versioning start time

SYS_END System-period versioning end time

TRANSEND Transaction-id-column for period
versioning

GETPAGES # of GETPAGE requests since
creation of last REORG

Use this data together with REORGUPDATES and
COPYUPDATEDPAGES to determine object activity.
Use for BP object placement when using together with
size.
Chapter 5. Db2 Real Time Statistics (RTS) 49

5.2.2 SYSTABLESPACESTATS – Columns affected by the REORG utility

SYSTTABLESPACESTATS columns affected by the REORG utility are shown in Table 5-3.

Table 5-3 SYSTTABLESPACESTATS columns affected by the REORG utility

Column name Short description Usage example

REORGLASTIME Timestamp of last REORG, LOAD
REPLACE and TS was created

Use as date to determine next REORGs. In RTS
history use to determine how often REORG is
run.

REORGINSERTS # of inserts since last REORG,
LOAD REPLACE or creation

Use together with PBG size to see where rows
are inserted. Use this data in RTS history to see
insert activity between reorgs.

REORGDELETES # of deletes since last REORG,
LOAD REPLACE and creation

Use together with REORGINSERTS, -DELETES
and –UPDATES to see activity between
REORGS.

REORGUPDATES # of updates since last REORG,
LOAD REPLACE and creation

Use together with REORGINSERTS, -DELETES
and –UPDATES to see activity between
REORGS.

REORGUNCLUSTINS # of rows inserted that were not
clustered well since last REORG,
LOAD REPLACE of creation.
“Well-clustered” denotes a record
within 16 pages of candidate page.

Use as an exception-based column to determine
REORGs and RUNSTATS. Also, potentially use
to REORG the clustering index.

REORGDISORGLOB # of LOBS that are not 100%
chunked since last REORG, LOAD
REPLACE or creation.

Use for exception-based REORG.

REORGMASSDELETE # of mass deletes since last
REORG, LOAD REPLACE or
object creation.

Use for exception-based REORG when counter
is high.

REORGNEARINDREF # of overflow rows near the pointer
record

Use for exception-based REORG planning. Use
with DSNACCOX or IBM Db2 tooling.

REORGFARINDREF # of overflow far from the pointer
record

Counter can be used for exception based
REORGs: see DSNACCOX.

REORGSCANACCESS # of times data is accessed using
DML since last REORG, LOAD
REPLACE or creation

Use this counter together with GETPAGES to
determine BP placement, backup strategy.

REORGHASHACCESS # of times hash access is used
since last REORG, LOAD
REPLACE or creation.

Use together with HASHLASTUSED to
determine complete hash access.

REORGCLUSTERSENS # of times SQL requires data in
cluster order

If this counter is low, consider not using
REORGUNCLUSTINS as the main indicator for
REORG.
50 Db2 for z/OS Utilities in Practice

5.2.3 SYSTABLESPACESTATS – Columns affected by the LOAD utility

SYSTTABLESPACESTATS columns affected by the LOAD utility are shown in Table 5-4.

Table 5-4 SYSTTABLESPACESTATS columns affected by the LOAD utility

5.2.4 SYSTABLESPACESTATS – Columns affected by the COPY utility

SYSTTABLESPACESTATS columns affected by the COPY utility are shown in Table 5-5.

Table 5-5 SYSTTABLESPACESTATS columns affected by the COPY utility

Column Short Description Use case examples

LOADLASTTIME Timestamp of the last LOAD Use with RTS history to determine LOAD frequency which in
turn can indicate how many times you have to REBUILD IXs.
Use this counter in RTS history together with INDEX ACCESS
in SYSINSPACESTATS to determine IX usage.

Column Short Description Use case examples

COPYLASTTIME Time of the last time COPY was run –
both FULL and Incremental

Use to determine when the last COPY
was run. This includes in-line copies
by REORG and LOAD. Use this
counter in RTS history to see how
often you COPY and when.

COPYUPDATEDPAGES A counter to denote the actual pages
updated since the last COPY

Use this counter to see the update
activity between COPY runs. If this
value is low, determine of IIC is better.
If very high, use for potential FCIC or
more regular runs.

COPYCHANGES Number of rows loaded since last IC
or update, delete and inserts since
last IC

Use this counter with
COPYUPDATEDPAGES to see
update activity between copies.
Especially in RTS history. See more
details in best practices

COPYUPDATELRSN The RBA/LRSN associated with the
latest IC

Can be used together with current
RBA/LRSN in a calculation – to
determine when to IC next

COPYDATETIME Timestamp of first update since last
IC

Can be used for exception-based
backups based on time
Chapter 5. Db2 Real Time Statistics (RTS) 51

5.2.5 SYSTABLESPACESTATS – columns affected by RUNSTATS utility

SYSTTABLESPACESTATS columns affected by the RUNSTATS utility are shown in Table 5-6.

Table 5-6 SYSTTABLESPACESTATS columns affected by the RUNSTATS utility

5.3 RTS table SYSIBM.SYSINDEXSPACESTATS

Db2 records RTS information for indexes into SYSIBM.SYSINDEXSPACESTATS and
externalizes this information the same as for tablespace statistics. The only difference is that
for indexspace statistics, information is recorded when the space is first opened versus for
tablespaces it is the first time the space is updated. In the following table we show the
columns in SYSINDEXSPACESTATS and how you can potentially use these counters for object
maintenance.

For DML operations, the incremental statistics are effected as follows in Table 5-7 and
Table 5-8 on page 53.

Table 5-7 Operational effects for SYSINDEXSPACESTATS

Column name Short description Use case examples

STATSLASTTIME Timestamp of the last execution of RUNSTATS Use to potentially determine how often
should RUNSTATS run. Use RTS
history equivalent to see when and how
often RUNSTATS is actually run.

STATSINSERT # of rows or LOBs that were inserted since LOAD
without REPLACE and since last RUNSTATS

For your most active objects use the
following 3 counters to set a threshold to
run RUNSTATS by exception.

STATSDELETES # of rows or LOBs that were deleted since LOAD
without REPLACE and since last RUNSTATS

See above

STATSUPDATES # of rows or LOBs that were updated since the last
RUNSTATS or since object creation.

See above

STATSMASSDELETE # of mass deletes from a segment or LOB table
space, or the number of tables dropped from a
segmented table space since RUNSTATS was last
run.

See above

Operation End result

INSERT for a COPY YES INDEX In addition to INSERT, update COPYUPDATELRSN, COPYUPDATEDPAGES,
COPYCHANGES, and UPDATESTATSTIME

DELETE for a COPY YES INDEX In addition to INSERT, update COPYUPDATELRSN, OPYUPDATEDPAGES,
COPYCHANGES, and PDATESTATSTIME

DROP without a WHERE clause Increment REORGMASSDELETE

DROP TABLE Increment REORGMASSDELETE

ROLLBACK – after INSERT Decrement the INSERT counter

ROLLBACK – after DELETE Decrement the DELETE counter
52 Db2 for z/OS Utilities in Practice

Table 5-8 SYSINDEXSPACESTATS – Incremental counters and usage

ROLLBACK – after UPDATE Decrement the UPDATE counter

ROLLBACK – after MASS DELETE Will not decrement the MASSDELETES counter

ROLLBACK – after DROP table Will not decrement the DROPs counter.

Db2 RESTART Statistics counters will not be updated.

Column name Short description Use case examples

UPDATESTATSTIME Timestamp of the latest insert or update Potentially use this counter to determine
updates. If the time is older, use RTS
history to determine the trends.

NLEVELS # of levels in the index tree This counter is useful in RTS history. It
will show how the index tree levels
increase over time. You can also look at
the history to see how the levels may
increase after REORG INDEX.

NPAGES The number of completely empty pseudo-deleted
pages

NLEAF # of leaf pages on the index Using a value of LEAFFAR / NLEAF >
10% for LOB auxiliary indexes for
REORG INDEX

NACTIVE # of active pages in the index space Can be used as one indicator to
determine of you want to IC the IX.

SPACE KB space size of the index As above – if the index spaceset is very
large, consider doing an IC. Modern
advice is to use update activity and not
always size.

EXTENTS # of extents. For striping it is the # of logical extents Use for exception—based REORG of
INDEX space.

IBMREQD Value of Y denotes row comes from tape.

DBID Internal ID of the DB

ISOBID Internal identifier of the index space set

PSID Internal identifier of the space set for the index

PARTITION The data set number of the index

INSTANCE Indicates the object association with data set 1 or
2

TOTALENTRIES # of entries in the space – including duplicate
entries

DBNAME Database name

NAME Index name

CREATOR Index creator

INDEXSPACE Index space name

LASTUSED Date the index was last used by DML and
SELECT. Default is now NULL

If NULL, consider dropping this IX.
Chapter 5. Db2 Real Time Statistics (RTS) 53

5.3.1 SYSINDEXSPACESTATS columns affected by the COPY utility

SYSINDEXSPACESTATS columns affected by the COPY utility are shown in Table 5-9.

Table 5-9 SYSINDEXSPACESTATS columns affected by the COPY utility

5.3.2 SYSINDEXSPACESTATS columns affected by the REORG INDEX utility

The SYSINDEXSPACESTATS columns affected by the REORG INDEX utility are shown in
Table 5-10.

Table 5-10 SYSINDEXSPACESTATS columns affected by the REORG INDEX utility

DRIVETYPE HDD and SSD (for Solid State Drive)

GETPAGES # of GETPAGE requests since last REORG or
creation

SYS_START Used for system-period versioning

SYS_END Used for system-period versioning

TRANS_START Used for system period versioning

Column name Short Description

COPYLASTTIME Timestamp of full image copy

COPYUPDATEDPAGES # of pages updates since full copy

COPYCHANGES # of updates since last full copy

COPYDATELRSN RBA or LRSN since last full copy

COPYUPDATETIME Timestamp of first update since last full copy

Column name Short description

REORGLASTTIME Timestamp since last REORG INDEX

REORGINSERTS # of inserts since last REORG, REBUILD, LOAD REPLACE or
creation

REORGDELETES # of deletes since last REORG, REBUILD, LOAD REPLACE or
creation

REORGAPPENDINSERT # if entries that have a key > than max key value since last utility of
creation

REORGPSEUDODELETES # of pseudo deleted entries since REORG, LOAD REPLACE of
creation

REORGMASSDELETE # of mass deletes from segmented or LOB space

REORGLEAFNEAR # of leaf pages near previous leaf pages

REORGLEAFFAR # of leaf pages away from previous leaf pages

REORGNUMLEVELS # of levels in the index tree since last REOG, REBUILD INDEX or
creation
54 Db2 for z/OS Utilities in Practice

5.3.3 SYSINDEXSPACESTATS columns affected by the LOAD utility

The SYSINDEXSPACESTATS columns affected by the LOAD utility are shown in Table 5-11.

Table 5-11 SYSINDEXSPACESTATS columns affected by the LOAD utility

5.3.4 SYSINDEXSPACESTATS columns affected by the REBUILD INDEX utility

The SYSINDEXSPACESTATS columns affected by the REBUILD INDEX utility are shown in
Table 5-12.

Table 5-12 SYSINDEXSPACESTATS columns affected by the REBUILD INDEX utility

5.3.5 SYSINDEXSPACESTATS columns affected by RUNSTATS

The SYSINDEXSPACESTATS columns affected by RUNSTATS are shown in Table 5-13.

Table 5-13 SYSINDEXSPACESTATS columns affected by RUNSTATS

REORGINDEXACCESS # of times this index was accessed with SELECT, FETCH, UPDATE
or DELETE since last REORG, REBUILD or creation – this includes
RI enforcement

Column name Short description

LOADLASTTIME Timestamp of the last LOAD REPLACE

Column name Short description

REBUILDLASTTIME Timestamp of the last REBUILD IX

Column name Short description

STATSLASTTIME Timestamp of the last RUNSTATS

STATSINSERTS # of IX entries inserted since last RUNSTATS

STATSDELETES # of IX entries deleted since last RUNSTATS

STATSMASSDELETE # of IX entries mass deleted since last RUNSTATS
Chapter 5. Db2 Real Time Statistics (RTS) 55

56 Db2 for z/OS Utilities in Practice

Chapter 6. Repairability and REPAIR
CATALOG

As of V11, Db2 does a “sanity check” with the first physical open of a page set to ensure that
the schema definitions for tables within the page set match their descriptions in the catalog. If
there is a mismatch, there will be an abend with reason code X'00C900E3'. Utilities that scan
table spaces also do this check, and on a mismatch, the utility fails with the following
message:

DSNU590I, RESOURCE NOT AVAILABLE, REASON=X'00C900E3'

This reliability checking failure is typically caused when moving objects using DSN1COPY to
clone table spaces across systems. In this environment with changing schema definitions, the
catalog definition for the table can get out of sync with the underlying format of the data rows
in the page set.

Customers using cloning tools are also at risk because these products can do similar copying
of underlying data sets. It’s important to catch schema mismatches early, because they can
result in internal overlays of memory, and these types of problems have been known to
occasionally crash Db2 systems.

In the past, it was difficult to detect schema mismatches, but in V11, a design point of
“self-describing objects” when creating an object with CREATE TABLESPACE and CREATE TABLE
enable this checking to take place.

6

© Copyright IBM Corp. 2018. All rights reserved. 57

For all newly created object-based table spaces, the initial metadata description is embedded
in the table space within the HEADER page and SYSTEM pages, as shown in Figure 6-1.

Figure 6-1 Table space (or partition) format

Critical table space attributes are kept in the header page for each partition, while the table
and column descriptions for each table are kept within system pages. For tables, CREATE
TABLE embeds a system page with a version 0 definition of the table, and if ALTER TABLE
statements are executed to change data types of columns, change the length of columns, or
add or drop columns, the new system page with version n+1 is embedded with the current
description when the first data row is inserted or updated to use that new description.

It’s one thing to catch schema mismatches, but it’s another to diagnose the exact problem so
that the problem can be remedied. That’s where the REPAIR CATALOG and REPAIR CATALOG
TEST utilities help.
58 Db2 for z/OS Utilities in Practice

6.1 REPAIR CATALOG TEST

REPAIR with the CATALOG TEST keywords should be run whenever a potential schema
mismatch is suspected (after an abend with reason code 00C900E3), or it can be run
periodically as a general health check.

As an example of how it can help, consider an example with a source table space TS1
containing table TB1, and a target table space TS2 containing table TB2. Suppose the tables
should be maintained in parallel, but for some reason, while changes were being made, they
weren’t applied together, so the definition got out of sync, as shown in Figure 6-2.

Figure 6-2 Source and target space objects

Notice the highlighted differences in red. If Source data sets for table space TS1 are moved
using DSN1COPY to copy over the data sets for TS2, then 20 characters for COL1 cannot fit within
the COL1 definition of 11 characters for COL1 in TB2. In addition, EBCDIC encoding can be
recognized if the table space is defined as UNICODE.
Chapter 6. Repairability and REPAIR CATALOG 59

When REPAIR CATALOG TEST DB2.TS2 is run, the system pages found within the underlying
page set are compared against the catalog definition. In this case, the following messages
are printed out, clearly showing the problem (Figure 6-3).

Figure 6-3 Output messages

Now change the scenario a bit by reversing the DSN1COPY and removing the UNICODE
encoding as shown in Figure 6-4.

Figure 6-4 Source and target table space objects

In this case, the difference is noted with REPAIR CATALOG TEST. However, the discrepancy can
be fixed by running REPAIR CATALOG. Why? Because, if the source table existed, and an ALTER
TABLE ALTER COLUMN COL1 VARCHAR(20) was done, it would look like the target table with
version N+1. REPAIR CATALOG changes the version in the catalog to N+1, so that when the
underlying data is updated, it’s changed to the latest version with format VARCHAR(20).
60 Db2 for z/OS Utilities in Practice

6.2 Multi-table tablespaces and version wrapping

When making schema changes on a table or tables in a table space, there is a limit of 255
versions that can be active at one time for a table space. The most frequent type of schema
change that creates a new version is the ALTER of a column in a table to a compatible data
type, typically to hold larger values. For example, a SMALLINT column COL2 must be made
larger, so the followed DDL is run:

ALTER TABLE TB1 ALTER COLUMN COL2 SET DATA TYPE INTEGER;

In addition to changing column types, other changes like an ALTER to add a new column to a
table also creates a new version. If a table is never ALTERed, then it remains at version zero.

The limit on the number of versions at 255 is usually plenty with a single table in the table
space, but if there are a few hundred tables in the table space, then a version changing alter
or two for each table can quickly reach the limit.

Wrapping is the term given when a version number is reused after reaching the limit of 255,
and new versions are allocated again starting at 1. This can only occur if there are no current
tables using version 0 or 1, and there are no image copies containing tables with rows for
version 0 or 1.

If the current table space version is 255 (SYSTABLESPACE column CURRENT_VERSION) there is a
blocking version 0 or version 1 indicated by (SYSTABLESPACE column OLDEST_VERSION, then the
ALTER will return the following SQL error:

SQLCODE = -4732, ERROR: THE MAXIMUM NUMBER OF ALTERS ALLOWED
HAS BEEN EXCEEDED FOR TABLE
54055 SQLSTATE RETURN CODE

The method to remove the blocking versions 0 and 1 in the table space are the following
procedures.

6.2.1 Single table tablespaces

The following steps can be taken

1. Run the REORG utility. This will ensure that all data rows are materialized to the current
version of 255.

2. Run the MODIFY utility to get rid of all image copies that have an oldest version of 0 or 1.
The date range needed for the MODIFY can be determined by running REPORT RECOVERY to
see the oldest versions as captured in the SYSCOPY records. After MODIFY is run, it will
update the SYSTABLESPACE column OLDEST_VERSION to represent the oldest version still left
in the SYSCOPY records.

3. Rerun the ALTER, and version 1 will be allocated as the current version after the previous
version of 255.
Chapter 6. Repairability and REPAIR CATALOG 61

6.2.2 Multi-table tablespaces

If all of the tables have a non-zero version, the procedure is the same as for table spaces with
a single table. Otherwise, the procedure must first get rid of these version zero tables as
follows:

1. Run REPAIR TABLESPACE with the keyword option SETCURRENTVERSION. This updates each
table version to be the current table space version.

2. Run REORG to bring all table data rows to their current version.

3. Run MODIFY to get rid of all of the previous image copies that have an OLDEST_VERSION of
zero.

4. Rerun the ALTER and the version can wrap to one.

For example, consider the following example of a table space with 4 tables. The lowest table
versions are at zero, but the highest table version after the later REORG brought those tables to
version 5.

Table 2 and Table 3 are at version zero. However, when REPAIR TABLESPACE with
SETCURRENVERSION is run, the SYSTABLES VERSION column in the catalog is updated to 5. The
next REORG TABLESPACE can then materialize all of the data rows to the current version of 5.
See Figure 6-5.

Figure 6-5 Multi-table tablespaces
62 Db2 for z/OS Utilities in Practice

Chapter 7. Db2 DSNZPARMs for utilities

There are many Db2 subsystem parameters, DSNZPARMs, also known as ZPARMs, that you
can tailor to manage Db2. In this chapter, we cover only those subsystem parameters that
affect your Db2 utilities. These Db2 utility DSNZPARMs can be altered and changed by you
as and when required, and almost all of them can be changed without recycling Db2, i.e.
dynamically. The effect of some ZPARMs can be overwritten with utility syntax at utility
execution time.

There are macros that get assembled to produce the DSNZPARM object modules into your
SDSNEXIT load library: DSN6ENV, DSN6ARVP, DSN6LOGP, DSN6FAC, DSN6GRP, DSN6SYSP, and DSN6SPRM.
The information in this chapter does not cover the installation and customization process of
ZPARMs.

This chapter describes the ZPARMs (because they affect the utilities) by sections based upon
general usage, sort, dynamic allocation of work data sets, and so on.

7

© Copyright IBM Corp. 2018. All rights reserved. 63

7.1 ZPARMs affecting dynamic allocation of data sets

The Db2 utilities may require many data sets for sorting purposes. The following table
denotes the two ZPARMs that affect the work data sets, which affect the dynamic allocation
for sorting when invoking DFSORT or the Db2 Sort product.

When UTSORTAL is set to YES, DB2 uses RTS for the estimates.

When not using the SORTNUM elimination feature (subsystem parameter UTSORTAL=NO) and no
SORTNUM is specified, DB2 queries the DFSORT installation option value, DYNALLOC, to be used
for SORTNUM.

In addition, when not using SORTNUM elimination (UTSORTAL=NO), Db2 uses the RUNSTATS SPACE
statistics from the Db2 catalog to estimate the FILSZ value. If RUNSTATS has not been run,
when the table space is compressed or the table space contains rows with VARCHAR columns,
Db2 may not be able to accurately estimate the number of rows. If the estimated number of
rows is too high and the sort work space is not available, or if the estimated number of rows is
too low, DFSORT might fail and cause an abend (Table 7-1).

Table 7-1 ZPARMS affecting sort dynamic allocation

7.2 ZPARMs affecting utility timeout operations

The UTIMOUT subsystem parameter specifies how long, in number of resource values, that a
utility or utility command is to wait for a resource. The utility or utility command waits until a
lock or all claims on a resource of a claim class is released (Table 7-2).

Table 7-2 ZPARMS affecting utility timeouts

Parameter Values What it does

UTSORTAL YES | NO Enable dynamic allocation of SORTWK data sets. Uses DB2
RTS to estimate the number of rows to sort.

IGNSORTN YES | NO Ignore SORTNUM statements when coded.

Tip: It is strongly advised to set these parameters to YES and let the utility (LOAD, REORG,
REBIULD IX, or CHECK INDEX) size and allocate the data sets for sorting purposes.

Parameter Values What it does

UTIMOUT 1-254 How long a resource is to wait for resources. This value
multiplied by IRLMRWT.

Tip: For example, if you use the default value of 6, a utility can wait six times longer than an
SQL application for a resource. This option allows utilities to wait longer than SQL
applications to access a resource. The value of UTILITY TIMEOUT is used as the default
value for the RETRY parameter of DB2 utilities, such as CHECK INDEX and online REBUILD
INDEX.
64 Db2 for z/OS Utilities in Practice

7.3 ZPARMs affecting SORT operations

The following three system parameters affect the SORT operations for utilities, such as REBUILD
INDEX, LOAD, REORG, and CHECK. When the utilities allocate the relevant temporary and work
data sets, it uses these values in conjunction with your DFSMS storage classes. In addition,
should you have the IBM DB2 SORT separately licensed product, this is where you enable
the usage without making any other changes to your JOBS or even JCL (Table 7-3).

Table 7-3 ZPARMS affecting sort operations

7.4 ZPARMS affecting RUNSTATS operations

From a utilities point of view, REAL TIME STATS (also known as RTS) is used for dynamic
allocation, sizing of the work and temporary data sets, and many more functions. When
running RUNSTATS, it is good to know how, when and how much RUNSTATS adds to the Db2
Catalog tables (Table 7-4 on page 66).

If you must record history, note the acceptable values of SPACE, NONE, ALL, and ACCESSPATH
(with a default of NONE). Here a description:

� SPACE: All inserts and updates that DB2 makes to space-related catalog statistics are
recorded.

� NONE: None of the changes that DB2 makes in the catalog are not recorded.

� ALL: All inserts and updates that DB2 makes in the catalog are recorded.

� ACCESSPATH: All inserts and updates that DB2 makes to ACCESSPATH-related catalog
statistics are recorded.

Parameter Values What it does

VOLTDEFT SYSDA Device type or unit name that is to be used by DB2 utilities
for dynamically allocating temporary data sets. Used for
COPY CONCURRENT (DFSMSdss) and CHECK data
sets.

UTIL_TEMP_STORCLAS DFSMS storage class that the CHECK INDEX, CHECK
DATA, and CHECK LOB utilities are to use when allocating
temporary shadow data sets. (These utilities allocate
shadow data sets when the SHRLEVEL CHANGE option
is used.)

DB2SORT ENABLE/
DISABLE

To enable the use of DB2 SORT TOOL instead of DFSORT
for utility sort processing. DB2 SORT should be licensed
and installed.

Tip: With the Db2 Catalog and Directory objects being SMS Managed, it is also strongly
advised to have all of your application table spaces SMS managed. The utilities can use
the DFSMS Storage Class and Management Class constructs, making data set
management from a Db2 point of view much more efficient and optimized.

UTIL_TEMP_STORCLAS: The default value of blank indicates that the shadow data sets are to
be defined in the same storage class as the production page set.
Chapter 7. Db2 DSNZPARMs for utilities 65

Table 7-4 ZPARMS affecting RUNSTATS

7.5 ZPARMS affecting IBM FlashCopy operations

Previously, in Db2 V8, with the BACKUP and RESTORE SYSTEM utilities, the utilities started to use
and exploit DASD fast replication, also known as IBM FlashCopy.

In Db2 V9, more enhancements were made to allow individual table spaces or index spaces
to be recovered from a System Level Backup (SLB). Also, Db2 9 provided the backup to be
offloaded to tape. The I/O for physical copying to disk in the background can be reduced by
the use of incremental FlashCopy. Even if incremental FlashCopy is used, the dump to tape is
always a full dump.

Increased availability with new online functions CHECK DATA, CHECK INDEX, and CHECK LOB is
enhanced to run in a SHRLEVEL CHANGE mode. SHRLEVEL CHANGE CHECK DATA (CHECK INDEX and
CHECK LOB) work on a copy of the related table spaces and indexes. The copies (shadows) are
taken by Db2 using the DFSMSdss (ADRDSSU) utility. Integrity checking is done on the shadow
data sets.

REBUILD INDEX can run now in SHRLEVEL CHANGE mode. The REBUILD utility now has a
LOGPHASE when SHRLEVEL CHANGE is specified. There are DRAIN WAIT options similar to REORG
to control the final drain of writers before the index can be made available.

The REPAIR utility has been enhanced so that LOCATE can be run against indexes, index
spaces, and table spaces with SHRLEVEL CHANGE. This does not apply to LOB table spaces.
Starting in Db2 10 and later, Db2 provides FlashCopy Image Copy (FCIC) for copying table
space. The following system parameters affect the use of IBM FlashCopy. Their operations
can be overwritten on utility syntax for the most part (Table 7-5 on page 67).

Parameter Values What it does

STATROLL YES/NO Specifies whether the RUNSTATS utility is to aggregate
the partition-level statistics, even though some parts
might not contain data

STATHIST SPACE/NONE/A
LL/ACCESSPAT
H

 Should inserts and updates be recorded in catalog
history tables

Tip: Consider setting STATROLL to YES, if you have large partitioned table spaces and
indexes: it may help optimizer to choose a better access path.
66 Db2 for z/OS Utilities in Practice

Table 7-5 ZPARMS affecting FlashCopy operations

Parameter Values What it does

COPY_FASTREPLICATION PREFERRED/
REQUIRED/
NONE

PREFERRED - The COPY utility directs
DSS COPY to use fast replication if
possible. If FlashCopy cannot be used, then
DSS uses traditional data movement
methods.
REQUIRED - The COPY utility directs DSS
COPY to only use fast replication, ensuring
that object copies occur as quickly as
possible. This option causes the COPY
utility to fail if FlashCopy cannot be used.
This option might reduce the opportunity for
resource contention and unavailability for
SHRLEVEL REFERENCE copies.
NONE - The COPY utility directs DSS
COPY not to use fast replication. Traditional
data movement methods are be used.

FLASHCOPY_COPY YES/NO Specifies that the COPY utility uses FC
technology when the FLASHCOPY option /
keyword is not specified in the utility control
statement

FLASHCOPY_LOAD YES/NO LOAD utility uses FC technology when the
FLASHCOPY option is not specified in the
control statement – inline copy

FLASHCOPY_REORG_TS YES/NO Inline copy at load phase for REORG –
when not coded on REORG control
statement

FLASHCOPY_REORG_IX YES/NO As above

FLASHCOPY_REBUILD_IX YES/NO Can Rebuild IX use FlashCopy by default
when not specified on the REBUILD INDEX
utility control statement

CHECK_FASTREPLICATIO
N

PREFERRED/
REQUIRED

Specifies the type of replication that
DFSMSdss COPY uses to copy objects to
shadow data sets

REC_FASTREPLICATION NONE/
PREFERRED/
REQUIRED

Should RECOVER utility use FC to recover
from a FlashCopy image copy

FLASHCOPY_PPRC NONE/
PREFERRED/
REQUIRED/
blank

Whether DFSMSdss preserves mirroring
while processing a DB2 utilities request
Whether the target device pair is allowed to
go to duplex pending state

FCCOPYDDN HLQ.&DB..&SN..
N&DSNUM..&UQ.

Template for the output VSAM data set
name for any FlashCopy image copy.

Tip: Consider (depending on if you are considering data set level FCIC or SYSTEM LEVEL
BACKUP) enabling FlashCopy through utility syntax. When, and if, you are using FlashCopy
backups everywhere, update the ZPARMS to match your criteria.
Chapter 7. Db2 DSNZPARMs for utilities 67

7.6 ZPARMS affecting BACKUP and RESTORE SYSTEM

Starting in Db2 12, COPY_FASTREPLICATION is a new subsystem parameter to specify whether
fast replication is required, preferred, or not needed during the creation of a FlashCopy image
copy by the COPY utility. This new parameter was necessary because the creation of a
FlashCopy image copy by the COPY utility used a default of FASTREP (PREF) (fast replication
preferred) and no options to override existed.

In addition, the system-level backup supports multiple copy pools in which you can keep,
extra system level backups on disk during upgrades. Also, an alternate copy pool includes the
same defined set of storage groups as the standard copy pool. However, different backup
storage groups are specified.

To use an alternate copy pool, specify the ALTERNATE_CP option and the related backup
storage group options (DBBSG and LGBSG) on the BACKUP SYSTEM utility control statement:

� DBBSG refers to the backup storage group name for the database copy pool. It can be up to
eight characters and must be defined to DFSMS with the COPY POOL BACKUP attribute.

� LGBSG refers to the backup storage group name for the log copy pool. It can be up to eight
characters and must be defined to DFSMS with the COPY POOL BACKUP attribute

And now, also starting in Db2 12, the FLASHCOPY_PPRCP keyword is added to RESTORE SYSTEM
and the RECOVER utilities, enabling you to control the preserve mirror option for the Db2
production volumes during FlashCopy operations when the recovery base is a system-level
backup. FLASHCOPY_PPRCP also applies to the RECOVER utility that uses a FlashCopy image
copy as a recovery base (Table 7-6).

Table 7-6 ZPARMS affecting BACKUP and RESTORE SYSTEM operations

Parameter Values What it does

SYSTEM_LEVEL_BACK
UPS

YES/NO Enables the RECOVER utility to use SLB as input for
object-level recoveries.

RESTORE_RECOVER_
FROMDUMP

YES/NO Specifies if RESTORE SYSTEM and RECOVER can use
SLB dump on tape as input for recovery. Yes: use tape. No:
use only disk.

UTILS_DUMP_CLASS_
NAME

Name of the DFSMShsm DUMP CLASS for BACKUP
SYSTEM dump to tape.

RESTORE_TAPEUNITS NOLIMIT/
1-255

The number of tape drives RESTORE SYSTEM allocates
for restore from dump.

ALTERNATE_CP If left blank, BACKUP SYSTEM uses the standard copy
pool only.
If not blank, BACKUP SYSTEM uses the specified copy
pool as the alternate copy pool for system-level backups.
BACKUP SYSTEM alternates between using the standard
copy pool and the alternate copy pool for system-level
backups.

UTIL_DBBSG The name of a backup DFSMS storage group to be used by
the BACKUP SYSTEM utility for the database copy pool.

UTIL_LGBSG The name of a backup SMS storage group to be used by the
BACKUP SYSTEM utility.
68 Db2 for z/OS Utilities in Practice

7.7 ZPARMS affecting the RECOVER utility

ZPARMS affecting the RECOVER are shown in Table 7-7.

Table 7-7 ZPARMS affecting the RECOVER utility

7.8 ZPARMS affecting the CHECK utility

ZPARMS affecting the CHECK utility are shown in Table 7-8.

Table 7-8 ZPARMS affecting the CHECK utility

UTILS_HSM_
MSGDS_HLQ

The high-level qualifier for data sets to be allocated by the
Db2 BACKUP SYSTEM and RESTORE SYSTEM utilities in
order to receive messages from IBM Hierarchical Storage
Management (HSM) and IBM Data Facility Data Set
Services (DFDSS). These messages will be included for
diagnostic purposes in Db2 utility SYSPRINT DD output.

Note: For ALTERNATE_CP, BACKUP SYSTEM checks the BSDS to determine whether the
standard copy pool or alternate copy pool was used for the most recent system-level
backups. The ALTERNATE_CP value applies to both the database copy pool and the log copy
pool, if one is specified.

For UTILS_HSM_MSGS_HLQ: This high-level qualifier must also be registered in HSM through a
SETSYS command. Data sets that use this high-level qualifier are defined and populated by
HSM and DFDSS during BACKUP SYSTEM and RECOVER SYSTEM processing, then allocated by
Db2 and the content written to the utility’s SYSPRINT DD. Db2 does not delete the data set .

Parameter Values What it does

REC_FASTREPLICATION REQUIRED/
PREFERRED/
NONE

REQUIRED - The RECOVER utility forces use of FlashCopy when
performing recovery from a FlashCopy image copy, to ensure that
recovery occurs as quickly as possible. However, this option will
cause RECOVERY to fail if FlashCopy cannot be used.
PREFERRED - The RECOVER utility uses FlashCopy only if
FlashCopy support is available.
NONE - The RECOVER utility will use standard input/output to
restore the FlashCopy image copy. This setting is not permitted
when the FLASHCOPY_PPRC parameter is set to PREFERRED or
REQUIRED.

Parameter Values What it does

CHECK_SETCHKP YES/NO Specifies whether the CHECK DATA and CHECK LOB
utilities are to place inconsistent objects in CHECK
PENDING

CHECK_
FASTREPLICATION

PREFERRED
/REQUIRED

 Specifies which DSS COPY option is used to shadow the
data sets during CHECK processing
Preferred – If FC is available, then DSS COPY will use it
Required – Forces DSS COPY to use FC – will fail if FC is
not avail
Chapter 7. Db2 DSNZPARMs for utilities 69

7.9 ZPARMS affecting the REORG utility

Starting in version 12, Db2 now avoids leaving the page set in COPY-pending when the REORG
utility is run to create an inline FlashCopy with no sequential inline image copy and FlashCopy
fails. If FlashCopy runs unsuccessfully, the REORG completes with a return code of 8
(Table 7-9).

Table 7-9 ZPARMS affecting the REORG utility

Note: There is no impact if the CHECK utilities are running in mode SHRLEVEL CHANGE
because the utilities are running on a shadow copy and a restrictive state is not set in this
mode.

Parameter Values What it does

REORG_LIST_
PROCESSING

PARALLEL
/SERIAL

This parameter controls the PARALLEL option for REORG.
Used during LISTDEF processing
PARALLEL = PARALLEL YES (when not specified on
REORG TS)
SERIAL = PARALLEL NO (when not specified on REORG
TS)

REORG_IGNORE_
FREESPACE

YES/NO Controls whether DB2 ignores the PCTFREE and
FREEPAGE values that are defined for PBG table spaces
in these situations
YES = DB2 will use 0

REORG_PART_SORT
_NPSI

AUTO/
YES/NO

AUTO - Specifies that if sorting all keys of the
non-partitioned secondary indexes improves the elapsed
time and CPU performance, all keys are sorted.
YES - Specifies that if sorting all keys of the
non-partitioned secondary indexes improves the elapsed
time, all keys are sorted.
NO - Specifies that only keys of the non-partitioned
secondary indexes that are in the scope of the REORG are
sorted.

REORG_MAPPING_
DATABASE

Default DB for mapping table for SHRLEVEL CHANGE
REORG
Blank – denotes an implicitly defined database will be used
Or 8 byte DB name

REORG_DROP_PBG
_PARTS

DISABLE/
ENABLE

Specifies whether the REORG utility removes trailing
empty partitions when operating on an entire PBG table
space- Only when running a REORG on the entire PGB
table

TEMPLATE_TIME UTC/
LOCAL

Specifies setting for the TIME option of the TEMPLATE
statement

PARAMDEG_UTIL 0 to 32767 Specified the maximum number of parallel subtasks:
REORG TS, REBUILD INDEX, CHECK INDEX, LOAD and
UNLOAD
0 – no constraints for parallelism
70 Db2 for z/OS Utilities in Practice

7.10 ZPARM affecting object conversion

The default behavior typically applies when the utility control statement does not specify the
RBALRSN_CONVERSION option: Db2 uses the value specified in ZPARM.
UTILITY_OBJECT_CONVERSION and RBALRSN_CONVERSION options to convert existing table
spaces and indexes to 6-byte page format (Table 7-10).

Table 7-10 ZPARM affecting object conversion

Parameter Values What it does

UTILITY_
OBJECT_
CONVERSION

BASIC/
EXTENDED/
NOBASIC/
NONE

Specifies whether DB2 utilities that accept the
RBALRSN_CONVERSION option will convert existing table
spaces and indexes to:
� A 6-byte page format
� A 10-byte page format
� Perform no conversion
Utility parameter is RBALRSN_CONVERSION for LOAD
REPLACE and REBUILD and REORG

Note: Table spaces and indexes that already use extended 10-byte page format cannot be
returned to the 6-byte page format. When this setting is in effect, utilities that specify the
RBALRSN_CONVERSION keyword with BASIC fail. In addition, utilities that specify the
RBALRSN_CONVERSION keyword with NONE when the object is in 6-byte page format fail.
NOBASIC is allowed in this field only if the OBJECT CREATE FORMAT field is set to EXTENDED. If a
value is not specified for RBALRSN_CONVERSION, the RBALRSN_CONVERSION value defaults to
EXTENDED.
Chapter 7. Db2 DSNZPARMs for utilities 71

72 Db2 for z/OS Utilities in Practice

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN DocISBN

REDP-5503-00

®

https://www.facebook.com/IBMRedbooks
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Loading Db2 data
	1.1 Usability functions
	1.1.1 CONSTANT and CONSTANTIF
	1.1.2 IGNORE keyword
	1.1.3 DATE and TIMESTAMP formats
	1.1.4 NUMRECS specification

	1.2 Availability considerations
	1.2.1 RESUME BACKOUT YES
	1.2.2 REPLACE SHRLEVEL REFERENCE
	1.2.3 SHRLEVEL CHANGE
	1.2.4 RESUME YES copy support

	1.3 Performance considerations
	1.3.1 Partition parallelism: Multiple input data sets
	1.3.2 SHRLEVEL NONE or REFERENCE Partition Parallelism: Single DS
	1.3.3 Index parallelism
	1.3.4 SHRLEVEL CHANGE Partition Parallelism: Single input data set
	1.3.5 FORMAT INTERNAL
	1.3.6 DRDA fast load
	1.3.7 zIIP offload

	Chapter 2. Reorganizing Db2 data
	2.1 Availability considerations
	2.1.1 Batch windows
	2.1.2 Switching phase during batch window
	2.1.3 Switch phase while applications are running
	2.1.4 The DRAIN_WAIT, RETURN, and RETRY_DELAY keywords
	2.1.5 Minimizing application failures proper REORG settings
	2.1.6 Recommendation for settings
	2.1.7 Mapping table control (locking contention)

	2.2 Performance considerations
	2.2.1 Parallelism
	2.2.2 SORTNPSI
	2.2.3 Inline copies and flash copies
	2.2.4 CPU and zIIP offload
	2.2.5 DISCARDING rows during REORG
	2.2.6 Sort products

	2.3 Disk space usage and considerations
	2.3.1 Avoiding sorting by unloading by the cluster index
	2.3.2 Avoiding sorting with RECLUSTER NO
	2.3.3 Smaller sorts by reorganizing subsets of partitions

	2.4 Partition by growth table space considerations
	2.4.1 REORG of a part range
	2.4.2 Dropping partitions

	2.5 Partition by range table space considerations
	2.6 Recovery considerations
	2.7 Materialization of pending schema changes
	2.7.1 Converting to universal table spaces

	2.8 Changing a partition boundary
	2.9 Inserting a new partition
	2.10 Altering column data types of lengths

	Chapter 3. Db2 backup and recovery
	3.1 Using the COPY utility
	3.1.1 Sequential copies
	3.1.2 FlashCopy Image Copy – non-sequential

	3.2 Using BACKUP SYSTEM
	3.2.1 FLASHCOPY_PPRCP option

	3.3 Db2 Recovery
	3.3.1 RECOVER using the SCOPE keyword
	3.3.2 MODIFY RECOVERY enhancements

	3.4 BACKUP considerations and tips
	3.4.1 COPY INDEXES
	3.4.2 FlashCopy IC
	3.4.3 CONCURRENT COPY
	3.4.4 Split off active versus non-active objects
	3.4.5 To QUIESCE or not to QUIESCE
	3.4.6 OPTIONS EVENT(ITEMERROR,SKIP)

	Chapter 4. Statistics collection (RUNSTATS)
	4.1 Functional improvements
	4.1.1 Inline statistics parity
	4.1.2 RESET keyword

	4.2 Availability
	4.2.1 INVALIDATECACHE

	4.3 Performance
	4.4 Usability
	4.4.1 PROFILE keyword
	4.4.2 PROFILE keyword and LISTDEF

	Chapter 5. Db2 Real Time Statistics (RTS)
	5.1 RTS overview
	5.1.1 How RTS is collected
	5.1.2 How RTS is externalized
	5.1.3 Where RTS information is stored

	5.2 RTS table SYSIBM.SYSTABLESPACESTATS
	5.2.1 SYSTABLESPACESTATS: Incremental statistics
	5.2.2 SYSTABLESPACESTATS – Columns affected by the REORG utility
	5.2.3 SYSTABLESPACESTATS – Columns affected by the LOAD utility
	5.2.4 SYSTABLESPACESTATS – Columns affected by the COPY utility
	5.2.5 SYSTABLESPACESTATS – columns affected by RUNSTATS utility

	5.3 RTS table SYSIBM.SYSINDEXSPACESTATS
	5.3.1 SYSINDEXSPACESTATS columns affected by the COPY utility
	5.3.2 SYSINDEXSPACESTATS columns affected by the REORG INDEX utility
	5.3.3 SYSINDEXSPACESTATS columns affected by the LOAD utility
	5.3.4 SYSINDEXSPACESTATS columns affected by the REBUILD INDEX utility
	5.3.5 SYSINDEXSPACESTATS columns affected by RUNSTATS

	Chapter 6. Repairability and REPAIR CATALOG
	6.1 REPAIR CATALOG TEST
	6.2 Multi-table tablespaces and version wrapping
	6.2.1 Single table tablespaces
	6.2.2 Multi-table tablespaces

	Chapter 7. Db2 DSNZPARMs for utilities
	7.1 ZPARMs affecting dynamic allocation of data sets
	7.2 ZPARMs affecting utility timeout operations
	7.3 ZPARMs affecting SORT operations
	7.4 ZPARMS affecting RUNSTATS operations
	7.5 ZPARMS affecting IBM FlashCopy operations
	7.6 ZPARMS affecting BACKUP and RESTORE SYSTEM
	7.7 ZPARMS affecting the RECOVER utility
	7.8 ZPARMS affecting the CHECK utility
	7.9 ZPARMS affecting the REORG utility
	7.10 ZPARM affecting object conversion

	Back cover

