
Redpaper

Front cover

How to Use IBM Cloud Object Storage
When Building and Running Cloud
Native Applications

Giri Badanahatti

Aaron Thomas Binford

Charlie Crawford

Daniel Fitzgerald

Vasfi Gucer

Wesley Leggette

Mrudula Madiraju

Daniel Pittner

Joeri Van Speybroek

International Technical Support Organization

How to Use IBM Cloud Object Storage When Building
and Running Cloud Native Applications

August 2018

REDP-5491-00

© Copyright International Business Machines Corporation 2018. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (August 2018)

This edition applies to IBM Cloud Object Storage Version 1.0.

This document was created or updated on November 15, 2018.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors. ix
Now you can become a published author, too! . xi
Comments welcome. xii
Stay connected to IBM Redbooks . xii

Chapter 1. IBM Cloud Object Storage primer . 1
1.1 Learning objectives . 2
1.2 Getting started. 2
1.3 What is object storage?. 2
1.4 Provisioning choices for IBM Cloud Object Storage . 4
1.5 API compatibility . 6
1.6 Security and encryption. 7
1.7 Data ingest and access options . 9
1.8 Next steps . 10
1.9 Other references . 10

Chapter 2. IBM Cloud primer . 11
2.1 Learning objectives . 12
2.2 Getting started. 12
2.3 What is IBM Cloud? . 12

2.3.1 Running apps . 13
2.3.2 Services . 14
2.3.3 Build smarter apps that employ Artificial Intelligence, Machine Learning, and Deep

Learning . 14
2.3.4 Regions and Availability Zones. 15
2.3.5 Account types . 15
2.3.6 Identity and access management . 16
2.3.7 Manage IBM Cloud using the console . 18
2.3.8 Managing IBM Cloud using the command line . 21

2.4 Best practices and documentation . 22
2.5 Next steps . 22
2.6 Other references . 22

Chapter 3. Application design and architecture. 23
3.1 Learning objectives . 24
3.2 Getting started. 24
3.3 Implementation . 24
3.4 Next steps . 28
3.5 Other references . 28

Chapter 4. Scaffolding using a Starter Kit . 29
4.1 Learning objectives . 30
4.2 Getting started. 30
4.3 Implementation . 30

4.3.1 Choosing your Deployment. 30
© Copyright IBM Corp. 2018. All rights reserved. iii

4.3.2 Starter Kits . 31
4.3.3 Delivery pipeline . 39
4.3.4 Credential injection from Starter Kits. 42
4.3.5 Adding a service after deployment . 43
4.3.6 Adding an IBM Cloud Object Storage service after deployment 44
4.3.7 Bucket name injection to application. 46
4.3.8 User interface components . 47

4.4 Next steps . 50
4.5 Other references . 50

Chapter 5. Storing metadata in Cloudant . 51
5.1 Learning objectives . 52
5.2 Getting started. 52
5.3 Implementation . 52

5.3.1 IBM Cloud persistency options . 53
5.4 Next steps . 62
5.5 Other references . 62

Chapter 6. Using IBM Cloud Object Storage . 63
6.1 Learning objectives . 65
6.2 Getting started. 65
6.3 Configuration. 65
6.4 Implementation . 66

6.4.1 Step-by-step . 67
6.4.2 Testing the app . 79
6.4.3 The IBM Cloud Object Storage SDK and singlepart versus multipart uploads . . . 80
6.4.4 Using ManagedUpload or TransferManager. 80

6.5 Next steps . 81
6.6 Other references . 81

Chapter 7. Advanced Object Storage integration patterns . 83
7.1 Learning objectives . 84
7.2 Getting started. 84
7.3 Implementation . 84

7.3.1 Uploading data to Cloud Object Storage . 84
7.3.2 Downloading data from Cloud Object Storage . 97
7.3.3 Verifying data integrity . 99
7.3.4 Presigned URLs . 105
7.3.5 Tiers in Cloud Object Storage. 109

7.4 Next steps . 110
7.5 Other references . 111

Chapter 8. Discover insights using Watson Services . 113
8.1 Current architecture . 114
8.2 Learning objectives . 114
8.3 Getting started. 114

8.3.1 Available models. 115
8.3.2 How to use the service . 115
8.3.3 Use cases . 115

8.4 Implementation . 116
8.4.1 Local configuration, tool chains. 116
8.4.2 Provisioning steps for IBM Cloud services . 116
8.4.3 Validation and first use through the API Explorer . 119
8.4.4 Implementation . 124
iv How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

8.4.5 Using Watson Visual Recognition Service with the default classifier 125
8.4.6 Using Watson VR Service with custom classifiers with a single class 127
8.4.7 Using Watson VR Service with a multi-class custom classifier. 134
8.4.8 Deploy front-end code. 147

8.5 Next steps . 150
8.6 Other references . 150

Chapter 9. Performing more advanced functions with machine learning 151
9.1 Introduction to machine learning . 152
9.2 Current architecture . 154
9.3 Learning objectives . 154
9.4 Getting started. 155
9.5 Implementation . 155

9.5.1 Enhance the VR service . 155
9.5.2 Explore more with Watson Studio, including Jupyter Notebooks, Spark, and Object

store . 161
9.6 Next steps . 165
9.7 Other references . 165

Chapter 10. Adding geographic and weather data. 167
10.1 Learning objectives . 168
10.2 Getting started. 168
10.3 Implementation . 168
10.4 Next steps . 176
10.5 Other references . 176

Chapter 11. Managing the application’s users . 177
11.1 Learning objectives . 178
11.2 Getting started. 178

11.2.1 Basic concepts . 179
11.2.2 Prerequisites . 180

11.3 Configuration. 180
11.4 Implementation . 181

11.4.1 Step-by-step . 183
11.5 Next steps . 194
11.6 Other references . 195

Chapter 12. Providing case search . 197
12.1 Learning objectives . 198
12.2 Getting started. 198
12.3 Implementation . 198
12.4 Next steps . 202
12.5 Other references . 202

Chapter 13. Running your web application in the Cloud. 203
13.1 Learning objectives . 204
13.2 Getting started. 204
13.3 Implementation . 204

13.3.1 Internet Services for application security . 204
13.3.2 Domain Name System . 205
13.3.3 Web Application Firewall. 206
13.3.4 Global Load Balancer . 206
13.3.5 Setting auto-scaling policies . 207
13.3.6 Splitting the application into subdomains . 207
 Contents v

13.3.7 Managing network traffic by using an Ingress resource 207
13.3.8 Content Delivery Network . 210
13.3.9 Multi Region application with Internet Services. 211
13.3.10 Configuring end-to-end health checks . 213
13.3.11 Improving visibility by analyzing logs and monitoring application health. 214

13.4 Next steps . 215
13.5 Other references . 215

Related publications . 217
IBM Redbooks . 217
Online resources . 217
Help from IBM . 219
vi How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2018. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Aspera®
Bluemix®
CICS®
Cleversafe®
Cloud Object Storage System™

Cloudant®
DB2®
IBM®
IBM Cloud™
IBM Watson®

MVS™
Redbooks®
Redpaper™
Redbooks (logo) ®
Watson™

The following terms are trademarks of other companies:

SoftLayer, are trademarks or registered trademarks of SoftLayer, Inc., an IBM Company.

The Weather Company, Weather Insights, are trademarks or registered trademarks of TWC Product and
Technology LLC, an IBM Company.

ITIL is a Registered Trade Mark of AXELOS Limited.

Microsoft, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redpaper™ publication presents a series of tutorials for cloud native developers
just getting started with IBM Cloud™ and IBM Cloud Object Storage. Within the context of a
car insurance application, this paper presents an introductory series of linked modules that
allow developers unfamiliar with either IBM Cloud or cloud native development to get started
with application development using IBM starter kits. This allows you to become familiar with
the types of services available on IBM Cloud, and to develop a sense of which patterns and
choices are appropriate for different use cases.

Some of the technologies and products covered in this book are Cloudant®, Watson™
Analytics, machine learning, elastic search, Kubernetes, containers, pre-signed URLs,
Aspera®, and SQL Query. In addition to the technical integration steps, it also presents a
business case for integrating these technologies and products with IBM Cloud Object
Storage.

The target audience for this paper is cloud native developers and cloud object storage
specialists.

Authors

This paper was produced by a team of specialists from around the world working at the
International Technical Support Organization, Austin Center.

Badanahatti Giri is a System Architect within the IBM Cloud
Object Storage Alliance Integration Team. He has around 20
years of technology experience split between
Telecommunications and Storage. He is passionate about
finding new solutions and integrations with IBM Cloud Storage.

Aaron Thomas Binford is a System Architect with the IBM
Cloud Object Storage Alliance Integration Team. He has 15
years of experience, including Information Technology
architecture, DevOps engineering, and concurrent/distributed
systems development.
© Copyright IBM Corp. 2018. All rights reserved. ix

Charlie Crawford is a Senior Software Developer within the
Data Services Center of Competency team. He has over 18
years of experience, ranging from quality assurance,
development, Watson AI, and IBM Cloud.

Daniel Fitzgerald is a sales engineer working for IBM Cloud
with a wide range of experience across many industries and a
background in software development. Daniel helps clients to
build Cloud native apps and employ DevOps practices and
tools across their software development lifecycle. In his
previous role, he worked as a DevOps engineer on the
Customer Information Control Systems (CICS®) product at the
IBM Hursley development lab.

Vasfi Gucer is an IBM Technical Content Services Project
Leader with the Digital Services Group. He has more than 20
years of experience in the areas of systems management,
networking hardware, and software. He writes extensively and
teaches IBM classes worldwide about IBM products. His focus
has been primarily on cloud computing, including cloud storage
technologies for the last six years. Vasfi is also an IBM Certified
Senior IT Specialist, Project Management Professional (PMP),
IT Infrastructure Library (ITIL) V2 Manager, and ITIL V3 Expert.

Wesley Leggette is responsible for Architecture and
Development Enablement for IBM Cloud Object Storage. He is
a Master Inventor and has over 500 issued and pending
patents relating to dispersed and cloud storage. He previously
worked at Cleversafe®, Inc. until 2006 when the
Chicago-based startup was acquired to form the basis of the
IBM Cloud Storage offering. He plays a key role in integrating
IBM Cloud Object Storage into the IBM Cloud experience.

Mrudula Madiraju is an Advisory Software Engineer in IBM
India. She has a lot of experience in global services delivery
model for customer projects, on-premises big data product
development, and big data cloud platform development. In her
most recent role, she works as a customer consultant with
focus on working with key focus on S3 object store. Previously
she worked as the Senior TechLead in the Cluster Provisioning
Dev team on Hadoop & Spark Service on the Cloud.
x How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Thanks to the following people for their contributions to this project:

Ernest Keenan
IBM Technical Content Services, Austin Center

Dawn McKenna, Laura Noonan, Michael Factor, Michael J Fork, Mike Lamb, Naeem Altaf,
Ramin Rouzbeh, Riz Amanuddin
IBM US

Torsten Steinbach
IBM Germany

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Daniel Pittner is a software architect working for IBM Cloud
SQL query with a strong focus on cloud native engineering and
DevOps. He has over 10 years of experience as a full-stack
engineer and architect building software and delivery
automation ranging from cloud native services over enterprise
content management systems to unstructured archiving
solutions. In a previous role, he was an architect for Box Relay,
a joint offering between Box and IBM.

Joeri Van Speybroek is a Cloud Storage Architect within the
EU IBM Cloud Object Storage Technical Sales team. As a
storage enthusiast, he likes to pursue the evolution of
enterprise storage and help clients to enhance their storage
architectures. He has experience in block, file, and object
storage architectures where he tries to provide the best fit for
any environment/application in an on-premises, off-premises,
and hybrid design. His main interest is to detect/create object
storage use-cases to enable/convince clients to offload their
installed systems to the IBM Cloud Object Storage platform.
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks® publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xii How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. IBM Cloud Object Storage primer

This series of tutorials explains how to build a cloud-native web application on IBM Cloud. You
will be building a consumer-facing Insurance application. This application will use IBM Cloud
Object Storage, and will also employ AI and machine learning to provide a unique digital
experience for a customer.

This module explains what object storage is, and how and why you should use it.

This chapter includes the following sections:

� Learning objectives
� Getting started
� What is object storage?
� Provisioning choices for IBM Cloud Object Storage
� API compatibility
� Security and encryption
� Data ingest and access options
� Next steps
� Other references

1

Note: These modules build on each other, so you should complete all of them in the order
they are presented.
© Copyright IBM Corp. 2018. All rights reserved. 1

1.1 Learning objectives

After completing this module, you will be able to:

� Describe what object storage is.

� Understand when to use object storage, file system, and databases in a cloud native
application.

� Understand the location and resiliency options available in IBM Cloud Object Storage, and
what the tradeoffs are for each resilience option.

� Describe the available IBM Cloud Object Storage tiers.

� Consider IBM Cloud Object Storage security options, including authentication, access
control, and encryption.

� Understand various data ingest options.

1.2 Getting started

Before you begin, sign up for a free IBM Cloud account or if you already have one, sign in.
Note that to leverage the full potential of the sample application that will be presented in this
Tutorial series, you need an IBM Cloud Pay-As-You-Go account. When creating or upgrading
a lite account to a Pay-As-You-Go, IBM Cloud offers a USD 200 credit that can go towards
creating, testing, and enhancing this application.

1.3 What is object storage?

Object storage is a way of organizing large amounts of data (objects) into collections
(buckets) by giving each object an identifying name (object key). Because buckets are
uniquely named, the combination of the bucket name and object key form a Uniform
Resource Identifier (URI). A useful analogy is valet parking: You do not need to know the
space number where the car is parked. You just provide a ticket to the valet and you get your
car back. With object storage, you do not need to know which physical disks or partitions data
is written to and read from. If you know the URI, the system can find your data.

IBM Cloud Object Storage provides a REST-based API that allows applications to directly
access data both within IBM Cloud data centers and over the internet. Object storage is ideal
for unstructured data, such as images and video.
2 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/registration/free/?target=%2Fcatalog%2Fservices%2Fcloud-object-storage
https://console.bluemix.net/
https://console.bluemix.net/registration/free/?target=%2Fcatalog%2Fservices%2Fcloud-object-storage

Object storage can also be used for the storage and query of structured data using Spark,
Hadoop, and IBM SQL Query, as shown in Figure 1-1. This concept is explored in Modules 6,
8, and 9.

Figure 1-1 Object Storage comparison with other storage options1

Unlike a file system or block storage, object storage allows fully atomic writes and overwrites,
not partial modification. This behavior is closer to a database and greatly simplifies
application development.

IBM Cloud Object Storage also provides several multi-AZ regional and even cross-regional
resiliency options. Your application can be deployed redundantly across many locations with
data following along automatically. There is no need for your DevOps team to manage
durability or availability.

File systems are still useful for cloud native development. This series uses ephemeral file
storage as a staging area to process images using a library that requires file storage. By only
using the file system as a temporary storage place, you can avoid having to implement
complex file system synchronization technologies. If you store permanent data in either a
database or object storage, the application’s data is automatically available wherever
instances of the application are deployed.

Unlike a database, object storage does not provide multiple indexes or multi-row and
multi-table transactions. Databases also provide much higher transactional throughput and
can process queries with lower average latencies. However, object storage makes up for
these limitations with scalability and cost. There are no practical limits to the number of
objects that can be stored in a Cloud Object Storage bucket, and object sizes can grow as
large as 10 TB. Per GB per month, object storage can be orders of magnitude cheaper than
databases.

A database can also provide more flexibility transactional capabilities. An ACID-compliant
database can simplify creating a correct application. However, it is worth noting that not all
databases provide transactional capabilities, and there is often good reason to choose one
that does not. In this series, we select IBM Cloudant, based on the open source Couch DB,
as our database.

1 Source: https://www.ibm.com/blogs/cloud-computing/2017/02/01/object-storage-benefits-myths-and-options/
Chapter 1. IBM Cloud Object Storage primer 3

https://en.wikipedia.org/wiki/ACID
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/blogs/cloud-computing/2017/02/01/object-storage-benefits-myths-and-options/

The Cloudant horizontal scaling architecture provides many of the same scalability and
multi-DC resiliency properties as object storage. This feature makes it a good fit for a
scale-out application that has instances running across the globe. However, it has a loose
eventual consistency model that does put some burden on your application to ensure correct
implementation. The cost per GB of Cloudant is also much lower than other databases, but
still much higher than IBM Cloud Object Storage.

It is worth noting that IBM Cloud Object Storage provides a strong consistency model. It
provides read-after-write consistency for all updates in all regions. IBM provides the only
object storage system with immediate strong consistency for cross-region buckets (stored in
multiple geographic regions).

1.4 Provisioning choices for IBM Cloud Object Storage

Information stored with IBM Cloud Object Storage is encrypted and dispersed across multiple
geographic locations. This service uses the distributed storage technologies provided by the
IBM Cloud Object Storage System™ (formerly Cleversafe).

Like other IBM Cloud services, IBM Cloud Object Storage can be provisioned by creating an
IBM Cloud Object Storage service instance. A service instance is an administrative unit that
can be used for access control and for billing separation. One or more buckets can be created
within a service instance. Buckets are created in a specific region, which determines the
physical location and resiliency of objects that are stored in that bucket.

IBM Cloud Object Storage is available with three types of resiliency: Cross Region, Regional,
and Single Data Center:

� Cross Region provides higher durability and availability than using a single region at the
cost of slightly higher latency. This type is currently available in the US and EU.

� Regional service reverses those tradeoffs and distributes objects across multiple
availability zones within a single region. This type is available in several regions across the
globe. If a region or Availability Zone is unavailable, the object store continues to function
without impediment.

� Single Data Center distributes objects across multiple machines within the same physical
location.
4 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

A full list of the current object storage locations and resiliency options can be found in the
Regions and Endpoints documentation. Figure 1-2 shows the tiers for Storage Class.

Figure 1-2 Storage Class tiers

IBM Cloud Object Storage provides several storage class tiers to allow a DevOps team to
optimize costs:

� Standard: For active data that is accessed multiple times a month

� Vault: For less active data that is accessed once a month or less

� Cold Vault: For data accessed several times a year, and needs immediate real-time
access

� Flex: For dynamic data, access frequency varies monthly or for mixed “hot” and “cold”
workloads

IBM Cloud Object Storage also provides an archive policy that can be applied for deep
auxiliary storage for seldom accessed data. It is even more cost effective to store data in the
archive tier, but access times for this archived data can be up to 15 hours. Your application
must be archive aware and must be able to manage restoring objects before access to
effectively use this policy. This series does not examine using archive policy buckets in detail,
but it is worth considering building this capability into your application when applicable.
Chapter 1. IBM Cloud Object Storage primer 5

https://console.bluemix.net/docs/services/cloud-object-storage/basics/endpoints.html#select-regions-and-endpoints

1.5 API compatibility

Most third-party applications that work against AWS S3 can be used against IBM Cloud
Object Storage. In most cases, this feature allows you to migrate your data to the IBM Cloud
using an application.

If you are a developer who is modifying an application written for Amazon S3 to work against
IBM Cloud Object Storage, most S3 API functions remain the same. Additionally, the IBM
Cloud Object Storage software development kit (SDK) is available in Java, Python, and
Node-js. For many applications, the Cloud Object Storage SDK is a drop-in replacement for
the AWS SDK, making it easy for developers to migrate their applications and support Cloud
Object Storage API-specific features.

In this series, we chose JavaScript and Node.js for development. We also use the IBM Cloud
Object Storage Node.js SDK.

For both third-party applications and migrated applications, note the following differences
when provisioning storage and setting up authentication and access control:

� Provisioning: A Bluemix® service instance must be created before buckets can be
created. See Module 2 for more details about how to do this.

� Authentication: For maximum capability, users can provision Cloud Object Storage HMAC
Keys within a service instance. Configuring an application with HMAC keys allows it to use
AWS V4 signature authentication unmodified. However, a fully migrated application should
provide support for OAuth2 API Keys for maximum compatibility.

� Location Constraint: The IBM Cloud regions are different from Amazon AWS regions, and
have different names. The location constraint field also needs to include a storage class
for the bucket and a region code if a storage class other than “standard” is being used.

� Endpoints: The IBM Cloud Object Storage regional and cross region endpoints are
different from Amazon AWS endpoints. Administrators must modify the connection
endpoint in the application to point to a specific IBM Cloud Object Storage endpoint,
depending on where they would like to create a bucket.

� AWS IAM policies and S3 bucket policies: Administrators need to change to IBM Cloud
IAM policies. IBM Cloud IAM policies support both user access control as well as
cross-service and cross-account access control.

� S3 ACLs: S3 ACLs support both Cross-Account Access Control and Anonymous Access:

– Cross-Account Access Control: Administrators need to use IBM Cloud IAM policies to
provide cross-account access control. Applications that manage cross-account access
control and require ACL support to do this must be modified.

– Anonymous Access: Applications that use ACLs to provide anonymous access to
buckets and objects do not need to be modified.

� Versioning: Older versions of an object will not be retained when an application writes new
data. Applications will not be able to list retained object versions.
6 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/docs/services/cloud-object-storage/libraries/java.html#using-java
https://console.bluemix.net/docs/services/cloud-object-storage/libraries/python.html#using-python
https://console.bluemix.net/docs/services/cloud-object-storage/libraries/node.html#using-node-js
https://console.bluemix.net/docs/services/cloud-object-storage/libraries/node.html#using-node-js
https://console.bluemix.net/docs/services/cloud-object-storage/libraries/node.html#using-node-js
https://console.bluemix.net/docs/services/cloud-object-storage/hmac/credentials.html#using-hmac-credentials
https://console.bluemix.net/docs/services/cloud-object-storage/hmac/credentials.html#using-hmac-credentials
https://console.bluemix.net/docs/services/cloud-object-storage/basics/endpoints.html#select-regions-and-endpoints
https://console.bluemix.net/docs/services/cloud-object-storage/basics/classes.html#use-storage-classes
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview

1.6 Security and encryption

Like other services in IBM Cloud, IBM Cloud Object Storage is secured using IBM Identity
and Access Management (IAM). IBM Cloud Object Storage offers integrated support for
policies and permissions. Your DevOps team can set bucket level permissions for users and
your applications. IBM Starter Kits make it easy to configure your application to access your
IBM Cloud Object Storage bucket, as shown in Figure 1-3.

Figure 1-3 Security configuration2

IBM Cloud Object Storage supports both IBM Cloud's native API keys and OAuth2
authentication mechanism, as well as supporting HMAC authentication for third-party
applications and SDKs.

This series also covers user authentication with IBM App ID. It is worth noting the difference
between these two mechanisms. Both use OAuth2 authentication flows. IAM manages
access control between IBM Cloud services, and between your application and the IBM
Cloud services it uses. App ID manages authentication and identity between your application
and users.

See Getting started with IAM and Using HMAC credentials in the IBM Cloud Object Storage
documentation for more information about authentication and access control mechanisms.

2 Source: https://www.ibm.com/blogs/bluemix/2018/02/five-fundamentals-cloud-security/
Chapter 1. IBM Cloud Object Storage primer 7

https://console.bluemix.net/docs/services/cloud-object-storage/iam/overview.html#getting-started-with-iam
https://console.bluemix.net/docs/services/cloud-object-storage/hmac/credentials.html#using-hmac-credentials
https://www.ibm.com/blogs/bluemix/2018/02/five-fundamentals-cloud-security/

Figure 1-4 shows an example configuration of encryption across a network.

Figure 1-4 Encryption across a network

IBM Cloud Object Storage has several options for data encryption.

First, all data is encrypted in transit using TLS 1.2, both between data centers and within data
centers. You should also configure your application to use HTTPS when communicating with
IBM Cloud Object Storage and to your users.

All data stored at rest is encrypted using an encryption mechanism called “SecureSlice”,
which is all-or-nothing encryption. This mechanism encrypts data using a per-segment (a
subset of an object) key before each object segment is erasure coded and stored across
multiple storage nodes across multiple data centers. The exception to this rule is buckets that
are stored in Single Data Center locations. It is not possible to decrypt the data unless a
threshold of slices is recovered.

Additionally, if you would like to manage the keys used for encryption, you have several
options to further enhance security:

� Client-side encryption can be used to encrypt data before it is sent to the storage server.

� Server-side Encryption with Customer-Provided Keys (SSE-C) support allows your
application to provide key material on a per-object basis, allowing IBM Cloud Object
Storage to perform the cryptography. When using SSE-C, IBM Cloud Object Storage only
holds the key material in memory, discarding it as soon as the operation is complete.

� Server-side Encryption with IBM Key Protect (SSE-KP) support allows you or a security
officer to upload or generate key material on IBM Key Protect, a centralized key
management system (KMS) backed by secure FIPS-140-2 Level 2 Hardware Security
Modules. When using SSE-KP, a bucket is linked to an encryption key in Key Protect, with
access controlled from a central dashboard. Unlike SSE-C, besides during initial bucket
setup, SSE-KP is transparent to your application.

See Manage Encryption in the IBM Cloud Object Storage documentation for more information
about these options.
8 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/catalog/services/key-protect
https://console.bluemix.net/docs/services/cloud-object-storage/basics/encryption.html#manage-encryption

1.7 Data ingest and access options

Additionally, applications must be designed to use the most efficient method for transferring
data. When uploading a single object at a time, there are two broad mechanisms for both
upload and download of data.

For writing data (performing a PUT operation using the REST API):

� Objects can be written either as a single part
� Broken up into multiple, smaller chunks of data using multipart upload

Likewise, for reading data (performing a GET operation using the REST API):

� Objects can be read as a single part
� The HTTP Range header can be used to read specific offsets.

Additionally, the IBM Cloud Object Storage SDKs provide a utility to manage uploading one or
more objects at a time. This utility is called ManagedUpload or TransferManager, depending on
the language being used. The ManagedUpload utility can be used to manage transfer of many
objects at once, automatically manage multi-part uploads for files, handle retries during
failures, and provide upload or download transfer status using a callback mechanism. This
utility can make transferring of large amounts of data much easier.

More information about using these various methods in your application is available in
Chapter 7, “Advanced Object Storage integration patterns” on page 83.

Additionally, objects can be managed in the IBM Cloud Object Storage console. The UI allows
you to list, upload, download, and view additional information about objects, as well as
manage buckets and service instances. By default, uploading and downloading objects from
object storage simply uses your built-in web browser download and upload function. This
technique is sufficient for casual uploads of a few files.

IBM Cloud Object Storage also provides built-in integration with Aspera, a high-speed data
transfer service using an optimized transfer protocol that increases throughput in high latency
and packet loss environments. This service is automatically available in the IBM Cloud Object
Storage console, and does not require custom configuration or service provisioning. You can
use Aspera to upload and download data by downloading a browser plug-in.

Aspera is free of charge for ingest, but there is a fee when using Aspera for reading data.

Consider using Aspera in situations where you need to upload large amounts of data. You see
an example of this approach in Chapter 8, “Discover insights using Watson Services” on
page 113 and Chapter 9, “Performing more advanced functions with machine learning” on
page 151, which cover uploading large amounts of training data for storage.

For more information about upload options using the UI and a list of regions where Aspera is
available, see uploading data in the IBM Cloud Object Storage documentation.
Chapter 1. IBM Cloud Object Storage primer 9

https://www.ibm.com/cloud/high-speed-data-transfer
https://console.bluemix.net/docs/services/cloud-object-storage/basics/upload.html#uploading-data

1.8 Next steps

The next module provides a broader overview of IBM Cloud and provides instructions for
setting up your development environment.

This series continues to explore various aspects of IBM Cloud Object Storage, and how to
use it effectively in a cloud-native application:

� Chapter 4, “Scaffolding using a Starter Kit” on page 29: Explore how IBM Cloud Object
Storage integrates with cloud native development and starter kits.

� Chapter 5, “Storing metadata in Cloudant” on page 51: Learn about how IBM Cloud
Object Storage is an ideal repository for database backups.

� Chapter 6, “Using IBM Cloud Object Storage” on page 63: Learn how to order IBM Cloud
Object Storage and how to integrate it into your application as the primary storage for user
uploaded data.

� Chapter 7, “Advanced Object Storage integration patterns” on page 83: Explore some of
the advanced integration patterns mentioned in this module.

� Chapter 8, “Discover insights using Watson Services” on page 113 and Chapter 9,
“Performing more advanced functions with machine learning” on page 151: Using Watson
Visual Recognition and other machine learning tools, learn how to use Object Storage as
a low cost and easy to use part of the machine learning workflow.

1.9 Other references

� IBM Cloud Object Storage docs

https://console.bluemix.net/docs/services/cloud-object-storage/about-cos.html#a
bout-ibm-cloud-object-storage

� IBM Cloud Object Storage API Reference

https://console.bluemix.net/docs/services/cloud-object-storage/api-reference/ab
out-api.html#about-the-ibm-cloud-object-storage-api

� IBM Cloud Object Storage Java SDK

https://console.bluemix.net/docs/services/cloud-object-storage/libraries/java.h
tml#using-java

� IBM Cloud Object Storage Python SDK

https://console.bluemix.net/docs/services/cloud-object-storage/libraries/python
.html#using-python

� IBM Cloud Object Storage Node.js SDK

https://console.bluemix.net/docs/services/cloud-object-storage/libraries/node.h
tml#using-node-js

� IBM Key Protect docs

https://console.bluemix.net/catalog/services/key-protect

� IBM Aspera high speed data transfer product information

https://www.ibm.com/cloud/high-speed-data-transfer
10 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/docs/services/cloud-object-storage/api-reference/about-api.html#about-the-ibm-cloud-object-storage-api
https://console.bluemix.net/docs/services/cloud-object-storage/about-cos.html#about-ibm-cloud-object-storage
https://console.bluemix.net/docs/services/cloud-object-storage/libraries/java.html#using-java
https://console.bluemix.net/docs/services/cloud-object-storage/libraries/python.html#using-python
https://console.bluemix.net/docs/services/cloud-object-storage/libraries/node.html#using-node-js
https://console.bluemix.net/catalog/services/key-protect
https://www.ibm.com/cloud/high-speed-data-transfer

Chapter 2. IBM Cloud primer

Welcome to part two in this tutorial series! This series explains how to build a cloud-native,
consumer-facing Insurance application on IBM Cloud. This application is built according to
best practices, uses IBM Cloud Object Storage at its core, and employs AI and machine
learning to provide a unique digital experience for a customer.

This module explains what the IBM Cloud is, and how and why you would use it. IBM Cloud is
a broad platform with many capabilities that are impossible to cover in such a short time. For
this reason, this paper includes plenty of references and additional reading should you be
interested in researching a topic in more depth.

This module contains the following sections:

� Learning objectives
� Getting started
� What is IBM Cloud?
� Best practices and documentation
� Next steps
� Other references

2

© Copyright IBM Corp. 2018. All rights reserved. 11

2.1 Learning objectives

After completing this module, you will be able to:

� Describe the components that make up the IBM Cloud.
� Choose the correct compute models for your use case.
� Describe the services that are available in IBM Cloud.
� Use the IBM Cloud command line interface to administer your account.

2.2 Getting started

Before you begin, sign up for a free IBM Cloud account, or, if you already have one, sign in.
Note that to leverage the full potential of the sample application that will be presented in this
Tutorial series, you need an IBM Cloud Pay-As-You-Go account. When creating or upgrading
a lite account to a Pay-As-You-Go, IBM Cloud offers a USD 200 credit that can go towards
creating, testing, and enhancing this application.

2.3 What is IBM Cloud?

IBM Cloud is a platform that combines Platform-as-a-Service (PaaS) and
Infrastructure-as-a-Service (IaaS) with a rich catalog of services that can be easily integrated
with your data to rapidly build applications.

Developers can use IBM Cloud to access a wide range of services and run times from the
open source community, IBM, and third parties to build apps using a polyglot programming
approach, as shown in Figure 2-1.

Figure 2-1 Available services
12 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://console.bluemix.net/registration/free/?target=%2Fcatalog%2Fservices%2Fcloud-object-storage
https://console.bluemix.net/registration/free/?target=%2Fcatalog%2Fservices%2Fcloud-object-storage

With IBM Cloud, you no longer need to make large investments in hardware and software to
take an idea from the drawing board to a globally distributed production environment. This
system can include compute, network, and storage infrastructure; open source platform
services and containers; and software tools and services from IBM.

2.3.1 Running apps

IBM Cloud provides various ways for you to run your apps:

� Writing a web or mobile app? Choose Cloud Foundry, the immensely popular open source
app platform to help you seamlessly deploy and scale your code.

� Need more flexibility over your apps deployment and want to use industry-standard tools
like Docker and Kubernetes? Use the IBM Cloud Container Service, a container-based
platform hosted on IBM Cloud, to run your Docker containers.

� Do you want to write fine-grained services that run in response to events and only charge
you for the time they are being run, all without having to manage any infrastructure?
Choose IBM Cloud Functions.

Developers often combine all of these platforms to help them create amazing things.

IBM Cloud is not just for cloud-native workloads. Virtual and bare metal servers are also
available when you need more flexibility and control over your infrastructure or network.
These servers work well for scenarios where you want to move an existing application to the
cloud or deploy a piece of off-the-shelf software. Figure 2-2 shows the available options in
IBM Cloud to run your applications.

Figure 2-2 Available options in IBM Cloud to run your applications
Chapter 2. IBM Cloud primer 13

2.3.2 Services

You can access a catalog of 180+ services from the open source community, IBM, and third
parties such as New Relic, SendGrid, and Twilio. You can use these services as the building
blocks of your app to get to market faster at a lower cost. Most come “as-a-service,” meaning
that you do not need to manage infrastructure or be an expert in configuring a service to use
it in your application.

� Application services: Access message queues, maps, VoIP, content management,
email-as-a-service, and so on.

� Blockchain: Simplify developing, governing, and operating an IBM Blockchain network
with Hyperledger fabric hosted on the IBM Cloud.

� Data and Analytics: Use fully managed SQL, NoSQL, big data, caching, and streaming.
Includes open source applications from Spark, Hadoop, Mongo, Redis, and IBM such as
DB2® and Cloudant.

� DevOps: Provides alerts, monitoring, CI/CD, pipelines, logging, and third-party services
such as New Relic, Load Impact, and BlazeMeter. You can also use your own DevOps
toolchains and integrate with your APIs.

� Infrastructure: Provision virtual machines and bare metal servers, application and global
load balancers, subnets and VLANs, WAF and DDoS, and Content Distribution Network.

� Storage: Set up object, block, and file storage.

� Security: Manage encryption keys, certificates, capture audit trails and logs, and secure
your apps against an enterprise directory.

� Watson: Build chatbots; extract insight from images, text, voice, and video; translate
languages; analyze sentiment; build your own custom models; and use
Deep-Learning-as-a-Service.

2.3.3 Build smarter apps that employ Artificial Intelligence, Machine Learning,
and Deep Learning

Watson is a collection of services that employ AI, ML, and DL techniques to extract insight
from language, speech, vision, and data. You can combine these services together to build
applications that understand, reason, learn, and interact with humans through unstructured
data like imagery and language, just like humans do. Figure 2-3 shows the available services
from IBM Watson®.

Figure 2-3 IBM Watson features
14 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Each of these services provides an API to interact with so you can incorporate them into your
apps. Many of these services also provide tools such as web interfaces to help you build and
train models. For example, Watson studio gives you tools to train custom visual recognition
classifiers, and Conversation provides an interface to create dialog trees that will become a
digital assistant.

One of the stated goals of IBM Watson is to democratize AI and make it available to
developers who have not studied statistics or learned a language like Python or Scala. IBM
also recognizes that in many cases, the professionals who have the domain expertise to train
a machine learning model are not computer scientists. For this reason, it is important to
provide tools to connect these experts with AI technology.

2.3.4 Regions and Availability Zones

An IBM Cloud region is a defined geographical territory that you can deploy your apps to. You
can deploy your apps to the region that is nearest to your customers to get low application
latency. To address security issues, you can also select the region where you want to keep
the application data. When you build apps in multiple regions, if one region becomes
unavailable, the apps that are in the other regions continue to run.

Within these regions, there are Availability Zones that are logically isolated data centers with
independent power and networks. Most major zones are made up of at least three Availability
Zones. Traffic within a zone has ultra-low latency. Figure 2-4 shows the locations of the data
centers.

Figure 2-4 Available data centers

2.3.5 Account types

There are three types of IBM Cloud accounts:

� Free
� Pay-Go
� Subscription
Chapter 2. IBM Cloud primer 15

When you signed up for your IBM Cloud account, you got a Free account. This type of
account is available without a fee and gives you a capped amount of capacity to run apps and
services. Many of the services in the catalog have a Lite plan that you can use without a fee
for evaluation purposes. Services provisioned under the Lite plan should not be used for
development or production scenarios because they do not have sufficient capacity.

You can convert your account to a Pay-Go account by adding a credit card. This account type
allows you to create services that cost money. Your credit card will be billed monthly based on
your usage.

Subscription accounts are purchased from IBM by speaking to a sales representative. You
commit to a time period and a monthly fee based on estimates, and in return receive a
discount. Any credit that is not used in one month rolls over to the next until the end of the
subscription term.

2.3.6 Identity and access management

IBM Cloud identity and access management (IAM) enables you to securely authenticate
users for platform services and control access to resources consistently across the IBM
Cloud platform. A set of IBM Cloud services is enabled to use Cloud IAM for access control.
These services are organized into resource groups within your account to give users quick
and easy access to more than one resource at a time.

Cloud IAM access policies are used to assign users and service IDs access to the resources
within your account. You can group a set of users and service IDs into an access group to
easily give all entities within the group the same level of access.

A policy assigns a user or service ID one or more roles with a combination of attributes that
define the scope of access. The policy can provide access to a single service down to the
instance level, or the policy can apply to a set of resources organized together in a resource
group. Depending on the user roles that you assign, the user or service ID will have different
levels of access for completing platform management tasks or accessing a service by using
the UI or performing specific types of API calls.

Note: To leverage the full potential of the sample application that will be presented in this
paper, you need an IBM Cloud Pay-As-You-Go account. When creating or upgrading a lite
account to a Pay-As-You-Go, IBM Cloud offers a USD 200 credit that can go towards
creating, testing, and enhancing this application.

If you do not have an IBM Cloud account, start your free trial to sign up for an IBMid and
create your IBM Cloud account. Then, upgrade it to a Pay-As-You-Go Account by adding a
credit card to take advantage of the USD 200 credit offer.
16 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/docs/account/resourcegroups.html
https://console.bluemix.net/docs/iam/groups.html
https://console.bluemix.net/docs/iam/serviceid.html#serviceids
https://console.bluemix.net/docs/iam/users_roles.html#iamusermanrol
https://console.bluemix.net/registration/free/?target=%2Fcatalog%2Fservices%2Fcloud-object-storage

Figure 2-5 shows the access control process flow.

Figure 2-5 Access control diagram

For services that do not support creating Cloud IAM policies for managing access, you can
use Cloud Foundry access.

Later in the series, we will be creating IAM policies to give users and apps access to IBM
Cloud resources.
Chapter 2. IBM Cloud primer 17

https://console.bluemix.net/docs/iam/cfaccess.html#cfaccess

2.3.7 Manage IBM Cloud using the console

The primary way that you access IBM Cloud (at least at first) will be using the console. It is
available at the IBM Cloud website. The console gives you the following views:

� Overview of your resources (Figure 2-6)

Figure 2-6 Dashboard to view your IBM Cloud resources
18 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/

� Catalog window (Figure 2-7)

Figure 2-7 Catalog view to create services

� Configuring and managing services dashboard (Figure 2-8)

Figure 2-8 Dashboard to configure and manage services
Chapter 2. IBM Cloud primer 19

� Documentation (Figure 2-9)

Figure 2-9 Documentation

� Monitoring support tickets (Figure 2-10)

Figure 2-10 Support tickets
20 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

2.3.8 Managing IBM Cloud using the command line

IBM Cloud offers a command line interface that allows you to manage all aspects of the
platform. You should download and install it now. The CLI uses plug-ins that can be added to
the CLI to work with different aspects of the platform.

To test the CLI, complete these steps:

1. Log in to the CLI. If you are using a federated ID, you must add the -sso flag.

$ bx login

> Choose your API endpoint - 4. us-south - https://api.ng.bluemix.net
> Enter the email you used to sign up for your IBM ID
> Enter the password you used when you signed up for your IBM ID
> Choose your account

2. Explore all the possible commands that you can run with the CLI:

$ bx

3. Now you need to target an IBM Cloud organization. An organization is a way of logically
dividing your IBM Cloud account into distinct areas, each with its own quota and set of
users. Target an IBM Cloud organization:

$ bx account orgs

Select an organization from the list:

$ bx target -o <org_name>

4. List the spaces within your organization. An organization can be further divided into
spaces that can contain apps and services. For example, you might divide an organization
into spaces for environments such as dev, test, and production. Target a space in the
organization:

$ bx account spaces

5. Choose a space:

$ bx target -s <space_name>

6. List the available services in the catalog:

$ bx service offerings

7. Create a Cloudant NoSQL DB instance:

$ bx service create cloudantNoSQLDB Lite my-cloudant

8. Create a service key for Cloudant:

$ bx service key-create my-cloudant my-cloudant-keys

9. Show the Cloudant service keys:

$ bx service key-show my-cloudant my-cloudant-keys

The IBM Cloud CLI uses a plug-in architecture to add additional services. For example, if you
want to manage an IBM Containers cluster or deploy a Cloud Functions action, you can install
the plug-in by completing these steps:

1. List the available plug-ins:

$ bx plugin repo-plugins -r Bluemix

2. Install the Cloud Functions plug-in from the repo:

$ bx plugin install cloud-functions -r Bluemix
Chapter 2. IBM Cloud primer 21

https://console.bluemix.net/docs/cli/reference/bluemix_cli/download_cli.html#download_install

You have now installed the IBM Cloud command line and added a plug-in that allows you to
work with Cloud functions. You can install more plug-ins to work with Containers, Cloud
Foundry, and so on.

2.4 Best practices and documentation

When building a solution, it is always useful to have guidance and best practices to hand. For
more information, see the following resources:

� IBM Cloud Documentation: Documentation for all 180+ services and tutorials, best
practices, and tips for setting up your account and administering the platform

� IBM Cloud Architecture center: Best practices, code samples, videos, and so on from
experts across IBM, captured from years of building and operating cloud solutions

� IBM Cloud solution tutorials: A range of end-to-end tutorials on everything from deploying
a LAMP stack to analyzing and visualizing data using Apache Spark

2.5 Next steps

The next module introduces the application that you will build over the course of the series.

2.6 Other references

Here are some useful links for further reading:

� IBM Cloud docs

https://console.bluemix.net/docs/

� IBM Cloud Architecture Center

https://www.ibm.com/cloud/garage/architectures/

� IBM Cloud Garage Method

https://www.ibm.com/cloud/garage/#changeHowYouWorkSection

� IBM Cloud Solution Tutorials

https://console.bluemix.net/docs/tutorials/index.html#tutorials
22 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/docs
https://www.ibm.com/cloud/garage/architectures/
https://console.bluemix.net/docs/tutorials/index.html#tutorials
https://console.bluemix.net/docs/
https://www.ibm.com/cloud/garage/architectures/
https://www.ibm.com/cloud/garage/#changeHowYouWorkSection
https://console.bluemix.net/docs/tutorials/index.html#tutorials

Chapter 3. Application design and
architecture

Welcome to part three in this tutorial series! This series explains how to build a cloud-native,
consumer-facing Insurance application on IBM Cloud that is built according to best practices.
It uses IBM Cloud Object Storage at its core, and employs AI and machine learning to provide
a unique digital experience for a customer.

We have chosen this example because most people are familiar with filing claims after an
automobile accident and can easily relate to the steps involved. Another important point is
that the scenario is broadly applicable to many other industries and areas. Therefore, it is a
good example of how to apply IBM Cloud Object Storage to case management solutions that
involve large data assets can be cost effectively stored in IBM Cloud Object Storage.

This chapter includes the following sections:

� Learning objectives
� Getting started
� Implementation
� Next steps
� Other references

3

© Copyright IBM Corp. 2018. All rights reserved. 23

3.1 Learning objectives

After completing this module, you will be able to:

� Describe the architecture of the claims application.
� Explain the scenario implemented and how the application adds value.
� Describe the different IBM Cloud services used in the architecture of this application.
� Identify how each service adds value for the particular use case.

3.2 Getting started

Before beginning this module, be sure to complete Chapter 2, “IBM Cloud primer” on
page 11.

3.3 Implementation

At the beginning of the claim process, an automobile accident occurs and the insured person
submits a claim for compensation. Along with submitting their loss notice, the customer
typically includes additional documentation such as pictures of the damage and sketches of
the road layout. In the past, this claim would be done by filling out a paper document. In
today's world, the notice can occur through a phone call, an online form, a mobile app, or
several other methods.

Automobile accidents can range from a single car fender-bender to a serious incident
involving loss of life and criminal charges. They can also involve financial fraud if they include
false information.

Although the notice can be received through various electronic channels, many steps in the
processing of claims are still manual.

The goal of Insurance Company X's claims application is to automate many of these steps
with AI to assist both customers during claim creation and caseworkers while they are
resolving the cases. Insurance X also wants to create a scalable and cost-effective solution
that can serve as a base for future innovation.

Each claim is different, even though the incidents and characteristics of the claims might be
similar. Which activities are needed for each claim depends on the details of the claim.

For a customer, the beginning of this process will always be very similar. The first step is
always to open a case and provide some initial information. This information will typically
include providing pictures of the insured vehicle along with a description of the damage and
what happened. Assisting customers with analyzing image content and adding the location
and weather conditions speeds up the creation of a claim, reduces friction, and improves
customer satisfaction.

For a caseworker processing the claim after it has been submitted, the following information
can be provided to assist the resolution of the claim:

� Are all necessary pictures of the insured car provided (front/left/right/back)?
� At which location did the accident happen?
� What was the weather like when the accident happened?
� What is the estimated cost for repair?
24 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

In addition, the application can detect suspicious items in the data provided to assist with
fraud detection:

� Have the pictures been taken at the place that the accident happened?

� Are all pictures showing the actual car of the insured person?

� Is the weather described consistent with the weather recorded at that time (such as for a
hailstorm damage claim)?

� Do the pictures match other pictures of the same car from previous claims?

You can identify other areas where AI services can provide value and speed up the process,
lower error rates, and support fraud detection.

Scenario:

Alice is driving on a roadway in a snow storm when her car strikes a large object. Although
she is not hurt, her car is too damaged to drive. The police arrive, and a tow truck is
dispatched. When Alice files the claim with the Insurance X web application, she is prompted
to provide pictures of her car from all four angles and a short description of what happened.
When she adds the pictures, the angle is automatically detected along with other details
about the location and weather, and the car is matched against the cars assigned to her
account so that she can quickly complete the claim.

The claim is assigned to Insurance X employee Bob, who checks the claim details populated
by the system. Because all of the details provided by Alice match the information extracted,
the system sets the flag for possible fraud to false and suggests that Bob approve proceeding
with getting an estimate for the repair.
Chapter 3. Application design and architecture 25

Solution:

The architecture of the solution that enables these scenarios is guided by both the functional
requirements and non-functional requirements such as deployment into multiple regions
around the globe and down-time-free deployments, as shown in Figure 3-1.

Figure 3-1 Solution architecture

At the core, the application consists of a Node.js based UI and API microservice that run in
Docker containers deployed in one or more IBM Container Service clusters.

We use Node.js because it allows code to be shared between the front end and back end, as
well as easily enabling advanced techniques such as server-side rendering. Because we are
focusing on integrating with IBM Cloud Object Storage and other services in this tutorial, we
are not using some of the more advanced Node.js patterns and technologies like Webpack,
React, Babel, Redux, Responsive Design, and Backend for Frontend that you would see in a
production service.

To keep things simple, we use Bootstrap.js to build the front end as single-page application
(SPA) that serves users. This application allows users to add new claims and list existing
claims.

Images that are uploaded as part of a claim are normalized to a fixed set of dimensions and
then stored in both original and normalized variants in IBM Cloud Object Storage
cross-regional buckets to provide cost-effective, resilient, long-term storage of data. We use
the normalized version of images for all of the processing, while still keeping the original
image for reference and audit purposes.
26 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Claim related metadata is stored in IBM Cloudant, which is a schema free JSON document
store. By using Cloudant and continuous replication, you can spread the application
throughout multiple geographically dispersed regions, while still running in an active-active
mode. Because every node in a Cloudant cluster can write, the global state of a database is
eventually consistent, but not immediately.

The schema free nature of Cloudant allows you to easily and quickly enhance the claim data
model to quickly increase the value delivered by the claims application.

An example of such integration is metadata extracted from images or the integration of other
Watson services, such as visual recognition, machine learning, and weather data.

Claim metadata for finalized claims is archived to IBM Cloud Object Storage for long-term
storage and analytics. By using IBM SQL query, data scientists can use ANSI SQL to gain
insight from previous claims. Furthermore, we are enabling the use of other Watson Studio
services like Notebooks.

Authentication of users is done using IBM App ID. Besides providing a directory integration,
App ID enables the application to support social login by using Facebook or Google with
ease.

We use DevOps toolchain to provide integrated, open, and easily extensible continuous
integration pipeline. Docker images built by the pipeline will be stored in image registry, where
they are scanned for vulnerable packages to prevent known attack vectors and increase
security of the application.

The remaining modules in this series incrementally build this application to implement the
data flow for claims, as shown in Figure 3-2.

Figure 3-2 Data flow for claim creation

Claim creation
Server

Create Claim

Upload Image

Resize Image

Report error

Extract EXIT metadata

Client Server

Cloudant COS Weather Service

Cloudant COS Visual Recognition Weather Service

API ensures/Checks authentication

Create Claim

Claim ID

Store original Image

Detect car

Store normalized image

Objects detected

Analyse Image

Car orientation detected

Append data to claim

Image Metadata, Weather, Location, classification

Claim details

[detected car in image]alt

Obtain weather at image location@time

Client Visual Recognition
Chapter 3. Application design and architecture 27

3.4 Next steps

The next module in this series walks you through creating an initial skeleton application using
IBM Starter Kits. You will also create an initial user interface.

3.5 Other references

� IBM Cloud Tutorials

https://console.bluemix.net/docs/tutorials/index.html#tutorials
28 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/docs/tutorials/index.html#tutorials

Chapter 4. Scaffolding using a Starter Kit

Welcome to part four in this tutorial series! This series explains how to build a cloud-native,
consumer-facing car insurance claim application on IBM Cloud that is built according to best
practices. It uses IBM Cloud Object Storage at its core, and employs AI and machine learning
to provide a unique digital experience for a customer.

This module covers Starter Kits. Many options are available to the reader to build a web
application using the IBM Cloud ecosystem. A Starter Kit is the lowest barrier entry point to
an application developer. The Starter Kit configurator can set up your Cloud native app and
DevOps environment in minutes.

Building a web application with all the supporting DevOps infrastructure on the cloud can be
intimidating. To make application creation easier, IBM Cloud provides IBM Cloud App Service
to help you while building cloud native apps. The IBM Cloud App Service provides starter kits
that walk you through the process of creating a “Hello World” Application with all of the
required resources.

IBM Cloud offers various Starter Kits that cover various languages, frameworks, and tools that
can be applied to insurance application web application.

This chapter includes the following sections:

� Learning objectives
� Getting started
� Implementation
� Next steps
� Other references

4

© Copyright IBM Corp. 2018. All rights reserved. 29

https://console.bluemix.net/developer/appservice/dashboard

4.1 Learning objectives

At the end of this chapter, you will be able to jumpstart a web application with a Starter Kit and
add the resources on the IBM Cloud for the application and deploy it on a cluster.

4.2 Getting started

Before you begin, sign up for a free IBM Cloud account or if you already have one, sign in.
Note that to leverage the full potential of the sample application that will be presented in this
Tutorial series, you need an IBM Cloud Pay-As-You-Go account. When creating or upgrading
a lite account to a Pay-As-You-Go, IBM Cloud offers a USD 200 credit that can go towards
creating, testing, and enhancing this application.

To leverage the full potential of the sample application that will be presented in this Tutorial
series, you need an IBM Cloud Pay-As-You-Go account. When creating or upgrading a lite
account to a Pay-As-You-Go, IBM Cloud offers a USD 200 credit that can go towards creating,
testing, and enhancing this application.

Clone the repository to get the code:

$ git clone https://github.com/IBMRedbooks/IBM-Cloud-Object-Storage-Tutorials
$ cd IBM-Cloud-Object-Storage-Tutorials

If you want to skip ahead, check out the completed code for this module and read along:

$ cd module04

4.3 Implementation

The following sections cover going from an intention to build an application to an actual
working application with all the infrastructure in place, so you can focus on development and
not spend time worrying about the infrastructure.

4.3.1 Choosing your Deployment

IBM Cloud offers Cloud Foundry and Kubernetes PaaS for your web application.

Cloud Foundry allows users to deploy and scale application without manual configuration. For
more information about IBM Cloud Foundry offerings, see the Cloud Foundry website.

IBM Cloud also provides Kubernetes PaaS for an intuitive user experience and built-in
security for rapid delivery of applications. You can bind these applications to cloud services
related to Watson, IoT, DevOps, and Data Analytics. As a certified K8s provider, IBM Cloud
Container Service provides intelligent scheduling, self-healing, horizontal scaling, service
discovery and load balancing, automated rollouts and rollbacks, and secret and configuration
management. This Kubernetes service also has advanced capabilities that provide simplified
cluster management, container security and isolation policies, the ability to design your own
cluster, and integrated operational tools for consistency in deployment. To learn about the
IBM Container Service offering, see the Container Service website.
30 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://www.ibm.com/cloud/cloud-foundry
https://www.ibm.com/cloud/container-service
https://console.bluemix.net/registration/free/?target=%2Fcatalog%2Fservices%2Fcloud-object-storage
https://console.bluemix.net/
https://console.bluemix.net/registration/free/?target=%2Fcatalog%2Fservices%2Fcloud-object-storage

Why Kubernetes
Kubernetes provides the following advantages:

� Better platform utilization, which gives greater control of the platform to developers.
� Kubernetes is open source with wide vendor support.
� Extensible framework. which allows you to add your own extensible components.

4.3.2 Starter Kits

To build Insurance Company X's Web Application, we had several choices. We decided to use
Express.js framework on Node.js as a starting point in this exercise. Express.js has become
the de facto standard server framework for Node.js.

At this point, two Starter Kits are available: Express.js Basic and Express.js Basic with React.
We chose Express.js Basic because it provides the building block on which we can add
components to build a full-fledged application.

Choose the Starter Kit
To select the Starter Kit, complete these steps:

1. Log in to the IBM Cloud and select Web Apps on the console, as shown in Figure 4-1.

Figure 4-1 Selecting Web Apps

Using Cloud Object Storage with Kubernetes: The default storage on Kubernetes
nodes is ephemeral. This type means data is lost when the nodes are rebooted. Using
Cloud Object Storage provides persistent storage to the applications that run on
Kubernetes nodes.
Chapter 4. Scaffolding using a Starter Kit 31

2. Select the Express.js Basic Starter Kit, as shown in Figure 4-2.

Figure 4-2 Selecting the Express.js Basic kit

3. Enter the name of the application and the route to your application, as shown in
Figure 4-3.

Figure 4-3 Entering the application name and route
32 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

4. Add the App ID, which provides Federated Identity Management, to the application by
clicking Add Resource → Security → App ID, as shown in Figure 4-4.

Figure 4-4 Adding the App ID

5. Add Cloudant Database, which provides a repository for metadata storage, to the
application by clicking Add Resource → Data → Cloudant Database, as shown in
Figure 4-5.

Figure 4-5 Adding the Cloudant Database
Chapter 4. Scaffolding using a Starter Kit 33

6. Add Object Storage, which provides storage for images and metadata backups, to the
application by clicking Add Resource → Storage → Cloud Object Storage, as shown in
Figure 4-6.

Figure 4-6 Adding Object Storage

7. Add Watson Visual Recognition, which provides the ability to analyze images, to the
application by clicking Add Resource → Watson → Visual Recognition, as shown in
Figure 4-7.

Figure 4-7 Adding Watson Visual Recognition

Note: If you already have a Cloud Object Storage that you intend to use, follow the
steps documented in 4.3.6, “Adding an IBM Cloud Object Storage service after
deployment” on page 44.
34 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

8. Add Watson Knowledge Studio, which provides Machine Learning, to the application by
clicking Add Resource → Watson → Knowledge Studio, as shown in Figure 4-8.

Figure 4-8 Adding Watson Knowledge Studio

9. Add Weather Data, which provides weather information based on location, to the
application by clicking Add Resource → Data → Weather Company Data, as shown in
Figure 4-9.

Figure 4-9 Adding Weather Company Data
Chapter 4. Scaffolding using a Starter Kit 35

After adding the services, your resources will look as shown in Figure 4-10.

Figure 4-10 Completed resources

10.Deploy the services on your cluster, as shown in Figure 4-11. Generally, create the cluster
before you create the application on the cluster.

Figure 4-11 Deploying services on your cluster

Note: IBM Cloud container registry allows 500 MB of transfer per month. If you
encounter a quota error, you need to upgrade your container registry plan.

You can try to delete some images in a repository by running the bx cr images
command to get the namespace of the repository, and then running this command:

bx rm namespace-rm <namespace>

You can check your quota by running this command:

bx cr quota
36 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

After deployment of the application, you will be able to accomplish these tasks:

� Get the public IP of the cluster by navigating to the Worker Nodes window by clicking
Cluster → Worker Nodes, as shown in Figure 4-12.

Figure 4-12 Retrieving the public IP

� Obtain a NodePort, which will be the port on which the application will be exposed to on
the Worker Node, as shown in Figure 4-13. The Node Port can be obtained by navigating
to the Services section of your Kubernetes dashboard.

Figure 4-13 Retrieving the NodePort

� Start the web application by pointing your browser to http://<Public IP of your
cluster>:<NodePort>, as shown in Figure 4-14.

Figure 4-14 Starting the web application

Note: Free clusters are not available in all regions. Ensure that you are in the region that
allows creating free clusters. See the documentation for “Getting started with IBM Cloud
Kubernetes Service” on your IBM Cloud console.
Chapter 4. Scaffolding using a Starter Kit 37

� View Development Tool Chain on the console with the necessary DevOps tools. IBM
Cloud provides ways to add your own tools to this tool chain, as shown in Figure 4-15.

Figure 4-15 Viewing the Development Tool Chain
38 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

� Check out the code and perform development activities by navigating to the Git tile in the
tool chain and running Git commands. It also provides the Eclipse Orion Web IDE for
Development in the web browser, as shown in Figure 4-16.

Figure 4-16 Eclipse Orion Web IDE

� Customize the delivery pipeline

4.3.3 Delivery pipeline

A delivery pipeline automates continuous development of a project. In a project's pipeline,
sequences of stages retrieve input and run jobs such as build, test, and deploy. The default
delivery pipeline contains the components shown in Figure 4-17.

Figure 4-17 Components in the default delivery pipeline
Chapter 4. Scaffolding using a Starter Kit 39

Each stage is highly customizable, and more stages can be added to build your customized
pipeline to meet your organization's needs. For example, you can add a stage for performing
Unit tests, deploy it in the staging area, run more sanity tests, and then move it to production.

To add a stage that does unit tests, complete these steps:

1. Click Add Stage.

2. Add the details for the new stage, as shown in Figure 4-18.

Figure 4-18 Adding details for the new stage

3. After the stage is created, drag the new tile to the correct location in the pipeline.
40 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

4. Customize the stage by adding your own Deploy script, as shown in Figure 4-19.

Figure 4-19 Adding a Deploy script

The pipeline configuration is one of the configuration artifacts. The Starter Kit places the
Development pipeline in .bluemix/pipeline.yml. This file can be modified to add stages. An
example of the build stage in the pipeline is shown in Example 4-1.

Example 4-1 Build stage example

stages:
- name: Build Stage
 inputs:
 - type: git
 branch: master
 service: ${REPO}
 triggers:
 - type: commit
 properties:
 - name: CHART_NAME
 value: ${CHART_NAME}
 type: text
 jobs:
 - name: Build
 type: builder
 build_type: cr
 artifact_dir: ''
 target:
 region_id: ${REGION_ID}
 api_key: ${API_KEY}
 namespace: ${REGISTRY_NAMESPACE}
 image_name: ${CHART_NAME}
 script: |-
 #!/bin/bash

<Your script>
 fi

For more information, see the Delivery Pipeline web page.
Chapter 4. Scaffolding using a Starter Kit 41

https://www.ibm.com/cloud/garage/content/deliver/tool_delivery_pipeline/

4.3.4 Credential injection from Starter Kits

Every resource that is bound to the application from a Starter Kit has credentials and access
points that allow it to access the service. The Starter Kit injects these attributes as
Kubernetes secrets. If you navigate to the Kubernetes dashboard of your cluster (Figure 4-20)
and open the Secrets window, you will see the secrets for each service.

Figure 4-20 The Kubernetes dashboard

The Starter Kit includes an ibm-cloud-env node package that abstracts environment
variables from various Clouds compute providers, such as, but not limited to, Cloud Foundry
and Kubernetes, so the application can be environment-agnostic.

The module allows you to define an array of search patterns that are run one by one until the
required value is found. More information about this package can be found at the IBM Cloud
Environment section of the NPM website.

A snippet of the mappings.json file is shown in Example 4-2.

Example 4-2 Portion of mappings.json

"cloudant_url": {
 "searchPatterns": [
 "cloudfoundry:$.cloudantNoSQLDB[0].credentials.url",
 "env:service_cloudant:$.url",
 "file:/server/localdev-config.json:$.cloudant_url"
]
 },

The access to the attributes is done in a code pattern like that shown in Example 4-3.

Example 4-3 Accessing attributes

const IBMCloudEnv = require("ibm-cloud-env");
const client = require("./cloudant");
const log4js = require("log4js");

const logger = log4js.getLogger("cloudant-service");

module.exports = function(app, serviceManager){
client.init(IBMCloudEnv.getString('cloudant_url')).then(() => {

serviceManager.set("cloudant", client);
}).catch((err) => {
42 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://www.npmjs.com/package/ibm-cloud-env
https://www.npmjs.com/package/ibm-cloud-env

logger.warn("Cloudant service could not be initialized: "+ err);
});

};

To facilitate local development, IBM Cloud Starter Kits allow you to create a local
configuration file in the location server/localdev-config.json. The ibm-cloud-env package
will seamlessly pick up the localdev-config.json attributes during application run time, as
shown in Example 4-4.

Example 4-4 Picking up the localdev-config.json attributes

{
 ….

"cloudant_url":
"https://xxxxx-bluemix:yyyyy@6d16902f-9774-4272-b029-03d3380fe096-bluemix.cloudant
.com",

…
}

4.3.5 Adding a service after deployment

When you first create a project with a starter kit you can add resources, as we did above.
However, sometimes you will need to add additional services after the code has been
generated and deployed. This requirement might be because you decided to add a new
service later, or you needed to add a service that is not currently supported by the starter kit
framework.

When you want to add a new service through the starter kit framework after deployment, you
can do so in the App console. Note that adding a resource allows you to generate new code
with references to the new service. However, this new code will not automatically be added to
your app's code repository.

Follow the procedure below do fully integrate your new service:

1. Log in to the IBM Cloud console and click WebApps → Apps. This window lists your
applications.

2. Click your application and select Add Resource.

3. Select the resource that you want to add and add it to your application.

4. You can now download the newly generated code into a directory.

5. Compare the changes to the mappings.json in the newly downloaded code bundle with
what is in the git location and merge the changes to the mappings.json file in the git
repository. A sample of a newly added Watson Conversation Service is shown in
Example 4-5.

Example 4-5 Example of an added service

…
 "watson_conversation_url": {
 "searchPatterns": [
 "cloudfoundry:$.conversation[0].credentials.url",
 "env:service_watson_conversation:$.url",
 "file:/server/localdev-config.json:$.watson_conversation_url"
Chapter 4. Scaffolding using a Starter Kit 43

]
 },
 "watson_conversation_username": {
 "searchPatterns": [
 "cloudfoundry:$.conversation[0].credentials.username",
 "env:service_watson_conversation:$.username",
 "file:/server/localdev-config.json:$.watson_conversation_username"
]
 },
 "watson_conversation_password": {
 "searchPatterns": [
 "cloudfoundry:$.conversation[0].credentials.password",
 "env:service_watson_conversation:$.password",
 "file:/server/localdev-config.json:$.watson_conversation_password"
]
 },

6. Copy the new file in server/services/service-<new service>.js from the downloaded
location to the git cloned location.

7. Create corresponding entries in the localdev-config.json to enable local development.

8. Commit and push the new changes to be deployed on the Kubernetes container.

Continue to develop changes for the new service as needed.

9. Commit and push the new changes to be deployed on the Kubernetes container.

4.3.6 Adding an IBM Cloud Object Storage service after deployment

The steps below are typically used when you already have an IBM Cloud Object Storage
service that you intend to use for this application rather than use the Starter Kit Wizard to
create one:

1. Create an alias to the service:

bx resource service-alias-create <alias_name> -instance-name <service name>

2. Create a service key:

bx resource service-key-create cos-alias-service-key Writer --alias-name
<alias_name>

3. Bind the alias to the cluster:

bx cs cluster-service-bind <cluster name> default <alias-name>

After the execution of the above command, you will see that the credentials for IBM Cloud
Object Storage will now be in the Kubernetes Secrets.

Note: Some services do not integrate with an existing app. If you want to add this service
to the app, then you will need to complete these steps:

1. Modify the mappings.json file manually to create the credential mapping, like the one
shown above.

2. Create a service-<new service>.js in the services folder using one of the existing
services as a base line.

3. You might need modify the Helm charts to add any needed environment variables.
44 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Complete the following steps to integrate the existing IBM Cloud Object Storage service into
your source code:

1. Modify the mappings.json to add the bucket lookup information, as shown in Example 4-6.

Example 4-6 Adding the bucket lookup information

"cos_original_bucket": {
 "searchPatterns": [
 "env:COS_ORIGINAL_BUCKET",
 "file:/server/localdev-config.json:$.cos_original_bucket"
]
 },
 "cos_normalized_bucket": {
 "searchPatterns": [
 "env:COS_NORMALIZED_BUCKET",
 "file:/server/localdev-config.json:$.cos_normalized_bucket"
]
 },
 "cos_api_key": {
 "searchPatterns": [
 "cloudfoundry:$.cloud-object-storage.credentials.apikey",
 "env:service_cos:$.apikey",
 "file:/server/localdev-config.json:$.cos_api_key"
]
 },
 "cos_service_instance_id": {
 "searchPatterns": [
 "cloudfoundry:$.cloud-object-storage.credentials.resource_instance_id",
 "env:service_cos:$.resource_instance_id",
 "file:/server/localdev-config.json:$.cos_service_instance_id"
]
 },
 "cos_endpoint": {
 "searchPatterns": [
 "env:COS_ENDPOINT",
 "file:/server/localdev-config.json:$.cos_endpoint"
]
 },
 "cos_ibm_auth_endpoint": {
 "searchPatterns": [
 "env:COS_IBM_AUTH_ENDPOINT",
 "file:/server/localdev-config.json:$.cos_ibm_auth_endpoint"
]
 },

2. Modify the Helm charts to add any needed environment variables. Add the code shown in
Example 4-7 in the services section of values.yaml file in chart/<appname>.

Example 4-7 Modifying the Helms charts

services:
 cos:
 originalBucket: claims-images-original
 normalizedBucket: claims-images-normalized
 endpoint: s3.us-south.objectstorage.softlayer.net
ibmAuthEndpoint: https://iam.bluemix.net/oidc/token
Chapter 4. Scaffolding using a Starter Kit 45

4.3.7 Bucket name injection to application

The Starter Kit will create an Object Storage Instance, but you need to create the buckets by
using either IBM Cloud Object Storage API or the console, as shown in Figure 4-21.

Figure 4-21 Creating buckets

Click Create bucket and create two buckets: One bucket for holding original uploaded image
and the other to hold the normalized images. The bucket names are made known to the
cluster through the Kubernetes environment variables. To accomplish this, place the bucket
names in the helm chart files located in charts/values.yaml and charts/deployment.yaml.

Example 4-8 shows the contents of charts.yaml.

Example 4-8 charts.yaml

…
services:
 cos:
 originalBucket: claims-images-original
 normalizedBucket: claims-images-normalized
…

Example 4-9 shows the contents of deployment.yaml.

Example 4-9 deployment.yaml

…
 env:
 - name: COS_ORIGINAL_BUCKET
 value: "{{ .Values.services.cos.originalBucket }}"
 - name: COS_NORMALIZED_BUCKET
 value: "{{ .Values.services.cos.normalizedBucket }}"
…

Note: If you want key-based protection using key protect, ensure that you add the keys
during the bucket creation. Key protect services cannot be added after a bucket has been
created.
46 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Bucket names to which images are written to are injected to the application with the
mappings.json file and read through the ibm-cloud-env modules, as shown in Example 4-10.

Example 4-10 Bucket names

{
…

 "cos_original_bucket": {
 "searchPatterns": [
 "env:COS_ORIGINAL_BUCKET",
 "file:/server/localdev-config.json:$.cos_original_bucket"
]
 },
 "cos_normalized_bucket": {
 "searchPatterns": [
 "env:COS_NORMALIZED_BUCKET",
 "file:/server/localdev-config.json:$.cos_normalized_bucket"
]
 }
…
}

const IBMCloudEnv = require('ibm-cloud-env');

// Bucket names - taken from environment variables set in Helm chart
const _originalBucket = IBMCloudEnv.getString('cos_original_bucket');
const _normalizedBucket = IBMCloudEnv.getString('cos_normalized_bucket');

4.3.8 User interface components

Now that the application has been enabled, add some user interface components to enable
you to visualize the modules whose details you will dive into shortly:

1. Create an index.html page, as shown in Figure 4-22. This will be the landing page of your
content. The landing page prompts you to log in to the application. See the index.html in
public folder of the git repository for more details.

Figure 4-22 Creating an index.html page

After clicking Login, the user is authenticated and is redirected to home.html page.
Chapter 4. Scaffolding using a Starter Kit 47

2. Create a home.html page. This is the page that the user will be directed to after a
successful login. This page contains all the controls for invoking actions on the web
application. See home.html in the public folder of the git repository for more details. The UI
is shown in Figure 4-23.

Figure 4-23 UI home page

3. In this module, we introduce a skeleton claims processing. To make a claim, the user
clicks Make a Claim in the user interface. This action invokes the newClaimsBtn Handler
in the action.js JavaScript file located in js/actions.js, as shown in Example 4-11.

Example 4-11 Making a claim

$("#newClaimBtn").click(function(e) {
 console.log("Getting new claim");
 e.preventDefault();

 // create a claim to start working on
 $.post(
 "/claim",
 {},
 function(data, textStatus, jqXHR) {
 console.log (textStatus);
 if (textStatus == "success") {
 var claimFQDN = jqXHR.getResponseHeader("Location");
 var claimId = claimFQDN.split("/")[2];
 var fullClaimLocation = jqXHR.getResponseHeader("Location");
 console.log('found claim location', fullClaimLocation);

 // Now render the page
 uiDisplayEditClaim(claimId);
 } else {
 alert("Failed to create claim!");
 }
 });
 });
48 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

4. This process ends a POST request to the server that sends a dummy response back to
the client. This process is handled on the server side in the file index.js in the
server/claims directory, as shown in Example 4-12.

Example 4-12 Handling the POST request

router.post("/", function(req, res) {
 res.setHeader("Location", `/claim/ComingInModule5`);
 res.status(201).end();
 });

 // GET a list of claims
 router.get("/", function (req, res) {
 var claims = {'claims': 'ComingInModule5'};
 res.json(JSON.stringify(claims));
 });

The user interface shown in Figure 4-24 is displayed to the user when the claim is handled by
the server.

Figure 4-24 Claim user interface

Module 5 expands on this skeleton code to add business logic.
Chapter 4. Scaffolding using a Starter Kit 49

4.4 Next steps

In the next module, you will enhance the Insurance Company X's Web Application to create
and configure an instance of a Cloudant to store the metadata and learn more about
Cloudant.

4.5 Other references

� IBM Cloud App Service Starter Kits Documentation

https://console.bluemix.net/developer/appservice/documentation
50 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/developer/appservice/documentation

Chapter 5. Storing metadata in Cloudant

Now that you have completed Module 4, you have a first version of the claims application
running. This module covers how you persist information. It focuses on using IBM Cloudant to
store all the metadata that is associated with a claim.

Metadata is often managed in a traditional relational database management system
(RDBMS) like Postgres. Although this technique provides solid capabilities for managing data,
it is challenging to distribute an RDBMS to multiple regions, scale it dynamically and
seamlessly, and evolve the structure of the data. However, these are core requirements for a
claims application.

By using IBM Cloudant, you can implement an elastic and geographically dispersed database
for claims, while not having to worry about deploying, scaling, or managing the database. In
addition, the schema-free nature allows you to change the structure of the data easily,
resulting in faster time-to-market and lower cost.

This chapter includes the following sections:

� Learning objectives
� Getting started
� Implementation
� Next steps
� Other references

5

© Copyright IBM Corp. 2018. All rights reserved. 51

5.1 Learning objectives

After completing this module, you will be able to:

� Create and configure an instance of Cloudant.
� Describe the differences between Cloudant and other database offerings.
� Implement code to read, write, and index data.
� Describe the different ways to work with data in Cloudant.
� Identify the best way to structure data for a specific use case.

5.2 Getting started

To adopt the code to your account and application, you must customize some files after
checking out the code and before adding the changes discussed in this chapter:

1. Clone the git repository that is linked to the continuous integration pipeline that you
created in the previous chapter:

$ git clone https://github.com/IBMRedbooks/IBM-Cloud-Object-Storage-Tutorials
$ cd IBM-Cloud-Object-Storage-Tutorials

2. Copy all code excluding the .git folder from GitHub into your repository.

3. Open chart/insurancewebappbackend/values.yaml and adjust the repository to match
your docker repository.

4. Open chart/insurancewebappbackend/deployment.yaml and replace the secret key
reference binding for service_cloudant and all other services with the ones found in your
chart’s deployment.yaml.

5. Rename the helm chart under chart from insurancewebappbackend to the name of your
application and overwrite your original chart.

6. Open chart.yaml and change the value of the name property.

7. Commit the changes.

5.3 Implementation

Besides claims, we will store some auxiliary information like accounts and policies. Claims
make up most of the data that is to be persistent. A Claim consists at least of this data:

� Claim identifier
� State of the claim: Open, approved, archived
� Image storage location in IBM Cloud Object Storage

Beyond this data, every additional service integration can contribute additional metadata to a
claim. Examples include location, weather, and classification information such as car color
and damage type. Because of this highly dynamic nature, a schema free database seems
most suitable for our needs.

Another aspect that you must take into account is the need to run in multiple geographically
dispersed locations in an active-active setup.
52 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://github.com/IBMRedbooks/IBM-Cloud-Object-Storage-Tutorials

5.3.1 IBM Cloud persistency options

Each database can be categorized by using the CAP-Theorem to help match the specific
service against the needs of your application.

The CAP-Theorem as postulated by Eric Brewer in 2000 states that because network failure
is inevitable in a distributed system, you can at most have two out of three properties in such
a system. The following are the three properties:

� Consistency ensures that when a transaction completes, all replicas of the data are
ensured to be consistent. Therefore, each client always has the same view of the data.
This concept is not to be confused with consistency as implied by ACID, which employs a
different definition of consistency.

� Availability is the ability to respond to a request within an acceptable amount of time.

� Partition tolerance is a measure for how the system keeps working after partial loss of
connectivity, nodes, or data.

Figure 5-1 shows the balance diagram.

Figure 5-1 Visual guide to NoSQL systems

Postgres is an example of an RDBMS, and therefore prefers consistency and availability over
partition tolerance. This choice means that a cluster cannot span multiple regions because
distance limits throughput and the loss of one region will bring Postgres down.

MongoDB, on the other hand, easily scales to a large set of nodes. MongoDB implementation
prefers consistency over availability. This goal is achieved by defining a group of nodes that
host the same data set as a replica set. Within each group, a primary node takes care of all
write operations and by default also read operations. Replication is used to recover from
hardware failure or service interruption. When the primary node fails, the remaining
secondaries run an election and promote a new primary through quorum. During that time,
the data cannot be read or written. If no quorum can be achieved, the election fails, and the
replica set remains unavailable.

Visual Guide to NoSQL Systems

Consistency:
All clients always
Have the same
view of the data.

Partition Tolerance:
The system works
well despite physical
network partitions.

(MySQL, RDBMs,
Postgres, etc)

CA

CouchDB
AP

MongoDB
CP

Data Models

Relation (comparison)
Key-Value
Column-Oriented/Tabular
Document-Oriented

A

C P

Availability:
Each client can always
read and write.
Chapter 5. Storing metadata in Cloudant 53

https://docs.mongodb.com/manual/replication/

Cloudant shares some characteristics with MongoDB, including easily scaling to a large set of
nodes. However, the underlying CouchDB prefers availability over consistency. This goal is
achieved by using a replication model called Eventual Consistency. In this system, clients can
write to any node of the database without waiting for other nodes to reach quorum about the
write. Nodes incrementally copy changes between nodes, ensuring that all nodes will
eventually be in sync.

Because there is no single point of failure in this system, it is highly available and can survive
the failure of multiple nodes. Furthermore, this model also allows for cross-cluster replication,
which helps to easily spread the database into multiple regions without decreasing availability.
The price that you must pay for this advantage is that the application needs to account for the
fact that data might not be consistent.

One of the objectives for the application is to deploy into multiple regions. Therefore, we have
selected Cloudant to store Claim and Accounts data. Using a document-oriented JSON
database also has the benefit that you do not need to migrate data or change the schema
when adding data to a claim.

Now that we have decided to use Cloudant, design your database schema. Unlike in RDBMS,
data should be highly denormalized because cross references between documents cause
consistency issues. Taking the eventual consistency aspect into account, the preferred
pattern is to never update documents, but only write new documents. This technique
effectively turns the database into an event-based change feed. Because Claims follow
several legal and audit regulations, this is actually a very useful property of this data model.
Using a write only model ensures a complete and consistent audit trail for every claim.

For a more in-depth discussion about how to properly design your data model for Cloudant,
see Cloudant Best (and Worst) Practices.

Working with a database
The client libraries for Cloudant were added when the Starter Kit was generated, which
means that you can start interacting with the database right away.

Methods to interact with Cloudant, to create databases, create indices, insert design
documents, and query the database will be added in server/services/cloudant/index.js.
This method helps to isolate Cloudant specific logic from the rest of the application. First, add
all necessary module imports as well as globals and the exported method, as shown in
Example 5-1.

Example 5-1 Adding all module imports

"use strict";

// Modules
const Cloudant = require("@cloudant/cloudant");
const log4js = require("log4js");

Using Cloud Object Storage with Cloudant: While Cloudant supports binary data such
as claim images, inline within the database, the recommended approach, which we
implement in this application, is to store binary data on Cloud Object Storage and only
keep a reference to this data in Cloudant.

Attachments are not included in Cloudant backups and there can be a negative
performance impact when storing many large objects in a database. Storing binary data in
Cloud Object storage provides better resiliency through cross regional Cloud Object
Storage at lower cost and enhances the replication performance of Cloudant.
54 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

http://docs.couchdb.org/en/latest/intro/consistency.html
https://console.bluemix.net/docs/services/Cloudant/guides/model_data.html#my-top-5-tips-for-modelling-your-data-to-scale
https://console.bluemix.net/docs/services/Cloudant/guides/model_data.html#my-top-5-tips-for-modelling-your-data-to-scale
https://medium.com/ibm-watson-data-lab/cloudant-best-and-worst-practices-7ee2040da1b

const uuid = require("uuid/v4");
const moment = require("moment");
const __ = require("lodash");

// Globals
let db;
const DB_NAME = "car_claims";
const CLAIM_INDEX = require("./claimIndex.json");
const logger = log4js.getLogger("cloudant-client");

// Public Methods --->

module.exports.init = _init;
//module.exports.createClaim = _createClaim;
//module.exports.appendClaim = _appendClaim;
//module.exports.getClaim = _getClaim;
//module.exports.listAllClaims = _listAllClaims;
//module.exports.archiveClaim = _archiveClaim;

Ensure that the database is created when your application starts, as shown in Example 5-2.

Example 5-2 Creating the database

function _init(cloudant_url) {
if (!cloudant_url) {

return Promise.reject("Cloudant configuration missing");
}
const cloudant = new Cloudant({ url: cloudant_url, plugins: ["promises"] });

// list all databases and create ours if it's not present
return cloudant.db.list().then((db) => {

const found = db && db.indexOf(DB_NAME) !== -1;
if (!found) {

logger.debug(`Database ${DB_NAME} does not exist, creating it`);
return cloudant.db.create(DB_NAME);

}
});

}

The code lists the names of all databases, creating the database if it does not exist. When
you start the application, you should see that the database is created in the Cloudant
Dashboard. You can find the dashboard on the Service Instance tab on your IBM Cloud
console.

After completing this initial setup, add the different functions for creating, updating, and
reading claims.

Creating a claim
Add your first document by creating a function to create a claim, as shown in Example 5-3.

Example 5-3 Function to create a claim

function _createClaim(claimDetails) {
// create the document from provided details, generated UUID and created date
const document = Object.assign({},claimDetails, {type: "claim", claimId:

uuid(), created: moment.utc() });
Chapter 5. Storing metadata in Cloudant 55

// just in case someone tried to set the id
delete document._id;
// insert the document and return the claimId
return db.insert(document).then((d) => {

logger.debug(d);
return document.claimId;

});
}

Because Cloudant natively stores JSON documents, you can easily pass any object to the
library to store its content. In addition to the claim data passed by the caller, the code adds
these mandatory properties for every claim object:

� Type allows you to distinguish different document types (Claim/Account).

� Claim ID is the unique ID of this claim. All documents with the same Claim ID are
considered part of the same claim.

� Created indicates the time that the claim was created and allows you to chronologically
order documents that belong to the same claim.

The Claim ID is returned to the caller after the document has been stored in Cloudant.

Now expose this function on a route so that you can create a claim by issuing a POST against
/claim. Complete these steps:

1. Set up an express router and group all code related to the /claim route under
/routers/claims.

2. Because all code on the /claim route needs access to Cloudant, add middleware in
/routers/common.js that adds the Cloudant service to the request object. This
configuration allows it to be easily used by downstream code so you do not need to repeat
the same code. In cases where Cloudant is not configured properly, the request fails and
returns an error. Example 5-4 shows the middleware.

Example 5-4 Middleware to add Cloudant service

module.exports.cloudantInjector = function (req, res, next) {
req.cloudant = serviceManager.get("cloudant");
if (!req.cloudant) {

res.status(500).send("Cloudant not configured, cannot search!");
}
next();

};

3. Having laid the foundation for all functions you will add to the claims route, add a method
to create a Claim. Example 5-5 shows the Claim creation code.

Example 5-5 Code to create a Claim

module.exports = function(app) {
const router = express.Router();

router.post("/", function(req, res) {
req.cloudant.createClaim(req.body).then((claimId) => {

// Tell caller the location of the created resource
res.setHeader("Location", `/claim/${claimId}`);
res.status(201).end();

}).catch((err) => {
logger.error(err);
56 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

res.status(500).send("Something broke!");
});

});
// Register the route /claim

app.use("/claim",
bodyParser.json(),
common.cloudantInjector,
router);

}

createClaim returns a Claim ID that is sent back in the location header to indicate the location
of the newly created claim to the caller.

Updating a Claim
Go back to server/services/cloudant/index.js to add a function to append data for a claim.

As you will not update a document in Cloudant, all documents belonging to the same claim
need to share the claim ID as a common property to allow you to group them together, as
shown in Example 5-6.

Example 5-6 Appending data to a Claim

function _appendClaim(claimAppend) {
// enforce presence of claimId, as this is the field that we use to aggregate
if (!claimAppend.claimId) {

return Promise.reject("Missing claimId parameter!");
}

// make sure the document has a proper created timestamp
const document = Object.assign({},claimAppend, {created: moment.utc(), type:

"claim"});
delete document._id;
// insert the document
return db.insert(document).then((d) => {

logger.debug(d);
return;

});
}

The code for updating a claim is similar to creation of a claim, with the exception that a
claim ID must be provided in this case.

To enable updates of claims through REST, add a function that responds to a patch against a
specific claim ID in /routers/claims/index.js, as shown in Example 5-7.

Example 5-7 Function to respond to patch

router.patch("/:claimId", function(req, res) {
 const append = Object.assign({},req.body,{claimId: req.params.claimId});

 req.cloudant.appendClaim(append).then(() => {
 res.status(200).end();
 }).catch((err) => {
 logger.error(err);
Chapter 5. Storing metadata in Cloudant 57

 res.status(500).send("Something broke!");
 });
});

The claim update is augmented with a created time, a type property, and the claim ID to
ensure that the documents fulfill the requirements of the data model.

Fetching claim details
Getting all the details for a claim requires the system to read multiple documents from
Cloudant. You must find all documents that belong to the same Claim. To hide the details of
the write-only data model from the user, fuse all the documents for a claim into a single view.

Because an update to a claim might overwrite a previous value, documents need to be
ordered by their creation time to merge them correctly.

Enabling querying and sorting by Claim ID and created time requires you to create an Index
for these fields in addition to the document type, as shown in Example 5-8.

Example 5-8 Creating an Index

{
 "name": "claimIndex",
 "ddoc": "claimIndex",
 "type": "json",
 "index": {
 "fields": [
 {
 "type" : "asc"
 },
 {
 "claimId": "asc"
 },
 {
 "created": "asc"
 }
]
 }
}

Adding the index to Cloudant is best done after validating that the database exists in
server/services/cloudant/index.js, as shown in Example 5-9.

Example 5-9 Validating that the database exists

const CLAIM_INDEX = require("./claimIndex.json");
...
function _init(cloudant_url) {

if (!cloudant_url) {
return Promise.reject("Cloudant configuration missing");

}
const cloudant = new Cloudant({ url: cloudant_url, plugins: ["promises"] });

// list all databases and create ours if it's not present
return cloudant.db.list().then((db) => {

const found = db && db.indexOf(DB_NAME) !== -1;
if (!found) {
58 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

logger.debug(`Database ${DB_NAME} does not exist, creating it`);
return cloudant.db.create(DB_NAME);

}
}).then(() => {

logger.debug(`Using database ${DB_NAME}`);
db = cloudant.db.use(DB_NAME);

}).then(() => db.index(CLAIM_INDEX)); // create the claim index
}

Now that you have enabled searching on these fields in the database, add a method that will
fetch all documents for a claim, as shown in Example 5-10.

Example 5-10 Fetching all documents for a claim

function _getClaim(claimId) {
if (!claimId) {

return Promise.reject("Missing claimId parameter");
}
// Leverage the index we created to sort by claimId and created date
const query = {

"selector": {
"type" : "claim",
"claimId": claimId

},
"sort": [

{
"type" : "asc"

},
{

"claimId": "asc"
},
{

"created": "asc"
}

]
};

// Search all documents for this claim
return db.find(query).then((docs) => {

// if there are none, return null
if (!docs || docs.docs.length === 0) {

return null;
}

logger.trace(`Will merge ${docs.docs.length} documents for case`);
// First, remove all internal properties starting with _, then merge all

documents
const cleanedDoc = __.map(docs.docs, (doc) => __.pickBy(doc, (v,k) =>

!__.startsWith(k,"_")));
const unionDocument = __.merge({},...cleanedDoc);
// created dates of states have a semantically different meaning for the

overall case
unionDocument.created = docs.docs[0].created;
unionDocument.lastUpdate = docs.docs[docs.docs.length - 1].created;
Chapter 5. Storing metadata in Cloudant 59

return unionDocument;
});

}

Using the Cloudant query syntax, retrieve all documents of type claim for a specific claim ID
and ensure that the results are ordered by the created date.

A couple of system properties like _id and _rev have been added by Cloudant to each
document. Because you do not want to return these properties, first remove all properties that
start with underscore from each document. Then, merge the documents in the order that they
were created. This technique ensures that later updates overwrite earlier values.

The merge implementation recursively merges all objects and arrays to produce the final
document.

Finally, use the creation time of the first and last document to indicate creation time and last
update time for the claim to the caller.

To make this data available in the REST API, add code to inject the current claim by using
express middleware similar to how you injected Cloudant to the request object, as shown in
Example 5-11.

Example 5-11 Middleware to inject Cloudant into the request object

// Ensures claim exist and attaches it to the request
const claimInjector = function (req, res, next) {
 // get the claimId from the request parameters
 const claimId = req.params.claimId;

 req.cloudant.getClaim(claimId).then((claimDetails) => {
 if (claimDetails) {
 req.claim = claimDetails;
 next();
 } else {
 res.status(404).send("Claim does not exist");
 }
 }).catch((err) => {
 logger.error(err);
 res.status(500).send("Something broke!");
 });
};

Having that function in place makes the actual implementation of a get for a specific claim
trivial, as shown in Example 5-12.

Example 5-12 Implementing a GET

// GET the details of a claim by :claimId
router.get("/:claimId", claimInjector, function (req, res) {
 res.json(req.claim);
});
60 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Along those lines, implement a function to retrieve the complete list of all claims, which mainly
differs in not restricting the claim ID, as shown in Example 5-13.

Example 5-13 Function to retrieve claims

function _listAllClaims() {
// leverage the index for sorting, but get all documents
const query = {

"selector": {
"type" : "claim"

},
"sort": [

{
"type" : "asc"

},
{

"claimId": "asc"
},
{

"created": "asc"
}

]
};

return db.find(query).then((docs) => {
logger.trace(`Found ${docs.docs.length} cases`);
// First, remove all except caseId, then make things unique
const cleanedDocs = __.map(docs.docs, (doc) => __.pickBy(doc, (v,k) =>

!__.startsWith(k,"_")));
// Second, group by id so that we can merge the changesets
const groupedDocs = __.groupBy(cleanedDocs, (doc) => doc.claimId);
// Finally, perform the merge
const unionDocs = __.map(groupedDocs, (docs) => __.merge({},...docs));
return unionDocs;

});
}

Backup
Although Cloudant clusters are generally backed up for disaster recovery, create regular
backups of your database so you can restore from them in case of failures in application logic
or human error.

To create these backups, implement active-active replication and backups by completing the
steps outlined in the Cloudant Backup and Recovery guide.

Wiring the user interface to the REST API
Now that you have enabled the REST API to create and update claims, link the user interface
to the API so that the Claim ID of the created claim is displayed properly.
Chapter 5. Storing metadata in Cloudant 61

https://console.bluemix.net/docs/services/Cloudant/guides/backup-cookbook.html#cloudant-nosql-db-backup-and-recovery

Open public/js/actions.js and add the code necessary to create a table containing the
claim ID you just received from the API in line 12, as shown in Example 5-14.

Example 5-14 Creating a table

$.getJSON('/claim', function(data) {
 if (data) {
 $.each(data, function(i, claim) {
 var table_entry = '<tr><td>';
 table_entry += '</td>';
 table_entry += '<td>' + claim.claimId + '</td><td>' + claim.created +
'</td>';
 table_entry += '<td><a href="#" onclick="navEditClaim(\'' +
claim.claimId + '\')">Edit Claim</td></tr>';
 claim_rows += table_entry;
 });
 document.getElementById('allClaimsTableBody').innerHTML=claim_rows;

 uiDisplayAllClaims();
 } else {
 alert('Could not load your claims!');
 }
 }
}

5.4 Next steps

In the next modules, you will add more code to display images and other information that you
extract, such as weather data. The next module is Chapter 6, “Using IBM Cloud Object
Storage” on page 63.

5.5 Other references

� 10 Common Misconceptions about CouchDB

https://www.youtube.com/watch?v=BKQ9kXKoHS8

� Cloudant Fundamentals: The Document

https://medium.com/ibm-watson-data-lab/cloudant-fundamentals-the-document-855c5
ab92051
62 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://www.youtube.com/watch?v=BKQ9kXKoHS8
https://medium.com/ibm-watson-data-lab/cloudant-fundamentals-the-document-855c5ab92051

Chapter 6. Using IBM Cloud Object Storage

Part six of this tutorial series shows you how to build an application for Insurance Company X.
This part focuses on using IBM Cloud Object Storage to store images that customers have
taken of their cars. Later modules show you how to do exciting things with those images such
as classifying them with Visual Recognition and extracting the metadata to determine the
weather in the location where they were taken.

Imagine that you leave work only to discover that someone has crashed into your parked car,
leaving a large dent in the rear bumper. You just have to snap a few pictures of the damage
and upload them, and the insurance company takes care of the rest.

But what happens to all those photos after they have been uploaded? For many companies,
managing huge volumes of media such as images, audio, and video is costly. Ensuring
availability and resiliency of that data is a large challenge. By using IBM Cloud Object
Storage, you let IBM take care of managing the infrastructure while you focus on developing
services that your customers will love. This technique results in faster time-to-market and
improved reliability, durability, and security of your most important data

6

© Copyright IBM Corp. 2018. All rights reserved. 63

Figure 6-1 shows a diagram of this technique.

Figure 6-1 Cloud management diagram

You can use analytics on the data that you collect to gain insights into your customers so that
you can offer a more personalized service. Tapping into structured and unstructured data
sources using platforms such as Apache Spark can yield significant business benefits such
as reducing customer churn. IBM Cloud Object Storage is a low-cost, scalable data layer that
is optimized for use with Spark. Furthermore, advancements in machine learning and AI
mean that more insight can be generated from this unstructured data than ever before.
However, accurate machine learning models require large amounts of training data. Using
IBM Cloud Object Storage is a cost-effective option that is already integrated into Watson
Studio.

Figure 6-2 shows the integration of IBM Cloud Object Storage.

Figure 6-2 IBM Cloud Object Storage integration
64 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://www.ibm.com/cloud/watson-studio
https://www.ibm.com/cloud/watson-studio

This chapter includes the following sections:

� Learning objectives
� Getting started
� Configuration
� Implementation
� Next steps
� Other references

6.1 Learning objectives

After completing this module, you will be able to:

� Implement code to read from and write data to IBM Cloud Object Storage.
� Describe how to use IBM Cloud Object Storage within a broader application.
� Identify the difference between single-part and multi-part uploads.

6.2 Getting started

Clone the repository to get the code:

$ git clone https://github.com/IBMRedbooks/IBM-Cloud-Object-Storage-Tutorials
$ cd IBM-Cloud-Object-Storage-Tutorials

Check out the code for Module 5 to get the finished code from the previous module that you
will build on:

$ cd module05

If you want to skip ahead, check out the completed code for this module and read along:

$ cd module06

6.3 Configuration

If you want to run this application locally on your laptop, you must enter the credentials for the
Cloudant and IBM Cloud Object Storage service in server/localdev-config.json. You need
to enter the following credentials:

� cloudant_url: The Cloudant URL found in the credentials section of your Web App starter
kit

� cos_original_bucket: The name of the bucket you created in Module 4 for the original
images

� cos_normalized_bucket: The name of the bucket you created in Module 4 for normalized
images
Chapter 6. Using IBM Cloud Object Storage 65

6.4 Implementation

This module covers the different ways to read and write data to Cloud Object Storage and
why you might choose one way over another. It also outlines any setup or installation that you
need to do and provides code examples showing how we are reading and writing data in the
Insurance Company X application.

Because you are writing a Node.js application, it makes sense to use the IBM Cloud Object
Storage Node.js SDK because it gives you an easier way to interact with IBM Cloud Object
Storage in your programming language of choice. This module focuses on using the Node.js
SDK to read and write data. It also describes preferred practices when using IBM Cloud
Object Storage in an application and provides some code to show how we have implemented
those practices in the Insurance Company X application.

So far in this series, you have created a basic app using the Starter Kits and added a basic
UI, REST API, and data persistence using Cloudant. Now you will implement an integration
with IBM Cloud Object Storage. Users of the application will upload photos of their damaged
cars after an accident. You need to store these photos so they can be analyzed, displayed in
the UI, and stored for regulatory and audit purposes. Because you have different needs for
the images, store two copies. Upload the original photo, but also normalize the image to
reduce the file size and get a consistent resolution for machine learning analysis.

Figure 6-3 shows what the application architecture will look after you have completed this
module.

Figure 6-3 Application architecture
66 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

6.4.1 Step-by-step

You should already have created an IBM Cloud Object Storage service instance as part of the
application scaffolding in Chapter 4, “Scaffolding using a Starter Kit” on page 29.

Complete the following steps:

1. Go to the IBM Cloud dashboard by clicking the menu at the upper left of the window and
selecting Dashboard, as shown in Figure 6-4.

Figure 6-4 Selecting the dashboard

2. On the dashboard, navigate to the Services section and click the IBM Cloud Object
Storage instance that you created earlier, as shown in Figure 6-5.

Figure 6-5 Services section of the dashboard
Chapter 6. Using IBM Cloud Object Storage 67

3. Explore the IBM Cloud Object Storage web console. The navigation on the left lets you
explore Buckets, Endpoints, Service Credentials, and so on, as shown in Figure 6-6.

Figure 6-6 Left navigation pane

The Navigation pane provides these options:

– Buckets, as already mentioned, are a logical unit of storage used to group objects.

– Endpoints provide a list of the API endpoints that are available to use. IBM Cloud
Object Storage offers cross-region, regional, and single site endpoints. Which one you
select affects where your data is stored as well as the resiliency and availability. For
example, cross-regional has the best resiliency and availability, but potentially higher
latency because your data is dispersed across multiple sites in a wider geographic
location.

– Service Credentials is where you can generate API or HMAC keys to authenticate with
IBM Cloud Object Storage. You can use these keys in your application or a compatible
tool.

4. Now you are ready to start writing some code. First, install the modules that you will need
from the package.json file:

$ npm install

For clarity, the following Node.js modules are being used:

– ibm-cos-sdk: The IBM Cloud Object Storage SDK for Node.js

– ibm-cloud-env: The IBM Cloud Env, which abstracts the underlying runtime
environment so that apps are portable between your notebook, Cloud Foundry, and
Kubernetes

– log4js: The logging framework for Node.js

– uuid: Generates universal unique identifiers

– multer: Express.js plug-in for handling multipart form data uploads

– imagemagick: Node.js wrapper for the image manipulation utility

– which: Find the first instance of an executable file in the PATH variable

– dms2dec: Degrees, minutes, seconds (sexagesimal) for decimal GPS positions, which is
useful for parsing PGS exif tags in geotagged images
68 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

5. Create a folder in server/services called cos and create a new file in that directory called
index.js:

$ mkdir -p server/services/cos
$ touch server/services/cos/index.js

Generally, split code into modules so that it is easy to reuse and to separate concerns.
Throughout this module series, you create new services and housing them in their own file to
divide the behavior of your application into reusable modules.

Example 6-1 shows the code in server/services/cos/index.js that reads and writes objects
to IBM Cloud Object Storage using the SDK. You will integrate this code into your existing
application logic so a user can upload a file and it will be stored in IBM Cloud Object Storage.

Example 6-1 Code from server/services/cos/index.js

"use strict";

// Modules
const COS = require("ibm-cos-sdk"); // the COS SDK
const IBMCloudEnv = require("ibm-cloud-env"); // access cloud environment vars
const log4js = require("log4js");

// Bucket names - taken from environment variables set in Helm chart
const _originalBucket = IBMCloudEnv.getString("cos_original_bucket");
const _normalizedBucket = IBMCloudEnv.getString("cos_normalized_bucket");

// global logger object
const logger = log4js.getLogger("cos-service");

// Config - Service credentials for the COS instance
const config = {

endpoint: IBMCloudEnv.getString("cos_endpoint"),
apiKeyId: IBMCloudEnv.getString("cos_api_key"),
ibmAuthEndpoint: IBMCloudEnv.getString("cos_ibm_auth_endpoint"),
serviceInstanceId: IBMCloudEnv.getString("cos_service_instance_id"),

};
const cos = new COS.S3(config);

// Public methods
module.exports.doCreateObject = _doCreateObject;
module.exports.doReadObject = _doReadObject;
module.exports.generatePresignedGet = _generatePresignedGet;
module.exports.originalBucket = _originalBucket;
module.exports.normalizedBucket = _normalizedBucket;

// Private methods

function _doCreateObject(bucketName, mimeType, key, data) {
let params = {

Bucket: bucketName,
// ContentEncoding: 'base64', - optional
ContentType: mimeType,
Key: key,
Body: data

};
Chapter 6. Using IBM Cloud Object Storage 69

return new Promise(function(resolve, reject) {
cos.putObject(params, function(err, data) {

if(err) {
reject(err);

}
else {

logger.info(data);
resolve(data);

}
});

});
}

function _doReadObject(key) {
logger.info("Getting object with key", key);
return new Promise(function(resolve, reject) {

cos.getObject({
Bucket: _normalizedBucket,
Key: key

}, function(err, data) {
if(err) reject(err);
resolve(data);

});
});

}

// Given a key, generate a pre-signed URL that can be used to GET an image.
// More info on pre-signed URLs here:
function _generatePresignedGet(key) {

logger.info("Generating presigned GET URL for key", key);
return new Promise(function(resolve, reject){

var url = cos.getSignedUrl("getObject", {
Bucket: _normalizedBucket,
Key: key

});
if (url!= null) {

resolve(url);
} else {

reject("Failed to generate pre-signed URL");
}

});
}

Copy the code in Example 6-1 on page 69 into the file that you created,
server/services/cos/index.js.

To begin, load the modules that you need for this service using a require statement. Then,
configure the service by getting the credentials and bucket names from the environment
where they have been injected using the IBM Cloud env package. For more information about
how credential injection works, see Chapter 4, “Scaffolding using a Starter Kit” on page 29.

Throughout these modules, we are following a pattern where you define private methods,
such as _doCreateObject that are preceded with an underscore. Then explicitly expose the
methods that you want other parts of your app to consume by adding them to the
module.exports object.
70 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://www.npmjs.com/package/ibm-cloud-env

The IBM Cloud Object Storage service consists of two functions: doCreateObject and
doReadObject. The names are fairly self-explanatory as to what they do, and both return
Promises. This application takes advantage of Promises when performing asynchronous
actions. These are actions that do not immediately return a result, such as requesting data
from an API or reading a file from the file system. For more information about Promises, see
“Promise” at MDN web docs.

_doCreateObject expects these parameters:

� bucketName is the name of the bucket that the object will be stored in. This function
assumes the name of the bucket that it is given already exists.

� mimetype is a two-part identifier for file formats commonly used in HTTP transfers. It is
important to include this parameter so when the object is downloaded again, the system
knows what kind of file it is.

� key is the name of the object as it appears in IBM Cloud Object Storage. The key must be
unique within the bucket and is used when you want to read, delete, or update that object
from the bucket. In this application, the key is in the following format:

original | normalized | claim ID | timestamp | filename

There are several reasons that we decided on this naming convention:

– Indicates the quality of the photo

– Easily readable by humans and machines

– Guaranteed to be unique

– Organized hierarchically such that SQL Query will be able to process it efficiently (see
Chapter 5, “Storing metadata in Cloudant” on page 51)

� data is either a Buffer, Typed Array, Blob, String, or a ReadableStream.

_doReadObject expects a single parameter, key. key is the object name assigned to it when it
was created. We already know which bucket we want to get the image from because we only
want to work with the normalized images.

Now integrate the IBM Cloud Object Storage service into your main application flow. You must
create an API route, /:claimId/image, that the front end of this application will use to submit
images uploaded by the user. Then, you will store those images on IBM Cloud Object
Storage. Create a folder called claims in server/routers and create a file called
postClaimImage.js:

$ mkdir -p server/routers/claims
$ touch server/routers/claims/postClaimImage.js

Copy the code in Example 6-2 and paste it into postClaimImage.js. This code snippet
imports the node modules that you need and sets up an Express.js route, /:claimId/image,
that uses Multer middleware to accept multipart/formdata uploads and assign the function
_processImage to handle that route. The _setupRoute function is exported as a variable called
init.

Example 6-2 Code to import node modules

const util = require("util");
const fs = require("fs");
const uuid = require("uuid/v1");
const cos = require("../../services/cos/index");
const imageProcessor = require("../../services/image-processing/processor");
const __ = require("lodash");
const multer = require("multer");
Chapter 6. Using IBM Cloud Object Storage 71

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

const log4js = require("log4js");

const logger = log4js.getLogger("claim-post-image");

function _setupRoute(router) {
return router.post("/:claimId/image", upload.any(), _processImage);

}

module.exports.init = _setupRoute;

Copy the code in Example 6-3 and paste it into postClaimImage.js. Now configure the Multer
middleware. Multer can be used to process any kind of multipart form data, but we are only
interested in accepting jpg or png images. Therefore, create a file filter that checks the file
extension and accepts or rejects the file. Also, configure Multer to use disk storage and store
uploaded images in a temporary directory.

Example 6-3 Code for processing image files

/*
 * Filters which files multer should accept to be uploaded
 * Only accept .jpg or .png files
 */
function multerFileFilter(req, fileDetails, cb) {

let file = fileDetails.originalname;
let fileName = file

.substring(file.lastIndexOf("/") + 1, file.lastIndexOf("."));
let extension = file

.substring(file.lastIndexOf("."), file.length).toLowerCase();
logger.info(fileName, extension);
if (extension == ".jpg" || extension == ".png" || extension == ".jpeg") {

// accept the file
cb(null, true);

} else {
// reject the file, not a jpg or png
cb(null, false);

}
}

// configure multer - multipart upload for form-data
const storage = multer.diskStorage({

destination: function (req, file, cb) {
// create the dir to store the images on disk
var dir = "/tmp/image-uploads";
if (!fs.existsSync(dir)){

fs.mkdirSync(dir);
}
cb(null, dir);

},
filename: function (req, file, cb) {

cb(null, uuid() + "-" + file.originalname);
}

});
72 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

const upload = multer({
storage: storage,
fileFilter: multerFileFilter

Copy the code in Example 6-4 and paste it into postClaimImage.js. The process image
function handles the image upload POST request. Create two variables to store data about
the image and the claim, image and append, to store in Cloudant.

Example 6-4 Code for image upload POSt request

/*
 * 1. Receive image
 * 2. Extract metadata
 * 3. Resize image
 * 4. Send image to VR service
 * 5. Store images in COS
 * 6. Reassemble JSON from various API calls and store in Cloudant
 */
function _processImage(req,res) {

// create a unique identifier to use as the key of the images object
// so we can use it as a reference
const imageId = uuid();
let image = {};
let imageContainer = {};
imageContainer[imageId] = image;

const append = {
claimId: req.params.claimId,
images: [imageContainer]

};

// create a timestamp to use when uploading the images
let dateTime = Date.now();

let file = req.files[0];

// read the uploaded image file from the tmp directory
new Promise((resolve, reject) => {

fs.readFile(file.path, (err, data) => {
if (err) {

reject(err);
} else {

resolve(data);
}

});
})

.then(data => {
// create a unique key for object storage
let origKey =

`original/${req.params.claimId}/${dateTime}/${file.filename}`;
// store key of original image in claimImageRecord for later retrieval
image.original = origKey;

// store the original user-uploaded image in a COS bucket
Chapter 6. Using IBM Cloud Object Storage 73

return cos.doCreateObject(cos.originalBucket, file.mimetype, origKey,
data);

})
.then(() => {

logger.info("Uploaded original image to COS");

// resize the image to get an normalized thumbnail
return imageProcessor.resize(file.path);

})
.then(resizedImg => {

// store the normalized image in a COS bucket
let normKey =

`normalized/${req.params.claimId}/${dateTime}/${file.filename}`;
// store key of normalized image in claimImageRecord for later retrieval
image.normalized = normKey;

return cos.doCreateObject(cos.normalizedBucket, file.mimetype, normKey,
resizedImg);

})
.then(function() {

// append all the data in claimImageRecord to Cloudant
return req.cloudant.appendClaim(append);

}).then(() => {
res.status(200).end();

})
.then(() => {

fs.unlinkSync(file.path);
})
.catch((err) => {

logger.debug("in the CATCH block", err);
logger.debug(util.inspect(err));
fs.unlinkSync(file.path);
res.status(500).send(err.message);

});

Then, read the file that Multer stored on the disk and get the image data as a buffer (the IBM
Cloud Object Storage module expects a buffer). Upload the original image to be stored in IBM
Cloud Object Storage. Next, use processor.js to resize the image to a normalized format and
then store the normalized image in IBM Cloud Object Storage. Finally, delete the original
image from the disk. After this process is completed using a Promise chain, append the keys
for images in IBM Cloud Object Storage to the claim that the customer is making. That way,
when the front end requests the images as thumbnails to display as part of the claim, it can
use the keys that are stored in the claim document.

By returning promises in your IBM Cloud Object Storage service, you can chain a series of
promises. This technique makes it easy for you to add functions to the app later, such as
weather data extraction or visual recognition classification.

The HTML in the front end to handle the image upload is shown below. It is a basic use of a
form and some JavaScript code.

<form>
 <input type="file" name="userfile" id="userfile" />

 <input type="button" id="upload" value="upload" />
</form>
74 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

The JavaScript that uploads the image is shown in Example 6-5.

Example 6-5 Uploading images JavaScript

$('#upload').click(function(){
 console.log('upload button clicked!')
 var fd = new FormData();
 fd.append('userfile', $('#userfile')[0].files[0]);
 var claimId = document.getElementById("claimSummaryId").innerHTML;
 console.log(claimId);
 var postImageURL = "/claim/" + claimId + "/image";
 var uploadInProgessMessage = "Upload In Progress...";
 document.getElementById("uploadProgress").innerHTML = uploadInProgessMessage;
 $.ajax({
 url: postImageURL,
 data: fd,
 processData: false,
 contentType: false,
 type: 'POST',
 success: function(data){
 console.log('upload success!')
 var uploadSuccessMessage = "Upload Succeeded";
 document.getElementById("uploadProgress").innerHTML = uploadSuccessMessage;
 $('#data').empty();
 $('#data').append(data);
 retrieveClaimDetails(claimId);
 },
 error: function(error) {
 var uploadFailedMessage;
 if(error) {
 uploadFailedMessage = error.statusText + " - " + error.responseText
 } else {
 uploadFailedMessage = "Upload Failed";
 }
 document.getElementById("uploadProgress").innerHTML = uploadFailedMessage;
 }
 });
});

The code in Example 6-6 returns an image from IBM Cloud Object Storage when supplied
with its key. Create a file in server/routers/claims called getClaimImage.js:

$ touch server/routers/claims/getClaimImage.js

Example 6-6 Code to return image from IBM Cloud Object Storage

const cos = require("../../services/cos/index");

module.exports.init = _setupRoute;

function _setupRoute(router) {
return router.get("/:claimId/image", _getImage);

}

function _getImage(req, res) {
// get the key of the image from the query parameters
let key = req.query.key;
Chapter 6. Using IBM Cloud Object Storage 75

// check to make sure we have a key
if(key) {

// read the object from COS
cos.doReadObject(key).then(image => {

// set some headers for type, length and disposition
res.writeHead(200, {

"Content-Type": image.ContentType,
"Content-disposition": "attachment;filename=" + key,
"Content-Length": image.ContentLength

});
// return the image to the user
res.end(image.Body);

});
} else {

// send an error, we don't have a key
res.status(500).send("Please include query parameter 'key' " +

 "to specify the image key");
}

}

Import the necessary modules, export an init function, and create an API route,
/:claimId/image. This route allows the front end to do a GET request specifying the claimId
and the key of the image in IBM Cloud Object Storage, and your API will return that image.
The _getImage function gets the key from the query string of the request, and uses the IBM
Cloud Object Storage module to read an object from IBM Cloud Object Storage. Because it is
the front end making the request, you want the image to come from the normalized bucket.

You have now created routes for uploading an image and getting an uploaded image. You
must register these routes in server/routers/claim/index.js so they become part of the
/claim route, as shown in Example 6-7.

Example 6-7 Registering the routes

const express = require("express");
const passport = require("passport");
const serviceManager = require("../../services/service-manager");

const log4js = require("log4js");
const common = require("../common");
const postClaimImage = require("./postClaimImage").init; // ADD THIS LINE
const getClaimImage = require("./getClaimImage").init; // ADD THIS LINE

const bodyParser = require("body-parser");
const logger = log4js.getLogger("claim-controller");

Require the two new modules that you have created, postClaimImage and getClaimImage, so
that your code in server/routers/claim/index.js looks like the snippet above
(Example 6-8).

Example 6-8 Requiring the modules

module.exports = function(app) {
const router = express.Router();

postClaimImage(router); // ADD THIS LINE
getClaimImage(router); // ADD THIS LINE
76 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

// Ensures claim exist and attaches it to the request
const claimInjector = function (req, res, next) {

// get the claimId from the request parameters
const claimId = req.params.claimId;

req.cloudant.getClaim(claimId).then((claimDetails) => {
if (claimDetails) {

req.claim = claimDetails;
next();

} else {
res.status(404).send("Claim does not exist");

}
}).catch((err) => {

logger.error(err);
res.status(500).send("Something broke!");

});
};

Call the init function for both modules and pass in the Express router to initialize the
modules. Make sure that your code in server/routers/claim/index.js looks like the snippet
above. So now you have created the modules to handle upload and download of images and
added them to your /claim route.

postClaimImage.js uploads images. However, you still must create the module that will resize
the uploaded images. Create a file called processor.js in
server/services/image-processing:

$ mkdir -p server/services/image-processing
$ touch server/services/image-processing/processor.js

Paste the code in Example 6-9 into server/services/image-processing/processor.js. The
code snippet is responsible for resizing the image. A utility called ImageMagick is used to do
this task, which you must install as part of your Docker build. Then, use a small Node.js
wrapper library around Image Magick.

Example 6-9 Code to resize the image

"use strict";

const im = require("imagemagick");
const which = require("which");
const dms2dec = require("dms2dec");
const log4js = require("log4js");

// global logger object
const logger = log4js.getLogger("image-service");

// Public methods

// guard function to ensure imageMagick is there before we call the im package
const _checkImageMagick = (func, ...args) => {

// check if preconditions are met (imagemagick is installed)
if (!which.sync("convert", {nothrow: true})) {

throw new Error("ImageMagick does not appear to be installed, please install
it!");

}

Chapter 6. Using IBM Cloud Object Storage 77

https://www.imagemagick.org/script/index.php
https://www.npmjs.com/package/imagemagick
https://www.npmjs.com/package/imagemagick

return func(...args);
};

module.exports.resize = (...args) => _checkImageMagick(_resize,...args);

// Private methods

function _resize(imageData) {
return isImagePortrait(imageData).then(isPortrait => {

// define our width and heigh to resize to
let width = 1024;
let height = 768;
// if the image is portrait, swap values of width and height so we can
// maintain the ratio
if(isPortrait) {

logger.info("Resize: swapping width & height values to maintain ratio");
width = 768;
height = 1024;

}
return new Promise(function(resolve, reject) {

im.resize({
srcPath: imageData,
width: width,
height: height

}, function(err, stdout) {
if (err) {

reject(err);
} else {

logger.info("resized image to fit within 768px");
// Convert the string data from the resize function to a binary

buffer
var buff = Buffer.from(stdout, "binary");
resolve(buff);

}
});

});
});

}

function getImageDimensions(imageData) {
return new Promise(function(resolve) {

im.identify(["-format", "%wx%h", imageData], function(err, output){
if (err) resolve(err);
let dimensions = output.split("x");
resolve(dimensions);

});
});

}

function isImagePortrait(imageData) {
return getImageDimensions(imageData).then(dimensions => {

let ratio = dimensions[0] / dimensions[1];
78 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

if(ratio < 1) return true;
return false;

});

Insurance Company X would like to eventually archive inactive claims after a certain time.
This is a good practice because otherwise the main database will grow to be a very large size
that costs more money and affects performance when indexing. You can archive the JSON
data directly into IBM Cloud Object Storage. A service on IBM Cloud called SQL Query allows
you to query files directly from IBM Cloud Object Storage, including JSON, CSV, and Parquet
documents. You can read the documentation for more information.

Replace the code for the _archiveClaim function in server/services/cloudant/index.js
with the code snippet in Example 6-10. Notice the line that uses the IBM Cloud Object
Storage module to create an object in a bucket called claims-archived.

Example 6-10 Code for archiving

function _archiveClaim(claimId) {
// get the claim, store it on COS and update the claim as archived
return _getClaim(claimId)

.then((claimDetails) => {
const data = JSON.stringify(claimDetails);
logger.trace("Will archive: " + data);
// prefix object by year, week and claimId, such that hive partitioning

may benefit from it
const now = moment.utc();
return cos.doCreateObject("claims-archived",

`${now.year()}/${now.week()}/${claimId}/data.json`, "application/json", data);
})
.then(() => _appendClaim({ claimId: claimId , state: "archived"}));

}

6.4.2 Testing the app

For this app to run locally on your computer, you need to install the ImageMagick utility. For
Mac users, you can install Homebrew and issue the following command:

$ brew install imagemagick

For other operating systems, there are download instructions.

To test the app, complete these steps:

1. Issue the following command:

$ npm start

2. Open your browser and navigate to http://localhost:3000.

3. Click Login in the upper right of the window.

4. Click the blue Make a Claim button.

5. Using the form, choose an image to upload (pick an image from the testData directory).
You can see in the terminal window the application logging the steps that it takes to upload
an image. After the upload is complete, the image is displayed in the window.
Chapter 6. Using IBM Cloud Object Storage 79

https://console.bluemix.net/docs/services/sql-query/sql-query.html#overview
https://brew.sh/
https://www.imagemagick.org/script/download.php

6.4.3 The IBM Cloud Object Storage SDK and singlepart versus multipart
uploads

The IBM Cloud Object Storage Node.js SDK can perform many more actions for you and
supports the entire IBM Cloud Object Storage API command set. The full documentation can
be found here. The following are examples of other tasks you can perform with the SDK:

� Create, read, update, and delete buckets
� Create, read, update, and delete objects
� Enable CORS on a bucket
� Creating a multipart upload

The final item in the list, creating a multipart upload, is worth discussing. IBM Cloud Object
Storage supports two methods of uploading files: Single-part and multipart. In this example,
we are using singlepart because we are uploading a single image at a time over a web
browser over a reliable internet connection.

In a singlepart upload, the entire object is uploaded as a single part. If the upload fails, the
process must start from the beginning again, and there is little indication of the progress of
the upload. Contrast this upload with multipart, where an object or multiple objects are divided
into parts and a separate upload is performed for each part. This technique can be achieved
by using the IBM Cloud Object Storage API, but the SDK handles the complexities of creating
the parts and managing the entity tags and part numbers.

The following are some example scenarios that benefit from multipart uploads:

� Uploading large files
� On mobile devices with unreliable network connections, dividing uploads into parts

reduces the amount that must be retransmitted in the event of an upload failure

Multipart uploads consist of three steps: Initiate the upload, upload the object parts, and
then complete the multipart upload. When IBM Cloud Object Storage receives the multipart
upload completed request, the parts are constructed into a single object that you can then
access like any other object.

Multipart uploads are only available for objects larger than 5 MB. For objects smaller than
50 GB, a part size of 20 MB to 100 MB provides optimum performance. For larger objects,
part size can be increased without significant effect on performance. Using more than 500
parts leads to inefficiencies in object storage, and should be avoided when possible.

Sometimes a multipart upload will fail. To avoid storing incomplete objects and therefore
incurring unnecessary costs, call abortMultipartUpload. To verify whether a multipart upload
has failed, first call listParts. If this list is not empty, then the multipart upload has failed and
you should abort it.

Due to the additional complexity involved, use S3 API libraries that provide multipart upload
support. For more information, see 6.4.4, “Using ManagedUpload or TransferManager”.

6.4.4 Using ManagedUpload or TransferManager

ManagedUpload provides a simple API for uploading content to IBM Cloud Object Storage and
makes extensive use of multipart uploads to achieve enhanced throughput, performance, and
reliability.

When possible, ManagedUpload attempts to upload multiple parts of a single upload at once.
When dealing with large content sizes and high bandwidth, this process can significantly
increase throughput.
80 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://ibm.github.io/ibm-cos-sdk-js/

ManagedUpload handles a lot of complexity for you, including dividing objects into multiple
parts, aborting failed uploads, returning progress events, adjusting the algorithm for maximum
performance, and presenting a simple API for ease of use.

The Managed uploader has an equivalent in the Java SDK known as the TransferManager.
Documentation can be found here.

6.5 Next steps

Review what you have learned and move on to Chapter 7, “Advanced Object Storage
integration patterns” on page 83.

6.6 Other references

� MIME types (a complete list)

https://www.sitepoint.com\mime-types-complete-list

� IBM Cloud Object Storage Node.js SDK documentation

https://ibm.github.io/ibm-cos-sdk-js/

� IBM Cloud Object Storage Java SDK documentation

https://ibm.github.io/ibm-cos-sdk-java

� IBM Cloud Object Storage documentation

https://console.bluemix.net/docs/services/cloud-object-storage/
Chapter 6. Using IBM Cloud Object Storage 81

https://ibm.github.io/ibm-cos-sdk-js/
https://ibm.github.io/ibm-cos-sdk-java
https://console.bluemix.net/docs/services/cloud-object-storage/
https://www.sitepoint.com\mime-types-complete-list
https://ibm.github.io/ibm-cos-sdk-js/AWS/S3/ManagedUpload.html

82 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Chapter 7. Advanced Object Storage
integration patterns

Welcome to Module 7 in this tutorial series! This series explains how to build a cloud-native,
consumer-facing car insurance claim application on IBM Cloud that is built according to best
practices, uses IBM Cloud Object Storage at its core, and employs AI and machine learning
to provide a unique digital experience for a customer.

This module explains some of the advanced techniques available to a developer when
interacting with Cloud Object Storage, and describes the use cases in which each of these
techniques can add value to an application.

This chapter includes the following sections:

� Learning objectives
� Getting started
� Implementation
� Next steps
� Other references

7

© Copyright IBM Corp. 2018. All rights reserved. 83

7.1 Learning objectives

After completing this module, you will be able to:

� Identify the best advanced method to interact with Cloud Object Storage for your use case

� Implement code to write data to Cloud Object Storage using a single part

� Implement code to write data to Cloud Object Storage using multipart upload and
concurrent streams

� Implement code to read specific data ranges from Cloud Object Storage objects

� Verify the integrity of data stored in and retrieved from Cloud Object Storage

� Implement code to create pre-signed URLs for others to interact with Cloud Object
Storage objects

� Identify the tiering options provided by IBM Cloud Object Storage and choose the tier that
best suits your data

7.2 Getting started

Clone the repository to get the code:

$ git clone https://github.com/IBMRedbooks/IBM-Cloud-Object-Storage-Tutorials
$ cd IBM-Cloud-Object-Storage-Tutorials

Check out the code for Module 6 to get the finished code from the previous module that you
will build on:

$ cd module06

If you want to skip ahead, check out the completed code for this module and read along:

$ cd module07

As with previous modules, this section assumes that you have an active IBM Cloud account
with Object Storage provisioned. This section also assumes that you have the IBM Cloud
Object Storage SDK for Node.js installed. If you do not, open a terminal and enter the
following command to install it:

npm install ibm-cos-sdk

7.3 Implementation

As discussed in previous modules, Cloud Object Storage provides a number of methods for
accessing and interacting with the service. This module will focus on some of the advanced
techniques afforded by the IBM Cloud Object Storage SDKs that are not explicitly used in the
example application.

7.3.1 Uploading data to Cloud Object Storage

When sending data to Cloud Object Storage, the operator should choose the most efficient
method for transferring the data: As a single part, or broken up into multiple, smaller chunks
of data (multipart upload).
84 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Each method has its own set of advantages and disadvantages.

Table 7-1 shows the pros and cons of single part transfers.

Table 7-1 Advantages and disadvantages of single part transfer

Table 7-2 shows the pros and cons of multipart upload transfers.

Table 7-2 Advantages and disadvantages of multipart upload transfers

Although there are no fixed criteria for making the determination between single part and
multipart upload, two major factors can help you determine which method to employ: The size
of the data to be uploaded, and the available bandwidth and network reliability of the client
that will upload the data.

As the size of the data to be uploaded and the bandwidth available to the client increase,
moving from a single part transfer to a concurrent operation can result in a significant
increase in overall throughput.

Multipart uploads are only available for objects larger than 5 MB. For objects smaller than
50 GB, use a part size of 20 MB to 100 MB for optimum performance. For larger objects, part
size can be increased without significantly affecting performance.

Using more than 500 parts leads to inefficiencies in Object Storage and should be avoided
when possible.

Standard upload (single part)
Begin with a standard upload operation. As in previous modules, you will split the code that
interacts with the Cloud Object Storage service into a service module (cos_advanced.js) and
require it in your example code.

Pro Con

Simple Implementation
Call cos.putObject and wait for the callback

Upload throughput bounded by single part

Easy data integrity checking
ETag will equal the md5sum of the source data

Cannot monitor upload progress

Relatively easy to debug
Any errors will surface in the method's callback

Transmission failure requires resending the entire
object

Pro Con

Increased upload throughput with concurrency Data integrity checking is more involved

Transmission failure requires only resending the
failed part

Debugging can be more difficult because each
part upload has its own error callback

Easy to monitor status Requires cleanup of uploaded data on abort

Manual multipart upload requires several steps
Chapter 7. Advanced Object Storage integration patterns 85

Create a file named cos_advanced.js now and enter the code shown in Example 7-1,
replacing the placeholder values with those specific to your IBM Cloud Object Storage
account.

Example 7-1 Service module code

"use strict";

// Modules
const COS = require('ibm-cos-sdk'); // the COS SDK
const util = require('util'); // used to inspect errors
const fs = require('fs'); // used to read/write from the file system

// COS bucket name
const _bucketName = 'example_bucket'; // replace this with your bucket name

// Config - Service credentials for the COS instance
const config = {
 endpoint: 's3.us-south.objectstorage.softlayer.net', // replace this with your
endpoint if deployed to a different region
 accessKeyId: 'my_access_key_id', // replace this with your access key id
 secretAccessKey: 'my_secret_access_key_id' // replace this with your secret
access key
};
const cos = new COS.S3(config);

// Public methods
module.exports.doSinglePartUpload = _doSinglePartUpload;

// Private methods
// upload an object with a single part
function _doSinglePartUpload(mimeType, key, data) {
 console.log('Uploading object with key', key);
 let params = {
 Bucket: _bucketName,
 ContentType: mimeType,
 Key: key,
 Body: data
 };
 return new Promise(function(resolve, reject) {
 cos.putObject(params, function(err, data) {
 if(err) {
 reject(err);
 } else {
 resolve(data);
 }
 });
 });
}

The doSinglePartUpload function accepts a MIME Type (ex. 'text/plain',
'application/octet-stream'), a key (the 'name' of the object to be uploaded), and the data
to be uploaded to the given key. This function returns a Promise that can be resolved later to
determine whether the operation was successful.
86 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Create a file named simple_put.js in the same directory as cos_advanced.js and enter the
code shown in Example 7-2.

Example 7-2 Code for simple_put.js

const cos = require('./cos_advanced');

// Simple single part PUT object
cos.doSinglePartUpload('text/plain', 'example1.txt', 'hello,
world!').then(function(res) {
 console.log(res);
}).catch(function(error) {
 console.error(error);
})

Our first foray into uploading to Cloud Object Storage is a simple one. Upload a text/plain
(mimeType) object to example1.txt (key) with the most traditional of contents: 'hello,
world!' (data). Then send the result (res) in case of success, or the error (error) in case of
failure to the console for inspection.

Next, run simple_put.js:

~# node simple_put.js
Uploading object with key example1.txt
{ ETag: '"3adbbad1791fbae3ec908894c4963870"' }

If you see the ETag returned from the object storage system, congratulations, the object is
uploaded. As with all writes to IBM Cloud Object Storage, after the PUT is acknowledged, the
uploaded data is immediately available to read. This code suffices for uploading simple
strings to Cloud Object Storage, but not for anything more complicated.

Create a file named simple_put_file.js in the same directory and enter the code shown in
Example 7-3.

Example 7-3 Code for the simple_put_file.js file

const cos = require('./cos_service');
const fs = require('fs');

let buffer = fs.readFileSync('hello_world.txt');

// Simple single stream PUT of file contents
cos.doSinglePartUpload('text/plain', 'example2.txt', buffer).then(function(res) {
 console.log(res);
}).catch(function(error) {
 console.error(error);
})

The doSinglePartUpload function accepts a string or a buffer as its data parameter,
meaning you can also feed it the contents of a file on disk and upload it to the object storage
system. This simple_put_file.js example reads the contents of a file named
hello_world.txt into a buffer and passes that buffer as the data to the doSinglePartUpload
function.
Chapter 7. Advanced Object Storage integration patterns 87

Next, run the following commands:

~# echo 'hello, world!' > hello_world.txt
~# node simple_put_file.js
Uploading object with key example2.txt
{ ETag: '"910c8bc73110b0cd1bc5d2bcae782511"' }

This procedure creates the hello_world.txt file that your simple_put_file.js script will read
from, and then run the code. Just as before, it returns successfully, and an ETag value is
printed to console. The implementation above is sufficient for many use cases. Because the
components in this tutorial series are deployed into the same datacenters as the Cloud Object
Storage system and the objects created by these components are relatively small, this
technique is used for uploading data to Cloud Object Storage throughout this series.

Multipart upload (manual)
In some cases, especially as the data to be uploaded grows in size (e.g. over 100 MiB),
uploading the data in pieces provides several advantages over a single, 'atomic' operation.
These benefits include optional concurrency (the operator can elect to initiate the upload of
parts while others are already underway), and more granular control of errors and retry logic
(the operator can retry a failed part instead of the entire object in the event of error).

Multipart uploads occur in three main phases, as shown in Table 7-3.

Table 7-3 Phases of multipart uploads

First, the operator creates the upload with a call to createMultiPartUpload. If this is
successful, uploadPart can be called as many times as necessary to transfer all of the data to
Cloud Object Storage. If all parts are uploaded successfully, the operator can then call
completeMultiPartUpload to finalize the upload to clean up the parts storage and finalize the
object.

If an error occurs, the operator can either attempt to re-upload the failed part, or call
abortMultiPartUpload to cancel the upload and clean up the parts storage to ensure that you
are not charged for storage of the partially uploaded object.

Open cos_advanced.js and update the “public methods” and “Private methods” sections to
include the code shown in Example 7-4.

Example 7-4 Updating the cos_advanced.js code

// Public methods
module.exports.doSinglePartUpload = _doSinglePartUpload;
module.exports.doCreateMultiPartUpload = _doCreateMultiPartUpload;
module.exports.doAbortMultiPartUpload = _doAbortMultiPartUpload;
module.exports.doCompleteMultiPartUpload = _doCompleteMultiPartUpload;
module.exports.doUploadPart = _doUploadPart;

// Private methods

// create a new multipart upload

Phase Function

Begin the upload createMultiPartUpload

Upload part(s) uploadPart

End the upload completeMultiPartUpload / abortMultiPartUpload
88 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

function _doCreateMultiPartUpload(key) {
 console.log('Creating multipart upload with key', key);
 let params = {
 Bucket: _bucketName,
 Key: key
 };
 return new Promise(function(resolve, reject) {
 cos.createMultipartUpload(params, function(err, data) {
 if(err) {
 reject(err);
 } else {
 resolve(data);
 }
 });
 });
}

// upload a part in a multipart upload operation
function _doUploadPart(key, partNumber, uploadId, data) {
 console.log('Uploading part ' + partNumber + ' for key ' + key + ' with uploadId
' + uploadId);
 let params = {
 Bucket: _bucketName,
 Key: key,
 PartNumber: partNumber,
 UploadId: uploadId,
 Body: data
 };
 return new Promise(function(resolve, reject) {
 cos.uploadPart(params, function(err, data) {
 if (err) {
 reject(err);
 } else {
 resolve(data);
 }
 });
 });
}

// abort an in-progress multipart upload operation
function _doAbortMultiPartUpload(key, uploadId) {
 console.log('Aborting multipart upload for key ' + key + ' with uploadId ' +
uploadId);
 let params = {
 Bucket: _bucketName,
 Key: key,
 UploadId: uploadId
 };
 return new Promise(function(resolve, reject) {
 cos.abortMultipartUpload(params, function(err, data) {
 if (err) {
 reject(err);
 } else {
 resolve(data);
 }
Chapter 7. Advanced Object Storage integration patterns 89

 });
 });
}

// complete an in-progress multipart upload operation
function _doCompleteMultiPartUpload(key, uploadId) {
 console.log('Completing multipart upload for key ' + key + 'with uploadId ' +
uploadId);
 let params = {
 Bucket: _bucketName,
 Key: key,
 UploadId: uploadId
 };
 return new Promise(function(resolve, reject) {
 cos.completeMultipartUpload(paramse, function(err, data) {
 if (err) {
 reject(err);
 } else {
 resolve(data);
 }
 });
 });
}

Each function above corresponds to a phase of the multipart upload operation and wraps the
step in a promise for ease of use outside of the service module.

Next, create a file named multipart_create_and_abort.js and add the code in Example 7-5.

Example 7-5 Code for multipart_create_and_abort.js

const cos = require('./cos_advanced');
let key = 'multipart.dat'; // the object name

// create a multipart upload, then immediately abort
cos.doCreateMultiPartUpload(key).then(function(res) {
 console.log(res);
 cos.doAbortMultiPartUpload(key, res.UploadId).then(function(res) {
 console.log(res)
 });
}).catch(function(error) {
 console.error(error)
});

This code creates a multipart upload. When a multipart upload is created successfully, the
Cloud Object Storage SDK returns a JavaScript object that includes the bucket name, the
object's key, and, importantly, the UploadId. It is essential when manually managing multipart
uploads to keep the UploadId close to hand. Any follow-up actions in the multipart upload flow
require this ID as a parameter.

Because the create operation returns a promise, you can trigger a following action with .then
to abort the multipart upload. Calls to doAbortMultiPartUpload require both the key and the
UploadId of the transaction to be cancelled. Because you specified the key yourself, this is
easy to provide. doCreateMultiPartUpload returns the response when its promise is
successfully resolved, so you can access the UploadId as a property of the response (res).
90 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Creating and immediately aborting an upload has little real-world value, but will let us see the
results of each operation as we build up to a complete multipart upload operation.

Run multipart_create_and_abort.js, as shown in Example 7-6.

Example 7-6 multipart_create_and_abort.js command

~# node multipart_create_and_abort.js
Creating multipart upload with key multipart.dat
{ Bucket: 'examplebucket',
 Key: 'multipart.dat',
 UploadId: '01000163-4307-b006-1e57-151586b0057e' }
Aborting multipart upload for key multipart1.dat with uploadId
01000163-4307-b006-1e57-151586b0057e
{}

When you run this code, you see the debug message from the cos_advanced.js module
acknowledging that it is creating a multipart upload. When that multipart upload creation
succeeds, the code logs the response and see the bucket name, object key, and UploadId
returned. Next, the returned UploadId and your original key are passed to the following
function to cancel the multipart upload. When the abort returns, you receive an empty object.

Now that creating and aborting multipart uploads are well in hand, you can move on to a
complete multipart upload.

Create a file named multipart_create_upload_and_complete.js and add the code in
Example 7-7.

Example 7-7 Code for multipart_create_upload_and_complete.js

const cos = require('./cos_advanced');
let key = 'multipart.dat'; // the object name
let buffer = new Buffer(1024 * 1024 * 25); // a 25MB buffer

// create a multipart upload, upload 4 25MB parts, then complete
cos.doCreateMultiPartUpload(key).then(function(res) {
 console.log(res);
 var put_promises = new Array();
 for (var i=0;i<4;i++) {
 put_promises.push(cos.doUploadPart(key, i + 1, res.UploadId, buffer));
 }
 Promise.all(put_promises).then(function(parts) {
 for (var j=0; j<parts.length;j++) {
 parts[j].PartNumber = j+1;
 }
 cos.doCompleteMultiPartUpload(key, res.UploadId, parts).then(function(res) {
 console.log(res)
 });
 })
}).catch(function(error) {
 console.error(error)
});

This script has a bit more going on than the previous examples. At the top of the file, you need
your Cloud Object Storage service module, then create a key variable to hold the name of
your object. Line 3 creates a new empty buffer 25 MB in size.
Chapter 7. Advanced Object Storage integration patterns 91

As before, create a new multipart upload and pass it in the key. Next, declare an array
prototype named put_promises in which you will collect the promises representing your
upload operations.

The first for loop increments from 0 to 3, creating promises and adding them as four distinct
calls to doUploadPart to the put_promises array.

In this example, for simplicity's sake, the data passed in to each call to cos.doUploadPart is
the same empty 25 MB buffer.

After the array of promises is built, wait the resolution of every upload operation with
Promises.all. As an uploadPart operation completes, it returns the calculated ETag value for
the part that has been uploaded. These ETag values will be collected in the parts array
prototype returned.

To complete the multipart upload operation, provide the doCompleteMultiPartUpload function
with three parameters: The object key, the UploadId, and a list of parts and their ETags. The
results of a Promise.all call are always arranged in the same order as the input array. You
can use that to your advantage to iterate the returned parts array and add a PartNumber
property to each entry.

When the doCompleteMultiPartUpload function completes successfully, it will return the
following data:

� Location: The URI of the finalized object.
� Bucket: The bucket into which the object was uploaded.
� Key: The object's name on the Cloud Object Storage system.
� ETag: A hash useful for verifying object integrity (see below). This value will be suffixed

with a dash (-), followed by a number. This number indicates the number of parts that
make up the finalized object.

Run the code shown in Example 7-8.

Example 7-8 Creating multipart upload with key multipart.dat

~# node multipart_create_upload_and_complete.js

Creating multipart upload with key multipart.dat
{ Bucket: 'examplebucket',
 Key: 'multipart.dat',
 UploadId: '01000163-4661-1ff5-f666-0c27b4055ff9' }
Uploading part 1 for key multipart.dat with uploadId
01000163-4661-1ff5-f666-0c27b4055ff9
Uploading part 2 for key multipart.dat with uploadId
01000163-4661-1ff5-f666-0c27b4055ff9
Uploading part 3 for key multipart.dat with uploadId
01000163-4661-1ff5-f666-0c27b4055ff9
Uploading part 4 for key multipart.dat with uploadId
01000163-4661-1ff5-f666-0c27b4055ff9
Completing multipart upload for key multipart.dat with uploadId
01000163-4661-1ff5-f666-0c27b4055ff9

Note: In the call to cos.doUploadPart, we are adding 1 to our loop counter (i + 1) before
passing it as the partNumber parameter. We do this because partNumber is 1-indexed.
doUploadPart will return a helpful error in case you omit this and attempt to upload a part
with a partNumber of 0.
92 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

{ Location:
'https://examplebucket.s3.us-south.objectstorage.softlayer.net/multipart.dat',
 Bucket: 'examplebucket',
 Key: 'multipart.dat',
 ETag: '"99ec0e49c289164f03024888d45b78a8-4"' }

The multipart upload begins, immediately followed by all four part uploads. Note that these
part uploads are taking place concurrently, which is the first benefit of multipart upload. After
all four parts have uploaded, the script completes the upload, providing the Cloud Object
Storage endpoint with a list of parts and their ETags.

Occasionally, you need to have direct control of each phase of the multipart upload operation.
The functions and concepts discussed above form the building blocks of such a flow.
However, more often you probably want to take advantage of the efficiencies provided by
multipart upload without dealing with the additional complexity involved. The SDK provides
just such a mechanism: The ManagedUpload class.

Multipart upload (with ManagedUpload)
ManagedUpload provides a simple API for uploading content to Cloud Object Storage that uses
multipart uploads to achieve enhanced throughput, performance, and reliability.

When possible, ManagedUpload attempts to upload multiple parts of a single upload at once.
When dealing with large file sizes and high bandwidth, this process can result in a significant
increase in throughput. The ManagedUpload class defaults to a 5 MB part size and four
concurrent uploads. Both of these defaults can be overridden as shown below.

ManagedUpload handles much of this complexity, including dividing objects into multiple parts,
aborting failed uploads, returning progress events, adjusting the algorithm for maximum
performance, and presenting a simple API for ease of use.

To see ManagedUpload at work, add a pair of functions to your Cloud Object Storage service
module (cos_advanced.js). Open cos_advanced.js and update the “Public methods” and
“Private methods” sections to include the code in Example 7-9.

Example 7-9 Updates to cos_advanced.js

// Public methods
module.exports.doBasicManagedUpload = _doBasicManagedUpload
module.exports.doManagedUpload = _doManagedUpload

// Private methods
// perform a basic ManagedUpload
function _doBasicManagedUpload(key, data) {
 console.log('Performing a managed upload of key', key);
 let params = {
 Bucket: _bucketName,
 Key: key,
 Body: data
 };
 return new Promise(function(resolve, reject) {
 cos.upload(params, function(err, data) {
 if (err) {
 reject(err)
 } else {
 resolve(data)
 }
Chapter 7. Advanced Object Storage integration patterns 93

 });
 });
}

// perform a basic ManagedUpload
function _doManagedUpload(key, data, partSize, concurrency) {
 console.log('Performing a managed upload of key', key);
 let params = {
 Bucket: _bucketName,
 Key: key,
 Body: data
 };
 let options = {
 partSize: partSize,
 queueSize: concurrency
 };
 return new Promise(function(resolve, reject) {
 cos.upload(params, options, function(err, data) {
 if (err) {
 reject(err)
 } else {
 resolve(data)
 }
 });
 });
}

You have added two functions to your growing Cloud Object Storage service module:
_doManagedUpload and _doBasicManagedUpload. Both functions use the ManagedUpload class,
with the “basic” function sticking to the 5MB/4 thread defaults mentioned previously. The
_doManagedUpload function accepts additional parameters, allowing you to specify custom
part size and concurrency numbers.

Next, create a file named basic_managed_upload.js and enter the code shown in
Example 7-10.

Example 7-10 Code for basic_managed_upload.js

const cos = require('./cos_advanced');
let key = 'managedupload.dat'; // the object name
let buffer = new Buffer(1024 * 1024 * 25); // an empty 25MB buffer

cos.doBasicManagedUpload(key, buffer).then(function(res) {
 console.log(res);
}).catch(function(error) {
 console.error(error)
});

Here, create an empty 25 MB buffer, and call the new doBasicManagedUpload function to
upload the data to Cloud Object Storage.
94 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Issue the command shown in Example 7-11.

Example 7-11 ~# node basic_managed_upload.js command

~# node basic_managed_upload.js
Performing a managed upload of key managedupload.dat
{ Location:
'https://examplebucket.s3.us-south.objectstorage.softlayer.net/managedupload.dat',
 Bucket: 'examplebucket',
 Key: 'managedupload.dat',
 ETag: '"01b86f5f0dc515188d548e2840c8bf40-5"' }

As seen in the output, the object was successfully uploaded to the Cloud Object Storage. By
examining the returned ETag, specifically its “-5” suffix, you see that the object was, indeed,
uploaded as five separate 5 MB parts.

Typically, when working with object sizes that can benefit from multipart upload, a part size in
the 20 MB - 100 MB range is preferred. Create a file named managed_upload.js and enter the
code shown in Example 7-12.

Example 7-12 Code for managed_upload.js

const cos = require('./cos_advanced');
let key = 'managedupload.dat'; // the object name
let buffer = new Buffer(1024 * 1024 * 120); // an empty 120MB buffer

cos.doManagedUpload(key, buffer, 1024 * 1024 * 20, 6).then(function(res) {
 console.log(res);
}).catch(function(error) {
 console.error(error)
});

The call to doManagedUpload looks very similar to the doBasicManagedUpload you just
performed. The important bits are found in the last two parameters passed to the function.
You are now specifying the part size and concurrency (queueSize) for the multipart upload
operation.

Issue the managed_upload.js command, as shown in Example 7-13.

Example 7-13 node managed_upload.js command

~# node managed_upload.js
Performing a managed upload of key managedupload.dat
{ Location:
'https://examplebucket.s3.us-south.objectstorage.softlayer.net/managedupload.dat',
 Bucket: 'examplebucket',
 Key: 'managedupload.dat',
 ETag: '"64f8e7993ee4d8c62b3d5cb2b26d40ab-6"' }

As shown in the output, the 120 MB object was uploaded as six separate 20 MB parts.
Chapter 7. Advanced Object Storage integration patterns 95

Note that the ManagedUpload class is not restricted to large objects that require multipart
upload. Create a file named managed_upload_non_multipart.js and enter the code in
Example 7-14.

Example 7-14 Code for managed_upload_non_multipart.js

const cos = require('./cos');
let key = 'managedupload.dat'; // the object name
let buffer = new Buffer(1024 * 1024 * 2); // an empty 2MB buffer

cos.doBasicManagedUpload(key, buffer).then(function(res) {
 console.log(res);
}).catch(function(error) {
 console.error(error)
});

Here, you pass a 2 MB empty buffer to your doBasicManagedUpload function, which is well
below the 5 MB threshold for multipart upload.

Issue the command shown in Example 7-15.

Example 7-15 managed_upload_non_multipart.js command

~# node managed_upload_non_multipart.js
Performing a managed upload of key managedupload.dat
{ ETag: '"b2d1236c286a3c0704224fe4105eca49"',
 Location:
'https://examplebucket.s3.us-south.objectstorage.softlayer.net/managedupload.dat',
 key: 'managedupload.dat',
 Key: 'managedupload.dat',
 Bucket: 'examplebucket' }

Examining the ETag from the result of the upload, you can see no sign of a -# suffix indicating
multipart upload. The object was uploaded in its entirety in a single part.

This output shows the real power of the ManagedUpload class: With one function definition,
you can pass in a string, buffer, or stream 10 bytes or 10 GB in size. You can rest assured that
the data will be uploaded in an efficient manner. The class abstracts away the tedium of
chunking incoming data, opening, maintaining, and cleaning up upload operations, but still
affords the developer control over part size and concurrency.

When it comes time to choose an upload technique for your application, consider this general
rule: Begin building with ManagedUpload. What begins as a basic use case that could be
serviced just as well by putObject requests might grow to include larger, more complex data
sets. Starting with the MangedUpload implementation allows your application to accommodate
these new data sets effectively and efficiently with no change to your service module.
96 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

7.3.2 Downloading data from Cloud Object Storage

This section covers methods for getting data from Cloud Object Storage. Open
cos_advanced.js and update the “Public methods” and “Private methods” sections to include
the code in Example 7-16.

Example 7-16 Code for cos_advanced.js

// Public methods
module.exports.doReadObject = _doReadObject;
module.exports.doReadObjectRange = _doReadObjectRange;

// Private methods
// Read Examples
function _doReadObject(key) {
 console.log('Getting object with key', key);
 return new Promise(function(resolve, reject) {
 cos.getObject({
 Bucket: _bucketName,
 Key: key
 }, function(err, data) {
 if(err) reject(err);
 resolve(data);
 });
 });
}

function _doReadObjectRange(key, start_byte, end_byte) {
 console.log('Getting object with key', key);
 return new Promise(function(resolve, reject) {
 cos.getObject({
 Bucket: _bucketName,
 Key: key,
 Range: "bytes=" + start_byte + "-" + end_byte
 }, function(err, data) {
 if(err) reject(err);
 resolve(data);
 });
 });
}

You have added two functions to your service module: _doReadObject and
_doReadObjectRange.

Standard download
The _doReadObject accepts a single argument, the key of the object to download from Cloud
Object Storage. It then returns a promise that calls getObject on the given key and contains
the data downloaded or an error if the operation fails.

This pattern (issuing a single GET on an object) is the most common technique for
downloading data from Cloud Object Storage and is the method used throughout this tutorial
series.
Chapter 7. Advanced Object Storage integration patterns 97

To see it in action, create a file named basic_download.js and enter the code shown in
Example 7-17.

Example 7-17 Code for basic_download.js

const cos = require('./cos_advanced');
let key = 'managedupload.dat'; // the object name

// download the managedupload.dat object
cos.doReadObject(key).then(function(res) {
 console.log(res);
}).catch(function(error) {
 console.error(error);
})

In this example, we will be downloading the 2 MB managedupload.dat object created at the
end of the ManagedUpload section. If you have removed that object from your bucket, upload a
new one or change the key to one that exists in your bucket.

Next, run the code shown in Example 7-18.

Example 7-18 The node basic_download.js command

~# node basic_download.js
Getting object with key managedupload.dat
{ AcceptRanges: 'bytes',
 LastModified: 'Fri, 11 May 2018 04:38:07 GMT',
 ContentLength: '2097152',
 ETag: '"b2d1236c286a3c0704224fe4105eca49"',
 ContentType: 'application/octet-stream',
 Metadata: {},
 Body: <Buffer 00
00
00 ... > }

In the output, you can see that the download operation returns the object's metadata from the
Cloud Object Storage system, along with the object's data in the Body field. You can take this
returned Body buffer and perform whatever operation you would like on the data.

Range read
Occasionally, you do not need the whole object. In those cases, downloading its entirety from
Cloud Object Storage would be a waste of bandwidth and, just as importantly, time.

If, for instance, you have a MapReduce job set up to spawn a number of workers to ingest a
portion of an object and act on that data, sending the entirety of the object to each worker
would be incredibly inefficient. Perhaps the object instead contains video data from a sporting
event, but you are only interested in the highlights. Again, downloading the entire object would
waste bandwidth and slow the user experience.

Luckily, the Cloud Object Storage SDK allows you to pass in an optional Range parameter to
your call to getObject to only request the specific data that you are interested in.
98 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Create a new file called range_download.js and enter the code shown in Example 7-19.

Example 7-19 Code for range_download.js

const cos = require('./cos_advanced');
let key = 'managedupload.dat'; // the object name
let begin_byte = 0; // the first byte to request
let end_byte = 9; // the last byte to request

// request the first 10 bytes from the managedupload.dat object
cos.doReadObjectRange(key, 0, 9).then(function(res) {
 console.log(res);
}).catch(function(error) {
 console.error(error);
})

Here, you specify two new variables to specify the first and last bytes of the range you
request: begin_byte and end_byte to specify the first and last bytes of the range you request.
These variables will be passed to the doReadObjectRange function declared in your Cloud
Object Storage service module where they will be used to construct a Range parameter for
your getObject request. The Range parameter is a string, and, in the case of this example will
be formatted in the request as follows: “bytes=0-9”.

Issue the command shown in Example 7-20.

Example 7-20 range_download.js command

~# node range_download.js
Getting object with key managedupload.dat
{ AcceptRanges: 'bytes',
 LastModified: 'Fri, 11 May 2018 04:38:07 GMT',
 ContentLength: '10',
 ETag: '"b2d1236c286a3c0704224fe4105eca49"',
 ContentRange: 'bytes 0-9/2097152',
 ContentType: 'application/octet-stream',
 Metadata: {},
 Body: <Buffer 00 00 00 00 00 00 00 00 00 00> }

The output shows that the ContentLength of the response was 10 (bytes). Compare this to the
result of your previous basic_download.js run in which you downloaded the full object
- ContentLength, which was 2097152. The range download only returned the 10 bytes you
requested, saving you significant bandwidth and time.

Additionally, a new ContentRange field was returned with this request, reminding you of the
byte range that you requested, along with the total size in bytes of the object.

7.3.3 Verifying data integrity

This module has covered several methods for storing data in and retrieving data from IBM
Cloud Object Storage. However, how can you be confident that the data you are uploading
and downloading has not been corrupted in transit?

An object's ETag metadata field, returned by many Cloud Object Storage SDK operations,
allows you to verify the contents of an object by comparing it to a locally calculated value. If
the two match, you can be confident that the data that you have on the local system is the
same as the object on the Cloud Object Storage system.
Chapter 7. Advanced Object Storage integration patterns 99

Single part ETag calculation
At its simplest, a single-part object's ETag is the hexadecimal digest of the data's md5
checksum. You can verify this easily by creating a file named basic_etag.js and enter the
code shown in Example 7-21.

Example 7-21 The basic_etag.js command

const cos = require('./cos');
let key = 'managedupload.dat'
let buffer = new Buffer(1024 * 1024 * 2);
let hashBuffer = crypto.createHash('md5').update(buffer).digest('hex');

cos.doBasicManagedUpload(key, buffer).then(function(res) {
 console.log(res);
 console.log('md5sum of data:', hashBuffer.toString('utf8'));
}).catch(function(error) {
 console.error(error)
});

This code uses your basic ManagedUpload code to upload an empty 2 MB buffer to the object
storage system. Here, after creating the buffer, calculate its md5sum to later compare against
the ETag that will be returned after the upload completes.

Issue the command shown in Example 7-22.

Example 7-22 The node basic_etag.js command

~# node basic_etag.js
Performing a managed upload of key managedupload.dat
{ ETag: '"b2d1236c286a3c0704224fe4105eca49"',
 Location:
'https://examplebucket.s3.us-south.objectstorage.softlayer.net/managedupload.dat',
 key: 'managedupload.dat',
 Key: 'managedupload.dat',
 Bucket: 'examplebucket' }
md5sum of data: b2d1236c286a3c0704224fe4105eca49

As the output shows, the md5sum of your local buffer is the same as the ETag returned by the
Cloud Object Storage upload operation.

Multipart ETag Calculation
You can similarly calculate the ETag of an object that was uploaded with multipart upload.
This process involves a few extra steps because the checksum calculation is not performed
against the full, finalized object. Rather, it is performed on each of its constituent parts and
then again on the concatenated binary form of all those hashes.

To verify the ETag of an object uploaded with multipart upload, complete these steps:

1. Calculate the md5 hash for each uploaded part of the object.
2. Concatenate those hashes into a single binary.
3. Calculate the md5 hash of the resulting binary.
4. Get the hex digest of the hash from step 3.

To see this in action, create a 100 MB file to work with by issuing this command:

~# dd if=/dev/zero of=100mb.dat bs=1m count=100
100 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Next, check the md5 sum of the new file:

~# md5 100mb.dat
 MD5 (100mb.dat) = 2f282b84e7e608d5852449ed940bfc51

Create a file named upload_file.js and enter the code shown in Example 7-23.

Example 7-23 Code for upload_file.js

const cos = require('./cos_advanced');
const fs = require('fs');
let buffer = fs.readFileSync('100mb.dat'); // read the 100mb.dat file into a
buffer
let key = '100mb.dat'; // the object name

// upload the buffer (the 100mb.dat file) with a part size of 10MB, and
concurrency of 5 threads
cos.doManagedUpload(key, buffer, 1024 * 1024 * 10, 5).then(function(res) {
 console.log(res);
}).catch(function(error) {
 console.error(error)
});

Use the ManagedUpload class discussed previously to upload your 100 MB file to Cloud Object
Storage in 10 MB parts with five concurrent uploads.

Issue the upload_file.js command, as shown in Example 7-24.

Example 7-24 upload_file.js command

~# node upload_file.js
Performing a managed upload of key 100mb.dat
{ Location:
'https://examplebucket.s3.us-south.objectstorage.softlayer.net/100mb.dat',
 Bucket: 'examplebucket',
 Key: '100mb.dat',
 ETag: '"1761756dcf22c0947a9b6e626b409659-10"' }

The returned result shows that the ETag does not match the simple md5 sum you calculated
before the upload. Because you know the part count and part size settings used to upload the
object, you can recreate the multipart ETag. Keep the 100mb.dat file around because you will
need it in a moment.

Open cos_advanced.js and update the “Public methods” and “Private methods” sections to
include the code shown in Example 7-25.

Example 7-25 Code for cos_advanced.js

// Public methods
module.exports.doHashMultipartFile = _doHashMultipartFile;
module.exports.checkEtagForMultipart = _checkEtagForMultipart;
module.exports.calculatePartSize = _calculatePartSize;

// Private methods
// ETag Examples
// read a file and return a promise to calculate the ETag, given a number of parts
and part size
function _doHashMultipartFile(file, parts, partSize) {
Chapter 7. Advanced Object Storage integration patterns 101

 console.log('Calculating Multipart ETag');
 return new Promise(function (resolve, reject) {
 var hashBuffer = new Buffer(0); // create an empty buffer to hold calculated
hashes
 var readStream = fs.createReadStream(file, { highWaterMark: partSize });
 var hash = ''

 readStream.on('data', function(chunk) {
 // concatenate the md5sum of this chunk to the hashBuffer
 hashBuffer = Buffer.concat([hashBuffer,
crypto.createHash('md5').update(chunk).digest()]);
 }).on('end', function() {
 // calculate the md5 hash of the full hashBuffer, then get the hex digest
 hash = crypto.createHash('md5').update(hashBuffer).digest('hex');
 resolve(hash + "-" + parts.toString())
 });
 })
}

// check an ETag for multipart ('-###') suffix and return a promise
function _checkEtagForMultipart(etag) {
 console.log('Checking ETag for multipart upload')
 return new Promise(function (resolve, reject) {
 var res = etag.match(/-\d+$/); // regex match the "-###" suffix from a
multipart upload etag
 if (res != null) {
 resolve(parseInt(res[0].substr(1))) // return the number of parts if found
 } else {
 resolve(null) // return null if no multipart suffix is found
 }
 })
}

// calculate the part size of a multipart file in bytes
function _calculatePartSize(file, parts) {
 console.log('Calculating multipart size for ' + file);
 var file_size = fs.statSync(file).size; // get the size of a file on disk
 var split = Math.floor(file_size / parts); // divide the file_size by the number
of parts, rounding the result down
 var megabytePartSize = Math.ceil(split / (1024 * 1024)); // divide the 'split'
size by 1MB, rounding the result up
 return Math.floor(megabytePartSize * (1024 * 1024)); // return the part size (in
bytes), rounding down
}

Several functions have been added. Start by looking at _doHashMultipartFile, which takes
the parameters shown in Table 7-4.

Table 7-4 Parameters of _doHashMultipartFile

Parameter Type Description

file String The name of a file on disk

parts Integer The number of parts used in a multipart upload

partSize Integer The size of parts used in a multipart upload in bytes
102 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

The new function opens the given file, reads it in partSize chunks, hashes those chunks, and
appends the result to a buffer (hashBuffer). After the file is completely read, the function
calculates the hex digest of the full hashBuffer, then appends the parts suffix (-#) to the result
and returns it.

Create a file named hash_multipart_file.js and enter the code in Example 7-26.

Example 7-26 Code for hash_multipart_file.js

const cos = require('./upload_working');
const fs = require('fs');

cos.doHashMultipartFile('100mb.dat', 10, 10 * 1024 * 1024).then(function(res) {
 console.log(res);
}).catch(function(error) {
 console.error(error);
})

Call your new doHashMultipartFile function, passing in the 100mb.dat file created above, a
part count (parts) of 10, and a partSize of 10 MB (10 * 1024 * 1024).

Issue the hash_multipart_file.js command, as shown in Example 7-27.

Example 7-27 ash_multipart_file.js command

~# node hash_multipart_file.js
Calculating Multipart ETag
1761756dcf22c0947a9b6e626b409659-10

As shown in the output, the ETag calculation now matches what was returned earlier when
you uploaded the object. With this in hand, verify that the object uploaded to Cloud Object
Storage matches your local copy so you can be confident in the integrity of your uploaded
data.

Similarly, you can verify the integrity of data downloaded from the Cloud Object Storage
system. Because you will not always know the part size used to create the original upload,
you can take the ETag returned from the Cloud Object Storage system and use math to
recreate the ETag as calculated on the object storage system.

To do so, you need the other two functions you have added to cos_advanced.js in this
section. First, examine _checkEtagForMultipart. This function accepts a single parameter
(an ETag) and uses a regular expression match to determine whether it contains a multipart
suffix (a dash, followed by a number of digits, such as -123). It returns the part count as an
integer if it finds one. Otherwise, it returns null.

Now that you can reliably pull the part count from any ETag, use that information to calculate
part size using _calculatePartSize. This function accepts a file name as a string and an
integer part count. The function then gets the file size from the local file system, and divides
that byte number by the part count, rounding down. It then converts the result (in bytes) to
megabytes, rounding up, before re-converting to bytes, rounded down, and returning the
result. Because the last part in a multipart upload is rarely the same size as the rest of the
parts of the upload, this seemingly convoluted math ensures that you return the part size
used for all parts except for the final one.

You now have all that you need to calculate the ETag: A file, its part size, and part count. Pass
each into the _doHashMultipartFile function to put your knowledge to the test.
Chapter 7. Advanced Object Storage integration patterns 103

First, create a file:

dd if=/dev/random of=20mb.dat bs=1m count=20

Then, create a file named 20mb_upload.js and enter the code in Example 7-28.

Example 7-28 Code for 20mb_upload.js

const cos = require('./cos_advanced');
const fs = require('fs');
let key = '20mb.dat'; // the object name
let parts = 0;
let partSize = 0;
let buffer = fs.readFileSync(key);

cos.doBasicManagedUpload(key, buffer).then(function(res) {
 console.log(res);
}).catch(function(error) {
 console.error(error)
});

This should look familiar. You are uploading the object using the ManagedUpload class and
default parameters (5 MB part size).

Create a file named download_and_calculate_etag.js and enter the code shown in
Example 7-29.

Example 7-29 Code for download_and_calculate_etag.js

const cos = require('./cos_advanced');
const fs = require('fs');
let key = '100mb.dat'; // the object name
let parts = 0;
let partSize = 0;

// download the 100mb.dat object
cos.doReadObject(key).then(function(res) {
 console.log("ETag from COS",res.ETag);
 fs.writeFile(key, res.Body, function(err) {
 if (err) {
 console.error(err);
 }
 });
 return res;
}).then(function(response) {
 parts = cos.checkEtagForMultipart(response.ETag); // get the part count from the
ETag
 return parts;
}).then(function(partCount) {
 if (partCount) {
 partSize = cos.calculatePartSize(key, partCount);
 }
}).catch(function(error) {
 console.error(error);
});
104 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

You are using a number of functions here. Because each function returns a promise, chain
them together with .then clauses. The code first reads back the object from Cloud Object
Storage. When this step resolves, the code returns the response and passes it to the function
that checks the returned ETag for a multipart upload suffix. If that suffix is found, the script
returns the part count and pass it to your function to calculate part size.

Issue the command shown in Example 7-30.

Example 7-30 The download_and_calculate_parts.js command

~# node download_and_calculate_parts.js
Getting object with key 100mb.dat
ETag from COS "1761756dcf22c0947a9b6e626b409659-10"
Checking ETag for multipart upload
Found 10 parts
Calculating multipart size for 100mb.dat
Calculated part size as 10485760

You can take what you learned about the object and use the doHashMultipartFile function to
verify the data you have downloaded. Create a file named doublecheck_etag.js and enter
the code shown in Example 7-31.

Example 7-31 Code for doublecheck_etag.js

const cos = require('./upload_working');
const fs = require('fs');

cos.doHashMultipartFile('100mb.dat', 10, 10485760).then(function(res) {
 console.log(res);
}).catch(function(error) {
 console.error(error);
})

Issue the command shown in Example 7-32.

Example 7-32 The doublecheck_etag.js command

~# node doublecheck_etag.js
Calculating Multipart ETag of 100mb.dat
Part Size: 10485760, Part Count: 10
1761756dcf22c0947a9b6e626b409659-10

The ETag that is calculated matches the value stored in Cloud Object Storage, so you and
can be confident that the data you received is intact.

7.3.4 Presigned URLs

IBM Cloud Object Storage provides a full complement of security and access management
mechanisms to ensure that users and roles associated with an IBM Cloud account have
appropriate levels of access to objects stored therein.

Developers commonly need to make IBM Cloud Object Storage resources (buckets or
objects) available outside of the account, either to everyone or just to authenticated/trusted
users.
Chapter 7. Advanced Object Storage integration patterns 105

If you need to make an object truly public (available for anyone to issue a HEAD or GET request
against it), setting the ACL on the object is the simplest solution. This setting can be done
either when creating an object or after the object has been uploaded, and can also be
reverted at any time. See the Allowing public access section for details.

Often, making an object completely public is not what you want to do. For example, you might
want an object to be available to download only after a user has successfully logged into your
application. You might also need to provide your users a location to which they can upload
data without giving the entire world public write access to your Cloud Object Storage storage.

In both cases, you need a mechanism for keeping your Cloud Object Storage resources
private, but providing access to others on occasion. Presigned URLs grant you this flexibility.
They provide developers with the ability to create and share a unique URL with access to a
single resource, and to ensure that the URL has a finite lifetime.

Open cos_advanced.js and update the “Public methods” and “Private methods” sections to
include the code in Example 7-33.

Example 7-33 Code to add to cos_advanced.js

// Public methods
module.exports.generatePresignedGet = _generatePresignedGet;
module.exports.generatePresignedGetWithExpiration =
_generatePresignedGetWithExpiration;
module.exports.generatePresignedPut = _generatePresignedPut;
module.exports.generatePresignedPutWithExpiration =
_generatePresignedPutWithExpiration;

// Private methods
// create a presigned GET URL with default 900 second expiry
function _generatePresignedGet(key) {
 console.log('Generating presigned GET URL for key', key);
 var url = cos.getSignedUrl('getObject', {
 Bucket: _bucketName,
 Key: key
 });
 console.log(url);
}

// create a presigned GET URL with an expiration in seconds
function _generatePresignedGetWithExpiration(key, expiration) {
 console.log('Generating presigned GET URL for key ' + key + ' with expiration '
+ expiration);
 var url = cos.getSignedUrl('getObject', {
 Bucket: _bucketName,
 Key: key,
 Expires: expiration
 });
 console.log(url);
}

// create a presigned PUT URL with default 900 second expiry
function _generatePresignedPut(key) {
 console.log('Generating presigned PUT URL for key', key);
 var params = {
 Bucket: _bucketName,
106 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/docs/services/cloud-object-storage/iam/public-access.html#allowing-public-access

 Key: key
 };
 cos.getSignedUrl('putObject', params, function (err, url) {
 console.log(url);
 });
}

// create a presigned PUT URL with an expiration in seconds
function _generatePresignedPutWithExpiration(key, expiration) {
 console.log('Generating presigned PUT URL for key ' + key + ' with expiration '
+ expiration);
 var params = {
 Bucket: _bucketName,
 Key: key,
 Expires: expiration
 };
 cos.getSignedUrl('putObject', params, function (err, url) {
 console.log(url);
 });
}

This code creates four new functions at the end of the file: _generatePresignedGet,
_generatePresignedGetWithExpiration, _generatePresignedPut, and
_generatePresignedPutWithExpiration. In production code, these could be consolidated
down to a single function with additional parameters, but are separated here for clarity.

The two “basic” functions (_generatePresignedGet and _generatePresignedPut) both accept
a key parameter (the object name to be read or uploaded) and use the default expiry (900
seconds / 15 minutes) value. The “WithExpiration” functions both accept a key parameter and
an additional integer expiration that will set the expiry in seconds.

Create a file named presigned_urls.js and complete it to match the code shown in
Example 7-34.

Example 7-34 Code for presigned_urls.js

const cos = require('./cos_advanced');
const fs = require('fs');
let getKey = '100mb.dat'; // the object name
let putKey = 'helloIBM';

cos.generatePresignedGet(getKey);
cos.generatePresignedGetWithExpiration(getkey, 3000);
cos.generatePresignedPut(putKey);
cos.generatePresignedPutWithExpiration(putKey, 27000);

Issue the commands shown in Example 7-35.

Example 7-35 The presigned_urls.js command

~# node presigned_urls.js
Generating presigned GET URL for key 100mb.dat
https://examplebucket.s3.us-south.objectstorage.softlayer.net/100mb.dat?AWSAccessK
eyId=................................&Expires=1526619000&Signature=hpwNvlhZRxhIKih
vFet%2Fu9gDH80%3D
Chapter 7. Advanced Object Storage integration patterns 107

Generating presigned GET URL for key 100mb.dat with expiration 3000
https://examplebucket.s3.us-south.objectstorage.softlayer.net/100mb.dat?AWSAccessK
eyId=................................&Expires=1526618101&Signature=501TzZmJ34ULYCF
Kh29eLEvdV3I%3D

Generating presigned PUT URL for key helloIBM
https://examplebucket.s3.us-south.objectstorage.softlayer.net/helloIBM?AWSAccessKe
yId=................................&Expires=1526619000&Signature=FN3VGGKnLe8HePdZ
1dEnZ0d1spM%3D

Generating presigned PUT URL for key helloIBM with expiration 27000
https://examplebucket.s3.us-south.objectstorage.softlayer.net/helloIBM?AWSAccessKe
yId=................................&Expires=1526645100&Signature=YEGMA07Ar0bkbKhZ
p8GycXImRE8%3D

You will see different values for the AWSAccessKeyID, Expires, and Signature tokens, but if the
code returns four URLs, you are successful. The first two URLS provide time-bound access to
the 100mb.dat object from the previous sections. Paste it into your browser or download it with
cURL/wget. Notice that you are not prompted for any credentials because you have signed the
URLs with Cloud Object Storage credentials ahead of time and can now share this URL
however you need to.

Similarly, you can issue a PUT at either of the two final URLs returned by the code and write
to the helloIBM object in your Cloud Object Storage account.

Using curl with a local file named file.txt, you can issue this command (replacing $putURL
with the URL returned above):

curl -v -T file.txt $putURL

Again, the system does not prompt for credentials during the PUT operation because you
have already signed the URL from your Cloud Object Storage account. As you develop your
applications, use this mechanism to allow users to upload data directly to Cloud Object
Storage without having to stage it on an intermediate server.

Examine what happens when your presigned URL expires by reopening presigned_urls.js
and editing it to match the code shown in Example 7-36.

Example 7-36 Code to add to presigned_url.js

const cos = require('./cos_advanced');
const fs = require('fs');
let getKey = '100mb.dat'; // the object name

cos.generatePresignedGetWithExpiration(getkey, 1);

Run the code, wait 10 seconds, and then try to GET the URL that returns, as shown in
Example 7-37.

Example 7-37 presigned_urls.js command

~# node presigned_urls.js
Generating presigned GET URL for key 100mb.dat with expiration 1
https://examplebucket.s3.us-south.objectstorage.softlayer.net/100mb.dat?AWSAccessK
eyId=................................&Expires=1526619316&Signature=501TzZmJ34ULYCF
Kh29eLEvdV3I%3D
108 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

~# curl
https://examplebucket.s3.us-south.objectstorage.softlayer.net/100mb.dat?AWSAccessK
eyId=................................&Expires=1526619316&Signature=501TzZmJ34ULYCF
Kh29eLEvdV3I%3D

<?xml version="1.0" encoding="UTF-8"
standalone="yes"?><Error><Code>ExpiredToken</Code><Message>The provided token has
expired.</Message><Resource>/100mb.dat</Resource><RequestId>67cf6b72-770a-4c93-ab2
a-5fe0e5317379</RequestId><httpStatusCode>403</httpStatusCode></Error>%

You see a 403 ExpiredToken response from Cloud Object Storage. The presigned URL was
valid for one second, then expired, effectively deactivating the URL. A one-second expiration
clearly has limited real-world value, but this example shows a real benefit of using presigned
URLs: After they reach the end of their lifetimes, they automatically close off access to the
resource to which they were pointed.

Presigned URLs provide developers with a way to safely allow users to interact with Cloud
Object Storage resources, providing time-bound access to specific operations and to manage
the lifecycle of that access.

7.3.5 Tiers in Cloud Object Storage

IBM Cloud Object Storage offers various pricing models for storage of data with no
performance penalties. IBM Cloud Object Storage offers the following tiers:

� Standard: Used for accessed multiple times per month.
� Vault: Used for less active data accessed once a month or less.
� Cold Vault: Used for rarely accessed data and long-term data retention.
� Flex: For dynamic data with varying month-to-month access needs, ideal for a mix of hot

and cold workloads.

In the Insurance Company's X case, we chose Standard buckets for storing all the images.
However, a better solution could be storing the original images uploaded by the user to Cold
Vaults because they are rarely accessed. The processed images could be placed in Standard
Vault because they might be frequently accessed.

The following are other cases where cold storage tiers could be useful:

� When claims are archived, it can go into the cold vault.
� Cloudant backups can be written to cold vault.
Chapter 7. Advanced Object Storage integration patterns 109

Using Cold Vault reduces the overall storage costs. Creating a Cold Vault is shown in
Figure 7-1.

Figure 7-1 Creating a Cold Vault

Complete the same procedure to create a Standard Vault.

Note the following about the vaults:

� You cannot move objects between tiers.
� You use the same access APIs to create, delete, and access objects.
� You will not notice any performance impacts when using any of the tiers

7.4 Next steps

After you complete this module, continue with the same code in Chapter 8, “Discover insights
using Watson Services” on page 113.
110 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

7.5 Other references

See these websites for more information about Multipart Upload functions:

� The createMultipartUpload operation:

https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#createMultipartUpload-property

� The uploadPart operation

https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#uploadPart-property

� The abortMultipartUpload operation

https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#abortMultipartUpload-property

� The completeMultipartUpload operation

https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#completeMultipartUpload-proper
ty
Chapter 7. Advanced Object Storage integration patterns 111

https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#createMultipartUpload-property
https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#uploadPart-property
https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#abortMultipartUpload-property
https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#completeMultipartUpload-property

112 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Chapter 8. Discover insights using Watson
Services

After adding images to the workflow, a new world of capabilities using the current
technologies are available. While traditional applications require input for all the registered
information, the new era allows you to create much more data out of the existing data.

By introducing AI and elaborating on it in the next module, you can reduce the input from the
user while also enhancing the application and making it more dynamic. This module
demonstrates the abilities in the Watson Visual Recognition API that allow you to perform
content validation and enhancement using the available data sources.

This chapter includes the following sections:

� Current architecture
� Learning objectives
� Getting started
� Implementation
� Next steps
� Other references

8

© Copyright IBM Corp. 2018. All rights reserved. 113

8.1 Current architecture

The current architecture already collects information from your application user and stores the
information in your Cloudant database.

The following are steps in the validation of the object using the Watson Visual Recognition
service:

1. Send the images to VR default classifiers to validate that the object is a car.

2. Send the images to VR default classifiers to validate that the car color matches the color in
the insurance database.

The following are steps in the enhancement of the object using the Watson Visual
Recognition service:

1. Instead of asking the client to drag the picture to the correct box, the VR service with a
self-trained classifier will enhance/match the picture with the correct angle.

2. Review each image for damage and classify the damage using a self-trained classifier.

8.2 Learning objectives

In this module, you will:

� Understand the capabilities of the Watson Visual Recognition service:

– Review the API explorer and use it without integration
– Use the default classifier on a random picture

� Implement API within your node.js application:

– Use the default classifier for content validation
– Create your own classifier and call it from within the application
– Enhance/retrain your own classifier and validate the results

8.3 Getting started

Clone the repository to get the code:

$ git clone https://github.com/IBMRedbooks/IBM-Cloud-Object-Storage-Tutorials
$ cd IBM-Cloud-Object-Storage-Tutorials

Check out the code for Module 7 to get the finished code from the previous module that you
will build on:

$ cd module07

If you want to skip ahead, check out the completed code for this module and read along:

$ cd module08

The IBM Watson Visual Recognition service uses deep learning algorithms to analyze
images for scenes, objects, faces, and other content. The response includes keywords that
provide information about the content. Researching how a deep learning algorithm
understands your picture helps you when choosing images to train your algorithm.
114 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

It is important to have sufficient variation in your images. For example, when the army trained
an algorithm to recognize tanks, they used hundreds of pictures to teach the algorithm.
However, they then tried to demonstrate the algorithm during the winter and it did not work.
This failure occurred because all of the training images involved different tanks, but they were
all taken with a bright blue sky in the summer. The algorithm was unable to identify those
same tanks in the winter.

8.3.1 Available models

A set of built-in models provides highly accurate results without training:

� General model: Default classification from thousands of classes.
� Face model: Facial analysis with age and gender.
� Explicit model (Beta): Whether an image is inappropriate for general use.
� Food model (Beta): Classification of images of food items.
� Text model (Private beta): Text extraction from natural scene images.

You can also train custom models to create specialized classes.

8.3.2 How to use the service

Figure 8-1 shows the process of creating and using Visual Recognition.

Figure 8-1 Creating and using Visual Recognition

8.3.3 Use cases

The Visual Recognition service can be used for diverse applications and industries:

� Manufacturing: Use images from a manufacturing setting to make sure that products are
being positioned correctly on an assembly line.

� Visual auditing: Look for visual compliance or deterioration in a fleet of trucks, planes, or
windmills out in the field, and train custom models to understand what defects look like.
Chapter 8. Discover insights using Watson Services 115

� Insurance: Rapidly process claims by using images to classify claims into different
categories.

� Social listening: Use images from your product line or your logo to track buzz about your
company on social media.

� Social commerce: Use an image of a plated dish to find out which restaurant serves it and
find reviews, or use a travel photo to find vacation suggestions based on similar
experiences.

� Retail: Take a photo of a favorite outfit to find stores with those clothes in stock or on sale,
or use a travel image to find retail suggestions in that area.

� Education: Create image-based applications to educate about taxonomies.

8.4 Implementation

Perform the following steps to implement this solution.

8.4.1 Local configuration, tool chains

This module uses the existing Watson Visual Recognition Service, so you do not need to
spend time developing your own notebooks, but instead focus on the content. Everything is
called from the API, which can be used in many different forms.

8.4.2 Provisioning steps for IBM Cloud services

With a free account, you are (at the time of the writing) allowed to have 250 API calls per day.
This amount should be sufficient for the initial tests. However, it will only allow a single custom
classifier, which creates some restrictions on the complete application. Therefore, you might
want to create a paid account that will allow you to perform all the following functions.
116 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Figure 8-2 shows the welcome page.

Figure 8-2 Build with Watson window

To create the Watson service API key, complete these steps:

1. Log in to your IBM Cloud account and select the correct space.

2. From the services, select AI, which will list all the available Watson services, as shown in
Figure 8-3.

Figure 8-3 Available Watson services
Chapter 8. Discover insights using Watson Services 117

3. This module focuses on the IBM Watson Visual Recognition service. Click the service to
open the service details, as shown in Figure 8-4.

Figure 8-4 Service details of Watson Visual Recognition

4. As explained, it is possible to start with the Lite plan. However, you can select the standard
plan at low cost to allow you to use more complex classifiers, as shown in Figure 8-5.

Figure 8-5 Selecting the plan
118 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

5. When you create a service, the first API key is automatically generated. This key must be
used within your application to call the Watson Visual Recognition Service. All your
monthly spend and details can be found in this overview, as shown in Figure 8-6.

Figure 8-6 Selecting service credentials

6. For security and tracking, you can create multiple API keys. This task can be performed on
the Service Credentials window. Use key rotation as explained in the object storage
module to reduce the risk of key abuse.

You can also link the API directly to Cloud Foundry applications. This tutorial calls the service
through its API for maximum flexibility.

8.4.3 Validation and first use through the API Explorer

Now that you have your API key, you can perform a first picture validation using the API
Explorer. Go to the Visual Recognition page for Watson API Explorer, as shown in Figure 8-7.

Figure 8-7 Watson API Explorer
Chapter 8. Discover insights using Watson Services 119

https://watson-api-explorer.mybluemix.net/apis/visual-recognition-v3

Upcoming sessions cover the different capabilities, so perform a quick validation of your API
key by selecting the <General> - <GET> - </v3/classify> option, as shown in Figure 8-8.

Figure 8-8 Using the /v3/classify option

For a simple test, add your API key and a URL to an image. This example uses a well-known
IBM image, which is shown in Figure 8-9.

Figure 8-9 Results of sample image
120 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Because we are going to use the default classifier for this first validation, there is no need to
focus on the remaining information. These topics are handled in the upcoming sections of this
module. Select IBM as the owner so that the default classifier is selected, as shown in
Figure 8-10. IBM takes data privacy very seriously, so your classifiers will not be shared with
any other account.

Figure 8-10 Selecting the owner
Chapter 8. Discover insights using Watson Services 121

The threshold can be changed if you want to see more output on the same image. The default
setting is 0.5. Click Try it out to review your results, as shown in Figure 8-11.

Figure 8-11 Changing the threshold

Example 8-1 shows the results of the example query, which are by default presented in JSON
format for easy application usage.

Example 8-1 Results of the example query

{
 "images": [
 {
 "classifiers": [
 {
 "classifier_id": "default",
 "name": "default",
 "classes": [
 {
 "class": "Labrador retriever dog",
 "score": 0.831,
 "type_hierarchy": "/animal/domestic animal/dog/retriever
dog/Labrador retriever dog"
 },
 {
 "class": "retriever dog",
 "score": 0.848
 },
 {
 "class": "dog",
 "score": 0.896
 },
 {
 "class": "domestic animal",
122 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

 "score": 0.933
 },
 {
 "class": "animal",
 "score": 0.939
 },
 {
 "class": "head of animal",
 "score": 0.59,
 "type_hierarchy": "/animal/domestic animal/head of animal"
 },
 {
 "class": "vizsla dog",
 "score": 0.5,
 "type_hierarchy": "/animal/domestic animal/dog/vizsla dog"
 },
 {
 "class": "light brown color",
 "score": 0.928
 },
 {
 "class": "beige color",
 "score": 0.721
 }
]
 }
],
 "source_url": "https://pbs.twimg.com/media/DG77KxYUQAAU80E.jpg",
 "resolved_url": "https://pbs.twimg.com/media/DG77KxYUQAAU80E.jpg"
 }
],
 "images_processed": 1,
 "custom_classes": 0
}
Chapter 8. Discover insights using Watson Services 123

By using the default classifier, you already receive a huge amount of information about the
image without having to review the image itself. All results shown have more than 50%
probability that the image is of a dog of the breed Labrador with a light brown or beige coat
color. Compare these results to Figure 8-12.

Figure 8-12 Image used in the test

You have now used the Watson Visual Recognition service for the first time and validated that
your API key works as expected. Read more about this great Watson technology story at
Passion//Project.

8.4.4 Implementation

Using IBM Watson Visual Recognition through the API provides a solid and easy
implementation. For code samples for different languages that can help you to add this
service to many other applications, see the IBM Watson Visual Recognition wiki.

API requests require a version parameter that takes a date in the format version=YYYY-MM-DD.
When you change the API in a backwards-incompatible way, a new version date is associated
with (or given to) the API. This feature ensures that the same result is obtained when using
the API at the same timestamp and that future enhancements of the API will not result in a
different output on an already used image.

Send the version parameter with every API request. The service uses the API version for the
date you specify, or the most recent version before that date. Do not default to the current
date. Instead, specify a date that matches a version that is compatible with your app, and do
not change it until your app is ready for a later version.

Tip: This documentation describes the current version of Watson Visual Recognition,
2018-03-19. In some cases, differences in earlier versions are noted in the descriptions of
parameters and response models.
124 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://www.ibm.com/thought-leadership/passion-projects/guiding-eyes/
https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/node.html?node

8.4.5 Using Watson Visual Recognition Service with the default classifier

To use the Watson Visual Recognition Service with the default classifier, complete these
steps:

1. Call the visual recognition service within our application. We also require Lodash, which is
a powerful tool for parsing the gathered JSON data. Line 4 creates the call method for the
VR service with current version and api_key, as shown in Example 8-2.

Example 8-2 Adding Lodash

// Add the watson-developer-cloud toolbox to allow accessing the Watson Visual
Recognition integration
var VisualRecognitionV3 =
require("watson-developer-cloud/visual-recognition/v3");
// Add lodash which is used for data filtering and parsing
var _ = require("lodash");
// Define a VisualRecognition object with the current version and your API key
var visualRecognition = new VisualRecognitionV3({

version: "2018-03-19",
api_key: "fb080f8e3f8f54177bfbbf7987b424f044241bd8"

});

2. Export your function to the rest of the application so it can be easily called in the other
modules, as shown in Example 8-3.

Example 8-3 Exporting the function

// Create Public methods to call from the main application
module.exports.getCarColor = _get_car_color;
module.exports.getCarPosition = _get_car_position;
module.exports.getCarDamage = _get_car_damage;
module.exports.validateCar = _validate_car;

3. Use your Watson Visual Recognition service to validate the contents of an image and take
appropriate actions in the front end, as shown in Example 8-4.

Example 8-4 Validating the contents of an image

/*
The _validate_car function is used to validate if the uploaded picture has a
car recognized.
A smart protection to validate the end-user input and return an error when they
have selected the wrong image.

This function uses the default watson visual recognition classifier and a
threshold at 0 to allow low detection rate to still pass this check.
After filtering the result with lodash we receive an array with all the items
that have "car" within their classname.
As last we sort the array with highest probability first.
*/

function _validate_car(image) {
return new Promise(function(resolve, reject) {

var car_classifier_ids = ["default"];
var car_threshold = 0;
Chapter 8. Discover insights using Watson Services 125

var params_carcol = {
images_file: image,
classifier_ids: car_classifier_ids,
threshold: car_threshold

};

visualRecognition.classify(params_carcol, function(err, response) {
if (err) {

reject(err);
}
else {

var car_validation =
_.filter(response.images[0].classifiers[0].classes, function(filter_car) {

return filter_car.class.includes("car");
});
var car_validation_sorted = _.orderBy(car_validation, ["score",

"class"], ["desc", "asc"]);
resolve(car_validation_sorted);

}
});

});
}

4. The second function is also for validation purposes and uses the same default classifier. It
reviews the colors that are detected within the image and lists them in a descending array
with the highest probability first. This step is used to validate whether the car color of the
registered vehicle matches the provided pictures, as shown in Example 8-5.

Example 8-5 Validating the car color

/*
The _get_car_color function is to obtain the car color which than can be
matched with the contract car colour as validation.
A smart protection to validate the end-user input and return an error when they
have selected a non matching car with their contract.
Be carefull since the default class has a huge range of colours which do not
always match classic colours (f.e. Teal is a variation of blue),
So when implementing this part it would be a best practices to review the color
results of a new registered car and add them to the filter.
Another enhancement would be to crop the car from the image, since now a
zoom-out picture with trees could provide green as most dominant colour.

This function uses the default watson visual recognition classifier and a
threshold at 0 to allow low detection rate to still pass this check.
After filtering the result with lodash we receive an array with all the items
that have "color" within their classname.
As last we sort the array with highest probability first.
*/

function _get_car_color(image) {
return new Promise(function(resolve, reject) {

var carcol_classifier_ids = ["default"];
var carcol_threshold = 0;

var params_carcol = {
126 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

images_file: image,
classifier_ids: carcol_classifier_ids,
threshold: carcol_threshold

};

visualRecognition.classify(params_carcol, function(err, response) {
if (err) {

reject(err);
}
else {

var car_color = _.filter(response.images[0].classifiers[0].classes,
function(filter_color) {

return filter_color.class.includes("color");
});
var car_color_sort = _.orderBy(car_color, ["score", "class"],

["desc", "asc"]);
resolve(car_color_sort);

}
});

});
}

8.4.6 Using Watson VR Service with custom classifiers with a single class

To be able to continue with the next parts of the code, you must create the first custom
classifier. The first classifier requires a paid subscription because it requires four distinct
classifiers to work. At the time of writing this IBM Redpaper, a lite account only allows a single
custom classifier.

The reasoning behind a custom classifier is that you can have multiple positive classes and a
single negative class. Because the first custom classifier tries to automatically detect the left,
right, front, and back of a car, a single positive class and three negative classes are put in a
single image pool to correspond to a single negative class.

With the downloaded examples, your classifiers will look like this where the positive class will
have 11 pictures from cars that match the angle and the negatives class will have 33 pictures
of angles that not match this classifier (11 per angle).

Car_right_classifier = +(car_right_small_positive_examples)
-(car_right_small_negatives)
Car_left_classifier = +(car_left_small_positive_examples)
-(car_left_small_negatives)
Car_front_classifier = +(car_front_small_positive_examples)
-(car_front_small_negatives)
Car_back_classifier = +(car_back_small_positive_examples)
-(car_back_small_negatives)

Now train your Watson Visual Recognition service using these images. You can perform this
training using the demonstrated API Explorer that you used to validate your API key. Use curl
to send the data to the VR engine.
Chapter 8. Discover insights using Watson Services 127

For every classifier, issue the command shown in Example 8-6 from the 1.1 directory that you
downloaded.

Example 8-6 The curl command

First we define our curl command and add the corresponding headers for
succesfull exectution.
The first input is a single positive classifier in this example.
"classname_positive_examples" defines a classname that has to be put into the
positive examples side.
There is no class name available for negative examples since they are not used
within a response. Like with the positive examples it is important to have
sufficient variation.
Last custom attribute is the name of the classifier, a custom number will be
added to remove the risk of having a duplicate name within the VR service.
Add the api-explorer link to the end including your active API key and version
information.

curl -X POST --header 'Content-Type: multipart/form-data' --header 'Accept:
application/json'
-F "car_angle_positive_examples=@car_angle_positive_examples.zip"
-F "negative_examples=@car_angles_negatives.zip"
-F name = 'custom-classifier-name'
'https://watson-api-explorer.mybluemix.net/visual-recognition/api/v3/classifiers?a
pi_key=api-key-here&version=2018-03-19'

Repeat this curl command three more times for the remaining angles. The second iteration
fails if you do not have a paid subscription because only one custom classifier is allowed in
the Lite plan.

The response shown in Example 8-7 is expected for each classifier.

Example 8-7 Expected results of the curl command

{
 "classifier_id": "cosredbook_car_right_213832081",
 "name": "cosredbook_car_right",
 "status": "training",
 "owner": "10ee4bc4-bc5e-4a55-8258-740998a8b5e5",
 "created": "2018-05-08T10:41:24.350Z",
 "updated": "2018-05-08T10:41:24.350Z",
 "classes": [
 {
 "class": "car_right"
 }
],
 "core_ml_enabled": true
}

128 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Now you must wait for the training to complete to be able to use your custom classifiers.
Because this example uses 11 images per class, the training only takes a few minutes, after
which the custom classifier will be available when using the same API key. To check the
training status, use the API Explorer or the curl command shown in Example 8-8.

Example 8-8 Using the curl command for training

curl "https://gateway-a.watsonplatform.net/visual-recognition/api/v3/classifiers/
 custom-classifier-name?
 api_key={api-key}&
 version=2018-03-19"

We received a “ready” status after about five minutes. After this time, you can use your
customer created classifier within your code, as shown in Example 8-9.

Example 8-9 Using the customer created classifier

{
 "classifier_id": "cosredbook_car_right_213832081",
 "name": "cosredbook_car_right",
 "status": "ready",
 "owner": "10ee4bc4-bc5e-4a55-8258-740998a8b5e5",
 "created": "2018-05-08T10:41:24.350Z",
 "updated": "2018-05-08T10:41:24.350Z",
 "classes": [
 {
 "class": "car_right"
 }
],
 "core_ml_enabled": true
}

Now test your classifier on one of the positive pictures to see whether it is functioning as
expected. Example 8-10 uses the curl command, but you can use the Watson API Explorer if
you prefer a graphical form.

Example 8-10 Testing the classifier on a positive picture

curl - X GET--header 'Accept: application/json' --header 'Accept-Language: en'
 'https://watson-api-explorer.mybluemix.net/visual-recognition/api/v3/classify?
 api_key={api-key}&
 version=2018-03-19&
 url=link-to-image&
 =me&
 classifier_ids=custom-classifier-name&
 threshold=0.5'
Chapter 8. Discover insights using Watson Services 129

https://watson-api-explorer.mybluemix.net/apis/visual-recognition-v3

The curl command in Example 8-10 on page 129 reviews the image shown in Figure 8-13
using the custom classifier for right and shows any result that has a probability above 0.5.

Figure 8-13 CAR_TEST_2_OR_RIGHT.JPG

Example 8-11 shows the result of the API Call.

Example 8-11 Result of the positive test

{
 "images": [
 {
 "classifier_id": "cosredbook_car_right_213832081",
 "name": "cosredbook_car_right",
 "classes": [
 {
 "class": "car_right",
 "score": 0.697
 }
]
 }
],
 "source_url":
"https://s3-api.us-geo.objectstorage.softlayer.net/cosredbook/CAR_TEST_2_OR_RIGHT.
JPG",
 "resolved_url":
"https://s3-api.us-geo.objectstorage.softlayer.net/cosredbook/CAR_TEST_2_OR_RIGHT.
JPG"
 }
],
 "images_processed": 1,
 "custom_classes": 1
}

130 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

The custom classifier is 69.7% sure that it is the right side of the car. Now review the same car
but the left side as shown in Figure 8-14 to see what probability it receives for the right side
classifier.

Figure 8-14 CAR_TEST_2_OR_LEFT.JPG

Example 8-12 shows the code involved.

Example 8-12 Code to classify the right side using a left side image

{
 "images": [
 {
 "classifiers": [
 {
 "classifier_id": "cosredbook_car_right_213832081",
 "name": "cosredbook_car_right",
 "classes": [
 {
 "class": "car_right",
 "score": 0.207
 }
]
 }
],
 "source_url":
"https://s3-api.us-geo.objectstorage.softlayer.net/cosredbook/CAR_TEST_2_OR_LEFT.J
PG",
 "resolved_url":
"https://s3-api.us-geo.objectstorage.softlayer.net/cosredbook/CAR_TEST_2_OR_LEFT.J
PG"
 }
],
 "images_processed": 1,
 "custom_classes": 1
}

Chapter 8. Discover insights using Watson Services 131

It is clear that when comparing both, it will be a valid classification. However, you need to add
other classifiers to be able to validate the real angle of this image within one API call.

First, review whether all your classifiers are ready to be used. Issue the curl command
shown in Example 8-13 to perform the validation.

Example 8-13 Performing the validation

curl - X GET--header 'Accept: application/json'

'https://watson-api-explorer.mybluemix.net/visual-recognition/api/v3/classifiers?
 api_key={api-key}&
 version=2018-03-19'

You should get the output shown in Example 8-14.

Example 8-14 Output from the validation command

{
 "classifiers": [
 {
 "classifier_id": "cosredbook_car_front_1204165740",
 "name": "cosredbook_car_front",
 "status": "ready"
 },
 {
 "classifier_id": "cosredbook_car_left_1405197292",
 "name": "cosredbook_car_left",
 "status": "ready"
 },
 {
 "classifier_id": "cosredbook_car_right_213832081",
 "name": "cosredbook_car_right",
 "status": "ready"
 },
 {
 "classifier_id": "cosredbook_car_back_974985661",
 "name": "cosredbook_car_back",
 "status": "ready"
 },
]
}

When all four classifiers are ready, you can run the request by evaluating all four angles at
once instead of one-by-one. This process makes it easier to compare the angle probabilities
and decide which angle is the most likely, as shown in Example 8-15.

Example 8-15 Comparing the angle probabilities

{
 "images": [
 {
 "classifiers": [
 {
 "classifier_id": "cosredbook_car_right_213832081",
 "name": "cosredbook_car_right",
 "classes": [
132 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

 {
 "class": "car_right",
 "score": 0.207
 }
]
 },
 {
 "classifier_id": "cosredbook_car_back_974985661",
 "name": "cosredbook_car_back",
 "classes": [
 {
 "class": "car_back",
 "score": 0.001
 }
]
 },
 {
 "classifier_id": "cosredbook_car_front_1204165740",
 "name": "cosredbook_car_front",
 "classes": [
 {
 "class": "car_front",
 "score": 0.019
 }
]
 },
 {
 "classifier_id": "cosredbook_car_left_1405197292",
 "name": "cosredbook_car_left",
 "classes": [
 {
 "class": "car_left",
 "score": 0.485
 }
]
 }
],
 "source_url":
"https://s3-api.us-geo.objectstorage.softlayer.net/cosredbook/CAR_TEST_2_OR_LEFT.J
PG",
 "resolved_url":
"https://s3-api.us-geo.objectstorage.softlayer.net/cosredbook/CAR_TEST_2_OR_LEFT.J
PG"
 }
],
 "images_processed": 1,
 "custom_classes": 4
}

The output in Example 8-15 on page 132 gives a solid left result when compared to the other
classes, even though the overall probability is below 50%. Note that this data set is in its early
stages, so you must further enhance the data classification.
Chapter 8. Discover insights using Watson Services 133

Now implement these four custom classifiers within your node.js application, as shown in
Example 8-16.

Example 8-16 Implementing the custom classifiers

/*
The _get_car_position is our self-trained class which we will update frequently
throughout the tutorial. This class requires a paid subscription since we will be
using 4 custom classes.
Make sure to first follow the training steps before enabling this feature within
your code. Update the classifier ids to make it work.

This function uses our four self-trained classifiers and a threshold at 0 to allow
low detection rate to still be added to the array.
We do not need to filter the results since there are only 4 classes, 1 per angle
and we want to keep all four withing the returned array.
We sort the array with highest probability first where the first element of the
array [0] will be used as automatic angle.
*/

function _get_car_position(image) {
return new Promise(function(resolve, reject) {

var carpos_classifier_ids = ["cosredbook_car_right_small3_39505551",
"cosredbook_car_left_small5_1133497139", "cosredbook_car_front_small_740382583",
"cosredbook_car_back_1854234732"];

var carpos_threshold = 0;

var params_carpos = {
images_file: image,
classifier_ids: carpos_classifier_ids,
threshold: carpos_threshold

};

visualRecognition.classify(params_carpos, function(err, response) {
if (err)

reject(err);
else

var car_position = _.orderBy(response.images[0].classifiers,
["classes[0].score", "classes[0].class"], ["desc", "asc"]);

resolve(car_position);
});

});
}

8.4.7 Using Watson VR Service with a multi-class custom classifier

You can use the Watson VR Service with a multi-class classifier either by using the API or
with Watson Studio.
134 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Using the API
In this example, you create a single classifier with multiple classes that performs car damage
detection. This use-case has multiple positive classes (flat tire, broken windshield, broken
mirror, car accident, and so on) versus a single negative class (car without damage). The
pictures used in this example are gathered from various sources. To perform this part, you
must first obtain at least 10 images per positive class to have a valid class. Make sure that
you have sufficient variation.

We have downloaded some images for every class, each containing around 20 images:

car_damage_broken_mirror_positive_examples.zip
car_damage_flat_tire_positive_examples.zip
car_damage_broken_window_positive_examples.zip
car_damage_accident_positive_examples.zip

In addition, we include a set of undamaged cars:

car_damage_negatives.zip

First, add two positive classes to the same qualifier, and then include an extra class to the
same qualifier. The same process can be used to add images to an existing class. You will
see the difference shown in Example 8-17 in the API call.

Example 8-17 Adding new classes

curl - X POST--header 'Content-Type: multipart/form-data' --header 'Accept:
application/json'
-F
"car_damage_broken_window_positive_examples=@car_damage_broken_window_positive_exa
mples.zip"
-F
"car_damage_flat_tire_positive_examples=@car_damage_flat_tire_positive_examples.zi
p"
-F "negative_examples=@car-damage_negatives.zip"
-F name = "cosredbook_car_damage"
'https://watson-api-explorer.mybluemix.net/visual-recognition/api/v3/classifiers?a
pi_key=api-key-here&version=2018-03-19'

An example output on the classifier details is shown in Example 8-18.

Example 8-18 Output of the classifier details

{
 "classifier_id": "cosredbook_car_damage_1460547759",
 "name": "cosredbook_car_damage",
 "status": "training",
 "owner": "10ee4bc4-bc5e-4a55-8258-740998a8b5e5",
 "created": "2018-05-08T13:40:56.987Z",
 "updated": "2018-05-08T13:40:56.987Z",
 "classes": [
 {
 "class": "car_damage_flat_tire"
 },
 {
 "class": "car_damage_broken_window"
 }
Chapter 8. Discover insights using Watson Services 135

],
 "core_ml_enabled": true
}

Example 8-19 shows the output of this class using the direct-api approach from the image
shown in Figure 8-15.

Figure 8-15 CAR_TEST_7_OR_FRONT_broken.jpg

Example 8-19 shows the output of this class.

Example 8-19 Output of the direct-api approach

{
 "images": [
 {
 "classifiers": [
 {
 "classifier_id": "cosredbook_car_damage_1460547759",
 "name": "cosredbook_car_damage",
 "classes": [
 {
 "class": "car_damage_broken_window",
 "score": 0.116
 },
 {
 "class": "car_damage_flat_tire",
 "score": 0.001
 },
]
 }
136 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

],
 "source_url":
"https://s3-api.us-geo.objectstorage.softlayer.net/cosredbook/CAR_TEST_7_OR_FRONT_
broken.jpg",
 "resolved_url":
"https://s3-api.us-geo.objectstorage.softlayer.net/cosredbook/CAR_TEST_7_OR_FRONT_
broken.jpg"
 }
],
 "images_processed": 1,
 "custom_classes": 2
}

Now you can add another positive class to an existing classifier when training is completed.
You can also add more images to one of the existing positive classes or the negative class, as
shown in Example 8-20.

Example 8-20 Adding another positive class

curl - X POST--header 'Content-Type: multipart/form-data'--header 'Accept:
application/json'
 -F
"car_damage_broken_mirror_positive_examples=@car_damage_broken_mirror_positive_exa
mples.zip"
 -F "negative_examples=@car-damage_negatives.zip"
 -F name="cosredbook_car_damage_1460547759"

'https://watson-api-explorer.mybluemix.net/visual-recognition/api/v3/classifiers?a
pi_key=api-key-here&version=2018-03-19'

Now you notice that the status is re-training, which means the model is being redefined.
When the status is ready, the class is available again for usage, as shown in Example 8-21.

Example 8-21 Class ready for use

{
 "classifier_id": "cosredbook_car_damage_1460547759",
 "name": "cosredbook_car_damage",
 "status": "retraining",
 "owner": "10ee4bc4-bc5e-4a55-8258-740998a8b5e5",
 "created": "2018-05-08T13:40:56.987Z",
 "updated": "2018-05-08T13:40:56.987Z",
 "classes": [
 {
 "class": "car_damage_broken_mirror"
 },
 {
 "class": "car_damage_flat_tire"
 },
 {
 "class": "car_damage_broken_window"
 }
],
 "core_ml_enabled": true
}

Chapter 8. Discover insights using Watson Services 137

Using Watson Studio
The new Watson Studio provides a centralized console for any Watson AI related task. This
section repeats the steps in “Using the API” on page 135 using a graphical user interface. The
data is not only available for your Visual Recognition module, but also for all the other Watson
modules.

Complete the following steps:

1. Enable the Watson Studio (Figure 8-16), which is available in the catalog, by clicking AI
and then selecting Watson Studio. You can sign up for a Lite (free) plan for this exercise
because you are only going to experiment with the VR service in this module.

Figure 8-16 Watson Studio
138 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/catalog/

2. Click Get Started to open the dashboard shown in Figure 8-17.

Figure 8-17 Watson Studio dashboard

3. The Watson Studio dashboard displays all of the available services, as shown in
Figure 8-18. The dashboard offers a centralized storage repository on object storage
where all services are automatically linked. You can create a project that creates a space
where you can work with many collaborators. You can share the services on an individual
or project basis with your co-workers.

Figure 8-18 Watson Studio dashboard showing available services
Chapter 8. Discover insights using Watson Services 139

4. Open the Auto Insurance Claims project to show an overview of all the related services, as
shown in Figure 8-19.

Figure 8-19 Overview of project services
140 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

5. This module focuses on the VR service, so upload the created data sets to the Watson
studio so they are automatically available within Watson studio on the linked object
storage, as shown in Figure 8-20.

Figure 8-20 Data sets available in Watson Studio

6. After the packages are uploaded, you can use them from the Watson Studio instance, as
shown in Figure 8-21.

Figure 8-21 Packages uploaded in Watson Studio
Chapter 8. Discover insights using Watson Services 141

7. Select New Visual Recognition Model at the right to add a model, as shown in
Figure 8-22.

Figure 8-22 Adding a model

8. Change the name and you are ready to add new classes, as shown in Figure 8-23. As
when you use the API, use a single Negative Class and multiple positive classes.

Figure 8-23 Adding classes

9. Select your negatives from the data assets on the right and drag them to the Negative
(Recommended) class, as shown in Figure 8-24. This action starts extracting the
compressed file to the Negative Class.

Figure 8-24 Selecting negatives
142 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

10.Click Create a class and provide the new class an appropriate name, then drag the data
asset to the class so it can extract the pictures to this class, as shown in Figure 8-25.

Figure 8-25 Classifying the data assets

11.After you have uploaded your images (Figure 8-26), you can start training.

Figure 8-26 Uploading your images
Chapter 8. Discover insights using Watson Services 143

12.After some time (depending on the number of images/classes), you will receive an alert
that the training is complete, as shown in Figure 8-27.

Figure 8-27 Training completed

You can always use this module through the API using the Model ID, as shown in
Example 8-22.

Example 8-22 Using the module through the API

curl - X GET--header 'Accept: application/json'

'https://watson-api-explorer.mybluemix.net/visual-recognition/api/v3/classifiers/
 classifier-name?
 api_key=your-api-key&
 version=2018-03-19'

Example 8-23 shows the expected results.

Example 8-23 Results of curl command

{
 "classifier_id": "cosredbookxcarxdamage_2008858186",
 "name": "cosredbook-car-damage",
 "status": "ready",
 "owner": "10ee4bc4-bc5e-4a55-8258-740998a8b5e5",
 "created": "2018-05-09T08:56:08.993Z",
 "updated": "2018-05-09T08:56:08.993Z",
 "classes": [{
 "class": "broken_windshield"
 }, {
 "class": "broken_mirror"
 }],
 "core_ml_enabled": true
}

144 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

However, perform the upcoming tests within Watson Studio, which offers a superior
look-and-feel while also integrating this with all other services. Select Test so you can test
your model against some pictures, as shown in Figure 8-28.

Figure 8-28 Performing test

Drag/Drop your test picture to the middle area to begin automatic processing of your image,
as shown in Figure 8-29.

Figure 8-29 Testing your picture
Chapter 8. Discover insights using Watson Services 145

After a few seconds, the results are shown below the test image. In this example, one of the
pictures has had a broken windshield and a broken mirror digitally added. However, the model
is not confident about identifying either type of damage, as shown in Figure 8-30.

Figure 8-30 Test results

The reason for this lack of confidence is that the system has been trained on pictures that are
much more close-up. The system has a hard time evaluating the same damage on a global
car picture. You can improve the recognition percentage by implementing a cropping tool that
creates multiple areas out of your pictures which can then be analyzed using a tagging
service. The images in Figure 8-31 show manual cropping that we did that already provides
much better results, although the reflection of the sun/trees in the windshield is also seen as a
broken windshield, so there is still some work to do.

Figure 8-31 Close-up pictures also used in analysis

It is hard to create a model that can successfully analyze every zoom level of a picture in
every weather condition. Therefore, when creating your own algorithms, try to remove all of
these variables in the preparation phase before you test the images against your model. A
good cropping tool within your application can help boost your probability scores. Implement
this function in your application with the code shown in Example 8-24.

Example 8-24 Implementing a cropping tool

/*
The _get_car_damage is our second self-trained class with self found/created data.
This class requires does not require a paid subscription since we will only use 1
custom class.
146 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Make sure to first follow the training steps before enabling this feature within
your code. Update the classifier ids to make it work.

This function uses our self-created damage classifier and a threshold at 0 to
allow low detection rate to still be added to the array.
We do not need to filter the results since there are only x classes (depends how
many you add), 1 per type of damage and we want to keep all withing the returned
array.
We sort the array with highest probability first where the first element of the
array [0] will be used as automatic damage detection f.
*/

function _get_car_damage(image) {
return new Promise(function(resolve, reject) {

var cardam_classifier_ids = ["cosredbook_car_damage_1744820941"];
var cardam_threshold = 0;

var params_cardam = {
images_file: image,
classifier_ids: cardam_classifier_ids,
threshold: cardam_threshold

};

visualRecognition.classify(params_cardam, function(err, response) {
if (err) {

reject(err);
}
else {

var car_damage = _.orderBy(response.images[0].classifiers[0].classes,
["score", "class"], ["desc", "asc"]);

resolve(car_damage);
}

});
});

}

8.4.8 Deploy front-end code

To deploy front-end code, complete these steps:

1. Open the code that you downloaded to
IBM-Cloud-Object-Storage-Tutorials/server/routers/claims/postClaimImage.js.

2. Define an array that will contain all the visual recognition obtained data, as shown in
Example 8-25.

Example 8-25 Creating the visual recognition data array

const append = {
claimId: req.params.claimId,
images: [imageContainer]

};
Chapter 8. Discover insights using Watson Services 147

image.vrClassification = {};

// create a timestamp to use when uploading the images
let dateTime = Date.now();

3. Include the visual recognition actions to the nested promises. First, verify whether the
image shows a car. If there is no class that even contains the word “car,” return a message
asking the user to not try to fool the system, as shown in Example 8-26.

Example 8-26 Verifying that the image is of a car

.then(() => {
logger.info("Uploaded original image to COS");

// resize the image to get an normalized thumbnail
return imageProcessor.resize(file.path);

})
.then(resizedImg => {

return vrService.validateCar(resizedImg)
.then(isCarProbability => {

if (isCarProbability.length === 0) {
throw new Error("Sorry, This is not a car! Nice try though

;)");
} else if (isCarProbability[0].score < 0.5) {

throw new Error("Sorry, we don't think this is a car. Nice
try though ;)");

}

return vrService.getCarDamage(resizedImg);
})

4. Now call the car damage service to review the car for any damage that can be
automatically detected, as shown in Example 8-27. Note that you will need to enhance this
data set because it is not trained for uncropped images.

Example 8-27 Enhancing the data set

.then(carDamage => {
 logger.info("CAR DAMAGE", carDamage[0].class, carDamage[0].score);
 image.vrClassification.carDamage = carDamage;

 return vrService.getCarColor(resizedImg);
})

5. Next, validate the car color with the color you have in the car registration. Obtain the array
of detected colors and add it to the data pool, as shown in Example 8-28.

Example 8-28 Adding the color array to the data pool

.then(carColor => {
 logger.info("CAR COLOR", carColor[0].class, carColor[0].score);
 image.vrClassification.carColor = carColor;

 // get the position of the car in the image using the VR service
 return vrService.getCarPosition(resizedImg);
})
148 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

6. The last nested promise is the car angle.

After obtaining the car angle, return the arrays and store the images on the object stores.
When this process has completed successfully, append all the information to your
Cloudant document, as shown in Example 8-29.

Example 8-29 Appending the data to your Cloudant document

.then(carPosition => {
 logger.info("GOT CAR POSITION");

 // add the VR classification to the claim image record
 image.vrClassification.carPosition = carPosition;

 // assign the top guess of classification for the claim
 append[carPosition[0].classes[0].class] = imageId;

 // store the normalized image in a COS bucket
 let normKey =
`normalized/${req.params.claimId}/${dateTime}/${file.filename}`;
 // store key of normalized image in claimImageRecord for later retrieval
 image.normalized = normKey;

 return cos.doCreateObject(cos.normalizedBucket, file.mimetype, normKey,
resizedImg);
})

You have now successfully integrated the VR service into your application.

Download the provided files if you do not have your own test data. Validate your results with
the results within the tutorial that are shown in Figure 8-32.

Figure 8-32 Results of the tutorial

This module only uses 1.1 Delivered Picture Set. Module 9 covers enhancing your vr-model
with sets 1.2 - 1.7.

Note: This promise requires a paid account. Therefore, if you are using a Lite account,
only have one angle configured or leave out this part of the code.
Chapter 8. Discover insights using Watson Services 149

8.5 Next steps

Now you have successfully added automation through the Watson Visual Recognition service
to your application. Many other use-cases using this service can also be added, so do not
hesitate to experiment further within this module.

8.6 Other references

� Building Cognitive Applications with IBM Watson Services: Volume 1 Getting Started,
SG24-8387

� Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition,
SG24-8393
150 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Chapter 9. Performing more advanced
functions with machine learning

This chapter focuses on how IBM Cloud is ideal for machine learning workloads because of
their peak resources requirements. An on-premises environment requires a huge investment
to be able to handle the peaks. This capacity is typically 20% utilized most of the time. With
the pay-per-use model, IBM Cloud provides a more economical back-end for your machine
learning projects.

Machine learning is the ability to train a system to identify patterns in data based on example
input. You create a model and train it with algorithms, positive and negative examples, or both
so that it has enough knowledge that it can successfully recognize those patterns in any new
input.

This chapter includes the following sections:

� Current architecture
� Learning objectives
� Getting started
� Implementation
� Next steps
� Other references

9

© Copyright IBM Corp. 2018. All rights reserved. 151

9.1 Introduction to machine learning

Models are extensively used in business today. For example, social media uses tagging
services. Each time that you tag someone, that information is used to optimize the model so
that the system can tag the same person in the future automatically.

Machine learning has improved recently because of the simplicity of gathering information for
supervised learning combined with improvements in processing power that allow you to
perform many tasks inline. Machine learning has existed for many decades. However, in the
past it was seen as a post-process activity that took days before it produced a result.

It is important to understand that a model requires training. The better material that you
provide for this training, the better results that you can expect. The first part of this module
shows the negative and positive influences of training the Visual Recognition services used in
the last chapter. Experiment with the Visual Recognition service to help you understand the
training process of (in this case) a predefined model. There are multiple forms of training:

� Supervised Learning

Data is labeled, and you provide negative and positive examples so that the algorithm can
create its model based on them. This method is used when creating custom classes with
the Visual Recognition service and is the fastest method to get high probability. However,
this method also requires the most preparation.

� Unsupervised Learning

Data is not labeled and there are no results to be interpreted. Instead, this method uses
mathematical functions to define the expected results. It requires no preparation of the
learning material, but is only capable in specific use-cases where results can be
calculated using algorithms, such as Apriori or k-Means.

� Semi-supervised Learning

Many real-life use-cases combine supervised and unsupervised learning. With an initial
base of supervised learning, you can train your model so that when new data is obtained,
the model can automatically predict the required structure to obtain the best possible
outcome.

Covering all of the available algorithms is beyond the scope of this paper. However, do some
research or study some open-source examples such as the notebooks below to understand
how data is prepared, analyzed, and returned. For example, in our example you remove the
reflection on the cars because it might be mistaken for damage by the damage detection
class. The following are some common algorithms that are used in machine learning:

� Regression

– Linear Regression
– Logistic Regression

� Instance-based

– k-Nearest Neighbor
– Learning Vector Quantization
– Locally Weighted Learning

� Regularization

– Ridge Regression
– Elastic Net
– Least-Angle Regression
152 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

� Decision Tree

– Classification and Regression Tree
– C4.5 and C5.0
– Conditional Decision Trees

� Bayesian

– Naive Bayes
– Gaussian Naive Bayes
– Bayesian Network

� Clustering

– k-Means
– k-Medians
– Hierarchical Clustering

� Association Rule

– Apriori algorithm
– Eclat algorithm

� Artificial Neural Network

– Perceptron
– Back-Propagation
– Hopfield Network

� Deep Learning

– Deep Belief Networks
– Convolutional Neural Network
– Stacked Auto-Encoders

� Dimensionality Reduction

– Principal Component Regression (PCR)
– Multidimensional Scaling
– Linear Discriminant Analysis

� Ensemble Algorithm

– Boosting
– Stacked Generalization
– Random Forest

Many more algorithms are available. The choice of the algorithms and the order in which you
use them are crucial because the configuration affects your model performance. For example,
you might want to first detect car brand and then use a brand-specific model instead of
searching all car models of the world in a single classifier. Also, retrain your model from time
to time with new data because the input can evolve, which requires your model to evolve. For
example, you will ultimately have to add new electric cars as they are introduced so that they
can be identified by your model.

IBM Cloud provides a unique machine learning experience with independent Watson
modules. Watson Studio was covered in the previous chapter. This module allows you to
combine different services connected to the same data sets into the same interface.

IBM Watson Machine Learning is a full-service IBM Cloud offering that makes it easy for data
scientists and developers to work together to integrate predictive analytics with their
applications. IBM Cloud enables organizations and developers to quickly and easily create,
deploy, and manage applications on the cloud.
Chapter 9. Performing more advanced functions with machine learning 153

The focus of IBM Watson Machine Learning on IBM Cloud service is deployment. IBM SPSS
Modeler or IBM Watson Studio is required to build models. IBM SPSS Modeler is a powerful,
versatile data mining workbench that helps you build predictive models quickly and intuitively,
without programming. Watson Studio enables you to analyze data using RStudio, Jupyter,
and Python in a configured, collaborative environment that includes IBM added value, such
as managed Spark and IBM Watson Machine Learning.

Both IBM SPSS Modeler and IBM Watson Studio offer various modeling methods that are not
only taken from the field of machine learning, but also from the fields of artificial intelligence
and statistics. All these modeling methods are included in IBM Watson Machine Learning.
Therefore, IBM Watson Machine Learning Machine is not confined to modeling methods that
are called “machine learning” models in the literature.

9.2 Current architecture

This chapter provides enhancements to the VR back-end and some notebook examples of
what can be achieved with machine learning in this context. Machine learning (ML) is not
implemented within the application in this module.

The following scenarios are covered in this tutorial:

� Enhance and review the re-training of our VR Service
� Create some custom notebooks to demonstrate the abilities of ML

9.3 Learning objectives

� Understand the capabilities of the Watson Machine Learning Service
� Understand the capabilities of the Watson Studio

Using Cloud Object Storage with machine learning: Cloud Object Storage is an optimal
storage platform for AI and machine learning workloads due to the following reasons:

� Scalability and cost efficiency: In order to deliver better algorithms, AI systems need to
process vast amounts of data. Cloud Object Storage can scale limitlessly within a single
namespace. It uses a dispersed storage mechanism that uses a cluster of storages
nodes to store pieces of the data across the available nodes. With its low management
overhead and data compression features, Cloud Object Storage provides a
cost-effective way of storing large data sets required by AI algorithms.

� Cloud integration: Most of the AI systems run in the cloud. As information is created
and analyzed, the storage platform should provide an easy flow of data to and from the
cloud. Cloud Object Storage is optimized for cloud applications and provides an easy
way to integrate Cloud and on-premise data.

� Data durability: Because AI systems use very large data sets, in many cases it is not
practical or cost effective to back up this data. Instead, you need a self-protecting
storage system. Cloud Object Storage uses an Information Dispersal Algorithm (IDA) to
divide files into unrecognizable slices that are then distributed to the storage nodes. No
single node has all the data, which makes it safe and less susceptible to data breaches
while needing only a subset of the storage nodes to be available to fully retrieve the
stored data. This ability to reassemble all the data from a subset of the chunks
dramatically increases the tolerance to node and disk failures.
154 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

9.4 Getting started

Clone the repository to get the code:

$ git clone https://github.com/IBMRedbooks/IBM-Cloud-Object-Storage-Tutorials
$ cd IBM-Cloud-Object-Storage-Tutorials

Check out the code for Module 8 to get the finished code from the previous module that you
will build on:

$ cd module08

If you want to skip ahead, check out the completed code for this module and read along:

$ cd module09

It would be helpful to take a Machine Learning introduction course to understand the
reasoning behind the provided notebook examples.

9.5 Implementation

We will present two case studies in this section:

� Enhance the VR services
� Explore more with Watson Studio: Jupyter Notebooks, Spark, and Object store

9.5.1 Enhance the VR service

Download the provided files if you do not have your own test data. Results should equal the
results within the tutorial, which allows easy validation, as shown as Figure 9-1.

Figure 9-1 Files to be downloaded

After using data set 1.1 in the previous chapter, use the data from 1.2 - 1.7. Instead of
retraining the existing custom classifier, create another with the same base so you can easily
compare your results and adapt it when you are not pleased with the new results. The
following examples use data sets 1.2 to 1.7, but you can create your own data sets.
Chapter 9. Performing more advanced functions with machine learning 155

Figure 9-2 shows the results generated in Module 8.

Figure 9-2 Results from Module 8

This data shows that of 44 pictures of the cars, 37 sides were recognized correctly. With new
pictures, there is a high probability of identifying the front and back, whereas left and right is
always a struggle. You can add more angles to the existing 1.1 data set to improve the results.
156 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

In the following example, we downloaded hundreds of random pictures with a mass
downloader to create a customer classifier. These images were only sorted as
front/back/left/right and used to train the model. Figure 9-3 shows the results from the random
set without any preparation.

Figure 9-3 Results for the random set without preparation

Even though it is “only” 31 out of 44 pictures, this is a great result because these pictures are
much different from the test pictures. Until recently, 70% was seen as a very high probability.
With some preparation and modification, it should be easy to get it close to 90%.
Chapter 9. Performing more advanced functions with machine learning 157

For the next exercise, enhance your self-created model by using the car pictures. As you
might have noticed, the system is struggling with high probability on right and very low on left,
so there are some influences that significantly affect identifying the left side, as shown in
Figure 9-4.

Figure 9-4 Problem results while identifying the left side

Add more pictures in the same scene to your custom classifier for review to enhance your
right and left classification. First, create a model using the existing 1.1 image set so you keep
every classifier for easy comparison.
158 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

For the Left side, see what results you can get by adding only positive, only negative, or extra
positive and negative pictures, as shown in Figure 9-5.

Figure 9-5 Enhancing the Left side results

The results show that you are not only comparing the pictures, but creating an algorithm. We
get the same 42 out of the 44 pictures correctly classified, but different pictures are seen as
false positives/negatives. Therefore, by adding random pictures from different cars, you are
enhancing your algorithm and obtaining better results. You might notice that there is still room
for improvement because your differentials are low in multiple images.
Chapter 9. Performing more advanced functions with machine learning 159

Determine if adding more images to the right side allows you to obtain even better results
(Figure 9-6).

Figure 9-6 Enhancing the right side results

Apparently we get the best results by only adding extra negatives to the right side. Therefore,
add examples that could be used as positives to the left as negatives to the right instead.
Even though we still “only” get 42.5 out of 44, this still represents the best results we have
achieved. Even just adding positive and negative images to the same algorithm reduces
overall performance, which shows that proper data preparation is important.

One of the problems in this picture set is that some pictures do not have the correct
90-degree angle. Instead of enhancing your algorithm, they have the opposite effect of adding
doubt. We saw a similar issue with damage detection. In this case, it is important to remove
external flare and reflections from the images because these might be mistaken for damage
by the algorithm.

The limitation of using a pre-built VR service is that you cannot introduce extra data
preparation. You can combine Watson Studio with other machine learning tools. This is not in
scope for this module, but you can search for some examples and combine image processing
capabilities (such as remove color, darken/lighten, and so on) with the VR service to obtain
higher probability.
160 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

9.5.2 Explore more with Watson Studio, including Jupyter Notebooks, Spark,
and Object store

In Module 8, you had a brief interaction with Watson Studio. Watson Studio is an advanced
social engineering platform that brings together data scientists, data engineers, and machine
learning experts to work collaboratively on projects using the best tools and technologies in
an intuitive manner. You have seen how the Watson Visual Recognition Service is used in
Watson Studio.

This section focuses on other kinds of analytics that can be performed using Juptyer
notebooks and Apache Spark libraries with data on an object store.

Auto Insurance Claims Analytics using Analytics Engine
In accordance with our example use case, this exercise demonstrates how you can create a
simple chart of the number of auto insurance claims filed in Insurance Company X. It gives
the total count of insurance claims against the reason for claim such as hail, accident, and so
on. It provides a step-by-step process to create a final bar chart by creating a new Jupyter
Notebook in Watson Studio.

Create a project in WatsonStudio and associate services
After you have logged in to the Watson Studio dashboard, you can create a project. As with
any project creation in the data science platform UI, you can associate a service with the
project in the Settings tab. We have chosen to associate the Analytics Engine service from
the IBM Cloud catalog. Analytics Engine is a powerful IBM Cloud service that allows you to
run Spark and Hadoop workloads against your data. This is the engine that will perform the
Spark analytics for this example. You can create an instance as you create a project or you
can work with a previously created instance. This link gives a good overview of how you can
do this.

Associate an instance of Object Store service with the project
You can also associate an object store with the project. Again, the UI automatically discovers
instances of object store if you have already created them. Otherwise, you can create one.
When you associate an object store, all of the assets that are associated with the project
automatically get stored in the object store, transparently. Some of the code templates that
are generated are also based on this object store, as you will see below.

Upload a data set as an “asset”
This tutorial involves publicly available Auto Insurance Claims - Automobile Insurance claims
including location, policy type, and claim amount. Download this file as a .csv and upload it
into the Assets section of the project so that it is available for use within the notebook.

Refine the data set
Use the Data Refinery service to change this raw data. Data Refinery service is typically used
to cleanse, transform, and prepare your data set using simple intuitive visual tools. To learn
more, see the Data Refinery website. For example, the data from the asset uploaded earlier is
all considered String by default. You want to specify the data types as float, Boolean, and so
on, for performing specific analytics later. Another refinement could be renaming of columns.
Because there are spaces in the column names in the original sheet, you can edit and
rename them as needed.
Chapter 9. Performing more advanced functions with machine learning 161

http://dyzz9obi78pm5.cloudfront.net/app/image/id/560ec66d32131c9409f2ba54/n/Auto_Insurance_Claims_Sample.csv
http://dyzz9obi78pm5.cloudfront.net/app/image/id/560ec66d32131c9409f2ba54/n/Auto_Insurance_Claims_Sample.csv
https://www.ibm.com/cloud/data-refinery
https://www.ibm.com/cloud/data-refinery

Figure 9-7 shows this process Claim_Reason.

Figure 9-7 Selecting data assets

Figure 9-8 shows the window where you can rename the columns.

Figure 9-8 Data Refinery window
162 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Create a notebook
For this notebook, associate the Analytics Engine instance (which was associated with the
project earlier) with the run time. This association supports different kinds of kernels such as
the Scala, Python, and R. Therefore, if you have associated different kinds of run times at the
project level, you can choose between them at the notebook level, as shown in Figure 9-9.

Figure 9-9 Selecting Analytics Engine-WatsonDemoEnv

Insert To Code utility
Insert To Code is a utility that abstracts much of the connectivity details to the data asset on
object store. It automatically detects the language/kernel of the notebook and offers
appropriate code templates that you can choose from. It also automatically discovers the
object store credentials that are needed for connection and stores those details as well. Click
the Insert to Code icon as shown in Figure 9-10 to use this feature. This example uses code
that uses Spark sessions and data frames.

Figure 9-10 Insert SparkSession DataFrame
Chapter 9. Performing more advanced functions with machine learning 163

Example 9-1 shows the code that is generated.

Example 9-1 Example code using Spark sessions and dataframes

In [10]:
import ibmos2spark

@hidden_cell
credentials = {
 'endpoint': 'https://s3-api.us-geo.objectstorage.service.networklayer.com',
 'api_key': '<MASKED>',
 'service_id': 'iam-ServiceId-2929d336-cff7-45d2-b621-0b0f4a6ac4a2',
 'iam_service_endpoint': 'https://iam.ng.bluemix.net/oidc/token'}

configuration_name = 'os_0c9d5e40ed09450e8f6a62d73321f98f_configs'
cos = ibmos2spark.CloudObjectStorage(sc, credentials, configuration_name,
'bluemix_cos')

from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
df_data_1 = spark.read\
 .format('org.apache.spark.sql.execution.datasources.csv.CSVFileFormat')\
 .option('header', 'true')\
 .load(cos.url('data_asset/AutoClaims.csv_shaped_WfLT3mxrREqJEb7yBbFkmA.csv',
'autoinsuranceclaims84fafb4d8a464df4bfc813eaf52415d3'))

Use Spark SQL along with plotting library to get a simple chart
The auto generated code in Example 9-1 reads the data from IBM Cloud Object Storage and
creates a dataframe. To run SQL statements using Spark, register the data as a temporary
table:

df_data_1.registerTempTable("auto_claims")

Use the plotting library matplotlib to create a simple bar chart, as shown in Example 9-2.

Example 9-2 Using the matplotlib plotting library to generate a chart

%matplotlib inline
import matplotlib.pyplot as plt, numpy as np
pandaPlot = sqlContext.sql("select CLAIM_REASON, count(*) AS COUNT from
auto_claims GROUP BY CLAIM_REASON").toPandas()

pandaPlot.plot(kind='bar', x='CLAIM_REASON', y='COUNT', figsize=(12, 5))
164 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

The graph in Figure 9-11 shows that claims due to collision are the most numerous followed
by natural forces such as hail, and then reasons such as a scratch/dent.

Figure 9-11 Claim reason chart

The notebook for reference can be accessed from the Module 9 resources in GitHub. This is a
very simple example, but you can use the full power of Spark-based analytics for different use
cases.

9.6 Next steps

Now you have successfully enhanced the Watson Visual Recognition service for your
application. Many other use-cases using this service can still be added, so do not hesitate to
experiment further.

9.7 Other references

� Building Cognitive Applications with IBM Watson Services: Volume 1 Getting Started,
SG24-8387

� Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition,
SG24-8393
Chapter 9. Performing more advanced functions with machine learning 165

166 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Chapter 10. Adding geographic and weather
data

Welcome to Module 10 in this tutorial series! This series explains how to build a cloud-native,
consumer-facing car insurance claim application on IBM Cloud that is built according to best
practices, uses IBM Cloud Object Storage at its core, and employs AI and machine learning
to provide a unique digital experience for a customer.

This module teaches how to extract metadata from images of automobiles and use that data
to look up weather data in the area where the pictures were taken. This module assumes that
all nine previous modules were followed to completion.

Insurance companies need a way to battle fraud, and in this scenario, Insurance Company X
uses the image and weather data to help detect fraud. By taking the data and location
information from an image, the insurance company can perform these tasks:

� Check to see whether the image submitted actually occurred in the expected time frame.
� Compare the collected weather data with what was reported in the claim. If the weather

does not match what was submitted with the claim, then it can be rejected and reported as
fraud.

This chapter includes the following sections:

� Learning objectives
� Getting started
� Implementation
� Next steps
� Other references

10
© Copyright IBM Corp. 2018. All rights reserved. 167

10.1 Learning objectives

After completing this module, you will be able to:

� Create and configure an instance of the Weather Company Data service.

� Implement code to extract location and time from an image’s EXIF metadata.

� Using the extracted metadata, implement code to get the Weather Data for the location
and time of the image.

� Identify how to use the Weather Data to detect insurance fraud.

10.2 Getting started

Clone the repository to get the code:

$ git clone https://github.com/IBMRedbooks/IBM-Cloud-Object-Storage-Tutorials
$ cd IBM-Cloud-Object-Storage-Tutorials

Check out the code for Module 9 to get the finished code from the previous module that you
will build on:

$ cd module09

If you want to skip ahead, check out the completed code for this module and read along:

$ cd module10

10.3 Implementation

The Weather Company® Data APIs allow the user to access weather data for a specified
geolocation. This module uses the Historical Data API, which returns up to 24-hour historical
weather observations based on a geolocation extracted from the submitted images.

When pictures are taken from a digital camera, certain details are stored with the image file.
This data is called the Exchangeable Image File Format (Exif) metadata. The Exif data stores
information like the date and time that the photo was taken and its geolocation. This data is
used in the call to the Historical Data API to get weather data for the date, time, and location
of the accident.

In Module 4, the Weather Data Service instance was created and bound to the application
starter kit. Complete the following steps if you would like to create your own service instance:

1. Create a Weather Company Data instance within IBM Cloud. Open the IBM Cloud
dashboard, select Catalog, select Platform → Data & Analytics, and click Weather
Company Data. You can also enter weather in the Search textbox and the choices will be
filtered automatically.

2. Name the service. You can use the default or change the name, and then click Create.

On the Weather Data console, you can read more about the service by following the links
under the Get Started section to access the service documentation.

Note: This module uses the Free Plan that allows up to 10,000 API calls, which is
plenty for the purpose of this tutorial.
168 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

3. Click the Menu icon and select Web Apps.

4. Click Apps and then click Your Starter Kit App.

5. Click Add Resource and select Existing Services, then click Next.

6. Select the Weather Company Data service created earlier in the module and click Next.

The service is now bound to the application and the credentials should be displayed in the
Credentials text box.

7. If you would like to create the Service credentials separately before binding, from the
Weather Company Data instance console, click Service credentials, as shown in
Figure 10-1.

Figure 10-1 Selecting Service credentials

8. Click the New credential button.

9. Name the credential or accept the default. For this module, you will not need to add any
optional Inline Configuration Parameters. Click Add.

The new credential is now listed in the Service credentials table, as shown in Figure 10-2.

Figure 10-2 Service credentials table

10.Click the twistie beside View credentials to see the generated JSON, as shown in
Example 10-1. Note that in the example, the username and password have been
removed.

Example 10-1 Generated JSON

{
 "username": "<USERNAME>",
 "password": "<PASSWORD>",
 "host": "twcservice.mybluemix.net",
 "port": 443,
 "url": "https://USERNAME:PASSWORD@twcservice.mybluemix.net"
}

Chapter 10. Adding geographic and weather data 169

Now, when you bind the service instance to your applications, the service credentials you
created will be used instead of being newly generated.

11.When the code is downloaded, the /server/config/mappings.json file is provisioned with
the Weather Insights® mapping and the credentials are added to
/server/localdev-config.json.

Example 10-2 shows the contents of the mappings.json file.

Example 10-2 Contents of the mappings.json file

1. "weather_company_data_url": {
2. "searchPatterns": ["cloudfoundry:$.weatherinsights[0].credentials.url",
"env:service_weather_company_data:$.url",
"file:/server/localdev-config.json:$.weather_company_data_url"]
3. }, "weather_company_data_username": {
4. "searchPatterns":
["cloudfoundry:$.weatherinsights[0].credentials.username",
"env:service_weather_company_data:$.username",
"file:/server/localdev-config.json:$.weather_company_data_username"]
5. }, "weather_company_data_password": {
6. "searchPatterns":
["cloudfoundry:$.weatherinsights[0].credentials.password",
"env:service_weather_company_data:$.password",
"file:/server/localdev-config.json:$.weather_company_data_password"]
7. }

Example 10-3 shows the contents of the localdev-config.json file.

Example 10-3 Contents of the localdev-config.json file

1. "weather_company_data_url":
"https://<USERNAME>:<PASSWORD>@twcservice.mybluemix.net",
2. "weather_company_data_username": "<USERNAME>",
3. "weather_company_data_password": "<PASSWORD>"

12.You have provisioned a new instance of the Weather Company Data service. To extract
the time and geolocation from the image and convert the data into usable coordinates,
install the imagemagick and dms2dec modules:

$ npm install imagemagick
$ npm install dms2dec

13.These two modules must also be added to the dependencies section in
insurancewebappbackend/package.json.

14.Add the following two lines to package.json:

1. "dms2dec": "^1.1.0",
2. "imagemagick": "^0.1.3"

15.Create a folder in server/services called weather and create a file in that directory called
weather-data.js:

$ cd server/services && mkdir weather && touch weather-data.js

Note: In the localdev.config.json file, the username and password have been
removed and replaced with variables. In your file, the actual credentials will be
displayed.
170 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

16.Now that the weather-data.js file is created, look at the service code that makes a
request to the Weather Company Data API and returns the weather observations for the
past 24 hours (Example 10-4).

Example 10-4 Code that returns weather observations

1. const IBMCloudEnv = require("ibm-cloud-env");
2. const request = require("request");
3. const log4js = require("log4js");
4. const logger = log4js.getLogger("weather-service");

//Public methods
5. module.exports.getWeatherSituation = _getWeatherSituation;

// Private methods
6. function _getWeatherSituation(lat, lon) {
7. return new Promise(function(resolve, reject) {
8. const config = {
9. username:
IBMCloudEnv.getString("weather_company_data_username"),
10. password:
IBMCloudEnv.getString("weather_company_data_password"),
11. url: IBMCloudEnv.getString("weather_company_data_url"),
12. hours: "23"
13. };
14. let url =
`${config.url}:443/api/weather/v1/geocode/${lat}/${lon}/observations/timeseries
.json?units=e&hours=${config.hours}`;
15. request(url, function(err, response, body) {
16. if (err) {
17. logger.info("error:", err);
18. reject(err);
19. } else {
20. logger.info("statusCode:", response && response.statusCode);
21. resolve(JSON.parse(body));
22. }
23. });
24. });
25.}

The function that you want to examine is _getWeatherSituation(lat, lon). The function
starts by building the config that consists of a username, password, url, and hours, as
shown in Example 10-5.

Example 10-5 _getWeatherSituation(lat, lon) function

1. const config = {
2. username: IBMCloudEnv.getString("weather_company_data_username"),
3. password: IBMCloudEnv.getString("weather_company_data_password"),
4. url: IBMCloudEnv.getString("weather_company_data_url"),
5. hours: "23"
6. };
Chapter 10. Adding geographic and weather data 171

The credentials used were created when the service was bound to the application and
stored in localdev-config.json. The hours represent how many hours to go back. Setting
hours to 23 tells the weather service to get the weather observations for the current hour
and then get the past 23 hours of historical data. This process results in 24 hours' worth of
historical weather data. The next step, the config, is used to build the url that will be used
in the HTTP request.

1. let url =
`${config.url}:443/api/weather/v1/geocode/${lat}/${lon}/observations/timeseries
.json?units=e&hours=${config.hours}`;

The config.url file already contains the username, password, and url, but you might be
wondering what &{lat}/${lon} mean. These variables will contain the latitude and
longitude values pulled from the Exif metadata. The code to obtain these values is covered
later in the module. The last variable in the url is config.hours, which specifies how many
hours to retrieve.

The endpoint (or API) in the example is /observations/timeseries.json. The ?units=e
parameter specifies what unit of measure to return. This tutorial uses e for Imperial
(English). The other units that are supported are m for metric and h for hybrid.

Now that the code has built the url, the HTTP request is made, and the results are
returned, as shown in Example 10-6.

Example 10-6 Results of HTTP request

1. request(url, function(err, response, body) {
2. if (err) {
3. logger.info("error:", err);
4. reject(err);
5. } else {
6. logger.info("statusCode:", response && response.statusCode);
7. resolve(JSON.parse(body));
8. }
9. });

The request(url, function(err, response, body) line makes the request and then error
checking makes sure it was successful. If not, the error is returned and logged, and the
request is rejected. If it was successful, the code logs the status code and returns the
body of weather observations.

At this point, the weather-data class exits and control is returned to the calling function.

17.Now that the service code is complete, modify several of the existing files to fully
implement the service in the application. Open
server/routes/claims/postClaimImage.js.

18.At the top of the file in the list of constants, add the following line:

1. const weather = require("../../services/weather/weather-data");

This change allows the postClaimImage.js file to access the weather-data.js file that you
created earlier in the module.

19.Search the file for return imageProcessor.getMetadata(file.path);. After the
proceeding}), press Return to add a line and insert the code shown in Example 10-7.

Example 10-7 Code to add after return imageProcessor.getMetadata(file.path);

1. .then(metadata => { // some images don't contain exif metadata, so let's
check
2. if (metadata.exif) {
3. logger.info("Extracted image metadata");
172 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

4. image.imageMetadata = metadata.exif; // get the lat,lon from the
image metadata
5. const latLon = imageProcessor.getLatLon(image.imageMetadata);
6. if (!latLon) {
7. return;
8. }
9. logger.info("exif lat,lon", latLon);
10. logger.info(`getting weather situation for lat:${latLon[0]}
lon:${latLon[1]} @ time: ${image.imageMetadata.dateTimeOriginal}`);
11. return weather.getWeatherSituation(latLon[0], latLon[1]);
12. } // we don't have any metadata to use for weather so just return;
13. logger.warn("No image metadata, skipping Weather API");
14. return;
15.}).then((weatherSituation) => {
16. if (weatherSituation) {
17. image.weatherData =
getClosestWeatherObservation(image.imageMetadata.dateTimeOriginal,
weatherSituation);
18. } // resize the image to get a normalized thumbnail
19. return imageProcessor.resize(file.path);
20.})

The code in Example 10-7 is run when the image is being processed after the upload.

20.Add the function shown in Example 10-8 to the postClaimImage.js file.

Example 10-8 Function to add to postClaimImage.js

1. // Gets the weather observation in weatherSituation that is closest to the
// dateTime provided
2. function getClosestWeatherObservation(dateTime, weatherSituation) {
3. const imageTime = dateTime / 1000; // sort observations by their
distance to image time
4. const closestObservation = __.sortBy(weatherSituation.observations,
(observation) => Math.abs(imageTime - observation.valid_time_gmt)); // Weather
api only returns data from last 24h. // A correct implementation would not add
data if the image is outside of that window // for the sake of this demo, we're
still adding the weather closest to the time // the picture has been taken
5. logger.info("Weather:" + closestObservation[0]);
6. return closestObservation[0];
7. }

21.In a previous step, you added the line "const latLon =
imageProcessor.getLatLon(image.imageMetadata);" This line calls the function
getLatLon(metadata) in the processor.js file. Open the
/server/services/image-processing/processor.js file.

22.Add the code shown in Example 10-9 to the end of the file.

Example 10-9 Code to add to /server/services/image-processing/processor.js

1. function _getLatLon(metadata) {
2. var gpsLatitude = metadata.gpsLatitude;
3. var gpsLatitudeRef = metadata.gpsLatitudeRef;
4. var gpsLongitude = metadata.gpsLongitude;
5. var gpsLongitudeRef = metadata.gpsLongitudeRef;
6. if (gpsLatitude && gpsLongitude && gpsLongitudeRef && gpsLatitudeRef) {
Chapter 10. Adding geographic and weather data 173

7. return dms2dec(gpsLatitude, gpsLatitudeRef, gpsLongitude,
gpsLongitudeRef);
8. }
9. }

The getLatLon(metadata) function retrieves the latitude and longitude of the image data
and processes it to decimal form.

You have added the necessary backend code, but that does you no good until the data can
be displayed to the customer.

23.Open /public/js/actions.js. Search for the function
renderImageDetails(imageMetadata, weatherDetails, vrDetails). You will see the
code shown in Example 10-10.

Example 10-10 Code in /public/js/actions.js

1. table_content += "<tr>";
2. table_content += "<td>Damage Type</td>";
3. table_content += "<td>Bump on Fender</td>";
4. table_content += "</tr>"

24.After the line table_content += "</tr>", insert the code shown in Example 10-11.

Example 10-11 Code to insert into /public/js/actions.js

1. table_content += "<tr>";
2. table_content += "<td>Weather Conditions on Incident Date</td>";
3. if (weatherDetails) {
4. table_content += "<td>" + weatherDetails.wx_phrase + " in " +
weatherDetails.obs_name + "</td>";
5. } else {
6. table_content += "<td>Weather not available.</td>";
7. }
8. table_content += "</tr>"

These lines of code add the weather conditions to the Image Details user-interface, as
shown in Figure 10-3.

Figure 10-3 Weather Conditions display

If there are no weather conditions available, the message “Weather not available.” is
displayed in the table.

25.Now that the code is in place, test the updates by navigating to /scripts and creating a
file called datefaker.sh:

$ cd scripts/ && touch datefaker.sh

26.Edit datefaker.sh and add the code shown in Example 10-12.

Example 10-12 Code for datefaker.sh

1. #!/bin/sh
2.
3. # This script replaces exif metadata in a photo to replace the
dateTimeOriginal value with
174 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

4. # the current time according to the system clock. This is to allow us to
pull weather data
5. # from the Weather Company Data API which only provides the previous 24
hours
6.
7. # Usage: place in a directory with some images where you want to fake the
date
8.
9. #Check if the tool is installed
10.command -v exiftool >/dev/null 2>&1 || { echo >&2 "I require exiftool but
it's not installed. Download at https://www.sno.phy.queensu.ca/~phil/exiftool/
Aborting."; exit 1; }
11.
12.#Check if you are in the right directory
13.if [-n "$(ls -A ./*.JPG 2>/dev/null)"]
14.then
15. now=$(date +"%Y:%m:%d %T")
16. exiftool -DateTimeOriginal="$now" "./"
17.else
18. echo "No JPG images found, please copy the script to the images directory.
Aborting."
19. exit 1
20.fi

This script looks for a module called exiftool. This module must be installed separately at
https://www.sno.phy.queensu.ca/~phil/exiftool/. Select the correct installation for
your OS.

27.Set datefaker.sh as an executable file:

$ chmod +x datefaker.sh

28.Navigate to the /testData directory. This directory contains four images: The front, back,
left, and right sides of a car. Because the metadata needs to update to get weather data
from the last 24 hours, issue the following command:

$../scripts/datefaker.sh

You should get the following output:

 1 directories scanned
 4 image files updated

29.Start the application locally by issuing the npm start command.

30.Open a browser and point it to localhost:3000.

31.Click Login and then either log in using existing credentials or create new credentials.

32.Click Make a Claim.

33.Under Upload Images, click Browse, navigate to the testData directory, select the file
CAR_TEST_1_OR_FRONT.JPG, and click Open.
Chapter 10. Adding geographic and weather data 175

34.Click Upload. The file is uploaded as shown in Figure 10-4.

Figure 10-4 Uploading the image

10.4 Next steps

Review what you have learned and move on to Chapter 11, “Managing the application’s
users” on page 177.

10.5 Other references

� The Weather Company Data Documentation

https://console.bluemix.net/docs/services/Weather/index.html

� Imagemagik

https://www.npmjs.com/package/imagemagick

� Dms2dec

https://www.npmjs.com/package/dms2dec

� Exiftool

https://www.sno.phy.queensu.ca/~phil/exiftool/
176 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/docs/services/Weather/index.html
https://www.npmjs.com/package/imagemagick
https://www.npmjs.com/package/dms2dec
https://www.sno.phy.queensu.ca/~phil/exiftool/

Chapter 11. Managing the application’s users

In the previous modules in this series, you have seen how to build a fully functional application
that allows users to create claims and attach images. The application uses several IBM Cloud
services to add intelligence to this process. However, the application currently only allows for
a single user. There is no account concept and users cannot log in to get access to their own
claim information.

In this module, you will add an account model to your system and integrate with IBM Cloud
App ID to allow users to sign in using an account that they create or using a public social
profile such as Google or Facebook. This configuration gives users the flexibility to log in how
they choose, and makes new account creation easier (Figure 11-1).

Figure 11-1 IBM Cloud structure

The App ID service provides uniform authentication and identify management capabilities for
your applications. It provides a single API and callback mechanism to allow single sign-on for
web applications. It also provides Cloud Directory, which is a user repository that allows your
app users to sign up and sign in with email and password, verify email addresses, and
manage password change and reset support. App ID includes support for Google and
Facebook social identity providers. Using App ID makes it easy for you to add all of these
authentication mechanisms with no additional development time. New providers can be
added in the future without code modifications.

11
© Copyright IBM Corp. 2018. All rights reserved. 177

App ID also provides support for custom user attributes, allowing you to gather additional
information about users. SAML for enterprise authentication is also supported. This module
does not cover either function, but more information can be found in the App ID
documentation.

This chapter includes the following sections:

� Learning objectives
� Getting started
� Configuration
� Implementation
� Next steps
� Other references

11.1 Learning objectives

After completing this module, you will be able to:

� Create and configure an instance of App ID.

� Design a data model for users and accounts to provide authentication and access control
functions.

� Implement authentication and access control.

11.2 Getting started

Clone the repository to get the code:

$ git clone https://github.com/IBMRedbooks/IBM-Cloud-Object-Storage-Tutorials
$ cd IBM-Cloud-Object-Storage-Tutorials

Check out the code for Module 10 to get the finished code from the previous module that you
will build on:

$ cd module10

If you want to skip ahead, check out the completed code for this module and read along:

$ cd module11
178 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/docs/services/appid/user-profile.html#user-profile
https://console.bluemix.net/docs/services/appid/enterprise.html#enterprise

11.2.1 Basic concepts

Before adding App ID to your application, it is important to understand a few key principles of
user management. Correctly designing your application to deal with identity can provide a
more positive experience for your users and provide much needed flexibility for advanced
features (Figure 11-2).

Figure 11-2 Identity loop

Your users will be most familiar with these concepts:

� User: Your app user will typically be a human who will sign up to use your app. We will be
making our app map users into something meaningful so that the user can only view and
edit their own claims.

� Credentials: A set of secret information that a user possesses that allows them to
authenticate themselves. Because we are using App ID, our app will not have to directly
manage credentials. This is one of the key benefits of App ID.

From your perspective as an app developer, it is important to understand the difference
between these concepts:

� Identity: An identity maps a user to a set of credentials. The act of authentication has a
user provide credentials to prove that they have some identity. Identity is not managed by
the example app, so it is provided when a user authenticates using App ID.

� Account: An account is something that maps elements in your app's data model to a user.
In the app, an account allows you to perform authorization to allow a user to see specific
claims.

What is the difference between identity and account, and why do we need both concepts?

If you remember only one thing about identity, it should be this: Users often have more than
one. They can sign up for your app using email and password, or by using Google or
Facebook authentication. Users can have any combination of these types of accounts.

A well-designed app will add an account concept to the data model independent of identity.
This configuration makes it possible for users to associate more than one identity to an
account, providing them flexibility in how they log in. A user might want to use Google today,
but switch to an email address and password later, for example. Or new third-party identity
providers might be introduced in the future that you want to allow existing users to use. This
change is fairly simple to do if it is designed in from the outset, so we will do so here.

IdentityUser Account Claims
1

N
1

N

1
1

N

1

Chapter 11. Managing the application’s users 179

11.2.2 Prerequisites

If you have completed the previous modules, you are ready to add App ID support.

However, note that when you create an instance of App ID, it uses the App ID Default
Configuration for Facebook and Google providers. This configuration only allows you to
authenticate up to 100 times per day. For production use, or for more heavy use during
development, you must register with those providers to obtain an app-specific ID and secret.
In the App ID console, you can get more information by clicking App ID Console → Identity
Providers → Manage.

11.3 Configuration

If you have completed Module 4 and created a starter kit with all of the services used for this
application, you might already have an App ID service instance created, and service
credentials that are already added to your application service instance, starter kit code, and
local development environment.

If you did not complete that step, add an instance to your web app after it is created. See
Chapter 4, “Scaffolding using a Starter Kit” on page 29 for more details about how to add a
resource to an existing project.

Ensure that the server/services/ folder contains the service-appid.js boilerplate. You will
be modifying that file to configure App ID.

For local development, add the following property to your server/localdev-config.json file:

"appid_app_external_address" : "http://localhost:3000",

For deployment, ensure that this property is set with the actual external host name and port
for your app. See Chapter 4, “Scaffolding using a Starter Kit” on page 29 for more information
on how to find this information.
180 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

11.4 Implementation

Now that you understand some basic concepts, this section covers what App ID actually
does. When users authenticate with social identity providers, those providers allow users to
authenticate and provide identity information to third-party sites using the OAuth2 grant flow.
Figure 11-3 shows a sample work flow diagram.

Figure 11-3 Work flow diagram
Chapter 11. Managing the application’s users 181

https://oauthlib.readthedocs.io/en/stable/oauth2/grants/authcode.html

You can choose from a few different flows based on what your application is trying to do. In
this module, because we are focusing on a web app that runs in a user’s browser, we use the
web app strategy using HTTP sessions. Figure 11-4 shows a sample diagram.

Figure 11-4 Process flow diagram

The web app strategy abstracts the OAuth2/OIDC authorization_code grant flow, making it
easy for developers to integrate authentication into their web apps. Several steps are involved
when the web app strategy is used:

1. A user's browser is redirected to App ID.

2. App ID redirects the browser to the identity provider sign-in page to enter user credentials.

3. After successfully authenticating with the identity provider, the user is redirected back to
App ID.

4. A grant code is sent to the web app, representing the user's authorization for App ID to
obtain the user’s identity information.

5. The web app, using App ID server-side SDK, retrieves the user's access and identity
tokens from App ID, storing them in the HTTP session.

We have chosen the web app strategy with HTTP session storage because it is relatively
simple to implement. However, also consider using the API strategy with JSON Web Tokens
(JWT), which App ID also supports. In this model, the tokens are held by the browser and
sent during each request in the Authorization header using the Bearer schema.

Authorization: Bearer <token>
182 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

This technique allows authentication to be stateless because it eliminates the need for
backend server-side storage for session cookies. This configuration provides scalability and
security benefits, as well as providing a better model for truly stateless, RESTful services.
See JSON Web Tokens vs. Session Cookies for a detailed comparison of the two
approaches. App ID also supports this schema, which can be implemented on the server side
with the API Strategy. You should always consider the API Strategy for REST APIs. It can
easily be used for UI authentication as well, and works especially well for stateless
applications, including applications created using IBM Cloud Functions.

11.4.1 Step-by-step

To integrate App ID functionality, you must complete these high-level steps:

1. Adjust the service-appid.js boilerplate to correctly configure App ID. Because you are
using Express.js, configure Passport.js.

2. Create the user data model and create methods to store this data model in Cloudant.

3. Create a REST API to allow the UI to obtain user information.

4. Create an Express.js injector to make it easier to interact with account information in the
controllers.

5. Add in passport authentication middleware and the user injector to REST API modules.

6. Create an index page to allow users to log in. Create a route for the users' home page
after they are logged in.

Configuring boilerplate code
The boiler plate code that comes with the Express.js basic starter kit only loads some
variables from the App ID instance. You must extend this code to properly configure
authentication.

First, add some dependencies to your project. Complete these steps:

1. Because you are using the Web App Strategy with HTTP cookies, include session
management. This application just uses memory sessions, but you should add in either
Redis or a database backed session storage for a production application. Otherwise, your
users must log in again every time their browser encounters a new container.

$ npm install express-session

2. Install passport for authentication:

$ npm install passport

3. Install bluemix-appid. This Node.js module is compatible with Passport.js and allows you
to configure the authentication strategy that you will be using.

$ npm install bluemix-appid

4. Add these dependencies to the top of your service-appid.js file. Some of these
dependencies should already be provided by the boilerplate code. Ensure that you have
the following imports:

const passport = require("passport");
const session = require("express-session");
const WebAppStrategy = require("bluemix-appid").WebAppStrategy;

Note: Session management is not required if JSON Web Token authentication is used.
This tutorial does not cover that type of authentication in detail.
Chapter 11. Managing the application’s users 183

https://ponyfoo.com/articles/json-web-tokens-vs-session-cookies

At this point, the boilerplate should have an API Strategy and Web App Strategy configured.
We will not be using the API Strategy, but you can leave it in if you want.

Make the following modifications to the Web App Strategy:

1. Create a few constants for some of your redirects:

const CALLBACK_URL = "/ibm/bluemix/appid/callback";
const LOGIN_URL = "/ibm/bluemix/appid/login";

The LOGIN_URL is where the browser starts the sign-in flow. The CALLBACK_URL is the
endpoint where App ID will redirect the browser to when sign-in is complete.

2. What you really need to pass App ID is a Redirect URI. This URI is passed as a query
parameter when you redirect to App ID, and needs to be a complete URL, including host
name and port. For a development deployment, this can be the external IP address and
port of your container. For production, it will most likely be a load balancer endpoint. Insert
the code that loads this property using the IBMCloudEnv utility function for this:

const APPID_REDIRECT_URI = IBMCloudEnv.getString("appid_app_external_address")
+ CALLBACK_URL;

3. Modify the WebAppStrategy constructor parameters to pass in the APPID_REDIRECT_URI
directly.

4. Configure session management, and then initialize passport, configure it to use sessions,
and add in your authentication strategies. You also need to configure user
serialization/deserialization. Because we are not doing anything specific to our application
here, this is mostly standard Passport.js boilerplate, as shown in Example 11-1.

Example 11-1 Passport.js

// Set up session and passport to be used by our routers

// Note: You should use a persistent session store in practice, such as
Redis.

app.use(session({
secret: "1234",
resave: false,
saveUninitialized: true,
cookie: {

httpOnly: false,
secure: false,
maxAge: (4 * 60 * 60 * 1000)

}
}));

app.use(passport.initialize());
app.use(passport.session());

passport.use(webStrategy);
passport.use(apiStrategy);

// Configure passportjs with user serialization/deserialization. This is
required

// for authenticated session persistence accross HTTP requests. See
passportjs docs

// for additional information http://passportjs.org/docs
passport.serializeUser(function(user, cb) {
184 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

cb(null, user);
});

passport.deserializeUser(function(obj, cb) {
cb(null, obj);

});

5. To finish off service configuration, configure your Callback URL to receive logged in users.
Also, create a logout endpoint so that you can add a Sign Out button to the UI. The logout
endpoint clears the session, removes the browser’s cookies, and redirects to the index
page that you will create later, as shown in Example 11-2.

Example 11-2 Configuring the Callback URL

app.get(CALLBACK_URL,
passport.authenticate(serviceManager.get("appid-web-strategy-name"),
 {allowAnonymousLogin: true}));

app.get("/logout", function(req, res) {
 //stringify(req);
 req.session.destroy(function() {
 res.clearCookie("connect.sid");
 res.redirect("/");
 });
});

6. In the server/services/index.js file, make sure that this line to properly configure App ID
on startup is included:

require("./service-appid")(app, serviceManager);

Creating the data model
Now that the service is configured, add your user model, as shown in Example 11-3.

Example 11-3 Adding the user model

{
 "type" : "user",
 "userId" : "77a48681-61bb-4fa1-8807-e40a734977b3",
 "accountId" : null,
 "name" : "John Smith",
 "identity" : {
 "provider" : "google",
 "id" : "123-EXAMPLE-ID-ABC"
 }
}

Because this tutorial uses Cloudant as the application's database, store each user as a JSON
document. You must be careful in how you perform updates to these documents. Design your
schema to allow multiple identities to be associated with each account. Account for the fact
that it is not possible to atomically insert a record. This configuration means that inserts will
not fail if there is already a matching record, so your schema must account for that fact.

When a user logs in, the identity token that you receive during the authentication process
provides two key values: The identity provider, and the ID specific to that provider.
Chapter 11. Managing the application’s users 185

This schema should meet these requirements:

� Map user identities to an account
� Map claims to users
� Allow a user to link multiple identities to the same account

We want to map user identities to accounts, and map accounts to claims. In an ACID
compliant database, the most straightforward way to accomplish these goals would be to
create a data model such as the one shown in Figure 11-5.

Figure 11-5 Simple data schema

For every identity encountered, add an entry in the table mapping the identity to an
account ID. The account ID would then be mapped to a claim. If you want to link an identity to
an existing account, you would atomically insert the identity with an existing account ID. If a
user accidentally creates two accounts, Account A and Account B, and wanted to link them
together, create a transaction to update Identity B to Account A and update the foreign key for
all of the claims previously tied to Account B.

Be careful not to use the IDENTITY directly in the claim because this does not allow you to
have multiple identities associated with an account.

To find claims for a logged in user, perform the following search:

1. Find the accountId for the current identity.
2. Select all claims where accountId matches.

However, there is a slightly better data model you can consider, as shown in Figure 11-6.

Figure 11-6 Improved data schema

This model is slightly better for our purposes because it allows you to link each claim to a
record, and not have to update those claims later if you link identities. Instead, if you link an
account later, simply add an account ID for the two user records. This action is especially
important for an eventual consistency database like Cloudant because it is not possible to
atomically update multiple records.
186 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

This limitation can result in inconsistent queries after an identity is linked if there are existing
claims. Therefore, this is a better data model if you want to allow merging accounts. This is
true for other databases as well because an atomic update for many claims can be quite
expensive.

Additionally, it is better to structure changes as updates only and not require
read-modify-writes. If you can simply update an account ID across two user records instead
of looking up an account ID from one record and updating the other with it, it is safer. For
example, when linking an account, how do you know that you are updating in the correct
direction? This data model also lets you merge two existing accounts together cleanly.

With this model, perform the following search to find claims for a given user:

1. Find the user_id, and account ID (if it exists) for the current identity.
2. If the account id exists, find the set of user IDs that match that account.
3. Select all claims where user ID matches any of the set of user IDs from step 1 and 2.

In the end, both schemas can work. You should consider how much flexibility you want to
allow for your users. When possible, allow users to link new identities to an existing account.
Also consider if you want to allow merging existing accounts because this is a commonly
requested user feature in many industries.

In our code, we have a placeholder for accountId, but will actually implement the first model.
The claim search algorithm will only find a single user ID from an identity and find claims
matching that ID. If you would like to extend this code to support merging claims or adding
multiple identities, it is relatively easy to do.

To implement this data model, first create an index document called userIndex.json, as
shown in Example 11-4, and place it in the server/services/cloudant folder.

Example 11-4 Code for userIndex.json

{
 "name": "userIndex",
 "ddoc": "userIndex",
 "type": "json",
 "index": {
 "fields": [
 {
 "type" : "asc"
 },
 {
 "userId" : "asc"
 },
 {
 "accountId" : "asc"
 },
 {
 "identity.provider" : "asc"
 },
 {
 "identity.id" : "asc"
 }
]
 }
}

Chapter 11. Managing the application’s users 187

Because we want to perform lookups by both user ID and identity, index both structures. Note
that identity has two parts, provider and ID, so you must index both. This index also includes
account ID, though we will not implement that part of the search algorithm in this code.

Make sure that this new index gets created in Cloudant by adding the following line near the
top:

const USER_INDEX = require("./userIndex.json");

In the _init() method, add this code at the end to create the index:

.then(() => db.index(USER_INDEX)) // create the user index

.catch(e => {
logger.warn(e._data);
});

We are also going to be searching claims by userId, so add this line to claimIndex.json in
the same folder:

{

 "userId": "asc"

 },

This code creates a new index in Cloudant with this additional field.

The sort parameter in getClaim() and listAllClaims() must be updated to reference this
new index. Make sure that the sort parameter is in the exact same order as the new index you
have created.

In server/services/cloudant, update index.js to add these methods to manage the user
records:

_createUser()
_getUser()
_findUserByIdentity()
_findOrCreateUser()
_listUserClaims()

The first three methods create a new user, get a user by user ID, and find a user by identity.
Because this simple application does not require a user to establish much of a profile before
using the system, the fourth public method _findOrCreateUser() automatically creates a
user record whenever a user authenticates to the system. A more advanced application might
not automatically create a user, so we use these methods independently.

The final method you will create is a version of listAllClaims() seen in an earlier module.
Change the query to restrict the returned claims to those for the current user.

The full code will have some other convenience methods dealing with users, but we will not
use them in our application right now.

The actual code for finding and creating users is not much different from finding or creating a
claim. To find a user, create a query with a selector and with a sort order matching the index
that you have created. The selector is either the user ID or the identity. Return the first
document if it exists. Note that with this schema, it is possible that a race condition during
authentication could create two user records for the same provider. The second scheme,
where the search algorithm finds a set of user records, would resolve this issue safely.
188 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

For the create user method, simply create a document, ensuring that the type is user and a
new user ID is generated.

You can see these two methods in Example 11-5.

Example 11-5 User model methods

// This function creates a user.
function _createUser(userDetails) {

// create the document from provided details, generated UUID and created date
const document = Object.assign({},userDetails, {type: "user", userId: uuid(),

created: moment.utc()});
// just in case someone tried to set the id
delete document._id;
// insert the document and return the claimId
return db.insert(document).then((d) => {

logger.debug(d);
return document.userId;

});
}

// This function finds a user by user id.
function _getUser(userId) {

if (!userId) {
return Promise.reject("Missing userId parameter");

}
// Leverage the index we created to sort by claimId and created date
const query = {

"selector": {
"type" : "user",
"userId": userId

},
"sort": [

{
"type" : "asc"

},
{

"userId" : "asc"
},
{

"accountId" : "asc"
},
{

"identity.provider" : "asc"
},
{

"identity.id" : "asc"
}

]
};

// Search all documents for this claim
return db.find(query).then((docs) => {

// if there are none, return null
if (!docs || docs.length === 0) {

return null;
Chapter 11. Managing the application’s users 189

}

return docs.docs[0];
});

}

// This function finds the set of users by an identity.
function _findUserByIdentity(provider, id) {

if (!provider || !id) {
return Promise.reject("Missing provider or id parameter");

}
// Leverage the index we created to sort by claimId and created date
const query = {

"selector": {
"type" : "user",
"identity.provider": provider,
"identity.id" : id

},
"sort": [

{
"type" : "asc"

},
{

"userId" : "asc"
},
{

"accountId" : "asc"
},
{

"identity.provider" : "asc"
},
{

"identity.id" : "asc"
}

]
};

// Search all documents for this claim
return db.find(query).then((docs) => {

// if there are none, return null
if (!docs || docs.length === 0) {

return null;
}

return docs.docs[0];
});

}

The findOrCreateUser() method calls these three methods in turn. This process is
straightforward and you can see this method in the full code sample download.
190 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

To create the _listUserClaims() method, copy the _listAllClaims() method, then change
the selector to add in the user ID:

"selector": {
"type" : "claim",
"userId": userId

},

Finally, make sure to add exports at the top:

module.exports.listUserClaims = _listUserClaims;
module.exports.createUser = _createUser;
module.exports.getUser = _getUser;
module.exports.findUserByIdentity = _findUserByIdentity;
module.exports.findOrCreateUser = _findOrCreateUser;

Creating a REST API
The REST API for users will be relatively simple. Make a single endpoint, /user, that allows
the UI to query the name of the currently logged in user.

Create the file shown in Example 11-6 as server/routers/user.js.

Example 11-6 The server/routers/user.js file

const express = require("express");
const passport = require("passport");
const serviceManager = require("../services/service-manager");
const common = require("./common");

module.exports = function(app) {
var router = express.Router();

// Get account information for the currently logged in user, creating
// an account if it doesn't already exist.
// Note: the injector does all the work here.
router.get("/", function (req, res) {

res.json(req.userAccount);
});

// Register the route /claim
app.use("/user",

passport.authenticate(serviceManager.get("appid-web-strategy-name")),
common.cloudantInjector,
common.userInjector,
router);

};

This code returns a JSON representation of your user record. There is more going on here
that we will examine more closely when you create your injector and insert passport
authentication to the claims API.

Make sure that your new route gets registered by adding this line to
server/routers/index.js:

require("./user")(app);
Chapter 11. Managing the application’s users 191

Creating an Express.js injector
In Module 5, you created a Cloudant injector, which is middleware to ensure that downstream
code always has a reference to the Cloudant component.

We will do something similar for user records here.

In the server/routers/common.js file, add two methods:

� An internal method _extractAuthIdentity() to get the identity information for an
authenticated request. This method depends on the passport.authenticate()
middleware to insert the user identity information. Passport inserts information about all
three token types. The token that we are interested in examining is the identity token, as
shown in Example 11-7.

Example 11-7 Internal method

function _extractAuthIdentity(req) {
// Passport inserts it's information into the key we've specified during
// configuration, so we will retrieve that from the session here.
var appIdAuthContext =

req.session[serviceManager.get("appid-web-auth-context")];

if (appIdAuthContext) {
// We're interested in the identitites stored in the identity token

payload.
// For our application we assume there will only be a single identity per

session.
if (appIdAuthContext.identityTokenPayload.identities.length > 0) {

return appIdAuthContext.identityTokenPayload.identities[0];
}

}

// If we have not logged in
return null;

}

� Export the userInjector itself. This method first attempts to extract the identity
information. It then calls the findOrCreateUser() method created above. See
Example 11-8.

Example 11-8 Exporting the userInjector

module.exports.userInjector = function (req, res, next) {

const identity = _extractAuthIdentity(req);
if (!req.user) {

// no user on request, proceed
next();
return;

}
req.cloudant.findOrCreateUser(req.user.name, identity.provider, identity.id)

.then((userRecord) => {
req.userRecord = userRecord;
next();
return;

}).catch((err) => {
logger.info(err);
192 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

res.status(500).send(err);
});

};

Adding REST API authentication
After all that, adding actual authentication for the REST API is easy. First, make sure that new
claims get associated with the correct user record. You could do this when you create the
initial claim, but in this example we add the userId when we add our first image. In
server/routers/claims/postClaimImage.js, modify the _processImage() method to insert
the userId right after the claimId, as shown in Example 11-9.

Example 11-9 The _processImage function

function _processImage(req,res) {
…
const append = {

claimId: req.params.claimId,
userId: req.userRecord.userId,
images: [imageContainer]

};
…
}

In server/routers/claims/index.js, modify the /claim route to only show claims for the
current user by changing the call from listAllClaims() to listUserClaims(), as shown in
Example 11-10.

Example 11-10 Changing the call to listUserClaims()

// GET a list of claims
router.get("/", function (req, res) {

req.cloudant.listUserClaims(req.userRecord.userId)
.then((claims) => {

res.json(claims);
})

.catch((err) => {
logger.error(err);
res.status(500).send("Something broke!");

});
});

Finally, just as seen in user.js, insert the passport authentication and user injector
middleware in the app.use() call, as shown in Example 11-11.

Example 11-11 Adding passport authentication and user injector middleware

// Register the route /claim
app.use("/claim",

passport.authenticate(serviceManager.get("appid-web-strategy-name")),
bodyParser.json(),
common.cloudantInjector,
common.userInjector,
router);
Chapter 11. Managing the application’s users 193

The passport authentication middleware forces authentication on these pages and the user
injector middleware retrieves the user record.

Creating the final login page
As shown in Chapter 4, “Scaffolding using a Starter Kit” on page 29, the app has only two
pages. The first, index.html, has a simple login page. Express routes to index.html by
default. It is served using express.static(), and the user does not require authentication to
view this page.

The second page is home.html, and it is served from the route "/home". This is the location of
the actual single page app. In server/server.js, change the registration for this route to
require passport authentication. All that the Login button does is redirect to "/home", and
passport takes care of the rest.

First, import passport:

const passport = require("passport");

Then, update the registration of the "/home" route, as shown in Example 11-12.

Example 11-12 Registering the “/home” route

app.use("/home",
passport.authenticate(serviceManager.get("appid-web-strategy-name")),
(req, res) => {
 res.sendFile(path.join(__dirname, "../public", "home.html"));
});

11.5 Next steps

This module taught you how to add authentication and identity to your application easily using
App ID. It also taught you how to build a simple data model that allows you to easily provide a
flexible account model for your users. This data model deals well with non-transactional
databases and also allows you to provide enhanced functionality to your users, such as
linking accounts together when a user uses multiple social identity providers over time.

Note that this system simply limits viewing and editing claims to the account that created
them. As you are designing your own applications, think about how you will perform more
advanced access control.

Consider the following concerns, among others:

� Your user model must incorporate different types of users. This module covered a user
who has a specific insurance policy. What about claims adjustors? System administrators?
Design an account model that meets the different roles in your system.

� You must build an authorization model into your system. Can you break the actions that
can be performed in the system into specific permissions? Which actions can users
perform? A role-based system can allow you to flexibly change which actions that specific
users can perform. You will also need to add permissions checks into different methods.
For example, the API to retrieve an image does not currently check that the user should
have access to that image, so it is vulnerable to attack if a user can guess what another
image might be named.
194 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

� Most application developers will create a built-in authorization model. However, integration
with SAML identity providers can allow organizations to manage roles on the identity
provider. These roles can then be mapped to permissions in the application. App ID has
additional tools to make working with SAML easier.

Review what you have learned and move on to Chapter 12, “Providing case search” on
page 197.

11.6 Other references

� Learn more about App ID

https://www.ibm.com/cloud/app-id

� More details about when to use the service

https://console.bluemix.net/docs/services/appid/about.html#about

� User identity versus user account, and best practices for integrating third-party providers

https://cloudplatform.googleblog.com/2018/01/12-best-practices-for-user-account
.html

� JSON Web Tokens versus Session Cookies

https://ponyfoo.com/articles/json-web-tokens-vs-session-cookies
Chapter 11. Managing the application’s users 195

https://www.ibm.com/cloud/app-id
https://console.bluemix.net/docs/services/appid/about.html#about
https://cloudplatform.googleblog.com/2018/01/12-best-practices-for-user-account.html
https://ponyfoo.com/articles/json-web-tokens-vs-session-cookies

196 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Chapter 12. Providing case search

Welcome to module 12 in this tutorial series! This series explains how to build a cloud-native,
consumer-facing car insurance claim application on IBM Cloud that is built according to best
practices, uses IBM Cloud Object Storage at its core, and employs AI and machine learning
to provide a unique digital experience for a customer.

This module covers how to create and use search indexes within IBM Cloudant NoSQL DB.
The search indexes are based on Apache Lucene full-text search and can be used to search
database documents using the Lucene Query Parser Syntax. This module assumes that all
11 previous modules were followed to completion.

This section describes search indexes in theory, so it will not include any new code to add to
the Insurance Company X application.

This chapter includes the following sections:

� Learning objectives
� Getting started
� Implementation
� Next steps
� Other references

12
© Copyright IBM Corp. 2018. All rights reserved. 197

12.1 Learning objectives

After completing this module, you will be able to:

� Define a search index
� Create search indexes
� Query search indexes

12.2 Getting started

Clone the repository to get the code:

$ git clone https://github.com/IBMRedbooks/IBM-Cloud-Object-Storage-Tutorials
$ cd IBM-Cloud-Object-Storage-Tutorials

Check out the code for Module 11 to get the finished code from the previous module that you
will build on:

$ cd module11

If you want to skip ahead, check out the completed code for this module and read along:

$ cd module12

12.3 Implementation

Cloudant allows the user to create several different indexes to find the documents that contain
the needed data. Those indexes are Primary, which is created automatically when a database
is created, Secondary, Search, Geospatial, and Cloudant Query. As stated earlier, this
module will focus on the Search Index.

The Search Index is built using Lucene search. Use it when ad hoc queries are needed on
one or more fields, searches use large blocks of text, and queries require Lucene syntax like
wildcards.

In the Insurance Company X application, the user can submit an insurance claim about
damage to their automobile. When the Make a Claim button is clicked, a Claim ID is
automatically generated. After that Claim ID is generated, a JSON document is inserted into
the Cloudant database.

Figure 12-1 shows the claim used during the remainder of this tutorial.

Figure 12-1 Example claim
198 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

The JSON document created in Cloudant is shown in Example 12-1.

Example 12-1 Created JSON document

1. {
2. "_id": "a2141ef6e3f0bbdfb1482a569e807231",
3. "_rev": "1-7cd1699cdf4819d294147f0747d85b28",
4. "type": "claim",
5. "claimId": "20916bf3-8d48-475a-944e-aacb76416a71",
6. "created": "2018-05-18T16:55:25.914Z"
7. }

The data above does not tell you much, so you might never have a reason to use anything
other than the document lookup or primary index. However, what happens to the JSON
document when a single image is uploaded to the claim? The new JSON document is shown
in Example 12-2.

Example 12-2 JSON document with uploaded image

1. {
2. "_id": "7912f19a21e0b5c74b102e7fa314cc72",
3. "_rev": "1-fd0863879a5d29c750e21e94627524cc",
4. "claimId": "20916bf3-8d48-475a-944e-aacb76416a71",
5. "userId": "15007abe-aaf8-4687-ac94-c018e99342b5",
6. "images": [{
7. "8a5b76e0-5ac4-11e8-8156-2535b70a227f": {
8. "vrClassification": {
9. "carDamage": [{
10. "class": "car_damage_accident",
11. "score": 0.001
12. }, {
13. "class": "car_damage_paint_vandalism",
14. "score": 0.001
15. }, {
16. "class": "car_damage_broken_mirror",
17. "score": 0
18. }, {
19. "class": "car_damage_broken_window",
20. "score": 0
21. }, {
22. "class": "car_damage_flat_tire",
23. "score": 0
24. }],

That JSON document is actually 182 lines. Example 12-2 only shows a small snippet. It is so
large because the EXIF data and the weather data for the image is now being stored in
Cloudant. Now, multiply that number of lines by four images that cover all sides of the car.
That is a lot of data to search through for just one claim.

This situation is where creating a search index will help you find the information that you need
quickly and efficiently. To do so, complete these steps:

1. Log in to IBM Cloud and click the Cloudant NoSQL DB instance that you created in an
earlier module.

2. Click Launch to be taken to the Cloudant Dashboard.

3. Click the database name, in this example car_accidents_3.
Chapter 12. Providing case search 199

The left pane has five sections: All Documents, Query, Permissions, Changes, and
Design Documents, as shown in Figure 12-2. When indexes are added, they are created
as Design Documents.

Figure 12-2 Available sections

4. Click Design Documents + and select + New Search Index. The New Search Index
window opens, as shown in Figure 12-3.

Figure 12-3 New Search Index window

You can name the design document, so enter module12-search and give the index a name
of claimCreationSearch.
200 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

We are going to create an index that allows the user to search for claims created on a
specific date by using the created field in the Cloudant document.

5. In the Search index function field, enter the code in Example 12-3.

Example 12-3 Code for the Search index function field

1. function(doc) {
2. if (doc.created) {
3. index("created", doc.created, {
4. "store": true
5. });
6. }
7. }

The if statement is called a guard clause and checks for the existence of the field in the
JSON document. If it exists, it continues to build the index.

The index is on created and store: true makes sure that the value is returned in the
search results. If it is false, the value will not be returned.

6. In the Type field, select Keyword.

7. Click Save Document and Build Index.

8. Click the Design Documents tab in the left pane. The search index that you just created
will now be listed, as shown in Figure 12-4.

Figure 12-4 Search index

9. Click _design/module12-search and view the design document for the search index. It
should be similar to the document in Example 12-4.

Example 12-4 Design document example

1. {
2. "_id": "_design/module12-search",
3. "_rev": "20-02fea3b3f37c4954c2d6ecf3b046744a",
4. "views": {},
5. "language": "javascript",
6. "indexes": {
7. "claimCreationSearch": {
8. "analyzer": "keywordstandard",
9. "index": "function (doc) {\n if (doc.created) {\n
index(\"created\", doc.created, {\"store\": true});\n }\n}"
10. }
11. }
12.}
Chapter 12. Providing case search 201

10.Close the search index design document and notice that there is now a module12-search
listed in the left pane. Click module12-search and then click claimCreationSearch.

11.You will see a query field and a button labeled Query. Enter created:2018-05-18* in the
field and click Query.

The results for 2018-05-18 are displayed, as shown in Figure 12-5.

Figure 12-5 Results based on date

12.Click the returned claim token to open the claim JSON document.

Queries can be added to the application’s user interface to allow customers to search on
specific fields and retrieve detailed information about their claims more easily.

12.4 Next steps

Review what you have learned and move on to Chapter 13, “Running your web application in
the Cloud” on page 203.

12.5 Other references

� Apache Lucene

https://lucene.apache.org/

� IBM Watson and Cloud Platform Learning Center

https://developer.ibm.com/clouddataservices/docs/cloudant/search/

� Cloudant on YouTube

https://www.youtube.com/user/CloudantInc/featured

Note: The date that you use will differ.
202 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://lucene.apache.org/
https://developer.ibm.com/clouddataservices/docs/cloudant/search/
https://www.youtube.com/user/CloudantInc/featured

Chapter 13. Running your web application in
the Cloud

This series has been developing an application for Insurance Company X using IBM Cloud. It
has used best practices and created automation to continuously integrate and deploy your
code into the cloud. This section covers how to operationalize the application.

Operating applications on the cloud requires companies to pay special attention to security,
availability, reliability, and user experience. Companies also need to protect their digital
assets. Ensuring that your apps are available and secure 24 hours a day, 7 days a week
requires a wide array of tools and practices. This module outlines what some of these
practices are and which tools you can find in the IBM Cloud to help, and also suggest some
preferred practices to help you scale your apps reliably and securely.

Companies are increasingly creating teams that span the disciplines of development and
operations known as DevOps. DevOps teams combine both disciplines while also practicing
some form of Agile methodology and making extensive use of automation. This module does
not seek to define what DevOps is. Rather, it describes some of the tools and techniques that
you can use to run apps on IBM Cloud effectively.

This chapter includes the following sections:

� Learning objectives
� Getting started
� Implementation
� Next steps
� Other references

13
© Copyright IBM Corp. 2018. All rights reserved. 203

13.1 Learning objectives

At the end of this module, you should be able to:

� Describe the DevOps tools that are available in the IBM Cloud.
� Implement Internet Services to protect the application and improve scalability.
� Create an auto-scaling policy to improve the resilience of an app running in Kubernetes.
� Describe how to improve visibility of your application using logging and monitoring.

13.2 Getting started

Clone the repository to get the code:

$ git clone https://github.com/IBMRedbooks/IBM-Cloud-Object-Storage-Tutorials
$ cd IBM-Cloud-Object-Storage-Tutorials

Check out the code for Module 12 to get the finished code from the previous module that you
will build on:

$ cd module112

If you want to skip ahead, check out the completed code for this module and read along:

$ cd module13

13.3 Implementation

The following sections cover the various strategies that you can use to scale and secure the
web application that you built for Insurance Company X.

13.3.1 Internet Services for application security

Internet Services provides network security, reliability, and performance for internet facing
applications such as the one you have built for Insurance Company X. Applications that are
exposed to the public require a set of common services to enable you to deliver your
application to your users:

� Domain Name System (DNS): Resolve host names to a corresponding IP address. For
example, the apps domain might be insurancecompanyx.com and you need a DNS service
to translate user requests for insurancecompanyx.com to the IP of your apps load balancer,
such as converting insurancecompanyx.com to 159.23.110.210.

� SSL/TLS encryption: Encrypted data transfer between a user's device and your
application.

� Caching: Provide visitors to your app with static assets from a near-by location, reducing
latency and improving performance.

� Global Load Balancer: Routing traffic across servers based on their health and availability.

� DDoS protection: Protect against attempts to take down your service by flooding it with
requests.

� Web Application Firewall: Protect your app against exploits and attackers.
204 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

All of the different features in this service can be orchestrated by using an API as part of your
applications deployment automation.

Log in to the IBM Cloud and create an instance of Internet Services. You can find it in the
catalog in the Security section.

13.3.2 Domain Name System

IBM Cloud Internet Services provide capabilities to register a domain name to the Public IP
address of your load balancer in front of your application running in a Kubernetes cluster, as
shown in Figure 13-1.

Figure 13-1 Registering domain name

Enable DNS Security, which cryptographically signs a zone to ensure that the Domain Name
System (DNS) records provided to the user are the same as the DNS records published on
the DNS server, as shown in Figure 13-2. This process helps to prevent DNS spoofing
attacks.

Figure 13-2 Enabling DNS Security
Chapter 13. Running your web application in the Cloud 205

https://console.bluemix.net/docs/infrastructure/cis/api-resource.html#api-specs

13.3.3 Web Application Firewall

With a click of a button, you can enable a Web Application Firewall (WAF), as shown in
Figure 13-3. A WAF filters, monitors, and blocks HTTP traffic to and from a web application. A
WAF can filter the traffic to and from Insurance Company X's web application. It can prevent
attacks such as SQL injection, file inclusions, and other security flaws that originate from
misconfigurations or mistakes in application logic. These vulnerabilities usually arise from not
properly sanitizing input from a request, but they can be easily mitigated by using a WAF.

Figure 13-3 Enabling Web Application Firewall

13.3.4 Global Load Balancer

IBM Cloud is a global platform with geographically dispersed regions (EU-GB, EU-DE,
US-South, and so on). To build an application with the highest possible resilience against
failures, you can deploy your app into one or more regions. This will be an active → active
architecture. Use a Global Load Balancer (GLB) to route traffic from users to their nearest
available server. This configuration not only improves response time for the user, but also
ensures that if a server or region is not available, traffic is routed to a functional region.

Applications that use this deployment topology can achieve high levels of availability. The
drawback of hosting an application in this fashion is increased cost of infrastructure and
additional overhead in managing that infrastructure.

Figure 13-4 shows a series of health checks that have been configured to detect the health of
an application.

Figure 13-4 Sample health checks

For more information about Internet Services and different use cases you can achieve using
this service, see Getting Started with IBM Cloud Internet Services (CIS).
206 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/docs/infrastructure/cis/

13.3.5 Setting auto-scaling policies

You can use the horizontal pod autoscaling mechanism to increase the number of pods based
on the resource utilization of the pod running on the cluster. For more information about how
Kubernetes performs autoscaling, see Horizontal Pod Autoscaler.

The following command auto-scales the number of pods based on the CPU utilization of the
pods. If one of the pods reaches a CPU utilization of greater than 80%, the auto scaler adds
another pod to the cluster up to a maximum of five pods.

kubectl autoscale deployment insurancewebappbackend-deployment --min=2 --max=5
--cpu-percent=80

This type of policy can also be configured by using a YAML file. Open
chart/insurancewebappbackend/templates/hpa.yaml to review how this application is
configured to scale on CPU and Memory metrics.

13.3.6 Splitting the application into subdomains

Currently, the web application is built as a single monolithic application, where all the
business logic is contained in one application. This configuration is rarely used in the real
world. A real-world web application generally splits the business logic into separate,
independently scalable entities.

Insurance Company X's web application can be restructured into different domains. For
example, claims handling and user handling might be separated into different domains, and
each domain placed in different pods on your cluster, as shown in Figure 13-5. These pods
can be independently auto scaled by using the Kubernetes horizontal pod auto-scaler.

Figure 13-5 Workflow process diagram

13.3.7 Managing network traffic by using an Ingress resource

Ingress is a Kubernetes service that balances network traffic workloads in your cluster by
forwarding public or private requests to your apps. You can use Ingress to expose multiple
app services to the public or to a private network by using a unique public or private route.

Ingress consists of two components:

� Application load balancer
� Ingress resource
Chapter 13. Running your web application in the Cloud 207

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Application load balancer
The application load balancer (ALB) is an external load balancer that listens for incoming
HTTP, HTTPS, TCP, or UDP service requests and forwards requests to the appropriate app
pod. When you create a standard cluster, IBM Cloud Container Service automatically creates
a highly available ALB for your cluster and assigns a unique public route to it. The public route
is linked to a portable public IP address that is provisioned into your IBM Cloud infrastructure
(SoftLayer) account during cluster creation. A default private ALB is also automatically
created but is not automatically enabled.

Ingress resource
To expose an app by using Ingress, you must create a Kubernetes service for your app and
register this service with the ALB by defining an Ingress resource. The Ingress resource is a
Kubernetes resource that defines the rules for how to route incoming requests for an app. The
Ingress resource also specifies the path to your app service, which is appended to the public
route to form a unique app URL such as
mycluster.us-south.containers.mybluemix.net/myapp.

Figure 13-6 shows how Ingress directs communication from the internet to an app.

Figure 13-6 Ingress flow diagram

Prerequisites
Ingress is available for paid clusters only and requires at least two worker nodes in the cluster
to ensure high availability and that periodic updates are applied. This next section will not
work if you have a Lite cluster.

Setting up Ingress requires an Administrator access policy. Verify your current access policy.
208 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/docs/containers/cs_users.html#access_policies
https://console.bluemix.net/docs/containers/cs_users.html#infra_access
https://console.bluemix.net/docs/containers/cs_users.html#infra_access

An Ingress resource exposes Kubernetes services on a public or private endpoint.
Example 13-1 shows the service that you are going to expose by using the Ingress.

Example 13-1 Example Kubernetes service

apiVersion: v1
kind: Service
metadata:
 name: insurancewebappbackend-service
spec:
 selector:
 app: insurancewebappbackend-deployment
 ports:
 - protocol: TCP
 port: 443

An Ingress can expose multiple apps by creating one external load balancer as a static public
route, which can be an IBM provided domain or a custom domain such as
myapp.mydomain.com. Create an Ingress resource, as shown in Example 13-2.

Example 13-2 Creating an Ingress resource

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: insurancewebappbackend-ingress
spec:
 tls:
 - hosts:
 - <cluster-name>.us-south.containers.mybluemix.net
 secretName: <cluster-name>
 rules:
 - host: <cluster-name>.us-south.containers.mybluemix.net
 http:
 paths:
 - path: /app
 backend:
 serviceName: insurancewebappbackend-service
 servicePort: 443

Copy and paste the code in Example 13-2 into a new file called ingress.yaml. Apply this
Ingress resource to your cluster's namespace:

$ kubectl apply -f ingress.yaml --namespace=default

Verify that the Ingress service has been applied correctly:

$ kubectl get svc --namespace=default

You should now be able to visit the app in a browser:

https://<cluster-name>.us-south.containers.mybluemix.net/app

For more advanced configuration of the Ingress resource, such as adding your own custom
domain or adding sticky sessions, see the Ingress documentation.
Chapter 13. Running your web application in the Cloud 209

https://console.bluemix.net/docs/containers/cs_ingress.html#ingress

13.3.8 Content Delivery Network

The Content Delivery Network (CDN) service of IBM Cloud distributes content where it is
needed. When the content is requested for the first time, it is pulled from the host server and
cached, and stays there for faster access the next time.

CDN helps you to distribute your content across geographically diverse nodes and shorten
the distance that it has to travel to get to your users. This feature helps avoid network traffic
jams, decrease latency, and optimize the performance of your overall cloud solution.

If Insurance Company X notices that there is a lot of traffic from a particular geographic area
that is far from where the service is running, they can decide to set up a CDN service on the
IBM Cloud to improve the user experience.

To configure CDN for Insurance Company X's website, complete these steps:

1. Navigate to Content Delivery Network in the IBM Cloud catalog.

2. Create an instance by entering the details shown in Figure 13-7.

Figure 13-7 Creating an instance

3. Configure a CNAME with the DNS provider.
210 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Although it might seem to be a good idea to take the images from the object storage directly
with an S3 protocol, avoid doing so because the images are access controlled, which means
the user images are secured in the object storage. CDN requires anonymous access to the
bucket. For Insurance Company X company, we will go with the Server option and not the
Object Storage option.

13.3.9 Multi Region application with Internet Services

As the Insurance Company X customer base grows and the application experiences more
traffic, the developers need to start thinking about a more robust architecture. After an
application becomes business critical, there will be expectations about the availability of the
application. For example, the company might want a user to be able to file a claim 99.95% of
the time. These increasing expectations create the challenges of high availability, disaster
recovery, and ensuring a consistent user experience.

The goals are to serve the users from the region that is closest to the user, provide a service
that is always available, and maintain business continuity when there is catastrophic loss to a
region. You can achieve these goals by adopting a multi-region, multitier architecture:

� IBM Internet Services plays two roles in this architecture:

– Provides data locality. Users are served from the region closest to them using
intelligent routing that detects the origin of the request and selects the closest region.

– Enhances application availability. When a region becomes unavailable, it can redirect
traffic to another, functional region.

� At the application tier, no state (such as user sessions) is maintained in memory. This
feature means that you can scale these components horizontally and do not need to
replicate any data between regions at this tier.

� At the data tier, Cloudant provides a replication feature that enables you to maintain
continuous replication between databases in different regions. However, Cloudant
replication is beyond the scope of this section.

� We chose the cross-region option in Cloud Object Storage. This option means that data is
dispersed across several regions, but you can use a regional endpoint to access your
data. This configuration provides the high availability and disaster recovery needed to
meet the requirements of a business-critical application.
Chapter 13. Running your web application in the Cloud 211

Figure 13-8 shows an example disaster recovery configuration.

Figure 13-8 Disaster recovery configuration
212 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

13.3.10 Configuring end-to-end health checks

Health checks are a crucial part of a distributed application architecture. In our application, we
have defined a /health API endpoint. Up until now, we consider the application healthy if,
when we call the API, it is able to respond with an HTTP 200 response code, as shown in
Example 13-3.

Example 13-3 HTTP 200 response code

var express = require("express");

module.exports = function(app) {
var router = express.Router();

router.get("/", function (req, res) {
res.json({status: "UP"});

});

app.use("/health", router);
};

The code snippet in Example 13-4 is from server/routers/health.js. It registers a route
/health that, when called, returns an HTTP 200 response code. Generally, include this code
in every application that you build.

Example 13-4 Registering the route /health

livenessProbe:
 httpGet:
 path: /health
 port: {{ .Values.service.servicePort }}
 initialDelaySeconds: {{ .Values.livenessProbe.initialDelaySeconds}}
 periodSeconds: {{ .Values.livenessProbe.periodSeconds}}

A liveness probe defined in chart/<project_name>/templates/deployment.yaml defines how
Kubernetes can determine whether the pod is still healthy. If it does not respond after a
certain period, Kubernetes will reschedule it.

In the multi-region architecture, two levels of health checks occur. The first layer is the
liveness probe that was just described. This feature provides high availability within the region
for your application. If you need to be able to recover from a failure within an entire region, you
must be able to perform health checks at a global level. You must also configure the Global
Load Balancer from Internet Services to perform health checks at the regional level.

If you refer to the diagram in Figure 13-8 on page 212, the global load balancer is also
performing periodic health checks to the load balancer in each region. This feature means
that you can detect the health of an entire region and fail over to the second region if needed.
Chapter 13. Running your web application in the Cloud 213

Although this health check is certainly useful, it does not tell you much about the backing
services that you rely on. It shows that your application is up and healthy, but what about the
database or the authentication service that you rely on to store data and allow the user to log
in? If those services are down, it does not matter if the application is healthy. Therefore, check
the availability of backing services in the health check endpoint. The code for this process
looks as shown in Example 13-5.

Example 13-5 Checking the availability of backing services

var express = require("express");
const serviceManager = require("../services/service-manager");

module.exports = function(app) {
var router = express.Router();

router.get("/", function (req, res) {

// check the availability of cloudant
if(serviceManager.get("cloudant")) {

res.json({status: "UP" });
} else {

res.json({ status: "DOWN" });
}

});

app.use("/health", router);
};

Replace the code in server/routers/health.js with the code in Example 13-5. Then, check
whether you can get the initialized Cloudant from the service manager. If so, you have a
healthy application and database.

13.3.11 Improving visibility by analyzing logs and monitoring application
health

You can use the IBM Cloud Log Analysis service to expand your log collection, log retention,
and log search abilities in the IBM Cloud. Empower your DevOps team with features such as
aggregation of application and environment logs for consolidated application or environment
insights, encryption of logs, retention of log data, and quick detection and troubleshooting of
issues. Use Kibana for advanced analysis tasks.

The IBM Cloud logging capabilities are integrated into the platform:

� Collection of data is automatically enabled for cloud resources. IBM Cloud, by default,
collects and displays logs for your apps, app runtimes, and compute runtimes where those
apps run.

� You can search up to 500 MB of logs per day.

� Logs for the last three days are stored in Log Search, a component of the Log Analysis
service.
214 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

You can use the logging capabilities in the IBM Cloud to understand the behavior of the cloud
platform and the resources that are running in it, as shown in Figure 13-9. No special
instrumentation is required to collect the standard out and standard err logs. For example, you
can use logs for these goals:

� Provide an audit trail for an application
� Detect problems in your service
� Identify vulnerabilities
� Troubleshoot your app deployments and runtime behavior
� Detect problems in the infrastructure where your app is running
� Trace your app across components in the cloud platform
� Detect patterns that you can use to pre-empt actions that could affect your service SLA

Figure 13-9 IBM Cloud logging capabilities

Follow this tutorial to set up forwarding of logs from your Kubernetes cluster and analyze them
with Kibana.

13.4 Next steps

This is the last tutorial in this series. You should now be ready to create your own applications
using IBM Cloud using the examples in this book.

13.5 Other references

� Horizontal Pod Autoscaler

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
Chapter 13. Running your web application in the Cloud 215

https://console.bluemix.net/docs/services/CloudLogAnalysis/tutorials/container_logs.html#objectives
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

216 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this paper.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� Cloud Object Storage as a Service: IBM Cloud Object Storage from Theory to Practice -
For developers, IT architects and IT specialists, SG24-8385

� IBM Cloud Object Storage Concepts and Architecture: An Under-the-Hood Guide for IBM
Cloud Object Storage, REDP-5435

� Building Cognitive Applications with IBM Watson Services: Volume 1 Getting Started,
SG24-8387

� Building Cognitive Applications with IBM Watson Services: Volume 3 Visual Recognition,
SG24-8393

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� 10 Common Misconceptions about CouchDB

https://www.youtube.com/watch?v=BKQ9kXKoHS8

� abortMultipartUpload operation

https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#abortMultipartUpload-property

� Apache Lucene

https://lucene.apache.org/

� Cloudant Fundamentals: The Document

https://medium.com/ibm-watson-data-lab/cloudant-fundamentals-the-document-855c5
ab92051

� Cloudant on YouTube

https://www.youtube.com/user/CloudantInc/featured

� completeMultipartUpload operation

https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#completeMultipartUpload-proper
ty
© Copyright IBM Corp. 2018. All rights reserved. 217

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://www.youtube.com/watch?v=BKQ9kXKoHS8
https://medium.com/ibm-watson-data-lab/cloudant-fundamentals-the-document-855c5ab92051
https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#abortMultipartUpload-property
https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#completeMultipartUpload-property
https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#completeMultipartUpload-property
https://lucene.apache.org/
https://www.youtube.com/user/CloudantInc/featured

� createMultipartUpload operation

https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#createMultipartUpload-property

� IBM Cloud Object Storage documentation

https://console.bluemix.net/docs/services/cloud-object-storage/

� IBM Cloud Object Storage Node.js SDK documentation

https://ibm.github.io/ibm-cos-sdk-js/

� IBM Cloud Object Storage Java SDK documentation

https://ibm.github.io/ibm-cos-sdk-java

� Dms2dec

https://www.npmjs.com/package/dms2dec

� Exiftool

https://www.sno.phy.queensu.ca/~phil/exiftool/

� IBM Aspera high speed data transfer product information

https://www.ibm.com/cloud/high-speed-data-transfer

� IBM Cloud Architecture Center

https://www.ibm.com/cloud/garage/architectures/

� IBM Cloud docs

https://console.bluemix.net/docs/

� IBM Cloud Garage Method

https://www.ibm.com/cloud/garage/#changeHowYouWorkSection

� IBM Cloud Object Storage API Reference

https://console.bluemix.net/docs/services/cloud-object-storage/api-reference/ab
out-compatibility-api.html#about-the-ibm-cloud-object-storage-api

� IBM Cloud Object Storage docs

https://console.bluemix.net/docs/services/cloud-object-storage/about-cos.html#a
bout-ibm-cloud-object-storage

� IBM Cloud Object Storage Java SDK

https://console.bluemix.net/docs/services/cloud-object-storage/libraries/java.h
tml#using-java

� IBM Cloud Object Storage Node.js SDK

https://console.bluemix.net/docs/services/cloud-object-storage/libraries/node.h
tml#using-node-js

� IBM Cloud Object Storage Python SDK

https://console.bluemix.net/docs/services/cloud-object-storage/libraries/python
.html#using-python

� IBM Cloud Solution Tutorials

https://console.bluemix.net/docs/tutorials/index.html#tutorials

� IBM Key Protect docs

https://console.bluemix.net/catalog/services/key-protect

� IBM Watson and Cloud Platform Learning Center

https://developer.ibm.com/clouddataservices/docs/cloudant/search/
218 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

https://console.bluemix.net/docs/services/cloud-object-storage/libraries/java.html#using-java
https://console.bluemix.net/docs/services/cloud-object-storage/libraries/python.html#using-python
https://console.bluemix.net/docs/services/cloud-object-storage/api-reference/about-compatibility-api.html#about-the-ibm-cloud-object-storage-api
https://console.bluemix.net/docs/services/cloud-object-storage/about-cos.html#about-ibm-cloud-object-storage
https://console.bluemix.net/docs/services/cloud-object-storage/libraries/node.html#using-node-js
https://console.bluemix.net/catalog/services/key-protect
https://www.ibm.com/cloud/high-speed-data-transfer
https://console.bluemix.net/docs/
https://www.ibm.com/cloud/garage/architectures/
https://www.ibm.com/cloud/garage/#changeHowYouWorkSection
https://console.bluemix.net/docs/tutorials/index.html#tutorials
https://ibm.github.io/ibm-cos-sdk-js/
https://ibm.github.io/ibm-cos-sdk-java
https://console.bluemix.net/docs/services/cloud-object-storage/
https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#createMultipartUpload-property
https://www.npmjs.com/package/dms2dec
https://www.sno.phy.queensu.ca/~phil/exiftool/
https://developer.ibm.com/clouddataservices/docs/cloudant/search/

� Imagemagik

https://www.npmjs.com/package/imagemagick

� JSON Web Tokens versus Session Cookies

https://ponyfoo.com/articles/json-web-tokens-vs-session-cookies

� Learn more about App ID

https://www.ibm.com/cloud/app-id

� MIME types (a complete list)

https://www.sitepoint.com\mime-types-complete-list

� More details about when to use the service

https://console.bluemix.net/docs/services/appid/about.html#about

� uploadPart operation

https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#uploadPart-property

� User identity versus user account, and best practices for integrating third-party providers

https://cloudplatform.googleblog.com/2018/01/12-best-practices-for-user-account
.html

� The Weather Company Data Documentation

https://console.bluemix.net/docs/services/Weather/index.html

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 219

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://www.sitepoint.com\mime-types-complete-list
https://ibm.github.io/ibm-cos-sdk-js/AWS/S3.html#uploadPart-property
https://console.bluemix.net/docs/services/Weather/index.html
https://www.npmjs.com/package/imagemagick
https://www.ibm.com/cloud/app-id
https://console.bluemix.net/docs/services/appid/about.html#about
https://cloudplatform.googleblog.com/2018/01/12-best-practices-for-user-account.html
https://ponyfoo.com/articles/json-web-tokens-vs-session-cookies

220 How to Use IBM Cloud Object Storage When Building and Running Cloud Native Applications

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738457043

REDP-5491-00

®

https://www.facebook.com/IBMRedbooks
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. IBM Cloud Object Storage primer
	1.1 Learning objectives
	1.2 Getting started
	1.3 What is object storage?
	1.4 Provisioning choices for IBM Cloud Object Storage
	1.5 API compatibility
	1.6 Security and encryption
	1.7 Data ingest and access options
	1.8 Next steps
	1.9 Other references

	Chapter 2. IBM Cloud primer
	2.1 Learning objectives
	2.2 Getting started
	2.3 What is IBM Cloud?
	2.3.1 Running apps
	2.3.2 Services
	2.3.3 Build smarter apps that employ Artificial Intelligence, Machine Learning, and Deep Learning
	2.3.4 Regions and Availability Zones
	2.3.5 Account types
	2.3.6 Identity and access management
	2.3.7 Manage IBM Cloud using the console
	2.3.8 Managing IBM Cloud using the command line

	2.4 Best practices and documentation
	2.5 Next steps
	2.6 Other references

	Chapter 3. Application design and architecture
	3.1 Learning objectives
	3.2 Getting started
	3.3 Implementation
	3.4 Next steps
	3.5 Other references

	Chapter 4. Scaffolding using a Starter Kit
	4.1 Learning objectives
	4.2 Getting started
	4.3 Implementation
	4.3.1 Choosing your Deployment
	4.3.2 Starter Kits
	4.3.3 Delivery pipeline
	4.3.4 Credential injection from Starter Kits
	4.3.5 Adding a service after deployment
	4.3.6 Adding an IBM Cloud Object Storage service after deployment
	4.3.7 Bucket name injection to application
	4.3.8 User interface components

	4.4 Next steps
	4.5 Other references

	Chapter 5. Storing metadata in Cloudant
	5.1 Learning objectives
	5.2 Getting started
	5.3 Implementation
	5.3.1 IBM Cloud persistency options

	5.4 Next steps
	5.5 Other references

	Chapter 6. Using IBM Cloud Object Storage
	6.1 Learning objectives
	6.2 Getting started
	6.3 Configuration
	6.4 Implementation
	6.4.1 Step-by-step
	6.4.2 Testing the app
	6.4.3 The IBM Cloud Object Storage SDK and singlepart versus multipart uploads
	6.4.4 Using ManagedUpload or TransferManager

	6.5 Next steps
	6.6 Other references

	Chapter 7. Advanced Object Storage integration patterns
	7.1 Learning objectives
	7.2 Getting started
	7.3 Implementation
	7.3.1 Uploading data to Cloud Object Storage
	7.3.2 Downloading data from Cloud Object Storage
	7.3.3 Verifying data integrity
	7.3.4 Presigned URLs
	7.3.5 Tiers in Cloud Object Storage

	7.4 Next steps
	7.5 Other references

	Chapter 8. Discover insights using Watson Services
	8.1 Current architecture
	8.2 Learning objectives
	8.3 Getting started
	8.3.1 Available models
	8.3.2 How to use the service
	8.3.3 Use cases

	8.4 Implementation
	8.4.1 Local configuration, tool chains
	8.4.2 Provisioning steps for IBM Cloud services
	8.4.3 Validation and first use through the API Explorer
	8.4.4 Implementation
	8.4.5 Using Watson Visual Recognition Service with the default classifier
	8.4.6 Using Watson VR Service with custom classifiers with a single class
	8.4.7 Using Watson VR Service with a multi-class custom classifier
	8.4.8 Deploy front-end code

	8.5 Next steps
	8.6 Other references

	Chapter 9. Performing more advanced functions with machine learning
	9.1 Introduction to machine learning
	9.2 Current architecture
	9.3 Learning objectives
	9.4 Getting started
	9.5 Implementation
	9.5.1 Enhance the VR service
	9.5.2 Explore more with Watson Studio, including Jupyter Notebooks, Spark, and Object store

	9.6 Next steps
	9.7 Other references

	Chapter 10. Adding geographic and weather data
	10.1 Learning objectives
	10.2 Getting started
	10.3 Implementation
	10.4 Next steps
	10.5 Other references

	Chapter 11. Managing the application’s users
	11.1 Learning objectives
	11.2 Getting started
	11.2.1 Basic concepts
	11.2.2 Prerequisites

	11.3 Configuration
	11.4 Implementation
	11.4.1 Step-by-step

	11.5 Next steps
	11.6 Other references

	Chapter 12. Providing case search
	12.1 Learning objectives
	12.2 Getting started
	12.3 Implementation
	12.4 Next steps
	12.5 Other references

	Chapter 13. Running your web application in the Cloud
	13.1 Learning objectives
	13.2 Getting started
	13.3 Implementation
	13.3.1 Internet Services for application security
	13.3.2 Domain Name System
	13.3.3 Web Application Firewall
	13.3.4 Global Load Balancer
	13.3.5 Setting auto-scaling policies
	13.3.6 Splitting the application into subdomains
	13.3.7 Managing network traffic by using an Ingress resource
	13.3.8 Content Delivery Network
	13.3.9 Multi Region application with Internet Services
	13.3.10 Configuring end-to-end health checks
	13.3.11 Improving visibility by analyzing logs and monitoring application health

	13.4 Next steps
	13.5 Other references

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

