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Introduction

There has been a considerable focus on performance improvements as one of the main 
themes in recent IBM DB2® releases, and DB2 12 for IBM z/OS® is certainly no exception. 
With the high-value data retained on DB2 for z/OS and the z Systems platform, customers are 
increasingly attempting to extract value from that data for competitive advantage. 

Although customers have historically moved data off platform to gain insight, the landscape 
has changed significantly and allowed z Systems to again converge operational systems with 
analytics for real-time insight. Business-critical analytics is now requiring the same levels of 
service as expected for operational systems, and real-time or near real-time currency of data 
is expected. Hence the resurgence of z Systems.

As a precursor to this shift, IDAA brought the data warehouse back to DB2 for z/OS and, with 
its tight integration with DB2, significantly reduces data latency as compared to the ETL 
processing that is involved with moving data to a stand-alone data warehouse environment. 
That change has opened up new opportunities for operational systems to extend the breadth 
of analytics processing without affecting the mission-critical system and integrating near 
real-time analytics within that system, all while maintaining the same z Systems qualities of 
service.

Apache Spark on z/OS and Linux for System z also allow analytics in-place, in real-time or 
near real-time. Enabling Spark natively on z Systems reduces the security risk of multiple 
copies of the Enterprise data, while providing an application developer-friendly platform for 
faster insight in a simplified and more secure analytics framework.

How is all of this relevant to DB2 for z/OS? Given that z Systems is proving again to be the 
core Enterprise Hybrid Transactional/Analytical Processing (HTAP) system, it is critical that 
DB2 for z/OS can handle its traditional transactional applications and address the 
requirements for analytics processing that might not be candidates for these rapidly evolving 
targeted analytics systems. And not only are there opportunities for DB2 for z/OS to play an 
increasing role in analytics, the complexity of the transactional systems is increasing. 
Analytics is being integrated within the scope of those transactions.

DB2 12 for z/OS has targeted performance to increase the success of new application 
deployments and integration of analytics to ensure that we keep pace with the rapid evolution 
of IDAA and Spark as equal partners in HTAP systems.

This paper describes the enhancements delivered specifically by the query processing 
engine of DB2. This engine is generally called the optimizer or the Relational Data Services 
(RDS) components, which encompasses the query transformation, access path selection, run 
time, and parallelism. 
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DB2 12 for z/OS also delivers improvements targeted at OLTP applications, which are the 
realm of the Data Manager, Index Manager, and Buffer Manager components (to name a 
few), and are not identified here. 

Although the performance measurement focus is based on reducing CPU, improvement in 
elapsed time is likely to be similarly achieved as CPU is reduced and performance constraints 
alleviated. However, elapsed time improvements can be achieved with parallelism, and DB2 
12 does increase the percentage offload for parallel child tasks, which can further reduce 
chargeable CPU for analytics workloads.

This IBM® Redpaper™ contains the following sections:

� Why read further
� The performance focus in DB2 12 for z/OS
� UNION ALL and outer join performance
� Runtime optimizations
� Predicate optimizations
� User-Defined table function predicate optimizations
� Optimizer cost model enhancements
� RUNSTATS and optimizer-generated statistics profiles
� Static and dynamic plan stability
� Summary

Why read further

If you are interested in understanding the overall performance focus and the performance 
expectation of DB2 12 for z/OS, read the next section. If you are interested in a high-level 
overview of each enhancement, skip to each section and view the examples that are provided 
for most enhancement topics. For a thorough understanding, read all of the sections.

This overview is written in a manner that allows DB2 database administrators, developers, 
and consultants with a basic understanding of SQL performance to logically determine both 
how and why each enhancement will benefit the identified SQL. As each enhancement is 
explained, there is generally an overview of how DB2 operated in prior releases and how DB2 
12 provides a benefit. And, despite IDAA and Spark with z Systems being referenced in the 
introduction, the focus is returning to z Systems for true real-time analytics, so there is no 
further discussion about these topics. Instead, the overview discusses the DB2 12 
enhancements to the RDS components for improved performance.

Employees and users of competitors to DB2 for z/OS can also benefit from reading this 
overview, including Hadoop-based SQL engines and cloud database providers. These 
competitive systems typically lack the maturity of performance-focused features of DB2 for 
z/OS. Therefore, understanding how and why DB2 has addressed performance challenges in 
CPU-constrained environments can help those competitors to identify opportunities for their 
customers. Increasing the knowledge of our competitors encourages new innovation among 
all database vendors, which benefits all of our customers and the industry as a whole.

The performance focus in DB2 12 for z/OS

The introduction referred to the importance of bringing analytics closer to the operational 
system, but also to the increased complexity of modern OLTP systems. The complexity and 
thus opportunity for improvements associated with analytics workloads might be understood, 
but the complexity associated with OLTP systems requires more explanation.
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Complex SQL can mean anything related to an increased number of tables being joined, 
number of rows being processed by the query, and duplicate removal expressions. The goal 
for DB2 development in DB2 12 for z/OS was to identify common SQL constructs from ERP 
applications and query generators, and to identify the bottlenecks that might affect the 
performance of existing operational systems as more work is deployed to DB2 for z/OS.

The following is a list of the key focus areas or SQL constructs targeted in DB2 12 for z/OS, 
with more detail provided in the following sections, including an explanation of other 
interesting query patterns targeted for improvement:

� Complex views, table user-defined functions (or stand-alone queries), or both containing:

– UNION ALL
– Outer joins
– Stage 2 join expressions
– CASE expressions, user-defined functions, CAST expressions, or scalar functions

Additionally, the following areas were targeted as bottlenecks that might inhibit workload 
scalability for complex operational or analytics processing in DB2 for z/OS:

� Sort and workfile processing
� Prepare cost and frequency
� I/O performance

This is not an exhaustive list. Later sections cover the major enhancements targeted at 
analytics and complex OLTP workloads. Enhancements related to traditional (simpler) OLTP 
workloads are also included in DB2 12 for z/OS, but not included in this overview.

Performance expectations

As outlined in the introduction, a major goal in DB2 12 for z/OS is to ensure that DB2 is well 
positioned to handle the demands of traditional workload growth and support new 
opportunities in HTAP. Although the performance improvements can benefit existing 
workloads, as you see in this section, the benefits vary based on the amount of exposure that 
customers have to the SQL constructs or bottlenecks that were targeted in this release.
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In DB2 11 for z/OS, we reported performance improvements for our internal workloads that 
exceeded the results of any prior DB2 release, with some workloads showing 30 - 40% CPU 
reductions as highlighted in Figure 1.

Figure 1   Internal DB2 workload results from DB2 11 for z/O

During DB2 12 for z/OS development, we added additional workloads to our internal 
measurements that represented some of the new workload growth opportunities in complex 
transactional processing and real-time analytics in DB2. And as outlined in Figure 2, the 
performance results vary significantly for each of the measured workloads. Figure 1 
compares DB2 10 to DB2 11 results, and the DB2 12 performance is comparing DB2 11 to 
DB2 12. Therefore, customers not yet on DB2 11 will benefit from considering moving up their 
migration plans to DB2 11 as a catalyst to taking advantage of DB2 12 for z/OS sooner, given 
the potential CPU savings and performance improvements available in both releases. 

Figure 2   Internal DB2 workload results from DB2 12 for z/OS
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Note that these measurements were conducted in an isolated environment to allow accurate 
performance comparison. Although this isolation does not match customer systems where 
highly concurrent activity competes for resources, the performance results observed in 
isolated environments translate to considerable performance improvements in highly 
concurrent environments. 

However, measuring only the DB2 portion of the workload, as represented here, is not 
capturing application CPU or any other system processing seen in customer environments. 
However, given the variability of the demonstrated DB2 CPU across these workloads, it does 
raise questions as to the reasons why some workloads achieved greater improvement than 
others. See Figure 3 for a summary of performance results for workloads in the 30–90% CPU 
reduction range. 

Figure 3   Workload characteristics of workloads in the 30–90% CPU reduction range

The workloads that demonstrate the most significant performance improvements are those 
that were the primary target for workload growth in DB2 12 for z/OS: UNION ALL and outer 
joins within either views, table expressions or Table UDFs.

The SAP-specific workloads measured were mostly using the VARGRAPHIC data type, 
although the non-SAP workloads did not. The CUST1-UNCL workload represents a customer 
workload that was converted to clustering the data by indexes that were not the indexes used 
for the joins between tables. This configuration was to represent situations where a workload 
does not have perfect clustering, or when the clustering have degraded due to regular 
INSERT/UPDATE/ DELETE activity. 

In all these workloads showing large performance improvements, most of the DB2 12 access 
paths were different from those chosen by the optimizer in DB2 11.
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As summarized in Figure 4, the DB2 workloads that were in the range of 15–25% 
improvement contained queries that involved significant sort and aggregation from GROUP 
BY or DISTINCT duplicate removal.

Figure 4   Workload characteristics of workloads in the 15–25% CPU reduction range

The remaining workloads measured achieved less than 15% CPU savings as compared with 
DB2 11. As noted in Figure 5, these workloads are predominantly scan-based workloads, 
which are ideal candidates for IDAA due to its highly parallelized architecture. However, it 
should also be noted that DB2 can improve the elapsed time performance of these workloads 
with parallelism. Also, z Systems specialty engines (zIIPs) reduce the chargeable CPU costs 
for these workloads. 

Figure 5   Workload characteristics of workloads in the 0–15% CPU reduction range

In DB2 12 for z/OS, the zIIP offload for parallel child tasks increases to 100% offload from 
80% in DB2 11 and prior releases. This change applies to the child tasks of local or 
distributed applications running on DB2 for z/OS. This enhancement alone has also resulted 
in performance improvements for parallelism workloads due to the reduction in processing for 
DB2 to manage the offload percentage that was required before DB2 12.

UNION ALL and outer join performance

Although the UNION ALL construct and outer joins might not always be combined in the 
same queries, there is significant overlap with the performance challenges of both, so it 
makes sense to discuss them together. However, not all queries involving UNION ALL or 
outer joins have performance challenges. The performance opportunities exist where these 
constructs currently involve materializations where filtering is not applied early in the query 
execution. Prior releases of DB2 have delivered enhancements for both constructs such that 
performance can be acceptable for simple use cases.

An outer join is generally coded when the join relationship between tables is optional, 
whereas an inner join is coded to maintain a mandatory join relationship. The expectation is 
typically that performance is similar between inner joins and outer joins. Although it might be 
possible to have similar performance, comparable performance can be challenging because 
outer joins will return rows even if there isn't a match between both tables, whereas inner joins 
will only return rows that match between both tables. 
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Therefore, you may not get the same performance if you simply changed an inner join to 
become an outer join. In addition, an outer join can dictate that A must be joined before B, 
while inner joins are free to choose any join sequence.

UNION ALL is used to combine different tables and allow them to be represented as a 
consistent result. This construct is appearing in many new workloads, including (but not 
limited to) SAP Core Data Services and IBM WebSphere®. It is also used internally by DB2 
for System-period Temporal (available since DB2 10) and Transparent Archive (since DB2 
11). The DB2 exploitation exposes more customers to UNION ALL within their queries. 
Customers are also integrating active and archive tables in their own applications, and using 
UNION ALL to supplement or alleviate the management challenges of very large table 
spaces.

Similar to the expectations for outer joins, introducing a UNION ALL infrastructure results in 
performance expectations similar to that of accessing a single object. This configuration can 
be far more challenging given the increase in the number of objects involved when UNION 
ALL is introduced.

In DB2 12 for z/OS, the targeted enhancements for improving UNION ALL and outer join 
performance to address materialization challenges include:

� Reordering outer join tables to avoid materializations
� Push predicates inside UA legs or outer join query blocks
� Sort of outer to ensure sequential access to inner
� Bypass workfile usage when materialization required
� Trim unnecessary columns and tables
� Push ORDER BY and FETCH FIRST into UA legs

These targeted enhancements are explained in the following sections. You can skip these 
sections to the UNION ALL and outer join summary, or read through them to gain an 
understanding of each enhancement and an explanation why each enhancement was 
targeted in DB2 12.

Reorder outer join tables to avoid materializations

Allowing DB2 to internally reorder the outer join tables within the query overcomes a limitation 
that occurs when combining outer and inner joins in the same query. In certain instances, 
DB2 11 and prior will materialize some tables, which can result in local or join filtering not 
being applied before the materialization. Some customers who have encountered this 
performance challenge have rewritten their queries to ensure that all inner joins appear 
before outer joins in the query, if possible. 

Rewriting a query is often difficult given the proliferation of generated queries and 
applications being deployed without thorough performance evaluation. Therefore, minimizing 
exposure to this limitation in DB2 12 provides a valuable performance boost for affected 
queries.
7



Push predicates inside UNION ALL legs or outer join query blocks

The example shown in Figure 6 can be used to demonstrate performance challenges when 
UNION ALL is combined with an outer join. The original query appears at the top of Figure 6 
and appears as a simple two table (left outer) join of T1 to T2.

Figure 6   DB2 11 left outer join query with transparent archive tables (or any UNION ALL views)

In this example, both T1 and T2 have archive enabled, which refers to the DB2 11 transparent 
archive feature. Therefore, DB2 rewrites the query to include the active and archive tables, 
with T1 circled and the arrow pointing to the first UNION ALL on the left side of the join, and 
T2 circled with arrow pointing to the second UNION ALL on the right side of the join. This 
representation would be true of any UNION ALL within a view, where the view definition is 
replaced within the query where it is referenced.

The performance challenge for this query example is that DB2 executes each leg of the 
UNION ALL separately and combines the results from each side of the first UNION ALL. DB2 
then combines each side of the second UNION ALL before joining the two results together as 
requested in the outer query block. 

In the V11 rewrite of the query, there are no join predicates or any filtering within the UNION 
ALL legs. The term “combining” means that DB2 returns all columns and all rows from T1 in 
the first UNION ALL and all columns and all rows from H1. It then materializes those rows to 
a workfile. The workfile is then sorted in preparation for the join. This process is repeated for 
the second UNION ALL. All columns and all rows from T2 and H2 are materialized into a 
workfile and sorted in preparation for the join on column C1 from both workfiles.

The performance of this query depends heavily on the size of the tables that are involved, 
with very large tables consuming significant CPU and workfile resources to complete.
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Figure 7 shows how several of the UNION ALL-focused enhancements in DB2 12 can 
improve the performance of the query from Figure 6 on page 8. Although the internal rewrite 
of the tables to the UNION ALL representation remains the same, DB2 12 adds the ability for 
the optimizer to make a cost-based decision about whether to push the join predicates into 
the UNION ALL legs. 

Figure 7   DB2 12 left outer join query with transparent archive tables (or any UNION ALL views)

Figure 7 demonstrates an example where the optimizer chose to push the join predicates 
inside each UNION ALL leg. The join predicates only occur on the right side of the join 
because a join is “FROM” the left “TO” the right. The TABLE keyword (highlighted in red) is 
required externally for this example to be syntactically valid given that pushing the predicates 
down results in the query appearing as a correlated table expression. 

Having the join predicates in each UNION ALL leg allows the join to “look up” each leg of the 
UNION ALL for every row coming from the outer, rather than sort the full results for the join. 
By using an additional optimization to reduce workfile usage and materialization, 

DB2 12 can “pipeline” the rows from the first UNION ALL (on the left side of the join). 
Transferring rows from one query block to another can require the results to be written 
(materialized) to an intermediate workfile as in the DB2 11 example. However, DB2 12 can 
“pipeline” the result from the first UNION ALL to the join without requiring this materialization.
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The result for this query in DB2 12 given the (cost based) join predicate pushdown is that the 
workfile/materializations are avoided, and available indexes can be used for each leg, as 
shown in Figure 8. 

Figure 8   DB2 12 left outer join UNION ALL query with sort of outer

The example in Figure 8 can be expanded to demonstrate more DB2 12 enhancements that 
can improve performance closer to queries that do not use the UNION ALL infrastructure. If 
two tables are accessed in a different sequence, then the lookups to the inner (second) table 
will be random. DB2 can choose to make the access to the inner (second) table sequential by 
sorting the first table into the sequence of the 2nd. After the sort, both tables will be in the 
same sequence for the join. 

If data from the outer table is accessed in a different sequence than the index used for the join 
to the inner, DB2 can choose to sort the outer into the sequence of the inner. This technique 
allows the access to the inner to occur in order. This approach is extended in DB2 12 to joins 
to UNION ALL views/table expressions, and is a cost-based choice for the optimizer.
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Figure 9 demonstrates another variation of the same query where there are no supporting 
indexes for the join to T2.C1 or H2.C1. DB2 12 allows a sparse index to be built on an 
individual leg of a UNION ALL. This change applies to one or both legs. It is cost-based and 
thus can be combined with the other UNION ALL-focused enhancements. 

Note that if a sparse index is chosen, you do not need to sort the outer into join order as was 
depicted in Figure 8 because a sparse index can use hashing if the result can be contained 
within memory. Thus, there are no concerns regarding random I/O. 

Figure 9   DB2 12 left outer join UNION ALL query without supporting join indexes

Trim unnecessary columns and tables

In the first UNION ALL example in Figure 6 on page 8, it was highlighted that “all columns and 
all rows” were materialized. The subsequent examples focused on the optimizations to 
improve the available access path choices to avoid materializing “all rows” of the view/table 
expression. However, an explanation of the “all columns” was purposefully avoided until a 
discussion of the enhancement was presented. 

The problem is that for materialized views or table expressions where the select list might 
contain more columns than are needed by the query that is referencing that view or table 
expression, in DB2 11 and prior when materialization occurs, all columns coded within that 
view/table expression are included as part of the materialization. DB2 already removes 
unreferenced columns from the select list if a view/table expression is merged with the 
referencing query, but not if that is materialized.
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DB2 12 provides an enhancement to remove (prune) columns that are not required by the 
referencing query from the select list of the view/table expression before materialization. This 
technique has the benefit of reducing the size of the materialized result, and thus reducing the 
amount of workfile space and sort key size. It can also allow index-only access for access 
before materialization. Such an enhancement can also apply to join predicate pushdown 
where materialization can be avoided, as demonstrated in Figure 10 and Figure 11. 

Figure 10   DB2 11 processing all columns in materialized view/table expression

The query depicted in Figure 10 involves a LEFT OUTER JOIN to a UNION ALL table 
expression. In the select list for each leg of the UNION ALL is SELECT *, meaning return all 
columns from that table. However, the referencing SELECT only requires P2.P_PARTKEY (for 
the SELECT list and ON clause). Given the materialization of the UNION ALL table 
expression in DB2 11, all columns from PART table (for example, if the table has 10 columns) 
are accessed and materialized to the workfile. As the outer query is retrieving from that 
workfile, only P_PARTKEY is retrieved.

The Figure 10 example is repeated in Figure 11 showing that DB2 12 will prune the 
unnecessary columns and only require P_PARTKEY to be returned from each UNION ALL 
leg, whereas DB2 11 returned all columns. 

Figure 11   DB2 12 pruning unreferenced columns with optional join pushdown
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If the UNION ALL table expression is materialized, then only P_PARTKEY would be retrieved 
and written/materialized to workfile compared with all (10) columns in DB2 11. And if 
P_PARTKEY is indexed, then the optimizer could choose a non-matching index scan in 
DB2 12 rather than table space scan in DB2 11. Similarly, if the join predicates were pushed 
down in DB2 12 and matching index access was chosen on P_PARTKEY, then index-only 
would now be possible because only P_PARTKEY is required.

Another benefit of column pruning is that it can provide extra table pruning opportunities. In 
DB2 10, an enhancement was delivered to prune outer join tables if no columns were 
required from that table and it was guaranteed that the table would not introduce duplicates. 
In DB2 12, this pruning enhancement is extended to outer joins to views/table expressions 
that are guaranteed not to return duplicates and no columns are required from the view/table 
expression.

The example in Figure 12 might appear convoluted, but it is a simplified example from an 
actual ERP workload that will be available on DB2 for z/OS. Before explaining the example, it 
is valid to ask why you would build a query that references tables from which columns are not 
actually required. This type of construct is becoming more common as views are built to hide 
the complexity and present a simplified representation to the user so that they can simply 
select from a view, rather than writing a complex query themselves. 

Similarly for query generators, what is required of the query generator is that the select from 
the views and the underlying table relationships can be set up or altered without affecting the 
query generation. Such views can be built on top of each other, as building blocks, for 
simplicity in constructing these and also to simplify future changes at any level. What this 
technique means is that the views typically contain more than what you might require, and 
you get to select only the columns you need, and ultimately that might mean that you also 
only need a subset of the tables. 

Figure 12   DB2 11 LEFT OUTER JOIN to unnecessary table expression
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Figure 12 on page 13 demonstrates an example of how DB2 11 would handle this problem. 
Similar to prior UNION ALL examples, the UNION ALL retrieves all columns and all rows from 
T1 and T2 and materialize these to a workfile, which are sorted for the join. T3 is then joined 
to this materialized result and a sort to remove duplicate C1 values (given the DISTINCT). 
Because no columns were required from the UNION ALL of T1 and T2, and that the 
DISTINCT would remove any duplicates introduced, this join is unnecessary.

The DB2 12 rewrite for the Figure 12 on page 13 example is demonstrated in Figure 13. The 
view definitions and the query against the views are the same between the two figures. What 
differs is how DB2 12 is able to prune out the table expression that contains the UNION ALL. 
The result is simply a SELECT DISTINCT only requiring access to T3. 

Figure 13   DB2 12 LEFT OUTER JOIN to unnecessary table expression

Push down of ORDER BY and FETCH FIRST

The final DB2 12 enhancement targeted at improving UNION ALL and outer joins with views 
and table expressions relates to the usage of ORDER BY and FETCH FIRST clauses.
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In the example shown in Figure 14, view V1 contains three tables combined with UNION ALL, 
and then a query against that view includes an ORDER BY 1 (meaning the first column in the 
select list) and FETCH FIRST 10 ROWS ONLY. Figure 14 shows the view definition, the 
query, and the merged query in DB2 11. 

From a performance perspective, all rows (and columns) from all three UNION ALL legs are 
retrieved and materialized to a workfile, and then sorted for the ORDER BY. From that sort, 
the top 10 rows are retrieved. If each of the tables contains 1 million rows, then that 
materialization and sort involves 3 million rows to retrieve the top 10 rows. 

Figure 14   DB2 11 ORDER BY and FETCH FIRST with materialized view
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In DB2 12, the ORDER BY and FETCH FIRST clauses are pushed inside each leg of the 
UNION ALL, as depicted in Figure 15. Also of note as to another difference between 
Figure 14 on page 15 and Figure 15: In Figure 14 on page 15 (DB2 11), the SELECT list of 
each UNION ALL leg contains SELECT *, which results in all columns from each table being 
retrieved and materialized. In Figure 15 (DB2 12), notice that the SELECT * from the view 
definition has had unnecessary columns pruned, resulting in column C1 only appearing in the 
merged query in DB2 12. 

Figure 15   DB2 12 ORDER BY and FETCH FIRST with materialized view

With ORDER BY and FETCH FIRST pushed down to each UNION ALL leg, the DB2 
optimizer can now optimize each leg independently. This process includes using an available 
index to avoid the ORDER BY sort and fetch the top 10 rows without having to retrieve and 
sort 1 million rows. If no index exists, then sort has in-memory optimizations since DB2 9 for 
z/OS when the number of rows is guaranteed, as is the case with FETCH FIRST. 

Therefore, each leg now can optimize sort or avoid a sort (given an available index) with the 
ORDER BY and FETCH FIRST on each leg. The final sort merges the three results because 
it is known that each leg is already in order. 

The best-case performance comparison would therefore be DB2 11 sorting 3 million rows, 
and DB2 12 using indexes in each leg to retrieve access only 10-12 rows total—to retrieve the 
top 10 rows. Why 12 rows and not 30 rows (3 X FETCH FIRST 10)? The answer is because 
the DB2 12 enhancement uses a merge process from each leg. Because there are three 
UNION ALL legs, then each leg will access its first row, and the lowest of those three rows will 
be returned. That leg will then fetch its next row. 

If the top 10 rows all come from one leg, then the maximum number of rows accessed to 
retrieve the top 10 is 12 rows.
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This ORDER BY (and FETCH FIRST) pushdown enhancement is also interesting to 
demonstrate by using a simpler type of query involving UNION ALL that might appear as a 
cursor in an OLTP or batch application. Figure 16 shows a simple cursor with UNION ALL and 
a final ORDER BY, followed by a FETCH that is performed 10 times. Note that there is no 
FETCH FIRST, and thus the optimizer is not aware of the number of fetches that will occur 
within the application. 

Figure 16   DB2 12 UNION ALL in an OLTP-style query

The summarized trace information in Figure 16 shows 1.5 milliseconds of class 2 CPU, 
10 fetches, and a total of 16 getpages across BP1 (index) and BP2 (data). Although the 
DB2 11 results are not shown for this example, the query would qualify over 200 million rows. 
Because DB2 11 will not push the ORDER BY to each UNION ALL leg, that amount would 
result in all 200 million rows being sorted and written to workfile, for the application to fetch 
only 10 rows.

What also is not shown in Figure 16 is the access path chosen in DB2 12, although it can be 
deduced from the low number of getpages that both legs of the UNION ALL are able to use 
an index to avoid the ORDER BY sort. And in addition to the ORDER BY pushdown (and 
FETCH FIRST pushdown when applicable), sort is able to merge the legs across the UNION 
ALL. What you cannot deduce from this example is how many getpages were required across 
each leg. This information would require a more detailed getpage trace or separating the 
objects into more buffer pools. All 10 rows fetched could come from the first leg, the second, 
or a combination of both.

Summary of targeted UNION ALL and outer join performance enhancements

It was highlighted in the introduction to the UNION ALL enhancements that this construct is 
appearing more frequently in ERP and customer workloads, and also is the foundation for the 
recent DB2 features System-Period Temporal and Transparent Archive. The previous 
sections showed the commitment in DB2 12 to improving UNION ALL performance. This goal 
is achieved by either avoiding materialization or improving the performance of materialization 
by piping or merging the materialization result into the next query processing step, and 
reducing the size of the materialization. 
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As implied in the examples, where the DB2 11 materialization would process all table rows, 
avoiding this in DB2 12 could result in only the required rows being processed. This technique 
results in orders of magnitude performance improvement.

Although most of the examples demonstrated the challenge and then benefit for UNION ALL 
queries, the DB2 12 optimizations are equally applicable to other materialized views/table 
expressions with outer joins. Once again, many of the same materialization performance 
challenges exist for optimal performance of outer join and UNION ALL-based queries. And it 
is expected that DB2 12 will provide significant performance improvement for these query 
patterns.

Runtime optimizations

The next DB2 12 target area to be discussed is those enhancements that take advantage of 
intelligent runtime adaptations, more efficient runtime code path, or both. The predominant 
DB2 component that delivers the enhancements in this section is the Runtime component 
within RDS. 

As with most of the query performance and optimization enhancements in DB2 12, these are 
complementary to other features listed. Therefore, the same query can benefit, for example, 
from a UNION ALL enhancement, a runtime optimization, and several other enhancements 
listed.

Runtime Adaptive Index

Runtime Adaptive Index extends the existing RID-based access paths List Prefetch and 
Multi-Index Access, and adds several execution-time enhancements to allow you to adapt at 
execution time based on index filtering.

The simple example in Figure 17 can be used to highlight the challenge that generic (search) 
queries place on a query optimizer. Numerous coding techniques are used for this type of 
SQL. It is commonly used for search screens where the user can fill various fields and select 
any or all combinations. 

Regardless of the technique that is used for the SQL, the premise is the same: The 
programmer wants to code one SQL that can be used generally. DBAs, however want the 
programmer to construct dynamic SQL at execution time that is specific to the input request, 
or to limit the combinations that are possible and code a subset of targeted SQL. 

Typically, it becomes the responsibility of the database to address the performance 
challenges. You can bind the package with the REOPT(ALWAYS) bind option, but this is not 
always possible if this is coming through DRDA because too many SQLs would use the same 
package. Similarly, for static SQL, all SQL in the package would be affected.

Figure 17   Generic search SQL challenge
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The SQL in Figure 17 on page 18 is used as a generic search query by “enabling” or 
“disabling” each predicate based on the user input. For example, if LASTNAME and CITY are 
entered, then these predicates are populated with their search values, such as LASTNAME 
LIKE 'SMITH' AND CITY LIKE 'SAN JOSE'. All other predicates are populated with LIKE 
'%%%%%' (or if the query was coded with BETWEENs for character columns, the predicate 
would be BETWEEN 'AAAAAAAA' AND 'ZZZZZZZZ') or BETWEEN 0 AND 99999 (for 
numeric columns). 

It is not possible for the DB2 optimizer (or any optimizer) to choose one plan that would best 
match the filtering predicates because that can change at every execution.

Runtime Adaptive Index is the name that is given to the DB2 12 optimizer (runtime) 
enhancements that target this type of SQL performance challenge. To describe this, assume 
that there is one separate index for each column in the WHERE clause, and for this example, 
the optimizer chose a multi-index plan with each of these five indexes.

At execution time, DB2 run time first looks at the values provided for each predicate to 
determine whether the predicate is “likely” or “unlikely” to be filtering. LIKE predicates that 
contain wildcards such as '%' are considered unlikely to be filtering, and BETWEEN or other 
range predicates that appear to cover the entire range of values are also considered unlikely 
filtering candidates. At this stage, run time will move unlikely filtering indexes to the end of the 
multi-index execution sequence. 

The run time begins processing the first “likely” filtering index based on the original index 
operation sequence (identified in the PLAN_TABLE by the MIXOPSEQ column (Multi-Index 
OPeration SEQuence)) after “unlikely” filtering indexes are moved to the end.

After a certain internal threshold is reached when processing the first filtering index, 
processing of that index is paused and the other remaining indexes are also searched (up to 
a similar threshold), which will allow the approximate filtering of each index to be determined. 
The threshold that is associated with the first index is implemented to ensure that 
short-running queries are not affected by any cost associated with validating the filtering of 
other indexes. 

After the filtering of each remaining index is determined, the run time can reorder the index 
execution sequence, discard any non-filtering indexes, or revert to table space scan if there 
are no indexes that provide sufficient filtering. If an index plan is to continue, then processing 
of each index continues where it was left off, and in the order of best filtering. Because this 
process is built on existing multi-index access, each leg is index-only as it is accumulating 
qualified RIDs that are then intersected with the RID list from each leg. The data rows is then 
accessed.

Therefore, runtime adaptive index is able to adjust/adapt at execution time to changes in 
actual filtering without requiring REOPT(ALWAYS) because REOPT would result in a 
reoptimization of the access path. REOPT(ALWAYS) is a “bind” parameter that indicates at 
execution time that DB2 should choose a new access path each time the query executes (that 
is, reoptimize the query). This reoptimization adds overhead to each query execution. This 
adaptive index solution avoids that reoptimization and thus avoids that extra cost. 

At execution time, the system performs a “first” quick peek at the literal values and adjustment 
of the index execution order or reversion to table space scan based on determination that 
certain index legs are not filtering. A more accurate filtering estimate is determined at 
execution after a threshold is reached. This adaptability is applicable to all list prefetch and 
multi-index access plans. 
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For multi-index ANDing, adaptive index is able to reorder the indexes from most to least 
filtering, early-out (discard) of non-filtering indexes, and revert to table space scan earlier than 
prior releases with insufficient filtering. For multi-index ORing or list prefetch-based plans, this 
early determination of filtering at two stages (first from peeking at the literals and second after 
the internal threshold) allows a decision to fall back to table space scan earlier than prior 
releases if there is no adequate filtering from the selected indexes.

Runtime adaptive index is not only for the generic search SQL challenge. The optimizer is not 
able to identify the intent of an SQL statement. The adaptive capabilities are applicable any 
time that the optimizer chose a RID-based plan, such as list prefetch or multi-index access. 

The obvious question is whether this capability means that DB2 12 will see a significant 
increase in multi-index access plans. However, this change is not expected because the 
optimizer only increases its consideration of multi-index access when the candidate 
predicates have high uncertainty in their filter factor estimates. Predicate uncertainty was 
added in DB2 10 to supplement the optimizer’s filter factor estimate. 

By design, the predicates that have the highest uncertainty in their filtering are range 
predicates, which could filter anywhere from 0 - 100% of the range based upon the literal 
values used. Other predicates that can be difficult to estimate include JSON, spatial, and 
index on expression predicates.

Figure 18 provides a simple example of three range predicates, each with an available index, 
and filtering with high uncertainty until execution time when the literal values are known. This 
type of query becomes a good candidate for multi-index access and its adaptive capabilities 
in DB2 12. 

Figure 18   SQL with high predicate uncertainty

Performance measurements for adaptive index can range from 20% CPU saving for list 
prefetch or multi-index ORing when failover to table space scan is the most appropriate 
choice, and orders of magnitude performance improvement for multi-index ANDing with a mix 
of filtering and non-filtering indexes. No measurable regression was found when the existing 
multi-index plan had appropriate filtering.

Internal runtime and complex expression optimization

In each recent DB2 release, an effort was made to improve the execution performance of 
expensive operations by using machine code generation. Historically, SPROCs (Select 
PROCedures and other xPROCS – also referred to as fast column processing) are the most 
notable example of machine code generation in DB2. 

Customers rely on SPROCs for their noticeable reduction in CPU after static SQL undergoes 
a REBIND in each new release. Some more recent examples of machine code generation 
enhancements include being (non-matching) IN-list and OR predicate evaluation in DB2 10, 
DECFLOAT data type processing, and SUBSTR scalar function evaluation in DB2 11. 
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Because optimizations based on machine code generation are not displayed externally in the 
explain output, it can leave customers questioning where a performance improvement came 
from or how to predict that such an improvement is possible. The latter is more difficult 
because there is no way to predict it, but answering the question after a performance 
improvement is seen is easier by explaining what improvements are available in each release.

DB2 12 applies the technique of machine code generation to the following items:

� CASE statements
� Extending the DB2 11 SUBSTR enhancements to all data types
� External data type conversions for DATE-based data types

An additional internal optimization is block fetch for moving qualified rows across Data 
Manager (stage 1) and RDS (stage 2). This data is recorded in the DSN_DETCOST_TABLE 
when it is determined that the optimizer has enabled internal block fetch. This process 
involves internally moving blocks of rows (similar to the external multi-row fetch) rather than 
row by row.

The next runtime optimization is referred to as expression sharing, and is best described by 
the example in Figure 19. 

When an expression is coded within a view or table expression, and a referencing select is 
merged with that view/table expression, then that outer reference is replaced with the 
expression. Figure 19 provides an example of a SELECT from a table expression (TX) that 
references an arithmetic expression four times. When the referencing SELECT is merged with 
the table expression, the result is that expression is repeated four times (once for each outer 
reference).

Figure 19   DB2 11 expression merge example

From a performance perspective, that also means that in DB2 11, the expression is run four 
times.

In DB2 12, when the merge occurs, DB2 recognizes that the expression is repeated. At 
execution time, the expression is executed only once and the result shared across the four 
references. This technique only applies to expressions where DB2 merges the query. If the 
query is written with multiple occurrences of the same expression, then DB2 does not detect 
and share the expression.

The term expression is often used to reference any type of arithmetic, scalar function, or 
user-defined functions (UDFs). Of these expressions, UDFs are often the most expensive 
given the flexibility in what can be contained within, including native SQL that references other 
tables or external UDFs that contain an external application program. 

DB2 12 also enhances the performance of deterministic UDFs by supporting caching of the 
UDF result given the same inputs. This enhancement is achieved with a hash table that is 
entirely managed by DB2, which means there is no user control. For a UDF that is defined as 
DETERMINISTIC and NO EXTERNAL ACTION, DB2 builds a hash key from the input 
variables and stores the output result. 
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Each UDF invocation first looks up the cache to see whether those values have already been 
processed. DB2 monitors the cache at regular intervals. If there have been no situations 
where a cached value has been found, then the cache is disabled to avoid performance 
regression. The cache only persists within a single query execution, and is not shared by 
other queries running the same UDF or for the next execution of the same SQL.

Sort, workfile, and sparse index improvements

Sort and workfile usage are areas in DB2 where there is continual focus on improving 
performance and reducing resource consumption. The workfile buffer pool and data sets can 
be a point of contention for workload scalability because OLTP, batch, and other queries can 
all converge on the same resources. This reason is why DB2 has continually sought to 
improve sort avoidance, optimize sort processing, and have smaller sorts that are processed 
in-memory.

Materializations also converge on the workfile buffer pool and data sets, and thus the 
reduction in materializations for UNION ALL and outer join queries can reduce this contention 
significantly for candidate workloads. The (ORDER BY and) FETCH FIRST pushdown was 
referenced also as one of the optimizations related to UNION ALL. It was mentioned in that 
section that pushing these down to the UNION ALL leg could result in DB2 taking advantage 
of other new or existing optimizations. 

FETCH FIRST (when combined with DISTINCT, GROUP BY, or ORDER BY) has had 
numerous sort performance improvements since DB2 9. These improvements are made 
possible because DB2 is given precise knowledge about how many rows need to be sorted 
and returned.

Sort has previously implemented an in-memory replacement technique for sort with FETCH 
FIRST if the result is guaranteed to be in-memory.

Partial sort-avoidance for FETCH FIRST

Although DB2 is already able to avoid many sorts with an index that provides the required 
order, DB2 12 introduces the concept of partial sort-avoidance with FETCH FIRST when 
order is provided for the leading columns only.
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In the example provided in Figure 20, there is an index on C1, and the query has an ORDER 
BY C1, C2 with FETCH FIRST 10 ROWS ONLY. Because the ORDER BY contains more 
columns than the available index, a sort cannot be avoided. However, in DB2 12, the 
optimizer can recognize that, if INDEX1 on C1 is chosen, then rows are to be passed into sort 
in C1 order. Therefore, the sort can stop fetching rows after the order for both C1 and C2 can 
be guaranteed to be within the number of rows requested by FETCH FIRST. 

Figure 20   DB2 12 partial sort-avoidance with FETCH FIRST

Given the index entries in Figure 20, the 10th row in C1 order is highlighted. After sort fetches 
the 10th row (which corresponds to the FETCH FIRST 10 ROWS ONLY), then sort only 
needs to fetch until the next change of C1 value. 

In this example, the 13th row has value 5, and this signals to sort that this 13th row is not 
needed because the top 10 rows in C1, C2 order are guaranteed to be found in the first 12 
rows. Those 12 rows can be sorted and the top 10 returned as requested by the query. 
Contrast this process to DB2 11, where all rows would need to be fetched and read by sort 
when a sort cannot be avoided.

Extensions to sort avoidance for OLAP functions

Sort avoidance is also extended to OLAP functions that combine PARTITION BY and ORDER 
BY. Although DB2 11 already supports sort avoidance, if an index matches the ORDER BY 
clause with an OLAP function (such as RANK), that did not apply for sort avoidance when 
PARTITION BY was involved. The example provided in Figure 21 highlights an appropriate 
index that could be used in DB2 12 to avoid the sort for this SQL statement. 

Figure 21   Sort avoidance for OLAP functions with PARTITION BY clause
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Sort space reductions and in-memory exploitation

When a sort cannot be avoided, then using memory to process the sort or reducing the length 
of the sort can result in that sort being contained in-memory or at a minimum reducing the 
amount of workfile resources that are needed to complete the sort.

DB2 11 avoids the final write to workfile for the last sort in the query if that result can be 
contained in the sort tree. In DB2 12, this feature is extended to many intermediate sorts, 
such as sorts for joins.

In DB2 11, the sort tree size is limited to 32,000 nodes. Although the amount of memory for 
sort can be controlled and therefore increased with zparm SRTPOOL, this limit of 32,000 
nodes remained. However, in DB2 12, sort allows up to 512,000 nodes for non-parallelism 
sorts or 128,000 nodes for a sort within a parallel child task. These amounts are still capped 
by SRTPOOL zparm. 

With the ability to contain sorts within the sort tree rather than writing the result to workfile, 
increasing zparm SRTPOOL is beneficial. This is a per-query zparm allocation that depends 
on the size of each sort and the number of concurrent queries that dictates how much 
memory is required across an entire system for sorting.

Increasing the number of nodes of the tree not only has a benefit to DB2 12 of containing a 
sort in-memory, but GROUP BY and DISTINCT sorts can take further advantage of a larger 
number of nodes. DB2 9 added hashing support as input to sort for duplicate removal 
(GROUP BY/DISTINCT), such that duplicates could be collapsed before going through sort. 
And in DB2 the number of hash entries is tied to the number of nodes of the sort tree. 

Therefore, increasing the number of nodes can result in higher cardinality GROUP 
BY/DISTINCT results, consolidating the groups as rows that are input to sort. This feature can 
increase the chance that the sort can be contained in memory or at least reduce the amount 
of workfile space that is required to consolidate duplicates during the final sort merge pass.

Therefore, increasing zparm SRTPOOL can have a greater benefit to improving sort 
performance in DB2 12 than prior releases. However, increasing SRTPOOL in DB2 11 might 
not result in that memory being used if the 32,000 limit is reached before the full memory 
request is allocated. Therefore, DB2 12 can use the memory up to the zparm SRTPOOL 
value that might not have been used previously. 

The next sort enhancements relate to reducing the length of the sort row. Reducing the sort 
row length has an obvious benefit in reducing the amount of memory and workfile space that 
is needed for sort.

It is common that predicates coded in the WHERE clause are redundantly included in the 
SELECT list. And any redundancy in the sort key or data row has a negative impact on sort 
performance and resource consumption. ORDER BY sort already removes columns from the 
sort key if covered by equals predicates in the WHERE clause. DISTINCT or GROUP BY 
already removes redundant columns for sort avoidance. 
24 DB2 12 for z Optimizer



But if a sort is required for DISTINCT or GROUP BY, such redundant columns remain until 
DB2 12, when they are removed from the sort key as shown by the simple example in 
Figure 22. In that example, because C1 has an equals predicate in the WHERE clause, all 
sorted rows are guaranteed to contain that same value, and thus only C2 is needed for the 
sort. 

Figure 22   Redundant columns in sort key

Similarly, in DB2 12, sort avoids duplicating the sort key from the data portion if they are an 
exact match of each other. That statement opens up an obvious question: Why would sort 
duplicate the data into the sort key? To answer this question, you need to understand briefly 
how sort works. Sort operates on a fixed-length concatenated key of the columns required to 
support the ORDER BY, GROUP BY, DISTINCT sort, or sort for join. 

The requested order of the sort key might not match the order of the columns in the SQL’s 
SELECT list. In DB2 12, when the sequence of columns in the sort matches the SELECT list, 
and contains only fixed-length columns, then sort will not replicate the key. Instead, DB2 12 
uses the data portion for the sort. This feature can dramatically reduce the sort row length.

Another goal in DB2 12 is to minimize the impact that larger sorts have on OLTP applications. 
Using memory for sort helps reduce contention on sort buffer pool and workfiles as a shared 
resource. Although DB2 9 added the option for sort to use 32 K workfile pages for longer sort 
rows (greater than 100 bytes), it is still possible for very large sorts of smaller-length rows to 
dominate the 4 K page buffer pool and workfile data sets. 

In DB2 12, many larger sorts of greater than 10,000 rows can now be compacted into the 32 
K workfile rather 4 K. This feature might result in an increased requirement for 32 K workfile 
allocations compared to 4 K, but it does improve separation of longer-running sorts from 
OLTP. It can improve performance with reduced getpages by using an eight times larger page 
size.

Sparse Index improvements

Sparse index has continually been enhanced in recent DB2 releases to provide similar 
support to hash join that is available in most competitive DBMSs. DB2 12 adds some 
incremental improvements to extend the support of the VARGRAPHIC data type, and also for 
better memory exploitation.

The first memory-related sparse index enhancement includes improved allocation of memory 
across multiple usages of sparse index within the same query. In prior releases, there was a 
high dependency on the optimizer estimate to determine the allocation of memory for each 
sparse index. In DB2 12, the sort component improves its algorithms to adjust the type of 
sparse index that is built to optimize memory, and also to reduce getpages when a sparse 
index must overflow to workfile.
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When building a sparse index, sort also attempts to trim the information that must be stored. 
Similar to sort key length reductions, sparse index can avoid repeating the key from the data if 
these are equal and of fixed length. And when the key prefix is the same for all rows in the 
sparse index, the key is truncated to avoid key duplication. And for variable length rows, 
trailing blanks can be truncated to reduce the amount of memory that is required to contain 
the sparse index key.

Because sparse index also converges on the sort workfile buffer pool and data sets, any 
reductions in workfile usage for sparse index has a similar benefit to improved workload 
scalability by alleviating workfiles as a bottleneck for DB2 applications.

Predicate optimizations

The stage at which DB2 is able to evaluate predicates can have a significant impact on SQL 
performance. It is well understood that indexable and stage 1 predicates allow filtering to 
occur at an earlier stage and can use indexes to restrict the search range.

And although limiting the search range can provide orders of magnitude performance over 
scanning the entire object, if the only filtering comes from a stage 2 predicate, then the 
performance of that query or application will not be acceptable and deployment of that query 
or application usually fails. Improving the performance of stage 2 predicates or allowing 
predicates to become indexable/stage 1 can thereby enable successful application 
deployments. Applications or queries where there is other filtering from indexable/stage 1 
predicates are less affected by stage 2 predicates.

Sort for stage 2 join expressions

The first use case of stage 2 predicates that are targeted in DB2 12 involve stage 2 join 
predicates. Numerous enhancements in recent releases improve the performance of stage 2 
predicates. However, stage 2 join predicates remain as a performance challenge, more 
specifically stage 2 join predicates on the inner table of a join. Figure 23 contains a simple 
example of a stage 2 join predicate.

Figure 23   Stage 2 join predicate

DB2 12 can improve the performance of stage 2 join predicates by allowing sort to evaluate 
the function. This process allows sparse index to be built on the result for the join, which 
becomes an optimal candidate on the inner table when the result can be contained 
in-memory, or when there is no other viable index to support the filtering of the join. 
Alternatively, if the table with the join expression is the outer table of the join, a sort for join 
order can allow access to the inner table to be performed sequentially.
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Stage 2 join predicates are often observed if tables are not designed with consistent data 
types for joined columns. This situation might occur if applications are integrated later, or if 
business information is embedded within columns, or if time stamp columns are used within 
each table and the join is by the consistent date portion of those columns (for example, insert 
time stamps do not match between two tables). Therefore, DB2 12 can improve performance 
significantly for these situations without requiring a targeted index on expression to be built.

User-Defined table function predicate optimizations

User-defined table functions (also known as table UDFs, table functions, or TUDFs) were 
initially targeted to allow an application program to be called from within an SQL statement. 
This feature provided the flexibility to access non-DB2 objects and represent them as a table 
within SQL to be joined with DB2 tables. 

Inline table UDFs were a further extension to DB2 support, allowing the definitions to contain 
native SQL. There has been an increase in table functions as an alternative to views because 
of the capability to create a table function with input parameters, whereas parameterized 
views are not supported in DB2 for z/OS.

Although prior releases already provided similar merge (and thus materialization avoidance) 
capabilities for table functions that were syntactically equivalent to views, DB2 12 has 
improved both the merge of deterministic table functions with input parameters and also 
improved indexability of input parameters as predicates within the table function, as 
demonstrated in Figure 24. 

Figure 24   Table function with input variables

VARBINARY indexability improvements

Variable-length binary (VARBINARY) is a more recent data type added to DB2 for z/OS. 
Increased adoption of any new feature typically clarifies customer usage patterns and 
therefore identifies opportunities for improvement. DB2 12 adds indexability support for 
mismatch length comparisons of BINARY and VARBINARY data types, which were previously 
stage 2. 
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Comparisons of the same length were already indexable. This feature is depicted in the 
example in Figure 25 that compares the pre-DB2 12 predicate as stage 2 with a CAST added 
in DB2 12 to support indexability of mismatched length VARBINARY. Mismatched length 
BINARY is not shown. 

Figure 25   Indexability for mismatched length VARBINARY

Although many customers do not use VARBINARY or BINARY data types in their 
environments, improving indexability is important because some DB2 scalar functions return 
BINARY or VARBINARY results. The improvements to the underlying support of BINARY and 
VARBINARY indexability were necessary to allow index on expressions to be built on those 
scalar functions and to be used for matching index access. 

Figure 26 provides an example of a scalar function as an index on expression that is now 
indexable in DB2 12. This example demonstrates the COLLATION_KEY scalar function with a 
parameter tailored to German. 

Figure 26   Index on expression example for VARBINARY-based expression

Row permission indexability for correlated subqueries

At this point, there should not be a need to further justify the performance benefit of indexable 
predicates as compared to stage 2. Instead, this section highlights other examples where 
indexability has been improved in DB2 12.

Row permissions improve data security at a lower level of granularity and thus become an 
attractive solution for integrating that security into the database system rather than requiring 
application control or implemented through views. Efficiency of security validation is 
paramount, so this enhancement in DB2 12 to resolve indexability of correlated subquery 
predicates within a row permission that were previously stage 2. 
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A correlated subquery example of a row permission is shown in Figure 27. 

Figure 27   Correlated subquery predicates in a row permission

Optimizer cost model enhancements

Moving through the internal DB2 components where the performance enhancements in 
DB2 12 are focused, the next area for discussion is the optimizer cost model. Within DB2 
development, this is the access path selection (APS) component. The optimizer cost model 
(access path selection) is responsible for choosing the lowest-cost access path based on the 
query after query transformation has performed view/table expression merge and predicate 
transformations (for example, pushdown and rewrites).

The previous section that presented the internal DB2 performance workload results 
highlighted that most queries and workloads that achieved the largest performance gains 
were those that chose a new access path in DB2 12 compared with DB2 11. This 
improvement might be due to these reasons:

� A new access path became available due to a query transformation (such as a predicate 
rewrite, predicate pushdown, or view/table expression merge). 

� A new execution path became available, an existing access path was optimized to be 
more efficient (DB2 12 Runtime Adaptive Index for example).

� The optimizer cost model has better access to accurate inputs or improves upon its cost 
formulas. 

It would be incorrect to infer from the groupings of topics in this overview that each of the DB2 
components operates independently. In fact, each component plays a role in providing an 
efficient execution for a SQL statement. Query transformations and runtime optimizations 
have already been described, so we can assume that the optimizer cost model played its role 
in ensuring an efficient access path based on those enhancements. This section describes 
the improvements specific to the cost model that take advantage of existing choices.
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Extending NPGTHRSH to default statistics

A discussion around zparm NPGTHRSH is unlikely to garner the same immediate 
understanding compared to a discussion of the VOLATILE table attribute. Both are trying to 
solve the same problem, which is that there are instances where RUNSTATS collected on an 
object might be unreliable for one of these reasons:

� That object is early in an application rollout (meaning it is small but likely to grow quickly) 

� The object size grows and shrinks regularly, making it difficult to collect representative 
statistics at the right point in time. 

The zparm NPGTHRSH was delivered in DB2 V7 to prefer matching index access over other 
access paths at the subsystem level. And DB2 12 extends the effectiveness of this zparm.

When zparm NPGTHRSH is set, this zparm value is compared with the number of pages for 
a table This number is the NPAGESF catalog statistic, or at the partition level, it is the number 
of pages in the partition that is compared to NPGTHRSH. If NPAGESF is less than 
NPGTHRSH, then the optimizer prefers matching index access for access to that table, if 
possible. 

NPGTHRSH is disabled by default, although there is at least one major ERP vendor that 
recommends DB2 for z/OS customers set their default to 10. This setting has been effective 
for many years. No customer complaint of the wanting a table space scan and DB2 choosing 
matching index access for a 9 (or less) page table has been received.

In DB2 11 and prior, if statistics were not collected on a table, and thus NPAGESF=-1, DB2 
did not use -1 for the NPGTHRSH comparison. Instead, and as documented, -1 becomes 501 
for all optimizer costing, including the comparison to NPGTHRSH.

DB2 12 instead allows default stats (-1) to apply the NPGTHRSH rules, if enabled. Enabling 
NPGTHRSH in DB2 12 also applies the rule for preferring matching index access if only the 
index being considered has default statistics. This scenario is possible if an index was 
recently created but statistics are not yet collected.

Although this might be considered a minor change, enabling zparm NPGTHRSH to a small 
value (even setting to 1) can result in the optimizer avoiding table space scans on very small 
or empty objects that might simply have statistics that are not representative and are actually 
larger than the statistics demonstrate.

List prefetch and hybrid join cost improvements

Neither list prefetch nor hybrid join are new to DB2. What is new are improvements to the 
optimizer to encourage list prefetch and also hybrid join for poorly clustered objects when sort 
avoidance is not a viable candidate as one of the lower-cost access paths.

The largest complaint with list prefetch is that, if chosen for an online application SQL, list 
prefetch degrades performance significantly because it accumulates all qualified RIDs before 
fetching the rows to return to the application. To be more specific, when the query contains an 
ORDER BY and an index exists to avoid the sort, then list prefetch can be a dangerous 
access path to choose for this reason for an online window.

The other complaint is if the optimizer underestimates the filtering of a predicate and a large 
percentage of the table qualifies, then list prefetch is less efficient compared with a table 
space scan. The introduction of the Runtime Adaptive Index enhancements for multi-index 
access and list prefetch allows the optimizer to improve the costing associated with list 
prefetch, multi-index, and hybrid join. 
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The optimizer now better reflects the improved I/O performance available for such choices 
when a sort avoidance plan is not one of the viable lower-cost plans.

In addition to the cost model improvements associated with list prefetch, hybrid join support 
(which uses list prefetch) has been extended as a viable optimizer choice in more situations 
when parallelism is enabled. Hybrid join has the benefit of more efficiently accumulating list 
prefetch requests to access the inner table of a join as compared with nested loop join with list 
prefetch.

Improved filter factor for CURRENT DATE/TIMESTAMP predicates

Range predicates with parameter markers or host variables are among the most difficult 
predicates for a query optimizer to estimate accurately. It is possible at execution time to 
specify a range that qualifies anywhere from 0 to 100% for a simple range predicate. 

Although the available catalog statistics for a column identifies the ranges that exist within the 
table, how much of that range qualifies cannot be known until the literal value is supplied at 
execution time. A predicate ORDER_DATE < ? is more difficult to accurately estimate 
compared with predicates with literal values such as ORDER_DATE < '2016-01-01' or 
ORDER_DATE < '9999-12-31'.

DB2 12 supports resolution of predicates involving CURRENT DATE and CURRENT 
TIMESTAMP to use the actual current value as at the bind/prepare time. This support 
includes date/time stamp arithmetic that incorporates those special registers. In DB2 11 and 
prior, ORDER_DATE < CURRENT DATE would use the same filter factor estimate as that of a 
parameter marker/host variable (ORDER_DATE < ?). 

Figure 28 provides predicate examples that resolve the predicate values at bind/prepare time 
to provide a more accurate filter factor estimation in DB2 12. 

Figure 28   Predicates involving date special registers

The obvious question from this enhancement is whether the filter factor estimate will become 
stale because the values are resolved at bind/prepare, and a static bind might have been 
performed six months ago and not repeated. Although it is true that the current date six 
months ago is not the same as the current date today, it is likely that the data in the table has 
also continued to change over time such that a six-month move in current date also 
corresponds to six months of additional rows added/updated to the table.

Improved resolution of filter factors at bind/prepare using index probing

Index probing was added in DB2 10 for dynamic prepares with literals (including 
REOPT(ONCE)) and static binds that use REOPT(ALWAYS). For index probing, DB2 uses 
the predicate value to probe the index non-leaf pages if a table is volatile or if the original 
predicate estimate is assumed to qualify zero rows. Index probing allows the optimizer to 
validate the estimated filter factor based on the data existing in the index. This index probing 
process also accesses the RTS information for clarity on the current object sizes.

DB2 12 improves the performance of index probing and allows the resultant filter factor to be 
used more consistently for the benefit of improved cost estimation.
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Improved bind/prepare performance with many indexes

Some recent deployments of ERP applications have included a very large number of indexes 
per table. This configuration is typically based on a design where each function of the 
application maps to a set of columns of the table. Therefore, which indexes are beneficial to 
the user depends on the features used.

A query optimizer reads in all available catalog information, including object definitions and 
statistics for a SQL statement, as input to the bind/prepare process to allow cost comparison 
of available choices to determine the lowest-cost access path. In DB2 11 and prior, the 
optimizer would evaluate every available index for each object. This approach presented 
performance challenges with multi-table joins involving hundreds of indexes per table. Such 
performance issues have not previously been a concern given that most tables have 10 
indexes or fewer.

In DB2 12, the optimizer first evaluates all available indexes for each table, and rank indexes 
based on the existence of matching predicates, screening predicates, and clustering 
attributes. Indexes are removed from consideration for the access path if there is no filtering 
value, and also removed when better filtering indexes are available. 

This feature can improve bind/prepare performance when there are many indexes on a table. 
It also can improve the chances that the index with the most filtering is chosen by the 
optimizer. Figure 29 provides an example of an SQL statement with 12 indexes on the table. 
In DB2 11, all 12 indexes would be evaluated by the optimizer throughout the access path 
selection process. In DB2 12, eight of those indexes would be discarded before beginning the 
access path selection process. 

Figure 29   DB2 12 discarding unnecessary indexes from consideration by the optimizer
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RUNSTATS and optimizer-generated statistics profiles

Although the focus is on the optimization and performance enhancements in DB2 12, 
RUNSTATS provides the most critical input to the optimizer and is therefore an important topic 
to discuss. This section outlines improvements to RUNSTATS that help customers determine 
what to collect and integrate statistics collection with their existing maintenance processes.

DB2 12 includes a minor improvement to the clusterratio formula that reduces the impact that 
unclustered inserts have on the clusterratio of the clustering index. This feature improves the 
alignment that the clusterratio formula has with the execution behavior of dynamic prefetch, 
and can extend the life between table space REORGs triggered by stored procedure 
DSNACCOX based on clusterratio. There is no formal requirement to collect statistics using 
the new formula before static rebinds or execution of dynamic SQL in DB2 12.

After you determine what statistics to collect, you need to determine how many frequencies to 
collect. The default is to collect the top 10, but the truth is that only the top 1 might be skewed, 
or the top 20 or 50. There is no single default that is applicable to all columns and all tables: It 
is entirely data dependent. 

DB2 12 provides the capability to allow RUNSTATS to continue collecting until the data is no 
longer skewed, with an upper limit of the top 100 values to avoid over-collection. This 
capability avoids situations where too few values were collected for the optimizer to estimate 
filtering correctly, and removes the requirement that the DBA specify an appropriate value.

Dynamic statement cache invalidation changes with RUNSTATS in DB2 12. If you run the 
RUNSTATS utility, then historically, any SQL statements that access those tables/indexes will 
have their access paths reset. In DB2 12, this “reset” is optional, and can be disabled using 
the RUNSTATS (INVALIDATECACHE) option.This now becomes optional with RUNSTATS to 
invalidate the cache by using the INVALIDATECACHE option with the default set to NO. This 
is a behavior change compared with prior releases of DB2, and is intended to reduce the cost 
of new prepares when RUNSTATS is run. 

Similarly, utilities such as LOAD or REORG will only invalidate statements in the cache if the 
object is in a pending state before the utility was run. The theory behind these behavior 
changes is that it is expected that a REORG or RUNSTATS is not necessarily run because of 
a bad access path, and thus, those utilities run for other purposes should not disrupt the 
existing access path. RUNSTATS with UPDATE NONE REPORT NO is still an effective 
method to flush statements from the dynamic statement cache.

Another RUNSTATS enhancement in DB2 12 is further integration of the DB2 optimizer 
recommendations with RUNSTATS. In DB2 11, the optimizer would externalize to a catalog 
table and optionally to an explain table, with RUNSTATS recommendations based on the 
identification of missing statistics or conflicting statistics that can benefit the SQL being 
bind/prepared/explained. In DB2 11, an extra manual step was required to convert those 
recommendations into RUNSTATS statements to be run.

In DB2 12, the RUNSTATS PROFILE will automatically be updated when new 
recommendations are made by the optimizer. If a profile does not already exist, then a new 
profile is created that merges the existing statistics in the catalog with the new 
recommendations.
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To enable the usage of the optimizer recommendations, the customer simply needs to specify 
USE PROFILE, which is now supported for inline stats in DB2 12. Therefore, all methods of 
DB2 RUNSTATS collection are now supported for using profiles. Figure 30 provides a visual 
overview of the RUNSTATS integration steps with the optimizer in DB2 11 and DB2 12. 

Figure 30   Optimizer externalization of missing statistics

Updates to a profile trigger a recommendation from DSNACCOX that RUNSTATS should be 
run for that table. These enhancements are a significant step forward in RUNSTATS 
simplification and integration with existing maintenance processes.

Static and dynamic plan stability

Although the delivery of performance improvements is critical for ensuring that application 
performance continues to meet service-level agreements and user expectations, customers 
also want stability and reliability of that performance. And if you have been reading all of the 
prior sections in this DB2 12 optimizer overview, you would see the attention to all aspects of 
improving query performance, from RUNSTATS integration with the optimizer for ensuring 
appropriate inputs to access path selection, query, and predicate transformations. 

These features mean that the optimizer has the best available choices, cost model 
enhancements, and runtime improvements. These have been consistent themes through the 
recent DB2 releases.

However, complementary to this has been the focus since DB2 9 on allowing fallback to a 
prior access path after a static REBIND, or to reuse a prior access path for a new 
BIND/REBIND from DB2 10. These static plan stability (or plan management) features have 
alleviated concerns for customers across DB2 release migrations when rebinding many static 
packages and ensuring minimal risk to their business from performance regression.

DB2 12 delivers further usability features to static plan stability, and also extends the benefit 
of basic stability to dynamic SQL that static SQL has always enjoyed.
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Static plan stability usability improvements

Being able to switch to a prior good access path or reusing a prior good access path are both 
valuable features. However, management of those prior copies should not be disruptive to 
currently active applications.

DB2 12 supports selectively FREEing either of the PREVIOUS or ORIGINAL copies 
individually. The ORIGINAL is intended to be the preferred copy that stays consistent across 
multiple REBINDs. However, this ORIGINAL copy will become stale over time and should be 
updated after performance of the current access path is considered to be the new standard 
for that package. 

This step requires manual intervention to manage that ORIGINAL copy, which is still true in 
DB2 12. However, the ability to selectively FREE only the ORIGINAL copy is an improvement 
over prior releases, where all prior copies would need to be FREEd (both ORIGINAL and 
PREVIOUS) to allow the ORIGINAL to be repopulated at the next REBIND. You can also 
FREE only invalid copies in DB2 12. And most importantly, FREEing these inactive copies 
(either ORIGINAL or PREVIOUS) can occur without affecting the active copy. 

Although this change seems minor, if you consider that DB2 11 would require exclusive 
access to the current package to manage those inactive copies, it is a simple but important 
availability enhancement to allow this to occur without disrupting a production application.

A further usability enhancement to the reuse (APREUSE) of a prior access path is the option 
to specify directly either the ORIGINAL or PREVIOUS copy as input to that reuse. In DB2 11, 
the only option is to specify the current copy as input. 

Reusing either of the inactive copies would require a two-step process to first SWITCH the 
inactive copy to current, and then to REBIND with APREUSE. This two-step process 
introduces the risk that an auto-bind could overwrite that current bind if the inactive copy was 
invalid. DB2 12 avoids this risk by allowing the REBIND with APREUSE from the inactive copy 
in one step.

Dynamic plan stability

The basic premise that static SQL helps ensure stability in performance is well understood. 
This feature provides obvious value given the critical nature of most workloads that customers 
run on DB2 for z/OS. The time between static rebinds could be weeks or years, during which 
time there is satisfaction that performance of that access path is consistent. The life 
expectancy of a dynamic SQL is instead the time the SQL remains in the dynamic statement 
cache. Stability is only guaranteed within that time until that query next exits and enters the 
cache. This time frame can be from minutes to days.

DB2 12 allows you to stabilize dynamic SQL and store the SQL and cache structures in the 
DB2 catalog similar to static SQL. Upon entry to the cache, DB2 can load the existing 
structures from the catalog for stabilized SQL rather than preparing a new access path. This 
process provides improved reliability in the access path, but also can significantly reduce the 
cost and improve performance of the first entry of the SQL into the cache. 

Heavy “cache-load” periods such as the beginning of the business day will see improved 
performance from prepare avoidance. Internal DB2 testing demonstrates 70–97% CPU 
reduction (of the prepare cost) for loading stabilized SQL into the cache compared with a new 
prepare, with more complex SQL achieving the more significant savings.
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Stabilizing dynamic SQL in this manner also provides benefits across future DB2 release 
migrations, in application of DB2 maintenance, in recycling DB2, across members of a data 
sharing group, and also after DB2 utility execution. All these events result in the potential for a 
new access path today, whereas dynamic plan stability can preserve the access path across 
each of these events. However, it should be noted that rebind capability or the switch and 
reuse capabilities are not yet available to dynamic SQL.

Dynamic plan stability is considered to be one of the most significant SQL performance 
enhancements in DB2 12 because of the benefit to dynamic SQL OLTP applications and 
repeating analytics SQL.

Summary

If you have read the Query Performance and Optimization overview from DB2 10 and DB2 11 
for z/OS, you would note that DB2 12 for z/OS provides even more enhancements targeted at 
the increased demands that customers are placing on their operational systems. And similar 
to the focus in these recent DB2 releases, most of the performance enhancements delivered 
do not require user intervention, other than rebind for static SQL.

The customer focus on real-time analytics requires that the analysis occurs close to the 
operational data. Otherwise, it is incredibly difficult to deliver real-time insights. And for DB2 
for z/OS workloads, that means that customers want that analysis to occur with systems that 
are tightly integrated with z Systems or within the DB2 for z/OS system itself. DB2 12 for z/OS 
is ready, targeting performance improvements that allow real-time analytics to occur within 
the scope of a transaction. It does so by focusing on critical inhibitors to workload scalability 
and enhancements to important SQL constructs exhibited in known analytics workloads.

IBM Z is at the core of Enterprise HTAP systems, and although DB2 for z/OS has traditionally 
handled the transactional workloads, those transactional requirements are increasing in 
complexity, and DB2 integration with the analytics is paramount for true HTAP. When 
customers are ready to gain real-time insight from their operational systems, DB2 12 for z/OS 
is available to meet the challenge.
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