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Preface

Application programming interfaces (API) act as the digital glue that links services, 
applications, and systems together to create compelling customer experiences. Using APIs 
you can create interfaces between back-end systems and applications that can help you bring 
new digital services to market, open revenue channels, and exceed customer expectations.

IBM® API Connect is an API management solution from IBM that offers capabilities to create, 
run, manage, and secure APIs and microservices, thus managing the full lifecycle of APIs for 
both on-premises and cloud environments. 

This IBM Redpaper™ publication gives a broad overview of APIs and API Connect and 
covers key considerations for managing the lifecycle of APIs. This paper is targeted for 
owners of an API Connect based API, such as, C-level executives, members of the business 
development teams, product managers, and technical evangelists.

For practical scenarios using API Connect, refer to the companion IBM Redbooks® 
publication, Getting Started with IBM API Connect: Scenarios Guide, REDP-5350.
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Chapter 1. Introduction to APIs

This chapter provides an overview of application programming interfaces (APIs). It describes 
what APIs are and the business drivers and value of APIs. It also includes an in-depth 
discussion of the API value chain, API pricing models, and API lifecycle. This broad view 
helps in building the foundation and understanding the role and value APIs bring to the 
dynamic digital services.

This chapter includes the following sections:

� 1.1, “Overview of APIs” on page 2
� 1.2, “Classification of APIs” on page 6
� 1.3, “Considerations before launching APIs” on page 7
� 1.4, “API business monetization models” on page 7
� 1.5, “API lifecyle” on page 9
� 1.6, “API strategy” on page 10
� 1.7, “API economy” on page 11
� 1.9, “Summary” on page 14
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1.1  Overview of APIs

An API is a public persona for a company or a product, where the API exposes business 
capabilities and services. APIs form a bridge for interactions between services, such as 
mainframe and databases and customer-facing services. APIs enable organizations to share 
information with external developers, business associates, and other teams within the same 
organization. 

APIs allow you to expose some functions of a program or service in a managed and secure 
environment. API providers can share portions of their code with developers but do not have 
to release everything for new applications and services to be developed. APIs from different 
providers can be combined by developers to create new applications as well. 

A high-quality API facilitates the development of applications by allowing different 
functionalities to be created independently while offering a complete set of capabilities for 
development. 

1.1.1  Business drivers of APIs 

The development of the cloud, cognitive computing, mobile devices, and mobile apps along 
with the creation of the Internet of Things (IoT) is changing the way organizations plan and 
operate, both internally and externally. 

Figure 1-1 shows how in today’s world there is a rapidly growing ecosystem of interconnected 
devices that require APIs to consume business functions. Applications in cars, appliances, 
smartphones, gaming consoles, and other devices all communicate with back-end business 
functions through APIs. 

Figure 1-1   APIs are enabling digital integration
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The interconnected revolution is here today. The following examples are already using API to 
enable this digital integration:

� Refrigerators can tell manufacturer services systems when maintenance is required.

� Cars can do the same with routine maintenance notification.

� Smart electric meters can provide usage and consumption information to the utility 
company. 

Mobile devices, sensors, and data sources are forcing organizations to continually evaluate 
how and on what platforms they need to conduct business. The interconnected global 
economy ensures a continual pressure on businesses to develop new innovations to increase 
the productivity of existing assets and to differentiate themselves from their competitors in the 
market. Collaborating with partner organizations and other businesses requires a quick and 
efficient means to collaborate. Businesses are also under pressure to expand their presence 
on a range of platforms, such as websites, mobile apps, social media, connected devices, 
and other areas.

All these developments are driving businesses to embrace APIs, which can help transform 
the way digital services are created, developed, managed, and secured. APIs provide 
businesses the flexibility in filtering the data and services to share and the ones to keep 
private. APIs allow sharing of business capabilities with external partners and drive 
innovation. Standardized interfaces of APIs provide for access to a multitude of devices and 
services and a host of different audiences. The desire of businesses for increased integration 
of various business data and record systems is in part satisfied through APIs. The IoT 
revolution, the explosion of mobile and social, along with the growth of the cloud have all 
driven APIs to the forefront of business strategy.

API-enabled mobile payments account for 21% of transactions at Starbucks1 and contributed 
to the growth in its U.S. customer base by 28% year over year. In 2012, PSA Peugeot Citroën 
introduced the Peugeot Connect Apps2 and Citroën Multicity Connect service platforms that 
improves the driving experience and makes vehicle data available to partners for a fee 
through the use of APIs. Citi group integrates rewards program with retailer partners over 
APIs by offering hackathons to drive innovation.3

1  http://www.geekwire.com/2015/mobile-payments-account-for-21-of-sales-at-starbucks-as-coffee-giant-ro
lls-out-new-technology/

2  http://www.peugeot.com/en/technology/connected-services/peugeot-connect-apps
3  http://www.citimobilechallenge.com/apis/
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Figure 1-2 illustrates the enterprise digital transformation.

Figure 1-2   Enterprise digital transformation

1.1.2  Innovation with APIs

An API platform accelerates innovation by opening up business assets manifested in existing 
systems. Figure 1-3 on page 5 shows the enterprise digital transformation using APIs.

Key business functionality can be exposed as APIs and later published on a self-service 
portal to be used by developers of digital applications that consume those APIs. APIs expose 
the enterprise assets to new channels and audiences and enrich the customer experience 
into integrated omnichannel interactions. For example, businesses with traditional retail stores 
can now develop applications built with APIs to sell and deliver products via mobile apps on a 
smartphone.

APIs enable innovating new business models that would not be otherwise possible without 
API adoption. An API platform provides a layer of controlled, secure, and self-service access 
to core business assets. Businesses with leadership in this API space have the complete 
advantage of being able to innovate differentiating digital applications compared to others in 
the market. The idea is to let businesses reinvent their traditional business and to allow them 
to expand their reach to new customers through multiple channels.

Key takeaway: Not having an API today can be compared to not having a website in the 
90s.
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Figure 1-3   Innovation via APIs

APIs that businesses expose allow new partnerships and collaboration to occur. The business 
shares certain assets with developers in order to speed up development of new applications 
that can provide the business with new market and revenue opportunities. APIs allow for data 
and documentation to be shared in a secure fashion. Publicly available APIs allow businesses 
to work with highly-skilled developers who are external to the business and can provide great 
value in marketing and visibility for the business. APIs also allow businesses to offer targeted 
products and services to specialized and niche markets.

1.1.3  Generic API use cases

Most APIs are specifically designed and targeted for a particular set of business functions or 
requirements. However, the following example generic API use cases are also possible:

� Managing essential records, documents, and files

� Providing omnichannel access to business information to accelerate internal app 
development

� Centrally managing the consumption of business logic, across the enterprise, for both 
Systems of Record and Systems of Engagement applications

� Collaborating with business partners on specific projects

� Creating and powering mobile applications and connected devices through Internet of 
Things applications

� Sharing APIs with the public

Key takeaway: APIs should be treated like products, with the appropriate level of 
marketing, sales, and support. APIs help in driving the business brand. For example, the 
vast majority of Twitter traffic occurs through APIs, and Twitter is synonymous with API 
usage in the technical rank.
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� Offering secure services via the cloud

� Providing new revenue streams of business services and data

1.2  Classification of APIs 

APIs are classified as external (public), partner (protected) and internal (private), based on 
how they are consumed. Figure 1-4 shows these different kinds of APIs.

Figure 1-4   Types of APIs based on the consumer
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some of its data and services. 

1.2.2  Partner APIs

These APIs are open to select business partners of a company. They are specifically 
designed for partners to be able to access business functions in context to the business 
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1.2.3  Internal APIs

Organizations use APIs internally or privately to develop new ways of operating and 
managing their business. These internal APIs can be developed to more efficiently process 
internal documents, manage processes, share information, account for assets, and other 
business processes in order to drive increased productivity. Businesses also use internal 
APIs to build publicly available applications.

1.3  Considerations before launching APIs

Before launching APIs, the API provider should carefully consider the following points:

� Objective of API: Have a clear objective and business plan with an API strategy and how 
the API will enable the success of the business.

� Legal conditions related to APIs: What are the terms and conditions of API usage? How 
do the providers and consumers protect themselves from Intellectual Property 
infringement?

� Business assets to expose through APIs: What business functions should be made 
available and at what level of granularity?

� Technical considerations:

– What is involved in the creation of APIs? Usually, this will involve the notion of 
assembly: how will an API fetch or transform information, what is the intent 
(rationalization) for the API, and what purpose does it serve? Does the API require 
calling out to other APIs to transform data? Or does it fetch a special security 
credential? 

– How is the API consumed? How do developers discover the API? Is the API listed in a 
catalog? What are the access rights for discovering the API? Is the API usually 
consumed as part of a larger composition of APIs that all provide some distinct 
functionality? How is the API deployed, versioned, or both? How do we communicate 
this information to others? 

Consider the business definition and also the technical architecture of an API before launch.

1.4  API business monetization models

There are several types of pricing models for APIs in order to monetize the value of APIs. 
Selecting the appropriate pricing model for an API requires an analysis of the end purpose of 
the API, which can include revenue generation, marketing, building relationships for the 
organization, or other goals. Some pricing models for APIs are free, indirect, paid by 
developer, or paid to developer.

Note: Internal APIs are the predominant category of APIs, as most APIs start privately 
inside organizations and later evolve for public or partner access with some rules and 
restrictions. 
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Figure 1-5 shows various pricing models of the APIs.

Figure 1-5   Business pricing models

1.4.1  API monetization model: For free
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work with and test the API at no cost. Free APIs allow developers to become familiar with the 
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analytics, which are attractive to developers and are not easily available from other sources.

1.4.3  API monetization model: Developer gets paid

APIs where the developer gets paid allow for an incentive to drive innovation and further 
development of the capabilities of the API. Developers build in more functionality and apps 
using the API and then receive payment for their work. These apps can include marketing 
messages that are incorporated into the content of applications developed with the API.
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Key takeaway: It is important to understand and develop the business model for the APIs 
brought to the market. API providers might allow developers to try the API and execute 
their tests at no cost but later charge based on other consumption criteria.
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1.4.4  API monetization model: Indirect

In an indirect API pricing model, there is no payment exchanged between the API provider 
and developers, but both parties benefit in other ways, such as increased awareness of the 
brand or by relationship and reputation building.

1.5  API lifecyle

The API lifecycle consists of four main components related to API management which 
includes creating, running, managing, and securing APIs. Each one of these components is 
critical to the successful development, deployment, and ongoing management of APIs. The 
API lifecycle provides the foundation of an API strategy. 

1.5.1  Creating APIs

Creating APIs involves developing and writing API definition and implementation, identifying 
and debugging defects, and submitting the code and application through testing to ensure the 
functionalities work as required.

1.5.2  Running APIs

Running APIs involves staging, packaging, and publishing the API. The API providers and 
developers ensure the API is hosted on a secure and stable platform so that it can be reliably 
accessed with high availability. 

1.5.3  Managing APIs

Key aspects of API management include the set of rules and conditions that govern the API; 
where, how, and with whom the API is shared; and if the API is meeting its stated purpose. 
Managing APIs also includes retiring and archiving the API at the appropriate time. 
Successful API management tracks and monitors these areas and makes adjustments 
accordingly to ensure the effective use of the API.

1.5.4  Securing APIs

Securing APIs can sometimes be overlooked in the API lifecycle, but it is a vital component to 
ensuring the smooth operation of APIs and maintaining the confidence and trust of the API 
audience. Access control, monitoring, and logging are necessary functions of properly 
securing an API.

Key takeaway: In an effective API Management program, all components of the lifecycle 
should be integrated and aware of each other; Changes in one stage of the API lifecycle 
should be automatically reflected in other components.
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1.6  API strategy

Businesses might consider the following elements to include in their API strategy:

� Accelerating in-house development by availing business functionality as a reusable set of 
APIs for self-service consumption.

� Providing secure and controlled access to APIs from digital applications in a Hybrid Cloud 
environment where the likes of mobile or IoT apps on a public cloud consume exposed 
APIs.

� Extending outreach to a wider community of external developers and partners by forming 
an ecosystem, which allows for publishing and consuming APIs beyond business 
boundaries. 

� Monetizing existing and new data and algorithms while enabling new business models.

To adopt an API strategy, a business needs to have a comprehensive API management 
platform to support the lifecycle of APIs. This strategy includes creating and testing APIs and 
connecting their implementation code to back-end systems. It also includes securing access 
to those APIs and managing them in production, whether they are accessed from a system of 
engagement kind of application, system of record (SOR), or other type of application. These 
steps are in addition to making the APIs available on a self-service Developer Portal for 
application developers to use them.

Figure 1-6 shows the main steps of an API strategy.

Figure 1-6   Main steps of an API strategy

An API strategy also involves making the argument to non-technical stakeholders as to why 
APIs are vital for businesses to invest in and develop. APIs help businesses build mobile 
apps, which are now integral to reaching consumers on their mobile devices. Working with 
business partners on shared projects is made easier and more efficient when both teams are 
able to build apps by sharing an API. Developing and sharing APIs allows businesses to have 
increased flexibility in distributing data and allowing access to their services and products. 
APIs allow business to properly scale their data and services to meet the demands of the 
intended audiences. APIs provide businesses with dynamic capabilities that can be used in 
various ways to provide value to the business.
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1.7  API economy

The previous sections in this chapter provided an explanation on the role of APIs in the digital 
world. APIs, the API lifecycle, API business drivers, the business value of APIs, and API 
strategy along with app developers, businesses, and consumers are the various components 
of something much larger called the API economy.

The API economy is an interconnected and fast moving system of innovation and iteration 
where businesses securely provide and share digital assets and services to a range of 
partners and customers. New technologies are disrupting the traditional methods of doing 
business, and leading organizations to reconsider how they conduct transactions with other 
organizations and customers.

The API economy involves increasingly complex interactions that are connecting businesses 
to customers, services, and data through applications. Security is a critical component of the 
API economy, as it facilitates the protection of exchanging data and services between 
business, developers, and customers. Businesses large and small are participants in the API 
economy, and new entrants are joining the system all the time. Competition, collaboration, 
and innovation have a continual presence in the API economy as APIs provide a quick and 
efficient platform to create connections between customer facing systems and back-end 
business assets, which can lead to new revenue sources. 

The term API economy refers to the opportunities associated with productizing the exposure 
of business functions as APIs. Consider that an API is a consumable product, and you need 
to market and position the product correctly for maximum profit. API economy deals with the 
additional channel opportunities that are associated with the proper exposure of your 
consumable business functions.

Let’s take an example to make this clearer. If you are a credit reporting agency and you 
produce an API that establishes credit scores and facts regarding a consumer's credit history, 
then many banks, loan companies, insurance companies, and solicitation companies would 
be more than happy to use (consume) your API for money. It provides them with the ability to 
perform the API functions, yet avoid having to develop and maintain their own API functions. 
In addition, they can easily disconnect yours if a better one comes along. This function is the 
differentiator for APIs in an API economy—the ability to quickly subscribe or unsubscribe to 
business functionality. It makes businesses more agile by driving a healthy competition for the 
business function. 

APIs link data, applications, services, and entire systems together to reuse existing assets 
and integrate new capabilities. APIs allow for fast moving connections to be built and enable 
the creation of interfaces between applications and systems so that services can be ready to 
deploy to the market faster than traditional development methods. 

1.7.1  Key roles in the API economy

The API economy has several integral roles, including app developers, business users, and IT 
personnel. Although there are additional roles, such as consumers, users, and business 
partners, these three roles are the most closely aligned with work that is related to developing 
and building APIs. 
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Figure 1-7 illustrates the three key roles in the API economy.

Figure 1-7   Three key roles in the API economy

These key roles are defined as follows:

� App developers create new applications and modify existing ones. App developers work 
for many organizations and work to build apps, both publicly and privately, via their 
knowledge of web programming languages, such as Node.js. App developers can be 
internal to a business, external, or business partners. 

� Business users understand the value of sharing assets and services in order to reach new 
markets.

� IT personnel work to integrate existing business systems, services, and assets with new 
applications and services of the API economy. The integration rate of change in the API 
economy is a tall order for some IT personnel. Continual training, education, and 
information sharing is vital in order for IT personnel to understand the value and need to 
adapt in the API economy. Sharing information via public APIs might be a new way to 
work.

1.7.2  API economy supply chain

The API economy supply chain focuses on several core components, which are business 
assets, APIs, developers, apps, and users. These components contribute a range of qualities 
to APIs, and together form an interconnected system that enhances the value of APIs to 
business, their business partners, and their customers. The API economy supply chain is a 
visual representation of the different components of the API lifecycle and development 
process.

Figure 1-8 shows the API economy supply chain.

Figure 1-8   API economy supply chain 
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The API economy supply chain has the following components:

� Business assets in an API supply chain are the services the business chooses to expose to 
developers via APIs. These assets might include anything from inventory and pricing data 
to movie schedules to social media content.

� Web APIs are APIs made available by the API Provider that form that platform to connect 
developers to the business assets, such as services, and data.

� Developers are the technical experts who utilize APIs to develop applications and services 
via a programming language, such as Node.js.

� Applications are programs that are created by developers using the business services and 
assets and are built on APIs.

� Users are consumers who use the apps created by developers.

1.8  What makes an effective API design

APIs are excellent platforms for collaboration and innovation. APIs are the foundation for 
many web and mobile applications. Effective and high quality APIs share several traits that 
allow them to be successful, including ease of use, version support and documentation, and 
being properly aligned with the target audience.

1.8.1  Ease of use 

APIs with a good design are easy to learn and work with so that new users are able to quickly 
understand the operating governance structure. If an API presents a developer with a 
significant learning curve, there will be challenges with keeping the developer engaged and 
willing to continue to invest their time and energy to build applications. Ease of use is critical 
to widespread utilization and adoption of an API.

1.8.2  Version support and documentation

High quality APIs have extensive and accessible documentation to aid developers as they 
work with the API. The documentation is updated and made available as new versions are 
released. 

1.8.3  Aligned with the audience

APIs with a good design are aligned with their targeted audience. They have the correct 
interface type for the stated purpose, such as Representational State Transfer (REST) or 
SOAP and allow developers to use the API for the intended end goal and within the 
requirements. APIs must be built with the scale of the possible audience taken into account. If 
the proposed business service needs to handle thousands of users versus millions of users, 
the APIs have to be built to handle the possible load.

Note: In this context, ease of use means having easy to use interfaces and does not 
necessarily mean that implementation is easy. The implementation of an API is transparent 
to the consumers, so they don’t need to learn the implementation.

Note: For a discussion on key concepts for designing a REST, refer to Chapter 4, 
“Principals of good API design” on page 47.
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1.9  Summary

This chapter provided an overview of APIs, their characteristics, business value, lifecycle, and 
strategy. These aspects of APIs are all present in the API economy, which is a dynamic 
exchange of interactions and transactions of services, assets, data, and ideas between 
developers, businesses, and consumers. 

APIs are a platform for innovation and the development of applications and services to build 
new connections between business, services, developers, and consumers and to create new 
streams of information sharing and revenue. 

The API economy presents challenges and opportunities to businesses large and small, 
established and newly formed. APIs help create new opportunities for market growth and 
exposure as well as a platform to collaborate and drive innovation. The API economy will 
continue to evolve and grow in the years ahead with the growth of cloud computing and 
cognitive systems.
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Chapter 2. API, microservices, and API 
management

This chapter provides conceptual overview on API, microservices and API management. It 
highlights how microservices enable the development of APIs. 

This chapter includes the following sections:

� 2.1, “API concepts” on page 16
� 2.2, “Microservices concepts” on page 18
� 2.3, “API management platform concepts” on page 21
� 2.4, “Summary” on page 28
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2.1  API concepts

Historically APIs used to be mean low-level programming code interfaces—generally a set of 
routines, protocols, and tools for building software. An API specified how the software 
components integrate and communicate with each other. 

In recent years, the term has been reappropriated to mean simple interfaces provided over 
HTTP. Typically, it equates to REST interfaces, which provide data by using the JSON data 
format (sometimes XML) and the HTTP verbs PUT, GET, POST, and DELETE to depict create, 
read, update, and delete actions. These protocols and data formats are simpler to use than 
the web services standards based on SOAP that were more prevalent in early 
service-oriented architecture (SOA). Also, they are more suited to such languages as 
JavaScript that are commonly used when making API requests.

In SOA programs, service exposure was about exposing each business function so that it 
could be reused as much as possible. This way, each new project didn’t have to go through 
the pain of performing integration to the back-end system again. The typical consumers were 
internal applications that attempted to put fresh user interfaces onto older systems of record. 
At the time, integration was difficult and took a significant portion of an IT project’s budget. If 
IT providers could make all of the core functions of the company available over reusable 
interfaces, IT could significantly cut project costs. SOA was about cost saving, not generating 
new revenue.

APIs have a different starting point, with the assumption that integration was already 
simplified. This simplification occurred either through an earlier SOA initiative or by upgrading 
back-end systems to provide more ready-to-use modern interfaces. The new challenge is to 
craft an appealing interface to potential consumers. APIs are designed for the context in 
which they are likely to be used. For example, they are ideally suited to provide the data that 
is required by a particular type of mobile application. Figure 2-1 on page 17 shows how 
systems of record can be exposed to external and internal customers using APIs.

The API gateway sits between the clients and the back-end services and provides APIs that 
are tailored for the clients. The API gateway is principally about hiding technological 
complexity (for example, connectivity to a mainframe) versus interface complexity. Informally, 
an API gateway is a facade. However, a facade provides a uniform view of complex internal 
workings to external clients, whereas an API gateway provides a uniform view of external 
resources to the internals of an application.

Much like the facade design pattern, the API gateway provides a simplified interface to the 
clients, making the services easier to use, understand, and test. This simplified interface 
allows it to provide different levels of granularity to desktop and browser clients. The API 
gateway might provide coarse-grained APIs to mobile clients and fine-grained APIs to 
desktop clients that might use a high-performance network.
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Figure 2-1   Exposing APIs externally and internally

2.1.1  REST API

REST is an architectural style for connected applications, primarily used to build web services 
that are lightweight, maintainable, and scalable. A service based on REST is called a RESTful 
service. REST is not dependent on any protocol, but almost every RESTful service uses 
HTTP as its underlying protocol.

REST is often used for web applications as a way to allow resources to communicate by 
exchanging information. If you consider the web as an application platform, REST enables 
you to have applications that are loosely coupled, can be scaled and provide functionality 
across services.

Over the past decade, REST has emerged as a predominant web service design model, and 
almost every major development language includes frameworks for building RESTful web 
services. The REST APIs use HTTP verbs to act on a resource. The API establishes a 
mapping between CREATE, READ, UPDATE, and DELETE operations, and the corresponding POST, 
GET, PUT, and DELETE HTTP actions.

The RESTful interface focuses on the components roles and resources and ignores their 
internal implementation details. Requests are sent to a server that is component-aware, 
which masks the intricate details from the users. The interactions must be stateless, because 
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the requests might travel between layered intermediaries between the original client agent 
and the server.

These intermediaries might be proxies or gateways, and sometimes cache the information. A 
constraint exists with REST that requires stateless communication. Every request should 
contain all of the information that is required to interpret that request. This increases the 
visibility, reliability, and scalability but also decreases performance because of the larger 
messages required for stateless communication.

Figure 2-2 provides a simple overview of REST architecture and shows how intermediary 
proxies, gateways, and the REST server can cache information.

Figure 2-2   REST architecture with intermediary caches

Figure 2-2 shows how one or more proxies or gateways can exist between the client agent 
that is requesting the information and the server. The responses must have a mechanism to 
define themselves as cacheable or non-cacheable. Well-managed caching improves the 
scalability and performance of a RESTful service. Because REST is designed around a 
request/response model, if the wanted response is not available, the application needs to do 
the call again later. In some cases, this repetition can lead to frequent polling by the 
application.

2.2  Microservices concepts

Microservices are an alternative architecture of building applications. Microservices offer a 
better way to decouple components within an application boundary.

Figure 2-3 on page 19 shows the difference between a monolithic application and a 
microservice application. The boundaries of the application remain the same despite being 
broken down components on the inside. The application might still look the same from the 
outside. The number and granularity of APIs that a microservice-based application exposes 
should not be any different than if the API was built as a siloed application. The prefix micro in 
microservice refers to the granularity of the internal components, not the granularity of the 
exposed interfaces.
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Figure 2-3   Monolithic versus microservices application

Logically separating components within an application is not new. A host of different 
technologies has been developed over the years to enable clean separation of the parts of an 
overall application. Application servers can run multiple application components within them 
for a long time, as shown by the middle image in Figure 2-4. Microservices go one step 
further by making the isolation between those application components absolute. They 
become separately running processes in the network, as shown on the right side in 
Figure 2-4. To achieve decoupling, also partition your data model to align with the 
microservices.

Figure 2-4   Monolithic and microservices application
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Figure 2-5 shows differences between monolithic and microservices architecture.

Figure 2-5   Monolithic versus microservices architecture

2.2.1  Benefits of microservices

Fully independent microservice components enable completely autonomous ownership, 
resulting in the following benefits:

� Agility and productivity

The team that is developing the microservice can completely understand the codebase. 
They can build, deploy, and test it independently of other components in much faster 
iteration cycles. Because the microservice component is simply another component in the 
network, you can write it in the best-suited language or framework for the required 
functionality and the most appropriate persistence mechanism. This approach can 
significantly reduce the amount of code to write and make it dramatically simpler to 
maintain. It ensures that teams can take on new technologies or versions of existing 
technology as needed rather than waiting for the rest of the application domain to catch 
up. For some definitions of microservice granularity, a microservice component should be 
simple enough that it can be rewritten in its next iteration if it makes sense to do so.

� Scalability

The microservices development team can scale the component at run time independently 
of other microservice components, enabling efficient use of resources and rapid reaction 
to changes in workload. In theory, the workload of a component can be moved to the most 
appropriate infrastructure for the task. It can also be relocated independently of the rest of 
the components to take advantage of network positioning. Well-written microservices offer 
extraordinary on-demand scalability, which was demonstrated by early innovators and 
adopters in this space. These microservices are also best placed to take advantage of the 
elastic capabilities of cloud-native environments that have cost-effective access to 
enormous resources.

� Resilience

The separate run time immediately provides resilience that is independent of failures in 
other components. With a carefully decoupled design, such as avoiding synchronous 
dependencies and using circuit breaker patterns, each microservice component can be 
written to satisfy its own availability requirements without imposing those requirements 
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across the application domain. Technologies, such as containers, and lightweight run 
times have enabled microservice components to fail quickly and independently, instead of 
taking down whole areas of unrelated functionality. Equally, they are written in a highly 
stateless fashion so that they can immediately redistribute workloads and almost 
instantaneously start new run times.

So now we can differentiate that microservices architecture is an alternative way for 
structuring applications, and APIs provide a way to expose the functions of applications as 
more readily accessible for the businesses to gain value out of the data. Although these two 
concepts can sometimes sound confusing, in reality the microservices application helps the 
agility, scalability, and resiliency of the API.

2.3  API management platform concepts

An API management platform is the embodiment of a fourth architectural layer that brokers 
the businesses core capabilities, data, and services with the digital application ecosystem, 
which channels those capabilities into new and novel business models. A superior API 
management platform provides a comprehensive set of capabilities to cover the entire 
lifecycle of an API, from its creation to deployment and management. It should be an 
integrated creation, run time, management, and security foundation for both business grade 
APIs to expose core business assets and microservices to power modern digital application.

The key capabilities for an API management platform include but are not limited to:

� Automated, visual and coding options for creating APIs: A set of tooling to rapidly design, 
model, develop, test, and deploy APIs in an automated continuous delivery model.

� Polyglot runtime support for creating microservices: Polyglot runtime support is key to 
enable innovation and agility within different programming models required by different use 
case scenarios. Support for Node.js and Java runtimes among others is essential.

� Integrated enterprise grade clustering, management and security for polyglot runtimes: 
SLA in an API Management is backed by platform characteristics, such as performance, 
scalability, load balancing, and failover.

� Lifecycle and governance for APIs, Products and Plans: Productizing the APIs, packaging 
and cataloging them, and tracking their lifecycle are all activities that will help the effective 
management and control of APIs as they are deployed.

� Access control over APIs, API Plans and API Products: Another key function for security 
is the managing the access to APIs at various levels of granularity involving users and 
user groups in a consumer or provider role.

� Advanced API usage analytics: Monitoring and analyzing API usage metrics from different 
user perspectives and roles helps in providing a feedback loop to the API owners and 
developers for future improvement.

� Customizable, self service Developer Portal for publishing APIs: Publishing and 
socializing the APIS through a user-friendly portal is crucial in promoting the access to 
your core business and to the market reach of your brand.

� Policy enforcement, security and control: A high performing and scalable API security 
gateway is imperative in any API management platform, mainly to protect access to your 
back-end systems.

Additional information: For more information about microservices architecture, refer to:

http://ibm.biz/MicroservicesVsSoa
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There are four major stakeholders in an API lifecycle, and any framework that addresses their 
individual concerns provides the comprehensiveness needed in an effective API 
management model:

� The application developer is the consumer of APIs. This person discovers and subscribes 
to the API that will be included in the business logic of the application. Some of the issues 
that the application developer must work with include:

– Where do I access APIs?
– How do I understand the APIs?
– How do I measure success of the application?

� The API developer is the creator of APIs. This person designs and implements the logic 
behind the API to deliver the proper data payload from the back-end business assets or 
services. Some of the issues that the API developer must work include:

– How do I design, model and assemble APIs?
– How do I manage security?
– Will the infrastructure scale?
– How do I measure performance of the API?

� The API owner/product manager is the designated owner of the API and the business 
asset that is exposed through that API. The API owner/product manager often deals with 
the following issues:

– How can I rapidly release and update my APIs?
– How do I publicize my API?
– How do I measure success of the product?

� The API IT operations lead is the IT owner of the API infrastructure, both the run time and 
management of the infrastructure. The person in this role often asks the following 
questions:

– How do I manage all the API Environments that are being requested?
– How can I scale each environment?
– How can I easily find and fix issues?

2.3.1  API management components

The lifecycle of an API includes the following key domains, each of which requires a rich set of 
capabilities:

� Create, which includes the development lifecycle, design, model, test, build, and deploy

� Run, which includes the performance, scalability, load, and resilience of the API runtime 
platform

� Manage, which includes the publishing, socializing, management, governance, and 
cataloging of APIs and the user management of API consumers and providers

This domain also covers the monitoring, collection, and analysis of API metrics.

� Secure, which includes the runtime security enforcement of APIs in terms of 
authentication, authorization, rate limits, encryption, and proxying of APIs
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Figure 2-6 illustrates the architectural components of API management platform.

Figure 2-6   Architectural components of API management

There are at least six major components to an effective API management platform. Two of 
them are solid and resilient runtime components, and the other four are UI components that 
address the needs of the stakeholders personas described in previous section:

� The developer toolkit is an SDK for API developers to model, create, and test APIs locally 
and use Cloud DevOps services to automate API build-deploy tasks.

� The microservices polyglot run time executes API and microservices business logic in 
different programming models, for example Node and Java. This run time usually includes 
a UI console for IT operations staff to perform unified ops and management across the 
runtime instances.

� The API management component enables API owners, API developers, and business 
users to catalog, package and publish APIs to the Developer Portal.

� The API gateway component enforces runtime policies to secure and control API traffic.

� The API analytics visualization is usually a UI tool for API owners and developers to 
obtain dashboard views of API usage metrics for monitoring and analytics purposes.

� The Developer Portal is a web interface for app developers to discover APIs published by 
API owners and subscribe to use them in digital applications.
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Figure 2-7 illustrates these API management platform components.

Figure 2-7   Components of API management platform

2.3.2  API management platform component description

This section describes the components of an API management platform.

API developer toolkit
The API developer toolkit provides the development environment for creating APIs and 
defining the characteristics of the API exposure. The API provider developer can create and 
configure APIs with the developer toolkit. The API developer toolkit provides the following 
capabilities:

� Develop and compose APIs
� Connect APIs to data sources
� Build deploy and scale APIs
� Monitor and debug APIs

API runtime server
The API runtime server is a collection of polygot runtime environments created for APIs that 
have an integrated management console. API runtime servers provide the following 
capabilities:

� Unified polygot API execution environments
� Provision system resources
� Monitor runtime health
� Scale the environment
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API management server
The API management server manages the operations of the various servers in the API 
management platform. The management server also provides analytic functions that collect 
and store information about APIs and API users. API management server provides the 
following capabilities:

� API, plan, product, policy creation
� API production versioning and lifecycle management
� API monitoring and analytics
� Subscription and community management

API gateway
The API gateway processes and manages security protocols and stores relevant user and 
appliance authentication data. The gateway servers also provide assembly functions that 
enable APIs to integrate with various endpoints, such as databases or HTTP-based 
endpoints. The API gateway provides the following capabilities:

� API policy enforcement
� Enterprise security
� Traffic control
� Workload optimization
� Monitoring and analytics collection

API analytics visualization
API analytics visualization is a UI console where API developers and API owners have 
access to obtain analytics and metrics based on API usage, runtime performance, and other 
patterns. API analytics visualization provides the following capabilities:

� Visual dashboard and reporting
� Reports creation

Developers Portal server
The Developer Portal server enables API providers to build a customized Developer Portal for 
application developers. It is a portal where you can publish APIs to encourage the 
development of new applications to extend the value of core enterprise assets. The Developer 
Portal server provides the following capabilities:

� API discovery
� Self-service app Developer Portal
� Clustering capability
� Branding and customization
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2.3.3  API management architectural components interaction

Figure 2-7 on page 24 showed the architectural components of API management platform. 
Figure 2-8 shows the interactions between these components. Note that this scenario is 
applicable for on-premises installations.

Figure 2-8   API management architectural components interaction

Interactions are categorized into the following categories:

� Design time interactions
� Runtime interactions

Refer to Figure 2-8 for the explanations in the numbered lists that follow.

Design time interactions include:

1. The API developer signs on to the API management cloud services to:

– Access the API Designer or developer toolkit.
– Create the API and implements business logic.

2. The API developer maps and integrates the API data model to the back-end schema.

3. The API developer tests and deploys the API to the run time and publishes to API 
management platform.

4. The API owner signs on to API management cloud services to:

– Access the API management console.

5. The API owner includes the API endpoint to existing API products and plans and specifies 
access control.

6. The API owner publishes the API to the Developer Portal for external discovery.
26 Getting Started with IBM API Connect: Concepts and Architecture Guide



7. The App developer accesses the Developer Portal to:

– Search and discover the API.

8. The App developer uses the API in the app and deploys the app to the device.

Runtime time interactions include:

9. The device user opens the app, which issues the API request.

10.The API request is handled by the API gateway, which performs load balancing and 
security validation for all API requests.

11.The API gateway validates access policies with API management.

12.The API gateway invokes the API.

13.The API run time executes the API and obtains the data payload from the back-end 
system.

14.The API response is sent back to the API gateway.

15.The API gateway forwards the response to the calling app.

16.The API gateway reports usage metrics and analytics to the API management.

17.The API developers and API owners can log on the to the API analytics visualization 
component to view dashboards on API usage metrics and other analytics. IT operations 
log on to the Polyglot run time console to monitor and manage the API runtime 
environments. 

2.3.4  API management and security

Security is enforced by the API gateway component. In that role, the API gateway applies 
configured policies to all traffic, including authentication, authorization, traffic management, 
routing, and other types of policies.

Encryption support
To increase mobile and API security for protecting mission-critical transactions, the API 
gateway provides JSON encryption, JSON signature, JSON key, and JSON token. It also 
protects mission-critical applications from security vulnerabilities with enhanced TLS protocol 
support using Elliptic Curve Cryptography, Server Name Indication, and Perfect Forward 
Secrecy.

Policy authoring
To simplify policy authoring, you can use API gateway pre-configured policies to enable quick 
delivery of gateway capabilities without any custom policy authoring or coding.

Open standards
From an openness standpoint, the API gateway provides flexible user authentication for single 
sign-on (SSO) to web, mobile, and API workloads using social (for example Google) or 
enterprise identities based on OpenID connect.

OAuth support
The API gateway supports OAuth. When the API developer creates an OAuth security 
definition in an API, the API developer provides settings for controlling access to the API 
operations through the OAuth authorization standard. OAuth is a token-based authorization 
protocol that allows third-party websites or applications to access user data without requiring 
the user to share personal information.
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2.4  Summary

This chapter provided a conceptual overview of API, microservices, and the API management 
platform, its components, and their interactions.
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Chapter 3. IBM API Connect overview and 
offerings

This chapter provides an overview of the IBM API Connect offering and a description of the 
strategy behind IBM API Connect. The various API Connection offerings are described, as 
well as the API Connect Deployment options.

This chapter includes the following sections:

� 3.1, “IBM API Connect overview” on page 30
� 3.2, “IBM API Connect architecture and strategy” on page 36
� 3.3, “API Connect offerings” on page 37
� 3.4, “API Connect deployment options” on page 41
� 3.5, “API reference use cases” on page 43
� 3.6, “Summary” on page 45

3

Additional reference: For more information about API Connect, refer to IBM Knowledge 
Center at:

http://www.ibm.com/support/knowledgecenter/SSFS6T/mapfiles/getting_started_blue
mix.html
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3.1  IBM API Connect overview

IBM API Connect is a cohesive application programming interface (API) operational platform 
that you can use to create, run, manage, and secure complex APIs and microservices that 
drive web and mobile applications. The API Connect platform includes features that help 
developers, businesses, and business partners develop and manage APIs. API Connect 
offers analytics, Node.js and Java support, a system of governing APIs, capabilities for 
customizing and publishing APIs, security, and many more additional capabilities. 

API Connect allows stakeholders to work together to develop and manage the entire API 
lifecycle from one foundational platform. The API Connect offering provides businesses with 
the tools to use existing assets and services to create new applications and to open new 
revenue streams.

3.1.1  API management with API Connect

The API economy moves at a rapid pace, where innovative new technologies and ideas are 
introduced on a continual basis. Business and organizations of all sizes are participating in 
the API economy as it provides new pathways to offering products and services to a wider 
and more diverse audience. 

API Connect is the IBM comprehensive platform for API management. This platform 
combines all the integral components of the API lifecycle into one management console for 
businesses to share the assets, services, and data that they choose with public developers, to 
collaborate with partners on new business solutions, and to build applications to increase the 
efficiency of business operations.

API Connect provides businesses with a platform to drive both internal and external 
innovation and application development. Effectively creating, running, managing, and 
securing both new and existing APIs with API Connect allows businesses to compete and 
gain an advantage other players that have not adapted to the realities of the API economy.

API Connect allows businesses to quickly get involved in the API economy, reduce 
development cycles, selectively share business assets and data with partners and the public, 
create secure applications, all while reducing costs and increasing flexibility of business 
assets and services.
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Figure 3-1 shows the components of API Connect for the lifecycle of API in the API 
management platform.

Figure 3-1   The components of API Connect in the API management platform

3.1.2  Capabilities of API Connect

API Connect allows you to manage the entire API lifecycle, from the initial development all the 
way through until the retirement of the application or service. You use an integrated visual tool 
to create API policy and secure traffic to the API without having to create code or interact with 
the gateway. With API Connect, you can also:

� Quickly create microservices
� Connect to data systems
� Gain access control over APIs, API plans, and products
� Provide API data analytics

API Connect also contains a service portal to publish local API creation and testing along with 
on cloud and on premise staging of APIs.

API Connect provides a custom Developer Portal along with advanced analytics. Enterprise 
security and quota management are additional components of API Connect.
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Figure 3-2 highlights the capabilities of API Connect platform.

Figure 3-2   Capabilities of API Connect platform
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3.1.3  API Connect personas

API Connect allows users to create, manage, publish, and stage APIs, which enables multiple 
users with different roles to be engaged in the solution. Figure 3-3 shows possible personas 
in the API management lifecycle.

Figure 3-3   API Connect personas and user roles 

User
The user or the consumer who is reflecting that why APIs are important. Alice, for example, is 
considered as a user who is using her mobile phone in her daily life and she is connected to 
everything. She can use the mobile to book flight tickets, check weather, do all her business 
and arrange her life. To do all these functions, she is using mobile applications which are 
interacting with real systems via APIs. The entry point to those APIs is through a system 
which has a gateway.

Application developer
The application developer (Andre) is responsible for building and developing new 
applications which will use the APIs whether it is public or private. Andre should be able to 
understand one or more programming languages to develop the application. Andre should 
also has the right permission to access those APIs on the Developer Portal and he also 
should be part of one or more communities with the appropriate access level.

Community manager
The community manager (Marsha) manages the relation between the API provider and API 
consumers. Marsha also supports application developers by answering questions, by 
providing information about how to use the API, and making the plans available. In addition, 
she inserts new feature to the Developer Portal or supports inserting special features.
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Lifecycle manager
The lifecycle manager (Jason) manages the deployment lifecycle. Jason is the interface 
between the API developer and the real published environment. He is also responsible for 
putting content directly on the production API system. Jason manages the actual scheduling 
of updates on the API portal to make sure that nothing wrong happened and the APIs have 
the right subscribers.

API developer
The API developer (Shavon) creates and configures APIs, products, and policies for provider 
organizations of which she is a member. She also builds the swagger interfaces for the 
published APIs.

Shavon develops the API implementation, the LoopBack® pieces, or connecting the internal 
systems through a gateway. The API Developer can be a member of one or more provider 
organizations. The API developer focuses on the technical implementation of APIs more than 
the business relationship with application developers.

Organization owner
The API product owner (Steve) decides the API capability to get surfaced and the kind of 
application to get supported, Steve also monitors the analytics dashboard to know which API 
is being used and which is having issues, what clients are coming to use the APIs, what 
features people are using.

The organization owner can also create and edit APIs, resources, products, developer 
organizations, users, identity providers, and catalogs.

Organization manager
The organization manager (Carol) boards user groups, enables Steve (the organization 
owner) and Shavon (the API developer) to get up and running by creating an organization 
inside API Connect. She is also responsible for looking at the infrastructure and boarding 
people. She can create and manage provider organizations for the cloud manager.

Cloud manager
The cloud manager (Will), or the infrastructure manager, plays the operations role. He keeps 
the on premises system up and running.

3.1.4  Features of API Connect to enable various personas

API Connect provides the following features for developers, business analysts, architects, and 
IT personnel:

� Developers: Provides enhanced developer productivity, higher quality systems of 
engagement applications, faster innovation and digital transformation, agility and usability, 
and improved manageability of APIs.

� Business analysts and architects: Provides enhanced brand value, digital team agility, 
manageability to innovate current business models and create new revenue streams with 
existing business assets and data, while lowering the cost of ownership and the effort 
needed for operations.

� IT personnel: Enables IT personnel to operate development, test, and production 
environments with the most cost effective mix of on-premise, IBM Bluemix, and external 
party cloud components. IT personnel can manage resources and secure access with API 
Connect to comply with business and regulatory rules and regulations.
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3.1.5  API Connect key features

API Connect is a complete solution that offers critical features that include the ability to:

� Create APIs and build microservices:

– Use StrongLoop® capabilities to allow the creation of microservices and APIs rapidly 
by using Node.js LoopBack and Express frameworks.

– Deliver a model-driven approach to API creation.

– Map models to back-end systems by using available connectors.

– Discover models from a database.

– Build, debug, profile, scale, and monitor Node.js applications.

� Engage with application developers through API portals that provide:

– API exploration

– Self-service sign up for rapid on-boarding

– Interactive API testing

– Application and key management

– Rate limit notification

– API usage analytics

� Define, publish, and analyze REST and SOAP APIs with:

– API discovery

– API security management

– API lifecycle management

� Establish API rate limits; publish to the Developer Portal and users; gain business insight 
through API analytics; and provide the capability to charge back developers for API usage.

� Manage the multi-tenant API environment to administer and scale system resources and 
monitor runtime health.

� Provide runtime policy enforcement by using a built-in gateway.

� Integrate all API Connect editions with IBM DataPower® Gateway with a minimum 
firmware level of Version 7.5. This capability enables DataPower to act as the API gateway 
to provide API security, traffic management, mediation, and optimization capabilities in a 
secure, highly consumable physical or virtual appliance.

3.1.6  API Connect unique differentiatiors

API Connect has several characteristics that differentiate it from other platforms. It is the only 
comprehensive solution that addresses all stages of the API lifecycle by addressing the 
needs of all stakeholders (LoBes, developers, and users). In addition, API Connect is part of 
an integrated offering of IBM products, services, and tools instead of a point solution. API 
Connect is the only solution offering that enables a willing enterprise to lay the foundation for 
a cognitive business as part of its overall digital transformation. It also enables enterprises to 
streamline and accelerate their journey into the API economy.
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3.2  IBM API Connect architecture and strategy

API Connect is an offering that reflects the following fundamental principles in the on-going 
digital application transformation that are powered by the social, mobile, analytics, security, 
and cognitive computing era:

� Choice with consistency
� Industrialized hybrid cloud 
� DevOps productivity
� Powerful, accessible analytics with cognitive capabilities

API Connect, which is built upon these guiding principles, provides the following capabilities:

� Receive requests, determine which services or applications in the systems of record 
(SOR) assets to invoke, and determine whether the user has the appropriate authority.

� Manage secure, controlled, and governed exposure of business APIs built from 
microservices to consumers.

� Advertise the available services endpoints to which the consumer applications have 
access and then provide API discovery, catalogs, and connection of offered APIs to 
service implementations and management capabilities, such as API versioning.

Additionally, API Connect features the following architectural elements:

� Create, deploy, run, scale, mediate, optimize, socialize, manage, govern, control, enforce, 
and secure new or existing microservices and APIs for the entire API lifecycle

� Polyglot runtimes of Node.js and Java for microservices and API creation using consistent 
and unified operations and management based on leading and emerging industry 
preferred practices and standards

� Omnichannel go-to-market, enabled strategy with modern, state-of-art, systems of 
engagement applications that are social, mobile, notebook, desktop, cloud channel based

� Consistent, rich, customized, context-aware, and compelling user experience centric 
omnichannel applications to integrate systems of engagement and SOR assets for digital 
transformation, on any device (desktop, notebook, tablet, smartphone, or IoT) at any 
location (on-premises or local, public, dedicated or hybrid cloud) in an always available 
consumption pattern

� Support for automation of API creation through introspection or discovery of SOR digital 
assets of data and service for seamless and integrated development of modern, stylish, 
rich, and responsive systems of engagement applications

� Availability of self-service consumption mode of delivery for enterprise, partner and 
third-party developer community
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API Connect contains several key components. Figure 3-4 shows details of the main 
components of the API Connect.

Figure 3-4   API Connect component view

There are two gateway options. A DataPower Gateway for enterprise level security, stability, 
and performance with a complete series of security management functions supports multiple 
catalogs per instance or cluster. A more basic option, the Micro Gateway is built for 
developers and single projects. It can be used with JavaScript and is built on Node.js with a 
basic series of security management functions. It supports a single catalog per instance or 
cluster.

API Connect helps integrate both services and microservices. Services can include SOR, 
data services, inner APIs, and system APIs. Microservices include systems of engagement, 
business services, outer APIs, and interaction APIs.

3.3  API Connect offerings

API Connect provides an excellent foundation to create, run, manage, and secure new or 
existing APIs and microservices in a hybrid deployment with Node.js and Java to power 
modern digital applications. The offerings are based on a consumption-based subscription 
model across customer managed and IBM-managed (Bluemix) environments.

Key takeaway: API Connect grows with your business needs. You can deploy it where you 
want and pay for what you use.
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Figure 3-5 shows the API Connect offerings targeted for different needs. 

Figure 3-5   API Connect offerings

As the tier of the offering increases, the levels of capability that it can offer also increase.

3.3.1  API Connect Essentials

The API Connect Essentials offering is designed for developers and is available at no charge. 
The offering has limited functionality compared to the two other offerings and has no IBM 
support. The Gateway that IBM Connect Essentials uses is the Micro Gateway.

Table 3-1 lists the features of the API Connect Essentials offering in relation to the API 
lifecycle.

Table 3-1   The API Connect Essentials offering features in relation to the API lifecycle

Important: The information in the sections that follow was valid at the time of writing the 
paper. For the most up-to-date information about API Connect offerings, refer to:

http://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.overview.d
oc/overview_rapic_offerings.html

API lifecycle API Connect Essentials (no charge)

Create � Auto generation of API models
� Visual API creation
� Single click build/package/deploy
� Basic connectors:
� REST, MySQL, PostgreSQL, MongoDB, Redis, Couchbase, IBM Cloudant®, 

Neo4j, Kafka, IBM z/OS® Connect, Whisk, Memory, Mail
� Advanced connectors for development and test
� OpenAPI (Swagger 2.0) support, ACL

Run � Node.js and Java compute instances
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3.3.2  API Connect Professional

The API Connect Professional offering builds on the capabilities that the API Connect 
Essentials offering provides and is suited to department-level environments. The level of 
functionality that is available in the API Connect Professional offering is greater than the API 
Connect Essentials offering but is limited in comparison to the IBM Connect Enterprise 
offering. IBM support is provided with this offering, which can be purchased with one of the 
following levels of support:

� A perpetual license is based on processor value units (PVUs) and includes subscription 
and support for 12 months with an unlimited number of API calls per month.

� A monthly subscription allows up to five million API calls per month and is designed for 
purchasing based on the need for limiting the number of API calls per month. An additional 
number of API calls can be purchased in blocks of 100,000 APIs call per month.

Table 3-2 lists the API Connect Professional offering features in relation to the API lifecycle.

Table 3-2   The API Connect Professional offering features in relation to the API lifecycle

Manage � API Manager (only one instance)
� Developer Portal (only one instance)
� REST and SOAP API support
� Policy Assembly UX
� Version and lifecyle management
� API discovery
� API analytics (limited)

Secure � Programmable Micro Gateway (only one instance)
� Programmable Micro Gateway (only one instance per catalog)
� HTTP 1.1, HTTPS 1.1
� REST API Proxy support
� SOAP API Proxy support
� Built-in policies supported by Micro Gateway:

� Client ID/Secret
� Basic Auth
� Basic rate limiting
� CORS
� Invoke (call service over HTTP)
� Set Variable
� JavaScript invoke

API lifecycle API Connect Essentials (no charge)

API lifecycle Professional

Create � All the functionality of IBM Connect Essentials
� Advanced connectors for development, test, or production that use:

� SOAP, IBM DB2®, Oracle, MS SQL, SAP HANA

Run � All of the functionality that IBM Connect Essentials possesses
� Basic clustering of Node.js and Java in a single data center
� Unified management via a single console

Manage � All the functionality of IBM Connect Essentials
� API Manager (up to two instances in a single data center)
� Developer Portal clustering (up to three instances in a single data center)
� API Manager (limited to installation in a single data center)
� Developer Portal clustering (limited to installation in a single data center)
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3.3.3  API Connect Enterprise

The API Connect Enterprise offering is ideal for teams with large projects that span the 
organization. It adds further capability to the API Connect Professional offering, provides the 
most functionality, and is aimed at enterprise-level environments. The greatest differentiatiors 
between this offering and the other offerings are that IBM Connect Enterprise provides 
advanced analytics and uses the DataPower Gateway.

This offering is available and can be purchased with one of the following levels of support:

� A perpetual license is based on PVUs and includes subscription and support for 12 
months with an unlimited number of API calls per month.

� A monthly subscription allows up to 25 million API calls per month and is designed for 
purchasing that is based on the need for limiting the number of API calls per month. An 
additional number of API calls can be purchased in blocks of 100,000 API calls per month.

Table 3-3 lists the API Connect Enterprise offering features in relation to the API lifecycle.

Table 3-3   The API Connect Enterprise offering features in relation to the API lifecycle

Secure � All the functionality of IBM Connect Essentials
� Micro Gateway (up to two instances in a single data center)
� Micro Gateway (limited to installation in a single data center)
� Basic rate limiting in a two instance Micro Gateway cluster

API lifecycle Professional

API lifecycle Enterprise

Create � All the functionality of IBM Connect Professional

Run � All the functionality of IBM Connect Professional
� Clustering in multiple data centers
� Java:

� Advance clustering (auto-scaling), Log analytics, health management

Manage � All the functionality of IBM Connect Professional
� In excess of three instances in a single data center
� Multiple data center deployments
� API analytics (full)

Secure � All the functionality of IBM Connect Professional
� DataPower Gateway Virtual:

� In excess of three instances in a single data center
� Multiple data center deployment
� API Management V4 parity

� Additional built-in policies supported by DataPower Gateway:
OAuth, Advanced rate limiting, Redaction, Map, Activity Log, REST 
validation, GatewayScript invoke, XSLT invoke, SOAP/XML schema 
validation, JSON to/from XML transform, Response caching

� Use exiting DataPower Gateway functionality as user-defined policies

Note: Each edition comes pre-entitled with a fixed quantity of microservices application 
compute. You can purchase entitlement to additional PVUs for microservices application 
compute for Node.js by ordering the part numbers for IBM API Connect Create for Node.js.
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3.4  API Connect deployment options

There are several ways to deploy API Connect for your team or organization. API Connect 
provides a set of API capabilities that can be deployed on-premises or used as an on-cloud 
offering as part of IBM Bluemix.

3.4.1  API Connect for IBM Bluemix

The API Connect for Bluemix solution comprises servers to manage and analyze APIs and to 
direct API traffic. Servers are grouped in clusters to load balance and isolate traffic. A cluster 
has a single network address through which you can access its capabilities.

With the infrastructure in place, organizations of users can create and consume APIs. Users 
can belong to one or more organizations and individually or collectively work on the APIs or 
applications that belong to the organization. The API Connect for Bluemix solution includes 
the following types of organizations:

� Provider organizations own APIs and associated products.
� Developer organizations own only applications.

Project teams, departments, and company divisions are all examples of groups of users that 
might be members of the same organization in the API Connect for Bluemix solution.

A collection of developer organizations is known as a community. Defining communities helps 
restrict the visibility and accessibility of APIs between groups, such as internal developers 
and business partners. When an API is published to a select community, only application 
developers who are part of the organization’s community can see the API on the Developer 
Portal and can obtain application keys to access it. It is possible to publish APIs to many 
communities at one time.

While developing and maintaining APIs, members of a provider organization can create 
separate deployment targets called catalogs for testing and production. Each contained 
catalog is associated with a specific Developer Portal and endpoints. A user with 
administrative privileges can restrict deployment access to a catalog and can require actions, 
such as approving deployment of new API versions.

After you create and test APIs, you publish one or more Products to expose an API on the 
Developer Portal. You include an API in a Plan, which is then contained in a Product. The 
Product is published to communities of application developers. Application developers gain 
access to APIs by registering applications to access Plans. You can specify policy settings to 
limit the use of the APIs exposed by the Plan. You can define a single quota policy that 
applies to all the API resources that are accessed through the Plan or separate quota policies 
for specific API resources.

You can define policies on API resources to configure capability, such as security, logging, 
and routing of requests to target services and transformation of data from one format to 
another. Such policies control aspects of processing in the gateway during the handling of an 
API invocation and are the building blocks of assembly flows.

Consult the following documentation for information about using API Connect for IBM 
Bluemix:

https://new-console.ng.bluemix.net/docs/services/apiconnect/index.html?pos=2
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Figure 3-6 shows the API Connect plans in IBM Bluemix.

Figure 3-6   API Connect plans in IBM Bluemix

3.4.2  API Connect for on-premises solution

API Connect for on-premise solution consists of one management server to manage and 
analyze APIs, one gateway server to direct API traffic, and a server to host the Developer 
Portal. You can gather a collection of management, gateway, and Developer Portal servers to 
create clusters to load balance and isolate traffic. A cluster has a single network address 
through which you can access its capabilities.

With the infrastructure in place, organizations of users can create and call APIs. Users can 
belong to one or more organizations and individually or collectively work on the APIs or 
applications that belong to the organization. The API Connect solution includes the following 
types of organizations:

� Provider organizations own APIs and associated products.
� Developer organizations own only applications.

Project teams, departments, and company divisions are all examples of groups of users that 
might be members of the same organization in the API Connect for on-premises solution.

When you publish an API, you can specify one or more developer organizations, thereby 
restricting visibility of the API. Only application developers in the specified organizations can 
see the API on the Developer Portal and obtain application keys to access it. An organization 
might represent a business partner or a group of internal developers. You can also group 
developer organizations into communities and then publish an API to one or more 
communities, rather than specifying the organizations separately.

While developing and maintaining APIs, members of a provider organization can create 
separate deployment targets called catalogs for testing and production. Each contained 
catalog is associated with a specific Developer Portal and endpoints. A user with 
administrative privileges can restrict deployment access to a catalog and require actions, 
such as approving deployment of new API versions.

After you create and test APIs, you publish one or more Products to expose an API on the 
Developer Portal. You include an API in a Plan, which is contained in a Product. The Product 
is published to communities of application developers. Application developers gain access to 
APIs by registering applications to access Plans. You can specify policy settings to limit the 
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usage of the APIs exposed by the Plan. You can define a single quota policy that applies to all 
the API resources accessed through the Plan or separate quota policies for specific API 
resources.

You can define policies on API resources to configure capability, such as security, logging, 
and routing of requests to target services and transformation of data from one format to 
another. Such policies control aspects of processing in the gateway during the handling of an 
API invocation and are the building blocks of assembly flows.

Consult the following documentation for information about using API Connect for on-premise 
solution:

http://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/com.ibm.apic.overview.doc/
overview_apimgmt_about.html

3.5  API reference use cases

This section describes various API reference use cases.

3.5.1  Reference use case 1: European auto manufacturer

A leading European auto manufacturer provides innovative vehicle connectivity with IBM API 
solutions.

Business challenge
In this reference use case, the auto manufacturer faces the following challenges:

� Offer innovative connectivity services to customers, improve the driver experience, 
improve safety, and create new revenue sources.

� Improve driving conditions by using driver profiling, ecodriving, and fleet management, 
and also reduce accident risk.

� Collect and monetize data for partners and management.

Business value
The auto manufacturer also must provide the following business value:

� Implement “always connected,” low-latency, and reliable communications with the car 
systems apps and customer mobile apps.

� Provide vehicle data APIs published on a secure Developer Portal.

� Allow internal and external developers to use vehicle data to develop mobile applications.

� Drive innovation for mobile application development.

Types of API
The API must also meet the following conditions:

� Location-based services APIs
� Sensory data to warranty system APIs
� Alerts to dealer APIs
� Services record access APIs
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Figure 3-7 shows the API use case for this automotive manufacturer in Europe.

Figure 3-7   API solution use case by leading automotive manufacturer in Europe

3.5.2  Reference use case 2: Global commercial bank

A leading global commercial bank provides easy and secure access to key financial services 
with IBM API solutions.

Business challenge
In this reference use case, the global commercial bank faces the following challenges:

� Difficult for internal partners and developers to discover and access key financial services.

� Lacked a standard ecosystem to manage internal partners, including global credit card 
companies and merchants.

� No visibility on service consumption or ability to chargeback for LoB use of services.

Business value
The global commercial bank also must provide the following business value:

� Offer third-party merchants secure standards-based access to key business services as 
APIs, with a self-service experience.

� Provide an internal ecosystem for partners and a central repository with usage analytics.

� Drive innovation for mobile application development.
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Types of API
The API must also meet the following conditions:

� Payment options (credit/debit) APIs
� Partner loyalty program APIs
� Bank and merchant specific promotion APIs
� Access to banking account information APIs

Figure 3-8 shows an API solution use case for a leading commercial bank.

Figure 3-8   API solution use case by leading commercial bank

For more information about API management use cases by industry, see:

ftp://public.dhe.ibm.com/software/es/events/doc/Casos_de_Uso_de_API_Management.pdf

3.6  Summary

API Connect is a comprehensive and integrated API management platform that enables 
businesses to compete effectively in the API Economy. API Connect provides businesses the 
capabilities to innovate, develop, run, manage, and secure APIs and the applications that are 
created using those APIs. Business can share their data and services with developers and 
business partners and manage the entire API lifecycle using API Connect. Business can 
experience shorter application development cycles, increased flexibility for hybrid 
environments, faster time to market, reduced cost, and more simplified operations for their IT 
personnel by using API Connect.

The API economy is a rapidly evolving and dynamic environment, and businesses that have 
the tools to quickly and effectively build, manage, and secure APIs will be able to enter new 
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markets and develop new revenues streams. API Connect can help businesses to align 
development processes and strategy while increasing visibility and consistency among 
developers, business partners, and consumers.
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Chapter 4. Principals of good API design

This chapter presents key concepts for designing a Representational State Transfer (REST) 
application programming interface (API).

Today, REST APIs are used pervasively for Internet communication and are a key component 
of the interconnected global economy that connects business applications, websites, and 
mobile channels to services and microservices, the Internet of Things (IoT) data, and any 
system of record (SOR). REST APIs are supported by almost every computing platform and 
enable a consumable communication network.

This chapter includes the following sections:

� 4.1, “Introduction to designing REST APIs” on page 48
� 4.2, “Common query parameters” on page 50
� 4.3, “Summary” on page 53

4

History of REST: REST was developed in a PhD dissertation by Roy T. Fielding, one of 
the authors of HTTP:

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
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4.1  Introduction to designing REST APIs

Consider that APIs are nothing new. APIs exist in almost every language to allow components 
to interact with each other. Although a language might have certain syntactical rules and 
some guidelines, it still falls to the software designers and developers to create the interface 
(that is, the set of calls and contracts that the API supports). When designing any interface, it 
is important to consider the user communities, business objectives, and the lifecycle and 
lifespan of the API. You want the API to be intuitive, robust, and potentially able to grow and 
evolve. To be a successful participant in the API economy, you further want your consumers 
to find the API simple and delightful to use so that they continue to use it to improve their 
business outcomes and yours.

When designing REST APIs, you need to understand the foundation of REST; however, you 
might notice that many REST APIs do not conform to pure REST principles. This is OK. It is 
most important to develop a REST style guide for your APIs so that your APIs are designed 
with consistency and careful consideration of your consumers. With conformance to a style 
guide, your consumers can recognize your APIs as familiar and easily expand their usage. 
The following sections of this chapter discuss aspects of REST API design that you should 
consider when developing your style guide.

4.1.1  URI naming considerations

A REST invocation includes:

� A verb or action to take, the most common being POST, GET, PUT, and DELETE, but there are 
several others

� A URI that refers to a resource or collection of resources

A resource is a single uniquely identifiable entity. For example, a resource can represent a 
customer, an airline ticket, or a book. A URI consists of several components, including 
scheme (fox example, HTTP or HTTPS), host name additional base URI components, and 
resource segments.

� Query parameters

� Input and output

Be consistent with the naming conventions your business uses for URIs, query parameters, 
and input and response schemas. The following sections provide an overview of 
considerations for naming.

4.1.2  Scheme

The first component of your URIs is the scheme. It is highly recommended that your endpoints 
are addressable over HTTPS, which is especially important for any authenticated endpoints 
where user or application credentials are being passed. 

4.1.3  Hostname

After the scheme, your base URI will have a host name. A typical convention for an API host 
name is to prefix it with API, such as api.<organization>.com. If you have preproduction or 
sandbox environments for your consumers to try out your APIs, you might have another 
sandbox host name that looks like api.sandbox.<organization>.com. Finally, if you have a 
portal where consumers can browse and subscribe to your catalog of APIs, a typical 
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convention for the host name is developer.<organization>.com. The important thing is not 
that you follow these conventions exactly, but that you do have a recognizable pattern for your 
APIs.

4.1.4  Other base URI segments

There might be additional base segments that uniquely identify an API. To decide whether 
you need more segments, think about the granularity at which you will version the API. Here’s 
an example where an API gives access to movie theatre locations and ticket prices:

� https://api.acmeshows.com/theaters/v1/theater-locations 
� https://api.acmeshows.com/theaters/v1/ticket-prices 

Here’s another example API for purchasing tickets:

� https://api.acmeshows.com/purchase/v1/charges 
� https://api.acmeshows.com/purchase/v1/refunds 

Alternatively, you can group these APIs together:

� https://api.acmeshows.com/v1/theater-locations 
� https://api.acmeshows.com/v1/ticket-prices 
� https://api.acmeshows.com/v1/purchase/charges 
� https://api.acmeshows.com/v1/ticket-prices 

The important thing to note is the granularity of the versioning. Note that a version segment in 
the URI is one option for versioning. We discuss in more detail other versioning strategies 
later in the chapter.

4.1.5  Resources

In REST, a URI uniquely references a resource, or a collection of resources. A resource is a 
single uniquely identifiable entity; for example, a resource might represent a movie theater, 
customer, an airline ticket or a book. Typically, resources should be nouns. An exception is for 
“control” type actions, such as a funds transfer or logout action.

Remember that you want the API to be consumable to the user. Do not reflect the back-end 
data model to the API developers. Do not reflect namespace or packaging constructs to the 
API developers. Some bad examples:

� https://api.acmeshows.com/v1/com.acme.data.theater_info
� https://api.acmeshows.com/v1/TheaterDataModel

4.1.6  Case conventions

To give your API a consistent look and feel, define and follow case conventions in your style 
guide for how you handle longer or multi part names. Here are some areas for consideration:

� For longer resource names, use hyphens; for example, use /ticket-prices instead of 
/ticket_prices or /TicketPrices. Both hyphenated and snake_case are commonly used, 
so this can come down to preference. One consideration is how Google handles hyphens 
versus underscores. Underscores are ignored, and hyphens are treated as spaces. 

Tip: Use multiple disciplines within your organization (for example, business owner, 
architect, or designer) along with other stakeholders to develop the resource names in your 
API. Do not leave this task solely to the API developers or implementers.
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� Use a consistent convention for query parameter names. 

� Be consistent in request and response payload property names.

� If you provide client SDKs, make sure to follow preferred practices for the languages you 
support.

4.2  Common query parameters

There are a number of query parameters that are typically used to request processing such 
as filtering and sorting of the API. It’s important to support these types of activities in the API 
implementation for use in multi-channel scenarios to find the best balance of minimizing 
network latency with chattiness of the API and client-side processing.

For example, if a mobile application needs a list of vehicles with a certain car part number, it’s 
better to provide a query parameter to filter the response in the API, rather than returning all 
vehicles, which can be a huge response and requires the application to then process the 
response. Similarly, if a full collection is requested by an application, it is useful to provide 
pagination support so the application can request smaller subsets and display these as 
needed to reduce latency in the application.

Consider query parameters that can be used across your API offerings and standardize on 
common usage. Some examples:

� Sorting
� Partial Responses
� Querying
� Pagination
� Expanding inline resources

4.2.1  Sorting

You might want to expose sort capability for one or more properties in the response. There 
are many variations on this capability. So again the key is to be consistent. One format is as 
follows:

?sort=asc.fieldA

where the query parameter is sort, and the value is the direction of the sort followed by the 
field on which to sort. The specified field name must exactly match a property name in the 
response object. You might support multiple sort fields with a comma separator as follows:

?sort=asc.fieldA,desc.fieldB

Your documentation should clearly show which fields are sortable and whether you support 
sorting on multiple fields within one query. The sortable fields might align with indexes on your 
data.

Important: The following sections show examples of common query parameters that API 
providers enable to allow applications to tailor responses to their needs. You should 
research other examples of REST APIs and find patterns and capability that apply to your 
API and the needs of your consumers. Then document and standardize on those patterns 
for your APIs.
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4.2.2  Partial responses

Sometimes an application might only need a few fields from a response. To reduce network 
overhead, it is convenient for the application to be able to request a subset of the fields or 
properties that it requires.

One format is as follows:

?fields=field1,field6

where the value of the fields query parameter is comma-separated list of fields to that are 
requested in the response. You can further permit filtering down to nested fields by using a 
separator like '.' as in:

?fields=field1.subfield1,field6

This returns the first nested property of the first property, as well as the sixth property.

You can also support excluding certain fields. In this example, return all fields except field 1 
and field6:

?fields=!(field1,field6)

4.2.3  Querying

To search on specific values within a response, you can use a few approaches.

One querying pattern allows certain fields to be listed with a logical operator and values, such 
as the following query to find all employees whose last name is Smith and who have more 
than 10 years of service:

/v1/employees?last_name=Smith&years_of_service>10

Field names such as last_name and years_of_service must exactly match property names in 
the response. The supported logical operators and query-able fields should be documented.

Another pattern is to provide a query alias for commonly used queries. For example, you 
might have an alias employees_loa to return the subset of employees on a leave of absence. 
You can further permit filtering on this response as in this query to return employees on a 
leave of absence with the last name of Smith:

/v1/employees_loa?last_name=Smith

Query aliases allow you to package up optimized queries and minimize the need to expose a 
query language.

Finally, if basic filters are not sufficient, you can provide the power of full text search by 
allowing users to express queries as follows:

/v1/employees?query=<search string>

If your API implementation is already using something such as ElasticSearch, this search can 
be exposed in the API and passed directly to your search engine. The response must be 
returned in the documented response format for the API.
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4.2.4  Pagination

To support infinite scrolling of results on mobile devices, your API should paginate results. 
There are two parts to supporting pagination:

� Enable parameters to express what page to retrieve and how many results per page

� Include information in the response about number of items and links to navigate between 
pages

Use query parameters such as index, offset, or page to indicate the location in the data to 
start retrieving. Use query parameters such as limit or page_size to indicate the maximum 
number of items to return. Here is an example:

/v1/employees?page=3&limit=10

This query returns the third page of up to 10 employees. It will skip over the first 20 
employees and return the 20th-30th employees in the response.

It is extremely helpful to return pagination and count information in the response, such as:

� Total count of items available to retrieve
� Number of items in this response
� A link to the next page, so this does not need to be calculated by the caller
� A link to the previous page
� A link to the first page
� A link to the last page

This information helps the application easily navigate the full collection of results.

4.2.5  Expanding inline resources

A resource might have subordinate data or referenced data. For example, an employee might 
have a home address or payroll information associated with them, or a library member might 
have a reference to a book that they have taken out. In both cases, by default the referenced 
information might not be expanded inline to reduce the amount of data being passed. 
However, if the application requires this data, it helps if it can explicitly request it to be 
expanded in a single call. This type of request reduces the amount of back and forth needed 
between the application and the server and allows the application to get everything it needs in 
one step.

You can enable this request by supporting an expand query parameter, which specifies which 
fields to expand inline:

?expand=employee.payroll

4.2.6  Versioning

One of the challenges with maintaining an API is managing API versions and releases. A 
good approach to versioning is semantic versioning where a version is expressed as 
major.minor.patch. These fields are incremented as follows:

� MAJOR version when you make incompatible API changes, essentially a new release 
stream.

� MINOR version when you add functionality in a backwards-compatible manner.

� PATCH version when you make a backward-compatible bug fix.
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You can find a detailed description of semantic versioning at:

http://semver.org

Within the context of semantic versioning, there are a few approaches to making versions 
available:

� Put the major version in the URL itself as described here:

https://api.acmetheater.com/v1/

� Use media type to express the version requested and provided:

application/vnd+xml; version=

� Use a custom request header.

All three approaches have their trade-offs, and there are many strong opinions to be found on 
the Internet. API Connect does not dictate any strategy. It supports any of those choices. It is 
highly recommended that the response returns the full version string in either a custom 
response header or in the media type to facilitate problem determination.

4.3  Summary

This chapter provided some key areas for consideration when designing REST API. Creating 
a REST API style guide for your organization that includes the sections in this chapter as a 
starting point can help you to design a consumable REST API that developers will want to use 
and that can bring value to them and to your business.
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Related publications

The publications listed in this section are considered particularly suitable for a more detailed 
discussion of the topics covered in this paper.

IBM Redbooks publications

The following IBM Redbooks publications provide additional information about the topic in this 
document. Note that some publications referenced in this list might be available in softcopy 
only. 

� Getting Started with IBM API Connect: Scenarios Guide, REDP-5350

� Hybrid Cloud Data and API Integration: Integrate Your Enterprise and Cloud with Bluemix 
Integration Services, SG24-8277

� Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix 
Integration Services, SG24-8281

You can search for, view, download or order these documents and other Redbooks, 
Redpapers, Web Docs, draft and additional materials, at the following website: 

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� IBM API Connect V5.0 IBM Knowledge Center

https://www.ibm.com/support/knowledgecenter/SSMNED_5.0.0/mapfiles/getting_start
ed.html

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
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