
Redpaper

Front cover

IBM Mainframe Bits:
Understanding Architecture

Keith Winnard

Rob Hunt

Jo Johnston

IBM REDBOOKS PROMOTIONS
Find and read thousands of
IBM Redbooks publications

Search, bookmark, save and organize favorites

Get personalized notifications of new content

Link to the latest Redbooks blogs and videos

Download
Now

Get the latest version of the Redbooks Mobile App

iO
S

Android

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Promote your business
in an IBM Redbooks
publication

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

http://bit.ly/redbooksapp
http://bit.ly/1bvYuMM
http://bit.ly/1lCxuBG
http://ibm.co/1maZVrw

THIS PAGE INTENTIONALLY LEFT BLANK

IBM Mainframe Bits: Understanding Architecture

This IBM® Redpaper™ publication reviews the role of the architecture and how it forms part
of the solution by meeting the needs that drive the requirements for computer systems. It also
examines the architecture’s relationships with hardware and software, and offers
considerations to help understand how these relationships work to ensure longevity and
compatibility.

This paper includes the following topics:

� Introduction
� Understanding what an architecture must achieve
� Architecture and components

This paper is the first in a new series of “Mainframe Bits” that are designed to provide you with
succinct information about discrete topics that relate to IBM z Systems™ architecture.

Introduction

To grasp the concepts that are presented in this paper, a clear definition of architecture within
the context of computing systems is essential. We use the following definition from
z/Architecture Principles of Operation, SA22-7832-091:

The architecture of a system defines it attributes as seen by the programmer, that is, the
conceptual structure and functional behavior of the machine, as distinct from the
organization of the data flow, the logical design, the physical design, and the performance
of any implementation. Several dissimilar machine implementations may conform to a
single architecture. When the execution of a set of programs on different machine
implementations produces the results as defined by a single architecture, the
implementations are considered to be compatible for those programs.

Given this definition of architecture, you might have the following questions:

� What tangible purpose does the architecture achieve?
� Why is the architecture important?
� How do you determine what lies within or outside of the scope of the defined architecture?

1 z/Architecture Principles of Operation, SA22-7832-09:
http://www.ibm.com/support/docview.wss?uid=pub1sa22783209

Machine definition: For this publication, machine in the definition refers to a physical
computer.
© Copyright IBM Corp. 2016. All rights reserved. ibm.com/redbooks 1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/docview.wss?uid=pub1sa22783209

� How does the architecture align with the IT infrastructure that supports the business?
� Is an architecture part of the machine?

In this paper, an architecture is considered a conceptual representation of or framework for a
solution. The remainder of this paper helps you understand this concept and reviews what
implications and considerations are required to put an architecture in place.

Understanding what an architecture must achieve

The architecture is the part of a solution that is created in response to a collection of needs.
These needs can come from the following sources:

� Consumers and customers
� Line of business, including users
� Business Partners or vendors
� Government, legal, and regulatory requirements
� Financial or business plans and strategy
� Innovations in products or technology
� Industry (for example, healthcare and education)

The needs can be from any of these sources, a combination of the sources, or a different
source. A solution must be put in place to meet these needs. In essence, the needs act as the
driver for creating the solution.

Needs and solutions

We start with a collection of needs and define a solution to meet those needs (see Figure 1).

Figure 1 Needs and solution simple flow

Figure 1 shows a simple process that moves from left to right. The development of a solution
consists of the following main stages:

� Analysis of needs
� Design of the architecture
� Build components that are based on the architecture

An architecture defines a conceptual structure for components to be built by using a
framework. The solution is intended to meet the identified needs and is acceptable if the
needs do not change beyond the scope of the solution.

Needs
Analysis

of
Needs

Solution

Architecture

Components

D
E
S
I
G
N

E
X
T
E
N
D

B
U
I
L
D

2 IBM Mainframe Bits: Understanding Architecture

But what if the needs change? If new or different needs emerge, how is the solution affected?
In this case, the analysis of the “new or changed” needs is the same, the architecture must be
reviewed to see whether changes are necessary. New components or enhancements to
components might be necessary to provide the functions to meet these changed needs.

Given a change in needs, is a new architecture necessary? If the architecture can
accommodate the new requirements, only changes to the components are necessary.
Changes do not necessarily mean changes to the architecture, just to the components. Not
every component uses all of the architecture to satisfy a need (see Figure 2).

Figure 2 Same architecture with multiple components

If you considered the components that are shown in Figure 2 as computers, you can see that
the following computers are used:

� Version 1 was the original solution to the original needs.

� Version 2 was developed because the original needs changed and new functions was
required to provide a solution to the changed needs.

Before going further, consider an important implication: If the architecture is to remain true to
its purpose, what is the relationship between the different versions of components that uses
the same architecture? Compatibility is a crucial consideration for an architecture to be
successful and achieve longevity.

Compatibility

Computer Version 1 satisfied the original needs, which are referred to as Needs Level 1.
Changes to existing needs or new needs are referred to as Needs Level 2. However, Version 1
computer cannot satisfy Needs Level 2. It can meet Needs Level 1 only. To meet Needs Level
2, the functions of the computer must expand and change. These needs cause the creation of
Computer Version 2 that meets the needs of Needs Level 2.

Solution

Changed
Needs

Analysis
of

Needs
Architecture

Components
Version 2

D
E
S
I
G
N

E
X
T
E
N
D

B
U
I
L
D

Components
Version 1

D
E
S
I
G
N

E
X
T
E
N
D

B
U
I
L
D

3

So far so good, but there might be a problem. Will Computer Version 2 meet the needs of
Needs Level 1? If Version 2 remains true and within the framework of the architecture, it will
meet the Needs of Level 1. If it was not built to the framework of the architecture, it might not
satisfy Needs Level 1.

The ability of Version 2 to support both Needs Levels is known as compatibility. To be more
specific, this kind of compatibility is known as backward compatibility. Backward compatibility
implies that if a new version of the computer is designed and built, it can process the requests
of the latest needs and previous needs levels.

Backward compatibility can be achieved only if the architectural framework allows it.

Figure 3 show the compatibility between the Needs Levels and the Computer Versions.

Figure 3 Compatibility within the architecture

The dashed lines in Figure 3 identify the relationship between the Needs Levels and the
Computer Versions. Consider the following points:

� Computer Version 1 and Version 2 are both within the same architecture.

� Computer Version 1 can process requests from Needs Level 1, but not requests from
Needs Level 2.

� Computer Version 2 was built with extended features that can process requests from both
Needs Levels.

Why is this issue significant? Expanding the architecture protects the organizations that
purchase the computers from the following exposures:

� Having to buy more computers each time needs levels change or increase.

� If there are modified Needs Levels, the previous computer might become redundant and
the organization wasted resources and investment on the previous version.

� The data and information that is used by each Needs Level might be interdependent,
which causes more complications and possible restrictions if Computer Versions 1 and 2
are not compatible.

For the architecture to provide compatibility, Computer Version 2 must be
able to process the requests from both Needs Level 1 and Needs Level 2.

Architecture

Computer
Version 1

Needs
Level 1

Needs
Level 2

Computer
Version 2
4 IBM Mainframe Bits: Understanding Architecture

Instead of buying more computers, it is simpler for the organization to upgrade the existing
computer to the next version to meet the new Needs Levels, as shown in Figure 4.

Figure 4 Backward Compatibility within the architecture

As the organization develops and consumer patterns change, new Need Levels can continue
to arrive and some existing Needs Levels might be modified. It is likely that the relationships
between Needs Levels can become more complex. This situation is why the design of the
architecture is important. Consider the scenario that is shown in Figure 5.

Figure 5 Architectural longevity

Backward compatibility allows the organization to upgrade Computer
Version 1 to Version 2 and still be able to meet both Need Levels.

Architecture

Computer
Version 1

upgraded to
Version 2

Needs
Level 1

Needs
Level 2

For the architecture to attain longevity it must sustain existing, changed, and
new Needs Levels and retain backward compatibility throughout.

Architecture

Computer
Version 1

upgraded to
Version 2

upgraded to
Version 3

upgraded to
Version 4

Needs
Level 3

Needs
Level 4

Needs
Level 2

Needs
Level 5

Needs
Level 1

Needs
Level 6
5

A new version of the computer might not be required for each new or changed Needs Level;
therefore, the organization might not need to upgrade its computer for every change. The
architecture enabled the computer to accommodate all the Needs Levels by offering the
option to upgrade.

Managing larger scale Needs Levels

Organizations today often have more than one computer. This situation might be because the
volume of activities that are undertaken are beyond the capacity of a single computer even
though it is not beyond the computer’s capabilities. There are likely other reasons, but those
reasons are outside of the scope of this paper.

The use of multiple computers to meet Needs Levels is another major consideration for the
architectural design. Not only must computers process the requests from the Needs Levels,
they must manage these activities as a group and communicate with one another. Figure 6
shows how the use of multiple computers that are grouped is a viable solution for an
organization with many Needs Levels.

Figure 6 Multiple computers within the same architecture

The increase in Needs Levels places higher demands on the computers and for large
organizations, this increase might be beyond the capacity of a single computer. The ability for
computers to work together to process high volumes of requests is imperative for large
organizations. The computers can transfer work to and from each other or share process
activities from the same Needs Levels. If one computer supports only lower Needs Levels,
any higher Needs Level requests must be directed to a computer within the group that can
support these higher Needs Level requests.

The solution can consist of multiple computers of differing versions that are all
designed and built from the same architecture.

Architecture

Needs
Level 3

Needs
Level 4

Needs
Level 2

Needs
Level 5

Needs
Level 1

Needs
Level 6

Computer
Version 4

Computer
Version 4

Computer
Version 3
6 IBM Mainframe Bits: Understanding Architecture

Thus far, we described how the computers can be extended to add new functions. The
following issues beyond functions can cause computers to be extended:

� Speed

The computer has the functions, but needs a faster level of performance.

� Availability

The organization needs the services to be available all the time so the computer must be
highly reliable. Therefore, it must recover from component failures or seamlessly switch to
an alternative component if a failure occurs.

� Security

The organization might be subject to requirements that stipulate that certain aspects of its
data must be encrypted or perhaps access to data is restricted.

There are other considerations, but these reasons show why the computers might expand
their functions to improve their capabilities and value to the organization.

Outgrowing the architecture

What happens when the Needs Levels exceed the capabilities of the computer and the
architecture? This situation can mean that the computer can no longer be expanded within
the architectural framework. Therefore, the architecture cannot provide a solution to satisfy
the Needs Levels.

Consider this serious issue from the perspective of the organization that uses the architecture
and solutions to meet its needs. The effect on the organization, associated organizations,
customers, partners, business applications, and workforce can be far reaching. The fabric of
the organization’s ability to exist might be put at risk. This problem can result in the following
suggested responses:

� Move to another platform architecture
� Modify the existing platform architecture

The first suggestion involves some form of conversion or migration to another set of solutions
that are based on a new architecture that meets the new Needs Levels. This option demands
careful consideration and planning. An organization often faces the following typical
challenges:

� New business applications
� Archived data and having programs to access that data
� Skills within the workforce
� Conversion or migration effort
� Conversion or migration costs
� Risk to the organization
� Backward compatibility
� Security exposures
� Legal requirements
� Expected longevity of the target architecture
� Change freeze on applications during the conversion or migration
� Compatibility of the new solutions with partnerships
� IT Infrastructure changes (hardware, software, processes, procedures, and support)

There are other challenges and their range and intensity vary from organization to
organization.
7

The second suggestion is aimed at the architecture supplier. The supplier must continually
evaluate the needs of the consumers and forecast needs and protect the consumers’ needs
to avoid a situation whereby the architecture becomes obsolete and poses a threat to the
consumers.

As you saw components’ functions expanded to meet new Needs Levels, the architecture
must expand and accommodate more functions for the components that form the solutions
offered to organizations. The supplier often faces the following typical challenges in extending
an architecture include:

� Backward compatibility for solutions
� Extend the architecture rather than replace it
� Avoid functional redundancy
� Expand with further growth in mind
� Prevent the need for complicated migrations
� Provide for component upgrades
� Continue to meet the consumers’ needs
� Position to meet projected consumers’ needs

The key point is that the architecture should add to its capabilities and not replace capabilities
to avoid issues with backward compatibility. Without the backward compatibility, you might
assume that the architecture was replaced rather than expanded.

Figure 7 shows how the architecture and component expansion meet the organizations’
needs.

Figure 7 Architecture expansion

The architecture achieves longevity if it can satisfy current and future needs and remain
flexible. In addition, the components must continue to expand in alignment with the
architecture to minimize disruption and provide organizations with an upgrade path to meet all
their envisaged needs.

The solution and components must be able to scale to organizations’ needs
and provide a smooth upgrade path if longevity is to be achieved.

Supplier

Architecture

Organizations

Current Needs

Projected
Needs

Solutions
And

Components
Solutions

And
Components

Solutions
And

Expandable
Components

Expansions
8 IBM Mainframe Bits: Understanding Architecture

Architecture and components

The definition of architecture (as described in “Introduction” on page 1) states: “The
architecture of a system defines it attributes as seen by the programmer, that is, the
conceptual structure and functional behavior of the machine...” and then continues by
distinguishing the architecture apart from other areas by stating “...as distinct from the
organization of the data flow, the logical design, the physical design, and the performance of
any implementation.”

Based on this definition, you can surmise that the conceptual structure and functional
behavior of the machine as seen by the programmer is our guideline to understanding more
about the architecture and what it does or does not entail. The conceptual structure provides
programmers with a solid base to design solutions knowing that while they remain within the
conceptual structures, the solution works because they understand the functional behavior of
the machine.

The need for scaling up is covered by the remainder of the definition, which states: “Several
dissimilar machine implementations may conform to a single architecture. When the
execution of a set of programs on different machine implementations produces the results as
defined by a single architecture, the implementations are considered to be compatible for
those programs.”

A key point here is that the architecture governs the components of the computer. Although
the components might change logically and physically, they remain compatible and functional
if they conform to the architecture. If the components drive the architecture, the integrity of the
architecture is challenged and can lead to architectural incompatibilities and hence failure.

Looking at components and other layers that perform different roles, all of them play a part in
providing an organization with a solution. These combinations help to further clarify the role of
the architecture and its relationship with all the components that offer a solution.

Consider the following areas:

� Compute

The ability for the machine to perform the appropriate action on data that is presented to it
is essential. Actions, such as a calculation, copy, or comparison, are typical. The compute
function also contains memory, which allows for the data to travel to and from the areas
where the compute functions can be performed. However, be aware that there are
different levels of memory.

� Storage

Programs must be stored for retrieval and execution. Data also must be stored when not in
use.

� Network

The components must communicate with each other on the same machine, between other
machines of the same architecture, and to networks with many different devices, such as
different computers and personal digital devices via the Internet.

If you take these three areas (see Figure 8 on page 10), plan how each area should work in
terms of a conceptual structure and functional behavior, and define those areas as the base
allowing its functions to be expanded and maintained, you have a strong architecture on
which components can be built to service the business needs.
9

Figure 8 Programmer view of architecture

The consistent view for the programmer is the architecture. The programmer might have an
awareness of the components, but these components can change and the programmer might
not be aware of the changes. Consistency and compatibility are maintained if the programmer
can understand the architecture.

The components relate to the three base areas of the architecture and can change or expand.
If the architecture is adhered to, the changes or expansion are acceptable. There might be
more components; the components that are shown in the Figure 8 are a simple base to show
the relationship with the architecture.

Instruction set

Thus far, we described the organizations’ needs and solutions. The solutions are comprised
mainly of an architecture with components that were designed, built, and expanded to suit
new needs. We also described the base areas of the architecture; specifically, the
components that relate to the hardware of the computer.

The next area of consideration is the instruction set. The instruction set can be regarded as
the language of the machine. While not an official definition, it helps clarify where the
instruction set fits in to the overall picture. The instruction set is defined based on the
architecture and then built as part of the hardware so that physical components can provide
the expected functional behavior of the machine. Microcode also is added to assist with
running functions within the hardware.

The next section describes other components that establish different layers that are built
within the scope of the architecture. All of these layers provide organizations with solutions to
meet their needs. The hardware aspects that relate to the architecture are shown in Figure 9
on page 11.

“The architecture of a system defines it attributes as seen by the programmer,
that is, the conceptual structure and functional behavior of the machine...”

Components

Processors

Memory

Networks

Tapes

Connected
devices

Cache Disks

Compute

Storage

Network

Structural
Concepts

Functional
Behavior

Architecture

Programmers
View
10 IBM Mainframe Bits: Understanding Architecture

Figure 9 Architecture hardware layers

Operating systems and software

The next layer is the operating system. An operating system provides the next base level for
business applications, user programs, specialist security software, and other software
components, such as online transaction handlers, and systems management software to run.
Figure 10 shows the software components of the system.

Figure 10 Architecture software layers

Figure 10 also shows the basic components that bring the architecture from a concept into a
reality.

The architecture hardware layer built on the compute, storage,
and network areas.

Architecture

Hardware

microcode

Processors

Memory

Tapes

Printers

Specialist devices

Cache Disks

Connected
devices

Networks

Instruction set

The architecture hardware and software layers built on the compute, storage, and network areas.

Architecture

Hardware

microcode

Processors

Memory

Tapes

Printers

Specialist devices

Cache Disks

Connected
devices

Networks

Instruction set

Software

Data
And

Storage
Management

Systems
Management

Operating Systems

Business
Applications

User Programs

Security Software
11

Authors

This paper was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Keith Winnard is the IBM Redbooks® Publications Project Leader for IBM z/OS® and
related topics at the International Technical Support Organization, Poughkeepsie Center. He
joined IT in 1977 and has worked for various clients and Business Partners. He is
experienced in blending traditional z/OS environments and applications with web middleware
and applications, and has presented on many mainframe-related topics.

Rob Hunt is an Accredited IT Specialist with the IBM System z® GTS Strategic Outsourcing
Team in the United Kingdom. Rob has over 27 years of experience with IBM in storage,
security, and systems management, supporting IBM MVS™, IBM z/VM®, and IBM z/OS
environments. He has provided IBM mainframe storage and virtual machine support in the
government, financial, retail, and insurance sectors.

Jo Johnston is a Certified IT Specialist and Chartered Engineer, who works in the IBM
System z Strategic Outsourcing Team in the United Kingdom. She has worked on IBM
mainframe systems as a systems programmer supporting z/VM, z/OS, MVS, IBM CICS®,
IBM DB2®, IBM WebSphere® Application Server, and IBM IMS™ for more than 30 years.

Thanks to LindaMay Patterson of the International Technical Support Organization,
Rochester Center, for her contributions to this project.

Now you can become a published author, too!

Here's an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
12 IBM Mainframe Bits: Understanding Architecture

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
13

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

14 IBM Mainframe Bits: Understanding Architecture

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2016. All rights reserved. 15

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

CICS®
DB2®
IBM®
IBM z Systems™
IMS™

MVS™
Redbooks®
Redpaper™
Redbooks (logo) ®
System z®

WebSphere®
z/OS®
z/VM®

The following terms are trademarks of other companies:

 is a trademark or registered trademark of Ustream, Inc., an IBM Company.

Other company, product, or service names may be trademarks or service marks of others.
16 IBM Mainframe Bits: Understanding Architecture

http://www.ibm.com/legal/copytrade.shtml

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738455180

REDP-5345-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	IBM Redbooks promotions
	IBM Mainframe Bits: Understanding Architecture
	Introduction
	Understanding what an architecture must achieve
	Needs and solutions
	Compatibility
	Managing larger scale Needs Levels
	Outgrowing the architecture

	Architecture and components
	Instruction set
	Operating systems and software

	Authors
	Now you can become a published author, too!
	Stay connected to IBM Redbooks

	Notices
	Trademarks

	Back cover

