
Redpaper

Front cover

IBM Z Integration Guide for
Hybrid Cloud

Nigel Williams

Richard Gamblin

Rob Jones

IBM Redbooks

IBM Z Integration Guide for Hybrid Cloud

April 2020

REDP-5319-03

© Copyright International Business Machines Corporation 2020.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Fourth Edition (April 2020)

This edition applies to the current version of products at the time of publication.

This document was created or updated on May 5, 2020.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

Preface . vii
Authors. vii
Now you can become a published author, too! . viii
Comments welcome. viii
Stay connected to IBM Redbooks . ix

Summary of changes . xi
April 2020, Fourth Edition. xi
July 2018, Third Edition . xi
February 2017, Second Edition . xi

Chapter 1. Introduction. 1
1.1 Digital transformation and reinvention. 2
1.2 Transforming IT with hybrid multicloud . 2
1.3 Agile integration . 3
1.4 Integration with IBM Z . 4

Chapter 2. Architecture options for integration . 7
2.1 Integration options. 8

2.1.1 Microservices, APIs, and microservices applications . 9
2.1.2 Containers and container orchestration . 10
2.1.3 Agile integration architecture . 12

2.2 API enablement. 14
2.2.1 Services and APIs. 15
2.2.2 REST and JSON. 16
2.2.3 API management and the OpenAPI Initiative . 17
2.2.4 Security standards for APIs . 17
2.2.5 Advantages of REST APIs . 18

2.3 Messaging and event streams . 19
2.3.1 Messaging. 20
2.3.2 Event streams . 21

Chapter 3. Hybrid integration architecture considerations. 25
3.1 Hybrid integration architecture . 26

3.1.1 Engagement applications . 27
3.1.2 Systems of Record . 27
3.1.3 API management . 27
3.1.4 Integration . 29

3.2 Integration patterns with IBM Z . 30
3.2.1 Aggregation pattern . 30
3.2.2 Direct API pattern . 31
3.2.3 Call-out pattern . 32
3.2.4 Event stream pattern. 32

Chapter 4. Hybrid integration solutions for IBM Z . 35
4.1 IBM integration solutions. 36
© Copyright IBM Corp. 2020. iii

4.1.1 IBM z/OS Connect Enterprise Edition. 36
4.1.2 IBM API Connect . 41
4.1.3 IBM DataPower Gateway . 44
4.1.4 IBM App Connect . 45
4.1.5 IBM MQ. 47
4.1.6 IBM Event Streams . 49
4.1.7 IBM Cloud Pak for Integration. 49

4.2 z/OS subsystem considerations . 51
4.2.1 CICS Transaction Server for z/OS . 51
4.2.2 IMS . 53
4.2.3 Db2 for z/OS . 54
4.2.4 MQ for z/OS . 57

4.3 Zowe . 60

Chapter 5. Real-world scenarios . 63
5.1 Implement Open Banking APIs with z/OS Connect EE . 64

5.1.1 Introduction . 64
5.1.2 Key decision factors . 64
5.1.3 Solution architecture . 65
5.1.4 Next steps . 67

5.2 Call out to external services using z/OS Connect EE . 67
5.2.1 Introduction . 67
5.2.2 Key decision factors . 67
5.2.3 Solution architecture . 68
5.2.4 Next steps . 69

5.3 Build a managed API framework using API Connect . 69
5.3.1 Introduction . 69
5.3.2 Key decision factors . 70
5.3.3 Solution architecture . 72
5.3.4 Next steps . 73

5.4 Develop Java-based REST APIs . 73
5.4.1 Introduction . 73
5.4.2 Key decision factors . 74
5.4.3 Solution architecture . 75
5.4.4 Next steps . 76

5.5 Integrate with App Connect . 76
5.5.1 Introduction . 76
5.5.2 Key decision factors . 76
5.5.3 Solution architecture . 77
5.5.4 Next steps . 78

Chapter 6. Summary . 79
6.1 Integration architectures . 80
6.2 Integration solutions . 80

Related publications . 83
IBM Redbooks . 83
Online resources . 83
Help from IBM . 84
iv IBM Z Integration Guide for Hybrid Cloud

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2020. v

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

CICS®
CICS Explorer®
CICSPlex®
DataPower®
DB2®
Db2®
IBM®

IBM API Connect®
IBM Cloud™
IBM Cloud Pak™
IBM Z®
MVS™
OMEGAMON®
RACF®

Rational®
Redbooks®
Redbooks (logo) ®
WebSphere®
z/OS®
z/VM®
z/VSE®

The following terms are trademarks of other companies:

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Zowe, are trademarks of the Linux Foundation.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

OpenShift, Red Hat, are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the United
States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
vi IBM Z Integration Guide for Hybrid Cloud

http://www.ibm.com/legal/copytrade.shtml

Preface

Today, organizations are responding to market demands and regulatory requirements faster
than ever by extending their applications and data to new digital applications. This drive to
deliver new functions at speed has paved the way for a huge growth in cloud-native
applications, hosted in both public and private cloud infrastructures.

Leading organizations are now exploiting the best of both worlds by combining their
traditional enterprise IT with cloud. This hybrid cloud approach places new requirements on
the integration architectures needed to bring these two worlds together.

One of the largest providers of application logic and data services in enterprises today is
IBM® Z, making it a critical service provider in a hybrid cloud architecture. The primary goal of
this IBM Redpaper publication is to help IT architects choose between the different
application integration architectures that can be used for hybrid integration with IBM Z®,
including REST APIs, messaging, and event streams.

Authors

This paper was produced by a team of specialists from around the world working at the IBM
Redbooks, Poughkeepsie Center.

Nigel Williams is an IT Specialist working in System Lab Services at the IBM Systems
Center in Montpellier, France. Nigel specializes in IBM CICS integration, API enablement, and
mainframe security topics. He helps clients to design and test mainframe integration
solutions. He is the author of many papers and IBM Redbooks publications.

Richard Gamblin is the CTO for Digital Transformation for IBM Z and Member of the IBM
Academy of Technology. Working with European clients, Richard aligns organization's Cloud,
integration and application strategy and architecture to best exploit IBM Z technologies. He
has worked in several technical roles in IBM, including as an Integration and Connectivity
Specialist and an IBM WebSphere® Architect. Prior to joining IBM, Richard was a researcher
at the University of Leeds, from where be obtained a doctorate in the field of Bioinformatics.

Rob Jones is Senior Technical Staff Member for APIs on IBM Z, working at the IBM Hursley
Software Laboratory in the UK as the Chief Architect for the IBM z/OS® Connect Enterprise
Edition product. Rob leads a world-wide team of software engineers and engages extensively
in design thinking collaborations together with many IBM Z clients, but is also a part-time
inventor with a growing patent portfolio, and author of several IBM Redbooks® publications.
He previously led development of IBM CICS® Transaction Gateway products, and spent his
early career in the communications maintenance team for CICS Transaction Server products.

Thanks to the following people for their contribution to this project:

Kim Clark
Mark Cocker
Dave Dalton
Andy Garratt
Andy Lyell
Matthew Leming
Anthony Papgeorgiou
© Copyright IBM Corp. 2020. vii

Wayne Swales
Phil Wakelin
IBM UK

Aymeric Affouard
Arnauld Desprets
Yann Kindelberger
Vincent Lattuca
Eric Phan
IBM France

Bruce Armstrong
Leigh Compton
Mitch Johnson
IBM US

Special thanks to Andy Lyell for the graphics included in this paper.

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies.
Your efforts will help to increase product acceptance and customer satisfaction, as you
expand your network of technical contacts and relationships. Residencies run from two to six
weeks in length, and you can participate either in person or as a remote resident working from
your home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
viii IBM Z Integration Guide for Hybrid Cloud

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface ix

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

x IBM Z Integration Guide for Hybrid Cloud

Summary of changes

This section describes the technical changes made in this edition of the paper and in previous
editions. This edition might also include minor corrections and editorial changes that are not
identified.

Summary of Changes for IBM Z Integration Guide for Hybrid Cloud as created or updated on
May 5, 2020.

April 2020, Fourth Edition

This revision includes the following new and changed information.

New information
� Agile integration architecture
� Messaging and event streams
� Integration patterns with IBM Z
� IBM Cloud™ Pak for Integration

Changed information
� z/OS Connect EE Version 3 enhancements
� Real-world scenario updates

July 2018, Third Edition

This revision includes the following new and changed information.

New information
� IBM App Connect Enterprise
� New real-world scenarios for mainframe API enablement

Changed information
� z/OS Connect EE Version 3
� IBM MQ messaging REST API
� Support for creating APIs with z/OS Connect EE and the MQ service provider

February 2017, Second Edition

This revision includes the following new and changed information.

New information
� New Hybrid Integration Architecture
� IBM DB2® REST services
� IBM z/OS Connect EE support for DB2
� z/OS Connect EE support for MQ
� API Connect
© Copyright IBM Corp. 2020. xi

xii IBM Z Integration Guide for Hybrid Cloud

Chapter 1. Introduction

Digital engagement has become one of the primary vehicles to create innovative new
services for both regional and global consumers. Cloud platforms are a key enabler for these
burgeoning digital channels, incorporating public, hybrid, and private cloud platforms. The
digital applications and microservices that provide these new capabilities are primarily
designed to exploit the agility of cloud platforms. But must also harness the business logic
and data services that are held within enterprise systems, such as IBM Z.

Access to business logic and data that is hosted on IBM Z has long been available through
multiple paths, with more options being introduced to specifically ease the integration for
cloud native applications. Today, integration patterns such as using REST APIs, messaging,
and event streams are key to unlocking the investment in core z/OS-based systems.

In this introduction we focus on the integration challenges brought about by the growth of
hybrid cloud architectures.

This chapter includes the following topics:

� 1.1, “Digital transformation and reinvention” on page 2
� 1.2, “Transforming IT with hybrid multicloud” on page 2
� 1.3, “Agile integration” on page 3
� 1.4, “Integration with IBM Z” on page 4

1

© Copyright IBM Corp. 2020. 1

1.1 Digital transformation and reinvention

Organizations are undergoing significant change as a result of new market forces. Some of
these changes are in response to regulatory requirements, while others relate to the
emerging requirements of consumers of their products or services. Over the last 5 to 10
years, a significant shift occurred in the marketplace regarding how consumers and
employees expect to interact with businesses and government institutions. There has been a
shift away from an enterprise-centric market to an individual-centric marketplace. The
confluence of social, mobile, and cloud technologies, along with insight that is drawn from
expanding pools of data, led to this need for digital reinvention of enterprise IT to meet the
demands of the individual-centric economy.

A key part of this approach is to ensure that IT systems are optimized and aligned to support
an unprecedented speed of change. Consider that traditional green-screen applications were
developed over the course of 40 years; that client/server did the same over 25 years, or that
the internet matured in 15 years. Contrast those development times — measured in decades
and years — with the mobile and digital age, in which consumer expectation has rocketed in
a mere 5 years, and industry disruption can happen in a matter of months.

For a time, new market entrants like FinTechs were seen to be key disruptors to established
business sectors like the financial sector. They harnessed the power of cloud-native
infrastructures and exploited commoditized compute power to quickly create new kinds of
service. They were quickly able to harness new technologies such as artificial intelligence (AI)
and blockchain digital ledger technologies. However, established market leaders are now
proving to be the greatest catalysts for change. These so-called incumbent disruptors now
achieve success by combining their traditional core business logic and data assets with
innovative new digital services in the cloud. They exploit the best of both worlds with a hybrid
cloud architecture.

1.2 Transforming IT with hybrid multicloud

According to a recent IBM study1, 94 percent of enterprises today have a mix of cloud
models: public, dedicated, private, and hybrid. Sixty-seven percent of enterprises are using
multiple public clouds, mixing software, infrastructure, and platform services from different
providers. While only 20 percent of core business applications and workloads have moved to
public cloud, with 80 percent still residing on premises in data centers.

This new hybrid and multicloud reality brings with it new considerations for IT leaders who
must continue to operate business as usual, while embracing greater complexity. In the IBM
study, IT leaders expressed concerns about how they'll connect traditional IT with these
clouds to address their specific use cases. Seventy-three percent needed better ways to
move apps, workloads, and data between clouds so they can adapt to change, optimize
costs, and minimize lock-in risk. Sixty-seven percent worried about how they'll manage this
new mix of cloud environments in a consistent way, across vendors, without impacting service
quality, security and compliance.

Hybrid cloud allows for a mix of environments - public, dedicated, and private cloud as well as
traditional enterprise IT — all working together on and off premises. Multicloud enables
choice of cloud-based technologies — artificial intelligence (AI), blockchain, IoT, analytics,
infrastructure as a service (IaaS) and platform as a service (PaaS) from more than one cloud
provider.

1 IBM Cloud White paper: Enterprise digital transformation with cloud
2 IBM Z Integration Guide for Hybrid Cloud

Fundamentally, this shift from traditional enterprise IT, to hybrid, multicloud environments
brings with it very real architectural considerations, particularly the need to improve the
integration of services in this mix. These new demands dictate the need for a more agile
integration approach.

1.3 Agile integration

The pace of innovation in IT has changed dramatically. Iterations on requirements occur in
near real-time, prototypes are prepared in weeks or even days, and new mobile apps are
made available in months. Application development techniques needed to keep pace by
introducing new approaches such as microservices, exploiting cloud infrastructures, that
enable teams to work more independently.

Integration solutions have traditionally been used to simplify how one enterprise application
communicates with another. These solutions manage protocol switching and data conversion,
and support both synchronous and asynchronous connectivity mechanisms. This is well
suited for tightly governed and controlled applications within an organization. However, the
rise of cloud-hosted applications requires a more self-service approach where application
interfaces are easier to use, enabling application teams to more rapidly share data and
functions.

There is much more subtlety to this change than is apparent. It is necessary to think
differently about how to align the people and skillsets that relate to integration. It is necessary
to consider how to ensure that integration components embrace new architectural tenets
such as microservices and that they capitalize on the benefits of new infrastructure platforms
such as containers.

As shown in Figure 1-1 agile integration addresses these issues by looking at how to
modernize an integration landscape based on people, architecture, and infrastructure.

Figure 1-1 Three aspects of agile integration

Decentralized
ownership

People & Process

Delivery focused
architecture

Architecture & Design

Cloud native
infrastructure

Infrastructure and Technology

Agile Integration

Modernizing
integration to enable

business agility

Improve build
independence and
production velocity
(deployment agility)

Accelerate agility and
innovation

(development agility)

Dynamic scalability
and inherent

resilience
(operational agility)
Chapter 1. Introduction 3

Integration is the secret weapon behind the great innovations of our time. Few, if any, new
ideas are stand-alone applications. They always require data and functionality from other
applications within the enterprise, and often from other enterprises.

However, today’s integration challenge is less about low-level connectivity as most of these
have been solved, or at least simplified. The challenge now is about velocity of change. How
quickly can ideas be transformed into production, or at least into prototypes, so that new
niches can be exploited?

This requires highly empowered and autonomous teams, that can self-provision the
integration capabilities they need wherever they are, and yet still interact efficiently with other
teams' capabilities.

Integration is front and center in enabling the business agility required to innovate faster than
the competition. Agile integration addresses this need by rethinking the approach to
integration based on people, architecture, and technology. It results in a decentralized,
microservices-aligned, portable approach to integration:

� People - Decentralized integration ownership: Improve development agility by
empowering teams with integration capabilities such that they can innovate in real time.

� Architecture - Delivery focused integration architecture: Improve deployment agility,
using modern architectural and design practices such as API-led or event-driven
integration with a focus on microservices applications.

� Technology - Cloud portable integration infrastructure: Improve operational agility by a
platform agnostic, cloud-native approach to integration infrastructure.

For a detailed exploration of the principals of agile integration, see the IBM Redbooks
publication Accelerating Modernization with Agile Integration, SG24-8452
(http://www.redbooks.ibm.com/abstracts/sg248452.html?Open).

1.4 Integration with IBM Z

The IBM Z mainframe has been widely adopted for delivering mission critical business
applications and data services because of its industry-leading data privacy, security, and
resiliency. IBM Z mainframes run operating systems including z/OS, IBM z/VM®, IBM
z/VSE®, Linux on IBM Z, and z/TPF. It is common for multiple operating systems to run on a
single mainframe.

Over the last 10 years, the adoption of Linux on Z has grown significantly bringing modern,
cloud native applications to the platform. And more recent enhancements such as support for
Red Hat OpenShift means that you can develop and deploy cloud native applications faster
and more effectively on IBM Z.

Considering its continued strategic role in enterprise IT, IBM Z is an essential ingredient of a
hybrid multicloud architecture. In this IBM Redpaper we focus on the hybrid integration of
traditional mainframe z/OS applications.

Traditionally, integration with z/OS subsystems, such as IBM CICS, IMS, Db2® for z/OS and
batch applications, has been based on file-based connectivity, point-to-point messaging,

Note: We define agile integration as a decentralized, microservices-aligned, portable
approach to integration that addresses people, architecture and technology.
4 IBM Z Integration Guide for Hybrid Cloud

custom connectivity options, and more recently, web services. While these connectivity
options are used widely, and have an important role in hybrid integration, they are being
complemented by more contemporary integration architectures such as REST APIs and
event streams.

� In Chapter 2, we review the main architectures that are used today for application
integration.

� In Chapter 3, we look at the components of a hybrid integration architecture and explore
the common integration patterns used with IBM Z.

� In Chapter 4, we describe the main IBM solutions and products that can be used to
integrate with IBM Z applications in a hybrid cloud infrastructure.

� In Chapter 5, we review some real-world IBM Z integration scenarios.
� In Chapter 6, we conclude with a summary of the different integration architectures and

solutions.
Chapter 1. Introduction 5

6 IBM Z Integration Guide for Hybrid Cloud

Chapter 2. Architecture options for
integration

This chapter describes the main architectures that are used today for application integration.

This chapter includes the following topics:

� “Integration options” on page 8
� “API enablement” on page 14
� “Messaging and event streams” on page 19

2

© Copyright IBM Corp. 2020. 7

2.1 Integration options

In this section, we introduce the technologies that play a vital role in any enterprise that is
looking to modernize their approach to integration. We also look at the architectural patterns
that can help to enable a more agile integration architecture (see “Agile integration” on
page 3).

Application integration, in one form or another, has always been a necessary part of all but
the simplest of enterprise software solutions. Today, REST APIs, messaging, and event
streams represent the integration technologies of choice across different industry sectors.
This is partly due to the popularity of the microservices architecture (see “Microservices,
APIs, and microservices applications” on page 9). Figure 2-6 shows the different ways of
communicating between microservices within an application.

Figure 2-1 Communication between microservices within an application

The use of REST APIs offers a simple synchronous communication, but relies on both
microservices being available to communicate at the same time. Within a microservices
application, interaction patterns based on asynchronous communication might be preferred.
For example, you might prefer event sourcing where a publish/subscribe model is used to
enable a microservices component to remain up to date on changes that are happening to the
data in another component.

Traditional IT solutions might typically exploit these and other technologies across an
enterprise, including for integration with IBM Z assets. However, fundamental shifts around
how they are best employed make it difficult to gain the full spectrum of possible benefits,
unless you take a more holistic approach to modernization.

Taking a big-bang approach to modernization is likely to be impractical, costly, and disruptive.
Rather, an incremental and carefully curated approach to the adoption of new integration
options is the recommended approach for enterprise clients wanting to embark on a digital
transformation mission.

Selecting the right integration technology to meet the requirements of a given project remains
a critical early decision. But planning for the adoption of agile integration techniques is now an
equally vital consideration, because it can bring these benefits: agility in response to
unforeseen future enhancements, flexible deployment options, scalability and extensibility
around changing non-functional requirements.
8 IBM Z Integration Guide for Hybrid Cloud

2.1.1 Microservices, APIs, and microservices applications

A microservice is a bounded entity with a well-defined interface that provides a functional
capability for application developers (but not an externalized service in its own right). A
microservice might optionally depend on other microservices or directly accessible resources.

A microservice application is a discrete entity with a well-defined interface that encapsulates
a specific set of externalized business functions. A microservice application is composed
from one or more underlying microservices, where the application runtime platform, access
method, security model, or programming language involved is not necessarily prescribed, as
illustrated in Figure 2-2.

Figure 2-2 Combining a microservices architecture with APIs

A microservice application can be designed, developed, discovered, and externalized as an
API. Similarly, internal microservices might be designed, developed, discovered, and used as
an API. While this might be an aesthetically pleasing employment of architectural symmetry,
point-to-point messaging is the more prevalent choice within a microservices application.

Themed collections of APIs and services focused around a given business function, or
resource type, might form key components of an overall solution that is based on a
microservices architecture. Where APIs and services are used to directly encapsulate SoR
(System of Record) assets, for example IBM Z assets, their individual capabilities might be
considered too fine-grained (or too “chatty”) for an engagement layer. In such cases, it makes
sense to recast common sequences of API calls under a microservice application,
externalized as a new API.

The adoption of microservices encourages a fine-grained deployment of business function,
and when applied with a considered approach, can deliver multiple benefits, including:

� Greater agility: They are small enough to be understood in isolation and changed
independently.

� Elastic and independent scalability: Their resource usage can be tied to the business
model.

� Discrete resilience: With suitable decoupling, changes to one microservice do not affect
others at run time.

Note: For a further insight into the evolution from services, APIs, and microservices in an
enterprise environment, see the article Microservices, SOA, and APIs: Friends or
enemies?, by Kim Clark, which is available online at:

http://www.ibm.com/developerworks/websphere/library/techarticles/1601_clark-trs
/1601_clark.html
Chapter 2. Architecture options for integration 9

https://www.ibm.com/developerworks/websphere/library/techarticles/1601_clark-trs/1601_clark.html

2.1.2 Containers and container orchestration

The era of the virtual machine delivered better value from hardware investments by ensuring
that relatively light individual workloads could share the same underlying computing
resources, thereby delivering a more efficient use of hardware capacity overall. In order to
provide isolation, each workload could be built into a dedicated virtual machine, which
included the full stack of application runtime and operating system. Software maintenance
could also be performed more centrally, as virtual machine images could be rebuilt,
versioned, and rolled-by a central team.

However, application consumption and reuse patterns demanded finer grain access and
lifecycle of components through services. So, the virtual machine model came to feel
somewhat heavy handed, and rebuilding entire machine images typically held back the agility.

Containerization refers to the refactoring, packaging, and running of discrete software
components on a container technology runtime such as Docker. Most probably the containers
are administered with a container orchestration technology such as Kubernetes. The Open
Container Initiative1 (OCI), a project of The Linux Foundation, defines open specifications for
both container images ("image-spec") and container run times ("runtime-spec").

Container images are much more lightweight in comparison to a VM image. They take up less
space on disk and memory, and can be started and stopped much more rapidly, because
another entire operating system is not instantiated and started. Containers enable a more
fundamental abstraction from the underlying infrastructure, providing a much more lightweight
and portable virtualization model, as shown in Figure 2-3.

Figure 2-3 Abstraction from infrastructure

The adoption of containers offers an opportunity to modernize key business functions, and,
with the right approach, can deliver a broad set of benefits including:

� Agility and productivity: accelerated development, improved consistency across
environments, empowered autonomous teams that improve productivity and quality.

1 https://www.opencontainers.org/
10 IBM Z Integration Guide for Hybrid Cloud

https://www.opencontainers.org/

� Fine-grained resilience: independent deployment of highly available components to
remove single points of failure.

� Scalability and infrastructure optimization: fine-grained dynamic scaling and
maximized component/resource density to make best use of infrastructure resources.

� Operational consistency: homogeneous administration of heterogeneous components,
reducing the range of skillsets required to operate the environments.

� Component portability: portability across nodes, environments, and clouds, ensuring
choice when selecting platforms.

The drive toward a granular set of components — such as a decomposition of a monolithic
application into microservices, combined with containerization — means that before long,
there are very many more containers in play than virtual machines. Their propensity for
simple provisioning and scaling soon further increases their proliferation within an enterprise
organization, and so the question of control and management becomes critical to successful
adoption.

A container orchestration platform provides a minimum framework for efficiently aligning
resources with the containers, mechanisms to manage container lifecycle and scaling, load
balancing across containers, routing between them, and control of how they are exposed
beyond the container platform.

Figure 2-4 illustrates the fundamental differences between virtual machines and containers.

Figure 2-4 Difference between virtual machines and containers2

A key characteristic of a container is that it is small and fast because it uses some of the
underlying host operating system's resources to run, rather than containing a whole and
dedicated operating for each application, or group of applications. As such, many more
containers can be placed on hardware than virtual machines, enabling a more efficient use of
overall computing resource. Furthermore, their lightweight nature enables a radically different
approach to how they are managed and scaled, which align perfectly with the needs of
cloud-native applications.

The container platform standardizes almost all of the capabilities required of the enterprise
system, rather than leaving those to bespoke, proprietary, or customized solution that might
be highly aligned to a specific line of business, project, or team skill-base. This means more
time can be spent on delivering functional value, less on non-transferable customizations of a
given platform.

2 Derived from https://www.docker.com/what-container
Chapter 2. Architecture options for integration 11

https://www.docker.com/what-container

2.1.3 Agile integration architecture

In agile integration, the architectural patterns are tuned towards enabling the business to
deliver changes to production robustly, and yet at high velocity, and of course with optimal
use of resources. This plays out differently across the different integration capabilities of API
management, application integration, and events and messaging. Each has changed in their
own way to enable decentralized ownership, and a cloud-native infrastructure.

Delivery-focused integration architecture aims to improve deployment agility, using modern
architectural and design practices such as API-led or event-driven integration with a focus on
microservices applications. In the architectural space, each integration capability contributes
differently to improving integration agility.

Integration is front and center in enabling the business agility required to innovate faster than
the competition. An agile integration architecture, as shown in Figure 2-5, addresses this
need by rethinking the traditional centralized approach, to integration based on people,
architecture, and technology. It results in a decentralized, microservices-aligned, portable
approach to integration.

Figure 2-5 Modern architectural and design patterns for agile integration

Each integration capability offers its own set of characteristics that are summarized in the
following sections.

Note: For an in-depth analysis on the benefits of containerization, refer to the series of
articles, The true benefits of moving to containers by Kim Clark and Callum Jackson
available here:

https://developer.ibm.com/series/benefits-of-containers/
12 IBM Z Integration Guide for Hybrid Cloud

https://developer.ibm.com/series/benefits-of-containers/

Fine-grained application integration
In “Microservices, APIs, and microservices applications” on page 9 we explored why
microservices concepts have become popular in the application space. Therefore, we can
quickly see how these principles can also be applied to the modernization of the integration
architecture itself.

The centralized deployment of an integration hub or Enterprise Services Bus (ESB) pattern —
where all integration components are deployed to a centralized ESB — has some benefits in
terms of consistency and apparent simplicity and efficiency. However, it has been shown to
introduce a bottleneck for projects. Furthermore, any deployment to the ESB runs a risk of
destabilizing existing critical interfaces. Also, because the ESB is deployed on a single
software instance, no individual project can choose to upgrade the version of the integration
middleware to gain access to new features without impacting others.

An alternative approach is to break up the enterprise-wide ESB into smaller more
manageable and dedicated pieces. Perhaps in some cases we can even get down to one
runtime for each interface we expose. These fine-grained integration deployment patterns
provide specialized, right-sized containers, allowing improved agility, scalability and
resilience, and look very different from the centralized ESB pattern of the past.

For a detailed exploration of the decentralized ownership of integration components and the
adoption of best practices, see the IBM Redbooks publication Accelerating Modernization
with Agile Integration, SG24-8452
(http://www.redbooks.ibm.com/abstracts/sg248452.html?Open).

Consumer centric API management
An API-led integration strategy for connectivity between applications is now more or less
taken as a given. API management allowed the ideas that were originally envisaged in SOA
to mature. As a result, the standards around how interfaces are shared between applications,
and ultimately between enterprises in an API economy have been refined and improved. A
key lesson from this was the importance of creating and exposing APIs based on the needs of
the API consumer.

APIs are now treated more like products than technical interfaces, and as such they need to
be able to be marketed and potentially monetized. Socialization of APIs through slick
developer portals that enable self-subscription and convenient ways to learn and test the
interface are critical to the success of any API.

In today's multicloud world, it is also critical to be able to administer, catalog, and secure APIs
from a single place even if they are exposed on many different cloud endpoints, further
simplifying the consumer's experience.

The use of APIs for application integration is considered further in “API enablement” on
page 14.

Application owned messaging and events
Asynchronous communication is perhaps more relevant than ever in today's multicloud world:

� Messaging, originally introduced to enable decoupled communication across disparate
platforms, continues in that mission critical purpose, but now also takes up the same role
in reliable communication across cloud boundaries.

� Events provide mechanisms to store an event history. This history provides an alternative
source of information on data updates, enabling applications to selectively listen for
notifications and build local data stores more suited to their needs.
Chapter 2. Architecture options for integration 13

However, it is no longer acceptable to have to wait on a highly specialized team to provision
new asynchronous communication infrastructure. Teams need to be able to self-provision and
configure queues and topics for immediate use as part of their event-driven integration
projects.

Templatized and patternized mechanisms must be introduced to simplify provisioning tasks,
and where possible provide them in as in-situ, multi-tenant managed services. The queue
and topic configurations need to be application-owned so that developers can prototype and
iterate on solutions rapidly.

Messaging and event streams for application integration is considered further in “Messaging
and event streams” on page 19.

2.2 API enablement

Computer programmers are familiar with the concept of an application programming interface
(API). Historically, an API refers to the published details for a defined set of capabilities that
an application programmer can build upon. The details of such an API might typically be
published in a technical manual and distributed as a binary runtime library with an associated
license.

The types of APIs that are described in this paper follow the same core principles. However,
they operate in a connected world in which APIs can be easily discovered by any developer
with the appropriate access. They also are self-describing to the point where application
development tools can generate code to use the API and are language agnostic, which
accelerates adoption and promotes preferred practices.

Although these APIs still represent common services for application programmers, the scope
in which they can operate is dramatically different. APIs today might be used across the
breadth of global organizations, between companies, or by private individuals. They might be
combined with other APIs from entirely unrelated providers to form innovative value
propositions. With an API, developers can use the functions of computer programs in other
applications.

Over the years, APIs evolved based on advances in technology (such as network speed,
security, and dynamic integration). As business IT practices matured, these functions have
evolved to become discreet, consumable entities that are capable of delivering a valuable
service in their own right.

The ways that applications intercommunicate by APIs have changed over the years. In
particular, the advent of service-oriented architecture (SOA) provided an architectural model
to manage consumer and provider relationships in a dynamic environment. This model paved
the way for producing and making available APIs with better business enablement
capabilities, including request access, entitlement, identification, authorization, management,
monitoring, and analytics.

Cloud application developers today can develop high-value applications by combining
available business services or APIs that are often made available by various API providers
and discovered independently by application developers.
14 IBM Z Integration Guide for Hybrid Cloud

Each service or API provider is unlikely to envision all of the ways in which an API might be
used. However, if a mutual benefit exists, the API has a fair chance of success. Cost-effective
APIs that provide rapid value to application developers and that also build a reputation for
reliability can soon become the definitive method of providing a specific capability within the
mobile application development community (for example, location services that use Google
Maps APIs).

Potential users of enterprise APIs might be internal (inter-department, cross-function, or
employee), partner (affiliated, authorized Business Partners), or public (free or by
registration). In all cases, access to enterprise APIs face a common set of challenges in terms
of consumability, security, auditing, measurement, billing, and lifecycle. API management
aims to provide a unified approach for addressing these challenges.

2.2.1 Services and APIs

A modern enterprise is likely to have a rich catalog of services, developed under SOA
initiatives and used by existing applications, within and outside of an organization. New
projects choosing to adopt APIs might use existing services where appropriate or create new
services as part of the overall API enablement. Services that are used by a new API project
might also be used independently, shared by other API enablement projects, or remain
entirely private to one API.

APIs can be used to provide an externalized aspect of services. As such, they are not to be
viewed as an alternative to SOA, but rather a part of a well-designed, service-oriented
enterprise. However, APIs are a specific genre of services with a lifecycle that is focused on
“external” usage. This externalization of enterprise services drives a focus on simplicity,
security, and compatibility with standards-based external systems.

Enterprise-scale businesses most likely feature many defined web services. These
mission-critical transactional services and business processes often provide a rich source of
content for new APIs. A collection of individual services that provide operations upon a
common resource might now be represented as a collective unit (an API). Such an API can
be discovered, documented, invoked, and maintained as a single entity.

Developing for internal enterprise services and external APIs enables the use of distinct
content pools in which completeness of content and operations upon a specific business
resource might vary according to the user. For example, an internal user in a Human
Resources department might have full access to an employee record, whereas an external
employee directory might redact sensitive personal information from an employee record,
such as home address or salary, while ultimately accessing the same system of record asset.

Today, the ubiquity of HTTP has made it the de-facto communications protocol of choice for
devices, ranging from industrial sensors to private secure links between servers within an
enterprise. Support for connectivity through HTTP is simply assumed by application
developers today. When proven within an organization or technical community,
“best-of-breed” APIs rapidly become elemental components that are reused time and time
again by application developers, throughout suites of application suites. This in itself can lead
to real value, simply in terms of a consistent user experience for the application user or
adoption of standard practices.

An API is composed of operations, which are offered in one of the following styles:

� A REpresentational State Transfer (REST) API is structured according to the principles of
REST and typically uses the JSON data format (for more information, see “REST and
JSON” on page 16).

� A SOAP API is a web service that is made available as an API.
Chapter 2. Architecture options for integration 15

Figure 2-6 shows the co-existence of one solution that is based on an API architecture
alongside an SOA-based solution, where a mixture of new or existing services to the
enterprise application might be used to access a System of Record (SoR).

Figure 2-6 Concurrent consumption models for SoR assets as Services and APIs

A collection of independent services can be brought together under the auspices of an “API”
facade. However, such an API might not be naturally “RESTful” if it does not intuitively reflect
the create, retrieve, update, and delete operations through the set of HTTP methods.

2.2.2 REST and JSON

Application developers today typically expect APIs to “talk” HTTP, to naturally use HTTP
methods to represent the wanted operation, to exchange data represented in JSON, and to
return resource references as fully formed URIs that are ready to flow on a subsequent
request. REST and JSON are assumed to be universally available for applications that are
designed for modern mobile devices, such as smartphones and tablets.

REST is a defined set of architectural principles by which you can design web services that
focus on resources. The REST architectural pattern uses the technologies and protocols of
the World Wide Web to describe how data objects can be defined and modified.

The HTTP protocol provides verbs such as GET, POST, PUT, and DELETE that are typically
overlooked in an SOA-based solution. In contrast to a request-response model, such as
SOAP that focuses on procedures that are made available by the system, REST is modeled
around the resources in the system.

A naturally RESTful API uses the HTTP verbs to imply semantic meaning, leading to a
separation between a given resource (for example, a single record) and the logical operation
(for example, update) upon that resource instance. This separation between operation and
resource encourages a desirable degree of freedom between the two in the resulting
interface and typically produces an API that is intuitive for consumers.

In simple terms, REST prescribes a basic mapping from HTTP methods POST, GET, PUT,
and DELETE, to the logical operations create, retrieve, update, delete. Each resource is
globally identifiable through its Uniform Resource Identifier (URI), and the following HTTP
methods are used:

� POST: Create a resource representation.

� GET: Read a resource representation.

� PUT: Update a resource representation.

� DELETE: Delete a resource representation.
16 IBM Z Integration Guide for Hybrid Cloud

JavaScript Object Notation (JSON) is an open standard format for data interchange. Although
originally used in the JavaScript scripting language, JSON is now language-independent, with
parsers available for many programming languages. A JSON data structure is shown in
Example 2-1.

Example 2-1 JavaScript that uses JSON-encoded array to represent structured names of employees

var employees = [
{"name:":"Rob","surName":"Williams"},
{"name:":"Nigel","surName":"Gamblin"},
{"name:":"Richard","surName":"Jones"}
];

JSON supports two structures: Objects and arrays. Objects are an unordered collection of
name-value pairs, where arrays are ordered sequences of values. JSON also supports
simple types, including strings, numbers, Boolean expressions, and null values. This support
enables JSON data structures to describe most resources. JSON is considered to be a
simple representation of data for humans (or at least programmers) to read and for machines
to parse.

2.2.3 API management and the OpenAPI Initiative

API management brings a multitude of operational capabilities and insight to bear on APIs
and services, including discovery through an API marketplace, access controls, lifecycle
operations, rate control (or throttling), metering, auditing, and analytics.

The combination of RESTful APIs and API management heralds a significant evolution
beyond the initial service enablement patterns of SOA, and the possibility to use
JSON-encoded data makes IBM Z business assets more easily usable for the rapidly
expanding mobile and cloud-based application development community.

A key success metric for API-enablement of IBM Z assets is discovery and ease of
consumption. An API enablement technology must make IBM Z APIs discoverable and easily
usable on the terms of the consumer. Today, the OpenAPI Initiative, a Linux Foundation
sponsored Open Source Initiative that is backed by several organizations (including IBM),
defines a standard, language-agnostic interface for REST APIs. The implementation of this
initiative, an OpenAPI (formerly Swagger) definition document provides a standard way for
defining an API.

Discovery of a self-describing API through a marketplace with the social capabilities, such as
number of users, ratings, and lifecycle updates allows great APIs to drive rapid adoption.
Direct feedback can drive the evolution and requirements gathering process or quickly
identify unpopular modifications, all in one place.

2.2.4 Security standards for APIs

The digital economy encourages organizations to liberate what might historically have been
some of their most prized, and guarded, services, and data. The objective is to create new
sources of revenue, influence, market-share, or perhaps simply good-will. Attributes of trust
and security must be implicit around the provision and use of such services, in order to have
any chance for widespread adoption. Security by obscurity does not make the grade in this
age, but common models to address some of the most difficult challenges around security are
gaining acceptance in the marketplace.

The OpenAPI Initiative specification defines a selected range of standard security schemes,
Chapter 2. Architecture options for integration 17

any of which might be used for a given API, but which are typically adopted across an
enterprise API catalog. These schemes include basic authentication, an API key that can be
specified as a header or as a query parameter, OAuth 2.0 common flows (as defined in
RFC6749) and OpenID Connect.

Given the open-ended nature of API consumption, whether that be restricted to the internal
scope of an enterprise or across enterprise boundaries, the adoption of open standards for
security maximizes the chances for adoption, interoperability, and compliance. Security
schemes such as OpenID Connect have evolved to a level of maturity and acceptance today
that they are leading the way regarding how a myriad of previously unlinked systems can be
combined under a common approach to security.

However, not all stakeholders looking at a digital transformation project today will necessarily
have such an end-to-end security scheme available but might have adopted certain aspects
of these technologies. Authorization tokens, such as JSON Web Token (JWT) and Security
Assertion Markup Language (SAML), can also be employed for APIs and services today
(using HTTP headers) without full adoption of an overarching scheme, such as OAuth 2.0 or
OpenID Connect. Although already providing functionality within a defined application or
organizational scope, such solutions are often based on home-grown conventions for the
lifecycle of these authorization tokens.

The partial adoption of such schemes, or elements of them, has led to a divergence of local
conventions around the creation, expiration, and distribution of authorization tokens, making
integration for middleware solutions possible but often inconsistent in style. Therefore, early
adoption of the open standard-based security schemes is desirable to maximize flexibility in
the future as digital transformation projects widen in scope and ambition. After an enterprise
looks to augment its own capabilities by employing APIs from providers that exist beyond its
direct influence, open standard-based security schemes are not only desirable, but likely to
be mandatory.

2.2.5 Advantages of REST APIs

The following major advantages result from implementing an API management solution:

� Extends internal enterprise services to a system of developers and new markets.
� Controls access to enterprise services.
� Provides insight into who is accessing enterprise services.

The use of REST APIs offers the following additional advantages:

� They are prescriptive in terms of implementation patterns and security options, which
leads to a uniform approach that is intuitive for consumers and providers alike.

� The barrier of entry for mobile application programmers is set low; JavaScript application
programmers can handle HTTP connections and JSON data without requiring extra
specialist libraries (for example, for parsing).

� REST interfaces for IBM Z assets are familiar to mobile application programmers and can
be used in the same way as industry-standard APIs.

� They are independent of platform, operating system, and programming language. REST
and JSON also are flexible and extensible.

� JSON can often represent data more concisely than XML.
18 IBM Z Integration Guide for Hybrid Cloud

2.3 Messaging and event streams

The connectivity mechanisms described previously are predicated on direct and synchronous
connectivity between two applications. Rather than exchanging information directly,
messaging architectures place messages in queues that store them until they are retrieved by
an application.

In messaging, a queue manager maintains the queue and is responsible for the integrity and
persistence of the message. This queue manager can also deliver messages across a
network to other queue managers. The full benefits of a messaging architecture are realized
when you integrate disparate software components and you are not in control of the
availability and connectivity between these components.

In event streaming, an event streaming platform provides facilities to publish and subscribe to
streams of records, to store streams of records with fault toleration, and process streams of
records in real-time. The two classes of application that typically exploit an event streaming
platform are real-time streaming for data pipelines between applications, and real-time
streaming applications that transform or react to streams of data.

At a high level, messaging and event streaming technology might appear to have overlapping
capabilities. This is often due to the fact that they both can be used for the same core
asynchronous interaction patterns. However, on a deeper review of the capabilities of each
technology, it will become clear that they achieve these patterns in very different ways to
serve different purposes. It is critical to select the right technology for the job.

Figure 2-7 illustrates the primary architectural patterns used in asynchronous integration
solutions.

Figure 2-7 Asynchronous integration patterns

The different patterns are described here:

Fire and forget: A requesting application sends a message or event for processing to
another application. The requesting application wants to assure the message or event has
been sent, but in this scenario, it does not expect a response. The requesting application
Chapter 2. Architecture options for integration 19

might in the future submit another request to determine the status of the original request.
However this is a separate interaction, and indeed might not even be done via messaging or
events.

Decoupled request/reply: In common with a synchronous call over a protocol such as
HTTP, a requesting application sends request message/event to a target application and
requires a response. However, in contrast to synchronous HTTP calls, the requesting
application can choose to continue processing and be called back with a response when this
becomes available. Messaging facilitates this, as the location and availability of the target
application can be decoupled from the requesting application.

Publish/subscribe: The previous two interaction styles have a one-to-one relationship
between the requesting and target applications. In other scenarios it is often desirable to send
messages/events to multiple target applications. For instance, a message/event that is
published with an airline’s flight change might be of interest to the passenger mobile
application, to the itinerary application, and many others also.

An event streaming technology could be used to implement a messaging solution, or a
messaging provider used to implement an event solution. However, each case would be an
anti-pattern. Each model facilitates the communication of data between systems, but the
underlying capabilities and usage of the technology is different.

The increasing complexities of hybrid applications increasingly rely on a de-coupled,
event-driven architecture where multiple cascading actions need to be taken upon one or
more real-world events.

2.3.1 Messaging

Messaging enables a decoupled architecture where an intermediary is placed between two
applications, systems, or services for communication.

This component is often referred to as a messaging provider. The messaging provider
achieves decoupling by providing queues onto which applications can place messages for
later retrieval by target applications. This asynchronous communication between the systems
means that the applications no longer depend on each other's availability.

Industry standards for messaging, such as JMS, enable Java applications to be developed
that can be fulfilled by any messaging provider that adheres to the standard.

Figure 2-8 shows a basic messaging interaction.

Figure 2-8 Basic messaging interaction
20 IBM Z Integration Guide for Hybrid Cloud

Messaging enables qualities of service like reliable delivery, enhanced security, and workload
distribution. It is most commonly used to enable the following use cases:

� Transient data

Data is stored until a consumer has processed the message, or it expires. The data does
not need to be persisted longer than required, and it is actually beneficial from a system
resource point of view that it does not.

� Request/reply

While some messaging operations follow the fire-and-forget pattern, the most common
use case is request/reply.

� Reliable delivery

Messages can be delivered using a suitable level of reliability, according to specific
delivery requirements. Examples include once-and-once-only delivery, assured delivery,
and transactional PUT or GET behavior.

Some examples of industry-leading messaging providers include IBM MQ, ActiveMQ, and
RabbitMQ. IBM MQ is used by a large number of mainframe clients to implement the
preceding use cases with IBM Z applications.

Security standards for messaging
TLS provides security for messages while they are in transmit between two queue managers,
or between a client application and a queue manager. However, if TLS alone is used,
message data remains unencrypted when it resides on message queues.

Some messaging providers, for example IBM MQ, extend TLS support by also providing
end-to-end data protection of messages, by enabling signing and encryption at the message
level. This guarantees that message data has not been modified between when it is originally
placed on a queue and when it is retrieved, and also ensures that the message data is
private.

Advantages of messaging
The use of messaging offers the following advantages:

� Provides an asynchronous communication mechanism that enables two or more
applications to communicate without both having to be available at the same time.

� Enables highly scalable solutions.

� Enables buffering of workloads between applications, such that one application does not
overload another with requests.

� Supports one-to-one and one-to-many publishing of messages.

� Ensures that business-critical information is not lost, and is delivered to the recipient once
and once only.

2.3.2 Event streams

Event streams are based on the publish/subscribe integration pattern, but with the capability
to significantly scale both the number of events occurring and subscribers listening for those
events. Event streaming technology allows an enterprise to collect, store, and distribute
events across all their applications at massive scale.

The stateless nature of many consumers of events introduces the need to retain an event
history. An event stream typically represents a collection of events that are generated by one
Chapter 2. Architecture options for integration 21

or more systems, or applications, and need to be processed by one or more other
applications or systems.

Figure 2-9 shows an event stream with multiple consumers.

Figure 2-9 Event stream consumers

Event streams lend themselves to an alternative set of asynchronous integration use cases
compared with messaging, albeit with some overlap around publish/subscribe use cases:

� Stream history

When retrieving events, often consumers are interested in the historical events, not only
the most recent. There are many instances when this is valuable, such as retrieving the
historical trends of a system’s availability. Therefore, every event needs to be appended,
and made available to consumers, and depending on the configuration, a certain number
or volume of events will be stored prior to removal.

� Scalable subscription

An event stream can be consumed by large numbers of subscribers, with limited
performance impact as the number of subscriptions is increased, because an event
stream maintains only one copy of each event.

� Immutable data

When an event is placed in the stream history, it cannot be changed or removed. It can be
considered immutable data. This enables consumers to rely on the assumption of
consistent replay, and reduces the complexity of replicating the data from a consistency
point of view.

Consumers of events don't necessarily want to read all events that pass through the event
stream. So publishers of events specify a topic and subscribers listen only to the topic(s) they
are interested in.

There are two key components to any event streaming technology: a server that stores
events and manages the topics, and a client that allows applications to interact as a provider
or consumer of events.

Several technologies provide event streaming capabilities. The market is leaning toward
Apache Kafka as the de facto standard. Apache Kafka is an open source project that was
originally created by LinkedIn and donated to the community in 2011. Some vendors provide
commercially supported versions of Kafka and the IBM offering is Event Streams.
22 IBM Z Integration Guide for Hybrid Cloud

Using event streaming with event-driven applications introduces new integration patterns that
gather events from multiple sources. The events might need to be extracted from mainframe
databases and applications, analytics systems, SaaS systems, or other cloud-based
applications.

Security standards for event streams
In much the same way as messaging, event stream communications secure data both on the
wire and at rest. Over the wire, protocols such as TLS can be configured and, at rest, disk
encryption secures data on the event streams servers.

In addition, authorization to topics is enforced upon the clients, both providers and
consumers, by Access Control Lists, with specific implementation dependent on the product
employed.

Advantages of event streams
The use of event streams offers the following advantages:

� Event streaming technology is designed to handle millions of events a second.

� Increases in the number of subscribers to a topic has a minimal impact on performance.

� An event history is maintained which means that consumers of events do not need to
maintain event state.

Note: IBM is also a key contributor to the Apache Kafka open source project as
committers.
Chapter 2. Architecture options for integration 23

24 IBM Z Integration Guide for Hybrid Cloud

Chapter 3. Hybrid integration architecture
considerations

Integration patterns between cloud-hosted services and mainframe applications can be
considered from different perspectives, including presentation, application, data, and security
integration. The goal of these patterns is to enable any application to consume Systems of
Record applications or data, quickly, simply and securely.

In this chapter, we review the key considerations and architectural components needed for
any cloud-native application to reuse mainframe applications and data.

This chapter includes the following topics:

� 3.1, “Hybrid integration architecture” on page 26
� 3.2, “Integration patterns with IBM Z” on page 30

3

© Copyright IBM Corp. 2020. 25

3.1 Hybrid integration architecture

An effective integration architecture must be sufficiently flexible to encompass applications
and services that span public and private clouds, as well as traditional enterprise systems.
Historically, there was a clear boundary of users, applications and hosting environments that
were either within, or beyond the enterprise. Over time, more complex requirements were
placed on the integration components, to support newer models for self-service, monetized
billing and event streaming.

We are now in a world where third partner applications sit beyond traditional enterprise
boundaries; increasingly, an organization's own applications reside in public cloud
environments and, indeed, may move over the lifetime of the application. This places new
requirements on integration, in which services can be discovered and consumed using REST
APIs, messaging and event-driven architectures.

In this section, we look at the major components of a hybrid integration architecture (see
Figure 3-1).

Figure 3-1 Hybrid integration architecture

Figure 3-1 shows a simplified representation of the different types of application, integration
layers and infrastructure (on-premises and cloud) used by enterprises today.

One of the pervasive industry trends is the adoption of a cloud native approach, where
applications and data services are designed for container platforms and hosted in cloud
infrastructures. Figure 3-1 shows how cloud native infrastructures can sit alongside traditional
infrastructure. It is important to note that organizations will almost certainly have a hybrid
infrastructure and so the integration architecture needs to work for both environments.

The major components of a hybrid integration architecture are described next.

Note: Not all solutions require all of the components that are shown in Figure 3-1. For
more information about hybrid integration architectures, see the IBM Redbooks publication
Accelerating Modernization with Agile Integration, SG24-8452:
http://www.redbooks.ibm.com/abstracts/sg248452.html?Open
26 IBM Z Integration Guide for Hybrid Cloud

http://www.redbooks.ibm.com/abstracts/sg248452.html?Open

3.1.1 Engagement applications

Engagement applications combine channel-specific logic with custom business logic to
provide presentation tier services. They support a diverse set of consumers, ranging from
human-driven interfaces to web and mobile applications, to business-to-business
applications, and machine appliances, such as IoT devices.

Figure 3-1 on page 26 illustrates this evolution of the architecture and deployment
infrastructure of engagement applications. Historically, engagement applications have been
monolithic in nature, with each monolith supporting a different channel. However, these
applications are increasingly being refactored to exploit microservices architecture patterns.
Alongside this change in application architecture, is a move to deploy these microservices
applications in a cloud infrastructure.

3.1.2 Systems of Record

When engagement applications provide information to consumers, it is vital that they can
access current and accurate data, irrespective of the engagement channel. For example, a
cloud-hosted, third-party application, must provide the same result as queries that are made
using traditional web or call center channels. The integrity and validity of the account data is
maintained by the System of Record (SoR), which can be hosted on different systems,
including the IBM Z mainframe.

Access to SoRs depends on a number of factors, including the type of SoR that is used, for
example, CICS, IMS, or Db2, and the type of interfaces made available, such as API-,
SOAP-, or message-based.

The SoR applications are most commonly implemented as monolithic applications, meaning
that they are developed to a set of standards, often in a single language such as COBOL or
Java, and perform multiple related functions. These functions can be in-house developed
applications or application packages that support business process management functions,
for example. The communication mechanisms for these applications tend to be diverse and
include messaging, SOAP web services, and increasingly REST APIs. These monolithic SoR
applications and data platforms are shown on the lower left side of Figure 3-1 on page 26.

Increasingly, SoR applications are evolving to become more componentized and to adopt
loosely coupled architectures. This approach paves the way for them to become full
microservices applications. In that case, each component performs a single function, can be
developed in a language that is best suited to the function, and can be scaled independently
from the others. The communications models for these applications are almost always based
on a combination of messaging and REST APIs. This evolution of the SoRs is shown on the
lower right side of Figure 3-1 on page 26.

3.1.3 API management

As organizations productize their business functions through REST APIs, it is essential for
these APIs to be managed so that only approved individuals or applications are able to
discover and consume the APIs. API management simplifies integration by enabling:

� API developers to create, secure, control, deploy, analyze, and manage SOAP and REST
APIs.

� API business owners to advertise, market, socialize and to bill either internally for
cross-charging purposes or externally to sell APIs as products.
Chapter 3. Hybrid integration architecture considerations 27

� Application developers to easily find, understand, and use APIs.

� IT operations staff to manage and upgrade the API environment.

API management enables access to APIs and essential services, such as security,
governance, monitoring, and analytics. For example, metering API invocations and
enablement of rate limiting and charging.

API management can also provide the underlying technology to support simple
message-format translation and version and change management. It can be deployed in the
same physical or virtual server as a security gateway, depending on whether the service is
available internally within an organization or beyond.

API management can be implemented to address different requirements. Figure 3-1 on
page 26 shows multiple logical instances of API management, which is associated with
engagement applications, integration components, and SoRs.

The ability to deploy multiple API management instances has advantages that are related to
the different non-functional requirements that are associated to the underlying component.
For instance, managed APIs that expose functions from the engagement applications, must
provide additional levels of protection associated with queries from outside the enterprise.
This is in contrast to API management deployments alongside a SoR, that must provide
enhanced API discovery and simplified access to core application and data assets.

However, it is equally easy to see how this might quickly get out of hand. Does each gateway
need its own API manager and developer portal? It would be painful if each team had to
manage their own API management infrastructure alongside their implementation.

In the case of API management, the important thing to decentralize is the ownership over the
ability to administer APIs (the provider perspective) and the ability to discover, subscribe, and
use them (the consumer's perspective).

A good API management solution should provide strong multi-tenant capabilities so each API
is defined, managed, and administered only by the team that created it. An API gateway
should be able to expose APIs from multiple separate implementations and provide good
isolation. For example, managing heavy traffic through one API (and perhaps limiting it in
relation to the policy that is defined for its consumers) should have no effect on the
performance characteristics of any other APIs also passing through the gateway concurrently.

Consider the following questions when you decide what role API management should play in
a hybrid integration architecture:

� Do you need to make your business services more usable?

Making APIs usable means more than just providing key technical information about how
to invoke the APIs, that is, the interface description. APIs should be intuitive to use and
simple to look up from a searchable catalog.

� Do you want to reach new markets, customers, and partners?

By making core business functions available as APIs to external consumers, a business
can deliver more comprehensive services and reach more customers.

� Do you need more control over who uses your business services?

The API gateway can check the entitlement for the invoking application, control workload,
and generate audit data on each invocation. The collected audit data can then be
analyzed and presented as a report for gaining insight into API invocation; for example,
which APIs are invoked, how often, and by which applications.
28 IBM Z Integration Guide for Hybrid Cloud

� Do you need to charge consumers for accessing your business services?

The audit data that is collected by the API gateway can be used for charging.

� Do you need to de-centralize ownership of APIs?

The chosen API management solution should offer strong support for multi-tenancy, and
distributed API ownership and deployment.

3.1.4 Integration

An integration component provides a means to connect a service requester with a service
provider. Each invocation from a service requester (for example, an engagement application)
results in one or many invocations to a service provider (for example, a mainframe SoR).
Integration components often handle request composition, event handling, data
synchronization, and adapter-based technology integration.

An integration component commonly supports the request protocols and data formats that are
associated with RESTful APIs and cloud services and augments the capabilities of the API
management components.

Service invocation requests from the engagement applications should be lightweight and
consist of a limited number of primitive data types and operations. The integration
components can handle the necessary routing, mediation of service interface differences,
data transformations, protocol transformations, caching, and orchestrations, retry logic,
exception handling, and so on.

Traditionally, integration was seen to be a single logical component, or layer, with the
responsibility for enterprise integration falling to a single team or domain within an enterprise.
More recently, integration has proven most effective when it is embedded as discrete
components alongside the applications that require it. This is illustrated in Figure 3-1 on
page 26. The left side shows a single, logical integration layer and on the right side, there are
multiple integration components, which are deployed where they are needed.

As an example, some integration components can be deployed as part of a
microservices-based engagement application hosted in a public cloud; while other integration
components can be created and deployed alongside the SoRs, perhaps to provide a façade
for a bespoke application.

Consider the following questions when you decide what role integration components should
play in a hybrid integration architecture:

� How many different types of service requesters and service providers are needed in the
enterprise?

The value of an integration component is partly determined by the range of different
service requesters and providers that must be integrated. When a significant and growing
number of endpoints require support for different protocols and data formats, the
integration component plays a crucial role in facilitating application integration. An
integration component also makes it easier to introduce systems into the application
integration architecture if business mergers and acquisitions occur.

� Does the engagement application need to support asynchronous requests?

For asynchronous requests, the response of a service provider must be correlated to the
original request from the service requester. The requester must determine which request a
response answers. An integration component can provide correlation for asynchronous
invocations by using a messaging engine.

� Is a centralized integration layer used in the application integration architecture today?
Chapter 3. Hybrid integration architecture considerations 29

Probably the most compelling reason for the use of a centralized integration layer is if
such a component is being used today to enable integration with service requesters. The
integration layer often has a pivotal governance role in applying policies, such as
authentication, audit, logging, and service versioning. In this case, it is likely that
engagement application requests are subject to the same governance policies.

If there is a centralized integration layer today and there is nothing major on the roadmap
for the applications that use the integration layer, it does not make sense to decompose
the integration layer into multiple decentralized components.

� Do you need to de-centralize ownership of integration components?

Consider the decentralization of integration components where the autonomy it brings is
required by the organization. The chosen solution should offer strong support for
multi-tenancy, and distributed integration component ownership and deployment.

3.2 Integration patterns with IBM Z

The components of the integration architecture do not sit in isolation but are connected by the
flow of requests between engagement applications and SoRs. In this section we look at the
common integration patterns used with IBM Z:

� Aggregation

� Direct API call

� Call-out

� Event stream

3.2.1 Aggregation pattern

One of the most common integration patterns used with IBM Z is when an application issues
a request that requires coordinated access to multiple SoRs. This is the aggregation pattern
shown in Figure 3-2.

Figure 3-2 Aggregation pattern
30 IBM Z Integration Guide for Hybrid Cloud

Figure 3-2 shows the following sequence of steps:

1. A request is made to an externally facing API, that is managed and secured with API
management. The API management layer directs the request to the relevant engagement
application.

2. To satisfy the request, the engagement application needs access to additional services,
which are provided via a single internally managed API. This API is available to internal
applications only.

3. The services required by the engagement application reside on two SoRs, one accessible
by a web service and the other accessible by messaging. The managed internal API calls
a service in the integration layer that handles the data and protocol transformation, and
issues the requests to the SoRs.

Not shown in Figure 3-2 on page 30 is the response leg, where the integration layer
correlates the requests to the SoRs, aggregates the SoR responses and provides a single
response to the engagement application via the managed API.

3.2.2 Direct API pattern

As integration components become embedded as part of an application domain, it opens the
possibility for more efficient, direct connectivity to services that naturally fulfil a request,
requiring no enrichment or modification. This is the direct API pattern shown in Figure 3-3.

Figure 3-3 Direct API pattern

Figure 3-3 shows the following sequence of steps:

1. A request is made to an externally facing API, that is managed and secured with API
management. The API management layer directs the request to the relevant engagement
application.

2. The engagement application, comprised of a set of microservices, requires access to a
service hosted in the SoR. This is accessible via a managed API, accessible to internal
applications only.

3. In this pattern, an integration component has been co-located with the SoR to provide a
REST API that can be consumed directly by the API management layer. This speeds up
the delivery of new services because no prototol switching is necessary. And the SoR
Chapter 3. Hybrid integration architecture considerations 31

team is responsible for the creation and deployment of the REST API (they do not need to
rely on a centralized integration team).

Not shown in Figure 3-3 on page 31 is the response leg, where the integration component
provides a response to the engagement application via the managed API.

3.2.3 Call-out pattern

Embedding integration components alongside the SoR has opened the possibility of calling
APIs from these applications and augmenting them with services that may reside in other
SoRs or cloud applications. This is the call-out pattern shown in Figure 3-4.

Figure 3-4 Call-out pattern

In this pattern, integration components are co-located with the SoR to provide a REST API
call-out capability. In this example, the SoR application requires access to two services; a
public cloud service, and an on-premise service provided by another SoR.

Figure 3-4 shows the following sequence of steps:

1. An initial request is made to the API management layer which manages calls to external
services.

2. The API management layer forwards the request to the public cloud service.

3. The SoR application next calls a managed API that is co-located with another API-enabled
SoR application. In spite of both SoR applications being implemented differently and
independently, they are able to communicate directly via standard REST APIs.

Not shown in Figure 3-4 are the response legs, where the SoR application receives
responses from the called APIs.

3.2.4 Event stream pattern

Sometimes it is necessary to disseminate information to multiple systems simultaneously.
This can be enabled using an event-driven architecture in which event streams are used to
publish events which are then consumed by subscribed consumers. This is the event stream
pattern shown in Figure 3-5.
32 IBM Z Integration Guide for Hybrid Cloud

Figure 3-5 Event stream pattern

In this pattern, an event stream representing changes to customer records is generated by a
mainframe SoR application and consumed by a number of cloud and on-premise
applications.

Figure 3-5 shows the following sequence of steps:

1. An initial request is made to the API management layer which then calls the SoR REST
API (as shown in the “Direct API pattern” on page 31).

2. The SoR application calls a private cloud hosted integration service via a managed API.

3. The integration service publishes the updates from the SoR application, for example an
address change, to an event stream. The event stream is then consumed by a number of
internal and external consumers.
Chapter 3. Hybrid integration architecture considerations 33

34 IBM Z Integration Guide for Hybrid Cloud

Chapter 4. Hybrid integration solutions
for IBM Z

This chapter describes the main IBM solutions and products that can be used to integrate
with IBM Z applications in a hybrid cloud infrastructure. We then look at specific
considerations for the main z/OS subsystems. And we also introduce the open source project
Zowe which offers a set of system APIs and a command-line interface that allows developers
and system administrators to interact with IBM Z in a cloud-native way.

This chapter includes the following topics:

� 4.1, “IBM integration solutions” on page 36
� 4.2, “z/OS subsystem considerations” on page 51
� 4.3, “Zowe” on page 60

4

© Copyright IBM Corp. 2020. 35

4.1 IBM integration solutions

This section describes the main solutions and products that can be used to integrate with IBM
Z applications in a hybrid cloud infrastructure:

� 4.1.1, “IBM z/OS Connect Enterprise Edition” on page 36
� 4.1.2, “IBM API Connect” on page 41
� 4.1.3, “IBM DataPower Gateway” on page 44
� 4.1.4, “IBM App Connect” on page 45
� 4.1.5, “IBM MQ” on page 47
� 4.1.6, “IBM Event Streams” on page 49
� 4.1.7, “IBM Cloud Pak for Integration” on page 49

We provide an overview of each solution and guidance on when to use each one.

4.1.1 IBM z/OS Connect Enterprise Edition

IBM z/OS Connect Enterprise Edition (z/OS Connect EE) provides a common entry point for
REST HTTP calls to reach business assets and data on z/OS operating systems. Where
these assets run is specified in the z/OS Connect configuration, which relieves client
applications in the cloud, mobile, and web worlds of the need to understand the details about
how to reach them and how to convert payloads to and from the formats that the applications
require. APIs can be enabled without writing code and tooling is provided for creating the data
transformation artifacts.

With z/OS Connect EE, mobile and cloud application developers can incorporate z/OS data
and transactions into their applications, whether they work inside or outside the enterprise,
without needing to understand z/OS subsystems. The z/OS resources appear as any other
REST API. This capability is referred to as the API provider support.

z/OS Connect EE also provides the capability that allows z/OS-based programs to access
any RESTful endpoint, inside or outside the enterprise, for example a cloud-based
microservice. This framework enables CICS, IMS, and other z/OS applications to call
RESTful APIs through z/OS Connect EE. This capability is referred to as the API requester
support.

API provider
An overview of the API provider support in z/OS Connect EE is shown in Figure 4-1.

Figure 4-1 z/OS Connect EE API provider
36 IBM Z Integration Guide for Hybrid Cloud

The following components are shown in Figure 4-1:

1. z/OS asset

z/OS Connect EE provides a framework that enables z/OS assets (programs and data) to
be enabled as APIs so that they can be more easily used by mobile and cloud
applications. z/OS Connect EE supports many types of z/OS asset, including CICS and
IMS applications, Db2 data, and MQ queues and topics.

2. Service providers

A z/OS Connect EE service provider forwards requests to a System of Record (SoR). The
following service providers are included with z/OS Connect EE:

– A CICS service provider for connecting to CICS (see , “z/OS Connect EE with CICS”
on page 51)

– An IMS service provider for connecting to IMS (see 4.2.2, “IMS” on page 53)

– A REST Client service provider for connecting to a REST service (HTTP/JSON
endpoint), for example, a Db2 REST service (see , “z/OS Connect EE with Db2 REST
services” on page 56)

– A WebSphere Optimized Local Adapter (WOLA) service provider for connecting to
WOLA-enabled applications, for example, a custom long-running task

– An IBM MQ service provider for putting or getting messages from an IBM MQ queue
(see , “z/OS Connect EE with IBM MQ” on page 58).

Other IBM products also provide integration with z/OS Connect EE, for example:

– IBM Host Access Transformation Services (HATS) provides a unified way for REST
APIs to access 3270-based applications. The APIs from HATS can be combined with
z/OS Connect EE to enable more meaningful API names and flexible API parameters.

– IBM Data Virtualization Manager (DVM) for z/OS includes a service provider that
enables direct access to data, for example, VSAM and sequential file data, with Select,
Insert, Update, and Delete functions using a RESTful interface.

For more information on DVM see the IBM Redbooks publication Accelerating Digital
Transformation on Z Using Data Virtualization, REDP-5523
(http://www.redbooks.ibm.com/abstracts/redp5523.html?Open).

– IBM File Manager for z/OS includes a service provider that enables access to data
sources through File Manager for z/OS.

You can also write your own service provider that implements the z/OS Connect EE
Service Provider Interface (SPI) com.ibm.zosconnect.spi.Service.

3. Services

Before you create an API, you must create and configure services that provide information
about the z/OS asset, including its expected request and response JSON schemas and
information about how to connect to the service.

The way that you create the service depends on the type of z/OS asset that is being API
enabled. For example, to create a service from an existing CICS COBOL application, you
import the copybook that defines the program interface into the z/OS Connect EE API
Toolkit. You then use the API toolkit to define the service interface, including:

– To assign fields to constant values
– To rename fields to make them more intuitive
– To selectively omit fields from the interface

z/OS Connect EE services can be invoked directly by using a basic “remote procedure
call” model of REST where typically an HTTP POST is used with the required JSON
Chapter 4. Hybrid integration solutions for IBM Z 37

request message. However, the full value of z/OS Connect EE is achieved when an API
layer is built on top of the JSON services.

4. APIs

The API defines the REST interface that you want to enable for the z/OS asset, including
what HTTP verbs are used, the format of the URIs, and the different API paths on which
the specific services are implemented.

The API-mapping model provides fine-grained control of the format of the JSON request
and response messages, and the use of URI query parameters, path parameters, and
HTTP headers in the design of the API. It adds a powerful abstraction layer between the
API consumer and the underlying z/OS assets. The mapping model allows inline
manipulation of requests, such as mapping HTTP headers, pass-through, redaction, or
defaulting of JSON fields. You can also define multiple HTTP status codes for an API
operation. Rules can be defined that determine the status code and unique response
mapping, that are returned in the HTTP response.

Behind each API operation, the JSON request-response schema that is associated with a
specific HTTP method (GET, POST, PUT, and DELETE) is mapped to an associated
service (as shown in Figure 4-2).

Figure 4-2 z/OS Connect EE API mapping

Figure 4-2 shows the relationship between API operations and the service archive (.sar)
files, which contain the information that is needed by the z/OS Connect EE service
provider to install and provide the service and to enable the service as a JSON asset.

5. server.xml

z/OS Connect EE is based on Liberty server technology; therefore, the z/OS Connect EE
server is configured in the Liberty server.xml file. The server.xml configuration file
defines the z/OS Connect EE feature, locations for API and service archive files, security
configuration, policy rules, and other configuration elements.

You can use z/OS Connect EE policies to adjust how an API request is processed, based
on the HTTP header values sent in by the client. You create rule sets to define the
condition and actions, then enable z/OS Connect EE policies to apply those actions to API
requests. For example, a policy that routes requests to a specific SoR based on the value
of an HTTP header.
38 IBM Z Integration Guide for Hybrid Cloud

6. Swagger document

The z/OS Connect EE API Editor generates a Swagger document that is used by the
client application developer to generate code that invokes the API or to import into an API
management system, such as IBM API Connect® (see 4.1.2, “IBM API Connect” on
page 41).

See 5.1, “Implement Open Banking APIs with z/OS Connect EE” on page 64 for an example
scenario that features the use of the API provider support of z/OS Connect EE.

API requester
An overview of the API requester support in z/OS Connect EE is shown in Figure 4-3.

Figure 4-3 z/OS Connect EE API requester

The following components are shown in Figure 4-3:

1. REST API

This component is the RESTful endpoint that is described in a Swagger document.

2. z/OS application

This component is the CICS, IMS, or z/OS application that needs to call the REST API.

3. API requester archive

Based on the Swagger document of the REST API, you use the z/OS Connect EE Build
Toolkit to generate the artifacts for the API requester. The artifacts include the API
requester archive (.ara) file to be deployed to the z/OS Connect EE server, and API
information file and data structures that are used by the z/OS application program for
calling the REST API.

4. Communications stub

The z/OS Connect EE communication stub is the module that establishes an HTTP
connection from the z/OS application to the z/OS Connect EE server.

5. server.xml

The z/OS Connect EE server is configured with the Liberty server.xml file. The server.xml
configuration file defines the z/OS Connect EE feature, location for API requester archive
files, security configuration, and other configuration elements
Chapter 4. Hybrid integration solutions for IBM Z 39

6. HTTP(S) endpoint

The HTTP(S) endpoint of the REST API, which is configured in the server.xml file. The
connection to the external API provider can be secured with TLS and z/OS Connect EE
can be configured to send a security token such as a JWT to the RESTful API.

See 5.2, “Call out to external services using z/OS Connect EE” on page 67 for an example
scenario that features the use of the API requester support of z/OS Connect EE.

z/OS Connect EE runtime
z/OS Connect EE is based on Liberty server technology and is lightweight and easily
configurable. It benefits from the security foundation of Liberty, for example, for authentication
using a variety of mechanisms including open standards like JSON Web Tokens (JWTs) and
encryption based on the Java Secure Sockets Extension (JSSE).

z/OS Connect EE also benefits from unique z/OS capabilities, such as System Authorization
Facility (SAF) security integration, z/OS Workload Manager (WLM), and audit logging to SMF.
SAF integration means that z/OS Connect EE supports z/OS Identity Propagation that can be
used to map a distributed user ID to an IBM RACF® user ID and then propagate the
distributed user ID or mapped RACF user ID onto the SoR (for example, CICS, IMS or Db2).
WLM integration means different URIs can be classified and measured so that you have
accurate data about how many times an API is called and the performance characteristics of
the API.

z/OS Connect EE provides a framework that enables interceptors to work with operations,
such as service invoke, status, start, or stop. z/OS Connect EE provides interceptors to
perform tasks, such as SAF authorization, SMF (System Management Facility) activity
recording, and logging JSON payloads.

The interceptor framework is used by other vendors to integrate their solutions with z/OS
Connect EE, for example:

� IBM OMEGAMON® for JVM on z/OS can be used to monitor the status of a z/OS Connect
EE API workload.

� IBM Z Common Data Provider can be used to stream z/OS Connect EE audit data to an
analytics platform such as Elasticsearch, Apache Hadoop or Splunk.

� AppDynamics can be used to track API requests processed by z/OS Connect EE.

You can also write your own interceptors that implement the z/OS Connect EE
com.ibm.zosconnect.spi.Interceptor SPI.

When to use z/OS Connect EE
Consider the use of z/OS Connect EE for REST API enablement when you want to perform
the following tasks:

� Create APIs from existing z/OS assets using a tool-based approach that requires no
programming.

� Simplify the REST API development process by making the mainframe application owner
responsible for creating APIs from z/OS assets, and calling external APIs from z/OS
applications.

Note: For more information on monitoring a z/OS Connect EE API workload, see
https://developer.ibm.com/mainframe/docs/managing-api-workloads/
40 IBM Z Integration Guide for Hybrid Cloud

https://developer.ibm.com/mainframe/docs/managing-api-workloads/

� Support the discovery of defined APIs by using the OpenAPI standard to share API
definitions as Swagger documents.

� Allow z/OS applications (including CICS and IMS applications) to call external REST APIs

� Enable interoperability between z/OS Connect EE and API solutions for management,
monitoring, transaction tracking, and analytics.

� Manage API access control using SAF and audit access to SMF.

� Minimize the required changes to SoRs.

� Use Java-based message transformation that can be offloaded to zIIP specialty engines.

For more information about z/OS Connect EE, see IBM Developer:

https://ibm.biz/zosconnectdc

4.1.2 IBM API Connect

IBM API Connect is a comprehensive platform from IBM for managing the API lifecycle which
has two main focuses: the first is providing best in class API management tooling, and the
second is having a cloud native solution. This allows users to create, manage, and secure
applications that are deployed across a variety of on-premises (including IBM Z) and cloud
environments.

The key phases in the API lifecycle are shown in Figure 4-4.

Figure 4-4 API lifecycle steps

The phases of the API lifecycle are as follows:

� Create: Develop and write API definitions from an API development environment,
eventually bundling these APIs into consumable products, and deploying them to
production environments.

� Secure: Leverage the best-in-class API gateway, gateway policies, and more, to manage
access to APIs and back-end systems, including IBM Z subsystems. The API gateway is
Chapter 4. Hybrid integration solutions for IBM Z 41

https://ibm.biz/zosconnectdc

based on the IBM DataPower® Gateway (see 4.1.3, “IBM DataPower Gateway” on
page 44).

� Manage: Governance structures are built into the entire API lifecycle, from managing the
view/edit permissions of APIs and Products being deployed, to managing what application
developers can view and subscribe to when APIs are deployed.

� Socialize: Leverage an advanced Developer Portal that streamlines the onboarding
process of application developers, and can be completely customized to an organization's
marketing standards.

� Analyze: Developers and Product Managers are given real-time analytics on API traffic
patterns, latency, consumption, and more, so that they can make data driven insights into
their API initiatives.

API Connect deployment options
IBM API Connect includes four major components: the API Manager, API Analytics,
Developer Portal, and the API gateway. These four components can be deployed in a variety
of hybrid and multicloud topologies. The infrastructure can either be deployed and managed
by an IBM team in an IBM Cloud environment, or it can be deployed and managed by
customers in their own dedicated environment or third-party cloud.

In addition to the above components there is a Cloud Manager to manage the API Connect
topology and a developer toolkit for offline API definition.

IBM API Connect is available as a separate product or as part of the IBM Cloud Pak™ for
Integration (see 4.1.7, “IBM Cloud Pak for Integration” on page 49).

How IBM API Connect works with z/OS Connect EE
API Connect can be used to secure and manage z/OS Connect EE APIs. In this scenario, a
z/OS Connect EE API is available as a proxy in the API gateway so that access to the API
can be controlled, as shown in Figure 4-5.

Figure 4-5 Securing and managing APIs with API Connect
42 IBM Z Integration Guide for Hybrid Cloud

The following steps are shown in Figure 4-5:

1. The API is retrieved by importing the Swagger document. This file is parsed to re-create
the operations of the API.

2. An assemble flow is created and a security policy is defined for the API. Optionally, you
can add some pre-request and post-request processing; for example, to modify JSON
request and response messages.

You include an API in a Plan that is contained in a Product. Application developers access
APIs by registering applications to subscribe to Plans. You can specify policy settings to
limit the use of the APIs that are exposed by the Plan. You can also define a single quota
policy that applies to all the API resources that are accessed through the Plan, or separate
quota policies for specific API resources.

3. During the publishing process, the API Manager sends the Product configuration to the
API gateway.

4. Also, during the publishing process, the API Manager sends the Product information to the
Developer Portal to make it available to communities of application developers.

5. After it is published, the managed API can be invoked by authorized applications,
including Business Partner applications, mobile and web applications, enterprise
applications, and IoT devices. The API provides runtime policy enforcement for security,
rate limitation, and general governance.

6. The API gateway invokes the REST API that is hosted by z/OS Connect EE.

See 5.3, “Build a managed API framework using API Connect” on page 69 for an example
scenario that features the use of API Connect with z/OS Connect EE.

When to use IBM API Connect
Consider the use of IBM API Connect in a hybrid integration architecture with IBM Z when
you want to perform the following tasks:

� Extend the value of your mainframe assets by socializing REST APIs to developers, and
provide controlled access to third parties.

� Streamline the development of new REST APIs through service discovery.

� Secure, govern, and monitor access to REST APIs.

� Adapt the interface of a mainframe service by performing simple or technical
transformation, for example, converting REST/JSON to SOAP/XML.

� Augment and enrich mainframe services with other endpoints to aggregate multiple
services into a single API.

For more information about IBM API Connect, see IBM Developer:

https://developer.ibm.com/apiconnect/new/

Important: The combination of IBM API Connect and z/OS Connect EE is a powerful
solution for simplifying the reuse of mainframe assets by mobile, web, and cloud-based
clients.
Chapter 4. Hybrid integration solutions for IBM Z 43

https://developer.ibm.com/apiconnect/new/

4.1.3 IBM DataPower Gateway

IBM DataPower Gateway appliances help quickly secure, integrate, control, and optimize
access to various workloads through a single, extensible, DMZ-ready gateway. These
appliances act as security and integration gateways for a full range of mobile, cloud, API, web,
SOA, and B2B workloads.

The principal roles of a DataPower Gateway are shown in Figure 4-6.

Figure 4-6 IBM DataPower Gateway

IBM DataPower can play the following roles in a hybrid integration architecture with IBM Z:

� As a security gateway, IBM DataPower secures access to corporate data and services,
while optimizing delivery of the workload. It provides the following security capabilities:

– Enforcement point for centralized security policies

– Authentication and authorization security standards, including SAML, OAuth 2.0,
OpenID Connect and JWT

– Auditing

– Threat protection for XML and JSON

– Message validation and filtering

– Centralized management and monitoring point

– Traffic control and rate limiting

� IBM DataPower is used as the runtime for the API gateway component of IBM API
Connect. It enables secure API access and traffic management.

� IBM DataPower supports a wide range of protocols and data transformation capabilities,
for example, from XML to byte array structures.

DataPower deployment options
The DataPower Gateway is available in physical, virtual, cloud, Linux, and container form
factors.

Note: You might want to use physical IBM DataPower appliances for your production
gateway servers. The physical gateway servers provide improved performance throughput
when compared with virtual gateway servers.
44 IBM Z Integration Guide for Hybrid Cloud

IBM DataPower is available as a separate product or as part of the IBM Cloud Pak for
Integration (see 4.1.7, “IBM Cloud Pak for Integration” on page 49).

When to use an IBM DataPower Gateway
Consider using the IBM DataPower Gateway in a hybrid integration architecture with IBM Z
when you want to perform the following tasks:

� Protect mainframe applications against security attacks.

� Implement authentication and authorization standards that are not supported natively on
the mainframe.

� Implement a secure API gateway as part an API enablement solution.

For more information about the IBM DataPower Gateway, see IBM Developer:

https://developer.ibm.com/datapower/

4.1.4 IBM App Connect

IBM App Connect provides market-leading application integration, enabling synchronous and
event-driven integrations that provide extensive adaptation to on-premises and cloud-based
applications.

Figure 4-7 shows the main components of IBM App Connect and how they interact.

Figure 4-7 IBM App Connect

App Connect supports a non-coding approach to integration, building message flows, and
exposing them as RESTful APIs without having to be an API development expert. App
Connect allows you to orchestrate calls across multiple applications, including mainframe
applications (see , “How IBM App Connect works with z/OS Connect EE” on page 46).
Chapter 4. Hybrid integration solutions for IBM Z 45

https://developer.ibm.com/datapower/

Message flows are built by wiring together functional modules that are graphically
represented by processing nodes through connection terminals with specific uses. Most
nodes have an input terminal where they receive the message under processing and a
number of output terminals that pass the message on to the next step in the flow.

For integration design, App Connect features include a desktop user interface coupled with
browser-based tooling, which brings together the teams that own and manage the data with
teams that have the context to apply it. Digital businesses rely on data that is delivered in the
right context, to the right client touch point, at the required time.

The tooling provides new integrated tooling experiences for a spectrum of users across the
digital enterprise:

� The core IT teams that manage the key systems and packaged applications

� Knowledge workers and line-of-business integrators

� Integration specialists that tackle more detailed and challenging requirements

App Connect provides connectivity options across cloud service applications, cloud platforms,
and existing on-premises applications. It provides an extensive set of connectors for
packaged applications and other assets that include:

� Customer relationship management (CRM) systems

� Enterprise resource planning (ERP) systems

� Files

� Databases

� Messaging systems

� Mainframe applications

App Connect is a proven solution for handling the transformation of thousands of messages
per second. Message parsing in App Connect is based on a highly optimized engine that
minimizes memory usage and optimizes CPU performance.

How IBM App Connect works with z/OS Connect EE
Sometimes a business function requires multiple calls to different applications. Figure 4-8
shows how App Connect can be used to aggregate and orchestrate calls to different z/OS
Connect EE APIs.

Figure 4-8 API orchestration with IBM App Connect

z/OS

Enterprise API
Consumer

One call
Business function A

Use IBM App Connect
to create one call for
Business function B

IBM ZIBM Cloud

IBM apiconnect
46 IBM Z Integration Guide for Hybrid Cloud

In Figure 4-8 business function A requires a single call to a z/OS Connect EE API, whereas
business function B requires multiple calls. A message flow in App Connect uses conditional
logic to perform dynamic API calls based on the responses that are returned from the
previous calls.

The API for business function B created using App Connect is then brought into the API
Manager component of IBM API Connect to handle the management, securing, and
socializing to development teams.

App Connect deployment options
IBM App Connect (formerly known as Integration Bus) is available as a separate product and
can be deployed on-premises, in a container, to IBM Cloud Private, or on a public cloud. IBM
App Connect certifies container technologies such as Kubernetes and OpenShift to allow
managed production-grade deployments.

IBM App Connect is also part of the IBM Cloud Pak for Integration (see 4.1.7, “IBM Cloud Pak
for Integration” on page 49).

The increasingly lightweight runtime of IBM App Connect makes it a natural fit for
cloud-native usage, where containers are started and stopped in seconds. Furthermore, the
runtime has been radically enhanced to enable container image-based deployment, so that
you can package an integration along with its configuration in a container image. This enables
fine-grained deployment of individual integrations on their own runtime, with independent
scaling, and availability. This is a fundamental aspect of the move to agile integration.

See 5.5, “Integrate with App Connect” on page 76 for an example scenario that features the
use of App Connect.

When to use IBM App Connect
Consider the use of IBM App Connect for hybrid cloud integration with IBM Z when you want
to perform the following tasks:

� Implement an integration solution with complex orchestrations or diverse data
transformation and protocol requirements.

� Invoke mainframe applications and data service calls for which a custom interface is
required, such as IBM MQ or CICS IPIC.

� Enable event-driven integration between mainframe applications and range of cloud and
on-premises apps.

� Use the App Connect built-in connectors for integrating with packaged applications,
including Salesforce, JDEdwards, SAP and Siebel.

For more information about IBM App Connect Enterprise, see the following website:

https://www.ibm.com/cloud/app-connect

4.1.5 IBM MQ

IBM MQ is the gold standard for enterprise messaging. It makes life easier for developers by
supporting multiple operating systems, hybrid cloud environments, agile development
processes, and microservices architectures with an all-in-one messaging backbone.

It enables applications and services to communicate reliably without calling each other
directly, introduces process independence into the application architecture, improves fault
Chapter 4. Hybrid integration solutions for IBM Z 47

https://www.ibm.com/cloud/app-connect

tolerance and reliability throughout the system, and offers once and once only message
delivery.

IBM has provided enterprise messaging in containers since 2015 and certifies container
technologies such as Kubernetes and OpenShift to allow managed production grade
deployments. Its lightweight nature makes it a natural fit for cloud native environments,
allowing runtimes to start up in seconds. Figure 4-9 shows how traditional on-premises MQ
environments (for example MQ for z/OS) can be expanded to a hybrid multicloud deployment.

Figure 4-9 IBM MQ

Messaging is traditionally administered by dedicated teams within IT. “As-a-service” delivery
lets enterprises create self-service portals that enable line of business (LoB) or individual
users to request changes to the messaging infrastructure independently, such as creating or
deleting queues or provisioning new resources for applications. Messaging middleware
naturally works well within serverless or microservices architectures common in cloud-native
development.

IBM MQ is available as a separate product and is also part of the IBM Cloud Pak for
Integration (see 4.1.7, “IBM Cloud Pak for Integration” on page 49).

See 5.5, “Integrate with App Connect” on page 76 for an example scenario that features the
use of IBM MQ.

When to use IBM MQ
Consider the use of IBM MQ for hybrid cloud integration with IBM Z when you want to perform
the following tasks:

� Decouple the cloud-based application from the mainframe application, such that
integration is possible even if one or other of these applications is temporarily unavailable.

� Enable very high messaging rates between mainframe and cloud-based applications.

Note: MQ for z/OS is not part of the IBM Cloud Pak for Integration.
48 IBM Z Integration Guide for Hybrid Cloud

� Enable the sending and receiving of batches of messages between two applications.

� Enable transactional and assured delivery of messages.

For more information about IBM MQ, see the following website:

https://www.ibm.com/cloud/mq

4.1.6 IBM Event Streams

Apache Kafka scales to handle millions of messages a second, suitable for any organization’s
needs. However deploying a production environment can be daunting, with the configuration
of Kafka brokers, zookeepers, administration agents and so on. IBM Event Streams builds on
the open source Apache Kafka event streaming technology by enhancing ease of use and
enterprise deployment.

IBM Event Streams is provided on public and private cloud environments to meet the needs
of clients. It can also run on-premises in a fully containerized offering, allowing the
deployment to benefit from cloud native best practices such as easy installation, management
and scaling of the solution. Running IBM Event Streams on Linux on IBM Z allows you to
extend the event backbone closer to mainframe applications.

Many organizations use both IBM MQ and Apache Kafka for their messaging needs.
Although they’re generally used to solve different kinds of messaging problems, users often
want to connect them together for various reasons. You can set up connections between IBM
MQ and Apache Kafka or IBM Event Streams systems. For example, IBM MQ can be
integrated with mainframe applications while Apache Kafka is commonly used for streaming
events from web applications. The ability to connect the two systems together enables
scenarios in which these two environments intersect.

IBM Event Streams is available as a separate product and is also part of the IBM Cloud Pak
for Integration (see 4.1.7, “IBM Cloud Pak for Integration” on page 49).

When to use IBM Event Streams
Consider the use of IBM Event Streams for hybrid cloud integration with IBM Z when you
want to perform the following tasks:

� Enable a mainframe application as a consumer of events for an event stream.

� Enable a mainframe application as a producer of events for an event stream.

� Enable very high event rates between mainframe and cloud-based applications.

For more information about IBM Event Streams, see the following website:

https://www.ibm.com/cloud/event-streams

4.1.7 IBM Cloud Pak for Integration

IBM Cloud Paks are enterprise-ready, containerized software solutions that give clients an
open, faster and more secure way to move core business applications to any cloud. Each
IBM Cloud Pak includes containerized IBM middleware and common software services for
development and management. IBM Cloud Paks run wherever Red Hat OpenShift runs and
are optimized for productivity and performance on Red Hat OpenShift on IBM Cloud.

The Cloud Pak for Integration contains the following integration capabilities:
Chapter 4. Hybrid integration solutions for IBM Z 49

https://www.ibm.com/cloud/mq
https://www.ibm.com/cloud/event-streams

� API Lifecycle: Create, secure, manage, share, and monetize APIs across clouds while
you maintain continuous availability.

� Application and Data Integration: Integrate all of your business data and applications
more quickly and easily across any cloud — from the simplest SaaS application to the
most complex systems — without worrying about mismatched sources, formats, or
standards.

� Enterprise Messaging: Simplify, accelerate, and facilitate the reliable exchange of data
with a flexible and security-rich messaging solution that’s trusted by many of the world’s
most successful enterprises. Ensure you receive the information you need, when you
need it, and receive it only once.

� Event Streaming: Use Apache Kafka to deliver messages more easily and reliably and to
react to events in real time. Provide more-personalized customer experiences by
responding to events before the moment passes.

� High-Speed Data Transfer: Send, share, stream and sync large files and data sets
virtually anywhere, reliably and at maximum speed. Accelerate collaboration and meet the
demands of complex global teams, without compromising performance or security.

� Secure Gateway: Create persistent, security-rich connections between your on-premises
and cloud environments. Quickly set up and manage gateways, control access on a per
resource basis, configure TLS encryption and mutual authentication, and monitor all of
your traffic.

Whereas these same integration capabilities are available by installing separate integration
products, the Cloud Pak for Integration provides additional benefits, including:

� A platform navigator enables a single entry-point for users. It allows users fast access to
all of the integration capabilities. Through this unified experience, it is simple to navigate
across any of the product capabilities.

� An asset repository allows users to share integration assets across various integration
capabilities in the platform. For example, an OpenAPI specification stored in the repository
can be directly imported within the API management user interface.

� The underlying container platform takes care of collecting the logs from all components in
use. The benefit is that all logs are in one place and the monitoring and dashboards are
built upon this information. The Cloud Pak for Integration also includes visibility to how
messages and data are being processed through embedded end-to-end tracing
capabilities.

For more information about IBM Cloud Paks, see the following website:

https://www.ibm.com/cloud/paks

Note: IBM intends to deliver the Red Hat OpenShift Container Platform and IBM Cloud
Paks on Linux on IBM Z and IBM LinuxONE platforms. See
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlf
id=872/ENUSAP19-0517&appname=STG_XS_IDEN_ANNO
50 IBM Z Integration Guide for Hybrid Cloud

https://www.ibm.com/cloud/paks
https://www.ibm.com/cloud/paks
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=872/ENUSAP19-0517&appname=STG_XS_IDEN_ANNO
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=872/ENUSAP19-0517&appname=STG_XS_IDEN_ANNO

4.2 z/OS subsystem considerations

In this section we look at hybrid cloud integration considerations for the most common z/OS
subsystems:

� 4.2.1, “CICS Transaction Server for z/OS” on page 51
� 4.2.2, “IMS” on page 53
� 4.2.3, “Db2 for z/OS” on page 54
� 4.2.4, “MQ for z/OS” on page 57

We focus on REST API enablement of these z/OS subsystems.

4.2.1 CICS Transaction Server for z/OS

CICS is used extensively for high-volume transaction processing. Consider the following
integration solutions that can be used for accessing CICS applications as REST APIs:

� z/OS Connect EE
� Web applications in CICS

z/OS Connect EE with CICS
z/OS Connect EE enables the creation and deployment of APIs that reuse CICS applications,
and a CICS program can also call any RESTful endpoint (see 4.1.1, “IBM z/OS Connect
Enterprise Edition” on page 36).

In API provider mode, z/OS Connect EE can be configured to connect to CICS using the
CICS service provider that uses an IPIC connection. An overview of the use of the CICS
service provider is shown in Figure 4-10.

Figure 4-10 z/OS Connect CICS service provider

As shown in Figure 4-10, the REST client invokes an API using the interface that is shared in
a Swagger document. The API-mapping model of z/OS Connect EE interprets the request by
inspecting the URI, HTTP headers, and JSON body, and then maps the request to a service.
The service definition provides information about the CICS program and a JSON schema
representation of the service interface.

The CICS service provider supports COMMAREA or channel interface programs. The
request message is converted from JSON to a byte array and the CICS program is invoked
using the CICS service provider across an IPIC connection. The same z/OS Connect EE
instance can be used for API enablement of different SoRs (CICS, IMS, Db2, and so on).

See 5.1, “Implement Open Banking APIs with z/OS Connect EE” on page 64 for an example
scenario that features the use of z/OS Connect EE with CICS.
Chapter 4. Hybrid integration solutions for IBM Z 51

Consider the use of z/OS Connect EE with the CICS service provider when you want to
provide intuitive, workstation-based tooling that enables a developer to create REST APIs
from CICS applications. For more information about other advantages of the use of z/OS
Connect EE for the creation and deployment of APIs, see, “When to use z/OS Connect EE”
on page 40.

Web applications in CICS
To provide a REST interface to CICS applications, you can develop a Web presentation layer
that runs in CICS and connects to CICS business logic programs. The most common way of
doing this is to write Java programs that use CICS Liberty support but you can also develop
Node.js applications using JavaScript.

You can use the IBM CICS SDK for Java in CICS Explorer® or the CICS-provided artifacts on
Maven Central to create, package, and build Java applications for CICS. To develop a
RESTful service, your program can use the Java API for RESTful Web Services (JAX-RS).
The Java program can link to other CICS programs and access CICS data and queues using
the JCICS API.

An overview of this scenario is shown in Figure 4-11.

Figure 4-11 Web application in CICS Liberty

When developing a Java program to link to a CICS COBOL program, you typically need to
map the data fields from a record structure to specific Java data types. To do this, you can
generate Java helper classes from a COBOL copybook using the IBM Record Generator for
Java V3.0. Alternatively, the IBM Rational® J2C tooling that is supplied with IBM Developer
for IBM Z Enterprise Edition can be used for the same purpose.

The Java program can also access local and remote relational databases using JDBC and
use JMS to get and put messages from messaging runtimes, such as IBM MQ. It can use a
wide range of Liberty features and CICS features to integrate with CICS qualities of service.

The Link to Liberty capability enables a CICS program to invoke a Java EE application that is
running in a Liberty JVM server. This feature can be useful if a CICS application needs to
invoke an external REST API. The CICS application can link to a Java program that is
running in a CICS Liberty JVM, which can then use JAX-RS to invoke the external API.
52 IBM Z Integration Guide for Hybrid Cloud

See 5.4, “Develop Java-based REST APIs” on page 73 for an example scenario that features
the use of Java-based REST APIs in CICS.

When to use web applications in CICS Liberty
Consider the use of custom web applications in CICS Liberty when you want to perform the
following tasks:

� Develop Java integration logic that reuses CICS programs; for example, a Java
application that links to several COBOL programs and returns a single JSON response.

� Develop new Java-based business services in CICS.

� Have complete control over the application interface.

� Use Java frameworks to handle complex data transformations.

� Call external APIs from CICS.

� Use Java-based message transformation that can be offloaded to zIIP specialty engines.

For more information about running Java applications in a CICS Liberty JVM server, see the
following CICS Developer Center website:

https://developer.ibm.com/cics/

4.2.2 IMS

IMS provides a high-performance application and data server environment for core business
transaction execution and database access.

z/OS Connect EE enables the creation and deployment of APIs that reuse IMS applications,
and an IMS program can also call any RESTful endpoint (see 4.1.1, “IBM z/OS Connect
Enterprise Edition” on page 36).

In API provider mode, z/OS Connect EE connects to IMS using the IMS service provider. An
overview of the use of z/OS Connect EE with the IMS service provider is shown in
Figure 4-12.

Figure 4-12 z/OS Connect EE IMS service provider

The REST client invokes an API using the interface that is shared in a Swagger document, as
shown in Figure 4-12. The API-mapping model of z/OS Connect EE interprets the request by
inspecting the URI, HTTP headers, and JSON body and then maps the request to a service.
The service definition provides information about the IMS program and a JSON schema
representation of the service interface. The request message is converted from JSON to a
byte array, and the IMS program is invoked using the IMS service provider. The request then
goes through IMS Connect to access the IMS program, which can then access IMS DB, Db2,
or other subsystems.
Chapter 4. Hybrid integration solutions for IBM Z 53

https://developer.ibm.com/cics/
https://developer.ibm.com/cics/

See 5.1, “Implement Open Banking APIs with z/OS Connect EE” on page 64 for an example
scenario that features the use of z/OS Connect EE with IMS.

Consider the use of z/OS Connect EE with the IMS service provider when you want to
provide intuitive, workstation-based tooling that enables a developer to create REST APIs
from IMS applications. For more information about other advantages of the use of z/OS
Connect EE for the creation and deployment of APIs, see , “When to use z/OS Connect EE”
on page 40.

For more information about the use of the IMS service provider, see IBM Developer:

https://ibm.biz/zosconnectdc

4.2.3 Db2 for z/OS

A large amount of z/OS data is stored in Db2 and there are many benefits to accessing this
data as REST APIs. This section describes the following integration solutions that can be
used for accessing Db2 data as REST APIs:

� Db2 REST services
� z/OS Connect EE with Db2 REST services

Db2 REST services
Db2 enables web, mobile, and cloud applications to interact with Db2 data through a set of
REST services. You create, discover, run, and manage user-defined services in Db2.

You can define a REST service as a package. Each package contains a single static SQL
statement and is stored in a user-defined catalog table. When a service is created, a new row
is added to the table that associates the service with its corresponding package. After the
package is bound, it can be executed only as a service.

Db2 REST services use the DDF capabilities for authorization, authentication, client
information management, service classification, system profiling, and service monitoring and
display.

Db2 provides a set of system defined APIs that can be used create and discover REST
services. You can also issue the BIND SERVICE subcommand to create a new REST
54 IBM Z Integration Guide for Hybrid Cloud

https://ibm.biz/zosconnectdc

service. An overview of how a Db2 REST service is created and then called from a REST
client is shown in Figure 4-13.

Figure 4-13 Db2 REST services

An authorized user can discover and invoke the service through a REST HTTP client. Db2
accepts the HTTP POST request, processes the JSON request body, runs the bound SQL
statement, and returns any output in JSON.

Db2 REST services do not support different HTTP verbs, API mapping, or discovery using a
Swagger document. However, these capabilities can be achieved by creating an API layer in
front of the Db2 REST service using z/OS Connect EE. For more information, see , “z/OS
Connect EE with Db2 REST services” on page 56.

When to use Db2 REST services
Consider the use of the Db2 REST services when you want to perform the following tasks:

� Simplify the deployment of mobile or cloud-based applications that require access to Db2
assets.

� Simplify the REST service development process by making the Db2 data owner
responsible for creating service artifacts.

� Provide a basic Db2 REST service discovery capability.

� As a step towards creating a REST API with z/OS Connect EE.

Note: A Db2 stored procedure call can also be specified as input to the API used for
creating a Db2 REST service.
Chapter 4. Hybrid integration solutions for IBM Z 55

z/OS Connect EE with Db2 REST services
z/OS Connect EE enables the creation and deployment of APIs that reuse Db2 REST
services. z/OS Connect EE can be configured to connect to Db2 using the REST service
provider.

An overview of using z/OS Connect EE with Db2 REST services is shown in Figure 4-14.

Figure 4-14 z/OS Connect EE with Db2 REST services

The REST client invokes an API using the interface that is shared in a Swagger document, as
shown in Figure 4-14. The API-mapping model of z/OS Connect EE interprets the request by
inspecting the URI, HTTP headers, and JSON body, and then maps the request to a service.

The service definition provides information about the location of the Db2 REST service. The
JSON request message is forwarded to Db2 using the REST Client service provider.

The z/OS Connect EE API Toolkit is used to create a Db2 service project that is based on the
Db2 REST service. The resulting service archive is then used to create an API.

See 5.1, “Implement Open Banking APIs with z/OS Connect EE” on page 64 for an example
scenario that features the use of z/OS Connect EE with Db2.

When to use z/OS Connect EE with Db2 REST services
Consider the use of z/OS Connect EE with Db2 REST services when you want to perform the
following tasks:

� Support the discovery of defined APIs by using the OpenAPI standard to share API
definitions as Swagger documents.

� Provide intuitive, workstation-based tooling that enables a developer to create REST APIs
from Db2 data.

� Add a more RESTful interface (for example, use of different HTTP verbs and intuitive
URIs) on top of Db2 REST services.

� Manage API authentication by using the security capabilities of the Liberty server, for
example, using open standards like JSON Web Tokens.

� Manage API access control and audit by using the z/OS Connect interceptor framework.

Note: The support of Db2 REST services with z/OS Connect EE supersedes the Db2
Adapter for z/OS Connect.
56 IBM Z Integration Guide for Hybrid Cloud

4.2.4 MQ for z/OS

IBM MQ is one of the most widely adopted connectivity patterns for messaging in the
enterprise today. Its characteristics of assured, once-and-once only delivery of messages is
well-suited to the business-critical functions that are provided by mainframe applications and
data.

MQ for z/OS often plays a key part within the enterprise messaging backbone (see 4.1.5,
“IBM MQ” on page 47). It is used widely for asynchronous connectivity with mainframe
systems.

This section describes the following integration solutions that can be used for accessing
MQ-based z/OS applications as REST APIs:

� MQ messaging REST API

� z/OS Connect EE

MQ messaging REST API
The messaging REST API comes as standard with IBM MQ and is enabled by default. You
can use the messaging REST API to send and receive IBM MQ messages in plain text
format.

� Applications can issue an HTTP POST to send a message to IBM MQ, an HTTP GET to
browse messages, or an HTTP DELETE to destructively get a message.

� The messaging REST API is enabled using the mqweb server, which is a Liberty server
integrated with IBM MQ (Figure 4-15).

Figure 4-15 MQ messaging REST API

When a client application uses the REST API to perform a messaging action on an IBM MQ
queue or topic object, the application programmer needs to construct a URL to represent that
object. The URL describes which host name and port to send the request to and describes a
particular object. The HTTP method determines the messaging action that is to be performed
on the resource, and additional information is sent in path parameters and query parameters.
The messaging REST API is integrated with IBM MQ security. The caller must be authorized
to access the specified queue or topic.

Note: HTTP is not a transactional protocol. Therefore, no transactional coordination of
messaging operations performed by REST clients is possible.
Chapter 4. Hybrid integration solutions for IBM Z 57

When to use the IBM MQ messaging REST API
Consider the use of the IBM MQ messaging REST API when you want to:

� Create an MQ-aware REST client application to send messages to queues or topics, and
receive messages from queues.

� Allow users to put and get messages to any queue or topic that they are authorized to
access without needing any special configuration to expose those queues or topics as
REST APIs.

z/OS Connect EE with IBM MQ
The IBM MQ service provider is supplied with z/OS Connect. The provider allows
REST-aware applications to interact with z/OS assets that are accessed using IBM MQ
queues or topics. You can achieve this configuration without being concerned with the coding
that is required to use asynchronous messaging.

The following types of service are supported:

� A two-way service allows a RESTful client to perform request-reply messaging on a pair of
queues.

� A one-way service can be used to provide a RESTful API on top of a single IBM MQ
queue or topic.

The z/OS Connect EE API Toolkit is used to create an MQ service project based on the
request and response copybooks of the z/OS application1. The resulting service archive is
then used to create an API. In combination with values from the HTTP headers and URI path
and query parameters, JSON fields can be mapped to the JSON request and response
schema that represent the MQ message.

The MQ servicer provider uses the MQ classes for JMS (Java Message Service) to connect
to a queue manager. These classes provide two different types of connection:

� In bindings mode, connections are made directly to the queue manager by using the Java
Native Interface (JNI). Bindings mode connections tend to provide better performance
than client mode but require the z/OS Connect EE server and IBM MQ queue manager to
be running in the same LPAR.

� In client mode, connections to the queue manager are made over TCP/IP. Client mode
connections allow greater flexibility than bindings mode as the IBM MQ queue manager
can be running on a different z/OS LPAR to the z/OS Connect EE server. However they
require more configuration, which might include setting up TLS, and typically do not
perform as well as bindings mode connections.

Note: The MQ messaging REST API supports only UTF-8 text based payloads. While MQ
for z/OS will automatically convert between different code pages, it is the application's
responsibility to perform any other necessary data conversion.

1 The API toolkit has been enhanced to support the creation of IBM MQ services in the z/OS Connect EE open beta.
58 IBM Z Integration Guide for Hybrid Cloud

Two-way requests
A two-way request allows a REST client to perform request-reply messaging against a pair of
queues, as shown in Figure 4-16.

Figure 4-16 z/OS Connect EE with MQ service provider and two-way service

The client issues an HTTP GET request that specifies a JSON payload, as shown in
Figure 4-16. The API defines the REST interface that you want to enable for the MQ queue,
including the format of the URI and the specific two-way service on which the API is
implemented. The API mapping allows inline manipulation of requests, such as mapping
HTTP headers, pass-through, redaction, or defaulting of JSON fields.

Configuration definitions in the server.xml file provide information about the JMS destination,
and the MQ service provider puts the message on the Request queue. An IBM MQ-based
application, such as CICS or IMS, gets the message, processes it, and generates a response
that is placed on the Reply queue. The IBM MQ service provider identifies this message by
using a correlation identifier, takes its payload, converts it to JSON, and returns it as the
response body of the HTTP GET to the REST client.

z/OS Connect EE can be used to convert the JSON payload into an appropriate format, for
example, a COBOL copybook. Applications can then get that message from the queue and
process it as they do with any other message. They are not aware of the fact that a REST
client sent it.

See 5.1, “Implement Open Banking APIs with z/OS Connect EE” on page 64 for an example
scenario that features the use of z/OS Connect EE with IBM MQ.

One-way requests
In a one-way request, REST clients can send a message to a queue or topic, or receive a
message from a queue.

The API defines the REST interface that you want to enable for the MQ queue or topic,
including what HTTP verbs are used and the one-way service(s) on which the API is
implemented. For example, when a REST client issues an HTTP POST with a JSON payload,
the API could map the request to a one-way service configured for sending messages. The
MQ service provider will then put the message on the target queue (see Figure 4-17). When

Note: Any HTTP verb can be used to invoke a two-way service.
Chapter 4. Hybrid integration solutions for IBM Z 59

the REST client receives an HTTP 200 response, this response is confirmation that the
message was successfully placed on the queue.

Figure 4-17 z/OS Connect EE with MQ service provider and one-way service

Any HTTP verb can be used to invoke a one-way service. The actual operation that is
performed on the underlying IBM MQ queue or topic is defined by using the messagingAction
property.

When to use z/OS Connect EE with the MQ service provider
Consider the use z/OS Connect EE with the MQ service provider when you want to perform
the following tasks:

� Create a REST interface to an MQ-based mainframe application that can be used by
client application programmers without knowledge of MQ.

� Use the interceptor framework of z/OS Connect EE, for authorizing, auditing, and
monitoring REST API requests to MQ-based applications.

4.3 Zowe

Zowe is an open source project under the Linux Foundation created to provide technologies
for the benefit the IBM z/OS platform and is available for anyone, including Integrated
Software Vendors (ISVs), System Integrators, and z/OS customers.

Zowe offers modern interfaces to interact with z/OS and allows you to work with z/OS in a
way that is similar to what you experience on cloud platforms today. You can use these
interfaces as delivered or through plug-ins and extensions that are created by clients or
third-party vendors. Zowe is especially appealing to the next generation of IT staff using z/OS.
60 IBM Z Integration Guide for Hybrid Cloud

Figure 4-18 shows the system APIs provided by Zowe that are used for development, system
programing and operations. The figure also shows business APIs that are deployed to z/OS
Connect EE and used for accessing mainframe applications and data.

Figure 4-18 Zowe System APIs

Zowe consists of the following components:

� Zowe Application Framework: A web user interface (UI) that provides a virtual desktop
that contains apps that allow access to z/OS function. Base Zowe includes apps for
traditional access such as a 3270 terminal and a VT Terminal, as well as an editor and
explorers for working with JES, IBM MVS™ Data Sets, and UNIX System Services.

The Zowe Application Framework is intended to break down product silos that have grown
up over the years by providing a task-oriented view of z/OS services.

� z/OS Services: Provides a range of APIs for the management of z/OS JES jobs and MVS
data set services.

� Zowe CLI: A command-line interface that lets application developers interact with the
mainframe in cloud-native way. The Zowe CLI lets application developers use common
tools such as integrated development environments (IDEs), shell commands, bash scripts,
and build tools for mainframe development.

It provides a set of utilities and services for application developers that want to become
efficient in supporting, building, and deploying z/OS applications quickly. The Zowe CLI
can be used, for example, to deploy z/OS Connect EE APIs and to configure the
connected z/OS subsystems.

� API Mediation Layer: Provides a gateway that acts as a reverse proxy for z/OS services
for working with MVS Data Sets, JES, as well as working with z/OSMF REST APIs.

The API Mediation Layer provides security, load balancing and high availability options for
accessing mainframe system APIs.

For more information about Zowe, see the following website:

https://docs.zowe.org/

Note: IBM provides a distribution of Zowe for use with IBM products. For additional
information see:

https://developer.ibm.com/mainframe/products/ibm-z-distribution-for-zowe/
Chapter 4. Hybrid integration solutions for IBM Z 61

https://developer.ibm.com/mainframe/products/ibm-z-distribution-for-zowe/
https://docs.zowe.org/

62 IBM Z Integration Guide for Hybrid Cloud

Chapter 5. Real-world scenarios

In this chapter, we summarize several integration scenarios that integrate cloud-based,
mobile, and digital applications with mainframe systems. For each scenario, we provide the
project context, including business drivers and solution goals. We then describe the key
decision factors that were used for deciding on the most appropriate mainframe integration
solution. We conclude with an outline of the solution architecture.

This chapter provides an outline of the following real-world scenarios:

� An implementation of Open Banking APIs using z/OS Connect EE
(See section 5.1, “Implement Open Banking APIs with z/OS Connect EE” on page 64.)

� Calling out to external services from a CICS application using z/OS Connect EE
(See section 5.2, “Call out to external services using z/OS Connect EE” on page 67.)

� Creation of a managed API framework using API Connect
(See section 5.3, “Build a managed API framework using API Connect” on page 69.)

� An implementation of Java-based REST APIs using CICS Liberty
(See section 5.4, “Develop Java-based REST APIs” on page 73.)

� An integration between CICS and Salesforce using IBM App Connect
(See section 5.5, “Integrate with App Connect” on page 76.)

5

© Copyright IBM Corp. 2020. 63

5.1 Implement Open Banking APIs with z/OS Connect EE

This scenario focuses on the API enablement of an IMS application and data services to
support an Open Banking initiative.

5.1.1 Introduction

One industry that has quickly embraced the API economy is the financial services sector.
Under the umbrella term of Open Banking, financial institutions are providing consumers
choice over how banking services and data can be accessed and used. The idea is that the
customers of a given Bank will be able to grant permission to third parties who will be able to
retrieve that customer’s banking data and issue payments on their behalf. From the
customer’s perspective, this enables them to go to a single provider and access all accounts
across different Banks. From a Bank’s perspective, they must provide a new kind of business
channel that provides an easy-to-use and yet secure and robust access mechanism between
the third party, acting on behalf of the customer, and the customer’s accounts. The most
widely adopted standard for this new Open Banking channel is REST APIs.

Although Open Banking initiatives are emerging throughout the world as an innovative new
offering, in certain markets, such as Europe and Japan, Open Banking initiatives are being
driven by regulatory mandate. As a result, in addition to the ease-of-use and security
challenges presented by Open Banking, these regulatory-driven initiatives must also offer
Open Banking services at speed.

Bank A is a major European bank that must adhere to the regulatory mandate for Open
Banking. Today, they offer a mix of traditional and digital multi-channel access methods,
including branch, ATM, call center, web, and mobile. They have recently implemented two
API gateways, one that surfaces APIs to external parties, and another that surfaces APIs to
internal applications and service consumers.

The next step for Bank A is to streamline and accelerate delivery of Open Banking services
through their API gateways, from their IMS and CICS core banking systems. The following
key questions are to be addressed in this project:

� Is the existing integration architecture fit for purpose for Open Banking?

� What alternative approaches could simplify and speed up integration between the API
gateway and core banking systems?

5.1.2 Key decision factors

Bank A considered multiple factors when it decided on the best approach for surfacing core
banking services to the API gateway. The primary factors were speed to market, ease of
implementation and security. The aim is to hide the underlying mainframe implementation so
that API developers can access the core banking applications as REST APIs in the same way
that they access other core systems. The key decision factors are reviewed next.

Mainframe application interface
Today, the core banking functions are accessed in the following ways:

� An in-house developed C application — hosted in a stand-alone address space running
on z/OS — provides synchronous connectivity services to IMS.

� An MQ-based application is used for pseudo-synchronous connectivity to CICS
64 IBM Z Integration Guide for Hybrid Cloud

In both of these cases, application developers who create new applications must have an
awareness of the COBOL copybook structures that are required to call the core banking
programs. These copybook structures commonly contain in excess of 50 fields. In many
cases, the external API exposes only 2 to 5 fields. However, the application developers must
still populate all of the fields of the copybook in order to correctly run the IMS and CICS
program.

The new solution should provide synchronous connectivity that simplifies the mainframe
application interface.

Application integration infrastructure
The core banking applications that run in IMS and CICS are to be accessed from the internal
API gateway. The target solution must be compatible with the existing application integration
interfaces and not require changes to the core banking applications.

Hybrid integration requirements
The advent of Open Banking regulations mandate that Bank A must offer API services. The
Bank has chosen a private cloud deployment for the internal API gateway to enable the
greatest possible portability. This takes advantage of a cloud-native infrastructure, using the
cluster management, scaling, and availability capabilities of the cloud platform in which the
gateway runs.

Non-functional requirements
The following key non-functional requirements have been identified:

� Simplification

– The solution must simplify the developer experience of discovering and calling core
banking services.

– The solution must support the large number of test teams and environments.

� Optimize performance and scalability

The solution must meet the performance and scalability expectations of Bank A,
particularly as Open Banking initiatives are forecasting a double-digit growth in the
number of requests over the next 3 to 5 years.

� Security

The solution must meet industry standard API security models, specifically OAuth 2.0 and
JWT.

5.1.3 Solution architecture

Bank A chose to implement a solution based on z/OS Connect EE (see Figure 5-1 on
page 66) because the adoption of REST APIs throughout the enterprise gives them the
speed, simplification, and security model they need for enterprise-wide Open Banking
services. z/OS Connect EE provides a common tool set and runtime for creating and
deploying APIs based on different mainframe applications and data.
Chapter 5. Real-world scenarios 65

Figure 5-1 REST API enablement for Open Banking

The solution features the following main components:

� z/OS Connect EE

z/OS Connect EE provides a REST API interface for the IMS and CICS core banking
applications.

The IMS service provider is used for connectivity to the IMS core banking applications.
API request messages contain only the essential pieces of information needed to run the
request. The API Toolkit is used to create services that augment the request messages by
assigning values to the fields that are needed to run the IMS programs.

The MQ service provider is used for connectivity with the MQ-based CICS core banking
application. The API mappings allow inline manipulation of requests such as mapping
HTTP headers and defaulting of JSON fields. The services mappings convert JSON data
to MQ messages so that the CICS application continues to work in the same way as
before.

The REST Client service provider is used to send REST requests directly to Db2, for
example, for read-only operations that use pre-defined SQL queries. The API mapping
model of z/OS Connect EE interprets the request by inspecting the URI, HTTP headers,
and JSON body, and then sends the request to a Db2 REST service.

z/OS Connect EE policy support is used to route requests from z/OS Connect EE to
different IMS test environments based on the value of a custom HTTP header. This
reduces the number of z/OS Connect EE test instances that need to be configured.

z/OS Connect EE also provides a security framework that enables APIs to be secured
using JSON Web Tokens (JWTs).

� Internal API gateway

The internal API gateway is hosted on the Bank's Private Cloud Platform, Red Hat
OpenShift, and is used to surface APIs accessible to all applications and services within
the boundary of Bank A. This includes other enterprise applications, as well as requests
from Third Party Providers (TPPs) that are processed first by the external API gateway.

� External API gateway

The external API gateway is used to surface APIs to consumers outside the boundary of
Bank A. For example, APIs that are accessed through the web and mobile channels, and
also more recently via the Open Banking channel.

� Open Banking channel

The Open Banking channel is offered by Bank A and is open to TPPs who have
permission to access account and payment information on behalf of the bank’s customers.
66 IBM Z Integration Guide for Hybrid Cloud

5.1.4 Next steps

Bank A successfully completed a proof of concept with z/OS Connect EE, concluding that it
gives them significant agility benefits, reducing service creation time from months to days.
This is partly due to the efficiencies gained by using the z/OS Connect EE API Toolkit, and
partly due to the process simplification in creating APIs deployed in the API gateway.

At present, Bank A is preparing z/OS Connect EE for production deployment and exploring
the next set of z/OS applications to API-enable. Bank A is also reviewing what changes are
required to the MQ-based CICS core banking application in order to use the CICS service
provider rather than the MQ service provider.

5.2 Call out to external services using z/OS Connect EE

This scenario focuses on calling external services from a CICS automobile insurance
application.

5.2.1 Introduction

In the same way that engagement applications need to access SoR applications on the
mainframe as APIs, mainframe applications often need to make calls to APIs available on
external systems, either within the organization or outside the organization, on-premises, or in
the cloud.

Insurance company A is a large insurance company that provides life, automobile, health,
and accident insurance. The automobile insurance application runs in CICS and is accessed
either directly by call center sales personnel or via a company website. Car insurance quotes
are provided based on the vehicle type and driver’s insurance history.

The insurance company wants to provide the most accurate real-time car insurance quotes
by using the most up-to-date information about the vehicle and driver. To do this, the
company wants to take advantage of two external services that are available as APIs:

� A public vehicle registration SOAP-based web service that returns vehicle details
� A real-time driver, risk scoring, cloud-based service that is available as a REST API

For simplicity, it is preferred to use a single protocol for calling all external services.

5.2.2 Key decision factors

Insurance company A considered different solutions for calling external services from the
CICS insurance application, including z/OS Connect EE, CICS SOAP web services and CICS
web support. A significant factor is the amount of development coding that is required. The
key decision factors are reviewed next.

Mainframe application interface
CICS provides different ways to invoke external services. For example, using the INVOKE
SERVICE command, a CICS application can call an XML-based service. However, the
Insurance company expects that most external services in the future will be available as
REST APIs, so they prefer a REST-based solution.

The new solution should provide tooling for creating artifacts and code snippets that minimize
the amount of required custom coding.
Chapter 5. Real-world scenarios 67

Application integration infrastructure
The automobile insurance application runs on CICS TS and Db2 and is currently accessed by
emulated 3270 terminals used by call center staff, and by CICS Transaction Gateway used by
web applications.

A parallel project is putting in place an API management solution based on IBM API Connect.
All calls from enterprise applications to external APIs will pass through the API Gateway
component of API Connect to enforce security and traffic management.

Hybrid integration requirements
The insurance company wants to take advantage of third-party APIs to use the data and
services of other organizations, and to reduce development costs. Some of these APIs are
available on public cloud environments.

Non-functional requirements
The following main non-functional requirements have been identified:

� No impact on availability

The insurance application runs 24 x 7 to provide quotes to clients using the company’s
web application. Calling out to the risk-scoring and vehicle registration APIs should not
impact availability.

� Performance

The solution must have minimal impact on service response times and General Processor
(GP) CPU cost.

� Monitoring

The number of calls to the external APIs must be monitored, for example, to track calls to
fee-based APIs.

5.2.3 Solution architecture

Insurance company A chose to implement a solution based on the API requester support in
z/OS Connect EE (see Figure 5-2).

Figure 5-2 Call out to external services using z/OS Connect EE

The solution features the following main components:

� z/OS Connect EE

z/OS Connect EE can be used by CICS, IMS or batch applications to call any RESTful
endpoint, inside or outside the enterprise.
68 IBM Z Integration Guide for Hybrid Cloud

z/OS Connect EE was chosen for the following reasons:

– Based on the Swagger document of the external REST API you can use the z/OS
Connect EE Build Toolkit to generate the artifacts used for the API request. These
include the API requester archive (.ara) file that is deployed to the z/OS Connect EE
server, and data structures that are used by the z/OS application program to call the
REST API.

The Swagger document of the risk scoring REST API can be used directly with the
z/OS Connect EE Build Toolkit. In the case of the vehicle registration service, the API
Gateway exposes a REST API and then converts REST/JSON messages to the
SOAP/XML format expected by the vehicle registration service.

– Most of the z/OS Connect EE processing can be offloaded to zIIP specialty engines,
therefore minimizing the impact on GP CPU.

– Timeouts can be set in z/OS Connect EE such that the CICS insurance application
does not need to wait indefinitely for a response from the external APIs. The
application provides provisionary quotes in the event that the external APIs are not
available.

� API Gateway

IBM API Connect is used as an API gateway that converts REST/JSON requests from
z/OS Connect EE to the message format expected by the external APIs. The API gateway
also monitors and logs all calls to external APIs, and applies the specific security policy
that is compatible with the security requirements of the APIs.

5.2.4 Next steps

Insurance company A has successfully implemented this API requester scenario using z/OS
Connect EE. The next step is to use z/OS Connect EE API provider support to API enable
some of the z/OS insurance applications. This will simplify the integration of these mainframe
hosted applications with the different channel applications.

5.3 Build a managed API framework using API Connect

This scenario focuses on establishing a managed API framework that allows internal and
external developers to discover and securely consume business services that are available
across the organization.

5.3.1 Introduction

Bank B is a boutique retail bank that offers a custom suite of retail and business banking and
credit card services. Their modern core banking systems are based on CICS/DB2
applications that were developed in COBOL and Java. There are multiple access points to
these systems; for example, the use of IBM MQ and web services. However, the predominant
access method for new applications is by using REST services.

In recent years, the Bank made significant investment in its digital channels and now supports
new web and mobile application services. Bank B places customer service as its top priority
to encourage growth and has invested in new mobile applications for staff. These mobile
services need to access the core banking systems, a Master Data Management (MDM)
system, and a business rules engine.
Chapter 5. Real-world scenarios 69

An enhanced mobile application is planned that will enable the bank’s small business
advisors to offer tailored financial products to customers in real time. The mobile app will
allow an advisor to meet with clients at their place of business, retrieve a customer’s profile
and financial data, and be advised on what financial products to offer the client.

Based on the needs to deliver new mobile services quickly and to comply with Open Banking
regulations, Bank B wants to enable a set of enterprise-wide APIs. The intention is to improve
agility and speed to market of new financial products by empowering the Bank’s own
development community. The Bank also wants to offer a subset of APIs to their partner
community to extend into a wider array of markets.

The key decision to address in this project is how to enable an enterprise-wide API framework
that supports the following functions:

� Automatic build, deployment, and testing of APIs
� Self-discovery of APIs
� Robust security and traffic shaping
� Reusing internal services
� Visibility and monitoring of APIs

5.3.2 Key decision factors

Bank B considered several factors when it decided how to deploy and manage APIs. The
primary factors were to simplify the reuse of mainframe applications and data from internal
and external clients, and the governance (access control, management, and monitoring) of
the published APIs.

Mainframe application interface
Currently, Bank B uses many different interfaces into z/OS based applications. The
requirement is to define a set of reusable APIs to speed up mobile app development, improve
integration with cloud-based applications, and interoperability with third parties.

Application integration infrastructure
The core banking systems, including the Accounts and Customer applications, run on CICS
TS and Db2. IBM’s Master Data Management (MDM) solution provides a comprehensive and
searchable view of customer data. Operational Decision Management (ODM) is used for
processing business rules (for example, to determine the level of risk in extending a loan at a
specific interest rate).

Most core systems are service-enabled as SOAP or REST services. In some cases, such as
the Cards Management System (CMS), applications are accessed as REST services though
a Java JAX-RS layer that is deployed in a WebSphere Liberty server.

The IBM DataPower Gateway is used today as a security gateway; for example, to protect
against denial of service attacks and to authenticate client requests.

Hybrid integration requirements
The new mobile app is a native iOS app that is provided to bank advisors on company-owned
iPads. The app must display real-time client financial data, compare the financial information
against other similar businesses that are in the same area, and allow the bank advisor to
apply for a line of credit while at the client’s workplace.
70 IBM Z Integration Guide for Hybrid Cloud

The app must securely integrate with several mainframe applications through a set of
operations, as shown in the following examples:

� listClients: Retrieve information about clients based on a set of filters, including type of
business and geographic location.

� viewClientProfile: View the client profile, including address, accounts, credit cards,
out-standing loans, and cash flow.

� listTransactions: List the transaction history of the client.

� getCreditRating: Get a credit rating.

Non-functional requirements
The following main non-functional requirements must be met:

� Speed of deployment

It is imperative that the mobile solution and associated APIs are deployed quickly to gain a
competitive advantage over other banks that offer similar small business financial
services.

� Security

All personal and financial data must be stored on the mainframe and encrypted in transit.

� Always available

As the new primary way to engage small businesses, the new mobile solution must be
available 24 x 7.

� API lifecycle

API creation, deployment, and testing must be automated, and support self-discovery and
versioning.

� Management and monitoring

The solution must provide the operational metrics and analytics capability to be able to
monitor API usage and manage the traffic demand when APIs are experiencing peak
loads.
Chapter 5. Real-world scenarios 71

5.3.3 Solution architecture

Bank B chose to adopt a solution that is based on IBM API Connect and z/OS Connect EE.
This solution supports a wide set of REST APIs that are used by the bank’s internal and
external clients. Figure 5-3 shows the mainframe systems and API operations used by the
bank advisor mobile app.

Figure 5-3 Build a managed API framework using API Connect

The solution features the following major components:

� z/OS Connect EE

z/OS Connect EE provides a REST interface for the CICS Accounts and Loans
applications (used by the viewClientProfile and listTransactions operations).

Developers use the API Toolkit to develop and test APIs in provisioned development z/OS
Connect EE instances.

A Jenkins based CI/CD (continuous integration and continuous delivery) pipeline is then
used to automatically build, deploy, and test APIs to the pre-production and production
environments. The CI/CD pipeline uses the following components:

– A Git repository for storing z/OS Connect EE projects

– z/OS Connect EE Build Toolkit for building services and APIs

– JFrog Artifactory for storing z/OS Connect EE service archive (.SAR) and API archive
(.AAR) files

– Zowe and the z/OS Connect EE RESTful administration interface for deploying
services and APIs

– Newman for automated testing

� Business Rules

IBM ODM provides a SOAP interface that is used by the getCreditRating operation to
calculate a risk score for a client.
72 IBM Z Integration Guide for Hybrid Cloud

� Master Data Management

IBM MDM contains customer profile information that is used by the listClients,
viewClientProfile, and listTransactions operations.

� WebSphere Liberty

A WebSphere Liberty server provides a REST interface to a Cards Management System
(CMS) that is used by the viewClientProfile operation.

� IBM DataPower Gateway

IBM DataPower Gateway is used as a security gateway and provides a secure and highly
available run time for the deployed APIs.

� IBM API Connect

IBM API Connect is used to manage the API lifecycle, to create new API versions and to
revert to previous versions when required. A developer portal is used to communicate
information about the APIs, API documentation, and code samples. This information
allows the developers to test and try the APIs. The API Manager is used for API
deployment and management, and IBM DataPower is used as an API Gateway.

5.3.4 Next steps

Bank B has established an API framework that is used extensively by mobile and cloud-
based apps, including the new bank advisor app.

The CI/CD pipeline that is used for deploying APIs to z/OS Connect EE is being extended to
automatically build and deploy new APIs when CICS application changes are installed.

5.4 Develop Java-based REST APIs

Java is an increasingly popular programming language for new z/OS applications. The z/OS
Java products provide the same, full function Java APIs as on all other IBM platforms. This
scenario focuses on the creation of custom Java applications that enable REST APIs based
on a CICS PL/I core banking applications.

5.4.1 Introduction

Bank C is a long-established financial services provider that wants to capitalize on their
mainframe investment by offering new services through a set of REST APIs. The key project
goals are as follows:

� Deliver modern intuitive standard-based APIs that enhance the developer experience.
� Enable delivery at speed.
� Reuse existing Java development and JVM management skilled resources.
� Enable Java client application developers to build server-based Java APIs.
� Create a cost-effective solution.
� Modernize the application delivery pipeline.

The question to be addressed by this project is whether to use an off-the-shelf product for
REST API enablement or to develop a custom solution.
Chapter 5. Real-world scenarios 73

5.4.2 Key decision factors

Bank C considered several factors when it decided how to API enable the CICS PL/I core
banking applications. The bank sees the capabilities delivered by these APIs as being key to
their digital strategy and a potential significant differentiator with competitors. As such,
retaining full control over the experience is an important requirement. The key decision
factors are reviewed next.

Mainframe application interface
Today, proprietary XML messages are sent into CICS using a custom CICS TCP/IP
sockets-based solution. The existing COMMAREA-based PL/I programs are limited to 32 KB
message lengths so returning large amounts of data requires multiple requests to be made.

The new solution should support a more loosely REST/JSON interface that gives the
developer complete control over the interface, for example, the REST API should control
client interactions by including conditional links (URIs) in the JSON response messages. The
solution should also support long messages without the need for multiple round trips.

Application integration infrastructure
The core banking applications are based on CICS TS and Db2 z/OS, and IBM CICSPlex®
SM is used to manage a CICSplex of regions that support the applications.

A security gateway provides authentication and identity propagation services.

Hybrid integration requirements
Bank C provides financial services to over one million clients that use modern web and
mobile applications to access their accounts. These engagement applications are deployed
on-premises today, but cloud implementations are being considered for the future.

The enablement of REST APIs is seen as a significant stepping stone to the creation of a
seamless omni-channel customer experience, whether the customer is using a desktop or
mobile device for online banking.

Non-functional requirements
The following main non-functional requirements have been identified:

� Skills

Maximize use of exiting Java skills and federate these skills across engagement
application and SoR development projects in order to develop a friction-less API
deployment process.

� Performance and cost

The solution must perform as well as or better than the existing solution and enable cost
advantages.

� Security and identity management

The solution must be consistent with the existing security model.
74 IBM Z Integration Guide for Hybrid Cloud

5.4.3 Solution architecture

Bank C chose to develop a Java solution based on the CICS Liberty support. New Java
integration logic is developed using the OSGi framework. The Java integration layer uses
hypermedia links to control the flow of client interactions. The solution is shown in Figure 5-4
on page 75.

Figure 5-4 Develop Java-based REST APIs

The solution features the following components:

� Liberty JVM server

CICS Liberty was chosen as the runtime server because of its simple XML-based
configuration, colocation with the core banking applications and tight integration with
RACF. Java applications running in CICS benefit from being eligible for zIIP offload, which
can significantly reduce the application cost of ownership.

The Java applications run in different CICS regions than the PL/I core banking programs.
This allows the CICS Java regions to be configured specifically for running Java and to be
upgraded independently of the CICS application owning regions (AORs).

� Custom Java components

A CICS Liberty server hosts the following custom components:

– A web application that uses JAX-RS to create the RESTful user interface for an API

– OSGi services that support dynamic deployment and are shared across multiple APIs

– A Trust Association Interceptor (TAI) that is used to switch the CICS user context to the
user ID sent by the Security Gateway

Wherever possible, Java components are tool-generated and share the same delivery
pipeline as the PL/I components.

� PL/I core banking applications

The PL/I core banking applications are called from the web application using the JCICS
API. Program link requests are dynamically routed to CICS AORs using CICSPlex SM.
Chapter 5. Real-world scenarios 75

CICS support for channels and containers is used to enable the transfer of long message
and to structure the message into logical blocks.

� Security gateway

The security gateway provides authentication and identity propagation services. End
users are authenticated against an enterprise LDAP directory and the user’s identity is
flowed to the mainframe for access control

5.4.4 Next steps

Bank C has now deployed many APIs using their custom Java solution. Work is ongoing to
migrate older services to the Java-based solution, and to consider how request results can be
cached. Bank C is also considering if z/OS Connect EE can be used for REST API
enablement of certain applications.

5.5 Integrate with App Connect

This scenario focuses on the integration of a CICS application with Salesforce using IBM App
Connect.

5.5.1 Introduction

As applications and data are increasingly hosted on cloud infrastructure, there is an
increasing requirement to maintain consistency between cloud and on-premises data stores.

Bank D has recently implemented a Salesforce customer-relationship management (CRM)
solution to collect, store, manage, and interpret data from many customer-related activities.
The bank needs to maintain consistency between the Salesforce CRM system and the
financial applications that run in CICS, for example, when new accounts are created,
customer addresses are updated, and so on.

The initial requirement is to replicate data updates made to CICS VSAM data to Salesforce. A
follow-on requirement is to replicate data updates made to the set of Salesforce customer
objects to CICS.

The following key questions are to be addressed in this project:

� How to enable data replication between CICS and Salesforce?
� How to transform the data emitted by CICS to the format required by Salesforce?

5.5.2 Key decision factors

Bank D considered several factors when it decided how to enable the integration between
CICS and Salesforce. The primary driver is to enable the integration quickly and to build a
solution that can be reused for bidirectional data replication. The key decision factors are
reviewed next.

Mainframe application interface
Today, the CICS packaged financial applications are accessed synchronously using the CICS
web support, and asynchronously using messaging.
76 IBM Z Integration Guide for Hybrid Cloud

The new solution should not require any changes to the CICS applications. Data records from
CICS formatted in byte array structure must be transformed to the JSON or CSV formats
supported by the Salesforce customer objects. The data transformation solution must also
take care of code page conversion from EBCDIC encoded data to ASCII encoding.

Application integration infrastructure
Bank D is an extensive user of IBM MQ and is already using IBM App Connect for a variety of
integration requirements.

Hybrid integration requirements
To integrate between the on-premises CICS financial applications and a SaaS application like
Salesforce running in a public cloud requires that the bank's security and privacy policies are
met.

Non-functional requirements
The following main non-functional requirements have been identified:

� Scalability

The solution needs to handle thousands of CICS data updates per second.

� Batch processing

Updates to account and customer data in CICS must generate events in real time,
however, the solution must also support batch processing.

� Security

All network communications must be encrypted and the connection to Salesforce must be
secured.

5.5.3 Solution architecture

Bank D chose to implement a solution based on IBM App Connect and CICS event
processing. You can use App Connect with Salesforce by configuration and data mapping
without a need for coding, and CICS events can be defined and controlled without the need to
modify the CICS financial applications. The solution is shown in Figure 5-5.

Figure 5-5 Integrate with IBM App Connect

The solution features the following components:

� App Connect

App Connect provides connectivity options across cloud service applications, cloud
platforms, and existing on-premises applications. It includes connectors for integrating
with Salesforce and other non-IBM solutions.
Chapter 5. Real-world scenarios 77

App Connect enables Bank D to automatically update Salesforce in real time, adding the
account and customer data that the CICS financial applications generate.

The App Connect message flow:

– Reads the data from an MQ queue or a file (for batch processing).

– Formats the source data (byte array) to the target format required by the Salesforce
customer objects (JSON or CSV).

– Encodes the data to ASCII from an EBCDIC encoding.

– Uses a SalesforceRequest node to create or update records in the Salesforce.com
system via a REST API. The connection to Salesforce is encrypted using HTTPS and
secured using the OAuth 2.0 support that is provided with the Salesforce connector.

App Connect is designed to enable scaling to many thousands of messages per second
and provides a way of updating Salesforce objects in a performant, secure, and reliable
architecture.

� CICS event processing

CICS event processing enhances business flexibility by providing a non-invasive way of
enhancing applications to emit events to a variety of different destinations. You can
specify, capture, and emit business events without changing the application. These events
can be consumed by another CICS application or placed on an IBM MQ queue for
consumption in a variety of ways, including by App Connect.

The Event binding editor of CICS Explorer is used to define business events. You can
specify that an event is emitted when the application issues any of the event enabled
EXEC CICS API commands or when an application program is initiated. In the case of the
CICS financial applications used by Bank D, events are captured when the accounts and
customer VSAM data sets are updated.

CICS event processing provides a high-performance, manageable and scalable
environment, which has minimal impact on the performance of the CICS financial
applications.

� IBM MQ

IBM MQ is used to transfer messages between CICS and App Connect. The messages
that are put by the CICS event processing adapter are sent from MQ z/OS across an
encrypted MQ channel to the MQ queue manager used by App Connect.

5.5.4 Next steps

The use of App Connect for integrating the CICS financial applications with Salesforce
achieves a return on investment in days rather than months. A similar solution can also be
used for replicating data updates from Salesforce to CICS.
78 IBM Z Integration Guide for Hybrid Cloud

Chapter 6. Summary

The need to deliver new functions at speed and the huge growth in cloud services means that
the requirement to interoperate with the mainframe within a hybrid cloud environment is high
on the priority list of many of the world’s largest companies.

In this paper, we reviewed the key considerations for planning hybrid cloud integration with
the mainframe. We also reviewed several real-world scenarios that highlight the decision
factors for choosing one solution over another.

We conclude with a summary of the different integration architectures and solutions, and
provide high-level recommendations for when to use each one.

6

© Copyright IBM Corp. 2020. 79

6.1 Integration architectures

The mainframe supports several integration architectures that can be used in hybrid
integration projects. These integration architectures are compared in Table 6-1.

Table 6-1 Common integration architectures

6.2 Integration solutions

Different IBM integration solutions can be used in hybrid integration projects with the
mainframe. The main solutions are compared in Table 6-2.

Table 6-2 IBM integration solutions

Integration
architecture

Description Recommendation

APIs and API
management

Architecture for creating,
assembling, managing,
securing, and socializing web
application programming
interfaces (APIs).

Use when:
� Business functions must be discoverable
� Enterprise applications must be extended to a system of

developers and new markets
� Need high degree of operational governance

REST Resource-oriented architecture
that is based on HTTP URL,
HTTP verbs and JSON.
De-facto standard for
engagement applications.

Use when:
� JSON is the primary data payload
� Intuitive and simple interface for developers is required

Messaging Asynchronous transport
mechanism.

Use when:
� Assured delivery is required
� Enabling publish/subscribe applications
� Reusing a messaging infrastructure

Event streams Implementation of
publish/subscribe pattern at
large scale.

Use when:
� Need to support very large number of events
� Need to support many producers and consumers of events

Integration solution Recommendation Description

z/OS Connect
Enterprise Edition

Provides a common toolset and
runtime for REST HTTP calls to
applications and data assets
that reside on z/OS. Also
provides the capability that
allows z/OS-based programs to
access any RESTful endpoint,
inside or outside the enterprise.

Use when:
� Want to use tool-based approach for creating RESTful

APIs that are based on z/OS assets.
� Enabling discovery of defined APIs based on OpenAPI

(Swagger 2.0) standard.
� Simplify the REST API development process by

making the mainframe application owner responsible
for creating APIs from z/OS assets.

� Requiring z/OS applications (CICS, IMS, and batch) to
call external REST APIs.

IBM API Connect API management solution for
creating, running, securing, and
managing APIs.

Use when:
� Extending the value of mainframe assets by socializing

APIs to various developers and partners
� Controlled access and strong governance are required

IBM DataPower
Gateway

SOA and API security gateway. Use when:
� Securing hybrid integration access to the mainframe
� Deploying APIs to a secure and efficient API Gateway
80 IBM Z Integration Guide for Hybrid Cloud

IBM App Connect Comprehensive integration
services with support for any-
to-any transformation.

Use when:
� Have complex integration requirements; for example,

service orchestration
� Diverse data and protocol formats are used
� Industry standard message formats must be supported

IBM MQ Asynchronous message
transport for reliable delivery of
messages.

Use when:
� Enabling bidirectional messaging connectivity
� Publish/subscribe pattern is required

IBM Event Streams IBM implementation of Apache
Kafka.

Use when:
� Enabling mainframe application as producer or

consumer of events for an event stream.
� For very high messaging rates.

IBM Cloud Pak for
Integration

Containerized IBM integration
middleware that runs wherever
Red Hat OpenShift runs.

Use when:
� Deploying integration components using

container-based, decentralized and microservice-
aligned approach.

� Enabling unified development experience (platform
navigator and asset repository) across IBM integration
capabilities.

Integration solution Recommendation Description
Chapter 6. Summary 81

82 IBM Z Integration Guide for Hybrid Cloud

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this paper.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� Accelerating Modernization with Agile Integration, SG24-8452

� An Architectural and Practical Guide to IBM Hybrid Integration Platform, SG24-8351

� CICS and SOA: Architecture and Integration Choices, SG24-5466

� IMS Integration and Connectivity Across the Enterprise, SG24-8174

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� OpenAPI and Swagger:

http://swagger.io/specification

� z/OS Connect EE:

https://ibm.biz/zosconnectdc

� CICS and Java:

https://developer.ibm.com/cics/

� DB2 REST Services:

https://ibm.biz/zos-connect-db2-rest-services

� IBM API Connect:

https://www.ibm.com/cloud/api-connect

� IBM DataPower Gateway:

https://www.ibm.com/products/datapower-gateway

� IBM App Connect:

https://www.ibm.com/cloud/app-connect

� IBM MQ:

https://www.ibm.com/cloud/mq
© Copyright IBM Corp. 2020. 83

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://swagger.io/specification
https://ibm.biz/zosconnectdc
https://developer.ibm.com/cics/
https://ibm.biz/zos-connect-db2-rest-services
https://www.ibm.com/cloud/api-connect
https://developer.ibm.com/datapower/
https://www.ibm.com/cloud/app-connect
https://www.ibm.com/cloud/mq

� IBM Event Streams:

https://www.ibm.com/cloud/event-streams

� IBM Cloud Paks:

https://www.ibm.com/cloud/paks

� Zowe:

https://docs.zowe.org/

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
84 IBM Z Integration Guide for Hybrid Cloud

https://www.ibm.com/cloud/event-streams
https://www.ibm.com/cloud/paks
https://docs.zowe.org/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738458627

REDP-5319-03

®

https://www.facebook.com/IBMRedbooks
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Summary of changes
	April 2020, Fourth Edition
	July 2018, Third Edition
	February 2017, Second Edition

	Chapter 1. Introduction
	1.1 Digital transformation and reinvention
	1.2 Transforming IT with hybrid multicloud
	1.3 Agile integration
	1.4 Integration with IBM Z

	Chapter 2. Architecture options for integration
	2.1 Integration options
	2.1.1 Microservices, APIs, and microservices applications
	2.1.2 Containers and container orchestration
	2.1.3 Agile integration architecture

	2.2 API enablement
	2.2.1 Services and APIs
	2.2.2 REST and JSON
	2.2.3 API management and the OpenAPI Initiative
	2.2.4 Security standards for APIs
	2.2.5 Advantages of REST APIs

	2.3 Messaging and event streams
	2.3.1 Messaging
	2.3.2 Event streams

	Chapter 3. Hybrid integration architecture considerations
	3.1 Hybrid integration architecture
	3.1.1 Engagement applications
	3.1.2 Systems of Record
	3.1.3 API management
	3.1.4 Integration

	3.2 Integration patterns with IBM Z
	3.2.1 Aggregation pattern
	3.2.2 Direct API pattern
	3.2.3 Call-out pattern
	3.2.4 Event stream pattern

	Chapter 4. Hybrid integration solutions for IBM Z
	4.1 IBM integration solutions
	4.1.1 IBM z/OS Connect Enterprise Edition
	4.1.2 IBM API Connect
	4.1.3 IBM DataPower Gateway
	4.1.4 IBM App Connect
	4.1.5 IBM MQ
	4.1.6 IBM Event Streams
	4.1.7 IBM Cloud Pak for Integration

	4.2 z/OS subsystem considerations
	4.2.1 CICS Transaction Server for z/OS
	4.2.2 IMS
	4.2.3 Db2 for z/OS
	4.2.4 MQ for z/OS

	4.3 Zowe

	Chapter 5. Real-world scenarios
	5.1 Implement Open Banking APIs with z/OS Connect EE
	5.1.1 Introduction
	5.1.2 Key decision factors
	5.1.3 Solution architecture
	5.1.4 Next steps

	5.2 Call out to external services using z/OS Connect EE
	5.2.1 Introduction
	5.2.2 Key decision factors
	5.2.3 Solution architecture
	5.2.4 Next steps

	5.3 Build a managed API framework using API Connect
	5.3.1 Introduction
	5.3.2 Key decision factors
	5.3.3 Solution architecture
	5.3.4 Next steps

	5.4 Develop Java-based REST APIs
	5.4.1 Introduction
	5.4.2 Key decision factors
	5.4.3 Solution architecture
	5.4.4 Next steps

	5.5 Integrate with App Connect
	5.5.1 Introduction
	5.5.2 Key decision factors
	5.5.3 Solution architecture
	5.5.4 Next steps

	Chapter 6. Summary
	6.1 Integration architectures
	6.2 Integration solutions

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

