
Front cover

A Transformation Approach to Smarter Core Banking

Alex Louwe Kooijmans
Rishi Balaji
Yasodhar Patnaik
Saket Sinha

Why transformation?

Transformation methodology, framework
and tools

Core banking systems infrastructure

Redguides
for Business Leaders

Executive overview

The way today’s economies are functioning, plus growing competitiveness between banks,
demands a very flexible IT environment. Banks must be able to quickly comply with new
regulations, introduce and bundle products, enter new marketplaces, and make swift business
decisions to increase profitability and revenue. An agile IT environment that can easily and
continuously be adapted to changing business needs is key.

However, many core banking systems have been modified, extended, replaced and
customized over time, resulting in a vast and complex web of customized code, especially
when this is done without strong and structured enterprise-wide governance. Maintaining this
code can involve significant operational cost and risk. Core banking systems were initially
designed to be product-based and hinged on loans, accounts, and savings. Applications and
processes followed this model, driving the duplication of services, for example opening an
account, across multiple product silos and customer touch points. This also led to a
product-based approach to systems and governance, in which each operational silo made its
own decisions without considering the requirements of other business units.

Currently, changing business models, increased regulatory requirements, and the need for
better risk management are forcing banks to integrate systems across siloed product lines,
further increasing the size and complexity of legacy systems. Moreover, transaction volume
and related data have exploded during the last decade and have exponentially compounded
complexity by causing a significant overhead in bank operating costs. This trend is expected
to continue in an accelerated manner because of the growth of the mobile channel.

The inflexibility of core banking systems in adapting to new approaches is becoming a major
business issue as business and operating models focus more closely on customers and
markets. Innovation, by means of exploiting new architectures and technologies, is necessary
to keep the IT systems responsive to the business needs of today. In most cases a
transformation will be required to create a foundation that is sustainable and flexible enough
to accomodate today’s and future business developments. This IBM® Redguide™ publication
explains how banks can use the IBM Banking Industry Framework along with industry models
and software and hardware products and solutions to progressively transform and modernize
their banking systems and achieve better straight-through processing, synergy, and
integration between product-based systems—and better time to market, while staying in
check with costs and minimize overall transformation risks to business.
© Copyright IBM Corp. 2012. All rights reserved. 1

2 A Transformation Approach to Smarter Core Banking

The case for core banking transformation

For many banks, the critical complexity gaps that hinder profitable development are embodied
in their core banking systems, application architectures, and project development capabilities.
While core banking systems are not actually broken, they are becoming a major impediment
to effectively executing application and product development. This need for a more flexible
core banking environment is accelerating because of some major trends in the banking
industry that are taking place right now. We examine these in the next section.

Trends in the banking industry affecting core banking systems

The banking industry has been evolving and searching for new business models since the
very beginning, but never before have the needs and trends been as strong as today.. The
following are the three most significant developments that call for a deep examination of the
core banking systems environment.

Customer insight and pro-active relationship management

Increasing insight into a bank’s customer’s buying behaviour and needs is putting the bank in
a position to offer products at the right time and in the right place, and perform cross-selling
and bundling of products. This could even extend beyond the traditional bank products, for
example into insurance products. For example, a customer who just took out a car loan may
also be interested in an insurance product for the car just purchased. Many of the bank’s
transactions touch the core systems at some point, whether it is just an inquiry or finalizing
the actual sale of a product. Opening up the core systems and making them more flexible will
allow the bank to access core systems more easily from across the entire bank, allowing for
product bundling and cross-selling.

Risk management and compliance with regulations

In today’s economic climate there is a lot of focus on the banks and their health. A bank must
be capable of determining its health at any point in time. Also, a bank has to comply with
numerous regulatory requirements, many times different per country, and also changing
through time. A bank today needs flexibility in creating reports and calculating indicators. The
© Copyright IBM Corp. 2012. All rights reserved. 3

core systems contain many of the source data for these reports and indicators and should be
up-to-date and easy to access at all times.

Driving down IT cost, while gaining flexibility

For many banks, core systems consume a significant portion of the IT budget and out of this
portion a large part is spent on “keeping the lights on”. So, there is money spent on IT without
really adding business function. With a continuous pressure to lower cost, including in IT, this
is an issue. It would be much better to have an almost “maintenance-free” core banking
environment, where money is only spent on actual new business functionality. With the
adoption of modern service-oriented architecture (SOA)-style application architectures and
business process management (BPM), the ratio between money spent on maintenance and
money spent on new business functions will improve dramatically. By applying more
straight-through processing, banking processes become less labor-intensive as well.

Key growth imperatives for banks

The inflexibility of legacy core banking systems is making it increasingly difficult for banks to
meet challenges and to address key growth imperatives, including the following:

� Address market opportunities in a timely manner

� Increase profitable customer acquisitions

� Tap high-margin new markets

� Improve the ability to target investments

� Drastically reduce the per unit cost structure and minimize operating overheads

� Create sustainable differentiation

� Increase volume without compromising on risk

� Regain consumer trust

The business problem

Banks continue to undertake extensive ad-hoc integration efforts to get a total customer view
across siloed business lines. Given financial and time pressures, many banks have chosen to
take short-cuts and apply quick fixes rather than to address the underlying product-based
architectural and governance issues.

Given the sheer size and scope of the challenge, using short-cut options has so far been
more appealing than tackling a full modernization project. Typically, a large core banking
system can contain millions of lines of code across multiple, distinct applications, written in
many versions in various programming languages, some of which may have become
obsolete. Such a system will depend on different database technologies and will
communicate, both internally and externally, with other systems via many unique interfaces.
4 A Transformation Approach to Smarter Core Banking

Figure 1 illustrates the key concerns banks have with their current core banking IT systems.

Figure 1 Dissatisfaction with current core banking IT systems as perceived by banks

The key issue is the underlying architecture of the core systems. Legacy core banking
systems were developed on a product-centric design that delivered operational support for a
single product line. At the same time, contemporary design principles allowed applications to
hard code user interfaces, business logic, business rules and data, all in millions of lines of
code and in monolithic programs. Without any holistic architectural strategy, thousands of
tactical changes carried out over time have left banks with inflexible and enormously complex
legacy systems. Most of these tactical changes spawned a series of code and program
changes that cascaded across the length and breadth of the application portfolio. Failure to
adopt modular design principles, to properly document code changes, and the limited
availability of systems skills and knowledge all added to the overall complexity and further
weakened the bank's ability to thrive in today's competitive banking environment.

The result is that the legacy core banking system at many banks has become a tangle of
hundreds of point-to-point interfaces, dead or unreferenced code pools, poor documentation,
duplicated or obsolete functionality, and inconsistent, redundant and duplicate sets of data.
All this spawns proliferations of applications, programs, codes and data causing compounding
impact on infrastructure, network, and computing power.

This complexity makes it extremely time-consuming and difficult to make modifications, add
new functions, and repair the existing systems. Maintaining the existing systems in good
working order consumes a major portion of IT budgets and also causes time-to-market
issues. Consider that a typical new core system enhancement consumes a huge part of a
bank’s IT budget merely by demanding integration and testing across the jumbled mess of
infrastructure and application platforms.

This complexity is true both for banks that built core banking systems and for banks that
customized a software package, though more and more customization was required to
accommodate explosive growth and changing business models. Many existing software
packages were designed around product-centric architecture; in time, they suffered from the
same design challenges as custom-built solutions. Thus, the levels of complexity and
inflexibility that inhibit growth and differentiation are similar regardless of whether the legacy
systems were custom built or adapted. Additionally, front-end systems with tight
dependencies on the underlying core systems created another layer of cost, inflexibility, and
complexity.

% dissatisfied

0% 10% 20% 30% 40% 50%

Customer Data
Analysis

New Produ ct
T ime to Market

Support For CRM

Integration Wi th
Other S ystems

Incorporating
Regulatory
Requirements

43%

40%

40%

29%

33%

BANKS’ DISSATISFACTION
Wit h Current Core Banking Syst ems’ Abilities1

Cannot s upport complex,
highly in terdependent

products and
r elationsh ips

Do not pr ov ide the
necessary information

required for today ’s
banking contro l

envi ronment

Cannot acc om modate
new and m ore complex

ris k management
fram eworks

Ar e inflexible due to
r el ianc e on o ld

tec hnologies , sing le-
purpose design and h igh

custom ization

Require lengthy
deve lopm ent period to
introduce and s upport

new products

Do not in tegra te eas ily
wi th

new applications such as
data war ehousing &

CRM

Do not s upport a
m ov em ent to more

efficient and effective
del iv ery c apabi li ties

Do not provide multi -
d im ensional cus tom er
views or managem ent

in form ation
5

Current business expenditures

Banks typically spend between 10 and 20 percent of their total operating budget on IT. More
than half of this amount is spent on maintaining aging core banking systems, and of that,
about 90 percent is spent on maintaining day-to-day business. This leaves limited resources
for discretionary projects or innovations. In fact, legacy IT systems can account for as much
as 30 to 40 percent of the bank's total operating expenses as shown by the need to maintain
larger numbers of employees due to system inefficiencies and poor front-to-back-office
integration or limited straight-through processing. Figure 2 illustrates such spending.

Figure 2 Core banking IT spending analysis

Unmodernized legacy systems can reduce revenues in various ways, including the following:

� Lower customer retention
� Lower success rates in new opportunities in limited cross-sell capabilities
� Lack of customer centricity
� Increase time-to-market for innovative products

Another cost is related to the changes required to accommodate regulatory and risk
management guidelines. This cost is exponentially compounded by the complexity of the
legacy systems and the need to gather data across numerous siloed applications.

~80%-
90%

~10%-
20%

Total
Operating

Cost

IT Spend

~50% Core
Banking
Spend

Other IT
Spend

~50%

~90% BAU
Spend

Discretionary
Spend~10%

Non IT
Spend

Complexi ties of core
banking system can

almost add ~30%-40%
to the operating cost
6 A Transformation Approach to Smarter Core Banking

Core banking transformation process

Addressing core banking systems’ complexity issues is a top priority, and many banks have
started to modernize core systems already or at least started to take a look at it. But this
modernization is seldom done at systemic levels and therefore does not deliver optimal
results. Modernization must involve a complete overhaul of the core application portfolio, IT
architecture, and infrastructure. Such an effort is expensive, time consuming, and risky but, if
successfully done, may significantly benefit the shareholders and also provide a sustainable
competitive differentiation in the marketplace. However, since benefits far outweigh risks,
some banks have already begun, or plan to begin a long-term systemic modernization
process. Their approach is to achieve a high degree of architectural modularity and
speed-to-market benefits while reducing overall complexity and unlocking non-discretionary
funding.

IBM is a leader in the modernization effort and offers deep industry experience amassed by
helping banks worldwide to successfully modernize core systems. The IBM experience
shows that a successful modernization project includes the following elements:

� Institutes transformational governance.
� Aligns business and IT stakeholders to commit to successful modernization.
� Includes key design principles of modular business and IT architecture.
� Selects proven methodology and technology.
� Optimizes infrastructure to deliver maximized value of the modernized systems.
� Professionally manages the project.
� Bases the delivery capabilities on an industrialized factory model.

We discuss how these elements drive a successful modernization in the following sections.

Getting started with the transformation

Successful organizations follow a structured approach to begin the transformation process. A
structured approach includes the following key principles:

1. Establish transformation goals and objectives.

2. Align the business and IT stakeholders.

3. Set up organizational governance.
© Copyright IBM Corp. 2012. All rights reserved. 7

4. Define the “to be” architecture.

5. Create the business case.

6. Design the transformation roadmap.

These topics are discussed in the following sections.

Establish transformation goals and objectives

A core banking transformation project must have the goal to eliminate inhibitors of growth to
an acceptable extent. Now, of course, the issue is that there are many different ways to
transform and one way may reach the goal better than the other. So you need to define what
“acceptable” means and you need to be able to measure the improvements that the
transformation project brought. Examples of easily quantifyable measurements are:

� Cost to develop a new function

For example, upgrading from a traditional programming model to a Java-based
programming model will reduce this cost significantly. This means that with the same IT
budget more functions can be added, leading to more business value.

� Time it takes to deploy a new function

For example, by using a better application architecture, better management of IT assets,
and end-to-end application lifecycle tooling, deployment speed will be much improved.
Because of this, new business functions become available faster, helping to remain
competitive in the marketplace.

However, some improvements may not be so easy to measure. A transformation project may
lead to an overall better quality of the IT system and thus impose less risk.

Align the business and IT stakeholders

It is critical that the objectives of both business and IT are aligned and that both participate
equally throughout the modernization process. Common business goals are growth, profit
margins, new products and services, and improved customer centricity. Common IT goals
include lowering nondiscretionary cost, rationalizing portfolios, modernizing systems,
improving efficiency, resolving complexity, shortening time to market, and enhancing skills. A
modernization effort will not be successful if it is driven from a single perspective, that is, IT or
business.

Business and IT need to create a common forum where business priorities and objectives,
and corresponding IT options—cost, time and risks—are evaluated, discussed and agreed
upon. Even though management may be aligned on common business and IT objectives,
these common goals do not necessarily percolate through the organization unless
management has committed to communicating and enforcing them. One management
technique is to incorporate modernization objectives into individual performance reviews.

Both IT and business teams must balance the interdependencies of agility, flexibility and
time-to-market against system complexity, development process, and technology
architecture. These interdependencies must be communicated through a common vocabulary
that will be adopted across the board. Both teams must conduct an ongoing dialogue during
the entire modernization process. Successful banks carry on such dialogues using
vocabulary from banking industry reference models. All these efforts result in a better
understanding of business requirements, and save time and reduce costs, especially during
the downstream testing and integration processes.
8 A Transformation Approach to Smarter Core Banking

The business and IT areas need to jointly define and agree on transforming functional,
application, architecture and infrastructure levels. Further, they need to express this
agreement in quantifiable business benefits that have both near term and long term tactical,
pragmatic and strategic realizations in line with the business case. To achieve a successful
core banking transformation, banks need to define an enforceable mechanism of periodic
review and common governance. This will align the benefits and the timing of realizing those
benefits as common goals directly tied to the financial metrics of the bank.

Set up organizational governance

Transformation governance is the decision-making process involved in modernizing a core
banking system. Typically, transformation governance shares the rights and responsibilities of
governance with the bank individuals participating in the modernization, especially
management and stakeholders. Transformation governance entails leadership buy-in,
commitment, collective ownership, and accountability in order to mitigate risks and deliver
business benefits. In many cases, upper management mandates the need for modernization
and communicates that goal throughout the organization.

Management must be completely committed to the modernization process to ensure success
and prevent failures; further, management needs to be continually aware of potential pitfalls
throughout the process. For example, the cost of transforming an enterprise is often beyond
an IT budget, which means the bank must identify additional capital to cover those costs.
Because the modernization investment horizon is long-term and involves significant risks, the
bank must have a clear roadmap to avoid unpredictable outcomes. If the methodology chosen
for the transformation is not correct, the process can stall and create critical gaps, further
adding to overall costs. Management needs to focus on the process to make sure that
unforeseen challenges do not force the bank to abandon the transformation midway.
Successful banks have addressed transformational governance in some of the following
ways:

� Collectively agreeing and committing to the transformation roadmap at the onset of the
modernization process.

� Clearly understanding the business case.

� Agreeing and enforcing the core tenets of the transformation process.

� Supporting the modernization case with statistics on potential savings, improved
efficiency, and so on.

� Quantifying and demonstrating direct and indirect benefits.

� Communicating how the transformation will improve operations while reducing costs.

� Analyzing operating costs against component-based business architecture to identify
points where operating costs are not aligned with strategic imperatives.

� Translating accrued benefits and cost savings to the bank's balance sheet to demonstrate
the modernization value to shareholders.

� Expressing benefit statements as a direct impact on the cost-to-income ratio, as an
increase in operating leverage, as an increase in profit margins, and as a direct impact on
operating costs.

Another key requirement of transformational governance is to identify and assign
modernization roles and responsibilities in the bank and, further, to set accountabilities for
those roles. Management needs to be empowered not only to make key decisions but also to
enforce responsibilities and accountabilities throughout the entire process. The bank
achieves optimal results only when the entire organization is aligned with the modernization
team and committed to the same goals.
9

Lastly, transformation governance must interact seamlessly with the day-to-day business of
the bank while simultaneously monitoring the modernization process. Often banks create
forums and steering committees to enforce the decisions necessary to drive the
transformation process; banks can also seek support and guidance from external advisory
services.

Define the project organization for the transformation approach

Obtaining organizational commitment from the top is a vital first step in the transformation.
Successful banks have the support of their board, C-level managers and business unit
leaders, all of whom are directly responsible for driving the transformation and achieving
business objectives. The entire team begins by clearly defining goals, developing the
roadmap and a pragmatic business case to achieve those goals.

Figure 3 shows an example of an organization structure for a transformation project.

Figure 3 Example of an organization structure for a transformation project

This team must also consider the following:

� Governance, the change-control framework, and communications plans
� High-level details of business and technology initiatives, with prioritization
� Investment justification, benefits, cost and risk factors for the entire program
� A roadmap that takes into account project strategy, dependencies and limitations
� Thorough understanding of how these changes will affect the bank

Define the “to be” architecture

Conduct an envisioning phase with stake holders to level set the expectations and
achievements that need to be targeted in the transformation. The envisioning phase begins

Bank
Stake holders

Bank
Executive Sponsors

Process
E ngineering

Team

Architecture
Team

Infrastru cture
Team

Develop ment
Team

Bank
P roject Manag er

IBM
Executive Spon sors

IBM
Client Team

IBM Glo bal
Del ivery T eam

IBM
Project Manager

Ban k
Development

Team

Industry M odels
and Governance

Program Management
and Governance
10 A Transformation Approach to Smarter Core Banking

by focusing on the strategic imperatives that the bank has to deliver and the current pain
points that challenge that delivery. Use this input to create the strategic priorities.

Develop the to be architecture that will be used with the strategic priorities to assess current
legacy assets, to identify gaps and the initiatives needed to fill those gaps. These initiatives
can fall into technology, application, functional and non-functional requirements, and
governance capabilities. How these initiatives are sequenced and plotted on the roadmap
depends on business priorities and inherent dependencies.

Create the business case

Prepare a business case that estimates the overall cost of the transformation plus derived
benefits. The merits of the business case may depend not only on the effort itself but can also
influence a broader transformation scope that addresses business requirements. It should be
more than a technology transformation, but one that also influences a broader business
transformation. This is necessary because, if the business case is viewed from a pure
technology aspect, it can be difficult to justify costs. Once the envisioning phase is finished,
the bank has several options to continue with the process: follow the roadmap, adjust the
process to fit the business direction, or select a replacement based on the envisioning phase
deliverables. Regardless of the chosen option, the bank can leverage all of its investment to
this point.

Design the transformation roadmap

Once the business case is made, the transformation roadmap can be created, which basically
describes how and in which steps the transformation will take place. In a transformation
process you typically go through the following phases, and we discuss each of these in more
detail now:

1. Componentize business and IT architecture

2. Map components

3. Delink legacy systems

Componentize business and IT architecture
A goal of componentization is to separate architectural concerns and modularization. This
makes it easier to develop, enhance and troubleshoot the system efficiently and more quickly.

Componentized applications allow users to install only those software components that are
necessary for their specific systems. These components can be reused by all appropriate
departments of the business. IBM has led the way in moving away from monolithic,
product-oriented development to creating componentized software that is more responsive to
customer demands.

During componentization, banks re-engineer and redesign their business architecture,
separating it into discrete building blocks that are then mapped to the underlying technology
services that support them. This allows a bank to view its business as a set of discreet
functional components, each exhibiting unique capabilities. Components can then be
classified under larger components such as strategy, planning, measure and control, and
execution. Using this method, banks create the ability to resolve problems in isolation and to
deliver opportunities in targeted areas. In short, componentization enables banks to make
required changes without the cost and risk of changing the entire environment. Further, it also
improves the ability to use a fine-grained mechanism to better address customer and
operational needs such as targeted product bundling, dynamic pricing, offers management,
and risk management. Figure 4 displays a typical componentized architecture in a bank.
11

Figure 4 Typical componentized architecture in a bank

Componentization typically involves the following key stages:

� Establishing a resilient, agile architecture that separates architectural concerns from
business logic

� Using a master data concept

� Breaking monolithic applications into manageable blocks

� Extracting business rules and logic for easier access, reference and control

Architecture componentized in this way can be reused by multiple business lines while
providing discrete business services that can be orchestrated to satisfy new business
requirements.

Basic components of bank operations are as follows:

� Collecting insights for customers, markets and products
� Distributing and servicing products through channels
� Manufacturing products
� Supporting bank operations with operational services
� Managing financials and risks
� Maintaining infrastructure and services necessary to operate the bank

Map components
Business architecture can be depicted as groupings of discrete business components on a
component map, a powerful tool that facilitates constructive and focused dialogue between
business and IT. The bank’s component map allows a business to attribute its strategic
imperatives and to identify points to differentiate itself for a sustainable competitive
advantage. The map also highlights capabilities and gaps that must be addressed to deliver
strategic outcomes. For example, business can use the map to determine areas of high cost
consumption and inefficiencies such as current operating expenses, resource consumption,
and labor, as well as revenue generating areas.

IT can use the component map to trace the existing application portfolio with capability
descriptions, a process that identifies redundancies and gaps in the portfolio. Business and IT
12 A Transformation Approach to Smarter Core Banking

units can work together to identity areas of concern by comparing and contrasting the
business overlay of strategic imperatives, resource consumption, and the IT overlay of the
technology portfolio. This joint effort drives bank growth while reducing costs.

Delink legacy systems
The transformation efforts that result from business component analysis are most effective
when paired with componentized technology architecture. Typically legacy systems do not
have well-defined componentized architecture and operate from hard coded elements.
Functions such as business process orchestration, functional capabilities, business rules,
business logic, and data access are hard coded, which makes them difficult to isolate and
separate. Part of the modernization process is to modularize architectural concerns so that
the complexity in the related technology can be broken apart. Next the legacy applications
need to be re-architected into a new architectural paradigm. The result is a transformed
legacy system whose core systems are delinked, meaning that a change in one component
does not necessitate changes in other components; see Figure 5.

Figure 5 Delinking legacy systems during transformation

Delinking components eases the modernization process because the resulting modulated
architecture means that changes are both less time consuming (there are no cascading
changes) and easier to manage (less time is required on system integration and testing).
Thus, changing a business rule that manages product terms and conditions can be done
without requiring the cascading of changes to other parts of the system. In addition, common
functional capabilities can be leveraged and shared without duplication. For example, opening
an account is a single discreet function that is defined, built, tested and deployed once, then
reused multiple times across the organization. Many system capabilities such as security,
auditing, and logging are now available in modular software products that can easily be
shared rather than replicated across multiple programs.

Another transformation advantage is that legacy applications can be delinked from data, thus
exposing the related business logic and making it available to multiple programs. This is
accomplished by removing hard coding between application logic and the data. In addition,
data can be grouped into master data that can serve read, write and update requests from
multiple programs.

Banks have been introducing the following elements, among many others, to separate
architectural concerns:

Millions of Lines of Monolithic Code

Presentation, Personalization, & Device
Enablement

Presentation, Personalization, & Device
Enablement

Extracted
Business
Services

Extracted
Business
Services

Process Orchestration / WorkflowProcess Orchestration / Workflow

Common Utility ServicesCommon Utilit y Services

Data Access ServicesData Access Services

Core Product Engines
(only transaction posting, scalabil ity & thro ughput)

Core Product Engines
(only transaction posting, scalabil ity & thro ughput)

New
Busin ess
Services

New
Business
Services

3r d Party
Business
Services

3r d Party
Business
Services

Master DataMaster Data

Modernization using Services Architecture

Wrapped
Legacy
Code

Wrapped
Legacy
Code

In
teg

ra
tio

n
 P

latfo
rm

In
teg

ra
tio

n
 P

latfo
rmBusiness RulesBusiness Rules Rules EngineRules Engine

{User Int erf ace}
{User Interface
M anagemen t}

{S ession M anagement }

{Busin ess Lo gic}
{Business Rules}

{Co mput ation}
{O utp ut Fo rm at ting }

{Data Access}
{Data Parsing}
{Data Loo kup}
{Data Po st ing}

{Application M anag em ent}
{S ecurity}
{Lo gging }

{Audit }

{User Int erf ace}
{User Interface
M anagement }

{S ession M anagement }

{Business Lo gic}
{Business Rules}

{Co mput ation}
{O utp ut Fo rm at ting }

{Data Access}
{Data Parsing}
{Data Loo kup}
{Data Po st ing}

{Application M anag em ent}
{S ecurity}
{Lo gging }

{Audit }

H/W, S /WH/W, S /W

{User Int erf ace}
{User Interface
M anagemen t}

{S ession M anagement }

{Busin ess Lo gic}
{Business Rules}

{Co mput ation}
{O utp ut Fo rm at ting }

{Data Access}
{Data Parsing}
{Data Loo kup}
{Data Po st ing}

{Application M anag em ent}
{S ecurity}
{Lo gging }

{Audit }

{User Int erf ace}
{User Interface
M anagement }

{S ession M anagement }

{Business Lo gic}
{Business Rules}

{Co mput ation}
{O utp ut Fo rm at ting }

{Data Access}
{Data Parsing}
{Data Loo kup}
{Data Po st ing}

{Application M anag em ent}
{S ecurity}
{Lo gging }

{Audit }

H/W, S /WH/W, S /W

Architecture-led
Transformation
13

� Presentation layer: user interface rendered over multiple channels and separated from the
business and data access logic

� Business logic as exposed services shared by multiple programs

� Rules engine and repository to house common rules

� Shared common programs, for example fees and charges

� Master data for customers, products, and contracts

� Common services to manage complex events and processing

� Banking process orchestration engine that handles both simple and complex events
processing

Separating architectural concerns is an important step because multiple point-to-point
integration, either internally across different components or externally across multiple
systems, makes system enhancements more difficult and costly. Point-to-point integration
tightly couples computing logic at two ends of the system. Multiple point-to-point interfaces
create a cascading dependency on the soundness of the system integrity whenever an
interface is modified. This increases both speed-to-market and delivery costs.

Further benefits are realized when each architectural construct is exposed as a service, a
process that eases making changes and adding new capabilities. Using the principles of
Service Oriented Architecture (SOA) enhances the benefits of separating architectural
concerns because as a bank transforms legacy systems into SOA, it reduces change impact
while increasing development speed. This in turn affects speed-to-market and system
development costs.

Banks typically use SOA where core banking components, for example user interfaces,
business rules, business logic and data, are developed or exposed as single or multiple
service components. Recent SOA advancements allow developers to link different system
components through an integration or mediation layer. System components created under
SOA have defined input and output interfaces that link with other components via the
integration layer rather than through hard coded interfaces. System components, therefore,
communicate with each other by publishing and consuming service requests mediated by the
integration layer.

Components designed with SOA principles can be changed and still continue to function as
long as they are able to publish and consume service requests. User interfaces, data,
business rules, business logic, security, audit, and transaction processing should be separate
system units that collectively deliver a business function. The key objective is to reduce
architectural complexity and minimize the size of system components so that they can be
modified, upgraded, enhanced and customized without affecting the remaining components.
The banks most successful in their transformation efforts are those that have focused on
creating architectural constructs in the beginning of the process.

Transformation approaches

Banks can select from various approaches once they have decided to embark on
transforming their core banking systems. Some banks prefer to focus on a few architectural
issues and then retrofit the existing systems; others prefer to complete limited transformation
of a few systems, while still others prefer to undertake a total systems replacement. The
following transformation approaches can be used:

� A packaged solution that replaces all, or parts of, the legacy systems

� A rewrite in which all, or parts of, the legacy systems are rewritten from scratch
14 A Transformation Approach to Smarter Core Banking

� A hybrid approach, which is a combination of the packaged solution and the rewrite
approach

� A customized progressive approach, in which existing applications are transformed and
enhanced in an iterative manner

Deciding on the approach is a complex thought process and the IBM core banking
tranformation solution can be customized to accomodate any of the approaches. IBM strongly
advises to weigh all possible decision factors, with a strong focus on architecture. This is why
IBM is also using the term architecture-led transformation. It is the architectural foundation
that determines agility and sustainability of the core banking systems. Figure 6 illustrates the
factors that play a role in this decision process.

Figure 6 Factors determining the core banking transformation approach

Selecting the best approach

A bank’s objectives and strategy should determine the approach, together with transformation
objectives and the scale of the agenda. Although there is no one answer for all banks, in
Figure 7 on page 16 we provide some guidance for selecting the right style.

Reusability of
assets

Transformation approach

Risk

Functional
requirements

Skills Transformation
cost

Time to market
"day 1

 functionality"

Architecture Complexity of
existing systems

Non-functional
requirements

Package Rewrite HybridProgressively
modernize
15

Figure 7 Transformation approaches

During the selection process, banks must refer to the following elements of a successful
transformation:

� Adopt architectural design principles and core architectural constructs before committing
to an approach.

� Mature the existing architecture, integration and SDLC environment before beginning the
transformation.

� Exercise due diligence to align business with IT, create the business case, design and
optimize the roadmap, and implement governance and organizational structures before
beginning the transformation.

� Give due diligence to the legacy system, making sure it is documented and streamlined;
also unravel any complexities wherever possible.

� Factor scenarios for experimentation, failed roadmap attempts and business cases.

� Factor resourcing and skill issues before beginning the transformation.

Packaged solution approach

Banks can customize packaged solutions to accommodate their business processes,
operating structures, customer and product structures, and local country regulatory and
compliance formats. The process can be completed all at once or by progressively moving
legacy systems functionality into the new packaged solution. One advantage of this method is
that a bank can leapfrog generations of development and thus accelerate the transformation.
However, there are several drawbacks to this method, such as the following:

� Need to customize

Since every package must be customized to meet operational needs, the bank must
consider how much customization will be required. Extensive customization can result in
systems that do not remain in synch with future releases, and that are costly to maintain.

Package
Implementation

Package
Implementation

Rip & ReplaceRip & Replace

Pro gressively
Replace

Progressively
Replace

Re-WriteRe-Write

HybridHybrid

Modernization approach Key characteristics

• Lack of knowledge, skil l sets and documentation
• More than 80%b usiness requi rements met by a package solu tion
• Wil ling to compromise on d ay 1 functionali ties

• Real ly old systems. Lack of knowledge and ski ll set
• Rip and replace is not an op tion if cannot compromise on day 1

functionality offered via package
• Packag e solution can meet up to 80% of b usiness requiremen ts

• Systems are too complex to be replaced by package solution s or
undertaking legacy modernization. Best option is to re-wri te again

• Lost documentation
• Legacy analysis p roves too cumbersome and expensive

• A combination of other approach es
• Usual ly targets a contained module for p ackag e replacement e.g .

trade finance i f business requirements are met in package and to
address time to market issues

• Choosing p ackage fo r new markets and modernizing legacy for
core

• Tries to mix b est of legacy leverage with cap abi lities from package

Progressively
M odern ize

P rogressively
M odernize

• Legacy systems old, have many cascading dependencies and
contains years of org anic develo pment and di fferentiated capab ili ties
that are n ot available in packages

• Packag e solutions can only meet upto 50% business requirements
• Desi re to undertake a step orderly mod ernization driven by solving

prio ri ty pain points
• Desi re to harvest legacy and the differentiated capabi lities

Legacy
Appl ications

Legacy
Appl ications
16 A Transformation Approach to Smarter Core Banking

� Package integrity

This is a major challenge as the bank integrates packaged software with legacy systems.
Packaged solutions contain specific architectural constructs, for example a customer
information file (CIF). If the bank’s strategy is to integrate the package with systems that
are not being transformed, the integration needs to link the package with its architectural
constructs to those systems and their architectural constructs. The more complex the
legacy system, the more integrations will be required.

These types of integrations can be costly, time consuming, and unpredictable, making
them a leading cause of budget overruns, frustration, and even failure. But keep in mind
that even a total replacement strategy is not immune to such challenges. In addition to
integration issues, another challenge is incorporating package capabilities to mimic bank
operations: as the process continues, a gap can grow between what functions the
package provides contrasted with capabilities that must be customized to meet bank
requirements.

� Package architecture

Architecture should determine the choice of the package and is an important
consideration when using this approach. The higher the architectural modularity inherent
in the package, the fewer the customization and integration challenges. Using a package
that requires significant changes to the existing infrastructure can increase the complexity
and risks of the transformation. Packaged solutions should adopt the bank’s technology
architecture and infrastructure. If they do not, the bank will need to deal with two levels of
complexity, one in the package and the other internally. The bank must also evaluate the
downstream net benefit against total cost of ownership and the level of future
performance.

Many packaged solutions are based on product silo design, for example deposit or loan
modules, and are closely knit front to back. The challenge here is to integrate the package
horizontally across business lines to support a customer-centric business model rather
than a product-centric one.

Packaged solutions that contain substantial hard coding and deeply embedded user
interfaces, data, business logic, and business rules in a product module (for example a
deposit module) are more difficult to customize than packages that provide modules as
separate architectural constructs. Also, packages that provide clearly defined hooks to
accommodate customization are better than more rigid packages.

Separating applications—in specific business logic and business rules—from data is
emerging as an important determinant to transformation complexity, cost and risk.

� Current bank architecture

Banks must have a mature technology architecture and a well-defined technical
governance model to successfully transform core systems. Architecture limits, or red flags,
include non-matured integration architecture, lack of master data, too many point-to-point
interfaces, lack of an integrated development and tooling environment, lack of technology
governance, and limited availability of skilled staff. All of these can dramatically increase
the difficulty and complexity of integrating a package solution because the existing
architecture is a poor foundation for the transformation.

� Open solutions

The packaged solution must not limit a bank’s ability to adapt to future changing business
conditions. Banks must choose a packaged solution that allows them to deliver business
capability in an adaptable environment after the transformation. Agility and flexibility can
be compromised downstream if a bank selects a package that locks architecture and
infrastructure.
17

� Financial commitment

The bank must remain committed to the transformation process because there are no exit
points without economic consequences. Capital investment is part of the financial
commitment required to drive the transformation and, once made, may be difficult to
recover in case of roadblocks in the process.

Rewrite approach

Banks may try the rewrite approach if they feel legacy systems are too old and complex to be
harvested and transformed. They conclude that available packages are not suitable for their
complex business processes and anticipate better results from rewriting the core system in
newer technologies and architectural paradigms. Typically these banks have substantial IT
discipline, a large IT staff, and have developed a deep pool of IT talent.

Hybrid approach

The hybrid approach combines both the packaged solution and customized progressive
approaches and is often used with complex legacy systems. Banks can use a package for
contained or compartmentalized domains such as trade finance, treasury, cash management,
and risk management. Then they use a customized approach for their core market, or home
country, while reverting to a package approach for international subsidiaries. The hybrid
approach requires the same architectural discipline as all other approaches.

Customized progressive approach

This approach involves progressively adding, modifying and enhancing capabilities to core
systems and is the one used by most banks. A customized approach requires a roadmap that
outlines the master transformation plan, using an agreed upon governance process. The
roadmap ensures that there is strong alignment between the business and IT and that
everyone uses a strong governance process. All this ensures that the transformation
successfully achieves its objectives.

Figure 8 on page 19 shows this progressive approach.
18 A Transformation Approach to Smarter Core Banking

Figure 8 Customized progressive approach

Banks using this approach continually reprioritize projects and adapt transformation
schedules accordingly. Guided by their roadmap, banks can continue to leverage assets that
are still effective and change only those assets that are not performing optimally. While
similarities exist, progressive transformation differs from the piecemeal modernization of the
past in that it leverages technological innovations and adopts holistic architectural principles
to fundamentally transform the system’s building blocks. This architecture-driven approach
provides tremendous agility, flexibility and time-to-market advantage while improving overall
efficiency and deliverability of business changes.

Challenges
Even though banks using the customized progressive approach have achieved great
success, there can be challenges along the way, namely the following:

� Roadmap

Progressive transformation requires a well-thought-out strategy, a roadmap with a long
horizon plus a strong commitment of senior leadership to realize the roadmap. The
roadmap should detail the progressive build of key architectural constructs and then
retrofit the existing environment to use those constructs; see Figure 9 on page 20. The
roadmap must align with the business objectives and capabilities necessary for the bank
to successfully compete in the marketplace.

The developed roadmap is a mixture of tactical and strategic initiatives that are executed
within the architectural discipline laid out by the bank. Executing the roadmap should be
supported by a business case where the investment dollars are spread out throughout the
transformation journey, though banks can change the transformation pace to
accommodate their investment spending.

Phase III: Deployment

Construction Deploy

Phase II: Iterative Elaboration

Design / Validation Manage

Design Patterns ,
Component Reuse

Architec ture Patterns,
Artifact/ Template Reuse

Architecture
Detail
Design

Service
Development

Test ing
Services

Delivery &
Implementation

Operations
Management

Direction & Planning

Phase I: Envisioning

Strategic
Imperatives

Business
Architecture Definit ion

Systems &
Legacy Reuse Assessment

Business & Systems
Initiat ives Formulat ion

Governance & Change
Control

Techni cal
Architecture Definit ion

Business Case
Justification

Business &
IT Pain
Points

Assess In-
f light

Init iati ves

Application Portfolio
Analysis

Applicat ion
Modernizat ion Plan

Integration
Architecture

Build out

Information
Transformation

Infrastructure
Build out

Application
Modernization

Actions

System
Integrat ion

Service
Extraction

from Legacy

10-12
weeks

TBD Based on Inputs and Envisioning Phase with
predefin ed phased d el iverables

T BD

Iterative

Detai led
Business & IT
Requirements

Process
Model ing &

Service
Identification

Detail ed
Service

Specification
& Design

Detailed
Operat ional

Model

Target Operating Model
Definition

Common Business Service
Ident ification

Detailed
Appli cat ion

Analysis

Detailed
Business

& IT
Architecture

Execution Roadmap

PILOT

Performance
Optimization

Refine initiative list ,
business case & roadmap

Systems Management

Security Archi tecture

Release Management

Governance, Program and Ch ange M an agement
19

Figure 9 Example of a roadmap

� IT maturity

Banks need a matured IT organization to pursue the customized approach. Strong
architectural discipline and technology governance must ensure that there is minimal
non-compliance to standards. Banks also need an experienced pool of talent, including
adept architects who can translate business objectives into architectural considerations in
the roadmap.

� Integrated development environment

Banks can set up an integrated development environment to drive an end-to-end
transformation. This environment allows the bank to define componentized business
architecture, to identify critical components that will drive strategic imperatives, to model
underlying processes that support component capabilities, and to derive the top-down
service definitions that will be built to deliver the business capability. The integrated
development environment also allows for tools to analyze the legacy environment and to
identify assets that will be leveraged as well as those used for top-down service
definitions. These elements are included in the design phase of the environment, which in
turn provides the technology environment with the tools and technologies to build,
integrate, and test processes.

The integrated development environment should provide all of these capabilities through a
common framework with a tight governance structure. A similar framework should also be
created to provide tools and technologies that will support the involved workforce in
building skills and competencies.

� Governance

It bears repeating that thorough governance controls the transformation process, provides
a preemptive view to risk and allows for proactive measures to mitigate those risks. Thus
governance plays a crucial role in a customized approach. Limited governance with
unenforceable oversight can damage progressive renovation, especially where a
piecemeal approach is used. Further problems arise when business and IT are not
aligned. For best results, such governance should be centralized. Banks using federated
governance, where pieces of architecture or application portfolio are owned and managed

Bui lding & Maturing Architectural
Constructs

• 2-3 years o utlook for business
capabil ity

• Integ rated View of Data
• Externalization o f business

ru les, product defini tions,
business logic

• Maturing of integration bu s
• Acceleration by adopting

industry referen ce d ata and
process models

• Stand ardized methods & tools

Bui ld vs. Buy

Go vernance &
Organizational
Changes

• Stake h older Alig nment
• Execu tive Sponsorship at

highest level
• Empowered g overnance

POT. POC

• Meth od Adoption
• Refinemen t
• Data for adopting

factory based
approach

Insti tuting a
transfo rmation
facto ry

• Resource
• Skil ls
• Size
• SDLC, Testing

• Repeatable an d Iterative method ology
• Risk Averse Implementation
• Focus on del ivering incremental

business capabil ities
• Clearing back office b acklog and

doing IT optimization

Pro gressive Modernization

Developing necessary buildi ng
blocks and execution capabilities

Progressive Modernization and
Execution
20 A Transformation Approach to Smarter Core Banking

by different stakeholders, can have difficulty driving the transformation. Governance
priorities must be aligned, set up and coordinated by a cohesive team. Banks can control
priorities and achieve favorable outcomes by placing accountable enterprise governance
at the top of the transformation effort and then defining a clear business-aligned strategy
and roadmap.

� Strong architectural discipline

Banks driving a customized transformation must adopt a strong architectural discipline
and its guiding principles. The architecture must be aligned at three levels of specificity:
business, technology, and infrastructure. At each level, changes to the architecture must
be guided by architecture principles such as separating architectural concerns from data,
and externalizing business rules and logic. The bank must enforce these principles across
the organization using a strong technology governance discipline.

Current legacy systems are unduly complicated as a direct result of compromised
architectural discipline that occurred over time. To prevent repeating this mistake, banks
must develop an architecture with clear definition and purpose. Many banks are using
SOA to drive their transformation efforts. As we have discussed, when systems are
componentized these components are then exposed as a service. Service components
are then orchestrated to deliver a business outcome that is simpler to deliver than through
hard coding. Common architectural principles adopted by banks are outlined in Table 1.

Table 1 Common architectural principles

Construct Description

Separate channels Separate core channels so that one can be changed without
changing the other.

Separate data Separate data so that embedded data and hard coding
between application logic and data is removed from the
application. Data is externalized as a set of master data that
represents a single truth. Master data is further defined at a
more specific granular level, for example customer, product,
and contract in order to make data versatile and to support
combinations of different data sets.
The goal is to achieve the best level of granularity to
orchestrate data elements to deliver the optimum business
outcomes. For example, separating customer, product, and
contract data elements provides flexibility and agility to
permutate a customer's contractual relationship with bank
products.

Externalize business rules Banks use rules engines and repositories to externalize
business rules outside applications. This provides deep
flexibility since a rule can be changed once in the master rule
engine and that change can cascade and be automatically
read by dependent systems, as opposed to changing each
dependent system.

Externalize business logic Embedding business logic, for example logic to compute fees
and charges for loans and mortgages, will require application
maintenance each time a business requirement changes.
This is expensive, time consuming, and affects the time to
market and competitiveness of the bank. By externalizing
business logic outside the application, banks can significantly
minimize the need to cascade changes across the systems.
21

Continuing the process

After completing all the steps required to select the best transformation approach and
creating the roadmap, and after considering all the interdependent IT and business issues,
banks can undertake the actual transformation process. However, as we have stressed,
governance, accountability, continued analysis and flexibility are paramount as the process
continues and as the bank manages the complexities of integrating legacy and transformed
systems.

Managing and delivering transformation projects

Banks need professional project management and delivery capabilities to successfully drive
the transformation process. A large, complex, multi-year transformation journey can be taxed
with risk, disruption to the business and staff changes, all of which require a robust program
management structure that will withstand various internal and external issues. In addition, the
transformation is often politically charged, which makes it difficult to accommodate the
involved staff at the same level of priorities.

Successful banks address these issues by creating a separate unit to drive the transformation
or by bringing in transformation professionals, or vendors. This frees the transformation team

Adopt middleware and
integration technologies.

Use sophisticated integration middleware to avoid multiple
point-to-point interfaces in connecting discrete units of
technology architectures. This ensures architectural
separation by allowing pointed development and changes
without changing the whole system.

Use industry reference
models.

Use these to standardize banking processes and data
models. Models contain predefined service definitions that
can accelerate adopting a services led approach. Industry
standard definitions also help to establish a common
vocabulary between business and IT, help with service
definitions by eliminating granularity questions, and provides
process, data and use cases for faster implementation.
Banks can scale infrastructure to support interconnection
between components without compromising scalability and
throughput. With this architecture, banks can componentize
their technology into granular components, each with a
defined interface through which it communicates with other
components. As long as service definitions and interface
points do not change, the component itself can be changed
without impacting other components. Componentization also
allows better sharing of common components through the
middleware, resulting in valuable return on investment and
increasing speed to market.
Banks using middleware and integration technologies invest
in the process of identifying the business and technology
blocks that can be componentized—developed once, then
used multiple times by multiple systems. Using middleware
also allows banks to separate front office channels from back
office systems, to publish commonly used business and
technological services, and to use services to mediate the
underlying complexity of the legacy systems.

Construct Description
22 A Transformation Approach to Smarter Core Banking

from organizational politics and fosters neutrality and objectivity. A bank can also create a
separate transformation company with full responsibility for providing advisory consulting,
design and development. Separating the staff involved in the transformation from the staff
running the bank brings more defined purpose, separates responsibilities and helps to avoid
conflict of interests. Banks look to transformation professionals for independent opinions,
objective guidance and experience.

Banks need to consider the following when creating the project management and delivery
options:

� Vendor experience

The vendor must demonstrate the total experience and capabilities necessary to drive all
aspects of the transformation, from strategy shaping, infrastructure and runtime
environment decisioning, to scaling large projects. The vendor should also have solid
experience in running large transformation projects. Banks should evaluate the vendor's
balance sheet to ensure that it can absorb transformation risk. Smaller vendors can
present risks to managing a large scale transformation program.

� Transformation initiatives

Banks need to determine which transformation initiatives will be handled internally and
which will be outsourced to the vendor. Many banks focus on creating the architectural
constructs and engage vendors to provide advisory consulting or testing and data
migration services. A consulting vendor can provide an outside view to help develop the
transformation strategy and roadmap. Outsourcing tasks such as testing and data
migration can leverage the economies of scale provided by reputable vendors.

� Factory based approach

Banks must plan for the large scale deployment of resources necessary for a successful
transformation. They must evaluate the vendor to ensure that it can provide all the
necessary resources to deliver the transformation, especially if the bank is using a
vendor-specific package. Successful banks invest heavily in setting up a transformation
factory that hires, trains and updates the skills of the delivery resources managing the
transformation. When vendors participate in the transformation factory setup, banks have
the flexibility to scale the resource mix and to adjust the number of factory resources to
align with the transformation pace. The transformation factory also manages moving the
work effort and makes sure that it is developed, integrated, tested, and delivered
efficiently.

Project-by-project method

As they continue in the transformation process, many banks at this point proceed with a
project-by-project method. This avoids the high risk rip-and-replace approach and achieves a
steady stream of return on investment (ROI) results. A project-by-project method includes the
following elements and steps:

1. Mature bank business and IT architecture.

After securing organizational commitments, the bank should focus on maturing key
aspects of its business and IT architecture. Matured architecture results in the cleaner
slate needed for a successful transformation. The alternative is spending resources to
clean up existing architecture or to transform inferior design.

Some aspects of architecture maturity include the following:

– Adopt a componentized business architecture that supports a common vocabulary in
all bank dialogues.
23

– Use industry reference models to create standard definitions that can be used to
accelerate the transformation.

– Clean up the application portfolio.

Banks should create a clean state before beginning the transformation by
standardizing legacy applications and by collapsing, consolidating, or sunsetting
applications that are not aligned. This step saves transformation time and effort since
the legacy system will be smaller and consist of components that remain valuable. Be
sure to document the legacy code—you cannot build a renovation plan without
knowing what you have. Higher productivity is another benefit of this step.

– Build key architectural constructs.

Build key architectural constructs such as master data, rules engine repository,
process servers, services repository, defined messaging interfaces, middleware
implementation, and maturity. All these constructs are necessary to derive maximum
value from the transformation.

– Build the integration hub.

Build the hub, then begin to aggregate channels, decommission P2P interfaces,
componentize legacy systems, and serve up web services.

– Organize data.

Develop master data management for client, product and account to help deliver on the
business demands for a holistic client view, product bundling, and single account.

2. Select the transformation vehicle.

Determine whether the transformation will use a software package approach, a
customized approach, or a hybrid of both. A bank will have a clearer view of the best
method after cleaning the legacy environment and building key architectural constructs.
Choosing the best method will guide technology investment and minimize transformation
risks.

IBM suggests a concurrent top-down and bottom-up view of the bank and its supporting
technology. These views meet in the middle and define the to be architecture that includes
IT, application, information, integration, and infrastructure architectures. This method,
done in a progressive manner, offers the greatest flexibility while mitigating risk. Because
the approach is progressive, the bank can scale the transformation pace as business
conditions and the appetite for investment change. A bank can better manage cash flows
and realize tangible results in a shorter time frame, usually six months, rather than the
three to five years necessary to complete the entire transformation. More banks are
adopting the progressive approach as the transformation process becomes more
widespread in the industry.

– Top down view

Review medium-term—three to five year—business objectives and focus on business
levers required to achieve financial objectives. This evaluation should result in a
roadmap that will include strategic initiatives, as well as the business and technology
pain points that need to be addressed.

Develop a component model of the bank's business architecture to identify the basic
building blocks of the business, determine the components, and isolate those
presenting immediate opportunities for growth, innovation, or improvement. This
remarkably efficient discovery helps to prioritize initiatives and to ensure that
operational and capital expenses are aligned with the bank’s overall business strategy.
The discovery process also identifies redundant and missing business components
while highlighting new opportunities.
24 A Transformation Approach to Smarter Core Banking

Define a similar component model for the target IT architecture and align it with the
business component model. IT components can be a combination of existing assets,
modernized assets and new assets to be acquired or constructed. In all cases, the
process should separate architecture concerns from user interfaces, data, business
logic, and business rules.

– Bottom-up view

Identify the bank’s unique differentiators and leverage them to create new value. The
deliverable is a transformation plan that uses a SOA, retrofitting the applications and
systems to fit into a new modular design that provides better flexibility, resiliency, and
agility benefits.

Using the top-down, bottom-up view enables the bank to:

– Build common services and decommission them from the legacy environment: EDM,
BPM, BI, statements, needs analysis, pricing engines, audit, compliance.

– Restructure the legacy code, in line with business priorities.

– Leverage package solutions that are aligned with the architectural principles adopted
by the bank.

3. Create an integrated development environment.

Select the appropriate method and create tooling and assets to integrate the development
environment that will drive the transformation. An integrated environment provides strong
governance and manages risks better.

4. Conduct a Proof of Concept (PoC) and Proof of Technology (PoT).

Conduct a PoC and PoT to test the transformation approach and technology. Both the PoC
and PoT provide insight into the risks, necessary skills, methods, tools and technologies
necessary for the transformation.

5. Create the program office.

Establish a program office to oversee the transformation. The program office must be
empowered to make decisions and allowed to interconnect with business-as-usual
ventures of the bank.

6. Create a transformation factory.

Use the PoC and PoT experiences to create the transformation factory, where the required
resources, skills and training needed to drive the transformation will be housed. Use
external vendors to provide requisite skills such as testing and data migration at lower
costs.

7. Use the progressive approach iteratively.

Continue with the transformation iteratively and progressively. It is critical that the
transformation process includes architectural constructs, a defined business and
technology roadmap, strong governance, integrated development environment, and a
transformation factory.

Keep funding liquid.

Use a powerful business case to obtain internal financing. Usually business and IT
stakeholders develop the business case and then get approval from the board or
management. However, financing may be difficult to obtain even when the business case
is effective. Some banks find the cost of transformation daunting and are not able to take
the plunge. It is possible for banks to secure funds externally from vendors or by raising
additional capital. Vendors can fund the bank's transformation as a financing vehicle. They
can also contribute transformational elements to offset the bank’s investment and defer
the payment until realization of benefits.
25

Transformation benefits

Banks that have modernized their core banking systems have seen dramatic improvements in
their overall operations and profitability. Benefits include the following:

� Improved time-to-market for new products and services

Banks have reduced time-to-market for new products from months to weeks: this
increased market share and improved customer retention.

� Implemented product bundling and relationship pricing

Bundled accounts result in increased cross-sell opportunities and results, increased
customer balances (lower cost of funds), reduced account maintenance costs, and
reduced risk. Customer satisfaction and retention also increased.

� Decreased business-as-usual expenses

Lower development and maintenance costs have reduced business expenses.

� Reduced operating expenses

Reduce costs by eliminating labor intensive activities while providing significantly
improved visibility of operational data.

� Quicker entry into new markets

Banks with a technology and operations template that can be reused effectively—with
minor localization costs—can open new businesses in emerging markets within months,
leaping over the competition and achieving first-to-market advantages.

� Accelerated project delivery

Reduces the cost and duration of systems projects that roll out new functions and
features.

� Increased productivity

Banks have leveraged the IBM application development model and methods to drive
consistency across development teams, centralizing key development activities and
driving delivery excellence.

� Reduced testing effort

Banks that leveraged common tools for automating testing processes, including
regression and performance testing, have realized lower infrastructure costs.

� Reduced time-to-market

Banks have reduced launch time for new products or product bundles.

� Reduced costs by consolidation

Banks have successfully balanced resources across product teams, increasing the
available pool of resources to minimize staffing peaks and lows.

� Reduced costs by outsourcing

Banks used global capabilities to provide planning and execution activities in lower-cost
locations.

� Improved quality

Banks identified defects earlier in the development process and reduced the overall
number of product software defects.

� Improved decision making and saved costs by applying a process

� Banks applied best practices and innovation to standard application process model and
methods.
26 A Transformation Approach to Smarter Core Banking

� Improved customer retention and implemented relationship pricing using a single
customer view

Single customer view and enhanced customer detail information enabled a bank to
improve cross-sell capabilities, increase wallet share, and maximize customer profitability,
resulting in a four-fold increase in customer loyalty.

When to measure benefits

Banks should analyze projected versus actual benefits over both the long term and short
term. IBM suggests that banks adopt the Earned Value Analysis approach where each
project segment is held accountable for projected benefits, and course corrections are
applied until each goal is achieved.

Banks that use a progressive approach to drive modernization have achieved tangible results
in shorter time frames than banks that waited until the end of a long transformation period.
27

28 A Transformation Approach to Smarter Core Banking

Transformation methodology

The Banking System Modernization Methodology (BSMM) is a structured approach
developed by IBM based on decades of experience in transforming systems to match the
evolving business needs and industry technology advances. BSMM helps banks plan and
execute a progressive transformation of their core banking systems.

A banking transformation engagement deals primarily with migrating legacy systems to
modernized systems using service oriented architecture (SOA). Typically, such engagements
begin with business modeling and IT architecture definition, which lead into the design and
development of the IT solution. Component Business Modeling (CBM), a technique defined
by IBM, is used for business modeling.

The IT portions are delivered through Service-Oriented Modeling and Architecture (SOMA),
another method defined by IBM. SOMA is an end-to-end delivery process for developing
complex service-oriented applications and solutions. In addition to CBM and SOMA, a core
banking transformation requires additional processes and methods that define activities
related to governance, program and change management. IBM provides these methods,
along with accelerators such as reusable models, transformation tools and work product
templates, as part of a framework called Core Banking Transformation Framework (CBTF).

BSMM phases

BSMM takes a phased approach towards modernization that is based on the types of
activities performed during the project life cycle. The modernization consists of three phases,
each further divided into sub-phases with specific activities and assigned roles. In addition to
activities required for modernization, BSMM includes references to IBM products and
reusable assets, ranging from specialized development tools to work product templates,
reference architecture, and code assets. These help to execute the steps outlined in the
methodology. Major BSMM phases are as follows:

Phase 1 - Envisioning
A high-level analysis focusing on the client’s vision and strategy that involves the basic
building blocks of modernization.
© Copyright IBM Corp. 2012. All rights reserved. 29

Phase 2 - Iterative elaboration
Designing and constructing the modernization solution outlined in the envisioning phase.
Phase 2 expands on the outputs of the envisioning phase and details requirements, design
and architecture of the modernized system, followed by the implementation and testing
activities.

Phase 3 - Deployment
The modernized system is deployed and managed. Phase 3 includes activities necessary to
deploy the modernized system to production, followed by maintenance and support activities
that continue through the end of the project lifecycle.

BSMM approaches to transformation

The main approaches that BSMM uses to modernization are the top-down and bottom-up,
and the model-driven approach that is illustrated in Figure 10.

Top-down versus bottom-up approach

In the top-down approach, current business and technology architecture are analyzed and a
modernized system is designed based on Service-Oriented Architecture (SOA). In the
bottom-up approach, existing legacy systems are analyzed and refactored to fit into an SOA
design. All these activities are distributed across the three BSMM phases. This BSMM
approach is illustrated in Figure 10. Completing the phases results in a system that has the
modernized versions of the existing business processes identified as business services with
certain service implementations referring to existing legacy code.

Figure 10 BSMM approach to modernization

Business
Architecture

Technology
Architecture

Legacy
Application

Portfolio

Componentized
Business Architecture

Process & Information
Model

Application
Architecture Master Data Integration Infrastructure

Service Oriented Architecture (SOA)

Legacy Modernization Options

Top Down
Approach

Bottom Up
Approach

Governance & Change Control

Remediate
The

Application

Convert
The

Application

Transform
The

Application

Replace
The

Application

Rewrite
The

Application

Modernized
Core

Banking
System

Backlog of
Business
Requests

IT
Optimization

As-Is To-Be
30 A Transformation Approach to Smarter Core Banking

Model-driven approach

BSMM model-driven approach to modernization is performed by defining the business and IT
systems as models that are eventually converted to source code through a series of
automated transformations. At each stage in the transformation, additional IT details are
added to the business models, thus enabling a smooth handover from business to IT. The
business architecture is modeled through component business modeling and business process
modeling. Business services are identified and attached to the process models. The process
models and services are then transformed into a solution model containing the service model,
business entities and their state machines in UML. Figure 11 illustrates the model-driven
approach to modernization.

The solution model is enhanced by adding additional services identified through legacy
system (bottom-up) analysis and by adding detailed design specifications for the identified
services. The UML content in the solution model is then transformed into source code
artifacts such as Java classes, WSDL interfaces, SCA state diagrams, and BPEL code.
Logical data models are created and transformed to physical models.

Figure 11 BSMM model-driven approach

Governance

Governance activities are performed throughout the modernization engagement beginning
with the envisioning phase onto the deployment phase. Banks that already have a
governance model in place at the corporate and IT levels should analyze and evaluate the
existing model to determine what facets will be applicable to the modernized system. Based
on this analysis, The governance model should be updated with policies and guidelines
based on this analysis and as indicated by the architecture and technology of the modernized
system.

Business Model

Component
Business Model

Process
Model

Data Model

Conceptual Data Model

Logical
Data Model

Dimensional
Model

Transformation Tools

Biz Process to Service Model
Transformation

Service Model to Code Artifact
Transformation

Data Model Transformations

Components to Code Artifact
Transformation

Solution Model

Business
Entities

ComponentsServices

Analysis
Tools

Legacy
Assets

Code
Artifacts

Business
Rules

Physical
Data
Model
31

Questions related to governance as addressed at the envisioning stage are:

� How to leverage the bank’s IT governance model in order to deliver the change?
� How to handle the funding for cross enterprise services?
� How to sustain the momentum for this long journey?
� Who will manage the bank’s architecture trade-off decisions?
� What KPIs will be defined and measured?
� How to ensure that there is no governance “overload”?

Based on the answers to these questions, the bank’s governance team lays out a governance
plan that will be used as a foundation for governance activities for the remainder of the
engagement. Governance activities are usually driven by a center of excellence that lays out
the policies and ensures compliance. BSMM includes guidelines on program governance
such as benefits management, stake holder management, risk management, roles and
responsibilities.

Since BSMM uses an SOA-based approach to modernization, make sure to consider SOA
governance best practices during the modernization. SOA governance is an extension of IT
governance, which is an extension of corporate governance. IBM provides methods and tools
to help implement SOA governance, for example IBM SOA Governance and Management
Method (SGMM), WebSphere® Service Registry and Repository (WSRR), DataPower® and
Tivoli® Composite Application Manager (ITCAM).
32 A Transformation Approach to Smarter Core Banking

Using a framework for transformation

Banks are adopting a variety of modernization approaches including progressive
transformation. A number of technology advances over the past several years offer viable
solutions for a progressive core banking transformation such as the following:

� SOA helps to decompose the problem space into a set of loosely coupled service
components that integrate through a service bus. This provides a new approach to
support the agility and flexibility that business is demanding, in both building new core
banking applications, or renovating existing applications.

� Using SOA as a set of architectural principles along with Model Driven Development, IT
can build applications that use rich industry models and derive solutions that align with
business goals.

� Legacy environments often contain multiple sources of master data. Key advances in
master data management (MDM) enable IT to consolidate the master data into a central
repository, providing a 360-degree view of customers, products and accounts. This data
can be exposed to enterprise-wide applications and business processes through a service
bus.

� Business process management (BPM) elevates business processes along with their
modeling, development and execution from the siloed application-centric approach to a
common set of service components that can be choreographed externally to provide
flexibility.

� Advances in business rules management (BRM) centralize management and governance
and free them from the application providers. This reinforces the agility that business
needs to expand to new markets or to optimize operations.

� While SOA, MDM, BPM, and BRM provide the architecture, modeling, development,
execution and monitoring, we still need the key solution ingredient of legacy analysis and
discovery. These technologies allow you to browse through millions of lines of legacy
code, and to identify pieces of business logic and rules that can then be elevated into the
middle tier. This enables IT to develop business processes that span across applications,
such as cross LOB product bundling, cross-sell and up-sell, and customer-centric pricing,
and so forth.
© Copyright IBM Corp. 2012. All rights reserved. 33

The framework

IBM and its business partners provide industry solutions that meet specific strategic business
and IT objectives. These solution offerings leverage IBM and partner industry assets and best
practices and business applications. To support these solutions, IBM provides industry
frameworks to support deployment and integration.

A framework is a repeatable methodology and uses reusable assets with an underlying set of
design rules that solve a class of problems. Frameworks give the bank the flexibility to deploy
multiple solutions at its own pace while using elements already in the bank’s IT portfolio. The
result is a faster implementation with less risk than with alternative approaches. The
framework includes the following:

� Next generation foundational architectural constructs and market leading software and
hardware platforms that bring modularity, agility and lowered TCO to the banking
architecture, for example message brokered enterprise integration, master data, system
management and governance services, and SOA capabilities.

� Proven reference models for best practice banking processes and data and service
models to develop differentiated capabilities such as predefined banking service
specifications, for example evaluating operational risks, or checking customer status, and
so on.

� Prebuilt solution templates and accelerators to speed time to market in both migration and
development of next generation banking architecture, for example bank-specific customer
master templates, solution templates for account opening, product bundling, dynamic
pricing, and so on.

� Proven methodology and business-specific usage patterns to lower implementation risk,
for example legacy modernization methodology, data migration methodology, and SOA
governance.

� Capability to seamlessly integrate third-party business applications such as the leading
ISV packages for front office, payments, risk, and core banking.

� An industry standard approach to align technology with business needs, for example
computing resources and throughput optimization.

Many banks approach transformation progressively, implementing solutions one project at a
time. These projects stand on their own and leverage the value created in previously
completed projects. Many project areas can be used as points of entry for a framework-based
solution implementation. Such project areas, and typical projects contained in each area,
include the following:

� Architectural transformation

This project area enables banks to transform their core banking platform, reduce
operational cost and risk, and improve core banking process efficiency. The transformation
is accomplished using projects that address fundamental capabilities, including a
simplified IT infrastructure, platform scalability, enterprise-wide master data management
for customers, contract, and product data, and model-driven development to build
business service components.

� Banking process agility

This project area helps banks to improve profitability by expanding into new markets
faster, bringing innovative products to market quicker, and differentiating pricing and terms
for maximum customer satisfaction. These projects help banks implement more flexible
and efficient processes such as account opening and management, product bundling, and
dynamic relationship pricing.
34 A Transformation Approach to Smarter Core Banking

� Banking application modernization

This project area aids in transitioning from existing core banking application silos to
service-oriented, componentized architecture in a staged and modular way, with near-term
payback and reduced risk and disruption. Banks achieve this by a combination of
integrating best-of-breed application components, renovating legacy applications, building
new SOA components, all of which lead to a customized, lower cost, and less risky
solution.

The four pillars of transformation

Core banking transformation is founded on four pillars built on an industry framework
foundation that includes best practices from engagement experiences, industry standards,
innovations from customer PoCs and first-of-a-kind projects led by IBM and early adopters.
The four pillars are method and tools, accelerators, architecture, and integration platform as
shown in Figure 12. Together, they offer the following:

� A comprehensive methodology and tooling that aligns business requirements with IT
capabilities.

� A set of solution accelerators to jump start transformation engagements.

� A flexible architecture that supports a variety of transformation patterns.

� A scalable and robust integration platform to support the architecture-led progressive
transformation.

Figure 12 IBM banking industry framework

Pillar 1: Methods and tools

The banking industry framework defines a comprehensive methodology that aligns business
and IT, leverages the IBM business architecture assets and industry models, and also
integrates bottom-up legacy analysis and discovery with top-down business-driven
transformation.

IBM BANKING INDUSTRY FRAMEWORK
ENABLEMENT

SERVICES

ISV & SI PARTNERS

ENGAGEMENT EXPERIENCES CUSTOMER POCS/FOAKS EARLY ADOPTERS INDUSTRY STANDARDS

IBM SOFTWARE FOUNDATION

IBM DYNAMIC INFRASTRUCTURE
35

This methodology, based on IBM’s experience with complex SOA projects and banking
transformation engagements, is a “meet in the middle” approach using both top-down and
bottom-up threads. It uses best practices and industry standards to greatly accelerate the
top-down approach. These approaches are illustrated in Figure 13.

Figure 13 Top-down and bottom-up approaches

On the business side, we define bank business priorities along with the processes and
service components required to support those priorities. The component business model
(CBM) is the starting point used to identify and target the business functions and activities
that will be transformed.

Once the business functions are identified, we map the CBM components to information
framework models and then identify the information framework (IFW) tasks and processes
that support the CBM component. The mappings are used to extract relevant processes and
information models from IFW. Obviously, all models are customized to meet specific bank
requirements.

We then create an SOA solution design based on the models analyzed in the IFW processes.
The solution model is refined to integrate the new SOA components with the legacy systems.
The bottom-up approach, or thread, is introduced at this point. Typically, this involves a
tool-based application portfolio analysis that is driven from the strategic imperatives identified
in the business architecture.

Next, we apply legacy analysis and discovery techniques to identify the service touch points,
and message and data requirements in the legacy applications. We then combine this
information with the top-down analysis to create a to be application architecture and solution
design. Finally, we use the resulting solution model to generate runtime artifacts that can be
deployed on the integrated middleware platform. This approach ensures that the business

SOA
Architecture

Process & Information Modeling

Application Portfolio
Analysis “To Be” Application

Architecture
Bottom-up
Approach

Business Service Model

Top-down
Approach

Runtime Environment

Component-based
Business Architecture

Legacy Assets Analysis

Inform at ion Fram ework (IFW)

Model Repository

Dat a Mo dels Pr ocess
M odels

Ser vices
M odels

Business
Analystx

Solution
Architect

Data
Modeler

Pr ocess
Modeler

Project
Manager

Applicatio n
Por tfolio

Assessme nt
36 A Transformation Approach to Smarter Core Banking

goals are aligned with the IT goals. The top-down and bottom-up approaches are further
illustrated in Figure 14.

Figure 14 How the top-down bottom-approach works

In Figure 14, the top-down approach identifies a set of coarse grained services for a specific
business process such as “provide arrangement proposal”, driven by analyzing new
requirements and functionalities. These coarse grained business services are decomposed
into fine grained technical services. Now these fine grained services are newly developed by
wrapping existing applications or packaged application components. This is where we harvest
differentiated capabilities using the bottom-up analysis. Once the application functionality or
components are identified using a bottom-up analysis, they are wrapped as services that are
then mediated to the fine grained services as identified in the top-down analysis.

This meet-in-the-middle approach allows you to harvest existing functionality whenever
possible and while continuing to address the new business requirements. You can
progressively modernize legacy applications and bring in new functionality as packaged
application components without disrupting business. In this approach we clearly separate the
architectural concerns, which greatly eases the integration and leverage of enterprise
capabilities. We provide a reference model for granularity of the services and design
principles as part of the industry frameworks and models. By providing a service mediation
layer between the core banking services and the channels, we hide the underlying
complexity; this gives banks the flexibility to change either the front or back end without either
impacting the other.

Figure 15 on page 38 illustrates how the meet-in-the-middle approach works.

Channels

CUSTOMER
RELATIONSHIP
MANAGEMENT

CUSTOMER
REFERENCE

INFROMATION

CUSTOMER
SALES &

SERVICING
PLANNING

Coarse Grain
Services

Fine Grain
Services

Enterprise Service
Bus with top down
business services

Wrapped Legacy
Code Exposed
As Services

GATHER CUST.

iDCUST. REQMT.

EVAL CUST. REL.

SELECT PD

Retrieve PD

ANALYSE. CUST.
RELATIONSHIP

RETRIEVE
Customer

GET IP

LEGACY 1
LEGACY 2

LEGACY n Package

PROVIDE ARRANGE MENT PROPOSAL

New
Requirements &
Functionalities

Harvesting
Differentiated
Capabilities
37

Figure 15 How the meet-in-the-middle approach works

The IBM Banking Transformation Workbench
The integration methodology is supported by the Banking Transformation Workbench (BTW),
an IBM integrated tooling environment that implements solution templates as part of a core
transformation project. BTW further integrates the framework methodology and assets with
IBM development and modeling tools from WebSphere and Rational® brands, all on a
collaborative integrated solution development platform designed for core banking. BTW
enables engagement governance through tasks, work items, and artifact management. It also
provides method and assets guidance to enable task-oriented development and automation
and assists in creating and transforming engagement artifacts. BTW is a comprehensive,
all-in-one tool that provides a multitude of core banking transformation capability patterns. It
enables a model-driven development approach that semi-automatically derives and
transforms SOA runtime artifacts from CBM maps and industry models.

Pillar 2: Solution templates

The banking industry framework provides prebuilt accelerators to jump-start the
implementation, namely banking industry solution templates. The templates are developed
through customer engagements and harvested, formalized and generalized to a set of
reusable industry software components. Templates are essentially industry software with
configurable business processes, business rules and data models, all grounded on the
following principles:

� Narrow focus

Concentrate on a specific problem, for example account opening as opposed to using a
generic method to solve business problems.

� Use a model-driven, componentized, service-oriented solution to a business problem
instead of building an application.

� Formalize the solution structure and behavior for the target problem. For example, define
the components for an account opening solution, their interfaces and behavior.

Col laborative Development Pla tform (Rationa l Team Concert)

Banking Asset
Repository

(RAM, WSRR)

Business
Archi tecture

CBM Tool

Process
Analysis and

Design

Business
Modeler

Solutio n
M odeling

Software
Architect

Data M odeling

Data
Architect

L egacy
Analysis and

Discovery

Asset A nalyzer
Rational Dev. z

Solution Impl.

WID, iLog, MDM&
product specific

Methodology: Meet in the Middle

Collaborative
Requirements Management

(Rational Requirements
Composer)

Banking Vocabulary
(InfoSphere Business

Glossary)

B est Practi ces

Sol ut ion Tem pl ates

Banking Industry Model s
(CBM and IFW)

Appl ication
Portfolio
An alysis

System
Architect

Governance &
Change Control

Business
Architecture

Def init ion

Architecture Patterns ,
Artifac t/ Templ ate Reuse

Detail ed
Business & IT
Requirements

Detai led
Architecture

Design

Detailed
Service

Specification

Detailed
Appli cat ion

Analysis

Service
Extract ion

f rom Legacy

Process Modeling
& Servi ce

Identification

Technical
Architecture
Definition

Information
Architecture Build

out

Systems & Legacy
Reuse Assessment

Application Portfolio
Analysis

(Disposit ion Plan)

Implementation &
Delivery

New Common
Servi ces

Development

Requirements
Reposi tory
38 A Transformation Approach to Smarter Core Banking

� Provide the solution’s out-of-the-box reference implementation on the IBM middleware that
provides the starting point for modernization projects.

� Deep configurability

Adapt the solution template for a specific bank by configuring the business process model,
business rules, and data model.

� Solution components become part of an enriched library because they were developed
with actual customers and harvested and hardened from one client engagement to
another.

Each solution template contains the following sets of artifacts:

� Business requirements captured as a set of business processes, use cases and key
performance indicator (KPI) definitions that are derived from industry standards and IFW
models.

� A platform-independent solution design is a collection of models—base services,
composite services, business service components message model, data model, business
rules, and business events. These models can be adapted to a specific bank runtime
platform.

� A complete reference implementation of the solution design on the IBM software platform
with stubbed-out integration to the core applications.

You can customize the solution templates at any of the artifact levels with BTW. The solution
templates use a component model that defines behavior. Figure 16 shows the component
model.

Figure 16 Template solutions - component model

DynamicPricingService GetCustomer GetContract

Lifecycle
Serv ices

Data
Services

Data
Model

State
Machine

Arrangement BE

DefineReqmt

Identi fyCustomer

Activa te

Cancel

GetCustomer

GetAccount

CreateAccount

GetAl lCustomerInfo

Li fecycle
Services

Data
Serv ices

Data
Model

State
Machine

Cu stomer BE

AddProdict

SetProductRels

SearchProduct

GetProduct

Lifecycl e
Services

Data
Services

Data
Model

State
Machine

Product BE

B
a

se
 S

e
rv

ice
s

C
o

m
p

o
site

 S
e

rvic
e

s
B

u
sin

e
ss

 E
ntitie

s

Realized Vi a

Rule
Engine

Realized ViaRealized Via

Master Data
Mgmt System

Legacy
Systems
39

Solution component types
We have identified three types of components based on behavior, as follows:

� Base services

These encapsulate business functions as atomic services, that is, they cannot be further
decomposed from a service perspective. You can implement a base service using a rule
engine, master data management server, human task management systems, and product
processors. You can also program a new base service in Java, Cobol or other languages.
Another option is to realize a base service using legacy systems, for example a legacy
CICS® application may expose specific functions as Web services.

� Composite services

These are composed from base services using a flow composition model. The composite
service component has a service interface and a flow model that defines the sequence in
which the base services are invoked. You can implement these with a flow engine.
Composite services can be interruptible, that is, executing them can be suspended to wait
for a return from a base service invocation. Multiple composite services may invoke the
same base service.

� Business entities

These are the dominant business objects of the core banking domain. A business entity
has a lifecycle model, a data model, and an interface model. The lifecycle model describes
the states of the entity, events that cause state transitions, and the actions performed as a
consequence of state transitions. These actions can include invocations of atomic or
composite services or can send an event to another business entity. The interface model
further describes two kinds of services exposed by the business entity component: the
lifecycle services that change the state of the entity, and the data access services that
create, update, and retrieve data attributes.

These business entities can be composed into various solution models. The component
model allows you to reuse base service components and to rapidly develop new solution
templates. For example, you can use the arrangement, customer, product, campaign,
account and condition service components to support the product bundling scenario.
Figure 17 on page 41 displays solution component details.
40 A Transformation Approach to Smarter Core Banking

Figure 17 Solution components

Available solution templates
Solution templates are packaged as service assets and are delivered through service
engagements. They use an IBM optimized software platform that contains key components
such as WebSphere Process Server, Enterprise Service Bus, WebSphere Message Broker,
iLOG Business Rules Management System and InfoSphere® Master Data Management
Server. IBM also provides a basic user interface to drive solutions based on WebSphere
Portal Server and WebSphere Multichannel Branch Transformation Toolkit.

Common components are employed to increase reusability across templates, including
canonical data and message models, service component definitions, MDM domain
extensions, interface maps, business object maps, and common IT services. In addition, IBM
has developed specific use cases such as product bundling, account opening, and a product
management platform. Each use case contains architectural work products that aid the sales
and delivery process, process models, solution models, service component implementations
and business rule implementations.

The solution templates also contain developer and user guides to support the bank teams as
they customize specific solutions. To repeat, templates are not applications; they require
integration with a bank’s core applications, both those developed in-house or bought from
third-party vendors.

Currently, the framework supports the following three solution templates:

� Product management platform
� Dynamic product bundling and relationship-based pricing
� Universal account opening

Each solution template is described in Table 2 on page 42.

Common Components

Industry Software Platform

T
ooling

(B
a

nkin
g Tra

nsform
atio

n W
o

rkben
ch)

P
ro

duct B
undling

A
ccount O

pe
ning

P
rodu

ct M
g

m
t

P
latform

T
arg

ete
d M

arketing
(F

u
tu

re
)

H/W platform

Core Banking Systems

x/p/z Series

WPS, WESB/WMB
iLOG
MDM

Portal /WMBTT

Canonical Data/Message Model
Service component defini tions

MDM domain extensions
Business object maps
Common IT services

Developer guide

Arch itecture
Process Models
Solution Model

Service component implementation
Business ru les

Sample user interface
Developer guide/User guide

Partner / Bank in-house
developed components

Lo
a

n
 O

rig
in

atio
n

(W
o

rk
 in

 p
ro

g
re

s
s)

T
xn

P
rocessing

(F
u

tu
re

)

41

Table 2 Description of available solution templates

Solution
template

Bank business
challenges

Solution outline Bank benefits

Product
management
platform

� Need to streamline
product introduction and
decrease time to
market.

� Difficult to create and
customize innovative
products based on
market requirements.

� Difficulty in customizing
product offerings per
individual customer
results in reduced
profitability.

� Inability to create
bundles across LOB
products, for example
deposits, loan, and
cards.

� Need to dynamically
structure product
bundles and offerings
for a specific customer.

� A collaborative product
development platform
where various role
players can develop and
launch new products
together.

� Uses rich industry
content to develop
highly flexible and
extendible product
schemas to support
disparate product
processing systems.

� Robust product catalog
component that is
integrated through an
ESB with the
consuming application.

� Developed on a highly
scalable middleware
platform including MDM
Server, MDM, PIM,
iLOG Business Rules,
Enterprise Service Bus
and Information Server.

� Build a central product
repository with complete
product definitions that
support complex product
hierarchy, structure,
attributes and terms and
conditions.

� Externalize business
rules, for example pricing
rules, interest
calculations, eligibility
criteria and product
recommendations.

� Manage entire product
lifecycle from concept to
launch with the flexibility
to quickly change, bundle,
cross-sell and up-sell
products to address
regulations, market and
compliance requirements.

� Integrate product data
with consuming
applications such as core
banking system, contract
origination, data
warehousing, revenue
forecasting and
recognition systems.

� Measure product
performance through
product profitability
analysis, customer
segmentation analysis,
and other business
intelligence techniques:
new products and product
changes are driven by an
understanding of what
works and what does not.
42 A Transformation Approach to Smarter Core Banking

Dynamic product
bundling and
relationship-based
pricing

� Need to support new
customer-centric
business models.

� Need to dynamically
bundle products and
services.

� Need to componentize
and simplify core
systems for better
operational efficiency
and flexibility.

� Constitutes a first step
in transformation
roadmap, that is, the
design, development
and deployment of a
dynamic product
bundling solution.

� Uses BTW (CBM, IFW,
WebSphere Business
Modeler, Rational
Software Architect, and
WebSphere Integration
Developer) for solution
design and
implementation.

� The runtime stack
includes WebSphere
Process Server,
InfoSphere MDM
Server, iLOG Business
Rule Management
System.

� Supports
customer-centric
business processes by
leveraging customer,
product, and arrangement
data available on the
Enterprise Service Bus.

� Grows business by
attracting new clients with
customized product offers
and service bundles.

� Architecture aids in
quicker response to new
market opportunities, foe
example regulatory
changes.

� Simplifies IT with loosely
coupled, reusable service
components derived
directly from business
models.

� IT operational efficiency
with endustry-leading
SOA foundation products.

� IT development efficiency
using generation of
service components from
IFW models.

Solution
template

Bank business
challenges

Solution outline Bank benefits
43

Pillar 3: Framework architecture

The heart of the architecture is an enterprise integration platform built on open standards to
support a multitude of integration patterns such as process choreography, service mediation
and content-based routing, service registry, business rule execution and legacy application
adapters. The framework architecture is displayed in Figure 18 on page 45.

Universal account
opening

� Need to streamline
contract origination
process across lines of
business.

� Business team requires
flexibility, agility and
reduced time-to-market
to roll out business
process changes.

� Process flow control is
divided between front
end and application
processing engine
without clear guidelines.

� Regional and country
level customizations to
address variability-
created heavily
customized services
that create
maintainability and
extensibility issue.

� Scalable, robust
account opening
solution that addresses
all functional and
business requirements.

� Process is shared and
reused across various
products and locations.

� Built on standardized
technology stack
providing extensive
BPM capabilities.

� Developed on highly
scalable middleware
platform including
WebSphere Process
Server, MDM Server,
iLOG Business Rules,
Enterprise Service Bus,
WebSphere Service
Registry and
Repository.

� Decreases
time-to-market.

� Aligns business and IT.
� Promotes reuse via

componentization and
decoupling.

� Provides business agility
and flexibility.

� Introduces new products
and services faster and
more dynamically.

� Faster response to
business changes.

� Variability across
countries and regions.

� Empowers by consistently
introducing capabilities.

� Monitors and manages
business and events,
including key
performance indicators
(KPI), via middleware.

� Supports auditability and
compliance via
middleware.

� Dynamically changes
business processes and
business rules.

� Reduces application
complexity and
maintenanc.

� Focuses on
componentization and
decoupling.

� Minimizes custom
framework complexity by
leveraging middleware
runtimes, products, and
tooling.

Solution
template

Bank business
challenges

Solution outline Bank benefits
44 A Transformation Approach to Smarter Core Banking

Figure 18 Four pillars of core banking transformation, architecture

This architecture provides many benefits including faster time to market, more innovative
products, and better insight into how they are performing while allowing banks to adjust their
pricing and product mix to meet the needs of specific customer segmentations. The
architecture also provides process agility to meet the changing business needs and enables
growth through scaling of hardware and middleware. Additionally, as the complexity
decreases, so does the cost of system maintenance.

More features of this architecture include the following:

� Core transactional systems such as deposits, loans, cards, wealth, and insurance product
processors are supported through transaction services. These services are
choreographed through the integration platform.

� Master data services that provide a single truth of data are captured as a common
repository,for example the common customer information file, a common product catalog,
and reference account data. These are exposed as services for use through the
integration platform. Also, operational data can be managed and exposed to the
applications.

� A set of business-specific services is built on the integration platform to support front and
back office operations. This set can be combined with office productivity tools and
third-party applications to support internal bank operations such as strategy definition,
product design, and relationship management. All these business-specific services are
served through channels and internal banking portals using a role-specific multichannel
integration layer.

Enterprise Integration Services

Business Specific Services

Core Transactional Systems

Demand Deposit Term Deposit

Loans

Mutual Funds

Fixed IncomeInsurance

BrokerageCards

General Ledger

Role Specific Access Services

Others

Service
Partners

Card
Networks

Corporate
B2B

Clearing &
Settlement

Data
Partners

Credit
Bureau
Market
Data

Regulatory
Bodies

Core Transactional Services

Business Applications & Services Office Productivity
Tool Services

3rd Party
Applications

Internal Operations

• Strategy Definition
• Product Design
• Banking Operations

• Account Opening
• Product Bundling
• Dynamic Pricing
• Loan Origination
• Case Management
• Single Customer View

• Customer Sales & Service
• Product Management
• Campaign Management
• Payments
• Credit & Risk Management
• Billing & Collections

Enterprise Services
Billing, Finance, HR,

Statements, Reporting

Service
Registry

Service
Gateways

Information
Gateways

Enterprise Business Services
e.g. inquiries (customer, product, accounts), fees & charges, interest rates etc.

Service Mediation Process Orchestration Business Rules

Event Based Routing Integration AdaptorsLegacy Wrappers

Complex Event ProcessingUtil ity Services
(Logging, Security, Audit etc.)

Data Services
(ETL, real time updates etc.)

Front Office

Middle Office

Back Office

Supporting
Infrastructure

Automated Screen Interaction Flows Collaboration Tools

Role and Device Specific Integrated Workplaces and Views Office Productivity Tools

Functional Roles

• Business
• e.g. Product Managers

• Operations
• e.g. Risk Managers

Bank Staff

Branch Call Center ATM/POS Internet IVR Mobile Kiosk

Assisted Channels Self Service Channels Partners

Bus. Partners

Operational Data Store

Master Data
Data Services

Structured Unstructured

Customer
Master

Product
Master

Contract
Master

Analytical Systems
Reporting Services

Data
Marts

Data
WarehouseOLAP
45

Pillar 4: Integration platform

The Banking Industry Framework provides industry-optimized integration on a runtime
platform derived from the rich portfolio of market-leading SOA software. A key component of
the runtime platform is the InfoSphere MDM server. Many core banking transformation
projects begin by consolidating customer data. The MDM server provides an integrated view
of customer data and exposes it as services on the Enterprise Service Bus. The MDM server
also provides consolidation of product and contract information and makes it available
through a services interface to the enterprise-wide business processes.

The integration also contains WebSphere Process Server that provides dynamic,
componentized, model-driven business process orchestration with WebSphere Enterprise
Service Bus or WebSphere Message Broker. These two features provide service mediation
and data mediation that integrate with legacy applications.

Additional integration components are the WebSphere ILOG® business rules engine that
externalizes the business rules development, management and execution, and WebSphere
Business events which support the detailed event processing required in a complex
integration pattern.

Overall, the integration framework provides a robust IT service management with Tivoli
software supported by IBM hardware and operating systems, all of which provide scalable
and high performance computing environments that support high volume transaction
processing and flexible business process execution.

More information about how such an integration platform can be designed, based on the IBM
zEnterprise® platform, can be found in “Core banking systems infrastructure” on page 47.
46 A Transformation Approach to Smarter Core Banking

Core banking systems infrastructure

The core systems environment typically serves as the back office for many of the bank’s
business functions. The expectations with regards to performance, availability and reliability
are high, while there is focus on reducing or at least optimizing the TCO.

Many core systems environments in large banks are running on IBM mainframes. The
mainframe provides a high quality environment that exactly fits the purpose of most core
systems, which is to provide a high volume transactional environment with excellent
availability and reliability. However, as discussed extensively in this paper, many of these
environments have grown into an inflexible and hard to maintain web of programs where new
integration requirements are hard to implement.

Infrastructure design methodology

When a core banking transformation project is started, the infrastructure should be
redesigned based on the new application architecture and the nonfunctional requirements
(NFRs). We suggest to follow a structured methodology to reach these infrastructure
decisions. Also, this process should start early, because some infrastructure decisions may
impact design decisions at the application architecture level. At a minimum this methodology
should include the steps outlined in Figure 19 on page 48.

It should not be assumed automatically that the new modernized core systems environment
should run in the same infrastructure configuration as the old one. The new architecture will
most likely require more processor, more integration capabilities and, because of extensive
reuse of shared services, high availability. The only way to find out what is needed is to go

Important: Infrastructure solution design should be done early in the overall core banking
transformation project in conjunction with the application architecture of the new
environment. Performing this step once all code has been developed would be a big risk.
Infrastructure may influence or even determine certain application architecture and
middleware decisions. So, application, middleware and infrastructure architecture design
are three activities that need to be balanced and not executed in a “waterfall” manner, that
is, sequentially.
© Copyright IBM Corp. 2012. All rights reserved. 47

through a structured methodology that starts with analysis of the nonfunctional requirements
(NFRs), the logical architecture, and the service level objectives (SLOs).

Figure 19 Process for determining the infrastructure for the new core systems

The following sections contain a brief explanation of each step and decision point.

Initiate project

START

Assess new core
systems

Create
infrastructure

solution
architecture
alternatives

Prioritize
infrastructure

solution
architecture
alternatives

Continue?

Sizing and
capacity planning

Yes

STOP No

TCO analysis

Create business
case

Business case
satisfactory?

No

Go to
implementation

phase
Yes
48 A Transformation Approach to Smarter Core Banking

Initiate project

In this activity it is important to define the following:

� Expectations regarding the outcome of the project

It is important that everybody understands the background of the project and expectations
of the stakeholders. For example, expectations could exist regarding documents and
reports to be produced or to convince somebody of a certain solution.

� Scope of the project

The scope of an infrastructure design project is typically set by specifying the core banking
applications or workloads to be included. A selection could be made based on various
criteria, such as applications with a similar architecture, applications belonging to a
specific business unit or geography, or applications associated with a product domain
(loans, mortgages, savings, and so on).

� Project organization

It is essential that all required stakeholders and subject matter experts are “on board” and
committed to perform their part during the project. Not everybody is necessarily required
in all activities, though. Both IBM and the client will be represented in the project.

� Terms and conditions (T&Cs)

It is important to agree on the T&Cs for the project. Is there any funding required and who
provides the funding? Also, there needs to be agreement on interim milestones.

� Project plan

We highly suggest to create a project plan, covering the different stages, their work
products and milestones, and assumptions and dependencies.

� Tools needed

In some of the activities certain tools should be used. Some of these tools may be for IBM
internal use only. The tools should be defined up front, and also who will use them.

Assess new core systems

This activity includes a variety of techniques, questionnaires and workshops to obtain a good
understanding of the new core banking applications in scope. This is necessary to be able to
define candidate infrastructure solution architectures in the next stage. It is in this activity
where application architects, business users and infrastructure architects have to work
together to make sure they have the same understanding of the new core banking application
architecture. At a minimum the following information needs to be collected, analyzed and
discussed:

� Application portfolio

Which new core banking applications have been defined and how do they relate to and
depend on each other. Can they be grouped in specific domains, based on function,
geography, security risk, and so on.

� Application architecture

What design principles have been followed in designing the new core banking
applications? Examples are:

– Data access is always performed using data access services running in an application
server.

– Business rules are executed in a business rules management system,
49

� Middleware architecture

Which middleware technologies will be used to execute the new core banking
applications? Examples are:

– WebSphere Business Process Manager Version 7.5

– WebSphere Message Broker Version 7

� Nonfunctional requirements

These are requirements derived from the service-level objectives and agreements and
describe the quality of the new applications in terms of availability, security and
performance.

Create infrastructure solution architecture alternatives

Once a good understanding has been built of the new core banking systems architecture and
its nonfunctional requirements, one or several infrastructure solution architectures can be
developed. Each of the alternatives must meet the nonfunctional requirements and be able to
run the new core banking systems environment within the stated SLOs, but one alternative
may just be able to do it a bit better than another. The final decision on which one will be best
can only be made when the sizing and the TCO analysis have been done.

Prioritize infrastructure solution alternatives

During this activity the solution architecture alternatives defined in the previous activity are
prioritized. This prioritization is done based on qualitative criteria and the alternatives are
matched with nonfunctional requirements (NFRs) and service level objectives.

Sizing and capacity planning

During this activity detailed information is collected to be able to size the required
infrastructure configuration. This sizing is necessary to assure that the SLAs and SLOs can
be met and that the TCO of the required infrastructure can be calculated. If this activity is not
performed, it will be completely unknown how the new core systems will work out from a
quality and cost point of view. Also, during this activity, a capacity planning is made for the
coming years based on growth predictions. By doing this, future bottlenecks can be avoided
and insight can be gained into TCO for the future.

This activity can be executed per solution architecture alternative or for all solution
architectures at once. The latter will make it possible to make direct comparisons between the
solution architecture alternatives with respect to sizing and capacity planning data. If this
stage is executed per solution architecture alternative, the one that was ranked the highest in
“Prioritize infrastructure solution alternatives” on page 50 would be the first one to examine.

TCO analysis

A proper TCO analysis can only be performed if all metrics are available for the applications in
scope. That is why this activity can only take place after the previous activity. Like the previous

Important: At this point no TCO analysis has been done yet. It could very well be that the
most favorable solution architecture from a qualitative point of view is not necessarily the
most favorable from a TCO point of view. In the last activity of this methodology (“Create a
business case” on page 51) this evaluation is made with pros and cons.
50 A Transformation Approach to Smarter Core Banking

activity, this activity can either be executed per solution architecture alternative or all solution
architecture alternatives at once. The latter will make it possible to make direct comparisons.

Create a business case

This activity is the final step in the methodology. Based on TCO information and the earlier
defined attributes of the solution architecture alternatives, a business case is built. There are
two options:

� Only one solution architecture alternative is justified and presented.

� All solution architecture alternatives are evaluated, ranked and presented in the context of
both TCO and qualitative aspects.

Balancing the transformed architecture and applications

Core banking applications often span heterogeneous platforms, appliances and devices over
a wide range of resources. This can create issues for IT as it works to meet demanding
business and performance objectives at a competitive Total Cost of Ownership (TCO). These
complex challenges underscore the criticality of a holistic systems design optimized around
workloads. Such designs must support the established quality of service from the core
banking system while extending that level of service to diverse workloads hosted on an
optimized, yet unified, environment.

Modernization efforts typically implement a shared services model that consolidates and
centralizes application management and hosting services. However, one size that fits all
shared services models does not work; to be effective, modernization must use an
appropriate level of commonality across business units, product lines, and regions. Accessing
the right information at the right time across the extended enterprise is key to staying ahead
of the competition, innovating faster, and improving operational efficiency.

Consequently, core banking environments must optimally balance standardization with local
customization and be flexible to accommodate change from both internal and external
organizations. The core banking infrastructure must integrate heterogeneous platforms and
optimally utilize IT resources while cost effectively scaling demand. Many banks deploy
multitier workloads on heterogeneous infrastructures. For example, mission critical back-end
workloads and customer data management need the availability, resiliency, security, and
scalability strength of the mainframe.

However, front-end workloads, such as access channel integration services and enterprise
integration services are better suited for distributed architectures. Creating and managing
these multiple workloads, especially when they are implemented on various physically
discrete servers, can lead to inefficient and ineffective solutions. One way to address this
issue is to use a deployment architecture based on heterogeneous virtualized processors that
work together as one infrastructure. Such deployment architecture and infrastructure provides
the following capabilities:

� Flexibility

A bank needs numerous options to scale servers and storage, operating systems and
subsystems in whatever way the architecture demands. The infrastructure must be flexible
to add capacity on demand while responding to demand spikes.

� Quality of service

The system should provide a high degree of service with high performance, reliable and
secure servers, and storage.
51

� Manageability

Banks need high performance systems that allow them to manage and control various
resources attached to the infrastructure. Integrated management of various hardware
components provides tremendous flexibility in deploying, scaling or updating without
requiring intensive system maintenance.

� Manageable TCO and Total Cost of Acquisition (TCA)

Infrastructure components need proven TCO and TCA, supported from both development
and runtime environments, to run core banking systems. TCO and TCA should reflect not
only the cost of hardware, software licenses or annual maintenance, but also the total cost
to install components plus the space, facility, power and cooling consumed by the
infrastructure.

The role of the IBM mainframe in core banking

Many of today’s core banking environments are running on the IBM mainframe (System z®
platform) under the z/OS® operating system, and use a transaction monitor such as CICS or
IMS™. This is especially true for the larger banks in the mature markets. Various other
applications, such as applications for payments, front office and customer relationship
management (CRM) invoke functions in these core banking applications. These other
applications may exist on other platforms, such as UNIX or Microsoft Windows.

It is not realistic to expect that all applications in a bank will ever run on one single platform.
either a mainframe, UNIX, or Windows. That is why the focus should be on making
heterogeneous platforms work together in a reliable and efficient way. Certain applications or
application functions are a better fit on one platform than another and a “fit for purpose”
infrastructure architecture should position the applications and their functions on the best fit
platform.

So, which is then the best fit platform for a core banking environment? We can answer this
question once we have analyzed the characteristics of a typical core banking application, its
nonfunctional requirements (NFRs), its required service level objectives (SLOs), and its
interfaces with the rest of the IT landscape.

Core banking application characteristics

The following is an attempt to generalize the characteristics of a typical core banking
application:

� Access to large databases with the bank’s operational data

These databases include all the information about business entities such as mortgages,
loans, and savings. This data includes functional data, but also audit records, transaction
records, and so on.

� A significant amount of interfaces between the core banking systems and other systems in
the bank’s IT ecosystem

These interfaces process large volumes of data, typically millions of records per day in a
medium to large size bank:

– Real-time and batch interfaces with other internal “core” applications such as the
general ledger (GL)

– Sometimes real-time, but usually batch, interfaces with external parties, such as the
central bank, government agencies, clearing houses, and other banks
52 A Transformation Approach to Smarter Core Banking

– Real-time interfaces with front-office applications

– Real-time interfaces with customer relationship management (CRM) applications

� Significant batch processing schedules, in certain frequencies, such as hourly, daily,
weekly, bi-weekly, monthly and yearly

A part of these batch jobs is functional, but a large part is related to creating interface files
and housekeeping (backups, consolidation, and so on).

� High security

The information processed in a bank’s core systems is sensitive. Much of the information
falls under policies and laws with respect to privacy. Also, if the information processed and
stored in the core systems environment falls into the wrong hands, the bank would be
exposed to serious fraud threats. Access to the core banking applications and its data is
tightly secured, at multiple levels (both logical and physical).

� High availability within the agreed service hours

As explained earlier, core banking systems are tied into many of the bank’s IT systems
and they really have to be fully available during the bank’s service hours. In the era of
Internet banking, these service hours have become 24 hours per day, 365 days per year,
in most countries. Now that we see a strong increase in customers using mobile devices
for banking, this requirement will even become stronger. The expectations are that most of
the bank’s core products should be available for purchase over the Internet through a
self-service portal.

� Audit trails

There is a lot of focus on the financial health of banks and regulations require a bank to be
able to produce an accurate insight into its liabilities and assets at any moment in time.
Therefore, core banking systems have mechanisms to guarantee accuracy of the
information stored. Transaction and audit records are created to be able to prove and
eventually reconstruct transactions.

� Performance

Core banking systems have consistent performance, and response times are typically
sub-second.

� Scalability

In the pre-Internet era scalability was not really that important, because traffic volumes
could be accurately estimated based on the bank’s office hours and the typical volumes
during the day. But now that an ever increasing portion of the traffic comes in over the
Internet channel, the load is not always predictable. Especially when a bank runs certain
promotions, sudden peaks may occur. Therefore, core banking systems have to be very
scalable while meeting the required performance.

� Smart business logic

Most of the actual code in a typical core banking system either deals with data access
(reading, updating, creating and deleting database records) or making decisions, for
example applying a certain condition to a loan or not. User interface logic remains to be
part of most core banking systems too, but tends to be placed under the front-office
domain. It is the business logic that we are interested in, because this business logic
encapsulates the bank’s business rules and its intelligence, which determines its
competitiveness.

� Significant application portfolio

A bank does not have just one application for its core banking operations, and most banks
do not even have just one application per product type (such as loans or savings). Instead,
it is typical to find multiple applications per product type and multiple applications that are
53

shared among all applications, such as a pricing application or customer information file
application. There may also be separate applications providing services or utilities to all
other core banking applications. Depending on the size of the bank, its maturity and its
geographical scope, the amount of different core banking applications can go into the
hundreds.

� Strict maintenance windows

A bank’s core banking systems cannot be updated at any moment in time. There are strict
windows in which no routine maintenance and new functional requirements can be
implemented in production. This calls for very strict planning of new releases of
applications, and updates have to have a fallback procedure. Deployment procedures are
very strict too.

Now you may say that the above characteristics are not that unique and may apply also to
other IT systems. Maybe that is true, but the combination of size and the financial impact of
the information processed in core banking systems make it a specific challenge.

Technology impact

There are many large banks that have proven for decades that the IBM mainframe, and the
z/OS operating system, CICS and IMS in particular, have no issues accommodating all the
characteristics discussed. Nevertheless, there are banks who do not use the mainframe (that
is z/OS) and some banks consider to shift their technology base. To become agile and adopt
modern architectural principles as discussed earlier in this document, the technology base
will need to be examined and reconsidered. Some of the possible shifts are:

� Move from one operating system to another, such as moving from z/OS to UNIX.

� Move from a traditional transaction monitor, such as CICS or IMS, to a JEE application
server.

� Move from one programming language to another. For example, moving from COBOL, or
even Assembler, to Java.

� Move from traditional data stores, such as VSAM, to a relational database, such as DB2®.

In all cases, a shift in the technology base for core banking systems has a major impact and it
is not always certain if and how the NFRs can be met. An apparent cost saving by switching
the platform and/or the middleware may look good in the beginning, but be completely
undone by rising cost in operability and all kinds of quality issues with the new environment.
Obviously, a shift in technology for all of the above examples at once is a major risk.

Core banking systems blueprint

By using the core bankingtransformation roadmap and an architectural blueprint of the future
core banking systems environment, a “fit for purpose” study can be performed to determine
on which platform each architectural construct fits best. The following is a generic list of these
constructs.

� Multichannel integration

These are basically the user interface components of core banking systems, but
implemented in a common middleware optimized for user interaction on multiple devices.

Attention: Note that in the to-be agile core banking system environment certain constructs
are not application-specific anymore, while in existing legacy applications these constructs
are contained within application silos.
54 A Transformation Approach to Smarter Core Banking

� Business process management (BPM)

The BPM layer is a common runtime running business processes involving services from
multiple back-end applications.

� Service registry

The service registry is also a common runtime used by all service requests throughout the
entire core banking application landscape.

� Business rules

One of the focus areas in the transformation is to implement business rules under a
“business rules management system”, instead of keeping them imbedded in procedural
code. This business rules layer is also a common construct shared between multiple core
banking applications.

� Analytics middleware

The analytics middleware is a set of middleware used for all core banking operations and
consists at a minimum of a business data warehouse, a business intelligence environment
for reporting, and an analytics environment for statistics and predictions.

� Enterprise service bus (ESB) and other connectivity infrastructures.

This shared middleware construct entails the entire communication infrastructure used
between services in the core banking systems and between the core banking systems and
other systems within a bank. A combination of different levels of communication
technology may be found in this construct:

– Enterprise service bus, applying SOA-style functionality to integration

– WebSphere MQ, for message-oriented integration

– RPC-style connectors

� Master data management server

As explained earlier, one of the higher priorities in core banking transformation is to
implement master data management. The master data management server is also a
common middleware construct shared between all core banking systems.

� Core banking applications

These are the applications themselves, organized per product or product type,
encapsulating business logic and business rules and having access to operational data.
The technology used per core banking application may be different and there is no rule
that they have to use the same programming language, database, or transaction manager.
It is, however, advised to implement functions as componentized services.

Figure 20 on page 56 shows these constructs and how they relate to business functions.
55

Figure 20 Core banking systems blueprint

Platform placement

Once you have a finalized blueprint, similar to the one shown in Figure 20, along with the
nonfunctional requirements, you can perform the infrastructure design methodology as
explained in “Infrastructure design methodology” on page 47.

The platform placement options for these constructs are shown in Figure 21 on page 57.

24

Deposi ts

Enterprise G/L

Securi ties Loans Other

Fees & charges
Contract

origination

Multi channel integration

Interest r ates
CRM &

campaign
mgmt.

Profitabi lity
mgmt.

Enterprise Service Bus

Business process
management

Product
bundling

Other reference data

Branch

Business RulesBusiness Process Management Analytics

Master data management Core banking services

In ternet ATM Kiosk Mobile Call
Center

El igibil ity ru les
(iLOG)Product

recommendation

Service
registry

Service
registry

Data
warehouse

Cus tomer
master

Contract
master

Product
master
56 A Transformation Approach to Smarter Core Banking

Figure 21 Platform placement options core banking systems blueprint

IBM zEnterprise system

Increasingly, business applications span heterogeneous platforms, appliances, and devices,
and this wide range of resources creates real issues for IT shops trying to meet business
objectives. Simply adding servers, routers, and other IT equipment ultimately will not solve
your IT challenges, and may even make them worse. Even using virtualization techniques can
only go so far in helping you to manage a massive number of servers, routers, and other
devices. The ability to manage resources for these heterogeneous applications as one logical
entity has been lacking—until now. The IBM zEnterprise System technology, referred to as
zEnterprise, combines scalable computing power with a ground breaking new architecture
that is able to manage heterogeneous workloads from a single point of control.

With its built-in management capabilities zEnterprise is perfectly positioned to meet
customers’ integration, automation, security, and cost requirements. To address these IT
transformation issues, the zEnterprise system provides a new architecture, consisting of
heterogeneous virtualized processors that work together as one infrastructure. The system
introduces a revolution in the end-to-end management of heterogeneous systems, while
offering expanded and evolved traditional System z capabilities.

Research outlines five key benefits of zEnterprise:

� Improved performance of the IBM compilers and the z/OS operating system

� Enhanced workload optimization scalability with the zEnterprise central processor
complex (CPC) system architecture

� Better Linux workload consolidation, performance, and economics with z/VM®

� New support for extending multiplatform virtualization on the zEnterprise BladeCenter®
Extension (zBX)

Workload category Middleware Platforms Key

Multi-channel integration • WebSpher e Port al
• WMBTT

Business process management • IBM BPM Server
• WebSpher e Business Monit or
• WebSpher e Business Eve nts

Service registry • WebSpher e Ser vice Registry &
Reposito ry

Business ru les • WebSpher e IL OG BRM S

Analytics • Cogno s BI , TM 1 an d Metr ics
• SPSS Mode ler an d Statistics

Enterprise service bus and
connectivity

• WebSpher e ESB
• WebSpher e M essage Br oker
• WebSpher e T ransf orm ation

Ext ender
• WebSpher e Data Powe r
• WebSpher e MQ
• Ad apte rs an d conn ector s (e.g . CTG)

Master data management • Info Sph ere MDM Ser ver
• Info Sph ere Infor mation Server

Core banking app lications • DB2 on z/O S
• CICS/I MS tran saction monito r
• WebSpher e Applicatio n Server

A Lz L

zA Lz

zA Lz

A Lz

zA Lz L

Lz z

z

1

2

3

4

5

6

7

8

D

I

z

AIX z/OS
Linux on
System z Linux

A Lz L D

Data
Power

I

IDAA

Platform legend

zA Lz

W

Windows

W

57

� Streamlined day-to-day operations and management with the Unified Resource Manager

The IBM zEnterprise system can host the entire blueprint, honoring classic IBM mainframe
qualities of service and providing choice of operating system.

In the following diagrams (Figure 22 and Figure 23 on page 59) the core banking system
constructs are mapped to a platform option on zEnterprise. The numbers indicate the link.

Figure 22 Core banking system blueprint, with numbers that map to zEnterprise topology

Note: The mapping shown in the diagrams is a possible or likely mapping. However, the
mapping of each construct depends on certain requirements and a thorough assessment
study is needed to determine the mapping in each case.

27

Deposi ts

Enterprise G/L

Securi ties Loans Other

Fees & charges
Contract

origination

Multi channel integration

Interest r ates
CRM &

campaign
mgmt.

Profitabi lity
mgmt.

Enterprise Service Bus

Business process
management

Product
bundling

Other reference data

Branch

Business RulesBusiness Process Management Analytics

Master data management Core banking services

In ternet ATM Kiosk Mobile Call
Center

El igibil ity ru les
(iLOG)Product

recommendation

Service
registry

Service
registry

Data
warehouse

Cus tomer
master

Contract
master

Product
master

1

2
3

4
5

7 8
58 A Transformation Approach to Smarter Core Banking

Figure 23 Possible zEnterprise topology

System z Hos t

Sy
st

e
m

 z
 H

a
rd

w
ar

e
M

a
na

ge
m

en
t

C
o

ns
ol

e
(H

M
C

)
w

ith
 U

ni
fie

d
R

e
so

ur
ce

 M
a

na
g

er S ystem z Host

z/OS
Cor e Banking

Batch

Core Ba nking
OLTP

Data base
DB2

Applicat ion A Applicat ion B
Application DApplicat ion C

Select IB M Blades Optimiz ers

System z PR/SM

z HW Resources

Support Element

Linux on
System z

Linux
on

System z
Linux on
System x

AIX on
POWER7

z/VM

Private data network (IEDN)

Blade HW Resources

Blade Virtualizat ion Blade Virtualization

D
a

ta
P

o
w

e
r

E
S

B

F
u

tu
re

O
ff

er
in

g

F
u

tu
re

 O
ff

e
ri

n
g8

8

3

4

4

5 7 5

2

3

1

4

5

4

2

3

7

1 3

2 6 5

6

zBX

Unified Resource
Manager

Private Managem ent Network

Private High Speed Data Network

Data link with IDAA
59

60 A Transformation Approach to Smarter Core Banking

Next steps

If you feel the pain points of an inflexible core banking systems environment, it is a good idea
to start looking at the options to transition to a modernized environment encapsulating all the
benefits explained earlier in this paper. By using a combination of business architecture, IT
architecture and frameworks, productive software and hardware, and a structured
methodology you have all the ingredients to be successful.

Reasons for choosing IBM

IBM believes that legacy modernization is a foundation for further benefits, rather than an end
in itself. This is why we advocate a progressive approach that delivers value while you are
building the technology foundation. IBM has the domain knowledge, business transformation
skills, technical expertise and wealth of real-world experience combined with unparalleled
software and hardware platforms to help you successfully modernize your core systems. IBM
is uniquely positioned to help you tackle the challenge, with capabilities that span the full
spectrum of your needs, from hardware and software through business and technology
consulting to outsourcing and managed services.

IBM makes extensive use of sophisticated software tools and draws on proven processes and
experience with other financial institutions to analyze your existing application portfolio,
business processes, application architecture, interfaces, and business rules. This enables us
to identify components that are candidates for relocation, renovation, restructuring,
reprioritization, or rationalization. Our industry-specific process and data models, used by
hundreds of banks, drive this analysis.

Modernization is a very broad topic, encompassing elements as diverse as infrastructure,
regionalization, globalization, right-sourcing skills, business operating model changes, and
innovative ways to fund transformation through operating expenses instead of capital
expenses. One way that banks are addressing modernization issues is by using the IBM
Banking Industry Framework. This unified banking framework spans the enterprise and
includes software foundations to provide end-to-end banking solutions. Framework domains,
in turn, identify the technology usage patterns, software, industry extensions, and
accelerators needed to address key banking pain points.
© Copyright IBM Corp. 2012. All rights reserved. 61

The major domains in the IBM Banking Industry Framework are:

� Core Banking Transformation Domain

Highlights how to modernize legacy applications that support core banking functions and
align them with changing business needs.

� Payments and Securities Domain

Provides the middleware tooling to progressively transform payments operations to
become more flexible and efficient.

� Integrated Risk Management Domain

Addresses a holistic approach for managing financial risk, operational and IT risk, financial
crimes and compliance.

� Customer Care & Insight Domain

Builds a foundation for creating a single view of the customer, ultimately enabling more
effective and efficient sales and service.

One of the most successful and critical modernization components is the Industrialized
Software Development factory supported by IBM tools and processes. This end-to-end
capability is unique to IBM and is the linchpin that ensures that IT projects deliver predictable
value on time and with quality results.

IBM has successfully completed many large programs for banks of all sizes around the world
and is ready to be your partner. We have all of the methods, tools and experience to renovate
any bank's core banking applications with a high-quality, committed team, using proven
processes to yield predictable results. Typically, we have already worked with your bank for
decades and have developed a deep understanding of your applications, architecture,
infrastructure, people, processes and culture.

We can also leverage the IBM global enterprise, including linking to the IBM global network of
Business Partners, IBM worldwide development, and IBM Research. Additionally, we offer
diversified global sourcing options delivered through strategic global delivery centers in India,
China, Romania, Brazil, Argentina, Vietnam, the Philippines, and Egypt.
62 A Transformation Approach to Smarter Core Banking

Summary

The extensive experience brought by IBM to core banking transformation indicates that the
most successful transformation approach is a progressive one in which modernization is a
process that incorporates flexibility and business acumen, and can adapt as requirements
change.

Creating a componentized architecture that separates key constructs and their assets from
the core transaction engine is a critical factor in achieving a successful transformation. Such
a scenario makes the architecture the central concern and allows a bank to benefit from the
necessary flexibility and efficiency. After the core architecture is established, the bank can
address each requirement and modification on a case-by-case basis by choosing from
custom and packaged options.

Further, the core transformation method outlined in this IBM® Redguide™ publication allows
a bank to make deployment decisions based purely on business benefits by using a
progressive program that delivers value at each step of the process, and every step can be
tailored to keep pace as needs and requirements change. Finally, this method ensures that
the overall transformation process remains in line with evolving business objectives.

Other resources for more information

For more information about this topic, consult the following resources:

� Landing page for IBM core banking transformation solutions:

http://www.ibm.com/software/industry/banking/transformation.html

� Banking Industry Framework (of which core banking transformation is a part):

http://www.ibm.com/software/industry/banking/framework/index.html

� Brochure on the IBM Banking Industry Framework:

ftp://public.dhe.ibm.com/software/industries/frameworks/pdf/BZD03001_BANKING.pdf

� IBM Banking Industry Framework announcement:

http://www.ibm.com/press/us/en/pressrelease/28401.wss
© Copyright IBM Corp. 2012. All rights reserved. 63

http://www.ibm.com/software/industry/banking/transformation.html
http://www.ibm.com/software/industry/banking/framework/index.html
ftp://public.dhe.ibm.com/software/industries/frameworks/pdf/BZD03001_BANKING.pdf
http://www.ibm.com/press/us/en/pressrelease/28401.wss

� IBM Redpaper™ Case Study: SOA Banking Business Pattern, REDP-4467

� Banking Transformation Workbench video:

http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=PS&appname=S
WGE_BZ_CZ_USEN&htmlfid=BZV03001USEN&attachment=BZV03001USEN.WMV

� Landing page for solutions for banking on System z:

http://www.ibm.com/systems/z/solutions/banking.html

� White paper Managing 21st Century Business and Technology Innovation: Core Banking
Transformation with System z, ZSW03011USEN:

http://public.dhe.ibm.com/common/ssi/ecm/en/zsw03011usen/ZSW03011USEN.PDF

The team who wrote this guide

This guide was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO).

Alex Louwe Kooijmans is a Senior Architect at the Financial Services Center of Excellence
at IBM Systems & Technology Group. Prior to this position he spent almost ten years in the
International Technical Support Organization leading IBM Redbooks® projects, teaching
workshops, and running technical events with a focus on using the IBM mainframe in new
ways. Alex has also been a Client Technical Advisor to various banks in The Netherlands,
and has worked in various positions in application development. His current focus is on
modernizing core banking systems and the role of IBM mainframe technology.

Rishi Balaji is an IBM accredited Application Architect with eleven and a half years of
experience in the design and development of IT solutions. His expertise ranges from product
development to consulting and asset development in areas such as service-oriented
architecture (SOA), case management, and business intelligence using JEE and related
technologies. He is a contributing author at IBM developerWorks® and has also co-authored
a book on asset-based development. Rishi currently works at the Global Business Solution
Center as an application architect for the banking industry.

Yasodhar Patnaik is the Chief Architect for husbanding Industry Framework in the IBM
Software Group. In his current role, he is responsible for thought leadership, roadmap, and
vision for the framework. Yasodhar is also responsible globally for engaging with banking
clients as a subject matter expert in banking solutions and technologies.

Saket Sinha is the worldwide core banking transformation leader for IBM. He focuses
globally on core system renovation and transformation opportunities for IBM banking clients.
Prior to this, Saket was a subject matter expert for the Strategy and Change practice for the
Global Banking and Financial markets. He was responsible for providing thought leadership,
critical insights, client engagement support, and advisory services to both banking and
financial market clients.

Thanks to the following people for their contributions to this project:

Tom Seevers, Ph.D
IBM Fellow, Vice President of Technology and CTO
IBM Financial Services Sector

Ken Muckenhaupt, Anna Wang
IBM Systems and Technology Group, Financial Services Center of Excellence
64 A Transformation Approach to Smarter Core Banking

http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=PS&appname=SWGE_BZ_CZ_USEN&htmlfid=BZV03001USEN&attachment=BZV03001USEN.WMV
http://www.ibm.com/systems/z/solutions/banking.html
http://public.dhe.ibm.com/common/ssi/ecm/en/zsw03011usen/ZSW03011USEN.PDF

Irena Slywkanycz and Alfred Schwab
International Technical Support Organization, Poughkeepsie center

Michel Van der Poorten
Client Executive, Financial Services Sector, IBM Belgium

Marcel Vonk
IBM Solution sales executive, ABN-Amro account
 Summary 65

66 A Transformation Approach to Smarter Core Banking

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2012. All rights reserved. 67

This document, REDP-4764-00, was created or updated on September 21, 2012.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries, or
both. These and other IBM trademarked terms are marked on their first occurrence in
this information with the appropriate symbol (® or ™), indicating US registered or
common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A
current list of IBM trademarks is available on the Web at
http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

BladeCenter®
CICS®
DataPower®
DB2®
developerWorks®
IBM®
ILOG®

IMS™
InfoSphere®
Rational®
Redbooks®
Redguide™
Redpaper™
Redbooks (logo) ®

System z®
Tivoli®
WebSphere®
z/OS®
z/VM®
zEnterprise®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

®

Redbooks®
68 A Transformation Approach to Smarter Core Banking

http://www.ibm.com/legal/copytrade.shtml

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Executive overview
	The case for core banking transformation
	Trends in the banking industry affecting core banking systems
	Customer insight and pro-active relationship management
	Risk management and compliance with regulations
	Driving down IT cost, while gaining flexibility

	Key growth imperatives for banks
	The business problem
	Current business expenditures

	Core banking transformation process
	Getting started with the transformation
	Establish transformation goals and objectives
	Align the business and IT stakeholders
	Set up organizational governance
	Define the project organization for the transformation approach
	Define the “to be” architecture
	Create the business case
	Design the transformation roadmap

	Transformation approaches
	Selecting the best approach
	Packaged solution approach
	Rewrite approach
	Hybrid approach
	Customized progressive approach

	Continuing the process
	Managing and delivering transformation projects
	Project-by-project method

	Transformation benefits
	When to measure benefits

	Transformation methodology
	BSMM phases
	BSMM approaches to transformation
	Top-down versus bottom-up approach
	Model-driven approach

	Governance

	Using a framework for transformation
	The framework
	The four pillars of transformation
	Pillar 1: Methods and tools
	Pillar 2: Solution templates
	Pillar 3: Framework architecture
	Pillar 4: Integration platform

	Core banking systems infrastructure
	Infrastructure design methodology
	Initiate project
	Assess new core systems
	Create infrastructure solution architecture alternatives
	Prioritize infrastructure solution alternatives
	Sizing and capacity planning
	TCO analysis
	Create a business case

	Balancing the transformed architecture and applications
	The role of the IBM mainframe in core banking
	Core banking application characteristics
	Technology impact
	Core banking systems blueprint
	Platform placement
	IBM zEnterprise system

	Next steps
	Reasons for choosing IBM

	Summary
	Other resources for more information
	The team who wrote this guide

	Notices
	Trademarks

