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    Preface

    This IBM® Redpaper publication describes the architecture, installation procedure, and results for running a typical training application that works on an automotive data set in an orchestrated and secured environment that provides horizontal scalability of GPU resources across physical node boundaries for deep neural network (DNN) workloads.

    This paper is mostly relevant for systems engineers, system administrators, or system architects that are responsible for data center infrastructure management and typical day-to-day operations such as system monitoring, operational control, asset management, and security audits. 

    This paper also describes IBM Spectrum® LSF® as a workload manager and IBM Spectrum Discover as a metadata search engine to find the right data for an inference job and automate the data science workflow. With the help of this solution, the data location, which may be on different storage systems, and time of availability for the AI job can be fully abstracted, which provides valuable information for data scientists.
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Overview

    This paper focuses on helping companies address the challenges of running large-scale workloads by using orchestration platforms for containerized applications, which are essential to ensure performance, high availability, and efficient horizontal scaling across compute resources. The proof of concept (PoC) that is described in this chapter and explained in detail in this paper provides guidance about how to configure a Red Hat OpenShift 4.4.3 cluster for multi-GPU and multi-node deep learning (DL) workloads. It describes as an example about how to run a real-world automotive industry training workload on a public data set that is provided by Audi.

    The scope of the PoC architecture uses Red Hat OpenShift V4.4 on NVIDIA DGX™ systems with IBM Spectrum Scale storage.

    1.1  Proof of concept background

    For many companies running large-scale infrastructures, orchestration of containerized applications is essential to ensure performance and high availability. Among the top orchestration tools are Kubernetes and Red Hat OpenShift. At the heart of Red Hat OpenShift is Kubernetes, and it is 100% certified Kubernetes, fully open source, and non-proprietary. The API to the Red Hat OpenShift cluster is the same as native Kubernetes. Nothing changes between a container running on any other Kubernetes environment and running on Red Hat OpenShift, and the applications require no changes. Red Hat OpenShift brings several added value capabilities in addition to the fundamental container orchestration capabilities that are provided by Kubernetes. 

    The capabilities of Red Hat OpenShift with Kubernetes, which are shown in Figure 1-1, makes it a complete, enterprise-ready, and hybrid cloud platform to build, deploy, and manage cloud-native and traditional applications across a hybrid cloud. Automated deployment and lifecycle management for hundreds of independent software vendor (ISV) and custom application workloads and infrastructure services that use Kubernetes Operators and Helm charts is one of many other appealing features. Red Hat OpenShift has over 1,700 customer deployments worldwide across many industry verticals. Also, companies in the automotive industry take advantage of these capabilities to support an orchestration platform that is fully supported by Red Hat. 

    [image: ]

    Figure 1-1   Red Hat OpenShift Container Platform

    For more information, see Red Hat OpenShift Container Platform: Kubernetes for rapid innovation.

    Important challenges remain when it comes to large-scale DL workloads, such as the development of DNNs that are trained to be used in the perception software stack for autonomous cars. These large-scale DL workloads are typically associated with applications that use NVIDIA GPUs. NVIDIA provides a hub of GPU-accelerated, optimized containers that can easily scale to hundreds of GPUs that are spread over multiple GPU-accelerated servers. 

    Scalability requires a balanced system where all components (compute, network, and storage) work hand-in-hand and avoid performance bottlenecks. This PoC describes the architecture and the installation procedure, and it shows the results for running a typical training application working on an automotive data set. 

    DNN training on huge data sets is a computational expensive task that can take several days on a single server, even with multiple GPUs. The only solution to reduce the training time from days to hours or even minutes is by running DNN training on multiple accelerated servers by using concepts like Message Passing Interface (MPI) and Horovod. 

    However, studies on multi-node training workloads with NVIDIA GPUs that use Red Hat OpenShift 4.4 are barely found in the literature. The best match is a public study that was created by NVIDIA that is based on Red Hat OpenShift 4.1. 

    This paper provides guidance about how to configure a Red Hat OpenShift 4.4.3 cluster for DL workloads and describes how to run a training workload on a public data set that is provided by Audi. It also takes a closer look at the horizontal scalability of GPU resources across physical node boundaries for DNN workloads on Red Hat OpenShift 4 as a container orchestration platform and IBM Spectrum Scale as highly scalable “data lake” conveniently providing access to the data in a global namespace for containerized AI workloads, without the need to duplicate or copy any data.

    For this PoC, the following key components were deployed or used:

    •IBM Elastic Storage® System (ESS) 3000 and IBM Spectrum Scale

    •IBM Spectrum Scale Container Storage Interface (CSI) drive

    •A NVIDIA DGX-1™ system

    •A NVIDIA® Mellanox® InfiniBand EDR/HDR interconnect

    •A NVIDIA GPU Cloud (NGC) container catalog

    The main goal of this PoC is to demonstrate the successful integration of these components and provide performance benchmarks for multi-GPU and multi-node training workloads with a real data set, such as the Audi autonomous electronic vehicle (AEV) Audi Autonomous Driving Dataset (A2D2) that is used for the development of autonomous vehicles.

    We also deployed Security Context Constraints (SCCs) to enable granular control of the permissions that are required for pods running AI workloads and for processing access requirements to remote direct memory access (RDMA) resources for best performance. SCCs represent a concept like the way that role-based access control (RBAC) resources control user access that administrators can apply to manage security in Red Hat OpenShift. These permissions include actions that a pod, which is a collection of containers, can perform and what resources it can access. SCCs are used to define a set of conditions that a pod must run with to be accepted into the system.
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Proof of concept environment

    This chapter describes the proof of concept (PoC) environment that is used in this paper.

    2.1  Overview

    Figure 2-1 shows the environment that is used for this proof of concept (PoC).
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    Figure 2-1   The environment that is used for this proof of concept

    The solution that is described in this paper uses the following major components in the installation:

    •DGX-1 systems running with Red Hat 7.6 as worker nodes (40 cores, 512 GB memory, and four single-port NVIDIA Mellanox ConnectX-4 EDR InfiniBand cards).

    •A NVIDIA Mellanox Quantum HDR 7800 managed switch to connect worker nodes and a storage back end.

    •InfiniBand: Four NVIDIA Mellanox dual-port ConnectX-5 Host Channel Adapters (HCAs) in ESS3000 and four single-port NVIDIA Mellanox ConnectX-4 HCAs in each DGX-1 system that are connected by 16 NVIDIA Mellanox EDR cables.

    •NVIDIA Mellanox 100 Gbps EDR InfiniBand Network.

    •Standard 1 Gbps (or higher) Ethernet admin network for all components.

    •Orchestrator: Red Hat OpenShift 4.4.3 with access to Red Hat subscriptions and other external resources on the internet (for example, GitHub and container images registries).

    •IBM Spectrum Scale Cluster 5.0.4.3 with IBM Spectrum Scale GUI/REST.

    •IBM ESS3000 with four dual-port NVIDIA Mellanox ConnectX-5 InfiniBand cards running IBM Spectrum Scale 5.0.4.3.

    2.2  Prerequisites

    Figure 2-2 shows the software release levels that are used for Red Hat OpenShift and 
IBM Spectrum Scale, and the role of each node.
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    Figure 2-2   Red Hat OpenShift and IBM Spectrum Scale node roles and software releases

    The following clusters were created for this PoC:

    •Red Hat OpenShift Cluster 4.4.3

    Red Hat OpenShift is an open source container orchestration platform that is based on the Kubernetes container orchestrator. It is designed for enterprise app development and deployment. As an operating system, we deployed Red Hat Enterprise Linux CoreOS (RHCOS), and Red Hat Enterprise Linux (RHEL). For more information about RHCOS, see “Related publications” on page 65. RHCOS is the only supported operating system for Red Hat OpenShift Container Platform master node hosts. RHCOS and RHEL are both supported operating systems for Red Hat OpenShift Container Platform x86-based worker nodes. As IBM Spectrum Scale and DGX-1 systems are supported only by RHEL, we used RHEL 7.6 for those systems.

    The compute-cluster consists of the following components:

     –	Three master nodes running RHCOS on a Lenovo SR650.

     –	Two worker nodes running RHCOS in a VM on a Lenovo SR650 (used to have a minimal healthy OCP cluster running as a base before adding the DGX-1 systems and testing with different configurations).

     –	Two DGX-1 worker nodes.

    •IBM Spectrum Scale 5.0.4.3 Storage Cluster

    IBM Spectrum Scale is a high-performance and highly available clustered file system and associated management software that is available on various platforms. IBM Spectrum Scale can scale in several dimensions, including performance (bandwidth and IOPS), capacity, and number of nodes or instances that can mount the file system.

    The storage client cluster consists of:

     –	IBM Spectrum Scale clients running on every DGX-1 that is based on Red Hat 7.6.

     –	IBM Spectrum Scale client running in a VM (providing GUI / REST, Quorum, and Management functions) that is based on Red Hat 7.6.

     –	A remote-mounted IBM Spectrum Scale file system that is called ess3000_4M from an IBM ESS3000 storage system, which is configured with a 4 MiB blocksize (good fit to the average image size of 3 - 4 MiB of the used Audi Autonomous Driving Dataset (A2D2)).

    •IBM Elastic Storage System (ESS) Storage Cluster

    IBM ESS 3000 combines IBM Spectrum Scale file management software with NVMe flash storage for the ultimate scale-out performance and unmatched simplicity by delivering 
40 GBps of data throughput per 2U system.

    The storage cluster consists of the following components:

     –	The IBM ESS3000 consists of two canisters, each running IBM Spectrum Scale 5.0.4.3 on Red Hat 8.1.

     –	A2D2 downloaded and extracted into the IBM ESS3000 storage system.

     –	Lenovo SR650 server running IBM Spectrum Scale 5.0.4.3 on Red Hat 7.6 (providing GUI / REST, Quorum, and Management functions).

    For more information about IBM Spectrum Scale, IBM ESS 3000, DGX-1 systems, and Red Hat OpenShift, see “Related publications” on page 65.
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Installation

    The installation procedure that is described in this chapter has the following steps:

    •Configuring the NVIDIA Mellanox EDR InfiniBand network

    •Integrating DGX-1 systems as worker nodes into a Red Hat OpenShift 4.4.3 cluster

    •Adding DGX-1 systems as client nodes to the IBM Spectrum Scale cluster

    •Installing and configuring more components in the Red Hat OpenShift 4.4.3 stack

    3.1  Configuring the NVIDIA Mellanox EDR InfiniBand network

    In this section, we complete the following tasks:

    •Enable Subnet Manager (SM) on the NVIDIA Mellanox HDR switch.

    •Configure and connect IBM ESS3000 with eight EDR ports total (8x 100 Gbps).

    •Configure and connect DGX-1 nodes with four EDR ports each (4x 100 Gbps / DGX-1).

    In this deployment scenario, each of the two DGX-1 systems and each of the two 
IBM ESS3000 I/O server nodes is connected with four EDR ports to a NVIDIA Mellanox Quantum HDR 200 Gbps QM8700 InfiniBand Smart Switch, as shown in Chapter 2, “Proof of concept environment” on page 5. This configuration provides a total of eight 100 Gbps EDR InfiniBand connections between the IBM ESS3000 storage system and the two DGX-1 systems. 

    The InfiniBand SM is started on the InfiniBand switch by using the following configuration:

    [standalone: master] > enable

    [standalone: master] # configure terminal

    [standalone: master] (config) # ib smnode DGX-IB-switch1.kelsterbach.de.ibm.com enable

    [standalone: master] (config) # ib smnode DGX-IB-switch1.kelsterbach.de.ibm.com sm-priority 0

    [standalone: master] (config) # ib sm virt enable

    [standalone: master] (config) # write memory

    [standalone: master] (config) # reload

    Here is the active switch configuration that is used for the PoC:

    [standalone: master] (config) # show running-config

    ##

    ## Running database "initial"

    ## Generated at 2020/05/13 15:45:50 +0000

    ## Hostname: DGX-IB-switch1.kelsterbach.de.ibm.com

    ## Product release: 3.9.0300

    ##

    ##

    ## Running-config temporary prefix mode setting

    ##

    no cli default prefix-modes enable

    ##

    ## Subnet Manager configuration

    ##

    ib sm virt enable

    ##

    ## Network interface configuration

    ##

    no interface mgmt0 dhcp

    interface mgmt0 ip address 9.155.106.250 /24

    ##

    ## Other IP configuration

    ##

    hostname DGX-IB-switch1.kelsterbach.de.ibm.com

    ip domain-list kelsterbach.de.ibm.com

    ip name-server 9.155.106.9

    ip route vrf default 0.0.0.0/0 9.155.106.1

    ##

    ## Other IPv6 configuration

    ##

    no ipv6 enable

    ##

    ## Local user account configuration

    ##

    username admin password 7 $6$dHjW/Juo$LYlJA...9qZgAVyLylNDAkzyVTXyCbWzc0

    username monitor password 7 $6$26O9wpNF$E1G35T.9eakkl...ShK6NIn2r4zMIsdIn8M1

    ##

    ## AAA remote server configuration

    ##

    # ldap bind-password ********

    # radius-server key ********

    # tacacs-server key ********

    ##

    ## Network management configuration

    ##

    # web proxy auth basic password ********

    ##

    ## X.509 certificates configuration

    ##

    #

    # Certificate name system-self-signed, ID 8a57f97b8877d86c46cc3bf2c3b9a1c15a6259d9

    # (public-cert config omitted since private-key config is hidden)

    ##

    ## IB nodename to GUID mapping

    ##

    ib smnode DGX-IB-switch1.kelsterbach.de.ibm.com create

    ib smnode DGX-IB-switch1.kelsterbach.de.ibm.com enable

    ib smnode DGX-IB-switch1.kelsterbach.de.ibm.com sm-priority 0

    ##

    ## Persistent prefix mode setting

    ##

    cli default prefix-modes enable

     

    [standalone: master] (config) # show ib smnode DGX-IB-switch1.kelsterbach.de.ibm.com sm-state enabled

    3.2  Integrating DGX-1 systems as worker nodes into a Red Hat OpenShift 4.4.3 cluster

    In this section, we complete the following tasks:

    •Install the Red Hat Enterprise Linux (RHEL) 7.6 and NVIDIA RPM packages.

    •Install the NVIDIA Mellanox InfiniBand drivers (MLNX_OFED).

    •Install the NVIDIA® GPUDirect® Remote Direct Memory Access (RDMA) Kernel Module (nv_peer_mem).

    •Install the NVIDIA Mellanox SELinux Module.

    •Add DGX-1 systems as RHEL7 based worker nodes to the Red Hat OpenShift 4.4.3 cluster.

    On x86 platforms, Red Hat OpenShift 4 can be extended with RHEL7 based worker nodes (as described in Adding RHEL compute machines to a Red Hat OpenShift Container Platform cluster). In this paper, we use this concept to integrate the DGX-1 systems as worker nodes into the existing OpenShift 4.4.3 cluster. Here are the steps that are involved:

    •Installing RHEL 7.6 as the base OS on the DGX-1 systems

    •Installing the DGX software for RHEL

    •Installing the NVIDIA Mellanox OpenFabrics Enterprise Distribution (OFED) (MLNX_OFED)

    •Installing the GPUDirect RDMA (GDRDMA) Kernel Module 

    •Adding the DGX-1 systems as worker nodes to the Red Hat OpenShift 4.4.3 cluster

    3.2.1  Installing the Red Hat Enterprise Linux 7.6 and DGX software

    The RHEL 7.6 base OS can be installed according to the DGX-1 instructions in
Installing Red Hat Enterprise Linux. Then, you install the DGX Software as described in Installing the DGX Software. 

     

    
      
        	
          Important: When following the steps in these instructions, you must stop just before installing the NVIDIA® CUDA® driver (Installing and Loading the NVIDIA CUDA Drivers). The Compute Unified Device Architecture (CUDA) driver should not be installed on the host OS when the node is integrated as a worker node into a Red Hat OpenShift cluster because the CUDA functions are provided by the SRO running in Red Hat OpenShift.

          DGX worker nodes for Red Hat OpenShift must not be pre-configured with NVIDIA components (CUDA driver, container runtime, and device plug-in). For more information, see the documentation for the NVIDIA GPU-Operator.

        
      

    

    Complete the following steps:

    1.		Install the NVIDIA repo for RHEL7 by running the following command:

    # yum install -y https://international.download.nvidia.com/dgx/repos/rhel-files/dgx-repo-setup-19.07-2.el7.x86_64.rpm

    2.		Enable the NVIDIA updates repo in /etc/yum.repos.d/nvidia-dgx-7.repo with the following code:

    [nvidia-dgx-7-updates]

    name=NVIDIA DGX EL7 Updates

    baseurl=https://international.download.nvidia.com/dgx/repos/rhel7-updates/

    enabled=1

    gpgcheck=1

    gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-dgx-cosmos-support

    3.		Install the NVIDIA software packages for DGX-1 systems by running the following command:

    # yum groupinstall -y 'DGX-1 Configurations'

    4.		Update the RHEL 7.6 packages and kernel.

    Before running the yum update command, we set the minor release to RHEL 7.6 in the 
Red Hat Subscription Manager (RHSM) to gain more control over the package and kernel updates, as shown in the following code. By setting it to RHEL 7.6, we ensure that we stay within this minor release for the kernel and package updates. The Linux kernel that is used in this paper is 3.10.0-957.27.2.el7.x86_64 on the DGX-1 systems. Red Hat OpenShift 4.4. generally supports RHEL7 minor versions RHEL 7.6 - RHEL 7.8 according to System requirements for RHEL compute nodes and Red Hat OpenShift Container Platform 4.x Tested Integrations (for x86_x64), but not RHEL 8 currently.

    # subscription-manager release -set=7.6

    # subscription-manager release --show

    Release: 7.6

    # yum clean all

    # yum update

    5.	Restart the system to load the drivers and to update the system configurations.

    3.2.2  Installing NVIDIA Mellanox InfiniBand drivers (MLNX_OFED)

    To install the NVIDIA Mellanox OFED (MLNX_OFED) for Linux for Red Hat operating systems, follow the instructions at Installing NVIDIA Mellanox InfiniBand Drivers. In our PoC, we install NVIDIA Mellanox OFED MLNX_OFED_LINUX-4.7-3.2.9.0 on both DGX-1 systems by using the same release version that is on the IBM ESS3000 system.

    After installing the MLNX_OFED drivers, skip the step to install the NVIDIA peer memory kernel module (nv_peer_mem) from the pre-built RPM package because it does not install properly without a full CUDA installation (which you do not have installed on the host OS). Instead, build and install the NVIDIA peer memory kernel module (nv_peer_mem) manually by following the instructions in 3.2.3, “Installing the GDRDMA kernel module” on page 13. 

    3.2.3  Installing the GDRDMA kernel module

    The NVIDIA peer memory (nv_peer_mem) kernel module is required for GDRDMA support. Because the installation of the provided RPM package requires a CUDA installation that is not present in our setup, we install the kernel module manually. GDRDMA enables multiple GPUs and network adapters to directly read and write CUDA host and device memory, which eliminates unnecessary memory copies and lowers CPU processing impact and latency, which results in performance improvements in data transfer times for applications running on NVIDIA Tesla and Quadro products.

    To install the GDRDMA Kernel Module without CUDA, complete the following steps:

    1.	Compile and install the nv_peer_mem source code as follows on one DGX system:

    # export NVIDIA=/run/nvidia/driver

    # export KERNEL_VERSION=$(uname -r)

    # ln -sf ${NVIDIA}/usr/src/nvidia-* /usr/src/.

    # yum -y group install "Development Tools"

    # yum -y install kernel-devel-${KERNEL_VERSION} kernel-headers-${KERNEL_VERSION} kmod binutils perl elfutils-libelf-devel

    # git clone https://github.com/Mellanox/nv_peer_memory.git

    # cd /root/nv_peer_memory

    # sed -i 's/updates\/dkms/kernel\/drivers\/video/g' create_nv.symvers.sh

    # ./build_module.sh

    # ln -sf  \

    /run/nvidia/driver/lib/modules/3.10.0-957.27.2.el7.x86_64/kernel/drivers/video/nvidia* \

    /lib/modules/3.10.0-957.27.2.el7.x86_64/kernel/drivers/video/.

    # rpmbuild --rebuild /tmp/nvidia_peer_memory-*

    # rpm -ivh /root/rpmbuild/RPMS/x86_64/nvidia_peer_memory-1.0-9.x86_64.rpm

    2.	Distribute the built RPM and install it on the other DGX systems.

    3.	Check that the module is loaded. If it is not loaded, load it by running modprobe nv_peer_mem:

    # lsmod | grep peer

    nv_peer_mem 13163 0

    nvidia 19893032 3261 nv_peer_mem,nvidia_modeset,nvidia_uvm

    ib_core 368807 11 rdma_cm,ib_cm,iw_cm,nv_peer_mem,mlx4_ib,mlx5_ib,ib_ucm,ib_umad,ib_uverbs,rdma_ucm,ib_ipoib

    Make sure that the module is loaded automatically on every system restart.

    3.2.4  Installing the NVIDIA Mellanox SELinux module

    Download and decompress the NVIDIA Mellanox SELinux module from the Mellanox docs website and install it on the DGX worker nodes by running the following commands:

    # semodule -i infiniband.pp

    # semodule -l | grep -i infi

    infiniband 1.0

    3.2.5  Adding DGX-1 systems as worker nodes to the Red Hat OpenShift cluster

    Finally, the DGX-1 systems are ready to be added to the Red Hat OpenShift cluster as RHEL7 based worker nodes. To do this task, follow the instructions at Adding RHEL compute machines to a Red Hat OpenShift Container Platform cluster.

    Ensure that you have an active Red Hat OpenShift Container Platform subscription on your Red Hat account. You must register each host with RHSM, attach an active Red Hat OpenShift Container Platform subscription, and enable the required repositories.

    Add your new worker nodes to your active Red Hat OpenShift load balancer configuration (for example, HAproxy).

    After this step you should see the DGX-1 systems appearing as worker nodes in the Red Hat OpenShift cluster:

    # oc get nodes -o wide
NAME                          STATUS   ROLES    AGE    VERSION   INTERNAL-IP    OS-IMAGE
dgx01.ocp4.scale.ibm.com      Ready    worker   6d3h   v1.17.1   192.168.1.19   OpenShift Enterprise
dgx02.ocp4.scale.ibm.com      Ready    worker   6d2h   v1.17.1   192.168.1.20   OpenShift Enterprise
master01.ocp4.scale.ibm.com   Ready    master   13d    v1.17.1   192.168.1.11   Red Hat Enterprise Linux CoreOS
master02.ocp4.scale.ibm.com   Ready    master   13d    v1.17.1   192.168.1.12   Red Hat Enterprise Linux CoreOS
master03.ocp4.scale.ibm.com   Ready    master   13d    v1.17.1   192.168.1.13   Red Hat Enterprise Linux CoreOS
worker03.ocp4.scale.ibm.com   Ready    worker   12d    v1.17.1   192.168.1.17   Red Hat Enterprise Linux CoreOS
worker04.ocp4.scale.ibm.com   Ready    worker   12d    v1.17.1   192.168.1.18   Red Hat Enterprise Linux CoreOS

    3.3  Adding DGX-1 systems as client nodes to the IBM Spectrum Scale cluster

    In this section, we complete the following tasks:

    •Add DGX worker nodes to the local IBM Spectrum Scale V 5.0.4.3 cluster as 
IBM Spectrum Scale client nodes.

    •Configure the DGX-1 nodes in the local IBM Spectrum Scale cluster.

    Both DGX-1 systems are now part of the Red Hat OpenShift 4.4.3 cluster as RHEL7 based worker nodes. You must add these DGX worker nodes to the local IBM Spectrum Scale 5.0.4.3 cluster as IBM Spectrum Scale client nodes either by using the IBM Spectrum Scale installation toolkit that is described in Adding nodes, NSDs, or file systems to an existing installation or manually following the instructions in Adding nodes to a GPFS cluster at the IBM Spectrum Scale IBM Knowledge Center.

    By using the IBM Spectrum Scale installation toolkit and meeting all the prerequisites, you can add the DGX-1 worker nodes as client nodes to the IBM Spectrum Scale cluster by running the following commands:

    # ./spectrumscale node add dgx01.ocp4.scale.ibm.com
# ./spectrumscale node add dgx02.ocp4.scale.ibm.com
# ./spectrumscale install [--precheck]
# ./spectrumscale deploy [--precheck]

    Afterward, the two DGX-1 worker nodes show up as new clients in the IBM Spectrum Scale cluster:

    # mmlscluster

GPFS cluster information
========================
   GPFS cluster name:         SpectrumScale.ocp4.scale.ibm.com
   GPFS cluster id:           16217308676014575381
   GPFS UID domain:           SpectrumScale.ocp4.scale.ibm.com
   Remote shell command:      /usr/bin/ssh
   Remote file copy command:  /usr/bin/scp
   Repository type:           CCR

Node  Daemon node name        IP address    Admin node name         Designation
----------------------------------------------------------------------------------

       1   scale00.ocp4.scale.com  192.168.1.30  scale00.ocp4.scale.ibm.com quorum- manager-perfmon
   2   dgx01.ocp4.scale.com    192.168.1.19  dgx01.ocp4.scale.ibm.com    perfmon
   3   dgx02.ocp4.scale.com    192.168.1.20  dgx02.ocp4.scale.ibm.com    perfmon
[ ...  plus additional nodes in the IBM Spectrum Scale client cluster ...]

    In our setup, the local IBM Spectrum Scale cluster remotely mounts an IBM Spectrum Scale file system that is called ess3000_4M from an IBM ESS3000 storage system. For more information about managing access to a remote IBM Spectrum Scale file system, see Accessing a remote GPFS file system and Mounting a remote GPFS file system. 

    # mmremotecluster show

    Cluster name:    ess3000.bda.scale.ibm.com

    Contact nodes:   fscc-fab3-3-a-priv.bda.scale.com,fscc-fab3-3-b-priv.bda.scale.com

    SHA digest: 9c58d9df69804393571044a9f08b005db12345e4cb87637cad83870a9f74c24d

    File systems:    ess3000_4M (ess3000_4M)

    The file system is configured with a 4 MiB block size, which is a good fit for the average image size of 3 - 4 MiB that is used for the autonomous vehicle training data in this paper.

    The IBM ESS3000 and DGX-1 systems are configured to allow all ports on the EDR InfiniBand network to be used for storage I/O, that is, the four NVIDIA Mellanox ConnectX-5 ports on each of the two IBM ESS3000 I/O server nodes, and the four NVIDIA Mellanox ConnectX-4 ports on each DGX-1 system. This configuration provides a total bandwidth of eight InfiniBand EDR 100 Gbps links to the IBM ESS3000 and four to each DGX-1 system.

    In addition to the InfiniBand daemon network for data transfers, we configure an extra IP address on all mlx5_1 interfaces (by using Internet Protocol over InfiniBand and 10.10.11.0/24) on the IBM ESS3000 nodes and the DGX-1 nodes as an extra subnet for 
IBM Spectrum Scale (by using the subnets configuration parameter), which is used for the mmfsd daemon TCP/IP communication over the 100 Gbps link instead of the 1 Gbps admin network. With verbsRdmaSend enabled, the amount of communication over this TCP/IP link is negligible. The 1 Gbps admin network is used as the default admin and daemon network connecting all IBM Spectrum Scale, DGX, and IBM Elastic Storage System (ESS) nodes.

     

    
      
        	
          Note: For more information about using the “subnets” configuration parameter in 
IBM Spectrum Scale, see the following resources:

          •Using public and private IP addresses for GPFS nodes 

          •The mmchconfig command 

        
      

    

    The DGX-1 nodes in the local IBM Spectrum Scale cluster are configured as follows, with verbsRdma, verbsRdmaSend, and verbsPorts enabling InfiniBand RDMA on the DGX-1 worker nodes and enforceFilesetQuotaOnRoot yes and controlSetxattrImmutableSELinux yes as requirements for the IBM Spectrum Scale CSI driver:

    [dgx]

    pagepool 128G

    workerThreads 1024

    ignorePrefetchLUNCount yes

    maxFilesToCache 1M

    maxStatCache 1M

    subnets 10.10.11.0/ess3000.bda.scale.ibm.com;SpectrumScale.ocp4.scale.ibm.com

    verbsRdma enable

    verbsRdmaSend yes

    verbsPorts mlx5_0/1 mlx5_1/1 mlx5_2/1 mlx5_3/1

    [common]

    maxMBpS 20000

    enforceFilesetQuotaOnRoot yes

    controlSetxattrImmutableSELinux yes

    3.4  Installing and configuring more components in the Red Hat OpenShift 4.4.3 stack

    In this section, we complete the following tasks:

    •Describe the Special Resource Operator (SRO) for GPU support.

    •Describe the NVIDIA Mellanox RDMA Shared Device Plugin for InfiniBand RDMA support.

    •Describe Security Context Constraints (SCCs) with the IPC_LOCK capability.

    •Describe service account, role, and role binding per user namespace to grant access to RDMA resources for pods that use the RDMA Shared Device Plugin.

    •Describe the Message Passing Interface (MPI) Operator, which you use to conveniently schedule multi-GPU and multi-node training jobs.

    •Describe the IBM Spectrum Scale Container Storage Interface (CSI), which you use to provide access to data in IBM Spectrum Scale, which offers parallel access to data in a global namespace across worker nodes in the Red Hat OpenShift cluster without needing to duplicate (copy or move) huge amounts of data for model training, model validation, or inference.

    To fully use the GPU and high-performance InfiniBand RDMA capabilities of the DGX-1 systems and shared access to the data in the global namespace of the parallel IBM Spectrum Scale file system, we install more components into the Red Hat OpenShift stack:

    •	SRO for GPU-resources

    •	NVIDIA Mellanox RDMA Shared Device Plugin for InfiniBand RDMA resources

    •	MPI Operator to run orchestrated MPI jobs in Red Hat OpenShift

    •	IBM Spectrum Scale CSI plug-in to access data in the IBM Spectrum Scale file system

    3.4.1  Special Resource Operator

    The SRO extends Red Hat OpenShift to support special resources that need extra management like the NVIDIA GPUs in the DGX-1 systems. Without the SRO, there would be no GPU resource that is known to the cluster, and the appropriate scheduling of pods relying on that resource and providing the correct drivers (like CUDA) would not be available. The SRO (or a similar extension to Red Hat OpenShift) is required to effectively schedule workloads that rely on GPUs in a Red Hat OpenShift cluster. 

    The SRO relies on the NFD operator and its node feature discovery capabilities to label the worker nodes in the Red Hat OpenShift cluster with node-specific attributes, like PCI cards, kernel or OS version, and other components.

    The SRO is also available as an operator in the OperatorHub and can be installed and deployed directly from the Red Hat OpenShift 4 GUI by using the Operator Lifecycle Management framework, as shown in Figure 3-1.
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    Figure 3-1   Special Resource Operator: Installed and deployed directly from the Red Hat OperatorHub

    For this paper, we used the latest version (as of 25 June 17:23 CEST) of SRO on GitHub, which can be installed from the command line by the system admin of the Red Hat OpenShift cluster as follows: 

    1.		Install the NFD operator by running the following commands:

    # git clone https://github.com/openshift/cluster-nfd-operator

    # cd cluster-nfd-operator

    # make deploy

    2.		Install the SRO operator by running the following commands:

    # git clone https://github.com/openshift-psap/special-resource-operator 

    # cd special-resource-operator

    # PULLPOLICY=Always make deploy

    It might take a while for the SRO operator to build the required container images and start all the required pods successfully. During that time, you notice that SRO pods are failing and restarting until all required build processes complete successfully and the SRO pods finally enter a steady running state.

    Make sure that the nouveau kernel module is disabled, which should already be the case when installing the NVIDIA packages for the DGX-1 system. Otherwise, disable the nouveau module manually.

    The SRO adds the following allocatable resources to each DGX-1 worker node (eight GPUs in this case):

    Allocatable:

      nvidia.com/gpu: 8

    With the SRO version that we use for this setup, we must set SElinux on the DGX-1 worker nodes to “permissive” mode so that the SRO can successfully build the required container images and start all the necessary pods.

    3.4.2  NVIDIA Mellanox RDMA Shared Device plug-in

    In addition to the NFD and SRO operators that add NVIDIA GPUs as a new resource in the Red Hat OpenShift cluster, we also must install the NVIDIA Mellanox RDMA Shared Device plug-in to further provide InfiniBand resources to Red Hat OpenShift, which provides non-privileged pods access to GPU and InfiniBand resources and allows Red Hat OpenShift access to scheduled pods requesting these resources. 

    InfiniBand enables high-performance communication between GPUs with the NVIDIA Collective Communications Library (NCCL) so that multi-node workloads can scale out seamlessly across worker nodes. The NVIDIA Mellanox RDMA device plug-in runs as a daemonset on all worker nodes and allows a granular assignment of individual NVIDIA Mellanox InfiniBand resources to pods. 

    To install the RDMA device plug-in, complete the following steps:

    1.	Clone the GitHub repository by running the following command:

    # git clone https://github.com/Mellanox/k8s-rdma-shared-dev-plugin.git

    2.	Follow the instructions at GitHub.

    3.		Create and deploy the configuration map.

    The DGX-1 systems have four single-port NVIDIA Mellanox ConnextX-4 EDR InfiniBand cards (NVIDIA Mellanox Technologies MT27700 Family) that are associated with two NUMA nodes:

    -	    mlx5_0, mlx5_1     (numa0)

    -	    mlx5_2, mlx5_3		     (numa1)

    In our setup, we configured the configuration map for the NVIDIA Mellanox device driver plug-in to make all four InfiniBand ports that are available in Red Hat OpenShift as selectable resources that are named shared_ib0, shared_ib1, shared_ib2, and shared_ib3:

    # cat images/k8s-rdma-shared-dev-plugin-config-map.yaml

    apiVersion: v1

    kind: ConfigMap

    metadata:

      name: rdma-devices

      namespace: kube-system

    data:

      config.json: |

        {

            "configList": [{

                 "resourceName": "shared_ib0",

                 "rdmaHcaMax": 100,

                 "devices": ["ib0"]

               },

               {

                 "resourceName": "shared_ib1",

                 "rdmaHcaMax": 100,

                 "devices": ["ib1"]

               },

               {

                 "resourceName": "shared_ib2",

                 "rdmaHcaMax": 100,

                 "devices": ["ib2"]

               },

               {

                 "resourceName": "shared_ib3",

                 "rdmaHcaMax": 100,

                 "devices": ["ib3"]

               }

            ]

        }

    Then, we deployed the configmap by running the following command:

    # oc apply -f images/k8s-rdma-shared-dev-plugin-config-map.yaml

    4.		Deploy the NVIDIA Mellanox RDMA device plug-in by running the following command:

    # oc apply -f images/k8s-rdma-shared-dev-plugin-ds.yaml

    The device plug-in adds the following allocatable resources to the DGX-1 worker nodes in 
Red Hat OpenShift:

    Allocatable:

      rdma/shared_ib0:    100

      rdma/shared_ib1:    100

      rdma/shared_ib2:    100

      rdma/shared_ib3:    100

    Unlike GPUs, a container can request only one quantity of a specific RDMA resource, for example, rdma/shared_ib0: 1, which enables access to the requested RDMA resource. Higher quantities, for example, rdma/shared_ib0: 2 are not possible. Instead, a container can request access to multiple different RDMA resources concurrently, for example, rdma/shared_ib0: 1, rdma/shared_ib1: 1, and so on.

    The GitHub repository provides a mofed-test-pod that can be adapted to the local configuration and used by the system admin to check proper RDMA functions, for example:

    # cat ../k8s-rdma-shared-dev-plugin/example/test-hca-pod.yaml 

    apiVersion: v1

    kind: Pod

    metadata:

      name: mofed-test-pod

    spec:

      restartPolicy: OnFailure

      containers:

      - image: mellanox/centos_7_4_mofed_4_2_1_2_0_0_60

        name: mofed-test-ctr

        securityContext:

          capabilities:

            add: [ "IPC_LOCK" ]

        resources:

          limits:

            rdma/shared_ib0: 1

            rdma/shared_ib1: 1

            rdma/shared_ib2: 1

            rdma/shared_ib3: 1

        command:

        - sh

        - -c

        - |

          ls -l /dev/infiniband /sys/class/net

          sleep 1000000

    You can log in to the running pod by running oc rsh mofed-test-pod and run regular ibstat, ibhosts, ib_write_bw, and similar commands to verify the connectivity across your InfiniBand network interactively. 

    3.4.3  Enabling the IPC_LOCK capability in the user namespace for the RDMA Shared Device plug-in

    Using the RDMA device plug-in requires the IPC_LOCK capability from the Red Hat OpenShift security context. This capability is not generally available to a regular user who is normally running under the “restricted” SCCs in Red Hat OpenShift 4. However, the system admin has access to the “privileged” SCC and can immediately run the mofed-test-pod that is mention in 3.4.2, “NVIDIA Mellanox RDMA Shared Device plug-in” on page 18.

    To allow a regular user to run jobs requesting the IPC_LOCK capability (for example, for jobs requesting RDMA resources for optimal multi-GPU usage across nodes), the system admin can add, for example, a new SCC that is derived from the “restricted” SCC, and extend it by using the IPC_LOCK capability: 

    defaultAddCapabilities:

    - IPC_LOCK

    To make the new SCC available to a user's namespace, the system admin must create a service account, a role binding, and a role referencing this new SCC by completing the following steps:

    1.	Create an SCC that includes the IPC_LOCK capability.

    We create and apply an SCC that is derived from the “restricted” SCC, add the IPC_LOCK capability, and name it scc-for-mpi because we intend to use it when running MPI jobs requesting multiple GPUs.

    # apply -f mpi-scc.yaml

    # cat mpi-scc.yaml

    allowHostDirVolumePlugin: false

    allowHostIPC: false

    allowHostNetwork: false

    allowHostPID: false

    allowHostPorts: false

    allowPrivilegeEscalation: true

    allowPrivilegedContainer: false

    allowedCapabilities: null

    apiVersion: security.openshift.io/v1

    defaultAddCapabilities: 

    - IPC_LOCK

    fsGroup:

      type: MustRunAs

    groups:

    - system:authenticated

    kind: SecurityContextConstraints

    metadata:

      annotations:

        kubernetes.io/description: cloned from restricted SCC adds IPC_LOCK 

      name: scc-for-mpi

    priority: null

    readOnlyRootFilesystem: false

    requiredDropCapabilities:

    - KILL

    - MKNOD

    - SETUID

    - SETGID

    runAsUser:

      type: MustRunAsRange

    seLinuxContext:

      type: MustRunAs

    supplementalGroups:

      type: RunAsAny

    users: 

    - system:serviceaccount:name-of-user-namespace:mpi

    volumes:

    - configMap

    - downwardAPI

    - emptyDir

    - persistentVolumeClaim

    - projected

    - secret

    2.	Create a service account in the user's namespace.

    We create a service account with the name mpi in the user's namespace:

    # apply -f mpi-sa.yaml

    # cat mpi-sa.yaml

    apiVersion: v1

    kind: ServiceAccount

    metadata:

      name: mpi

      namespace: name-of-user-namespace

    3.	Create a role in the user's namespace.

    We create a role with the name mpi in the user's namespace that is referring to the newly created SCC that is named scc-for-mpi that includes the IPC_LOCK capability:

    # apply -f mpi-role.yaml

    # cat mpi-role.yaml

    apiVersion: rbac.authorization.k8s.io/v1

    kind: Role

    metadata:

      name: mpi

      namespace: name-of-user-namespace

    rules:

    - apiGroups:

      - security.openshift.io

      resources:

      - securitycontextconstraints

      verbs:

      - use

      resourceNames:

      - scc-for-mpi

    4.	Create a role binding in the user's namespace.

    We create a role binding with the name mpi in the user's namespace that connects the service account MPI with the role MPI:

    # apply -f mpi-rolebinding.yaml

    # cat mpi-rolebinding.yaml

    apiVersion: rbac.authorization.k8s.io/v1

    kind: RoleBinding

    metadata:

      name: mpi

      namespace: name-of-user-namespace

    roleRef:

      apiGroup: rbac.authorization.k8s.io

      kind: Role

      name: mpi

      namespace: name-of-user-namespace

    subjects:

    - kind: ServiceAccount

      name: mpi

      namespace: name-of-user-namespace

    userNames:

    - system:serviceaccount:name-of-user-namespace:mpi

    A regular user in this namespace (also called project in Red Hat OpenShift) can now run a pod under the created service account mpi and fully use RDMA resources by adding the service account and the IPC_LOCK capability to the pod's spec section in the YAML:

    spec:

      serviceAccount: mpi 

      serviceAccountName: mpi 

      containers:

      - name: your-container-name:tag

      image: your-container-image:tag

      securityContext:

        capabilities:

        add: [ "IPC_LOCK" ]

    This service account is bound to a namespace. The mpi service account, role, and role binding must be applied to every namespace that must run jobs with the IPC_LOCK capability and then added to the SCC. 

     

    
      
        	
          Note: In Red Hat OpenShift 4.4.3, we also must add LimitMEMLOCK=infinity to the default system settings of cri-o under [Service] in /usr/lib/systemd/system/cri-o.service on all DGX-1 worker nodes to propagate an unlimited ulimit setting of max locked memory to the pods. Otherwise, RDMA transfers (for example, with ib_send_bw) in a non-privileged pod as non-root user fail with the following error:

          sh-4.2$ ib_write_bw dgx02 -d mlx5_1

          Couldn't allocate MR

          failed to create mrd

          Failed to create MR

          Couldn't create IB resources

          If the attribute is not present, then add it and restart cri-o:

          # systemctl daemon-reload

          # systemctl restart cri-o

          This step might no longer be necessary in future Red Hat OpenShift 4 releases beyond Version 4.4.3.

        
      

    

    3.4.4  MPI Operator

    We use MPI Operator for distributed AI workloads to scale out across GPUs and worker nodes. To achieve this configuration, we use the MPI Operator project on GitHub, which makes it easy to run distributed AI workloads as MPI jobs on Kubernetes and Red Hat OpenShift.

    The MPI Operator can be installed as follows:

    # git clone https://github.com/kubeflow/mpi-operator.git

    # cd mpi-operator/

    # oc apply -f deploy/v1alpha2/mpi-operator.yaml 

    The MPI Operator allows users to define and run MPIJob resources, as shown in 4.3, “MPIJob definition” on page 33. 

    3.4.5  IBM Spectrum Scale CSI

    IBM Spectrum Scale is a scalable software-defined storage (SDS) solution from IBM for today's enterprise AI workloads that ensures security, reliability, and high performance at scale. As a distributed parallel file system, it provides a global namespace for your data. The data can easily be made accessible to workloads running in Red Hat OpenShift or Kubernetes by using the IBM Spectrum Scale CSI plug-in. The Container Storage Interface was introduced as an alpha function in Kubernetes V1.9 and promoted to general availability in Kubernetes V1.13. 

    With IBM Spectrum Scale CSI, you can provision persistent volumes (PVs) in Kubernetes and Red Hat OpenShift with IBM Spectrum Scale as the storage back end. These PVs can be either dynamically provisioned at a user's request (dynamic provisioning) by using a persistent volume claim (PVC) and a storage class, or statically provisioned by a system admin when a specific path with existing data in IBM Spectrum Scale should directly be made available to users for their AI training or inference workloads to share direct access to huge amounts of training or inference data and models. Then, users can request these statically provisioned volumes like when using PVCs and labels to specify exactly which PVs (that is, which data) in which they are interested.

    The IBM Spectrum Scale CSI Operator can deploy and manage the CSI plug-in for 
IBM Spectrum Scale. The IBM Spectrum Scale CSI plug-in requires a running IBM Spectrum Scale cluster with access to the IBM Spectrum Scale GUI. In this paper, we use 
IBM Spectrum Scale CSI V2.0.0.

    You can deploy the IBM Spectrum Scale CSI plug-in by installing the IBM Spectrum Scale CSI Operator from the OperatorHub in the Red Hat OpenShift GUI, as shown in Figure 3-2.
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    Figure 3-2   IBM Spectrum Scale CSI plug-in installed and deployed directly from Red Hat OperatorHub

    To configure the IBM Spectrum Scale CSI Operator, follow the documentation that is provided in the operator. For more information and the full documentation of IBM Spectrum Scale CSI, see IBM Knowledge Center and IBM Spectrum Scaale CSI Driver for Container Persistent Storage, REDP-5589.

    To prepare your environment, follow the instructions at Performing pre-installation tasks. In our setup, we label the Red Hat OpenShift DGX-1 worker nodes to specify where the 
IBM Spectrum Scale client is installed and where the IBM Spectrum Scale CSI driver should run:

    # oc label node dgx01.ocp4.scale.ibm.com scale=true --overwrite=true

    # oc label node dgx02.ocp4.scale.ibm.com scale=true --overwrite=true

    Ensure that the controlSetxattrImmutableSELinux parameter is set to yes by running the following command (this parameter is especially important for Red Hat OpenShift):

    # mmchconfig controlSetxattrImmutableSELinux=yes -i

    The following IBM Spectrum Scale CSI driver configuration in the IBM Spectrum Scale CSI Operator custom resource YAML is used in this setup, which is composed of a local 
IBM Spectrum Scale cluster (ID 16217308676014575381 with GUI on 192.168.1.30 with the primary file system fs0 that is being used for hosting IBM Spectrum Scale configuration data) and a remote IBM ESS3000 cluster (ID 215057217487177715 with GUI on 192.168.1.52 hosting the remote file system ess3000_4M):

    apiVersion: csi.ibm.com/v1

    kind: CSIScaleOperator

    metadata:

      labels:

        app.kubernetes.io/instance: ibm-spectrum-scale-csi-operator

        app.kubernetes.io/managed-by: ibm-spectrum-scale-csi-operator

        app.kubernetes.io/name: ibm-spectrum-scale-csi-operator

      name: ibm-spectrum-scale-csi

      release: ibm-spectrum-scale-csi-operator

      namespace: ibm-spectrum-scale-csi-driver

    spec:

      # cluster definitions

      clusters:

        - id: '16217308676014575381'

          primary:

            primaryFs: fs0

            primaryFset: csifset

          restApi:

            - guiHost: 192.168.1.30

          secrets: csisecret-local

          secureSslMode: false

        - id: '215057217487177715'

          restApi:

            - guiHost: 192.168.1.52

          secrets: csisecret-remote

          secureSslMode: false

      scaleHostpath: /gpfs/fs0

      # node selector

      attacherNodeSelector:

        - key: scale

          value: "true"

      provisionerNodeSelector:

        - key: scale

          value: "true"

      pluginNodeSelector:

        - key: scale

          value: "true"

    status: {}

    For more information about the IBM Spectrum Scale CSI Operator custom resource YAML, see IBM Spectrum Scale Container Storage Interface driver configurations.

  
[image: ]
[image: ]

Preparation and functional testing

    This chapter provides more information about how to prepare the environment, that is, configuring persistent volumes (PVs) and defining YAML for running Message Passing Interface (MPI) jobs. It also provides baseline tests to ensure proper network performance and multi-node and multi-GPU communications tests with the NVIDIA Collective Communications Library (NCCL). The chapter concludes with initial GPU scaling tests running the ResNet-50 benchmark on synthetic data.

    4.1  Testing remote direct memory access through an InfiniBand network

    If you have not done so during the installation (see Chapter 3, “Installation” on page 9), you should check that remote direct memory access (RDMA) over InfiniBand is working properly. A quick test to access resources over an InfiniBand connection and to verify link throughput can be done as shown in the following steps:

    1.	Start ib_write_bw in listening mode on one DGX-1 system. In our example, we use dgx02.

    [root@dgx02 ~]# ib_write_bw 

    ************************************

    * Waiting for client to connect... *

    ************************************

    2.	Start the following test pod by using nodeName: dgx01.ocp4.scale.ibm.com to schedule the pod on the other DGX-1 system:

    # oc apply -f nv-rdma-batch-job-run.yaml

    # cat nv-rdma-batch-job-run.yaml

    apiVersion: batch/v1

    kind: Job

    metadata:

      name: mofed-test-job

    spec:

      template:

        spec:

          restartPolicy: OnFailure

          serviceAccount: mpi

          serviceAccountName: mpi

          nodeName: dgx01.ocp4.scale.ibm.com

          containers:

          - image: mellanox/centos_7_4_mofed_4_2_1_2_0_0_60

            name: mofed-test-ctr

            resources:

              limits:

                rdma/shared_ib0: 1

                rdma/shared_ib1: 1

                rdma/shared_ib2: 1

                rdma/shared_ib3: 1

            securityContext:

              capabilities:

                add: [ "IPC_LOCK" ]

            command: ["/bin/sh","-c"]

            args: ["whoami; ls -l /dev/infiniband /sys/class/net; ibstatus; set -x; for i in 0 1 2 3; do ibhosts -C mlx5_$i; done; ib_write_bw dgx02 -d mlx5_1"]

    Wait for the job to complete and look at the job's log:

    # oc logs job.batch/mofed-test-job

    1075480000

    /dev/infiniband:

    total 0

    crw-rw-rw-. 1 root root 231,  64 Jul  6 15:52 issm0

    crw-rw-rw-. 1 root root 231,  65 Jul  6 15:52 issm1

    crw-rw-rw-. 1 root root 231,  66 Jul  6 15:52 issm2

    crw-rw-rw-. 1 root root 231,  67 Jul  6 15:52 issm3

    crw-rw-rw-. 1 root root  10,  57 Jul  6 15:52 rdma_cm

    crw-rw-rw-. 1 root root 231, 224 Jul  6 15:52 ucm0

    crw-rw-rw-. 1 root root 231, 225 Jul  6 15:52 ucm1

    crw-rw-rw-. 1 root root 231, 226 Jul  6 15:52 ucm2

    crw-rw-rw-. 1 root root 231, 227 Jul  6 15:52 ucm3

    crw-rw-rw-. 1 root root 231,   0 Jul  6 15:52 umad0

    crw-rw-rw-. 1 root root 231,   1 Jul  6 15:52 umad1

    crw-rw-rw-. 1 root root 231,   2 Jul  6 15:52 umad2

    crw-rw-rw-. 1 root root 231,   3 Jul  6 15:52 umad3

    crw-rw-rw-. 1 root root 231, 192 Jul  6 15:52 uverbs0

    crw-rw-rw-. 1 root root 231, 193 Jul  6 15:52 uverbs1

    crw-rw-rw-. 1 root root 231, 194 Jul  6 15:52 uverbs2

    crw-rw-rw-. 1 root root 231, 195 Jul  6 15:52 uverbs3

     

    /sys/class/net:

    total 0

    lrwxrwxrwx. 1 root root 0 Jul  6 15:52 eth0 -> ../../devices/virtual/net/eth0

    lrwxrwxrwx. 1 root root 0 Jul  6 15:52 lo -> ../../devices/virtual/net/lo

    Infiniband device 'mlx5_0' port 1 status:

            default gid:     fe80:0000:0000:0000:ec0d:9a03:0044:d2d0

            base lid:        0xb

            sm lid:          0x9

            state:           4: ACTIVE

            phys state:      5: LinkUp

            rate:            100 Gb/sec (4X EDR)

            link_layer:      InfiniBand

     

    Infiniband device 'mlx5_1' port 1 status:

            default gid:     fe80:0000:0000:0000:ec0d:9a03:0044:d608

            base lid:        0xd

            sm lid:          0x9

            state:           4: ACTIVE

            phys state:      5: LinkUp

            rate:            100 Gb/sec (4X EDR)

            link_layer:      InfiniBand

     

    Infiniband device 'mlx5_2' port 1 status:

            default gid:     fe80:0000:0000:0000:ec0d:9a03:006e:fef2

            base lid:        0xc

            sm lid:          0x9

            state:           4: ACTIVE

            phys state:      5: LinkUp

            rate:            100 Gb/sec (4X EDR)

            link_layer:      InfiniBand

     

    Infiniband device 'mlx5_3' port 1 status:

            default gid:     fe80:0000:0000:0000:ec0d:9a03:0044:bda4

            base lid:        0xe

            sm lid:          0x9

            state:           4: ACTIVE

            phys state:      5: LinkUp

            rate:            100 Gb/sec (4X EDR)

            link_layer:      InfiniBand

     

    + for i in 0 1 2 3

    + ibhosts -C mlx5_0

    Ca      : 0x248a0703001f0426 ports 1 "dgx02 HCA-3"

    Ca      : 0x98039b0300a8b706 ports 1 "Mellanox Technologies Aggregation Node"

    Ca      : 0x248a0703001f0786 ports 1 "dgx02 HCA-4"

    Ca      : 0xec0d9a03006efef2 ports 1 "dgx01 HCA-3"

    Ca      : 0xec0d9a030044bda4 ports 1 "dgx01 HCA-4"

    Ca      : 0x248a0703001ef46e ports 1 "dgx02 HCA-2"

    Ca      : 0x248a0703001ef3a2 ports 1 "dgx02 HCA-1"

    Ca      : 0xec0d9a030044d608 ports 1 "dgx01 HCA-2"

    Ca      : 0x98039b03005cd071 ports 1 "fscc-fab3-3-a HCA-3"

    Ca      : 0x98039b03005cbe79 ports 1 "fscc-fab3-3-b HCA-5"

    Ca      : 0x98039b03005cbe78 ports 1 "fscc-fab3-3-b HCA-4"

    Ca      : 0x98039b03005cbdd0 ports 1 "fscc-fab3-3-b HCA-2"

    Ca      : 0x98039b03005cd081 ports 1 "fscc-fab3-3-a HCA-5"

    Ca      : 0x98039b03005cd070 ports 1 "fscc-fab3-3-a HCA-2"

    Ca      : 0x98039b03005cd080 ports 1 "fscc-fab3-3-a HCA-4"

    Ca      : 0x98039b03005cbdd1 ports 1 "fscc-fab3-3-b HCA-3"

    Ca      : 0xec0d9a030044d2d0 ports 1 "dgx01 HCA-1"

    + for i in 0 1 2 3

    + ibhosts -C mlx5_1

    Ca      : 0x248a0703001f0426 ports 1 "dgx02 HCA-3"

    Ca      : 0x98039b0300a8b706 ports 1 "Mellanox Technologies Aggregation Node"

    Ca      : 0xec0d9a03006efef2 ports 1 "dgx01 HCA-3"

    Ca      : 0x248a0703001f0786 ports 1 "dgx02 HCA-4"

    Ca      : 0xec0d9a030044bda4 ports 1 "dgx01 HCA-4"

    Ca      : 0x248a0703001ef46e ports 1 "dgx02 HCA-2"

    Ca      : 0x248a0703001ef3a2 ports 1 "dgx02 HCA-1"

    Ca      : 0xec0d9a030044d2d0 ports 1 "dgx01 HCA-1"

    Ca      : 0x98039b03005cd071 ports 1 "fscc-fab3-3-a HCA-3"

    Ca      : 0x98039b03005cbe79 ports 1 "fscc-fab3-3-b HCA-5"

    Ca      : 0x98039b03005cbe78 ports 1 "fscc-fab3-3-b HCA-4"

    Ca      : 0x98039b03005cbdd0 ports 1 "fscc-fab3-3-b HCA-2"

    Ca      : 0x98039b03005cd081 ports 1 "fscc-fab3-3-a HCA-5"

    Ca      : 0x98039b03005cd070 ports 1 "fscc-fab3-3-a HCA-2"

    Ca      : 0x98039b03005cd080 ports 1 "fscc-fab3-3-a HCA-4"

    Ca      : 0x98039b03005cbdd1 ports 1 "fscc-fab3-3-b HCA-3"

    Ca      : 0xec0d9a030044d608 ports 1 "dgx01 HCA-2"

    + for i in 0 1 2 3

    + ibhosts -C mlx5_2

    Ca      : 0x248a0703001f0426 ports 1 "dgx02 HCA-3"

    Ca      : 0x98039b0300a8b706 ports 1 "Mellanox Technologies Aggregation Node"

    Ca      : 0x248a0703001f0786 ports 1 "dgx02 HCA-4"

    Ca      : 0xec0d9a030044bda4 ports 1 "dgx01 HCA-4"

    Ca      : 0x248a0703001ef3a2 ports 1 "dgx02 HCA-1"

    Ca      : 0x248a0703001ef46e ports 1 "dgx02 HCA-2"

    Ca      : 0xec0d9a030044d608 ports 1 "dgx01 HCA-2"

    Ca      : 0xec0d9a030044d2d0 ports 1 "dgx01 HCA-1"

    Ca      : 0x98039b03005cd071 ports 1 "fscc-fab3-3-a HCA-3"

    Ca      : 0x98039b03005cbe79 ports 1 "fscc-fab3-3-b HCA-5"

    Ca      : 0x98039b03005cbe78 ports 1 "fscc-fab3-3-b HCA-4"

    Ca      : 0x98039b03005cbdd0 ports 1 "fscc-fab3-3-b HCA-2"

    Ca      : 0x98039b03005cd081 ports 1 "fscc-fab3-3-a HCA-5"

    Ca      : 0x98039b03005cd070 ports 1 "fscc-fab3-3-a HCA-2"

    Ca      : 0x98039b03005cd080 ports 1 "fscc-fab3-3-a HCA-4"

    Ca      : 0x98039b03005cbdd1 ports 1 "fscc-fab3-3-b HCA-3"

    Ca      : 0xec0d9a03006efef2 ports 1 "dgx01 HCA-3"

    + for i in 0 1 2 3

    + ibhosts -C mlx5_3

    Ca      : 0x248a0703001f0426 ports 1 "dgx02 HCA-3"

    Ca      : 0x98039b0300a8b706 ports 1 "Mellanox Technologies Aggregation Node"

    Ca      : 0x248a0703001f0786 ports 1 "dgx02 HCA-4"

    Ca      : 0xec0d9a03006efef2 ports 1 "dgx01 HCA-3"

    Ca      : 0x248a0703001ef46e ports 1 "dgx02 HCA-2"

    Ca      : 0x248a0703001ef3a2 ports 1 "dgx02 HCA-1"

    Ca      : 0xec0d9a030044d608 ports 1 "dgx01 HCA-2"

    Ca      : 0xec0d9a030044d2d0 ports 1 "dgx01 HCA-1"

    Ca      : 0x98039b03005cd071 ports 1 "fscc-fab3-3-a HCA-3"

    Ca      : 0x98039b03005cbe79 ports 1 "fscc-fab3-3-b HCA-5"

    Ca      : 0x98039b03005cbe78 ports 1 "fscc-fab3-3-b HCA-4"

    Ca      : 0x98039b03005cbdd0 ports 1 "fscc-fab3-3-b HCA-2"

    Ca      : 0x98039b03005cd081 ports 1 "fscc-fab3-3-a HCA-5"

    Ca      : 0x98039b03005cd070 ports 1 "fscc-fab3-3-a HCA-2"

    Ca      : 0x98039b03005cd080 ports 1 "fscc-fab3-3-a HCA-4"

    Ca      : 0x98039b03005cbdd1 ports 1 "fscc-fab3-3-b HCA-3"

    Ca      : 0xec0d9a030044bda4 ports 1 "dgx01 HCA-4"

    + ib_write_bw dgx02 -d mlx5_1

    Conflicting CPU frequency values detected: 3403.930000 != 3029.296000. CPU Frequency is not max.

    ---------------------------------------------------------------------------------------

                        RDMA_Write BW Test

     Dual-port       : OFF          Device         : mlx5_1

     Number of qps   : 1            Transport type : IB

     Connection type : RC           Using SRQ      : OFF

     TX depth        : 128

     CQ Moderation   : 100

     Mtu             : 4096[B]

     Link type       : IB

     Max inline data : 0[B]

     rdma_cm QPs     : OFF

     Data ex. method : Ethernet

    ---------------------------------------------------------------------------------------

     local address: LID 0x0d QPN 0x16cb PSN 0xa2ff90 RKey 0x038f5c VAddr 0x007fa65e670000

     remote address: LID 0x12 QPN 0x2251 PSN 0x914a1d RKey 0x0a82f8 VAddr 0x007f451bb10000

    ---------------------------------------------------------------------------------------

     #bytes     #iterations    BW peak[MB/sec]    BW average[MB/sec]   MsgRate[Mpps]

     65536      5000             11300.40            11264.11                  0.180226

    ---------------------------------------------------------------------------------------

    You should see the correct information about all the InfiniBand interfaces and observe a throughput of at least 11,000 MBps for a single point-to-point InfiniBand EDR connection on a DGX-1 system.

    4.2  Preparing persistent volumes with IBM Spectrum Scale Container Storage Interface

    The overall amount of data that is used for model building, model evaluation, or inference in Enterprise AI environments is typically huge, and multiple users (for example, data scientists) require access to the shared data in parallel with their containerized applications running on multiple worker nodes in the Red Hat OpenShift cluster. Only a parallel file system like 
IBM Spectrum Scale can meet all these requirements while providing extreme scalability and ensuring security, reliability, and high performance. 

    IBM Spectrum Scale offers parallel access to data in a global namespace from every worker node in the cluster without needing to duplicate (copy or move) huge amounts of data that is needed for model training, model validation, or inference. With its additional features like Active File Management (AFM) to provide access to the global namespace across globally dispersed IBM Spectrum Scale clusters and also allow data access and data ingestion through SMB, NFS, and S3 Object protocols, it truly meets the expectations of a universal “data lake”.

    In this section, we introduce a basic example of how to provision a PV with IBM Spectrum Scale Container Storage Interface (CSI) to provide access to existing training data in 
IBM Spectrum Scale for containerized applications running AI workloads.

    The IBM Spectrum Scale CSI driver provides: 

    •Dynamic provisioning of new PVs for containers in a self-service manner based on storage classes (see Dynamic provisioning).

    •Static provisioning (see Static provisioning) for exposing existing paths and data in 
IBM Spectrum Scale to containerized workloads in Red Hat OpenShift. 

    In this paper, we use static provisioning to share access to a directory that is named adas, which is in the ess3000_4M IBM Spectrum Scale file system on the IBM ESS3000. This directory holds all the training data, models, and training scripts. You can also use different directories and PVs for training data (for example, shared input data with read only permissions), an individual user's workspace for training scripts (individual read/write access), and models (shared output data with read/write access).

    Once claimed, PVs are bound to a namespace and cannot be used across different namespaces. So, to make this directory available to users with different namespaces, the system admin must create one or more PVs (adjust the name of the PV in the following YAML example, for example, pv01, pv02, pv03, and so on, depending on how many namespaces require access to the data) referencing this specific path in IBM Spectrum Scale: 

    # oc apply -f nv-pv01.yaml 

    # cat nv-pv01.yaml 

    apiVersion: v1

    kind: PersistentVolume

    metadata:

      name: "adas-data-pv01"

      labels:

        type: data

        dept: adas

    spec:

      storageClassName: static

      capacity:

        storage: 100Gi

      accessModes:

        - ReadWriteMany

      csi:

        driver: spectrumscale.csi.ibm.com

        volumeHandle: "16217308676014575381;099B6A7A:5EB99743;path=/gpfs/ess3000_4M/adas"

    The following items must be specified in the csi: volumeHandle stanza: 

    •The local IBM Spectrum Scale cluster ID (for example, 16217308676014575381, as shown by mmlscluster)

    •The file system UID (for example, 099B6A7A:5EB99743, as shown by mmlsfs ess3000_4M --uid) 

    •The directory path (for example, /gpfs/ess3000_4M/adas) to the directory that we want to make accessible for the containerized AI workloads

    In addition, we annotate the volume with a storageClassName “static” (make sure that there is no real storage class with this name) and use labels like type: data and dept: adas to allow a user to bind a PV with these specific attributes to a persistent volume claim (PVC) referencing these labels to match.

    After the PV (or a set of these volumes) is created by the system admin, a user can request this volume to be bound to their namespace by issuing a PVC by using storageClassName: static and a selector to match the labels type: data and dept: adas:

    # oc apply -f nv-data-pvc.yaml

    # cat nv-data-pvc.yaml

    kind: PersistentVolumeClaim

    apiVersion: v1

    metadata:

      name: "adas-data-pvc"

    spec:

      storageClassName: static

      accessModes:

      - ReadWriteMany

      resources:

        requests:

          storage: 100Gi

      selector: 

        matchLabels:

          type: data

          dept: adas

    After a user successfully binds the PV to their namespace, it stays bound to the user's namespace until the user deletes the PVC.

    ReadWriteMany (RWX) is an access mode for the volume that ensures that the volume can be used in multiple pods in the user's namespace in parallel and across physical worker nodes concurrently. RWX is convenient for running MPI jobs with multiple worker pods across multiple nodes that all need access to the same data. 

    In the pod's YAML, the PVC can be applied as follows to mount the data in IBM Spectrum Scale under /gpfs/ess3000_4M/adas/ to the directory /workspace within the container:

    			spec:

              containers:

              - name: your-container-name

                image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                volumeMounts:

                - name: a2d2-data

                  mountPath: /workspace

              volumes:

              - name: a2d2-data

                persistentVolumeClaim:

                  claimName: adas-data-pvc

    4.3  MPIJob definition

    We use the MPI Operator for distributed AI workloads to scale out across GPUs and worker nodes by using the MPI Operator project on GitHub, which makes it easy to run distributed AI workloads as MPI jobs on Kubernetes and Red Hat OpenShift.

    With the MPI Operator installed, we can use the MPIJob resource to run a multi-GPU and multi-node AI workload with a single MPI job on a Red Hat OpenShift cluster. In this paper, we start deep neural network (DNN) training jobs by using the NVIDIA GPU Cloud (NGC) TensorFlow 2 image (nvcr.io/nvidia/tensorflow:20.03-tf2-py3) in the user's namespace with the following MPIJob YAML:

    # cat nv-tf2-job-a2d2.yaml 

    apiVersion: kubeflow.org/v1alpha2

    kind: MPIJob

    metadata:

      name: tf2-a2d2-16x01x02-gpu

    spec:

      slotsPerWorker: 1

      cleanPodPolicy: Running

      mpiReplicaSpecs:

        Launcher:

          replicas: 1

          template:

            spec:

              containers:

              - name: tf2-a2d2-16x01x02-gpu

                image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                imagePullPolicy: IfNotPresent           

                command:

                - mpirun

                - -np

                - "16"

                - -wdir

                - "/workspace/scripts/tf2_comparison/hvd"

                - -bind-to

                - none

                - -map-by

                - slot

                - -x

                - NCCL_DEBUG=INFO

                - -x

                - NCCL_IB_DISABLE=0

                - -x

                - NCCL_NET_GDR_LEVEL=1

                - -x

                - LD_LIBRARY_PATH

                - -x

                - PATH

                - -mca

                - pml

                - ob1

                - -mca

                - btl

                - ^openib

                - python

                - main.py

                - --model_dir=checkpt

                - --batch_size=16

                - --exec_mode=train 

                - --max_steps=16000

        Worker:

          replicas: 16

          template:

            spec:

              serviceAccount: mpi 

              serviceAccountName: mpi 

              containers:

              - name: tf2-a2d2-16x01x02-gpu

                image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                imagePullPolicy: IfNotPresent            

                env:

                - name: IBV_DRIVERS

                  value: "/usr/lib/libibverbs/libmlx5"

                securityContext:

                  runAsUser: 1075481000

                  runAsGroup: 1075481000

                  capabilities:

                    add: [ "IPC_LOCK" ]

                resources:

                  limits:

                    nvidia.com/gpu: 1

                    rdma/shared_ib0: 1

                    rdma/shared_ib1: 1

                    rdma/shared_ib2: 1

                    rdma/shared_ib3: 1

                volumeMounts:

                - name: a2d2-data

                  mountPath: /workspace

                - name: dshm

                  mountPath: /dev/shm

              volumes:

              - name: a2d2-data

                persistentVolumeClaim:

                  claimName: adas-data-pvc

              - name: dshm

                emptyDir:

                  medium: Memory

    This MPI job has one launcher pod running the mpirun command on 16 worker pods with each of them running with a single GPU (nvidia.com/gpu: 1) and having access to all four InfiniBand ports (rdma/shared_ibX: 1; X=0,1,2,3) on the DGX-1 systems. The worker pods run under the previously created service account mpi in the user's namespace and use the additional IPC_LOCK capability of the scc-for-mpi Security Context Constraints (SCCs). In addition, we specify a user and group ID for the worker pods that matches the UID/GID of the data directory.

    The NCCL environment variables NCCL_IB_DISABLE=0 and NCCL_NET_GDR_LEVEL=1 explicitly enable InfiniBand RDMA and GPUDirect RDMA (GDRDMA) support on the worker pods, which provides the best performance in our setup. These environment variables can be used to switch between the following NCCL modes:

    •TCP mode:

    NCCL_IB_DISABLE=1

    NCCL_NET_GDR_LEVEL=0

    •Without GDRDMA:

    NCCL_IB_DISABLE=0

    NCCL_NET_GDR_LEVEL=0

    •With GDRDMA:

    NCCL_IB_DISABLE=0

    NCCL_NET_GDR_LEVEL=1

    In addition to the PVC adas-data-pvc that mounts the /gpfs/ess3000_4M/adas directory of the IBM Spectrum Scale file system to the /workspace directory in the worker pod's NGC TensorFlow v2 container, we also mount a POSIX shared memory volume as /dev/shm that is backed by emptyDir: medium: memory into the container that provides optimized communication path options for NCCL under certain conditions. 

    The /workspace directory in each worker pod provides access to both the training data under /workspace/dataset and to the Python scripts at /workspace/scripts, where the code of the DNN training is. The checkpoints of each training run are written to the same directory that provides the Python scripts. 

    The mpirun command changes the active working directory in the worker pods to /workspace/scripts/tf2_comparison/hvd and starts 16 tasks that run the Python script main.py with options --model_dir=checkpt --batch_size=16 --exec_mode=train --max_steps=16000 in each of the 16 worker pods with one GPU. We reduced the max_steps to 16,000 so that we can run multiple training runs in an acceptable time. The training typically runs with many more steps and last for days and not just hours. 

    4.4  Connectivity tests with the NVIDIA Collective Communications Library

    The NCCL implements multi-GPU and multi-node collective communication primitives that are performance-optimized for NVIDIA GPUs. NCCL provides routines such as all-gather, all-reduce, broadcast, reduce, and reduce-scatter that are optimized to achieve high bandwidth and low latency over PCIe, NVLink, and other high-speed interconnects. 

    NCCL supports an arbitrary number of GPUs that is installed in a single node or across multiple nodes and can be used in either single- or multi-process (for example, MPI) applications. The code with examples is provided at GitHub. 

    The system admin can quickly run an initial test job to check GPU communication with the NCCL on each DGX-1 worker node (eight GPUs per DGX-1) by running a Kubernetes job as follows:

    # oc apply -f nv-nccl-batch-job.yaml

    # cat nv-nccl-batch-job.yaml

    apiVersion: batch/v1

    kind: Job

    metadata:

      name: nv-nccl

    spec:

      template:

        spec:

          nodeName: dgx01.ocp4.scale.ibm.com

          containers:

          - name: nv-nccl

            image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

            imagePullPolicy: IfNotPresent

            command: ["/bin/sh","-c"]

            args: ["nvidia-smi && nvidia-smi topo -m && git clone https://github.com/NVIDIA/nccl-tests.git && cd nccl-tests && make && ./build/all_reduce_perf -b 8 -e 256M -f 2 -g 8"]

            resources:

              limits:

                nvidia.com/gpu: 8

          restartPolicy: Never 

    Under nodeName, you can specify the DGX-1 worker node on which you want to run this job. Example 4-1 shows the output of the completed job (for example, oc logs job.batch/nv-nccl), which provides information about the GPUs (nvidia-smi), the GPU topology (nvidia-smi topo -m), and a table with the measurement results of the NCCL all_reduce_perf test running on eight GPUs (-g 8) and scanning 8 bytes (-b 8) - 256 MB 
(-e 256M). 

    Example 4-1   GPU information, GPU topology, and NCCL measurement results for single-node batch job with 8 GPUs

    [image: ]

    [root@fscc-sr650-6 nccl]# oc logs job.batch/nv-nccl

    Mon Jul  6 12:00:05 2020       

    +-----------------------------------------------------------------------------+

    | NVIDIA-SMI 440.33.01    Driver Version: 440.33.01    CUDA Version: 10.2     |

    |-------------------------------+----------------------+----------------------+

    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |

    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |

    |===============================+======================+======================|

    |   0  Tesla V100-SXM2...  On   | 00000000:06:00.0 Off |                    0 |

    | N/A   32C    P0    58W / 300W |      0MiB / 16160MiB |      0%      Default |

    +-------------------------------+----------------------+----------------------+

    |   1  Tesla V100-SXM2...  On   | 00000000:07:00.0 Off |                    0 |

    | N/A   34C    P0    44W / 300W |      0MiB / 16160MiB |      0%      Default |

    +-------------------------------+----------------------+----------------------+

    |   2  Tesla V100-SXM2...  On   | 00000000:0A:00.0 Off |                    0 |

    | N/A   34C    P0    42W / 300W |      0MiB / 16160MiB |      0%      Default |

    +-------------------------------+----------------------+----------------------+

    |   3  Tesla V100-SXM2...  On   | 00000000:0B:00.0 Off |                    0 |

    | N/A   34C    P0    43W / 300W |      0MiB / 16160MiB |      0%      Default |

    +-------------------------------+----------------------+----------------------+

    |   4  Tesla V100-SXM2...  On   | 00000000:85:00.0 Off |                    0 |

    | N/A   33C    P0    42W / 300W |      0MiB / 16160MiB |      0%      Default |

    +-------------------------------+----------------------+----------------------+

    |   5  Tesla V100-SXM2...  On   | 00000000:86:00.0 Off |                    0 |

    | N/A   36C    P0    41W / 300W |      0MiB / 16160MiB |      1%      Default |

    +-------------------------------+----------------------+----------------------+

    |   6  Tesla V100-SXM2...  On   | 00000000:89:00.0 Off |                    0 |

    | N/A   36C    P0    42W / 300W |      0MiB / 16160MiB |      0%      Default |

    +-------------------------------+----------------------+----------------------+

    |   7  Tesla V100-SXM2...  On   | 00000000:8A:00.0 Off |                    0 |

    | N/A   34C    P0    42W / 300W |      0MiB / 16160MiB |      0%      Default |

    +-------------------------------+----------------------+----------------------+

                                                                                   

    +-----------------------------------------------------------------------------+

    | Processes:                                                       GPU Memory |

    |  GPU       PID   Type   Process name                             Usage      |

    |=============================================================================|

    |  No running processes found                                                 |

    +-----------------------------------------------------------------------------+

            GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    mlx5_0  mlx5_1  mlx5_2  mlx5_3  CPU Affinity

    GPU0     X      NV1     NV1     NV2     NV2     SYS     SYS     SYS     PIX     PHB     SYS     SYS     0-19,40-59

    GPU1    NV1      X      NV2     NV1     SYS     NV2     SYS     SYS     PIX     PHB     SYS     SYS     0-19,40-59

    GPU2    NV1     NV2      X      NV2     SYS     SYS     NV1     SYS     PHB     PIX     SYS     SYS     0-19,40-59

    GPU3    NV2     NV1     NV2      X      SYS     SYS     SYS     NV1     PHB     PIX     SYS     SYS     0-19,40-59

    GPU4    NV2     SYS     SYS     SYS      X      NV1     NV1     NV2     SYS     SYS     PIX     PHB     20-39,60-79

    GPU5    SYS     NV2     SYS     SYS     NV1      X      NV2     NV1     SYS     SYS     PIX     PHB     20-39,60-79

    GPU6    SYS     SYS     NV1     SYS     NV1     NV2      X      NV2     SYS     SYS     PHB     PIX     20-39,60-79

    GPU7    SYS     SYS     SYS     NV1     NV2     NV1     NV2      X      SYS     SYS     PHB     PIX     20-39,60-79

    mlx5_0  PIX     PIX     PHB     PHB     SYS     SYS     SYS     SYS      X      PHB     SYS     SYS

    mlx5_1  PHB     PHB     PIX     PIX     SYS     SYS     SYS     SYS     PHB      X      SYS     SYS

    mlx5_2  SYS     SYS     SYS     SYS     PIX     PIX     PHB     PHB     SYS     SYS      X      PHB

    mlx5_3  SYS     SYS     SYS     SYS     PHB     PHB     PIX     PIX     SYS     SYS     PHB      X 

     

    Legend:

     

      X    = Self

      SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)

      NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node

      PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)

      PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)

      PIX  = Connection traversing at most a single PCIe bridge

    [...]

    # nThread 1 nGpus 8 minBytes 8 maxBytes 268435456 step: 2(factor) warmup iters: 5 iters: 20 validation: 1 

    #

    # Using devices

    #   Rank  0 Pid      1 on nv-nccl-7f9ns device  0 [0x06] Tesla V100-SXM2-16GB

    #   Rank  1 Pid      1 on nv-nccl-7f9ns device  1 [0x07] Tesla V100-SXM2-16GB

    #   Rank  2 Pid      1 on nv-nccl-7f9ns device  2 [0x0a] Tesla V100-SXM2-16GB

    #   Rank  3 Pid      1 on nv-nccl-7f9ns device  3 [0x0b] Tesla V100-SXM2-16GB

    #   Rank  4 Pid      1 on nv-nccl-7f9ns device  4 [0x85] Tesla V100-SXM2-16GB

    #   Rank  5 Pid      1 on nv-nccl-7f9ns device  5 [0x86] Tesla V100-SXM2-16GB

    #   Rank  6 Pid      1 on nv-nccl-7f9ns device  6 [0x89] Tesla V100-SXM2-16GB

    #   Rank  7 Pid      1 on nv-nccl-7f9ns device  7 [0x8a] Tesla V100-SXM2-16GB

    #

    #                                                     out-of-place                       in-place          

    #       size     count    type   redop     time   algbw   busbw  error     time   algbw   busbw  error

    #        (B)(elements)                     (us)  (GB/s)  (GB/s)            (us)  (GB/s)  (GB/s)       

               8         2   float     sum    40.92    0.00    0.00  2e-07    44.50    0.00    0.00  1e-07

              16         4   float     sum    38.08    0.00    0.00  6e-08    40.94    0.00    0.00  6e-08

              32         8   float     sum    41.30    0.00    0.00  6e-08    39.27    0.00    0.00  6e-08

              64        16   float     sum    43.86    0.00    0.00  6e-08    38.48    0.00    0.00  6e-08

             128        32   float     sum    42.10    0.00    0.01  6e-08    43.15    0.00    0.01  6e-08

             256        64   float     sum    41.70    0.01    0.01  6e-08    43.80    0.01    0.01  6e-08

             512       128   float     sum    38.83    0.01    0.02  6e-08    44.29    0.01    0.02  6e-08

            1024       256   float     sum    44.58    0.02    0.04  2e-07    45.88    0.02    0.04  2e-07

            2048       512   float     sum    39.82    0.05    0.09  2e-07    46.95    0.04    0.08  2e-07

            4096      1024   float     sum    39.32    0.10    0.18  2e-07    42.10    0.10    0.17  2e-07

            8192      2048   float     sum    41.99    0.20    0.34  2e-07    39.79    0.21    0.36  2e-07

           16384      4096   float     sum    45.90    0.36    0.62  2e-07    43.01    0.38    0.67  2e-07

           32768      8192   float     sum    40.47    0.81    1.42  2e-07    44.78    0.73    1.28  2e-07

           65536     16384   float     sum    43.01    1.52    2.67  2e-07    41.39    1.58    2.77  2e-07

          131072     32768   float     sum    51.51    2.54    4.45  2e-07    47.67    2.75    4.81  2e-07

          262144     65536   float     sum    48.17    5.44    9.52  5e-07    47.02    5.58    9.76  5e-07

          524288    131072   float     sum    59.04    8.88   15.54  5e-07    60.19    8.71   15.24  5e-07

         1048576    262144   float     sum    100.4   10.45   18.28  5e-07    99.56   10.53   18.43  5e-07

         2097152    524288   float     sum    118.9   17.64   30.88  5e-07    119.6   17.54   30.69  5e-07

         4194304   1048576   float     sum    187.8   22.33   39.08  5e-07    183.7   22.83   39.95  5e-07

         8388608   2097152   float     sum    291.0   28.83   50.45  5e-07    287.4   29.18   51.07  5e-07

        16777216   4194304   float     sum    355.2   47.23   82.66  5e-07    352.5   47.60   83.30  5e-07

        33554432   8388608   float     sum    557.2   60.22  105.38  5e-07    553.3   60.65  106.13  5e-07

        67108864  16777216   float     sum    994.8   67.46  118.05  5e-07    987.4   67.96  118.94  5e-07

       134217728  33554432   float     sum   1862.1   72.08  126.14  5e-07   1863.6   72.02  126.03  5e-07

       268435456  67108864   float     sum   3671.2   73.12  127.96  5e-07   3637.3   73.80  129.15  5e-07

    [image: ]

    The NCCL table provides information about NCCL communication latencies and bandwidths per scan size. The time is useful with small sizes to measure the constant latency that is associated with operations, and bandwidth is typically of interest for large scan sizes. It is important that the latency for small scan sizes is in the range of 2-digit microseconds (µs) in a setup like ours with 100 Gbps EDR InfiniBand, as shown here. Should you see latencies in the range of thousands of microseconds, then your configuration is probably not using InfiniBand but Ethernet. In this case, you must investigate your RDMA setup and InfiniBand network configurations.

    We can also run the same task as a single-node MPI job with just one worker pod by using eight GPUs on a single DGX-1 worker node as follows:

    # oc apply -f nv-nccl-mpi-job-01x08.yaml

    # cat nv-nccl-mpi-job-01x08.yaml

    apiVersion: kubeflow.org/v1alpha2

    kind: MPIJob

    metadata:

      name: nccl-test-mpi

    spec:

      slotsPerWorker: 1

      cleanPodPolicy: Running

      mpiReplicaSpecs:

        Launcher:

          replicas: 1

          template:

            spec:

              containers:

              - image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                name: nccl-test-mpi

                env:

                - name: IBV_DRIVERS

                  value: "/usr/lib/libibverbs/libmlx5"

                command:

                - mpirun

                - -np

                - "1"

                - -bind-to

                - none

                - -map-by

                - slot

                - -x

                - NCCL_DEBUG=INFO

                - -x

                - NCCL_IB_DISABLE=0

                - -x

                - NCCL_NET_GDR_LEVEL=1

                - -x

                - LD_LIBRARY_PATH

                - -x

                - PATH

                - -mca

                - pml

                - ob1

                - -mca

                - btl

                - ^openib

                - /workspace/other/nccl/all_reduce_perf

                - -b

                - "8"

                - -e

                - 256M

                - -f

                - "2"

                - -g

                - "8"

        Worker:

          replicas: 1

          template:

            spec:

              serviceAccount: mpi 

              serviceAccountName: mpi 

              containers:

              - name: nccl-test-mpi

                image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                imagePullPolicy: IfNotPresent            

                securityContext:

                  runAsUser: 1075481000

                  runAsGroup: 1075481000

                  capabilities:

                    add: [ "IPC_LOCK" ]

                env:

                - name: IBV_DRIVERS

                  value: "/usr/lib/libibverbs/libmlx5"

                resources:

                  limits:

                    nvidia.com/gpu: 8

                    rdma/shared_ib0: 1

                    rdma/shared_ib1: 1

                    rdma/shared_ib2: 1

                    rdma/shared_ib3: 1

                volumeMounts:

                - name: a2d2-data

                  mountPath: /workspace

                - mountPath: /dev/shm

                  name: dshm

              volumes:

              - name: a2d2-data

                persistentVolumeClaim:

                  claimName: adas-data-pvc

              - name: dshm

                emptyDir:

                  medium: Memory

    The results should be like the ones that are seen from the nv-nccl-batch-job.yaml batch job.

    We can run a multi-node MPI job with two pods on two DGX-1 worker nodes where each of them uses eight GPUs (so we have 16 GPUs in total) as follows: 

    # oc apply -f nv-nccl-mpi-job.yaml

    # cat nv-nccl-mpi-job.yaml

    apiVersion: kubeflow.org/v1alpha2

    kind: MPIJob

    metadata:

      name: nccl-test-mpi

    spec:

      slotsPerWorker: 1

      cleanPodPolicy: Running

      mpiReplicaSpecs:

        Launcher:

          replicas: 1

          template:

            spec:

              containers:

              - image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                name: nccl-test-mpi

                env:

                - name: IBV_DRIVERS

                  value: "/usr/lib/libibverbs/libmlx5"

                command:

                - mpirun

                - -np

                - "2"

                - -bind-to

                - none

                - -map-by

                - slot

                - -x

                - NCCL_DEBUG=INFO

                - -x

                - NCCL_IB_DISABLE=0

                - -x

                - NCCL_NET_GDR_LEVEL=1

                - -x

                - LD_LIBRARY_PATH

                - -x

                - PATH

                - -mca

                - pml

                - ob1

                - -mca

                - btl

                - ^openib

                - /workspace/other/nccl/all_reduce_perf

                - -b

                - "8"

                - -e

                - 256M

                - -f

                - "2"

                - -g

                - "8"

        Worker:

          replicas: 2

          template:

            spec:

              serviceAccount: mpi 

              serviceAccountName: mpi 

              containers:

              - name: nccl-test-mpi

                image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                imagePullPolicy: IfNotPresent            

                securityContext:

                  runAsUser: 1075481000

                  runAsGroup: 1075481000

                  capabilities:

                    add: [ "IPC_LOCK" ]

                env:

                - name: IBV_DRIVERS

                  value: "/usr/lib/libibverbs/libmlx5"

                resources:

                  limits:

                    nvidia.com/gpu: 8

                    rdma/shared_ib0: 1

                    rdma/shared_ib1: 1

                    rdma/shared_ib2: 1

                    rdma/shared_ib3: 1

                volumeMounts:

                - name: a2d2-data

                  mountPath: /workspace

                - mountPath: /dev/shm

                  name: dshm

              volumes:

              - name: a2d2-data

                persistentVolumeClaim:

                  claimName: adas-data-pvc

              - name: dshm

                emptyDir:

                  medium: Memory

    We verify that we still see acceptable latencies for small scan sizes in the 2-digit microseconds (µs) range, as shown In Example 4-2.

    Example 4-2   NCCL measurement results of a multi-node MPI job with two 8-GPU worker pods that are distributed across two DGX-1 worker nodes (16 GPUs total)

    [image: ]

    # Using devices

    #   Rank  0 Pid     30 on nccl-test-mpi-worker-0 device  0 [0x06] Tesla V100-SXM2-16GB

    #   Rank  1 Pid     30 on nccl-test-mpi-worker-0 device  1 [0x07] Tesla V100-SXM2-16GB

    #   Rank  2 Pid     30 on nccl-test-mpi-worker-0 device  2 [0x0a] Tesla V100-SXM2-16GB

    #   Rank  3 Pid     30 on nccl-test-mpi-worker-0 device  3 [0x0b] Tesla V100-SXM2-16GB

    #   Rank  4 Pid     30 on nccl-test-mpi-worker-0 device  4 [0x85] Tesla V100-SXM2-16GB

    #   Rank  5 Pid     30 on nccl-test-mpi-worker-0 device  5 [0x86] Tesla V100-SXM2-16GB

    #   Rank  6 Pid     30 on nccl-test-mpi-worker-0 device  6 [0x89] Tesla V100-SXM2-16GB

    #   Rank  7 Pid     30 on nccl-test-mpi-worker-0 device  7 [0x8a] Tesla V100-SXM2-16GB

    #   Rank  8 Pid     30 on nccl-test-mpi-worker-1 device  0 [0x06] Tesla V100-SXM2-16GB

    #   Rank  9 Pid     30 on nccl-test-mpi-worker-1 device  1 [0x07] Tesla V100-SXM2-16GB

    #   Rank 10 Pid     30 on nccl-test-mpi-worker-1 device  2 [0x0a] Tesla V100-SXM2-16GB

    #   Rank 11 Pid     30 on nccl-test-mpi-worker-1 device  3 [0x0b] Tesla V100-SXM2-16GB

    #   Rank 12 Pid     30 on nccl-test-mpi-worker-1 device  4 [0x85] Tesla V100-SXM2-16GB

    #   Rank 13 Pid     30 on nccl-test-mpi-worker-1 device  5 [0x86] Tesla V100-SXM2-16GB

    #   Rank 14 Pid     30 on nccl-test-mpi-worker-1 device  6 [0x89] Tesla V100-SXM2-16GB

    #   Rank 15 Pid     30 on nccl-test-mpi-worker-1 device  7 [0x8a] Tesla V100-SXM2-16GB

    #

    #                                                     out-of-place                       in-place          

    #       size     count    type   redop     time   algbw   busbw  error     time   algbw   busbw  error

    #        (B)(elements)                     (us)  (GB/s)  (GB/s)            (us)  (GB/s)  (GB/s)       

    nccl-test-mpi-worker-0:30:30 [0] NCCL INFO Launch mode Group/CGMD

               8         2   float     sum    52.72    0.00    0.00  4e-07    50.09    0.00    0.00  4e-07

              16         4   float     sum    58.60    0.00    0.00  2e-07    49.80    0.00    0.00  2e-07

              32         8   float     sum    58.46    0.00    0.00  2e-07    61.82    0.00    0.00  1e-07

              64        16   float     sum    52.95    0.00    0.00  1e-07    50.00    0.00    0.00  1e-07

             128        32   float     sum    54.79    0.00    0.00  1e-07    60.03    0.00    0.00  1e-07

             256        64   float     sum    60.63    0.00    0.01  1e-07    51.02    0.01    0.01  1e-07

             512       128   float     sum    51.87    0.01    0.02  1e-07    51.36    0.01    0.02  1e-07

            1024       256   float     sum    52.68    0.02    0.04  4e-07    51.93    0.02    0.04  4e-07

            2048       512   float     sum    62.35    0.03    0.06  4e-07    49.45    0.04    0.08  4e-07

            4096      1024   float     sum    55.25    0.07    0.14  4e-07    58.66    0.07    0.13  4e-07

            8192      2048   float     sum    63.85    0.13    0.24  5e-07    58.16    0.14    0.26  5e-07

           16384      4096   float     sum    87.96    0.19    0.35  5e-07    78.23    0.21    0.39  5e-07

           32768      8192   float     sum    104.6    0.31    0.59  5e-07    100.1    0.33    0.61  5e-07

           65536     16384   float     sum    103.7    0.63    1.19  5e-07    107.4    0.61    1.14  5e-07

          131072     32768   float     sum    110.2    1.19    2.23  5e-07    110.4    1.19    2.23  5e-07

          262144     65536   float     sum    118.5    2.21    4.15  5e-07    119.4    2.20    4.12  5e-07

          524288    131072   float     sum    123.7    4.24    7.95  5e-07    144.1    3.64    6.82  5e-07

         1048576    262144   float     sum    167.5    6.26   11.74  5e-07    159.4    6.58   12.34  5e-07

         2097152    524288   float     sum    247.7    8.47   15.88  5e-07    241.3    8.69   16.29  5e-07

         4194304   1048576   float     sum    367.9   11.40   21.37  5e-07    376.4   11.14   20.90  5e-07

         8388608   2097152   float     sum    556.2   15.08   28.28  5e-07    512.2   16.38   30.71  5e-07

        16777216   4194304   float     sum    918.7   18.26   34.24  5e-07    907.6   18.48   34.66  5e-07

        33554432   8388608   float     sum   1594.9   21.04   39.45  5e-07   1557.2   21.55   40.40  5e-07

        67108864  16777216   float     sum   2950.1   22.75   42.65  5e-07   2954.5   22.71   42.59  5e-07

       134217728  33554432   float     sum   4777.7   28.09   52.67  5e-07   4781.1   28.07   52.64  5e-07

       268435456  67108864   float     sum   9115.8   29.45   55.21  5e-07   9115.3   29.45   55.22  5e-07

    # Out of bounds values : 0 OK

    # Avg bus bandwidth    : 12.3088 
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    Again, should we observe latencies in the thousands of microseconds range, then your configuration is probably not using InfiniBand RDMA, and you must look into the job's log to check whether the InfiniBand connections are correctly established and used for communication queues. Watch for NCCL INFO NET/InfiniBand messages like the following one to ensure that RDMA ports (for example, [0]mlx5_3:1/IB, …,) are discovered and used by NCCL as available communication paths:

    nccl-test-mpi-worker-1:30:30 [0] NCCL INFO NET/IB : Using [0]mlx5_3:1/IB [1]mlx5_2:1/IB [2]mlx5_1:1/IB [3]mlx5_0:1/IB ; OOB eth0:10.128.7.148<0>

    Instead of running two pods with eight GPUs, it is often more convenient to assign only one GPU to a single pod (the smallest compute unit that can be scheduled on Red Hat OpenShift or Kubernetes) and scale the total number of GPUs for your DNN training job by the number of worker pods that is assigned to the job. 

     

    
      
        	
          Note: Here we assume that we have only one container per pod requesting GPUs to run the AI workload. In general, you can have more than one container per pod, although you would not scale your application by using multiple containers in the same pod. 

        
      

    

    This configuration offers the highest granularity for Red Hat OpenShift resource allocation when scheduling pods for DNN workload. This way, a much better resource utilization and scheduling can be achieved. 

    The following example schedules 16 pods across both DGX-1 systems with each pod using a single GPU (16 GPUs in total for the job):

    # oc apply -f nv-nccl-mpi-job-16x01.yaml

    # cat nv-nccl-mpi-job-16x01.yaml

    apiVersion: kubeflow.org/v1alpha2

    kind: MPIJob

    metadata:

      name: nccl-test-mpi

    spec:

      slotsPerWorker: 1

      cleanPodPolicy: Running

      mpiReplicaSpecs:

        Launcher:

          replicas: 1

          template:

            spec:

              containers:

              - image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                name: nccl-test-mpi

                env:

                - name: IBV_DRIVERS

                  value: "/usr/lib/libibverbs/libmlx5"

                command:

                - mpirun

                - -np

                - "16"

                - -bind-to

                - none

                - -map-by

                - slot

                - -x

                - NCCL_DEBUG=INFO

                - -x

                - NCCL_IB_DISABLE=0

                - -x

                - NCCL_NET_GDR_LEVEL=1

                - -x

                - LD_LIBRARY_PATH

                - -x

                - PATH

                - -mca

                - pml

                - ob1

                - -mca

                - btl

                - ^openib

                - /workspace/other/nccl/all_reduce_perf

                - -b

                - "8"

                - -e

                - 256M

                - -f

                - "2"

                - -g

                - "1"

        Worker:

          replicas: 16

          template:

            spec:

              serviceAccount: mpi 

              serviceAccountName: mpi 

              containers:

              - name: nccl-test-mpi

                image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                imagePullPolicy: IfNotPresent            

                securityContext:

                  runAsUser: 1075481000

                  runAsGroup: 1075481000

                  capabilities:

                    add: [ "IPC_LOCK" ]

                env:

                - name: IBV_DRIVERS

                  value: "/usr/lib/libibverbs/libmlx5"

                resources:

                  limits:

                    nvidia.com/gpu: 1

                    rdma/shared_ib0: 1

                    rdma/shared_ib1: 1

                    rdma/shared_ib2: 1

                    rdma/shared_ib3: 1

                volumeMounts:

                - name: a2d2-data

                  mountPath: /workspace

                - mountPath: /dev/shm

                  name: dshm

              volumes:

              - name: a2d2-data

                persistentVolumeClaim:

                  claimName: adas-data-pvc

              - name: dshm

                emptyDir:

                  medium: Memory

    The log of the successfully completed job shows NCCL messages like the following ones:

    nccl-test-mpi-worker-2:30:30 [0] NCCL INFO NET/IB : Using [0]mlx5_3:1/IB [1]mlx5_2:1/IB [2]mlx5_1:1/IB [3]mlx5_0:1/IB ; OOB eth0:10.131.4.63<0>

     

    nccl-test-mpi-worker-11:30:39 [0] NCCL INFO Ring 00 : 10[89000] -> 11[89000] [receive] via NET/IB/0/GDRDMA

    These messages indicate that InfiniBand connections (for example, mlx5_3, mlx5_2, mlx5_1, and mlx5_0) are successfully used for NCCL communication paths and that GDRDMA is enabled. 

    Example 4-3 shows the NCCL results of this configuration, which show slightly higher latencies due to the increased parallelization costs but allow for a more granular and robust way to schedule pods and DNN workloads across all the available GPU resources in a Red Hat OpenShift cluster. 

    Example 4-3   NCCL measurement results of a multi-node MPI job with sixteen 1-GPU worker pods that are evenly distributed across two DGX-1 worker nodes (16 GPUs total)

    [image: ]

    # Using devices

    #   Rank  0 Pid     30 on nccl-test-mpi-worker-0 device  0 [0x85] Tesla V100-SXM2-16GB

    #   Rank  1 Pid     30 on nccl-test-mpi-worker-1 device  0 [0x0b] Tesla V100-SXM2-16GB

    #   Rank  2 Pid     30 on nccl-test-mpi-worker-2 device  0 [0x07] Tesla V100-SXM2-16GB

    #   Rank  3 Pid     30 on nccl-test-mpi-worker-3 device  0 [0x0a] Tesla V100-SXM2-16GB

    #   Rank  4 Pid     30 on nccl-test-mpi-worker-4 device  0 [0x06] Tesla V100-SXM2-16GB

    #   Rank  5 Pid     30 on nccl-test-mpi-worker-5 device  0 [0x86] Tesla V100-SXM2-16GB

    #   Rank  6 Pid     31 on nccl-test-mpi-worker-6 device  0 [0x0a] Tesla V100-SXM2-16GB

    #   Rank  7 Pid     30 on nccl-test-mpi-worker-7 device  0 [0x06] Tesla V100-SXM2-16GB

    #   Rank  8 Pid     30 on nccl-test-mpi-worker-8 device  0 [0x8a] Tesla V100-SXM2-16GB

    #   Rank  9 Pid     30 on nccl-test-mpi-worker-9 device  0 [0x8a] Tesla V100-SXM2-16GB

    #   Rank 10 Pid     30 on nccl-test-mpi-worker-10 device  0 [0x89] Tesla V100-SXM2-16GB

    #   Rank 11 Pid     30 on nccl-test-mpi-worker-11 device  0 [0x89] Tesla V100-SXM2-16GB

    #   Rank 12 Pid     30 on nccl-test-mpi-worker-12 device  0 [0x0b] Tesla V100-SXM2-16GB

    #   Rank 13 Pid     30 on nccl-test-mpi-worker-13 device  0 [0x85] Tesla V100-SXM2-16GB

    #   Rank 14 Pid     30 on nccl-test-mpi-worker-14 device  0 [0x86] Tesla V100-SXM2-16GB

    #   Rank 15 Pid     30 on nccl-test-mpi-worker-15 device  0 [0x07] Tesla V100-SXM2-16GB

    #

    #                                                     out-of-place                       in-place          

    #       size     count    type   redop     time   algbw   busbw  error     time   algbw   busbw  error

    #        (B)(elements)                     (us)  (GB/s)  (GB/s)            (us)  (GB/s)  (GB/s)       

               8         2   float     sum    78.92    0.00    0.00  2e-07    72.73    0.00    0.00  1e-07

              16         4   float     sum    72.27    0.00    0.00  1e-07    77.27    0.00    0.00  1e-07

              32         8   float     sum    73.74    0.00    0.00  1e-07    72.11    0.00    0.00  1e-07

              64        16   float     sum    82.74    0.00    0.00  1e-07    81.37    0.00    0.00  6e-08

             128        32   float     sum    83.59    0.00    0.00  6e-08    79.80    0.00    0.00  6e-08

             256        64   float     sum    78.04    0.00    0.01  6e-08    78.35    0.00    0.01  6e-08

             512       128   float     sum    78.49    0.01    0.01  6e-08    83.42    0.01    0.01  6e-08

            1024       256   float     sum    88.29    0.01    0.02  2e-07    91.61    0.01    0.02  2e-07

            2048       512   float     sum    107.5    0.02    0.04  5e-07    109.6    0.02    0.04  5e-07

            4096      1024   float     sum    121.4    0.03    0.06  5e-07    116.4    0.04    0.07  5e-07

            8192      2048   float     sum    122.8    0.07    0.13  5e-07    121.9    0.07    0.13  5e-07

           16384      4096   float     sum    143.3    0.11    0.21  5e-07    135.9    0.12    0.23  5e-07

           32768      8192   float     sum    152.4    0.22    0.40  5e-07    158.5    0.21    0.39  5e-07

           65536     16384   float     sum    193.0    0.34    0.64  5e-07    189.7    0.35    0.65  5e-07

          131072     32768   float     sum    233.7    0.56    1.05  5e-07    220.0    0.60    1.12  5e-07

          262144     65536   float     sum    313.7    0.84    1.57  5e-07    326.3    0.80    1.51  5e-07

          524288    131072   float     sum    594.7    0.88    1.65  5e-07    598.3    0.88    1.64  5e-07

         1048576    262144   float     sum    754.3    1.39    2.61  5e-07    769.7    1.36    2.55  5e-07

         2097152    524288   float     sum   1068.4    1.96    3.68  5e-07   1072.8    1.95    3.67  5e-07

         4194304   1048576   float     sum   1748.3    2.40    4.50  5e-07   1742.8    2.41    4.51  5e-07

         8388608   2097152   float     sum   2966.9    2.83    5.30  5e-07   2955.6    2.84    5.32  5e-07

        16777216   4194304   float     sum   5637.3    2.98    5.58  5e-07   5617.9    2.99    5.60  5e-07

        33554432   8388608   float     sum    11270    2.98    5.58  5e-07    11231    2.99    5.60  5e-07

        67108864  16777216   float     sum    22060    3.04    5.70  5e-07    22009    3.05    5.72  5e-07

       134217728  33554432   float     sum    44146    3.04    5.70  5e-07    43998    3.05    5.72  5e-07

       268435456  67108864   float     sum    88376    3.04    5.70  5e-07    88034    3.05    5.72  5e-07
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    4.5  Multi-GPU and multi-Node GPU scaling with TensorFlow ResNet-50 benchmark 

    We run a test to verify how a DNN training workload scales out with more GPUs in an orchestrated fashion by using a single MPI job in Red Hat OpenShift. Each DGX-1 system has eight NVIDIA V100 SXM2 GPUs with 16-GB GPU memory.

    AI workloads might scale equally well with the number of GPUs that is used in parallel. This configuration depends heavily on the infrastructure, the model, and the implementation. The TensorFlow ResNet-50 benchmark with synthetic data (referred to as ResNet-50 benchmark) typically scales well with the number of GPUs. Therefore, we use the ResNet-50 benchmark with synthetic data from the TensorFlow benchmarks GitHub repository to explore the GPU scaling behavior of MPI jobs in Red Hat OpenShift 4. We clone the repository into our adas directory in IBM Spectrum Scale that we made available in Red Hat OpenShift through a statically provisioned PV that can be mounted into each MPI worker pod, as described in 4.2, “Preparing persistent volumes with IBM Spectrum Scale Container Storage Interface” on page 31.

    We schedule MPI jobs with multi-GPU pods that use 1, 2, 4, and 8 GPUs in a single worker pod on a single DGX-1 system, and then 16 GPUs in two 8-GPU worker pods on two DGX-1 systems to scale beyond physical node boundaries (horizontal scaling). 

    The MPI Job YAML looks as follows for the 02x08 GPU case (16 GPUs total):

    # cat nv-tf2-job-resnet50-02x08x02.yaml

    apiVersion: kubeflow.org/v1alpha2

    kind: MPIJob

    metadata:

      name: tf2-resnet50-02x08x02

    spec:

      slotsPerWorker: 8

      cleanPodPolicy: Running

      mpiReplicaSpecs:

        Launcher:

          replicas: 1

          template:

            spec:

              containers:

              - name: tf2-resnet50-02x08x02

                image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                imagePullPolicy: IfNotPresent           

                command:

                - mpirun

                - -np

                - "16"

                - -bind-to

                - none

                - -map-by

                - slot

                - -x

                - NCCL_DEBUG=INFO

                - -x

                - NCCL_IB_DISABLE=0

                - -x

                - NCCL_NET_GDR_LEVEL=1

                - -x

                - LD_LIBRARY_PATH

                - -x

                - PATH

                - -mca

                - pml

                - ob1

                - -mca

                - btl

                - ^openib

                - python

                - /workspace/other/benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py 

                - --model=resnet50 

                - --batch_size=64

                - --use_fp16=true 

                - --variable_update=horovod  

        Worker:

          replicas: 2

          template:

            spec:

              serviceAccount: mpi 

              serviceAccountName: mpi 

              containers:

              - name: tf2-resnet50-02x08x02

                image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                imagePullPolicy: IfNotPresent            

                securityContext:

                  runAsUser: 1075481000

                  runAsGroup: 1075481000

                  capabilities:

                    add: [ "IPC_LOCK" ]

                env:

                - name: IBV_DRIVERS

                  value: "/usr/lib/libibverbs/libmlx5"

                resources:

                  limits:

                    nvidia.com/gpu: 8

                    rdma/shared_ib0: 1

                    rdma/shared_ib1: 1

                    rdma/shared_ib2: 1

                    rdma/shared_ib3: 1

                volumeMounts:

                - name: a2d2-data

                  mountPath: /workspace

                - name: dshm

                  mountPath: /dev/shm

              volumes:

              - name: a2d2-data

                persistentVolumeClaim:

                  claimName: adas-data-pvc

              - name: dshm

                emptyDir:

                  medium: Memory

    Figure 4-1 on page 49 shows that the number of images per second increases (with some scaling costs) when we scale multi-GPU pods from 1 to 8 GPUs with 7096 images per second on a single DGX-1 node and almost doubles when seamlessly scaling out to 16 GPUs on two DGX-1 systems with 13,745 images per second.
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    Figure 4-1   ResNet-50 results when scaling multi-GPU worker pods that use 1 - 8 GPUs per pod on a single system and 16 GPUs on two DGX-1 systems

    Each column in Figure 4-1 (and in Figure 4-2 on page 51) represents the median value of five measurements for the configuration.    

    Not every AI workload can make efficient use of multiple GPUs in a single pod. Furthermore, orchestrating jobs with multi-GPU pods requesting 4 or 8 GPUs in a single worker pod might also lead to less optimal scheduling and a suboptimal resource utilization across all the resources in large clusters because such a pod is scheduled and started only when 4 or 8 GPUs as requested are available on a single worker node. 

    Scheduling jobs with only single-GPU pods allows a more granular scheduling policy. A single-GPU worker pod can be scheduled on any worker node in the cluster that has a GPU resource available and can contribute to the overall AI workload of a larger multi-GPU and multi-node MPI job. This configuration leads to a more balanced and optimal overall resource utilization in a cluster. In addition, single-GPU worker pods might also tend to provide a more robust scheduling and runtime behavior.

    In the second test case, we schedule MPI jobs with single-GPU pods that use 1, 2, 4, an d8 GPUs and the same number of single-GPU worker pods on a single DGX-1 system (enforced by using nodeName in the worker pod YAML template). Finally, 16 GPUs in 16 worker pods on two DGX-1 systems scale beyond physical node boundaries (horizontal scaling). 

    The MPI Job YAML looks as follows for the 16x01 GPU case (16 GPUs total):

    # cat nv-tf2-job-resnet50-16x01x02.yaml 

    apiVersion: kubeflow.org/v1alpha2

    kind: MPIJob

    metadata:

      name: tf2-resnet50-16x01x02

    spec:

      slotsPerWorker: 1

      cleanPodPolicy: Running

      mpiReplicaSpecs:

        Launcher:

          replicas: 1

          template:

            spec:

              containers:

              - name: tf2-resnet50-16x01x02

                image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                imagePullPolicy: IfNotPresent           

                command:

                - mpirun

                - -np

                - "16"

                - -bind-to

                - none

                - -map-by

                - slot

                - -x

                - NCCL_DEBUG=INFO

                - -x

                - NCCL_IB_DISABLE=0

                - -x

                - NCCL_NET_GDR_LEVEL=1

                - -x

                - LD_LIBRARY_PATH

                - -x

                - PATH

                - -mca

                - pml

                - ob1

                - -mca

                - btl

                - ^openib

                - python

                - /workspace/other/benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py 

                - --model=resnet50 

                - --batch_size=64

                - --use_fp16=true 

                - --variable_update=horovod  

        Worker:

          replicas: 16

          template:

            spec:

              serviceAccount: mpi 

              serviceAccountName: mpi 

              containers:

              - name: tf2-resnet50-16x01x02

                image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                imagePullPolicy: IfNotPresent            

                securityContext:

                  runAsUser: 1075481000

                  runAsGroup: 1075481000

                  capabilities:

                    add: [ "IPC_LOCK" ]

                env:

                - name: IBV_DRIVERS

                  value: "/usr/lib/libibverbs/libmlx5"

                resources:

                  limits:

                    nvidia.com/gpu: 1

                    rdma/shared_ib0: 1

                    rdma/shared_ib1: 1

                    rdma/shared_ib2: 1

                    rdma/shared_ib3: 1

                volumeMounts:

                - name: a2d2-data

                  mountPath: /workspace

                - name: dshm

                  mountPath: /dev/shm

              volumes:

              - name: a2d2-data

                persistentVolumeClaim:

                  claimName: adas-data-pvc

              - name: dshm

                emptyDir:

                  medium: Memory

    Figure 4-2 shows that the number of images per second increases steadily to 5918 images per second when we scale with single-GPU worker pods from 1 to 8 GPUs on a single DGX-1 node, and it almost doubles when seamlessly scaling out to 16 GPUs on two DGX-1 systems with 11,632 images per second. 

    [image: ]

    Figure 4-2   ResNet-50 results when scaling single-GPU worker pods that use 1 - 8 GPUs on a single system and 16 GPUs on two DGX-1 systems

    Especially with eight single-GPU pods on a one DGX-1 system (the 8-GPU and 16-GPU cases) when going for the limit of a single DGX-1 system with eight GPUs, we experience slightly higher costs in overall performance by using single-GPU pods compared to multi-GPU pods. However, the 1, 2, and 4GPU cases show identical performance results for single-GPU and multi-GPU pods.

    These results illustrate that we can efficiently and seamlessly scale out the GPU resources beyond physical node boundaries in Red Hat OpenShift for an AI workload by using MPI jobs. Single-GPU pods provide a finer granularity when scheduling jobs and allocating resources in large clusters, which leads to a better overall resource utilization across all compute nodes and can justify the slightly higher performance costs that come with single-GPU worker pods at full utilization compared to multi-GPU worker pods.
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Deep neural network training on the Audi Autonomous Driving Dataset semantic segmentation data set

    This chapter provides details about multi-GPU and multi-node training that uses the Audi Autonomous Driving Dataset (A2D2).

    5.1  Description of the A2D2

    Audi recently published the A2D2, which can be used to support academic institutions and commercial startups working on autonomous driving research (for more A2D2 license details, see “Related publications” on page 65). The data set consists of recorded images and labels like bounding boxes, semantic segmentation, instance segmentation, and data that is extracted from the automotive bus. The sensor suite consists of six cameras and five LIDAR units, which provide full 360 coverage. The recorded data is time-synchronized and mutually registered. There are 41,277 frames with semantic segmentation and point cloud labels. Out of that are 12,497 frames that have 3D bounding box annotations for objects within the field of view of the front camera.

    The semantic segmentation data set features 38 categories. Each pixel in an image has a label that describes the type of object it represents, such pedestrian, car, or vegetation.

    Figure 5-1 shows an example of a real picture that is compared to the segmentation picture.
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    Figure 5-1   Real picture that is compared to the segmentation picture (showing the color to label match)

    5.2  Multi-node GPU scaling results for deep neural network training jobs

    In this section, we perform multi-GPU and multi-node training with the A2D2 and train a segmentation network. Not all classes are considered, and the training data set runs on a reduced set of classes. The frames and labels are from the front camera. A random subset of the original set is used with ~27,300 image and label pairs, which is roughly 1/10th of a representative data set that usually contains more than 300,000 selected frames per network and task. The subset that is used for the training in this paper has a total size of 92 GB. 

    The training Message Passing Interface (MPI) job uses 16 GPUs on both DGX-1 systems and runs as follows:

    # oc apply -f nv-tf2-job-a2d2.yaml

    # cat nv-tf2-job-a2d2.yaml

    apiVersion: kubeflow.org/v1alpha2

    kind: MPIJob

    metadata:

      name: tf2-a2d2-16x01x02-gpu

    spec:

      slotsPerWorker: 1

      cleanPodPolicy: Running

      mpiReplicaSpecs:

        Launcher:

          replicas: 1

          template:

            spec:

              containers:

              - name: tf2-a2d2-16x01x02-gpu

                image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                imagePullPolicy: IfNotPresent           

                command:

                - mpirun

                - -np

                - "16"

                - -wdir

                - "/workspace/scripts/tf2_comparison/hvd"

                - -bind-to

                - none

                - -map-by

                - slot

                - -x

                - NCCL_DEBUG=INFO

                - -x

                - NCCL_IB_DISABLE=0

                - -x

                - NCCL_NET_GDR_LEVEL=1

                - -x

                - LD_LIBRARY_PATH

                - -x

                - PATH

                - -mca

                - pml

                - ob1

                - -mca

                - btl

                - ^openib

                - python

                - main.py

                - --model_dir=checkpt

                - --batch_size=16

                - --exec_mode=train 

                - --max_steps=16000

        Worker:

          replicas: 16

          template:

            spec:

              serviceAccount: mpi 

              serviceAccountName: mpi 

              containers:

              - name: tf2-a2d2-16x01x02-gpu

                image: nvcr.io/nvidia/tensorflow:20.03-tf2-py3

                imagePullPolicy: IfNotPresent            

                env:

                - name: IBV_DRIVERS

                  value: "/usr/lib/libibverbs/libmlx5"

                securityContext:

                  runAsUser: 1075481000

                  runAsGroup: 1075481000

                  capabilities:

                    add: [ "IPC_LOCK" ]

                resources:

                  limits:

                    nvidia.com/gpu: 1

                    rdma/shared_ib0: 1

                    rdma/shared_ib1: 1

                    rdma/shared_ib2: 1

                    rdma/shared_ib3: 1

                volumeMounts:

                - name: a2d2-data

                  mountPath: /workspace

                - name: dshm

                  mountPath: /dev/shm

              volumes:

              - name: a2d2-data

                persistentVolumeClaim:

                  claimName: adas-data-pvc

              - name: dshm

                emptyDir:

                  medium: Memory

    The job is based on the MPI job YAML that is described in 4.3, “MPIJob definition” on page 33. The job schedules 16 single-GPU pods for the training and uses the NVIDIA GPU Cloud (NGC) TensorFlow v2 image (nvcr.io/nvidia/tensorflow:20.03-tf2-py3).

    The training data and TensorFlow Python scripts are stored in the IBM Spectrum Scale file system at the following location:

    •Training data: /gpfs/ess3000_4M/adas/dataset/a2d2_8channel

    •Python scripts: /gpfs/ess3000_4M/adas/scripts/tf2_comparison/hvd/

    Using IBM Spectrum Scale Container Storage Interface (CSI) with a statically provisioned volume that was created in 4.2, “Preparing persistent volumes with IBM Spectrum Scale Container Storage Interface” on page 31, the directory /gpfs/ess3000_4M/adas is mounted locally under /workspace in each TensorFlow container in all the worker pods of the MPI job. With IBM Spectrum Scale as the distributed parallel file system, all worker pods share read/write access to the same data in IBM Spectrum Scale across physical node boundaries. 

    We compare a multi-GPU training run that uses a single MPI job with eight single-GPU pods on a single DGX-1 node (setting Launcher: np=8 and Worker: replicas=8 in the YAML) with a training job that uses 16 single-GPU pods on two DGX-1 nodes that use Red Hat OpenShift 4.4.3 as a container orchestration and scheduling platform.

    Figure 5-2 shows the median value of the elapsed time of five training runs for each configuration. 
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    Figure 5-2   Median value of the elapsed time of five training runs on a single DGX-1 node (eight GPUs) and on two DGX-1 nodes (16 GPUs) in Red Hat OpenShift

    By scaling the training job from a single DGX-1 node (eight GPUs) to two DGX-1 nodes 
(16 GPUs) in Red Hat OpenShift, we observe that we can seamlessly scale out across physical node boundaries and reduce the job run time from 1328 seconds to 740 seconds (55.7%). This reduction results in an increase in speed of 1.8x (at only 10% costs in performance compared to an ideal value of 2.0X).

    Repeated and frequent training and validation cycles of the neural networks are common in the autonomous vehicle industry. Being able to scale out conveniently and efficiently these workloads across GPU resources is essential to reduce run times and improve time to new insights and better models.

    The results in this paper prove that multi-GPU and multi-node (horizontal) scaling of GPU resources for deep neural network (DNN) training jobs works seamlessly and efficiently in Red Hat OpenShift 4.4.3 as a container orchestration platform with DGX worker nodes, with NVIDIA Mellanox InfiniBand remote direct memory access (RDMA) as the network infrastructure and IBM Spectrum Scale as back-end storage for a scalable high-performance “data lake”. 

    5.3  Application

    The rate of innovation in developing deep learning (DL) based solutions is crucial. One of the most challenging engineering tasks is building the right training and validation data set. Many DL practitioners agree with the statement that they are essentially building data sets rather than networks (see Revisiting the Unreasonable Effectiveness of Data). 

    The validation of a trained neural network in various relevant situations provides confidence about its performance and valuable insights into its weaknesses. Multiple validation data sets might be built to validate certain aspects or the model performance in a subset of the operational domain.

    A rich set of metadata for the data set is crucial to building the necessary data sets and understanding neural network strength and weaknesses.

    In the context of this paper, we use IBM Spectrum Discover as a metadata store. The metadata that is available in the A2D2 was maintained in IBM Spectrum Discover. 
IBM Spectrum Discover allows us to ask queries with SQL. We are aware that many more metadata tags are necessary in a production environment.

    In this section, we name a few samples where a metadata store helps to derive steps for developing the data set or network:

    •The DNN under test performs well on large objects and worse on smaller ones when object occurrence is balanced. This situation also happens with the randomly chosen subset of our training data set. As shown in Figure 5-3 on page 59, we evaluated a training after just 20,000 steps by using a confusion matrix. For a perfect predictor, the diagram would have only a diagonal line from upper left to lower right that would read that the network classified all pixels of a certain class right.

    Figure 5-3 on page 59 shows a confusion matrix presenting the training evaluation. There is a logarithmic scale for the color coding.
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    Figure 5-3   Confusion matrix presenting the training evaluation

    There are two obvious observations:

     –		There are classes (the bright ones on the diagonal, such as class 1, RD normal street; class 9, Sky; and class 11, Nature Object) that can be detected well. With the metadata in IBM Spectrum Discover, we see that the frequency of those pixels occurring correlate. A query like the following one can help us to understand potential reasons:

    https://localhost/db2whrest/v1/sql_query -X POST -dselect sum(int(t_rd_normal_street.value)) / ((count(t_rd_normal_street.value)*1920*1208)/100) from t_rd_normal_street with ur;

    Here is the result:

    22.22743915175

    In contrast, other classes such as “Road Blocks” appear at only 0.85 percent, and the frequency of object occurrence is not sufficient.

     –		Furthermore, it is obvious that the data that used for the evaluation has no representatives for bicycle class (19). Thus, the validation data set must be extended. A query like the following one can help to select frames that are known to contain the required class:

    https://localhost/db2whrest/v1/sql_query -X POST -dselect platform,datasource,filename from metaocean,t_front,t_center,t_bicycle where t_front.fkey=metaocean.fkey and int(t_front.value)=1 and t_center.fkey=metaocean.fkey and int(t_center.value)=1 and t_bicycle.fkey=metaocean.fkey and int(t_bicycle.value)>0

    Here is the result:

    0,"IBM COS","a2d2","camera_lidar_semantic/20181107_133445/camera/cam_front_center/20181107133445_camera_frontcenter_000021093.png"

    1,"IBM COS","a2d2","camera_lidar_semantic/20181107_132300/camera/cam_front_center/20181107132300_camera_frontcenter_000001645.png"

    2,"IBM COS","a2d2","camera_lidar_semantic/20181107_132300/camera/cam_front_center/20181107132300_camera_frontcenter_000004159.png"

    3,"IBM COS","a2d2","camera_lidar_semantic/20181107_132300/camera/cam_front_center/20181107132300_camera_frontcenter_000002707.png"

    4,"IBM COS","a2d2","camera_lidar_semantic/20181107_132300/camera/cam_front_center/20181107132300_camera_frontcenter_000004093.png"

    ...

    •	The DNN performs poorly in a certain case, for example, close to bridges and poor lighting. A join by location of a map database together with the used training data allows such a query.

    •	The DNN performs not as expected on a specific class though it has plenty of training data. Here, the data set might be too simple and not as complicated as the validation data set. A selection of those frames with an active learning uncertainty estimate allows you to reduce the data set to the most informative training samples.

    It is common in the automotive industry that each training frame carries several hundred metadata tags. Data from the recording ego vehicle and the subdomains of the operational design domain (ODD) are typical sources of metadata. In our experiments, we solely rely on the A2D2 without the help of other data sources. On uploading the data set, the available information was extracted, such as the presence of certain classes and their pixel count.

    Most of that metadata information is derived by joining information from multiple sources together with the recorded data, for example, from high-definition maps.

    Usually, this data is pre-joined for practicality reasons and to avoid joins at query time. Pre-joining easily leads to many attributes. Likely, the time comes that one of those attributes is needed. Data minimalism on the metadata is not encouraged. Thus, it is more practical to keep all of the attributes rather to repeatedly suffer from missing attributes and then add them with much effort.

    Here, we leverage IBM Spectrum Discover as a metadata database. It works together with IBM storage solutions, and it is used as a metadata store in the context of this work. Metadata information for each frame of the A2D2 is created in IBM Spectrum Discover to show how it can be used in that context.

    Building a representative validation data set is a challenge. Validation data sets are much larger for autonomous vehicles than their training data set.

    Figure 5-4 on page 61 shows the process of building a representative validation data set.
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    Figure 5-4   Building a representative validation data set

    Training and validation of the neural networks are done on a frequent basis. Validating the trained DNN against a large validation data set is critical to understanding its weaknesses. For representative results, the validation data set is larger than the training data set and reflects the distribution of the target operational domain. Large-scale DNN validation is an inference job that is rolled out into the cluster in a fan-out manner to multiple workers. It follows a mapreduce pattern where each worker takes care of a certain partition of the validation data. Results are collected and aggregated. 

    5.4  Integrating IBM Spectrum Discover and IBM Spectrum LSF to find the correct data based on labels

    For demonstration purposes, we add IBM Spectrum LSF as a workload manager and 
IBM Spectrum Discover as a metadata search engine to find the correct data for our inference job and to automate the workflow.

    IBM Spectrum Discover is a modern metadata management software that provides data insights for exabyte-scale heterogeneous file, object, backup, and archive storage on-premises and in the cloud. The software easily connects to these data sources to rapidly ingest, consolidate, and index metadata for billions of files and objects.

    IBM Spectrum Discover provides a rich metadata layer that enables storage administrators, data stewards, and data scientists to efficiently manage, classify, and gain insights from massive amounts of data. It improves storage economics, helps mitigate risk, and accelerates large-scale analytics to create competitive advantage and speed critical research.

    IBM Spectrum LSF is a complete workload management solution for demanding high-performance computing (HPC) environments. Featuring intelligent, policy-driven scheduling and easy to use interfaces for job and workflow management, it helps organizations to improve competitiveness by accelerating research and design while controlling costs through superior resource utilization.

    For this use case, we connected IBM Spectrum Discover to the data source and let 
IBM Spectrum Discover scan the content. The scan was needed because we added 
IBM Spectrum Discover after the data was stored in the storage system. IBM Spectrum Discover comes with built-in functions that can react to new incoming data and automatically detect metadata for the new data and catalogs it.

    To find the data that is needed for model training or inference based on label details, a user can run a simple REST query in SQL format against IBM Spectrum Discover as follows:

    https://localhost/db2whrest/v1/sql_query -X POST -dselect platform,datasource,filename from metaocean,t_front,t_center,t_car,t_bicycle,t_pedestrian where t_front.fkey=metaocean.fkey and int(t_front.value)=1 and t_center.fkey=metaocean.fkey and int(t_center.value)=1 and t_car.fkey=metaocean.fkey and int(t_car.value)>=10000 and int(t_car.value)<=20000 and t_bicycle.fkey=metaocean.fkey and int(t_bicycle.value)>=3000 and int(t_bicycle.value)<=5000 and t_pedestrian.fkey=metaocean.fkey and int(t_pedestrian.value)>=500 and int(t_pedestrian.value)<=6000

    A user can also work with a customized job user interface window that is created in 
IBM Spectrum LSF.

    Figure 5-5 shows an example of an IBM Spectrum LSF AV job submission template.

    [image: ]

    Figure 5-5   IBM Spectrum LSF AV job submission template example

    As a user, start a job by selecting the needed labels, as shown in Figure 5-5 on page 62. IBM Spectrum LSF forwards the request to IBM Spectrum Discover. IBM Spectrum Discover answers with a list of files that match the requested label details that are shown in the following example:

    0,"IBM COS","a2d2",

    "camera_lidar_semantic/20181008_095521/camera/cam_front_center/20181008095521_camera_frontcenter_000038997.png"

    1,"IBM COS","a2d2",

    "camera_lidar_semantic/20180925_135056/camera/cam_front_center/20180925135056_camera_frontcenter_000062196.png"

    2,"IBM COS","a2d2",

    "camera_lidar_semantic/20181016_125231/camera/cam_front_center/20181016125231_camera_frontcenter_000005145.png"

    3,"IBM COS","a2d2",

    "camera_lidar_semantic/20180807_145028/camera/cam_front_center/20180807145028_camera_frontcenter_000010529.png"

    4,"IBM COS","a2d2",

    "camera_lidar_semantic/20181008_095521/camera/cam_front_center/20181008095521_camera_frontcenter_000031069.png"

    5,"IBM COS","a2d2",

    "camera_lidar_semantic/20181016_095036/camera/cam_front_center/20181016095036_camera_frontcenter_000041815.png"

    6,"IBM COS","a2d2",

    "camera_lidar_semantic/20181016_095036/camera/cam_front_center/20181016095036_camera_frontcenter_000020381.png"

    7,"IBM COS","a2d2",

    "camera_lidar_semantic/20180925_124435/camera/cam_front_center/20180925124435_camera_frontcenter_000045908.png"

    8,"IBM COS","a2d2",

    "camera_lidar_semantic/20180925_124435/camera/cam_front_center/20180925124435_camera_frontcenter_000043968.png"

    ...

    IBM Spectrum Discover can catalog multiple different storage systems and returns the platform and data source with the data details.

    With the help of IBM Spectrum Scale Active File Management (AFM), the data can be pre-cached close to the AI workloads. Pre-caching helps keep the accelerators busy as the to-be-analyzed data is present at the correct time, even if rather “slow” storage systems / data lakes host the data. Pre-caching helps to ensure that high-performing storage is not overutilized and runs out of space.

    With the help of this solution, the data location and time of availability for the AI job can be fully abstracted.

     

    
      
        	
          NVIDIA DGX family:

          When this PoC was started, the new NVIDIA DGX A100 system was not yet announced. Instead, two DGX-1 systems were deployed. The DGX-1 is a purpose-built system for deep learning (DL) with fully integrated hardware and software that can be deployed quickly and easily. DGX-1 features eight NVIDIA V100 GPU accelerators with a Tensor Core architecture that is connected through NVIDIA NVLink, which is the NVIDIA high-performance GPU interconnect, in a hybrid cube-mesh network. Together with dual socket Intel Xeon CPUs and four 100 Gb InfiniBand network interface cards, DGX-1 provides unprecedented performance for DL training.

          The successor system, which is called NVIDIA DGX A100, was announced on 8 June 2020. There is a plan to replicate this PoC with the next-generation NVIDIA DGX platform. The NVIDIA DGX A100 is the universal system for all AI workloads, offering unprecedented compute density, performance, and flexibility in the world's first 5 petaFLOPS AI system. The NVIDIA DGX A100 system features the world's most advanced accelerator, the NVIDIA A100 Tensor Core GPU, which enables enterprises to consolidate training, inference, and analytics into a unified, easy-to-deploy AI infrastructure that includes direct access to NVIDIA AI experts. For more information, see NIVIDIA DGX A100: The Universal System for AI Infrastructure.

          Architecture details for Ampere can be found in this blog. Details about the new MIG mode are described in this blog.

        
      

    

     

  
    Related publications

    The publications that are listed in this section are considered suitable for a more detailed description of the topics that are covered in this paper.

    Online resources

    These websites are also relevant as further information sources:

    •Audi Autonomous Driving Dataset (A2D2) citation

    @article{geyer2020a2d2,

    title={{A2D2: Audi Autonomous Driving Dataset}},

    author={Jakob Geyer and Yohannes Kassahun and Mentar Mahmudi and Xavier Ricou and Rupesh Durgesh and Andrew S. Chung and Lorenz Hauswald and Viet Hoang Pham and Maximilian M{\"u}hlegg and Sebastian Dorn and Tiffany Fernandez and Martin J{\"a}nicke and Sudesh Mirashi and Chiragkumar Savani and Martin Sturm and Oleksandr Vorobiov and Martin Oelker and Sebastian Garreis and Peter Schuberth},

    year={2020},

    eprint={2004.06320},

    archivePrefix={arXiv},

    primaryClass={cs.CV},

    url = {https://www.a2d2.audi}

    }

     –	Public License

    https://aev-autonomous-driving-dataset.s3.eu-central-1.amazonaws.com/LICENSE.txt 

     –	This data set is released under the CC BY-ND 4.0 license

    https://creativecommons.org/licenses/by-nd/4.0/

     –	Liability and Copyright (licensed material was not modified for this study)

    https://www.a2d2.audi/a2d2/en/legal.html

     –	Driving Dataset Downloads and Citation

    https://www.a2d2.audi/a2d2/en/download.html 

     –	A2D2: Audi Autonomous Driving Dataset

    https://arxiv.org/pdf/2004.06320.pdf

    •Designing and Building End-to-End Data Pipeline Using IBM Spectrum Storage for AI with NVIDIA DGX-2™ Systems

    https://www.ibm.com/downloads/cas/GGWQ40KE

    •How IBM ESS3000 makes your GPUs fly: A field report based on the Deep Thought project

    https://www.spectrumscaleug.org/wp-content/uploads/2020/03/SSSD20DE-How-ESS3000-makes-your-GPUs-fly-A-field-report-based-on-the-Deep-Thought-project-SVA.pdf

    •How Volkswagen Tests Autonomous Cars with GPUs and Red Hat OpenShift

    https://www.openshift.com/blog/how-volkswagen-tests-autonomous-cars-with-gpus-and-openshift

    •IBM Automotive 2030

    https://www.ibm.com/downloads/cas/NWDQPK5B

    •IBM Elastic Storage System (ESS) 3000 Version 6.0.0 IBM Knowledge Center

    https://www.ibm.com/support/knowledgecenter/SSZL24_6.0.0/ess3000_600_welcome.html

    •IBM ESS3000

    https://www.ibm.com/us-en/marketplace/elastic-storage-system-3000

    •IBM Spectrum Scale

    https://www.ibm.com/products/scale-out-file-and-object-storage

    •IBM Spectrum Storage for AI with DGX Systems 

    https://www.ibm.com/downloads/cas/MNEQGQVP

    •IBM Spectrum Scale 5.0.4 IBM Knowledge Center

    https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.4/ibmspectrumscale504_welcome.html

    •NVIDIA Mellanox

    https://docs.mellanox.com/pages/releaseview.action?pageId=19804150

    •Red Hat Enterprise Linux CoreOS (RHCOS)

    https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html/architecture/architecture-rhcos

    Help from IBM

    IBM Support and downloads

    ibm.com/support

    IBM Global Services

    ibm.com/services

  
    Back cover

    Acrobat bookmark 

    ISBN 0738459097

    REDP-5610-00

    ®

  OPS/images/5610ch01.05.1.1.jpg





OPS/images/5610spec.03.1.1.jpg
I d





OPS/images/5610ch04.08.1.10.jpg
‘Scale out of GPU resources in OpenShift 4

ResnNetso MP Job wih syt doia

i85 8 8§ 3

Nunber ot sl GPU Workes P






OPS/5610cover.jpg
@ Redbooks

ibm.comredbooks.

Deployment and Usage Guide for Running Al Workloads
on Red Hat OpenShift and NVIDIA DGX Systems with
IBM Spectrum Scale

Simon Lorenz
Gero Schmidt
Thomas Schoenemeyer

A Cloud





OPS/images/5610ch05.09.1.7.jpg





OPS/images/5610ch05.09.1.6.jpg
: DNN Training  Evaluation Improvement )

Steps:

1 1
Training dataset representative?
- Validation dataset representative?
Is more data needed?

Is data informative enough?
Training Dataset Vaiidation Dataset Weaknessin DNN architecture?






OPS/images/5610ch05.09.1.5.jpg
9 L 8 6 O TL Z €0 4T ST 9T (1 ST 61






OPS/images/5610ch05.09.1.4.jpg
Multi-node GPU Scaling with A2D2 Training MPI Job in OpenShift 4.4.3

(TFv2 /batchSize=16 / maxsteps=16.000 / no AMP)

1400
1200

1000

H

clapsed Time ]
8

400

8 (single DGX1) 16 (wo DGX1)

Numberof GPUS.






OPS/images/5610ch05.09.1.3.jpg





OPS/images/5610ch03.07.1.4.jpg
i, Aaems

-

—_ ®

—— 160 Spect S 5 P
[i—— vt
-






OPS/images/5610ch05.09.1.2.jpg






OPS/images/5610ch03.07.1.3.jpg
OperatorHub

oo oo h et oy s e ottt o o3 ot s i el Yoo o Cpetrn

SRR S R

i oGt 5 o

1 Mt Ao
p— e
Jr——
agoss
Dot SpacResrce Opater
[——
- it pactcy .






OPS/images/5610ch05.09.1.1.jpg





OPS/images/5610ch03.07.1.2.jpg





OPS/images/5610ch01.05.1.3.jpg
Advanced
cluster
management

Openshift
Container
Platform

Openshift
Kubernetes
engine

Multicluster management

Discovery | Polcy | Complance  Configuraton

Manage workloads Build cloud-native apps

't Workloads

Develop

er product

ity

S






OPS/images/5610ch03.07.1.1.jpg





OPS/images/5610ch01.05.1.2.jpg





OPS/images/5610ch04.08.1.09.jpg
Imsgessecona

000

a0

200

Scale out of GPU resources in OpenShift 4

2

~ResNetso MP Job wih synthtic data

n






OPS/images/5610ch04.08.1.08.jpg





OPS/images/5610ch04.08.1.07.jpg





OPS/images/5610ch04.08.1.06.jpg





OPS/images/5610ch04.08.1.05.jpg





OPS/images/5610ch04.08.1.04.jpg





OPS/images/5610ch04.08.1.03.jpg





OPS/images/5610ch02.06.1.4.jpg
Red Hat Openshift Cluster 4.4.3

IBM Spectrum Scale 5.0.4.3 Storage Cluster
(Storage cluster remate mounted to IBM ESS Storage Cluster)

IBM ESS Storage Cluster






OPS/images/5610ch04.08.1.02.jpg





OPS/images/5610ch02.06.1.3.jpg
Red Hat OpenShift Cluster 4.4.3

3 Master Nodes

IBM Spectrum Scale 6.0.4.3 Storage Cluster
(Storage cluste emote mounted o |BM ESS Storage Cluster)

i CrE e

2 Worker Nodes

m m % Manager

=
=

NVIDIA® Mellanox® Quantum
HDR 200G InfniBand

e

—— 100Gb 1B EDR Data Network 10.10.10x24
—— 1GYE Scale MgmuAdmin Network 192 168.1024

1BM ESS Storage Cluster
Node, Scale G Guonsm

M 184 ES$3000
—— NVIDIA® Mellanor® Connectis






OPS/images/5610ch04.08.1.01.jpg





OPS/cover.xhtml


   

      [image: Cover image]

    


  

OPS/images/5610ch02.06.1.2.jpg





OPS/images/5610ch02.06.1.1.jpg





