

 [image: Cover image]

 	
 Note: Before using this information and the product it supports, read the information in “Notices” on page v.

 First Edition (February 2015)

 This edition applies to IBM Bluemix Version 1.0.

 This document was created or updated on February 13, 2015.

 Notices

 This information was developed for products and services offered in the U.S.A.

 IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

 The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

 Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

 IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

 Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

 Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

 This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

 Trademarks

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

 The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

 Bluemix™

 developerWorks®

 IBM®

 IBM Watson™

 Redbooks®

 Redpaper™

 Redbooks (logo)[image:]®

 Watson™

 WebSphere®

 The following terms are trademarks of other companies:

 SoftLayer, and SoftLayer device are trademarks or registered trademarks of SoftLayer, Inc., an IBM Company.

 ITIL is a registered trademark, and a registered community trademark of The Minister for the Cabinet Office, and is registered in the U.S. Patent and Trademark Office.

 Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

 Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

 Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

 Other company, product, or service names may be trademarks or service marks of others.

 IBM Redbooks promotions

 Preface

 Many types of web applications are running on the Internet today. There are also as many ways to manage and maintain the infrastructure that powers those applications. IBM® Bluemix™ delivers quick and easy cloud capabilities to deploy and maintain your web application, with minimal hassle and overhead. As you follow along with four lab-style scenarios, this IBM Redpaper™ publication demonstrates how to create and deploy a web-based collaboration application on IBM Bluemix. The application chosen for these scenarios is Etherpad Lite, an open-source web-based collaboration application. Each lab extends the functionality of the Etherpad Lite application and to give you a good foundation for discovering the additional powerful capabilities that are available on Bluemix.

 The target audience for this paper is technical cloud specialists who are familiar with the technology of enterprise applications, but might be new to Bluemix.

 Authors

 This paper was produced by a team of specialists from around the world working at the International Technical Support Organization, Raleigh Center.

 	
 [image:]

 	
 Ann Marie Fred is a Software Developer at IBM, in the Cloud business unit. Most recently, she helped develop IBM Cloud Orchestrator, and she is currently a member of the Service Engage team. She is also a DevOps evangelist, helping to drive adoption of DevOps principles and practices within and beyond IBM. She uses IBM cloud technologies, collaboration tools, OpenStack, SoftLayer®, and Chef to develop new offerings that help people innovate with speed and confidence.

 	
 [image:]

 	
 Bhargav Perepa is an IBM Information Technology Specialist/Architect, working with various United States Federal Civilian and Department of Defense government agencies at the IBM Federal Software Group in the Washington, D.C. area. He received his M.S. in Computer Science from Illinois Institute of Technology, Chicago, IL, and an MBA from the University of Texas at Austin, TX. His current interests are in cloud, analytics, mobile, social, security, and IBM Watson™ technologies. Bhargav joined IBM in late 1994 as a Staff Programmer with programming skills in Smalltalk, C, C++ languages, at IBM Chicago. In 1999, Bhargav moved to IBM Austin Research Lab as a Middleware Product Developer, helping IBM develop Component Broker (C++) and IBM WebSphere® (Java) products. Subsequent to his graduation and in 2004, Bhargav moved to his current job role in the Washington, D.C. area.

 	
 [image:]

 	
 Eduardo A Patrocinio is a Cloud Architect and Senior Technical Staff Member at the IBM Cloud Lab Services organization. He leads the client cloud infrastructure service organization. He received a B.S. and M. S. from State University of Campinas, Brazil. Eduardo joined IBM after finishing college and worked in Brazil and Spain before moving to the United States.

 	
 [image:]

 	
 Henryk Gorski is a Software Client Architect supporting Federal customers by providing advice about technology adoption and architecting complex solutions in the area of cloud, analytics, big data, mobile, and security. Henryk joined IBM in 2007 with a background in development and consulting. He has extensive experience in architecting, designing, and implementing SOA and web-based systems.

 	
 [image:]

 	
 Manav Gupta is a Software Client Architect for the telecom industry in Canada with over 17 years of experience in the IT industry in India, USA, UK, and Canada. Manav is a Lead Architect for IBM Cloud Computing Reference Architecture, and has written extensively about service management, cloud computing and big data. Manav holds a number of patents in these areas also.

 	
 [image:]

 	
 Patrick M Ryan is an Executive Architect and Client Technical Manager in the US Federal Software group. He manages a team of architects who support the defense and intelligence community, including the Federal system integrators. Pat holds bachelor's and master's degrees in Computer Science.

 	
 [image:]

 	
 Richard Osowski is a Technical Product Manager for IBM Cloud. With over 10 years of deep technical experience in IBM middleware and business process management capabilities, Rick now focuses on next-generation cloud platforms to deliver both hosted and on-premises solutions to the company's expanding client base. He has a bachelor's degree in Computer Science from Penn State University and considers himself hopelessly addicted to architecting, scripting, and automating in work and everyday life.

 	
 [image:]

 	
 Ryan C Livesey is a Software Client Architect covering higher education, healthcare and local government in California. He is responsible for consulting and advising his clients about leveraging and extending current investments, while adopting and integrating new technologies into their organizations. Ryan spent a number of years developing and delivering enterprise web applications.

 	
 [image:]

 	
 Vasfi Gucer is an IBM Redbooks® Project Leader with the IBM International Technical Support Organization. He has more than 20 years of experience in the areas of systems management, networking hardware, and software. He writes extensively and teaches IBM classes worldwide about IBM products. His focus has been on cloud computing for the last four years. Vasfi is also an IBM Certified Senior IT Specialist, PMP, ITIL V2 Manager, and ITIL V3 Expert.

 Thanks to the following people for their contributions to this project:

 IBM USA	Chad Montgomery
	Heather Kreger
	James Moody
	Jeff Sloyer
	Jenifer Schlotfeldt
	Jordan T Moore
	Ke Zhu
	Kyle Brown
	Lin Sun
	Mamoun A Hirzalla
	Moe Abdula
	Rachel Reinitz
	Rajeev Sikka
	Ruth Willenborg
	Seth Packham
	Srinivas Chowdhury

 IBM Canada	Kathryn Fryer

 IBM Japan	Takehiko Amano

 IBM India	Sundar Venkatraman

 Thanks to the following contributors for helping to publish this project:

 Diane Sherman, Ella Buslovich, Erica Wazewski

 Now you can become a published author, too!

 Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

 Find out more about the residency program, browse the residency index, and apply online at:

 ibm.com/redbooks/residencies.html

 Comments welcome

 Your comments are important to us!

 We want our papers to be as helpful as possible. Send us your comments about this paper or other IBM Redbooks publications in one of the following ways:

 •Use the online Contact us review Redbooks form found at:

 ibm.com/redbooks

 •Send your comments in an email to:

 redbooks@us.ibm.com

 •Mail your comments to:

 IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Stay connected to IBM Redbooks

 •Find us on Facebook:

 http://www.facebook.com/IBMRedbooks

 •Follow us on Twitter:

 http://twitter.com/ibmredbooks

 •Look for us on LinkedIn:

 http://www.linkedin.com/groups?home=&gid=2130806

 •Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:

 https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

 •Stay current on recent Redbooks publications with RSS Feeds:

 http://www.redbooks.ibm.com/rss.html

[image:]
[image:]

Introduction

 Many types of web applications are running on the Internet today. There are also as many ways to manage and maintain the infrastructure that powers those applications. IBM Bluemix delivers quick and easy cloud capabilities to deploy and maintain your web application, with minimal hassle and overhead. Applying industry-adopted standard architecture capabilities into our application deployments allow us to confidently advance and grow our infrastructure.

 Hosting applications on Bluemix provides users with many advantages. Bluemix is an end to end offering that provides developers with a complete set of DevOps tools and integrated services to simplify development, test, build, and deploy applications. Moreover, applications that are hosted by Bluemix have access to the capabilities of the underlying cloud infrastructure. Such an infrastructure provides the best support for non-functional requirements (such as scalability, performance, availability, security) that are needed for enterprise applications. Furthermore, Bluemix provides a rich set of services to extend your application through incorporation of sophisticated analytics, social, and mobile capabilities as needed. Finally, the Bluemix platform frees developers and organizations from worrying about infrastructure-related “plumbing” details and focus on what matters to their organizations: business scenarios that drive better values for their customers.

 This chapter discusses the main considerations for deploying your web application with IBM Bluemix, and provides an architecture overview and our implementation decisions. We suggest that you read this chapter first before implementing the scenarios that are in this book.

 This chapter contains the following topics:

 •1.1, “Why deploy your application on Bluemix” on page 2

 •1.2, “Architecture overview” on page 2

 •1.3, “Implementation decisions” on page 5

 1.1 Why deploy your application on Bluemix

 In these lab exercises, you deploy a collaborative editing web application, taking advantage of certain architecture elements of a web application hosting pattern, and extend it by using several services that are available on Bluemix. This application, Etherpad Lite, is an open-source project built for real-time collaboration, with extensibility options that easily allow for future integration of additional capabilities as needed.

 In this scenario, we assume the role of developers who are tasked with managing an Etherpad Lite deployment. The current deployment is on-premises, which means we also need to manage the middleware and database infrastructure that also support the application. The machines that are dedicated to powering the environment are reaching capacity, and we cannot request more hardware, so growing the infrastructure is difficult.

 We prefer to move the deployment elsewhere, to a more scalable environment where we can easily add more instances as teams increase in number and usage, and to a managed environment so we can focus on the development work as opposed to maintaining servers. A cloud environment might be a great fit. However, we do not want to rewrite the application; we want to run the existing code.

 Fortunately, IBM Bluemix recently released its Containers service, so we can easily deploy our Etherpad Lite web application into containers running off-premises that will give us the ability to easily develop, test, and roll out new features for our users.

 Some of these capabilities that we want to target immediately are hosted database services to externalize the data of our Etherpads, integrating with IBM Watson Question and Answer service; all of this being possible by building our application on Bluemix.

 With our choice of architectural elements, we hope to realize speed, flexibility, and return on investment. Bluemix enables us to deploy our application instantly to multiple environments such as test, development, preproduction and production, multiple versions or releases with agile, pipeline, and DevOps-oriented integration. We also can integrate with on-premises enterprise resources through the built-in hybrid integration capabilities of Bluemix, targeting anything with an API or host name and port behind our firewall.

 To say it simply, building our application on Bluemix enables us to grow quickly and securely, while also realizing cost and time savings, and at the same time build on industry-proven architectures. Now we are ready to get to it.

 1.2 Architecture overview

 Through the lab series, we incrementally grow our capabilities to adapt a standard web application into an architecture more in line with an industry-proven architecture for web application hosting. This web application hosting reference architecture covers the details from the user requesting the initial URL all the way through to the back-end data calls. It is described in the following document:

 http://www.cloudstandardscustomercouncil.org/web-app-hosting-wp/index.htm

 See the Cloud Standards Customer Council Resource Hub website:

 http://www.cloud-council.org/resource-hub.htm

 Figure 1-1 on page 3 shows the web application hosting reference architecture.

 [image:]

 Figure 1-1 Web application hosting reference architecture

 The components of the web application hosting reference architecture are as follows:

 •Inbound user requests are initially handled by Domain Name Services, which route your traffic to the proper infrastructure endpoints.

 •Content Delivery Networks provide the least latency and the highest speed to create an exceptional user experience for all your static application content.

 •Firewalls provide a boundary to help keep intruders out while your web application operates smoothly.

 •Load Balancers allows configurability and flexibility to manage the traffic and resource usage of server nodes in your environment so that no single device gets overwhelmed.

 •The Web App Server component is the heart of your web application, serving up your core application to users. Build your server infrastructure by using high performance containers, virtual machines, or Cloud Foundry based run times, all of which can be similarly integrated across the architecture.

 •User Registry Services enable authorization and authentication to secure resources across your application.

 •Session and Data Caching ensure low latency data access and prevent data loss for a robust user experience. In addition, with storage services, you can customize and have total control over a SAN or NAS solution that fits your storage needs.

 •Managed Database Services deliver high-performance database support, while allowing you to focus on your application and not database maintenance. These databases range from standard SQL databases to newer NoSQL databases to big data services.

 The architecture has multiple tiers and multiple components in each tier that are critical to the optimal performance of your web application. The labs in this book will specifically focus on the Web and Service tiers, with the Web App Server, Cache, and Load Balancer components.

 Basic rules exist that are best followed when developing, deploying, and maintaining cloud applications, in addition to the reference architecture. These rules are described in Top 9 rules for cloud applications, by Kyle Brown and Mike Capern, and which is available at the IBM developerWorks® library:

 http://www.ibm.com/developerworks/websphere/techjournal/1404_brown/1404_brown.html

 Here is an overview of the rules:

 •Rule 1: Do not code your application directly to a specific topology. So far, we are talking about only components. There is no mention of specific hardware, software, or hosting capabilities. The key here is to keep your application flexible.

 •Rules 2 - 4: These all center around the ephemeral, or non-permanent, natures of cloud applications. Do not assume the local file system is permanent. Do not keep session state inside your application. Do not log to the file system. Many run times that power cloud applications today are ephemeral, or non-permanent. Therefore the application instances and their underlying file systems can disappear and be rewritten when the application scales or an instance is restarted. Overall, these are not new concepts for web applications, but they are critical for successful cloud applications.

 •Rules 5 and 6: These focus on infrastructure and on what you are building your application. Do not assume any specific infrastructure dependency. Do not use infrastructure APIs from within your application. You do not want to tie your application to the infrastructure it is running on for these reasons:

  –	It might be moved to another platform by you or the hosting provider.

  –	It might run on multiple platforms at the same time.

  –	Platform APIs and dependencies change at a different lifecycle than your application code, so adding another requirement is unnecessary.

 A preferred practice is to abstract the infrastructure needs outside of your application and handle them through management and operation interfaces that are available on the cloud platform.

 •Rules 7 and 8: These are common across application development to keep your long term sanity. Do not use obscure protocols. Do not rely on features that are specific to the operating system. You do not know with which services your application will need to integrate in the future. You do not know which operating system your application will run on. Use as many standards-supported APIs as possible when developing your application, so you are not locked into a certain run time.

 •Rule 9: Do not manually install your application. Automate, automate, automate. Whether in development, test, staging, or production, automate your application installation as much as possible. This promotes reuse, saves time, and vastly reduces errors in the long run. That means better application quality and more uptime for users.

 You are probably already adopting many of these rules in your applications today. If not, you read Kyle and Mike's post for broader detail about what and how to accomplish these goals. The exercises we describe in the following labs exemplify these rules and demonstrate capabilities to deliver cloud applications that follow the rules.

 1.3 Implementation decisions

 As a team, we reviewed the skills available to the team and how these matched with our end goals. The intention of our team of authors was to leverage as much existing code as possible, instead of creating something new; the focus was not on development, but rather to quickly compose industry-proven architectures, with the flexibility provided by cloud infrastructures. The Node.js application that was first discussed was Etherpad Lite. This is a collaborative online editing application that runs with relatively low overhead and is an open-source project that is easily accessible on GitHub. After discussing multiple other options, the team decided that this was the best approach because it was easy enough to get started, would eventually show a robust application running on Bluemix without reinventing anything, and had the potential for future extensibility in many areas.

 After we decided on Etherpad as our base application, we discussed options for Bluemix deployments and what makes the most sense to expand upon from a scenario and use-case perspective. Bluemix provides a wealth of data and application services, so we could first use one of the database services to provide a persistent back-end. Next, we could expand the applications security model and integrate with one of the security services Bluemix provides, either the App User Registry service or the Single Sign On service. After we covered some possible scenarios for hardening the base Etherpad application on Bluemix into a more standard web application, we discussed possible scenarios to show several unique service capabilities of Bluemix. Because of the collaborative nature of the application, based on user interaction, a few possible scenarios led to discussing Watson integration through the Question and Answer service, Relationship and Term Definition services, or Translation services. All of these services and potential integrations highlight the breadth of Bluemix and its ability to be the platform for applications of tomorrow.

 For the scenario in this paper, we are taking an existing application, running it on Bluemix in a matter of hours, and then integrating complete automated cognitive services into it, thereby enhancing the user experience without requiring users to do anything extra. We decided on several scenarios that seemed achievable in a shorter amount of time, saving the other scenarios for a future book.

 Starting with the most straightforward approach, the team tried pushing the Node.js application directly to Bluemix and found certain technical hurdles that needed to be handled before the application would run as a Cloud Foundry backed application. We consulted with Jeff Sloyer, Developer Advocate for Bluemix, who investigated the feasibility of running Etherpad Lite on Bluemix in a Cloud Foundry backed run time. We learned that additional overhead exists when you want to deploy Etherpad Lite into a Cloud Foundry run time that requires pulling a specific package from the Etherpad site, with some of the prerequisites configured in a specific way for the Etherpad build. This is not in the realm of the Etherpad Lite source and not as current as the source. That is not something we wanted to introduce to the lab experience, because we want to pull directly from source as much as possible.

 Jeff was getting Etherpad running in Bluemix through the Node.js run time. This is described at the following web page:

 https://developer.ibm.com/bluemix/2015/01/13/etherpad-cloud-foundry-quick-start-guide/

 Meanwhile, the team also investigated how to deploy Etherpad Lite through a Docker container on the IBM Containers service on Bluemix. This seemed like a valid option to deploy the same application, but directly from the source and not a pre-built package, while still maintaining some of the ease of use and scalability that Bluemix promises. Containers seemed like an optimal approach that would allow us more flexibility of what we were deploying, with the cost of a small increase in management overhead. The flexibility that was required was necessary based on the amount of time that is required and familiarity with the codebase. The team believed that this pattern more closely mirrors the general customer experience; customers prefer to get their existing applications running on Bluemix as quickly as possible, instead of trying to port them to be supported in a Cloud Foundry run time and build pack. Existing applications are more likely to adopt the container model; new applications are more likely to build from scratch, using the power of the Cloud Foundry model.

 This was deemed acceptable by the team, so we began the investigation into running Etherpad Lite in the IBM Containers service. Using an existing Dockerfile for Etherpad Lite, we configured our environments for use of the IBM Containers service with the ice command-line extensions (described in Chapter 2, “Lab 1: Build a web application hosting architecture on an enterprise Containers service” on page 7).

 By using the instructions at the following web page and learning about Docker, we were able to get the web application running in a Docker container, hosted on Bluemix, and making it publicly available through the IBM Containers service in only a few hours:

 https://www.ng.bluemix.net/docs/#services/Containers/index.html#container

 This is a great story to tell customers with existing code bases and who are not interested in porting their existing applications to work inside a Cloud Foundry model. As such, the team decided that the container-based deployment of Etherpad Lite was going to be our run time for the Web App Service component of the architecture for this paper. The Bluemix services that were selected for integration with our Etherpad Lite, running on the IBM Containers service, is described at the beginning of each lab that focuses on them.

 Figure 1-2 shows the technical reference architecture of the scenarios covered in this book.

 [image:]

 Figure 1-2 Technical reference architecture of the scenarios covered in this book

[image:]
[image:]

Lab 1: Build a web application hosting architecture on an enterprise Containers service

 In this chapter, we introduce our first lab: building a web application hosting architecture on an enterprise containers service. This lab is a prerequisite for all the other scenarios in this book.

 To get your web application running, complete the following tasks in this lab:

 •2.1, “Task 1. Set up a Bluemix account and create a container” on page 8

 •2.2, “Task 2. Install development tools on your workstation” on page 12

 •2.3, “Task 3. Obtain the sample code” on page 14

 •2.4, “Task 4. Build the image for the application” on page 15

 •2.5, “Task 5. Test the application on your workstation” on page 18

 •2.6, “Task 6. Run the application in Bluemix” on page 20

 •2.7, “Try it” on page 22

 	
 Note: These labs were documented to be as accurate as possible at the time of publication. However, Bluemix is an actively evolving development platform, therefore capabilities, services, and user interfaces do change. For the most recent and accurate labs, see the following web page:

 https://ibm.biz/bluemix_labs

 2.1 Task 1. Set up a Bluemix account and create a container

 IBM Bluemix is an open-standards, cloud-based platform for building, managing, and running all types of applications: mobile, smart devices, web, and big data. The Bluemix capabilities include Java, mobile back-end development, application monitoring, and features from ecosystem partners and open source, all through an as-a-service model in the cloud.

 In this task, you register for an account, understand service limits for no-cost or trial accounts, and add a Containers service.

 	
 Note: The screen captures about the IBM Containers service are based on the beta version of the service and might be slightly different in the generally available version.

 Register for an account

 Before you can use the Bluemix capabilities, you must register for an account. Sign up at the following website, which gives you a 30-day no-charge trial. After the trial, you will need to provide a credit card to pay as you go for your resource usage.

 https://bluemix.net/

 For more helpful information about Bluemix, see the Docs section of this web page:

 https://www.ng.bluemix.net/docs/#overview/overview.html

 Service instance limits on no-cost or trial accounts

 If you have a no-cost or trial account, the limit is four service instances. During subsequent labs, you create a number of service instances for use with the application. You might need to delete some unused or irrelevant service instances to proceed throughout the labs if you created other services during previous Bluemix activity.

 To delete a service instance, complete these steps:

 1.	From the Bluemix Dashboard, highlight the settings icon in the top right of the service panel and select Delete.

 2.	If you are asked to restage your application, click Restage and wait for your application to be redeployed before proceeding.

 Add a Containers service

 Complete the following steps:

 1.	Log in to Bluemix. The dashboard opens (Figure 2-1).

 [image:]

 Figure 2-1 Bluemix dashboard

 The dashboard shows an overview of the active Bluemix space for your organization. By default, the space is dev and the organization is the project creator’s user name. For example, if bob@fictional-example.com logs in to Bluemix for the first time, the active space is dev and the organization is bob@fictional-example.com. If you create more organizations or spaces in Bluemix, be sure to use the same ones as you follow the labs. Use the default selections.

 2.	Create an IBM Containers service. In the left navigation, select SERVICES and then click ADD A SERVICE (Figure 2-2 on page 10).

 [image:]

 Figure 2-2 Select SERVICES and click ADD A SERVICE

 3.	Scroll through the catalog to locate and select Containers (Figure 2-3).

 [image:]

 Figure 2-3 Select Containers

 4.	Accept the defaults and click CREATE (Figure 2-4).

 [image:]

 Figure 2-4 Click CREATE

 	
 Note: The Service name is generated by Bluemix, so your Service name will differ from what the figure shows.

 5.	Type your registry name, which is appended to form the registry URL. You must provide your own name for your Containers service. As the lab continues, you use this registry URL name based on your own Containers service name.

 [image:]

 Figure 2-5 Provide your own name for your Containers service

 	
 Registry URL name: You must provide your own Registry URL name for the service, rather than use the service name that was generated when you added the service. The registry URL that you enter will be used when issuing command-line requests with the IBM Containers service. Make sure that the registry name that you provide is descriptive and unique, but easy to type.

 Now you can see your container service in the DASHBOARD view (Figure 2-6).

 [image:]

 Figure 2-6 Dashboard view

 In this view, you can see your registry URL, API authentication key, containers, and images. You will need to use this information later, when you build and deploy containers for your app.

 2.2 Task 2. Install development tools on your workstation

 Next, you install several development tools on your workstation: Git, Docker, and the IBM Containers Extension (ice) command-line tools.

 2.2.1 Install development tools on Windows 7 and Windows 8

 Running Docker on Windows workstations usually requires some trial and error. An easier approach might be to either obtain a new machine (real or virtual) running Ubuntu 14.04, or run Ubuntu as a virtual machine on top of your Windows operating system. After you have Ubuntu running, the remaining steps of the setup are straightforward.

 Windows systems often have virtualization support disabled in the BIOS. Boot to your BIOS settings screen and ensure that you enable virtualization support, or you will not be able to run Docker or any other virtual machine. The virtualization settings are usually under these menus: Security, Chipset, or Processor.

 If you have Ubuntu available, you can stop here and follow the Linux setup instructions in 2.2.3, “Install development tools on Linux (such as Ubuntu, Red Hat)” on page 13 instead.

 2.2.2 Install development tools on Mac OS X

 Our suggested setup for Mac workstations is that you run the boot2docker tool, which runs a Linux virtual machine on your workstation. That boot2docker virtual machine is where you will run the Docker containers.

 1.	To install Git, VirtualBox, boot2docker, and Docker for you, follow the setup instructions at this web page:

 https://docs.docker.com/installation/mac/

 2.	Install Python Indexing Project (PIP) and the ice command-line tools by using the instructions at this web page:

 http://www.ng.bluemix.net/docs/#services/Containers/index.html#container

 2.2.3 Install development tools on Linux (such as Ubuntu, Red Hat)

 Linux workstations (Ubuntu, Red Hat, and others) can run Docker natively, so you do not need the boot2docker virtual machine.

 Installation notes

 The version used for this lab was Ubuntu 14.04 LTS:

 http://releases.ubuntu.com/14.04/

 If you run Ubuntu in a virtual machine and are familiar with networking between hosts and guests, Ubuntu Server is an ideal choice. If you prefer not to configure networking and port-forwarding, Ubuntu Desktop might be an optimal choice to work in a desktop-based environment without having to configure networking on your virtualization platform.

 See the following resources as you complete the steps:

 •Docker installation:

 https://docs.docker.com/installation/#installation

 •GIT installation:

 http://git-scm.com/book/en/v2/Getting-Started-Installing-Git

 •IBM Container Extensions, ice CLI:

 http://www.ng.bluemix.net/docs/#services/Containers/index.html#container

 Installation steps

 Complete the following steps to set up and configure your development environment in an Ubuntu-based environment. If you encounter any issues, see the web pages that are listed under Installation notes, above.

 1.	Install Ubuntu, either Server or Desktop. Make sure it is the 64-bit version because Docker requires a 64-bit environment.

 2.	From a terminal window, run the following commands (and the commands in the remainder of these installation steps). These assume you are running them as a non-root user (which is common). If you are running as root, you do not need the sudo command at the beginning of each the following commands.

 a.	Install Git:

 sudo apt-get install git

 b.	Install Docker-maintained packages:

 sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 36A1D7869245C8950F966E92D8576A8BA88D21E9

 sudo sh -c "echo deb https://get.docker.com/ubuntu docker main > /etc/apt/sources.list.d/docker.list"

 sudo apt-get update

 sudo apt-get install lxc-docker

 source /etc/bash_completion.d/docker

 3.	Test the installation of Docker:

 sudo docker run -i -t ubuntu /bin/bash

 This command starts an Ubuntu-based Docker container and puts you in the command line of that running container. If you see a prompt similar to root@4656f27df98f:/#, you can type exit to return to the Ubuntu command line and stop the container instance.

 4.	Install PIP:

 sudo apt-get install python-pip

 5.	Install Python Setuptools:

 wget https://bootstrap.pypa.io/ez_setup.py -O - | sudo python

 6.	Install ice CLI:

 wget https://static-ice.ng.bluemix.net/icecli-1.0.zip

 sudo pip install icecli-1.0.zip

 	
 Important: When you install ice, if you get a message that Docker cannot be found or that the ~/.ice/ice-cfg.ini file does not exist, you must create the ~/.ice/ice-cfg.ini file with the following content to resolve the issue. Additional necessary parameters will be added as you interact with ice.

 [DEFAULT]

 docker_path = /usr/bin/docker

 2.3 Task 3. Obtain the sample code

 Download the sample code for this lab from our Git repository. We use an open-source Node.js application called Etherpad. It is easy to set up and fun to play with. From here onward, the lab instructions assume an Ubuntu command-line environment. Adjust your commands for any alteration in your setup.

 1.	Open a command prompt (Windows) or a terminal window (all other platforms) and create a working directory (for example, git) and then change to that directory:

 mkdir git

 cd git

 2.	Download our Git repository to your working directory as follows:

 git clone https://hub.jazz.net/git/osowski/etherpad-lite

 3.	An etherpad-lite subdirectory is created. Change to that subdirectory:

 cd etherpad-lite

 Now you are ready to build the sample application.

 2.4 Task 4. Build the image for the application

 The etherpad-lite directory contains a file named Dockerfile. You can open it in an editor to see what it does, but you do not have to edit it for this lab. The Dockerfile instructs Docker how to build an image for the container that will run our application: the base image to use (an IBM Node.js container), and the commands to run to install and run the application.

 Explore the Dockerfile

 The Dockerfile has several interesting parts:

 •The first line, starting with the keyword from, tells Docker which container base image to use:

 from registry-ice.ng.bluemix.net/ibmnode:latest

 To learn more about the IBM Node container image, see this official Bluemix documentation:

 http://www.ng.bluemix.net/docs/#services/Containers/index.html#container_images_node

 •Several lines start with RUN. The RUN command installs the Etherpad application and any packages it needs to run. We use the base image that uses the Ubuntu 14.04 operating system, so the RUN commands are Ubuntu-style.

 # Install etherpad-lite

 RUN mkdir /src

 RUN git clone https://github.com/ether/etherpad-lite.git \/src/etherpad-lite --branch develop --single-branch

 ADD ./settings.json /src/etherpad-lite/settings.json

 RUN /src/etherpad-lite/bin/installDeps.sh

 EXPOSE :9080

 ENTRYPOINT ["/src/etherpad-lite/bin/run.sh", "--root"]

 •The line starting with ADD copies the settings.json file from the current working directory to the container image. This file was extracted from our GIT repository, along with the Dockerfile:

 ADD ./settings.json/src/etherpad-lite/settings.json.

 2.4.1 Configure the application

 Complete the following steps to configure the application:

 1.	The settings.json file in the etherpad-lite directory configures the Etherpad application. The Bluemix containers documentation states this: “The only open ports for Containers and your floating IP address are: 22, 80, 443, 9080, and 9443.”

 This means that you need to configure Etherpad to use port 9080 instead of the default port.

 We changed only the following settings to get Etherpad running in Bluemix, but you can try changing more settings later:

 // Name your instance!

 "title": "Etherpad on Bluemix",

 //IP and port which etherpad should bind at

 "ip": "0.0.0.0",

 "port" : 9080,

 See the following web page:

 https://www.ng.bluemix.net/docs/#services/Containers/index.html#container

 2.	Run the Etherpad installer within the container, and tell the container that you will need to access port 9080 by using the EXPOSE keyword:

 RUN /src/etherpad-lite/bin/installDeps.sh

 EXPOSE :9080

 3.	The ENTRYPOINT line tells the container what command to run at startup to start the Etherpad web application. By adding this line, ensure that Etherpad will be running when you start your containers:

 ENTRYPOINT ["/src/etherpad-lite/bin/run.sh", "--root"]

 You can find more information for Etherpad at the following web pages:

 •https://github.com/ether/etherpad-lite

 •https://github.com/ether/etherpad-lite/wiki

 Now that you are familiar with the files, you can build the Docker container.

 2.4.2 Build the container

 On Linux, you normally need to start the ice commands in the following steps with the sudo ice command. On Mac OSX, do not use the sudo command.

 In the following steps, you need your API authentication key and registry URL. We use it now, to log in to the ice command-line tool.

 ice login -k API_KEY -H https://api-ice.ng.bluemix.net/v1.0/containers -R registry-ice.ng.bluemix.net

 	
 Note: The only string you need to change in the command above is API_KEY. Later commands will require you to change registry URLs, but the -H and -R parameters above are the same for all users when initially logging in.

 If you do not know your API authentication key and registry URL, you can find them from your Containers service dashboard. To display it, from the Bluemix dashboard, click SERVICES and then click the name of your Containers service (in this example, Containers-dq). Your API authentication key is in the circled area (Figure 2-7 on page 17).

 [image:]

 Figure 2-7 Bluemix dashboard

 Build your container using the following commands in succession, from the etherpad-lite directory. You need to use the value of your own Registry URL in the following commands, found in the Bluemix dashboard (Figure 2-8).

 [image:]

 Figure 2-8 Copy your Registry URL

 The commands are as follows:

 •The first command pulls the most recent official IBM Node.js container from the global IBM repository:

 ice --local pull registry-ice.ng.bluemix.net/ibmnode:latest

 •The second command builds your application container and pulls the pulled latest image and with our Dockerfile and settings.json that were extracted from the lab’s GIT repository. The -t parameter provides a tag that is automatically applied to the built image, so you can reference it locally.

 	
 Tip: The trailing period (.) is important to make sure you specify the current directory (the cloned etherpad-lite directory) is the working directory for Docker to build our image from.

  –	Format: ice --local build -t YOUR_LOCAL_IMAGE_NAME .

  –	Example: ice --local build -t etherpad_bluemix .

 •The final command tags your image into a repository with a format that allows you to publish your built image to Bluemix and run it on the IBM Containers service. This command takes your local image that was tagged previously during the build command and applies a repository-specific tag to it, so it can be correctly placed in the IBM Containers service shared repository. This format is required and you will not be able to successfully push an image to Bluemix if you use another image name format that does not match.

  –	Format: ice --local tag -f YOUR_LOCAL_IMAGE_NAME registry-ice.ng.bluemix.net/YOUR_REGISTRY_URL/YOUR_REMOTE_IMAGE_NAME

  –	Example: ice --local tag -f etherpad_bluemix registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix

 Your local and remote image names do not have to be the same, but having them be the same does help for clarity when comparing local and remote image lists. Also, you can tag your initial image with the full repository tag during the build step instead, but it helps to use shorter tags when running locally to save time and apply the Bluemix required format before pushing your image to Bluemix.

 In order, these commands are listed as follows; replace the necessary formatted parts with your organization and images information:

 ice --local pull registry-ice.ng.bluemix.net/ibmnode:latest

 ice --local build -t etherpad_bluemix .

 ice --local tag -f etherpad_bluemix registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix

 2.5 Task 5. Test the application on your workstation

 Now that your container is built, you can try testing your Etherpad web application locally.

 1.	Start a Docker container and run Etherpad in it by entering the following command. The command also prints out a container ID (CID) that you will need for the next step:

 docker run -d -p 9080:9080 etherpad_bluemix

 2.	Find the URL to type into your browser to see the running Etherpad web application by entering the following command. Replace ${CID} with the container ID from the docker run command in the previous step. This command provides the IP address of the Docker container, which is needed if you are running in a Linux Desktop environment:

 docker inspect --format '{{ .NetworkSettings.IPAddress }}' ${CID}

 3.	If you are running a Linux Server environment inside a virtual machine, you must configure port-forwarding for your virtualization platform to access Etherpad running on the container from your host machine. Port-forwarding configuration varies from platform to platform, but forwarding port 9080 on your host machine to the internal virtual machine guest is usually all that is needed. An example of a VirtualBox Port Forwarding configuration is shown in Figure 2-9.

 [image:]

 Figure 2-9 Port Forwarding Rules

 Similarly, a virtual machine running on VMware requires a port-forwarding rule also, but the Guest IP value will be the IP address associated with the VMware 8 network.

 On Mac OSX, boot2docker is running Docker in a virtual machine, so you need the IP address of boot2docker (usually 192.168.59.103). Run this command to get the IP address of boot2docker:

 boot2dockerip

 4.	In this lab, you are hosting Etherpad on port 9080. Therefore, to test your running Etherpad application you can open a URL, similar to the following example, in your browser (replacing 192.168.59.103 with your container's IP address):

 http://192.168.59.103:9080/

 If everything is running correctly, you see a welcome window (Figure 2-10).

 [image:]

 Figure 2-10 New Pad window

 5.	create a new Pad and experiment with it. This simple Etherpad setup uses a local file to store the Pad text, so data does not persist across containers. Therefore, your Pads and text are deleted when you shut down the container. In Chapter 3, “Lab 2: Extend the architecture with Database services” on page 23, you will configure Etherpad to use a real database hosted in Bluemix, so that you can save your data.

 2.6 Task 6. Run the application in Bluemix

 When you have the application running locally, you can publish it to a container running in Bluemix and run it on the Internet.

 The commands to run the container in Bluemix are described next. You will need to replace some values with values that are specific to your environment, so read the formatting of each command before running them, in order.

 ice --local push registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix ice images

 The ice --local push command publishes the container image to Bluemix and places it in your organization's registry, scoped by the Registry URL you configured when you created your Containers service instance.

 •Format:

 ice --local push registry-ice.ng.bluemix.net/YOUR_REGISTRY_URL/YOUR_REMOTE_IMAGE_NAME

 •Example:

 ice --local push registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix

 The ice images command prints the published image URL for you, along with other data that is associated with the rest of the images you have pushed to Bluemix.

 The output of the ice images command is similar to the example in Figure 2-11. The <UUID> fields are actual unique IDs that are generated for each image pushed to Bluemix.

 [image:]

 Figure 2-11 The output of the ice images command

 Note the etherpad_bluemix image that we pushed to Bluemix with the previous <formatted>ice --local push</formatted> command and the difference between its image name and the other two images provided by IBM. As a user, you can pull from only the base global directory, but you can push to (or pull from) your Organization-scoped repository by using the format in the previous command.

 Now, create a running container instance on Bluemix by issuing the following command:

 ice run --name etherpad_01 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix:latest

 You will need to change the container name parameter from etherpad_01 to whatever container name you choose each time you create a new container. This container name does not have to be scoped with a complete URL like the image name does, because it is only for ease of identification of running containers. It can be a simple string and must be unique across the containers you have running in your Containers service instance. You must also replace the URL with your own image URL:

 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix:latest

 The :latest tag at the end of the URL specifies to run the latest version of that image, if multiple versions exist.

 •Format:

 ice run --name <Unique Container Name> registry-ice.ng.bluemix.net//YOUR_REGISTRY_URL/YOUR_REMOTE_IMAGE_NAME:latest

 •Example:

 ice run --name etherpad_01 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix:latest

 The ice run command returns a unique container ID (CID); use that CID in commands that are run for that container. In the following examples, the CID is as follows, so replace that with your own CID:

 dd489740-ffff-4c8f-9117-d94cd147f122

 Before you can connect to your web application, you must assign to it a floating public IP address. The ice ip request command assigns one to you. Replace 129.0.0.0 in the following example with the IP address returned from the ice ip request command.

 ice ip request

 ice ip bind 129.0.0.0 CID

 We are hosting Etherpad on port 9080, so to test your running Etherpad application you can open a URL similar to the following one in your browser; replace 129.0.0.0 with the IP address returned from the ice ip request command:

 http://129.0.0.0:9080/

 Your account gets only two of these public IP addresses at no charge, so unbind the IP addresses when you are not using them. We use dd489740-ffff-4c8f-9117-d94cd147f122 CID in this lab but use your own CID.

 ice ip unbind CID

 To look up the CIDs for your running containers and your published image names, use either of the following methods:

 •Click the Containers and Images tabs in the container view of the Bluemix dashboard.

 •Use the following ice commands to view running containers and published images:

  –	To view running containers:

 ice ps

  –	To view published images:

 ice images

 2.6.1 Stop or remove a running container instance on Bluemix

 As a preferred practice, we stop (and optionally remove) the local containers that were used for testing after the application is running on Bluemix. This can be done by running the commands in the following steps.

 1.	Find the running Docker container instances:

 sudo ice --local ps

 2.	Optional: Stop the Docker container instance by container ID, available as output from the previous command.

 sudo ice --local stop CID

 3.	Optional: Remove the Docker container instance entirely (again, as an optional step; it only needs to be stopped to proceed with future labs), use the container ID again as the parameter to the following remove command:

 sudo ice --local rm CID

 	
 Stopping local Etherpad containers: At the end of each lab, any locally running Etherpad containers should be stopped for error-free progression through subsequent labs.

 2.7 Try it

 Now that you are a “pro” at setting up a fast and highly reliable web application that runs on the cloud, go to Bluemix and create your own web application.

 When you are ready to learn more, consider exploring the following labs:

 •Lab 2

 Learn how to save your web application's data in a database that is running in Bluemix.
(See Chapter 3, “Lab 2: Extend the architecture with Database services” on page 23.)

 •Lab 3

 Explore the ease of integrating Caching services into your web application.
Use a Redis Caching service to be the back end of the Etherpad Lite web application.
(See Chapter 4, “Lab 3: Extend the architecture with Caching services” on page 41.)

 •Lab 4

 Expose the awesome brain power of Watson to your users, directly inside of a Pad.
(See Chapter 4, “Lab 3: Extend the architecture with Caching services” on page 41.)

[image:]
[image:]

Lab 2: Extend the architecture with Database services

 This chapter presents a scenario for extending your web application with hosted services on Bluemix. The MySQL service was chosen for this scenario.

 To extend your web application to include a hosted MySQL data source, complete the following tasks in this lab:

 •3.1, “Before you begin” on page 24

 •3.2, “Task 1. Create your MySQL service instance” on page 24

 •3.3, “Task 2. Configure your application to use MySQL service” on page 29

 •3.4, “Task 3. Build the image for the application” on page 32

 •3.5, “Task 4. Test the application on your workstation” on page 34

 •3.6, “Task 5. Run the application in Bluemix” on page 36

 •3.7, “Task 6. Optional: Validate the application data in the MySQL database” on page 38

 •3.8, “Try it” on page 39

 	
 Note: These labs were documented to be as accurate as possible at the time of publication. However, Bluemix is an actively evolving development platform, therefore capabilities, services, and user interfaces do change. For the most recent and accurate labs, see the following web page:

 https://ibm.biz/bluemix_labs

 3.1 Before you begin

 This lab is written for Ubuntu 14 and Mac OS X development workstations because setting up up the required tools on those platforms is easier. If your development workstation is running another operating system (such as Windows), either obtain an additional server running Ubuntu or run Ubuntu in a virtual machine on your development workstation.

 	
 Prerequisite: Complete Lab 1 first. See Chapter 2, “Lab 1: Build a web application hosting architecture on an enterprise Containers service” on page 7.

 In Lab 2, we mix the use of Bluemix apps with containers. These are two separate conceptual ideas for executing code in Bluemix today. The apps closely map to the Cloud Foundry app model, while containers are simply Docker containers running on Bluemix. Eventually, we can bind container instances to apps and take advantage of all the native integration points available to apps and services in Bluemix today.

 However, based on the experimental status of the IBM Containers service, that model is not available across all user IBM Containers service interfaces. Therefore in this lab and other labs, we create an app which we bind our services to for instantiation. We then reference that service instance directly from the container during the build and execution stages. Our created apps are simply placeholders for our services in this lab series. In the future, we will be able to take advantage of the platform integration between apps and containers, using an environment variable in our Docker images and Dockerfiles to retrieve this same information dynamically.

 3.2 Task 1. Create your MySQL service instance

 IBM Bluemix is an open-standards, cloud-based platform for building, managing, and running all types of applications: mobile, smart devices, web, and big data. The Bluemix capabilities include Java, mobile back-end development, application monitoring, and features from ecosystem partners and open source, all through an as-a-service model in the cloud.

 For this lab, we use a partner service to provide us with a managed database-as-a-service, that we can use as our back-end repository for the Etherpad data.

 Complete the following steps:

 1.	Log in to Bluemix. The dashboard opens (Figure 3-1 on page 25). It shows an overview of the active Bluemix space for your organization.

 [image:]

 Figure 3-1 Bluemix dashboard

 2.	Click CREATE AN APP (Figure 3-2)

 [image:]

 Figure 3-2 Click CREATE AN APP

 3.	Select WEB when you are asked what type of app to create (Figure 3-3).

 [image:]

 Figure 3-3 Select WEB

 4.	When you are prompted for what to start with (the runtime of your application), you can choose any runtime for this lab because we use the application only to aggregate our services. Future labs will deploy application contents to the necessary runtimes. We chose SDK for Node.js as the runtime for this task (Figure 3-4). Click CONTINUE.

 	
 Note: As mentioned in 3.1, “Before you begin” on page 24, the apps are only placeholders for the services you are creating in this lab series, and have no direct correlation through the Bluemix interface to the containers we deploy. We will directly link the containers we run to the services that we create through configuration files in the running containers in these exercises.

 [image:]

 Figure 3-4 Select SDK for Node.js

 5.	Give your application a meaningful name and click FINISH (Figure 3-5). You can see your new application in the Dashboard view. Click it for details.

 [image:]

 Figure 3-5 Application name selection

 6.	Create a new service instance and bind it to the application by first clicking ADD A SERVICE (Figure 3-6).

 [image:]

 Figure 3-6 Adding a service

 7.	Scroll to the Data Management section and hover over the ClearDB MySQL Database service (or click the icon). Click VIEW MORE (Figure 3-7).

 [image:]

 Figure 3-7 Data Management section

 8.	Accept all the defaults and click CREATE (Figure 3-8).

 [image:]

 Figure 3-8 Click CREATE

 9.	If you are asked whether to restage your application, click RESTAGE and wait the few seconds for your app to restage (Figure 3-9).

 [image:]

 Figure 3-9 Restage Application

 After your page refreshes and your app restages, you now have a managed MySQL data store ready for your use.

 [image:]

 Figure 3-10 Managed MySQL datastore ready for your use

 3.3 Task 2. Configure your application to use MySQL service

 You now have a managed MySQL Database service that you can connect to from your Etherpad application. We show you how we configure our application through a settings file to point to the new persistent data store instead of using a local, volatile file on the Container file system.

 	
 Tip: On Linux, you must begin each of the following ice commands with sudo ice, followed by the remainder of the command. On Mac OS X, do not use the sudo command, begin each command with ice followed by the remainder of the command.

 Complete the following steps:

 1.	From your application details page, click Show Credentials under your ClearDB MySQL Database (Figure 3-11).

 [image:]

 Figure 3-11 The credentials for accessing the MySQL Database

 Make note of the name (the generated database name), host name, port, user name, and password. All of these fields are generated for you automatically on the database service already. You can now use these values to update the settings.json file and redeploy the application.

 2.	In a text editor, open etherpad-lite/settings.json file and find the lines starting with "dbType" : "dirty" (approximately line 38). See Figure 3-12 on page 31. You must replace these configuration options with the options from the credentials panel in Bluemix.

 [image:]

 Figure 3-12 Configuration options: before the changes

 Use these steps to edit the file:

 a.	Comment out or delete the lines that are highlighted in the figure. Uncomment the lines surrounding the "dbType" : "mysql" block.

 b.	Copy your user name field from the Bluemix panel into the user field, replacing __username__.

 Replace the underscores also (they are shown only for placeholder text).

 c.	Copy your host name field from the Bluemix panel into the host field, replacing __hostname__.

 Replace the underscores also (they are shown only for placeholder text).

 d.	Copy your password field from the Bluemix panel into the password field, replacing __password__.

 Replace the underscores also (they are shown only for placeholder text).

 e.	Copy your name field from the Bluemix panel into the database field, replacing __database__.

 Replace the underscores also (they are shown only for placeholder text).

 3.	Save your newly updated settings.json. You now have a settings.json that resembles the file in Figure 3-13.

 [image:]

 Figure 3-13 Configuration options: after the changes

 	
 Note: The implementation method here is not as flexible as it could be. We are hard-coding the service properties into the Docker image when we build it. Eventually, we will be able to dynamically bind any service properties to the Docker image when it first boots and will not need to hard-code service properties. However, as mentioned previously, being able to bind containers to apps for this capability is not yet globally available, because the experimental state of the IBM Containers service. This lab will be updated when this capability is available in later releases of the IBM Containers service.

 3.4 Task 3. Build the image for the application

 This section is similar to “Task 4. Build the image for the application” on page 15, however we do use different image names because we are leveraging an additional MySQL service.

 	
 Linux and Mac OS X: On Linux, you normally need to start the ice commands in these steps with sudo ice. On Mac OS X, do not use the sudo command.

 Complete the following steps:

 1.	Log in to the ice command-line tool, replacing API_KEY with your own API authentication key from the Bluemix dashboard:

 ice login -k API_KEY -H https://api-ice.ng.bluemix.net/v1.0/containers -R registry-ice.ng.bluemix.net

 	
 Note: The only string you need to change in this command is API_KEY. Later commands will require you to change Registry URLs, but the -H and -R parameters in this command are the same for all users when initially logging in.

 2.	As shown in the Bluemix dashboard, your API authentication key is in the circled area (Figure 3-14 on page 33). If you need to return to this view from the main dashboard page, click SERVICES and then click the name of your IBM Containers service (Containers-dq in this example).

 [image:]

 Figure 3-14 Bluemix dashboard

 3.	Build your container by using the following commands in succession, from the etherpad-lite directory. In the command, you must use the value of your own Registry URL, found in the Bluemix dashboard (Figure 3-15).

 [image:]

 Figure 3-15 API authentication key

 Use the commands in the following order:

 a.	This command pulls the most recent official IBM Node.js container from the global IBM repository.

 ice --local pull registry-ice.ng.bluemix.net/ibmnode:latest

 b.	This command builds our application container, against that pulled latest image and with our Dockerfile and settings.json that were extracted from the Labs GIT repository. The -t parameter provides a tag that will automatically be applied to the built image, so you can reference it locally. The trailing period (.) is important to make sure we specify the current directory (the cloned etherpad-lite directory), which is the working directory for Docker to build our image from.

  •	Format: ice --local build -t YOUR_LOCAL_IMAGE_NAME .

  •	Example: ice --local build -t etherpad_bluemix_mysql .

 c.	We tag our image into a repository with a format that will allow us to publish our built image to Bluemix and run it on the IBM Containers service. This command takes your local image that was tagged previously during the build command and applies a repository-specific tag to it, so it can be correctly placed in the IBM Containers service shared repository. This format is required and you will not be able to successfully push an image to Bluemix if you use another image name format that does not match.

  •	Format:

 ice --local tag -f YOUR_LOCAL_IMAGE_NAME registry-ice.ng.bluemix.net/YOUR_REGISTRY_URL/YOUR_REMOTE_IMAGE_NAME

  •	Example:

 ice --local tag -f etherpad_bluemix_mysql registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_mysql

 Your local and remote image names do not have to be the same, but it does help for clarity when comparing local and remote image lists. Also, you can tag your initial image with the full repository tag during the build step instead, but it helps to use shorter tags when running locally to save time and apply the Bluemix-required format before pushing your image to Bluemix.

 In order, these commands appear as follows, replacing the necessary formatted parts with your organization and images information:

 ice --local pull registry-ice.ng.bluemix.net/ibmnode:latest

 ice --local build -t etherpad_bluemix_mysql .

 ice --local tag -f etherpad_bluemix_mysql registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_mysql

 3.5 Task 4. Test the application on your workstation

 Now that the container is built, you can try testing the Etherpad web application locally. Complete the following steps:

 1.	Use the following command to start a Docker container and run Etherpad in it. It also prints out a container ID (CID) that you will need for the next step:

 docker run -d -p 9080:9080 etherpad_bluemix_mysql

 2.	Find the URL to type into your browser to see the running Etherpad web application. On Linux operating systems, you need to get the IP address of the Docker container if you are running in a Linux desktop environment. In the following command, replace ${CID} with the container ID (from the docker run command in the previous step):

 docker inspect --format '{{ .NetworkSettings.IPAddress }}' ${CID}

 On Mac OS X, boot2docker is running Docker in a virtual machine, so you need the IP address of boot2docker (usually 192.168.59.103). Run the boot2dockerip command to get the IP address of boot2docker.

 3.	If you are running a Linux Server environment inside a virtual machine, you must configure port-forwarding for your virtualization platform to access Etherpad running on the container from your host machine. This can vary from one platform to another, but forwarding port 9080 on your host machine to the internal virtual machine guest is usually all that is necessary. An example of a VirtualBox Port Forwarding configuration is shown in Figure 3-16.

 [image:]

 Figure 3-16 Port Forwarding Rules window

 Similarly, a virtual machine running on VMware will require a port-forwarding rule also, but the Guest IP value will be the IP address that is associated with the VMware 8 network.

 4.	We are hosting Etherpad on port 9080, so to test your running Etherpad application you can open a URL similar to the following one in your browser; replace 192.168.59.103 with your container’s IP address or local host if you configured port-forwarding:

 http://192.168.59.103:9080/

 If everything is running correctly, you see a welcome window (Figure 3-17).

 :[image:]

 Figure 3-17 New Pad window

 5.	Create a new Pad and experiment with it. This lab example used a simple Etherpad setup that leveraged a local file to store the Pad text, so data was not persisted across containers, and your Pads and text were be deleted when you stopped the container. Now your data is persisted in a permanent data store, so your Pads and text will be available across server outages and network issues.

 Remember the name of the pad that you created here. You will need it later.

 6.	From the command line, run the following command to see your locally running container instances:

 docker ps

 The output is similar to the following example:

 CONTAINER ID IMAGE COMMAND CREATED

 7dad5190094a regist...mysql:latest /src/etherpad-lite/b 18 seconds ago

 7.	You can now stop this container and restart it, without losing your pad data.

 a.	From the command line, run the following commands to stop and then delete your running container instance, replacing the container ID (starting with 7dad) with the container ID of your specific container:

 docker stop 7dad5190094a

 docker rm 7dad5190094a

 b.	Issue the docker run command again to start a new container instance, but accessing your previously created Pad through the same URL or by entering the same Pad name in the text box on the Etherpad landing page:

 docker run -d -p 9080:9080 etherpad_bluemix_mysql

 You will see your changes persisted across the lifetime of multiple container instances.

 	
 Before you continue: Before moving on, stop (and optionally delete) the running local Docker container instance as described at the end of 2.6.1, “Stop or remove a running container instance on Bluemix” on page 21.

 3.6 Task 5. Run the application in Bluemix

 When you have the application running locally, you can publish it to a container that is running in Bluemix and run it on the Internet, similar to our previous work in “Task 6. Run the application in Bluemix” on page 20.

 The commands to run the container in Bluemix are described next. You will need to replace some values with values that are specific to your environment, so read the formatting of each command before running them, in order:

 ice --local push registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_mysql

 ice images

 ice run --name etherpad_mysql_01 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_mysql:latest

 The ice --local push command publishes the container image to Bluemix and places it in your organization’s registry, scoped by the Registry URL you configured when you created your IBM Containers service instance.

 •Format:

 ice --local push registry-ice.ng.bluemix.net/YOUR_REGISTRY_URL/YOUR_REMOTE_IMAGE_NAME

 •Example:

 ice --local push registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_mysql

 The ice images command prints the published image URL for you, along with other data that is associated with the rest of the images you have pushed to Bluemix.

 The output of the ice images command is similar to output in Figure 3-18.The <UUID> fields are actual unique IDs that are generated for each image pushed to Bluemix.

 [image:]

 Figure 3-18 Pushing to your Organization-scoped repository

 Note the etherpad_bluemix_mysql image that we pushed to Bluemix with the previous command and the difference between its image name and the other two images provided by IBM. As a user, you can pull from only the base global directory, but you can push to your Organization-scoped repository by using the format in the previous command.

 Now, create a running container instance on Bluemix by issuing the following command:

 ice run --name etherpad__mysql_01 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_mysql:latest

 You will need to change the container name parameter from etherpad__mysql_01 to whatever container name you choose each time you create a new container. This container name does not have to be scoped with a complete URL like the image name does, because it is only for ease of identification of running containers. It can be a simple string and must be unique across the containers you have running in your Containers service instance. You must also replace the following URL with your own image URL:

 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_mysql:latest

 The :latest tag at the end of the URL specifies to run the latest version of that image, if multiple versions exist.

 The format and example are as follows:

 •Format:

 ice run --name <Unique Container Name> registry-ice.ng.bluemix.net/YOUR_REGISTRY_URL/YOUR_REMOTE_IMAGE_NAME:latest

 •Example:

 ice run --name etherpad_01 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_mysql:latest

 The ice run command returns a unique container ID (CID); use that CID in commands that are run for that container. In the following examples, the CID is as follows, so replace that with your own CID:

 dd489740-ffff-4c8f-9117-d94cd147f122

 Before you can connect to your web application, you must assign to it a floating public IP address. The ice ip request command assigns one to you. Replace 129.0.0.0 in the following example with the IP address that is returned from the ice ip request command, and replace dd489740-ffff-4c8f-9117-d94cd147f122 with your own CID:

 ice ip request

 ice ip bind 129.0.0.0 dd489740-ffff-4c8f-9117-d94cd147f122

 We are hosting Etherpad on port 9080, so to test your running Etherpad application you can open a URL similar to the following one in your browser; replace 129.0.0.0 with the IP address returned from the ice ip request command:

 http://129.0.0.0:9080/

 Your account gets only two of these public IP addresses at no-cost, so unbind the IP addresses when you are not using them. In the following example, replace 129.0.0.0 with the IP address that is returned from the ice ip request command, and replace dd489740-ffff-4c8f-9117-d94cd147f122 with your own CID:

 ice ip unbind 129.0.0.0 dd489740-ffff-4c8f-9117-d94cd147f122

 To look up the CIDs for your running containers and your published image names, use either of the following methods:

 •Click the Containers and Images tabs in the container view of the Bluemix dashboard.

 •Use the following ice commands to view running containers and published images:

  –	To view running containers:

 ice ps

  –	To view published images:

 ice images

 To stop or remove a running container instance on Bluemix, you can issue the following commands, providing the necessary CID of the container you want work on:

 •To stop a running container instance:

 sudo ice stop <CID>

 •To remove a running container instance:

 sudo ice rm <CID>

 Observe that a container does not have to be stopped before it can be removed from the IBM Containers service, which is a requirement when running containers locally using Docker.

 3.7 Task 6. Optional: Validate the application data in the MySQL database

 Based on the way we integrated the MySQL database service into our application, we have all the necessary information to view the database in a workbench to validate that we are actually writing data to the database. This can be done with a number of tools, but the image in Figure 3-19 is from the MySQL Workbench, connecting with the same information collected from the Credentials panel.

 [image:]

 Figure 3-19 MySQL Workbench

 There is one table, named store, that holds all the data necessary in a key-value pair relationship. This validates, along with our previous container re-creation, that we are indeed using the MySQL service for backing our Etherpad application. A subsequent lab describes how we use Caching services available on Bluemix to use an even faster data store.

 3.8 Try it

 Now that you are a “pro” at setting up a fast and highly reliable web application that runs on the cloud, go to Bluemix and create your own web application.

 Also consider exploring the following labs:

 •Lab 3

 Explore the ease of integrating Caching services into your web application.
Use a Redis Caching service to be the back end of the Etherpad Lite web application.
(See Chapter 4, “Lab 3: Extend the architecture with Caching services” on page 41.)

 •Lab 4

 Expose the awesome brain power of Watson to your users, directly inside of a Pad.
(See Chapter 4, “Lab 3: Extend the architecture with Caching services” on page 41.)

[image:]
[image:]

Lab 3: Extend the architecture with Caching services

 In this lab, you modify an existing web application deployed and running on IBM Bluemix. You modify the application to use a different database service, Redis.

 Redis is an open source cache networked, in-memory data structure server. It is often referred to as a data structure server because keys can contain strings, hashes, lists, sets, sorted sets, bitmaps and HyperLogLogs.

 To extend your web application to include a hosted Redis data source, complete the following tasks in this lab:

 •4.1, “Before you begin” on page 42

 •4.2, “Task 1. Create your Redis service instance.” on page 42

 •4.3, “Task 2. Configure your application to use the Redis service” on page 46

 •4.4, “Task 3. Build the image for the application” on page 47

 •4.5, “Task 4. Test the application on your workstation” on page 50

 •4.6, “Task 5. Run the application in Bluemix” on page 52

 •4.7, “Task 6. Optional: Validate the application data in the Redis database” on page 54

 •4.8, “Try it” on page 55

 	
 Note: These labs were documented to be as accurate as possible at the time of publication. However, Bluemix is an actively evolving development platform, therefore capabilities, services, and user interfaces do change. For the most recent and accurate labs, see the following web page:

 https://ibm.biz/bluemix_labs

 4.1 Before you begin

 This lab is written for Ubuntu 14 and Mac OS X development workstations because setting up up the required tools on those platforms is easier. If your development workstation is running another operating system (such as Windows), either obtain an additional server running Ubuntu or run Ubuntu in a virtual machine on your development workstation.

 	
 Prerequisite: You will need to have completed Lab 1 in this series, available in Chapter 2, “Lab 1: Build a web application hosting architecture on an enterprise Containers service” on page 7.

 In Lab 3, we mix the use of Bluemix apps with containers. These are two separate conceptual ideas for executing code in Bluemix today. The apps closely map to the Cloud Foundry app model, while containers are simply Docker Containers running on Bluemix. Eventually, we can bind container instances to apps and take advantage of all the native integration points available to apps and services in Bluemix today.

 However, based on the experimental status of the IBM Containers service, that model is not available across all user IBM Containers service interfaces. Therefore in this lab and other labs, we create an app which we bind our services to for instantiation. We then reference that service instance directly from the container during the build and execution stages. Our created apps are simply placeholders for our services in this lab series. In the future, we will be able to take advantage of the platform integration between apps and containers, using an environment variable in our Docker images and Dockerfiles to retrieve this same information dynamically.

 4.2 Task 1. Create your Redis service instance.

 IBM Bluemix is an open-standards, cloud-based platform for building, managing, and running all types of applications: mobile, smart devices, web, and big data. The Bluemix capabilities include Java, mobile back-end development, application monitoring, and features from ecosystem partners and open source, all through an as-a-service model in the cloud.

 For this lab, we use a database service that is provided by a partner. Complete the following steps:

 1.	Log in to Bluemix. The dashboard opens (Figure 4-1 on page 43). It shows an overview of the active Bluemix space for your organization.

 [image:]

 Figure 4-1 Bluemix dashboard

 The dashboard shows an overview of the active Bluemix space for your organization. By default, the space is dev and the organization is the project creator’s user name. For example, if bob@fictional-example.com logs in to Bluemix for the first time, the active space is dev and the organization is bob@fictional-example.com. If you create more organizations or spaces in Bluemix, be sure to use the same ones as you follow the labs. Use the default selections.

 You will be creating a new database service associated with you existing app.

 2.	In the dashboard, click APPS (Figure 4-2) and select the etherpad-container app. Although the etherpad-container app was created in the previous lab, your app title might differ. Select the app created from the previous lab if the titles differ.

 [image:]

 Figure 4-2 APPS

 3.	Click ADD A SERVICE (Figure 4-3).

 [image:]

 Figure 4-3 Click etherpad-container

 4.	When the service catalog opens, scroll to Data Management and look for Redis Cloud (Figure 4-4). Click the Redis icon.

 [image:]

 Figure 4-4 Redis Cloud

 5.	The next pane opens so you can create a new database service (Figure 4-5). Accept the default settings and click CREATE.

 [image:]

 Figure 4-5 Create a new database service

 6.	If you are asked to restage your application (Figure 4-6), click RESTAGE and wait for your app to restage.

 [image:]

 Figure 4-6 Restaging Application

 After your page refreshes and your app restages, you now have a managed Redis data store ready for your use.

 4.3 Task 2. Configure your application to use the Redis service

 Complete the following steps to configure your application to use the Redis service:

 1.	From your application details page, click Show Credentials under your Redis Cloud database (Figure 4-7).

 [image:]

 Figure 4-7 Show Credentials

 2.	In the Instantiating Credentials box, select and copy all the text that is displayed. Paste that information into a plain text file. These fields were all generated for you automatically on the database service already.

 3.	You can now use these values to update the settings.json file and redeploy the application. Return to the Linux image where you have the code for Etherpad. Within the etherpad-lite directory, locate the settings.json file. This file might already be configured for MySQL (step 2 on page 30 in 3.3, “Task 2. Configure your application to use MySQL service” on page 29). If not previously commented out or deleted, comment out the lines with "dbType": "dirty" and its associated "dbSettings" property.

 Use these steps to edit the file:

 a.	In the line that says "dbType" : "mysql", change "mysql" to "redis".

 See the credential data that you saved when you created the Redis service in Bluemix.

 b.	Copy your host name field from the Bluemix panel into the host field, replacing __hostname__.

 c.	Copy your password field from the Bluemix panel into the password field, replacing __password__.

 d.	Set the database field to "0" (the double-quotation marks are part of the setting).

 e.	Save your newly updated settings.json file.

 An example of the settings.json is shown in Figure 4-8.

 [image:]

 Figure 4-8 The settings.json file

 	
 Note: The implementation method here is not as flexible as it could be. We are hard-coding the service properties into the Docker image when we build it. Eventually, we will be able to dynamically bind any service properties to the Docker image when it first boots and will not need to hard-code service properties. However, as mentioned previously, being able to bind containers to apps for this capability is not yet globally available, because the experimental state of the IBM Containers service. This lab will be updated when this capability is available in later releases of the IBM Containers service.

 4.4 Task 3. Build the image for the application

 This task is similar to “Task 4. Build the image for the application” on page 15 in Lab 1, however we do use different image names because we are leveraging an additional Redis service.

 	
 Linux and Mac OS X: On Linux, you normally need to start the ice commands in these steps with sudo ice. On Mac OS X, do not use the sudo command.

 Complete the following steps:

 1.	Log in to the ice command-line tool, replacing API_KEY with your own API authentication key from the Bluemix dashboard:

 ice login -k API_KEY -H https://api-ice.ng.bluemix.net/v1.0/containers -R registry-ice.ng.bluemix.net

 	
 Note: The only string you need to change in the command is API_KEY. Later commands will require you to change Registry URLs, but the -H and -R parameters in this command are the same for all users when initially logging in.

 2.	As shown in the Bluemix dashboard, your API authentication key is in the circled area (Figure 4-9 on page 48). If you need to return to this view from the main dashboard page, click SERVICES and then click the name of your IBM Containers service (Containers-dq in this example).

 [image:]

 Figure 4-9 Bluemix dashboard

 3.	Build your container by using the following commands in succession, from the etherpad-lite directory. In the command, you must use the value of your own Registry URL, found in the Bluemix dashboard (Figure 4-10).

 [image:]

 Figure 4-10 API authentication key

 Use the commands in order:

 a.	This command pulls the most recent official IBM Node.js container from the global IBM repository.

 ice --local pull registry-ice.ng.bluemix.net/ibmnode:latest

 b.	This command builds our application container, against that pulled latest image and with our Dockerfile and settings.json that were extracted from the Labs GIT repository. The -t parameter provides a tag that will automatically be applied to the built image, so you can reference it locally. The trailing period (.) is important to make sure we specify the current directory (the cloned etherpad-lite directory), which is the working directory for Docker to build our image from.

  •	Format: .

  •	Example: ice --local build -t etherpad_bluemix_redis .

 c.	We tag our image into a repository with a format that will allow us to publish our built image to Bluemix and run it on the IBM Containers service. This command takes your local image that was tagged previously during the build command and applies a repository-specific tag to it, so it can be correctly placed in the IBM Containers service shared repository. This format is required and you will not be able to successfully push an image to Bluemix if you use another image name format that does not match.

  •	Format:

 ice --local tag -f YOUR_LOCAL_IMAGE_NAME registry-ice.ng.bluemix.net/YOUR_REGISTRY_URL/YOUR_REMOTE_IMAGE_NAME

  •	Example:

 ice --local tag -f etherpad_bluemix_redis registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_redis

 Your local and remote image names do not have to be the same, but it does help for clarity when comparing local and remote image lists. Also, you can tag your initial image with the full repository tag during the build step instead, but it helps to use shorter tags when running locally to save time and apply the Bluemix-required format before pushing your image to Bluemix.

 In order, these commands appear as follows, replacing the necessary formatted parts with your organization and images information:

 ice --local pull registry-ice.ng.bluemix.net/ibmnode:latest

 ice --local build -t etherpad_bluemix_redis .

 ice --local tag -f etherpad_bluemix_redis registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_redis

 After the build process is complete, you see the completed process (Figure 4-11 on page 50).

 [image:]

 Figure 4-11 Process complete

 4.5 Task 4. Test the application on your workstation

 Now that the container is built, you can try testing the Etherpad web application locally. Complete the following steps:

 1.	Use the following command to start a Docker container and run Etherpad in it. It also prints a container ID (CID) that you will need for the next step:

 docker run -d -p 9080:9080 etherpad_bluemix_redis

 2.	Find the URL to type into your browser to see the running Etherpad web application. On Linux operating systems, you need to get the IP address of the Docker container if you are running in a Linux desktop environment. In the following command, replace ${CID} with the container ID (from the docker run command in the previous step):

 docker inspect --format '{{ .NetworkSettings.IPAddress }}' ${CID}

 On Mac OS X, boot2docker is running Docker in a virtual machine, so you need the IP address of boot2docker (usually 192.168.59.103). Run the boot2dockerip command to get the IP address of boot2docker.

 3.	If you are running a Linux Server environment in a virtual machine, you must configure port-forwarding for your virtualization platform to access Etherpad running on the container from your host machine. This can vary from one platform to another, but forwarding port 9080 on your host machine to the internal virtual machine guest is usually all that is necessary.

 An example of a VirtualBox Port Forwarding configuration is shown in Figure 4-12.

 [image:]

 Figure 4-12 Port Forwarding Rules window

 Similarly, a virtual machine running on VMware will require a port forwarding rule also, but the Guest IP value will be the IP address that is associated with the VMware 8 network.

 4.	We are hosting Etherpad on port 9080, so to test your running Etherpad application you can open a URL similar to the following one in your browser; replace 192.168.59.103 with your container’s IP address or local host if you configured port-forwarding:

 http://192.168.59.103:9080/

 If everything is running correctly, you see a welcome window (Figure 4-13).

 :[image:]

 Figure 4-13 New Pad window

 5.	Create a new pad and experiment with it. This lab example used a simple Etherpad setup that used a local file to store the pad text, so data was not persisted across containers, and your pads and text were be deleted when you stopped the container. Now your data is persisted in a permanent data store, so your pads and text will be available across server outages and network issues.

 As our application and its data model grows, using a cache service as a primary data store is optimal to provide the lowest level of latency to users. Eventually, we can configure the cache service to persist the data to a permanent, non-volatile back-end data store. This provides us with lower overall overhead and simpler management, with low latency, super-fast lookups, and automatically tiered data storage.

 Remember the name of the pad that you created here. You will need it later.

 6.	From the command line, run the following command to see your locally running container instances:

 docker ps

 The output is similar to the following example:

 CONTAINER ID IMAGE COMMAND CREATED

 7dad5190094a regist...redis:latest /src/etherpad-lite/b 18 seconds ago

 7.	You can now stop this container and restart it, without losing your pad data.

 a.	From the command line, run the following commands to stop and then delete your running container instance, replacing the container ID (starting with 7dad) with the container ID of your specific container:

 docker stop 7dad5190094a

 docker rm 7dad5190094a

 b.	Issue the same docker run command again to start another container instance, but accessing your previously created Pad. You will see your changes persisted across the lifetime of the container instance.

 	
 Note: We are not yet running the application in Bluemix. The cache service is on the external cloud and the application is running in a local Docker image.

 4.6 Task 5. Run the application in Bluemix

 When you have the application running locally, you can publish it to a container that is running in Bluemix and run it on the Internet, similar to our previous work in “Task 6. Run the application in Bluemix” on page 20.

 The commands to run the container in Bluemix are described next. You will need to replace some values with values that are specific to your environment, so read the formatting of each command before running them, in order:

 ice --local push registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_redis

 ice images

 ice run --name etherpad_redis_01 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_redis:latest

 The ice --local push command publishes the container image to Bluemix and places it in your organization’s registry, scoped by the Registry URL you configured when you created your IBM Containers service instance.

 •Format:

 ice --local push registry-ice.ng.bluemix.net/YOUR_REGISTRY_URL/YOUR_REMOTE_IMAGE_NAME

 •Example:

 ice --local push registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_redis

 The ice images command prints the published image URL for you, along with other data that is associated with the rest of the images you pushed to Bluemix.

 The output of the ice images command is similar to output in Figure 4-14. The <UUID> fields are actual unique IDs that are generated for each image pushed to Bluemix.

 [image:]

 Figure 4-14 Output of the ice images command

 Note the etherpad_bluemix_redis image that we pushed to Bluemix with the previous command and the difference between its image name and the other two images provided by IBM. As a user, you can pull from only the base global directory, but you can push to your Organization-scoped repository by using the format in the previous command.

 Now, create a running container instance on Bluemix by issuing the run command:

 ice run --name etherpad__redis_01 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_redis:latest

 You will need to change the container name parameter from etherpad_01 to whatever container name you choose each time you create a new container. This container name does not have to be scoped with a complete URL like the image name does, because it is only for ease of identification of running containers. It can be a simple string and must be unique across the containers you have running in your Containers service instance. You must also replace the following URL with your own image URL:

 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_redis:latest

 The :latest tag at the end of the URL specifies to run the latest version of that image, if multiple versions exist.

 •Format:

 ice run --name <Unique Container Name> registry-ice.ng.bluemix.net/YOUR_REGISTRY_URL/YOUR_REMOTE_IMAGE_NAME: latest

 •Example:

 ice run --name etherpad_redis_01 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_redis:latest

 The ice run command returns a unique container ID (CID); use that CID in commands that are run for that container. In the following examples, the CID is as follows, so replace that with your own CID:

 dd489740-ffff-4c8f-9117-d94cd147f122

 Before you can connect to your web application, you must assign to it a floating public IP address. The ice ip request command assigns one to you. Replace 129.0.0.0 in the following example with the IP address that is returned from the ice ip request command, and replace dd489740-ffff-4c8f-9117-d94cd147f122 with your own CID:

 ice ip request

 ice ip bind 129.0.0.0 dd489740-ffff-4c8f-9117-d94cd147f122

 We are hosting Etherpad on port 9080, so to test your running Etherpad application you can open a URL similar to the following one in your browser; replace 129.0.0.0 with the IP address returned from the ice ip request command:

 http://129.0.0.0:9080/

 Your account gets only two of these public IP addresses at no-cost, so unbind the IP addresses when you are not using them. In the following example, replace 129.0.0.0 with the IP address that is returned from the ice ip request command, and replace dd489740-ffff-4c8f-9117-d94cd147f122 with your own CID:

 ice ip unbind 129.0.0.0 dd489740-ffff-4c8f-9117-d94cd147f122

 To look up the CIDs for your running containers and your published image names, use either of the following methods:

 •Click the Containers and Images tabs in the container view of the Bluemix dashboard.

 •Use the following ice commands to view running containers and published images:

  –	To view running containers:

 ice ps

  –	To view published images:

 ice images

 To stop or remove a running container instance on Bluemix, you can issue the following commands, providing the necessary CID of the container you want work on:

 •To stop a running container instance:

 sudo ice stop <CID>

 •To remove a running container instance:

 sudo ice rm <CID>

 Observe that a container does not have to be stopped before it can be removed from the IBM Containers service, which is a requirement when running containers locally using Docker.

 4.7 Task 6. Optional: Validate the application data in the Redis database

 You can open a management console for the database to prove that the application is storing information in the database.

 1.	In the Bluemix dashboard, go to SERVICES (Figure 4-15), and locate click the Redis Cloud service.

 [image:]

 Figure 4-15 Locate Redis Cloud

 2.	On the next page that opens (Figure 4-16 on page 55), click OPEN REDIS CLOUD DASHBOARD.

 [image:]

 Figure 4-16 Open the Redis Cloud dashboard

 3.	A new browser opens to a page (Figure 4-17). Note that the database has several megabytes of data that are stored by the Etherpad application.

 [image:]

 Figure 4-17 Redis cloud window

 4.8 Try it

 Now that you are a “pro” at setting up a fast and highly reliable web application that runs on the cloud, go to Bluemix and create your own web application.

[image:]
[image:]

Lab 4: Extend the architecture with Cognitive service integration

 This lab presents a scenario for extending your web application with Cognitive service integration on Bluemix. The service chosen for this scenario is the IBM Watson Question and Answer (Watson QA) service, which is currently in beta.

 For this lab, complete the following tasks:

 •5.1, “Before you begin” on page 58

 •5.2, “Task 1. Extend Etherpad Lite capabilities using the defined plug-in model” on page 58

 •5.3, “Task 2. Create the Watson Question and Answer service” on page 59

 •5.4, “Task 3. Understand the Bluemix environment variables (VCAP_SERVICES) and how they are accessed in the application” on page 63

 •5.5, “Task 4. Update the Dockerfile” on page 67

 •5.6, “Task 5. Build the image for the application” on page 68

 •5.7, “Task 6. Test the application on your workstation” on page 70

 •5.8, “Task 7. Run the application in Bluemix” on page 73

 •5.9, “If you still have questions” on page 75

 •5.10, “Try it” on page 75

 	
 Note: These labs were documented to be as accurate as possible at the time of publication. However, Bluemix is an actively evolving development platform, therefore capabilities, services, and user interfaces do change. For the most recent and accurate labs, see the following web page:

 https://ibm.biz/bluemix_labs

 5.1 Before you begin

 This lab is written for Ubuntu 14 and Mac OS X development workstations because setting up up the required tools on those platforms is easier. If your development workstation is running another operating system (such as Windows), either obtain an additional server running Ubuntu or run Ubuntu in a virtual machine on your development workstation.

 This lab was completed using Ubuntu 14 Desktop following the same set up and configuration procedures described in the previous labs.

 	
 Prerequisite: Complete Lab 1 first. See Chapter 2, “Lab 1: Build a web application hosting architecture on an enterprise Containers service” on page 7.

 5.2 Task 1. Extend Etherpad Lite capabilities using the defined plug-in model

 This lab uses the defined Etherpad-lite plug-in framework to add capabilities that integrate with services that Bluemix provides. In this case, we use the IBM Watson Question and Answer (Watson QA) service.

 For more details and to explore the Etherpad-lite plug-in framework, see the following web page:

 https://github.com/ether/etherpad-lite/wiki/Creating-a-plugin

 The plug-in we developed allows for users of the Etherpad-lite application to send questions to the Watson QA service and receive a response in the working pad.

 5.3 Task 2. Create the Watson Question and Answer service

 Complete the following steps to create the Watson Question and Answer service:

 1.	Log in to Bluemix. The Bluemix dashboard opens (Figure 5-1).

 The dashboard shows an overview of the active Bluemix space for your organization. By default, the space is dev and the organization is the project creator’s user name. For example, if bob@fictional-example.com logs in to Bluemix for the first time, the active space is dev and the organization is bob@fictional-example.com. If you create more organizations or spaces in Bluemix, be sure to use the same ones as you follow the labs. Use the default selections.

 [image:]

 Figure 5-1 Bluemix dashboard

 2.	Create a new service by clicking ADD A SERVICE (Figure 5-2).

 [image:]

 Figure 5-2 Add a service

 3.	A catalog of all Bluemix services opens. Click Question and Answer (Figure 5-3).

 [image:]

 Figure 5-3 Question and Answer option

 4.	The service options are displayed (Figure 5-4 on page 62). Be sure that you select the correct application in the App list. We selected etherpad-container. Although the etherpad-container app was created in a previous lab (Chapter 4, “Lab 3: Extend the architecture with Caching services” on page 41), your app title might differ. Select the app that you created from that lab if the titles differ. Then, click CREATE.

 [image:]

 Figure 5-4 Creating the service

 5.	If you are asked to restage your application (Figure 5-5), click RESTAGE and wait for your app to restage.

 [image:]

 Figure 5-5 Restage Application

 After your page refreshes and your app restages, the Watson QA service is ready for your use (Figure 5-6).

 [image:]

 Figure 5-6 Watson QA service is ready for your use

 5.4 Task 3. Understand the Bluemix environment variables (VCAP_SERVICES) and how they are accessed in the application

 The Bluemix application environment has a set of environment variables (VCAP_SERVICES) that define the names and details of services bound to the application (for example, ClearDB MySQL, Question and Answer). For the Etherpad Lite app to interact with Watson QA, the plug-in code used and adapted the NodeJS demonstration application provided by IBM:

 https://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/doc/qaapi/#nodejsApplication

 You do not need to edit any of the plug-in code; it is presented here to help you see how different applications can interact with bound Bluemix services.

 From the application dashboard, select the Environment Variables link (Figure 5-7).

 [image:]

 Figure 5-7 Environment Variables link

 The details of the services that are bound to your application are displayed (Figure 5-8).

 [image:]

 Figure 5-8 Service details

 The Etherpad application automatically uses the URL, user name, and password property names of the question_and_answer binding in the server-side JavaScript that will invoke the Watson QA service.

 Figure 5-9 shows how the NodeJS application loads VCAP_SERVICES variables in order to access the Watson QA service.

 [image:]

 Figure 5-9 NodeJS application loads VCAP_SERVICES variables access the Watson QA service

 Figure 5-10 shows how the NodeJS script uses the VCAP_SERVICES variables to set up the REST API to invoke the Watson QA service. The Watson QA service is a beta version that provides two corpora (healthcare and travel). For this example, we set the default data set to healthcare. For more details about the service, see the following web page:

 http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/question-answer.html

 [image:]

 Figure 5-10 invoking the Watson QA service

 The code example in Figure 5-11 on page 67 shows how the question is sent and the correlating response is received and sent to the Etherpad-lite pad object that invoked the request.

 [image:]

 Figure 5-11 Question is sent and the correlating response is received

 5.5 Task 4. Update the Dockerfile

 Update the Dockerfile to include the npm command to install the plug-in when the container is built in the next task.

 1.	Open the Dockerfile, which is in the /etherpad-lite directory.

 2.	Add the following command to the Dockerfile at approximately line 20 (Figure 5-12):

 run npm install --prefix /src/etherpad-lite ep_talk_to_watson

 3.	Save this file.

 [image:]

 Figure 5-12 Dockerfile

 5.6 Task 5. Build the image for the application

 This task is similar to “Task 4. Build the image for the application” on page 15 in Lab 1, however we do use different image names because we are leveraging the Watson Question and Answer service.

 	
 Linux and Mac OS X: On Linux, you normally need to start the ice commands in these steps with sudo ice. On Mac OS X, do not use the sudo command.

 Complete the following steps:

 1.	We now use the API key from a previous lab to log in to the ice command-line tool. Replace API_KEY in the following command with your own API authentication key from the Bluemix dashboard and run the command on a single line:

 ice login -k API_KEY -H https://api-ice.ng.bluemix.net/v1.0/containers -R registry-ice.ng.bluemix.net

 	
 Note: The only string you need to change in the command is API_KEY. Later commands will require you to change Registry URLs, but the -H and -R parameters in this command are the same for all users when initially logging in.

 2.	As shown in the Bluemix dashboard, your API authentication key is in the circled area (Figure 5-13). If you need to return to this view from the main dashboard page, click SERVICES and then click the name of your IBM Containers service (Containers-dq in this example).

 [image:]

 Figure 5-13 Bluemix dashboard

 3.	Build your container by using the following commands in succession, from the etherpad-lite directory. In the command, you must use the value of your own Registry URL, found in the Bluemix dashboard (Figure 5-14).

 [image:]

 Figure 5-14 Copy your Registry URL

 Use the commands in the following order:

 a.	This command pulls the most recent official IBM Node.js container from the global IBM repository.

 ice --local pull registry-ice.ng.bluemix.net/ibmnode:latest

 b.	This command builds our application container, against that pulled latest image and with our Dockerfile and settings.json that were extracted from the Labs GIT repository. The -t parameter provides a tag that will automatically be applied to the built image, so you can reference it locally. The trailing period (.) is important to make sure we specify the current directory (the cloned etherpad-lite directory), which is the working directory for Docker to build our image from.

  •	Format: ice --local build -t YOUR_LOCAL_IMAGE_NAME .

  •	Example: ice --local build -t etherpad_bluemix_watson .

 c.	We tag our image into a repository with a format that will allow us to publish our built image to Bluemix and run it on the IBM Containers service. This command takes your local image that was tagged previously during the build command and applies a repository-specific tag to it, so it can be correctly placed in the IBM Containers service shared repository. This format is required and you will not be able to successfully push an image to Bluemix if you use another image name format that does not match.

  •	Format:

 ice --local tag -f YOUR_LOCAL_IMAGE_NAME registry-ice.ng.bluemix.net/YOUR_REGISTRY_URL/YOUR_REMOTE_IMAGE_NAME

  •	Example:

 ice --local tag -f etherpad_bluemix_watson registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_watson

 Your local and remote image names do not have to be the same, but it does help for clarity when comparing local and remote image lists. Also, you can tag your initial image with the full repository tag during the build step instead, but it helps to use shorter tags when running locally to save time and apply the Bluemix-required format before pushing your image to Bluemix.

 In order, these commands appear as follows, replacing the necessary formatted parts with your organization and images information:

 ice --local pull registry-ice.ng.bluemix.net/ibmnode:latest

 ice --local build -t etherpad_bluemix_watson .

 ice --local tag -f etherpad_bluemix_watson registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_watson

 5.7 Task 6. Test the application on your workstation

 Now that the container is built, you can try testing the Etherpad web application locally. Complete the following steps:

 1.	Use the following command to start a Docker container and run Etherpad in it. It also prints a container ID (CID) that you will need for the next step:

 docker run -d -p 9080:9080 etherpad_bluemix_watson

 2.	Find the URL to type into your browser to see the running Etherpad web application. On Linux operating systems, you need to get the IP address of the Docker container if you are running in a Linux desktop environment. In the following command, replace ${CID} with the container ID (from the docker run command in the previous step):

 docker inspect --format '{{ .NetworkSettings.IPAddress }}' ${CID}

 On Mac OS X, boot2docker is running Docker in a virtual machine, so you need the IP address of boot2docker (usually 192.168.59.103). Run the boot2dockerip command to get the IP address of boot2docker.

 3.	If you are running a Linux Server environment in a virtual machine, you must configure port-forwarding for your virtualization platform to access Etherpad running on the container from your host machine. This can vary from one platform to another, but forwarding port 9080 on your host machine to the internal virtual machine guest is usually all that is necessary. An example of a VirtualBox Port Forwarding configuration is shown in Figure 5-15.

 [image:]

 Figure 5-15 Port Forwarding Rules window

 Similarly, a virtual machine running on VMware will require a port forwarding rule also, but the Guest IP value will be the IP address that is associated with the VMware 8 network.

 4.	We are hosting Etherpad on port 9080, so to test your running Etherpad application you can open a URL similar to the following one in your browser; replace 192.168.59.103 with your container’s IP address or local host if you configured port-forwarding:

 http://192.168.59.103:9080/

 If everything is running correctly, you see a welcome window (Figure 5-16).

 [image:]

 Figure 5-16 New Pad window

 5.	Create a new pad and experiment with it. When you access the pad you now are able to submit a question to the Watson QA service.

 On a new line in the pad, type the text @aw (which means Ask Watson). Make sure to add a space after the “w”. The following response is presented:

 @watson Ask Me:

 You can enter a question on the pad; be sure to add a question mark (?) to the end of the question. The plug-in takes this question and submits it to the Watson QA service and places the text of the response into the pad.

 Consider the following information:

 •The default corpus used for answers is a healthcare domain.

 •This is a beta service and the corpus does not contain the depth or breadth of information that you might expect from a full Watson service.

 Figure 5-17 through Figure 5-20 on page 72 show the interaction.

 [image:]

 Figure 5-17 Watson QA service interaction (part 1 of 4)

 [image:]

 Figure 5-18 Watson QA service interaction (part 2 of 4)

 [image:]

 Figure 5-19 Watson QA service interaction (part 3 of 4)

 [image:]

 Figure 5-20 Watson QA service interaction (part 4 of 4)

 5.8 Task 7. Run the application in Bluemix

 When you have the application running locally, you can publish it to a container that is running in Bluemix and run it on the Internet.

 The commands to run the container in Bluemix are described next. You will need to replace some values with values that are specific to your environment, so read the formatting of each command before running them, in order:

 ice --local push registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix

 ice images

 ice run --name etherpad_01 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_watson:latest

 The ice --local push command publishes the container image to Bluemix and places it in your organization’s registry, scoped by the Registry URL you configured when you created your IBM Containers service instance.

 •Format:

 ice --local push registry-ice.ng.bluemix.net/YOUR_REGISTRY_URL/YOUR_REMOTE_IMAGE_NAME

 •Example:

 ice --local push registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_watson

 The ice images command prints the published image URL for you, along with other data that is associated with the rest of the images you pushed to Bluemix.

 The output of the ice images command is similar to output in Figure 5-21. The <UUID> fields are actual unique IDs that are generated for each image pushed to Bluemix.

 [image:]

 Figure 5-21 Output of the ice images command

 Note the etherpad_bluemix image that we pushed to Bluemix with the previous command and the difference between its image name and the other two images provided by IBM.

 Now, create a running container instance on Bluemix by issuing the run command:

 ice run --name etherpad_01 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_watson:latest

 You will need to change the container name parameter from etherpad_01 to whatever container name you choose each time you create a new container. This container name does not have to be scoped with a complete URL like the image name does, because it is only for ease of identification of running containers. It can be a simple string and must be unique across the containers you have running in your Containers service instance. You must also replace the following URL with your own image URL:

 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix_redis:latest

 The :latest tag at the end of the URL specifies to run the latest version of that image, if multiple versions exist.

 •Format:

 ice run --name <Unique Container Name> registry-ice.ng.bluemix.net//YOUR_REGISTRY_URL/YOUR_REMOTE_IMAGE_NAME:latest

 •Example:

 ice run --name etherpad_01 registry-ice.ng.bluemix.net/bluemix_residency/etherpad_bluemix:latest

 The ice run command returns a unique container ID (CID); use that CID in commands that are run for that container. In the following examples, the CID is as follows, so replace that with your own CID:

 dd489740-ffff-4c8f-9117-d94cd147f122

 Before you can connect to your web application, you must assign to it a floating public IP address. The ice ip request command assigns one to you. Replace 129.0.0.0 in the following example with the IP address that is returned from the ice ip request command, and replace dd489740-ffff-4c8f-9117-d94cd147f122 with your own CID:

 ice ip request

 ice ip bind 129.0.0.0 dd489740-ffff-4c8f-9117-d94cd147f122

 We are hosting Etherpad on port 9080, so to test your running Etherpad application you can open a URL similar to the following one in your browser; replace 129.0.0.0 with the IP address returned from the ice ip request command:

 http://129.0.0.0:9080/

 Your account gets only two of these public IP addresses at no-cost, so unbind the IP addresses when you are not using them. In the following example, replace 129.0.0.0 with the IP address that is returned from the ice ip request command, and replace dd489740-ffff-4c8f-9117-d94cd147f122 with your own CID:

 ice ip unbind 129.0.0.0 dd489740-ffff-4c8f-9117-d94cd147f122

 To look up the CIDs for your running containers and your published image names, use either of the following methods:

 •Click the Containers and Images tabs in the container view of the Bluemix dashboard.

 •To view running containers, use the following command:

 ice ps

 •To view published images, use the following command:

 ice images

 To stop or remove a running container instance on Bluemix, you can issue the following commands, providing the necessary CID of the container you want work on:

 •To stop a running container instance:

 sudo ice stop <CID>

 •To remove a running container instance:

 sudo ice rm <CID>

 Observe that a container does not have to be stopped before it can be removed from the IBM Containers service, which is a requirement when running containers locally using Docker.

 5.9 If you still have questions

 Find expert help in the Bluemix forum:

 https://developer.ibm.com/answers/smart-spaces/12/bluemix.html

 5.10 Try it

 When you are ready to learn how to save your web application's data in a database running in Bluemix, you can complete Lab 2.

 Related publications

 The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this paper.

 IBM Redbooks

 The following IBM Redbooks publications provide additional information about the topic in this document. Note that some publications referenced in this list might be available in softcopy only.

 •Accelerate Development of New Enterprise Solutions for the Cloud with Codename BlueMix, REDP-5011

 •IBM Bluemix Architecture Series: Web Application Hosting on Java Liberty, REDP-5184

 You can search for, view, download or order these documents and other Redbooks, Redpapers, Web Docs, draft and additional materials, at the following website:

 ibm.com/redbooks

 Online resources

 These websites are also relevant as further information sources:

 •Sign up for Bluemix:

 https://bluemix.net/

 •Bluemix overview:

 https://www.ng.bluemix.net/docs/#overview/overview.html

 •Cloud Standards Customer Council Resource Hub:

 http://www.cloud-council.org/resource-hub.htm

 •Docker:

 https://docs.docker.com/

 •IBM Containers information:

 https://www.ng.bluemix.net/docs/#services/Containers/index.html#container

 Help from IBM

 IBM Support and downloads

 ibm.com/support

 IBM Global Services

 ibm.com/services

 Back cover

 Acrobat bookmark

 OPS/images/5181ch05.10.1.22.jpg

OPS/images/5181ch03.08.1.21.jpg
© seners
3 s
-Fouisons

°

G]
QeIZFACS

e sared

[———
Py

o it 6 G [Womciconet T

o o7 e .
oot e
Pt

o 14215
.
e
ot i 5o e

OPS/images/5181ch05.10.1.20.jpg
« ke i

OPS/images/5181ch05.10.1.21.jpg

OPS/images/5181ch03.08.1.20.jpg
o T . Creatad

<UD @ g Mt nee/blumstx ressdancy/echarpad Blusix maq) latess 2016-01-16T20:36:142
DD Loy iom. na blat. e/ Ehuamix. ves cary scPespas Eloemix lucest 2016 01 1ETI0 56 122
onn ey i Plomtin reey omiery davent 201413 91T20:36 82
2t e Ay AT iTan e

OPS/images/5181ch03.08.1.14.jpg
J/The Type of the databuse; You can choore betveen dirty, postares, salite and mysal

6 for £07 angthiog elise than Lesking or development
el
[/ehe database shecific settings
“Gusettings”
“Filenane” : “var/dirty.db"
7
Capryper
“dbsertings”’
“Gatabace"
-

e i el ey

OPS/images/5181ch03.08.1.15.jpg
//The Type of the database. You can choose between dirty, postgres, sqlite and mysql
o theinin: e S Yor For Srthing e than Kestina o developeent
v
//she database specific settings
et

“Filenane” : "var/dirty.db"

TAke Sebeitt G oF & pad

OPS/images/5181ch03.08.1.13.jpg
O 16M Bluemix

© Backto Dashboara

SDK for Node.js
Files and Logs
Environment Variables

Start Coding

SERVICES

ClearDB MySQL Database

DASHBOARD S

ClearDB MySQL.
Database

“Clasrd
“ramm"s “Cleard® My Datsbase-71",

“eredentials”s {
s —

OPS/images/5181ch03.08.1.18.jpg
Protocal
T

Hoztlp
127001

Hostport
080

Guestlp

GuestPort
9080

e

OPS/images/5181ch05.10.1.13.jpg
// Create a request to POST to Watson
var watson_req = https.request(options, function(result) {
Fesult.setencadtng(Ut

var response_string = '';

result.on('data’, function(chunk) {
response_string += chunk;
»i

result.on("end’, functton() {
ar answers = J5ON.par se(response_string)[0];
Var evidenceLtst = answers.question.evidencellst;

/7 Uttty function to print the contents of the returned answers to the system console.
Togevidence(evidencel st);

/] since we are only returning the text to the first answer, use index 0 or default
11 nessage to respond.
Var answer = 'Watson is uns

€0 provide an answer

Af(evidenceList.length > 0)|
€

)
1/ change the Leading prompt and remove the question mark fron the end of the

71 string so ttdoesn't recursively call Watson or provide negative index numbers.
Question = “guatresponded You asked: * + questlonText.substr(o, questlonText.length -1) + "\

answer = evidenceLtst[o]. text;

/1 stnce this (s an asynchronous call and the apt object provides an in context/scope
71 place to tnsert the answer back on to the pad.
pU.setText(pad. 14, before + question + answer + after);
»:
»;

// set the oST body and send to Watson
uatson_req.urite(JSON. stringify(questionData)

OPS/images/5181ch05.10.1.14.jpg
192 Install etherpad-lite
20 run'en et Jsrc

21 run mkdir Jarc
22 cun ot clone het

//gLthub. confether etherpad-ite.gtt /sre/etherpad-Lite --branch develop --stngle-branch

OPS/images/5181ch05.10.1.11.jpg
/| VCAP_SERVICES contatns all the credentlals of services bound to
] ths spplication, For detatls of Lts content, please refer to
7 the dacument o sample of each service

function processcAP SERVICES()

consote. ¢ art processycar seavices:
7" Service names, check the VEAP SERVICES in bluentx to get the nane of the services
Var vatson Service-nane ~ question and snsver 5

e for this conponent.

Reprocess. env.vese_seavices)
¢

consat
Servic

Log("Loading VCAP_ SERVICES fron Bluent:

wation_passuord
)
e
i

consote. Log('The service * + uatson_service_nane + * 15 not {n the VCAP_SERVICES, did you forget to bind 17')
)

consote. LogC waston.
Consone.Log(st
Consote 03

concole Log(

+ vatson_urt);
a1 atson ssernane):

OPS/images/5181ch05.10.1.12.jpg
/] sets the default dataset to healthcare...keep it simple for this example.
(1 e spepke itian cirpuaiis. teoial:

ar dataset = ‘healthcare’s
Var auth = "Basic " + new Buffer(watson_usernane + ":* + watson_password). tostring("basesd");

var parts = url.parse(watson_url + '/vijquestion/' + dataset);

var opttons = {
host: parts.hostnane,
port: parts.port,
parts.pathhane,

‘Content-Type' :'application/json’,
*Accept': ‘application/json’,
‘X-synctineout' : '30',
‘Authortzation’ : auth

OPS/images/5181ch05.10.1.10.jpg
05w Biens — o @

[Y—

L ———

OPS/images/5181ch05.10.1.19.jpg
BIus E=m= dc e

-,

OPS/images/5181ch05.10.1.17.jpg
MNome. Protocol HostlP HostPot GuetlP GuestPor | @

127001 %080 %080 e

OPS/5181cover.jpg
@ Redhooks

[e—

IBM Bluemix Architecture
Series: Web Application Hosting
on IBM Containers

Leveraging best practice and reference architectures for cloud

Ann Marie Fred

Bhargav Perepa

Eduardo A Patrocinio
Henryk Gorski
Manav Gupta
Patrick M Ryan
Richard Osowski
Ryan G Livesey

Vasfi Gucer

OPS/images/5181ch02.07.1.06.jpg

OPS/images/5181ch02.07.1.05.jpg
o eusuemx

amnsagun v

a

r——

Integration

Data
Management

it

| Canmars: sy gt e

e o ke

Pl

OPS/images/5181ch02.07.1.04.jpg

OPS/images/5181ch02.07.1.03.jpg
O mimeen osmow soumm cwuss rcwe oocs comvmn | eson vt » | iG]

oo amigeion. v @ -
Fp——
e

s

OPS/images/5181ch02.07.1.02.jpg

OPS/images/5181ch02.07.1.01.jpg

OPS/images/5181ch05.10.1.06.jpg
poes, Interpeots anc answers user quastars dirscy dased on prmary

€ BT T | e
| ST e e R —
ot

OPS/images/5181ch05.10.1.07.jpg
oD L

OPS/images/5181ch05.10.1.04.jpg
O U Blerix asusommD e neaovussoun > @

Appicatirs

atherpadcontaner

at
5
ADD ASERVICE

OPS/images/5181ch05.10.1.05.jpg

OPS/images/5181ch05.10.1.02.jpg

OPS/images/5181ch05.10.1.01.jpg

OPS/images/5181ch01.06.1.3.jpg

OPS/cover.xhtml

 [image: Cover image]

OPS/images/5181ch01.06.1.2.jpg

OPS/images/5181ch01.06.1.1.jpg

OPS/images/5181ch04.09.1.09.jpg
Redis Cloud

-

Instantiating Credentials

¢

OPS/images/5181ch04.09.1.02.jpg

OPS/images/5181ch04.09.1.14.jpg
Protocal
T

Hoztlp
127001

Hostport
080

Guestlp

GuestPort
9080

e

OPS/images/5181ch04.09.1.01.jpg

OPS/images/5181ch02.07.1.11.jpg
Protocol HostP HostPot GuetlP GuestPor | @
25 127001 %080 %080 e

OPS/images/5181ch02.07.1.13.jpg
duney/etharpad Bismmis iatars 20101 GeTi s6 12
i e R
P T R

OPS/images/5181ch03.08.1.02.jpg

OPS/images/5181ch03.08.1.01.jpg

