
Redbooks

Front cover

Mainframe Application 
Modernization Patterns for 
Hybrid Cloud

Lydia Parziale

Yinka Adesanya

Elton de Souza

Peter Haumer

Sandor Irmes

Amey Patil

Lauren K Li

Liyong Li

Filipe Miranda

Sidney Varoni





IBM Redbooks

Mainframe Application Modernization Patterns for 
Hybrid Cloud

June 2023

SG24-8532-00



© Copyright International Business Machines Corporation 2023. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (June 2023)

This edition applies to IBM z/OS 2.5, IBM z16, Red Hat OpenShift Container Platform 4.10.12, Instana, and 
IBM Z and Cloud Modernization Stack 2022.

Note: Before using this information and the product it supports, read the information in “Notices” on 
page vii.



Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Now you can become a published author, too!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Stay connected to IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1  What does hybrid cloud mean in 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2  The value of the hybrid cloud approach  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3  Application modernization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4  What are the application modernization patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1  Accelerating modernization with application discovery . . . . . . . . . . . . . . . . . . . . . . 6
1.5  How to apply application modernization patterns on IBM Z  . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1  Patterns for enhancing and modernizing applications  . . . . . . . . . . . . . . . . . . . . . . 7
1.5.2  Hybrid cloud network architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.3  Patterns to simplify information sharing and data access. . . . . . . . . . . . . . . . . . . . 8
1.5.4  Patterns to integrate across a hybrid cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5.5  Implementing enterprise DevOps and observability . . . . . . . . . . . . . . . . . . . . . . . 10

1.6  Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2.  Modernized application architectures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1  Expose through APIs pattern  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2  Extend with cloud-native pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3  Sample application architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1  Application architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2  Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3  Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3.  Modernized data access architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1  Data fabric as the basis for modern data access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1  What a data fabric is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2  Data fabric architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3  Advantages of data fabric architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4  How IBM Cloud Pak for Data helps you to realize the data fabric  . . . . . . . . . . . . 26

3.2  Enabling modern access to IBM Z data patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1  Modern data access solution and pattern for IBM Z . . . . . . . . . . . . . . . . . . . . . . . 28

3.3  Virtualize IBM Z data pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1  Virtualization solution and pattern for IBM Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4  Cache IBM Z data pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1  Cache support solution and pattern for IBM Z  . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2  Examples of customer scenarios for data caching . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5  Transform IBM Z data pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.1  Data transformation solution and pattern for IBM Z  . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 4.  Event-driven architecture with IBM z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1  Overview of an event-driven architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
© Copyright IBM Corp. 2023. iii



4.1.1  Simplified reference architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2  Types of event processing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2  Introducing the event-driven architecture in the z/OS ecosystem. . . . . . . . . . . . . . . . . 44
4.2.1  Respond to IBM Z application events pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2  Optimize CQRS pattern  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5.  Modernizing Enterprise DevOps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1  Core practices of IBM Z DevOps for hybrid enterprise application development . . . . . 60

5.1.1  Standardizing and automating your development setup . . . . . . . . . . . . . . . . . . . . 60
5.1.2  Maintaining a single source code management system . . . . . . . . . . . . . . . . . . . . 61
5.1.3  Incrementally building a fully automated pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.4  Fully automated tests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.5  Every change that is pushed to the source code management system is automatically 

built and tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.6  Clearly defining your builds as a consistent set of artifacts. . . . . . . . . . . . . . . . . . 65

5.2  The vision for a cloud-native developer experience for z/OS enterprise applications. . 66
5.2.1  Role of z/OS for hybrid development projects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.2  Personas of the hybrid development team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3  IBM Z Cloud and Modernization Stack: A layered development tool architecture adding 
incremental capabilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1  Layer 1: Establishing connectivity to z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.2  Layer 2: Building a foundational layer with client software development kits, open 

APIs, and command-line interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.3  Layer 3: Standardizing on next-generation editors and modern languages 

capabilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.4  Layer 4: Adding pluggable extensions with specialized capabilities: z/OS access, 

debug, build, CICS, and Db2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.5  Layer 5: Adopting containerization for deploying development tools with Red Hat 

OpenShift and Dev Spaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.6  Layer 6: Moving z/OS development into the cloud . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.7  Layer 7: Establishing a common control platform on Red Hat OpenShift . . . . . . . 81
5.3.8  Layer 8: Creating end-to-end automation with IBM DBB and Groovy and Ansible 

collections for z/OS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.9  Layer 9: Adopting a pipeline technology that matches the application platform . . 85

5.4  A next-generation developer end-to-end development example  . . . . . . . . . . . . . . . . . 88
5.4.1  Deb's story  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.2  Deb's tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.3  Applying next-generation development strategies and tools to mainframe application 

development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5  IBM Wazi as a Service and IBM Z and Cloud Modernization Stack tutorial . . . . . . . . . 96

5.5.1  Creating a virtual private cloud and z/OS virtual server instance . . . . . . . . . . . . . 97
5.5.2  Deploying Red Hat OpenShift and IBM for IBM Wazi Dev Spaces in a VPC . . . 101
5.5.3  Creating and configuring a development workspace in IBM Wazi Dev Spaces . 103
5.5.4  Building, running, and debugging your application . . . . . . . . . . . . . . . . . . . . . . . 106

5.6  Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 6.  Managing your applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.1  Monitoring, logging, and metering introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2  Components of the Red Hat OpenShift monitoring stack . . . . . . . . . . . . . . . . . . . . . . 110

6.2.1  Monitoring the Red Hat OpenShift Container Platform infrastructure by using 
Prometheus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.2  Using the Red Hat OpenShift Container Platform web console's dashboard to 
iv Mainframe Application Modernization Patterns for Hybrid Cloud



monitor your cluster and customer workloads  . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2.3  Exploring the default alerting system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.4  Exploring cluster monitoring data from different sources, such as cluster nodes, 

projects, or pods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.5  Using the oc client tool to monitor resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2.6  Using Resource Measurement Facility to monitor z/OS resources for Red Hat 

OpenShift Container Platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3  Observability on z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3.1  Instana on IBM z/OS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4  Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.5  Metering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Chapter 7.  Deploying production applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1  Production deployment strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2  Exposing on-premises applications through a public cloud  . . . . . . . . . . . . . . . . . . . . 126

7.2.1  Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2.2  Current architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2.3  Target architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2.4  Current architecture implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2.5  Target architecture implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Appendix A.  Voting app changes to support an IBM Db2 database  . . . . . . . . . . . . . 139

Appendix B.  Additional material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Locating the web material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Using the web material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Additional requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Abbreviations and acronyms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Other publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Online resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Help from IBM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
 Contents v



vi Mainframe Application Modernization Patterns for Hybrid Cloud



Notices

This information was developed for products and services offered in the US. This material might be available 
from IBM in other languages. However, you may be required to own a copy of the product or product version in 
that language in order to access it. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, 
program, or service may be used. Any functionally equivalent product, program, or service that does not 
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to 
evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. The 
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in 
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” 
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in 
certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make 
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time 
without notice. 

Any references in this information to non-IBM websites are provided for convenience only and do not in any 
manner serve as an endorsement of those websites. The materials at those websites are not part of the 
materials for this IBM product and use of those websites is at your own risk. 

IBM may use or distribute any of the information you provide in any way it believes appropriate without 
incurring any obligation to you. 

The performance data and client examples cited are presented for illustrative purposes only. Actual 
performance results may vary depending on specific configurations and operating conditions. 

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the 
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the 
capabilities of non-IBM products should be addressed to the suppliers of those products. 

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and 
represent goals and objectives only. 

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to actual people or business enterprises is entirely 
coincidental. 

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the sample 
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, 
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are 
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use 
of the sample programs. 
© Copyright IBM Corp. 2023. vii



Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines 
Corporation, registered in many jurisdictions worldwide. Other product and service names might be 
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright 
and trademark information” at http://www.ibm.com/legal/copytrade.shtml 

The following terms are trademarks or registered trademarks of International Business Machines Corporation, 
and might also be trademarks or registered trademarks in other countries. 

CICS®
Db2®
FICON®
GDPS®
IBM®
IBM Cloud®
IBM Cloud for Financial Services®
IBM Cloud Pak®

IBM Garage™
IBM Watson®
IBM Z®
Instana®
Jazz®
Parallel Sysplex®
POWER®
Rational®

Redbooks®
Redbooks (logo) ®
UrbanCode®
WebSphere®
z/OS®
z/VM®

The following terms are trademarks of other companies:

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive 
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Zowe, are trademarks of the Linux Foundation.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, 
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its 
affiliates.

Red Hat, Ansible, OpenShift, are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in 
the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

VMware, and the VMware logo are registered trademarks or trademarks of VMware, Inc. or its subsidiaries in 
the United States and/or other jurisdictions.

Other company, product, or service names may be trademarks or service marks of others. 
viii Mainframe Application Modernization Patterns for Hybrid Cloud

http://www.ibm.com/legal/copytrade.shtml


Preface

As businesses digitally transform, they can impose significant demands on existing 
mainframe applications and data requiring the need to modernize to achieve 
business outcomes. 

To meet this need for modernization which includes greater agility, efficiency, and innovation, 
they are choosing a hybrid cloud strategy that brings together the best of IBM Z® and Cloud. 

IBM Z integrated into a hybrid cloud based on Red Hat OpenShift provides resiliency and 
secure architecture that allows for application workload placement on the "best fit" 
infrastructure to maximize scale, performance, and efficiency. You can accelerate application 
modernization today by using architectural patterns that are building blocks and best 
practices to learn how to implement and deploy application modernization in an IBM Z 
environment integrated with public cloud.

In the IBM Redpaper, Accelerate Mainframe Application Modernization with Hybrid Cloud, 
REDP-5705, we discussed strategies and architectural solutions that can accelerate your 
mainframe application modernization by leveraging hybrid cloud environments. 

This IBM Redpaper publication takes that IBM Redpaper on a deeper dive as it discusses and 
demonstrates implementation approaches to modernization when adopting a hybrid cloud 
with IBM Z. We discuss and demonstrate application centric, data integration/access centric, 
and event driven modernization patterns. Additionally, we provide a chapter on modernizing 
an enterprise's DevOps with patterns and a chapter on managing your applications. 

Finally, we conclude with a demonstration of deployments of production applications. 

This IBM Redbooks® publication provides information for IT Architects, IT Specialists and 
system administrators. 

Authors

This book was produced by a team of specialists from around the world working at 
IBM Redbooks, Poughkeepsie Center.

Lydia Parziale is a Project Leader for the IBM Redbooks team in Poughkeepsie, New York, 
with domestic and international experience in technology management, including software 
development, project leadership, and strategic planning. Her areas of expertise include 
business development and database management technologies. Lydia is a PMI-certified PMP 
and an IBM Certified IT Specialist with an MBA in Technology Management. She has been 
employed by IBM® for over 30 years in various technology areas.

Yinka Adesanya is a Chief Architect with a focus on cloud and performance at IBM in New 
York, US. He has over 12 years of professional experience in the information technology 
industry. He holds a bachelor's degree in Electrical/Electronic Engineering and a master's 
degree in Computer Information Systems. His areas of expertise include private and public 
clouds, application and infrastructure performance, and delivering solutions at scale. He also 
has keen interests in security, networking, and blockchain.
© Copyright IBM Corp. 2023. ix

https://www.redbooks.ibm.com/abstracts/redp5705.html
https://www.redbooks.ibm.com/abstracts/redp5705.html


Elton de Souza is a Senior Technical Staff Member for Hybrid Cloud Adoption Acceleration 
based at IBM Canada. He has worked on the IBM Z platform his entire 12-year career at IBM 
and leads hybrid cloud adoption as part of the IBM Hyper Protect Services organization. The 
first half of his career was spent on the internals of Java, where he worked on leveraging 200+ 
hardware instructions on IBM Z for mission-critical mobile and cloud workloads. He was one 
of the first technical experts for Docker and Kubernetes on IBM Z in early 2015, and since 
then has worked with IBM clients on successful adoption of cloud-native technology like 
Kubernetes, IBM Cloud® Private, and most recently Red Hat OpenShift and IBM Cloud Paks 
and IBM Hyper Protect Services. He has written over 50 publications, including patents, 
books, analyst reports, and peer-reviewed reference architectures. He has won several 
awards, including external industry awards, and he contributes to several 
open-source projects.

Peter Haumer is a development lead and senior technical staff member for the IBM Wazi 
product platform, which is composed of tools and solution packages for IBM z/OS® 
Cloud-native DevOps. He is at the IBM Silicon Valley Labs in California, US. He has 40 years 
of software development experience. For IBM, he has worked as an agile software 
development team lead, full-stack software developer, and senior researcher. He has created 
and released all new software products end-to-end. In recent years, he led the development 
of several IBM offerings, such as IBM Wazi, IBM Z® Open Editor, IBM User Build, 
IBM Application Delivery Intelligence, IBM Jazz® Global Configuration Management, 
IBM Jazz Reporting Service, reporting components in the IBM Rational® Quality Manager, 
IBM Self-Check, IBM Rational Method Composer, and the Eclipse Process Framework. He 
holds a degree of Dr rer. nat. from RWTH Aachen, Germany.

Sandor Irmes is a senior IT architect in Hungary who provides Linux on IBM Z and 
IBM LinuxONE consulting services at EMEA IBM Z Lab Services. He has more than 30 years 
of experience in IBM POWER® and mainframe server technology, and several years of 
experience in Linux on IBM Z and open source. His areas of expertise include hybrid cloud 
solutions, infrastructure, and platform solutions, and competencies, including networks and 
Linux. Sandor is an IBM Certified IT Architect and has worked for IBM for over 16 years in 
various technology areas.

Lauren K Li is a DevOps Transformation Specialist on the IBM Z DevOps Acceleration Team, 
which helps clients begin their mainframe modernization journey by integrating IBM 
technologies with Git-based continuous integration (CI) and continuous deployment (CD) 
(CI/CD) pipeline solutions. In her 4 years with IBM, she has contributed code and 
documentation to the open-source Zowe Explorer Visual Studio Code extension and the 
IBM Wazi product platform. Lauren holds a master's degree in Information Science from the 
University of North Carolina at Chapel Hill, and has special interests in front-end software 
development and user experience (UX) design and research.

Liyong Li is a Certified Consulting IT Specialist and open source enthusiast. Liyong is the 
technical lead within the IBM Technology Lifecycle Services organization in ASEAN, where 
he helps customers adopt new technologies, such as hybrid cloud solution on IBM Z and 
LinuxONE, Red Hat OpenShift Container Platform, and Ansible Automation Platform. He has 
been with IBM for 17 years, and holds a degree in Computer Science. He has written and 
contributed to several IBM Redbooks publications on cloud, IBM z/VM®, and Linux.
x Mainframe Application Modernization Patterns for Hybrid Cloud



Filipe Miranda is a Principal Technical Specialist for Hybrid Cloud on IBM Z and LinuxONE. 
He is a member of the zAcceleration Team (ZAT). Filipe has 15+ years of experience working 
with open-source technologies. He has a bachelor's degree in System Information with many 
academic specializations in telecommunications and computer networks. His expertise 
includes, Linux (on x86, IBM Power, and IBM Z/LinuxONE), virtualization (Kernel-based 
Virtual Machine (KVM) and z/VM, VMware, Xen, and other hypervisors), containers (Docker, 
Podman, and Cri-O), Kubernetes, Red Hat OpenShift (on x86, IBM Power, and IBM 
Z/LinuxONE), and other products from IBM and Red Hat.

Amey Patil is an Application Architect for the IBM CIO team in Raleigh, North Carolina, US. 
He has 15+ years of experience in IT consulting and software development. He holds a 
master’s degree in Software Engineering from th Birla Institute of Technology & Science, 
Pilani, India. His areas of expertise include cloud computing, blockchain, business process 
management (BPM), service-oriented architecture (SOA), APIs and microservices, enterprise 
application integration, and middleware.

Sidney Varoni is an IBM Z Technical Sales Specialist at IBM Australia. He has 16 years of 
experience in the IT Infrastructure field, including IBM Z and storage solutions. He has 
worked at IBM Global Technology Services, IBM Storage, and currently at the IBM Z business 
unit. He holds a bachelor’s degree in Computer Science from Faculdade Politecnica de 
Jundiai, Brazil, and holds an MBA from FGV, Brazil, with an extension in IT Innovation and 
Leadership from MediaX at Stanford University, CA, US. His areas of expertise include high 
availability and business continuity solutions, and performance analysis. He has co-authored 
several IBM Redbooks publications on IBM GDPS®, IBM z/OS, and IBM Storage solutions.

Thanks to the following people for their contributions to this project:

Robert Haimowitz
IBM Redbooks, Poughkeepsie Center

Patrik Hysky 
IBM Redbooks, Austin Center

Tom Ambrosio and Bill Lamastro, 
IBM CPO

Dennis Behm, Nicolas Dangeville, Nasser Ebrahim, Mike Fulton, Mythili Venkatakrishnan, 
Suman Gopinath, Peter McCaffrey
IBM

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published 
author—all at the same time! Join an IBM Redbooks residency project and help write a book 
in your area of expertise, while honing your experience by using leading-edge technologies. 
Your efforts will help to increase product acceptance and customer satisfaction, as you 
expand your network of technical contacts and relationships. Residencies run from two to six 
weeks in length, and you can participate either in person or as a remote resident working 
from your home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html


Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or 
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks 
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xii Mainframe Application Modernization Patterns for Hybrid Cloud

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html


Chapter 1. Introduction

This chapter describes reasons for adopting a hybrid cloud approach to a mainframe 
application modernization that leverages the IBM Z platform and cloud. It also introduces 
patterns that are covered more in-depth throughout this book by using examples that use 
hybrid cloud with IBM Z to resolve real business challenges. Also, this publication deals with 
patterns for the following entry points: 

� Enhancing and modernizing applications: Drive enhancements to business functions by 
using modern languages on z/OS and extending them as cloud-native applications that 
can be deployed in the best-fit platform based on business needs.

� Integrating across hybrid cloud.

� Simplifying information sharing and data access.

� Getting more agile with enterprise DevOps.

This chapter covers the following topics:

� What does hybrid cloud mean in 2023

� The value of the hybrid cloud approach

� Application modernization

� What are the application modernization patterns

� How to apply application modernization patterns on IBM Z

� For more information, see Enterprise DevOps pattern.

� Security

1

© Copyright IBM Corp. 2023. 1



1.1  What does hybrid cloud mean in 2023

The cloud was originally an umbrella term for resource capacity (primarily compute) either 
on-premises behind a corporate firewall, or on an infrastructure that is managed by a third 
party and beyond the company premises (public cloud). This form of compute delivery is 
known as infrastructure-as-a-service (IaaS). Since then, cloud has evolved to higher layers of 
the architecture stack, that is, platform, service, functions, and others, which all are offered 
as-a-service model. This approach offers higher layers of abstraction that enables rapid 
innovation and accelerated go-to-market for products and services. It also shifts responsibility 
for uptime service-level agreements (SLAs) to a provider. 

There are several vendors in the public cloud space, each with varying capabilities to meet 
client demand. Some focus on providing the widest set of services or building blocks, and 
others focus on specific workloads, for example, analytics, highly regulated industries, 
confidential computing, and hardware-based workload accelerators. IBM focuses on highly 
regulated industries (IBM Cloud for Financial Services®) because of our industry leading 
confidential computing capabilities and evolved operations around regulatory controls.

Cloud-native is another term that is used (wrongly) interchangeably with cloud. Cloud-native 
is not a technology or tool but a set of characteristics that was originally offered only through 
the public cloud but extended to hybrid cloud environments and environments that might not 
be traditionally considered to be in the purview of cloud. Although there is no industry 
standard definition of cloud-native, some of the characteristics are as follows:

� Elasticity (both vertical and horizontal)

� Source control-managed infrastructure as a code and platform configuration

� DevOps (the tools and culture of DevOps)

� Software that is packaged in a way that enables reproducibility (for example, containers)

� A microservice architecture (only where it makes architectural sense)

� Bring your own language (BYOL), which is also known as polyglot development)

� No hard dependencies on the base or host operating system (outside of container 
base images)

� End to end automation (where feasible)

� Standardized access points by using industry standard protocols (for example, HTTPS, 
JSON, protobuf, gRPC, and Avro)

� Separation of state (typically implemented by using stateful containers that are consumed 
by stateless containers)

Figure 1-1 on page 3 shows a sample hybrid cloud topology that is based on the IBM Hybrid 
Cloud Platform (Red Hat OpenShift).1 

1  https://www.ibm.com/cloud/architecture/decision-guides/container-workload-hybrid-cloud/overview 
2 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/cloud/architecture/decision-guides/container-workload-hybrid-cloud/overview


Figure 1-1   Sample topology overview

An application that is deployed on the public cloud might not be cloud-native, and conversely 
an application that is deployed on-premises in a heritage environment (such as VMWare or 
z/OS) might be cloud-native. Cloud-native implies the set of characteristics versus specifying 
an underlying platform or infrastructure as a prerequisite, although picking the right 
underlying platform might reduce friction in running and operations.
Chapter 1. Introduction 3



Multi-cloud is the term that is used for the consumption of multiple clouds (either a vendor for 
public cloud or on-premises). On average, 93%2 of organizations use multi-cloud as part of 
their enterprise IT strategy, which includes software-as-a-service (SaaS), 
function-as-a-service (FaaS), platform-as-a-service (PaaS), and IaaS. Multi-cloud (or hybrid 
multi-cloud) provides challenges around data sovereignty; normalized security across all the 
vendors; identity and access management; standardized DevSecOps; mismatched SLAs; 
and other items.

For core business-critical applications, SLAs that include throughput, latency, availability, and 
uptime are important. Although throughput often can be improved by horizontally or vertically 
scaling, general latency generally is a function of the network, and cannot be solved only by 
delegating more resources to a task. Placement of the business presentation layer relative to 
the integration and database layer become important: too far, and the steady state latency or 
the occasional latency spike might infringe on SLAs. The problem is compounded in a hybrid 
cloud context because it is rarely possible to lift and shift an entire application stack in one 
step and layers are moved incrementally. This situation often is known as the strangler 
pattern, and it can impact negatively business SLAs.

In cases where latency impacts user experience (UX), it makes sense to move to a 
cloud-native in-place versus a “lift and shift” incrementally to a new location. This approach 
offers the best balance of agility, time to market, and SLAs while minimizing operational or 
compliance risk. In cases where latency is not as critical, the strangler pattern might be a 
good fit.

This publication provides a use-case-driven approach to designing various hybrid cloud 
solutions to optimize for enterprise KPIs while maintaining risk. Most books assume the same 
underlying architecture (typically amd64), but modern cloud designs include alternative 
architectures like arm64, s390x, and ppc64le because each Instruction Set Architecture (ISA) 
or hardware architecture offers unique benefits.

Modernization on IBM Z typically benefits from leveraging decades of investment by 
organizations into intellectual property that is critical to their operations on this platform. Also, 
there is programming language modernization that can be as simple as upgrading compilers 
from COBOL 4 to COBOL 63 to benefit from modern programming constructs and improved 
performance4, or more involved like migrating a heritage language to Java, JavaScript, or Go. 
In both scenarios, the consumption of a developer friendly integrated development 
environment (IDE) that supports the source and target language is beneficial. 

Tools that have the capabilities under the IBM WAZI5 portfolio enable portable development 
and testing of application on-premises or in the public cloud. There are several other 
techniques like application programming interface (API) extension of applications, data 
virtualization, caching, and event-based architecture that also are used for modernization 
applications. To accelerate modernization, IBM created an all-inclusive stack that is named 
the IBM Z and Cloud Modernization Stack that simplified procurement of the tools that are 
necessary for modernization. The following chapters describe how to implement a subset of 
those patterns.

2  https://www.nutanix.com/theforecastbynutanix/technology/why-the-public-vs-private-cloud-debate-rages
-on-in-the-hybrid-multicloud-era 

3   https://www.ibm.com/docs/en/developer-for-zos/14.1.0?topic=documents-enterprise-cobol-zos-v62
4  https://www.ibm.com/support/pages/enterprise-cobol-zos-documentation-library 
5  https://www.ibm.com/cloud/wazi-as-a-service 
4 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.nutanix.com/theforecastbynutanix/technology/why-the-public-vs-private-cloud-debate-rages-on-in-the-hybrid-multicloud-era
https://www.nutanix.com/theforecastbynutanix/technology/why-the-public-vs-private-cloud-debate-rages-on-in-the-hybrid-multicloud-era
https://www.ibm.com/support/pages/enterprise-cobol-zos-documentation-library
https://www.ibm.com/docs/en/developer-for-zos/14.1.0?topic=documents-enterprise-cobol-zos-v62
https://www.ibm.com/cloud/wazi-as-a-service
https://www.ibm.com/products/z-and-cloud-modernization-stack


1.2  The value of the hybrid cloud approach

The journey to the cloud is no longer a trend. It is now the center of most IT strategies for 
companies of all sizes in every industry. However, there are many ways of adopting cloud 
computing, and many things to consider when deciding on the best approach:

� Should I use a public or private cloud?

� How do I move the application or workload to the cloud: lift-and-shift, contain-and-extend, 
or refactoring?

� What are the required integrations or dependencies?

� What are the non-functional requirements?

There is no single cloud solution for all business problems, but a cloud solution often is 
defined at the application level, depending on its unique requirements. 

A hybrid cloud approach excels at a flexibility. It provides a standard and consistent 
experience for developers to build and test applications across the various platforms of the 
enterprise, while giving flexibility for decision makers to choose where to deploy and run 
production workloads based on business needs. In this context, IBM Z is typically the best fit 
platform for mission-critical applications that demand high availability, scalability, and high 
levels of security while maintaining low latency even when processing large volumes of 
transactions and data.

The aspects and characteristics of different cloud approaches are described in Why IBM 
Hybrid Cloud for Your Journey to the Cloud?, REDP-5653, The Cloud Adoption Playbook, and 
Accelerate Mainframe Application Modernization with Hybrid Cloud, REDP-5705.

1.3  Application modernization

Mainframe applications that are part of hybrid cloud enterprises can leverage a set of 
capabilities that are becoming an industry standard:

� Agility through automated DevOps practices.

� Integration through OpenAPIs that actively participate in the event-processing ecosystem.

� Ability to shift workloads around different enterprise platforms, including an on-premises 
infrastructure and various cloud providers.

� Provide intelligent data analytics as part of the enterprise data fabric.

These capabilities can help drive better business performance and be applied to most 
applications that run in the IBM Z platform:

� For new or recently deployed workloads, these capabilities are adopted as part of the 
development cycle by using modern tools and practices.

� For legacy workloads, typically written many years ago, applications might need to be 
modernized by using certain patterns.
Chapter 1. Introduction 5

https://www.ibm.com/cloud/architecture/adoption/the-cloud-adoption-playbook/
https://www.ibm.com/cloud/architecture/adoption/the-cloud-adoption-playbook/
https://www.redbooks.ibm.com/abstracts/redp5705.html


1.4  What are the application modernization patterns

Application modernization involves cost, risk, change impact, and multiple variables that must 
be considered when deciding on the best approach. Accelerate Mainframe Application 
Modernization with Hybrid Cloud, REDP-5705 details a set of entry points that can be used 
as various starting points of mainframe application modernization to address specific 
business challenges. Here are the entry points:

� Optimizing the cost and performance of existing mainframe applications: Optimize and 
improve the efficiency of the existing IBM Z applications by adopting the right set of 
hardware and software features and pricing models. 

� Enhancing and modernizing applications: Drive enhancements to business functions by 
using modern languages on z/OS and extending them as cloud-native applications that 
can be deployed in the best-fit platform based on business needs.

� Integrating across hybrid cloud: Making mainframe applications part of the OpenAPI 
ecosystem and event-driven architectures, and using the data and business processing 
that is embedded in these applications.

� Simplifying information sharing and data access: Gain data-driven business value from 
mainframe applications share system of record (SOR) data either through direct access, 
replication, caching, or data virtualization concepts that combine data assets across 
the enterprise.

� Getting more agile with enterprise DevOps: Derive deeper insights about the operations 
and enable agile solution development through techniques and tools that support DevOps 
practices and software pipelines.

� Making AI-driven decisions at scale: Infuse AI within z/OS applications and transactions to 
builder faster resilient and intelligent systems. 

� Automating and standardizing IT: Standardize IT automation across all platforms, 
including IBM Z.

A set of patterns and accelerators is published by IBM at Application modernization for iBM Z 
architecture.

This set of technical building blocks is designed and published to provide guidance and best 
practices to address these entry points. Modernization is a continuous journey with 
incremental progress. Technology is not static and keeps evolving, so these patterns must be 
constantly adjusted and updated to remain current.

1.4.1  Accelerating modernization with application discovery

Discover and understand your applications before they are modernized or a modernization 
pattern is applied to them. Application discovery is an accelerator that kickstarts this 
modernization journey. You can extract consumable information about your software assets 
and build an inventory of applications and their resource usage and dependencies, and 
visualize an information flow across application components, perform impact analysis, and 
generate reports to act on your modernization strategy and plan increments with confidence. 

In the next section, these patterns are applied in an IBM Z context. 
6 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/cloud/architecture/architectures/application-modernization-mainframe/patterns/
https://www.ibm.com/cloud/architecture/architectures/application-modernization-mainframe/patterns/


1.5  How to apply application modernization patterns on IBM Z

There is no single solution for all applications or business problems. Therefore, the best 
modernization pattern depends on the wanted outcome for each application. Understanding 
application and data interdependencies, affinities, performance, security, and availability are a 
prerequisite to identifying the best application modernization strategy. Multiple patterns might 
apply to a single application, depending on its requirements.

The modernization patterns for IBM Z are described next.

1.5.1  Patterns for enhancing and modernizing applications

Enhance application functions by applying one or more of the following patterns:

� Extending existing code applications on z/OS with cloud-native applications

� Collocating applications with existing IBM Z applications and data

� Enhancing selected functions by incrementally rewriting as cloud-native

� Refactoring elements of an existing IBM Z application into discrete services

Extending existing code applications on z/OS with cloud-native 
applications
Augment core applications on IBM z/OS with new cloud-native components that are 
integrated through REST APIs. The cloud-native application can be pre-existing or developed 
by using enterprise DevOps and containers that run on IBM z/OS or IBM LinuxONE.

For more information, see Extend with a new function pattern.

Collocating applications with existing IBM Z applications and data
Colocate applications on IBM Z in a container that can access existing data or applications 
with an order of magnitude reduced latency to meet SLA objectives.

For more information, see colocate applications pattern.

Enhancing selected functions by incrementally rewriting as cloud-native
Incrementally rewrite a part of a mainframe application, which is driven by an immediate 
business need. Use cloud-native principles, enterprise DevOps, modern languages, and 
container technology on IBM z/OS or IBM LinuxONE. Integrate new functions by using APIs 
to or from assets by using the co-existence model.

For more information, see Enhance an existing function pattern.

Refactoring elements of an existing IBM Z application into discrete 
services
Refactor functions into reusable components for agile development and sharing 
by applications.

For more information, see Refactor into discrete services pattern.
Chapter 1. Introduction 7

https://www.ibm.com/cloud/architecture/architectures/z-refactor-discrete-services-pattern
https://www.ibm.com/cloud/architecture/architectures/z-enhance-cloud-native-pattern
https://www.ibm.com/cloud/architecture/architectures/z-collocate-applications-pattern
https://www.ibm.com/cloud/architecture/architectures/z-extend-cloud-native-pattern


1.5.2  Hybrid cloud network architecture

Although a complete description of the network architecture is outside of the scope of this 
publication, in our environment, we worked with the following three main topologies:

� An application running in a non z/OS environment that accesses database or files 
on z/OS.

� An application running on z/OS, typically leveraging IBM CICS®, IBM IMS, IBM MQ, 
IBM WebSphere® Application Server, or equivalent middleware subsystems that access 
or store data in an external data repository, such as MongoDB, Postgres, or 
equivalent databases.

� Both the application and data repository running on Red Hat OpenShift, either on IBM zCX 
or Linux on IBM Z.

1.5.3  Patterns to simplify information sharing and data access

These patterns focus on eliminating the existence of data silos within organizations. Data that 
is on IBM Z should be accessible by applications regardless of their platforms, but you still 
respect data security practices. 

To simplify information sharing and data access, use one or more of the following patterns:

� Enabling modern access to existing IBM Z data

� Virtualizing IBM Z data to provide access across data sources without replication

� Caching SOR data on IBM Z to create data

� Transforming SOR data on IBM Z to create data

� Replicating SOR data on IBM Z by using change data capture

Enabling modern access to existing IBM Z data
Provide modern support to access IBM Z data through SQL-based queries and through 
REST APIs. Simplify new application development by using this modern data access without 
disrupting data management and recovery processes on IBM Z to maintain data consistency.

For more information, see Enable modern access to IBM Z data pattern.

Virtualizing IBM Z data to provide access across data sources without 
replication
Access data across IBM Z and other data sources, including joining data, without needing to 
copy and replicate that data. Deliver more current and accurate data with virtualized data 
access to consuming applications, including analytics.

For more information, see Virtualize IBM Z data pattern.

Caching SOR data on IBM Z to create data
Improve application response time and scalability by storing optimized copies of IBM Z data. 
Free compute resources and increase throughput by offloading application logic to the 
caching layer, especially for read-heavy applications.

For more information, see Cache IBM Z data pattern.
8 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/cloud/architecture/architectures/z-enable-modern-access-pattern
https://www.ibm.com/cloud/architecture/architectures/z-virtualize-ibm-z-data-pattern
https://www.ibm.com/cloud/architecture/architectures/z-cache-ibm-z-data-pattern


Transforming SOR data on IBM Z to create data
Incrementally build new, modernized SOR data stores by tapping into IBM Z data traffic 
through a data adapter to transform to the modernized data format.

For more information, see Transform IBM Z data.

Replicating SOR data on IBM Z by using change data capture
Replicate data in real time by capturing change log activity to drive changes in the target. 
Enable newer applications to access a broader range of data stores and access methods 
through replication.

For more information, see Replicate IBM Z data.

1.5.4  Patterns to integrate across a hybrid cloud

IBM Z applications can interact in near real time with other applications regardless of their 
platform with various integration patterns. 

Here are the integration patterns that can be applied:

� Exposing applications through APIs

� Responding in near real time to events occurring within IBM Z applications

� Responding to external events in near real time by leveraging IBM Z applications

� Optimizing Command Query Response Separation: delivering core systems integration

Exposing applications through APIs
Access mainframe applications and data by using standards-based REST APIs with 
IBM z/OS Connect. Manage APIs by using industry-standard API Management solutions, 
including solutions by IBM. 

For more information, see Expose through APIs pattern.

Responding in near real time to events occurring within IBM Z 
applications

Share events that are generated in IBM Z applications so that new application logic can be 
developed to respond to such events without introducing risks in core applications. Analyze 
data as part of application logic to generate an event.

For more information, see Respond to IBM Z application events pattern.

Responding to external events in near real time by leveraging IBM Z 
applications
Share events that are generated by applications that are external to IBM Z to drive the 
invocation of IBM Z application logic. Develop flexible logic without introducing risks in 
core applications.

For more information, see Respond to external events pattern.
Chapter 1. Introduction 9

https://www.ibm.com/cloud/architecture/architectures/z-transform-data-pattern
https://www.ibm.com/cloud/architecture/architectures/z-replicate-data-pattern
https://www.ibm.com/cloud/architecture/architectures/z-respond-to-z-app-events-pattern
https://www.ibm.com/cloud/architecture/architectures/z-respond-external-events-pattern
https://www.ibm.com/cloud/architecture/architectures/z-expose-apis-pattern/


Optimizing Command Query Response Separation: delivering core 
systems integration
Deliver an efficient Command Query Response Separation (CQRS) system that is based on 
IBM Z to optimize the synchronization between the command access, which is SOR data that 
is updated by online and batch applications, and the query access, which is an information 
model that is aligned with the needs of the new applications. Optimize by using IBM Z Digital 
Integration Hub (zDIH) to deliver a non-disruptive, low-latency, high-throughput, and 
cost-attractive solution.

For more information, see Optimize CQRS pattern.

1.5.5  Implementing enterprise DevOps and observability

DevOps focuses on enabling IBM Z applications to leverage common agile practices and 
tools that are used by modern development frameworks. It involves the following functions: 

� Provides a cloud-native developer experience for IBM Z by fully integrating IBM Z 
development into enterprise continuous integration (CI) and continuous deployment (CD) 
(CI/CD) pipelines and embracing consistent open-source tools that are familiar to 
all developers. 

For more information, see Enterprise DevOps pattern.

� Improves visibility across z/OS systems and empowers operations teams with AI insights. 

1.6  Security

Although security is an important topic, it is not covered in this book. However, the 
IBM Z platform brings with it several built-in features that can be explored by workloads 
running in the platform:

� Encryption everywhere: Stop choosing what to encrypt. Encrypt faster and without 
application changes.

� Quantum-safe protection: Protect your data, applications, and infrastructure from possible 
quantum threats.

� Plan for crypto agility: Discover where and what crypto is used in applications to build and 
maintain your crypto inventory.

� Preserve privacy with zero trust: Protect and control access to sensitive data while it is 
shared throughout your hybrid cloud.

� Centralize keys: Manage keys efficiently and securely for IBM z/OS data set encryption on 
IBM Z and public cloud key management systems.

� Protect data in flight: Protect and encrypt data flowing on IBM FICON® and Fibre Channel 
links from IBM Z to IBM DS8900F, or between IBM Z platforms.

For more information, see the IBM Z Enterprise Security portal at IBM Z Mainframe 
Enterprise Security.
10 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/cloud/architecture/architectures/z-enterprise-devops-pattern
https://www.ibm.com/it-infrastructure/z/capabilities/enterprise-security
https://www.ibm.com/it-infrastructure/z/capabilities/enterprise-security
https://www.ibm.com/cloud/architecture/architectures/z-optimize-cqrs-pattern


Chapter 2. Modernized application 
architectures

IT environments are now fundamentally hybrid in nature. Companies adopting cloud 
applications view application modernization as a key component to harmonize business 
processes across their hybrid cloud applications.

As part of the next critical step in their digital transformations, organizations are building new 
applications and modernizing applications to leverage cloud-native technologies, which 
enable consistent and reliable development, deployment, management, and performance 
across cloud environments and across cloud vendors.

This chapter describes how to accelerate application modernization by using the following 
application-centric1 architectural patterns that are designed and published by IBM. You can 
use them to learn how to implement and deploy them in an IBM Z environment, whether z/OS 
or Linux, and determine which circumstances are best for your application modernization 
initiatives. For more information, see Application modernization for IBM Z architecture.

� Expose through application programming interfaces (APIs)

Expose applications and data through APIs. Access mainframe applications and data by 
using standards-based REST APIs with IBM z/OS Connect. Manage APIs by using 
industry-standard API management solutions, including solutions by IBM.

� Extend with cloud-native

Extend core applications on IBM z/OS with cloud-native applications. Augment core 
applications on IBM z/OS with new cloud-native components that are integrated through 
REST APIs. The cloud-native application can be pre-existing or developed by using 
enterprise DevOps and containers that run on IBM z/OS or IBM LinuxONE.

2

1  The application-centric patterns are part of IBM Z application modernization patterns, which are described at 
https://www.ibm.com/cloud/architecture/architectures/application-modernization-mainframe/patterns.
© Copyright IBM Corp. 2023. 11

https://www.ibm.com/cloud/architecture/architectures/application-modernization-mainframe/patterns
https://www.ibm.com/cloud/architecture/architectures/application-modernization-mainframe/


� Colocate applications

Colocate applications with existing IBM Z applications and data. Colocate applications on 
IBM Z in a container that can access existing data or applications with order of magnitude 
reduced latency to meet service-level agreement (SLA) objectives.

� Enhance as cloud-native

Enhance selected functions by incrementally rewriting as cloud-native. Incrementally 
rewrite a part of a mainframe application, which is driven by an immediate business need. 
Use cloud-native principles, enterprise DevOps, modern languages, and container 
technology on IBM z/OS or IBM LinuxONE. Integrate new functions by using APIs to or 
from assets by using the co-existence model.

� Refactor into discrete services

Refactor elements of an IBM Z application into discrete services. Refactor functions into 
reuseable components for agile development and sharing by applications.

This chapter covers the following topics:

� Expose through APIs pattern

� Extend with cloud-native pattern

� Sample application architecture

2.1  Expose through APIs pattern

New initiatives often impose significant demands on applications and data because timely 
access to data drives new business processes and better customer experiences. 

Many organizations continue to rely on core applications and data on IBM Z. To accelerate 
digital transformation, organizations must embark on a strategy to modernize core 
applications and build new ones. 

However, challenges often arise when it comes to updating mainframe-based monolithic 
applications to support new business initiatives. Risks are involved, and the effort that is 
required to develop the new features and test the application is often significant. Alternatively, 
a full rebuild also faces multiple challenges, such as high development costs; lack of 
documentation and understanding of the business logic; exposure risks to business-critical 
data; and poor performance and availability.

A good starting point for modernization is to leverage core business-critical applications on 
IBM Z by using APIs that are consumed by new cloud-native application logic, such as mobile 
or cognitive applications. You must develop APIs to expose your applications on IBM Z. You 
also need a robust and comprehensive runtime environment for APIs that is scalable, highly 
available, secure, and that covers all subsystems.
12 Mainframe Application Modernization Patterns for Hybrid Cloud



Solution and architecture
Figure 2-1 shows the components that are involved in invoking a mainframe application that is 
exposed as APIs. In the simplified flow example, a cloud-native application invokes an API 
that is managed, secured, and exposed by an enterprise API management system that uses 
an API gateway. When the API gateway receives a request, it checks to see whether it is an 
authorized request. If the request is authorized, the gateway routes the request to a 
corresponding API that is deployed on z/OS Connect EE that runs on IBM Z. The z/OS 
Connect EE server transforms a REST- or JSON-based API request into a payload according 
to the specified copybook format. The server also invokes a z/OS application that runs on a 
subsystem such as CICS, IMS, or IBM Db2®. Similarly, the z/OS Connect EE server 
transforms the response from the application into the results format that the API 
definition specifies.

Figure 2-1   Exposing through APIs on IBM Z

A key business benefit is that no new coding or changes to mainframe assets are required for 
newly developed cloud-native applications to access core business-critical applications and 
associated data. 
Chapter 2. Modernized application architectures 13



Considerations
� Use the IBM z/OS Connect API toolkit.

The ability to use an API from a z/OS application starts with using an API description 
format to document and understand the interface for the cloud-native application. Such a 
format might be based on the OpenAPI specification. From the OpenAPI document, you 
can use the IBM z/OS Connect API toolkit to build the artifacts to enable a z/OS 
application that is written in COBOL or PL/I to call the API. The following artifacts 
are generated:

– An API runtime file (API requester archive) that contains the transformation logic to 
convert the request payload from binary format to JSON format and convert the 
response payload from JSON format to binary format

– An API information file that contains information such as the path and method of 
operation that is supported by the API

– The request and response data structures that are used for each operation in the API

� Use IBM Application Discovery and Delivery Intelligence. 

To discover and understand the code that is exposed as APIs, use this tool to analyze 
assets on IBM Z. You can understand the impact and interdependencies of extending a 
core application. For more information, see Application discovery for business alignment 
pattern.

� Enable monitoring and management. 

Consider integrating the monitoring of APIs with the monitoring of the end-to-end solution, 
which span the cloud-based application that invokes APIs and the API enabling run times 
and core applications that run on IBM Z. For more information, see Chapter 6, “Managing 
your applications” on page 109.

� Consider your deployment topology. 

Consider supporting the full lifecycle of applications, APIs (including development and 
testing), deployments, and a highly available and scalable production runtime 
environment. For more information, see Chapter 7, “Deploying production applications” on 
page 125.

2.2  Extend with cloud-native pattern

As you drive digital transformation and enable hybrid cloud solutions, you face 
these challenges:

� Using core assets that cannot be re-created without a huge upfront cost, a significant 
effort, and a long delay.

� Avoiding the risks of rebuilding business-critical applications without thorough due 
diligence because doing so can lead to high development costs, lack of documentation 
and understanding of business logic, exposure of business-critical data, and poor 
performance and availability.

Note: For more information about IBM z/OS Connect, see Overview of IBM z/OS Connect 
(OpenAPI 3).
14 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/docs/en/zos-connect/zos-connect/3.0?topic=welcome-overview
https://www.ibm.com/docs/en/zos-connect/zos-connect/3.0?topic=welcome-overview
https://www.ibm.com/cloud/architecture/architectures/z-application-discovery-pattern
https://www.ibm.com/cloud/architecture/architectures/z-application-discovery-pattern


� Enabling agility and innovation by supporting a new cloud-based application ecosystem 
through enabling multi-speed IT with cloud-native applications.

� Using open standards-based languages and tools to enhance applications with new 
microservices and container technology.

Solution and architecture
The “Extend with cloud-native” pattern that is shown in Figure 2-2 shows the process and 
components that are involved to extend a core application on z/OS, whether CICS, IMS, or 
batch, by writing new functions as cloud-native applications. Communication between the 
core application on z/OS and the cloud-native application occurs by using well-defined APIs.

Figure 2-2   Extending core applications on IBM Z with cloud-native

A key business benefit of using this pattern is that enterprises do not need to abandon their 
investment in core applications on IBM Z. Instead, they can extend the capabilities of their 
applications with cloud-native applications. The usage of cloud-native technologies can 
enable organizations to build highly scalable applications in a modern environment with 
private, public, and hybrid clouds.

The ability to use cloud-native applications with core applications on z/OS provides 
many advantages:

� Enables the speed to develop and deploy new capabilities and respond to market 
demands by using modern development tools and processes.

� Addresses skills shortages of older technology by using open 
standards-based languages.

� Leverages security frameworks that are available with modern applications to meet 
compliance standards.

� Avoids the high risks of rebuilding business-critical applications.

� Provides a way to deploy updates without redeploying the entire application.

Considerations
� The usage of containers with cloud-native applications offers flexibility of deployment for a 

hybrid cloud solution:

– Deploy containers inside z/OS and closer to the z/OS application by using the 
IBM z/OS Container Extensions (zCX) technology.

– Deploy containers on Red Hat OpenShift Container Platform on-premises on IBM Z or 
a distributed platform.
Chapter 2. Modernized application architectures 15



– Deploy containers on Red Hat OpenShift Container Platform on a public cloud.

– Deploy containers on any Kubernetes platform.

� The key decision criteria include reducing latency with the collocation of cloud-native 
applications closer to z/OS based applications and data and meeting stringent SLAs on 
security, availability, and scalability. For more information, see Collocate applications 
pattern.

2.3  Sample application architecture

In our sample application architecture, we deploy an open-source, lightweight, and 
microservices-based application that is called the “Voting app”. It is cross-platform and can be 
deployed on any architecture. We use this application as an example to demonstrate how to 
leverage the application modernization pattern to learn how to implement and deploy 
applications in a hybrid cloud platform, which combines the public cloud, Red Hat OpenShift 
on IBM LinuxONE, and Red Hat OpenShift on zCX.

You can find the public repository with the application source code at GitHub.

In the original source code, some programs are using a Postgres database, and we changed 
these programs to support IBM Db2, as described in Appendix A, “Voting app changes to 
support an IBM Db2 database” on page 139.

2.3.1  Application architecture

Our application architecture is shown in Figure 2-3.

Figure 2-3   Sample Voting app architecture

The application provides the user with a choice to vote for any of two options (such as 
Coca-Cola versus Pepsi).
16 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/cloud/architecture/architectures/z-collocate-applications-pattern
https://www.ibm.com/cloud/architecture/architectures/z-collocate-applications-pattern
https://github.com/OpenShift-Z/voting-app


� On IBM public cloud

The web front end is composed of a Python microservice that displays the options that 
users choose. When the user interacts with the application, the information (votes) is sent 
to the Redis microservice.

� On Red Hat OpenShift Cluster on LinuxONE

Redis serves as an in-memory cache holding the votes that are received by the Python 
web microservice.

Another microservice, also written in Python, is running in the background, and it takes the 
votes from Redis and stores them in an IBM z/OS Db2 database. 

� On IBM z/OS

A running Db2 database stores the votes.

� On Red Hat OpenShift Cluster on zCX

A Node.js microservice shows the voting results as they are accumulated in the 
Db2 database. 

The application follows the notation of microservices-based architecture and its 
components can be scaled individually; in fact, each component can be switched with an 
alternative one without affecting the overall application.

2.3.2  Deployment

The architecture is deployed on the following environment: 

� Red Hat OpenShift cluster on IBM public cloud

� Red Hat OpenShift cluster on IBM LinuxONE

� IBM zCX Foundation for Red Hat OpenShift (zCX for Red Hat OpenShift)

� Db2 on z/OS

To deploy the application, you must get the GitHub personal access token that will be used for 
generating a secret. For more information, see Creating a personal access token.

To start the deployment, complete the following steps: 

1. Deploy the z/OS Db2 database with the following settings:

DB2 SSID            D2B1 , D2B2
DB2 member name     D2B1 , D2B2
IRLM SSID           I2B1 , I2B2
z/OS System         SC74 , SC75
Command Prefix      -d2b1 , -d2b2
DRDA Port           38010
Security Port       38011
Resync Port         38012, 38013
Location            DB2B

2. On all Red Hat OpenShift clusters, complete the following steps:

a. Set the following environmental variables: $PROJECT, $GIT_REPO, and $GIT_TOKEN.

b. Create a project by using the following command:

oc new-project ${PROJECT}
Chapter 2. Modernized application architectures 17

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token


c. Create the secret by using the following command:

oc create secret generic git-token --from-file=password=${GIT_TOKEN} 
--type=kubernetes.io/basic-auth

d. Import images by using the following commands:

oc import-image rhel8/nodejs-12 --from=registry.redhat.io/rhel8/nodejs-12 
--confirm
oc import-image ubi8/python-38 --from=registry.redhat.io/ubi8/python-38 
--confirm

3. On Red Hat OpenShift cluster on LinuxONE, complete the following steps:

a. Deploy the Redis service by using the following commands:

oc new-app --name new-redis --template=redis-persistent \
--param=DATABASE_SERVICE_NAME=new-redis \
--param=REDIS_PASSWORD=admin \
--param=REDIS_VERSION=latest

Figure 2-4 shows a sample output for the Redis pod.

Figure 2-4   Sample output for Redis pod

b. Deploy the Python worker by using the following commands:

oc new-app python-38:latest~${GIT_REPO} \
--source-secret=git-token \
--context-dir=worker-python \
--name=voting-app-worker-py \
-e DB_NAME="DB2B" \
-e DB_USER="admin" \
-e DB_PASS="admin" \
-e HOST_NAME="wtsc75.pbm.ihost.com" \
-e PORT_NO="38010" \
-e REDIS_PASSWORD="admin"

Figure 2-5 shows a sample output for the Python worker pod.

Figure 2-5   Sample output for Python worker pod
18 Mainframe Application Modernization Patterns for Hybrid Cloud



4. On Red Hat OpenShift cluster on IBM public cloud, complete the following steps:

a. Deploy the Voting app front end by using the following commands:

oc new-app python-38~${GIT_REPO} \
--source-secret=git-token \
--context-dir=/vote \
--name=voting-app-py \
-e REDIS_PASSWORD="admin"

Figure 2-6 shows a sample output for the Voting app front-end pod.

Figure 2-6   Sample output for the Voting app front-end pod

b. Create the Voting app front-end route by using the following commands:

oc create route edge demo-py --service=voting-app-py --port=8080

Figure 2-7 shows a sample output for the Voting app front-end route.

Figure 2-7   Sample output for the Voting app front-end route

5. On Red Hat OpenShift cluster on zCX, complete the following steps:

a. Deploy the Node.js result front-end application by using the following commands:

oc new-app nodejs-12:latest~${GIT_REPO} \
--source-secret=git-token \
--context-dir=result \
--name=voting-app-nodejs \
-e 
DB2_CONNECT_STRING="database=DB2B;hostname=wtsc75.pbm.ihost.com;port=38010;p
rotocol=tcpip;uid=admin;pwd=admin"

Figure 2-8 shows a sample output for the Node.js result front-end pod.

Figure 2-8   Sample output for the Node.js result front-end pod
Chapter 2. Modernized application architectures 19



b. Create the node.js result front-end route by using the following commands:

oc create route edge demo-nodejs --service=voting-app-nodejs --port=8080

Figure 2-9 shows a sample output for the Node.js result front-end route.

Figure 2-9   Sample output for the Node.js result front-end route

6. Access the application by using a web browser:

– To see the Voting app front end, go to the following URL:

https://demo-py-voting-app-db2.apps.rdbkvmocp.pbm.ihost.com

– To see the Voting app result, go to the following URL:

https://voting-app-nodejs-voting-app-db2.apps.ocpzcx1.rdbkocp.pbm.ihost.com

2.3.3  Consideration

� Latency is an important aspect to address in any cloud-native application:

– Platform matters.

With a hybrid cloud with IBM Z technologies, the application can scale in three 
dimensions (horizontally, vertically, or both), which achieves superior performance and 
meets SLAs. 

– Collocation of cloud-native applications and data within or closer to IBM Z.

By collocating supporting applications on the same IBM Z platform as core systems of 
record (SORs) applications, you can leverage the data gravity and reduce latency, and 
provide better security, availability, and scalability. For more information, see Collocate 
applications pattern.

– Introduce memory cache.

Caching is a key implementation when it comes to production-level deployment of 
services that helps to increase the application performance by acting as a middle layer 
between the application component and the persistence system. In this sample 
application, we used Redis memory cache as an example. 

� Enterprise DevOps.

While integrating IBM Z into your hybrid cloud, it is imperative that developers and IT 
operations understand that the same, agile processes also can be performed on 
IBM Z by using the same DevOps tools, and provide the same DevOps experience that is 
on other platforms. A range of solutions helps integrate systems, empowering developers 
with an open and familiar development environment with enterprise-wide, platform-neutral 
standardization, which helps developers build, test, and deploy code faster. For more 
information, see Chapter 5, “Modernizing Enterprise DevOps” on page 59. 
20 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/cloud/architecture/architectures/z-collocate-applications-pattern
https://www.ibm.com/cloud/architecture/architectures/z-collocate-applications-pattern


Chapter 3. Modernized data access 
architectures

This chapter describes how to modernize data access architectures. 

This chapter covers the following topics:

� Data fabric as the basis for modern data access

� Enabling modern access to IBM Z data patterns

� Virtualize IBM Z data pattern

� Cache IBM Z data pattern

� Transform IBM Z data pattern

3

© Copyright IBM Corp. 2023. 21



3.1  Data fabric as the basis for modern data access

Because of the recent acceleration of digital transformation, every business is facing change. 
In this transformation process, only those companies that treat the data that they accumulate 
as a strategic asset will gain a competitive advantage.

Most of today's successful businesses already understand this fact, but unfortunately they do 
no always take steps to extract more actionable information from their data. They are not 
planning any data strategy or dealing with the extra costs of poor data quality.

The core of a typical IT solution is the system that supports the core business, which is 
complemented by other subsystems that work on specific subtasks. The core also includes 
leveraging new technologies, cloud computing, mobile and social technologies, and security; 
incorporating the unstructured data that is generated by IT systems that pervade all aspects 
of life (called big data); and the analysis of the totality of these items.

Thanks to traditional processing, there are many data sources everywhere, and each data 
source can have hundreds of tables, each with dozens of columns. This data must be used to 
serve a relatively large number of users or use cases, where the users usually require slightly 
different data. The amount of data is now so vast that centralizing it is an impossible task. 
Data is stored in many places, and everyone will use it everywhere.

One of the most serious challenges to maximizing the usage of data is that it is constantly 
changing. Every company is using increasingly complex and diverse data structures and data 
types that are in a state of almost constant change to meet the ever-changing 
business needs.

Most companies already are distinguishing between structured and unstructured data and 
considering how to link them together. But, there is still the challenge of data diversity.

A typical example is when you must run reports and analytics on mixed-source data. 
Combining different data sources is not easy, but processing also is complicated by 
inconsistent data from different sources. It is easy to see that the more data sources a 
company has, the more likely it is that data quality eventually becomes a problem.

In addition, recent events brought a new challenge, that is, the organizational transformation 
of companies. Because of the COVID-19 pandemic, many office workers are working 
remotely, and many of them might continue to do so. We also see more mobile workers and 
ones that work without a permanent office. Of course, their data needs also must be met. 
Most of these employees with changing work styles generally want to use data in a 
self-service way. A new approach that is called data fabric can provide answers to 
these challenges.

3.1.1  What a data fabric is

A data fabric is not a single product or platform. It cannot be purchased or installed. A data 
fabric is an architecture that can incorporate all your existing data sources and facilitate the 
integration of these data sources by using automated solutions.

The data fabric is a modern, distributed data architecture that includes distributed data tools 
and optimized data management and integration processes to manage today's data 
challenges in a unified way.

The hope is that users will use the data fabric to spend more time analyzing data than 
manipulating it. Data consumers will have access to integrated, high quality, and usable data.
22 Mainframe Application Modernization Patterns for Hybrid Cloud



Figure 3-1is a high-level representation of data fabric integration. 

Figure 3-1   Data fabric

The data fabric architecture is needed to make it easier to find data in a reliable and 
accessible way for anyone. With the data fabric, decision makers can look at data from 
different sources in a unified way to better understand customer problems and make 
connections between data that did not exist before. By closing the gaps in understanding 
customers, products, and processes, data fabrics accelerate digital transformation and 
automation initiatives in enterprises.

3.1.2  Data fabric architecture

The data fabric can bring together data from legacy systems, data lakes, data warehouses, 
relational and non-SQL databases, and applications. The aim is to achieve greater integration 
between data environments as opposed to individual data warehousing systems while trying 
to avoid the problem where data becomes more difficult and costly to move and transform as 
it grows (commonly known as the problem of data gravity). The data fabric tries to make all 
data available across the enterprise wherever possible.

There is not much that is new in the components that make up the data fabric. We continue to 
use the existing elements that are constantly evolving. Continuous evolution is particularly 
true in those application areas where the cloud is involved. It is a new combination of these 
existing and changing elements that creates this approach that we call the data fabric.
Chapter 3. Modernized data access architectures 23



An example of a data fabric architecture is in a multi-cloud environment, for example, where 
accounting is done in one cloud; a CRM system is run in another cloud; and data cleansing 
and transformation are done on another platform. Furthermore, on another platform, for 
example, IBM Cloud Pak® for Data, analytics services might be used. 

The data fabric architecture can integrate these environments to provide a single view to 
decision makers, who then can see relationships between data that were 
previously unknown.

This example is a general one. Different businesses have different needs, so there is certainly 
no one-size-fits-all approach.

However, different data fabric architectures have common elements:

� Data organization

Data organization is where some of the most important tasks of the data fabric occur, such 
as data transformation, integration, and cleansing. It makes data usable by different units 
across the enterprise. It enables the categorization and access of enterprise data from 
multiple data sources while implementing strong access management. It can include 
centralization, control, and management of master data management or data describing 
other data (metadata).

� Data management and data access

Data management and data access enforce data policies and maintain data quality. It 
helps users establish policies, processes, and accountability, and ensures that data quality 
remains satisfactory. It enables data usage, ensures that users in each group or 
department have the right to access the data they need, and ensures that everyone has 
access only to the data that is relevant to them.

� Data preparation and data quality

Data preparation and data quality analyze information and identify incorrect, incomplete, 
or improperly formatted data. Data quality tools clean or correct this data according to 
defined rules.

� Data integration and data processing

Data integration and data processing take data from different sources and combine it into 
a single view. This layer refines the data so that only the relevant data is extracted. 
Integration starts with data entry and includes cleaning. Data integration enables users to 
apply analytical tools to produce actionable business intelligence.

� Data discovery

With data discovery, you can discover new opportunities by integrating different data 
sources. For example, you can find previously hidden opportunities to link your accounting 
system database with CRM system data, opening new possibilities for developing new 
personalized offers for your customers.

� Data analysis and data visualization

This layer is where the data is examined to identify trends and draw conclusions about the 
information that is contains. Data visualization is a way of seeing what the data tells us. 
Rather than being presented in numerical, tabular, or other formats, data is presented 
graphically in charts and graphs, which can make it much easier to understand trends or 
messages in the data.
24 Mainframe Application Modernization Patterns for Hybrid Cloud



3.1.3  Advantages of data fabric architectures

The key achievement of data fabric architectures is that they enable action at the speed of 
business, often in real time. Data brings business benefits only when it is made available to 
any user in the organization. When properly implemented, the data fabric also helps to reveal 
hidden relationships between data, enabling the value of data to be accessed in the most 
efficient and automated way across the organization.

Here are the some of the advantages of data fabric architectures:

� Intelligent integration.

The implementation uses metadata, machine learning (ML), and artificial intelligence (AI) 
to unify data of different data types and endpoints, which helps data management teams 
to group related data sets, but also helps to eliminate data silos and improve data quality. 
This activity involves capturing, consolidating, and making data available through different 
systems so that it can be analyzed where it is needed.

Intelligent Integration helps to automate any data access or data delivery process without 
using a tedious or error-prone coding process.

Data integration that is optimized with automation speeds up data delivery. An automated 
process of real-time data capture ensures continuous data quality. ML can automate 
specific data discovery and classification processes, which result in faster time to value. 
Continuous analysis can be performed automatically in real time wherever the data is.

� Democratizing data, and self-service data retention.

Data fabric architectures facilitate self-service applications by extending the range of data 
consumers beyond data engineers, developers, and data analysis teams. The data fabric 
gets data quickly into the hands of those users who need it. It helps business users use 
the data themselves by enabling them to make faster business decisions, and frees up 
their experts to focus on solving problems that better leverage their skills.

Business users find and consume data through a unified access point. Self-service data 
access can help businesses collaborate with other users.

� Better privacy and security, and using active metadata.

Widening access to data should not compromise data security and privacy. In fact, it 
means introducing more data management barriers around access control, ensuring that 
certain data is available only to certain roles. A data fabric architecture can automatically 
enforce all data access policies to ensure a high level of data protection and compliance. 
The use of AI and ML technologies can increase the level of automation, which enables 
organizations to create and implement data governance policies that ensure the ethical 
usage of data wherever it is at orders of magnitude faster than ever before.

Data fabric architectures enable technical and security teams to discover and encrypt data 
around sensitive and proprietary data, which reduces the risks of data sharing and 
system breaches.

� Provides a total picture of customers.

By connecting all your company's data sources, you can get a single, reliable, and 
comprehensive view of your customers. With centralized master and metadata 
management, you minimize the risk of incorrect data entry, increase accuracy, and 
improve decision-making speed. New ways of accessing data create previously 
unavailable decision and reporting capabilities for companies to better understand their 
customers' needs and position their products and services from a new, 
comprehensive view. 
Chapter 3. Modernized data access architectures 25



Using the data fabric has the following benefits:

– Enables the creation of customized and reliable customer views.

– Standardizes management policies and processes run times with workflow 
automation features.

– Provides more valuable and accurate reports on customer interactions.

� Data fabric functions that are supported by AI.

AI can be used to track the lifecycle of the data fabric. It can enable greater transparency 
and automate lifecycle documentation. AI also can be used to determine which corporate 
policies should be enforced during the development and deployment lifecycle.

Using AI has the following benefits:

– Enables automatic monitoring and, where appropriate, automatic relearning of 
different models.

– Controls rules for automated lifecycle monitoring.

– Helps to create intelligent recommendations.

3.1.4  How IBM Cloud Pak for Data helps you to realize the data fabric

IBM Cloud Pak for Data is a product that makes the concept of a data fabric a reality. 

IBM Cloud Pak for Data is a platform that simplifies and automates data collection, data 
organization, and data analysis; and accelerates the flow of AI throughout the enterprise.

IBM Cloud Pak for Data can connect data from disparate data sources and run workloads in a 
hybrid cloud environment. Designing, deploying, and managing AI in hybrid cloud 
environments enables enterprises to accelerate digital transformation and implement a data 
fabric architecture.

The IBM Cloud Pak for Data platform provides seamless integration across the enterprise by 
providing the following benefits: 

� Uses the services that are available in IBM Cloud Pak for Data.

� Integrates with external applications and data sources.

� Provides advanced AI-based capabilities for data management, data centralization, and 
data governance.

Figure 3-2 on page 27 shows the IBM Data Fabric approach.
26 Mainframe Application Modernization Patterns for Hybrid Cloud



Figure 3-2   IBM Data Fabric approach

This platform provides users with the foundation to have up-to-date and curated data with an 
optimal balance of performance and compliance. It delivers data processing by intelligently 
tuning and managing workloads based on data location and data management policies.

In most cases, IBM Cloud Pak for Data automates the provisioning of business-appropriate 
data that is required by data fabrics. The following capabilities support the design and 
implementation of data fabric architectures:

� Metadata-based knowledge core 

This core facilitates the discovery of data sources and catalogs, and it enriches data sets. 
It also performs various analyses by using AI to help automate and extract insights. The 
knowledge core is used to power the data marketplace through semantic searches.

� Self-service data marketplace 

A next-generation data catalog that helps data consumers, such as business analysts, to 
retrieve data in a unified way across all data sources in the enterprise.

� Smart integration 

Enables data consumption by extracting and overutilizing data. Connects to the 
knowledge core to automate data integration and has the intelligence to decide which 
integration approach is best based on workloads and data management policies. It also 
can be used for data preparation as part of data editing workloads or to create data 
products. Finally, it provides the possibility to publish updates to data products.

� Governance 

Catalogs and maintains metadata, defines privacy policies, maintains data, records data 
provenance, and performs other tasks that are related to security and compliance.

This layer understands the different data formats (such as structured or unstructured data) 
and the meaning of the data (such as public or proprietary data). Apply the appropriate 
security policies to each piece of data and each user. Rather than manually applying 
standards and rules to data, this integrated capability means that they are applied at the 
organizational level and to the appropriate data sources. Analysis models in different tools 
can communicate with each other, and enforcement of data policies at the elementary 
level can be highly automated. 
Chapter 3. Modernized data access architectures 27



� Unified development and operations 

Enables unified lifecycle tracking across all components of the data platform, automates 
configuration, and runs in production.

3.2  Enabling modern access to IBM Z data patterns

For decades, companies have tried to copy data from different operational systems into 
central data stores for various business cases, such as operational business transactions and 
analytics. Establishing and maintaining data replication pipelines is expensive, 
time-consuming, and it creates data quality and data latency challenges for using 
applications. Accessing data in place can accelerate transformation and improve its 
opportunity for success. It also preserves the existing data management and 
recovery processes.

Accessing consistent data avoids application design complexity by eliminating the need for 
compensation logic. It is a powerful foundation to satisfy complex information needs, such as 
infusing AI models and historical data, within service processing. You can dramatically 
simplify application development by using broad application programming interface (API) 
support through SQL, REST, or both.

3.2.1  Modern data access solution and pattern for IBM Z

IBM Z supports modern access to real-time transactional data in IBM Db2, IMS, and other 
data sources, as shown in Figure 3-3. Db2 and IMS can be accessed through SQL and REST 
API by using IBM z/OS Connect EE. Other data sources can be accessed through SQL or 
REST API by using IBM Data Virtualization Manager for z/OS along with z/OS Connect EE.

With Java Database Connectivity (JDBC) support, new cloud applications that use 
information from core Db2 and IMS systems can use SQL to detect the underlying data 
format and contexts from SORs, which often are required.

Figure 3-3   Real-time access to transactional data

You can access data that is stored in Db2 from anywhere by using SQL. Db2 for z/OS also 
supports native RESTful services to expose SQL and stored procedures as REST APIs when 
combined with z/OS Connect EE. You can invoke Db2 native RESTful services from z/OS 
Connect EE by using the z/OS Connect EE REST Client Service Provider.
28 Mainframe Application Modernization Patterns for Hybrid Cloud



Figure 3-4 shows the various means of access that z/OS Connect EE can use.

Figure 3-4   z/OS Connect EE capabilities

With z/OS Connect EE, you can use IBM Z data that is stored in Db2, IMS, or data sources 
through a REST API. Applications anywhere can consume data that is stored on z/OS. It is a 
common interface for cloud-native applications. IBM Data Virtualization Manager for z/OS 
extends SQL access to data sources other than relational databases.

Advantages
Accessing IBM Z data in place provides several critical business benefits:

� Reduces the risk of data integrity.

� Reduces the cost that is involved in data movement.

� Increases data quality.

� Preserves the existing data management and recovery processes.

� Allows cloud applications to access the data at its underlying format and context.

� Supports all popular access methods, such as SQL and REST APIs.

� Benefits from higher performance by accessing data that is on IBM Z.

Considerations
This data access pattern satisfies many data consumption needs. For example, you can run 
complex Db2 queries or resource-intensive queries through SQL by using the IBM Db2 
Analytics Accelerator for z/OS. In fact, Db2 for z/OS can parse and resolve complex SQL 
statements. However, some of those queries might be resource-intensive Db2 queries. Those 
queries are often offloaded to be run by using the IBM Db2 Analytics Accelerator for z/OS. For 
example, “select * from TABLENAME where last_name like UCASE(“ALM%“)” might be a 
resource-intensive query because it might cause a table scan in certain situations. That 
example would not be an analytical query, but because it is a table scan, the accelerator 
would run it.

By using this pattern, you can deliver modern applications because the pattern facilitates and 
simplifies access to relational and non-relational IBM Z transactional data and combines that 
data with off-platform data. The pattern allows access and updates to live 
IBM Z data through traditional APIs such as SQL and, when combined with IBM z/OS 
Connect EE, to modern RESTful APIs. It also reduces the cost and delay of moving data to 
non IBM Z platforms.
Chapter 3. Modernized data access architectures 29



3.3  Virtualize IBM Z data pattern

Data is an integral element of digital transformation for enterprises. New services need 
simplified access to IBM Z data for business operations that require read/write updates 
through APIs. Frequently, IBM Z data also must be combined with other data sources.

But as organizations seek to use their data, they encounter challenges that result from 
diverse data sources, types, structures, environments, and platforms. Those challenges apply 
equally to data that is stored on IBM Z, which contains most operational data in large 
organizations. A common concern is that data on IBM Z is difficult to access and transform.

One approach is to move all data into a single data store, such as an operational data store 
(ODS) or a data lake, which can create more challenges. The complexity of data copy 
processes results in data latency, poor data quality, increased cost, risks, and security 
challenges. With data virtualization, you can access data across many data sources without 
the need to copy and replicate data.

3.3.1  Virtualization solution and pattern for IBM Z

The foundation for using IBM Z data through data virtualization across data sources is the 
implementation of the “Enable modern access to IBM Z” data pattern. That pattern supports 
access to real-time transactional data in IBM Db2, IMS, and other data sources. You can 
access Db2 and IMS through SQL, JDBC, and a REST API by using 
IBM z/OS Connect EE. IBM Data Virtualization Manager for z/OS can provide SQL access to 
all IBM Z data sources. For access through the REST API, you can add 
z/OS Connect EE.

The term data virtualization is overused. The main adopted use case for Data Virtualization 
Manager for z/OS is the mapping of traditional IBM Z data sources such as VSAM, IMS, or 
Adabas into relational views for modern access through SQL or API. In contrast, the main use 
case for data virtualization in IBM Cloud Pak for Data is to gain a single view of disparate data 
without data movement and manage data with less complexity and risk of error.

The foundation for accessing data across disparate data sources is the IBM Watson® 
Knowledge Catalog in IBM Cloud Pak for Data. It is more feasible and less costly to maintain 
metadata across different data sources instead of constantly moving terabytes of changing 
data. Watson Knowledge Catalog is a data catalog tool that powers the intelligent, 
self-service discovery of data structures, models, and more. You can access, curate, 
categorize, and share data, knowledge assets, and their relationships wherever they are, 
backed by active metadata and policy management. The cloud-based enterprise metadata 
repository also activates information for AI, ML, and deep learning. 

As shown in Figure 3-5 on page 31, in Watson Knowledge Catalog, you can discover, govern, 
and catalog the metadata of IBM Z data that is stored in Data Virtualization Manager for z/OS 
and Db2 for z/OS.
30 Mainframe Application Modernization Patterns for Hybrid Cloud



Figure 3-5   Data Virtualization Manager

IBM data virtualization is designed as a peer-to-peer computational mesh, which offers an 
advantage over a traditional federation architecture. By using innovations in advanced parallel 
processing and optimization, the data virtualization engine can rapidly deliver query results 
from many data sources. Collaborative, highly parallel compute models provide superior 
query performance compared to federation (up to 430% faster against 100 TB data sets). 
IBM data virtualization has unmatched scaling of complex queries with joins and aggregates 
across dozens of live systems. IBM Z data can be accessed through SQL.

Data virtualization can simplify th development of applications, including infusing AI into 
business applications. It also allows those applications to access current and accurate data at 
its source.

Advantages
Accessing IBM Z data in place provides the same critical business benefits that are described 
in “Advantages” on page 29. 
Chapter 3. Modernized data access architectures 31



Considerations
Data virtualization in IBM Cloud Pak for Data is the foundation for rapid ML model 
development and deployment by infusing AI into business applications, as shown in 
Figure 3-6.

Figure 3-6   Data virtualization and machine learning

With a centralized view of data, including IBM Z data, within Watson Knowledge Catalog, you 
can build, test, and train ML models on the platform of your choice. Then, you can deploy AI 
models to Watson Machine Learning for z/OS to address more complex information needs 
within business services that run on z/OS.

For more information about deploying and using the IBM Data Virtualization Manager for 
z/OS, see IBM Data Virtualization Manager for z/OS, SG24-8514.

3.4  Cache IBM Z data pattern

The surge of new digital applications is driving growth in data access. Those new applications 
typically run read-only queries of up-to-date data, but they are not necessarily associated with 
generating revenue for the organization. Examples of such applications include mobile 
banking, retail online browsing, and insurance open enrollment. The characteristics of those 
applications can make it difficult to plan and size for the following situations:

� High, unpredictable volume

� Massive, sharp spikes in activity

� Updates are possible, but are not propagated back to the source (read-only)

� Expensive to maintain

� Complex to implement

� Often compromised data currency

� Prone to instability

To address those challenges, organizations used several methods to extract data for use on 
other platforms. It did not matter whether the applications were analytic or simple query-type 
access because the typical approach was to take the data off platform. Organizations used 
that approach because website developers who were accessing the data were sometimes 
unfamiliar with the mainframe and because of concerns that too much read-only activity might 
conflict with operational applications.
32 Mainframe Application Modernization Patterns for Hybrid Cloud



Traditional incremental copy and extract, transform, and load (ETL) approaches are 
unpredictable and can be associated with data latency. By using general-purpose incremental 
copy and ETL technologies, you can limit efficiency and performance improvement 
opportunities. Data extraction and incremental copy from IBM Db2 for z/OS can use 
considerable resources, increase software-related costs, and compete for the same 
resources that are used for operational processing.

Because these applications are often customer-facing, the data must be up to date and only 
moments behind a transactional system. This requirement drives the need for more complex 
application logic that ensures data currency. In addition to the processes to refresh the 
read-only data store, some organizations use customized code to ensure this consistency, 
which adds more complexity, instability, and cost to many environments. 

Figure 3-7 shows the common approach to new, highly intensive, and read-only applications.

Figure 3-7   Cache IBM Z data pattern

Many IT organizations consider these applications necessary to support customer service but 
want to minimize their associated cost. However, these applications often are 
customer-facing, so the data must be up to date and data access must be resilient.

3.4.1  Cache support solution and pattern for IBM Z

Caching support on IBM Z improves application response time by storing copies of data that 
is on IBM Z. IBM Z offers several products that implement variations of this pattern. The IBM 
Db2 Analytics Accelerator, IBM Z Digital Integration Hub (zDIH), IBM Db2 for z/OS Data Gate, 
IBM Z Table Accelerator, and IBM Data Virtualization for z/OS with Cache Option include an 
implementation of the cache. Some of the products include a synchronization component to 
maintain the cache.

Table 3-1 indicates the appropriate solution based on the application needs of the data 
access type.

Table 3-1   Which solution does my application need

Data access type Db2 for z/OS Db2 Analytics 
Accelerator

Db2 Data Gate IBM Z Table 
Accelerator

Operational processing on rapidly 
changing data

Y N/A N/A N

Ad hoc analytic processing on 
data that is stored in the Table 
Accelerator through Db2 for z/OS

N/A Y N/A N

Access to Db2 for z/OS (and 
other) data that is outside of 
IBM Z

N/A N/A Y N
Chapter 3. Modernized data access architectures 33



The two main differentiators of the cache are as follows:

� Pull versus push maintenance of the cache. In push maintenance, the cache is always 
kept in-sync with the source regardless of actual use. Pull maintenance involves a lazy 
update and invalidation of the cached values based on access.

� Cache data structure. The data structures of the cache are optimized for the consumption 
pattern, such as columnar or in memory. The cache itself might also contain derived or 
precomputed results.

Table 3-2 summarizes the key differentiators among the available options. 

Table 3-2   Key differentiators

High-speed access to relatively 
static data from within an 
IBM Z infrastructure (CICS, 
Cobol, and others)

N/A N/A N/A Y

Offers general processor offload (Requires IBM Z 
Integrated 
Information 
Processor 
(zIIP).)

Y Y Y

Data access type Db2 for z/OS Db2 Analytics 
Accelerator

Db2 Data Gate IBM Z Table 
Accelerator

Description Db2 Data Gate Db2 Analytics 
Accelerator

IBM Db2 Data 
Stage

IBM Data 
Virtualization 
for z/OS with 
Cache Options

Change Data 
Capture

Use case Use current and 
consistent 
IBM Z data on a 
modern platform.

Accelerate 
analytical 
queries on Db2 
for z/OS.

Automate ETL. Data integration 
and 
virtualization, 
make 
IBM Z data 
accessible and 
consumable for 
new users.

Stream data from 
data sources into 
a data lake and 
warehouses.

Is data copied or 
kept in place?

Copied. Copied, but kept 
In place if you 
use Db2 
Analytics 
Accelerator on 
IBM Z.

Copied. In place or in 
memory.

Copied.

If copied, what is 
the typical 
latency?

1 - 10 seconds. 1 - 10 seconds. Hours or days. No copy. Depends 
(30 seconds for 
warehouse, and 
1 - 10 for OLTP).

Query 
performance 
expectation

Depends on the 
target.

Optimized for 
transactions and 
analytics (hybrid 
transaction/analy
tical processing 
(HTAP)).

Depends on the 
target data store.

Data is moved or 
re-accessed on 
every query.

Depends on the 
target.
34 Mainframe Application Modernization Patterns for Hybrid Cloud



Figure 3-8 shows how the approach that is shown in Figure 3-7 on page 33 can be improved. 

Figure 3-8   Cache IBM Z Data: improved approach

The IBM vision is for modern applications to share an integrated infrastructure with 
mission-critical transactional applications without the need to build custom integration. That 
vision supports an integrated infrastructure that does not require access to the same copy of 
the transactional data. Db2 Data Gate delivers an integrated approach for your digital 
transformation without the need to be concerned about potential cost or workload implications 
on your operational systems.

Data ownership 
and access 
control.

Target store. Db2 on z/OS. Target store. Source. Target store.

IBM Z Integrated 
Information 
Processor (zIIP) 
eligibility.

Integrated 
synchronization. 
zIIP eligible.

Integrated 
synchronization.
zIIP eligible.

Depending on 
the workload.

High percentage 
of workload is 
zIIP eligible.

Lower zIIP 
eligibility rate 
(about 50%).

Addresses data 
transformation 
requirements?

N. In database 
transformation.

Y. Y. Y.

Data access 
type.

Read. Read. Read. Read/write. Read.

Target. IBM Cloud Pak 
for Data.
Db2 or Db2 
Warehouse.

Db2 Analytics 
Accelerator.

Data warehouse, 
data lake, or flat 
files.

In-memory 
virtual tables.

Data warehouse, 
data lake, or flat 
files.

Continuous 
replication?

Y. Y. N. N/A. Y.

Description Db2 Data Gate Db2 Analytics 
Accelerator

IBM Db2 Data 
Stage

IBM Data 
Virtualization 
for z/OS with 
Cache Options

Change Data 
Capture
Chapter 3. Modernized data access architectures 35



Figure 3-9 shows an integrated approach to enterprise digital transformation. 

Figure 3-9   Integrated approach to enterprise digital transformation

IBM Db2 for z/OS Data Gate can help you with this specific challenge regarding Db2 data on 
IBM Z. You can derive value faster from data that is generated through mission-critical 
applications that run on Db2 for z/OS. The solution uses technology to manage the replication 
and synchronization between the source and target. The source data always remains secure 
on IBM Z, and all insert, update, and delete actions are completed in Db2 for z/OS. You can 
define instances of Db2 Data Gate on IBM Cloud Pak for Data and use the IBM Cloud Pak for 
Data platform to build new applications and analytical models from Db2 for z/OS data without 
impacting the source system. In this sense, data needs from lines of businesses are fulfilled 
while transactional workloads on IBM Z remain secure and stable.

You can access Db2 for z/OS data in other ways, such as through z/OS Connect, a REST 
API, and JDBC or Open Database Connectivity (ODBC). However, Db2 Data Gate provides 
the best performance, simplicity, and cost-effectiveness. Db2 Data Gate eliminates that 
complexity, providing timely, fast cloud access to your Db2 for z/OS data. Compared with 
traditional replication methods, Db2 Data Gate performs magnitudes better at a fraction of the 
CPU cost.

Advantages
Optimizing application performance by accessing cached IBM Z data can provide several 
critical business benefits:

� Achieves service-level agreements (SLAs).

� Improves performance in scenarios where data is read repetitively and at 
high frequencies.

� Provides a good compromise between cost and complexity.

� Improves efficiency by avoiding contacting databases or other data sources every time for 
the same request.

� Integrated and lightweight data synchronization.

� Excellent performance and resiliency.

� Lower latency and better data currency.

Although caching is commonly used to improve application latency, a highly available and 
resilient cache also can help applications scale. By offloading responsibilities from the 
application’s main logic to the caching layer, you free up compute resources to process more 
incoming work. Read-intensive applications can greatly benefit from implementing a 
caching approach.
36 Mainframe Application Modernization Patterns for Hybrid Cloud



Considerations
Applications can tolerate various levels of latency depending on the nature of the specific 
application. For example, a data warehouse reporting system that runs a balance sheet and 
income statement after a close does not need up-to-the-second data. However, a trading 
application that depends on exact information has no tolerance for latency. In fact, even 
microseconds might mean a different decision. Algorithmic trading depends on a futures price 
and the price of a basket of stocks that the option represents. Any significant variation from 
those prices means that the trade might be unprofitable. The more latency in data, the greater 
the risk that your decision is wrong.

If you are leaving the Db2 for z/OS environment, the only security that you can depend on is 
the security of the target system to which the data is being moved. You must control 
database- and application-specific access for that database because none of the security 
attributes are passed on with the data.

3.4.2  Examples of customer scenarios for data caching

Here are examples of typical data-caching scenarios: 

� Replicate once (to cache), use many:

– Ideal use case: Read-intensive applications that can tolerate some level of latency. 
Usually analytics, dashboards, customer summary records, batch processes, 
notification, and mailing use cases.

– Isolate or protect the original source system from new, read-intensive workloads.

– Save processing costs on the mainframe.

– One-way synchronization to avoid data integrity problems, and the need to update 
conflict resolution. 

– Achieve data and function colocation.

– The low latency data access is important for hybrid cloud scenarios where the 
on-premises SOR must stay as-is.

� Low-risk modernization:

– Keep the existing data source and surrounding application landscape as-is.

– Add a selective cache of the tables that new applications need.

– The cache is synchronized one way (from source to target).

– Writes go to the original source or SOR to avoid any form of data integrity issue.

� “Self-service access to use-case and/or application-specific data” for cloud consumption:

– Data mesh architecture: Separation from the product team and a team that provides 
data “as a service”.

– Data is served as a replicated cache that is maintained by the data team, and provided 
“as a service”.

� Mobile applications need current and low latency data but have high variability in 
workloads (day, night, and weekend). Extend the transactional system with a new mobile 
app where the back end is developed as cloud-native, but data access is to the SOR as 
current data (second accurate) is needed.
Chapter 3. Modernized data access architectures 37



� Data cache as a data delivery method for a data fabric:

– Even though data is copied, the fabric helps to enforce lineage, security, and policy 
rules to make sure that, for example, only in-country access to data is possible.

– Also, since cached data is registered in the catalog, including relation to the original 
source (connection), this situation helps “smart data integration” use cases where 
applications decide whether direct access or cached access is better. 

– Data discovery: Represents cached data in a data catalog. Assigns business terms. 
Policy rules can be applied to the discovered metadata (that is, this column is PII, and 
mask PII with every access that is not in-country).

3.5  Transform IBM Z data pattern

The transformation of SOR data by software processes to create a data set is a specialization 
of a broader copy-and-access use case. That use case also includes ETL processes, 
software replication processes, and virtualization and federation processes. All those broader 
processes include some transformation capabilities, and it is common to require light 
transformations during otherwise routine copy-and-access use cases.

This pattern involves heavy, set-based transformations that create a data set that is 
composed by external feeds, derived transformations, and source SOR data sets, such as 
aggregations or consolidations and summations. Currency requirements dictate the usage of 
either real-time mechanisms, such as virtualization, near-real-time mechanisms, such as 
software replication, or periodic batch mechanisms, such as ETL or extract, load, and 
transform (ELT).

You might need combinations of those three mechanisms if set-based transformations, which 
are typically the province of ETL products, are required in addition to real-time or 
near-real-time currency. Although this pattern applies to SOR data on any platform, its usage 
with SOR data on IBM z/OS is relevant and valuable because many large enterprises use 
z/OS as an SOR.

In Figure 3-10, the transformation processes are indicated by the Data Adapter box. In 
practice, these transformations can span both processes and time.

Figure 3-10   Transforming data
38 Mainframe Application Modernization Patterns for Hybrid Cloud



3.5.1  Data transformation solution and pattern for IBM Z

On z/OS, it is typical to have solutions that maintain logically related data across different 
stacks, such as IBM Db2, IMS, VSAM, or sequential files. The ability to view this data through 
federated queries or from an aggregated copy has value in itself. Add the ability to extend the 
aggregation to derive data (summations and transformations) and to add sources (distributed 
databases and external feeds), and the value of the original z/OS SOR data grows without 
disrupting the original workloads.

Beyond data creation, you can use this pattern to create schemas over data. One common 
use case is to convert normalized data models from the SOR to a de-normalized data model. 
A de-normalized data model might be one that is used in data warehouse solutions and 
dimensional data marts that are optimized for statistical and analytical processing. Another 
common use case is to create user-oriented schemas from what might be a product 
orientation at the SOR. This use case enables consumption by people who are less familiar 
with the internal view of the technology or products that underpin the data.

IBM has industry-leading product capabilities in the data transformation space. One such 
product is IBM Db2 Data Stage, which is available in on premises, on IBM Cloud Pak for Data, 
and in cloud implementations.

Advantages
Creating data sets with extra attributes that are derived from production data sets allows for 
extensibility with minimal disruptions. It also reduces the need to maintain the same data in 
multiple stores without synchronization.

� No changes are required to the original SOR data sets. All these methods apply 
transformations downstream from the original data.

� These methods all provide remote access to SOR data in addition to the transformation of 
that SOR data.

� Downstream data sets can be created or modified without impacting the source SOR data 
from which they are derived.

� New applications can be created outside of the context of the original SOR data.

� The impact to core SORs from downstream workload requirements is mitigated.

Considerations
When you create transformed data from SOR data, you must consider a few factors. Any 
changes to the source SOR schema or content can have a downstream impact on the new, 
derived workload. Modify SOR procedures and processes to account for the impact on the 
new, derived workloads. Make sure that lineage and provenance are discoverable to ensure 
that the downstream processes are maintained correctly.
Chapter 3. Modernized data access architectures 39



40 Mainframe Application Modernization Patterns for Hybrid Cloud



Chapter 4. Event-driven architecture with 
IBM z/OS

In this chapter, we describe event-driven architectures with event-driven solutions. 

This chapter covers the following topics:

� Overview of an event-driven architecture

� Introducing the event-driven architecture in the z/OS ecosystem

� Conclusion

4

© Copyright IBM Corp. 2023. 41



4.1  Overview of an event-driven architecture

As internet capabilities continue to grow and bringing the world closer than ever, users are 
empowered to perform business functions with the tap of a few buttons through mobile or web 
applications. It is necessary for businesses to reinvent themselves in a competitive world by 
developing inter-operable, loosely coupled, and high-throughput systems that offer better, 
reliable, and near-real-time user experiences (UXs), which requires an 
event-driven architecture.

From a non-technical perspective, an event can be considered as anything and everything 
happening or changing around us. An event-driven architecture builds a system that can 
sense, detect, and capture such events, put them in context and apply intelligence over those 
events, and determine the next best action or decision.

Event-driven architectures are rising to popularity because of its ability to complement 
microservice architecture styles and agile practices. Together, microservice architecture 
styles and agile practices overcome limitations such as inflexibility in adding or modifying 
components, expensive and slower development, and an inability to scale up or down quickly.

For more information about event-driven architectures, see Application modernization for IBM 
Z architecture.

4.1.1  Simplified reference architecture

Figure 4-1 describes the basic components that are involved in event-driven architectures, 
and their connectivity with each other.

Figure 4-1   Simplified event-driven architecture
42 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/cloud/architecture/architectures/application-modernization-mainframe/patterns
https://www.ibm.com/cloud/architecture/architectures/application-modernization-mainframe/patterns


The basic components of simplified event-driven architectures include: 

� Event triggers might be part of the technical system. They cause changes in state for a 
subject of interest in real world. Triggers might be technical, political, environmental, or 
others. Depending on the scope of th application or project, we can accommodate the 
triggers that we want to cover. 

� Producers are hosted either on the same server or distributed servers. They capture 
real-life events, convert them into a technical format, and emit them to an 
event-processing platform that can be understood by other technical systems. 

� An event-processing platform is a distributed system for high availability that acts as 
temporary storage for an event to ensure that an event goes to the correct consumers. It 
also can be visualized as message broker among disparate systems.

� Consumers, hosted either on the same server or on distributed servers, continuously poll 
the event-processing platform. Generally, it is designed so that each consumer is a 
microservice that is triggered only when an event of interest is found. Sometimes, 
consumers also can act as producers to publish separate events, which cause a chain of 
events, as shown in Figure 4-1 on page 42 (see the microservice inside Application C).

Typically, events are captured and processed by using any of the following categories, 
depending on the use cases. They are general categorizations and not a holistic view.

� Message topics are generally used in the publish/subscribe model, where each message 
can be used by multiple subscribers. For example, a business publishes a message to all 
customers that are subscribed for promotional events regarding holiday offers. 

� Kafka is used when we expect high throughput, that is, processing a large load of data in 
less time. The processed data is used to feed an analytical engine to build intelligence 
around information. For example, depending on videos that are seen by users, the engine 
builds a user profile and recommend new videos.

� File systems are used to automate processes to avoid manual intervention. For example, 
receiving an invoice at an FTP location triggers a bot to send an email to vendors.

� Message queues are generally used when we must maintain the sequence of each 
message while processing. For example, in supply chain management, the shipment goes 
through different statuses, such as departed, booked, landed, and delivered. These events 
must be processed in order without jumbling.

4.1.2  Types of event processing

To discover a use case and design, we must categorize events as follows: 

� Simple Event Processing typically detects a change in state in the context of a specific 
workflow or business process, which determines the next action. The scope of event is 
limited to current and next state only. For example, in a payroll system, an employee 
submitting a leave application triggers a simple event, which is used by the approval 
process and the salary distribution process.

� Complex Event Processing typically detects and correlates a change in state to other past 
or future events, which establishes a pattern to determine the next action. For example, in 
smart home systems, whenever water is used, an event is generated. When it is detected 
that water consumption is more than user's typical water consumption in last 30 days by 
analyzing all the events received in past, the system shuts down the water supply and 
notifies the user about a possible plumbing issue.
Chapter 4. Event-driven architecture with IBM z/OS 43



� Event Stream Processing is typically used when high throughput is expected to build an 
intelligence in real time over streams of events that are received. For example, in GPS, 
when all cars on a road slow down due to traffic, the GPS device in each car emits an 
event about th current speed. The system correlates all these events and modifies the 
route color from blue to yellow or red to signify delays, on th GPS user interface. 

4.2  Introducing the event-driven architecture in the z/OS 
ecosystem

In this section, we provide a detailed description of a couple of patterns. We use a sample 
scenario and describe the current versus proposed architectures, their benefits, some 
considerations, and provide a brief implementation guide. The patterns that we describe in 
this section are as follows: 

� Respond to IBM Z application events pattern 

Share events that are generated in IBM Z applications so that new application logic can be 
developed to respond to such events without introducing risks in core applications. 
Analyze data as part of application logic to generate an event.

� Optimize CQRS pattern

Deliver an efficient CQRS system that is based on IBM Z to optimize the synchronization 
between the command access, which is system of record (SOR) data that is updated by 
online and batch applications, and the query access, which is an information model that is 
aligned with the needs of the new applications. Optimize by using IBM Z Digital Integration 
Hub (zDIH) to deliver a non-disruptive, low-latency, high-throughput, and 
cost-attractive solution.

An extra pattern that is not described here is “Respond to external events”. This pattern 
allows you to share events that are generated by applications that are external to 
IBM Z to drive the invocation of IBM Z application logic. You develop flexible logic without 
introducing risks in to the core applications.

4.2.1  Respond to IBM Z application events pattern

To demonstrate the different possibilities of hybrid cloud with z/OS and be consistent with 
agile principles, we start small and then scale by using the following sample scenario.

Sample scenario
A bank with thousands of customers that processes millions of transactions a day decides to 
extract meaningful information from their customers’ credit card transactions to serve 
customers better and increase customer satisfaction without disrupting business as usual 
(BAU). This task includes establishing a prototype that ingests credit card transactions in real 
time to build an intelligence model. This prototype is meant to be a foundation that might 
further be extended, enriched, and enhanced for the following example use cases: 

� Campaign management to build a user profile so that the right customer gets the right 
product offers. 

� Categorizing and tracking expenses that are made through a credit card.

� Credit card fraud detection.
44 Mainframe Application Modernization Patterns for Hybrid Cloud



Therefore, in the scope of design and implementation, we describe different alternatives to 
integrate an event-driven architecture with z/OS; provide instructions to set up an 
infrastructure that is suitable for one of the designs; deploy services to connect with the 
event-processing platform; and provide sample code that produces and consumes events. 
We do not provide any business logic in this example.

Typical as-is (current) architecture
The simplified version of the existing system, as shown in Figure 4-2, demonstrates credit 
card transactions as BAU. 

Figure 4-2   Typical as-is architecture

Here is the simplified processed that is used in a typical as-is architecture: 

1. A user makes a transaction by using a mobile device, a laptop, or any other means, over 
the public internet. 

2. The payment gateway sends the transaction to the bank to process it.

3. The transaction processing unit, which is hosted on IBM z/OS, receives, processes, and 
approves or rejects the request.

4. The result is returned to the payment gateway and stored in a database. 

We enhance this system by feeding data that is received by the transaction processing unit to 
more components.

Proposed architecture: Phase 1
To leverage the power of z/OS with a hybrid cloud, we introduce new components step by 
step to ensure minimal or no impact on the existing system. This process allows businesses 
to adapt to modern development practices, such as agile and DevOps, while enjoying the 
benefits of z/OS computing power.
Chapter 4. Event-driven architecture with IBM z/OS 45



Figure 4-3 shows the proposed architecture for Phase 1. 

Figure 4-3   Proposed architecture: Phase 1

Figure 4-3 introduces the components to ingest existing data. The new setup is put on a 
separate Red Hat Enterprise Linux box, either on-premises or on a private network, and 
decoupled from the existing system, which adheres to the principle of not disrupting the 
existing system (BAU). The setup also helps us to measure the performance matrix 
separately for a new implementation, along with separate application management 
(deployments, logging, and monitoring) if needed. The containerization of the event streaming 
platform and microservices in Red Hat OpenShift makes the implementation platform 
independent, for example, the solution provides flexibility to deploy Red Hat OpenShift 
on-premises or on cloud, if needed with the cloud provider of the customer’s choice.

From a technical perspective, in addition to existing functions, this approach sets up an event 
streaming platform and set of microservices, which are containerized in Red Hat OpenShift 
and installed on the Red Hat Enterprise Linux machine.

The existing transaction processing unit is extended to emit events for each transaction that is 
made on the event streaming platform. Containerized microservices are continuously polling 
the event streaming platform. When an event is received, the respective microservice of 
interest triggers and runs the business logic.

Proposed architecture: Phase 2
Once we have functioning prototype, we perform a “lift and shift” of components from one Red 
Hat OpenShift cluster on Red Hat Enterprise Linux to another cluster on z/OS, as shown in 
Figure 4-4 on page 47.
46 Mainframe Application Modernization Patterns for Hybrid Cloud



Figure 4-4   Proposed architecture: Phase 2

However, IBM z/OS Container Extensions (zCX) is a prerequisite to install Red Hat OpenShift 
on z/OS (for more information, see “Installing Red Hat OpenShift Container Platform” on 
page 48). From a technical perspective, the interfaces among components are unchanged, 
but getting Red Hat OpenShift closer to th existing system helps to reduce latency and 
provides closer control to the developer for existing and new implementations.

Benefits of proposed architecture
The event-driven architecture that is described in this chapter combined with microservices 
and agile methodologies provides the following benefits: 

� Asynchronous processing: Provides efficient usage of resources and loosely coupled 
resilient services. It can replay events if needed.

� Cross-technology/platform integration: Allows developers to choose different languages 
for different services and still integrate seamlessly with other modules.

� Continuous integration (CI) and continuous deployment (CD) (CI/CD): Automates the 
process from source code development to deployment on server or run time, which helps 
with scalability, reliability, and availability.

� Rapid go to market strategy: Helps businesses to react to events and act quickly without 
compromising any of the existing applications or systems. 

� Cost-effective: Solutions and components can be rolled out in phases. Technical 
resources are used or scaled only when events occur and not blocked.

� Separation of responsibilities: With independently deployed components, the proposed 
architecture can help to detect, correct, and deploy a solution for a component without 
affecting other components or systems.

� Maintaining a skillset in a team: This task is easier compared to monolithic systems 
because components are not technology or platform-dependent 
Chapter 4. Event-driven architecture with IBM z/OS 47



Considerations
Consider the following items when you use this proposed architecture: 

� The design is technology-neutral, giving the user the flexibility to choose technologies. 
The microservices can be in Java, Python, Node.js, or any other language. The database 
can be Db2, SQL, or others.

� Although the design depicts connectivity to a database from technical components in 
z/OS, the implementation of this aspect already is proven, so it is not included in the 
implementation guide.

� The architecture can be mirrored if events are sourced from external components by 
putting event streaming platform and microservices in a public cloud. 

� Other existing systems, functions, and non-functional parameters are not part of the 
architecture to focus on event-driven architecture, which is expected to be integrated into 
real-time applications

Implementation 
This section provides implementation-level details to achieve the proposed architecture. The 
main focus area is on event-driven components, such as implementing, deploying, and testing 
microservices by using an event streaming platform.

For our use case, we use the following components:

� IBM Event Streams as our event processing platform 

� Red Hat OpenShift Container Platform as our hosting platform

� Java microservices as our consumers of events

� A transaction processing unit, which acts as producer (simulated with another 
Java microservice)

Installing Red Hat OpenShift Container Platform
To learn how to install Red Hat OpenShift Container Platform, see Red Hat OpenShift 
Container Platform installation interview.

To install Red Hat OpenShift on z/OS by using zCX, see Red Hat OpenShift on IBM Z 
Installation Guide, REDP-5605.

Installing an event processing platform on Red Hat OpenShift
Your application team can choose the event processing platform as-a-service on Red Hat 
OpenShift, such as IBM MQ, Red Hat AMQ, Apache Kafka, IBM Event Streams, Strimzi 
Kafka, and OperatorHub on Red Hat OpenShift console. For our use case, we used 
IBM Event Streams. 

To install IBM Event Streams, see Installing on Red Hat OpenShift.

To use Strimzi Kafka, see Deploy Apache Kafka in a Few Seconds with Strimzi and Operator 
Framework and Operator Lifecycle Manager.

Deploying microservices on Red Hat OpenShift
Because this solution is containerized, an application team can choose various programming 
languages without worrying about the environment, deployment, or networking rules. 
Developers can enjoy CI/CD with built-in support for various buildpacks from Red Hat 
OpenShift, and focus more on business functions.
48 Mainframe Application Modernization Patterns for Hybrid Cloud

https://docs.openshift.com/container-platform/4.11/installing/index.html
https://docs.openshift.com/container-platform/4.11/installing/index.html
https://ibm.github.io/event-streams/2019.4/installing/installing-openshift/
https://strimzi.io/blog/2019/03/06/strimzi-and-operator-lifecycle-manager/
https://strimzi.io/blog/2019/03/06/strimzi-and-operator-lifecycle-manager/


For our use case, we chose to deploy the following Java microservices that were developed in 
Spring Boot, which is an open-source Java based framework that is used to 
create microservices:

� kafka-demo-producer 

This microservice simulates the events that the transaction processing unit emits on the 
topic that is configured in the Kafka service. To obtain kafka-demo-producer, see GitHub.

� kafka-demo-consumer 

This microservice is the listener application that polls a Kafka topic, where actual business 
logic should be when we extend the functions. To obtain kafka-demo-consumer, 
see GitHub.

Prerequisites
Here are the prerequisites that are needed to deploy the microservices:

� Red Hat OpenShift cluster is provisioned and the developer has sufficient access 
permissions or roles on the cluster.

� If the cluster is an on-premises or private network, the user is connected to the network 
through a virtual private network (VPN) or similar.

� Client tools to access the cluster from a command-line interface (CLI) are installed on th 
developer machine. For more information, see Getting started with the Red Hat OpenShift 
CLI.

� The server certificate is installed on the client machine to enable a secured connection. 
You can secure a certificate from your cluster administrator.

� Because the example is developed in Java Spring Boot, you should be familiar with it 
and Maven.

� A Personal Access Token is set up if the source code is referred from GitHub. For more 
information, see GitHub.

Deployment instructions
To deploy the Java microservices, complete the following steps:

1. Log in to the Red Hat OpenShift cluster by running the following command:

$oc login -u <userName> --certificate.authority=<path_to_certificate> 
--server=<server_url>

You are prompted for the password. After you enter it, you see an output likeExample 4-1.

Example 4-1   Logging in to the cluster

Authentication required for <server_url> (Red Hat OpenShift)
Username: <userName>
Password: 
Login successful.
You have access to 78 projects, the list has been suppressed. You can list all 
projects with 'oc projects'

2. Create a project. It is a best practice to separate services per functional domain for better 
maintenance. The following command creates a project in the container: 

$ oc new-project <project_name> --display-name=”<display_name>” 
--description=”<description>”
Chapter 4. Event-driven architecture with IBM z/OS 49

https://docs.openshift.com/container-platform/4.8/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/4.8/cli_reference/openshift_cli/getting-started-cli.html
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://github.com/IBMRedbooks/SG248532-zos-hybrid-cloud-examples/tree/main/Chapter04/kafka-demo-producer
https://github.com/IBMRedbooks/SG248532-zos-hybrid-cloud-examples/tree/main/Chapter04/kafka-demo-consumer


The output should be like Example 4-2. 

Example 4-2   Creating a project

Now using project “<project_name>” on server “<server_url>”

3. Build and deploy the microservice. Red Hat OpenShift supports an array of options, such 
as using containerized images that are based on Docker. Build your Dockerfiles and push 
the image to a repository by using one of the following methods:

– Run the docker build command. For more information, see docker build.

– Use Quay.io to build Dockerfiles and push the resulting image to a repository. For more 
information, see Building Dockerfiles.

– Perform a native build or source to image (S2I) build by using various technology 
stacks. For more information, see S2I Requirements.

We used an S2I build for our use cases. This process has multiple steps: 

a. First, pull a buildpack that is compatible with Red Hat OpenShift, which is needed to 
build an image (in our case, a Java one) by using the following command:

$ docker pull <JDK_BUILD_TAG>

For example: 

$ docker pull registry.access.redhat.com/ubi8/openjdk-11:1.14-3

The output should be like Example 4-3.

Example 4-3   Pull prerequisite images

Digest: sha256:8054b2aac795530eea7e0053343c624c96b661f38d99c51997dad91a4c32e094

Status: Downloaded newer image for 
registry.access.redhat.com/ubi8/openjdk-11:1.14-3

registry.access.redhat.com/ubi8/openjdk-11:1.14-3

b. Run the build to create an application in the Red Hat OpenShift project. The following 
command fetches source code from a centralized repository; builds the deployable unit 
of source code by using the downloaded buildpack; and pushes the deployable unit to 
the Red Hat OpenShift project as an application and start it.

$ oc new-app <JDK_BUILD_TAG>~<GIT_URL> --context-dir=<NAME_OF_DIR_IN_GIT> 
--name=<APP_NAME> 

For example:

$ oc new-app registry.access.redhat.com/ubi8/openjdk-11:1.14-3~<GIT_URL> 
--context-dir=/kafka-demo-producer --name=kafka-demo-producer 

The output should be like Example 4-4 on page 51.
50 Mainframe Application Modernization Patterns for Hybrid Cloud

https://docs.docker.com/engine/reference/commandline/build/
https://docs.quay.io/guides/building.html
https://docs.openshift.com/container-platform/3.11/creating_images/s2i.html


Example 4-4   Creating an application

--> Found container image 790ba43 (4 weeks old) from registry.access.redhat.com 
for "registry.access.redhat.com/ubi8/openjdk-11:1.14-3"
    Java Applications 
----------------- 
    Platform for building and running plain Java applications (fat-jar and flat 
class path)
    Tags: builder, java
    * An image stream tag will be created as "openjdk-11:1.14-3" that will track 
the source image
    * A source build using source code from 
https://github.com/amey0309/kafka-demo.git will be created
      * The resulting image will be pushed to image stream tag 
"kafka-demo-producer:latest"
      * Every time "openjdk-11:1.14-3" changes a new build will be triggered
--> Creating resources...
    imagestream.image.openshift.io "openjdk-11" created
    imagestream.image.openshift.io "kafka-demo-producer" created
    buildconfig.build.openshift.io "kafka-demo-producer" created
    deployment.apps "kafka-demo-producer" created
    service "kafka-demo-producer" created
--> Success

c. Validate the status of the application by using the following command:

$ oc status

The output should be like Example 4-5.

Example 4-5   Validating the status

In project <project_name> on server <server_url>
svc/<APP_NAME> - <IP> ports <PORT_NUMBERS>
  deployment/<APP_NAME> deploys istag/<APP_NAME>: <TAG_NAME>
    bc/<APP_NAME> source builds <GIT_URL> on<BUILDPACK> 
      build #1 running for 36 seconds - bd02973: should trigger build in quay 
(<GIT_USER_NAME>)
    deployment #1 running for 37 seconds - 0/1 pods growing to 1

d. Create a route in case you want to expose a REST end point for the application. In our 
use case, for consuming events, we did not need to create a route. However, we 
simulate producing events by posting a message on an end point., so the route is 
needed for the producer component. We expose the route by using the following 
command:

$oc expose svc <APP_NAME>

For example: 

$oc expose svc kafka-demo-producer

The output should be like Example 4-6.

Example 4-6   Create route

route.route.openshift.io/kafka-demo-producer exposed

Perform the steps from step 3 on page 50 to step d for kafka-demo-producer and 
kafka-demo-consumer.
Chapter 4. Event-driven architecture with IBM z/OS 51



4. Testing the Kafka connection. Now your application is ready to be tested. We produce an 
event by using a REST end point, which should be consumed by the consumer application 
in real time. The business logic that is built to process simple, complex, or stream events is 
placed in the consumer application by using the application programming 
interfaces (APIs).

To emit a simulated event to Kafka, run the following command: 

$curl -X POST -H “Content-Type: plain/text” \ -d 'Simulated message for 
kafka-demo' \
<SRVC_ROUTE>

SRVC_ROUTE is the URL of the REST end point that we created for kafka-demo-producer.

The output should be like Example 4-7.

Example 4-7   Output of producer

Message posted successfully!

At the same time, this message should be processed in kafka-demo-consumer, and should 
appear in logs to show that data is flowing from the producer to Kafka to the consumer 
successfully by using Red Hat OpenShift in the z/OS environment.

5. Monitoring the application is possible by using a CLI or an administrator console. For more 
information, see Monitoring application health by using health checks.

Possible alternative solutions
The solution that is outlined here is for a client business that is new to the cloud journey. 
There are other possible solutions to achieve a similar outcome that you can choose. We 
provide a brief overview of some other possible solutions, which were considered while 
writing this chapter.

Alternative 1
Figure 4-5 on page 53 is a slight variation of the design that we described in detail and 
showed in Figure 4-3 on page 46. The difference is that the event streaming platform is not 
containerized, but instead is installed directly on Red Hat Enterprise Linux or on any machine 
on-premises. It decouples the business logic in microservices from the infrastructure.

Important: The properties of Kafka that are used in codebase are provider-dependent. 
Ensure that accurate properties are set according to the Kafka provider documentation.
52 Mainframe Application Modernization Patterns for Hybrid Cloud

https://docs.openshift.com/container-platform/4.11/applications/application-health.html


Figure 4-5   Proposed architecture: Alternative 1

Alternative 2
IBM also offers IBM Cloud Pak for Integration, IBM Cloud Pak for Automation, and IBM Cloud 
Pak for Data, which can be installed on any cloud environment to multiply the benefits that 
z/OS and event-driven architecture provide, such as seamless integration and a better user 
experience (UX).

For this alternative use case, you can choose to install IBM Cloud Pak for Integration on Red 
Hat OpenShift that is deployed on z/OS. 

For more information, see the following resources: 

� IBM Cloud Pak for Integration 

� IBM Cloud Pak for Business Automation 

� IBM Cloud Pak for Data 

4.2.2  Optimize CQRS pattern

Enterprise organizations are responding to both business pressures and opportunities 
through digital transformation and modernization initiatives. Although these efforts can yield 
significant positive results, effective transformation for enterprise clients is often underpinned 
by how well core SORs integrate and interact with hybrid cloud deployments. 

As clients move to more open and modular architectures based on industry-aligned 
references, such as the Banking Industry Architecture Network (BIAN) for banking, the 
efficient flow of information between SORs and cloud applications becomes even 
more essential. 
Chapter 4. Event-driven architecture with IBM z/OS 53

https://www.ibm.com/cloud/cloud-pak-for-integration
https://www.ibm.com/cloud/cloud-pak-for-business-automation
https://www.ibm.com/products/cloud-pak-for-data


In addition, trends across many industries are creating the need to transform business 
processes into real-time or near-real-time by using CQRS. This trend includes even those 
industry use cases that traditionally are satisfied with latent information. Typical CQRS 
patterns leverage event-based mechanisms to achieve the real-time delivery of relevant 
information to business processes. 

For those environments that have a high volume of transactions and low latency needs for 
real-time information, what is needed is a performant, secure, cost-effective, and modern way 
to share information with hybrid cloud. The Optimize CQRS pattern is an optimized pattern for 
SORs that are on IBM z/OS. For IBM Z enterprise clients, the application systems include 
core banking, claims adjudication, wealth management, card processing, and more. 

Sample scenario
Efficient flow of business process information and inquiry-driven interaction between cloud 
applications and z/OS SORs by using a non-disruptive, progressive modernization approach 
is valuable for many scenarios across industries. One example industry where this situation is 
most relevant is banking and a category of scenarios that can leverage an optimized CQRS 
pattern for greater return-on-investment (ROI) that includes ecosystem expansion.

Across the banking industry, many fintech (technology that is used to support or enable 
banking and financial services) and RegTech (the management of regulatory processes 
within the financial industry) companies are making their capabilities available in a 
software-as-a-service (SaaS) model that is deployed in public cloud environments. There is 
an increased need to share relevant, real-time core banking application information at scale 
with this expanding ecosystem. At the same time, there is also a need to ensure that SORs, 
which perform mission-critical operations for the bank, are not exposed to unpredictable 
inquiry traffic. 

Core systems for enterprise banking clients often handle significant volumes of transactions 
and generate much high-value data. Using an approach that generates an event for each 
data-level change can cause significant challenges in terms of performance and latency, and 
the ability to achieve functional requirements such as sharing composed information. 

As a more specific example, one set of information that might be highly valuable for 
downstream hybrid cloud ecosystem applications is running balances or account balances 
and summaries from various banking products. Account balances are composed with 
business logic and not typically represented in copies that are populated from 
change-captured data. Reconstructing this kind of information on the receiving side of a 
typical CQRS implementation is usually not achievable in real time, so there is a need for an 
Optimized CQRS approach. The high-level scenario is shown in the Figure 4-6.

Figure 4-6   High-level scenario
54 Mainframe Application Modernization Patterns for Hybrid Cloud



Typical as-is architecture
Typical CQRS architectures are often implemented through data-level capture of changes 
from core systems data stores that are sent as events to streaming architectures, such as the 
ones that are built on Kafka. Although leveraging event streaming platforms can be a valuable 
approach for communication with a broad spectrum of consumers, there are challenges with 
this methodology if it is not optimized for the event content and volume. 

A typical as-is architecture is shown in Figure 4-7.

Figure 4-7   As-is architecture

In Figure 4-7, data that is associated with core banking applications on z/OS, such as 
demand deposit (DDA), timed deposit (TDA), Automated Clearing House (ACH) payments, 
and others, is captured with change data capture technologies and streamed off platform 
through Kafka topics. Typically, these data feeds go to a layer that ingests the events (for 
example, through Kafka based topics), and either populates in a different data store or are 
held in the Kafka cluster itself. From this point, the broader ecosystem of SaaS applications 
that are shown in the yellow box in Figure 4-7 consumes the data for inquiry purposes. If the 
SaaS ecosystem applications want to transact for an update to the core systems, they 
communicate directly with the core SORs application through REST interfaces, for example.

Here are some key challenges of this approach: 

� For SORs that have a high transaction volume, the latency or lack of sufficient currency 
can pose problems for real-time needs.

� The events are driven from changed data and typically do not contain composed 
information such as balances.

� When composed information is required, reconciliation techniques are occasionally built 
into the environment to reconstruct the missing information, but it can be difficult to 
maintain this reconstructed information accurately. 
Chapter 4. Event-driven architecture with IBM z/OS 55



� Maintaining ordering for information, such as transaction history in this environment, 
particularly across a multi-partition clustered environment, can be challenging.

� In many cases, the SaaS ecosystem solutions produce results, recommendations, scores, 
and other items that should be shared back with core systems. In many cases, clients 
prefer that communication is handled in an asynchronous manner for minimal disruption. 
The as-is CQRS approach is a one-way flow of events from z/OS, and there is no efficient 
mechanism for a two-way asynchronous sharing back of SaaS ecosystem results with 
the SOR.

Proposed architecture
In the proposed architecture, the typical CQRS pattern is optimized for high-volume 
transactional information that must be shared in real time. While the event streaming 
capability is leveraged, the content of these events is composed and aggregated into a subset 
of information rather than every raw data event. The information to populate the event is 
derived from selective integration with core systems at the application level, rather than from 
a data perspective. In addition, there is a mechanism to optimize the handling and sharing of 
the information through an in-memory set of caches on z/OS to facilitate both low latency 
needs and asynchronous two-way communication. 

The proposed architecture is shown in Figure 4-8.

Figure 4-8   Proposed architecture

In this model, the SaaS solutions leverage the 'Query' parts of the architecture through the 
real-time in-memory caches that are on z/OS. These caches are kept current in real time with 
only the necessary information that is shared rather than all the raw data. The 'Update' part of 
the flow still is driven to the core SORs through tools such as z/OS Connect EE for 
REST-based interaction. The architecture facilitates the following activities:

� Fast performance with subsecond concurrency of information at scale.

� Ordered handling for use cases such as transaction history, where information from 
applications that span multiple systems in an IBM Parallel Sysplex® can still be preserved 
in order on the z/OS cache environment.

� Sharing of selected, composed information, such as balances through 
application-level integration.
56 Mainframe Application Modernization Patterns for Hybrid Cloud



� Cost advantages from avoiding recomputing of information if it is not changed and 
leveraging of z/OS specialty engines (IBM Z Integrated Information Processor 
(zIIP) processors).

� Asynchronous two-way communication where enriched information from the SaaS 
ecosystem applications can flow efficiently back to SORs.

Implementation
From an implementation perspective, the key component to achieve an optimized CQRS 
pattern for core SORs on z/OS is zDIH. zDIH addresses these needs for clients that run core 
systems on z/OS through several key features, among which are the following ones: 

� Java based, fast, and flexible in-memory caches and run time to accelerate compute and 
query functions.

� The zDIH Developer Kit auto generates Java applications that leverage z/OS 
information-sharing mechanisms such as logstreams; create cache structures; and keep 
the caches current in real time by using low-code or no-code techniques.

� A pre-built set of templates for ease of integration with core SORs on z/OS.

� Standards-based interfaces including REST, Java Database Connectivity (JDBC), and 
Kafka for event-based architectures. 

Figure 4-9 shows a technical component overview of zDIH. 

Figure 4-9   Overview of zDIH

zDIH can be used for various use cases in addition to optimized CQRS, and it delivers value 
through its implementation natively on z/OS. Specifically, the zDIH can perform the 
following tasks:

� Integrates through application-level exits with core SORs.

� Leverages z/OS capabilities such as logstream for z/OS to share real-time information at 
scale and in order.

� Uses z/OS functions of Parallel Sysplex enabled logstreams for capturing information 
consistently across multi-system workloads. 
Chapter 4. Event-driven architecture with IBM z/OS 57



� Reduces skills barriers with low-code zDIH applications by using zDIH Developer Kit 
and Java. 

� Delivers information in a more consumable manner through a flexible cache infrastructure.

For more information about zDIH and how you can start using it, see IBM Z Digital Integration 
Hub.

4.3  Conclusion

The support of niche cloud technologies such as the Red Hat OpenShift event streaming 
platform (zDIH in z/OS) with an event-driven architecture opens an exciting future. With it, 
businesses can be more competent and prepared in ever-changing competitive markets, and 
technical teams can be creative, innovative, and focused on business solutions by providing 
them with richer technical stacks and automating part of their workload. The beauty of a 
containerized system is that it provides a “lift and shift” approach. Depending on the use 
cases, we can shuffle these containers on-premises, on a private cloud, or a public cloud with 
the provider of the customer's choice, either by using the same provider or a mix of providers, 
making solutions truly hybrid.
58 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/support/z-content-solutions/z-digital-integration-hub/
https://www.ibm.com/support/z-content-solutions/z-digital-integration-hub/


Chapter 5. Modernizing Enterprise DevOps

After looking at many different use cases and solution examples for three groups of 
IBM Z application modernization patterns in this book, this chapter explores the Enterprise 
DevOps patterns, also known as the Enabler patterns for the other three pattern groups in the 
framework. These Enabler patterns define best practices and solution patterns for organizing 
the development teams' ways of working and development infrastructure and tools. In 
particular, we look at what IBM calls Enterprise DevOps or IBM Z DevOps and its recent 
journey to the cloud to support the development of the hybrid applications, which are 
composed of cloud-native and z/OS application components that were presented as 
examples in the previous chapters.

In this chapter, we present IBM Z DevOps in three sections:

1. Important best practices for DevOps and how they apply to hybrid development projects, 
which are described in 5.1, “Core practices of IBM Z DevOps for hybrid enterprise 
application development” on page 60. 

2. Key tools and technologies that help enable development teams to realize these best 
practices, which are described in section 5.3, “IBM Z Cloud and Modernization Stack: A 
layered development tool architecture adding incremental capabilities” on page 70. 

3. An end-to-end example project that uses these practices and technologies, which are 
described in 5.4, “A next-generation developer end-to-end development example” on 
page 88.

This chapter covers the following topics:

� Core practices of IBM Z DevOps for hybrid enterprise application development

� The vision for a cloud-native developer experience for z/OS enterprise applications

� IBM Z Cloud and Modernization Stack: A layered development tool architecture adding 
incremental capabilities

� A next-generation developer end-to-end development example

� IBM Wazi as a Service and IBM Z and Cloud Modernization Stack tutorial

5

© Copyright IBM Corp. 2023. 59



5.1  Core practices of IBM Z DevOps for hybrid enterprise 
application development

When development organizations start with enterprise modernization and adopt DevOps, the 
first thing to review and reform are the development practices that are used in the 
organization. Every development team follows some kind of process. To create a hybrid 
development team that can work on hybrid applications, this process or the various processes 
of the previously siloed teams must be assessed and compared to industry best practices and 
technical solutions that enable them.

The practices that are described here were collected over the last few years by the IBM Z 
DevOps offerings group that is led by Rosalind Radcliffe. For more information, see the 
following resources: 

� DevOps from APIs to IBM Z For Dummies

� Enterprise Bug Busting: From Testing through CI/CD to Deliver Business Results, by 
Radcliffe

� Enterprise DevOps pattern

� IBM Garage™ Method

These resources can serve as references for an assessment. They also are the driving force 
behind many IBM development tool offerings, such as the products that are included in the 
IBM Z Cloud and Modernization Stack. These products can directly support and sometimes 
even enable the adoption of these practices. All the practices are based on what we perceive 
as industry standards, and they can be implemented for enterprise application development 
and hybrid, distributed applications. However, we focus on the specifics of enterprise 
application development that covers specific challenges and how we aim to unify the 
developer experience between enterprise application development and hybrid, 
distributed applications.

There is a strong focus on continuous integration (CI) and continuous deployment (CD) 
(CI/CD) with the practices that are described in this chapter, and the tool examples that are 
shown mainly focus on those practices. 

5.1.1  Standardizing and automating your development setup

Before any CI/CD automation can take place, all developers in the hybrid team must have the 
same baseline for working on application changes, which includes access to artifacts such as 
source code and scripts to build and debug the application components that they are working 
on, and standardizing the setup and configuration of the development environments, for 
example, the editors and tools they use and how they are configured to ensure common ways 
of working and optimal collaboration capabilities.

The best practices for standardization in this book are not along the lines that all developers 
need to use Mac, Linux, or Windows, or need to use the same editor. These choices are 
made by each developer based on their skills and technical preferences because they 
contribute significantly to a developer's job satisfaction.
60 Mainframe Application Modernization Patterns for Hybrid Cloud

http://www.recarta.co.uk/wp-content/uploads/2017/05/DevOpsforDummies-ilovepdf-compressed.pdf
https://www.ibm.com/cloud/architecture/architectures/z-enterprise-devops-pattern
https://www.ibm.com/garage/method


However, standardization must happen on the artifact formats that are produced by these 
developer environments because they must be uniform and platform-independent. For 
example, if the team is composed of a mix of Windows and Mac users, then an important 
standardization and rules to follow would be around eliminating any differences between 
these platforms, such as the file encoding that is used for source code files (such as UTF-8 
without any special characters allowed outside of strings), and the required control characters 
(such as only LF and not CRLF line break characters) that must be used in source code files. 
Tools such as Git can be used to enforce these standards and even perform 
automatic conversions.

Another example is to standardize platform-independent tools when developers work with 
different editors around source code formatting, which is essential for the readability of source 
code files and compare-and-merge operations when bringing the code of multiple developers 
on the same files together. If every developer formats their code with different rules that are 
provided by different editors, then difference-views that are used for merging would show 
many changes that are based only on formatting and not actual code changes. A simple thing 
such as having trailing white spaces and tabs versus spaces can become a huge productivity 
killer for a development team. An editor-independent tool such as Prettier can be used to 
format code within many editors or outside of the editor with command-line interface (CLI) 
operation. Prettier can be used in a build pipeline to check for and reject incorrectly formatted 
code by failing the build. Unfortunately, such solutions are not always available for all 
languages and technologies, so teams must find the right compromises to ensure such 
standards in different ways.

Another best practice is for a hybrid development team to provide a set of well-documented 
and proven standard configurations for a developer to choose, at least as a starting point. 
Here, it is important that such configurations do not enforce any silos, such as a setup for 
COBOL only developers, or a setup for Java only programming, but rather that they all cover 
all technology platforms so that anyone can work with a COBOL program although they are 
mainly working on Java.

To facilitate these reference configurations, ensure that they can be set up with as much 
automation as possible because a new developer joining the team might have never worked 
with some of the technologies and related tools that are used by the team, or a developer is 
interested in trying a new editor, but would shy away from a long list of installation and 
configuration instructions.

In the following sections, in which we are exploring the IBM Z Cloud and Modernization Stack 
and the End-to-End Next Generation Developer Walkthrough, we describe some 
configuration and automation examples for hybrid development teams.

5.1.2  Maintaining a single source code management system

Maintaining a single source code management system is a core practice for enabling CI/CD 
in a development organization, especially for hybrid and more complex projects that build 
applications that are composed of many components that must be individually built, tested, 
and integrated. The overall goal is to have a fully automated pipeline to do all these steps, and 
the main prerequisite for that pipeline is to maintain all your code, scripts, configuration files, 
and other non-binary assets “as code” and manage it as a code repository so that everything 
can be retrieved on demand in a consistent way.
Chapter 5. Modernizing Enterprise DevOps 61

https://prettier.io/


Because these applications are complex, and many people are involved with many different 
aspects of the application in parallel. All these changes must be continuously integrated and 
tested, so an important requirement is that a common source code management system 
enables a consistent baselining, branching, and retrieval of old versions in a consistent way. 
For a hybrid application, this technology must work on all participating platforms and in all 
development and automation environments. Using a special solution for z/OS comes with 
significant risk of breaking integrations and impeding parallel development.

One technology that addresses all these requirements and runs on z/OS is Git. For more 
information about Git, see Git.

For more information about open-source languages and tools for z/OS, see Rocket Open 
Source Solutions for z/OS.

For more information from the z/OS Open Source Tools community, see z/OS Open Tools 
Docs.

Surveys, such as from the Stack Overflow website, show a larger than 90% usage of Git in 
the industry. The same survey also shows that commercial and open-source version control 
platforms, such as GitLab and GitHub, are also almost 100% dominated by 
Git-based technologies. 

In the cloud development space, the 2021 Eclipse Foundation Cloud Developer Survey shows 
that all the major cloud-based integrated development environments (IDEs) and IDEs that 
integrate with the cloud are centered around Git-based workflows.

To summarize some important recommendations: 

� Use a Git-based software repository system that can be applied in a fully distributed way, 
with developers cloning Git repositories to their development machines, and a centralized 
management server such as GitLab or GitHub that can be used for build orchestration.

� Store all your source code that is written in all languages in these repositories.

� Store everything that is needed for testing, building, deploying, and managing your 
applications as code in your repositories.

� Use clearly defined branching and baselining rules to go from one consistent state of your 
hybrid application to the next one. For more information about the Git branching model 
and branch-based workflows, see the following websites: 

– A successful Git branching model 

– The essence of branch-based workflows 

5.1.3  Incrementally building a fully automated pipeline

Automation is not something that happens overnight for a development organization and 
projects that try to implement it, but rather something that gradually evolves, depending on 
your experience, skills, and careful planning and adjusting plans continuously. The end goal is 
to build and deploy an entire hybrid application end to end that is based on any change in any 
of its components, with the optimization to rebuild only the changed parts.
62 Mainframe Application Modernization Patterns for Hybrid Cloud

https://git-scm.com
https://www.rocketsoftware.com/zos-open-source
https://www.rocketsoftware.com/zos-open-source
https://survey.stackoverflow.co/2022/#version-control-version-control-system
https://f.hubspotusercontent10.net/hubfs/5413615/Cloud%20DevTools%20Survey%20Report.pdf
https://nvie.com/posts/a-successful-git-branching-model
https://www.atlassian.com/blog/git/the-essence-of-branch-based-workflows
https://www.atlassian.com/blog/git/the-essence-of-branch-based-workflows
https://zosopentools.github.io/meta/#/
https://zosopentools.github.io/meta/#/


There can be many strategies to achieve these goals. Probably the most popular approach is 
going bottom-up for automating the builds of various components and gradually adding 
automation for integrations and deployments. The downside is that the different components 
might have evolved out of siloed teams that chose different technologies to accomplish their 
goals, which might be hard to integrate. A top-down approach assumes that some plan or 
overall strategy is defined, for example, as part of an enterprise modernization initiative. The 
downside here is that all automation rarely can be reinvented from scratch, so in most cases, 
a mix between a bottom-up and top-down implementation is the result in most 
modernization projects.

The other complication is that many components of a hybrid application require different 
technology stacks for building, and they must be integrated. For example, a hybrid application 
might be made up of the following items: 

� CICS transaction programs that are written in COBOL that must be compiled on z/OS by 
using a build toolkit such as IBM Dependency Based Build (IBM DBB); unit tested with 
IBM z/OS Automated Unit Testing Framework (zUnit) programs that run on the IBM Virtual 
Test Platform (IBM VTP); and deployed with scripts that are written for IBM DBB in Groovy 
or IBM UrbanCode® Deploy (IBM UCD).

� Java programs running on z/OS, such as an application back end, can be compiled 
anywhere by using Java automation frameworks such as Gradle or Maven, but if they use 
z/OS capabilities such as MVS, they must be tested on the platform, perhaps by using a 
testing framework such as Galasa.

� A web front end might be written in Node.js with TypeScript and built by using a package 
manager such as NPM or Yarn that runs unit tests and packages the application.

An integrated build pipeline can perform all these tasks by running the build on multiple 
systems; collecting all the results; packaging the application components; publishing them to 
an artifact repository; baselining the code versions that are used for the build in Git together 
with the build’s log files; deploying the application to a staging system; and then running a set 
of integration tests against that deployment.

Realizing such an integrated pipeline requires top-down thinking and the selection of a 
pipeline orchestration technology that can perform all the various steps. In this chapter, we 
look at a few examples of such technologies. There are other publications that are available 
that explore such technologies in much more detail, such as the following websites: 

� Develop Mainframe Software with Open-source Source Code Managers and IBM 
Dependency Based Build

� zAppBuild Introduction and Custom Version Maintenance Strategy

� Integrating IBM z/OS platform in CI/CD pipelines with GitLab

5.1.4  Fully automated tests

Test automation must run as part of the automated build pipelines to ensure that changes do 
not introduce, for example, regressions, and ensure that the application components still 
perform their functions as intended. Tests must be performed at many levels of the 
application, ranging from unit tests that test the functions of solution components in isolation 
to integration tests that test many parts of the application end to end in a real staging or 
emulated environment with representative data.
Chapter 5. Modernizing Enterprise DevOps 63

https://www.ibm.com/support/pages/develop-mainframe-software-opensource-source-code-managers-and-ibm-dependency-based-build
https://www.ibm.com/support/pages/dbb-zappbuild-introduction-and-custom-version-maintenance-strategy
https://www.ibm.com/support/pages/dbb-zappbuild-introduction-and-custom-version-maintenance-strategy
https://www.ibm.com/support/pages/integrating-ibm-zos-platform-cicd-pipelines-gitlab


The creation and maintenance of tests should not be a dedicated activity that is performed by 
specialists, but by the hybrid development team themselves as part of the overall 
development activities. Depending on the technology stack, different methods for creating 
and maintaining tests must be employed. In the distributed development space for languages 
such as TypeScript, Java, or Python, Test-Driven Development or its more holistic refinement 
Behavior-Driven Development are popular methods that focus on writing the tests first as an 
expression of the requirements that are collected through user stories. Developers run and 
rerun these tests while creating the implementation until they pass. The results are a formal 
specification of the requirements, but the downside is that you must maintain many tests, 
which slow down build times with potential redundancies with tests that are not useful at 
catching regressions. So, unit tests must be carefully curated and augmented with 
integration tests.

For impact analysis, IBM has an application suite that is called IBM Application Discovery and 
Delivery Intelligence that can scan your entire application code and artifacts on z/OS and 
populate databases (relational and graph) that can be used by many tools for analysis. The 
analysis tools that are available are made up of a powerful search engine, visual call-graph 
navigators, business logic visualization and business rule extraction tools, Git history 
analysis, static-analysis report generators, and many more. With these tools, you can rapidly 
analyze an existing application and trace control or data flows to assess the impact that a 
potential change will have end to end. With this information, you can define the tests that you 
must create to ensure the correctness of the application before and after the changes.

For test writing, IBM has a framework that is called zUnit (originally based on the xUnit 
framework, but heavily modified since then) that is composed of a method for test writing and 
execution, and supporting tools. These tools can generate test code for existing program 
code in COBOL or PL/I. These tests are generated as COBOL or PL/I programs themselves 
and can be run in the same environments. In combination with the IBM Z Virtual Test 
Platform, these tests can run as unit tests, and as tests that emulate integration tests by 
recording and replaying network interaction with external systems such as IBM CICS or the 
IBM Db2 database. The framework also can be used for full integration tests running against 
a full infrastructure setup.

After the tests are written, you must be able to run automatically them as part of a build 
pipeline and on a component level, which is described in 5.1.5, “Every change that is pushed 
to the source code management system is automatically built and tested” on page 64.

5.1.5  Every change that is pushed to the source code management system is 
automatically built and tested

In the last two sections, we focused on best practices for automation and tests that run as part 
of the automation. In this section, we explore when to run the automation. The short answer is 
as often as possible. Ideally, the full build pipeline should run when you push a change from 
your local copy of your Git repository to a Git management system such as GitLab. These 
systems can trigger build events on a push and integrate with various systems that coordinate 
the builds. Among examples for such systems are GitLab CI, Jenkins, and Travis.
64 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.oreilly.com/library/view/test-driven-development/0321146530/
https://dannorth.net/introducing-bdd/
https://www.ibm.com/products/app-discovery-and-delivery-intelligence
https://www.ibm.com/products/app-discovery-and-delivery-intelligence
https://www.ibm.com/docs/en/developer-for-zos/15.0.0?topic=applications-zos-automated-unit-testing-framework-zunit
https://xunit.net
https://www.ibm.com/products/z-virtual-test-platform
https://www.ibm.com/products/z-virtual-test-platform


For large hybrid applications, the practical question is how feasible is it to run builds that often 
and run them in parallel for larger teams working on many changes at the same time. As 
described in Enterprise Bug Busting: From Testing through CI/CD to Deliver Business 
Results, by Radcliffe, the builds must be designed and optimized to run fast, focusing on 
giving quick feedback to the developer and the code reviewers. If that is not enough, you can 
break your builds into parts that build individually to run unit tests and mock integration tests 
that use technologies such as Mockito in the Java and Spring Boot world or the IBM VTP in 
the Enterprise Application world. Then, development teams can run fast CI builds for their 
local components, rapidly reviewing, fixing (in the case of regression causing builds to break), 
and merging code changes, which then can be built in larger integration builds. Such builds 
can be nightly builds that then run the entire test suites, including CI/CD integration tests on 
real staging systems. This approach requires more work on maintaining tests for these 
different stages of builds.

5.1.6  Clearly defining your builds as a consistent set of artifacts

The result of an automated pipeline build should be a set of artifacts that is made up of the 
deployable application with all its installation and configuration components that also allows a 
full trace back to all the sources that were used for the build. The sources also include the log 
files and build artifacts that are produced with the build. Some examples of such artifacts are 
as follows: 

� Log files for building individual application components and integration build activities.

� Dependency information linking specific component builds, for example, when not all 
components require a rebuild, then there must be a trace report of which artifact versions 
were used from previous builds.

� Quality artifacts such as code coverage reports, static code analysis results, security code 
scans, and test results.

� Versioning baselines from the software configuration management (SCM) that define the 
version that is used for each file that is used in the build. For Git, this process can be as 
simple as using the SHA Commit ID of every Git repository that was used in the build, 
which includes the Git repositories of dedicated build and integration testing scripts. With 
these IDs, the exact version of all files in the repository can be easily retrieved. In addition 
to committed IDs, some teams use Git Tags as a way to have more expressive baseline 
names and label special builds, such as end-of-iteration builds or release builds.

� Application binary files that are used and produced by the build.

With this information, it is possible to go back and reproduce any previous build to perform the 
following tasks: 

� Branch off, for example, reproduce the release build three released versions back to fix a 
bug in an earlier version of the application that might be deployed at a specific site 
or customer.

� Compare any earlier build with another build to answer questions such as why did the 
application work back then, and why is it now broken? What changed since then? When 
was the problem introduced, and did the log files report anything unusual then?

� Perform a trend analysis of quality metrics that are captured by the builds. Restore the last 
release build, run a static code analysis against it, and compare it against the current state 
of the code.
Chapter 5. Modernizing Enterprise DevOps 65



Git provides all the capabilities that are needed for baselining source code. Moreover, there 
are many tools that integrate with Git for creating baselines, such as SonarQube. It can store 
many of the quality data types that are mentioned, such as test results, code coverage 
reports, and static code analysis data in a database that is linked to one or more Git 
repositories that store these results for every build and branch.

In addition to using the built-in capabilities of CI/CD tools, many organizations create extra Git 
repositories for baselining build artifacts, such as Compliance Evidence Lockers, which are 
critical to achieve various compliance standards such as Sarbanes-Oxley and ISO-27001.

For more information about baselining build artifacts, see the following websites: 

� Compliance in a DevOps Culture: Integrating Compliance Controls and Audit into CI/CD 
Processes

� Evidence in the IBM Cloud DevSecOps reference architecture for tool chains

The goal here is to provide a full trace of any change to all build and application assets for an 
audit of all the activities such as scans and tests that were performed for the change. These 
evidence lockers are often implemented as a set of versioned reports that are stored as 
baselined Git artifacts, and databases or general storage that maintains binary artifacts.

Finally, you must provide a place in which binary build artifacts such as the compiled and 
packaged application components can be stored for every build. Dedicated artifact 
management systems or artifact repositories are a popular choice. There are many 
commercial offerings available, such as the JFrog Artifactory product that you find referenced 
by many IBM DevOps offerings. This solution is attractive for hybrid development teams 
because it supports many artifact types from many different technologies that can be 
accessed in a technology native way. For example, it provides NPM repositories for storing 
JavaScript or TypeScript packages that the application might use for its front end, Maven 
repositories that can be used for Java libraries with Maven or Gradle, and generic repositories 
that can be used to store enterprise application artifacts such as compiled COBOL modules 
and CICS configuration files that can then be directly deployed to z/OS staging and 
production systems. An example of Artifactory that uses IBM UrbanCode Deploy is shown at 
z/OS considerations for IBM UrbanCode Deploy.

5.2  The vision for a cloud-native developer experience for z/OS 
enterprise applications

After listing some core practices for hybrid IBM Z DevOps development teams, we now want 
to tell the story of how we created the IBM Wazi brand of IBM Z DevOps development tools 
and solutions that are driven by these practices.

IBM Wazi was chosen as a brand name for IBM products that embody the IBM Z DevOps 
vision that is outlined in this chapter. IBM Wazi is a term in the Swahili language that stands 
for open and clear, such as in open minded and clear vision, which is what we want to 
express when thinking about our solutions. 

IBM Wazi started out as a project to provide COBOL editing capabilities in a browser. Its first 
technology preview was running an Eclipse Theia editor with a COBOL and Zowe extension 
on a developer laptop from a local Docker container. This preview evolved into a VS Code 
extension called IBM Z Open Editor that was published to the VS Code Marketplace in 
September 2019. Since then, it has been installed over 65,000 times. 
66 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.sonarqube.org/enterprise-edition
https://martinfowler.com/articles/devops-compliance.html
https://cloud.ibm.com/docs/devsecops?topic=devsecops-devsecops-evidence
https://jfrog.com/artifact-management
https://www.ibm.com/garage/method/practices/deliver/tool_artifactory
https://www.ibm.com/docs/en/urbancode-deploy/7.2.3?topic=integrating-zos-considerations-urbancode-deploy
https://www.youtube.com/watch?v=0XbfLBIoL0E
https://www.ibm.com/docs/en/urbancode-deploy/7.2.3?topic=integrating-zos-considerations-urbancode-deploy


The editor evolved further by making it available in a cloud-based editing experience that is 
based on the Red Hat CodeReady Workspaces environment. A debugger also was added, 
and User Build capabilities that use the IBM DBB product.

IBM Wazi is now providing three different editing experiences: IBM Wazi for VS Code, IBM 
Wazi for Dev Spaces (Dev Spaces is the new name for Red Hat CodeReady Workspaces), 
and IBM Wazi for Eclipse. The IBM Wazi brand also includes z/OS virtualization solutions 
such IBM Wazi Sandbox that run a z/OS emulator on x86 hardware in Red Hat OpenShift, 
and IBM Wazi as a Service (WaaS), which runs z/OS on real hardware in the IBM Cloud as a 
virtual server instance (VSI) in a virtual private cloud (VPC). In 2021, the IBM Wazi products 
(except for WaaS) were repackaged into the IBM Z and Cloud and Modernization Stack, 
which is made up of several other components for cloud-native development for z/OS.

We envision the hybrid development team as a group of people without major skill gaps or 
skill gaps that can easily be bridged if required, and that work with similar development tools 
and a common pipeline for hybrid applications that are made up of components running on 
z/OS and distributed or cloud-based applications.

5.2.1  Role of z/OS for hybrid development projects

A key goal for making this vision a reality is to make the mainframe another node in your 
pipeline, for example, integrating z/OS like any other operating system into an organization's 
hybrid infrastructure. IBM Systems, as an organization, has been working on the following 
three major guidelines for achieving this goal:

1. z/OS has been working to remove the differences that serve no purpose. z/OS has a set of 
qualities of service that provide value and allow you to build applications that leverage the 
reliable hardware, but that does not mean that the development and operations processes 
must be different.

2. Open source works on and for z/OS. Nothing about building COBOL or PL/I makes it 
different than building any other language. Strive toward using the same core practices 
and tools to break down the silos.

3. DevOps defines cultural principles that apply to any system development project and 
requires breaking down silos. Remove the silos between the mainframe and the rest of the 
organization by transforming the mainframe development process and tools to 
today's standards.

Along these lines, we envisioned and created solutions along the following two major guiding 
vision statements:

1. We envisioned z/OS to be a widely available and vibrant choice of platform in a 
hybrid-cloud development environment.

2. To provide a modern, cloud-native developer experience for IBM z/OS that is consistent 
and familiar to all developers.

5.2.2  Personas of the hybrid development team

Before we go into the details about the architectural decision we made for our IBM Z DevOps 
pipeline and development tools, let us review the audience, that is, the personas representing 
developers of a hybrid development project to guide our decision making, and the 
assumptions that we had about these personas’ provisioning and using our tools.
Chapter 5. Modernizing Enterprise DevOps 67

https://www.ibm.com/products/z-and-cloud-modernization-stack


By using an IBM variant of the Design Thinking method, we defined several personas 
(Figure 5-1) for using our tools and solution framework. We will, in this section in particular, 
focus on Deb, Kathleen, Todd, and Zach.

Figure 5-1   The personas for the cloud-native enterprise application development team

Deb's background
Deb is an early tenure z/OS application developer. As a recent graduate entering the 
workforce today, Deb has limited system programming capabilities and little, if any, exposure 
to the 3270 terminals (or emulators) that are used for traditional mainframe application 
development. Instead, she learned to develop on a modern IDE. Although her instructor in 
school might have suggested a specific IDE to use for her classes, Deb also tried out other 
IDEs, and she is used to being able to pick her IDE of choice for programming assignments.

In addition to learning how to code, Deb also was introduced to the DevOps and agile 
methodologies that many distributed development teams use today. To support these 
development approaches, she learned best practices like writing unit tests for her code to 
make it more robust and easier to maintain. These best practices were facilitated by tools like 
test coverage detection that was provided by her IDE and its integrations, along with the 
CI/CD pipeline technologies that she used in her projects. As she begins working in z/OS 
application development, Deb wants to continue working by using the tools and best practices 
with which she is familiar.

Kathleen's background
Kathleen is an experienced z/OS application developer. Although she spent most of her 
career coding on the traditional 3270 interface by using a Waterfall development 
methodology, she is aware of the need to stay current with the industry's evolving technology 
environment. Thus, she is open to trying new and innovative ideas and technologies to 
continue learning and improving as a developer, and to modernize her team's z/OS 
application development processes so that they can continue delivering quality products on 
time in an increasingly fast-paced world.

Kathleen sees the potential of IBM Z DevOps and its associated tools for enriching her team's 
development process with more coding, debug, testing, and analysis capabilities. At the same 
time, she notes that the automation capabilities of a CI/CD pipeline can streamline 
traditionally manual processes such as backup and deployment, making them more efficient 
and less error-prone. 
68 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/design/thinking/page/framework


Because developers that are new to z/OS are becoming more common in the workforce, 
Kathleen is interested in adopting these modern IBM Z development approaches and tools 
that appeal to newer developers with their familiarity and facilitate the onboarding process for 
new team members.

Todd's background
Todd is a cloud operations administrator. He is a cloud DevOps development expert with an 
emphasis on infrastructure, deployment, and operations. He leverages this knowledge along 
with his expertise in Red Hat OpenShift to help hybrid development teams set up their 
development infrastructure in the cloud and in on-premises Red Hat OpenShift clusters. Todd 
contributes to the development and operation of the overall cloud toolchain and pipeline, and 
aims to keep the cloud platform maintained and updated so that it runs as efficiently 
as possible.

Earlier in his career, Todd worked on projects that deployed and ran Kubernetes applications 
that were written with various technologies, such as Java and Node.js. He also has a 
background in writing automation for Kubernetes by using Helm and Operators that are 
written in Go, and more recently, Ansible. Although Todd did not have any exposure to 
mainframe applications in the past, he understands the role of the mainframe in hybrid 
application architecture. While working on cloud development infrastructure, Todd expects 
that he can use the mainframe in the same way as any other compute node in his 
infrastructure setup rather than having to learn z/OS specifics. He expects services such as 
Unix and SSH to be available for him in the same way as on any other device.

Zach's background
Zach is a system programmer and z/OS expert with many years of experience. He is 
responsible for the configuration of many z/OS systems in his organization, and his career 
experience primarily has been as a traditional z/OS developer that uses “green screen” only. 
Although he believes in z/OS as the best and most robust platform for security, reliability, and 
availability, he also feels the need to modernize to adapt and remain relevant in today's 
fast-paced technical industry. Thus, one of his goals is to automate processes that are 
involved in managing and maintaining z/OS systems and resources without impacting current 
day-to-day system operations.

As Zach helps many different teams, he has limited time to work with Kathleen, Deb, and 
Todd. They try to be as independent from Zach's services as they can. To help them, Zach 
creates standard z/OS development configurations that Deb's team can deploy themselves as 
VSIs and use with minimal setup.

Assumptions for the hybrid cloud-native development team
For this chapter, we assume that there are development teams that are composed of 
representatives of the three main personas, with limited involvement from Zach, working on a 
hybrid application that matches one or more of the architectural patterns that are described in 
this book. The application under development is composed of code in several languages, 
such as COBOL code running on z/OS, access through REST application programming 
interfaces (APIs) from Red Hat OpenShift applications that implement their back end 
(perhaps in a language such as Java), and front-end applications (perhaps in TypeScript 
and Node.js).
Chapter 5. Modernizing Enterprise DevOps 69



The team decided that all developers should have full visibility into all the components of the 
application because they want to work as one development squad that uses a common agile, 
rapid-iteration development process for working on all application components. Although 
there are clear experts and owners of specific application components that match their 
backgrounds, all team members should be able to understand how the application works in 
general, and every team member should be able to pick up work for any of those components. 
For example, Deb should be able to debug and research a defect in the COBOL code, and 
Kathleen should be able to implement changes in the Java code running on 
Red Hat OpenShift.

Therefore, the team follows many practices to standardize on a set of editors (Deb uses VS 
Code with IBM Z Open Editor, and Kathleen uses IBM Wazi for Dev Spaces), code encoding, 
conventions, code formatters, and others. They create a fully integrated pipeline that builds all 
application components, which are owned overall by Todd, but with Deb and Kathleen writing 
code by using test-driven development methods and the build scripts and integration tests.

In 5.4, “A next-generation developer end-to-end development example” on page 88, we pick 
up this scenario again, but remember these personas and their backgrounds when we walk 
you through the technical IBM Z DevOps architecture.

5.3  IBM Z Cloud and Modernization Stack: A layered 
development tool architecture adding incremental capabilities

In this section, we want to explore the overall architecture of the IBM Z Cloud and 
Modernization Stack and its IBM Wazi components. As the name implies with the word stack, 
it is a layered set of capabilities that provide the following functions:

� Give developers and their organizations options by providing layers with alternative 
implementations that use alternative technologies that best match their requirements or 
reuse the technologies that are deployed and in use. For example, you can use z/OS 
Management Facility (z/OSMF) or Remote System Explorer to access z/OS resources. 

� Provide capabilities with an increasing level of deployment and usage complexity to 
provide choices for the level of tool support that users want to implement in their 
organization or want to implement incrementally. Examples for such layers might be 
command-line interface (CLI) operations to access only z/OS resources from your 
development machine; use a graphical navigator in a local VS Code or Eclipse editor; or 
access z/OS resources from the cloud. 

� Support different ways of working based on organizational policies that either centralize 
development resource management or empower developers to provision their own 
development environments. For example, developers can use only the z/OS system that is 
provided to them by their system programmers, but developers can deploy and configure 
their own z/OS systems as virtualized sandboxes that are deployed through Red Hat 
OpenShift, which serves as a central command center with automation for provisioning 
and configuring such systems. Another example is development teams that implement full 
end-to-end developer responsibilities by managing all build scripts with the source code, 
which is maintained by the developers versus all development scripts that are maintained 
by a central team of build engineers that do not allow developers to access and change 
the build process.
70 Mainframe Application Modernization Patterns for Hybrid Cloud



The following sections are organized to describe the layers from the bottom up, starting with 
the lowest level of abstraction of z/OS access and development capabilities and progressing 
to more sophisticated and complex capabilities. Each layer also is representative of a core 
architectural principle that we established for IBM Z DevOps that enables these layers.

5.3.1  Layer 1: Establishing connectivity to z/OS

A development environment for enterprise applications requires access to z/OS. Because 
IBM no longer produces physical 3270 terminals, access through a “green screen” must be 
based on an established protocol such as 3270. However, for creating common tools for the 
hybrid development team that wants to access z/OS in the same way that they access a Linux 
server running a Java back-end server, we want to use protocols that allow such similar 
behavior. There are several to choose from, among which are the following ones: 

� FTP: This protocol is focused on getting files on and off z/OS. Through extension, the 
z/OS FTP server supports access to subsystems such as z/OS UNIX System Services, 
MVS, and Job Entry Subsystem (JES).

� SSH: z/OS has an SSH implementation that is based on OpenSSH that provides 
encrypted login and command run facilities, and file transfer access to z/OS, which 
effectively provides a more secure FTP implementation. Plus, it provides login shells for 
interactive command runs and for running scripts.

� z/OSMF: Provides system management functions in a task-oriented, web browser-based 
user interface with integrated user assistance. For many of its capabilities, it provides 
REST APIs that can be programmatically used. Among its many APIs are methods for file 
transfer, running of commands and jobs, and querying status such as for JES. All REST 
services are fully documented and are discoverable with Open API or Swagger interfaces.

� Remote Systems Explorer (RSE) REST API (RSE API): Provides capabilities like z/OSMF 
that were introduced with IBM z/OS Explorer and IBM Developer for z/OS (IDz) 
development tools. Although z/OSMF focuses on systems management, these services 
are optimized for development activities and maintained by the same group that develops 
the IBM Z DevOps development tools. The REST APIs are also discoverable with Open 
API or Swagger, plus there are Node.js and Java libraries that are available to use from 
development tools implementing these languages.

Development teams can use any of these technologies or combinations of them to access 
z/OS directly, for example, by using SSH or SFTP to download and upload program files for 
maintenance updates, and provide connectivity to z/OS for development environments. 
Teams can create their own tools that use these well-documented capabilities or use the tool 
sets that were built by them.
Chapter 5. Modernizing Enterprise DevOps 71

https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-using-zosmf-rest-services
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/blog-entry1/2020/06/12/introducing-ibm-remote-system-explorer-api
https://www.ibm.com/docs/en/explorer-for-zos/3.2?topic=SSBDYH_3.2/com.ibm.rseapi.doc/swagger.json
https://www.ibm.com/docs/en/explorer-for-zos/3.2?topic=SSBDYH_3.2/com.ibm.rseapi.doc/swagger.json


5.3.2  Layer 2: Building a foundational layer with client software development 
kits, open APIs, and command-line interfaces

Instead of asking developers to use the connectivity services directly, IBM and IBM Business 
Partners have invested in extra layers of abstraction that make the creation and maintenance 
of a development tool much easier. The design principles and how they are applied as 
capabilities of z/OSMF are straight-forward: 

� Provide an API for every new capability.

z/OSMF provides a proprietary web user interface and a REST API that is fully 
documented for every new capability.

� Follow standards and industry best practices for the API specification. 

There is also a machine-readable specification that is provided in the industry-standard 
OpenAPI that is accessible through a Swagger interface.

� Create software development kits (SDKs) to use these capabilities in many different ways.

The Zowe open-source project created several SDKs that support various programming 
languages to develop applications that abstract from the z/OSMF REST APIs to easily 
create applications that use it. SDKs are available for Node, Java, Python, and several 
other programming languages.

� Implement alternative user experiences (UXs) with these SDKs.

The Zowe SDKs are used for creating several UXs for interacting with z/OS and MVS Data 
Sets. The most well known of these UXs is the Zowe CLI, which provides a CLI that allows 
users to create a data set with a simple command, such as zowe zos-files create 
data-set NEW.DATASET --like EXISTING.DATASET, and Zowe Explorer, which provides a 
GUI in Microsoft VS Code editor that allows users to search and display data sets and 
create data sets with simple right-click operations, such as right-clicking an existing data 
set and performing an Allocate Like operation similar to the CLI operation.

This abstraction layer for providing SDKs can be combined with the previous layer to provide 
alternatives to data provider technologies because the SDKs support z/OSMF and other 
protocols such as FTP. Vendors such as IBM also provide extensions to these SDKs, which 
are called plug-ins, for their own technologies, such as the RSE. The ability to create such 
plug-ins for extensibility is another core principle that the design of SDKs follows. The Zowe 
project often makes the extensibility of its capabilities a core feature. For an example of the 
APIs that are provided by the Zowe Explorer project for contributing new data providers, see 
VS Code extensions for Zowe Explorer. The RSE API data provider is designed to plug in to 
Zowe CLI and Zowe Explorer to provide users with the choices for the UXs.

5.3.3  Layer 3: Standardizing on next-generation editors and modern 
languages capabilities

We described a flexible architecture for IBM Z DevOps that gives developers and their 
organizations choices for alternative technologies. We used the example of CLI versus a GUI 
to show how the same capabilities can be provided as different UXs. 
72 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-using-zosmf-rest-services#IZUHPINFO_RESTServices__swagger
https://github.com/zowe/zowe-cli/blob/master/docs/SDKGuidelines.md
https://github.com/zowe/zowe-client-java-sdk
https://github.com/zowe/zowe-client-python-sdk
https://github.com/zowe/zowe-cli
https://github.com/zowe/vscode-extension-for-zowe
https://github.com/zowe/vscode-extension-for-zowe/commits/main/docs/README-Extending.md
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-zos-data-set-file-rest-interface#izuhpinfo_api_restfiles


Therefore, retrieving a COBOL program from MVS on a z/OS system, changing it in an editor, 
and then re-uploading it to z/OS for compiling and running the program can be done in either 
of these scenarios. Deb the developer (the persona that was introduced in 5.2.2, “Personas of 
the hybrid development team” on page 67 as a next-generation developer without prior 
enterprise development experience) can do the following tasks with a CLI editor: 

1. Use the Zowe CLI to download a COBOL program from MVS with a simple command that 
retrieves a file by name and converts it to UTF-8 to be placed on her 
development machine. 

2. Use any editor of her choice such as VIM to edit the program. 

3. Use another Zowe CLI command to upload the file and convert it back to EBCDIC. 

4. Use a third Zowe CLI command to submit a JCL that compiles, links, and tests 
the programs.

Deb also can use a more integrated editor such as IBM Z Open Editor and Zowe Explorer that 
run inside Microsoft VS Code to do the following tasks: 

1. Use Zowe Explorer's Data Sets view to search for the data set with her COBOL programs. 

2. Open the file that was converted by Zowe Explorer to UTF-8 in the IBM Z Open Editor 
COBOL editor by clicking the data set member name and making changes in the editor. 

3. Use the Save menu or shortcut for the updated program to be converted and written back 
to MVS. 

4. Either find JCL in MVS data sets the same way as she found her program files and 
right-click to submit it, or use the IBM Z Open Editor user build function to upload, build, 
and run the program by right-clicking in the editor.

Either the CLI editor or a more integrated editor are both valid alternatives for editing a 
COBOL program. One option requires more tools to be installed and configured on the 
developer's machine than the other one. One option provides more integrated capabilities 
than the other one, such as the language support of IBM Z Open Editor performing instant 
syntax checking and advanced editing capabilities, such as code completion, code formatting, 
and navigation along an outline view and code references.

However, both scenarios are not mutually exclusive, but rather are specific choices that a 
developer can make to support their preferred way of working. The tools that are mentioned in 
these examples can be configured in a way that the scenario can become more 
interchangeable. For example, VS Code has an integrated terminal and Deb can run any 
Zowe CLI command directly from VS Code. If the COBOL editing capability was implemented 
with the right abstractions, then it is feasible that the (almost) exact same UX for COBOL 
language features can be available in both editors, but presented in each editor's 
specific ways.

Such an abstraction exists. It is called the Language Server Protocol (LSP), and it is another 
open API that was created to support interchangeable layers of capabilities and capabilities 
that can be combined with one another in a plug-and-play way. The key for the success of 
such APIs is that they need to be popular enough with enough implementations for vendors to 
provide these choices. In LSP, implementations are available for a many programming 
languages and different and diverse editors, including VIM and various Eclipse based editors, 
such as the Eclipse Java SDK and Eclipse Theia. Many of these editors also provide SDKs for 
anyone to build and integrate language servers.
Chapter 5. Modernizing Enterprise DevOps 73

https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/implementors/tools/


For a vendor such as IBM who has invested in its language parsers for COBOL and PL/I for 
over 20 years as part of its IDz offering, an API such as LSP is ideal because with refactoring, 
these capabilities can be offered as part of a language server in other editors, such as 
Microsoft VS Code and Eclipse Theia. However, language capabilities that were newly 
created for the IBM Z Open Editor for VS Code, such as IBM Z Open Editor's language server 
for the REXX language, also were immediately adopted and made available for IDz.

In conclusion, when it comes to development organizations providing choices to their 
developers, a family of editors that use the same language server implementations for 
specific languages is easier to support and maintain, and it allows developers to switch 
between editors, even editors that behave differently and offer fundamentally 
different features.

5.3.4  Layer 4: Adding pluggable extensions with specialized capabilities: z/OS 
access, debug, build, CICS, and Db2

In 5.3.3, “Layer 3: Standardizing on next-generation editors and modern languages 
capabilities” on page 72, we described the LSP API, which provides pluggable language 
capabilities to editors. In addition to programming languages support, development teams 
also need integrations with other development tools and connectivity to platforms, which 
should be integrated with similar APIs to allow alternatives.

Continuing the example from 5.3.1, “Layer 1: Establishing connectivity to z/OS” on page 71, 
different development organizations want to standardize on different protocols on that list. If 
an organization used the Eclipse-based z/OS Explorer or IDz before, then they already 
deployed the RSE servers. If they now want to also offer Zowe CLI and Zowe Explorer for VS 
Code to their developers as an alternative choice, then it is likely that they want to use the 
same technology to avoid double-maintenance. Another organization that is not using RSE 
might prefer using z/OSMF because it is part of the z/OS operation system.

When designing connectivity tools such as Zowe CLI and Zowe Explorer, which are key 
underlying technologies of the IBM Wazi offerings, there must be support for APIs that 
support multiple protocols. Zowe CLI provides a CLI plug-in that allows users to install extra 
capabilities. Such new capabilities can be the implementation of commands that interact with 
z/OS by using a different protocol. Because Zowe CLI provides z/OSMF that is ready to use, 
IBM created a plug-in for it that can run all its commands by using the RSE API instead of 
z/OSMF and SSH.

Zowe CLI and its plug-ins provide CLI operations and can be used as an SDK for other 
Node.js applications to use the implementation of the CLI operations. The graphical Zowe 
Explorer that adds visual tree views to VS Code showing hierarchies of MVS data sets, z/OS 
UNIX System Services folders, and JES jobs was created with these Zowe CLI SDKs. When 
using the graphical tree view to, for example, list all the data sets for a search pattern, the 
Zowe Explorer calls the respective API method that is provided by the Zowe CLI SDK.

The RSE API plug-in for the Zowe CLI provides API calls to run the exact same commands 
against RSE API. It implements the same SDK method for listing data sets for a search 
pattern. Zowe Explorer was designed to extend its tree views to use alternative plug-ins by 
using a simple Adapter Design Pattern1. So, the combination of APIs from Zowe Explorer and 
Zowe CLI allowed a transparent extension of the Zowe Explorer with the RSE API protocol as 
an alternative to z/OSMF. The same thing was accomplished with the FTP protocol by using 
the Zowe CLI plug-in for FTP with the Zowe Explorer extensibility APIs.

1   Design Patterns: Elements of Reusable Object-Oriented Software, by Gamma, et al.
74 Mainframe Application Modernization Patterns for Hybrid Cloud

https://ibm.github.io/zopeneditor-about/Blog/announcing-rexx.html
https://docs.zowe.org/stable/extend/extend-cli/cli-developing-a-plugin
https://ibm.github.io/zopeneditor-about/Blog/rse-march-beta.html
https://github.com/zowe/vscode-extension-for-zowe/blob/main/docs/README-Extending.md
https://github.com/zowe/zowe-cli-ftp-plugin


Figure 5-2 shows the relationships of the various extensibility APIs and their implementations 
that are used by IBM Z Open Editor and Zowe Explorer. 

Figure 5-2   An overview of various extensibility use cases for IBM Z Open Editor and Zowe Explorer

On the left side of Figure 5-2, you can see three extensions for VS Code: IBM Z Open Editor, 
Zowe Explorer, and Zowe Explorer FTP Extensions. In the middle row of these extensions, 
the Zowe Explorer extension provides an Explorer API that allows other VS Code extensions 
to register extra capabilities for the Zowe Explorer. IBM Z Open Editor does that task by 
providing an implementation for the RSE API that uses the RSE API CLI SDK. 

The RSE API CLI SDK is packaged with IBM Z Open Editor and fully reused from the Zowe 
CLI plug-in for RSE API. By using it, Zowe Explorer with RSE API capabilities is independent 
from the Zowe CLI plug-in that is installed locally. Figure 5-2 illustrates that scenario by 
showing various CLI plug-ins at the bottom that are installed directly on the development 
machine (as global npm packages). You see that the FTP Zowe Explorer extension does the 
same thing by implementing the Zowe Explorer API for the FTP protocol. When configured 
with these extending VS Code extensions, Zowe Explorer can be used with any of the 
protocols that can interact with z/OS.

In addition to having VS Code extensions for alternative z/OS interaction protocols, a 
development team also wants to select extensions that provide specialized capabilities for 
other technologies that are used in the project. Here is a selection of extensions that we 
recommend for an IBM Wazi setup.

� IBM Z Open Debug: Provides a Debugger UI in VS Code for COBOL, PL/I, and high-level 
assembler language. It is part of the IBM Z Cloud and Modernization Stack.

� Another open-source extension that uses the extensibility APIs of the Zowe Explorer is the 
Zowe Explorer for IBM CICS VS Code that adds CICS capabilities that allow interactions 
with CICS regions and programs and the ability to run commands against them.

� IBM Db2 for z/OS Developer Extension can be used for writing, analyzing, and debugging 
SQL queries and stored procedures.

� VS Code has only basic support for Git. The GitLens extension has many features, which 
almost replace the need for a CLI.
Chapter 5. Modernizing Enterprise DevOps 75

https://marketplace.visualstudio.com/items?itemName=Zowe.cics-extension-for-zowe
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=IBM.db2forzosdeveloperextension
https://www.ibm.com/products/z-and-cloud-modernization-stack


� IBM Z Open Editor uses YAML for configuration files. Red Hat has a YAML extension that 
reads the JSON and YAML schema and provides code completion and validation.

� If you are doing automation with Ansible and IBM Red Hat Ansible Certified Content for 
IBM Z, which we use later in this chapter, then you want the Red Hat Ansible VS Code 
extension, which provides code completion and validation.

5.3.5  Layer 5: Adopting containerization for deploying development tools with 
Red Hat OpenShift and Dev Spaces

In this chapter, we showed examples of many technologies that can be used by a hybrid 
development team. The focus has been mainly on tools for enterprise applications, such as 
the COBOL and PL/I applications that run on z/OS. For a hybrid project that mixes multiple 
technology stacks, there are more tools from which the teams can choose.

The IBM Wazi tool set is centered around VS Code so that developers do not have to change 
tools for different technology combinations. We want to support the most commonly used 
environments, with the most flexible extensibility, and the largest portfolio of extensions that is 
available for hybrid development projects. Currently, these requirements are met by VS Code. 
Stack Overflow surveys show a more than 80% adoption rate of VS Code. Its extensibility API 
is reimplemented even by other editors, including the many implementations of the LSP. The 
VS Code Marketplace provides tens of thousands of extensions that were built with this API. 
The most popular extensions have tens of millions of users, for example, the Python VS Code 
extension has 65 million users. At the time of writing, The IBM Z Open Editor was installed 
more than 65,000 times. In our own telemetry that we receive from our editor installations, in 
which users kept telemetry enabled, we can see more than 500 unique users every day.

So, we believe that for hybrid development teams that are staffed with personas like Deb, VS 
Code is the ideal editor for IBM Wazi because these developers probably used the tool and 
many of its extensions already for developing in many other programming languages for 
various technologies. However, what about the Kathleen persona? VS Code might be new to 
her because she worked on a traditional green screen emulator and perhaps a more 
integrated IDE such as Eclipse and IDz that come prepackaged with more capabilities.

Figure 5-3 on page 77 lists some of the steps that Kathleen must perform to set up the 
prerequisites, tools, and extensions.
76 Mainframe Application Modernization Patterns for Hybrid Cloud

https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
<https://ibm.github.io/z_ansible_collections_doc/index.html
<https://ibm.github.io/z_ansible_collections_doc/index.html
https://marketplace.visualstudio.com/items?itemName=redhat.ansible
https://marketplace.visualstudio.com/items?itemName=redhat.ansible
https://survey.stackoverflow.co/2022/#version-control-version-control-system


Figure 5-3   Steps a developer must perform to set up IBM Z Open Editor and Zowe Explorer

Many development teams manage a wiki (or online web page) that documents all the setup 
steps that are required for a developer joining a project. For a developer that is experienced 
with these tools, such as Deb, they are straight-forward. However, even for her there are 
potential points of errors. For example, if a version of a language run time such as Node.js or 
Java is required, it is possible that the wrong version is being used, particularly for developers 
that work on more than one project, which can lead to an accidental usage of incompatible 
SDKs, build errors, and other items.

As another example, a popular technology such as Ansible is built on many layers of other 
technologies, such as Python and SSH, and requires that you use the correct version 
combinations of them on the client and host. When you use Ansible on z/OS, there are more 
potential incompatibilities to consider with specific versions of IBM Z Open Automation 
Utilities (ZOAU) and Python for z/OS. What makes it even more complicated is that the Red 
Hat Ansible VS Code extension also requires special versions of Ansible and the Ansible 
Linter to be installed on the client. 

The extension depends on Python and the YAML VS Code extension, and not every version 
of these extensions works with every other version. If some team members choose to use a 
different VS Code “compatible” editor such as Eclipse Theia, they cannot use the latest of 
each version that is available because the Theia implementation of the VS Code API is not up 
to date. For Windows users, the setup is even more complicated because Ansible does not 
support Windows as a client (for example, the control node), and users must install a Linux 
virtualization such as Windows Subsystem for Linux (WSL).

From these examples, you can see that maintaining a developer machine requires much 
experience with these technologies and precise documentation by the team leads for which 
tools to install and maintain on their machines. A better solution is to automate the installation 
and configuration of these development environments to enable all developers with the same 
setup, or at least a setup with the mandatory prerequisites that can be individually refined by 
each developer with the tools that they choose from and prefer to use. Such automation must 
be provided on several layers of the setup, from the operating system, the compilers and 
runtime environments, and build and automation tools.
Chapter 5. Modernizing Enterprise DevOps 77

https://www.ibm.com/docs/en/zoau
https://www.ibm.com/docs/en/zoau


For DevOps, this situation is a common problem with common solutions in the deployment 
space. Here, containerization has been used for many years to ensure that applications 
automatically are deployed, potentially in many distributed locations, in to the correctly 
configured environments with the exact same prerequisites. The sample principles can be 
applied for development environments too by containerizing the development setup 
prerequisites, mapping them to editor configurations, and deploying them into the cloud, 
potentially hundreds of times, which provides a sample development baseline to each 
developer. There is an open-source project that is called Eclipse Che that provides such a 
solution, as shown in Figure 5-4.

Figure 5-4   Overview of a developer's personal Eclipse Che workspace

In Eclipse Che, development teams can choose from a large stack of technology 
configurations that are provided as container images that are based on open-source Docker 
files and an open specification framework that is called devfiles that you can use to specify 
development stacks as combinations of multiple images, VS Code extensions, storage 
volumes, settings, environment variables, command short cuts, Git repositories, and others. A 
developer then uses a web-based dashboard to select a predefined stack from Eclipse Che to 
create a personal workspace, which runs on Kubernetes in a personal namespace, as shown 
in Figure 5-4.

Based on the devfiles, images are instantiated into containers, and VS Code extensions are 
loaded in to a web-based editor. The developer does not need to install anything themselves 
because everything can be predefined. The stacks that are provided by the Eclipse Che 
open-source project are examples and starters that development teams can use to customize 
for their specific needs. In other words, a project's development lead can prepare the perfect 
development stack for the project and publish it in the Kubernetes-based Eclipse Che system. 
Then, every other developer can instantiate the stack as their personal workspace with a 
single click. All the prerequisites and VS Code extensions are available with the right versions 
in the containers and editor as prepared by the lead. Developers can still customize their 
personal workspace by copying and modifying the devfile and even add their own images for 
their personal containers with special tools and VS Code extensions that they want to use in 
addition to the prepared stack. 
78 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.eclipse.org/che/docs/stable/overview/introduction-to-eclipse-che/
https://www.eclipse.org/che/docs/stable/overview/introduction-to-eclipse-che/


Because devfiles can be maintained with the project's source code in Git, the team can 
continuously evolve the devfile and agree on new tools to be used by the team. Similarly, the 
Dockerfiles that define the container images can be managed by the team and republished to 
an image registry that is used by the team. Eclipse Che provides a Kubernetes operator to 
manage one or many installations with different configurations for different teams of an 
organization as needed.

Eclipse Che provides a large set of images and devfiles as open source items that are 
donated by many different developers and organizations. Red Hat took a major subset of 
them and curated them in a similar fashion as they curate their Linux distributions. With an 
emphasis on stability, reliability, and security, Red Hat maintains each image by basing them 
on the Red Hat Universal Base Image and certifying each image. Red Hat published this 
variant of Eclipse Che as a branded distribution that is called Red Hat OpenShift Dev Spaces, 
formerly known as Red Hat CodeReady Workspaces, which runs, as the name implies, 
exclusively of Red Hat OpenShift. All the images' Dockerfiles and devfiles are still available as 
open source under an EPL license so that customers can still take them as starting points for 
customization, but they must license Red Hat OpenShift and the Universal Base Images.

For enterprise and hybrid application development support, IBM took the Red Hat distribution 
of Red Hat OpenShift Dev Spaces and customized it by using the IBM Wazi for Dev Spaces 
offering. IBM added capabilities and integrations for z/OS development by providing an extra 
set of custom images and devfiles on top of what Red Hat provided. The images are 
fully IBM Cloud certified, which adds extra requirements to the Red Hat certification.

Figure 5-5 shows an overview to the IBM Wazi solution stack.

Figure 5-5   IBM Wazi for Dev Spaces and its integrations
Chapter 5. Modernizing Enterprise DevOps 79

https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image
https://www.ibm.com/downloads/cas/ZDWOEKQB


IBM Wazi for Dev Spaces is shown on the left inside the Red Hat OpenShift box showing 
some of its runtime components, such as two sidecar containers that provide special 
development configurations for z/OS developers. Code Sidecar provides essential tools for 
interacting with z/OS, such as the Zowe CLI and the RSE API Plug-in for Zowe CLI that were 
described in 5.3.2, “Layer 2: Building a foundational layer with client software development 
kits, open APIs, and command-line interfaces” on page 72. 

Together with the Zowe Explorer VS Code extension that is listed in the Plug-ins box in 
Figure 5-5 on page 79, these capabilities provide tools to access z/OS systems from the 
editor. Another important set of productivity tools that is pre-configured in the IBM Wazi stack 
are tools for Ansible and Ansible collections for z/OS, which are installed on that image with 
the Ansible run time and its prerequisites, such as Python, and editing tools such as the 
Ansible Linter and the VS Code extension for Ansible. Developers can immediately start 
working on Ansible playbooks in the editor with language support through syntax checking, 
code completion, and documentation integration, and run the playbooks against z/OS directly 
from the editor's integrated terminal window.

Another sidecar that is available for IBM Wazi for Dev Spaces is the Analyze Sidecar, which 
provides static code analysis of your applications that are written in COBOL, PL/I, assembler 
language, JCL, or Java. You can run an analysis scan of the code that you are editing and 
review the results in a web-based, graph-browser presentation directly from the IBM Wazi for 
Dev Spaces editor.

As shown in Figure 5-5 on page 79, IBM Wazi provides alternative choices. Although the 
IBM Wazi for Dev Spaces solution provides all these preinstalled configurations, some 
developers might prefer to be more in control and work locally. They can use the alternative 
VS Code or Eclipse based editors of the IBM Wazi package. IBM Wazi comes with the 
IBM Wazi Sandbox, which provides developers with their own personalized z/OS environment 
that is emulated on x86 hardware and deployed and managed from Red Hat OpenShift.

5.3.6  Layer 6: Moving z/OS development into the cloud

In 5.2, “The vision for a cloud-native developer experience for z/OS enterprise applications” 
on page 66, we outlined our vision for cloud-native hybrid application development. We 
described the need to unify the development processes and tools of the hybrid team. We 
talked about developers such as Deb and Kathleen who are looking to use the same 
methods, editors, and tools for developing enterprise applications and cloud applications. In 
Figure 5-5 on page 79, we showed connectivity tools and editors such as IBM Wazi for Dev 
Spaces that can run in the cloud and deployed into an Red Hat OpenShift namespace.

In this section, we describe what else we can move to the cloud to empower Deb and 
Kathleen to work in virtual environments that can be rapidly created and re-created and run 
close to or even in the same development and test infrastructure as the cloud-based 
applications that they are building. We want to look at z/OS systems, infrastructure 
management tools, build tools and pipelines, and other automation.

Note: If you want to try the IBM Z Open Editor running in Red Hat Dev Spaces running VS 
Code, Red Hat offers a 30-day trial that is named the Developer Sandbox, which can be 
found at Developer Sandbox for Red Hat OpenShift.

After signing up for the trial, log on and load a workspace in the cloud by running IBM Z 
Open Editor and Zowe Explorer in VS Code in your browser at Red Hat IDP.

The trial loads a Git repository with some sample COBOL, PL/I, HLASM, and REXX 
programs that you can use with the editor for testing. For more information, see GitHub.
80 Mainframe Application Modernization Patterns for Hybrid Cloud

https://developers.redhat.com/developer-sandbox
https://workspaces.openshift.com/#https://github.com/IBM/zopeneditor-sample/tree/devfile?che-editor=che-incubator/che-code/insiders
https://github.com/IBM/zopeneditor-about/tree/main/che


We start this section by looking at the various ways development teams can get access to 
z/OS systems that can run in the private or public cloud. The basic usage model is the same 
for all these offerings. They come with a preconfigured z/OS image that has been curated for 
IBM Z DevOps scenarios, which provides many of the IBM software components that are 
needed, such as compilers for all enterprise languages and modern languages such as Java 
or Python, and connectivity servers such as RSE API and z/OSMF, Debug, IBM DBB, 
and more. 

These images are a great starting point for development teams, especially if they work with 
the IBM Z DevOps solution components. However, it is possible to customize the image or 
build your own based on your on-premises z/OS systems by using the IBM Wazi Image 
Builder. Coming back to our personas from Figure 5-1 on page 68, the system programmer 
Zach assembles the image for the team and then works with Todd, the cloud operations 
administrator to publish it in the right location for the following three technologies to pick up:

� IBM Wazi Sandbox is part of the IBM Z Cloud Modernization Stack. As with many of the 
modernization components, it comes with an operator that allows easy deployment on 
Red Hat OpenShift clusters. It is targeted for on-premises deployment by using x86 
hardware, but it can be deployed in the cloud in what is known as VPC environments. Todd 
prepares the environment on Red Hat OpenShift so that Deb and Kathleen can easily 
create personal instances by using the Red Hat OpenShift developer user interface by 
pasting and editing YAML files. The v instances can be used as the development platform 
with other Modernization Stack components, such as IBM Wazi for Dev Spaces, 
z/OS Cloud Broker, and z/OS Connect.

� IBM Virtual Dev and Test for z/OS (ZVDT) is similar to the IBM Wazi Sandbox with the 
difference that it is targeted to all IBM Z development shops. The VSIs run on S390x 
hardware running Linux on IBM Z. The z/OS system is emulated on the real target 
hardware, which offers significant performance advantages. ZVDT can eliminate typical 
development bottlenecks by enabling flexible, horizontal scaling of early development, 
test, and education activities.

� IBM WaaS is a pure cloud-based offering that also runs on real IBM Z hardware in IBM 
Cloud data centers in many regions throughout the world. Developers such as Deb and 
Kathleen can self-provision z/OS VSIs into a secure virtual network that is managed by 
Todd in a VPC. As with the other two solutions, they can create instances by using the IBM 
default development and test image or use a custom image that is created by Zach and 
uploaded by Todd into secure IBM Cloud Object Storage. By using the regular cloud 
interfaces and automation utilities, they can add extra volumes for test databases and 
other requirements.

With their own z/OS system for development, Deb and Kathleen are empowered to configure 
this system and use it for building and debugging, deploying their applications, and running 
local tests before committing code and submitting changes to the larger team and IBM Z 
DevOps pipeline. With an IBM Wazi Code editor such as IBM Wazi for Dev Spaces, they can 
connect to these systems in the cloud or on-premises Red Hat OpenShift clusters without 
extra network configurations if everything is deployed into the same subnet, which simplifies 
how they can use these systems for their development activities.

5.3.7  Layer 7: Establishing a common control platform on Red Hat OpenShift

When we described the usage scenarios for IBM Sandbox in 5.3.6, “Layer 6: Moving z/OS 
development into the cloud” on page 80, we briefly mentioned the role of operators in Red Hat 
OpenShift playing a role for deploying the IBM Wazi Sandbox and developers using the user 
interfaces in Red Hat OpenShift that are provided by this operator to create 
IBM Sandbox instances. 
Chapter 5. Modernizing Enterprise DevOps 81

https://www.ibm.com/cloud/learn/vpc


Operators are pieces of software that ease the operational complexity of running and 
maintaining applications and services in a Kubernetes cluster. They are defined as an 
extensibility pattern that is part of the Kubernetes specification, and they are the preferred 
method for deploying and managing applications on Red Hat OpenShift.

This approach of using operators in Red Hat OpenShift also is part of a larger strategy for the 
IBM approach to hybrid cloud-native z/OS development. Assuming that hybrid development 
teams want to create their hybrid applications for and with Red Hat OpenShift, then you 
should use it as a general control platform for managing the development tool infrastructure 
and the development and test deployments of the entire application under development, even 
the z/OS parts, all from one central location: the Red Hat OpenShift dashboard and CLI.

With our Red Hat OpenShift operators deploying the editor and development images for the 
editor and the emulated z/OS Sandbox systems, another solution component of the IBM Z 
and Cloud Modernization Stack, the z/OS Cloud Broker, now can be used to further configure 
and refine these development platforms. It can be used, for example, to install and configure 
more development resources like a C++ compiler through an Red Hat OpenShift UX. In this 
way, z/OS Cloud Broker allows developers to interact directly with z/OS resources without 
deep mainframe expertise and use z/OS in a cloud-native way. The UX is designed in a Red 
Hat OpenShift native way: A developer can log on to the Developer Perspective, and browse a 
catalog of resources that are available to deploy or review the resources that already are 
available. They can select resources and actions, such as deploy, install, or uninstall.

Moreover, z/OS Cloud Broker allows development teams to create their own custom 
operators by using the popular Ansible framework with IBM Ansible collections for z/OS to 
support direct z/OS interactions. In 5.3.5, “Layer 5: Adopting containerization for deploying 
development tools with Red Hat OpenShift and Dev Spaces” on page 76, we already 
described how VS Code and IBM Wazi for Dev Spaces can provide a highly productive 
development environment for Red Hat Ansible and how such operators empower the hybrid 
development teams to create and standardize on common z/OS and other systems 
automation tasks without involving system programmers.

5.3.8  Layer 8: Creating end-to-end automation with IBM DBB and Groovy and 
Ansible collections for z/OS

So far, we have focused on automation for developers to provision and prepare their personal 
z/OS systems in the cloud. The advantage of these systems is that development teams can 
quickly spin up and configure such systems themselves and use them for development and 
testing in any way they need. However, the potential disadvantage is that these systems, 
unless they were created with the IBM Wazi Image Builder specifically for a project, are 
generic and in many cases must be configured for the specific application under 
development. They require automation to configure the subsystems that are used, such as 
CICS, to build and to deploy the application.

Automation for configuring z/OS
We covered several technologies, starting with connectivity APIs, that development teams 
can choose from to configure their freshly deployed IBM Wazi Sandbox or WaaS VSI. They 
can pick any of them based on the skill set that is available in the team or other preferences. 
82 Mainframe Application Modernization Patterns for Hybrid Cloud

https://ibm.github.io/z_ansible_collections_doc/index.html


Here is a summary of the most important ones:

� Zowe CLI and its many plug-ins: In addition to the basic z/OS interactions that Zowe CLI 
provides, there is a large list of plug-ins that provide extensions for more capabilities, 
including z/OS subsystems such as CICS, IMS, IBM MQ, and IBM Db2, but also many 
third-party technologies. The Zowe Conformance Program website currently lists 18 fully 
Zowe project certified plug-ins that are available.

� ZOAU is part of the IBM Z and Cloud Modernization Stack. It was developed to serve 
partially as an alternative to JCL, but also to augment the usage of “legacy” JCL script with 
modern scripting techniques to ease the adoption for hybrid development teams. For 
example, there is an open-source Node.js package that is available for developers to use 
ZOAU services in Node.js.

ZOAU is designed as a natural way for programmers that are familiar with Linux and Unix 
to use the z/OS UNIX System Services environment directly to access traditional MVS 
resources such as data sets directly without using JCL. The utilities have a name and 
syntax that is familiar to Unix developers. For example, you can use the dls command to 
list data sets, which has a similar syntax and output to the ls command that is available on 
Unix environments. 

ZOAU provides easy-to-use class libraries for accessing MVS resources such as data sets 
directly from other languages such as Python, without requiring installation or 
configuration of other software. Where specific language libraries do not exist, ZOAU 
provides a shared library interface that is written in C that can be invoked by any 
programming language by using the appropriate C language bindings.2

� Red Hat Ansible and Red Hat Ansible z/OS collections are partially built on top of the 
ZOAU utility, which is a prerequisite for them, but ZOAU targets Red Hat Ansible 
developers that are familiar with that framework. The z/OS collections also cover modules 
for many subsystems such as CICS and IMS, but also z/OSMF workflows and IBM Z 
System Automation. More generally, Red Hat Ansible also can integrate with and 
orchestrate existing tools and automation that are provided by the various technologies 
that are described in this chapter. Red Hat Ansible provides a rich, open framework to 
accelerate DevOps integration and practices.3

� IBM z/OS Cloud Broker, with its extensibility through custom operators, can provide a 
higher level of automation than the script-based frameworks that are in this list. 

� IBM DBB and Groovy are intended as a pure build automation framework. as described in 
“User build automation and debug” on page 83. IBM DBB provides a JVM-based API that 
can be used for configuration tasks. A user-built script that runs from the editors to run on 
z/OS can perform system preparation tasks for the developer without requiring them to 
use another framework.

� JCL is a valid alternative because it can be used in combination with any of the 
frameworks. JCL can upload and run JCL directly from a remote system. Also, the Zowe 
Explorer can be used by developers to quickly find and run JCL.

User build automation and debug
Because enterprise application editors such as IBM Z Open Editor or IBM Wazi for Dev 
Spaces run on remote clients like developer laptops and Red Hat OpenShift clusters running 
on x86 Linux or Linux on IBM Z, developers need real-time syntax checking that is provided 
by an editor, they need the capability to build, run, and debug their applications on z/OS.

2  https://www.ibm.com/docs/en/zoau/1.2.x?topic=extending-zoau-other-languages 
3  https://www.ansible.com/blog/devops-and-ci/cd-with-automation-controller 
Chapter 5. Modernizing Enterprise DevOps 83

https://www.openmainframeproject.org/all-projects/zowe/conformance
https://www.ibm.com/docs/en/zoau/1.2.x?topic=extending-zoau-other-languages
https://www.ansible.com/blog/devops-and-ci/cd-with-automation-controller


The IBM Z and Cloud Modernization Stack includes the IBM DBB, which provides build 
automation capabilities for build pipelines, and build capabilities for developers. You can run 
builds by using a CLI, by using SSH shells to z/OS UNIX System Services, or by using 
integrations to run builds for individual programs in the IBM editors (if needed), and save them 
with a simple right-click. Developers manage build configuration files (defining things such as 
which compiler to use and where to search for include files) that they can store with their 
source code in Git, and build scripts that were written in Groovy, which is a language that 
became popular because of the Gradle build framework, which makes it easy for hybrid 
development teams to understand and maintain.

Figure 5-6 shows a simple workflow diagram for an IBM Z Open Editor user build that also is 
available with IBM Wazi for Dev Spaces and IBM Wazi for Eclipse. 

Figure 5-6   IBM Z Open Editor user build with IBM Dependency Based Build

Because IBM DBB requires that components are installed on z/OS, the development and test 
images that are available for IBM Wazi Sandbox, ZVDT, and WaaS are installed and 
configured so that they can be used directly from the IBM Wazi editors when the Deb and 
Kathleen have their personal systems running. It is available for COBOL, PL/I, and 
HLASM programs.

Deb or Kathleen can build the program that they are editing by right-clicking from the editor. 
This action uses the editor's language server capabilities to compute the list of local 
dependencies, and the copybooks in the COBOL cases, and uploads them with the program 
to zFS UNIX System Services through a Zowe Explorer profile by using the SDK capabilities 
of Zowe CLI, as described in 5.3.3, “Layer 3: Standardizing on next-generation editors and 
modern languages capabilities” on page 72. 
84 Mainframe Application Modernization Patterns for Hybrid Cloud



Whether the user created profiles for z/OSMF or RSE API does not matter because the user 
build automatically picks the one that is available. On z/OS UNIX System Services, the user 
build remotely runs IBM DBB by using a Groovy build script. This build script performs all the 
operations that are required to build the application, create PDS data sets, copy files, run the 
compile and link commands, and other actions.

Then, the build application can be deployed and started depending on the application. The 
developer can submit a JCL from Zowe Explorer or use any of the automation capabilities. 
They can start a debug session for the IBM Z Open Debug VS Code extension. This 
debugger provides all the capabilities that VS Code developers are used to when debugging 
in any other language, such as setting breakpoints, watching variable values, and stepping 
over and into calls.

Deployment automation
IBM DBB is used for performing a user build from the editor, and the same build scripts and 
configuration settings can be reused to build many programs and applications as part of an 
automated pipeline. The goal of that pipeline is to deploy the application it is building and run 
integration tests against it. Deployment automation frameworks such as IBM UCD can be 
used with IBM DBB.

IBM UCD provides a web-based UX for defining applications through conceptual models that 
are composed of components, resources, processes, and environments. IBM DBB 
performing a continuous integration (CI) build, such as for changes that are pushed to a Git 
server, can publish its build results to an artifact repository, such as Artifactory, and trigger a 
CD process in the IBM UCD server. Then, IBM UCD orchestrates the deployment of the 
Artifactory assets to a dedicated z/OS test system by using an agent that is installed there.

For more information and a detailed tutorial showing how to install the z/OS agent with the 
IBM UCD server to define an application process, set up a build pipeline for IBM DBB in 
Jenkins, and connect IBM UCD to the Artifactory, see API reference. This website also 
explores configuring IBM UCD deployment steps for CICS and Db2.

5.3.9  Layer 9: Adopting a pipeline technology that matches the application 
platform

In 5.3.8, “Layer 8: Creating end-to-end automation with IBM DBB and Groovy and Ansible 
collections for z/OS” on page 82, we mentioned that the various automation components can 
be used in fully automated CI/CD pipelines. There is a long list of pipeline technologies that 
are available to development teams that they can then use in many different combinations 
with these automation tools. All these pipeline technologies are cloud-native, that is, they can 
either run directly in the cloud or access resources and nodes in cloud, or can integrate z/OS 
as a compute node into the pipeline workflow. 

For hybrid development teams, we envision pipelines that provide fully automated processes 
to build, deploy, and test the entire hybrid application. These automated processes can be 
triggered by any developer's push operation of code changes in a versioning branch to a 
central Git repository management system. We describe representative example pipeline 
technologies here, but there are many more that can be used.
Chapter 5. Modernizing Enterprise DevOps 85

https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.3?topic=code-debugging-applications
https://www.ibm.com/docs/en/dbb/1.0.0?topic=api-reference
https://www.ibm.com/docs/en/urbancode-deploy/7.2.3?topic=overview-urbancode-deploy
https://www.ibm.com/docs/en/dbb/1.0.0?topic=api-reference


GitLab CI/CD
GitLab Ultimate is tailored for hybrid IBM Z DevOps scenarios. Together with IBM DBB and a 
GitLab Runner (an agent, for example) that can run on Linux for IBM Z, it is a package that is 
tailored for hybrid teams that must build z/OS components. GitLab servers and agents can be 
deployed in the cloud and onsite and used in a fully distributed manner by using the GitLab 
CI/CD automation framework for defining pipelines that run on many different platforms and 
integrate all DevOps steps from source code management to deployment.

Much like GitHub or Azure, GitLab offers a proprietary pipeline description language in the 
form of YAML files that can be managed with the application source code in Git repositories 
that are stored on a GitLab server. Pipelines can be triggered based on a branch push, run on 
a schedule, or be manually started. The agent that runs the pipeline scripts can be running on 
a virtual, cloud-based, or hardware Linux or Linux for IBM Z node, and run build operations by 
using SSH against a z/OS build machine running IBM DBB. Build results can be pulled by the 
agents to populate build reports and artifact stores that are provided by GitLab or third parties 
such as Artifactory.

IBM published several tutorials and documentation for combining GitLab with many of these 
technologies. For more information, see GitHub.

Here are some important examples:

� Build a pipeline with GitLab CI, IBM DBB, and IBM UCD, which completes the automation 
that uses IBM DBB with IBM UCD, which is now orchestrated by GitLab CI/CD.

� Integrating IBM z/OS platform in CI/CD pipelines with GitLab, which is a detailed 
description into configuring GitLab for hybrid applications that are built on multiple 
platforms, and integrations with other IBM Z DevOps capabilities, such as 
IBM Wazi Analyze.

� Implementing a Release-based Development Process for Mainframe Applications, which 
explores in detail how hybrid teams can manage Git branches and GitLab pipelines for 
parallel development, including user build, test automation, collaborative code review 
workflows, and frequent release deliveries.

IBM Cloud Toolchain
Although you can deploy GitLab securely in a VPC in VSIs or Kubernetes clusters, the most 
common deployment scenarios for GitLab are on-premises with possibly a hybrid mix of local 
and cloud-based nodes. If you want to run a purely cloud-native pipeline, you can use 
the IBM Cloud Continuous Delivery offering that offers a toolchain feature or graphical 
modeling of your entire DevOps configuration from Git repositories to links to cloud-based 
editors such as IBM Wazi for Dev Spaces to build pipelines, and artifact and build report 
management and insights tools.

When you create your toolchain by using the graphical editors in IBM Cloud, there is a 
toolchain template that you can pick that is tailored for building z/OS applications. For more 
information about detailed walk-through of the wizard that is used by the template and all the 
options that are available, see Create a toolchain to secure z/OS application development in 
IBM Cloud.

The resulting pipeline implements many of the practices that we described in 5.1, “Core 
practices of IBM Z DevOps for hybrid enterprise application development” on page 60, such 
as baselining build artifacts that use Compliance Evidence Lockers, which are critical to 
achieve various compliance standards. 
86 Mainframe Application Modernization Patterns for Hybrid Cloud

https://mediacenter.ibm.com/media/Create+a+toolchain+to+secure+z+OS+application+development+in+IBM+Cloud/1_ax4aw1hr
https://mediacenter.ibm.com/media/Create+a+toolchain+to+secure+z+OS+application+development+in+IBM+Cloud/1_ax4aw1hr
https://cloud.ibm.com/docs/devsecops?topic=devsecops-devsecops-evidence
https://www.ibm.com/products/gitlab-ultimate/zos
https://ibm.github.io/mainframe-downloads/DevOps_Acceleration_Program/resources.html
https://developer.ibm.com/tutorials/build-a-pipeline-with-gitlab-ci-dbb-and-ucd/
https://www.ibm.com/support/pages/integrating-ibm-zos-platform-cicd-pipelines-gitlab
https://www.ibm.com/support/pages/node/6619083
https://cloud.ibm.com/catalog/services/continuous-delivery#about


The goal with the toolchain is to provide a full trace of any change to all build and application 
assets for an audit of all the activities, such as scans and tests that were performed for the 
change. These evidence lockers often are implemented as a set of versioned reports that are 
stored as baselined Git artifacts and databases or general storage that maintain 
binary artifacts.

The pipeline runs as a Tekton pipeline that can run build steps against the target system. 
Developers manage their Tekton build scripts in a dedicated Git repository that is configured 
for the pipeline. The developers can define custom container images to use for these builds 
that provide all the tools that are required to run a remote build against z/OS, and then use 
any of the connectivity solutions such as SSH or Zowe CLI to run the build steps on the target 
z/OS system.

Tekton
The IBM Cloud Toolchain provides an abstraction layer and graphical front end to create and 
run Tekton pipelines. Tekton is an open-source framework for creating Kubernetes native 
CI/CD systems. It was created for the Kubernetes project. For a hybrid development team that 
works on a Kubernetes front-end application and z/OS back-end applications, running the 
integrated pipeline on Kubernetes with Tekton can be an attractive alternative. If you run on a 
different Kubernetes platform such as Red Hat OpenShift, AWS, or Azure, and develop with 
on-premises Kubernetes clusters, using Tekton directly can be a valuable alternative.

Red Hat OpenShift is a potential central control center for the entire hybrid development 
project's development infrastructure that offers through Red Hat OpenShift Pipelines a great, 
almost platform-independent complement to the tools of the IBM Z and Cloud Modernization 
Stack. You can define the pipeline with the de facto, standard Tekton and then potentially run 
it almost unmodified on the many different Red Hat OpenShift provider platforms, or slightly 
modified on any other Kubernetes platform. As with the other IBM Z and Cloud Modernization 
Stack features, Red Hat OpenShift Pipelines can be written as code, but it also integrates with 
the graphical Red Hat OpenShift UX in the same Developer Perspective as the z/OS Cloud 
Broker, IBM Wazi Sandbox, and IBM Wazi for Dev Spaces operators, which provide a single 
space for developers of the hybrid project.

Although Tekton was designed to build and deploy Kubernetes applications, it also can be 
used as an orchestrator for starting external subpipelines that run on other network nodes 
and wait for their completion. Tekton can be used to integrate other non Tekton models, such 
as the ones that are required for IBM DBB running on a z/OS node that builds and deploys 
z/OS applications. Tekton introduced in 2020 the concept of Custom Tasks to support these 
kinds of use cases. Andrews Smithson provides an example with some code snippets for how 
he integrated access to z/OS into his hybrid project's Tekton pipeline by using the Zowe CLI, 
found at Accessing z/OS from your Tekton Pipeline.

Jenkins
Jenkins represents the classic way of running an automation pipeline. There are many 
advantages to using Jenkins. Jenkins is a widely used platform with a large and active 
community. It is easy to find developers with Jenkins skills, documentation and reusable 
solutions for most use cases, and a large portfolio of extending plug-ins. Additionally, Jenkins 
can be deployed almost everywhere, including VPCs in the cloud, Kubernetes, Docker, and 
almost every operating system, and it can connect to almost everything, including z/OS. For 
more information and a detailed tutorial about how to build a pipeline with Jenkins, IBM DBB, 
and IBM UCD, see Build a pipeline with Jenkins, Dependency Based Build, and UrbanCode 
Deploy. This tutorial describes how to set up a pipeline with Jenkins, IBM DBB, and IBM UCD. 
You can compare it to building a pipeline with GitLab CI, IBM DBB, and IBM UCD, comparing 
a Jenkins setup with GitLab to understand the differences in the UX, and decide which fits 
better in your hybrid development project.
Chapter 5. Modernizing Enterprise DevOps 87

https://developer.ibm.com/articles/introducing-tekton-custom-tasks/
https://medium.com/zowe/accessing-z-os-from-your-tekton-pipeline-4abaffd7110c
https://developer.ibm.com/tutorials/build-a-pipeline-with-jenkins-dependency-based-build-and-urbancode-deploy/
https://developer.ibm.com/tutorials/build-a-pipeline-with-jenkins-dependency-based-build-and-urbancode-deploy/
https://tekton.dev/


5.4  A next-generation developer end-to-end development 
example

This section describes some examples for using many of these technologies in a 
development project.

To illustrate how a next-generation developer can leverage the IBM Z and Cloud 
Modernization Stack, we look closer at Deb, who is our user persona who represents an 
archetypical new z/OS developer, and explore how she is accustomed to working based on 
her background.

5.4.1  Deb's story

The following list provides a generic, high-level overview of the development workflow that 
Deb typically follows to implement a change by using the practices and technologies with 
which she is familiar. Section 5.4.3, “Applying next-generation development strategies and 
tools to mainframe application development” on page 91 maps these steps in a detailed 
example of the application in mainframe DevOps practices. 

1. Receive the assignment: Deb receives a development task, such as implementing a new 
feature in an application.

2. Get the latest code: She begins her work by cloning or pulling a copy of the application 
code from a central Git repository down to her local workstation.

3. Switch to the feature branch: On her local workstation, Deb creates a “feature branch”, 
which is a new branch of the application code that she dedicated for her specific task. By 
switching to this new feature branch to make the code changes for her task, Deb can work 
on the task in isolation and in parallel with her team without having to worry about other 
development activities disturbing her work.

4. Make the code changes: On her feature branch, Deb uses her preferred IDE to make the 
code changes for her task.

5. Run a personal build and test: After she makes her code changes, Deb runs a personal 
build of the application so that she can test it, and verify that her new feature works and 
does not cause regressions. Automated unit testing is integrated into this build process.

6. Commit and push code changes: After determining that her code changes are correct, 
Deb commits her code, and then pushes her feature branch to the central Git repository.

7. Merge request and approval process: When Deb's feature branch is on the central Git 
repository, she creates a merge request (also referred to as a “pull request” by some Git 
providers) to integrate her code changes into the common development branch for her 
team. Her team set up an automated pipeline to run builds of the code in the merge 
request, which also include tests and code scans.

This point is when her team implements an approvals process where she can add 
teammates to review her changes and approve them before merging them into their 
common branch of code.

8. Integrate code changes: When Deb's merge request is approved, her code changes are 
merged into her team's common development branch of code. The feature branch on 
which she did her development work can be deleted. A build of her team's common 
development branch, which now contains Deb's code changes, can be run to move the 
changes forward or associate them with a release.
88 Mainframe Application Modernization Patterns for Hybrid Cloud



As Deb enters the workforce, whether it is in distributed application development or 
mainframe application development, she wants to continue working in this way with tools, 
technologies, and workflows that support the best practices that she was taught.

5.4.2  Deb's tools

Now, we describe the tools and technologies that Deb uses to achieve her development 
workflow from beginning to end. Within the CI/CD pipeline, these items can be broken into the 
following six main components:

1. SCM

2. IDE

3. Build component

4. Artifact repository

5. Deployment manager

6. Pipeline orchestrator

Software configuration management
The SCM tool is what Deb and her team use to store and manage different versions of their 
source code files, application configuration files, test cases, and more. With this tool, Deb and 
her team can do parallel development.

Git is the de facto industry standard in source code version control. Popular Git providers 
such as GitLab and GitHub enhanced Git with graphical web interfaces and features such as 
merge requests or pull requests that help teams coordinate planning, development, and code 
review activities. The providers also provide webhooks and even pipeline orchestrators (for 
example, GitLab CI/CD and GitHub Actions) to help integrate the coding step of the DevOps 
cycle with other CI/CD steps.
 

Integrated development environment
Deb uses the IDE to check out and edit her code, check it back in to the SCM. Many modern 
IDEs have features that enhance development capabilities, such as real-time syntax 
checking, code completion, outline views of the code structure, variable declaration lookups, 
and variable reference search.

Note: Because the source code for mainframe applications might be managed on z/OS, 
the following methods can facilitate the migration of a monolithic mainframe application into 
logically decoupled Git repositories:

� The IBM DBB migration tool.
� The IBM Software Configuration and Library Manager migration tool.
� Manual migration of source files in MVS to Git repositories is a possibility. The files are 

copied into z/OS UNIX System Services by using ISPF/TSO, which is the z/OS UNIX 
System Services CLI, or IDz, and then a Git repository is initiated from the destination 
folder in z/OS UNIX System Services.

IBM provides a no-charge and self-paced online course where you can learn more about 
the source code migration process and other IBM DBB fundamentals.
Chapter 5. Modernizing Enterprise DevOps 89

https://learn.ibm.com/course/view.php?id=5146


Although the IDE component is often installed on the developer's local workstation, newer 
containerized options on the cloud, such as IBM Wazi for Dev Spaces, allow developers to 
access and use a shared image of a development environment that provided by their team 
through a web URL. The image contains the configured IDE and other development tools that 
are used by the team, which reduces the time and effort that is required to generate instances 
of the development environment and onboard new teammates.

Build component
The build component understands and resolves dependencies, and then converts the source 
code to produce the runnable software artifacts. In this component, Deb and her team can 
integrate automated steps for unit testing and code quality inspection.

For z/OS application development, IBM DBB provides an intelligent build capability that 
discovers and resolves dependencies between objects before compiling and link-editing the 
application. This build tool is optimized to build only the changed programs and manage their 
impacts (similar to how mainframe application teams often manage builds), but IBM DBB 
enables automation of these traditionally manual z/OS development processes so that they 
are more efficient and can be integrated into modern CI/CD pipelines. IBM DBB is often used 
with zAppBuild, a sample z/OS application build framework that can be customized to your 
enterprise’s needs.

Artifact repository
After the build process is complete, the resulting build outputs are packaged together along 
with anything else that the team wants to install or run during deployment. The package is 
uploaded and stored in the artifact repository, which also stores metadata to help trace the 
software artifacts back to the source code from which they originated. This process helps 
decouple the SCM from the runtime environments, which is a fundamental DevOps practice.

Deployment manager
The deployment manager component rolls out application packages to various environments 
for purposes such as acceptance testing, system integration testing, and even production. 
The deployment manager also tracks the inventory of runtime environments so that the team 
can know what each one is running.

IBM UCD is a popular deployment manager option, but it is possible for the development team 
to script their deployment. Sample CI/CD pipeline scripts that can be customized for your use 
case can be found in the Pipeline section of the IBM DBB public GitHub repository.

Pipeline orchestrator
Overseeing all the automated processes in the pipeline is the pipeline orchestrator. This 
component integrates the steps from the different tools (the SCM, build component, artifact 
repository, and deployment manager) together and ensures that they run in the correct order.

A centrally controlled pipeline is important for implementing a safe development process in 
which changes can be delivered only through the pipeline process. The pipeline itself is 
mostly automated, although development teams can integrate manual approval steps 
where necessary.
90 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/products/dependency-based-build
https://github.com/IBM/dbb/tree/main/Pipeline
https://github.com/IBM/dbb-zappbuild


5.4.3  Applying next-generation development strategies and tools to 
mainframe application development

With next-generation tools, we can adapt Deb's workflow to mainframe application 
development. For some components such as the SCM, artifact repository, and pipeline 
orchestrator, the z/OS application development process can use the same technologies that 
are favored by distributed development teams, which enable standardization of development 
tools across the enterprise, and can allow z/OS and distributed application teams to 
collaborate more easily by breaking down the silos between them and opening the way for 
enabling a multi-technology application architecture. There are many choices for integrating 
modern development tools and strategies into mainframe development processes. The 
scenario that is described in this section for Deb's team illustrates an 
example implementation.

CI/CD pipeline setup
Sharing the technologies that are used by their enterprise's distributed development teams, 
Deb's team is using GitLab as their SCM and GitLab CI/CD as their pipeline orchestrator. 
Thus, their z/OS application's source code, tests, and configurations are stored on a central 
Git repository that is hosted by GitLab. GitLab CI/CD integrates the SCM with other pipeline 
tools such as IBM DBB to perform builds and other CI/CD actions at appropriate points in the 
development process.

To streamline the onboarding process for developers, Deb's team set up a preconfigured 
developer workspace in IBM Wazi for Dev Spaces that contains all the necessary source 
code, z/OS access, and tools that are needed to be productive on the team. Deb and her 
teammates can access instances of this development environment with a single click after 
logging in to the team's IBM Wazi for Dev Spaces website. Alternatively, if she prefers, Deb 
can use Git to create a local copy, or clone, of her team's application repository on her local 
workstation so that she can work on her development tasks there by using IBM Wazi for VS 
Code or IBM Wazi for Eclipse. In this case, Deb chooses IBM Wazi for Dev Spaces as the 
most convenient option because it is set up for her and does not require any special 
configurations or tools on her local workstation.

Preparing the z/OS environment
To easily create the z/OS development and test environments for Deb's team to work on, their 
system programmer, Zach, uses the IBM Wazi Image Builder to extract a custom image from 
their organization's on-premises IBM Z platform. This image contains the setup and 
configuration information for the z/OS system, and the organization's cloud administrator, 
Todd, uses it as the basis to create more development and test environments. Todd may use 
the IBM Cloud graphical web interface to create the WaaS target environments from the 
image. Although this graphical approach takes only a few clicks per environment instance, 
Todd implemented a more streamlined process by using an “infrastructure as code” (IAC) 
approach. The IAC approach leverages Terraform and Ansible scripts to automate the 
creation of the target environments, which makes the process more efficient and scalable. 
When Deb is ready to connect to the z/OS environment, she can self-provision her z/OS VSI 
on the VPC that is managed by Todd. Section 5.5, “IBM Wazi as a Service and IBM Z and 
Cloud Modernization Stack tutorial” on page 96 provides a more detailed introduction to the 
concepts and graphical interfaces of WaaS.
Chapter 5. Modernizing Enterprise DevOps 91



Code
Deb follows her team's Git-based CI/CD workflow for each development task that she takes 
on and uses the following steps:

1. Receive the assignment: After completing a planning session with other teams in their 
business unit, Deb's team follows up by creating issues within GitLab according to 
features, tasks, and bug fixes that are identified as targets for the next milestone. They 
organize these issues on a GitLab issue board for the milestone, and move the issues 
between the issue board's columns to represent different statuses as they progress.

For this example, Deb was assigned an issue to fix a display message in one of her team's 
COBOL programs, similar to Figure 5-7. She can view the details of her assigned issue on 
its dedicated GitLab issue page, and update her issue's description, status, comments, 
and other metadata there.

Figure 5-7   GitLab issue interface with issue description and metadata

2. Get the latest code: Deb logs in to her team's IBM Wazi for Dev Spaces website and 
accesses her instance of the team's development workspace. This environment already 
contains a copy of the application code along with the necessary development tools. Deb 
can use the Git integration in the IDE to pull any latest changes from the team's central 
Git repository.

3. Switch to the feature branch: To begin working on her assigned issue, Deb uses the Git 
integration on her IDE to create a branch of the application code. This new branch is a 
copy of her team's shared development code, and she ensures that she switches to this 
new branch before beginning her coding work so that the branch is dedicated to her work 
on her assigned task.

4. Make the code changes: Using the IBM Z Open Editor and IBM Z Open Debug extensions 
to support her coding work, Deb makes the code changes to fix her assigned issue. She 
also can run unit tests that are related to the code she is modifying to make her changes 
more robust and easier to maintain. She uses the Zowe Explorer extension to connect 
remotely with her team's mainframe system to manage her data sets, z/OS UNIX System 
Services files, and jobs. 
92 Mainframe Application Modernization Patterns for Hybrid Cloud



The IDE that is she is using provides her with the following capabilities, among others:

– Editing: In IBM Z Open Editor, Deb uses the Outline View to explore and navigate the 
code for the program that she is fixing. With the copybook resolution feature, she can 
preview the contents of copybooks that are referenced in the COBOL program by 
hovering her cursor over the copybook name, and she also can open the copybook 
itself in a separate editor by pressing Ctrl+click (Windows).

While Deb is coding her fixes, IBM Z Open Editor provides a code completion feature, 
which lets her easily pick from a selection list of commands, defined variables names, 
and code snippets as she types in commands, variables, or paragraph names. Deb 
also leverages the hover declaration lookup feature to hover over a variable or 
paragraph name and view its definition (see Figure 5-8). She uses the variable 
reference search feature to search for and find all references to the variables and 
paragraphs in which she is interested.

Figure 5-8   Hovering over the underlined copybook reference reveals a preview of the copybook

– Debugging: Within the IDE, the IBM Z Open Debug extension helps Deb troubleshoot 
her issue by allowing her to set breakpoints in her COBOL code and view the state of 
different variables at different points in the program or application. By using this 
function, Deb can monitor the code’s runtime path to analyze the root cause of 
the issue. 
Chapter 5. Modernizing Enterprise DevOps 93



5. Run a personal build and test: After Deb makes her code changes that she is ready to test, 
she uses the IBM DBB User Build tool to create a personal build of the program so that 
she can test it and verify that her fix works and does not cause regressions. Figure 5-9 
shows the build log. 

Figure 5-9   Sample IBM DBB User Build log with build results outlined in green

Deb can install the generated build artifacts (such as load modules) into her 
self-provisioned z/OS instance and perform manual testing without worrying about her 
team’s other development activities affecting the results of her testing. The User Build 
process also includes automated testing, which provides her with an extra and efficient 
way to check for regressions.

Deb and her teammates can use the zUnit within IDz to create unit tests, which can be 
stored as part of the same application repository containing the source code. Deb's team 
can script the running of these zUnit tests to occur automatically after a build completes.

6. Commit and push code changes: Having coded, built, and tested her fix for the assigned 
issue, Deb is satisfied with her code changes, and uses the IDE's Git integration to commit 
and push her feature branch with her code changes to her team's central Git repository.

7. Merge request and approval process: Now that her feature branch to fix her assigned 
issue is on the central Git repository, Deb opens a merge request in GitLab to have her 
code changes merged into the common development branch for her team. Deb's team set 
up an automated GitLab CI/CD pipeline to run builds of the code for any changes to merge 
request code, which also includes tests and code scans (see Figure 5-10). Following her 
team's approval process, Deb also adds some teammates to review her changes in the 
merge request.

Figure 5-10   The primary steps in a CI/CD pipeline for a merge request's feature branch
94 Mainframe Application Modernization Patterns for Hybrid Cloud



8. Integrate code changes: After Deb’s request is approved and her fix is merged into the 
shared development branch, the feature branch that she used for her development work 
can be deleted, and a full or impact pipeline build can run on the team's common 
development branch (Figure 5-11) with Deb's fix to move the changes forward or associate 
them with a release.

Figure 5-11   An example of a CI/CD pipeline that can run when a merge request is merged into the 
team's shared development branch

After Deb’s code changes are merged into the shared development branch, the artifacts and 
metadata that are generated by the pipeline build on the team’s common development branch 
in step 8 can be uploaded and stored in the team's artifact repository, from where they can be 
downloaded and deployed to the various test environments, such as system integration or 
acceptance testing environments. The artifact repository serves as a way to enable the 
deployment of the same package into multiple environments, and a way to trace the 
generated build artifacts within that package back to their source code origins. The 
deployment itself can either be handled by a deployment manager such as IBM UCD or, as 
Deb's team has set up, by a deployment script.

Aftere Deb's team achieves their development milestone and their code is ready for release, 
they run predefined steps in their GitLab CI/CD pipeline orchestrator to create a release 
package from the generated build artifacts, and create a release on their GitLab SCM. The 
release package is uploaded to the team's artifact repository, from where it can be 
downloaded and deployed to the various testing environments and, once ready, also deployed 
to the production environment.

For more information and guidance on CI/CD pipelines designs that can be implemented at 
different points in the release development process, see Implementing a Release-based 
Development Process for Mainframe Applications.
Chapter 5. Modernizing Enterprise DevOps 95

https://www.ibm.com/support/pages/node/6619083
https://www.ibm.com/support/pages/node/6619083


5.5  IBM Wazi as a Service and IBM Z and Cloud Modernization 
Stack tutorial

The following tutorial describes the steps that you perform to deploy a complete cloud-based 
development environment. You need a web browser (Firefox or Google Chrome). The system 
that we deploy is shown in Figure 5-12, which is a variant of Figure 5-5 on page 79 that 
replaces IBM Wazi Sandbox running in Red Hat OpenShift with WaaS running in the 
IBM Cloud on real IBM Z hardware as a VSI.

Figure 5-12   Cloud deployment diagram of the tutorial system

When the deployment is set up, you can use the cloud-based editor in IBM Wazi for Dev 
Spaces to edit, build, and debug a sample COBOL program in that environment. There are 
some optional steps that we do not cover in this tutorial to keep it brief, such as setting up a 
virtual private network (VPN) or deploying a local GitLab server and GitLab runner to run a 
pipeline. For these pieces, we provide links to the documentation and recorded demo videos 
that show you how those parts work. With this system, you also can try other components 
from the IBM Z and Cloud Modernization Stack that we cannot cover here. 

There is a fee that is associated with creating these systems. The costs are shown when you 
create the systems in the IBM Cloud creation dialog boxes. In most cases, the charges are 
per hour, so if you keep your tutorial walk-through brief and delete your resources afterward, 
then the charges should be reasonable. 
96 Mainframe Application Modernization Patterns for Hybrid Cloud



5.5.1  Creating a virtual private cloud and z/OS virtual server instance

In this section, we assume the role of Todd, who is tasked with provisioning a cloud-based 
development infrastructure for the team. His plan is to provision a VPC for the team and 
deploy everything that they need there. To sketch out his plan and discuss it with the team, he 
creates the diagram in Figure 5-13 that shows all the components that he plans to deploy 
and configure.

Figure 5-13   Cloud deployment diagram of the tutorial system

As an experienced cloud administrator, he deploys this infrastructure entirely with automation 
scripts that are written in Terraform and Ansible, which are based on reference scripts that are 
provided by IBM. However, this time he wants to teach his colleagues Deb and Kathleen the 
principles of this technology by using the IBM Cloud GUI to deploy each component one by 
one to explain each piece more visually. He performs the following steps:

1. He creates an account in IBM Cloud. He upgrades his new account to a Pay-As-You-Go 
account. For more information, see Setting up your IBM Cloud account.

2. He creates access groups and adds other cloud administrators to this account and gives 
them permissions. Deb and Kathleen do not need an account.
Chapter 5. Modernizing Enterprise DevOps 97

https://cloud.ibm.com
https://github.com/IBM/automation-ibmcloud-infra-zos-dev/
https://www.ibm.com/docs/en/wazi-aas/1.0.0?topic=vpc-setting-up-your-cloud-account


3. After he has access, he is ready to create a VPC and a z/OS virtual server instance (VSI). 
For more information, see Getting started with IBM Virtual Private Cloud (VPC).

4. He shows Deb and Kathleen the IBM Cloud VPC overview window, which in our example 
is https://cloud.ibm.com/vpc-ext/overview and shown in Figure 5-14. This window is 
the central hub for creating and configuring many of the components that he needs.

Figure 5-14   IBM Cloud Virtual Private Cloud

5. From the table of contents on the left, he browses to various pages to create the resources 
that are needed, which include the following tasks: 

a. The SSH keys page provides a public key to be used later for connecting to the 
z/OS VSIs.

b. He creates a VPC in his preferred region that also hosts z/OS VSIs. 

c. He creates subnets in three zones because he will use the same VPCs and subnets to 
also run his Red Hat OpenShift cluster later. 

d. He attaches a public gateway because he wants access to the public internet to 
download IBM Red Hat OpenShift Operators and images, such as IBM Wazi for 
Dev Spaces.

e. He configures an access control list (ACL) to limit the subnet's inbound and 
outbound traffic.

6. He creates a VPN for clients to connect securely to the VPC from his organization. For 
more information, see Creating a client-to-site VPN server for VPC.

With the VPC ready and configured, he can deploy his first z/OS VSI (Figure 5-15 on 
page 99).
98 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/docs/en/wazi-aas/1.0.0?topic=vpc-getting-started-virtual-private-cloud
https://www.ibm.com/docs/en/wazi-aas/1.0.0?topic=vpc-creating-client-site-vpn-server


Figure 5-15   Creating a virtual server instance for the IBM Z architecture

7. He performs the following tasks: 

a. In the menu in the left pane, he selects VPC Infrastructure → Virtual 
server instances.

b. He clicks Create on the Virtual server instances window, which opens the window that 
is shown in Figure 5-15, and selects the “IBM Z, LinuxONE” architecture template.

c. He selects his VPC Geography, which automatically also selects the same Region and 
Zone (subnets) of the VPC.

d. Moving down to the Details section, he enters a unique name for his VSI, and then 
selects the appropriate resource group.
Chapter 5. Modernizing Enterprise DevOps 99



e. He scrolls to the section that is shown in Figure 5-16, and then selects IBM z/OS as the 
image's operating system, with the image version 
ibm-zos-2-4-s390x-dev-test-wazi-3. (The actual number at the end of the image 
version might vary.)

f. He selects a profile with his vCPU and RAM requirements (mz2-2x16), which is a good 
choice for evaluation.

g. Under “SSH keys”, he selects the SSH key that he created earlier to use for connecting 
to the VSI. 

Figure 5-16   Creating a virtual server instance with the z/OS Development and Test image

8. Todd reviews the cost estimates for his configuration choices in the right pane and clicks 
Create virtual server to deploy his new VSI. The new VSI appears in his list of VSIs in the 
VPC management window.

9. To access the VSI without setting up a VPN, he temporarily creates a floating IP address 
by selecting his VSI from the list, going to the details window, and by using the Network 
Interfaces window to reserve and assign the VSI. He can try connecting to the VSI through 
SSH by using the following command: 

ssh ibmuser@<ip-address>

10.After he is logged on, he can enable a default user with a secure password that can be 
used for other setup work by using the following command: 

tsocmd "ALTUSER IBMUSER PASSWORD("password") NOEXPIRE RESUME"
100 Mainframe Application Modernization Patterns for Hybrid Cloud



5.5.2  Deploying Red Hat OpenShift and IBM for IBM Wazi Dev Spaces in a VPC

After he creates a VPC and VSI in IBM Cloud, Todd wants to deploy Red Hat OpenShift into 
the same VPC for Deb and Kathleen's development work.

The images that are required for running an IBM Z and Cloud Modernization Stack with 
IBM Wazi for Dev Spaces on Red Hat OpenShift are in public IBM and Red Hat catalogs that 
must be pulled from the internet. To do so, Todd must configure a public gateway that makes 
the internet reachable for his subnets for outgoing traffic by completing the following steps:

1. He uses the VPC management pages in IBM Cloud to create and assign a public gateway 
by logging in to IBM Cloud.

2. He clicks Create. 

3. He uses the Subnets management page to go into each subnet and attaches the public 
gateway with the slider. 

4. He also must order encrypted cloud storage, which is required by IBM Wazi for Dev 
Spaces to persist the developer's virtual workspaces. The quickest way to order this 
storage is to use the Search widget at the top of an IBM Cloud page to search for Object 
Storage, select IBM Cloud as the infrastructure, and select the Lite plan.

5. He provides a name for his Cloud Object Storage and creates it.

Todd is ready to deploy a Red Hat OpenShift cluster into his VPC, so he completes the 
following steps:

1. Todd uses the Search widget at the top of an IBM Cloud page to search for Red 
Hat OpenShift. 

2. On the Red Hat OpenShift creation page, he selects VPC as the infrastructure 
for deployment. 

3. He selects his VPC and his Cloud Object Storage to be used for this cluster. 

4. He selects Red Hat OpenShift 4.9 or newer. He uses the defaults for all the other values.

5. In the right pane, he reviews the cost estimates and clicks Create.

After the deployment finishes, he clicks Red Hat OpenShift web console on the cluster 
window to open the Red Hat OpenShift console.

In Red Hat OpenShift, he can now configure the IBM Operator Catalog and deploy IBM Z and 
Cloud Modernization Stack components through it. Todd deploys IBM Wazi for Dev Spaces by 
completing the following steps: 

1. In the Red Hat OpenShift web console, Todd uses the Administrator perspective and clicks 
the plus (+) icon at the upper right to open a YAML editor, and submits the YAML that is 
shown in Example 5-1 to configure the IBM Catalog.

Example 5-1   YAML to configure the IBM Catalog

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
  name: ibm-operator-catalog
  namespace: openshift-marketplace
spec:
  displayName: IBM Operator Catalog
  publisher: IBM
  sourceType: grpc
  image: icr.io/cpopen/ibm-operator-catalog:latest
Chapter 5. Modernizing Enterprise DevOps 101

https://cloud.ibm.com/vpc-ext/network/publicGateways


  updateStrategy:
    registryPoll:
      interval: 45m

2. After the catalog is added, he selects Operator → OperatorHub and searches for wazi in 
the Filter by keyword field.

3. He clicks the IBM Wazi for Dev Spaces operator. A summary window opens.

4. He clicks Install and accepts all the default settings, and then clicks Install again.

5. The operator installation prompts him to create a license. He clicks the link, accepts the 
license terms, and installs the license.

He can now create instances of IBM Wazi for Dev Spaces by using the Create Instance link in 
the installed operator's Details page by completing the following steps:

1. In the Create Cluster page, he accepts all the defaults and clicks Create. 

2. When the creation finishes and IBM Wazi for Dev Spaces is deployed, he can open the 
instance from the IBM Wazi for Dev Spaces list and find all the details that he needs, as 
shown in Figure 5-17.

Figure 5-17   Deployed IBM Wazi for Dev Spaces instances

Todd is using the Administrator menu in the left pane of the Red Hat OpenShift console to 
select Workloads → Secrets and open che-identity-secret. Here, he finds the password 
that is generated that is used for several administrative purposes by clicking Reveal values.

Back in the Dev Spaces instance window that is shown in Figure 5-17, he uses the link to the 
Keycloak SSO Admin Console with the password he looked up to create accounts for Deb, 
Kathleen, and himself. For more information about managing identities and authorizations, 
see Managing identities and authorizations.
102 Mainframe Application Modernization Patterns for Hybrid Cloud

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.14/html/administration_guide/managing-identities-and-authorizations_crw


IBM Wazi Dev Spaces is ready for Deb and Kathleen to use. Todd copies the links that are 
shown under URL Route (Figure 5-17 on page 102) and sends the links to them as the URL 
that they use to log on.

5.5.3  Creating and configuring a development workspace in IBM Wazi Dev 
Spaces

Now that Todd created an IBM Wazi for Dev Spaces deployment in IBM Cloud running in a 
VPC and created user accounts, Kathleen can use the URL that was provided by Todd to log 
on to the Dev Spaces dashboard and create her personal development workspace. The 
dashboard shows the Create Workspace page that presents several prepared templates for 
different technology stacks. Because Kathleen is trying the editor for the first time, she selects 
the “Wazi Code with sample apps” template that provides a complete technology stack for 
COBOL, PL/I, HLASM, REXX, Zowe CLI and Zowe Explorer, and Ansible automation clients 
and sample applications for all the languages that she can use for experimentation.

After the workspace starts, she is in the cloud-based editor running in her browser with the 
sample application that was cloned from a Git repository, as shown in Figure 5-18. For 
security, she was asked before cloning the repository if she trusts the repository source, 
which she answered with Yes.

Figure 5-18   The IBM Wazi for Dev Spaces COBOL editor
Chapter 5. Modernizing Enterprise DevOps 103



Kathleen opens her first COBOL program from the sample repository and explores the editing 
features, such the outline view on the right that she can use to quickly navigate the program. 
When she hovers the cursor over a variable, she sees its definition, which she can right-click 
and go to that definition in the code or review other locations in the program where it is used. 
She also can write new lines by using code completion by pressing Ctrl-Spacebar to open 
choices for completing a command for the language in which she is working. She also 
discovers that the code completion menu provides many code templates from which she can 
choose. These templates offer standard development code patterns such as opening and 
writing to VSAM files or a CICS Handle Abends code snippet.

Next, she wants to make and build code changes on her team’s WaaS VSI and start a Debug 
session from there too. For that task, the repository comes with sample automation scripts 
that are written in Ansible (for configuring the new z/OS VSI) and Groovy (for running builds 
on z/OS with IBM DBB).

To use the Ansible script, she edits an Ansible configuration file that contains all the specific 
host variables that are needed for the run time. The IBM Wazi for Dev Spaces sample 
repository includes configuration files that are prepared for the WaaS Development and Test 
image (and the IBM Wazi Sandbox image), so all she must do is provide the IP address for 
the VSI and the username that Todd enabled for her. For the tutorial, we did not set up a VPN, 
but a public IP address, so Todd must provide that address to the developers. He finds it in the 
VSI list of the VPC home page in IBM Cloud.

Kathleen opens the file ansible/inventories/inventory.yml in the editor and edits the IP 
address for the devtest entry that is listed there. She also replaces the username with 
ibmuser. She sees that editing the file also comes with advanced features because the 
development stack that she selected for her IBM Wazi for Dev Spaces workspace comes with 
tools for editing Ansible and YAML.

Kathleen also opens the file ansible/initialize-local-files.yaml to review the first 
playbook Todd asked her to run. She uses the languages selector in the status bar of the 
editor to switch the language to Ansible, which starts the Ansible language support. She now 
can use similar features that she observed for the COBOL editor by hovering her cursor in the 
editor, such as the documentation of most Ansible commands, syntax highlighting and errors 
in the Problems view, and code completion.

She opens wazi-terminal from the Terminal menu and runs that playbook by entering the 
following commands: 

cd ansible
ansible-playbook -i inventories --extra-vars "host=devtest1" 
initialize-local-files.yaml

The command prompts her for the following information: 

1. For the password of the user that she specified in the configuration file, which generates 
several files. 

2. For the version of Zowe CLI profiles that she wants to create. She confirms the default 
of v7.

3. For the editor that she is using. She enters che because she is in IBM Wazi for Dev 
Spaces. 

4. Whether she wants to overwrite previously created files. She enters yes.
104 Mainframe Application Modernization Patterns for Hybrid Cloud



When the playbook finishes running, she scrolls back up, and carefully reviews the output. It 
contains instructions for the following tasks to complete the setup:

1. Finishing the Zowe CLI setup depends on how she answered the prompts. The script 
created a Zowe team configuration file for her host devtest1 and placed it in 
~/.zowe/zowe.config.json. To complete the setup, she runs the following command to 
complete the Zowe configuration:

zowe config update-schemas

2. The script output informs her that the script created an IBM Z Open Debug launch for her 
that she must copy into her workspace’s .vscode folder. 

3. Finally, the script printed JSON values that she must add to her IBM Wazi for Dev Spaces 
user settings to run the debugger. To open the Preferences window, she selects File → 
Settings → Open Preferences, and then she switches to the JSON view and pastes the 
provided JSON at the end (before the final closing brace).

Because Todd has not contacted Zach to configure the debugger with his company’s signed 
SSL certificates, Todd decided to use the debugger with self-signed certificates for now. He 
provides Kathleen and Deb with the instructions to run these certificates manually. He 
instructs them to open a new browser tab and go to 
<https://vsi-ip-addres:8192/api/v1/remote-debug/config> to accept the self-signed 
certificate into the browser so that IBM Wazi for Dev Spaces can use it for connecting to 
the debugger.

Now, Kathleen configured a connection to her WaaS VSI by using Zowe and configured the 
debugger to work with her VSI. She tests her configuration by switching to the Zowe Explorer 
view in the editor. She uses the z/OS UNIX System Services view to connect to the VSI and 
look at the ibmuser home directory as /u/ibmuser. For more information about using the 
Zowe Explorer, see Using the Zowe Explorer views.

In the /u/ibmuser home directory, Kathleen opens the file .ssh/authorized_hosts and pastes 
and saves her IBM Wazi for Dev Spaces Workspace's SSH key, which she retrieved from the 
command menu by pressing Ctrl-Shift-P (Windows) or Cmd-Shift-P (Mac), and then selecting 
SSH: View public keys → Default. For more information, see Managing Git configuration: 
identity.

Next, Kathleen wants to build and run a COBOL application. To do so, she must prepare the 
IBM DBB setup on the z/OS VSI. Its development and test image is preinstalled and 
preconfigured for IBM DBB, so she must configure only her user account. The sample 
repository has another Ansible playbook for the configuration task.

She runs the playbooks by using the following command: 

ansible-playbook -i inventories --extra-vars "host=devtest1" 
dbb-prepare-userbuild.yml

The script runs fully automated. When it finishes, she reviews the output and the playbook's 
source code to understand what it did. 

The output of the playbook provides some JSON that must be copied into Kathleen's user 
settings. It contains user- and system-specific values that the editor uses to start a user build 
remotely on the VSI.
Chapter 5. Modernizing Enterprise DevOps 105

https://www.ibm.com/docs/en/cloud-paks/z-modernization-stack/2022.3?topic=zowe-using-explorer-views
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.14/html/end-user_guide/che-theia-ide-basics_crw#version-control_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.14/html/end-user_guide/che-theia-ide-basics_crw#version-control_crw


Kathleen also sees that the script cloned a Git repository remotely on z/OS UNIX System 
Services into the folder /u/ibmuser/projects that contains the latest version of IBM 
dbb-zappbuild with the build scripts that are needed for remote building from the editor. It also 
copied a configuration file into that repository. This configuration is specific to the 
development and test z/OS VSI system, and lists the data sets for the compiler, libraries, and 
ports. All the required values are provided for the Development and Test Stock Image in the 
Ansible inventory by the file ansible/inventories/host_vars/devtest1.yml.

After running two Ansible playbooks for setup, Kathleen is now ready to start development.

5.5.4  Building, running, and debugging your application

After this quick setup, Kathleen can focus on working on an application. She must build it, run 
debug sessions to trace through its functions and her changes, and run it with test data to 
ensure that any changes she applies do not break the application or introduce regressions.

To simplify development for enterprise applications and make it easy for Deb and Kathleen to 
perform these same operations, the team uses another set of Ansible playbooks that provide 
a similar UX as though Deb were building, running, and debugging a Java or 
JavaScript application.

The team wants simple operations for the following tasks: 

1. Installing all the prerequisites and building all the programs of the application.

2. Uploading test data to the z/OS system and running the application to test its functions.

3. Quickly building the program that is being edited to ensure that it compiles.

4. Launching a debug session of the program that was built to step through its functions.

IBM Wazi for Dev Spaces and the sample repository have Ansible playbooks and editor 
launches for these operations. In our example, we complete the following steps: 

1. Kathleen runs the playbook by using the following command to build the entire application. 
This playbook also generates and uploads JCL files to the VSI for running and debugging.

ansible-playbook -i inventories --extra-vars "host=devtest1" dbb-sam-build.yml

2. Kathleen runs another playbook by using the following command to upload test data and 
run the application against that test data. The output of the playbook shows the 
downloaded application's output to check the results.

ansible-playbook -i inventories --extra-vars "host=devtest1" dbb-sam-run.yml

3. Kathleen edits the program COBOL/SAM1.cbl that she opened earlier. She performs a 
right-click operation from within the source code and selects Run IBM User Build (the first 
time she runs it, she must select Run setup for IBM User Build). This action starts a user 
build session. The editor opens an output view and shows the log for uploading the 
program and its local copybook dependencies and starting an IBM DBB build by using the 
dbb-zappbuild repository's scripts.

4. After the build succeeds, Kathleen can start a debug session. She uses Zowe Explorer to 
find the DEBUG JCL file that was uploaded by the build playbook to IBMUSER.SAMPLE.JCL. 
She right-clicks the file and selects Submit to start the session. She switches to the 
editor's Debug view and selects the launch that was created by the initialized playbook 
that she ran at the beginning. She clicks Play, and the debug session starts in the editor. 
She can set breakpoints and examine the value of variables. The UX is the same as with 
debugging Java or TypeScript.
106 Mainframe Application Modernization Patterns for Hybrid Cloud

https://github.com/IBM/dbb-zappbuild


5.6  Summary

Our review of the Enterprise DevOps Enabler Patterns and the IBM technology portfolio 
around them is concluded. We described many important best practices for DevOps and how 
they apply to hybrid development projects. We explored key tools and technologies that help 
enable development teams to realize these best practices. We presented best practices as a 
set of layers that build on top of each other while also recounting the history of IBM Z DevOps, 
IBM Wazi, and IBM Z and Cloud Modernization Stack. We gave you two end-to-end examples 
that use these practices and technologies: One from the development team's process point of 
view, and one technical hands-on tutorial that you can try out yourself.

For more information that summarizes many of the core concepts of this chapter, and to see 
the end-to-end demonstration from the tutorial section in action, see this YouTube video.
Chapter 5. Modernizing Enterprise DevOps 107

https://www.youtube.com/watch?v=8Z0GPN7Ld2w


108 Mainframe Application Modernization Patterns for Hybrid Cloud



Chapter 6. Managing your applications

This chapter describes the implications of application monitoring and management aspects in 
a hybrid cloud architecture. Additionally, it describes Red Hat OpenShift implementations on 
IBM Z.

This chapter covers the following topics:

� Monitoring, logging, and metering introduction

� Components of the Red Hat OpenShift monitoring stack

� Observability on z/OS

� Logging

� Metering

6

© Copyright IBM Corp. 2023. 109



6.1  Monitoring, logging, and metering introduction

Monitoring systems, applications, and IT infrastructure components is an essential step to 
achieve high standard service levels. Being able to predict and quickly respond to failure, fix 
issues rapidly, and understand resource utilization is crucial. 

These goals can be achieved by applying the following different techniques: 

� Monitoring: Composed of strategies and practices for analyzing, tracking, and managing 
services and applications, allowing systems administrators to maintain visibility of the 
performance of their IT assets.

� Logging: In a hybrid cloud environment, logging refers to the ability of capture and 
aggregate logs from various applications and services. Ideally, it comes coupled with 
analytics tools administrators and operations teams use to gain insights into the overall 
system’s health.

� Metering: Refers to the ability of collecting metrics that administrators, operations teams, 
and users use to understand the usage of applications, services, and IT resources.

6.2  Components of the Red Hat OpenShift monitoring stack

Red Hat OpenShift Container Platform includes a preconfigured, preinstalled, and 
self-updating monitoring stack that provides monitoring for core platform components. The 
Red Hat OpenShift Container Platform monitoring stack is based on the Prometheus 
open-source project and its wider ecosystem. The monitoring stack includes the 
following components:

� Core platform monitoring components: A set of platform monitoring components are 
installed in the openshift-monitoring project by default during an Red Hat OpenShift 
Container Platform installation. These components provide monitoring for core Red Hat 
OpenShift Container Platform components, including Kubernetes services. The default 
monitoring stack also enables remote health monitoring for clusters. These components 
are illustrated in the “Installed by default” section of Figure 6-1 on page 111.

� Components for monitoring user-defined projects: After optionally enabling monitoring for 
user-defined projects, more monitoring components are installed in the 
openshift-user-workload-monitoring project, which provides monitoring for user-defined 
projects. These components are illustrated in the “User” section of Figure 6-1 on 
page 111.
110 Mainframe Application Modernization Patterns for Hybrid Cloud



Figure 6-1   Red Hat OpenShift Container Platform monitoring stack diagram1

Ideally, you should configure persistent storage for your running Red Hat OpenShift cluster to 
store that data into a persistent volume (PV) so that it can survive a pod restart or re-creation. 
Because Prometheus has two replicas and Alertmanager has three replicas, you need five 
PVs to support the entire monitoring stack. Depending on the persistent storage solution in 
place, all these PVs are provisioned dynamically, for example, Red Hat Data Foundation 
provides that capability.

Monitoring user-defined workloads is beyond of the scope of this publication, but to contrast 
user-defined projects versus standard monitoring of components of a project or namespace, 
consider the following example: A PostrgeSQL database is deployed in a project that is 
named Database, and uses the standard monitoring capabilities of the built-in monitoring 
stack, so you can check the amount of CPU, memory, network usage, and others. 

1  Source: https://docs.openshift.com/container-platform/4.11/monitoring/monitoring-overview.html 
Chapter 6. Managing your applications 111

https://docs.openshift.com/container-platform/4.11/monitoring/monitoring-overview.html


The user-defined monitoring capability that is described by Red Hat documentation means 
that extended monitoring capabilities can be added, such as the number of connections to the 
database, which extends the monitoring capabilities beyond the standard capabilities. For 
more information about enabling the monitoring of user-defined projects, see Configuring and 
using the monitoring stack in OpenShift Container Platform.

6.2.1  Monitoring the Red Hat OpenShift Container Platform infrastructure by 
using Prometheus

This section covers the built-in monitoring stack that comes with Red Hat OpenShift 
Container Platform.

Red Hat OpenShift Container Platform provides preconfigured and self-updating monitoring 
as standard. You can monitor the platform's core components and user-defined projects. By 
using the user-defined monitoring, the cluster administrators, developers, and other types of 
users can specify how services and pods are monitored for each project (also known as 
a namespace).

Red Hat defines monitoring of user-defined workloads as monitoring the number of 
connections for a database, or any other specific characteristic of that workload that does not 
meet the default items that are covered by the standard monitoring stack.

This section does not replace the official Red Hat OpenShift Platform documentation. For 
more information, see Monitoring overview.

In summary, the Red Hat OpenShift Container Platform web console provides a way to view 
and manage metrics and alerts, and to access the monitoring dashboards.

Besides the built-in monitoring dashboards, Red Hat OpenShift Container Platform also offers 
support for third-party interfaces such as Prometheus, Alertmanager, and Grafana.

6.2.2  Using the Red Hat OpenShift Container Platform web console's 
dashboard to monitor your cluster and customer workloads 

In this section, we explore the Red Hat OpenShift Container Platform web console's 
dashboard that is used to monitor your cluster and customer workloads. 

Exploring the Overview dashboard as the cluster administrator
The Overview dashboard (shown in Figure 6-2 on page 113) provides information such as 
alerts; the status of the cluster and control plane nodes; the status of operators; and whether 
your cluster is deployed as a connected cluster. You can leverage the Insights capability to 
prevent issues on your environment by tapping into a huge database of information from Red 
Hat and leveraging the artificial intelligence (AI) capability to create alerts of potential issues 
in your environment. 
112 Mainframe Application Modernization Patterns for Hybrid Cloud

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/index#preparing-to-configure-the-monitoring-stac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/index#preparing-to-configure-the-monitoring-stac
https://docs.openshift.com/container-platform/4.11/monitoring/monitoring-overview.html


Figure 6-2   Red Hat OpenShift dashboard web console overview

Scrolling down through the Overview dashboard window, you see real-time monitoring of your 
Red Hat OpenShift cluster of total utilization of CPU, Memory, Filesystem, Network, and Pod 
count, as shown in Figure 6-3.

Figure 6-3   Red Hat OpenShift dashboard web console real-time monitoring
Chapter 6. Managing your applications 113



By default, historic monitoring data is kept for about 15 days. If no PVs are used for the 
monitoring stack, data is saved in the local node where the stack is running. Data is lost if the 
pod is lost or if the node is unavailable, so as a best practice, add a persistent storage layer to 
your Red Hat OpenShift Cluster so that no historical data is lost.

To change the amount of time that historic monitoring data is kept, see Modifying the retention 
time and size for Prometheus metrics data.

Further down on the Overview window, you can check the activity of the cluster, where it 
explores the most recent events from this cluster, as shown in Figure 6-4.

Figure 6-4   Red Hat OpenShift dashboard web console real-time monitoring

6.2.3  Exploring the default alerting system 

Moving from the Overview section to the Observe menu provides access to the Alerting 
feature of Red Hat OpenShift and other dashboards that show resources that are monitored. 

Figure 6-5 on page 115 shows the Alerting feature in Red Hat OpenShift.
114 Mainframe Application Modernization Patterns for Hybrid Cloud

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/index#modifying-retention-time-and-size-for-prometheus-metrics-data_configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/index#modifying-retention-time-and-size-for-prometheus-metrics-data_configuring-the-monitoring-stack


Figure 6-5   Red Hat OpenShift Alerting feature

Alerts can be used to monitor certain condition of the cluster and aspects of user-defined 
workloads. Configuring a new alert is beyond the scope of this publication, but we show you 
an example of a default alert to track, for example, new versions of a software stack for Red 
Hat OpenShift Container Platform. 
Chapter 6. Managing your applications 115



Figure 6-6 shows an alert to inform the administrator that there is an update that is available 
for the Red Hat OpenShift cluster. Regardless of whether the administrator is working 
connected or disconnected deployments of Red Hat OpenShift, they receive an alert 
whenever there is an update that is available to this particular cluster.

Figure 6-6   Red Hat OpenShift Alerting example 

In this cluster, as an example, this alert was triggered, and it shows in the Red Hat OpenShift 
web console in the bell icon at the upper right of the window (Figure 6-7).

Figure 6-7   Red Hat OpenShift Notification bell 
116 Mainframe Application Modernization Patterns for Hybrid Cloud



In Figure 6-7 on page 116, there are six alerts that are triggered, and if we scroll down the list, 
we see that a cluster update is available, as shown in Figure 6-8.

Figure 6-8   Red Hat OpenShift notifications expanded
Chapter 6. Managing your applications 117



6.2.4  Exploring cluster monitoring data from different sources, such as cluster 
nodes, projects, or pods 

If you select Observe → Dashboards on the Red Hat OpenShift web console, a drop-down 
menu offers many options to show monitoring data about the Red Hat OpenShift cluster, as 
shown in Figure 6-9.

Figure 6-9   Red Hat OpenShift Observe dashboard
118 Mainframe Application Modernization Patterns for Hybrid Cloud



For demonstration purposes, a few options are selected from that list of items. Starting with 
Kubernetes /Compute Resources / Namespaces (Pods), as shown in Figure 6-10. It 
shows monitoring information about a user workload (not user-defined monitoring 
information) about a specific namespace (project). Inside this project (pdf-voting-app-demo), 
we have an application that is composed of several microservices, and this dashboard shows 
what each pod inside this namespace is using, such as CPU, memory, and network usage.

Figure 6-10   Red Hat OpenShift dashboard namespace pod monitoring
Chapter 6. Managing your applications 119



A different perspective for the same collection of microservices can be shown if the option 
Kubernetes /Computer Resources / Workload is selected, as shown in Figure 6-11. By 
using this option, you can select the Namespace, the Type of deployment, and Workload (in 
this case, the different microservices of this application).

Figure 6-11   Red Hat OpenShift dashboard namespace, deployment type, and workload monitoring

Figure 6-12 on page 121 shows the same dashboard, but with a different deployment Type 
(this collection of microservices uses two types of deployments). Both Figure 6-10 on 
page 119 and Figure 6-12 on page 121 provide mode details about resource consumption 
per workload inside that specific namespace. 
120 Mainframe Application Modernization Patterns for Hybrid Cloud



Figure 6-12   Red Hat OpenShift dashboard different deployment types example

6.2.5  Using the oc client tool to monitor resources 

The following set of examples describe how to use the command-line interface (CLI) to obtain 
the same information by using the oc client tool. For more information about this tool, see 
Getting started with the Red Hat OpenShift CLI.

After the oc client tool is installed on your client workstation, you can work remotely with 
your cluster.

Example 6-1 demonstrates how to monitor specific namespaces by using the oc client tool. 

Example 6-1   The oc adm top pod -n <namespace> command 

$ oc adm top pod -n pdf-voting-app-demo
NAME                             CPU(cores)   MEMORY(bytes)                                                

postgresql-1-wjzq8                   3m           39Mi
redis-1-c7m22                        2m           14Mi     
voting-app-nodejs-5748d6bf84-ktmfb   0m           50Mi 
voting-app-py-76766496f4-pq5kr       3m           56Mi
voting-app-worker-py-c5949-72vnn     0m           20M
Chapter 6. Managing your applications 121

https://docs.openshift.com/container-platform/4.11/cli_reference/openshift_cli/getting-started-cli.html


Example 6-2 shows how to monitor all namespaces in your Red Hat OpenShift Cluster by 
using the oc client tool.

Example 6-2   The oc adm top pod --all-namespaces command 

$ oc adm top pod --all-namespaces
NAMESPACE             NAME            CPU(cores)   MEMORY(bytes)                                                   
…                                                
pdf-voting-app-demo  postgresql-1-wjzq8     3m           39Mi
pdf-voting-app-demo  redis-1-c7m22          2m           14Mi     
voting-app-nodejs-5748d6bf84-ktmfb          0m           50Mi 
pdf-voting-app-demo  voting-app-py-767664…  3m           56Mi
pdf-voting-app-demo  voting-app-worker-p…   0m           20M
openshift-multus     network-metric…        0m           47Mi
…

You can monitor the resources that are used by nodes on the Red Hat OpenShift cluster with 
the oc client tool, as shown in Example 6-3.

Example 6-3   Monitoring resources that are used by nodes

$ oc adm top node
NAME                CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%                                                                                                  
infra1.ocp.local     1478m        42%    4001Mi          26% master0.ocp.local    
1557m        44%    12825Mi         85% master1.ocp.local     768m        21%    
7740Mi          51%
master2.ocp.local    1262m        36%    8557Mi          57% infra0.ocp.local     
2243m        29%    10007Mi         32% worker1.ocp.local     503m         6%    
7805Mi          25%
worker2.ocp.local     579m         7%    6962Mi          22%

Our simplified overview of the Red Hat OpenShift Container Platform built-in monitoring stack 
is concluded. For more information, see About OpenShift Container Platform monitoring.

6.2.6  Using Resource Measurement Facility to monitor z/OS resources for Red 
Hat OpenShift Container Platform

In this publication, the Red Hat OpenShift Container Platform was implemented on top of 
z/OS. As such, the z/OS Workload Manager (WLM) is used to control the assignment of 
resources to the Red Hat OpenShift cluster, as with any other started task. 

When using IBM z/OS Container Extensions (zCX) to run Red Hat OpenShift components 
and workloads, there are specific z/OS WLM definitions to be made as part of the Red Hat 
OpenShift implementation, such as service classes. For more information, guidance, and 
implementation steps to configure WLM policies for zCX Foundation for Red Hat OpenShift, 
see Workload management configurations.

After the implementation, monitoring resource utilization and adjusting definitions is equally 
important. Standard z/OS monitoring tools, such as z/OS Resource Measurement Facility 
(RMF) can be used to monitor Red Hat OpenShift related zCX started tasks to ensure that 
velocity goals are being achieved and CPU consumption for general-purpose processors and 
IBM Z Integrated Information Processor (zIIP) offload engines are within the needed levels.
122 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/docs/en/zcxrhos/1.1.0?topic=openshift-workload-management-considerations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/index#about-openshift-monitoring


For more information about monitoring zCX started tasks with RMF, see 7.5, “Monitoring with 
RMF on zCX instance level” of the Getting started with z/OS Container Extensions and 
Docker, SG24-8457.

6.3  Observability on z/OS

In a hybrid cloud architecture, you must monitor applications and all their involved 
infrastructure components from a single tool. Monitoring refers to assessing, based on logs, 
events and traces; whether an application or its components are available; healthy, 
malfunctioning, and heavily used; and others. However, when applications involve integration 
between several different layers and services that might be running in various platforms or 
clouds, it might become challenging to understand whether service levels, end-to-end, are 
being met or to predict and prevent failures.

To overcome this challenge, new techniques are applied to cloud-native applications and 
microservices to complement traditional monitoring tools. As such, being able to measure the 
state of applications end-to-end and in each of its processing phases over time is known 
as observability. 

Observability can be accomplished by continuously analyzing logs, events, metrics, and trace 
data; recording success or failure, individual response times, and other telemetry data; and 
generating insights that can trigger automated recovery actions.

Due to existing requirements of availability, there is a shift to AI-driven observability, which 
brings specific metrics with it:

� Mean Time To Detect (MTTD) describes how long it takes to detect incidents or issues.

� Mean Time To Prevention (MTTP) describes how long it takes to automatically prevent 
incidents or issues from negatively impacting application performance and users.

� Mean Time To Notify (MTTN) refers to the amount of time that it takes to raise alerts to 
relevant teams about incidents or issues.

� Mean Time To Repair (MTTR) is used to describe the amount of time that is taken during 
automated, semi-automated, or manual remediation of incidents or issues.

6.3.1  Instana on IBM z/OS

One of the leading observability tools that is available in the market and made available to 
cover z/OS components is IBM Instana®. It is an enterprise observability solution that 
automatically makes your applications and services visible, which provides context to that 
observed information. You can take intelligent action based on that information. Instana 
monitors and analyzes your applications, services, infrastructure, web browsers, mobile 
applications, and more.

With Instana, you instantly know whether any of your customers are impacted by performance 
or stability issues in your applications within a few seconds. Instana provides a GUI to guide 
you to the root cause with a few clicks.
Chapter 6. Managing your applications 123



Some key capabilities of Instana on IBM z/OS are as follows. 

� It provides end-to-end observability for applications from mobile through mainframe in a 
single solution.

� It combines the industry's leading capabilities from the Instana Observability platform, 
which are automation, context, and intelligent action together with the world’s most 
powerful enterprise data processing hub, which is the IBM mainframe. 

� It does not replace traditional z/OS tools, but operations teams can form an application 
point of view, and quickly determine and point to exactly where there is an issue, such as 
unavailability or slowdown.

� It smooths operational visibility from all application intersections, including application 
dependency maps for every application, their flows, and calls.

6.4  Logging

Red Hat OpenShift Logging aggregates all the logs from a Red Hat OpenShift Container 
Platform cluster, such as node system audit logs, application container logs, and 
infrastructure logs. Red Hat OpenShift Logging stores them in a default log store where you 
can use a Kibana web console to visualize log data.

Red Hat OpenShift Logging aggregates the following types of logs:

� Application: Container logs that are generated by user applications running in the cluster, 
except infrastructure container applications.

� Infrastructure: Logs that are generated by infrastructure components running in the cluster 
and Red Hat OpenShift Container Platform nodes, such as journal logs. Infrastructure 
components are pods that run in the openshift*, kube*, or default projects.

� Audit: Logs that are generated by the node audit system (auditd), which are stored in the 
/var/log/audit/audit.log file, and the audit logs from the Kubernetes application 
programming interface (API) server and the Red Hat OpenShift apiserver.

6.5  Metering

Metering is a deprecated feature since Red Hat OpenShift 4.7. Its function is included in the 
Red Hat OpenShift Container Platform and continues to be supported, but it will be removed 
in a future release of this product, so you should not use it for new deployments.

Note: At the time of writing, the Instana back-end on-premises installation is supported 
only on certain Linux distributions running on x86/64bit processors, as documented 
in IBM Instana Observability documentation. For more information about this topic, see the 
IBM Statement of Direction IBM Observability by Instana intends to provide support for IBM 
Z application environments.

This IBM Statement of Direction is subject to change to support on-premises installation of 
Instana back-end servers running on Linux on IBM Z. For more information, contact your 
IBM Sales representative.
124 Mainframe Application Modernization Patterns for Hybrid Cloud

https://www.ibm.com/docs/en/instana-observability
https://www.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/897/ENUS222-177/index.html
https://www.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/897/ENUS222-177/index.html


Chapter 7. Deploying production 
applications

This chapter builds on the modernization patterns that were introduced in Chapter 1, 
“Introduction” on page 1. We focus on the delivery of an application by using the 
application-centric modernization pattern to production with a chosen production deployment 
strategy. The application-centric modernization pattern is used to enhance functions by 
developing cloud-native functions to extend or enhance an application.

You are provided with a sample application, implementation details, and implementation 
best practices. 

This chapter covers the following topics:

� Production deployment strategies

� Exposing on-premises applications through a public cloud

7

© Copyright IBM Corp. 2023. 125



7.1  Production deployment strategies

Production deployment strategies involve delivering an application from development to the 
production environment, where it is used by users. There are various factors that inform the 
choice of deployment strategy, which include application architecture, business requirements, 
size of the change, and impact to application users. 

Here are some common deployment strategies:

� Re-create deployment

This deployment stops the current version of an application and creates a new version. 
This deployment type requires a maintenance window, which leads to downtime for users. 
If there are any issues with the application, another maintenance window is required to roll 
back changes.

� Blue/green deployment

This deployment has two releases that are deployed in production. The current version 
and the new version are both functional, and user traffic is switched from the current 
version to the new version. This deployment type requires almost no maintenance window 
and offers faster rollbacks if major issues are discovered in the new version. Two releases 
in production mean it is costlier because more resources are required.

� Rolling deployment

This deployment involves the incremental rollout of a new version to replace the current 
version of an application. This deployment type requires almost no maintenance window, 
depending on the size of deployment. While a rollout or rollback is happening, there is no 
control over which application version accepts traffic.

� Canary deployment

This deployment is used to expose a new version to a small subset of users. Using 
weights, traffic is partitioned to multiple versions of an application that are running 
concurrently in production. For example, a stable release and canary release are deployed 
into production with 90% traffic going to the stable release and 10% going to the canary 
release. With this deployment, you can test features in production with minimal impact. 

We use the canary deployment strategy in this chapter.

� A/B Testing deployment

This deployment is similar to the canary deployment strategy but has fine-grained controls 
on the subset of users that can access a new feature. It uses statistical evidence from 
observing and monitoring user engagement to decide about whether a new feature is 
viable. This deployment has full control of traffic distribution, but it is a more 
complex implementation.

7.2  Exposing on-premises applications through a public cloud

In the section, we prepare an on-premises application that is deployed to Red Hat OpenShift 
on IBM Z to accept traffic from the internet through IBM Cloud. You learn how to connect your 
on-premises application to IBM Cloud in a secure fashion. This task is a building block of the 
canary deployment that was described in 7.1, “Production deployment strategies” on 
page 126.
126 Mainframe Application Modernization Patterns for Hybrid Cloud



7.2.1  Prerequisites

Here are the required components for our application deployment: 

� A Red Hat OpenShift cluster and registry that are provisioned. The developer has 
sufficient access permissions (roles) on the cluster.

� If the cluster is on-premises or a private network, the user is connected to the network 
through a virtual private network (VPN).

� Podman is installed on the developer machine.

� Client tools to access the cluster from a command-line interface (CLI) are installed on the 
developer machine. For more information about installation instructions, see Getting 
started with the Red Hat OpenShift CLI.

� The server certificate is installed on the developer machine to enable a secured 
connection. You must obtain a server certificate from your cluster administrator.

� Access to GitHub to access some sample Golang source code.

� An IBM Cloud account with Identity and Access and Management (IAM) services to virtual 
private cloud (VPC) infrastructure services.

� The domain or subdomain for delegation to IBM Cloud.

7.2.2  Current architecture

In our lab environment scenario, we have an application that is named Supply Chain App that 
is deployed on-premises with local access to a database. The only means to use the 
application is by being physically present in the corporate network or by using a VPN to 
access the corporate network. The CIO will likely make the application available to business 
partners. A high-level overview of this architecture is shown in Figure 7-1.

Figure 7-1   Current architecture
Chapter 7. Deploying production applications 127

http://www.github.com
https://docs.openshift.com/container-platform/4.11/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/4.11/cli_reference/openshift_cli/getting-started-cli.html


7.2.3  Target architecture 

The business wants to allow access through the internet and enable business partners to 
access the application in a secure fashion. We use IBM Cloud to deploy the “front-door” 
components and perform network integration through a site-to-site VPN gateway and by 
using Internet Protocol Security (IPsec). An overview of our architecture is shown in 
Figure 7-2.

Figure 7-2   Target architecture

Benefits
Some benefits that come from this target architecture are the following ones: 

� Seamless application deployment. The user has no clue where the infrastructure is.
� Easy to implement multiple points of failures.
� Leveraging multiple networking and cloud security tools.

Considerations
Latency requirements should be factored in when determining the location of the IBM Cloud 
VPC components. There are existing solutions that provide high-bandwidth, low latency links 
between an on-premises data center and various IBM Cloud locations.
128 Mainframe Application Modernization Patterns for Hybrid Cloud



7.2.4  Current architecture implementation

We deploy a simple application that is written in Golang to Red Hat OpenShift on 
IBM Z. The application listens on port 8080 and provides a health endpoint. 

Building and deploying the Supply Chain App 1.0 from source code
Although the Red Hat OpenShift source to image (S2I) process was introduced in 
“Deployment instructions” on page 49, here we manually build the application by using 
Podman and uploading the image to the Red Hat OpenShift Container registry. For more 
information about the registry, see Registry.

To build and deploy an application, complete the following steps: 

1. Download the source code from Git by using the command that is shown in Example 7-1.

Example 7-1   Command to download the source code

git clone github.com/redbook
cd redbook/ch7/scapp-1.0
podman build --pull --rm -f "dockerfile" -t scapp:1.0

2. Build and push the application to the Red Hat OpenShift registry, as shown in 
Example 7-2.

Example 7-2   Using Podman to build and push the application

podman build --pull --rm -f "dockerfile" -t scapp:1.0

3. Deploy the application to Red Hat OpenShift by using the command that is shown in 
Example 7-3.

Example 7-3   Deploying the application

oc create-project scapp
oc deploy bla

4. Check the application by using the command that is shown in Example 7-4.

Example 7-4   Checking the application

oc describe deployment

5. Test the application by using the command that is shown in Example 7-5.

Example 7-5   Command to test the application

curl app url

This command returns a response with the application version.

We built and deployed a simple application. This application is now deployed. 
Chapter 7. Deploying production applications 129

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/registry/index


7.2.5  Target architecture implementation

This section involves the creation of the components that are representative of the 
architecture that is shown in Figure 7-1 on page 127. Most of the steps are conducted on the 
IBM Cloud web GUI. Here are the high-level steps:

1. Creating and configuring a load balancer in IBM Cloud

2. Creating the IBM Cloud internet service to manage the domain

3. Creating an IBM Secrets Manager to order public TLS certificates

4. Configuring IBM Cloud Load Balancer with TLS certificates

In our example, we have two domains: one internal and one external. 

The Red Hat OpenShift cluster is configured to use the internal domain 
rdbkvmocp.pbm.ihost.com, and the applications are reachable on-premises at 
https://<app>.app.rdbkvmocp.pbm.ihost.com.

We named our external domain zhybridcloud.centers.ihost.com. The application that we 
deploy will be reachable in our lab environment at 
https://scapp.zhybridcloud.centers.ihost.com on the internet.

Creating and configuring a load balancer in IBM Cloud
In this step, we create an application load balancer to receive traffic from the internet:

1. Create a resource group. 

Creating a resource group helps with grouping all the resources that are deployed for this 
example. You can accomplish this task by using the IBM Cloud command-line interface 
(CLI) or its GUI. 

For our example, we went to IBM Cloud Resource Groups to create a resource group that 
is named redbook.
130 Mainframe Application Modernization Patterns for Hybrid Cloud

https://cloud.ibm.com/account/resource-groups


2. Go to the VPC Infrastructure page on IBM Cloud. 

On the IBM Cloud dashboard, click the navigation menu at the upper left, and then click 
VPC Infrastructure (Figure 7-3), or go to IBM Cloud VPC.

Figure 7-3   VPC Infrastructure navigation
Chapter 7. Deploying production applications 131

https://cloud.ibm.com/vpc-ext/provision/vpc


3. Create a VPC.

In the VPC Infrastructure window, scroll down the left pane to the Network section, click 
VPC, and then click Create. Figure 7-4 shows the window that opens. 

Alternatively, you can click Catalog at the upper right menu and search for VPC. We are 
deploying in the North America Geography and Dallas region. We input redbook as the 
Name and select redbook as the resource group. No changes are required for the 
other options.

Figure 7-4   Creating a VPC

Click Create virtual private cloud.

4. Create the security group for the load balancer.

This step is used to configure the traffic flow roles for the load balancer instance that we 
create. The planned traffic rules are to accept HTTPS traffic from any IP address and 
allow traffic of any type to any IP address. Add the rules as shown in Figure 7-5 on 
page 133.
132 Mainframe Application Modernization Patterns for Hybrid Cloud



Figure 7-5   Security group rules for the load balancer

We entered the name redbook-alb-sg. Ensure that Location is the same as the VPC that 
you created and the resource group is the same as the one that you created. In our case, 
it is redbook. The VPC we selected is also redbook. Click Create security group.

5. Create the load balancer.

On the VPC Infrastructure window, scroll down the left pane to the Network section, click 
Load balancers, and then click Create. Alternatively, go to IBM Cloud Load Balancer, and 
then click Create. 

Enter zhybridcloud-alb as the name of the load balancer. Ensure that the 
Geography/Region is the same as in step 3 on page 132, the resource group is redbook, 
and the Application Load Balancer is selected. Select Public for the Type. Select all the 
subnets for Subnets. No back-end pool or listeners must be configured currently. For 
security groups, clear the default that is highlighted as VPC default, and select 
redbook-alb-sg. 

Note: In a real production environment, the outgoing traffic should be limited to only 
permitted protocols, ports, and IP addresses.
Chapter 7. Deploying production applications 133

https://cloud.ibm.com/vpc-ext/network/loadBalancers


Figure 7-6 shows the window where this information in entered. 

Figure 7-6   Creating a load balancer

6. Click Create load balancer. Verify that the load balancer was properly created. You 
should have two public IP addresses that are allocated to the load balancer. Note the IP 
addresses because you reference them again.

Creating the IBM Cloud internet service to manage the domain
In the next configuration tasks, we will be completing the following tasks: 

� Use the IBM Cloud Internet Services to manage a delegated subdomain:

zhybridcloud.centers.ihost.com

� Use the IBM Secrets manager to order TLS certificates for the subdomain.

� Configure the HTTPS front-end listener on the load balancer with a TLS certificate.
134 Mainframe Application Modernization Patterns for Hybrid Cloud



Complete the following steps:

1. Create an IBM Cloud Internet Services Instance.

On the IBM Cloud dashboard, click Catalog at the upper right and search for Internet 
Services. Click the Internet Services by IBM tile. Select a pricing plan, enter cis-redbook 
as the service name, and select resource group redbook. Read the license terms and click 
Create if you agree.

2. Configure the IBM Cloud internet service. 

After you complete step 1, you should be redirected to the internet service instance. If that 
action does not occur, you can go to your resource list by clicking the upper-right 
IBM Cloud menu, clicking Resource List, and expanding the Services and Software 
section. Alternatively, you can go directly to IBM Cloud Resources.

Add a domain by clicking Add a domain. Enter a domain name or subdomain that can be 
delegated, skip importing the DNS records, and go to Configure Domain management.

The Domain Management configuration requires delegating the domain or subdomain to 
an IBM cloud name server for DNS management. In our case, our network admin 
delegated the zhybridcloud.centers.ihost.com subdomain by configuring the name 
server records with the following addresses: 

– ns001.name.cloud.ibm.com 

– ns096.name.cloud.ibm.com 

After the configuration successfully completes, your domain should be active on the 
overview page. We return to this window in step 3 to create a DNS entry for a subdomain 
that is named scapp.zhybridcloud.centers.ihost.com that will resolve to our 
load balancer.

3. Create a subdomain for the load balancer.

On the Internet Service window for cis-redbook, select Reliability → DNS. Scroll down to 
the DNS Records section, and click Add.

Select A as the type, Automatic for TTL, and scapp for the name, and then enter one of the 
public IP addresses of the load balancer that we created. Click Add.

To test that this configuration works, run the nslookup scapp.<domain> command. It 
should resolve to one of the public addresses of the load balancer, as shown in 
Example 7-6.

Example 7-6   Results from nslookup

Non-authoritative answer:
Name:scapp.zhybridcloud.centers.ihost.com
Address: 52.116.129.47

Note: At the time of writing, there is a no-charge 30-day trial plan that you can use for 
your test implementation.
Chapter 7. Deploying production applications 135

https://cloud.ibm.com/resources


Creating an IBM Secrets Manager to order public TLS certificates
To create your IBM Secrets Manager, complete the following steps:

1. Create a Secrets Manager instance.

Go to the catalog and search for Secrets Manager. Click the Secrets Manager by IBM tile. 
Select the location (in our example, we selected Dallas).

To configure the resources, enter redbook-scm as the service name, select redbook as the 
resource group, and leave all the remaining defaults. The configuration should be similar 
to Figure 7-7.

Figure 7-7   IBM Cloud Secrets Manager configuration

Read the license terms. If you agree, select the checkbox and click Create.

2. Create Identity Access & Management (IAM) access between Cloud Internet Services and 
Secrets Manager by using the instructions at IBM Cloud.

3. Configure the DNS provider in the Secrets Engine for Public Certificates:

a. In the Secrets Manager UI, select Secrets engine → Public Certificates.

b. Click Add in the DNS provider section, enter redbook-cis as the Name, and select 
Cloud Internet Services as the DNS Provider. Click Next.

If you have the IAM authorization properly configure, you should see the redbook-cis 
instance in the drop-down list in the Authorization tab. Select redbook-cis and click Add.

4. Create an Automatic Certificate Management Environment (ACME) account for use with 
the Let’s Encrypt Public certificate authority (CA). 

With an account with the ACME protocol, you can install a certificate management agent 
on your web server. To create your account, go to GitHub. You need your account 
credentials for step 5. 

5. Configure the CA in the Secrets Engine for Public Certificates by completing the 
following steps:

a. In the Secrets Manager UI, select Secrets engine → Public Certificates.

b. Click Add in the Certificate Authorities section, enter redbook-letsencrypt for Name, 
and select Let’s Encrypt for Certificate Authority. Click Next. 

c. Click the Enter value tab, and then copy and paste your private key from the ACME 
account that you created in step 4.

6. Request s TLS certificate for the subdomain. In our example, we request a TLS certificate 
for scapp.zhybridcloud.centers.ihost.com.
136 Mainframe Application Modernization Patterns for Hybrid Cloud

https://cloud.ibm.com/docs/secrets-manager?topic=secrets-manager-prepare-order-certificates#authorize-cis
https://github.com/ibm-cloud-security/acme-account-creation-tool


Configuring IBM Cloud Load Balancer with TLS certificates
Create IAM access between the load balancer and the Secrets Manager (for more 
information, see Managing IAM access for VPC Infrastructure Services). To access the TLS 
certificates from the load balancer, you must have IAM access (for more information, see 
Configuring the IAM credentials engine).
Chapter 7. Deploying production applications 137

https://cloud.ibm.com/docs/vpc?topic=vpc-iam-getting-started&interface=ui
https://cloud.ibm.com/docs/secrets-manager?topic=secrets-manager-configure-iam-engine&interface=ui


138 Mainframe Application Modernization Patterns for Hybrid Cloud



Appendix A. Voting app changes to support 
an IBM Db2 database

In 2.3, “Sample application architecture” on page 16, we deployed an open-source, 
lightweight, and microservices-based application that is called the “Voting app”. You can find 
the public repository with the application source code at GitHub.

In the original source code, the following programs are using a Postgres database:

� voting-app/worker-python/app.py 

� voting-app/result/server.js 

In this appendix, we provide the changes that we made to the Voting app to support IBM Db2 
by noting them as follows:

---text in red: Original source code
+++text in blue: Updated source code

� The voting-app/worker-python/app.py program, as shown in Example A-1.

Example: A-1   The voting-app/worker-python/app.py program

#!/usr/bin/env python3

from redis import Redis
import os
import time
---import psycopg2
+++import ibm_db
import json

def get_redis():
   redishost = os.environ.get('REDIS_HOST', 'new-redis')
   redispassword = os.environ.get('REDIS_PASSWORD', 'password')
   print ("Connecting to Redis using " + redishost)
   #redis_conn = Redis(host=redishost, db=0, socket_timeout=5)
   redis_conn = Redis(host=redishost, db=0, socket_timeout=5, password=redispassword)
   redis_conn.ping()
   print ("connected to redis!") 
   return redis_conn

---def connect_postgres(): 
   ---host = os.getenv('POSTGRES_SERVICE_HOST', "new-postgresql")
+++def connect_db2(): 
   +++host = os.getenv('DB2_SERVICE_HOST', "new-db2ql")
   db_name = os.getenv('DB_NAME', "db") 

A

© Copyright IBM Corp. 2023. 139

https://github.com/OpenShift-Z/voting-app


   db_user = os.getenv('DB_USER', "admin") 
   db_pass = os.getenv('DB_PASS', "admin") 
   +++hostnm = os.getenv('HOST_NAME', "wtsc75.pbm.ihost.com") 
   +++portno = os.getenv('PORT_NO', "38010") 
   try:
      print ("connecting to the DB") 
      ---conn = psycopg2.connect ("host={} dbname={} user={} password={}".format(host, db_name, db_user, db_pass))
      ---print ("Successfully connected to Postgres")
      
+++conn_str='database='+db_name+";hostname="+hostnm+";port="+portno+";protocol=tcpip;uid="+db_user+";pwd="+db_pass
      +++conn = ibm_db.connect(conn_str,'','')
      +++print ("Successfully connected to Db2")
      return conn 

   except Exception as e:
      print ("error connecting to the DB")
      print (e)
---def create_postgres_table():
+++def create_db2_table():
    try: 
       ---conn = connect_postgres()
       +++conn = connect_db2()
    except Exception as e:
       ---print ("error connecting to postgres")  
       +++print ("error connecting to Db2")  
       print (str(e)) 
    try:
       ---cursor = conn.cursor()
       ---sqlCreateTable = "CREATE TABLE IF NOT EXISTS public.votes (id VARCHAR(255) NOT NULL, vote VARCHAR(255) NOT 
NULL);"
       ---cursor.execute(sqlCreateTable)
       +++sqlCreateTable = "CREATE TABLE votes (id VARCHAR(255) NOT NULL, vote VARCHAR(255) NOT NULL);"
       +++ibm_db.exec_immediate(conn, sqlCreateTable)
       print ("votes table created") 
       ---conn.commit()
       ---cursor.close() 

    except Exception as e:
       print ("error creating database table")
       print (e)

    try:
      ---conn.close()
      +++ibm_db.close(conn)

    except Exception as e:
       ---print ("error closing connection to postgres")
       +++print ("error closing connection to Db2")
       print (str(e))

---def insert_postgres(data):
+++def insert_db2(data):
    try:
       ---conn = connect_postgres()
       +++conn = connect_db2()

    except Exception as e:
       ---print ("error connecting to postgres")  
       +++print ("error connecting to Db2")  
       print (str(e)) 

    try:
---cur = conn.cursor()
       ---cur.execute("insert into votes values (%s, %s)",
       ---(
          ---data.get("voter_id"),
          ---data.get("vote")
       ---))
       ---conn.commit()
       +++insert = "insert into votes values(?,?)"
       +++stmt_insert = ibm_db.prepare(conn, insert)
       +++ibm_db.execute(stmt_insert,(data.get("voter_id"),data.get("vote")))
       print ("row inserted into DB")
       ---cur.close()

    except Exception as e:
       ---conn.rollback()
       ---cur.close()
       ---print ("error inserting into postgres")
       +++print ("error inserting into Db2")
       print (str(e))

    try:
140 Mainframe Application Modernization Patterns for Hybrid Cloud



      ---conn.close()
      +++ibm_db.close(conn)

    except Exception as e:
       ---print ("error closing connection to postgres")
       +++print ("error closing connection to Db2")
       print (str(e))

def process_votes():
    redis = get_redis()
    redis.ping()  
    while True: 
       try:  
          msg = redis.rpop("votes")
          print(msg)
          if (msg != None): 
             print ("reading message from redis")
             msg_dict = json.loads(msg)
             ---insert_postgres(msg_dict) 
             +++insert_db2(msg_dict) 
          # will look like this
          # {"vote": "a", "voter_id": "71f0caa7172a84eb"}
          time.sleep(3)        
   
       except Exception as e:
          print(e)

if __name__ == '__main__':
    ---create_postgres_table()
    +++create_db2_table()
    process_votes()

� The voting-app/result/server.js program, as shown in Example A-2.

Example: A-2   The voting-app/result/server.js program

var express = require('express'),
    async = require('async'),
    ---pg = require('pg'),
    ---{ Pool } = require('pg'),
    +++ibmdb = require('ibm_db');
    path = require('path'),
    cookieParser = require('cookie-parser'),
    bodyParser = require('body-parser'),
    methodOverride = require('method-override'),
    app = express(),
    server = require('http').Server(app),
    io = require('socket.io')(server);

io.set('transports', ['polling']);

var port = process.env.PORT || 8080;
---var pgconnectstr = process.env.POSTGRES_CONNECT_STRING;
+++var connStr = process.env.DB2_CONNECT_STRING;

io.sockets.on('connection', function (socket) {

  socket.emit('message', { text : 'Welcome!' });

  socket.on('subscribe', function (data) {
    socket.join(data.channel);
  });
});
---var pool = new pg.Pool({
---//  connectionString: 'postgres://postgres:'+passwd+'@db/postgres'
---//  connectionString: 'postgres://pfruth:pfruth@new-postgresql/postgres'
---//  connectionString: 'postgres://pfruth:pfruth@10.130.3.185:5432/postgres'
---  connectionString: pgconnectstr
---});

async.retry(
  {times: 1000, interval: 1000},
  function(callback) {
    ---pool.connect(function(err, client, done) {
    +++ibmdb.open(connStr, function (err,client) {
      if (err) {
        console.error("Waiting for db");
        ---console.log("pg error code:", err.code);
        +++console.log("db2 error code:", err.code);
      }
      callback(err, client);
Appendix A. Voting app changes to support an IBM Db2 database 141



    });
  },
  function(err, client) {
    if (err) {
      return console.error("Giving up");
    }
    console.log("Connected to db");
    getVotes(client);
  }
);

function getVotes(client) {
  client.query('SELECT vote, COUNT(id) AS count FROM votes GROUP BY vote order by vote', [], function(err, result) {
    if (err) {
      console.error("Error performing query: " + err);
    } else {
      var votes = collectVotesFromResult(result);
      io.sockets.emit("scores", JSON.stringify(votes));
    }

    setTimeout(function() {getVotes(client) }, 1000);
  });
}

function collectVotesFromResult(result) {
  var votes = {a: 0, b: 0};

  ---result.rows.forEach(function (row) {
  ---  votes[row.vote] = parseInt(row.count);
  ---});
  +++result.forEach(function (row) {
    +++votes[row.VOTE] = parseInt(row.COUNT);
  +++});

  return votes;
}

app.use(cookieParser());
app.use(bodyParser());
app.use(methodOverride('X-HTTP-Method-Override'));
app.use(function(req, res, next) {
  res.header("Access-Control-Allow-Origin", "*");
  res.header("Access-Control-Allow-Headers", "Origin, X-Requested-With, Content-Type, Accept");
  res.header("Access-Control-Allow-Methods", "PUT, GET, POST, DELETE, OPTIONS");
  next();
});

app.use(express.static(__dirname + '/views'));

app.get('/', function (req, res) {
  res.sendFile(path.resolve(__dirname + '/views/index.html'));
});

server.timeout = 0;
server.listen(port, function () {
  var port = server.address().port;
  console.log('App running on port ' + port);
  ---console.log('Postgres connect string ' + pgconnectstr);
  +++console.log('Db2 connect string ' + connStr);
});
142 Mainframe Application Modernization Patterns for Hybrid Cloud



Appendix B. Additional material

This book refers to additional material that can be downloaded from the internet, as described 
in the following sections. 

Locating the web material

The web material that is associated with this book is available in softcopy on the internet from 
the IBM Redbooks GitHub repository:

https://github.com/IBMRedbooks/SG248532-zos-hybrid-cloud-examples

Using the web material

The additional web material that accompanies this book includes the following files:

File name Description

../tree/main/Chapter04 Main repository.

kafka-demo-consumer A sample application that is a proof of concept for the 
proposed architecture in “Proposed architecture: Phase 2” 
on page 46.

kafka-demo-producer A sample application that is a proof of concept for the 
proposed architecture in “Proposed architecture: Phase 2” 
on page 46.

Additional requirements 

The web material requires the following system requirements to build and deploy this code on 
any machine:

� Java: An object-oriented programming language.
� Maven: A build automation tool that is used primarily for Java projects.

B

© Copyright IBM Corp. 2023. 143

https://github.com/IBMRedbooks/SG248532-zos-hybrid-cloud-examples
https://github.com/IBMRedbooks/SG248532-zos-hybrid-cloud-examples/tree/main/Chapter04
https://github.com/IBMRedbooks/SG248532-zos-hybrid-cloud-examples/tree/main/Chapter04/kafka-demo-consumer
https://github.com/IBMRedbooks/SG248532-zos-hybrid-cloud-examples/tree/main/Chapter04/kafka-demo-producer


144 Mainframe Application Modernization Patterns for Hybrid Cloud



ronyms
ACH Automated Clearing House

ACL access control list

ACME Automatic Certificate Management 
Environment

AI artificial intelligence

API application programming interface

BAU business as usual

BIAN Banking Industry Architecture 
Network

BPM business process management

BYOL bring your own language

CA certificate authority

CD continuous deployment

CI continuous integration

CI/CD continuous integration and 
continuous deployment

CLI command-line interface

CQRS Command Query Response 
Separation

DDA demand deposit

ELT extract, load, and transform

ETL extract, transform, and load

FaaS function-as-a-service

HTAP hybrid transaction/analytical 
processing

IaaS infrastructure-as-a-service

IAM Identity Access & Management

IBM International Business Machines 
Corporation

IBM DBB IBM Dependency Based Build

IBM UCD IBM UrbanCode Deploy

IDE integrated development 
environment

IDz IBM Developer for z/OS

IPsec Internet Protocol Security

ISA Instruction Set Architecture

JDBC Java Database Connectivity

JES Job Entry Subsystem

LSP Language Server Protocol

ML machine learning

MTTD Mean Time To Detect

MTTN Mean Time To Notify

Abbreviations and ac
© Copyright IBM Corp. 2023.
MTTP Mean Time To Prevention

MTTR Mean Time To Repair

ODBC Open Database Connectivity

ODS operational data store

PaaS platform-as-a-service

PV persistent volume

RMF Resource Measurement Facility

ROI return-on-investment

RSE Remote Systems Explorer

S2I source to image

SaaS software-as-a-service

SCM software configuration 
management

SDK software development kit

SLA service-level agreement

SOA service-oriented architecture

SOR system of record

TDA timed deposit

UX user experience

VPC virtual private cloud

VPN virtual private network

VSI virtual server instance

VTP Virtual Test Platform

WaaS IBM Wazi as a Service

WLM Workload Manager

WSL Windows Subsystem for Linux

z/OSMF z/OS Management Facility

ZAT IBM zAcceleration Team

zCX IBM z/OS Container Extensions

zDIH IBM Z Digital Integration Hub

zIIP IBM Z Integrated Information 
Processor

ZOAU IBM Z Open Automation Utilities

zUnit IBM z/OS Automated Unit Testing 
Framework

ZVDT IBM Virtual Dev and Test for z/OS
 145



146 Mainframe Application Modernization Patterns for Hybrid Cloud



Related publications

The publications that are listed in this section are considered suitable for a more detailed 
description of the topics that are covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide more information about the topics in this 
document. Some publications that are referenced in this list might be available in softcopy 
only. 

� Accelerate Mainframe Application Modernization with Hybrid Cloud, REDP-5705

� Getting started with z/OS Container Extensions and Docker, SG24-8457

� IBM Data Virtualization Manager for z/OS, SG24-8514

� Red Hat OpenShift on IBM Z Installation Guide, REDP-5605

� Why IBM Hybrid Cloud for Your Journey to the Cloud?, REDP-5653

You can search for, view, download, or order these documents and other Redbooks, 
Redpapers, web docs, drafts, and additional materials, at the following website: 

ibm.com/redbooks

Other publications

These publications also are relevant as further information sources:

� Gamma, et al, Design Patterns: Elements of Reusable Object-Oriented Software, Addison 
Wesley, 1994, ISBN 

� Radcliffe, Enterprise Bug Busting: From Testing through CI/CD to Deliver Business 
Results, Accelerated Strategies Press, July 2021, ISBN 9781098381493

Online resources

These websites also are relevant as further information sources:

� The Cloud Adoption Playbook

https://www.ibm.com/cloud/architecture/adoption/the-cloud-adoption-playbook/

� DevOps from APIs to IBM Z For Dummies 

http://www.recarta.co.uk/wp-content/uploads/2017/05/DevOpsforDummies-ilovepdf-c
ompressed.pdf

� Git repository for kafka-demo-consume

https://github.com/IBMRedbooks/SG248532-zos-hybrid-cloud-examples/tree/main/Cha
pter04/kafka-demo-consumer
© Copyright IBM Corp. 2023. 147

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.recarta.co.uk/wp-content/uploads/2017/05/DevOpsforDummies-ilovepdf-compressed.pdf
https://github.com/IBMRedbooks/SG248532-zos-hybrid-cloud-examples/tree/main/Chapter04/kafka-demo-consumer
https://github.com/IBMRedbooks/SG248532-zos-hybrid-cloud-examples/tree/main/Chapter04/kafka-demo-consumer
https://www.ibm.com/cloud/architecture/adoption/the-cloud-adoption-playbook/


� Git repository for kafka-demo-producer

https://github.com/IBMRedbooks/SG248532-zos-hybrid-cloud-examples/tree/main/Cha
pter04/kafka-demo-producer

� IBM Wazi as a Service: Bringing your own image with IBM Wazi Image Builder

https://www.ibm.com/docs/en/wazi-aas/1.0.0?topic=bringing-your-own-image-wazi-i
mage-builder

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
148 Mainframe Application Modernization Patterns for Hybrid Cloud

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://www.ibm.com/docs/en/wazi-aas/1.0.0?topic=bringing-your-own-image-wazi-image-builder
https://github.com/IBMRedbooks/SG248532-zos-hybrid-cloud-examples/tree/main/Chapter04/kafka-demo-producer


(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

M
ainfram

e Application M
odernization Patterns for Hybrid Cloud







ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738461016

SG24-8532-00

®

https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 What does hybrid cloud mean in 2023
	1.2 The value of the hybrid cloud approach
	1.3 Application modernization
	1.4 What are the application modernization patterns
	1.4.1 Accelerating modernization with application discovery

	1.5 How to apply application modernization patterns on IBM Z
	1.5.1 Patterns for enhancing and modernizing applications
	1.5.2 Hybrid cloud network architecture
	1.5.3 Patterns to simplify information sharing and data access
	1.5.4 Patterns to integrate across a hybrid cloud
	1.5.5 Implementing enterprise DevOps and observability

	1.6 Security

	Chapter 2. Modernized application architectures
	2.1 Expose through APIs pattern
	2.2 Extend with cloud-native pattern
	2.3 Sample application architecture
	2.3.1 Application architecture
	2.3.2 Deployment
	2.3.3 Consideration


	Chapter 3. Modernized data access architectures
	3.1 Data fabric as the basis for modern data access
	3.1.1 What a data fabric is
	3.1.2 Data fabric architecture
	3.1.3 Advantages of data fabric architectures
	3.1.4 How IBM Cloud Pak for Data helps you to realize the data fabric

	3.2 Enabling modern access to IBM Z data patterns
	3.2.1 Modern data access solution and pattern for IBM Z

	3.3 Virtualize IBM Z data pattern
	3.3.1 Virtualization solution and pattern for IBM Z

	3.4 Cache IBM Z data pattern
	3.4.1 Cache support solution and pattern for IBM Z
	3.4.2 Examples of customer scenarios for data caching

	3.5 Transform IBM Z data pattern
	3.5.1 Data transformation solution and pattern for IBM Z


	Chapter 4. Event-driven architecture with IBM z/OS
	4.1 Overview of an event-driven architecture
	4.1.1 Simplified reference architecture
	4.1.2 Types of event processing

	4.2 Introducing the event-driven architecture in the z/OS ecosystem
	4.2.1 Respond to IBM Z application events pattern
	4.2.2 Optimize CQRS pattern

	4.3 Conclusion

	Chapter 5. Modernizing Enterprise DevOps
	5.1 Core practices of IBM Z DevOps for hybrid enterprise application development
	5.1.1 Standardizing and automating your development setup
	5.1.2 Maintaining a single source code management system
	5.1.3 Incrementally building a fully automated pipeline
	5.1.4 Fully automated tests
	5.1.5 Every change that is pushed to the source code management system is automatically built and tested
	5.1.6 Clearly defining your builds as a consistent set of artifacts

	5.2 The vision for a cloud-native developer experience for z/OS enterprise applications
	5.2.1 Role of z/OS for hybrid development projects
	5.2.2 Personas of the hybrid development team

	5.3 IBM Z Cloud and Modernization Stack: A layered development tool architecture adding incremental capabilities
	5.3.1 Layer 1: Establishing connectivity to z/OS
	5.3.2 Layer 2: Building a foundational layer with client software development kits, open APIs, and command-line interfaces
	5.3.3 Layer 3: Standardizing on next-generation editors and modern languages capabilities
	5.3.4 Layer 4: Adding pluggable extensions with specialized capabilities: z/OS access, debug, build, CICS, and Db2
	5.3.5 Layer 5: Adopting containerization for deploying development tools with Red Hat OpenShift and Dev Spaces
	5.3.6 Layer 6: Moving z/OS development into the cloud
	5.3.7 Layer 7: Establishing a common control platform on Red Hat OpenShift
	5.3.8 Layer 8: Creating end-to-end automation with IBM DBB and Groovy and Ansible collections for z/OS
	5.3.9 Layer 9: Adopting a pipeline technology that matches the application platform

	5.4 A next-generation developer end-to-end development example
	5.4.1 Deb's story
	5.4.2 Deb's tools
	5.4.3 Applying next-generation development strategies and tools to mainframe application development

	5.5 IBM Wazi as a Service and IBM Z and Cloud Modernization Stack tutorial
	5.5.1 Creating a virtual private cloud and z/OS virtual server instance
	5.5.2 Deploying Red Hat OpenShift and IBM for IBM Wazi Dev Spaces in a VPC
	5.5.3 Creating and configuring a development workspace in IBM Wazi Dev Spaces
	5.5.4 Building, running, and debugging your application

	5.6 Summary

	Chapter 6. Managing your applications
	6.1 Monitoring, logging, and metering introduction
	6.2 Components of the Red Hat OpenShift monitoring stack
	6.2.1 Monitoring the Red Hat OpenShift Container Platform infrastructure by using Prometheus
	6.2.2 Using the Red Hat OpenShift Container Platform web console's dashboard to monitor your cluster and customer workloads
	6.2.3 Exploring the default alerting system
	6.2.4 Exploring cluster monitoring data from different sources, such as cluster nodes, projects, or pods
	6.2.5 Using the oc client tool to monitor resources
	6.2.6 Using Resource Measurement Facility to monitor z/OS resources for Red Hat OpenShift Container Platform

	6.3 Observability on z/OS
	6.3.1 Instana on IBM z/OS

	6.4 Logging
	6.5 Metering

	Chapter 7. Deploying production applications
	7.1 Production deployment strategies
	7.2 Exposing on-premises applications through a public cloud
	7.2.1 Prerequisites
	7.2.2 Current architecture
	7.2.3 Target architecture
	7.2.4 Current architecture implementation
	7.2.5 Target architecture implementation


	Appendix A. Voting app changes to support an IBM Db2 database
	Appendix B. Additional material
	Locating the web material
	Using the web material
	Additional requirements


	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	Help from IBM

	Back cover

