@ Redhooks

bbbbbbbbbbbbbbb

Securing Your Critical
Workloads with IBM Hyper
Protect Services

Lydia Parziale

Cecilia A De Leon
Jean-Yves Girard
Carlos Guarany Gomes
Florian Schwanzara

> Cloud

LinuxONE

IBM Redbooks

Securing Your Critical Workloads with IBM Hyper
Protect Services

February 2022

SG24-8469-01

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Second Edition (February 2022)

This edition applies to IBM Hyper Protect Virtual Servers V1.2.0, IBM Hyper Protect Crypto Services V1.0.0,
and IBM Hyper Protect DBaaS V1.0.0.

© Copyright International Business Machines Corporation 2020, 2022. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

NotiCes \i
Trademarks viii
Preface iX
AUNOIS . L e iX
Now you can become a published author,too! Xi
Comments WeICOME.t Xi
Stay connected t0 IBM RedbOOKSttt e Xii
Chapter 1. Introducing IBM Hyper Protect Services 1
1.1 Industry and IBM Hyper Protect Services portfolio overview 2
1.2 IBM Hyper Protect Crypto Services i e 2
1.3 IBM Cloud Hyper Protect DatabaseasaService............... ..., 4
1.4 IBM Cloud Hyper Protect Virtual Servers i, 4
1.5 IBM Hyper Protect Virtual Servers on-premises oot 6
1.5.1 Building images with integrity: Securing Continuous Integration and Continuous
DeliVery. . . e 6
1.5.2 Managing infrastructure with least privilege access to applications and data. 7
1.5.3 Deploying images with trusted provenance 7
1.6 Security features 7
1.6.1 Cryptography e 7
1.6.2 IBM Secure Service Container 10
Chapter 2. IBM Cloud Hyper Protect Crypto Services. 13
2.1 OVEBIVIEBW . . et e e 14
2.2 IBM Hyper Protect Crypto Services provisioningo .. 14
2.2.1 Provisioning an instance by using the IBM Cloud console 15
2.2.2 Provisioning your instance by usingthe IBM Cloud CLI.................... 26
2.3 Service initialization: Crypto units master key initialization. 31
2.3.1 Activating your service’s masterkey. i 31
2.3.2 Using the IBM Cloud TKE CLI plug-in and master key partfiles. 34
2.3.3 Getting the crypto units details and enabling cryptocurrency cryptography 51
2.3.4 Zeroing outthe cryptounitmasterkey i 54
2.3.5 Selecting administrator signature keys when working in secure mode. 56
2.3.6 Initializing your IBM Hyper Protect Crypto Services master key by using recovery
CrYPtO UNItS . . . o 57
2.3.7 Initializing your IBM Hyper Protect Crypto Services master key by using smart cards
and the Management Utilities 63
2.4 Using the IBM Key Protect REST APL. e 105
2.4.1 Key Protect concepts and programming language software developer kits. ... 105
2.4.2 Setting your authentication configuration to call APl functions 106
2.4.3 Retrieving connection information to your IBM Hyper Protect Crypto Services
NStANCEo e 108
2.4.4 Creating IBM Key Protectkeys.t 110
2.4.5 Working with Key Protectrootkeys 119
2.4.6 Key Protectrootkeyrotation. i 129
2.4.7 Bring Your Own Key to the cloud: importing a Key Protect rootkey.......... 133
2.4.8 Integrating IBM Cloud services with IBM Hyper Protect Crypto Services. 136

2.5 Using the Public Key Cryptography Standards #11 APl with IBM Hyper Protect Crypto

© Copyright IBM Corp. 2020, 2022. All rights reserved. iii

iv

S BIVICES . . ittt e 151

2.5.1 The PKCS #11 APl e e e e e 152
2.5.2 How to use the IBM Enterprise PKCS #11 overgRPCAPI 182
Chapter 3. IBM Cloud Hyper Protect Database as a Service. 207
3.1 Introducing IBM Cloud Hyper Protect DBaaS i, 208
3.2 Sizing and toPolOgY ot 209
3.3 Public Cloud service instantiation 210
3.3.1 Prerequisites.o e 210
3.3.2 Webinterface 210
3.3.3 IBM Cloud Command-Line Interface. 213
3.3.4 The IBM Hyper Protect DBaaS RESTful APl 215
3.4 Administration and operations. 218
3.4.1 Managing an IBM Hyper Protect DBaaS service 218
3.4.2 Managing database instances i 222
3.4.3 Logging and monitoringottt 223
3.4.4 Backingup and restoring 229
3.5 Security and compliance. 232
3.6 Use case: Encrypting databases with your keys protected. 233
3.7 APl interaction and code samples. e 234
3.7.1 Cloning the GitHub example Pythoncode 235
3.7.2 Setting up a Python virtual environment withrequests. 235
3.7.3 Running the examplefile 236
Chapter 4. IBM Cloud Hyper Protect Virtual Servers. 239
4.1 Introducing IBM Cloud Hyper Protect Virtual Servers. 240
4.2 |1BM Cloud Hyper Protect Virtual Serversuse cases.coiviuean... 240
e S 1 o 241
4.4 Public cloud service instantiation 242
441 Prerequisites. . ..ot 242
442 Webinterface e 242
4.4.3 IBM Cloud Command-Line Interface. 245
4.5 Administration and operations. e 247
4.5.1 Managing an IBM Hyper Protect Virtual Servers service 247
4.5.2 Managing IBM Hyper Protect Virtual Serversinstances................... 249
4.5.3 TOPO0IogY . . e e 249
Chapter 5. IBM Hyper Protect Virtual Servers on-premises 253
5.1 Introducing IBM Hyper Protect Virtual Servers on-premises. 254
5.2 IBM Hyper Protect Virtual Servers key features 255
5.2.1 Trusted Cl/CD e e e e e 256
5.2.2 Enterprise PKCS#110overgRPC e 257
5.2.3 Usermanagementt e 258
524 Bring YourOwnlmagettt e 258
5.2.5 ENCryplion. . ..o e 258
5.3 IBM Hyper Protect Virtual Serversuse cases. 259
5.4 IBM Hyper Protect Virtual Servers architecture overview 261
5.5 A sample use case: IBM Hyper Protect Virtual Servers for secure storage 266
5.5.1 Creating a Secure Storage Server in IBM Hyper Protect Virtual Servers. 268
Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 271
6.1 Planning and prerequisites for IBM Hyper Protect Virtual Servers on-premises. 272
6.2 Downloading the package to the managementserver 273
6.3 Setting up the Secure Service Container LPAR 274

Securing Your Critical Workloads with IBM Hyper Protect Services

6.3.1 Creating the Secure Service Container LPAR 275

6.3.2 Installing the IBM Hyper Protect Virtual Servers appliance. 276
6.3.3 Configuring storage disks on the hosting appliance 279
6.4 Networking for IBM Hyper Protect Virtual Servers 285
6.4.1 Networking to the hosting appliance (SSCLPAR) 285
6.4.2 Networking inside the hosting appliance (networking for IBM Hyper Protect Virtual
Servers containers throughthe CLI). i it 286
6.4.3 Creating an Ethernetinterface i 287
6.4.4 Creatinga VLAN interface i 291
6.5 Installing the IBM Hyper Protect Virtual Servers CLI on the management server. ... 295
6.5.1 Setting up the environment by using the setup script. 295
6.6 Configuring the IBM Hyper Protect Virtual Servers environment 299
6.6.1 Configuring the internal network i 300
6.6.2 Pushing the base images to a remote Docker repository 302
6.6.3 Setting up an IBM Hyper Protect Virtual Serversinstance 304
6.6.4 Backing up and restoring IBM Hyper Protect Virtual Servers. 308
6.6.5 Setting up the Secure Build container. 309
6.6.6 Setting up the monitoringinstance 312
6.6.7 Integrating with Enterprise Public Key Cryptography Standards #11......... 316
6.7 Public Cloud service instantiation 322
Chapter 7. IBM Hyper Protect Virtual Servers key features 323
7.1 User roles in IBM Hyper Protect Virtual Servers. 324
7.2 Trusted Continuous Integration and Continuous Delivery: Building and deploying
containers SECUNElY.t e 325
7.2.1 Importance of establishing a trusted CI/CD pipeline. 325
7.2.2 Trusted CI/CD pipeline architecture 326
7.2.3 Using the Secure Build application to build and store an image in a repository . 327
7.2.4 Building an image from a trusted baseimage. L 333
7.3 MONItOIING . . . oottt 334
7.3.1 Deploying a monitoring container i 334
7.3.2 Viewing the metrics from the monitoring service 335
7.4 Enterprise Public Key Cryptography Standards #11 overgRPC 337
7.4.1 Deployinga GREP11 container 337
7.4.2 Adding GREP11 functions into your applications 338
7.5 Bring Your Own Image (deploying your applications securely). 341
7.5.1 Signing your image by using Docker Content Trust 341
7.5.2 Addingtheregistry 341
7.5.3 Generatingthe signingkeys 342
7.5.4 Registering a repository as a trusted repository L 343
7.5.5 Preparing the configuration. 343
7.5.6 Deploying a securely built image from a trusted repository 344

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper

Protect Services 347

8.1 Secure Bitcoin Wallet application 348
8.1.1 Planning for the installation by using IBM Hyper Protect Services 349
8.2 Building the Secure Bitcoin Wallet application container 350
8.2.1 Using IBM Cloud Hyper Protect with Bring Your Ownimage............... 350
8.2.2 Using IBM Hyper Protect Secure Build Servers on-premises. 364
8.2.3 Using IBM Cloud Hyper Protect Secure Build Server..................... 371
8.3 Testing the Secure Bitcoin Wallet application. 377
Appendix A. Configuration parameters 385

Contents v

Vi

Configuration parameters for the managementserver 386

Configuration parameters for the IBM Secure Service Container logical partition. 386
Configuration parameters for the Secure Build containerserver.................... 387
Configuration parameters for repository definitionfiles 389
Configuration parameters for IBM Hyper Protect Virtual Servers. 389
Configuration parameters for the monitoring component. 390
Configuration parameters for the Enterprise PKCS #11 over gRPC container 390
The rtoa_destination PGP publickey. 391
Appendix B. Additional material L. 393
Locating the GitHub material 393
Cloning the GitHub material. 393
Related publications 395
IBM RedbOOKSo e 395
ONliNE FESOUICESo it ittt e e e e e e 395
Help from IBM ... e 397
Abbreviations and acronyms 399

Securing Your Critical Workloads with IBM Hyper Protect Services

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS 1S”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS 1S”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.

© Copyright IBM Corp. 2020, 2022. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/1egal/copytrade.shtmi

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Db2® IBM Research® Redbooks®

FICON® IBM Z® Redbooks (logo) ¢@ ®
IBM® IBM z14® z15™ '
IBM Cloud® Passport Advantage®

The following terms are trademarks of other companies:

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

OpenShift, Red Hat, are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the United
States and other countries.

VMware, VMware vSphere, and the VMware logo are registered trademarks or trademarks of VMware, Inc. or
its subsidiaries in the United States and/or other jurisdictions.

Other company, product, or service names may be trademarks or service marks of others.

viii Securing Your Critical Workloads with IBM Hyper Protect Services

http://www.ibm.com/legal/copytrade.shtml

Preface

Authors

Many organizations must protect their mission-critical applications in production, but security
threats also can surface during the development and pre-production phases. Also, during
deployment and production, insiders who manage the infrastructure that hosts critical
applications can pose a threat because of their super-user credentials and level of access to
secrets or encryption keys.

Organizations must incorporate secure design practices in their development operations and
embrace DevSecOps to protect their applications from the vulnerabilities and threat vectors
that can compromise their data and potentially threaten their business.

IBM® Cloud® Hyper Protect Services provide built-in data-at-rest and data-in-flight protection
to help developers easily build secure cloud applications by using a portfolio of cloud services
that are powered by IBM LinuxONE.

The LinuxONE platform ensures that client data is always encrypted, whether at rest or in
transit. This feature grants customers complete authority over sensitive data and associated
workloads (which restricts access, even for cloud admins) and helps them meet regulatory
compliance requirements. LinuxONE also allows customers to build mission-critical
applications that require a quick time to market and dependable rapid expansion.

This IBM Redbooks® publication has the following goals:

» Introduce IBM Hyper Protect Services on IBM LinuxONE on IBM Cloud and on-premises.
» Provide high-level architectures.

» Describe deployment best practices.

» Provide guides to getting started and examples of IBM Hyper Protect Services.

The target audience for this book is IBM Hyper Protect Virtual Services technical specialists,
IT architects, and system administrators.

This book was produced by a team of specialists from around the world working at IBM
Redbooks, Poughkeepsie Center.

Lydia Parziale is a Project Leader for the IBM Redbooks team in Poughkeepsie, New York,
with domestic and international experience in technology management including software
development, project leadership, and strategic planning. Her areas of expertise include
business development and database management technologies. Lydia is a PMI certified PMP
and an IBM Certified IT Specialist with an MBA in Technology Management and has been
employed by IBM for over 25 years in various technology areas.

© Copyright IBM Corp. 2020, 2022. ix

Cecilia A De Leon is an IBM Z® and LinuxONE Technical
Specialist at the Systems business unit at IBM Philippines. She
has over 25 years of experience in the IT industry. She holds a
Computer Engineering degree from the Mapua Institute of
Technology. Her areas of expertise include IBM Z and
LinuxONE servers, infrastructure, and operating systems
(OSs). She has extensive experience as a systems
programmer, technical consultant, and technical support
manager.

Jean-Yves Girard is an IBM Certified Lab Services architect at
the IBM Cloud and Cognitive Software business unit at

IBM France. He has 25 years of experience in the IT industry.
His EMEA job role is to support the IBM Hyper Protect Digital
Asset platform and blockchain projects. He worked as a subject
matter expert (SME) for several blockchain projects and led
their implementation on LinuxONE servers that use

IBM CryptoExress that is configured with Public Key
Cryptography Standards (PKCS) #11 firmware. He also has

| expertise in the implementation of several independent
software vendor (ISV) core banking software on IBM
technologies and Oracle database.

Carlos Guarany Gomes is a Senior Solution Architect at IBM
Cloud Brazil. He has 24 years of experience in the IT industry.
He is certified as a Distinguished Architect by The Open Group.
He holds a Computer Network Management degree from the
UNA University Center in Belo Horizonte/MG - Brazil. His areas
of expertise include virtualization, VMWare, networks,

IBM Cloud infrastructure, and platform services.

Florian Schwanzara is an Enterprise IT Architect in Germany.
He has more than 20 years of experience in the IT
Infrastructure field. His background in hardware, software, and
the financial industry has lead to his roles as leading architect
for Fin-Tecs in DACH. His areas of expertise include secure
infrastructure, blockchain, digital asset custody, confidential
computing, and Zero Trust Architecture.

Thanks to the following people for their contributions to this project:

Robert Haimowitz and Makenzie Manna
IBM Redbooks, Poughkeepsie Center

Patrik Hysky
IBM Systems Technical Sales Services, Austin

Tom Ambrosio and Bill Lamastro
IBM CPO

Securing Your Critical Workloads with IBM Hyper Protect Services

Arnaud Mante
IBM Cloud and Cognitive Software, Montpellier

Alex McMullen
IBM Cloud Hyper Protect Services
Thanks to the authors of the previous editions of this book.

» Authors of the first edition, Securing Your Critical Workloads with IBM Hyper Protect
Services, published in March 2021, were:

Barry Silliman, Diana Henderson, Elton de Souza, Jin VanStee, Jordan Cartwright,
Madhuri Gangireddy, Matt Mondics, Matthew Arnold, Ravi Kumar Gullapalli, Sandeep
Ambekar, Sandeep Sarkar, Sarath Chandra Mekala, Vasfi Gucer, Qi Ye

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies. Your
efforts will help to increase product acceptance and customer satisfaction, as you expand
your network of technical contacts and relationships. Residencies run from two to six weeks
in length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!
We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:
» Use the online Contact us review Redbooks form found at:
ibm.com/redbooks
» Send your comments in an email to:
redbooks@us.ibm.com
» Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

» Find us on LinkedIn:
http://www.linkedin.com/groups?home=&gid=2130806

» Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?0penForm
» Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html

Xii Securing Your Critical Workloads with IBM Hyper Protect Services

http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Introducing IBM Hyper Protect
Services

This chapter introduces IBM Hyper Protect Services.

This chapter includes the following topics:

» Industry and IBM Hyper Protect Services portfolio overview
» IBM Hyper Protect Crypto Services

» IBM Cloud Hyper Protect Database as a Service

» IBM Cloud Hyper Protect Virtual Servers

» IBM Hyper Protect Virtual Servers on-premises

» Security features

© Copyright IBM Corp. 2020, 2022. All rights reserved.

1.1 Industry and IBM Hyper Protect Services porifolio overview

Organizations worldwide face challenges in protecting their enterprise. As malicious actors
continue to evolve their methods to leverage vulnerabilities in enterprise systems,
organization’s enterprise data remains at risk. When considering the move to cloud,
organizations expect that services operate in an always-on state and are quick to switch
providers if they experience response times and uptimes that does not meet their
expectations. Downtime can cost a brand its image, loyalty, and ultimately revenue.

Security and data protection are two of the biggest inhibitors to organizations that are moving
sensitive data and applications to the cloud. No organization wants to be featured in the
headlines because of a data breach. With data privacy laws emerging across all industries
and worldwide, companies can find themselves liable for fines for millions of dollars or even a
percentage of their revenue (whichever is higher), so the financial implications are significant.

When we think more about a company’s data, it is their intellectual property and their
competitive differentiation. Organizations must protect their client data to maintain their
reputation and because of audit requirements and the governance of consumer privacy laws.
Ultimately, clients are faced with the opportunity, flexibility, and agility that cloud brings, but
also must consider their security standards.

To address these concerns, IBM introduced IBM Hyper Protect Services, which is a portfolio
of services. This portfolio protects an enterprise’s most critical data while delivering cloud
agility with the qualities of service that many organizations trusted for years to run their core
workloads in their own data center.

IBM Hyper Protect Services are available in IBM Cloud, and they are deployed on IBM
LinuxONE servers. These services are available in four Multi-Zone Region (MZR) sites
worldwide (Dallas, Frankfurt, Sydney, and Washington), where each multi-zone-region
contains three availability zones or physical data centers with the LinuxONE hardware. If any
disruption in service occurs, the clients’ data is backed up, protected, and can fail over to
another availability zone.

The following IBM Hyper Protect Services portfolio offerings are available:

» IBM Cloud Hyper Protect Crypto Services

» IBM Cloud Hyper Protect Database as a Service (DBaaS)
» IBM Cloud Hyper Protect Virtual Servers

» IBM Hyper Protect Virtual Servers (on-premises)

For more information, see Confidential computing on IBM Cloud.

1.2 IBM Hyper Protect Crypto Services

Enterprises are concerned about data security and compliance in the cloud, so encryption of
that data becomes an imperative. However, this issue raises the following key challenges:

» Customers want to use their own keys to encrypt, but who manages and controls the
encryption keys?

» Application developers want to focus on their application development without having to
become security experts.

2 Securing Your Critical Workloads with IBM Hyper Protect Services

https://www.ibm.com/cloud/hyper-protect-services

IBM Hyper Protect Crypto Services delivers on both of these needs by offering key
management and encryption application programming interfaces (APIs) to manage access to
data and the lifecycle of encryption keys. Delivering on both of these needs is competitively
differentiated when compared to other solutions that offer only one of the two capabilities.

IBM Hyper Protect Crypto Services enables customers to control their cloud data encryption
keys (DEKs) and Cloud Hardware Security Module (HSM), which is built on industry-leading
Federal Information Processing Standard (FIPS) 140-2 Level 4 certified hardware. Built on
LinuxONE technology, the service runs on a secure enclave, which ensures that no one,
including cloud administrators, can access a user’s keys.

Another key capability is Keep Your Own Key (KYOK), compared to what is more common in
the industry, Bring Your Own Key (BYOK). BYOK requires that users trust another entity to
handle their keys when bringing them to the cloud. Conversely, with KYOK, users can
maintain control of their keys. A client integrates them directly to the HSM as opposed to
handing them over to a program that then stores the keys. In this manner, a user can keep
their own DEKSs within a dedicated customer-controlled HSM that the cloud service provider
has no access to by any means.

By using IBM Hyper Protect Crypto Services, developers can design and code applications
with a standard API that requests encryption. This feature enables organizations to invoke
security without their development teams needing to become encryption experts. Data
integrity is enabled through digital signing and confidentiality from the data encryption.
Applications can use a Public Key Cryptographic Standards 11 (PKCS #11) library to perform
specific cryptographic functions, such as digital signing and validation and Secure Sockets
Layer (SSL) offloading. IBM Hyper Protect Crypto Services provides a set of Enterprise
PCKS #11 over gRPC (GREP11) API calls that enable remote application access to run
cryptographic functions in the cloud HSM. For more information about using the GREP11
feature, see 2.5, “Using the Public Key Cryptography Standards #11 APl with IBM Hyper
Protect Crypto Services” on page 151.

In addition, this service is built with a cloud command-line interface (CLI) for the HSM Key
Ceremony process for the user to take ownership of the cloud HSM. The service uses the
same key provider API as IBM Key Protect, which is the multi-tenant Key Management
Service (KMS) that provides a consistent approach for adopting IBM Cloud services. At the
time of writing, there are new ways of initializing the master key. Another option is to use
recovery crypto units, which means that when you provision a service instance in either
region with this feature enabled, by default you can back up your master keys. A third option is
to use a smart card and its management utilities where key parts are stored encrypted in
smart cards.

IBM Hyper Protect Crypto Services can also integrate with IBM Cloud services so that you
can manage encryption keys in the cloud. Several database and storage service offerings,
such as IBM Cloud Storage and IBM Hyper Protect Database as a Service (DBaaS), are
supported for integration, so that you can use envelope encryption, which is the practice of
encrypting data with DEK and then wrapping it with the root key. Integration with compute
services such as VMware vSphere and Virtual Server for IBM Virtual Private Cloud (VPC)
provides secure key management. Container service integrations are also available to protect
secrets and provide more granular control on access. To see the list of supported integration
services and for more information about integrating IBM Cloud services, see Integrating IBM
Cloud services with Hyper Protect Crypto Services.

For more information about IBM Hyper Protect Crypto Services, see Chapter 2, “IBM Cloud
Hyper Protect Crypto Services” on page 13 and IBM Cloud Hyper Protect Crypto Services.

Chapter 1. Introducing IBM Hyper Protect Services 3

https://www.ibm.com/cloud/hyper-protect-crypto
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-integrate-services
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-integrate-services

1.3 IBM Cloud Hyper Protect Database as a Service

The IBM Cloud Hyper Protect DBaaS solution enables the provisioning and management of
highly secured databases to provide data confidentiality to mission-critical workloads without
needing a traditional database administrator (DBA) to maintain it.

Imagine that a development organization wants to build an application in the cloud. However,
with security top of mind and organizational concerns about cloud, management is instead
considering pulling the application back behind the firewall for protection. It might even be
necessary to get a sign-off on the architecture from the Chief Information Security Officer
(CISO), who considers the following key questions:

» Is our customer’s data safe in the cloud?
» How can we ensure that the data is protected from internal and external threats?
» Will the application integrate well? How easy will the process be to get started?

» Can we get the same level of security and performance in the cloud as we do with our
on-premises solution today?

IBM Hyper Protect DBaa$S offers complete data confidentiality for data that is hosted in the
cloud so that even the cloud administrators cannot access customer data. The solution is
deployed on IBM LinuxONE technology with industry-leading data confidentiality through
built-in workload isolation and data encryption, restricted administrator access, tamper
protection for data at rest and in flight, and with vertical scale and performance, all to enable
users to maintain complete control over their data in the cloud. IBM Hyper Protect DBaaS
also provides nondisruptive version upgrades, monitoring, and support so that users can
focus on application development.

This service offers standard APls to provision, manage, maintain, and monitor multiple
databases. This solution is built with high availability (HA), where every deployment is built as
a HA clustered configuration, including 3-node clusters (one primary and two replicas) with
each deployed instance that is hosted on LinuxONE in an MZR setup within an IBM Cloud
region with daily automated backups. IBM Hyper Protect DBaaS also supports industry
certifications, such as the General Data Protection Regulation (GDPR) and clients’ regulatory
compliance activities.

Currently, the following options are available:

» IBM Hyper Protect DBaa$S for MongoDB
» IBM Hyper Protect DBaa$S for PostgreSQL

For more information about IBM Hyper Protect DBaa$S, see Chapter 3, “IBM Cloud Hyper
Protect Database as a Service” on page 207, and see IBM Cloud Hyper Protect DBaaS.

1.4 IBM Cloud Hyper Protect Virtual Servers

4

The adoption of cloud brought rapid business changes over the past decade. What remains is
a challenge in the migration of workloads and data from highly regulated industries, such as
financial services, healthcare, telecommunications, and government. Market analysis shows
that 80% of workloads are still being run on-premises because of concerns about moving
sensitive data to the cloud and the risk of data compromise.

Securing Your Critical Workloads with IBM Hyper Protect Services

https://www.ibm.com/cloud/hyper-protect-dbaas

For example, healthcare is a multi-trillion dollar industry in the United States and features
unique challenges when it comes to securing data. With medical records of millions of people,
health systems are regulated by tight federal laws, such as the Health Insurance Portability
and Accountability Act (HIPAA) and GDPR.

However, as the healthcare structure continues to evolve, healthcare companies are
pressured to adapt. Examples of this adaptation include moving sensitive data to the cloud
and taking advantage of the latest technology in the hopes of reducing costs and improving
patient outcomes.

Naturally, these changes are attracting critics amid heightened attention to data privacy, and
the healthcare industry is not alone in hesitating to move to cloud. IBM Cloud Hyper Protect
Virtual Servers is an offering that alleviates these concerns.

IBM Cloud Hyper Protect Virtual Servers is the industry’s first customer-managed, LinuxONE
-based virtual server platform in the public cloud. It provides customers with complete
authority over their LinuxONE -based workloads without the cloud administrators accessing
their data. Customers manage their LinuxONE -based workloads through users who
instantiate their own Linux virtual servers with their own public Secure Shell (SSH) key to
maintain. Users can build their applications and create development and test environments
and use them for disaster recovery (DR) or geographic expansions where a client wants a
presence but cannot build a complete data center on their own.

Managing IBM Cloud Hyper Protect Virtual Servers is done through the IBM Cloud portal for
tasks such as checking the status of virtual servers and information about instances. In
addition, the Dashboard has information about how to connect to instances and perform tasks
like create, modify, and delete users, and install applications.

As LinuxONE -based virtual servers on the IBM Cloud, IBM Cloud Hyper Protect Virtual
Servers include security that is enforced at the hardware layer that does not depend only on
software policies or operational best practices. Only the user who provisioned the virtual
server with their public SSH key can access it (not even the cloud administrators are granted
this access), which assures the user that even the cloud administrator has no technical way of
accessing the data.

With IBM LinuxONE and Secure Service Container (SSC) technology, IBM Cloud Hyper
Protect Virtual Servers provide built-in pervasive encryption of data at rest and in flight, and
tamper protection from inside and outside threats. This feature can give organizations peace
of mind that highly sensitive data, such as medical records, are always protected. IBM Cloud
Hyper Protect Virtual Servers offer a confidential computing environment that addresses the
top security concerns of regulated enterprises.

IBM Cloud Hyper Protect Virtual Servers also provide users high reliability and availability for
mission-critical applications. Workloads are deployed on high-performance Linux virtual
machines (VMs), and an instance can be built as a HA cluster with MZR support. Overall,
IBM Cloud Hyper Protect Virtual Servers offer users control and security without
compromising performance.

For more information, see Chapter 4, “IBM Cloud Hyper Protect Virtual Servers” on page 239,
and IBM Cloud Hyper Protect Virtual Servers.

Chapter 1. Introducing IBM Hyper Protect Services 5

https://www.ibm.com/cloud/hyper-protect-virtual-servers

1.5 IBM Hyper Protect Virtual Servers on-premises

The IBM Hyper Protect Virtual Servers offering delivers unique security capabilities to protect
applications on-premises that are deployed to IBM LinuxONE or IBM Z servers.

Many organizations must protect their mission-critical applications in production, but security
threats can also surface during the development and pre-production phases. Also, during
deployment and production, insiders who manage the infrastructure that hosts critical
applications might pose a threat because of their super-user credentials and level of access
to secrets or encryption keys. Organizations must incorporate secure design practices in their
development operations and embrace DevSecOps to protect their applications from the
vulnerabilities and threat vectors that can compromise their data and potentially threaten their
business.

IBM Hyper Protect Virtual Servers, which is the evolution of the IBM Secure Service
Container for IBM Cloud Private offering, protect Linux workloads on IBM Z and

IBM LinuxONE platforms throughout their lifecycle, build, management, and deployment
phases. This solution delivers the security that is needed to protect mission-critical
applications in hybrid multicloud deployments.

IBM Hyper Protect Virtual Servers provide a simplified CLI tool to manage various containers
throughout the lifecycle. Command sets are available to manage virtual servers and Secure
Build Server (SBS), and monitor the appliance health and Enterprise PKCS #11 (EP11)
interfaces for crypto operations. Recently, commands were enhanced to deliver benefits such
as reduced deployment time of images and to update the default Docker and bridge network
definitions (previously, only the default name and subnet were supported).

IBM Hyper Protect Virtual Servers enables the following security benefits:

» Developers can securely build their applications in a trusted environment with integrity.

» IT infrastructure providers can manage the servers and virtualized environment where the
applications are deployed without having access to those applications or their sensitive
data.

» Application users can validate that those securely built applications originate from a
trusted source by integrating this validation into their own auditing processes.

» CISOs can be confident that their data is protected and private from internal and external
threats.

1.5.1 Building images with integrity: Securing Continuous Integration and
Continuous Delivery

6

Developers can securely build their own applications by using the IBM Hyper Protect Virtual
Servers Secure Build Continuous Integration and Continuous Delivery (CI/CD) pipeline flow
to sign their applications and sign and encrypt the application configuration information.
Through this CI/CD, developers can validate the code that is used to build their images and
reassure their users of the integrity of their applications.

IBM Hyper Protect Virtual Servers can also use the IBM Crypto Express HSM with FIPS
140-2 Level 4-certified cryptographic capabilities to generate public or private key pairs for
signing and encrypting the securely built, and signed application images that are deployed as
virtual servers.

Securing Your Critical Workloads with IBM Hyper Protect Services

1.5.2 Managing infrastructure with least privilege access to applications and
data

After deploying signed IBM Hyper Protect Virtual Servers images, infrastructure providers can
manage the underlying infrastructure that hosts the images without accessing the
application’s sensitive data to ensure separation of duties and access. The IBM Hyper Protect
Virtual Servers image, which is deployed in an SSC appliance, can be managed by using:

» Only RESTful APIs alone
» Disabled SSH for production builds
» Enabled SSH for development builds

Multiple management options provide a flexible choice in access level to match the lifecycle
stage of the application.

IBM Hyper Protect Virtual Servers is designed for zero trust. It uses technical assurance,
which means technology is enforced so that the administrator cannot access data, which is
unlike operational assurance, which trusts that the provider will not access or provide an
internal admin unauthorized access to the data.

1.5.3 Deploying images with trusted provenance

The origin of IBM Hyper Protect Virtual Servers images can be validated to ensure that the
image to be deployed and its components come from a trusted source, such as an
independent software vendor (ISV) organization or internal development team. The images
can be checked to verify that no back door is introduced during the image build. Users of
IBM Hyper Protect Virtual Servers application images can use an image’s manifest during an
audit to approve an image for deployment.

For more information, see Chapter 5, “IBM Hyper Protect Virtual Servers on-premises” on
page 253 and IBM Hyper Protect Virtual Servers.

1.6 Security features

The IBM Hyper Protect Virtual Servers services are based on SSC on IBM LinuxONE, which
is the most secure platform in the industry. In this section, we describe the following security
features that are used by the IBM Hyper Protect Virtual Servers services:

» Cryptography
» SSC
» Encryption key management

1.6.1 Cryptography

IBM Hyper Protect Virtual Servers services on IBM Cloud and on-premises are hosted on the
most secure platform, which is IBM LinuxONE. In this section, we describe some
cryptographic concepts to help you understand some security features on this platform.

Chapter 1. Introducing IBM Hyper Protect Services 7

https://www.ibm.com/us-en/marketplace/hyper-protect-virtual-servers

8

Keys
In modern cryptography, keys must be kept secret. Depending on the effort that is made to
protect the key, keys are classified into the following levels:

» Aclear keyis a key that is transferred from the application in clear text to the cryptographic
function. The key value is stored in the clear (at least briefly) somewhere in unprotected
memory areas. Therefore, the key can be made available to someone under certain
circumstances who is accessing this memory area. This risk must be considered when
clear keys are used. However, many applications exist where this risk can be accepted.
For example, the transaction security for the (widely used) encryption methods Secure
Sockets Layer (SSL) and Transport Layer Security (TLS) is based on clear keys.

» The value of a protected key is stored only in clear in memory areas that cannot be read by
applications or users. The key value does not exist outside of the physical hardware,
although the hardware might not be tamper-resistant. The principle of protected keys is
unique to IBM Z and LinuxONE systems.

» For a secure key, the key value does not exist in clear format outside of a special hardware
device (HSM), which must be secured and tamper-resistant. A secure key is protected
from disclosure and misuse, and it can be used for the trusted execution of cryptographic
algorithms on highly sensitive data. If used and stored outside the HSM, a secure key
must be encrypted with a master key, which is created within the HSM and never leaves
the HSM. On IBM LinuxONE, secure keys are in IBM Crypto Express adapters, which are
described in “IBM Crypto Express adapter”.

CP Assist for Cryptographic Functions

On each processor unit (PU) or core of the LinuxONE server, an independent cryptographic
coprocessor that is named CP Assist for Cryptographic Functions (CPACF) is available. The
CPACEF coprocessor is not classified as an HSM. It is not suitable for handling algorithms that
use secure keys. However, it can be used for algorithms that use clear keys and protected
keys.

The CPACF offers a set of symmetric cryptographic functions that enhances the encryption
and decryption performance of clear key operations. CPACF is designed to facilitate the
privacy of cryptographic key material when used for data encryption through key wrapping
implementation. It ensures that key material is not visible to applications or operating systems
(OSs) during encryption operations. Because CPACF is on the same PU, it runs at processor
speed (5.2 GHz). Therefore, it is a fast cryptographic device that performs synchronous
cryptographic operations.

CPACEF offers a set of symmetric cryptographic functions (for example, AES and DES) that
enhances the encryption and decryption performance of clear key operations. These
functions are for SSL, virtual private network (VPN), and data-storing applications that do not
require FIPS 140-2 Level 4 security.

CPACEF can encrypt up to 13 GB of data per second per core. CPACF can provide
performance improvements of up to 6x, and it is best suited for symmetric, high-speed bulk
encryption.

IBM Crypto Express adapter

IBM Z and LinuxONE include a PCle cryptographic adapter feature that is exclusive to these
platforms that is designed for FIPS 140-2 Level 4 certification. This feature is an HSM that is
compliant with PCI-HSM certifications and provides a secure programming and hardware
environment on which crypto processes are run. It provides tamper-sensing and
tamper-responding high-performance cryptographic operations.

Securing Your Critical Workloads with IBM Hyper Protect Services

Each cryptographic adapter can be configured in one of the following configurations:

» Secure IBM Common Cryptographic Architecture (CCA) coprocessor (CEX7C) for FIPS
140-2 Level 4 certification.

» Accelerator (CEX7A) for acceleration of public key and private key cryptographic
operations that are used with SSL/TLS processing.

» Secure IBM Enterprise EP11 coprocessor (CEX7P) implements an industry-standardized
set of services that adheres to the PKCS #11 specification V2.20 and more recent
amendments. This mode introduced the PKCS #11 secure key function. In EP11, keys can
be generated and securely wrapped under the EP11 Master Key. A Trust Key Entry (TKE)
workstation is always required to support the administration of the Crypto Express7S
when it is configured in EP11 mode. IBM Hyper Protect Virtual Servers employ an EP11
over gRPC (GREP11) container that enables API calls to cryptographic functions on the
HSM from other applications or microservices.

These modes can be configured by using the Support Element (SE). The PCle adapter must
be configured offline to change the mode.

The Trust Key Entry workstation

The TKE workstation is an optional feature that offers key management functions. The TKE
provides a secure, remote, and flexible method of providing Master Key Part Entry and to
remotely manage PCle cryptographic coprocessors. The cryptographic functions on the TKE
are run by one PCle cryptographic coprocessor. The TKE workstation communicates with the
IBM Z or LinuxONE system through a TCP/IP connection. TKE securely manages multiple
cryptographic modules that run in CCA or EP11 and use compliant-level hardware-based key
management techniques from a single point of control.

Chapter 1. Introducing IBM Hyper Protect Services 9

1.6.2 IBM Secure Service Container

IBM SSC provides the base infrastructure on IBM LinuxONE for integrating OS, middleware,
and software components that are packaged to work autonomously and provide core services
and infrastructure with a focus on consumability and security.

Figure 1-1 shows an overview of the SSC.

ation Interfaces

Management Backend

o
<
=
o
w
14
=
et
=
L
E
L
o
]
=
L]
-

Figure 1-1 Secure Service Container

The SSC focuses specifically on protections from misuse of privileged user credentials and
delivers this protection and other security capabilities that applications or code can use
without changing the code. In addition, the SSC framework encrypts the underlying
infrastructure data in flight and at rest, which prevents access to memory or processor state;
deploys to a logical partition (LPAR) that is certified for Enterprise Assurance Level (EAL) 5+
level isolation; and prevents direct access to the embedded OS. The SSC provides
communication and management through defined APls in the appliance framework.

Security mechanisms
The following security mechanisms also are applied to protect the data in the SSC:

» Persistence data is encrypted by using the automatic file system encryption technology
Linux Unified Key Setup (LUKS). The encryption keys are stored within appliances, and
they are not accessible by administrators. Keys are managed based on the appliance
lifecycle. The Docker container data that is mounted to disk is also encrypted.

» In-flight data is encrypted by using the automatic network encryption technology TLS.
Data is transferred through encrypted management REST API interfaces among SSC
partitions.

10 Securing Your Critical Workloads with IBM Hyper Protect Services

» Diagnostic data is encrypted, which includes first-failure data capture (FFDC) data that is
required to fix problems, dump data (including log message buffers), and so on. Such data
is accessible to the service team only.

» OS access to the underlying SSC appliance is prohibited. Back doors to this host level are
eliminated because SSH is disabled on the SSC partitions by default. Access to the
cluster nodes are available by using SSH keys that are protected by the cloud
administrator. Users with OS access cannot access application data and customer data.

Note: IBM SSC encrypts your data at-rest and in-flight by using CPACF on IBM LinuxONE
at CPU speed. Optionally, to provide the most secure environment that is compliant with
FIPS 140-2 Level 4 certification, SSC also uses PCI-HSM on LinuxONE for secure keys
management by configuring the PCI-HSM or crypto adapters with the EP11 mode.

Encryption algorithms that are used for storage and data transport are provided by the
IBM SSC in IBM Hyper Protect Virtual Servers services.

IBM Hyper Protect Virtual Servers services are based on the SSC technology. They inherit all
the security mechanisms that are provided by the SSC, as described in “Security
mechanisms” on page 10.

Note: At the time of writing, secure keys management in IBM Hyper Protect Virtual
Servers services uses EP11 library and APIs, including IBM Cloud Hyper Protect Crypto
Services and IBM Hyper Protect Virtual Servers on-premises.

Chapter 1. Introducing IBM Hyper Protect Services 11

12 Securing Your Critical Workloads with IBM Hyper Protect Services

IBM Cloud Hyper Protect Crypto
Services

In this chapter, we describe how cryptographic operations and private keys can be secured by
using IBM Hyper Protect Crypto Services in IBM Cloud by using Hardware Security Modules
(HSMs). This chapter covers the service configuration, the programming application
programming interfaces (APIs) that are available and examples, and the connection setup to
the IBM Hyper Protect Crypto Services instance.

This chapter includes the following topics:

>

>

>

Overview

IBM Hyper Protect Crypto Services provisioning

Service initialization: Crypto units master key initialization
Using the IBM Key Protect REST API

Using the Public Key Cryptography Standards #11 APl with IBM Hyper Protect Crypto
Services

© Copyright IBM Corp. 2020, 2022. All rights reserved. 13

2.1 Overview

IBM Hyper Protect Crypto Services is a dedicated Key Management Service (KMS) and HSM
that uses Federal Information Processing Standard (FIPS) 140-2 Level 4 certified hardware
that is available in the public IBM Cloud.

Your application connects the IBM Hyper Protect Crypto Services over a TCP/TP Transport
Layer Security (TLS) connection and authenticates it by using valid IBM Cloud service
authentication tokens.

IBM Hyper Protect Crypto Services provides HSM master key lifecycle management
capabilities like master key generation, master key rotation, and master key recovery.

IBM Hyper Protect Crypto Services provides a programming model that allows an application
to secure the data by securing the management of cryptographic keys and cryptographic
operations in a cloud service. Three programming models are available to application
developers:

» The IBM Key Protect REST API.

» The Public Key Cryptography Standards (PKCS) #11 over gRPC API (GREP11) to
request encryption or to sign the application data.

» Native PKCS #11 C library.

PKCS #11 defines a standard platform that is an independent set of cryptographic APIs (also
referred to as cryptoki). The cryptoki APl implements cryptographic operations, such as key
generation for symmetric keys and asymmetric key pairs; encryption and decryption; hashing;
and digital signatures, which occur securely within the HSM.

The HSM devices that are used in IBM Hyper Protect Crypto Services are certified at FIPS
140-2 Level 4, which is the highest protection level that is defined by the standard. IBM Hyper
Protect Crypto Services clients have a dedicated HSM crypto unit (a single-tenant model).

Note: For more information about the differences between the various FIPS 140-2 security
levels, see What is the difference between FIPS 140-2 Level 1, 2, 3, and Level 47.

For more information about the official FIPS 140-2 specification, which is from the United
States Government’s National Institute of Standards and Technology (NIST), see the NIST
publication Security Requirements for Cryptographic Modules.

2.2 IBM Hyper Protect Crypto Services provisioning

An instance of IBM Hyper Protect Crypto Services can be created by using the IBM Cloud
console (the IBM Cloud user interface that is available on the internet from your browser) or
the IBM Cloud Command-Line Interface (CLI). Two mandatory steps are required before your
application can use the services:

1. Provision your IBM Hyper Protect Crypto Services, as described in 2.2.1, “Provisioning an
instance by using the IBM Cloud console” on page 15.

2. Initialize your service by setting up its HSM master key, as described in 2.2.2,
“Provisioning your instance by using the IBM Cloud CLI” on page 26.

14 Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-faq-security-compliance
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

Online information also is available at the following resources:

» Provisioning an instance by using the IBM Cloud console.
» Provisioning an instance by using the IBM Cloud CLI.

2.2.1 Provisioning an instance by using the IBM Cloud console

IBM Cloud console is the user interface that is available at Log in to IBM Cloud. You use a
web browser application like Google Chrome, Firefox, or Microsoft Edge to connect the IBM
Cloud console.

Tip: The authors of this book used Chrome Version 89.0.4389.114 running on Linux and
KDE Plasma 5.21 for the screen captures of the IBM Cloud console that are shown in this
chapter.

For more information about supported browsers, see What are the IBM Cloud
prerequisites?

In this book, it is assumed that you own an IBM Cloud account with which you can perform
the tasks that are shown in this chapter.

Listing your IBM Hyper Protect Services

When you connect to https://cloud.ibm.com, you see the login window that is shown in
Figure 2-1.

IBM Cloud : ator B Docs

Log in to IBM Cloud

i

YourlbmID@ToBeTyped.Here

Continue

[J Remember ID

Figure 2-1 IBM Cloud login window

Chapter 2. IBM Cloud Hyper Protect Crypto Services 15

https://cloud.ibm.com/docs/overview?topic=overview-prereqs-platform
https://cloud.ibm.com/docs/overview?topic=overview-prereqs-platform
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-provision#provision-gui
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-provision#provision-gui
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-provision#provision-gui
https://cloud.ibm.com
https://cloud.ibm.com
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-provision#provision-gui
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-provision#provision-cli
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-provision#provision-cli
https://cloud.ibm.com
https://cloud.ibm.com/docs/overview?topic=overview-prereqs-platform
https://cloud.ibm.com

16

Enter your IBM Cloud user ID and click Continue.

After you are authenticated, a new window opens. Click the Navigation Menu icon (the one

with three horizontal bars, often referred to as a “hamburger menu”).

& @ m B i

B

0

A &® 0 @8

E

a8

IBM Cloud

Create resource +

Quick start

Build

Explore IBM Cloud with this
selection of eas
rials and services.

Resource summary

4

Explore IBM Analytics
Engine

Develop and deploy
analytics applications using
open source Apache Spark
and Apache Hadoop.

10 min

Explore IBM Cloud Shell

Try a command-driven
approach for creating,
developing, and deploying a
web project.

2min

View all

Figure 2-2 Navigation Menu

Select Resource List, as shown in Figure 2-3 on page 17.

Securing Your Critical Workloads with IBM Hyper Protect Services

0

0O

@ ®

E

o-¢

IBM Cloud

Dashboard

Resource List

Docs
Support

Manage

Classic Infrastructure
Cloud Foundry

Code Engine

Functions

Kubernetes

Openshift

Satellite

Security and Compliance

VMware

A e E s s

https://cloud.ibm.com/resources

Explore IBM Analytics
Engine

Develop and deploy
analytics applications using
open source Apache Spark
and Apache Hadoop.

10 min

Explore IBM Cloud Shell

Try a command-driven
approach for creating,
developing, and deploying a
web project.

2min

View all

Figure 2-3 Resource list

The Resource List window opens and displays your list of resources. They are grouped by
category. If you are an IBM Cloud client, you already might have some of the resources that
are listed.

Chapter 2. IBM Cloud Hyper Protect Crypto Services

17

Figure 2-4 shows that the account has an HPCS-RedBook service running.

==
~ Name T Group Status
B
@ Q, Filter by name or IP address... Filter by g... ~ Q, Filter...
@ ~ Devices (0 0)
~ VPC infrastructure (0 /0)
B ~ Clusters (0/0)
@ ~ Satellite (0 /0)
i ,
~ Cloud Foundry apps (0/ 0)
@ ~ Cloud Foundry services (0 0)
@ ~ Services (1/3)
s] ~
~ &y HPCS-RedBook zsb006ResourceGroup @ Active
@ ~ Storage (0 /1)
~ Network (0/0)
vm ~ Functions namespaces (0 / 0)
5

~ Apps (0/0) =

Figure 2-4 Instance HPCS-RedBook is listed in the Services drop-down list

Creating your IBM Hyper Protect Crypto Services instance by using the
IBM Cloud catalog

In this section, we describe two methods of creating an IBM Hyper Protect Crypto Services
instance.

Method 1: Menu toolbar

Click the magnifying glass in the menu toolbar of your IBM Cloud console, as shown in
Figure 2-5.

IBM Cloud Q Catalog Jocs Support Manage -

gj., Resource list me
g ~ Name T Group Location Status Tags

(&) Q, Filter by name or IP address. R Filter by gro... ~ Filter... ~ Q Filter... Filter... v

© ~ Devices (0/0)

(ﬁ ~ VPCinfrastructure (0 /0)

@ ~ Clusters (0/0)

Figure 2-5 Searching for a resource

18 Securing Your Critical Workloads with IBM Hyper Protect Services

Type the first letter of Hyper Protect. The full list of IBM Hyper Protect Services displays, as
shown in Figure 2-6.

IBM Cloud

Q

Resource list

Catalog Results

Name @
Filter by name or [P @

& @ m b
Jo

=] ~
@ N
m R
@ N
(S N
LS)

@ N
N
vm ~

N o~

Devices (0/0) @
VPC infrastructure | @

Clusters (0 /0)

Satellite (0 / 0) ﬁ
Cloud Foundry apps
Cloud Foundry servi
Services (1/3)

&7 HPCS-RedBook
Storage (0 /1)
Network (0 /0)
Functions namespaces (0 / 0)

Apps (0/0)

0 resource results found

Service

_ Create resource +
View all catalog results

Hyper Protect Crypto Services

Hyper Protect DBaas for MongoDB

Service

Hyper Protect DBaas for PostgreSQL

Service

Hyper Protect Virtual Server

Service

Phunware Mohile Marketing Automation

Service

Search "Hyper" in Support Cases [7

Search "Hyper" in Docs [7

zsb006ResourceGroup

Status

Q. Filter...

© Active

Figure 2-6 Looking for a resource by using the menu toolbar

Select Hyper Protect Crypto Services, as shown in Figure 2-7.

g Quick start

s e 0@9

+

Q, oresource results found

Dashboard ~

Catalog Results View all catalog results

@ Hyper Protect Crypto Services

Service

Hyper Protect Crypto Services
Hyper Protect DBaas for Mongo...

Service

Service

Search "hyper "in Docs []

2 min

Resource summary

A

Hyper Protect Virtual Server

@ Hyper Protect DBaa$ for Postgr... Create a Kubernetes
Service

Search "hyper " in Support Cases [

cluster

Automate deployments and
manage your containerized
apps in a native Kubernetes
experience.

20 min

Edit dashboard &

Set up your IBM Cloud

account

Learn how
IBM Cloud

to set up your
account, manage

your account settings,
organize resources, and
control access to those

resources.

10 min

View all

Planned maintenance

Create resource +

S

Create an OpenShift cluster

Deploy apps on highly
available clusters with Red
Hat Openshift on IBM
Cloud.

20 min

View all

Figure 2-7 Selecting Hyper Protect Crypto Services

Chapter 2. IBM Cloud Hyper Protect Crypto Services 19

Method 2: Catalog menu

If you prefer, you can select the Hyper Protect Crypto Services in the complete list of
IBM Cloud services. To do this task, click Catalog in the upper toolbar menu, as shown in
Figure 2-8.

IEM Cloud

IBM Cloud
products

Featured

Over 350 pre

S
Software

Consulting

Figure 2-8 Selecting Catalog in the upper toolbar menu

Select Services in the left menu, as shown in Figure 2-9.

IEM Cloud

Services

Featured . 5 .
sturee Explore our broad portfolio of managed services for infrastructure, developer tools,

Services and more to build your apps on the public cloud.

o Internal IBM pricing *
One or more products has discounted pricing for IBMers. The prices are IBM
confidential and should not be shared with clients. Log cut of your internal
1B8M =, pint #o weisaar 1, | nricin,

Figure 2-9 Selecting Services in the left menu

20 Securing Your Critical Workloads with IBM Hyper Protect Services

Scroll down the list of services to find

(Figure 2-10).

Cloud

Featured

Services

ovider (D

Hyper Protect Crypto Services
IEM - Security

Keep Your Own Key for cloud data
tion with a dedicated ki

= IAM-enabled

Financial Se:

©

Hyper Protect DBaas for
PostgreSQL
IEM - Databases

Deploy and manage a PostgreS0L cluster
ur sensitive data in a Secure
Service Container on IBM LinuxONE.

- 1AM d -
ce Endpoint Supported

v
L

IBM Cloud Activity Tracker
IEM » Logding and Monitoring

of events that occur
we searches, design

Lite = Free « IAM-enabled

IEM Cloud Data Shield
IEM =« Security

ables users to
u nerized applications in a secure
an IEM Cloud Kubernetes ho

IBM Cloud”

the tile for the Hyper Protect Crypto Services service

Hyper Protect DBaas for
MongoDB

IBM - Databases

Deploy and manage a MongoDB cluster to
ur sensit ainaSecure

IBM LinuxOME.

=

Hyper Protect Virtual Server
I8M « Compute

Create and run LinuxOME-bas
servers with exclusive acce
and complete authori

virtual
to your data
jour sensiti...

IEM Cloud Backup

IBM « Storage

A fast and flexible backup solution that is
y les

IBMC and p
ns to scale perfectly

+

!

IEM Cloud Monitoring

IBM -« Logging and Monitoring

Figure 2-10 Finding and selecting Hyper Protect Crypto Services in the list of available services

Chapter 2. IBM Cloud Hyper Protect Crypto Services 21

Click Hyper Protect Crypto Services to begin the process of provisioning an instance of the
service, as shown in Figure 2-11.

TTEE =
[y =
= E
Hyper Protect Crypto Services Hy
IBM = Security Ma

I8
Keep Your Own Key for cloud data De
encryption with a dedicated key prc
management service built on FIPS 140-_.. Sel

:"E"
Financial Services Validated = IAM-enabled Ser
<)

Figure 2-11 Clicking Hyper Protect Crypto Services

22 Securing Your Critical Workloads with IBM Hyper Protect Services

You should see the service creation that is shown in Figure 2-12.

Summary

& Hyper Protect Crypto Services

I8# « Date of last update: 04/30/20; AFL

Create About

Select a location

Dallas {us-south) b

Select a pricing plan
Displayed prices do nat include tax. Monthly prices shown are for country or location: United States

Flan Fextures Fricing

Standard Keep your awn keys $1,300.00 USDYCrypte Units
scalable performance with additional units

in the region. You may chaose edditional units for greater pesfarmance. The

The default number of crypte units is two for high aveilabi
Il be billed at a rate of $0.01 USD per 10,000 APT calls ower 1 million API calls.

monthly chasge for each provisianed crypto unit and API ¢

Configure your resource

Hyper Protect Crypto Services-s1 2sb006RescurceGroup

umber of crypts units

2 {multi-zene for high availability)

(®) Public and private (default) (O Private only "
Create

Figure 2-12 Hyper Protect Crypto Services Creation window

Chapter 2. IBM Cloud Hyper Protect Crypto Services 23

Clicking the tile opens a window in which you can specify settings for your instance. We
entered the following values, as shown in Figure 2-13.

= IBM Cloud Q Catalog Dacs Support
Select a location Summary
Hyper Protect Crypto
Select a location — s
(__ Dallas (us-south) \/._."

Select a pricing plan
Displayed prices do not include tax. Monthly prices shown are for country or location: United States

Plan Features Pricing

Standard Keep your own keys $1,560.00 USD/Crypto Units
Scalable performance with additional units

The default number of crypto units is two for high availability within the region. You may choose additional units for greater
performance. The monthly charge for sach provisioned crypto unit and AP calls will be billed at a rate of $0.01 USD per
10,000 AFT calls over 1 million APT calls.

Configure your resource

Servigpmame———_ e R

¢ detaut)

. My-hpcs-instance)

Tags @

Number of crypto units_

(2 (multi-zone for high availability)

anly through the private network using the CLI or APL Private-only net cee Create

tance. Learn more

Figure 2-13 Choosing your options when creating an IBM Hyper Protect Crypto Services instance

Select a region We selected Dallas from the list of regions in
which the service is available (Dallas,
Washington DC, Sydney, and Frankfurt at the
time of writing. More regions might host the
service in the future).

Service name We entered a name of my-hpcs-instance.

Resource group We accepted the default. By using resource
groups, you can organize your IBM Cloud
account resources for access control and billing
purposes. If you use this feature and use defined
resource groups, select a suitable group (the
choice is up to you). For more information about
resource groups, see Best practices for
organizing resources and assigning access.

Tags We left this field blank. Tags are optional. For
more information, hover the cursor over the
information tooltip that is next to the Tags label.

24 Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs/account?topic=account-account_setup#bp_resourcegroups
https://cloud.ibm.com/docs/account?topic=account-account_setup#bp_resourcegroups
https://cloud.ibm.com/docs/resources?topic=resources-bp_resourcegroups#bp_resourcegroups

Number of crypto units We selected 2 - (multi-zone for high
availability), which is the minimum
recommendation for production usage.

Public (default) or Private network We kept the default public option. This option
can be modified later. The IBM Hyper Protect
Crypto Services keys can be managed only by
using a CLI in a private network.

IBM Cloud Virtual Private Cloud (VPC) support: If you have an IBM Cloud VPC
instance, you can connect the VPC instance to your IBM Hyper Protect Crypto Services
instance through a virtual private endpoint (VPE) gateway so that you can manage your
keys by using IBM Hyper Protect Crypto Services through a private network.

After you select your settings, you might want to click View Terms in the Summary pane on
the right below the Create button or estimate your costs by using the link in the Summary
pane.

Note: Figure 2-13 shows the price of the service at time of writing. You might see a
different price in your configuration.

Click Create to create your IBM Hyper Protect Crypto Services instance.

After a couple of seconds, the Resource list opens, as shown in Figure 2-14, and you see the
in-progress provisioning of your service. After a couple of minutes, everything is ready.

oo
- Resource list
[E] ~ Name T Group Location Status Tags
[Q, Filter by name or IP address... Filter by group or org v Filter. v Q, Filter.. Filter v
@ ~ Devices (0]
'ﬁ' ~ WPC infrastructure (0}
@ # Clusters (0)
- Satellite (0)
3 - Cloud Foundry apps (0)
@ ~ Cloud Foundry services (0]
m ~ Services (4)
x "y HPCS-RedBook zsb006ResourceGroup Dallas @ Active -
+ Watson Studio-z4 default Dallas @ Active —
& my-hpes-instance default Dallas Provision in progre... —
| watson-vision-combined-at default Dallas & Active -
Storage (1)
Network (0)
- Functions namespaces (0]
-~ Apps (0)

Figure 2-14 On-going creation of the HPCS service

Your instance is created, but as a developer you cannot start using it. The HSM master keys
that protect your application keys and their cryptographic operations must be set up, as
described in 2.3, “Service initialization: Crypto units master key initialization” on page 31.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 25

2.2.2 Provisioning your instance by using the IBM Cloud CLI

26

In this section, we guide you through an installation and configuration of the IBM Cloud CLI
and how to create an IBM Hyper Protect Crypto Services instance.

Installing the IBM Cloud CLI

The IBM Cloud CLI must be installed on your workstation for you to complete all the other
tasks in this section.

Note: Commands run in a terminal emulator. The authors of this book used a Linux
notebook and its terminal emulator applications like konsole or gnome-terminal. The $ sign
represents a shell prompt and might be different on your notebook.

You can determine whether the IBM Cloud CLI is installed by running the command that is
shown in Example 2-1.

Example 2-1 The ibmcloud command.: Checking your release number

$ ibmcloud --version
ibmcloud version 1.5.1+7684ebe-2021-04-27T18:17:58+00:00

If you do not receive output that displays a version number but instead receive a message
indicating that the ibmcloud command is not found, you can learn how to install the IBM
Cloud CLI command at Getting started with the IBM Cloud CLI.

Important: You must ensure that you can successfully run the command that is shown in
Example 2-1 before you can perform any of the remaining tasks that are necessary to get
your service instance ready to use.

Configuring your IBM Cloud CLI

Log in to IBM Cloud by using the ibmcloud 1ogin command and select the correct account
that will be billed for the provisioning of the IBM Hyper Protect Crypto Services, as shown in
Example 2-2.

Example 2-2 Log in to IBM Cloud by using an IBM Corporate account and a one-time temporary
password

$ ibmcloud login --sso
API endpoint: https://cloud.ibm.com
Region: eu-de

Get a one-time code from
https://identity-1.uk-south.iam.cloud.ibm.com/identity/passcode to proceed.
Open the URL in the default browser? [Y/n] > Y

One-time code >

Authenticating...

0K

Select an account:

1. Redbooks Authorl's Account (156c853fbde0df21e3041ae895dd62a) <-> 2297237
2. IBM (c2a75eec409305d799123abc59659aa9a) <-> 24183987

3. ITSO's Account (f5606ddf8d449f4fe0384ebcch7570a8) <-> 93181231

Enter a number> 1

Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs/cli?topic=cli-getting-started

Targeted account Redbooks Authorl's Account (156c853fbde0df21e3041ae895dd62a)<->
2297237

API endpoint: https://cloud.ibm.com

Region: us-south

User: redbook.autho@itso.ibm.com

Account: Redbooks Authorl's Account (156c853fbde0df21e3041ae895dd62a)<->
2297237

Resource group: No resource group targeted, use 'ibmcloud target -g
RESOURCE_GROUP'

CF API endpoint:

Org:

Space:

The following steps guide you through the configurations options:
1. Select a region.

You must select a region (IBM Cloud data center) where IBM Hyper Protect Crypto
Services is available. At the time of writing, you can select Dallas, Washington DC,
Sydney, or Frankfurt.

To list the available regions, run the command that is shown in Example 2-3. It shows a
mapping between Display name and Name for the various regions. Name value is what you
specify as option parameters when required.

Example 2-3 Listing available regions

$ ibmcloud regions
Listing regions...

Name Display name
au-syd Sydney
in-che Chennai
jp-osa Osaka

jp-tok Tokyo

kr-seo Seoul

eu-de Frankfurt
eu-gb London
us-south Dallas
us-south-test Dallas Test
us-east Washington DC
$

Use the Name and not the Display name of the region where you want to provision your
service. For our example, we want us-south, so we select Dallas.

Using your region, run the command that is shown in Example 2-4.

Example 2-4 Targeting the correct region

$ ibmcloud target -r us-south
Switched to region us-south

Chapter 2. IBM Cloud Hyper Protect Crypto Services 27

2. Select a resource group.

Your account has a default resource group that is defined when the service is provisioned
and billed. You can list the available resource groups of your account by running the
ibmcloud resource groups command, as shown in Example 2-5.

Example 2-5 Listing your resource groups

$ ibmcloud resource groups
Retrieving all resource groups under account 537544c2222297f40ed689e8473e7849
as jeanyves.girard@fr.ibm.com...

0K

Name ID Default Group State
default b6c700bd2c854162bbb708f199479245 true ACTIVE
zsb006ResourceGroup d48a36a73a8141e48e66008a1180d89f false ACTIVE

default is defined as the default group for your account.

You can select another group by using the ibmcloud target command, as shown in
Example 2-6.

Example 2-6 Selecting another resource group to provision IBM Hyper Protect Crypto Services

$ ibmcloud target -g zsb0O6ResourceGroup
Targeted resource group zsb006ResourceGroup

API endpoint: https://cloud.ibm.com
Region: us-south

User: redbook.author@itso.ibm.com
Account: Redbooks Authorl's Account

(156c853fbde0df21e3041ae895dd62a)<-> 2297237
Resource group: zsb006ResourceGroup

CF API endpoint:

Org:

Space:

Creating your IBM Hyper Protect Crypto Services instance
In this step, we guide you with examples that assist you in the following tasks:

» Listing your services.

» Creating a service instance and listing the running service instances.

Listing your services

You can list your running IBM Hyper Protect Crypto Services instances by using the ibmc1oud
resource service-instances command, as shown in Example 2-7. The command applies to
a specific resource group. In our example, default is still selected as the resource group.

Example 2-7 Listing all running services

$ ibmcloud resource service-instances --type all
Retrieving instances with all types in resource group default in all locations
under account Redbooks Authorl's Account as redbook.author@itso.ibm.com...

0K

Name Location State Type

Watson Studio-z4 us-south active service_instance
cloud-object-storage-jh global active service_instance

28 Securing Your Critical Workloads with IBM Hyper Protect Services

watson-vision-combined-at us-south active service_instance
my-hpcs-instance us-south active service_instance

Any type of service is listed and includes non- IBM Hyper Protect Services. As a best
practice, include the type of service in the name of your IBM Hyper Protect Crypto Services.
In Example 2-7 on page 28, we used the hpcs acronym in the name so that we can easily see
that the my-hpcs-instance, which was previously created by using the IBM Cloud console, is
an IBM Hyper Protect Services instance.

To retrieve more information about an active service by using its name, run the command that
is shown in Example 2-8.

Example 2-8 Getting more information about an active service

$ ibmcloud resource service-instance my-hpcs-instance
Retrieving service instance my-hpcs-instance in all resource groups under
account edBook Authorl's Account as redbook.author@itso.ibm.com...

0K

Name: my-hpcs-instance

ID:
crn:vl:bluemix:public:hs-crypto:us-south:a/537544¢2222297f40ed689e8473e7849:8207ab
d0-b8d8-4c52-a257-966edalbabdd: :

GUID: 8207abd0-b8d8-4c52-a257-966edalbabad
Location: us-south

Service Name: hs-crypto

Service Plan Name: standard

Resource Group Name: default

State: active

Type: service_instance

Sub Type: kms

Created at: 2021-05-05T06:54:07Z
Created by: redbook.author@itso.ibm.com
Updated at: 2021-05-05T06:56:16Z

Last Operation:
Status create succeeded
Message Asynchronous provision completed successfully.

Creating a service instance and listing the running service instances

The ibmcloud resource service-instance-create command, as shown in Example 2-9,
creates a service instance.

The service name itso-second-hpcs-instance and the region us-south are mandatory
parameters.

Example 2-9 Instantiating IBM Hyper Protect Crypto Services

$ ibmcloud resource service-instance-create itso-second-hpcs-instance hs-crypto
standard us-south

Creating service instance itso-second-hpcs-instance in resource group default of
account Redbooks Authorl's Account as redbook.author@itso.ibm.com...

1] 4

Service instance itso-second-hpcs-instance was created.

Name: itso-second-hpcs-instance

Chapter 2. IBM Cloud Hyper Protect Crypto Services 29

ID:
crn:vl:bluemix:public:hs-crypto:us-south:a/537544¢c2222297f40ed689e8473e7849:c852b8
80-2503-4926-9158-b7bc5f7f6c09::

GUID: c852h880-2503-4926-9f58-b7bc5f7f6c09
Location: us-south

State: provisioning

Type: service_instance

Sub Type: kms

Allow Cleanup: false

Locked: false

Created at: 2021-05-05T10:07:47Z

Updated at: 2021-05-05T10:07:47Z

Last Operation:
Status create in progress
Message Started create instance operation

After you run the command that is shown in Example 2-9 on page 29, you can check the
following items:

» The state of the service provisioning, as shown in Example 2-10. The results of the
command that are shown in Example 2-10 shows that the service is still provisioning.

Example 2-10 Listing services while provisioning

$ ibmcloud resource service-instances

Retrieving instances with type service_instance in resource group default in
all locations under account Redbooks Authorl's Account as
redbook.author@itso.ibm.com...

0K

Name Location State Type

Watson Studio-z4 us-south active service_instance
cloud-object-storage-jh global active service_instance
watson-vision-combined-at us-south active service_instance
my-hpcs-instance us-south active service_instance

itso-second-hpcs-instance us-south provisioning service instance

» Example 2-11 shows successful instantiation when the service state becomes active.

Example 2-11 Listing your service

$ ibmcloud resource service-instances

Retrieving instances with type service_instance in resource group default in
all locations under account Redbooks Authorl's Account as
redbook.author@itso.ibm.com...

0K

Name Location State Type

Watson Studio-z4 us-south active service instance
cloud-object-storage-jh global active service instance
watson-vision-combined-at us-south active service_instance
my-hpcs-instance us-south active service instance

itso-second-hpcs-instance us-south active service instance

30 Securing Your Critical Workloads with IBM Hyper Protect Services

Advanced options: In the IBM Cloud console, the number of crypto units and the
private-only option can be specified by adding the following parameter options to the
ibmcloud resource service-instance-create command:

-p '{"units": <number of crypto units>, "allowed network": "<network access>"}

By default, a minimum of two crypto units are provisioned, and public and private networks
are enabled for the service.

2.3 Service initialization: Crypto units master key initialization

The HSM master key that is used by IBM Hyper Protect Crypto Services protects all the
cryptographic material that is created in the service. You must initialize it before by using your
service.

2.3.1 Activating your service’s master key

You must verify whether your service is initialized and active before you can use your service.

In the IBM Cloud console resource list, click the name of one of your provisioned IBM Hyper
Protect Crypto Services instances to start its configuration. In this example, we use the
my-hpcs-instance, as shown in Figure 2-15.

-~ Services (4}
h "y HPC5-RedBook zsb006ResourceGroup Dallas O Active =
+ Watson Studio-z4 default Dallas & Active -

'-:" my-hpcs-instance default Dallas @ Active =

default Dallas @ Active ==

Figure 2-15 Listing your service in the Resource List of the IBM Cloud console

Chapter 2. IBM Cloud Hyper Protect Crypto Services 31

If your HSM master key is not configured, you see a yellow warning toolbar telling you that the
master key has not been activated, as shown in Figure 2-16.

my-hpcs-instance ©acve addtes 2 Details | Actions. -

Getting started Key management service keys 0

P L ey X CiE TS Get started
Key management service key I Master key not activated. To manage your keys, you need to initialize your service instance first t star ‘

ngs

Key management service keys

%, Search vooo
nt service
ources

Name ID Alias Key ring ID Type State Origin Last updated
Enterprise PKCS #11 keystores

Enterprise PKCS #11 keys

No keys to be displayed.

You need to initialize your service instance before you
can add keys

Items per page 100 v 0-0 of 0 items 1~ oflpage

Figure 2-16 HSM master key is not configured

The master key (also known as the HSM master key) is used to encrypt the cryptographic
materials that are stored in the service-allocated keystores. It is a symmetric 256-bit AES key.
For the initialization, you must prepare and load it or you can auto-generate it. One service
instance has only one master key. If you delete the master key of the service instance, you
can effectively crypto-shred all data that was encrypted with the keys that are wrapped by the
HSM master key.

With an HSM master key, you take the ownership of the cloud HSM and own the root of trust
that encrypts your application keys and the cryptographic operations with them. You can keep
and protect a copy of this HSM master key by using multiple smart cards or multiple files that
are protected by a specific password that is known by multiple individuals.

The activated HSM master key never leaves the HSM. IBM Cloud administrators cannot
extract this key out of the HSM.

By restoring this master key in another HSM, you can restore your operations at another site.
This task requires a quorum of Security Officers (SOs) to provide their master key copy part
and enter their password. IBM Hyper Protect Crypto Services includes recovery crypto units
that make this procedure easy and transparent.

The procedure to manipulate this HSM master key is highly sensitive, and it is done by using
a set of specific ibmcloud tke commands. (The tke acronym means Trusted Key Entry.)

Note: The HSM is certified at Security Level 4 of the United States government’s FIPS
140-2 standard, which is the highest security level that is defined in the standard.

For more information about the FIPS 140-2 specification, see What is the difference
between FIPS 140-2 Level 1, 2, 3, and Level 4.

FIPS 140-2 Level 4 means that the HSM responds to virtually all attempts at tampering by
destroying all critical security parameters, that is, the master key. It is almost impossible for
a malicious actor to steal your master key from the HSM.

32 Securing Your Critical Workloads with IBM Hyper Protect Services

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-faq-security-compliance#faq-fips-levels
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-faq-security-compliance#faq-fips-levels
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-faq-security-compliance#faq-fips-levels
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-faq-security-compliance#faq-fips-levels
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

Table 2-1 describes three approaches that can be used to initialize your HSM master key.

Table 2-1 Three options to initialize the HSM master key

Approaches Tool Master key Master key Master key
storage backup rotation?

Using smart TheManagement | The masterkeyis | You are Not supported at

cards and the Utilities composed of responsible for the time of

IBM Hyper several master backing up the writing.

Protect Crypto key parts thatare | master key by

Services stored on smart using smart

Management cards. cards.

Utilities.

Using recovery
crypto units.

IBM Cloud Trust
Key Entry (TKE)

The masterkey is
automatically

The masterkey is
automatically

You do not need
to prepare a new

2.3.2, “Using the
IBM Cloud TKE
CLI plug-in and
master key part

files” on page 34.

stored on your
local workstation
files.

need to make
sure that the files
are properly
saved and only
the master key
custodian knows
the password.

For more CLI plug-in generated and backed up in master key forthe
information, see stored within the recovery crypto rotation. The new
2.3.6, “Initializing recovery crypto units. You can master key is
your IBM Hyper units of your recover your automatically
Protect Crypto service instance. | master key from generated in a
Services master the backups ifthe | recovery crypto
key by using master key is lost | unit and then
recovery crypto or destroyed. propagated to the
units” on operational
page 57. crypto units and
other recovery
crypto units.
Using key part IBM Cloud TKE The masterkeyis | The local files Youmustprepare
files. CLI plug-in composed of serve as a anew master key
For more several master backup of the on your local
information, see key parts thatare | master key. You workstation

before you can
rotate the master
key for your
service instance.

a. Master Key rotation is the action to switch the current HSM master key to a new one, which
forces a re-encryption of the existing ciphered materials in IBM Hyper Protect Crypto Services
keys stores and maybe your application data too.

Note: At the time of writing, only the us-south and us-east regions are enabled with the
recovery crypto units.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 33

2.3.2 Using the IBM Cloud TKE CLI plug-in and master key part files

Figure 2-17 shows an operational model of a master key initialization by using a notebook
that connects to IBM Hyper Protect Crypto Services on IBM Cloud.

Master key ‘parts’

= a Security officer 1

: " =
/s 7
E i
<"~ Security officer2 (Jmww
o=

Private keys for

/" authentication h

m / ; Security officer 4

H | / N
, (_}__7 IBM Cloud :>

a Master Key

Figure 2-17 Master key management by using the IBM Cloud TKE CLI plug-in

T secu rity officer 3

2o B

Two security officers out of 4 are
required in this example to
create/rotate master key

‘crypto units’ i
Hardware Security Module (&

The following list describes the master key parts that are shown in Figure 2-17:
» SOs

To use the IBM Cloud TKE CLI plug-in and master key part files, first you must do the
following tasks:

— Identify a set of trusted people that will be referred to as SOs or administrators in this
book. They are responsible for the crypto unit master key lifecycle. A minimum of two
people are required. Each one owns a signature key file that is created by running the
ibmcloud tke sigkey-add command. The file is used to sign their actions on the HSM
master key.

— Define a quorum of SOs that are required to apply an action on the master key. The
quorum is defined by running the ibmcloud tke cryptounit-thrhld-set command.
This command also switches the crypto unit from an insecure mode that is used for the
HSM master configuration to a secure mode.

» A TKE notebook

The master key initialization happens on a single notebook where the signature key file of
each SO (protected by their password) is temporarily stored. This notebook can run a
Linux, Mac, or MS Windows operating system (OS). The examples that are documented in
this book used a Linux notebook.

On this notebook, you have the following items:
— The IBM Cloud TKE CLI plug-in installed.

— A copy of the administrators or SOs signature keys, as described in “Create your
administrators’ signature keys.” on page 37.

34 Securing Your Critical Workloads with IBM Hyper Protect Services

— A copy of the master key parts that were previously generated by each administrator or
SO by running the ibmcloud tke mk-add command. The parts are protected a
password. For more information, see “Creating the master key parts on your notebook”
on page 44.

The notebook OS environment variable CLOUDTKEFILES defines the directory where
signature keys and key parts are stored. This directory is a working one that also keeps
some contextual information for an ibmcloud tke working session as:

— The selected crypto units on which you want to apply an action.

— The selected set of administrator signature keys that are used to sign and authenticate
your action when the crypto units are switched to the secure mode.

Note: CLOUDTKEFILES must be defined as an absolute path name.

Security context

Except for administrator signature key and master key part generation, all the ibmc1oud
tke commands require you to log in to IBM Cloud with your account.

The crypto units are initially provisioned for an IBM Cloud user in an insecure mode (called
imprint). By using this temporary mode, you can define administrators and the master key
registers for all crypto units that are associated with the service instance.

The same set of administrators must be added in all crypto units. They are defined by
using the administrator signature keys and the ibmcloud tke cryptounit-admin-add (and
ibmcloud tke cryptounit-admin-rm) commands. For more information, see step 4 on
page 39.

To switch the crypto units from configuration mode to a secure mode, specify the quorum
or threshold of administrator signatures. In secure mode, all actions (that use ibmc1oud
tke) on them must be signed by at least the threshold number of signature keys. These
signatures must be selected before running the action. For more information, see 2.3.5,
“Selecting administrator signature keys when working in secure mode” on page 56.

You can check the status of your crypto units by running the ibmcloud tke
cryptounit-thrhlds command.

All crypto units exit imprint mode at the same time.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 35

Master key activation
Figure 2-18 describes the four steps that are necessary to activate the master key:

1. Key generation
2. Key loading

3. Key committing
4. Key activation

Your Laptop Your Hyper Protect Crypto Service
Key generation | |
ibmcloud tke mk -add ——randem |
1
. " I
New Master Key Register Current Master Key Register | o
Empty Old key 1
I
1
1
I
= I
Key loading |
ibmecloud tke mk —add —-random !
__(New Master Key Register Current Master Key Register : e
rl Key uncommitted Old key |
J 1
I
1
1
Key committing :
ibmcloud tke cryptounit -mk —-commit 1
I
1
Current Master Key Register 1
[0ld key] : 9
I
1
Key activation 1
ibmcloud tke cryptounit -mk -setimm :
1
1
New Master Key Register laster 2, : e
Empty New key active 1

Figure 2-18 Managing HSM master keys registers by using the CLI

The HSM card has two internal registers:

» The Current Master Key Register is used by current cryptographic operations.
» The New Master Key Register that temporary stores a key before its activation into the
Current Master Key Register.

The ibmcloud tke commands are used to move a key from the new to the current register.
The two master key registers also can be cleared if you do something wrong:

» ibmcloud tke cryptounit-mk-clrcur clears the current master key register.

» ibmcloud tke cryptounit-mk-clrnew clears the new master key register.

As shown in Figure 2-18, the master key parts are loaded into the new key register by using
the following command:

ibmcloud tke cryptounit-mk-load

Ultimately, the master key is activated by using the following two commands:

ibmcloud tke cryptounit-mk-commit
ibmcloud tke cryptounit-mk-setimm.

The service is ready for application developers. As a best practice, remove the key parts and
signature keys from this initial setup workstation for security reasons.

36 Securing Your Critical Workloads with IBM Hyper Protect Services

Installing the IBM Cloud TKE CLI plug-in

By using The TKE plug-in in your IBM Cloud CLI environment, you can manage the HSM
master key of your service. To install the plug-in, complete the following steps:

1. List your installed plug-ins.
List your installed plug-ins by using the command that is shown in Example 2-12. In the
example, the TKE plug-in is not listed, which means that it is not installed.

Example 2-12 IBM Cloud plug-in list

$ ibmcloud plugin list
Listing installed plug-ins...

PTug-in Name Version Status Private
endpoints supported

cloud-object-storage 1.2.1 Update Available false
container-registry 0.1.497 Update Available false
container-service/kubernetes-service 1.0.208 Update Available false
cloud-functions/wsk/functions/fn 1.0.47 Update Available false

2. Run the IBM Cloud CLI TKE plug-in installation command.

Install the plug-in by running the ibmcloud plugin install tke command, as shown in
Example 2-13.

Example 2-13 Installing the Trusted Key Entry plug-in

$ ibmcloud plugin install tke
ibmcloud plugin install tke
Looking up 'tke' from repository 'IBM Cloud'...
Plug-in 'tke 1.1.4' found in repository 'IBM Cloud'
Attempting to download the binary file...

12.32 MiB / 12.32 MiB

100.00% 5s

12921694 bytes downloaded

Installing binary...

0K

PTug-in 'tke 1.1.4' was successfully installed into
/home/itsouser/.bluemix/plugins/tke. Use 'ibmcloud plugin show tke' to show its
details.

3. Create your administrators’ signature keys.

These keys are required to authenticate the actions that are applied to the crypto units and
HSM during the activation and management the HSM master key. Each signature key file
is protected on the notebook by a password that is required during an ibmcloud tke
command invocation.

In our scenario, we simulate three different administrators who are called adminl, admin2,
and admin3.

Note: It is expected that each administrator provides their signature file and its master
key part and store it on the notebook that is used during the HSM setup. These files are
stored in a directory that is specified by the CLOUDTKEFILES OS environment variable.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 37

To create the signature key for admin1, open a terminal emulator and run the command
that is shown in Example 2-14. In this example, the command results in an error message.

Example 2-14 Error message that results if you fail to create a directory to store your TKE files

$ export CLOUDTKEFILES=$HOME/securestorage

$ ibmcloud tke sigkeys

FAILED

Error accessing the subdirectory defined by the CLOUDTKEFILES environment
variable.

Check that the subdirectory exists and is specified correctly by the
environment variable.

CLOUDTKEFILES=/home/itso/securestorage

You receive an error because a directory that you need is not on your notebook.
Example 2-15 demonstrates how to fix this error. In our case, we used a notebook that
uses a Linux OS.

To create signature key for each administrator, run the ibmcloud tke sigkey-add
command.

Example 2-15 Generating a system administrator signature file for each admin

$ export CLOUDTKEFILES=$HOME/securestorage

$ mkdir -p $HOME/securestorage

$ ibmcloud tke sigkeys

No files containing a signature key were found.

To create a file containing a signature key, use the 'ibmcloud tke sigkey-add'
command.

$ ibmcloud tke sigkey-add

Enter an administrator name to be associated with the signature key:
> adminl

Enter a password to protect the signature key:

>

Reenter the password to confirm:
>

0K
A signature key was created.
The available signature keys on this workstation are:

KEYNUM DESCRIPTION SUBJECT KEY IDENTIFIER
1 adminl 48d998c79b703b91bc0Ob1bc529b369. ..

No KEYNUM is selected as current signature keys.

$ ibmcloud tke sigkey-add

Enter an administrator name to be associated with the signature key:
> admin2

Enter a password to protect the signature key:

>

Reenter the password to confirm:
>

0K

38 Securing Your Critical Workloads with IBM Hyper Protect Services

A signature key was created.
The available signature keys on this workstation are:

KEYNUM DESCRIPTION SUBJECT KEY IDENTIFIER
1 adminl 48d998c79b703b91bc0Ob1bc529b369. ..
2 admin2 840f77fd9079d713c5527fc1f4f027. ..

No KEYNUM is selected as current signature keys.

$ ibmcloud tke sigkey-add

Enter an administrator name to be associated with the signature key:
> admin3

Enter a password to protect the signature key:

>

Reenter the password to confirm:
>

0K
A signature key was created.
The available signature keys on this workstation are:

KEYNUM DESCRIPTION SUBJECT KEY IDENTIFIER

1 adminl 48d998c79b703b91bcOb1lbc529b369. ..
2 admin2 840f77fd9079d713ch527fclf4f027...
3 admin3 6d733334d57eae3ec7e5ced0197991. ..

No KEYNUM is selected as current signature keys.
$ ibmcloud tke sigkeys

KEYNUM DESCRIPTION SUBJECT KEY IDENTIFIER

1 adminl 48d998c79b703b91bcOb1bc529b369. ..
2 admin2 840f77fd9079d713ch527fclf4f027...
3 admin3 6d733334d57eae3ec7e5ced0197991. ..

No KEYNUM is selected as current signature
keys.

You can check the created key files in the $CLOUDTKEFILES directory, as shown in
Example 2-16.
Example 2-16 Listing admin signatures files in your notebook in the $CLOUDTKEFILES directory

$ 1s $CLOUDTKEFILES
l.sigkey 2.sigkey 3.sigkey SIGKEYS

These files are protected by a password. To increase security at operations time, you can
move these file to each administrator’s or SO’s own notebook. Further actions on the
crypto units require you to contact each administrator to get this file.

. Specify the crypto unit or HSM administrators by opening a terminal and logging in to
IBM Cloud by using the IBM Cloud CLI.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 39

5. Check the provisioned IBM Hyper Protect Crypto Services instance that you want to
configure by running the following command (Example 2-17):

ibmcToud resource services-instance

In our example, the instance was previously provisioned by using one of the procedures
described in 2.2, “IBM Hyper Protect Crypto Services provisioning” on page 14.

Example 2-17 Listing all your services including IBM Hyper Protect Crypto Services ones

$ ibmcloud resource service-instance

Retrieving instances with type service _instance in all resource groups in all
locations under account Lydia Parziale's Account as
jeanyves.girard@fr.ibm.com...

0K

Name Location State Type

Watson Studio-z4 us-south active service_instance
cloud-object-storage-jh global active service_instance
watson-vision-combined-at us-south active service_instance
my-hpcs-instance us-south active service_instance

Checking the provisioned crypto units of your services

To verify that your provisioned crypto units are used by your provisioned IBM Hyper Protect
Crypto Services instance, run the ibmcloud tke cryptounits command.

If you do not specify your resource group before running the ibmcloud tke cryptounits
command, you encounter the error that is shown in Example 2-18.

Example 2-18 Checking your available Hardware Security Modules

$ ibmcloud tke cryptounits
FAILED
No resource group targeted.

You must specify your resource group before running the ibmcloud tke cryptounits
command where your service was created, as shown in Example 2-19.

Example 2-19 Setting the resource group for your account and retrieving the list of crypto units

$ ibmcloud target -g default
Targeted resource group default

API endpoint: https://cloud.ibm.com

Region: us-south

User: redbook.author@itso.ibm.com

Account: ITSO's Account (537544c2222297f40ed689e8473e7849) <-> 2297116
Resource group: default

CF API endpoint:

Org:

Space:

$ ibmcloud tke cryptounits
Verifying the OA certificate chain for serial number 93AAATOB...
Successfully verified the OA certificate chain for 93AAATOB.

Verifying the OA certificate chain for serial number 93AAASM5...
Successfully verified the OA certificate chain for 93AAASM5.

40 Securing Your Critical Workloads with IBM Hyper Protect Services

Verifying the OA certificate chain for serial number 93AAATZI...
Successfully verified the OA certificate chain for 93AAATZIL.

Verifying the OA certificate chain for serial number 93AABA6J...
Successfully verified the OA certificate chain for 93AABA6J.

API endpoint: https://cloud.ibm.com

Region: us-south

User: redbook.author@itso.ibm.com

Account: ITSO's Account (537544c2222297f40ed689e8473e7849)

Resource group: default

SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbab4d

CRYPTO UNIT NUM SELECTED TYPE LOCATION

1 false OPERATIONAL [us-south].[AZ3-CS6].[02].[07]
2 false OPERATIONAL [us-south].[AZ1-CS4].[00].[09]
3 false RECOVERY [us-south].[AZ3-CS9].[01].[11]
4 false RECOVERY [us-east].[AZ3-CS3].[01].[05]

Note: all operational crypto units in a service instance must be configured the
same.
Use 'ibmcloud tke cryptounit-compare' to check how crypto units are configured.

Note: The ibmcloud tke cryptounits command lists all crypto units and HSMs of all IBM
Hyper Protect Crypto Services instances that you provisioned in a resource group. The
service instance’s Globally Unique Identifier (GUID) is specified before each group of
associated crypto units.

To check whether the GUID corresponds to the service, run the ibmcloud resource
service-instance <service names>command.

Selecting the crypto units to set up their master key

In Example 2-19 on page 40, you might notice that your crypto units are not selected, so any
command to modify their configuration would fail, as shown in Example 2-20.

Example 2-20 Error when no Hardware Security Module or crypto unit is selected

$ ibmcloud tke cryptounit-admins
FAILED
No crypto units have been selected.

You must select one or more crypto units by using the 'ibmcloud tke
cryptounit-add' command before running this command.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 41

Select crypto cards that use the ibmcloud tke cryptounit-add command, as shown in
Example 2-21. Use a white space separated list of numbers to specify the HSMs that you
want to apply an action to. In our example, we typed 1 2 3 4.

To remove some selected crypto units if you make a mistake, run the ibmcloud tke
cryptounit-rm command.

Example 2-21 Selecting your crypto units to apply an action to them

$ ibmcloud tke cryptounit-add
/... IBM Cloud connection details .../

SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbab4dd

CRYPTO UNIT NUM SELECTED TYPE LOCATION

1 false OPERATIONAL [us-south].[AZ3-CS6].[02].[07]
2 false OPERATIONAL [us-south].[AZ1-CS4].[00].[09]
3 false RECOVERY [us-south].[AZ3-CS9].[01].[11]
4 false RECOVERY [us-east].[AZ3-CS3].[01].[05]

Note: all operational crypto units in a service instance must be configured the
same.
Use 'ibmcloud tke cryptounit-compare' to check how crypto units are configured.

Enter a 1ist of CRYPTO UNIT NUM to add, separated by spaces:
>12314

0K

/... IBM Cloud connection details .../

SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbab4dd

CRYPTO UNIT NUM SELECTED TYPE LOCATION

1 true OPERATIONAL [us-south].[AZ3-CS6].[02].[07]
2 true OPERATIONAL [us-south].[AZ1-CS4].[00].[09]
3 true RECOVERY [us-south].[AZ3-CS9].[01].[11]
4 true RECOVERY [us-east].[AZ3-CS3].[01].[05]

Note: In our example, we select the recovery crypto units and HSM. We want to load the
same master key in both operational and recovery crypto units. This way, the master key
can be recovered by using the recovery crypto units, as described in 2.3.6, “Initializing your
IBM Hyper Protect Crypto Services master key by using recovery crypto units” on page 57.

Specifying the administrator signature keys of your crypto units

Specify the quorum of admins that is required to perform an action on your selected HSMs by
using the ibmcloud tke cryptounit-admin-add command using your signature keys available
in our $CLOUDTKEFILES directory, as shown in Example 2-22. By default, two administrators
are required.

Example 2-22 Specifying your crypto unit administrator

$ ibmcloud tke cryptounit-admin-add

KEYNUM DESCRIPTION SUBJECT KEY IDENTIFIER

1 adminl 48d998c79b703b91bcOb1bc529b369. ..
2 admin2 840f77fd9079d713ch527fcl1f4f027...
3 admin3 6d733334d57eae3ec7e5ced0197991. ..

42 Securing Your Critical Workloads with IBM Hyper Protect Services

No KEYNUM is selected as current signature keys.

Enter the KEYNUM of the administrator signature key you want to load:
>1

Enter the password for the administrator signature key file:

>

0K
The crypto unit administrator was added to the selected crypto units.

$ ibmcloud tke cryptounit-admin-add

KEYNUM DESCRIPTION SUBJECT KEY IDENTIFIER

1 adminl 48d998c79b703b91bcOb1bc529b369. ..
2 admin2 840f77fd9079d713ch527fclf4f027...
3 admin3 6d733334d57eae3ec7e5ced0197991. ..

No KEYNUM is selected as current signature keys.

Enter the KEYNUM of the administrator signature key you want to load:
> 2

Enter the password for the administrator signature key file:

>

0K
The crypto unit administrator was added to the selected crypto units.

$ ibmcloud tke cryptounit-admin-add

KEYNUM DESCRIPTION SUBJECT KEY IDENTIFIER

1 adminl 48d998c79b703b91bcOb1lbc529b369. ..
2 admin2 840f77fd9079d713ch527fclf4f027...
3 admin3 6d733334d57eae3ec7e5ced0197991. ..

No KEYNUM is selected as current signature keys.

Enter the KEYNUM of the administrator signature key you want to load:
>3

Enter the password for the administrator signature key file:

>

0K

The crypto unit administrator was added to the selected crypto units.

In Example 2-23, we list the three administrators who are configured for the four crypto units
of the service.

Example 2-23 Listing crypto units administrators

$ ibmcloud tke cryptounit-admins

SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edal6ab4dd
CRYPTO UNIT NUM ADMIN NAME SUBJECT KEY IDENTIFIER

1 adminl 009dbc1cd13b285a29020c41c0f8e2. ..
1 admin2 9ed551ab8dc4eallcb118d3b390d75. ..
1 admin3 bedbb6c5508afad25655b69e61ab72. ..
2 adminl 009dbc1cd13b285a29020c41c0f8e2. ..
2 admin2 9ed551ab8dc4eallcb118d3b390d75. ..
2 admin3 be4bb6c5508afad25655b69e61ab72. ..

Chapter 2. IBM Cloud Hyper Protect Crypto Services 43

3* adminl 009dbc1cd13b285a29020c41c0f8e2. ..

3* admin2 9ed551ab8dcdeallcb118d3b390d75. ..
3* admin3 be46b6c5508afad25655b69e61ab72. ..
4* adminl 009dbc1cd13b285a29020c41c0f8e2. ..
4* admin2 9ed551ab8dcdeallcb118d3b390d75. ..
4* admin3 be46b6c5508afad25655b69e61ab72. ..

Creating the master key parts on your notebook

Before creating the master key parts, check that all the crypto units are in imprint mode by
running the ibmcloud tke cryptounit-thrhlds command, as shown in Example 2-24.

Imprint mode is a nonsecure mode that you use to activate a master key on nonconfigured
crypto units.

Example 2-24 Checking the crypto units mode

$ ibmcloud tke cryptounit-thrhlds

SIGNATURE THRESHOLDS
SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbab4dd
CRYPTO UNIT NUM SIGNATURE THRESHOLD REVOCATION THRESHOLD

1 0 0
2 0 0
3* 0 0
4% 0 0

* Indicates a recovery crypto unit that is used only to hold a backup master key
value.

==> (Crypto units with a signature threshold of 0 are in IMPRINT MODE. <==

The threshold (number of signatures required) is set to zero, which indicates that the crypto
units are in imprint mode.

Now, you can create the master key parts by running the ibmcloud tke mk-add --random
command, as shown in Example 2-25. This command creates a randomized key part. By
using The --value option, you can load your own key part.

In our scenario, we create one key part per administrator or SO. If needed, you can create
more key parts.

Each key part is protected by a password. In our scenario, each password is known by only
one specific administrator or SO. The password can be different from their signature key
password.

Example 2-25 Generating master key parts on your notebook

$ ibmcloud tke mks
No files containing an EP11 master key part were found.

$ ibmcloud tke mk-add --random

Enter a description for the key part:

> key part 1-3

Enter a password to protect the key part:
>

44 Securing Your Critical Workloads with IBM Hyper Protect Services

Reenter the password to confirm:

>

0K

A key part was created.

The available EP11 master key parts on this workstation are:

KEYNUM DESCRIPTION VERIFICATION PATTERN
1 key part 1-3 d4fbbb0f5f8b09bdcee23dd605899¢c13
b106e76ec0dd0ddbccf38c83b31c4688

$ ibmcloud tke mk-add --random

Enter a description for the key part:

> key part 2-3

Enter a password to protect the key part:
>

Reenter the password to confirm:

>

0K

A key part was created.

The available EP11 master key parts on this workstation are:

KEYNUM DESCRIPTION VERIFICATION PATTERN

1 key part 1-3 d4fbbb0f5f8b09bdcee23dd605899c13
b106e76ec0dd0ddbccf38c83b31c4688

2 key part 2-3 a0791c825f4751c2c8c9163f034adfe2

69fd190e39bc2b7187ab329a31eeb627

$ ibmcloud tke mk-add --random

Enter a description for the key part:

> key part 3-3

Enter a password to protect the key part:
>

Reenter the password to confirm:

>

0K

A key part was created.

The available EP11 master key parts on this workstation are:

KEYNUM DESCRIPTION VERIFICATION PATTERN

1 key part 1-3 d4fbbb0f5f8b09bdcee23dd605899c13
b106e76ec0dd0ddbccf38c83b31c4688

2 key part 2-3 a0791c825f4751c2c8c9163f034adfe2
69fd190e39bc2b7187ab329a31eeb627

3 key part 3-3 c4949dd64f92h2a96d7832b8420ee62¢

e021d4c9efe2a9f9141668ecbef262bf

$ ibmcloud tke mks

KEYNUM DESCRIPTION VERIFICATION PATTERN

1 key part 1-3 d4fbbb0f5f8b09bdcee23dd605899c13
b106e76ec0dd0ddbccf38c83b31c4688

2 key part 2-3 a0791c825f4751c2c8c9163f034adfe2

69fd190e39bc2b7187ab329a31eeb627

Chapter 2. IBM Cloud Hyper Protect Crypto Services

45

3 key part 3-3 c4949dd64f92b2a96d7832b8420ee62¢
e021d4c9efe2a9f9141668ecbef262bf

Tips: In the description in Example 2-25 on page 44, we specify the total number of key
parts and the key part number so that you do not miss a file.

Do you see the verification pattern? You retrieve these numbers from the crypto units
Master Key Register, which is a good way to know which key parts were used to load the
Master Key in case of recovery.

Example 2-26 lists the files in our $CLOUDTKEFILES directory for both signature files and key
part files.

Example 2-26 Listing the master key files after they are generated

$ 1s $CLOUDTKEFILES
l.mkpart 1.sigkey 2.mkpart 2.sigkey 3.mkpart 3.sigkey CRYPTOMODULES DOMAINS
MKPARTS SIGKEYS

As for signature files, each key part file that is assigned to a SO can be moved to their
notebook, but they are secured by a password on the notebook where they were created.

A key part and a signature file may not be assigned to the same person. Typically, the key part
is not owned by an information technology person or department, but rather by business
people.

Important: All master key part files and signature key files that you use must be on a
common workstation. If the files were created on separate workstations, make sure that
the file names are different to avoid collision. The master key part file owners and the
signature key file owners must enter the file passwords when the master key register is
loaded on the common workstation.

Master key restoration: By restoring the master key parts file in the $CLOUDTKEFILES
directory and running the ibmcloud tke cryptounit-mk-1oad command, you can restore
your master key and activate it by using the procedure that is described in “Activating the
master key” on page 49.

The other option is to use the recovery crypto units, which is described in 2.3.6, “Initializing
your IBM Hyper Protect Crypto Services master key by using recovery crypto units” on
page 57.

This scenario can be considered for a disaster recovery (DR) or Digital Asset cold wallet
scenario. Of course, administrators and SOs secret keys must be restored too.

Getting out of imprint mode before loading a master key

Imprint mode is a specific operational mode for the crypto units that allows actions that do not
need to be signed with any administrator signature keys. After an IBM Hyper Protect Crypto
Services provisioning, the associated crypto units start in this mode. You exit the imprint
mode when you set a threshold level.

Installing a master key requires that you to exit imprint mode and define the same signature
threshold value on each crypto unit.

46 Securing Your Critical Workloads with IBM Hyper Protect Services

Note: Removing an IBM Hyper Protect Crypto Services instance requires that you revert to
imprint mode. For more information, see “ibmcloud cryptounit-rm” on page 54 and 2.3.4,
“Zeroing out the crypto unit master key” on page 54.

Ensure that you select the minimum number of administrator signature keys on your notebook
to issue the command that is shown in Example 2-27.

Example 2-27 Selecting two administrator signature keys before getting out of imprint mode

$ ibmcloud tke sigkey-sel

KEYNUM DESCRIPTION SUBJECT KEY IDENTIFIER

1 adminl 48d998c79b703b91bcOb1bc529b369. ..
2 admin2 840f77fd9079d713c5527fc1f4f027...
3 admin3 6d733334d57eae3ec7e5ced0197991. ..

No KEYNUM is selected as current signature keys.

Enter the KEYNUM values to select as current signature keys, separated by spaces:
>

Eniei the password for KEYNUM 1:

>

Enter the password for KEYNUM 2:

>

0K

KEYNUM 1, 2 have been made the current signature keys.

Define a threshold level (the number of administrators that are required to apply an action on
the crypto unit) for signature and revocation.

Set the threshold level on the selected crypto units by using the command that is shown in
Example 2-28. This command causes your instance to exit imprint mode.

Example 2-28 Switching from imprint mode to secure mode by setting the threshold

$ ibmcloud tke cryptounit-thrhld-set

Enter the new signature threshold value:
> 2

Enter the new revocation signature threshold value:

> 2

Enter the password for the signature key identified by:

adminl (48d998c79b703b91bcOblbc529b369...)

>

Enter the password for the signature key identified by:

admin2 (840f77fd9079d713c5527fc1f4f027...)

>

0K

New signature threshold values are set in the selected crypto units.

SIGNATURE THRESHOLDS

SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbabdd
CRYPTO UNIT NUM SIGNATURE THRESHOLD REVOCATION THRESHOLD
1 2 2

Chapter 2. IBM Cloud Hyper Protect Crypto Services 47

2 2 2
3*
4 2 2

[aS]
[AS]

* Indicates a recovery crypto unit that is used only to hold a backup master key
value.

==> (Crypto units with a signature threshold of 0 are in IMPRINT MODE. <==

The command that is shown in Example 2-29 allows checks the current threshold on the
selected crypto units in your session.

Example 2-29 Listing the threshold of your selected crypto units

$ ibmcloud tke cryptounit-thrhlds

SIGNATURE THRESHOLDS
SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbab4dd
CRYPTO UNIT NUM SIGNATURE THRESHOLD REVOCATION THRESHOLD

1 2 2
2 2 2
3* 2 2
4* 2 2

* Indicates a recovery crypto unit that is used only to hold a backup master key
value.

==> (Crypto units with a signature threshold of 0 are in IMPRINT MODE. <==

Note: If you forget to select the required number of administrator signatures when using
the ibmcloud tke sigkey-sel command, you might encounter the following error:

FAILED

Error reported by EP11 crypto module.

Return code: 209

Reason code: 70

Error message: Change not allowed. You are not allowed to change an attribute
if the corresponding attribute control bit is reset.

If you use recovery crypto units, you see that the thresholds are not set on the recovery
crypto units.

Loading the master key by using the master key parts
Check the prerequisites:

» Are the selected crypto units still in imprint mode?
» Are the master key parts ready on the configuration notebook?
» Have you selected the required number of administrator signature keys?

If all these items are complete, you can create the master key for the crypto units as shown in
Example 2-30 on page 49 by running the ibmcloud tke cryptounit-mk-load command.

48 Securing Your Critical Workloads with IBM Hyper Protect Services

Example 2-30 Creating the crypto units master key

$ ibmcloud tke cryptounit-mk-1oad

KEYNUM ~ DESCRIPTION VERIFICATION PATTERN

1 key part 1-3 d4fbbb0f5f8b09bdcee23dd605899c13
b106e76ec0dd0ddbccf38c83b31c4688

2 key part 2-3 a0791c825f4751c2c8c9163f034adfe2
69fd190e39bc2b7187ab329a31eeb627

3 key part 3-3 c4949dd64f92h2a96d7832b8420ee62¢

e021d4c9efe2a9f9141668ecbef262bf

Enter the KEYNUM values of the master key parts you want to load.

2 or 3 values must be specified, separated by spaces.

>123

Enter the password for the signature key identified by:
adminl (48d998c79b703b91bcOblbc529b369...)

>

Enter the password for key file 1
>

Enter the password for key file 2
>

Enter the password for key file 3
>

0K

The new master key register has been lToaded in the selected crypto units.

NEW MASTER KEY REGISTER

SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbab4dd

CRYPTO UNIT NUM STATUS

1 Full Uncommitted
2 Full Uncommitted
3* Full Uncommitted
4* Full Uncommitted

* Indicates a recovery crypto unit that is used only to hold a backup master key

value.

VERIFICATION PATTERN

7b4f4535bd48bcc0deallf960ea2elee
¢5f884b2005e90cc0ff86d39993bb7d3
7b4f4535bd48bcc0deallf960ea2elee
¢5f884b2005e90cc0ff86d39993bb7d3
7b4f4535bd48bcc0deallf960ea2elee
¢5f884b2005e90cc0ff86d39993bb7d3
7b4f4535bd48bcc0deallf960ea2elee
c5f884b2005e90cc0ff86d39993bb7d3

You might notice that the master key is in an Uncommitted state in the New Master Key

Register. Understand that the key is not used by any application.

Activating the master key

Your crypto units and HSMs hold two registers:

» The current master key register, which is used for cryptographic operations.

» The new master key register, which you can use to change the value of the current master

key register.

Chapter 2. IBM Cloud Hyper Protect Crypto Services

49

The master key activation is a two-step process:
1. Committing the new master key register.

2. Performing the activation, which moves the value of the new master key register into the
current master key register. this action makes any data that is protected with the previous
key on the service unreadable.

To commit the master key on the crypto units, use the command that is shown in
Example 2-31. In our example, we use two out of three administrator signature keys as
defined in our threshold and our list of crypto units admins.

Example 2-31 Committing the master key in the new master key register

$ ibmcloud tke cryptounit-mk-commit

Enter the password for the signature key identified by:

adminl (48d998c79b703b91bcOblbc529b369...)

>

Enter the password for the signature key identified by:

admin2 (840f77fd9079d713c5527fc1f4f027...)

>

0K

The new master key register has been committed in the selected crypto units.

NEW MASTER KEY REGISTER
SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbab4dd

CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

1 Full Committed 7b4f4535bd48bcc0dea0lf960ea2elee
c5f884b2005e90cc0ff86d39993bb7d3

2 Full Committed 7b4f4535bd48bcc0dea0l1f960ea2elee
c5f884b2005e90cc0ff86d39993bbh7d3

3* Full Committed 7b4f4535bd48bcc0dea0l1f960ea2elee
c5f884b2005e90cc0ff86d39993bbh7d3

4* Full Committed 7b4f4535bd48bcc0dea0l1f960ea2elee

c51884b2005e90cc0ff86d39993bb7d3

* Indicates a recovery crypto unit that is used only to hold a backup master key
value.

To activate the master key on the crypto units, use the command that is shown in
Example 2-32. Activating the master key moves it from the new key register to the current key
register.

Example 2-32 Activating the master key

$ ibmcloud tke cryptounit-mk-setimm

Warning! Any key storage that is associated with the targeted service instance
must be prepared to accept the new master key value before running this command.
Otherwise, key storage might become unusable.

Do you want to continue?

Answer [y/N]:

>y

Enter the password for the signature key identified by:

adminl (48d998c79b703b91bcOblbc529b369...)

>

0K

Set immediate completed successfully in the selected crypto units.

50 Securing Your Critical Workloads with IBM Hyper Protect Services

NEW MASTER KEY REGISTER

SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbabdd

CRYPTO UNIT NUM STATUS

1 Empty
2 Empty
3* Empty
4* Empty

CURRENT MASTER KEY REGISTER

VERIFICATION PATTERN

00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000

SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbab4d

CRYPTO UNIT NUM STATUS

1 Valid
2 Valid
3* Valid
4* Valid

VERIFICATION PATTERN

7b4f4535bd48bcc0deallf960ea2elee
c5f884b2005e90cc0ff86d39993bb7d3
7b4f4535bd48bcc0deallf960ea2elee
c5f884b2005e90cc0ff86d39993bb7d3
7b4f4535bd48bccO0deallf960ea2elee
c5f884b2005e90cc0ff86d39993bb7d3
7b4f4535bd48bcc0deallf960ea2elee
c5f884b2005e90cc0ff86d39993bb7d3

* Indicates a recovery crypto unit that is used only to hold a backup master key

value.

The crypto units are now in a valid state. Your application can now use IBM Hyper Protect

Crypto Services.

You see that the value in the new master key register is set to empty, and the value of the

current master key register is now set to the new value.

Note: For this command, only one administrator signature key is needed. When prompted,
enter the password for the signature key file that is to be used.

2.3.3 Getting the crypto units details and enabling cryptocurrency

cryptography

To see whether a change has been applied, run the ibmcloud tke cryptounit-compare

command. The command that is shown in Example 2-33 provides a view of your crypto units
administrators, capabilities, and their master keys status.

Example 2-33 Viewing your crypto units administrators, capabilities, and their master keys status

$ ibmcloud tke cryptounit-compare

SIGNATURE THRESHOLDS

SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbab4d
CRYPTO UNIT NUM SIGNATURE THRESHOLD REVOCATION THRESHOLD

1 2
2 2
3* 2
4* 2

2

2
2
2

Chapter 2. IBM Cloud Hyper Protect Crypto Services

51

* Indicates a recovery crypto unit that is used only to hold a backup master key value.
==> Crypto units with a signature threshold of 0 are in IMPRINT MODE. <==
CRYPTO UNIT ADMINISTRATORS

SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbabdd
CRYPTO UNIT NUM ADMIN NAME SUBJECT KEY IDENTIFIER

1 adminl 48d998c79b703b91bc0b1bc529b369. ..
admin2 840177fd9079d713¢c5527fc1f4f027. ..
admin3 6d733334d57eae3ec7e5ced0197991. ..

2 adminl 48d998c79b703b91bc0b1bc529b369. ..
admin2 840f77fd9079d713c5527fc1f4f027...
admin3 6d733334d57eae3ec7e5ced0197991. ..

3* adminl 48d998c79b703b91bc0b1bc529b369. ..
admin2 840177fd9079d713c5527fc1f4f027. ..
admin3 6d733334d57eae3ec7e5ced0197991. ..

4% adminl 48d998c79b703b91bc0b1bc529b369. ..
admin2 840f77fd9079d713c5527fc1f4f027...
admin3 6d733334d57eae3ec7e5ced0197991. ..

* Indicates a recovery crypto unit that is used only to hold a backup master key value.

NEW MASTER KEY REGISTER
SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbabdd
CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

1 Empty 00000000000000000000000000000000
00000000000000000000000000000000
2 Empty 00000000000000000000000000000000
00000000000000000000000000000000
3* Empty 00000000000000000000000000000000
00000000000000000000000000000000
4* Empty 00000000000000000000000000000000

00000000000000000000000000000000

CURRENT MASTER KEY REGISTER
SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbabdd
CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

1 Valid 7b4f4535bd48bcc0deall1f960ea2elee
c¢5f884b2005€90cc0ff86d39993bb7d3
2 Valid 7b4f4535bd48bcc0dea01f960ea2elee
c¢51884bh2005e90cc0ff86d39993bb7d3
3* Valid 7b4f4535bd48bcc0deall1f960ea2elee
c5f884b2005€90cc0ff86d39993bb7d3
4% Valid 7b4f4535bd48bcc0deall1f960ea2elee

c5f884b2005e90cc0ff86d39993bb7d3
* Indicates a recovery crypto unit that is used only to hold a backup master key value.
CONTROL POINTS

SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edal6a64d
CRYPTO UNIT NUM XCP_CPB_ALG_EC 25519 XCP_CPB_BTC XCP_CPB_ECDSA_OTHER

1 Set Set Set
2 Set Set Set
3* Set Set Set
4* Set Set Set

* Indicates a recovery crypto unit that is used only to hold a backup master key value.

52 Securing Your Critical Workloads with IBM Hyper Protect Services

==> A1l crypto units are configured the same. <==

By using the command that is shown in Example 2-33 on page 51, you can list the following

settings:

SIGNATURE THRESHOLDS

CRYPTO UNIT ADMINISTRATORS

The threshold of the signatures that are required to apply a
change or to revoke an administrator.

The subject key identifier that corresponds to the signature
key value of the administrator signature file that can be
found in $CLOUDTKEFILES, as shown in Example 2-34.

Example 2-34 Listing your subject key identifier in your signature file

$ jq -r .ski $CLOUDTKEFILES/1.sigkey
48d998c79b703b91bc0b1bc529b36997043960739257eb113936d35ef7b24e2c

MASTER KEY REGISTERS

CONTROL POINTS

XCP_CPB_BTC.

The two master keys register values: NEW MASTER KEY
REGISTER and the CURRENT MASTER KEY REGISTER.

Whether there are some crypto mechanisms that are
active (indicated by the word Set) on your crypto unit. In
our example, we show the following items:

The BIP32 Bitcoin Improvement Proposal (see

Figure 2-19), which defines how to derive private and
public keys of a wallet from a binary master seed (shown
as “m” in Figure 2-19) and an ordered set of indexes. The
BIP32 extended private key represents the extended
private key that is derived from the derivation path.

Master
Seed

Entropy
128 bits

S

BIP 32 - Hierarchical Deterministic Wallets

HMAC-5HAS12 T
7 Rl

Child Key Derivation Function ~ CKD(x,n) = HMAC-SHA512(X chain + X sunkey || N)

Wallets / Wallet Addresses
Accounts Chains
Extamal (RS _~mi0/0/0 _ m/ojoi1 - rngo'ro'.rk
CED{m/D, 0) k%) = -
[t L] m/0/0 — :
—‘6 T3 ty (8 ... g
m/ CKO(mIO, 1) Mo ™= — ~m0/1/0 _ m/0/1/1 - mi0flfk
External A
CKD(m/1, 0) ta
t EA m/1/0
0 » .
Internal t A
m/l iy L)
/ CKD(m/L, 1) i =
-
.
-
-
External (o g
L CKD{myi, 0} |t %)
t g mfif0
0 — - Y r M N
" Internal (v 4 13 g « s s |15
m/i L T ~miie _ min e Mk
Depth =1 Depth = 2 Depth = 3

Figure 2-19 BIP32!

' Source: https://wiki .trezor.io/Address_path_(BIP32)

Chapter 2. IBM Cloud Hyper Protect Crypto Services 53

https://wiki.trezor.io/Address_path_(BIP32)

XCP_CPB_ALG_EC_25519 The Edwards-curve Digital Signature Algorithm (EdDSA) is
a secure digital signature algorithm that used on
performance-optimized elliptic curves. For more
information, see EdDSA.

XCP_CPB_ECDSA_OTHER The Schnorr digital signature is proposed as an alternative
algorithm to the Elliptic Curve Digital Signature Algorithm
(ECDSA) for cryptographic signatures in the Bitcoin
system. The Schnorr signature is known for simplicity and
efficiency.

If you must enable the BIP32, Schnorr, or EADSA capabilities on your card, select the crypto
units cards by using the following commands, as shown in Example 2-21 on page 42:
ibmcloud tke cryptounits

ibmcToud tke cryptounit-add

ibmcToud cryptounit-rm

Then, run the following commands:

» ibmcloud tke cryptounit-cp-eddsa (Enables EdDSA.)
» ibmcloud tke cryptounit-cp-sig-other (Enables the Schnorr algorithm.)
» ibmcloud tke cryptounit-cp-btc (Enables BIP32.)

2.3.4 Zeroing out the crypto unit master key

Sometimes, you might become lost in your setup or implement a cold wallet solution for a
digital wallet. In each of these cases, you might need to zero your crypto units master keys.

Zeroing out a crypto unit clears the crypto unit, which includes removing all crypto unit
administrators, clearing the master key, and placing the crypto unit back in imprint mode.

Recovery crypto units contain the only backup copies of the master key value. If all recovery
crypto units for a service instance are zeroized, the master key value is permanently lost and
cannot be recovered.

If keys were created for a service instance and placed in key storage keystores, zeroing out a
crypto unit prevents those keys from being used. Data that was encrypted and uses those
keys can no longer be used.
To zero your crypto unit, complete the following steps:
1. Select the correct set of crypto units by using the following commands:

— ibmcloud tke cryptounits

— ibmcloud tke cryptounit-add

— ibmcloud cryptounit-rm

For more information, see “Selecting the crypto units to set up their master key” on
page 41.

The crypto units that are tagged as true in the SELECTED column are zeroed out, as shown
in Example 2-35 on page 55. If you run multiple IBM Hyper Protect Crypto Services
instances, ensure that you zero the correct crypto unit.

54 Securing Your Critical Workloads with IBM Hyper Protect Services

https://en.wikipedia.org/wiki/EdDSA

Example 2-35 Selecting the correct set of crypto units for your service

$ ibmcloud tke cryptounits

API endpoint: https://cloud.ibm.com

Region: us-south

User: redbook.author@ibm.com

Account: ITSO’s Account (537544c2222297f40ed689e8473e7849)

Resource group: default

SERVICE INSTANCE: 3deld9le-1636-4ed0-ba97-121cc720559f

CRYPTO UNIT NUM SELECTED TYPE LOCATION

1 true OPERATIONAL [us-south].[AZ1-CS7].[02].[12]
2 true OPERATIONAL [us-south].[AZ3-CS9].[01].[05]
3 true RECOVERY [us-south].[AZ1-CS7].[02].[11]
4 true RECOVERY [us-east].[AZ1-CS1].[03].[08]

SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbab4dd

CRYPTO UNIT NUM SELECTED TYPE LOCATION

5 false OPERATIONAL [us-south].[AZ3-CS6].[02].[07]
6 false OPERATIONAL [us-south].[AZ1-CS4].[00].[09]
7 false RECOVERY [us-south].[AZ3-CS9].[01].[11]
8 false RECOVERY [us-east].[AZ3-CS3].[01].[05]

. Select the required number of administrator signature keys as defined in your crypto units
threshold. For more information, see 2.3.5, “Selecting administrator signature keys when
working in secure mode” on page 56.

. Run the ibmcloud tke cryptounit-zeroize command, as shown in Example 2-36.

Example 2-36 Zeroing out your master key

$ ibmcloud tke cryptounit-thrhlds

SIGNATURE THRESHOLDS
SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbabdd
CRYPTO UNIT NUM SIGNATURE THRESHOLD REVOCATION THRESHOLD

1 2 2
2 2 2
3* 0 0
4* 0 0

* Indicates a recovery crypto unit that is used only to hold a backup master
key value.

==> (Crypto units with a signature threshold of 0 are in IMPRINT MODE. <==

$ ibmcloud tke cryptounit-zeroize

WARNING: Zeroizing a crypto unit completely clears the crypto unit, which
includes removing all crypto unit administrators, clearing the master key
registers, and placing the crypto unit back in imprint mode.

You have selected one or more recovery crypto units to zeroize. Recovery crypto
units contain the only backup copies of the master key value. If all recovery
crypto units for a service instance are zeroized, the master key value is
permanently lost and cannot be recovered.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 55

If keys have been created for a service instance and placed in key storage,
zeroizing a crypto unit prevents those keys from being used. Data encrypted
using those keys cannot be used.

Are you sure you want to zeroize the selected crypto units?
Answer [y/N]:

>y

Enter the password for the signature key identified by:
admin3 (bed46b6c5508afad25655b69e61ab72...)

>

0K

The selected crypto units have been zeroized.

$ ibmcloud tke cryptounit-thrhlds
SIGNATURE THRESHOLDS

SERVICE INSTANCE: 8207abd0-b8d8-4c52-a257-966edalbab4d
CRYPTO UNIT NUM SIGNATURE THRESHOLD REVOCATION THRESHOLD

1 0 0
2 0 0
3* 0 0
4* 0 0

* Indicates a recovery crypto unit that is used only to hold a backup master
key value.

==> Crypto units with a signature threshold of 0 are in IMPRINT MODE. <==

2.3.5 Selecting administrator signature keys when working in secure mode

When your crypto units are switched from imprint mode to secure mode, any further action on
them is authenticated by a set of administrators’ signatures.

The ibmcloud tke sigkeys command tells you which signature keys are selected in your
context.

To select the set of administrator keys to be used to authenticate a system management
action on the crypto unit, run the ibmcloud tke sigkey-sel command, as shown in
Example 2-37.

Example 2-37 Checking your context and selecting two administrator signature keys

$ ibmcloud tke sigkeys

KEYNUM DESCRIPTION SUBJECT KEY IDENTIFIER

1 adminl 48d998c79b703b91bcOb1bc529b369. ..
2 admin2 840f77fd9079d713c5527 fc1f4f027...
3 admin3 6d733334d57eae3ec7e5ced0197991. ..

KEYNUM 1, 2 are selected as the current signature keys.

$ ibmcloud tke sigkey-sel

KEYNUM DESCRIPTION SUBJECT KEY IDENTIFIER

56 Securing Your Critical Workloads with IBM Hyper Protect Services

1 adminl 48d998c79b703b91bcOb1bc529b369. ..
2 admin2 840f77fd9079d713ch527fcl1f4f027...
3 admin3 6d733334d57eae3ec7e5ced0197991...

No KEYNUM is selected as current signature keys.

Enter the KEYNUM values to select as current signature keys, separated by spaces:
>12
Enter the password for KEYNUM 1:

>

Enter the password for KEYNUM 2:

>

0K
KEYNUM 1, 2 have been made the current signature keys.

2.3.6 Initializing your IBM Hyper Protect Crypto Services master key by using
recovery crypto units

This procedure is different from the one that is described in 2.3.2, “Using the IBM Cloud TKE
CLI plug-in and master key part files” on page 34 in the following ways:

» It is faster and easier.

» Itis not available in all IBM Cloud regions.

Note: At the time of writing, only the us-south and us-east regions are enabled with the
recovery crypto units, which means that when a service instance is provisioned in either
regions, you are by default enabled with the option to back up your master keys in the
recovery crypto units that are in both regions.

To initialize your IBM Hyper Protect Crypto Services master key by using recovery crypto
units, complete the following prerequisites:

» Assign SOs, as described in “SOs” on page 34.
» Creating your administrators’ signature keys, as described in step 3 on page 37.

» Make sure that a region and a resource group are selected for the IBM Hyper Protect
Crypto Services that is set up and currently running, as described in step 4 on page 39.
Use the following command to specify these parameters if they already are not set:

ibmcloud target -r <region> -g <resource_group>

» Provision an IBM Hyper Protect Crypto Services instance, as described in 2.2, “IBM Hyper
Protect Crypto Services provisioning” on page 14.

» The crypto units must be in imprint mode. If not, you must zero them out, as described in
2.3.4, “Zeroing out the crypto unit master key” on page 54. This procedure makes any
application data that is encrypted with this crypto unit’s IBM Hyper Protect Crypto Services
unusable.

Initialization steps

In this example, two services are provisioned. One already has the master key set up, and we
want to set up the master key of the other one.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 57

58

Complete the following steps:

1. Open a terminal and log in to the IBM Cloud. Use the ibmcloud 1ogin command, as
shown in Example 2-38. You can specify the resource group with the -g option.

Example 2-38 Logging in to IBM Cloud by using a terminal and IBM Cloud CLI

$ ibmcloud login --sso -g default

2. Check your running services (Example 2-39) to identify the GUID of the service that you
want to set up.

Example 2-39 Listing your service

$ ibmcloud resource service-instances --long

Retrieving instances with type service_instance in resource group default in
all locations under account ITSO's Account as itso.author@ibm.com...

0K

ID

GUID Name Location
State Type Resource ID
crn:vl:bluemix:public:data-science-experience:us-south:a/537544c2222297f40ed689
€8473e7849:4c089dc4-370f-4071-8147-507dab12bbed: :
4c089dc4-370f-4071-8147-507dab12bbed Watson Studio-z4 us-south
active service instance 39ba9d4c-blc5-4cc3-al63-38b580121e01

crn:vl:bluemix:public:cloud-object-storage:global:a/537544c2222297f40ed689e8473
€7849:63328d0b-6918-46ca-a%ef-47cle7772b59::
63328d0b-6918-46ca-a9ef-47cle7772b59 cloud-object-storage-jh global
active service instance dff97f5c-bc5e-4455-b470-411c3edbed9c

crn:vl:bluemix:public:watson-vision-combined:us-south:a/537544c2222297f40ed689e
8473e7849:530b4003-9ea9-4715-852e-27hf3ad7all8::
530b4003-9ea9-4715-852e-27bf3ad7all8 watson-vision-combined-at us-south
active service instance 700c7e8b-6609-71eb-el36-0a0f0ef9c2a2

crn:vl:bluemix:public:hs-crypto:us-south:a/537544¢c2222297f40ed689e8473e7849:820
7abd0-b8d8-4c52-a257-966edalbabad: :

8207abd0-b8d8-4c52-a257-966edalbabdd my-hpcs-instance us-south
active service_instance d589492e-6ac0-4all-9c28-al57851c8f68

crn:vl:bluemix:public:hs-crypto:us-south:a/537544¢2222297f40ed689e8473e7849:3de
1d91le-1636-4ed0-ba97-121cc720559f::

3deld91le-1636-4ed0-ba97-121cc720559f hpcs-2 us-south
active service_instance d589492e-6ac0-4all-9c28-al57851c8f68

In our example, we provisioned hpcs-2 and we want to set up its master key.

3. Check that you installed the administrator signature keys that will be defined as the crypto
units administrator, as shown in Example 2-40.

Example 2-40 Checking that your have administrator signature keys on the notebook

$ ibmcloud tke sigkeys

KEYNUM DESCRIPTION SUBJECT KEY IDENTIFIER

1 adminl 48d998c79b703b91bc0b1bc529b369. ..
2 admin2 840f77fd9079d713c5527fc1f4f027...
3 admin3 6d733334d57eae3ec7e5ced0197991. ..

Securing Your Critical Workloads with IBM Hyper Protect Services

4. To start the process, run the command that is shown in Example 2-41.

Example 2-41 Starting the automated master key setup

$ ibmcloud tke auto-init

5. Select your IBM Hyper Protect Services instance if you provisioned more than one, as
shown in Example 2-42.

Example 2-42 Selecting the IBM Hyper Protect Services instance that you want to set up

More than one service instance is assigned to the current resource group.

INSTANCE NUM INSTANCE ID
1 3deld91le-1636-4ed0-ba97-121cc720559f
2 8207abd0-b8d8-4c52-a257-966edalbabdd

Enter the INSTANCE NUM of the service instance you want to initialize.
>1

6. Now that you have all the administrators signature keys installed on your notebook, press
the Enter key to continue, as shown in Example 2-43.

Example 2-43 Loading a common set of administrators

A common set of administrators will be loaded in all crypto units that are
assigned to the service instance; the signature thresholds will be set the
same; and a random master key value will be generated in one crypto unit and
exported to the other crypto units.

Press Enter to continue or Ctrl-c to exit.
>

7. Specify the signature threshold according to your corporate security standards. In our
example, we used 2, as shown in Example 2-44.

Example 2-44 Setting the signature thresholds
ENTER SIGNATURE THRESHOLD VALUES

Enter the number of signatures to be required on commands that are sent to the
service instance.

This number must be in the range 1 - 8.

To enforce dual control, this number must be at Teast 2:

> 2

Enter the number of signatures to be required on commands to remove an
administrator.

This number must be in the range 1 - 8.

To enforce dual control, this number must be at Teast 2:

> 2

Chapter 2. IBM Cloud Hyper Protect Crypto Services 59

8. Specify the crypto unit administrators by using their signature keys. We used three
administrators in our example (Example 2-45). You are prompted for their protection
password.

Example 2-45 Setting up crypto units administrators

ENTER NUMBER OF ADMINISTRATORS TO INSTALL

To initialize and maintain your crypto units, administrators must be installed.
Each administrator has an associated signature key.

Signature keys are stored in files that are protected by a password.

To use the signature key, you must supply the password.

To enforce dual control, each signature key file should be assigned to a
different user and only that user should know the password.

You can install up to eight administrators in a crypto unit.

To set a signature threshold value of 2 and a revocation signature threshold of
2, you must install at least 2 administrators.

Enter the number of administrators you want to install:

>3

SELECT EXISTING SIGNATURE KEY FILES TO USE

The following signature key files were found on this workstation:

KEYNUM DESCRIPTION SUBJECT KEY IDENTIFIER

1 adminl 48d998c79b703b91bcOb1bc529b369. ..
2 admin?2 840f77fd9079d713c5527fc1f4f027...
3 admin3 6d733334d57eae3ec7e5ced0197991. ..

Enter the KEYNUM of any existing signature key files you want to use to create
administrators.

If you don't want to use existing signature key files, press enter without
entering any KEYNUM values.

If you want to use a combination of existing and new signature keys, enter the
KEYNUM values of the existing signature key files you want to use.

You will be prompted to enter information for any new signature key files
afterward.

Enter the KEYNUM of the existing signature key files you want to use to create
administrators:

>123

Enter the password for the signature key identified by:
adminl (48d998c79b703b91bcOblbc529b369...)

>

Enter the password for the signature key identified by:
admin2 (840f77fd9079d713c5527fc1f4f027...)

>

Enter the password for the signature key identified by:
admin3 (6d733334d57eae3ec7e5ced0197991...)

>

60 Securing Your Critical Workloads with IBM Hyper Protect Services

You asked to install 3 administrators and selected 3 existing signature keys to
use.
No new signature key files will be created.

Installing 1 of 3 administrators...

Installing 2 of 3 administrators...

Installing 3 of 3 administrators...

Setting signature thresholds...

Generating a random master key value...

Transferring the master key value to 1 of 3 crypto units...
Transferring the master key value to 2 of 3 crypto units...
Transferring the master key value to 3 of 3 crypto units...

0K

The selected service instance has been initialized.

To see what administrators are installed and what signature threshold and
master key register values are set, use the 'ibmcloud tke cryptounit-compare'
command.

. Your service is now ready to be used by applications. To check and compare the
configuration settings of the selected crypto units, run the command that is shown in
Example 2-46.

Example 2-46 Checking the crypto units state

$ ibmcloud tke cryptounit-compare

SIGNATURE THRESHOLDS
SERVICE INSTANCE: 3deld9le-1636-4ed0-ba97-121cc720559f
CRYPTO UNIT NUM SIGNATURE THRESHOLD REVOCATION THRESHOLD

1 2 2
2 2 2
3* 2 2
4* 2 2

* Indicates a recovery crypto unit that is used only to hold a backup master
key value.

==> (Crypto units with a signature threshold of 0 are in IMPRINT MODE. <==
CRYPTO UNIT ADMINISTRATORS

SERVICE INSTANCE: 3deld9le-1636-4ed0-ba97-121cc720559f
CRYPTO UNIT NUM ADMIN NAME SUBJECT KEY IDENTIFIER

1 adminl 48d998c79b703b91bcOb1bc529b369. ..
admin2 840f771d9079d713c5527fc1f4f027...
admin3 6d733334d57eae3ec7e5ced0197991. ..

2 adminl 48d998c79b703b91bcOb1bc529b369. ..
admin2 840f771d9079d713c5527fc1f4f027...
admin3 6d733334d57eae3ec7e5ced0197991. ..

3* adminl 48d998c79b703b91bcOb1lbc529b369. ..
admin2 840f771d9079d713c5527fc1f4f027...
admin3 6d733334d57eae3ec7e5ced0197991. ..

4* adminl 48d998c79b703b91bcOb1bc529b369. ..
admin2 840f771d9079d713c5527fc1f4f027...
admin3 6d733334d57eae3ec7e5ced0197991. ..

Chapter 2. IBM Cloud Hyper Protect Crypto Services 61

* Indicates a recovery crypto unit that is used only to hold a backup master
key value.

NEW MASTER KEY REGISTER
SERVICE INSTANCE: 3deld9le-1636-4ed0-ba97-121cc720559f
CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

1 Empty 00000000000000000000000000000000
00000000000000000000000000000000
2 Empty 00000000000000000000000000000000
00000000000000000000000000000000
3* Empty 00000000000000000000000000000000
00000000000000000000000000000000
4* Empty 00000000000000000000000000000000

00000000000000000000000000000000

CURRENT MASTER KEY REGISTER
SERVICE INSTANCE: 3deld9le-1636-4ed0-ba97-121cc720559f
CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

1 Valid €6943b3844babde073201cf16d76cd8e
5651a38abd6f561bd6c65b97faf701f2
2 Valid €6943b3844babde073201cf16d76cd8e
5651a38abd6f561bd6c65b97faf701f2
3* Valid €6943b3844babde073201cf16d76cd8e
5651a38abd6f561bd6c65b97faf701f2
4* Valid €6943b3844babde073201cf16d76cd8e

5651a38abd6f561bdbc65b97faf701f2

* Indicates a recovery crypto unit that is used only to hold a backup master
key value.

CONTROL POINTS
SERVICE INSTANCE: 3deld9le-1636-4ed0-ba97-121cc720559f
CRYPTO UNIT NUM XCP_CPB ALG_EC 25519 XCP_CPB_BTC XCP_CPB_ECDSA_OTHER

1 Set Set Set
2 Set Set Set
3* Set Set Set
4% Set Set Set

* Indicates a recovery crypto unit that is used only to hold a backup master
key value.

==> Al1 crypto units are configured the same. <==

62 Securing Your Critical Workloads with IBM Hyper Protect Services

2.3.7 Initializing your IBM Hyper Protect Crypto Services master key by using
smart cards and the Management Utilities

This third option is like 2.3.2, “Using the IBM Cloud TKE CLI plug-in and master key part files”
on page 34. However, here are the key differences:

» The administrator files and master key part files are stored on encrypted smart cards and
not files.

» The communication between the smart card reader and the utilities over the USB cable is
encrypted in the same way a virtual private network (VPN) protects communication on the
internet. You are protected against malware that can read your keystrokes or your display
on your notebook.

» A certificate authority (CA) smart card is required.

» It is the most secure way to initialize your crypto unit master key.

You must have the following prerequisites:

» Two smart card readers. The supported smart card reader type is SPR332 v2.0 Secure
Class 2 PIN Pad Reader (part number 905127-1), which can be acquired at several online
market places.

» Some smart cards (give at a minimum).

» The ability to install the smart card reader drives that are described in “Smart card reader
drivers” and the TKE Smart Card Utility Program, which is described in “TKE Smart Card
Utility Program”, on a Linux OS notebook.

» The Linux notebook must connect to the IBM Cloud Hyper Protect Crypto Services by
using an IBM Cloud account over a Internet Protocol network.

See the fully documented procedure at Setting up smart cards and the Management Ultilities.

Smart Card utility and TKE software installation on Linux

In this section, we install the “Smart card reader drivers” and the “TKE Smart Card Utility
Program” on a notebook with a Linux OS.

Smart card reader drivers

In our lab environment, we use the Personal Computers/Smart Card (PCSC) Lite Framework
for Linux, which is available at GitHub, as our smart card reader driver. PCSC is a
specification that facilitates the integration of smart cards into computer environments.

Install the pcsc-11te package on your Linux distribution. We used the Mageia 8 release. On
Red Hat Enterprise Linux (RHEL) 8.0.0, you can install the smart card reader by using the
command that is shown in Example 2-47.

Example 2-47 Installing a smart card reader driver

$ sudo yum install pcsc-lite

$ sudo yum install libusb

Make sure that the opensc and sc packages are not installed because they might cause
unexpected errors during operations on the smart card readers.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 63

https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-prepare-management-utilities
https://github.com/LudovicRousseau/PCSC

Start the pcscd service by using the command that is shown in Example 2-48.

Example 2-48 Starting the pcscd service

$ systemctl start pcscd
$ journalctl -1 -u pcscd
May 19 14:06:56 Tinux.home systemd[1]: Started PC/SC Smart Card Daemon.

TKE Smart Card Utility Program

The TKE Smart Card Utility Program (SCUP) allows you to create and manage CA, TKE, and
Enterprise PKCS #11 (EP11) smart cards and to enroll the TKE workstation crypto adapter in
a zone.

To install the Linux card reader utilities, download the cloudtke.bin binary file from GitHub.

The TKE plug-in for IBM Cloud CLI must be installed, as described in “Installing the IBM Cloud
TKE CLI plug-in” on page 37.

To install the card reader utilities, run the commands that are shown in Example 2-49. The
binary files are installed in the /opt/ibm/hpcs/management-utilities directory.

Example 2-49 Installing IBM Management Ultilities

$ sudo bash cloudtke.bin

[sudo] password for itsouser:

Preparing to install

Extracting the JRE from the installer archive...

Unpacking the JRE...

Extracting the installation resources from the installer archive...
Configuring the installer for this system's environment...

Launching installer...

$ 1s /opt/ibm/hpcs/management-utilities

applets/ cloudscup.gif* cloudtke.jar* jcop2.jar* lax.jar Logs/
sample.linux.installer.properties* smartcard.properties*

base-core.jar* cloudscup.jar* gson-2.7.jar* jre/ 1ibOCFPCSC1.so*
opencard.properties* scup* tke*
base-opt.jar* cloudtke.gif* _installation/ kobil.jar* 1license/
pcsc-wrapper.jar* scup.lax*

You should see the Software License Agreement that is shown in Figure 2-20 on page 65.

64 Securing Your Critical Workloads with IBM Hyper Protect Services

https://github.com/IBM-Cloud/hpcs-management-utilities/releases

1l

Introduction Please read the following license agreement carefully.
Choose Install Folder LICEMSE INFORMATION =
Choose Shortcut Folder =
: The Programs listec below are licensed under the following License
Pra-Installation Sum... Information terms and conditions in addition to the Program license
Installing... terms previously agreed to by Client and IEM. If Client cloes not hawve
| e | previously agreed to license terms in effect for the Program, the
galllbomplete Imternational License Agresment for Non-Warramed Programs
(Z125-5589-05) applies.
Frogram Mame (Program Number):
IEM Hyper Protect Crypto Services Management Utilities, wversion 1.0
(5900-4A59) =)

@ || accept the terms in the license agreement.

i 1 do not accept the terms in the license agreement.

#

Cancel Pravicus et

Figure 2-20 Starting the smart card reader installation program

As shown in Figure 2-21, do not create links when prompted.

o

Introduction Where would you like to create links?

Choose Install Folder

Choose Shortcut Folder

Pre-Installation Sum...) Other: Choose...
Installing...

Install Complate ® Don't create links|

) In your home foldar

Cancel Previous Tt

Figure 2-21 Selecting Don't create links

Chapter 2. IBM Cloud Hyper Protect Crypto Services 65

66

Checking your smart card readers

You must plug in the two smart card readers for all operations. Plug each smart card reader
into a USB port. You should hear a beep when they are connected properly.

To determine whether your SPR532 smart card readers are properly detected, run the
commands that are shown in Example 2-50.

Example 2-50 Checking the smart card reader connection

$ 1susb
Bus 001 Device 042: ID 04e6:e003 SCM Microsystems, Inc. SPR532 PinPad SmartCard
Reader
Bus 001 Device 043: ID 04e6:e003 SCM Microsystems, Inc. SPR532 PinPad SmartCard
Reader

$ dmesg | tail -n 13

[239072.718341] usb 1-4.2: USB disconnect, device number 41

[239076.230460] usb 1-4.2: new full-speed USB device number 42 using xhci_hcd
[239076.321963] usb 1-4.2: New USB device found, idVendor=04e6, idProduct=e003,
bcdDevice= 7.01

[239076.321971] usb 1-4.2: New USB device strings: Mfr=1, Product=2,
SerialNumber=5

[239076.321975] usb 1-4.2: Product: SPRx32 USB Smart Card Reader
[239076.322004] usb 1-4.2: Manufacturer: SCM Microsystems Inc.

[239076.322007] usb 1-4.2: SerialNumber: 51271815200080
1-3
1-3

N

[239080.153481] usb : new full-speed USB device number 43 using xhci_hcd
[239080.282907] usb : New USB device found, idVendor=04e6, idProduct=e003,
bcdDevice= 7.01

[239080.282909] usb 1-3: New USB device strings: Mfr=1, Product=2, SerialNumber=5
[239080.282910] usb 1-3: Product: SPRx32 USB Smart Card Reader

[239080.282911] usb 1-3: Manufacturer: SCM Microsystems Inc.

[239080.282912] usb 1-3: SerialNumber: 51271809200008

When using the software to configure the smart cards, you might notice that the two smart
card readers have different indexes. Ensure that you insert the smart card into the correct
reader number when prompted.

Securing Your Critical Workloads with IBM Hyper Protect Services

Figure 2-22 shows our notebook, smart card readers, and smart cards.

ook, smart card readers, and smart cards

Figure 2-22 Our noteb

Preparing the certificate authority smart card

The first step is to generate a CA smart card that is used in all subsequent actions because it
includes part of the cryptographic materials.

Tips from the pros:

» You can easily become overwhelmed by the number of smart cards. Prepare some
labels to stick on your smart cards and write down the purpose of each smart card
(admin signature, CA, key part, or backup).

» Use the same PIN (123456) for every smart card during the initialization. When done,
each smart card owner changes the PIN to a more secure one.

To prepare a smart card for the CA, complete the following steps:

1. Start the smart card utility scup, as shown in Example 2-51, in a terminal emulator. The
emulator is a graphical application that requires a GUI to be running. IBM utilities are
installed in the /opt/ibm/hpcs/management-utilities directory.

Example 2-51 Running the scup utility

$ cd /opt/ibm/hpcs/management-utilities
$./scup

Chapter 2. IBM Cloud Hyper Protect Crypto Services 67

68

A window opens, as shown in Figure 2-23.

File CASmart Card EP11 Smart Card Help
Smart card reader 1
Card type: Zone enroll status:
Card ID: Zone ID:
Card description: Zone description:
PIN status: Zone key type:
Administrator key:
Key parts:
Key type Description Origin MDC-4 or CMAC SHA-1 EMC-ZERD AES-YP or HMAC-WP Cantrol wector or key attributes Length
Smart card reader 2
Card type: Zone enroll status:
Card ID: Zone ID:
Card description: Zone description:
PIN status: Zone key type:
Administrator key:
Key parts:
Key type Cescription arigin MDC-4 or CMAC SHA-1 EMC-ZERC AES-YP or HMAC-YP Control vector or key attributes Length
Main Menu
Figure 2-23 scup utility started
2. Select CA Smart Card — Initialize and personalize CA smart card, as shown in
Figure 2-24.
File EP11 Smart Card Help
S packup CA smart card
© Change PIN e enroll status;
Cand 10 Zone 1D
Card description: Zone description:
PIN status: Zone Key type:
Administrator key:
Key parts:
Ky ypE Dascription Origin MDC=4 0r CMAL SHA=1 ENC-ZERD AES=YP 0r HMAC-YP Coniral vectar or Key atirloutes Length
[|
| |
[
=
Smart card reader 2
Card type: Zone enroll Status:
Card 1D; Zone 102
Cani description; Zone description:
FIN status: Zone key type:
Administrator key:
Ky pans:
Keyype Description Qrigin MDC-4 or CMAC SHA-1 ENC-ZERQ AES-YF or HMAC-YP Comrol vector or key atributes Length

Main Menu

Figure 2-24 Initializing the CA smart card

Securing Your Critical Workloads with IBM Hyper Protect Services

You are prompted to enter a 6-digit PIN twice. Enter the PIN twice within 20 seconds.

Otherwise, the session expires and you must reenter the PIN.

3. Specify the name of your zone, as shown in Figure 2-25. We use CA as the name of our
zone. The name is a logical way to describe the domain in which all the smart cards will be

created.
5 E 4 IBM Hyper Praotect Crypto Services Smart Card Utility Program e e
File CASmart Card EP11 Smarnt Card Help
Smart card reader 1
Card type: Zone enroll status:
Card 1D Zane 10
Card description: Zone description:
PIM status: Fone key type
Administrator key:
Key parts:
Keytype | Description | Origin | MDC-4 or CMAC | SHA-1 | ENC-ZERO | AES-WP or HMAC-VP Cortrol vectar or key anributes Length
| | | | | -
| | | | =
| | | |
|
|
| Each zone should have a unique zone description that identifies the zone.
I Enter the Zone description. -
[}
Smart card reader 2 — —
0K Cancel |
Card type:
Card 10: EOE T
Card description Zone description:
PIM status: Zone key type:
Administrator key:
Key pans:
oy Tyfe Description | Origin | MDC-4 or CWMAC SHA=1 | ENC-ZERO AES=YP or HMALC=YP Control vactar or key attrioutes Langth
-
| -
| Mai Meri

Figure 2-25 Setting a name to the CA smart card

Chapter 2. IBM Cloud Hyper Protect Crypto Services

69

You see a dialog box, as shown in Figure 2-26, which indicates that the smart card is being

built.
3 IBM Hyper Protect Crypto Services Smart Card Utility Program v ~0
File CASmarnt Card EP11 Smart Card Help
Smart card reader 1
Card ype: Zone enroll status:
Card 1D: Zone 10
Card description: Zone description:
FIM status: Zone key type:
Administrator key:
Key parts:
Kay type Dascription origin MDC-4 or CMAC SHA-1 ENC-ZERO AES-YP or HMALZ-VP Control vectar or key atributes Length
-
Initialize and pe: e CA smart card
Building CA smart card. This process takes up to 1 minute. e
It operation s interrupted, card will be corrupted and new Initalization |s
Smart card reader 2 required.
Card type: OO
Card ID: Zone 1D
Card description: Zone description:
PIN status: Zone key type:
Administrator key:
Key parts:
| Keytype | Description | Origin | MDC-4 or CMAC | SHA-1 | ENC-ZERO | AES-VP or HMAC-VP | Control vector or key anributes | Length |
-
Main Menu

Figure 2-26 Building the CA cryptographic material onto the smart card

70 Securing Your Critical Workloads with IBM Hyper Protect Services

Figure 2-27 shows the successful creation message.

m - IBM Hyper Protect Crypto Services Smart Card Utility Program ~~ 0
File CASmart Card EP11 Smart Card Help
Smart card reader 1
Card type: Zone enroll status:
Card I1D: Zone 1D:
Card description: Zone description:
PIM status: Zone key type:
Administrator key:
Key pans:
ey type Description origin MDIC-4 or CHMAC SHA-1 ENC-ZEROQ AES-YP or HMAC-VP Control vectar or key arrioutes Length
-
X
The CA smart card was created successtully. =
Smiart card reader 2 Ok
Card type: Zone enTOT STACHS:
Card 1D: Zone ID:
Card description: Zone description:
Pik status: Zone key type:
Administrator key:
Key pars:
| Keytpe | Description | Origin | MDC-d4 or CMAC | SHA-1 | ENC-ZERD | ASS-VPorHMAC-WP | Control vector or key anrioutes | Length
-
Main Menu

Figure 2-27 Successful smart card creation

Chapter 2. IBM Cloud Hyper Protect Crypto Services

71

4. Check your card as shown in Figure 2-28:
— Your card description.
— The PIN has been set.

— Your Zone ID, which will be the same for all other smart cards that are created with this
zone description (in our case, CA).

File CASmart Card EP11 Smart Card Help

Smart card reader 1

Card ype: CASman Card v s Zone enroll status: Enrolled

Card ID: FBESCAIFS Zone I0: EOA4CTCS
Card description: Cenificate Authonty Zone description: A

PIM status: Ok Zone key type: 521-bit EC key

Administrator key: Mot present

Key parts:
Feytype | Descrplion Qrigin MDC-4 or CMAC | 5SHA-1 EMC-ZERO AES=YP or HMAC-YF Control vectar or key attributes | Length

Smart card reader 2

Card type Zone enroll status:
Card 1D: Zone D

Card description: Lone description:
PIM status: Zone key type:

Administrator Key:

Key pars:)
ey type Description arigin MDC-4 or CWAL SHA=1 ENC-ZERO AES=YP or HMAC-YP Control vector or key attrioutes Length

-

Main Menu

Figure 2-28 Checking your smart card

Tip: It is a best practice that you create a backup copy of your CA smart card. You can
create a backup copy by selecting CA Smart Card — Backup CA smart card.

Initializing smart cards for administrator signatures

You can use the scup utility for as many EP11 smart cards as you have SOs. Each smart card
holds a specific signature. One smart card can store only one signature. In our example, we
consider two administrators.

The CA card must be present in the first smart card reader.

72 Securing Your Critical Workloads with IBM Hyper Protect Services

To initialize smart cards for administrator signatures, complete the following steps:

1. As shown in Figure 2-29, select EP11 Smart Card — Initialize and enroll EP11 smart

card.
¢ b IBEM Hyper Protect Crypto Services Smart Card Utility Program
File CASman Card [EPL1Smarnt Card | Help
Smart card reader 1 poconalize EPLL smart card
Card type: Unblock EPF11 smart card us: Enrolled
Card ID: Change PIN BOASCTCS
Card description: % CA
PIM status: Ok Zone key type: 521-hit EC key
Administrator key: Mot present
Key pans:
Fey 1y Description Origin MDC-4 or CMAC SHA-1 EMC-ZERO AES-YP or HMAC-VP | Control VeCtor or kay Length
| Z|
| =1
I
|
| o |
[=l
Smart card reader 2
Card type: Zone enroll status:
Card ID: Zone ID:
Card description: Zone description:
PIN status: Zone key type:
Administrator key:
Key parts:
ey b ey Descrption S 0N Lz Sl b e s 3l L o e]| Sl L L
-
b |
Main Menu

Figure 2-29 Selecting Initialize and enroll EP11 smart card

Chapter 2. IBM Cloud Hyper Protect Crypto Services 73

2. Insert your smart card when you are prompted, as shown in Figure 2-30.

}E b4 IBM Hyper Protect Crypto Services Smart Card Utility Program WA °
‘ File CASmart Card EP11 Smart Card Help
|| Smart card reader 1
Card type: CaSman Card w09 Zone enroll status: Enrolled
Card ID: FBEECAIFS Zone ID; BOA4CTCS
Card description: Certificate Authority Zone description: CA
PIN status: Ok Zone Key type: 521-hit EC key
Administrator key: Mot present
Key parts:
Key type Description origin MDC-4 or CMAC SHA-1 ENC-ZERQ AES-P or HMAC WP Control wector or key attributes Length
e and enro P a ard S
Insert smart card to be initialized as an EP11 smart card in smart card reader
2, he
Smart card reader 2
: Card type:
| cardID: Zone ID:
Card description: Zone description:
PIN status: Zone key type:
Administrator key:
Key parts:
Key type Description Origin MDC-4 or CMALC SHA-1 ENC-ZERO AES-WP ar HMAC-WP Control wector or key attributes Length
Main Menu

Figure 2-30 Prompt to insert a smart card

The initialization process can take up to 1 minute, as shown in Figure 2-31.

& .

File CASmart Card EP11 Smart Card

IBM Hyper Protect Crypto Services Smart Card Utility Program

Smart card reader 1

Card type: CaSman Card w09 Zone enroll status: Enrolled
Card ID: FBEGCAIFS Zone ID: 60A4C7CO
Card description: Certificate Authority Zone description: CA
PIN status: Ok Zone key type: 52 1-hit EC key
Administrator key: Mot present
Key parts:
Key type Description origin MDC-4 or CMALC SHA-1 ENC-ZERO AES-YP or HMAC WP Control wector or key attributes Length
-
e and enroll EP d X
Smart card is being initialized. This process takes up to 1 minute, =
If operation is interrupted, card will be corrupted and new initialization is
Smart card reader 2 required.
Card type: Stacas:
Card ID: :
Card description: Zone description:
PIN status: Zone key type:
Administrator key:
Key parts:
Key type Description origin MDC-4 or CMALC SHA-1 ENC-ZERO AES-WP ar HMAC WP Control wector or key attributes Length

M

Main Menu

Figure 2-31 Smart card is being initialized

74 Securing Your Critical Workloads with IBM Hyper Protect Services

The window that is shown in Figure 2-32 opens and shows successful completion.

E b4 IBM Hyper Protect Crypto Services Smart Card Utility Program WA °
‘ File CASmart Card EP11 Smart Card Help
Smart card reader 1

| Card type: CaSman Card w09 Zone enroll status: Enrolled
| Card ID: FBEECAIFS Zone ID; BOA4CTCS

Card description: Certificate Authority Zone description: CA

PIN status: Ok Zone Key type: 521-hit EC key

Administrator key: Mot present
|| Key parts:

Key type Description origin MDC-4 or CMAC SHA-1 ENC-ZERQ AES-P or HMAC WP Control wector or key attributes Length
E » Initialize and enroll EP11 smart card v e
The EP11 smart card was created successfully. i

‘ Smart card reader 2

Card type: Zone enromSTI0ms:

Card ID: Zone ID:

Card description: Zone description:

PIN status: Zone key type:

Administrator key:

Key parts:
Key type Description Origin MDC-4 or CMALC SHA-1 ENC-ZERO AES-WP ar HMAC-WP Control wector or key attributes Length
Main Menu

Figure 2-32 Successful completion

The card information is retrieved and you see the following items:

— The smart card zone ID is identical to the CA zone ID.

— The PIN code has not been set.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 75

76

3. From the EP11 Smart Card menu, select the Personalize option to set up your PIN and

the purpose of this smart card. You are prompted as shown in Figure 2-33.

E »* IBM Hyper Protect Crypto Services Smart Card Utility Program Sk °

File CASmart Card EP11 Smart Card Help
Smart card reader 1

Card type: CASman Card w0 9 Zone enroll status: Enrolled

Card ID: FEB6CAIFS Zone 1D: BOA4CTCS

Card description: Certificate Authority Zone description: ChA

PIN status: Ok Zone key type: 521-hit EC key

Administrator key: Mot present
Key parts:

Key type Description arigin MDC-4 or CMAC SHA-1 ENC-ZERO AFS-YP ar HMAC-WP Control wector or key attributes Length
Personalize EP 3 ard S
Enter a 6 digit PIN to be used for this smart card twice on the smarn card =
reader PIN pad.

Smart card reader 2 (To Cancel the operation press the red X button on the PIN pad).

Card type: EP11 Smart Card wi ZOTTE ETITOI STdUus: ENTOeD

Card ID: CEQEFS 955 Zone ID; GOA4CTCS

Card description: Zone description: CA

PIN status: Mot set Zone Key type: 521-hit EC key

Administrator key: Not present
Key parts:

Key type Description origin MDC-4 or CMAC SHA-1 ENC-ZERO AES-YP ar HMAC-YWP Control wector or key attributes Length

Main Menu

Figure 2-33 Entering your PIN

Securing Your Critical Workloads with IBM Hyper Protect Services

4. Specify the administrator name that will be the card holder, as shown in Figure 2-34.

m »* IBM Hyper Protect Crypto Services Smart Card Utility Program Sk °

File CASmart Card EP11 Smart Card Help
Smart card reader 1

Card type: CASman Card w0 9 Zone enroll status: Enrolled

Card ID: FEB6CAIFS Zone 1D: BOA4CTCS

Card description: Certificate Authority Zone description: ChA

PIN status: Ok Zone key type: 521-hit EC key

Administrator key: Mot present
Key parts:

Key type Description arigin MDC-4 or CMAC SHA-1 ENC-ZERO AFS-YP ar HMAC-WP Control wector or key attributes Length
Perso e EP a ard X
Enter a description for the smart card.
LADM 1

Smart card reader 2

Card type: EP11 Smart Card w0.7 Zone enroll 5

Card ID: CEQEFS 955 Zone ID; GOA4CTCS

Card description: Zone description: CA

PIN status: Mot set Zone Key type: 521-hit EC key

Administrator key: Not present
Key parts:

Key type Description origin MDC-4 or CMAC SHA-1 ENC-ZERO AES-YP ar HMAC-YWP Control wector or key attributes Length

Main Menu

Figure 2-34 Specifying the owner of the smart card

Chapter 2. IBM Cloud Hyper Protect Crypto Services 77

5. Repeat steps 3 on page 76 and 4 on page 77 for the second administrator, as shown in
Figure 2-35.

File CASmart Card EP11 Smart Card Help

Smart card reader 1

Card type: CASman Card w0 9 Zone enroll status: Enrolled

Card ID: FEB6CAIFS Zone 1D: BOA4CTCS
Card description: Certificate Authority Zone description: ChA

PIN status: Ok Zone key type: 521-hit EC key

Administrator key: Mot present

Key parts:

Key type Description arigin MDC-4 or CMAC SHA-1 ENC-ZERO AFS-YP ar HMAC-WP Control wector or key attributes Length
Smart card reader 2

Card type: EP11 Smart Card w0.7 Zone enroll status: Enraolled

Card ID: SFD558345 Zone ID; GOA4CTCS

Card description: ADM2 Zone description: CA

PIN status: Ok Zone Key type: 521-hit EC key

Administrator key: Not present
Key parts:

Key type Description origin MDC-4 or CMAC SHA-1 ENC-ZERO AES-YP ar HMAC-YWP Control wector or key attributes Length

M

| Main Menu |

Figure 2-35 Second administrator smart card ready

Generating your administrator signature keys
Your smart cards are now ready. You can generate each administrator’s signature key and
store it on a smart card.

Do not forget to provision your IBM Hyper Protect Crypto Services instance as described in
2.2, “IBM Hyper Protect Crypto Services provisioning” on page 14.

The TKE tool requires that you log in to the IBM Cloud with your account.

To generate your administrator signature keys, complete the following steps:
1. Open two terminals by completing the following steps:

a. Log into IBM Cloud by running the ibmcloud login -g <resource group>command in
one terminal.

b. Start the tke utility on the other terminal. The tke and scup utilities cannot be running
concurrently on the notebook. You set up the CLOUDTKEFILES environment variable with
an existing directory on your Linux notebook before starting the tke tool.

As shown in Example 2-52, log in to IBM Cloud and verify that you can see the
provisioned crypto units for your service (we have three in our example). They do not need
to be selected.

Example 2-52 Logging in to IBM Cloud in one terminal

$ export CLOUDTKEFILES=$HOME/tke

$ mkdir $CLOUDTKEFILES

$ ibmcloud login -sso -g zsh006

API endpoint: https://cloud.ibm.com

78 Securing Your Critical Workloads with IBM Hyper Protect Services

Region: us-south

Get a one-time code from
https://identity-1.uk-south.iam.cloud.ibm.com/identity/passcode to proceed.
Open the URL in the default browser? [Y/n] > Y

One-time code >

Authenticating...

0K

Select an account:

Targeted resource group zsb006

API endpoint: https://cloud.ibm.com

Region: us-south

User: itso.author@ibm.com

Account: ITSO Account (537544c2222297f40ed689e8473e7849) <-> 2297116
Resource group: zsb006

CF API endpoint:

Org:

Space:

$ ibmcloud tke cryptounits

API endpoint: https://cloud.ibm.com

Region: us-south

User: jeanyves.girard@fr.ibm.com

Account: Lydia Parziale's Account (537544c2222297140ed689e8473e7849)

Resource group: zsb006

SERVICE INSTANCE: 269dad25-4ae9-4f55-9dfe-d0036fdelf38

CRYPTO UNIT NUM SELECTED TYPE LOCATION

1 false OPERATIONAL [us-south].[AZ2-CS8].[01].[16]
2 false OPERATIONAL [us-south].[AZ3-CS9].[01].[10]
3 false RECOVERY [us-south].[AZ2-CS8].[01].[08]
4 false RECOVERY [us-east].[AZ1-CS1].[02].[06]

SERVICE INSTANCE: 34b5af99-c165-4863-af2e-aaabd7af8137

CRYPTO UNIT NUM SELECTED TYPE LOCATION

5 false OPERATIONAL [us-south].[AZ3-CS6].[02].[07]
6 false OPERATIONAL [us-south].[AZ1-CS4].[00].[09]
7 false RECOVERY [us-south].[AZ3-CS9].[01].[11]
8 false RECOVERY [us-east].[AZ2-CS2].[03].[06]

SERVICE INSTANCE: d300bb89-1807-4d6b-9927-3ala2882e2b7

CRYPTO UNIT NUM SELECTED TYPE LOCATION

9 false OPERATIONAL [us-south].[AZ3-CS9].[00].[03]
10 false OPERATIONAL [us-south].[AZ1-CS7].[01].[16]
11 false RECOVERY [us-south].[AZ1-CS7].[01].[15]
12 false RECOVERY [us-east].[AZ2-CS2].[03].[13]

Chapter 2. IBM Cloud Hyper Protect Crypto Services 79

2. Start the tke application, as shown in Example 2-53.

Example 2-53 Starting tke in the second terminal

$ cd /opt/ibm/hpcs/management-utilities
$ export CLOUDTKEFILES=$HOME/tke
$./tke

You might get a few dialog boxes like the one that is shown in Figure 2-36. These dialog
boxes appear if CLOUDTKEFILES is empty. You get the same message if you run the
ibmcloud tke cryptounits command:

Verifying the OA certificate chain for serial number 93AAAUAC...

Successtully verified the OA certificate chain for 93AAAUAC.

Ok

Figure 2-36 Connection dialog box at launch time

When using the user interface, the window that is shown in Figure 2-37 opens. You see all
the same crypto units displayed if you run the ibmcloud tke cryptounits command.

Administrators ’:‘\Pl endpoint httns:f;’lﬂuua.ihm.com B
e e e | egion: us-sou
w User jeanyves.girard@fr.ibm.com
_ Masterkeys | account Lydia Parziale’s Account (537544c2222297f40ed689e8473e7849)
Smar card Resource group: zsbooo

SERVICE INSTANCE: 269dad25-4ae9-4f55-9dfe-d0036fdelf38

CRYPTO UNIT NUM SELECTED TYPE LOCATION
A false OPERATIONAL [us-south].[AZ?-CS8].[01].[16]
2 false OPERATIONAL [us-south].[AZ3-CS9).[01].[10]
3 false RECOVERY [us-southl.[AZ2-CS8].|01].[08]
4 false RECOVERY [us-east}[AZ1- C51].[02].[06]

SERVICE INSTANCE 34b5af99-c165-4863-af2e-aaabd7ar§137

CRYPTO UNIT NUM SELECTED TYPE LOCATION
5 false OPERATIONAL [us-southl.[AZ3-CS6).[02].[07]
6 false OPERATIONAL [us-south].[AZ1-CS4].[00].[09]
7 false RECOVERY [us-southl.[AZ3-CS9L[01L[11]
8 false RECOVERY [us-east}[AZ2- C52][03].[06]

SERVICE INSTANCE: d300bb89-1807-4d6b-9927-3ala2882e2b?

CRYPTO UNIT NUM SELECTED TYPE LOCATION
9 false OPERATIONAL [us-south].[AZ3-C59].[00].[03]
10 false OPERATIONAL [us-southl.[AZ1-CS71.[01].[16]
11 false RECOVERY [us-south].[AZ1-CS7)[01][15]
12 false RECOVERY [us-eastl[AZ2- C521.[03].[13]

Mote: all crypto units in a service instance must be configured the same.

[« T

‘ Add crypto units ‘ | Remove cryplo units | | Refresh panel |

Figure 2-37 TKE started and showing the available crypto units in your IBM Hyper Protect Crypto
Services instance

80 Securing Your Critical Workloads with IBM Hyper Protect Services

3. Check the IBM Cloud console (Figure 2-38) to verify that your master key has not yet been
initialized for your service. Check the target instance ID (our target instance ID shows
269dad25-4ae9-4f55-9dfe-d0036fdelf38).

m— rtcardreader @acive addtags 2

Getting started

Key management s

=2 [us-south][AZ3-CS9][01].[10]
associated

Enterprise PKCS #11 keystores

Enterprise PKCS #11 keys

Instance
retancs 10

269dad25-4aed- 4455 - 9dfe -d00I6Fde1£38]
Resource group

25bBB6 U}

I\ Master key not activated. To manage your keys, you need to initializs your service instance first Get started
‘ Overview

Instance policies

Key management service key Crypto units Location

rings

Key management service keys us-south] [AZ2-CS8].[01].[16] UNINITIALIZED

petalls

UNINITIALIZED

.
.
.
Region Dallas (us-south)
Key management endpoint URL Enterprise PKCS #11 endpoint URL
Public
https://api.us-south.hs-crypto.cloud. ibm.com:11633 s
https:/fapi.private.us-south.hs-crypto.cloud.ibm.com: 11633 U]

Figure 2-38 IBM Console showing the details of the IBM Hyper Protect Crypto Services instance

that we want to initialize

Chapter 2. IBM Cloud Hyper Protect Crypto Services 81

82

4. Go back to the TKE, click Add crypto units, and enter the number that corresponds to
your IBM Hyper Protect Crypto Services instance (our instance is
269dad25-4ae9-4f55-9dfe-d0036fdelf38, as shown in Figure 2-39). The selected status

should switch to true in the scup user interface.

SERVICE INSTANCE: 269dad2?5-4ae9-4f55-9dfe-d0036fdelf38

CRYPTO UNIT NUM SELECTED TYPE

1 false OPERATIONAL
2 false OPERATIONAL
3 false RECOVERY

4 falca

SERVICE IN:

Enter a list of CRYPTO UNIT NUM values to add, separated by spaces:

E * IBEM Hyper Protect Crypto Services Trusted Key Entry application
Crypto units
AdiRinistratnie AP endpoint: https:/ { cloud.ibm.com
Signature thresholds Hegion: us=south .
User Jeanyves.girard@fr.ibm.com
Master keys Account: Lydia Parziale's Account (537544c2222207140ed689e8473e7849)
Smart card Resource group: zsh006

LOCATION

[us-south].[AZ2-CS8].[01].[16]

[Us-S5outh].[AZ3-CS91[01].[10]

[us-south].[AZ2-CS8].[01].[08]

lnc_eact] 471 CS1][02)[06]
S

CRYPTO Ut ‘12 34
]

s
8

CRYPTO UNIT NUM SELECTED TYPE

9 Talse OPERATIONAL
i0 false OPERATIONAL
11 Talse RECOVERY

12 false RECOVERY

T 7T 1[03).[06]

SERVICE INSTANCE d300bb89-1807-4d6b-9927-3a1a2882e2b7

LOCATION
[Us-south].[AZ3-C591.[001.[03]
[us-south].[AZ1-CS7].[01].[16]
[Us-South].[AZ1-CS7LI01L[15]
[us-east)[AZ2-C52).[031[13]

Mote: all crypto units in a service instance must be configured the same.

| Add crypto units | | Remove cryptlo units | | Refresh panel

[+]

[«

Figure 2-39 Selecting the right crypto units to initialize

5. Click the Administrators tab in the left menu in the TKE and click Generate Signature

Key.

Securing Your Critical Workloads with IBM Hyper Protect Services

Specify the administrator name to be associated with the generated key, as shown in
Figure 2-40.

E ot IBEM Hyper Protect Crypto Services Trusted Key Entry application oA °
Crypto units
Administrators SERVICE INSTANCE 269dad25-4ae9-4f35-9dfe-d0036fdelr38
Signature thresholds CRYPTO UNIT NUM ADMIN NAME SUBJECT KEY IDENTIFIER
Master keys 1 No administrators
Smart card 2 No administrators
I* No administrators
4+

No administrators

* Indicates a recovery crypto unit used only to hold a backup master key value.

Enter the administrator name:

[acimin1]
| Add administrator || Remove administrator ‘ | Generate signature key
Figure 2-40 Entering the administrator name for the signature

The key is stored on a smart card.

Insert the admin1/signature smart card into reader 2 (with the CA card in reader 1) and
enter the PIN when prompted, as shown in Figure 2-41.

E » IBM Hyper Protect Crypto Services Trusted Key Entry application VoA o
Cryplo units
T SERVICE INSTANCE 269dad25-4ae9-4f35-9dfe-d0036fdel1f38
Signature thresholds CRYPTO UNIT NUM ADMIN NAME SUBJECT KEY IDENTIFIER
Master keys 1 No administrators
Smart card 2 No administrators
3* No administrators
4+

No administrators

= Indicates a recovery crypto unit used only to hold a backup master key value.

Enter 6 digit PIN on smart card reader 2 PIN pad.

| Add administrator || Remove administrator H Generate signature key |

Figure 2-41 Entering the PIN to use the admin1 signature smart card

Chapter 2. IBM Cloud Hyper Protect Crypto Services 83

In Figure 2-42, you see that the signature is generated and written on to the smart card.

E * IBM Hyper Protect Crypto Services Trusted Key Entry application N °
Crypto units
AT e T SERVICE INSTANCE 269dad25-4ae9-4f35-9dfe-d0036fdelr38
Signature thresholds | CRYPTO UNIT NUM ADMIN NAME SUBJECT KEY IDENTIFIER
Master keys 1 No administrators
Sart card 2 No administrators
I* No administrators
4 No administrators
* Indicates a recovery cypto unit used only to hold a backup master kKey value.
Generate Signature Key
Generating signature key on the EP11 smart card.
Please wait
| Add administrator | | Remove administrator ‘ | Generate sighature key
Figure 2-42 Generating the signature key
After a couple of seconds, the window that is shown in Figure 2-43 opens.
E * IBM Hyper Protect Crypto Services Trusted Key Entry application N °
Crypto units
AT e T SERVICE INSTANCE 269dad25-4ae9-4f35-9dfe-d0036fdelr38
Signature thresholds | CRYPTO UNIT NUM ADMIN NAME SUBJECT KEY IDENTIFIER
Master keys 1 No administrators
Sart card 2 No administrators
I* No administrators
.

No administrators

* Indicates a recovery crypto unit used only to hold a backup master key value.

Generate Signature Key

@ The signature key was successfully generated and stored on the smart card.

Administrator name:
adminl

Subject Key Identifier:
EB9COACCIDES512998026185C215A9135 DALE1AGIB7ABI1EECIEFSDSEDOIBEEF2

| Add administrator | | Remove administrator ‘ | Generate signature key

Figure 2-43 Signature that is written on to the smart card

The signature has been generated and written on to the smart card.

84 Securing Your Critical Workloads with IBM Hyper Protect Services

7. Click Add Administrator to add this first administrator as the administrator of the crypto

units of your instance by using the smart card content. You should be prompted for the
smart card PIN, as shown in Figure 2-44.

E * IBM Hyper Protect Crypto Services Trusted Key Entry application N °
Crypto units
Administrators SERVICE INSTANCE 269dad25-4ae9-4f35-9dfe-d0036fdelr38
Signature thresholds CRYPTO UNIT NUM ADMIN NAME SUBJECT KEY IDENTIFIER

Master keys 1 No administrators

Smart card 2 No administrators
I* No administrators
4* No administrators

* Indicates a recovery crypto unit used only to hold a backup master key value.

Add Administrator

Insert the EP11 smart card with the signature key of the administrator to be

added in smart card reader 1.

| Add administrator | | Remove administrator ‘ | Generate signature key

Figure 2-44 Entering the PIN to access the smart card content

Your admin appears as shown in Figure 2-45 after the content of the smart card has been
read.

IBM Hyper Protect Crypto Services Trusted Key Entry application

~ Administrators] SERVICE INSTANCE: 269dad25-4ae9-4f55-9dfe-d0036delr38
Signature thresholds | CRYPTO UNIT NUM ADMIN NAME SUEBJECT KEY IDENTIFIER

Master keys 1 adminil ER9COACC1DA512998026185C 21549135
e DALE1A6387AB94EECIEFEDSED03EERF2

2 adminil ER9COACCIDA512998026185C 21540135
DALE1A6387AB94EECIEFEDSED03SERF2

3* adminil ER9COACC1D8512998026185C21549135
DALE1A6387AB94EECIEFBDSED03SERF2

4+ adminil ER9COACC1D8512998026185C21549135

DALE1IAG387ABO1EECOETEDSEDO38EBEF2

* Indicates a recovery crypto unit used only to hold a backup master key value.

| Add administrator | | Remove administrator ‘ | Generate signature key

Figure 2-45 The first administrator of your crypto units

Chapter 2. IBM Cloud Hyper Protect Crypto Services 85

Repeat steps 4 on page 82 - 7 on page 85 for all the other administrators by using their own
signature smart card. The window that is shown in Figure 2-46 opens.

.,

Crypto units

SERVICE INSTANCE: 269dad25-43e9-4f55-9dfe-d00367delr38

[__Administrators |
“Signature thresholds | CRYPTO UNIT NUM ADMIN NAME SUBJECT KEY IDENTIFIER
— Masterkes: | 1 adminl EB9COACCID8512998026185C21549135
SIS DA1E1A6387AB94EECOE78DSEDO3SERF2
admin? 8025B8842ABA7CE73282DF8FF4E21397
D9CFEAE7DS2BEBFACID6CCA9A16B229D
2 adminl EB9COACCID8512998026185C215A9135
DA1E1A6387AB94EECOE7SDSEDO3SERF2
admin2 8025B8842ABA7CE73282DF8FF4E21397
D9CFEAE7DS2BEBFACID6CCA9A16B229D
3* adminl EB9COACCID8512998026185C215A9135
DAIELAG6387ABY4ERECYEFSDSEDD3EERF2
admin2 8025B8842ABA7CE73282DF8FF4E21397
09CFEAE7DE2BEBFACID6CCA9ALEE229D
4+ admini EB9COACCID8512998026185C215A9135
DA1ELAG6387ABY4ERECYEFSDSEDD3SERF2
admin2 8025B8842ABA7CE73282DF8FF4E21397

09CFEAE7DS2EEEFACIDGCC49A16B229D

* Indicates a recovery crypto unit used only to hold a backup master key value.

| Add administrator | | Remove administrator ‘ | Generate signature key

Figure 2-46 Two administrators listed

Setting up a threshold and entering the secure code
Complete the following steps:

1. Click the Signature thresholds tab in TKE left menu and click Change signature
thresholds. Enter the threshold value, as shown in Figure 2-47 on page 87.

We specified 2 in our example. Use your security guidelines and the number of
administrator signature smart cards that you prepared to determine this value.

86 Securing Your Critical Workloads with IBM Hyper Protect Services

o]

Smart card

* IBM Hyper Protect Crypto Services Trusted Key Entry application WA e
Crypto units
M‘ API endpoint: hups:/ { cloud.ibm.com
Sighature thresholds Hegion: uszsouth "
e L jeanyves.girard@fr.ibm.com
Master keys Account: Lydia Parziale's Account (537544c22222097f40ed689e8473e7849)

Resource group: zsb006

SERVICE INSTANCE 269dad25-4ae9-4755-9dfe-d0036fdelr3g

CRYPTO UNIT NUM SIGNATURE THRESHOLD REVOCATION THRESHOLD
1 L1}

2 1}

3" L1}

4 1}

* Indicates a recovery cry alue,

Enter the new signature threshold value:

Crypto units with signati H |

| Change signature thresholds | | Zeroize Crypto unit

Figure 2-47 Change signature thresholds window

2. You are prompted to insert the administrator signature smart cards into reader 2 to

authenticate this action because you are using secure mode, as shown in Figure 2-48.

Enter your PIN.

o]

Smart card

* IBM Hyper Protect Crypto Services Trusted Key Entry application WA e
Crypto units
M‘ API endpoint: hups:/ { cloud.ibm.com
Sighature thresholds Hegion: uszsouth "
e L jeanyves.girard@fr.ibm.com
Master keys Account: Lydia Parziale's Account (537544c22222097f40ed689e8473e7849)

Resource group: zsb006

SERVICE INSTANCE 269dad25-4ae9-4755-9dfe-d0036fdelr3g

CRYPTO UNIT NUM SIGNATURE THRESHOLD REVOCATION THRESHOLD
1 L] 0
2 L] 0
I L] 0
4 L] 0

*Indica o | Collect Signatures
Crypto

Number of signatures still required: 1 of 2.

Insert the next EP11 smart card with 2 signature Key in smart card reader 1.

| Change signature thresholds | | Zeroize Crypto unit |

Figure 2-48 Inserting the signature smart card when requested

Chapter 2. IBM Cloud Hyper Protect Crypto Services

87

In Figure 2-49, each administrator signed the action and a threshold is set.

IBM Hyper Protect Crypto Services Trusted Key Entry application

Crypto units

Administrators API _endpuim: hitps:/ f cloud.ibm.com
(Signature threshotds | |0 pszsouih -
Usen Jjeanyves.girard@fr.ibm.com
Master keys Account: Lydia Parziale's Account (537544c2222207140ed689e8473e7849)
Smart card Resource group: zsh006

SERVICE INSTANCE: 269dad2?5-4ae9-4f55-9dfe-d0036fdelf38

CRYPTO UNIT NUM SIGNATURE THRESHOLD REVOCATION THRESHOLD
1 s 2
2 2 2
I* s 2
4 2 2

= Indicates a recovery crypto unit used only to hold a backup master key value.

Crypto units with signature thresholds of 0 are in IMPRINT MODE

| Change signature thresholds | | Zeroize crypto unit

Figure 2-49 Threshold set

Preparing the key parts smart cards
Complete the following steps:

1. Click the Master keys tab on the TKE left menu. The window that is shown in Figure 2-50
opens.

yper Protect Crypto Services Trusted Key Entry appiicaﬁon

" administrators | NEW MASTER KEY REGISTER
Signature thresholds SERVICE INSTANCE 269dad25-4ae9-4f35-9dfe-d0036fdelr38
W CRYPTO UNIT NUM STATUS VERIFICATION PATTERN
Smart card 1 Empty
2 Empty
FF Empty
4* Empty

CURRENT MASTER KEY REGISTER
SERVICE INSTANCE 269dad25-42e9-4755-9dfe-d0036fdelr3g

CRYPTO UNIT NUM STATUS VERIFICATION PATTERN
1 Empty
2 Empty
3% Empty
4 Empty

* Indicates a recovery cryplo unit used only to hold a backup master key value,

| Clear new H Clear current || Load || Commit H Set immediate H Generate Key part || Rotate

Figure 2-50 No master key in both crypto units registers

88 Securing Your Critical Workloads with IBM Hyper Protect Services

Before you load the key parts, you must first create them on smart cards.
Exit the TKE and restart the scup tool.

As described in “Initializing smart cards for administrator signatures” on page 72, we must
initialize our smart cards to store the key parts. You should have the following items:

— The CA smart card.
— The Administrator signature smart cards.
— The key parts smart cards.

Select EP11 Smart Card — Initialize, and then select EP11 Smart Card- —
Personalize. The windows that are shown in Figure 2-51 and Figure 2-52 on page 90
open.

o IBM Hyper Protect Crypto Services Smart Card Utility Program N @

File CASmart Card EP11 Smart Card Help

Smart card reader 1

Card type: Zone enroll status:
Card ID: Zone ID:

Card description: Zone description:
PIN status: Zone key type:

Administrator key:

Key parts:
Key type Description Qrigin MDIC-4 or CMAC SHA-1 ENC-ZEROQ AES-YP or HMAC-YWP Control wector or key attributes Length
itialize and enroll EP11 smart card Y <]
Smart card is being initialized. This process takes up to 1 minute.]
-
= If operation is interrupted, card will be corrupted and new initialization is
Smart card reader 2 required.
Card type: Zone enroll status:
Card ID: Zone ID:
Card description: Zone description:
PIN status: Zone key type:

Administrator key:

Key parts:
Key tyne Description Qrigin MDC-4 or CMAC SHA-1 ENC-ZERC AES-YP or HMAC-YWP Control wector or key altributes Length

[»

Main Menu

Figure 2-51 Smart card initialization

Chapter 2. IBM Cloud Hyper Protect Crypto Services 89

G A IBM Hyper Protect Crypto Services Smart Card Utility Program VoA a
File CA Smart Card | Help
Initialize and enroll EP11 smart card
Smart card reader
Card type: s: Enrolled
Card ID: Change PIN S044CTCH
Card description: — CETTIICETE SO0y LU WESTITPOON: CA
PIN status: Ok Zone key type: 52 1-hit EC key
Administrator key: Mot present
Key parts:
Key type Description Origin MDC-4 or CMAC SHA-1 ENC-ZERCQ AFS-YP ar HMAC-WP Control wector or key attributes Length
Smart card reader 2
Card type: EP11 Smart Card 0.7 Zone enroll status: Enrolled
Card ID: GCRSA0125 Zone 1D: GOA4CTCY
Card description: Zone description: CA
PIN status: Mot set Zone Key type: 521-bit EC key
Administrator key: Mot present
Key parts:
Key type Description Qrigin MDIC-4 or CMAC SHA-1 EMNC-ZERC AES-YP or HMAC-YWP Control wector or key attributes Length
-
Main Menu

Figure 2-52 Preparing to set up a description

Figure 2-53 on page 91 and Figure 2-54 on page 92 show the naming for the key parts in this
example. For clarity, if you must restore this master key, here is a description of the key parts:

» Master key first for key part1
» Master key last for key part 2

90 Securing Your Critical Workloads with IBM Hyper Protect Services

As a best practice, set the card index and the total number of parts in the description.

= ~

File CASmart Card EP11 Smart Card

IBM Hyper Protect Crypto Services Smart Card Utility Program

Card type:
Card I1D:

Key parts:

Card description:
PIN status:

Smart card reader 1

CASmart Card w02

FEEGCASFS

Ok

Certificate Autharity

Administrator Key: Mot present

Zone enroll status: Enrolled

Zone 1D

60A4CTCS

Zone description: A
52 1-hit EC key

Zone kKey type:

Key tyoe

Cescription

Origin

MDC-4 or CMAC

SHA-1

EMC-ZERQ

AES-YP ar HMAC-YP

Caontrol wector or key attrib

Card type:
Card 1D:

Key parts:

Smart card reader 2

EP11 Smart Card v0.7 Zone enroll s
GCESAD1Z25

Card description:

PIN status: Mot set

Administrator Key: Mot present

Enter a description for the smart card.

|master ke first

Zone ID:

£one key type:

GOALCTCS
Zone description: ChA

52 1-hit BC key

Key type

Cescription

Origin

MDC-4 or CMAC

SHA-1

EMNC-ZERQ

AES-YP ar HMAC-YP

Caontrol wector or key attrib

Figure 2-53 Specifying the description for the first smart card

Chapter 2. IBM Cloud Hyper Protect Crypto Services 91

92

» IBM Hyper Protect Crypto Services Smart Card Utility Program VoA o
File CASmart Card EP11 Smart Card Help

Smart card reader 1

Card type: CASman Card w0.9 Zone enroll status: Enrolled

Card I1D: FEEECAZFS Zone ID: BOA4CTCS

Card description: Certificate Autharity Zone description: Ca

PIN status: Ok Zone Key type: 521-hit EC key

Administrator key: Mot present
Key parts:

Key type Description Origin MDC-4 ar CMAC SHA-1 EMNC-ZERQ AES-YP ar HMAC-VP Cantral vector or key attributes Length
Enter a description for the smart card. ||
-
\masler key ast] |

Smart card reader 2

Card type: EP11Smar Card v0.7 Zone enroll §

Card I1D: COB7S61FS Zone ID: GOAGCTCE

Card description: Zone description: CA

PIN status: Mt et Zone Key type: 521-hit EC key

Administrator key: Mot present
Key parts:

Key type Description Crigin MDC-4 ar CMAC SHA-1 EMNC-ZERQ AES-YP ar HMAC-VP Cantral vector or key attributes Length

Main Menu

Figure 2-54 Specifying the description for the second smart card

Tip: Do not forget to write down the description on the note that you stick on these smart

cards.

Generating the master key parts
To generate the master key parts, complete the following steps:

1. Exit scup and restart the tke program.
2. Click Generate key part.

Securing Your Critical Workloads with IBM Hyper Protect Services

3. Insert a key part and enter its PIN, as shown in Figure 2-55.

E * IBM Hyper Protect Crypto Services Trusted Key Entry application AN 9
Crypto units
Administrators NEW MASTER KEY REGISTER
Signature thresholds SERVICE INSTAMNCE 269dad25-4ae9-4755- 0dfe-d0036fdelr3g

Master keys CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

Smart card 1 Error reading crypto unit data
2 Empty
3* Empty
4* Empty
CURRENT MASTER
SERVICE INSTANCE 26
ERYFTU UNIT NUM i Insert EP11 smart card in smart card reader 2. PATTERN
2 E J00000000000000000000

J00000000000000000000

3* E
4 Empty
* Indicates a recovery crypto unit used only to hold a backup master key value,
‘ Clear new | ‘ Clear current | ‘ Load | | Commit | | Set immediate | | Generate key part | | Rotate

Figure 2-55 Inserting the key to generate the key part

Tip: Use the format YYYY/MM/DD-#outof# in the description of your signatures keys to
make it easier to retrieve them in the tke application.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 93

94

4. Inthe Generate master key part dialog box, enter a description and click OK, as shown in

Figure 2-56.
E * IBM Hyper Protect Crypto Services Trusted Key Entry application AN 9
Crypto units
Administrators NEW MASTER KEY REGISTER
Signature thresholds SERVICE INSTANCE: 269dad25-4ae9-4755-0dfe-d0036Tdelr38
Master keys CRYPTO UNIT NUM STATUS VERIFICATION PATTERN
Smart card 1 Error reading crypto unit data
2 Empty
3* Empty
4* Empty
CURRENT MASTER K
SERVICE INSTANCE: 269
CRYPTO UNIT NUM s ENTer a description for the master Key part | pairepn
1 Er [2021/05/19-FIRsT] |
2 En
3* En
4 Empty
* Indicates a recovery crypto unit used only to hold a backup master key value,
‘ Clear new | ‘ Clear current | ‘ Load | | Commit | | Set immediate | | Generate key part | | Rotate
Figure 2-56 Specifying the key part description
Your first key part should now be ready, as shown in Figure 2-57.
E » IBM Hyper Protect Crypto Services Trusted Key Entry application N @
Crypto units
Administrators NEW MASTER KEY REGISTER
Signature thresholds SERVICE INSTANCE: 269dad25-4ae9-4155-0dfe-d0036Tdelf38
Master keys CRYPTO UNIT NUM STATUS VERIFICATION PATTERN
Smart card 1 Error reading crypto unit data
2 Empty
3" Empty
4* 0000000000000
00000DOD0OD0O000
A random EP11 master key part has been created on the smart
CURRENT M, @ard with the following attributes:
SERVICE INSTA
CcRYPTO UNIT e Type XMK
1 Description 2021,/05/19-FIRST
2 Key length 32 N0000000000000
Do0o00000000000
3+ AES-VP 2573824 2AF6F3DCEED476873A4101C929 HO000000000000
EA724AD3ICESAFE4BEB09526E6D6EDEGFA D00000000D0000
4* no0o0000000D0D
no0o0000000D0D
* Indicates a recovery cryptlo unit used only to hold a backup master Key value,
‘ Clear new | ‘ Clear current | ‘ Load | | Commit | | Set immediate | | Generate key part | | Rotate

Figure 2-57 First key part generated

If you click Smart Card in the left menu, you can list the content of your smart card, as
shown in Figure 2-58 on page 95.

Securing Your Critical Workloads with IBM Hyper Protect Services

Signature thresholds
Master Keys

Smart card

Card ID 6CB3A012S
Card description master key first

Zone D 60A4CT7CO
Zone description CA

Card contents, reader 2

KEY NUM [KEY TYPE [DESCRIFTION [oRIGIN [aEs-ve [LEnGTH
1 |ICSF P11 master key p...[2021/05 J19-FIRST [Smart card |25 728292 AF6F3DCEE.. |32

| Display smart card ‘ | Delete Keys | | Generate sighature key | | Generate key part

| Copy smart card ‘ | Copy key part file | | Copy signature key file |

Figure 2-58 Checking the content of your smart card by using the Smart Card menu

Repeat steps 2 on page 92 - 4 on page 94 to generate a second key part with a similar
description, as shown in Figure 2-59.

E » IBM Hyper Protect Crypto Services Trusted Key Entry application VoA e
Crypto units
Administrators NEW MASTER KEY REGISTER
Signature thresholds SERVICE INSTANCE 269dad25-4aed-4r55-9dfe-d0036fdelf38

Master Keys CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

Smart card 1 Empty
2 Empty
3* Empty
4 Empty

&) # Generate master keypart ™

CURRENT MASTER K
SERVICE INSTANCE 269 Enter a description for the master key part:
CRYPTO UNIT NUM ST |202 1705 /19-LAST ‘ PATTERN
')
2 En
3¥ Empty
4 Empty
* Indicates a recovery crypto unit used only to hold a backup master key value.
| Clear new | | Clear current | | Load | | Commit | | Set immediate | | Generate key part ‘ | Rotate

Figure 2-59 Creating the second key part

Chapter 2. IBM Cloud Hyper Protect Crypto Services

95

In Figure 2-60, you might see that the second smart card has a previous key part that was
generated in 2020. Multiple key parts can be stored on a smart card.

Crypto units
~ Administrators | Card ID COB7961F5 Zone ID 60A4CTCO
Signature thresholds Card description master key last Zone description CA
Master keys
E Card contents, reader 2
KEY MUM KEY TYPE DESCRIPTION ORIGIN AES-YWP LEMGTH
1 ICSF P11 master key p... | 2020/12/31-LAST Smart card SHFCCEFFDEZASBOLE.. |32
E ICSF P11 master key p...|2021/05/19-LAST Srmart card G50707642AE61C46.. |32
| Display smart card | | Delete keys | | Generate sighature key | | Generate key part
| Copy smart card | | Copy key part file | | Copy signature key file |

Figure 2-60 Multiple key parts on a smart card

Loading the key part to the new master key register

Normally, all the required key parts are ready and stored on multiple smart cards, and they
are protected by a PIN. To load the key part to the new master key register, complete the
following steps:

1. Select the Master keys tab of the TKE application and click Load.

2. Specify the number of key parts to load, as shown in Figure 2-61 on page 97.

96 Securing Your Critical Workloads with IBM Hyper Protect Services

E - IBM Hyper Protect Crypto Services Trusted Key Entry application VoA @
Crypto units
Administrators NEW MASTER KEY REGISTER
Signature thresholds SERVICE INSTANCE 269dad25-4ae9-4r35-9dfe-d0036fdelf38

Master Keys CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

Smart card 1 Error reading crypto unit data
2 Empty
3* Empty
4 Empty
CURRENT MAST
SERVICE INSTANCE
CRYPTO UNIT WUm ENter the number of key parts to be loaded (2 or 3 [y
1 2l |
2 000000000000000000

- - 000000000000000000

3%
4 Empty
* Indicates a recovery crypto unit used only to hold a backup master key value.
| Clear new | | Clear current | | Load | | Commit | | Set immediate | | Generate key part | | Rotate

Figure 2-61 Specifying the number of key parts to load

For each key part, insert the correct key part smart card and enter the corresponding PIN

to read them, as shown in Figure 2-62.

E » IBM Hyper Protect Crypto Services Trusted Key Entry application VoA e
Crypto units
Administrators NEW MASTER KEY REGISTER
Signature thresholds SERVICE INSTANCE 269dad25-4aed-4r55-9dfe-d0036fdelf38

Master Keys CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

Smart card 1 Empty
2 Empty
3* Empty
4 Empty
CURRENT MASTER KE
SERVICE INSTANCE 269da s -

Loading first key part
CRYPTO UNIT NUM STA DM PATTERN
1 Emj|
’

2 Emp.
3¥ Empty
4 Empty
* Indicates a recovery crypto unit used only to hold a backup master key value.
| Clear new | | Clear current | | Load | | Commit | | Set immediate | | Generate key part | | Rotate

Figure 2-62 Reading the smart card content

Chapter 2. IBM Cloud Hyper Protect Crypto Services

97

The smart card content is displayed, as shown in Figure 2-63. You must select the correct

key part.

I" g
Crypto units

Administrators

Master keys
Smart card

IBM Hyper Protect Crypto Services Trusted Key Entry application VoA o

Signature thresholds

NEW MASTER KEY REGISTER
SERVICE INSTANCE: 269dad25-4ae9-4f55-9dfe-d0036fdelf38

CRYPTO UNIT NUM STATUS VERIFICATION PATTERN
1 Empty
2 Empty
3 Empty

Load new master key

|DBCRIPTION |VERIFICATION FATTERN

|2021/05/19-FIRST |25738242 AF6F3DCEB0476E73A101CH2 SEAT24AD3 CEBAFS4BB0S5 26E606E0B. . |

Enter the KEY NUM of the EP11 master key parl io be loaded:

[1

4* Empty

* Indicates a recovery crypto unit used only to hold a backup master key value.

| Clear new || Clear current || Load || Commit || Set immediate || Generate Key part || Rotate

Figure 2-63 Selecting the correct key part on smart card 1

4. On the second card, you may select between multiple key parts. Because our description
included the date, we know that we must select the last one, as shown in Figure 2-64.

*

@

IBM Hyper Protect Crypto Services Trusted Key Entry application L e

Crypto units
Administrators

Signature thresholds

NEW MASTER KEY REGISTER
SERVICE INSTANCE 269dad25-4ae9-4r35-9dfe-d0036fdelf38

Master keys CRYPTO UNIT NUM STATUS VERIFICATION PATTERN
Smart card 1 Empty
2 Empty
3* Empty
00000000000000000000000000000000
(AN ¢ Load new master key o
KEY MU DESCRIFTION VERIFICATION PATTERMN
I 202012 /2 1-LAST S4FCCETFDEZ ABBOIESS CASEZ 2 25FEEDBCZBEZ AFERZ 82 ALEDERSECEBDFBOBFS 2D
2 2021105 /19-LAST L0V0VE42AE61C4512 7195 BEEODADAY SDE0MES 1RIBCTYSAFOS32F3EE7C207 ...

Enter the KEY NUM of the EP11 master Key part to be loaded:

2

4+ Empty

= Indicates a recovery crypto unit used only to hold a backup master Key value.

| Clear new || Clear current || Load || Commit || Set immediate || Generate key part || Rotate

Figure 2-64 Multiple choices on the second smart card.

98 Securing Your Critical Workloads with IBM Hyper Protect Services

The window that is shown in Figure 2-65 opens and shows that all key parts are loaded. Your
NEW MASTER KEY REGISTER is in an uncommitted state, which means that it has not been
used by the application.

Crypto units
Administrators

Signature thresholds
Master keys

Smart card

NEW MASTER KEY REGISTER
SERVICE INSTANCE 269dad25-4ae9-4f35- 9dfe-d0036fdelf38

CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

1 Full Uncommitted FOE9E25FCDEGBDGO83017CCOFS306872
SFODF7CBY069717C7962AF26A157ED1GE

2 Full Uncommitted FOE9E253FCDEGBD6983917CCI7S306872
SFODF7CBY69717C7962AF26A157ED16E

3~ Full Uncommitted FOE9E25FCDEGBDGYB3917CCIFS306872
SFODF7CBY 60717 C7062AF26A157ED1GE

L Full Uncommitted FOE9E25FCDEGBDGIB3917CCIFII06872

SFO0F7CE769717C7962AF26A157ED16E

CURRENT MASTER KEY REGISTER
SERVICE INSTANCE 269dad25-4ae9-455-9dfe-d0036delf38

CRYPTO UNIT WNUM STATUS VERIFICATION PATTERN
1 Empty
2 Empty
Ex Empty
4 Empiy

* Indicates a recovery crypto unit used only to hold a backup master key value.

| Clear new || Clear current || Load || Commit || Set immediate H Generate key part || Rotate

Figure 2-65 All the key parts are now loaded

Chapter 2. IBM Cloud Hyper Protect Crypto Services

99

100

Committing your new master key register

To commit your key, click Commit. Insert the administrator signature key into the smart card
reader when you are prompted and enter the PIN, as shown in Figure 2-66.

O]

2

Crypto units

Master keys
Smart card

IBM Hyper Protect Crypto Services Trusted Key Entry application oA 9

Administrators
Signature thresholds

NEW MASTER KEY REGISTER
SERVICE INSTANCE 269dad25-4ae9-4f55- 9dfe-d0036fdelf35

CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

1 Full Uncommitted FOE9E253FCDEGBDGIB3917TCCIFII0GET2
SFODF7CBY69717C7962AF26A157ED1GE

2 Full Uncommitted FOE9E25FCDEGBDGO83917CCOFS306872
SFODF7CB769717C7062AF26A157ED16E

Es Full Uncommitted FOEOE25FCDEGBDGO83017CCO7S306872
QF90F7CBY69717C7962AF26A157ED1GE

4 Full Uncommitted FOE9E253FCDEGBDGIB39LITCCIFII06872

SFODF7CBY69717C7962AF26A157ED1GE

CURRENT MASTER]]]
SERVICE INSTANCE: 26¢ MNumber of signatures still required: 1 of 2.

CRYPTO LINITHUM il Insert the next EP11 smart card with a signature key in smart card reader 1.

1

. b | ok || cancer
3 Empty

4+ Empty

* Indicates a recovery Crypto unit used only to hold a backup master Key value,

| Clear new || Clear current || Load || Commit || Set immediate H Generate key part || Rotate

Figure 2-66 Signature smart cards are required to commit the new master key register

When the signature process completes, you should see the status that is shown in
Figure 2-67 on page 101, where the New Master Key Register is in the Committed state.

Securing Your Critical Workloads with IBM Hyper Protect Services

1BM Hyper Protect Crypto Services Trusted Key Entry application

Crypto units
~ Administrators | NEW MASTER KEY REGISTER
Signature thresholds | SERVICE INSTANCE 269dad25-4ae9-4f55-9dfe-d0036fde1f38
Master keys CRYPTO UNIT NUM STATUS VERIFICATION PATTERN
Smart card 1 Full Committed FOEOE2SFCDEGBOGO83017CCATFS306872
SFO0F7CB769717C7962AF26A157BD168
2 Full Committed FOE9B25FCDEGBOGIR3O17CCITS306872
SFO0F7CB769717C7962AF26A157ED16E
3 Full Committed 70E9B25FCDE6806983917CCI75306872
SFOOF7CE769717C7962AF26A157ED1GE
4 Full Committed 70E9B25FCDE6B06983917CCI75306872

SFO0F7CE769717C7062AF26A157ED16E

CURRENT MASTER KEY REGISTER
SERVICE INSTANCE 269dad25-4ae9-4f35- 9dfe-d0036fdelf38

CRYPTO UNIT NUM STATUS VERIFICATION PATTERN
1 Empty
2 Empty
3% Empty
4 Empiy

* Indicates a recovery crypto unit used only to hold a backup master key value.

| Clear new || Clear current || Load || Commit || Set immediate H Generate key part || Rotate

Figure 2-67 New master key register in the Committed state

Setting your new master key register as the current master key register
Click Set immediate. You get the warning that is shown in Figure 2-68.

E £ IBM Hyper Protect Crypto Services Trusted Key Entry application WA a
Crypto units
Administrators NEW MASTER KEY REGISTER
Signature thresholds SERVICE INSTANCE 269dad2?5-4ae9-4f35-9dfe-d0036Tdelf38
Master keys CRYPTO UNIT NUM STATUS VERIFICATION PATTERN
Smart card 1 Full Committed FOE9E25FCDEGBOGOB3017CCO7S306872
SF90F7CE7069717C7962AF26A157ED16E
2 Full Committed FOE9B25FCDE6GBOGI83017CCIFI306872
SFO0F7CB769717C7962AF26A157ED16E
3 Full Committed FOE9B25FCDEGBOGOR3O17CCIATS306872
SFO0F7CE769717C7062AF26A157ED16E

L Full Committed 7OESB2IFCDEOBOGIBII17CCIFIZ0087 2

o e D16E

(8 f} Warning! Key storage in the target service instance must be prepared to accept

5 the new master key value before running this command. Otherwise, key storage
may become unusahle.

C

1 Do you want to continue?

2

3 Empty

4 Empiy

* Indicates a recovery crypto unit used only to hold a backup master key value.

| Clear new || Clear current || Load || Commit || Set immediate H Generate key part || Rotate

Figure 2-68 Set immediate window

Chapter 2. IBM Cloud Hyper Protect Crypto Services 101

For your information: There is a difference between Set immediate and Rotate:

» Set immediate: The cryptographic materials that are stored in the crypto unit are not
reencrypted with the new key, so you lose access to those materials.

» Rotate: Reencrypts all the cryptographic materials.

Figure 2-69 shows the final setup.

Crypto units
Administrators NEW MASTER KEY REGISTER
Signature thresholds SERVICE INSTANCE: 260dad25-4aed-4f55- 0dfe-d0036fdelf38
m CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

Smart card 1 Empty
2 Empiy
3+ Empty
4* Empty

CURRENT MASTER KEY REGISTER
SERVICE INSTANCE: 269dad25-4ae9-4f55- 9dfe-d0036fdelf38

CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

1 Valid FOE9E25FCDEGBD6983917CCO7S306872
SFOOF7CBY69717C7962AF26A157ED16E

2 Valid FOE9E25FCDEGBDGYB3917CCIFS306872
SFODF7CBY 60717 C7062AF26A157ED1GE

E Valid 7OE9E253FCDEGBDG9IB3917CCIFII06872
SFODF7CB769717C7062AF26A157ED16E

L Valid FOE9E25FCDEGBDG9B3917CCIFII06872

SFO0F7CE769717C7062AF26A157ED16E

* Indicates a recovery crypto unit used only to hold a backup master key value.

| Clear new || Clear current || Load || Commit || Set immediate H Generate key part || Rotate

Figure 2-69 Final setup of the new key

The verification patterns allow you to retrieve the correct key part that is stored on the smart
card. You have one verification pattern per key part.

You might notice that this verification pattern is also displayed when you look at the key part
smart card content, as shown in Figure 2-57 on page 94 (see the AES VP number).
Figure 2-70 on page 103 is what your table should look like:

» One CA smart card with a red sticker
» Two key part smart cards with a green sticker
» Two admin signature smart cards with a yellow sticker

102 Securing Your Critical Workloads with IBM Hyper Protect Services

(]
[

Figure 2-70 Completed smart cards

You now can accomplish the following tasks:
» Create smart card backups.

» Hand out the smart cards to the correct persons, for example, you could hand out the
yellow ones to your IT people and the green ones to business people.

» Change the PINs.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 103

You can check to see whether your IBM Hyper Protect Crypto Services instance is ready for
an application by using the IBM Cloud console, as shown in Figure 2-71.

Resource list /

hpcs-smartcardreader © Active Add tags £ Details

Getting started Crypto units Location
Overview
. us-south].[AZ2-CS8].[01].[16] © INITIALIZED ~
Instance policies
Key management service key us-south].[AZ3-CS9].[011.[10] @ INITIALIZED
ngs .

.
Key management service keys L

Key manag
associated

Enterprise PKCS #1

Enterprise PKCS #11 keys

Region Dallas (us-south)

Instance Key management endpoint URL Enterprise PKCS #11 endpoint URL
Instance ID Fublic

269dad25-4ae9-4£55-9d e - d0DI6Fde1£38 {n| https://api.us-south.hs-crypto.cloud.ibm. com:11633 i}
Resaurce group Frivate

zshB06 Un] https://api.private.us-south.hs-crypto.cloud.ibm.com:11633 il

<)

Figure 2-71 IBM Cloud console showing that the instance is ready

Tip: If you take too much time between your two actions, your IBM Cloud CLI connection
might time out. We used the ibmcloud tke plug-in in the background. For example, you
might get the warning that is shown in Figure 2-72 on page 105.

104 Securing Your Critical Workloads with IBM Hyper Protect Services

E ~ IEM Hyper Protect Crypto Services Trusted Key Entry application W Q

Crypto units
 adminisurators | NEW MASTER KEY REGISTER
Signature thresholds | SERVICE INSTANCE 269dad?5-4ae9-4f55- 9dfe-d0036fdelf38
Master keys CRYPTO UNIT NUM STATUS VERIFICATION PATTERN
Smart card 1 Full Committed FOESE25FCDE6GB0GI83I01FCCIAFS306872
SFOOF7CB769717C762AF26A157ED16E
2 Full Committed FOE9B2?5FCDE6GBDGI83917CCIFS306872
SFOOF7CB769717C7062AF26A157ED16E
3 Full Committed FOE9B25FCDE6GBOG983917CCI75306872
SFO0F7CEFO97F17C7FO02AF26A15FED1GE
4* Full Committed FOE9B25FCDEGBOG983917CCI75306872
[~ \157BD16E
= d
CURRI ® Error sending HTPRequest to target service instance.
SERVIC Status code: 401)
CRYPT Message: Unauthorized
i Your access token Is invalid, expired, ot does not have the necessary | o000 0o
permissions to access this instance. tooanoo
2 - 00000000
m 00000000
3+ DT
4 Empiy

* Indicates a recovery crypto unit used only to hold a backup master key value.

| Clear new || Clear current || Load || Commit || Set immediate H Generate key part || Rotate

Figure 2-72 Getting a error because the IBM Cloud CLI session timed out

If this situation occurs, open a new terminal and log in by running the ibmcloud login -g
<resource group> command. Then, retry your action on the tke application.

2.4 Using the IBM Key Protect REST API

In this section, we describe how to use the IBM Key Protect REST API.

2.4.1 Key Protect concepts and programming language software developer
kits
IBM Hyper Protect Crypto Services implements the IBM Key Protect REST API that provides

Key Protect concepts to applications developers to store sensitive data as a key ID and
payload map model.

Each key is assigned a unique identifier, a name, and a description. Multiple keys can have
the same name but different unique identifiers.

Key Protect keys can be disabled and reenabled.

Two key types are available:

» Key Protect standard keys can store any base64-encoded string. This type comes in
handy when there is need to keep credentials in a vault.

A Key Protect standard key payload is extractable: Your application can retrieve its plain
text data (payload) out of the IBM Hyper Protect Services keystore.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 105

Access to Key Protect standard keys is managed by IBM Cloud Identity and Access
Management (IAM): Any access is logged and tracked in the Activity Tracker with LogDN
and can be easily audited. For more information, see Getting started with IBM Cloud
Activity Tracker.

If you store a data encryption key (DEK) or other sensitive data, it is a best practice to
encrypt the Key Protect standard key data by using symmetric encryption. The Key Protect
REST API offers wrap and unwrap encryption functions that are coupled with a Key
Protect root key for this purpose.

» Key Protect root keys are primary resources in Key Protect. They are symmetric
key-wrapping keys that are used as roots of trust for wrapping (encrypting) and
unwrapping (decrypting) other keys that are stored in a data service. They implement AES
Galois and counter-mode encryption.

Typically, Key Protect root keys wrap and unwrap DEKSs, and the resulting wrapped data
encryption keys (WDEKSs) are stored as a Key Protect standard key. A DEK is a key that is
used by your application. The Key Protect root key protects these DEKSs.

The Key Protect root key can either be imported from your notebook or generated by the
Key Protect service. Then, the plain text value of a root key never leaves the IBM Hyper
Protect Services instance. The key is nonextractable and protected by the HSM master
key.

You can work with IBM Key Protect standard keys and root keys by using one of the following
methods:
» The IBM Hyper Protect Crypto Services GUI.

» Several software development kits (SDKs) are available for Node.js, Java, Python, and
Golang.

» The IBM Cloud CLI Key Protect plug-in.

This Key Protect API is documented at IBM Key Protect APl and includes code snippets for
the curl CLI, Java, Python, and Go programming language.

For Python, install the Key Protect module by running the pip install -U keyprotect
command. This keyprotect package is a wrapper around the redstone package. Its
documentation is available at Redstone: Encrypting/Decrypting with Key Protect.

The Golang Key Protect SDK is available at GiHub. To install it on your Go environment, run
the go get github.com/IBM/keyprotect-go-client command.

The Key Protect Node.js SDK is available at GitHub. To install it, run the npm install

@ibm-cloud/ibm-key-protect command.

2.4.2 Setting your authentication configuration to call API functions

IBM Cloud IAM is the primary method to authenticate Key Protect API calls. A convenient way
to secure access to your IBM Hyper Protect Crypto Services instance is to use an API key.
You can create a specific service ID to control access to this service.

This section describes the procedure by using a terminal and the IBM Cloud CLI. You can
achieve the same result by using the IBM Cloud console.

106 Securing Your Critical Workloads with IBM Hyper Protect Services

https://github.com/IBM/keyprotect-go-client
https://cloud.ibm.com/apidocs/key-protect
https://redstone-py.readthedocs.io/en/latest/#module-redstone.crypto
https://github.com/IBM/keyprotect-nodejs-client
https://cloud.ibm.com/docs/activity-tracker?topic=activity-tracker-getting-started
https://cloud.ibm.com/docs/activity-tracker?topic=activity-tracker-getting-started

Creating an IBM service ID on your IBM Cloud account

A service ID identifies a service or an application the same way as a user ID identifies a user.
A service ID can be used to enable an application outside of IBM Cloud access to your

IBM Cloud services.

» You assign specific access policies to the service ID to restrict permissions from using
specific services.

» Service IDs are not tied to a specific user. If a user happens to leave an organization and
is deleted from the account, the service ID remains, which ensures that your application or
service keeps running.

In Example 2-54, we create a service ID that is called hpvs-sid. Under the Linux OS, open a
terminal and log in to your IBM Cloud account with the CLI and create your service ID.

Example 2-54 Creating a service ID

$ ibmcloud iam service-id-create hpvs-sid

Creating service ID hpvs-sid bound to current account as
redbook.author@ibm.com...

0K

Service ID hpvs-sid is created successfully

ID Serviceld-a4594010-afe7-467e-909d-8aa906481617
Name hpvs-sid

Description

CRN

crn:vl:bluemix:public:iam-identity::a/537544c2222297f40ed689e8473e7849: :serviceid:
Serviceld-a4594010-afe7-467e-909d-8aa906481617

Version 1-ae2f75c82c6a5f0331a5c56ad3a9f232

Locked false

Generating an API key for your service ID

An API key is a unique identifier that is used to authenticate access to an IBM Cloud service.
The APl key is used in our example and by the application that you might build.

Generate such a key for your service ID by running the command that is shown in

Example 2-55. This command creates a key that is called hpvskey for the service ID hpvs-sid
that was previously created in Example 2-54. The command stores the APl key in a file that is
called mykey on your notebook.

Example 2-55 Creating an API key for your IBM Hyper Protect Crypto Services instance

$ ibmcloud iam service-api-key-create hpvskey hpvs-sid --file mykey

Creating API key hpvskey of service ID hpvs-sid under account 537544c2222297f40ed689e8473e7849 as
jeanyves.girard@fr.ibm.com...

0K

Service ID API key hpvskey is created

Successfully save API key information to mykey

Preserve the API key! It cannot be retrieved after it is created.

1D ApiKey-ed6f6731-fbad-4266-a0le-d0adb10c906e
Name hpvskey

Description

Created At 2021-05-07T12:46+0000

API Key 8vFwZ9yQIyG8iDI0j2UYKRAWNh401i31-vBwAvcZd50DX
Locked false

Chapter 2. IBM Cloud Hyper Protect Crypto Services 107

Then, you can retrieve the value of your API key by using the command that is shown in
Example 2-56. Its value is exported as the API_KEY environment variable (for a Linux OS).

Example 2-56 Extracting your API key from the generated mykey file

$ export API_KEY=$(jq -r .apikey mykey)

Keep the mykey file in a safe file because it stores authentication data for your service.

Creating an access policy
You now must grant Editor access to the service ID to your IBM Hyper Protect Crypto
Services instance, as shown in Example 2-57.

Editor is an IBM Cloud defined role that groups a set of actions that are available for IBM
Hyper Protect Crypto Services.

In our example, the IBM Hyper Protect Crypto Services name is hpcs-svc. Run the
commands that are shown in Example 2-57.

Example 2-57 Granting access to the IBM Hyper Protect Crypto Services instance to your service ID

$ ibmcloud resource service-instances

Retrieving instances with type service_instance in resource group zsb006 in all
locations under account ITSO's Account as redbook.author@ibm.com...

0K

Name Location State Type

hpcs-svc us-south active service_instance

$ ibmcloud iam service-policy-create hpvs-sid --roles Editor --service-name
hpcs-sve

Creating policy under current account for service ID hpvs-sid as
jeanyves.girard@fr.ibm.com...

0K

Service policy is successfully created

Policy ID: d59cdef5-24ba-4b6b-b660-4093cc3eelf4

Version: 1-3adadab66cal5940431148e6e72c0bblc
Roles: Editor
Resources:

Service Name hpcs-svc

2.4.3 Retrieving connection information to your IBM Hyper Protect Crypto
Services instance

To connect and use your IBM Hyper Protect Crypto Services instance, you require three
things:

» The API key of the service ID, which was defined in 2.4.2, “Setting your authentication
configuration to call API functions” on page 106.

» The service instance ID of your IBM Hyper Protect Crypto Services instance.
» The endpoint URL of your IBM Hyper Protect Crypto Services instance.

108 Securing Your Critical Workloads with IBM Hyper Protect Services

To use the IBM Cloud console, complete the following steps:
1. In the IBM Cloud console, go to your Resource list.

2. Click the service name and select Overview in the left menu, and then retrieve the service
ID and the endpoint URL, as shown in Figure 2-73.

hpc5-5vc @ Active Add tags £ Details

Getting started Crypto units Location

Overview

us-south].[AZ3-CS9].[00].[03] @ INITIALIZED

Instance policies

Key management service key [us-south].[AZ1-C57].[01].[16] © mmauzen
ngs

.
Key manager ce keys ®

Enterprise PKCS #11 keys

Region Dallas (us-south)

Instance Key management endpoint URL Enterprise PKCS #11 endpoint URL

Instance ID

d388bb89-1887-4d6b-9927 -3alaBE2ebT

25bB86 [m]

Figure 2-73 Getting the service endpoint details at the IBM Cloud console.

To use the IBM Cloud CLI, in a terminal session, log in to your IBM Cloud account and run the
command that is shown in Example 2-58.

All parameters are stored in environment variables that are interpreted by the IBM Cloud Key
Protect plug-in to establish the connection with your IBM Hyper Protect Crypto Services
instances.

Example 2-58 Retrieving connection information by using the IBM Cloud CLI

$ export KP_PRIVATE_ADDR=$(ibmcloud resource service-instance hpcs-svc --output
json | jq -r '.[].extensions.endpoints.public')

$ export KP_INSTANCE_ID=$(ibmcloud resource service-instance hpcs-svc --output
json | jq -r '.[].guid")

$ echo $KP_INSTANCE_ID
d300bb89-1807-4d6b-9927-3a1a2882e2b7

$ echo $KP_PRIVATE_ADDR
https://api.us-south.hs-crypto.cloud.ibm.com:11398

Whether you use your public or private key management endpoint URL depends on whether
your IBM Cloud account is enabled to use the IBM Cloud Private network. In either case, the
endpoint URL is set to the environment variable that is named KP_PRIVATE_ADDR.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 109

Tip: Define the KP_PRIVATE_ADDR and KP_INSTANCE_ID environment variables to avoid
connection and authorization errors. They can be defined in your shell environment in the
.bash_profile file to make them permanent for every CLI session.

For more information, see Performing key mangement operations with the CLI.

2.4.4 Creating IBM Key Protect keys

Creating an IBM Key Protect key with a predefined payload is referred to as an imported key.
Most of the examples in this book create Key Protect standard keys as imported keys.
Importing a Key Protect root key is described in 2.4.7, “Bring Your Own Key to the cloud:
importing a Key Protect root key” on page 133.

Key import requires that you specify the payload by using base64 encoding. In our examples,
we use the Linux base64 shell tool for this purpose.

An expiration date may be specified. If an expiration date is defined when the key is created,
the key is automatically disabled by the IBM Hyper Protect Crypto Services instance after the
expiration date passes.

Using the IBM Cloud Console
You can easily create or import a key from a file by using the IBM Cloud console by
completing the following steps:

1. In your Resource list, select your IBM Hyper Protect Crypto Services instance.
2. In the left menu, select Key management service keys.
3. In the right pane, click Add Key. The window that is shown in Figure 2-74 opens.

IBM Cloud

n Menu

Add key

Create encryption keys that are protected by the
hardware security modules of Hyper Protect Crypto
Services, or import your own keys. Learn more

Create a key Import a key

Dual authorization deletion
Disabled

Key type

@ Root key O Standard key
Key name

Enter key name

Key alizs (optional)

Create key

Figure 2-74 Creating a key by using the IBM Cloud console

110 Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-set-up-cli

Using this menu, you can create or import a key.

To create a key, specify the following items:

— Its type: root or standard.

— Its name.

You may indicate some other options like the following items:

— Its expiration date.
— Its description.
— Its ring, which is a way to logically group Key Protect keys.

4. When you are done, click Create Key.

Creating IBM Key Protect keys in Python

Make sure that you installed the Key Protect module by using the pip tool, as described in

2.4.1, “Key Protect concepts and programming language software developer kits” on
page 105.

To connect the IBM Hyper Protect Crypto Services instance, our sample program uses three

Linux environment variables:

» The API_KEY variable. Its setup procedure is shown in “Generating an API key for your

service ID” on page 107.

» The KP_INSTANCE_ID and KP_PRIVATE_ADDR variables. Their setup procedures are shown in

2.4.3, “Retrieving connection information to your IBM Hyper Protect Crypto Services

instance” on page 108.

In Example 2-59, the kp session object is created by using the three environment variables.

Then, the create() function that follows the kp session object allows you to easily create the

key and specify its parameters, such as type and name.

You must import the keyprotect module as specified at the beginning of the program to use

the Key Protect function.

Example 2-59 Python program that creates one Key Protect standard key and one Key Protect root

key

import os
import keyprotect
from keyprotect import bxauth

kp = keyprotect.Client(
credentials= bxauth.TokenManager(api_key=os.getenv("API _KEY")),
#region="us-south",
service_instance_id=os.getenv("KP_INSTANCE ID"),
Set custom service endpoint
endpoint_url=os.getenv("KP_PRIVATE_ADDR"),

)

print (kp.endpoint_url)

Initialize the Key Protect client as specified in Authentication

key = kp.create(name="itso rocks")

print("Created key '%s'" % key["id"])

rootkey = kp.create(name="itso really rocks", root=True)
print("Created root key '%s'" % rootkey["id"])

Chapter 2. IBM Cloud Hyper Protect Crypto Services

111

key = kp.create(name="Not to be done",payload="Hello World".encode('ascii'))
print("Created key '%s'" % key["id"])

You can run the program in a Linux terminal where the environment variables API_KEY,
KP_INSTANCE_ID, and KP_PRIVATE_ADDR are defined, as shown in Example 2-60.

Example 2-60 Running a Python program to create Key Protect keys

$ python sample_createroot.py
https://api.us-south.hs-crypto.cloud.ibm.com:11398
Created key '5583eef2-1a46-4107-b53e-5€95990786h9"
Created root key 'e893d3c8-976b-4e51-a3ab-7326aa86a19d’
Created key '487a368c-773f-4936-ae68-ea5ee0032d02"

From the IBM Cloud console, you can check that the two keys were successfully created, as
shown in Figure 2-75.

IBM Cloud

Resource list |

h pCS -SVC @ Active Addtags & Details
Getting started Key management service keys 3
Oten
Instance policies O Search 7 o i) Add key +
Key management service key Key
rings Name D Alias ;lnng Type State Origin t::]tated
Key management service keys SN 21-05-0
;’ ('_Er ! €893..a19d T default Root key @ Active Created 2021-05-07

Key management service 18:20:28

associated resou

e el Jpap - o Standard A ptiv P 2021-05-07
) .) 50 rocks 5583..86h9 T default key @ Active Created 182025
Enterprise PKCS #11 keystores
Enterprise PKCS #11 keys tso rocks Dcd1.9ce5 T default Jandam @ Destroyed Created

Items per page 100 v 1-3 of 3 items

Figure 2-75 Checking your Key Protect keys

In Figure 2-75, there is a destroyed Key Protect key with an identical name to the one before
it. When you delete a key, you immediately deactivate its key material and move it to a
backstore in the Key Protect service. Four hours after a key is deleted, the key becomes
available to be manually purged. Thirty days after a key is deleted, the key becomes
nonrestorable, and the key material is destroyed. After a key has been deleted for 90 days, if
it is not manually purged, the key becomes eligible to be automatically purged and all its
associated data will be permanently removed, or “hard deleted”.

As shown in Example 2-61, the Key Protect payloads can be retrieved by running the

ibmcloud kp key show command. This command shows the following information:

» The Key Protect standard key is extractable and readable.

» The Key Protect root key is nonextractable from the IBM Hyper Protect Crypto Services
instance.

Example 2-61 Using the ibmcloud Key Protect plug-in to get a key payload

$ ibmcloud kp key show 487a368c-773f-4936-ae68-ea5ee0032d02 -o json
{

"id": "487a368c-773f-4936-ae68-eabee0032d02",
"name": "test",
"type": "application/vnd.ibm.kms.key+json",

112 Securing Your Critical Workloads with IBM Hyper Protect Services

"algorithmType": "AES",

"createdBy": "iam-Serviceld-a4594010-afe7-467e-909d-8aa906481617",

"creationDate": "2021-05-07T21:33:397",

"lastUpdateDate": "2021-05-07T21:33:39Z",

"keyRingID": "default",

"extractable": true,

"imported": true,

"payload": "SGVsbG8gV29ybGQ=",

"state": 1,

"crn":
"crn:vl:bluemix:public:hs-crypto:us-south:a/537544c2222297140ed689e8473e7849:d300b
b89-1807-4d6bh-9927-3a1a2882e2h7:key:487a368c-773f-4936-ae68-ea5ee0032d02",

"deleted": false,

"dualAuthDelete": {

"enabled": false

}

}$ echo "SGVsbG8gV29ybGQ=" | base64 -d
Hello World

$ ibmcloud kp key show e893d3c8-976b-4e51-a3ab-7326aa86al9d -o json | ijq
'.extractable, .payload’
false

$

Creating IBM Key Protect keys with Go

Make sure that you installed the Key Protect module by using the go get command, as
described in 2.4.1, “Key Protect concepts and programming language software developer
kits” on page 105.

To connect the IBM Hyper Protect Crypto Services instance, our sample program use three
Linux environment variables:

» The API_KEY parameter, which is described in “Generating an API key for your service ID”
on page 107.

» The KP_INSTANCE_ID and KP_PRIVATE_ADDR parameters, which are described in 2.4.3,
“Retrieving connection information to your IBM Hyper Protect Crypto Services instance”
on page 108.

Example 2-62 on page 114 and Example 2-63 on page 115 provide code samples that list
and create Key Protect keys. They use environment variables to create a session object that
is named client. Example 2-64 on page 116 shows how to compile and run the code
samples.

In Go, import the github.com/IBM/keyprotect-go-client module to use Key Protect
functions.

The GetKeys() function is used to retrieve all the keys that are managed by our IBM Hyper
Protect Crypto Services instance.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 113

To list your IBM Hyper Protect Crypto Services keys, run the command that is shown in
Example 2-62.

Example 2-62 Running listkeyprotect.go to list your IBM Hyper Protect Crypto Services keys

package main

import (
"fmt"
n os n
"context"
"github.com/IBM/keyprotect-go-client"
)

func main() {
instanceld, ok := os.LookupEnv("KP_INSTANCE_ID")
if lok {
panic("Must set KP_INSTANCE ID")
}

apiKey, ok := os.LookupEnv("API_KEY")
if lok {

panic("Must set IBMCLOUD API KEY")
}

url , ok := os.LookupEnv("KP_PRIVATE_ADDR")
if lok {

panic("Must set KP_PRIVATE ADDR")
}

cc := kp.ClientConfig{
BaseURL: url,
APIKey: apiKey,
InstancelD: instanceld,

}

// Build a new client from the config
client ,_ := kp.New(cc, kp.DefaultTransport())

ctx := context.Background()

// List keys in your KeyProtect instance
keys, err := client.GetKeys(ctx, 0, 0)
if err 1= nil {
panic(err)
}
for _, key := range keys.Keys {
fmt.Printf("%+v\n\n", key)
}

114 Securing Your Critical Workloads with IBM Hyper Protect Services

In the second example, which is shown in Example 2-63, the following actions occur:
» CreateRootKey can take an expiration date as a third argument (ni1 in our example).

» CreateImportedStandardKey also takes a nil expiration date as its third argument. The
last argument is the value of our key that we encrypt with base64encoding. This data is
extractable.

» GetKey retrieves the payload of the standard key.

Example 2-63 Running createkeyprotect.go to create a root key and a standard key

package main

import (
"fit"
1] os n
"context"
"github.com/IBM/keyprotect-go-client"
b64 "encoding/base64"

)

func main() {
instanceld, ok := os.LookupEnv("KP_INSTANCE_ID")
if lok {
panic("Must set KP_INSTANCE_ID")
}

apiKey, ok := os.LookupEnv("API_KEY")
if lok {

panic("Must set IBMCLOUD_API_KEY")
}

url , ok := os.LookupEnv("KP_PRIVATE_ADDR")
if lok {

panic("Must set KP_PRIVATE_ADDR")
}

cc := kp.ClientConfig{
BaseURL: url,
APIKey: apikey,
InstancelD: instanceld,

}

// Build a new client from the config
client ,_ := kp.New(cc, kp.DefaultTransport())

ctx := context.Background()

// Create a root key named MyRootKey with no expiration
key, err := client.CreateRootKey(ctx, "goRootkey", nil)
if err 1= nil {

fmt.Printin(err)

}
fmt.PrintIn(key.ID, key.Name)

// Create a new standard key

Chapter 2. IBM Cloud Hyper Protect Crypto Services 115

creds := [Jbyte(™{ "EXAMPLE_ID": "itso", "EXAMPLE SECRET":

"cipheredsecret!" }7)

crk, err := client.CreateImportedStandardKey(ctx, "goStandardkey",
nil,b64.StdEncoding.EncodeToString(creds))
if err 1= nil {
panic(err)
}
fmt.PrintIn(crk.ID,crk.Name)

k,err := client.GetKey(ctx,crk.ID)
printin(k.Payload)

Expiration date: Use the following code example to specify an expiration date. Import the
time package into your code. We used a 24 hour expiration delay in our example.

expiration := time.Now().Add(24 * time.Hour)
key, err = client.CreateRootKey(ctx, “goRootkey", &expiration)

Example 2-64 shows how the key is created and can be listed afterward by using the
GetKey () call.

Example 2-64 Creating the Key Protect keys by using the source code that you put in $§GOPATH/src

$ go build listkeyprotect.go

$ go build createkeyprotect.go

$./createkeyprotect

3ab9c48e-bdc2-4350-8a0f-785865ad5557 goRootkey
ee3c63f0-62db-4fb0-abb5-c808a75983ca goStandardkey
eyAiRVhBTVBMRVIJRCI6ICIpdHNVIiwgIkVYQULIQTEVFUOVDUKVUIjogImNpcGhlcmVkc2VjcmVOISIgfQ

$ echo

"eyAiRVhBTVBMRV9JRCI6ICIpdHNVIiwgIkVYQULIQTEVFUOVDUKVUIjogImNpcGhlcmVkc2VjcmVOISIgf
==" | base64 -d

{ "EXAMPLE_ID": "itso", "EXAMPLE SECRET": "cipheredsecret!" }

$./listkeyprotect

{ID:3abh9c48e-bdc2-4350-8a0f-785865ad5557 Name:goRootkey Description:
Type:application/vnd.ibm.kms.key+json Tags:[] Aliases:[] AlgorithmType:AES
CreatedBy:iam-Serviceld-a4594010-afe7-467e-909d-8aa906481617
CreationDate:2021-05-07 18:12:16 +0000 UTC LastUpdateDate:2021-05-07 18:12:16
+0000 UTC LastRotateDate:<nil> KeyVersion:0xc00027e4c0 KeyRingID:default
Extractable:false Expiration:<nil> Imported:false Payload: State:1l
EncryptionAlgorithm:
CRN:crn:vl:bluemix:public:hs-crypto:us-south:a/537544¢c2222297f40ed689e8473e7849:d3
00bb89-1807-4d6b-9927-3a1a2882e2b7: key:3ab9c48e-bdc2-4350-8a0f-785865ad5557
EncryptedNonce: IV: Deleted:<nil> DeletedBy:<nil> DeletionDate:<nil>
DualAuthDelete:0xc000122110}

{ID:ee3c63f0-62db-4fb0-ab6bh5-c808a75983ca Name:goStandardkey Description:
Type:application/vnd.ibm.kms.key+json Tags:[] Aliases:[] AlgorithmType:AES
CreatedBy:iam-Serviceld-a4594010-afe7-467e-909d-8aa906481617
CreationDate:2021-05-07 18:12:17 +0000 UTC LastUpdateDate:2021-05-07 18:12:17
+0000 UTC LastRotateDate:<nil> KeyVersion:0xc00027e6a0 KeyRingID:default

116 Securing Your Critical Workloads with IBM Hyper Protect Services

Extractable:false Expiration:<nil> Imported:false Payload: State:l
EncryptionAlgorithm:
CRN:crn:vl:bluemix:public:hs-crypto:us-south:a/537544¢2222297f40ed689e8473e7849:d3
00bb89-1807-4d6b-9927-3a1a2882e2b7: key:ee3c63f0-62db-4fb0-abb5-c808a75983ca
EncryptedNonce: IV: Deleted:<nil> DeletedBy:<nil> DeletionDate:<nil>
DualAuthDelete:0xc000122130}

For more information about the topics in this section, see GitHub.

Using the Key Protect plug-in with the IBM Cloud CLI
The key-protect plug-in is installed in a terminal, as shown in Example 2-65.

Example 2-65 Installing the Key Protect plug-in

$ ibmcloud plugin install key-protect
Looking up 'key-protect' from repository 'IBM Cloud'...
Plug-in 'key-protect/kp 0.6.1' found in repository 'IBM Cloud'
Attempting to download the binary file...

11.12 MiB / 11.12 MiB

6s

11655065 bytes downloaded

Installing binary...

0K

Plug-in 'key-protect 0.6.1' was successfully installed into
/home/itso/.bluemix/plugins/key-protect. Use 'ibmcloud plugin show key-protect' to
show its details.

Listing the Key Protect keys

To list the IBM Key Protect keys, run the ibmcloud kp keys command, as shown in
Example 2-66.

Example 2-66 list the keys that were previously created with the Python examples that are
shown in “Creating IBM Key Protect keys in Python” on page 111.

The ibmcloud kp command uses the KP_INSTANCE_ID and KP_PRIVATE_ADDR environment
variables that you defined. Your IBM Cloud credentials are used here and not your service ID
API key.

Example 2-66 Listing your Key Protect keys

$ ibmcloud kp keys

Retrieving keys...

0K

Key ID Key Name
5583eef2-1a46-4107-b53e-5€95990786b9 itso rocks
e€893d3c8-976b-4e51-a3ab-7326aa86a19d itso really rocks

Chapter 2. IBM Cloud Hyper Protect Crypto Services 117

https://github.com/IBM/keyprotect-go-client

Creating your Key Protect keys

The ibmcloud kp create command can create both a Key Protect root key (Example 2-67) or
a Key Protect standard key. To create a standard key, use --standard-key option with the
command for the standard key.

Example 2-67 Creating and getting the details of the Key Protect root key by using the Key Protect CLI
plug-in

$ ibmcloud kp create mynewrootkey

Command "create" is deprecated, as of 0.4.0 use “key create”
Creating key: 'mynewrootkey', in instance:
'd300bb89-1807-4d6b-9927-3a1a2882e2b7"'...0K

Key ID Key Name
f0a0a495-ada0-480f-9¢c55-1f78ac7080b9 mynewrootkey

$ ibmcloud kp keys

Retrieving keys...

0K

Key ID Key Name
5583eef2-1a46-4107-b53e-5€95990786b9 itso rocks
e€893d3c8-976b-4e51-a3ab-7326aa86a19d itso really rocks
f0a0a495-ada0-480f-9¢c55-1f78ac7080b9 mynewrootkey

$ ibmcloud kp key show f0a0a495-ada0-480f-9c55-1f78ac7080b9 -0 json
{

"id": "f0a0a495-ada0-480f-9c55-1f78ac7080b9",

"name": "mynewrootkey",

"type": "application/vnd.ibm.kms.key+json",

"algorithmType": "AES",

"createdBy": "IBMid-27000182VX",

"creationDate": "2021-05-07T16:52:41Z",

"lTastUpdateDate": "2021-05-07T16:52:41Z",

"keyVersion": {

"id": "fOa0a495-ada0-480f-9c55-1f78ac7080h9",
"creationDate": "2021-05-07T16:52:41Z"
},
"keyRingID": "default",

"extractable": false,

"state": 1,

Ilcr,nll:
"crn:vl:bluemix:public:hs-crypto:us-south:a/537544c2222297f40ed689e8473e7849:d300b
b89-1807-4d6b-9927-3a1a2882e2b7 : key:f0a0a495-ada0-480f-9¢c55-11f78ac7080b9",

"deleted": false,

"dualAuthDelete": {

"enabled": false

}

Example 2-68 on page 119 shows how to use a Key Protect standard key to store a JSON
string that is used to initialize the creds bash variable. They key can represent some
application credentials that we want to save in the Key Protect vault.

This string is base64-encoded by using the base64 tool.

We use the -i option to specify the IBM Hyper Protect Crypto Services instance if there are
multiple instances that are provisioned.

118 Securing Your Critical Workloads with IBM Hyper Protect Services

Example 2-68 Keeping some data as a Key Protect standard key

$ creds='{ "EXAMPLE_ID": "itso", "EXAMPLE_SECRET": "cipheredsecret!" }'

$ encoded=$(base64 -w 0 - <<< ${creds})

$ echo $encoded
eyAiRVhBTVBMRV9JRCI6GICIpdHNVIiwgIkVYQU1QTEVFUOVDUKVUIjogImNpcGhTcmVkc2VjicmVOISIgfQ
O=

$ ibmcloud kp key create itso _creds --standard-key --key-material $encoded -i
$KP_INSTANCE_ID

Creating key: 'itso creds', in instance: 'd300bb89-1807-4d6b-9927-3ala2882e2b7'...
0K

Key ID Key Name
33abe217-9dca-4d9f-9b95-e1600196c55¢c itso_creds

$ ibmcloud kp key show 33abe217-9dca-4d9f-9b95-e1600196c55¢c -0 json | jq -r
'.payload' | base64 -d
{ "EXAMPLE_ID": "itso", "EXAMPLE_SECRET": "cipheredsecret!" }

You can connect to the IBM Cloud console to verify the details of the created keys, as shown
in Figure 2-76:

» In the Resource list, select your IBM Hyper Protect Crypto Service instance.
» Select Key management service keys in the left menu.

» Click the action menu for a key by clicking the three dots.

» Click View key details.

Key name

mynewstandardtkey

default

Cloud resource name
crn:vlchluemix:public:hs-cryptous-
south:a/537544c2222297£40ed689e84732760
9:d380bb89-1867-4d6h-0027 -

1a288222b

9b68-52c4b81feaTd

Attribute name Attribute value
State © Active

Created 2021-05-07 18:53:01
Type Standard key

Origin Created

Last updated 2021-05-07 18:53:01
Dual authorization enabled false

Setfor delation Not applicable
Algorithm type AES

Algorithm made CBC_PAD

Algorithm bit size 256

Figure 2-76 Getting the Key Protect details from the IBM Cloud console

2.4.5 Working with Key Protect root keys
Key Protect root keys are nonextractable AES-GCM (a block cipher mode of operation that

provides high-speed authenticated encryption and data integrity) symmetric keys. You can
use it to encrypt and decrypt some payloads by using wrap and unwrap SDK functions.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 119

Root keys can be rotated. The unwrap function always works with previous Key Protect root
keys, but a new encrypted payload with a new key is returned. It is a best practice that your
application stores this new encrypted workload and discards the previous one. Some SDK
unwrap calls might not support rotated keys. For more information, see 2.4.6, “Key Protect
root key rotation” on page 129.

Python

For this example, we open a terminal and configure environment variables, as described in
“Creating IBM Key Protect keys in Python” on page 111.

In the first example, we use a Key Protect root key that we created, which is described in
2.4.4, “Creating IBM Key Protect keys” on page 110.

Retrieve the Key Protect root keys as shown in Example 2-69 and select one (itso really
rocks in our example).

Set its identifier in the ROOTKEYID environment variable.

Example 2-69 Retrieving a Key Protect root key

$ ibmcloud kp keys

Retrieving keys...

0K

Key ID Key Name
3ab9c48e-bdc2-4350-8a0f-785865ad5557 goRootkey
487a368c-773f-4936-ae68-eabee0032d02 test
5583eef2-1a46-4107-b53e-5€95990786b9 itso rocks
81d9f66d-4098-4dba-9b68-52c4b01fea73 mynewstandardtkey
e893d3c8-976b-4e51-a3ab-7326aa86al9d itso really rocks
ee3c63f0-62db-4fb0-abb5-c808a75983ca goStandardkey
f0a0a495-ada0-480f-9¢c55-1f78ac7080b9 mynewrootkey

$ export ROOTKEYID=e893d3c8-976b-4e51-a3ab-7326aa86a19d

Example 2-70 uses the Python wrapping and unwrapping function to create a sample
application that encrypts and decrypts a message by using our selected root key.

Example 2-70 Wrapping and unwrapping by using a Key Protect root key Python snippet

import os
import keyprotect
from keyprotect import bxauth

kp = keyprotect.Client(
credentials= bxauth.TokenManager(api_key=os.getenv("API_KEY")),
#region="us-south",
service_instance_id=os.getenv("KP_INSTANCE ID"),
Set custom service endpoint
endpoint_url=os.getenv("KP_PRIVATE_ADDR"),

)

wrap/unwrap, payload should be a bytestring if python3

message = b'This is a really important message.'

wrapped = kp.wrap(key id=os.getenv("ROOTKEYID"), plaintext=message)
ciphertext = wrapped.get("ciphertext")

print(ciphertext)

120 Securing Your Critical Workloads with IBM Hyper Protect Services

unwrapped = kp.unwrap(key_id=os.getenv("ROOTKEYID"), ciphertext=ciphertext)
print (unwrapped)

wrap/unwrap with AAD

message = b'This is a really important message too with aad.'
wrapped = kp.wrap(key id=os.getenv("ROOTKEYID"), plaintext=message,
aad=["'python-keyprotect'])

ciphertext = wrapped.get("ciphertext")

print

print(ciphertext)

unwrapped = kp.unwrap(key_id=os.getenv("ROOTKEYID"), ciphertext=ciphertext,
aad=["'python-keyprotect'])
print (unwrapped)

Additional authentication data (AAD) is a string array where each element has a maximum
value of 255 chars, which adds additional protection. It is specific to the Galois Counter mode.
The same string must be used for encrypting and decrypting. It must not contain any sensitive
data. For more information, see Galois/Counter Mode.

Example 2-71 shows encrypting data by using a Key Protect root key.

Example 2-71 Encrypted data that uses a Key Protect root key

$ python sample_test.py
eyJjaXBoZXJ0ZXh0IjoiRFVTZFZmMnI2QTNDUDNRROTraE9TWFQ5Q2swMWU3czNXc05zM3Q0dn1h0StXVU
NJM3dMaFgvTUsxbFEObVBLNiIsImi12IjoicG1FNjBSU2E2UkQzTjEYyOTgvZTA3UTO9IiwidmVyc21vbil6
I1jQuMCAwIiwiaGFuZGx1IjoiZTg5M2QzYzgt0Tc2Yi00ZTUXLWEZYWItNzMyNmFhODZhMT1kIn0=
b'This is a really important message.'
eyJjaXxBoZXJ0ZXh0IjoieGJvUUVsNnJ4SEYwLOJIXxdGINWHZkakFQVm1wK3NoaXpYRUTKkNVRVMTAIRHVTQ2
05eGdwNENvcOVydmNkT20zTOZKZW10TkpQZUhqZWhvdGkvdFZnUFE9PSIsIm121joiZHIJKQTV4bTMObTk2
cm5ITkdRTDF1dz09IiwidmVyc21vbiI6IjQuMCAwliwiaGFuZGx11joiZTg5M2QzYzgt0Tc2Yi00ZTUXLW
EzYWItNzMyNmFhODZhMT1kInO=

b'This is a really important message too with aad.'

Wrapping examples by using the IBM Cloud CLI Key Protect plug-in

the ibmcloud kp wrap and ibmcloud kp unwrap commands can encrypt and decrypt some
data by using AES-CGM encryption and a Key Protect root key.

To harden our example in Example 2-68 on page 119, we encrypted the Key Protect standard
key value by using a Key Protect root key.

In Example 2-72, we set a message in the $creds bash variable. The variable is stored as a
Key Protect standard key, and we use the Key Protect root key to encrypt its payload. A
provisioned IBM Hyper Protect Crypto Services instance that is called hpcs-svc is used.

Example 2-72 Creating a Key Protect standard key to store wrapped data with a Key Protect root key

$ creds='{ "EXAMPLE_ID": "itso", "EXAMPLE_SECRET": "cipheredsecret!" }'

$ encoded=$(base64 -w 0 - <<< ${creds})

$ echo $encoded
eyAiRVhBTVBMRV9JRCI6ICIpdHNVIiwgIkVYQU1QTEVFUOVDUKVUIjogImNpcGhTcmVkc2VicmVOISIgfQ
O:

$ export KP_INSTANCE_ID=$(ibmcloud resource service-instance hpcs-svc --output
json | jq -r '.[].guid")

Chapter 2. IBM Cloud Hyper Protect Crypto Services 121

https://en.wikipedia.org/wiki/Galois/Counter_Mode

$ ibmcloud kp key create itso_rootkey -i $KP_INSTANCE_ID
Creating key: 'itso_rootkey', in instance:
'd300bb89-1807-4d6b-9927-3a1a2882e2b7" ...

0K

Key ID Key Name
17c8168a-5472-49f6-84f7-60f6bdc61lcde itso_rootkey

$ ROOT_KEY_ID=17c8168a-5472-49f6-84f7-60f6bdc61csde

$ ciphertext=$(ibmcloud kp key wrap $ROOT_KEY_ID -p $encoded -i $KP_INSTANCE_ID
--aad "itso author" -0 json | jq -r .ciphertext)

$ ibmcloud kp key create itso_creds --standard-key --key-material $ciphertext -i
$KP_INSTANCE_ID

Creating key: 'itso_creds', in instance: 'd300bb89-1807-4d6b-9927-3ala2882e2b7'...
0K

Key ID Key Name
1db657fe-e613-4b8e-b2db-868581660c4b itso_creds

AAD: The AAD is a string array where each element can be up to 255 chars. The same
string must be used for wrapping and unwrapping calls. Do not use sensitive data in the
AAD. Passing AAD to wrap and unwrap calls to provide another level of protection for your
encrypted Key Protect data payload.

If we check the payload of the Key Protect standard key, we see that data is encrypted by
using AES-CGM encryption, as shown in Example 2-73. The data cannot be extracted
without the Key Protect root key.

Example 2-73 Checking the payload of the wrapped Key Protect standard key payload

$ ibmcloud kp key show 1db657fe-e613-4b8e-b2db-868581660c4b -o json | jq -r
.payload
eyJjaXBoZXJ0ZXh0IjoibUtoQOdOdGRLU3JKaDZHW1p6eESwNzgrTyttQ1lIycVE4aORURHUWWGPRN2JuUn
pCUzM2Z3Trcjc0akFTcGZnVzk4NUd6QnJAVEPYUW5CODJUTGtTIMNCcIPSIsIm121joidzEwTWMOdzRQWkO5
ZGO1STBOUVJiUTO9IiwidmVyc2TvbiI6IjQuMCAwliwiaGFuZGx1I1joiMTdjODE20GELNTQ3Mi000WY2LT
g0ZjctNjBmNmJkYzYxYzR1In0=

$ ibmcloud kp key show Idb657fe-e613-4b8e-b2db-868581660c4b -o json | jq -r
.payload | base64 -d
{"ciphertext":"mKhCGttdKSrJh6GZZzxNp78+0+mCR2qQ8kDnDu0XjQ7bnRzBS36gykr74jASpfgWa8s
GzBrxTJXQnB82nlLke2w==","iv":"w10Mc4w4PZM9dm5JPNQRbQ==","version":"4.0.0","handTe":
"17c8168a-5472-49f6-84f7-60f6bdcblcle"}

We retrieve the original data by unwrapping the payload of the Key Protect standard key
payload with the Key Protect root key, as shown in Example 2-74.
Example 2-74 Unwrapping example

$ encrypted _data_b64=$(ibmcloud kp key show 1db657fe-e613-4b8e-b2db-868581660c4b
-0 json | jq -r .payload)

$ ibmcloud kp key unwrap $ROOT_KEY ID $encrypted data b64 -i $KP_INSTANCE_ID --aad
"itso author" -o json | jq -r .plaintext | base64 -d
{ "EXAMPLE_ID": "itso", "EXAMPLE_SECRET": "cipheredsecret!" }

122 Securing Your Critical Workloads with IBM Hyper Protect Services

Key Protect root key rotation: When you unwrap wrapped data by using a rotated root
key, the service returns a new ciphertext in the response entity-body. Each ciphertext
remains available for unwrap actions. If you unwrap some data with a previous ciphertext,
the service also returns the latest ciphertext and latest key version in the response. Store
and use the new ciphertext value for future envelope encryption operations so that your
data is protected by the latest root key.

For more information, see 2.4.6, “Key Protect root key rotation” on page 129.

JavaScript end-to-end example by using Node.js

First, the Key Protect Node.js SDK must be installed by running the npm install command,
as described in 2.4.1, “Key Protect concepts and programming language software developer
kits” on page 105.

The connection to the IBM Hyper Protect Crypto Services instance for our example is defined

with three Linux environment variables:

» For API_KEY, see “Generating an API key for your service ID” on page 107.

» For KP_INSTANCE_ID and KP_PRIVATE_ADDR, see 2.4.3, “Retrieving connection information
to your IBM Hyper Protect Crypto Services instance” on page 108.

Example 2-75 creates a Key Protect root key. A text is wrapped by using this key and storing
it as a Key Protect standard key payload.

KeyProtectClient represents the session and is created by the KeyProtectV2 constructor.
The createKey () function is used to create the key.

The await keyword allows waiting for a synchronous response to the call so that we can read
the key identifier.

Example 2-75 The end-to-end.js program: Creating a Key Protect root key

const KeyProtectV2 = require('@ibm-cloud/ibm-key-protect/ibm-key-protect-api/v2');
const { IamAuthenticator } = require('@ibm-cloud/ibm-key-protect/auth');

// env vars, using external configuration in this example
const envConfigs = {
apiKey: process.env.API KEY,
serviceUrl: process.env.KP_PRIVATE ADDR,
bTuemixInstance: process.env.KP_INSTANCE ID,
}s

async function keyProtectSdkExample() {
let response;

// Create an IAM authenticator.

const authenticator = new IamAuthenticator({
apikey: envConfigs.apiKey,

s

// Construct the service client.

const keyProtectClient = new KeyProtectV2({
authenticator,
serviceUrl: envConfigs.servicelUrl,

1)

Chapter 2. IBM Cloud Hyper Protect Crypto Services 123

// Create a root key as not extractable
const bodyroot = {
metadata: {
collectionType: 'application/vnd.ibm.kms.key+json',
collectionTotal: 1,
bs
resources: [
{
type: ‘'application/vnd.ibm.kms.key+json',
name: 'nodejsrootKey',
extractable: false,
}s
1,
bs

const createParams = Object.assign({}, envConfigs);
createParams.body = bodyroot;

response = await keyProtectClient.createKey(createParams);
const keyId = response.result.resources[0].id;
console.log('Root key created, id is: ' + keyId+"\n");

Example 2-76 shows the following actions:

» The getKey() function retrieves the payload of the standard key.

» The wrapKey () function and its parameter wraps some data by using the Key Protect root
key that we created.

Example 2-76 The end-to-end.js program: Wrapping some data with a Key Protect root key

// Get the root key
const getKeyParams = Object.assign({}, envConfigs);
getKeyParams.id = keyld;
response = await keyProtectClient.getKey(getKeyParams);

// Wrap and unwrap key
const samplePlaintext = 'SGVsbG8gd29ybGQK'; // Hello World in base64 encoded
plaintext

console.log("Original text: ",samplePlaintext,"\n");

const wrapKeyParams = Object.assign({}, envConfigs);
wrapKeyParams.id = keyld;
wrapKeyParams. keyActionWrapBody = {

plaintext: samplePlaintext,
bs
response = await keyProtectClient.wrapKey(wrapKeyParams);
console.log("Ciphered Text:", response.result.ciphertext,"\n");

const ciphertextResult = response.result.ciphertext;

124 Securing Your Critical Workloads with IBM Hyper Protect Services

In Example 2-77, we show how to create a Key Protect standard key by using this wrapped
data.

Example 2-77 The end-to-end.js package: Creating a Key Protect standard key with wrapped text as
the payload

/1

const bodystandard = {
metadata: {
collectionType: 'application/vnd.ibm.kms.key+json',
collectionTotal: 1,
}!
resources: [
{
type: ‘'application/vnd.ibm.kms.key+json',
name: 'nodejsKey',
extractable: true,
payload: ciphertextResult
}’
]!
}s

const createParams_std = Object.assign({}, envConfigs);
createParams_std.body = bodystandard;

response = await keyProtectClient.createKey(createParams std);
const keyId std = response.result.resources[0].id;
console.log('Standard Key created, id is: ' + keyId std+"\n");

In Example 2-78, we retrieve the Key Protect standard key data and we unwrap it by using a
Key Protect root key and the unwrapKey () function.

Example 2-78 The end-to-end.js program: Retrieving a payload from a Key Protect standard key and
unwrapping it by using a Key Protect root key

// Get the standard key

}

const getKeyParams_std = Object.assign({}, envConfigs);
getKeyParams_std.id = keyId std;

response = await keyProtectClient.getKey(getKeyParams_ std);
retrieved ciphertext=response.result.resources[0].payload;

//
const unwrapKeyParams = Object.assign({}, envConfigs);
unwrapKeyParams.id = keyld;
unwrapKeyParams.keyActionUnwrapBody = {
ciphertext: retrieved ciphertext, // from wrap key response
bs
response = await keyProtectClient.unwrapKey(unwrapKeyParams);
console.log("Unwrapped plain text: ",response.result.plaintext,"\n");

keyProtectSdkExample();

Chapter 2. IBM Cloud Hyper Protect Crypto Services

125

We run this program as shown in Example 2-79.

Example 2-79 Running the nodejs end-to-end program

$ npm install @ibm-cloud/ibm-key-protect
$ node end-to-end.js
Root key created, id is: dc3edb4c-2339-48fb-86e7-bccf3b320fhd

Original text: SGVsbG8gd29ybGQK

Ciphered Text:
eyJjaXBoZXJ0ZXh0IjoiSE1IHRVpVNHhGb1Y2aGXxZZjBqQWE3dz09TiwiaXYi0iI3ZGdLQ1pgNU1DZWptME
JRL2RZNGRRPT01iLCJ2ZXJzaW9uIjoiNCAwLjAiLCIoYW5kbGUi0iJkYzN1ZGIOYyOyMzM5LTQ4ZmIt0ODZ1
Ny1iY2NmM21zMjBmYmQifQ==

Standard Key created, id is: bf6f3d6b-flcd-49b2-9111-63323ad7240f

Unwrapped plain text: SGVsbG8gd29ybGQK

$ echo SGVsbG8gd29ybGQK | base64 -d
Hello world

Go end-to-end example

To do this example, ensure that you installed and configured the Go programming language
software on your Linux environment and installed the Key Protect module by using the go get
command, as described in 2.4.1, “Key Protect concepts and programming language software
developer kits” on page 105.

To connect to the IBM Hyper Protect Crypto Services instance, our sample program uses

three Linux environment variables

» API_KEY, which is described in “Generating an API key for your service ID” on page 107.

» KP_INSTANCE_ID and KP_PRIVATE_ADDR, which is described in 2.4.3, “Retrieving connection
information to your IBM Hyper Protect Crypto Services instance” on page 108.

The example in Example 2-69 on page 120 retrieves the previously created Key Protect root
key. In Example 2-80, we set the ROOTKEYID environment variable to the value of this key.

Example 2-80 Retrieving a Key Protect root key

$ ibmcloud kp keys

Retrieving keys...

0K

Key ID Key Name
3abh9c48e-hdc2-4350-8a0f-785865ad5557 goRootkey
487a368c-773f-4936-ae68-eabee0032d02 test
5583eef2-1a46-4107-b53e-5€95990786b9 itso rocks
81d9f66d-4098-4dba-9h68-52c4b01fea73 mynewstandardtkey
€893d3c8-976b-4e51-a3ab-7326aa86a19d itso really rocks
ee3c63f0-62db-4fb0-abb5-c808a75983ca goStandardkey
f0a0a495-ada0-480f-9c55-1f78ac7080b9 mynewrootkey

$ export ROOTKEYID=3ab9c48e-bdc2-4350-8a0f-785865ad5557

126 Securing Your Critical Workloads with IBM Hyper Protect Services

The Key Protect SDK allows you to create a connection object to work with your IBM Hyper
Protect Crypto Services instance. In our example, that instance is named client, and it is
shown in Example 2-81.

The following functions are provided by this object to work with the service:

» The Wrap() function encrypts some data by using a Key Protect root key. The function
takes as a parameter a base64-encoded payload and AAD string arrays that are used to
better secure the wrapping. The same AAD must used for both wrapping and unwrapping
calls.

» The CreateImportedStandardKey() function creates an imported key with a specific name
by using a specified workload. It returns the generate key ID.

» The GetKey() function retrieves the Key Protect key details. Because a Key Protect
standard key is extractable, its value is stored in the payload attribute.

» The Unwrap() function decrypts some data by using Key Protect root key symmetric
encryption. The same AAD string array that was used for the Wrap() function must be
used. The decrypted result is returned.

Note: Unwrap() does not work if your Key Protect root key will be rotated. Instead, use
UnwrapV2 (), as described in 2.4.6, “Key Protect root key rotation” on page 129.

Example 2-81 The wrapkeyprotect.go source code

package main

import (
"fmt"
IIOSII
"context"
"github.com/IBM/keyprotect-go-client"
b64 "encoding/base64"

)

func main() {
instanceld, ok := os.LookupEnv("KP_INSTANCE_ID")
if lok {
panic("Must set KP_INSTANCE ID")
}

apiKey, ok := os.LookupEnv("API_KEY")
if lok {

panic("Must set API_KEY")
}

url , ok := os.LookupEnv("KP_PRIVATE_ADDR")
if tok {

panic("Must set KP_PRIVATE ADDR")
}
rootkeyid, ok := os.LookupEnv("ROOTKEYID")
if tok {

panic("Must set ROOTKEYID")
}

cc := kp.ClientConfig{
BaseURL: url,

Chapter 2. IBM Cloud Hyper Protect Crypto Services 127

128

APIKey: apikey,

InstancelD: instanceld,
}
client ,_ := kp.New(cc, kp.DefaultTransport())
ctx := context.Background()

creds := [Jbyte(™{ "EXAMPLE_ID": "itso", "EXAMPLE_SECRET":

"cipheredsecret!" }7)

myAAD := []string{"First aad string", "second aad string", "third aad
string"}

wrappedCreds, err := client.Wrap(ctx,
rootkeyid, [Ibyte(b64.StdEncoding.EncodeToString(creds)), &myAAD)

if err 1= nil {

panic(err)
}
printIn("Our wrapped b64 data: "+string(wrappedCreds)+"\n")

crk, err := client.CreateImportedStandardKey(ctx, "goStandardkey",
nil,string(wrappedCreds))
if err 1= nil {
panic(err)
}
fmt.PrintIn(crk.ID,crk.Name)

k,err := client.GetKey(ctx,crk.ID)
if err 1= nil {
panic(err)
}
printin("Key Protect standard key payload: " +k.Payload+"\n")

unwrappedPayload, err := client.Unwrap(ctx, rootkeyid, []byte(k.Payload),

&myAAD)
if err 1= nil {
panic(err)
}
printIn("Unwrapped payload: "+string(unwrappedPayload))
}

The data from the call, { "EXAMPLE_ID": "itso", "EXAMPLE_SECRET": "cipheredsecret!" },
is stored encrypted in a Key Protect standard key. The application retrieves its value by using
the Unwrap() function. All data is encoded with base64.

Example 2-82 shows how to recompile and run the program in a Linux terminal with Go
installed on the system. You must edit wrapkeyprotect.go in your $GOPATH directory.

Example 2-82 Compiling and running our wrapkeyprotect.go program

$ go build wrapkeyprotect.go

$./wrapkeyprotect

Our wrapped b64 data:
eyJjaXBoZXJ0ZXh0IjoiVFpGLOTjcVYIUFFIQXh5bS91RWduMHQOU1dSYZzEQY2VZzSG16bDBEaFdwMXZwM2
VmM2RRc3dPYTR4eU5HN1hpUWcrTU5CVXdYMFEWUHMOTVdWQjFrMGcIPSIsImI2IjoiZ3RoUGIBLGRKVIVU
bmwlanROTTY5Zz09IiwidmVyc21vbiI6IjQuMCAwliwiaGFuZGx11joiZTg5M2QzYzgt0Tc2Yi00ZTUXLW
EzYWItNzMyNmFhODZhMT1kInO=

Securing Your Critical Workloads with IBM Hyper Protect Services

811a055b-7dc2-4cd6-bf53-d7afab4a88bd goStandardkey

Key Protect standard key payload:
eyJjaXBoZXJ0ZXh0IjoiVFpGLOTjcVYIUFFIQXh5bS91RWduMHQOU1dSYZzEQY2VZzSG16bDBEaFdwMXZwM2
VmM2RRc3dPYTR4eU5HN1hpUWcrTU5CVXdYMFEWUHMOTVdWQjFrMGcIPSIsImI2IjoiZ3RoUGIBLGRKkVIVU
bmwlanROTTY5Zz09IiwidmVyc21vbil6IjQuMCAwliwiaGFuZGx11joiZTg5M2QzYzgt0Tc2Yi00ZTUXLW
EzYWItNzMyNmFhODZhMT1kInO=

Unwrapped payload:
eyAiRVhBTVBMRV9JRCI6ICIpdHNVIiwgIkVYQU1QTEVFUOVDUKVUIjogImNpcGhTcmVkc2VicmVOISIgfQ

$ echo
eyAiRVhBTVBMRV9JRCI6ICIpdHNVIiwgIkVYQU1QTEVFUOVDUKVUIjogImNpcGhlcmVkc2VjcmVOISIgfQ
== | base64 -d

{ "EXAMPLE_ID": "itso", "EXAMPLE_SECRET": "cipheredsecret!" }

2.4.6 Key Protect root key rotation

A best practice is to rotate your Key Protect root keys (that is, to create a new version of the
key) on a regular basis.

You can disable a compromised Key Protect root key by using the IBM Cloud console or the
ibmcloud kp key disable <compromised keyid> -i <your_hpcs_service_id>1BM Cloud Key
Protect CLI command.

In Example 2-83, we store in a Key Protect standard key some data that is encrypted with a
Key Protect root key. Then, this root key is rotated. We want to check that the previously
encrypted data can still be decrypted.

Example 2-83 Storing encrypted data in a Key Protect standard key

$ creds="{ "EXAMPLE_ID": "itso", "EXAMPLE_SECRET": "cipheredsecret!" }'

$ encoded=$(base64 -w 0 - <<< ${creds})

$ echo $encoded
eyAiRVhBTVBMRVIJRCI6ICIpdHNVIiwgIkVYQULIQTEVFUOVDUKVUIjogImNpcGhlcmVkc2VjcmVOISIgfQ
0:

// retrieve one of your Key Protect root key

$ ROOT_KEY_ID=17c8168a-5472-49f6-84f7-60f6bdc61cde

$ ciphertext=$(ibmcloud kp key wrap $ROOT_KEY ID -p $encoded -i $KP_INSTANCE_ID
--aad "itso author" -o json | jq -r .ciphertext)

$ ibmcloud kp key create itso_creds --standard-key --key-material $ciphertext -i
$KP_INSTANCE_ID

Creating key: 'itso_creds', in instance: 'd300bb89-1807-4d6b-9927-3ala2882e2b7"'...
0K

Key ID Key Name
5175b70d-c9e3-4dbd-aafb-d3226e331b7¢c itso_creds

$ KEYID=5175b70d-c9e3-4d5d-aafb-d3226e331b7c

$ encrypted_data_b64=$(ibmcloud kp key show 1db657fe-e613-4b8e-b2db-868581660c4b
-0 json | jq -r .payload)

$ ibmcloud kp key unwrap $ROOT_KEY_ID $encrypted_data_b64 -i $KP_INSTANCE_ID --aad

"itso author" -o json | jq -r .plaintext | base64 -d
{ "EXAMPLE_ID": "itso", "EXAMPLE_SECRET": "cipheredsecret!" }

Chapter 2. IBM Cloud Hyper Protect Crypto Services 129

130

$ ibmcloud kp key unwrap $ROOT_KEY_ID $encrypted_data_b64 -i $KP_INSTANCE_ID
--aad "itso author" -0 json

{

"plaintext":
"eyAiRVhBTVBMRVIJRCI6ICIpdHNVIiwgIkVYQUIQTEVFUOVDUkVUIjogImNpcGhlcmVkc2VjcmVOISIgf
Qo=",

}

"rewrappedPlaintext":

Rotate the Key Protect root key by using the IBM Cloud Key Protect CLI in a Linux terminal to
run the ibmcloud kp key rotate command, as shown in Example 2-84.

We see that the unwrap command that was applied to the original encrypted data returns the

following information:

» The decrypted data that was wrapped by the AES-GCM key before the rotation.

» A new encrypted payload that represents the encrypted payload that was wrapped by the
new rotated AES-GCM key.

Example 2-84 Key Protect root key rotation by using the IBM Cloud CLI Key Protect plug-in

$ ibmcloud kp key rotate $ROOT_KEY ID
Rotating root key...
0K

$ ibmcloud kp key unwrap $ROOT_KEY ID $encrypted data_b64 -i $KP_INSTANCE_ID
--aad "itso author" -o json

{

"plaintext":
"eyAiRVhBTVBMRVIJRCI6GICIpdHNVIiwgIkVYQUIQTEVFUOVDUkVUIjogImNpcGhlcmVkc2VjcmVOISIgf
QO= ")

"rewrappedPlaintext":
"eyJdjaXBoZXJOZXh0Ijoia3JwRjglSTIyTXFZOHN6Q3pNUM1TZnMOcDQrL2J4TGZ5S2NGNzJvTZzM5YNnV1S
FR1IRVNXSDVOdHBYdTV6VkQxS1JDVETUNDhOMj1XL1IM3Rmo4c09kRncIPSIsIm12IjoiWmEyYkk5WFVtdjM
XxcFFaUUNnbEJCUTO9TiwidmVyc21vbiI6IjQuMCAwIiwiaGFuZGx11joiN2M20T110TALZTVi0S00YmIyL
TgzYjktYThhODBhZGU1ZjR1In0O="

}

Using this rewrappedPlaintext payload for the same unwrap command returns only the
decrypted data as it was before the key rotation.

To take advantage of the newly rotated key, you must update your previously encrypted data
with the new encrypted data, as shown in Example 2-88 on page 133 when using the IBM
Cloud CLI Key Protect plug-in.

Example 2-85 shows unwrapping the data that was encrypted with the rotated key.

Example 2-85 Unwrapping the data that was encrypted with the rotated key

$new_encrypted_data_b64=eyJjaXBoZXJ0ZXh01joiK25q0TBCUUZIZOFYZUpkdDVqallLcGTUSWlab2
TTNm5NN1ToUmZLUTRCAWF jSWxrWUppY1AxSDgrVk1BTHTDbXNgMWRKQUTQRkdVRTdjUmI3Q3VDN2c9IPSIs
Im121j0iQ0tCWVFhWWkzSHVSREVabDdaY21aQT09IiwidmVyc21vbil6IjQuMCAwliwiaGFuZGx1IjoiN2
M20T110TAtZTVi0S00YmIyLTgzYjktYThhODBhZGU1ZjR11In0=

$ ibmcloud kp key unwrap $ROOT_KEY_ID $new_encrypted_data_b64 -i $KP_INSTANCE_ID
--aad "itso author" -o json

{

Securing Your Critical Workloads with IBM Hyper Protect Services

"plaintext":
"eyAiRVhBTVBMRVIJRCI6ICIpdHNVIiwgIkVYQUIQTEVFUOVDUkVUIjogImNpcGhlcmVkc2VjcmVOISIgf

Qo=",

}
$ echo $new_encrypted_data_b64| base64 -d

{"ciphertext":"LzfKanscd1gFAbR+P/8Y9IBYyufkNQChWqc103SZ1sUUY8ISvXu9IN7rp2Q7PZXMMi Fv
ksvx8RhoPpF5d6JbjSg==","1iv":"8MXD6zvu77iLD/TDYbalfw==","version":"4.0.0","handle":
"7¢699e90-e5b9-4bb2-83b9-a8a80ade5f4e"}

"rewrappedPlaintext":

You can achieve the same results with both the Node.js and Go SDKs.

As prerequisites, ensure that the following tasks are done:

» You installed the Key Protect module by using the go get command, as described in
2.4.1, “Key Protect concepts and programming language software developer kits” on
page 105.

» You defined the following three environment variables:

— API_KEY, as described in “Generating an API key for your service ID” on page 107.
— KP_INSTANCE_ID and KP_PRIVATE_ADDR, as described in 2.4.3, “Retrieving connection
information to your IBM Hyper Protect Crypto Services instance” on page 108.

In Example 2-86, we modified our previous Go example (Example 2-81 on page 127) to use
the UnwrapV2 () function instead of Unwrap(). UnwrapV2() supports Key Protect root key
rotation, and a second argument is returned with the data encrypted with the new rotated key.

Example 2-86 The unwrapkey.go program: Unwrapping with a rotated key by using Go

package main

import (
IIOSII
"context"
"github.com/IBM/keyprotect-go-client"
)

func main() {
instanceld, ok := os.LookupEnv("KP_INSTANCE_ID")
if lok {
panic("Must set KP_INSTANCE_ID")
}
apikKey, ok := os.LookupEnv("API _KEY")
if lok {
panic("Must set API_KEY")
}
url , ok := os.LookupEnv("KP_PRIVATE_ADDR")
if lok {
panic("Must set KP_PRIVATE_ADDR")
}
rootkeyid, ok := os.LookupEnv("ROOTKEYID")
if lok {
panic("Must set ROOTKEYID")
}
keyid, ok := os.LookupEnv("KEYID")
if lok {
panic("Must set KEYID")

Chapter 2. IBM Cloud Hyper Protect Crypto Services 131

}
cc := kp.ClientConfig{
BaseURL: url,
APIKey: apikey,
InstancelD: instanceld,
}
client ,_ := kp.New(cc, kp.DefaultTransport())
ctx := context.Background()

k,err := client.GetKey(ctx,keyid)
if err 1= nil {
panic(err)
}
myAAD := []string{"itso author"}
unwrappedPayload, unwrappedPayload2, err := client.UnwrapV2(ctx,
rootkeyid, []byte(k.Payload), &myAAD)
if err 1= nil {
panic(err)
}
printIn("Unwrapped payload with previous key : "+string(unwrappedPayload))
printin("New ciphered payload with new key
"+string(unwrappedPayload2))
}

As shown in Example 2-87, we recompiled the program that is shown in Example 2-86 on
page 131. In this example, we retrieve a Key Protect root key the same way as we did in
Example 2-69 on page 120. We set the ROOTKEYID environment variable to the value of the
Key Protect root key that we want to rotate to. Then, we specify a Key Protect standard key ID
by using the KEYID environment variable.

Run this example to achieve identical behavior to using the IBM Cloud CLI: You decipher data
by using the old AES-GCM key and receive a new payload that is encrypted with the new
rotated AES-GCM key.

Example 2-87 Unwrapping the rotated key in Go

$ go build unwrapkey.go

$ export ROOTKEYID=$ROOT_KEY_ ID

$ export KEYID=5175b70d-c9e3-4d5d-aafb-d3226e331b7c

$./unwrapkey

Unwrapped payload with previous key :
eyAiRVhBTVBMRV9JRCI6ICIpdHNvIiwgIkVYQUIQTEVFUOVDUKVUIjogImNpcGhTcmVkc2VicmVOISIgfQo=

New ciphered payload with new key
eyJjaXBoZXJ0ZXh0IjoiTHpmS2Fuc2NkbGdGQWJISK1AvOFk5SUJZeXVma05RQ2hXcWNsT2pTWmxzVVVZOETTdnh10U43cnAy
UTdQWThNTW1Gdmtzdng4UmhvUHBGNWQ2SmJqU2¢c9PSIsImI121joiOE1YRDZ6dNU3N2TMRCIURF11YWxmdz09IiwidmVyc21v
biI6IjQuMCAwIiwiaGFuZGx1IjoiN2M20T110TAtZTVi0S00YmIyLTgzYjktYThhODBhZGU1ZjR1In0=

$ echo
eyJjaXBoZXJ0ZXhOIjoiTHpmS2Fuc2NkbGdGQWJISK1AvOFk5SUJZeXVma05RQ2hXcWNsT2pTWmxzVVVZOET Tdnh10U43cnAy
UTdQW1hNTW1Gdmtzdng4UmhvUHBGNWQ2SmJqU2c9PSIsIm12IjoiOELYRDZ6dAnU3N2TMRCIURF1iYWxmdz09IiwidmVyc21v
biI6IjQuMCAwIiwiaGFuZGx1IjoiN2M20T110TAtZTVi0S00YmIyLTgzYjktYThhODBhZGU1ZjR1In0= | base64 -d
{"ciphertext":"LzfKanscd1gFAbR+P/8Y9IBYyufkNQChWqc10jSZ1sUUYBISvXu9IN7 rp2Q7 PZXMMiFvksvx8RhoPpF5d6
JbjSg==","iv":"8MXD6zvu77iLD/TDYbalfw==","version":"4.0.0","handle":"7c699e90-e5b9-4bb2-83b9-a8a
80ade5f4e"}

132 Securing Your Critical Workloads with IBM Hyper Protect Services

Python support: Redstone is a Python library for interacting with IBM Cloud services, and
its module Unwrap function returns only the plain text attribute of the response. You must
modify this Unwrap() function to support key rotation to return both plaintext and
rewrappedPlaintext responses.

In Example 2-88, we delete the original key and create a new one by using encrypted data
that uses the new rotated key. The unwrapping command returns only one answer.

Example 2-88 Re-create a new Key Protect standard key by using the newly wrapped payload

$ ibmcloud kp key delete 5175b70d-c9e3-4d5d-aafb-d3226e331b7c
Deleting key: '5175b70d-c9e3-4d5d-aafb-d3226e331b7c', from instance:
'd300bb89-1807-4d6b-9927-3ala2882e2b7"'. ..

0K

Deleted Key

5175b70d-c9e3-4d5d-aafb-d3226e331b7c

$ ciphertext=$(ibmcloud kp key wrap $ROOT_KEY ID -p $encoded -i $KP_INSTANCE_ID
--aad "itso author" -0 json | jq -r .ciphertext)

$ ibmcloud kp key create itso_creds --standard-key --key-material $ciphertext -i
$KP_INSTANCE_ID

Creating key: 'itso creds', in instance: 'd300bb89-1807-4d6b-9927-3ala2882e2b7'...
0K

Key ID Key Name
aab7ff12-096d-4bc8-8922-bb4ae5f1068c itso_creds

$ encrypted_data_b64=$(ibmcloud kp key show aab7ff12-096d-4bc8-8922-bb4ae5f1068c
-0 json | jq -r .payload)

$ ibmcloud kp key unwrap $ROOT_KEY_ID $encrypted_data_b64 -i $KP_INSTANCE_ID --aad
"itso author" -0 json

{

"plaintext":
"eyAiRVhBTVBMRVIJRCI6GICIpdHNVIiwgIkVYQUIQTEVFUOVDUkVUIjogImNpcGhlcmVkc2VjcmVOISIgf
Qo=",

"rewrappedPlaintext": ""

}

2.4.7 Bring Your Own Key to the cloud: importing a Key Protect root key

IBM Hyper Protect Crypto Services creates keys that are rooted in HSMs that are specific to
your instance, but you might need to generate key material from your internal solution that
imports the keys into your Hyper Protect Crypto Services instance.

Obviously, you want assurance that the key material is protected while it is in flight. This task
is achieved by using an import token.

In our example, we use the openss1 tool to create a 256-bit symmetric encryption key.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 133

134

To import the key material into the Hyper Protect Crypto Services, two options are available:

» Securely transfer the key by using the TLS 1.2 protocol. This method is the default one
when importing the key by using the IBM Cloud console menu.

» Use an import token to mitigate risks against man-in-the-middle attacks. In this method,
you must:

— Use the RSAES_OAEP_SHA_1 RSA encryption scheme.
— Securely generate a nonce (an arbitrary number that can be used only once).
To use the second method, which uses the ibmcloud key protect command, complete the
following steps:
1. Create an import token for your Hyper Protect Crypto Services instance, as specified in
the KP_INSTANCE_ID in Example 2-89.

Example 2-89 Creating an import token by using IBM Cloud CLI

$ ibmcloud kp import-token create --instance-id $KP_INSTANCE_ID
--max-retrievals=1 --expiration=1200

0K

Created 2021-05-10 08:56:25 +0000 UTC
Expires 2021-05-10 09:16:25 +0000 UTC
Max Retrievals 1

Remaining Retrievals 1

$ ibmcloud kp import-token show
Retrieving import token details...
0K

Nonce 505LMK84KnRpakCO

PayTload
LSOtLS1CRUAJTiBQVUJIMSUMgSOVZLSOtLSOKTUTJQO1EQU5CZ2txaGtpRz13MEJBUUVGQUFPQOFNMEF
NSU1DQOFLQOFnRUF5aDF5eXBNRkk2UUNDRG1tMGtUcApUQkkwVWhCSE9IOXRaVUXTY3QrZGRkSOpBem
430VM2R2xjMTRka2VPWWYvdU92NG1kOGhUSVImbE5jdOFPZm5QCmJUQkVvV0oxLOw4dzQ0aTFOYjRsV
2czT2ZGWWhyMVFJIKzdDbDQwR3hWbW1we TNQcXNXUDNIRFT1UHZvemdjZTMKKO1gYmsvY1dvT1THCGFm
RXdQbWo2Smo1VUZ1TFdLVE1RakU4dHdDOEJUdWNSMG5jNXFyYmdoTTRPbjJuZ2hxVwpFdOVxQ31VSU5
HNXI0QnolUTJYSFNmZWc5YUVaUXBEWDVtRHc3NWoxaDBZeWNVZGJIMQUIVeEo1bOhwcT1aNOIvCktnQm
ZyRCtSbhzhTamcrM25tWFRKSnBIcVFKQ2xjbUVmM2xXcX11K0g3bXBGOFZUUTZoZ3pWckNXQUgxUVFOb
EMKQS90Mi85UXhxSE5sUJZIRWIuQ29rYXT1aN3FtMDVFAVFSckxUV2FCcVFseGec30UhFc3k3TkhuK1Qo
K3BRbGdDUwo3emhXSDTHST1doSExBSnhHZ0Jqek5VRURrQnNOU3FSU256WmoxcUJVRUIwZzNXY1FtV3V
zUTRxSm0yak8zKy9pCmhDUjI5ZktOUDBUVmMZYyZnE3RVRDMFNORVJESOXZL2FBUXZWaFhOUXBMaDQzM2
grMVhNYU96V2k2L3d4MGhVenQKNmdsWGwwcUJ1dUMONUpiQUpiaE1IWWHFFZ3k3SjA2K1hYb1NUVEdhL
ytXcUd1MIM3V2pPWG1FSDM1SjdjZXhmNgo5Y0xmQzhjZDFyS0d1bVVsM1ZFdEMrQWw5S0Qva2NtK1M5
UDRaVOx1RH030X1iN290QTVUdThIdHFod3ZudE1CCk8ydVoxbONZdmYrZ31YV3RkNzIwWEUWQOFSRTO
KLSOtLS1FTkQQUFVCTETDIEtFWSOtLSOtCg==

2. The resulting import token payload is a base64-encoded public key. Extract the nonce
value and the public key value into some shell variables, as shown in Example 2-90.

Example 2-90 Retrieving the import token public key in a file and nonce in an environment variable
in a Linux terminal

$ NONCE=$(ibmcloud kp import-token show -o json | jq -r .nonce)
$ PUBKEYB64=$ (ibmcloud kp import-token show -o json | jq -r .payload)

Securing Your Critical Workloads with IBM Hyper Protect Services

3. Create a 256-bit encryption key by using the openss1 command and encode it in base64
encoding by using the base64 tool, as shown in Example 2-91.

Example 2-91 Generating the key on a Linux terminal

$ openssl rand 32 > PlainTextKey.bin
$ KEY_MATERIAL=$(base64 PlainTextKey.bin)

4. Prepare your response to the Hyper Protect Crypto Services by encrypting both the nonce
and the symmetric key. Run the commands that are shown in Example 2-92.

Example 2-92 Encrypting the nonce and the symmetric key in a Linux terminal

$ ibmcloud kp import-token nonce-encrypt --key "$KEY_MATERIAL" --nonce "$NONCE"
--cbc -0 json > EncryptedValues.json

$ ENCRYPTED_NONCE=$(jq -r .encryptedNonce EncryptedValues.json)

$ IV=$(jq -r .iv EncryptedValues.json)

$ ENCRYPTED_KEY=$ (ibmcloud kp import-token key-encrypt --key $KEY_MATERIAL
--pubkey $PUBKEYB64 --hash SHAL -o json | jq -r .encryptedKey)

5. The final step is running the command that is shown in Example 2-93.

Example 2-93 Creating the Key Protect root key by using the key material

$ ibmcloud kp key create new-imported-key --key-material $ENCRYPTED_ KEY
--encrypted-nonce $ENCRYPTED_NONCE --iv $IV -0 json

Alternatively, the following steps can be used in place of step 5:

1. Retrieve an access token for your API_KEY, as shown in Example 2-94. An access token is
a temporary credential that expires after 1 hour.

Example 2-94 Retrieving an access token by using your service APl key

$ curl -X POST "https://iam.cloud.ibm.com/identity/token" -H "Content-Type:
application/x-www-form-urlencoded" -H "Accept: application/json" -d
"grant_type=urn:ibm:params:oauth:grant-type:apikey&apikey=$API_KEY" >

token. json

$ ACCESS_TOKEN="Bearer $(jq -r .access_token token.json)"

2. Import the encrypted key into your IBM Hyper Protect Crypto Services instance, as shown
in Example 2-95. Specify your key name in the KEYNAME variable. You also can specify it in
the resources JSON definition.

Example 2-95 Importing a root key

$ KEYNAME="ITSO imported key"
$ curl -X POST $KP_PRIVATE_ADDR/api/v2/keys -H "Accept:

application/vnd.ibm.collection+json" -H "Authorization: $ACCESS_TOKEN" -H
"Content-Type: application/json" -H "Bluemix-Instance: $KP_INSTANCE_ID"
-d '{

"metadata”: {
"collectionType": "application/vnd.ibm.kms.key+json",
"collectionTotal": 1

}

"resources": [

{

Chapter 2. IBM Cloud Hyper Protect Crypto Services 135

"name": "'"$KEYNAME"'",
"type": "application/vnd.ibm.kms.key+json",
"payload": "'"$ENCRYPTED_KEY"'",
"extractable": false,
"encryptionAlgorithm": "RSAES_OAEP_SHA 1",
"encryptedNonce": "'"$ENCRYPTED_NONCE"'",
"iy"y "rUgIVTEYT
}
1
}l

{"metadata":{"collectionType":"application/vnd.ibm.kms.key+json","collectionTot
al":1},"resources": [{"id":"7efc97c8-e6le-442a-8bc3-11ef3c2b40ca", "type":"applic
ation/vnd.ibm.kms.key+json","name":"ITSO imported

key","state":1,"crn":"crn:vl:bluemix:public:hs-crypto:us-south:a/537544c2222297
f40ed689e8473e7849:d300bb89-1807-4d6b-9927-3a1a2882e2b7:key:7efc97c8-eble-442a-

8bc3-11ef3c2b40c4","extractable":false,"imported":true}]}

Verify that the key was as expected by using the command that is shown in Example 2-96.

Example 2-96 Checking your imported root key

$ ibmcloud kp keys

Retrieving keys...

0K

Key ID Key Name
7efc97c8-eb6le-442a-8bc3-11ef3c2b40c4 ITSO imported key

2.4.8 Integrating IBM Cloud services with IBM Hyper Protect Crypto Services

136

The following services are offered in the IBM Cloud and offer integration with IBM Hyper
Protect Crypto Services to provide extra protection:

»

Database service integrations
— IBM Hyper Protect Database as a Service (DBaaS) for PostgreSQL

https://cloud.ibm.com/docs/hyper-protect-dbaas-for-postgresql?topic=hyper-pr
otect-dbaas-for-postgresql-hpcs-byok

— IBM Hyper Protect DBaa$S for MongoDB

https://cloud.ibm.com/docs/hyper-protect-dbaas-for-mongodb?topic=hyper-prote
ct-dbaas-for-mongodb-hpcs-byok

— IBM Cloud Databases for DataStax
https://cloud.ibm.com/docs/cloud-databases?topic=cloud-databases-hpcs
— IBM Cloud Databases for Elasticsearch
https://cloud.ibm.com/docs/cloud-databases?topic=cloud-databases-hpcs
— IBM Cloud Databases for etcd
https://cloud.ibm.com/docs/cloud-databases?topic=cloud-databases-hpcs
— IBM Cloud Databases for Enterprise DB (EDB)
https://cloud.ibm.com/docs/cloud-databases?topic=cloud-databases-hpcs
— IBM Cloud Databases for MongoDB

https://cloud.ibm.com/docs/cloud-databases?topic=cloud-databases-hpcs

Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs/hyper-protect-dbaas-for-postgresql?topic=hyper-protect-dbaas-for-postgresql-hpcs-byok
https://cloud.ibm.com/docs/hyper-protect-dbaas-for-mongodb?topic=hyper-protect-dbaas-for-mongodb-hpcs-byok
https://cloud.ibm.com/docs/cloud-databases?topic=cloud-databases-hpcs
https://cloud.ibm.com/docs/cloud-databases?topic=cloud-databases-hpcs
https://cloud.ibm.com/docs/cloud-databases?topic=cloud-databases-hpcs
https://cloud.ibm.com/docs/cloud-databases?topic=cloud-databases-hpcs
https://cloud.ibm.com/docs/cloud-databases?topic=cloud-databases-hpcs

IBM Cloud Databases for PostgreSQL
https://cloud.ibm.com/docs/cloud-databases?topic=cloud-databases-hpcs

IBM Cloud Databases for Redis
https://cloud.ibm.com/docs/cloud-databases?topic=cloud-databases-hpcsitso-
IBM Cloud Messages for RabbitMQ

https://cloud.ibm.com/docs/messages-for-rabbitmq?topic=cloud-databases-hpcs

Storage service integrations:

IBM Cloud Object Storage

https://cloud.ibm.com/docs/cloud-object-storage?topic=cloud-object-storage-e
ncryption

IBM Cloud Block Storage for Virtual Private Cloud (VPC)

https://cloud.ibm.com/docs/vpc?topic=vpc-block-storage-vpc-encryption

Compute service integrations:

IBM Cloud Virtual Servers for VPC

Create an encrypted block storage volume when you create a virtual server instance by
using IBM Hyper Protect Crypto Services. Use your own root keys that you manage in
IBM Hyper Protect Crypto Services to protect the DEKs that encrypt your data at rest.

https://cloud.ibm.com/docs/vpc-on-classic-vsi?topic=vpc-on-classic-vsi-creat
ing-instances-byok

Key Management Interoperability Protocol (KMIP) for VMware on IBM Cloud

KMIP, maintained by OASIS, is a cryptographic standard that enables secure key
exchange for encryption and decryption without requiring direct access to the key.

KMIP for VMware works together with VMware native vSphere encryption and VSAN
encryption and supports IBM Cloud Key Protect or IBM Hyper Protect Crypto Services
customer-managed keys.

The tutorial is available online at the following site:
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-tutorial-kmip-vmware
HyTrust DataControl for IBM Cloud

https://cloud.ibm.com/docs/vmwaresolutions?topic=vmwaresolutions-htdc-hpcs-d
etail

Container service integration:

Red Hat OpenShift on IBM Cloud (See “Red Hat OpenShift’ on page 148.)

— IBM Cloud Kubernetes service (See “IBM Cloud Kubernetes” on page 138.)

Ingestion service integrations:

— IBM Cloud Monitoring. Use this service to gain operational visibility into the

performance and health of your IBM Hyper Protect Crypto Services instance.

https://cloud.ibm.com/docs/Monitoring-with-Sysdig?topic=Monitoring-with-Sysd
ig-mng-data

IBM Cloud Schematics

https://cloud.ibm.com/docs/schematics?topic=schematics-secure-data#pi-encryp
t

Chapter 2. IBM Cloud Hyper Protect Crypto Services 137

https://cloud.ibm.com/docs/vmwaresolutions?topic=vmwaresolutions-htdc-hpcs-detail
https://cloud.ibm.com/docs/schematics?topic=schematics-secure-data#pi-encrypt
https://cloud.ibm.com/docs/schematics?topic=schematics-secure-data#pi-encrypt
https://cloud.ibm.com/docs/Monitoring-with-Sysdig?topic=Monitoring-with-Sysdig-mng-data
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-tutorial-kmip-vmware
https://cloud.ibm.com/docs/cloud-databases?topic=cloud-databases-hpcs
https://cloud.ibm.com/docs/messages-for-rabbitmq?topic=cloud-databases-hpcs
https://cloud.ibm.com/docs/cloud-object-storage?topic=cloud-object-storage-encryption
https://cloud.ibm.com/docs/vpc?topic=vpc-block-storage-vpc-encryption
https://cloud.ibm.com/docs/vpc-on-classic-vsi?topic=vpc-on-classic-vsi-creating-instances-byok
https://cloud.ibm.com/docs/cloud-databases?topic=cloud-databases-hpcsitso-

— Event Streams

https://cloud.ibm.com/docs/EventStreams?topic=EventStreams-managing_encrypti
on

» Security service integrations:
— AppID
https://cloud.ibm.com/docs/appid?topic=appid-mng-data
— Secrets Manager

https://cloud.ibm.com/docs/secrets-manager?topic=secrets-manager-mng-data#da
ta-encryption

— Certificate Manager

https://cloud.ibm.com/docs/certificate-manager?topic=certificate-manager-mng
-data

— Security and Compliance Center
https://cloud.ibm.com/docs/security-compliance?topic=security-compliance-mng
-data

Tip: This list is expected to grow over time as more services that are offered in IBM Cloud
add support for integration with IBM Hyper Protect Crypto Services. For more information
about the list of services, see Integrating IBM Cloud services with Hyper Protect Crypto
Services.

IBM Cloud Kubernetes

By configuring a KMS in your Kubernetes cluster, you can protect your Kubernetes secret by
using a KMS encryption provider. It uses an envelope encryption scheme to encrypt data in
etcd.

For more information on this topic, see Features and limitations of KMS providers.

As prerequisites, you must provision both an IBM Kubernetes Service and one Hyper Protect

Crypto Services with the HSM master key initialized:

» When using the IBM Cloud Console or the IBM Cloud CLI, provision a Kubernetes cluster.

» Provision and configure your IBM Hyper Protect Crypto Services as described in 2.2.2,
“Provisioning your instance by using the IBM Cloud CLI” on page 26.

The procedure can be achieved by using the IBM Cloud console or the IBM Cloud CLI.

138 Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs/EventStreams?topic=EventStreams-managing_encryption
https://cloud.ibm.com/docs/appid?topic=appid-mng-data
https://cloud.ibm.com/docs/secrets-manager?topic=secrets-manager-mng-data#data-encryption
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-integrate-services
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-integrate-services
https://cloud.ibm.com/docs/certificate-manager?topic=certificate-manager-mng-data
https://cloud.ibm.com/docs/security-compliance?topic=security-compliance-mng-data
https://cloud.ibm.com/docs/containers?topic=containers-encryption#keyprotect

Using the IBM Cloud console

In this section, we outline how to use the IBM Cloud console to provision a Kubernetes
cluster. To do so, complete the following steps:

1. Open your IBM Cloud console and select your Kubernetes service to reach its main page,
as shown in Figure 2-77.

Clusters |
° itso-ks © nHormal Addtags £ Help
(2l Mode status Add-on status Master status Ingress status
Warke 5 :
Worker nodes 3 O_I: 3 0 O_I: 0 Normal Warnlng @
Warker pools & Normal & MNormal (]
LI, Details] Details . Docs A Docs A
Details
Cluster I Wersion Infrastructure Zones
£2370508315801° @ 1.206_1538 Classic dall0, dal12, dall3
Created Resource group Image security enforcement
5/20/2021, 5:12 PM 75b006
Node hea[th Worker node details

3 total nodes

M Critical 0% [warning 0% [l Mormal 100% [l Pending 0%

Networking
Service endpoint URL
Public enabled U]
6] kD
Integrations
Logging Manitoring Key management sarvice
| Connect | @ Connect | @ | Enable
Al @

Figure 2-77 IBM Cloud console for the IBM Kubernetes Service

Chapter 2. IBM Cloud Hyper Protect Crypto Services 139

2. Click Enable under the Key Management Service heading under the Integrations section,
as shown in Figure 2-78.

Clusters

‘ |t50'k5 © Mormal Add tags & Help

Ouerview Node status Add-on status Master status Ingress status

Worker - .

Worker nodes 3 01; 3 O Df 0 Normal Wal’l"llﬂg @

Warker paols ® Normal @ Normal (-]

wOps N

VEREED. Details . Details J. Docs A Docs A
Details
Cluster [Wersion Infrastructure Zones

£2170a50034158015 & 1206 1538 Classic dal10, dal12, dal13

Created Resource group urity enforcement

5/20/2021, 5:12 PM 250006

Node health Worker node details

3 total nodes

M critical 0% [warning 0% [l Normal 100% Il Pending 0%

Networking

Service endpaint URL

Public enabled Capy link TJ
@ Copy link T

Integrations
Logging Manitaring Key management servicd

| Connect | @

Connect | @ Enable

Al

Figure 2-78 Enabling IBM Hyper Protect Crypto Services with Kubernetes

140 Securing Your Critical Workloads with IBM Hyper Protect Services

3. Select your Hyper Protect Crypto Services instance, as shown in Figure 2-79.

(&1}
1

IBM Cloud

Enable key management service

Encrypt your cluster’s secrets with a root key froma
key management service (KMS) provider, such as IBM Key
Protect for IBM Cloud.

Impoertant:

Key management service instance

hpcs-smartcardreader Py
hpcs-smartcardreader v
hpcs-itso

hpcs-svc

el Enable

Figure 2-79 Selecting your IBM Hyper Protect Crypto Services instance

Chapter 2. IBM Cloud Hyper Protect Crypto Services 141

4. Select a root key that is available for the selected service, as shown in Figure 2-80.

(&1}
1

IBM Cloud

Enable key management service

Encrypt your cluster’s secrets with a root key froma
key management service (KMS) provider, such as IBM Key
Protect for IBM Cloud.

Key management service instance

hpcs-svc £V
Root key

itso_rootkey ~

itso_rootkey v =

goRootkey

ITSO imported key

encrypted-root-key

itso really rocks

1 Enable

Figure 2-80 Selecting a key

142 Securing Your Critical Workloads with IBM Hyper Protect Services

The integration starts, and after about 20 minutes, you should see the Updating status for
your Master node, as shown in Figure 2-81.

Clusters |
° |tso—ks @ Normal Add tags £ Help Kubemmetes dashboard 3
Overview
Node status Add-on status fEster status Ingress status
Warke s . .
Worker nodes 3 O.I: 3 0 Of 0 Updaung] Wal’ﬂll"lg @
Warker pools & MNormal @ Normal O
Yo, Details .. Details .| Docs A
Details
Cluster [D Varsion Infrastructure Zonas
¢2§70q5d8341b861 n @ 1206 1538 Classic dall0, dall2, dall3
Creatsd Resaurce group Image security enforcement
5/20/2021, 5:12 PM z5b006
Node health Worker node details

3 total nodes

M critical 0% [Warning 0% [l Normal 100% [l Pending 0%

Networking

Service endpaint URL

Public enabled Copy link T
@ Copy link T

Integrations

Logging Monitaring Key management service
| Connect | © Connect | @ ‘ Enable
Add E

Figure 2-81 KMS integration is ongoing

Chapter 2. IBM Cloud Hyper Protect Crypto Services 143

Figure 2-82 shows the dashboard after this process completes. In the Integrations section,
you can see that the Key Management service has an Enabled status.

Clusters f

° itSO'kS © Normal Add tags £ Help Kubernetes dashboard

Overview

Mode status Add-on status Master status Ingdress status
Worker nodes ;
Worker nodes 3 Of 3 O Of 0 MNormal Warnlng @
Warker pools ® Normal ® Normal L]

vOps Nes

Litng i Details .} Details .| Docs A Docs A

Details

Cluster ID} Version Infrastructure Zones

c2j7og5d8341b861 T @ 1.20.6_1538 Classic dall0, dall2, dall3
Created Resource group Image security enforcement
5/20/2021, 5:12 PM z5b006
Worker node details
Node health

3 total nodes

M cCritical 0% [warning 0% [l Normal 100% [l Pending 0%

Networking

Service endpoint URL

@ Fublic enabled Copy link T3
@ Copy link T3

Integrations

Logging Manitoring Key management service
A

Figure 2-82 Kubernetes integration with an IBM Hyper Protect Crypto Services instance active

Using the IBM Cloud CLI

You can check your available services by using the commands ibmcloud ks 1s for the
Kubernetes cluster and ibmcloud ks kms instance 1s for the KMSs instances, as shown in
Example 2-97. You can also use the IBM Cloud console for the same purpose.

Example 2-97 Listing Kubernetes and HPCS services by using IBM Cloud CLI

$ ibmcloud ks cluster 1s

0K

Name 1D State Created Workers Location
Version Resource Group Name Provider

itso-ks c2cj56gd0cf37mbjdla0 normal 27 minutes ago 1 Dallas
1.20.6_1538 - classic

$ ibmcloud ks kms instance 1s
0K
Name ID Region Service

144 Securing Your Critical Workloads with IBM Hyper Protect Services

my-hpcs-instance 8207abd0-b8d8-4c52-a257-966edalbabdd us-south Hyper Protect
Crypto Services
hpcs-svc d300bb89-1807-4d6b-9927-3a1a2882e2b7 us-south Hyper Protect
Crypto Services

In our example, we used the hpcs-svc crypto service. You can retrieve the Key Protect root
key that is available in this service as shown in Example 2-98.
Example 2-98 Getting the Key Protect root key of the service

$ ibmcloud ks kms crk 1s --instance-id d300bb89-1807-4d6b-9927-3ala2882e2b7
0K

Name ID

itso_rootkey 17¢8168a-5472-49f6-84f7-60f6bdcblcle
goRootkey 3ab9c48e-hdc2-4350-8a0f-785865ad5557
itso really rocks e893d3c8-976b-4e51-a3ab-7326aa86al9d
goStandardkey ee3c63f0-62db-4fb0-a6b5-c808a75983ca
mynewrootkey f0a0a495-ada0-480f-9c55-1f78ac7080b9

Enable encryption for your Kubernetes service by using the ibmcloud ks kms enable
command with the following arguments:

» The Kubernetes cluster name.
» The Hyper Protect Crypto Services instance ID.
» The Key Protect root key ID.

In Example 2-99, we use the “itso really rocks” root key of the hpcs-svc service.

Example 2-99 Enabling the IBM Hyper Protect Crypto Services instance with Kubernetes

$ ibmcloud ks kms enable -c itso-ks --instance-id
d300bb89-1807-4d6b-9927-3ala2882e2b7 --crk e893d3c8-976b-4e51-a3ab-7326aa86al9d
0K

You can check that KMS encryption is enabled on your cluster by running the command that
is shown in Example 2-100.

Example 2-100 Checking that the IBM Hyper Protect Crypto Services instance is enabled on the
Kubernetes service

$ ibmcloud ks cluster get -c itso-ks
Retrieving cluster itso-ks...

0K

Name: itso-ks

ID: c2cj56gd0cf37mbjdlal
State: normal

Status: ATl Workers Normal
Created: 2021-05-10T14:04:04+0000
Location: dal10

Pod Subnet: 172.30.0.0/16

Service Subnet: 172.21.0.0/16

Master URL:
https://cl13.us-south.containers.cloud.ibm.com:30252
Public Service Endpoint URL:
https://cl13.us-south.containers.cloud.ibm.com:30252
Private Service Endpoint URL: -

Chapter 2. IBM Cloud Hyper Protect Crypto Services 145

Master Location: Dallas

Master Status: VPN server configuration update requested. (22
seconds ago)

Master State: deployed

Master Health: normal

Ingress Subdomain: -1

Ingress Secret: -1

Ingress Status: warning

Ingress Message: Registering Ingress subdomain
Workers: 1

Worker Zones: dall0

Version: 1.20.6_1538

Creator: -

Monitoring Dashboard: -

Resource Group ID: 12db27d1ef1744559d56513e23108c00
Resource Group Name: zsbh006

Key Protect: enabled

t Your Ingress subdomain and secret might not be ready yet. For more info by
cluster type, see 'https://ibm.biz/ingress-sub' for Kubernetes or
'https://ibm.biz/ingress-sub-ocp' for Red Hat OpenShift.

This process takes several minutes to activate. You should see the status that is shown in
Example 2-101 if the KMS activation has not completed

Example 2-101 The ibmcloud ks cluster get -c itso-ks not ready message

Master Status: Key management service enablement in progress. (4
minutes ago)
Master State: updating

Then, you can create Kubernetes secrets and transparently have them encrypted by the
AES-GCM Hyper Protect Crypto Services root key. Data is stored on the etcd component as
k8s secret

You can still retrieve the secrets by using the kubect1 (authenticated) command. The secrets
are unwrapped automatically by using the Key Protect root key while they are encrypted in
etcd.

Example 2-102 Creating your Kubernetes keys by using IBM Hyper Protect Crypto Services

$ ibmcloud ks cluster config --cluster c2cj56gd0cf37mbjd1a0
0K
The configuration for c2cj56gd0cf37mbjdla0 was downloaded successfully.

Added context for c2c¢j56gd0cf37mbjdl1a0 to the current kubeconfig file.

You can now run 'kubectl' commands against your cluster. For example, run 'kubectl
get nodes'.

If you are accessing the cluster for the first time, 'kubectl' commands might fail
for a few seconds while RBAC synchronizes.

$ kubectl create secret generic secretl -n default --from-literal=mykey=mydata
secret/secretl created

$ kubectl describe secret secretl -n default
Name: secretl

146 Securing Your Critical Workloads with IBM Hyper Protect Services

Namespace: default
Labels: <none>
Annotations: <none>

Type: Opaque

Data

mykey: 6 bytes

$ kubectl get secret secretl -n default -o json

{
"apiVersion": "v1",
"data": {
"mykey": "bX1kYXRh"
b,
"kind": "Secret",
"metadata": {
"creationTimestamp": "2021-05-20T15:20:52Z",
"managedFields": [
{
"apiVersion": "v1",
"fieldsType": "FieldsV1l",
"fieldsVl": {
"f:data": {
",
"fimykey": {}
b,
\ "f:type": {}
"manager": "kubectl-create",
"operation": "Update",
"time": "2021-05-20T15:20:527"
}
1,
"name": "secretl",
"namespace": "default",
"resourceVersion": "8097",
"uid": "fla8ff7b-deae-4c25-bb06-a258eff741ee"
b,
"type": "Opaque"
}
$ echo bXTkYXRh | base64 -d
mydata

Important: Do not delete the Key Protect root keys in your Hyper Protect Crypto Services
instance, even if you rotate to use a new key. If you delete a root key that a cluster uses,
the cluster becomes unusable, loses all its data, and cannot be recovered. When you
rotate a root key, you cannot reuse a previous root key for the same cluster.

If you disable a Key Protect root key, operations that rely on reading secrets fail. However,
unlike deleting a root key, you can re-enable a disabled key to make your cluster usable
again, as shown in Example 2-107 on page 150.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 147

Red Hat OpenShift

In this section, we describe the following topics:
» Enabling the OpenSSL GREP11 engine for the Red Hat OpenShift router
» Encrypting the Kubernetes master’s local disk and secrets

Enabling the OpenSSL GREP11 engine for the Red Hat OpenShift router

For more information about enabling the OpenSSL GREP11 engine for the Red Hat
OpenShift router, see Encrypting routes with keys stored in Hyper Protect Crypto Services.

A private key that is stored in an IBM Hyper Protect Crypto Services instance can be used by
an Red Hat OpenShift router in a TLS session establishment and in a Certificate Signing
Request (CSR) signing. To access IBM Hyper Protect Crypto Services, an Red Hat OpenShift
router must use the OpenSSL Engine GREP11 to make calls to the GREP11 API. However,
the default router in Red Hat OpenShift on IBM Cloud Version 4 clusters cannot be configured
to use an alternative OpenSSL engine integration.

Instead, you can deploy the custom IBM Cloud HPCS Router, which uses the GREP11
OpenSSL Engine to access private keys that are stored in an IBM Hyper Protect Crypto
Services instance to encrypt routes. The IBM Cloud HPCS Router is managed by an Red Hat
OpenShift operator, and provides the same route management system as the default router.

Encrypting the Kubernetes master local disk and secrets

The Kubernetes master is the main controlling unit of the cluster, and it manages the cluster’s
workload and directs communication across the system.

IBM Key Protect for IBM Cloud is a KMS provider for public cloud or on-premises
environments. It is supported by Red Hat OpenShift on IBM Cloud. For more information
about this topic, see Features and limitations of KMS providers.

To encrypt the Kubernetes master local disk and secrets, complete the following steps:

1. On your Red Hat OpenShift cluster, specify a Key Protect root key that was created in an
IBM Hyper Protect Crypto Services instance as a KMS provider. With this key, you can
encrypt your Kubernetes secret by using AES-GCM symmetric encryption on the Red Hat
OpenShift master node.

2. Provision an Red Hat OpenShift cluster in the IBM Cloud and IBM Hyper Protect Crypto
Services instance by using the IBM Cloud Console or by using the IBM Cloud CLI, as
described in 2.2.2, “Provisioning your instance by using the IBM Cloud CLI” on page 26.

3. Create a Key Protect root key, as described in 2.4.4, “Creating IBM Key Protect keys” on
page 110.

4. Select the resource group where your Hyper Protect Crypto Services and Red Hat
OpenShift cluster run by running the ibmcloud target -g <group> command.

5. Check your available Red Hat OpenShift cluster, as shown in Example 2-103.

Example 2-103 Listing your Red Hat OpenShift cluster

$ ibmcloud oc cluster 1s

0K

Name ID State Created Workers Location
Version Resource Group Name Provider

itso-ocp c2clhprdOgsn78ulm7rg normal 14 hours ago 1 Dallas
4.6.23_ 1540 _openshift zsb006 classic

148 Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs/openshift?topic=openshift-hpcs-router
https://cloud.ibm.com/docs/openshift?topic=openshift-encryption#keyprotect

6. Check your available Hyper Protect Crypto Services instance and choose a Key Protect

root key to encrypt your Red Hat OpenShift Kubernetes secrets (Example 2-104). Create
one if necessary.

Example 2-104 Listing your Hyper Protect Crypto Services instance and available Key Protect root keys

$ ibmcloud oc kms instance 1s

0K

Name
my-hpcs-instance
hpcs-svc

1D Region Service
8207abd0-b8d8-4c52-a257-966edalbabdd us-south Hyper Protect Crypto Services
d300bb89-1807-4d6b-9927-3a1a2882e2b7 us-south Hyper Protect Crypto Services

$ ibmcloud oc kms crk 1s --instance-id d300bb89-1807-4d6b-9927-3a1a2882e2b7

0K

Name

itso_rootkey
goRootkey

itso really rocks
goStandardkey
mynewrootkey

ID

17¢8168a-5472-49f6-84f7-60f6bdc61cde
3ab9c48e-bdc2-4350-8a0f-785865ad5557
€893d3c8-976b-4e51-a3ab-7326aa86a19d
ee3c63f0-62db-4fb0-abb5-c808a75983ca
f0a0a495-ada0-480f-9c55-1f78ac7080b9

To enable your Hyper Protect Crypto Services instance as a KMS provider for your Red
Hat OpenShift cluster and use a Key Protect root key for encryption of secrets, run the
command that is shown in Example 2-105.

Example 2-105 Enabling Hyper Protect Crypto Services as a KMS provider

$ ibmcloud oc kms enable -c c2clhprdOqsn78ulm7rg --instance-id
d300bb89-1807-4d6b-9927-3a1a2882e2b7 --crk e893d3c8-976b-4e51-a3ab-7326aa86al9d
1] 4

It takes several minutes to update the cluster. You can monitor the status of your cluster by
running the ibmcloud oc cluster get -c <cluster id>command.

You should see the following messages during the waiting time:

Master Status:
(11 minutes ago)
Master State:

Key management service enablement in progress.

updating

The change is complete when the results are like what is shown in Example 2-106.

Example 2-106 Checking that Key Protect is enabled on your Red Hat OpenShift cluster

$ ibmcloud oc cluster get -c c2clhprdOgsn78ulm7rg
Retrieving cluster c2clhprdOgsn78ulm/rg...

0K

Name: itso-ocp

ID: c2cThprd0gsn78ulm/rg
State: normal

Status: A11 Workers Normal
Created: 2021-05-10T16:01:43+0000
Location: dall2

Pod Subnet: 172.30.0.0/16

Service Subnet:

Master URL:

172.21.0.0/16

https://cll4-e.us-south.containers.cloud.ibm.com:31749

Public Service Endpoint URL:

https://cll4-e.us-south.containers.cloud.ibm.com:31749

Chapter 2. IBM Cloud Hyper Protect Crypto Services

149

Private Service Endpoint URL: -

Master Location: Dallas

Master Status: Ready (1 minute ago)
Master State: deployed

Master Health: normal

Ingress Subdomain:
itso-ocp-c89fed71325d648350833a28d6641984-0000.us-south.containers.appdomain.cloud

Ingress Secret: itso-ocp-c89fed71325d648350833a28d6641984-0000
Ingress Status: healthy

Ingress Message: A11 Ingress components are healthy
Workers: 1

Worker Zones: dall2

Version: 4.6.23_1540_openshift

Creator: -

Monitoring Dashboard: -

Resource Group ID: 12db27d1ef1744559d56513e23108c00
Resource Group Name: zsbh006

Key Protect: enabled

By using the IBM Cloud console or ibmcloud kp key disable/enable keyid command, you
can verify whether the KMS is active.

If you disable the key (Example 2-107), the Red Hat OpenShift cluster cannot retrieve
secrets.

Example 2-107 Disabling the KMS Key Protect key for testing

$ oc get secrets

NAME TYPE DATA AGE
all-icr-io kubernetes.io/dockerconfigjson 1 8d
builder-dockercfg-1c8mc kubernetes.io/dockercfg 1 8d
builder-token-7rjtd kubernetes.io/service-account-token 4 8d
builder-token-p8xrg kubernetes.io/service-account-token 4 8d
default-dockercfg-Tkgdk kubernetes.io/dockercfg 1 8d
default-token-5b5b5 kubernetes.io/service-account-token 4 8d
default-token-wdrx4 kubernetes.io/service-account-token 4 8d
deployer-dockercfg-t46fm kubernetes.io/dockercfg 1 8d
deployer-token-5méhq kubernetes.io/service-account-token 4 8d
deployer-token-zfzr9 kubernetes.io/service-account-token 4 8d

$ ibmcloud kp key disable e893d3c8-976b-4e51-a3ab-7326aa86a19d
Disabling key: 'e893d3c8-976b-4e51-a3ab-7326aa86al9d', in instance:
'd300bb89-1807-4d6b-9927-3a1la2882e2b7"'...

0K

After a few minutes, the cluster should become unreachable, as shown in Example 2-108.

Example 2-108 The Red Hat OpenShift cluster becomes unreachable

$ oc get secrets

Error from server (InternalError): Internal error occurred: unable to transform key
"/kubernetes.io/secrets/default/all-icr-io": rpc error: code = Unknown desc = Unable to
decrypt, the Key Protect key is not enabled

§ oc get nodes
Unable to connect to the server: dial tcp 52.116.231.210:31749: i/o timeout

150 Securing Your Critical Workloads with IBM Hyper Protect Services

Re-enable your Key Protect root key to restore operations, as shown in Example 2-109.

Example 2-109 Re-enable the key to go back to the normal state

$ ibmcloud kp key enable e893d3c8-976b-4e51-a3ab-7326aa86a19d
EnabTing key: 'e893d3c8-976b-4e51-a3ab-7326aa86al9d', in instance:
'd300bb89-1807-4d6b-9927-3a1a2882e2b7"'...

0K

$ oc get nodes

NAME STATUS ROLES AGE VERSION
10.184.54.85 NotReady master,worker 8d v1.19.0+a5a0987

2.5 Using the Public Key Cryptography Standards #11 API with
IBM Hyper Protect Crypto Services

In addition to the Key Protect API, IBM Hyper Protect Crypto Services provides two more
APIs for applications:

» The standard PKCS #11 API
» The Enterprise PKCS #11 over gRPC (GREP11) API

PKCS #11 API uses dedicated keystores that are provided by IBM Hyper Protect Crypto
Services to ensure data isolation and security. Privileged users (IBM Cloud system
administrators) are locked out for protection against abusive use of system administrator
credentials or root user credentials.

GREP11 is stateless and does not manage keystores.

For more information about a comparison between the PKCS #11 API and the GREP11 API,
see Comparing the PKCS #11 API with the GREP11 API.

Each Hyper Protect Crypto Services instance and its keystores runs in its own protected
enclave in a Secure Service Container (SSC) logical partition (LPAR). SSC is a logical
partitioning technology that is Common Criteria Enterprise Assurance Level (EAL) 5+
certified for separation and isolation. For more information, see IBM Secure Service
Container.

FIPS 140-2 Level 4 compliant cloud HSM is enabled for the highest physical protection of
secrets. Each Hyper Protect Crypto Services instance uses its own specific HSM domain.

Table 2-2 provides a comparison chart of both APls:

Table 2-2 Comparing PKCS11 # APl and GREP11

Feature PKCS #11 API GREP11
Interface Stateful interface. Data is Stateless interface. The result
implementation stored on the host. request always stays the same.

The result of arequest can vary | No data is stored on the host.
depending on the implicit state,
such as session state and user
login state.

Prior installation PKCS #11 library on your local | No extra installation.
workstation.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 151

https://en.wikipedia.org/wiki/IBM_Secure_Service_Container
https://en.wikipedia.org/wiki/IBM_Secure_Service_Container
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-introduce-cloud-hsm#compare-grep11-pkcs11

Feature

PKCS #11 API

GREP11

Application migration

None if applications use the
standard PKCS #11 API.

Must use IBM GREP11 SDKs,
which are available for Go,
JavaScript, and Rust.

Authentication and
access management

SO, user, and anonymous HSM
access are mapped to IAM user
API keys. For more information,
see Setting up PKCS #11 API
user types.

Standard IAM access.

Keystore The PKCS #11 keys are The application is responsible
protected by the HSM master for storing wrapped keys that
key and are stored in cloud are created by using the
databases (keystores). GREP11 APL. In particular, the
Keystores are reencrypted for application must manage HSM
HSM Master key rotation. master key rotation and rewrap

cryptographic materials with the
new future key.

Supported The PKCS #11 API supports The GREP11 API does not

cryptographic most of the standard PKCS #11 | support general-purpose

operations functions. functions and session

management functions. It
supports most of the EP11
cryptographic functions.

2.5.1 The PKCS #11 API

PKCS #11 is a standard that specifies an API, which is called Cryptoki, for devices that hold
cryptographic information and perform cryptographic functions.

On your Hyper Protect Crypto Services instance, you can define multiple slots. Each slot has
its own public and private keystore. An API key controls the access to these slots. Three
levels of access are possible:

» As a SO, if you need to reset a label or perform some other system administration
operations.

» As a user for read/write operations, for example, if you must create some objects such as
cryptographic keys in the slot.

» As anonymous access or read only, if your application performs only cryptographic
operations by using keys that were created by another user.

A specific IAM API key can be assigned for each user to control access. For more
information, see Setting up PKCS #11 API user types.

By default, you use the same API key. This read/write access model should fit 80% of
application needs that perform their cryptographic operations by using their own
cryptographic keys. Crypto unit system management operations like key store management
and access control are done by using Hyper Protect Crypto Services functions.

Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-best-practice-pkcs11-access
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-best-practice-pkcs11-access
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-best-practice-pkcs11-access

PKCS #11 mechanisms
A Hyper Protect Crypto Services instance implements many cryptographic operations like

encryption, hashing functions, key derivations, or random number generations. They are
referred to as mechanisms. A mechanism is used as a parameter to a PKCS #11 call to

specify which algorithm is used and what kind of keys should be created. Examples are AES
encryption and SHA512 signing.

Table 2-3 provides a list of some of those mechanisms and the functions that they support.

Table 2-3 Hyper Protect Crypto Services PKCS #11 mechanisms

Function group

Supported mechanisms

Encrypt and decrypt.

CKM_RSA_PKCS, CKM_RSA_PKCS_OAEP, CKM_AES_ECB,
CKM_AES_CBC, CKM_AES_CBC_PAD, CKM_DES3_ECB,
CKM_DES3_CBC, CKM_DES3_CBC_PAD

Sign and verify.

CKM_RSA_PKCS, CKM_RSA_PKCS_PSS, CKM_RSA_X9_31,
CKM_SHA1_RSA_PKCS, CKM_SHA256_RSA_PKCS,
CKM_SHA224_RSA_PKCS, CKM_SHA384_RSA_PKCS,
CKM_SHA512_RSA_PKCS, CKM_SHA1_RSA_PKCS_PSS,
CKM_SHA224_RSA_PKCS_PSS,
CKM_SHA256_RSA_PKCS_PSS,
CKM_SHA384_RSA_PKCS_PSS,
CKM_SHA512_RSA_PKCS_PSS, CKM_SHA1_RSA_X9_31,
CKM_DSA, CKM_DSA_SHA1, CKM_ECDSA,
CKM_ECDSA_SHA1, CKM_ECDSA_SHA224,
CKM_ECDSA_SHA256, CKM_ECDSA_SHA384,
CKM_ECDSA_SHA512, CKM_SHA1_HMAC,
CKM_SHA256_HMAC, CKM_SHA384_HMAC,
CKM_SHA512_HMAC, CKM_SHA512_224_HMAC,
CKM_SHA512_256_HMAC, CKM_IBM_ED25519_SHA512

Digest.

CKM_SHA_1, CKM_SHA224, CKM_SHA256, CKM_SHA384,
CKM_SHA512, CKM_SHA512_224, CKM_SHA512_256

Generate key or
generate key pair.

CKM_RSA_PKCS_KEY_PAIR_GEN,
CKM_RSA_X9_31_KEY_PAIR_GEN,
CKM_DSA_KEY_PAIR_GEN, CKM_DSA_PARAMETER_GEN,
CKM_EC_KEY_PAIR_GEN (CKM_ECDSA_KEY_PAIR_GEN),
CKM_DH_PKCS_KEY_PAIR_GEN,
CKM_DH_PKCS_PARAMETER_GEN,
CKM_GENERIC_SECRET_KEY_GEN, CKM_AES_KEY_GEN,
CKM_DES2_KEY_GEN, CKM_DES3_KEY_GEN

Wrap and unwrap.

CKM_RSA_PKCS, CKM_RSA_PKCS_OAEP, CKM_AES_ECB,
CKM_AES_CBC, CKM_AES_CBC_PAD, CKM_DES3_ECB,
CKM_DES3_CBC, CKM_DES3_CBC_PAD

Derive.

CKM_ECDH1_DERIVE, CKM_DH_PKCS_DERIVE,
CKM_DES3_ECB_ENCRYPT_DATA,
CKM_SHA1_KEY_DERIVATION,
CKM_SHA224_KEY_DERIVATION,
CKM_SHA256_KEY_DERIVATION,
CKM_SHA384_KEY_DERIVATION,
CKM_SHA512_KEY_DERIVATION, CKM_IBM_BTC_DERIVE

Chapter 2. IBM Cloud Hyper Protect Crypto Services

153

PKCS #11 objects

By using the PKCS #11 API, your application creates objects in the HSM keystores with
different attributes:

>

CKA_CLASS defines the object type. For example, a symmetric key is specified as
CKO_SECKET_KEY, and a private key is specified as CKO_PRIVATE.

CKA_LABEL provides a description, which is useful for retrieving your key in the keystores:
CKA_TOKEN specifies whether your object is a session-only object or a token:
— A session object is kept only in memory and disappears when the session is closed.

— Atoken is stored in the keystores, and then it can be shared across different
microservices and application components. For example, a symmetric key that is
created with CKA_TOKEN set as false disappears at the end of the session that is
established by your application.

CKA_ID is an identifier. It can be useful to specify a unique ID as an attribute for a key to
identify it. We can create two objects with same label (CKA_LABEL) and the same CKA_ID.
Both CKA_ID and CKA_LABEL are useful for retrieving your keys that are stored on the Hyper
Protect Crypto Services HSM.

CKA_EXTRACTABLE indicates whether the key can be wrapped into ciphertext out of the
keystores by your application and unwrapped to restore it into the crypto unit keystores. If
the key is a set to be not extractable, it cannot leave the HSM keystore in an encrypted
form and cannot be wrapped. The value is true (CK_TRUE) or false (CK_FALSE).

CKA_PRIVATE is used to indicate whether the key should be stored in a public or a private
IBM Hyper Protect Crypto Services keystore. Public keys are created in the public
keystore with this parameter set to false (CK_FALSE).

These objects can be retrieved from the HSM by using C_FindObjects() PKCS11.
C_GetAttributeValue() to retrieve the attribute value.

Table 2-4 provides a list of PKCS #11 data types and their descriptions.

Table 2-4 PKCS #11 data types

PKCS11 type Description

Data Application data, such as details about stored keys. However, IBM Hyper
Protect Crypto Services does not support C_CreateObject() and
C_CopyObject().

Keys Cryptographic keys: Public/private (asymmetric) or secret (symmetric).

Each type of these keys has subtypes for use in specific mechanisms:

» Public key: The public component of a key pair that is used by
anyone to encrypt messages that are intended for a recipient that
has access to the private key of the key pair. The public key also is
used to verify signatures that are created by the private key.

» Private key: The private component of a key pair that is used to
decrypt messages. The private key also is used to create signatures.

» Secret key: A secret key is a generated stream of bits that is used to
encrypt and decrypt messages symmetrically.

These keys are not Key Protect keys. They cannot be displayed by using

the ibmcloud kp keys command.

Certificates X509 Certificates. IBM Hyper Protect Crypto Services does not support
the C_CreateObject() call.

154 Securing Your Critical Workloads with IBM Hyper Protect Services

PKCS #11 session

To run cryptographic operations on a Hyper Protect Crypto Services instance, your program
starts by opening a session with the service that is authenticated with an API key. The
structure is as follows:

>

>

>

>

Initialize your PKCS11 GREP11 native library.

Connect your Hyper Protect Crypto Services PKCS11 endpoint by using your APl Key
with a C_Login().

Get the list of available slots (specified by the configuration file).

Open a session one slot with C_0penSession(), where you specify the session mode (read
only/read write) and the API key.

Create or retrieve objects like cryptographic keys by using C_FindObjects in your session.
Perform some cryptography operations by using these objects with C_Encrypt, C_Derive,
C_Sign, C_Verify, C_GenerateKey, or other PKCS #11 encryption functions.

Created objects last only for the session lifetime or are persistent within the Hyper Protect
Crypto Services keystores. Use the CTA_TOKEN attribute in the key templates to set
persistence.

Note: IBM Hyper Protect Crypto Services does not support the following PKCS# 11
functions:

» C_CreateObject, C_CopyObject

C_DigestKey

C_SignRecoverInit, C_SignRecover, C_VerifyRecoverInit, C_VerifyRecover
C_DigestEncryptUpdate, C_DecryptDigestUpdate

C_SignEncryptUpdate, C_DecryptVerifyUpdate

C_SeedRandom

vyvVyVYyYvYyYyYy

PKCS #11 encryption functions take the following input arguments:

— Some key template structures that describe the cryptographic PKCS #11 objects to be
created. The structures can be a random number, a key pair, or a symmetric key.

— A mechanism structure that specifies the PKCS #11 function that is used, like
encryption, digesting, and key generation. This mechanism object also may take a
parameter object structure as required by the mechanism. For example, for AES
encryption, we must pass the initialization vector.

You close the session by using C_CloseSession() and C_Logout ().
Libraries are finalized.

Python, Go, JavaScript, and Java programming languages offer several PKCS #11 wrappers
that can be easily installed, and they are the ones that we used in this book.

The pkcsll-tool tool is a convenient and standard CLI tool to retrieve objects in your
PKCS11 IBM Hyper Protect Crypto Services instance. To use it, use the OpenSC package on a
Linux OS.

You also can use the IBM Cloud console to create cryptographic keys easily:

1.

Go to your service.

2. Click EP11 keys in the left menu.
3. Click Add Key to create your key.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 155

To perform a PKCS #11 API call, you must complete the following tasks:

» Install the PKCS #11 library. It is available for both the AMD64 and s390x processor
architectures for Linux OS. For more information, see “Installing the IBM Hyper Protect
Crypto Services PKCS #11 native library” on page 156.

» Set up one service ID and an associated API key for your IBM Hyper Protect Crypto
Services instance. For more information, see “Retrieving your connection data” on
page 157.

One service ID is enough (as we used in this book), but you might want to specify specific API
keys for each PKCS #11 access level: SO, normal user, and anonymous. The keys can be
specified in the GREP11 native library configuration file, as described in “Setting up your
configuration file” on page 159.

Note: For multi-level access, you can create three services IDs and assign a specific
custom IAM role. For more information, see Step 2: Create service IDs and API keys for
the SO user, normal user, and anonymous user.

Use the respective API key of each service ID as the PIN parameter when you open the
PKCS #11 session and do not write them into the GREP11 native library configuration file
on the system.

For information about PKCS #11, see Introducing PKCS #11.

The PKCS #11 standard documentation is available at the following websites:

» http://docs.oasis-open.org/pkcsll/pkcsll-ug/v2.40/pkcsll-ug-v2.40.html
» http://docs.oasis-open.org/pkcsll/pkcsll-base/v2.40/pkcsll-base-v2.40.html
» http://docs.oasis-open.org/pkcsll/pkcsll-curr/v2.40/pkcsll-curr-v2.40.html

Installing the IBM Hyper Protect Crypto Services PKCS #11 native
library

The IBM Hyper Protect Crypto Services PKCS #11 library can be retrieved from GitHub.

It must be installed on a Linux OS. To do this task, complete the following steps:

1. Use an FTP client to retrieve the correct file for your hardware architecture at the correct
release level.

2. Copy the pkcsll-grepll-xxxx.so.xxxx file into your Linux library directory. In
Example 2-110, we use /usr/Tocal/1ib.

Example 2-110 Installing the library

$ 1ftp -e 'pget -n 5
https://github.com/IBM-Cloud/hpcs-pkcsll/releases/download/v2.3.90/pkcs11l-grepl
1-amd64.s0.2.3.90'

45932432 bytes transferred in 23 seconds (1.89MiB/s)

1ftp :™> quit

$ sudo cp pkcsll-grepll-amd64.s50.2.3.90 /usr/local/lib

3. Install the opensc software on your Linux notebook.
4. In RHEL, run the following command:
sudo yum install opensc

For other Linux distributions, use the appropriate software installation tools to install
opensc.

156 Securing Your Critical Workloads with IBM Hyper Protect Services

http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
https://github.com/IBM-Cloud/hpcs-pkcs11/releases
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-pkcs11-intro
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-best-practice-pkcs11-access#step2-create-service-id-api-key
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-best-practice-pkcs11-access#step2-create-service-id-api-key
http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html

Retrieving your connection data
Complete the following steps:

1. Retrieve your Hyper Protect Crypto Services instance ID and endpoint URL in the
IBM Console, as shown in Figure 2-83.

Resource list /
hpcs-sve @active addtass 2 Details
Getting started Crypto units Location
Qverview

[us-south].[AZ3-CS9].[00].[03] © INTIALIZED
Instance policies
Key management service key [us-south].[AZ1-CS7].[01].[16] @ INITIALIZED

ngs .
"

Key management service keys

Key management service
associated resources

Enterprise PKCS #11 keystores

Enterprise PKCS #11 keys

Instance Key management endpoint URL Enterprise PKCS #11 endpoint URL ‘

Instance 1D

n]

Resource gr Private
z5bBE6 [m} epll.private.us-south.hs-crypto.cloud. ibm. com: 11398 ﬁ@

Figure 2-83 Retrieving the PKCS #11 endpoint and Hyper Protect Crypto Services instance ID

o 306b0bEY-1867-4dEb-9927-3a1a2882e2b7

2. Generate an API key to access your service:

a. By creating a service ID, as described in “Creating an IBM service ID on your IBM
Cloud account” on page 107.

b. By creating an API key for your IBM Cloud account, as shown in Example 2-111.

Example 2-111 Creating an API key for your IBM Cloud account

$ ibmcloud iam api-key-create apikeyhpcs -d "API key for Hyper Protect
Crypto Services PKCS11"

Creating API key apikeyhpcs under 537544c2222297f40ed689e8473e7849 as
itso.author@ibm.com...

0K

API key apikeyhpcs was created

Preserve the API key! It cannot be retrieved after it is created.

1D ApiKey-4cbfb9ab-5835-4b19-9¢99-b0cff1b9679d

Name apikeyhpcs

Description API key for Hyper Protect Crypto Services PKCS11
Created At 2021-05-11T13:01+0000

API Key Yh7CXSg4qnK-VcqeKgs jZwXefAB7 jSCKMCMz4b-Bn_Zm
Locked false

Creating your public and private EP11 keystores in the IBM Cloud console

Your PKCS #11 keys are stored in the IBM Cloud and encrypted with the HSM master key.
The keys are stored in the Hyper Protect Crypto Services keystores.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 157

You must create at least two keystores per service:

» A public keystore that stores public keys (for asymmetric encryption mechanisms). This
keystore is accessible to so, user, and anonymous users.

» A private keystore that stores private keys (for asymmetric encryption) and secret keys (for
symmetric encryption).

Multiple applications can use the same IBM Hyper Protect Crypto Services instance, but they
use a different pair of keystores. The selection is done when the application selects the PKCS
#11 slot to open a session with.

To create a keystore, complete the following steps:

1. In your IBM Cloud console, go to your service instance window and select Enterprise
PKCS #11 keystores in the left menu, as shown in Figure 2-84.

Resource list |

h pCS-|tSO @ Active Addtags £ Details
Getting started Enterprise PKCS #11 keystores 0
Qverview

Instance policies Q Search G Add keystore +

Key management service key
rings jis] Name Type

Key management service keys

associated resources
Enterprise PKCS #11 keystores
Enterprise PKCS #11 keys

No keystores to be displayed.

0 add a kevstore use the Add kevstore hutton

Figure 2-84 Hyper Protect Crypto Services Enterprise PKCS #11 keystores menu

2. Click Add Keystore.

3. A dialog box opens, where you specify the name of your keystore ad select a public or a
private attribute as shown in Figure 2-85 on page 159. Make sure that you create one
public and one private key store.

158 Securing Your Critical Workloads with IBM Hyper Protect Services

IEM Cloud

]
1]

Add keystore *

If you are adding an Enterprise PKCS #11 key through the
IBM Cloud console, add a keystore first to store your keys.
Learn mare

Keystore 1D

7EB7Be7df-8616-47ch-aléa-3bifabatdedd T

Keystore name

ks1_publid

Keystore type

O Private
(®) Public

Figure 2-85 Creating keystores on your IBM Hyper Protect Crypto Services instance

4. Create as many pairs of keystores as needed. For example, we have two pairs in

Figure 2-86.

Resource list |

hpcs-itso @acie acdus 2

Getting started
Overview
Instance policies

Key management service key
rings

Key management service keys

Key management service
associated resources

Enterprise PKCS #11 keystores

Enterprise PKCS #11 keys

Enterprise PKCS #11 keystores

O, Search

D

f938845d-cble-4cfl-bee2-7cOdecalBec? T
cch6ad2c-fhad-4618-bf57-396cdeaTelic

7f85feB0-225a-4305-b3eb-01e5ddfach?h T

7878e7df-8616-47ch-alba-3bffabas3ed2 T

4

%]

Name Type

ksl_private Private o]
ks2_private Private o]
ks2_public Public [
ksl_public Public [l

Figure 2-86 Listing your keystores

5. For the next steps of the configuration, select:

— The keystore ID of a private key store.

— The keystore ID of a public key store.

Setting up your configuration file
Complete the following steps:

1. Create the library configuration file in the /etc/epllclient directory by running the
commands that are shown in Example 2-112.

Example 2-112 Creating the /etc/ep11client/grep11client.yaml file by using the vi editor

$ mkdir /etc/epllclient/
$ vi /etc/epllclient/grepllclient.yaml

Chapter 2. IBM Cloud Hyper Protect Crypto Services 159

2. While in the vi editor, specify the following four required parameters:

— The Hyper Protect Crypto Services instance ID that can be retrieved in the IBM Cloud
console, for example, by using the ibmcloud resource service-instances --long
command in a terminal or by running the ibmcloud tke cryptounits command with the
CLOUDTKEFILES environment variable set up.

— The address and port number of the PKCS #11 endpoint (see Figure 2-83 on
page 157).

— The API key that is used for opening a PKCS #11 session as the value for the apikey
attribute in the iamauth section.

— The IDs of the private and public keystores that you created in the console on the two
tokenID parameters in the users section of a tokens section entry:

¢ Specify the keystore ID of the private store in the tokens.0.users.1 section.
¢ Specify the keystore ID of the public store in the tokens.0.users.2 section.

In Example 2-113, we used the f938845d-cb0e-4cfl-bee2-7c0dccal8ec’ keystore for the
private key store and 7878e7df-8616-47ch-al6a-3bffaba63e42 for the public keystore.

A PKCS #11 native library configuration file is shown in Example 2-113. The second token
definition is not printed.

Example 2-113 The /etc/ep1iclient/grep11client.yaml file

jamcredentialtemplate: &defaultiamcredential

enabled: true

endpoint: "https://iam.cloud.ibm.com"

Keep the 'apikey' empty. It will be overridden by the Anonymous user
API key configured later.

apikey:

The Universally Unique IDentifier (UUID) of your IBM Hyper Protect
Crypto Services instance.

instance: "34b5af99-c165-4863-af2e-aaabd7af8137"

tokens:
0:
grepllconnection:
The EP11 endpoint address starting from 'epll'.
For example, "epll.us-south.hs-crypto.cloud.ibm.com"
address: "epll.us-south.hs-crypto.cloud.ibm.com"
The EP11 endpoint port number
port: "11491"
tls:
Grepll requires TLS connection.
enabled: true
Grepll requires server only authentication, so 'mutual' needs to be set
as 'false'.
mutual: false
'cacert' is a full-path certificate file.
In Linux with the 'ca-ca-certificates' package installed, this file is
normally not needed.
cacert:
Grepll requires the server-only authentication, so 'certfile' and
'keyfile' need to be empty.
certfile:
keyfile:

160 Securing Your Critical Workloads with IBM Hyper Protect Services

storage:

filestore:
enabled: false
storagepath:

'remotestore' needs to be enabled if you want to generate keys with the

attribute CKA_TOKEN.
remotestore:
enabled: true
users:
0: # The index of the Security Officer (SO) user must be 0.
The name for the Security Officer (SO) user. For example,
"Administrator".
NEVER put the API key under the SO user for security reasons.
name: "Administrator"
iamauth:
<<: *defaultiamcredential
1: # The index of the normal user must be 1.
The name for the normal user. For example, "Normal user".
NEVER put the API key under the normal user for security reasons.
name: "Normal user"
The Space ID is a 128-bit UUID and can be chosen freely.
The UUID can be generated by third-party tools, such as
'https://www.uuidgenerator.net/'.
For example, "f00db2f1-4421-4032-a505-465bedfa845b".
'tokenspaceID' under the normal user is to identify the private
keystore.
tokenspacelD: "f938845d-chOe-4cfl-bee2-7c0dcca08ec7"
iamauth:
<<: *defaultiamcredential
2: # The index of the anonymous user must be 2.
The name for the anonymous user. For example, "Anonymous".
name: "Anonymous"
The Space ID is a 128-bit UUID and can be chosen freely.
The UUID can be generated by third-party tools, such as
'https://www.uuidgenerator.net/'.
For example, "ca22be26-b798-4fdf-8c83-3e3a492dc215".
'tokenspaceID' under the anonymous user is to identify the public
keystore.
tokenspacelD: "7878e7df-8616-47cb-alba-3bffa5a63e42"
iamauth:
<<: *defaultiamcredential
This API key for the Anonymous user must be provided.
It will override the 'apikey' in the previous
defaultcredentials.iamauth.apikey field
apikey: "Yh7CXSg4qnK-VcqeKgsjZwXefAB7jSCKMCMz4b-Bn_Zm"

1:
igddsdsdsddadadsddadaddagaddadadsdatadsdiddasadatasaddadagadadiii
Add a second slot definition by using different keystore IDs
igddadsdsddadadsddadaddagaddadadsdatadsdsdtasadadasadiadagadadiiia
logging:

Set the logging level.

The supported levels, in an increasing order of verboseness, are:

'panic', 'fatal', 'error', 'warning'/'warn', 'info', 'debug', 'trace'.
The Default value is 'debug'.

loglevel: debug

Chapter 2. IBM Cloud Hyper Protect Crypto Services

161

The full path of your Togging file.
For example, /tmp/grepllclient.log
Togpath: /tmp/grepllclient.log

Defining multiple tokens: To define multiple tokens on your Hyper Protect Crypto
Services instance, complete the following steps:

1. Copy the token.0 section to create token. 1, token.2, ..., token.n entries as necessary
for your application, as shown in Example 2-114. One token section defines one slot
with one token. In this configuration, multiple microservices can use the same Hyper
Protect Crypto Services instance, but they use different keystores. The same HSM
master key is used for all the slots.

Example 2-114 The grep11client.yaml file that defines multiple tokens

tokens:
0:
grepllconnection:
............ config token 1

grepllconnection:
............ config token 2

2. In each token section:
— Specify tokenspacelD for the private keystore in the tokens.#.users.1 section.
— Specify tokenspaceID for the public keystore in the tokens.#.users.2 section.

— Specify the API keys to access to use these keystores as the value of the apikey
attribute in the tokens.#.users.2.iamauth section.

C_lIntialize(): The keystore’s creation initializes the token by using the Hyper Protect
Crypto Services instance. If you call this function in your application with a label parameter,
it resets the two keystores of the crypto unit slot to this label and removes existing keys in
the keystores, which will be lost.

Checking the configuration by using the pkcs11-tool

Using pkcs1l-tool and specifying the pkcs11-grep native library, you can get details about
your Hyper Protect Crypto Services setup. In Example 2-115, we create two token sections
for keystore1and keystore2 in the grepllclient.yaml file.

Example 2-115 Listing the IBM Hyper Protect Crypto Services HSM details

$ pkcsll-tool --module=/usr/local/lib/pkcsll-grepll-amd64.s0.2.3.90 -I
Available slots:
Slot 0 (0x1):

token Tabel : GREP11 Token

token manufacturer : IBM

token model : GREP11

token flags : login required, rng, token initialized, PIN initialized,

other flags=0x200
hardware version : 0.0
firmware version : 0.0
serial num : 000/0000
pin min/max : 16/65536
Slot 1 (0x0):

162 Securing Your Critical Workloads with IBM Hyper Protect Services

token label : GREP11 Token
token manufacturer : IBM

token model : GREP11

token flags : login required, rng, token initialized, PIN initialized,
other flags=0x200

hardware version : 0.0

firmware version : 0.0

serial num : 000/0000

pin min/max : 16/65536

You can retrieve the available mechanisms by using the pkesl1-tool -M command. The
--slot option is used to specify the slot number. It gives you information about which
algorithms are implemented and which type of PKCS #11 function is used for key generation,
encryption, signature, wrapping, derivation, and digest. Example 2-116 demonstrates this
command and its output.

Example 2-116 Listing the available mechanisms on your HSM

$ pkcsll-tool --module=/usr/local/l1ib/pkcsll-grepll-amd64.s0.2.3.90 -M --slot 0
Using slot 0 with a present token (0x0)
Supported mechanisms:
RSA-PKCS, keySize={512,4096}, encrypt, decrypt, sign, verify, wrap, unwrap
RSA-PKCS-0AEP, keySize={512,4096}, encrypt, decrypt, wrap, unwrap
RSA-PKCS-KEY-PAIR-GEN, keySize={512,4096}, generate key pair
RSA-X9-31-KEY-PAIR-GEN, keySize={512,4096}, generate key pair
RSA-PKCS-PSS, keySize={512,4096}, sign, verify
SHA1-RSA-X9-31, keySize={512,4096}, sign, verify
SHA1-RSA-PKCS, keySize={512,4096}, sign, verify
SHA1-RSA-PKCS-PSS, keySize={512,4096}, sign, verify
SHA256-RSA-PKCS, keySize={512,4096}, sign, verify
SHA256-RSA-PKCS-PSS, keySize={512,4096}, sign, verify
SHA224-RSA-PKCS, keySize={512,4096}, sign, verify
SHA224-RSA-PKCS-PSS, keySize={512,4096}, sign, verify
SHA384-RSA-PKCS, keySize={512,4096}, sign, verify
SHA384-RSA-PKCS-PSS, keySize={512,4096}, sign, verify
SHA512-RSA-PKCS, keySize={512,4096}, sign, verify
SHA512-RSA-PKCS-PSS, keySize={512,4096}, sign, verify
AES-KEY-GEN, keySize={16,32}, generate
AES-ECB, keySize={16,32}, encrypt, decrypt
AES-CBC, keySize={16,32}, encrypt, decrypt, wrap, unwrap
AES-CBC-PAD, keySize={16,32}, encrypt, decrypt, wrap, unwrap
DES2-KEY-GEN, keySize={16,16}, generate
DES3-KEY-GEN, keySize={24,24}, generate
DES3-ECB, keySize={16,24}, encrypt, decrypt
DES3-CBC, keySize={16,24}, encrypt, decrypt, wrap, unwrap
DES3-CBC-PAD, keySize={16,24}, encrypt, decrypt, wrap, unwrap
GENERIC-SECRET-KEY-GEN, keySize={8,256}, generate, derive
SHA256, digest
mechtype-0x393, derive
SHA256-HMAC, keySize={16,32}, sign, verify
SHA224, digest
mechtype-0x396, derive
SHA224-HMAC, keySize={14,32}, sign, verify
SHA-1, digest
SHA1-KEY-DERIVATION, derive
SHA-1-HMAC, keySize={10,32}, sign, verify

Chapter 2. IBM Cloud Hyper Protect Crypto Services 163

SHA384, digest
mechtype-0x394, derive
SHA384-HMAC, keySize={24,32}, sign, verify

SHA512, digest

mechtype-0x395, derive

SHA512-HMAC, keySize={32,32}, sign, verify

mechtype-0x4C, digest

mechtype-0x80010012, digest

mechtype-0x4D, keySize={16,32}, sign, verify

mechtype-0x80010014, keySize={16,32}, sign, verify

mechtype-0x48, digest

mechtype-0x80010013, digest

mechtype-0x49, keySize={14,32}, sign, verify

mechtype-0x80010015, keySize={14,32}, sign, verify

ECDSA-KEY-PAIR-GEN, keySize={192,521}, generate_key pair, other flags=0x1900000
ECDSA, keySize={192,521}, sign, verify, other flags=0x1900000

ECDSA-SHA1, keySize={192,521}, sign, verify, other flags=0x1900000
ECDH1-DERIVE, keySize={192,521}, derive, other flags=0x1100000
mechtype-0x80020007, keySize={192,521}, derive, other flags=0x1100000
mechtype-0x8001000C, keySize={192,521}, encrypt

DSA-PARAMETER-GEN, keySize={1024,3072}, generate

DSA-KEY-PAIR-GEN, keySize={1024,3072}, generate_key pair

DSA, keySize={1024,3072}, sign, verify

DSA-SHA1, keySize={1024,3072}, sign, verify

DH-PKCS-PARAMETER-GEN, keySize={1024,3072}, generate

DH-PKCS-KEY-PAIR-GEN, keySize={1024,3072}, generate_key pair

DH-PKCS-DERIVE, keySize={1024,3072}, derive

mechtype-0x80020006, keySize={1024,3072}, derive

RSA-X9-31, keySize={512,4096}, sign, verify

PBE-SHA1-DES3-EDE-CBC, keySize={24,24}, generate

mechtype-0x80020004, keySize={,4096}, wrap, unwrap

ECDSA-SHA224, keySize={192,521}, sign, verify, other f1ags=0x1900000
mechtype-0x80010008, keySize={192,521}, sign, verify, other flags=0x1900000
ECDSA-SHA256, keySize={192,521}, sign, verify, other f1ags=0x1900000
mechtype-0x80010009, keySize={192,521}, sign, verify, other flags=0x1900000
ECDSA-SHA384, keySize={192,521}, sign, verify, other f1ags=0x1900000
mechtype-0x8001000A, keySize={192,521}, sign, verify, other flags=0x1900000
ECDSA-SHA512, keySize={192,521}, sign, verify, other f1ags=0x1900000
mechtype-0x8001000B, keySize={192,521}, sign, verify, other flags=0x1900000
mechtype-0x80010031, keySize={192,521}, sign, verify, other flags=0x1900000
mechtype-0x8001001B, keySize={256,256}, derive, other flags=0x1100000
mechtype-0x8001001C, keySize={256,256}, sign, verify, other flags=0x1100000
mechtype-0x8001000D, derive
mechtype-0x80040001, keySize={,256}
mechtype-0x80010007, keySize={16,32
mechtype-0x80070001, keySize={16,64

, wrap
}, sign, verify
}, derive

You are now ready to use your Hyper Protect Crypto Services instance with the PKCS #11
native library.

The pkcsll-tool utility is a standard CLI tool that you can use to create keys, delete keys,
generate keys, sign some data, derive some keys, encrypt and decrypt some data, and
generate random numbers according to the mechanisms that are available on the HSM.
Example 2-117 on page 165 demonstrates the uses of pkcs11l-tool.

164 Securing Your Critical Workloads with IBM Hyper Protect Services

Example 2-117 Using pkcs11-tools with your Hyper Protect Crypto Services instance

$ head -c 1k </dev/urandom >myfile

$ pkcsll-tool --module=/usr/local/1ib/pkcsll-grepll-amd64.s0.2.3.90 --slot 0
--login --pin $API_KEY --hash --input-file myfile --output-file sha

Using sTot 0 with a present token (0x0)

Using digest algorithm SHA256

$ hexdump -ve '1/1 "%.2x"' sha
396b3407214a0e4f61a311b20547f83f37b44cedaf727f6050ead15ad6b25d97

$ sha256sum myfile
396b3407214a0e4f61a311b20547f83f37b44cedaf727f6050ead15ad6b25d97 myfile

$ pkcsll-tool --module=/usr/local/1ib/pkcsll-grepll-amd64.s0.2.3.90 --slot 0
--login --pin $API_KEY --generate-random 128 | base64 -w0
oV7eDerZnhmYQePRjA7WW58Ugr2/emRAP/yw7MVmfOVaw9tgQG3c0180SJdL+RkcegZ fLBRCL+7K0LgyyH
JEqryZOH1aBpCOiXxg4Act7LuRkv1lxnkfRIraQkyrXrHrVQAL1gkPGMISTHAUEHP1TWV/zydaqW81zNXz1
y4QQTfs=

$ pkcsll-tool --module=/usr/local/1lib/pkcsll-grepll-amd64.s0.2.3.90 --login --pin
$API_KEY --keygen --key-type AES:32 --id 20 --label "itso aes" --slot 1

Key generated:

Secret Key Object; AES length 32

label: itso aes
ID: 20
Usage: encrypt, decrypt, verify, wrap, unwrap

warning: PKCS11 function C_GetAttributeValue(ALWAYS SENSITIVE) failed: rv =
CKR_ATTRIBUTE_TYPE_INVALID (0x12)

Access: extractable, local

$ pkcsll-tool --module=/usr/local/1ib/pkcsll-grepll-amd64.s0.2.3.90 --login --pin
$API_KEY --keypairgen --label itsoECkeys --id 200 --key-type EC:secp384rl --slot 1
Using sTot 0 with a present token (0x0)

Key pair generated:

Private Key Object; EC

label: itsoECkeys
ID: 10
Usage: sign, derive

warning: PKCS11 function C_GetAttributeValue(ALWAYS_AUTHENTICATE) failed: rv =
CKR_ATTRIBUTE_TYPE_INVALID (0x12)

warning: PKCS11 function C_GetAttributeValue(ALWAYS_SENSITIVE) failed: rv =
CKR_ATTRIBUTE_TYPE_INVALID (0x12)

Access: sensitive, extractable, local
Public Key Object; EC EC_POINT 384 bits
EC_POINT:

046104bd7758ca425781cf04d0a5¢c9ff55214908139305ebc388bdaf94cdc825540192d46d4bb08d98
8ff7f41d59684536fa5757a09df7923a3f5c88ef8fbb4e87d61594a06c150f023272c090f204631007
712b74b14727e7cc680090c27e61ae79c8

EC_PARAMS: 06052b81040022

label: itsoECkeys

ID: 10

Usage: verify, derive
Access: none

Chapter 2. IBM Cloud Hyper Protect Crypto Services 165

$ pkcsll-tool --module=/usr/local/1ib/pkcsll-grepll-amd64.s0.2.3.90 --login --pin
$API_KEY --keypairgen --label itsoECkeys --id 100 --key-type EC:secp384rl --slot 0
Key pair generated:

Private Key Object; EC

label: itsoECkeys
ID: 10
Usage: sign, derive

warning: PKCS11 function C_GetAttributeValue(ALWAYS_AUTHENTICATE) failed: rv =
CKR_ATTRIBUTE_TYPE_INVALID (0x12)

warning: PKCS11 function C_GetAttributeValue(ALWAYS_SENSITIVE) failed: rv =
CKR_ATTRIBUTE_TYPE_INVALID (0x12)

Access: sensitive, extractable, local
PubTlic Key Object; EC EC_POINT 384 bits
EC_POINT:

046104bh91a0fd50cel679fc13082a5fe04h81087bce7d9366794f6b2498bh76c3d898331220739hd66
33ebecl10bchc901ac41f727bc472578a97dfc78c737124957dbal7a61312583d01b12091ff9f717a4c
284cedb831ca79e9b600f2bf6bad0bc42c

EC_PARAMS: 06052b81040022

label: itsoECkeys

ID: 10

Usage: verify, derive
Access: none

On the IBM Cloud console, select EP11keys in the left menu to see the keys that you created,
as shown in Figure 2-87:

» The label is assigned as you specified in the CLI command.
» They key class is secret for the AES key and private/public for the EC keys.
» The respective keystores are assigned as follows:

— The slot number that you specified in your command.

— The type of the key: private/secret or public.

Resource list |

hpcs-itso © Active Addtags 2. Details

Getting started Enterprise PKCS #11 keys &
Overview
Instance policies C ref Addkey +
Key management service key
rings 0] Name Class Version Keystore Type
Key management service keys
7541aadc-03eb-424f- 1af (n] = Secret 0 © eff!

Key managem
associated res

ces

ef6cTedc-970d-41. b8 in} ECkeys ublic Q i1 b
Enterprise PKCS #11 keystores
Enterprise PKCS #11 keys 14501101-6689-4f35-a5a9-d48fled16bi] tsoECkeys Private 0 cebé...effs
d40cffb3-6031-4e77-a7b3-56ee261152 (n] oECke rivat: 0 878

80adebef-fedd-dbda-b401-65

Items perpage 100 ~ 1-50f 5 items 1~ oflpage

Figure 2-87 Listing your PCKS #11 keys by using the IBM Cloud console

166 Securing Your Critical Workloads with IBM Hyper Protect Services

As shown in Figure 2-88, you can easily create your own keys. Click Add key and specify the
key’s attributes. By using the C_Findobjects() PKCS #11 function, your program can retrieve
the key by using its key ID or its name combined with its type.

1BM Cloud Q Catalog Docs Support Manag 2297116 - Lydi... B @
Add key pair *
@ Identifiers O Public key attributes O Private key attributes O cenfirmation

Add an Enterprise PKCS #11 key or key pair and set the identifiers of the key or key pair. Learn more

Key name Key type

mykey Elliptic Curve (EC) key pair ~

Elliptic Curve (EC) key pair >
Public key ID

fBelaafh-35e1-4218-0b40-Tfead1289107 e T =l L () L (ol

Diffie-Hellman (DH) key pair

~Shamir-Adleman (RS/

Keystare for the public key
Digital Signature Algorithm (DSA) key pair
7f85fe80-225a-43b5-h3eb-01e5dAfachTh (ks2_public) - Public

Advanced Encryption Standard (AES) key

Private key ID

nat inn Ctandard (NES) L,

a6aB389c-h212-4a29-857£-28874c8692bh ™

Keystore for the private key

7f857e80-225a-43b5-b3eb-01e5d4fach7b (ks2_public) - Public ~

Figure 2-88 Creating cryptographic keys

PKCS #11 programming with JavaScript, Python, or Go

The C programming language can be used with the pkcs11-grepll dynamic library. Use the C
PKCS #11 API for this task. Samples are available at GitHub.

For other programming languages, several PKCS #11 library wrappers are available. They
can be used with this pkcs11-grepll library.

PKCS #11 JavaScript wrappers

The pkcslljs package is a PKCS #11 wrapper. The package and its documentation are
available at GitHub.

Graphene is another PKCS #11 wrapper. The package and its documentation are available at
npm.
To run the examples, the following prerequisites are required:

» The pkcsll-grepll package must be installed and properly set up as described in
“Installing the IBM Hyper Protect Crypto Services PKCS #11 native library” on page 156.

» A properly configured Node.js application is installed on your system.

You can install the pkcs11ljs and graphene-pkll Node.js modules, as shown in
Example 2-118.

Example 2-118 Installing pkcs11js or graphene-pk11 for an application called myapp

$ mkdir myapp && cd myapp
$ npm install pkcslljs

$ npm install graphene-pkll

Chapter 2. IBM Cloud Hyper Protect Crypto Services 167

https://github.com/IBM-Cloud/hpcs-pkcs11
https://github.com/PeculiarVentures/pkcs11js
https://www.npmjs.com/package/graphene-pk11

In Example 2-119, we use the API_KEY environment variable to specify the API key that is
used to authenticate the Hyper Protect Crypto Services instance. For an explanation of how
to create this key, see Example 2-111 on page 157 or “Creating an IBM service ID on your
IBM Cloud account” on page 107.

Example 2-119 Setting up the API_KEY environment variable in a Linux terminal

$ export API_KEY=Yh7CXSg4qnK-VcqeKgsjZwXefAB7jSCKMCMz4b-Bn_Zm

On the wrapper side, you specify only the location of the pkcs11-grepll library. In our Linux
environment, the location is /usr/local/1ib/pkcsll-grepll-amd64.s0.2.3.90.

In Example 2-120, we have the following calls:

» C_Initialize() initializes pkcsll 1ib in this pkcs1ljs library.

» C_GetSlotList() gets the list of configured slots.

» C_GetTokenInfo() retrieves the details of the token, which corresponds to a pair of
keystores defined in the grepllclient.yaml file.

» C_Finalize() cleans up.

Example 2-120 The example_getslot.js file

var pkcslljs = require("pkcslljs");
var pkcsll = new pkcs11js.PKCS11();
pkcsll.load("/usr/local/1ib/pkcsll-grepll-amd64.s0.2.3.90");

pkcs1l.C_Initialize();

try {
var slots = pkcsll.C_GetSlotList(true);
slots.forEach((sTot,i) => console.log(pkcsll.C_GetTokenInfo(slot)));
}
catch(e){
console.error(e);
}
finally {
pkcs1l.C_Finalize();

}

To test the program that is shown in Example 2-120, run the command that shown in
Example 2-121.

Example 2-121 Listing the crypto units slots in JavaScript with two slots that are defined

$ node exemple_getslot.js
{ label: 'ks2_public ',
manufacturerID: 'IBM "
model: 'GREP11 ',
serialNumber: '000/0000 ',
flags: 1549,
maxSessionCount: 4294967296,
sessionCount: 0,
maxRwSessionCount: 4294967296,
rwSessionCount: 0,
maxPinLen: 65536,
minPinLen: 16,

168 Securing Your Critical Workloads with IBM Hyper Protect Services

hardwareVersion: { major: 0, minor: 0 },
firmwareVersion: { major: 0, minor: 0 },
utcTime:

"\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\ud
000\u0000\u0000",

totalPublicMemory: 0,

freePublicMemory: 0,

totalPrivateMemory: 0,

freePrivateMemory: 0 }

{ Tabel: 'ksl public ',
manufacturerID: 'IBM .
model: 'GREP11 ",
serialNumber: '000/0000 ',
flags: 1549,
maxSessionCount: 4294967296,
sessionCount: 0,
maxRwSessionCount: 4294967296,
rwSessionCount: 0,
maxPinLen: 65536,
minPinLen: 16,
hardwareVersion: { major: 0, minor:
firmwareVersion: { major: 0, minor:
utcTime:

"\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\ud
000\u0000\u0000",

totalPublicMemory: 0,

freePublicMemory: 0,

totalPrivateMemory: 0,

freePrivateMemory: 0 }

In Example 2-122, we generate ECDSA key pairs by completing the following steps:

1. Select the first Hyper Protect Crypto Services slot.

2. Labelthem as itso key.

3. Assign an ID of 007.

4. Store them on the Hyper Protect Crypto Services store database.

Because we are writing to the crypto service, we need read/write access (user), and we do

things sequentially (parallel operation is not supported), as indicated when you open the
session in the open() call as the 2 | 4 parameter.

The generateKeyPair() call creates the pair of keys with the attributes that we want. For
example, we use the secp192r1l elliptic curve.

Example 2-122 The genkeypair.js file

var graphene = require("graphene-pkl11");
var Module = graphene.Module;
var mod = Module.load("/usr/Tocal/1ib/pkcsll-grepll-amd64.s0.2.3.90", "hpcs");

mod.initialize();
var session = mod.getSlots(0).open(2 | 4); //Open in RW and Serial

Chapter 2. IBM Cloud Hyper Protect Crypto Services 169

session.login(process.env.API KEY);

// generate ECDSA key pair
var keys = session.generateKeyPair(graphene.KeyGenMechanism.ECDSA, {
keyType: graphene.KeyType.ECDSA,
label: "itso pub key",
id: Buffer.from("007"),
token: true,
verify: true,
paramsECDSA: graphene.NamedCurve.getByName("secpl92rl").value

keyType: graphene.KeyType.ECDSA,
label: "itso priv key",

id: Buffer.from("007"),

token: true,

sign: true

1

session.Togout();
session.close();
mod.finalize();

Run the program and check whether the keys were properly created by running pkcs11-tool,
as shown in Example 2-123.

Example 2-123 Generating two key pairs by using the PKCS #11 in IBM Hyper Protector Crypto
Services

$ node genkeypair.js

$ pkcsll-tool --module=/usr/local/1ib/pkcsll-grepll-amd64.s0.2.3.90 --login --pin
$API_KEY --1ist-object --slot 0

Using slot 0 with a present token (0x0)

PubTlic Key Object; EC EC_POINT 192 bits

EC_POINT:
043104e6a25eba8392a253ae2cd0e70fc705d02042f7bd3f477059eaa33f36443f8680331e7b4bcdes
a020ech915d96df131d9

EC_PARAMS: 06082a8648ce3d030101

label: itso pub key

ID: 303037

Usage: verify

Access: none
Private Key Object; EC

label: itso priv key

ID: 303037

Usage: sign

warning: PKCS11 function C_GetAttributeValue(ALWAYS_AUTHENTICATE) failed: rv =
CKR_ATTRIBUTE_TYPE_INVALID (0x12)

warning: PKCS11 function C_GetAttributeValue(ALWAYS_SENSITIVE) failed: rv =
CKR_ATTRIBUTE_TYPE_INVALID (0x12)

Access: sensitive, extractable, local

170 Securing Your Critical Workloads with IBM Hyper Protect Services

In Example 2-124, we use the pair of keys to sign a message and verify it. You can create two
separate programs for this task.

We retrieve a reference to the key that is stored in the Hyper Protect Crypto Servicess
instance by using session.find(). To filter the search, we specify an array with a pair of
PKCS #11 attributes and their values: the type of key (public or private key), its label (itso pub
or priv key), and its ID (007).

The reference is retrieved as a JavaScript collection, and we convert the first element to a key.

Example 2-124 The sign_verify.js sample program

var graphene = require("graphene-pkll");

var Module = graphene.Module;

var mod = Module.load("/usr/local/1ib/pkcsll-grepll-amd64.s0.2.3.90", "hpcs");
mod.initialize();

var session = mod.getSlots(0).open();

session.login(process.env.API KEY);

// Get a number of private key objects on token

col_sk=session.find({class: graphene.ObjectClass.PRIVATE KEY,label:"itso priv
key",id: Buffer.from("007")});

col_pub=session.find({class: graphene.ObjectClass.PUBLIC KEY,label:"itso pub
key",id: Buffer.from("007")});

// should be only one key returns. Check col_sk.length otherwise
sk = col_sk.items(0).toType()
pub = col _pub.items(0).toType()

// sign content
var sign = session.createSign("ECDSA_SHA512", sk);

sign.update("simple text 1");
sign.update("simple text 2");
var signature = sign.final();
console.log("Signature DSA-SHA512:", signature.toString("hex"));

// verify content

var verify = session.createVerify("ECDSA_SHA512", pub);
verify.update("simple text 1");

verify.update("simple text 2");

var verify result = verify.final(signature);
console.log("Signature DSA-SHA512 verify:", verify result);

session.Togout();
session.close();

mod.finalize();

Chapter 2. IBM Cloud Hyper Protect Crypto Services 171

We verify this sample program by running the program in a Linux terminal, as shown
Example 2-125.

Example 2-125 Signing data and verifying a program’s signature by using IBM Hyper Protect Crypto
Services

$ node sign_verify.js

Signature DSA-SHA512:
€316d9b049153acaca9758d7ba089356d560d172e65d2b292ec48ba8ac8fhef4d6e8c8b54b372eh994
a0a499d2dllel3

Signature DSA-SHA512 verify: true

Clean up your HSM afterward by deleting both the private key and the public key, as shown in
Example 2-126. Use the appropriate type pubkey for public key and privkey for the private
key.

Example 2-126 Removing your keys by using the pkcs11-tool CLI

$ pkcsll-tool --module=/usr/local/lib/pkcsll-grepll-amd64.s0.2.3.90 --login --pin
$API_KEY --delete-object --type pubkey --label "itso pub key" --id 303037 --slot 0
Using slot 0 with a present token (0x0)

$ pkcsll-tool --module=/usr/local/lib/pkcsll-grepll-amd64.s0.2.3.90 --login --pin
$API_KEY --delete-object --type privkey --label "itso priv key" --id 303037 --slot
0

Using slot 0 with a present token (0x0)

PKCS #11 Python wrapper

PyKCS11 and pkcs11 are two Python modules that you can use with IBM Hyper Protect Crypto
Services.

The PyKCS11 documentation is available at Welcome to PyKCS11 documentation.

The pkcs11 module documentation is available at Python PKCS #11 - High-Level Wrapper
API.

To install the modules on a Linux OS, consider the following items:

» For PyPKCS11, make sure that the swig tools and python-dev package are installed, and
install the module by using the following command:

pip install PyKCS11

» For pkecsll, install the python-dev package, and then install the pcks11 module by using
the following command:

pip install pkcsll

When using pkcs11, the pkcs11-grepll native library must be specified with the pkcs11.1ib()
call. The Python module must be imported into the program by using an import statement
because the pkcs11l-grepll dynamic library is loaded before initialization.

In Example 2-127 on page 173, we create one AES symmetric key that is stored in the Hyper
Protect Crypto Services HSM slot private keystore because we specified the PKCS# 11 TOKEN
attribute as true. The key does not disappear when the session closes, and it can be
retrieved later in another session. We work with slot #0.

The session is opened in read/write mode (user mode) because we create a secret key object
in the crypto unit keystore.

172 Securing Your Critical Workloads with IBM Hyper Protect Services

https://pkcs11wrap.sourceforge.io/api/index.html
https://python-pkcs11.readthedocs.io/en/latest
https://python-pkcs11.readthedocs.io/en/latest

We also specify a label and one identifier so that other applications can retrieve and use it.

The Python SDK generate_key() calls the PKCS #11 C_GenerateKey () function that is
provided by the pkcsl1l-grepll library.

Example 2-127 Creating an AES secret key by using Python

import pkcsll
import os

Initialise our PKCS #11 library
1ib = pkcs11.1ib("/usr/Tocal/1ib/pkcsll-grepll-amd64.s0.2.3.90")

slot =1ib.get_slots()
token = slot[0].get token()

Open a session on our token
with token.open(rw=True,user pin=os.getenv("API _KEY")) as session:
Generate an AES key in this session
key = session.generate key(pkcsll.KeyType.AES, 256, template={
pkcsll.constants.Attribute.LABEL: 'itsokey',
pkcsll.constants.Attribute.ID: bytes("007","ascii"),
pkcsll.constants.Attribute.TOKEN: True,
pkcsll.constants.Attribute.EXTRACTABLE: 0
1)

Ensure that the AES key was created with the correct label and ID, as shown in
Example 2-128.

The key was set as not extractable from the HSM, which means that the key cannot be
wrapped in ciphertext outside of the HSM keystores.

Example 2-128 Listing the AES key in the HSM

$ pkcsll-tool --module=/usr/local/1ib/pkcsll-grepll-amd64.s0.2.3.90 --login --pin $API_KEY
--list-object

Using slot 0 with a present token (0x0)

Secret Key Object; AES length 32

Tabel: itsokey
ID: 303037
Usage: encrypt, decrypt, verify, wrap, unwrap

warning: PKCS11 function C_GetAttributeValue(ALWAYS_SENSITIVE) failed: rv =
CKR_ATTRIBUTE_TYPE_INVALID (0x12)

Access: sensitive, never extractable, local

Chapter 2. IBM Cloud Hyper Protect Crypto Services 173

In Example 2-129, we write a simple encryption and decryption program that uses a Hyper
Protect Crypto Services nonextractable secret key. In this example, we open a session in
read-only (as anonymous), but we still use the API key to authenticate the service by
completing the following steps:

1. We retrieve the AES key that is stored in the HSM keystore by calling the PKCS #11
C_FindObjects call.

2. We generate a true random number by calling the PKCS #11 C_GenerateRandom call.
3. We perform the encryption by using the itsokey#007 that is labeled as an AES key in the
HSM by calling the PKCS #11 C_Encrypt call.

One initialization vector parameter is provided by the application for both AES encryption and
AES decryption. It has the same value for both operations.

Example 2-129 The crypt.py Python encryption example

import pkcsll

import os

import sys

1ib = pkes11.1ib("/usr/Tocal/1ib/pkcsll-grepll-amd64.s0.2.3.90")
slot =Tib.get_slots()

token = slot[0].get token()

with token.open(user pin=os.getenv("API KEY")) as session:
#retrieving our key
key = session.get key(label="itsokey',id=bytes('007"','ascii'))

iv = session.generate_random(128)

print(iv.hex())

plaintext=sys.argv[1]

print(plaintext)

ciphertext = key.encrypt(plaintext, mechanism param=iv)

print(ciphertext.hex())

The decryption program uses the same initialization vector and the encrypted text that was
provided by the crypt.py program (Example 2-130).

Example 2-130 The uncrypt.py decryption Python example

import pkcsll

import os

import sys

1ib = pkcs11l.1ib("/usr/local/1ib/pkcsll-grepll-amd64.s0.2.3.90")
slot =1ib.get_slots()

token = sTot[0].get_token()

with token.open(user_pin=os.getenv("API_KEY")) as session:
key = session.get_key(label="itsokey',id=bytes('007',"'ascii"'))

iv = bytes.fromhex(sys.argv[1])
ciphertext = bytes.fromhex(sys.argv[2])

plaintext = key.decrypt(ciphertext, mechanism_param=iv)
print(plaintext)

174 Securing Your Critical Workloads with IBM Hyper Protect Services

Example 2-131 demonstrates both programs.

Example 2-131 Using crypt.py and uncrypt.py

$ python crypt.py "Hello dangerous world"
b09c08302dcladeffc45f03e814dc699
76c1f4108291531d308d41acf3ce5fc0aled1853ce9176d077d65ch80956479c¢

$ python uncrypt.py b09c08302dcladeffc45f03e814dc699
76¢114108291531d308d41acf3ce5fc0ale41853ce9176d077d65ch80956479c¢

'Hello dangerous world'

If you are finished, you now can delete your keys from the Hyper Protect Crypto Services
instance by using pkcsll-tool, as shown in Example 2-132.

Example 2-132 Removing your AES key from the HSM

$ pkcsll-tool --module=/usr/local/1lib/pkcsll-grepll-amd64.s0.2.3.90 --login --pin
$API_KEY --list-object

Using sTot 0 with a present token (0x0)

Secret Key Object; AES length 32

label: itsokey
ID: 303037
Usage: encrypt, decrypt, verify, wrap, unwrap

warning: PKCS11 function C_GetAttributeValue(ALWAYS SENSITIVE) failed: rv =
CKR_ATTRIBUTE_TYPE_ INVALID (0x12)

Access: sensitive, never extractable, Tocal
$ pkcsll-tool --module=/usr/local/1lib/pkcsll-grepll-amd64.s0.2.3.90 --login --pin
$API_KEY --delete-object --type secrkey --label "itsokey" --id 303037
Using sTot 0 with a present token (0x0)

PKCS #11 Go wrapper

As a prerequisite, make sure that your Go environment is set up in the following way:
» Go software packages are installed on your workstation.

» The GOPATH and GOROOT environment variables are defined in your shell.

You can install the Go PKCS #11 wrapper by issuing the command that is shown in
Example 2-133.
Example 2-133 Installing the PKCS #11 library wrapper Go module on a Linux notebook

$ cd $GOPATH
$ go get github.com/miekg/pkcsll

The documentation for this library is available at GitHub.

To use this module, specify pkcs1l "github.com/miekg/pkcsll" inthe import section of your
program.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 175

https://github.com/miekg/pkcs11
https://github.com/miekg/pkcs11
https://github.com/miekg/pkcs11

In Example 2-134, the main block establishes a session and calls the example() function that
performs this basic SHA512 digest operation. The session and p (library context) variables
are made global so that you can use them in the function with no need to initialize the session
in it.

The example() function performs the cryptographic C_Digest () operation. You can modify
this function to test another PKCS #11 operation. The digest operation is done by using the
session variable as parameter on the p library context variable.

Example 2-134 The digest.go package

package main
import ("os";"fmt";pkcsll "github.com/miekg/pkcs11™)

var session pkcsll.SessionHandle
var p *pkcsll.Ctx

func example() {

p.DigestInit(session,
[1*pkcsll.Mechanism{pkcsll.NewMechanism(pkcs11l.CKM_SHA512, nil)})

hash, err := p.Digest(session, []byte(os.Args[1]))
if err 1= nil {
panic(err)
1
for _, d := range hash {
fmt.Printf("%x", d)

1

fmt.Printin()
1

func main() {
var err error
p = pkcsll.New("/usr/local/Tib/pkcsll-grepll-amd64.s0.2.3.90")
err = p.Initialize()
if err = nil {
panic(err)
1
defer p.Destroy()
defer p.Finalize()
slots, err := p.GetSlotList(true)
if err = nil {
panic(err)
1
session, err = p.OpenSession(slots[0],
pkcs11.CKF_SERIAL SESSION|pkcs1l.CKF_RW_SESSION)
if err = nil {
panic(err)
1
defer p.CloseSession(session)
apiKey, ok := os.LookupEnv("API_KEY")
if lok { panic("Must set IBMCLOUD API KEY") }
err = p.Login(session, pkcsll.CKU USER, apiKey)
if err 1= nil {
panic(err)

}

176 Securing Your Critical Workloads with IBM Hyper Protect Services

defer p.Logout(session)

example()

}

To test the digest in a Linux terminal, run the commands that are shown in Example 2-135.

Example 2-135 Testing the digest Go example in a Linux terminal

$ go build digest.go
$./digest "hello world"

309ecc489c12dbebdccdf50c92f2b4dd0ed77eeb11a7¢c7a9bcd3ca86d4cd861989dd35bc5ff499670da
34255b45b0cfd830e81f605dcf7dc5542e93ae9cd76f

$ echo -n "hello world" | sha512sum
309ecc489c12d6eb4cc40f50c902f2b4d0ed77ee511a7c7a9bcd3ca86d4cd861989dd35bc5ff499670
da34255b45b0cfd830e81f605dcf7dc5542e93ae9cd76f -

In Example 2-136, we show another example that illustrates how to extract an AES key from a
crypto unit keystore into your application by using a public key to restore it later by using the
corresponding private key. Therefore, the AES key can be restored only where the private key
is present in a keystore. If this private key is nonextractable, the AES key can be restored only

in this crypto unit.

Example 2-136 shows how to complete the following steps:

1. Create a pair of public and private keys by using RSA_PKCS.

2. Create an AES key.

3. Use the wrap() and unwrap() calls.

The wrap() function wraps the AES key with the public key. We create this key in the HSM

and make this AES key extractable (or it could not be wrapped). The program output is a

hexadecimal encoding of this AES key.

Example 2-136 The wrap.go package

package main

import ("os";pkcsll "github.com/miekg/pkcs11";"fmt" ; "encoding/hex")

var session pkcsll.SessionHandle

var p *pkcsll.Ctx

func genKeyPair() (pkcsll.ObjectHandle, pkcsll.ObjectHandle) {
publicKeyTemplate := []*pkcsll.Attribute{

pkcsll.NewAttribute(pkcsl1l.
pkcsll.NewAttribute(pkcsl1l.
pkcsll.NewAttribute(pkcsl1l.
pkcsll.NewAttribute(pkcsl1l.
pkcsll.NewAttribute(pkcsl1l.
pkcsll.NewAttribute(pkcsll.

pkcsll.NewAttribute(pkcsll.

}

CKA_TOKEN, true),

CKA_CLASS, pkcs11.CKO PUBLIC_KEY),
CKA_KEY_TYPE, pkcs11.CKK_RSA),
CKA_MODULUS_BITS, 2048),
CKA_PUBLIC_EXPONENT, [lbyte{l, 0, 1}),
CKA_WRAP, true),

CKA LABEL, "itso extraction pub"),

privateKeyTemplate := []*pkcsll.Attribute{

pkcsll.NewAttribute(pkcsl1l.
pkcsll.NewAttribute(pkcsll.

CKA CLASS, pkcs11.CKO PRIVATE KEY),
CKA_TOKEN, true),

pkcsll.NewAttribute(pkcs11l.CKA UNWRAP, true),

Chapter 2. IBM Cloud Hyper Protect Crypto Services

177

pkcs1l.NewAttribute(pkcs11.CKA_LABEL, "itso extraction priv"),
}
pk, sk, e := p.GenerateKeyPair(session,
[1*pkcsll.Mechanism{pkcs1ll.NewMechanism(pkcs1l.CKM_RSA_PKCS_KEY_PAIR_GEN,
nil)},
publicKeyTemplate, privateKeyTemplate)
if e I=nil {
panic(e)
}
return pk,sk

}

func genAESkey() (pkcsll.ObjectHandle) {
keyTemplate := []*pkcsll.Attribute{
pkcsll.NewAttribute(pkcs11.CKA TOKEN, true),
pkcs1l.NewAttribute(pkcs11.CKA_LABEL, "aes key to be moved"),
pkcs1l.NewAttribute(pkcs11.CKA_EXTRACTABLE, true),
pkcs1l.NewAttribute(pkcs11.CKA_VALUE_LEN, 16),
}
key, err := p.GenerateKey(session,
[1*pkcs1l.Mechanism{pkcsll.NewMechanism(pkcsl11.CKM_AES_KEY GEN, nil)},
keyTemplate)
if err = nil {
panic(err)
}
return key

}

func wrap(pub pkcsll.ObjectHandle, sk pkcsll.ObjectHandle , aeskey
pkcsll.0bjectHandle) []byte {
m := []*pkcsll.Mechanism{pkcsll.NewMechanism(pkcs11l.CKM_RSA PKCS, nil)}
cipher, e := p.WrapKey(
session,
m,
pub,
aeskey)
if e !I=nil {
panic(e)
}
cipherhex := make([]byte, hex.EncodedLen(Ten(cipher)))
hex.Encode(cipherhex, cipher)
return cipherhex

}

func main() {
p = pkcsll.New("/usr/local/1ib/pkcsll-grepll-amd64.s0.2.3.90")
err := p.Initialize()
if err != nil { panic(err) }
defer p.Destroy()
defer p.Finalize()
slots, err := p.GetSlotList(true)
if err != nil { panic(err)}
session, err = p.OpenSession(slots[0],
pkcs11.CKF_SERIAL_SESSION|pkcs11.CKF_RW_SESSION)
if err != nil { panic(err) }

178 Securing Your Critical Workloads with IBM Hyper Protect Services

defer p.CloseSession(session)

apiKey, ok := os.LookupEnv("API_KEY")

if lok { panic("Must set IBMCLOUD_API _KEY") }
err = p.Login(session, pkcsll.CKU_USER, apiKey)
if err != nil { panic(err) }
defer p.Logout(session)

pubkey, privkey := genKeyPair()

key := genAESkey ()

cipheredkeyhex := wrap(pubkey,privkey, key)
fmt.Printf("%s\n",cipheredkeyhex)

In Example 2-137, we see how to retrieve the private key by using the findObject PKCS #11
call. We take the first key because we are sure that there is only one key that was created.

The value of this private key can never be read by the application.
Then, we unwrap the AES key and make sure it is restored into the crypto unit keystore.

Example 2-137 unwrap.go

package main

import ("os";pkcsll "github.com/miekg/pkcs11"; "encoding/hex")
var session pkcsll.SessionHandle

var p *pkcsll.Ctx

func unwrap(sk pkcsll.0bjectHandle , cipherhex []Jbyte) {
cipher := make([]byte, hex.DecodedLen(len(cipherhex)))
_, _ = hex.Decode(cipher, cipherhex)

template := []*pkcsll.Attributef
pkcs1l.NewAttribute(pkcs1l.CKA_CLASS, pkcsll.CKO_SECRET_KEY),
pkcs1l.NewAttribute(pkcs11l.CKA_KEY_TYPE, pkcsll.CKK_AES),
pkcs1l.NewAttribute(pkcs11.CKA_TOKEN, true),
pkcs1l.NewAttribute(pkcs11.CKA_LABEL, "aes key"),
pkcs1l.NewAttribute(pkcs11.CKA_EXTRACTABLE, true),
}

_, e := p.UnwrapKey(
session,
[]*pkcsll.Mechanism{pkcsll.NewMechanism(pkcs11l.CKM_RSA_PKCS, nil)},
sk,
cipher,
template)
if e !I=nil {
panic(e)
}
}

func findObject(class uint, label string) pkcsll.ObjectHandle {
template := []*pkcsll.Attributef{
pkcsll.NewAttribute(pkcs11.CKA_CLASS, class),
pkcsll.NewAttribute(pkcs11.CKA_LABEL, label),
}

if err := p.FindObjectsInit(session, template); err != nil {

Chapter 2. IBM Cloud Hyper Protect Crypto Services

179

180

panic(err)
}
obj, _, err := p.FindObjects(session, 1)
if err 1= nil {
panic(err)
}
if err := p.FindObjectsFinal(session); err != nil {
panic(err)
}
if Ten(obj) > 0 {
return obj[0]
}
return Oxffffffff
}

func main() {
p = pkcsll.New("/usr/local/1ib/pkcsll-grepll-amd64.s0.2.3.90")
err := p.Initialize()
if err != nil { panic(err) }
defer p.Destroy()
defer p.Finalize()
slots, err := p.GetSlotList(true)
if err != nil { panic(err)}
session, err = p.OpenSession(slots[0],
pkcs11.CKF_SERIAL_SESSION|pkcs11.CKF_RW_SESSION)
if err != nil { panic(err) }
defer p.CloseSession(session)

apiKey, ok := os.LookupEnv("API_KEY")

if lok { panic("Must set IBMCLOUD_API_KEY") }
err = p.Login(session, pkcsll.CKU_USER, apiKey)
if err != nil { panic(err) }
defer p.Logout(session)

privkey := findObject(pkcs11.CKO_PRIVATE KEY,"itso extraction priv")

unwrap (privkey, []byte(os.Args[1]))

After you compile both programs by using the go build command, you can test the programs
as shown in Example 2-138. The first program creates three keys: two asymmetric keys and
one AES secret key.

We delete the secret key after it is wrapped.

Example 2-138 Creating the three keys by using Go, listing them, and deleting the secret one

$./wrap
54e1e8dc8b37b40dcedbb149d56d21c26c50caec190cba040db0ff8aa8213dbbd9a7bd789bf31189d9
159¢3a0778cc94eb6babb7b90f1abc39c53cedbd85d044bb205d2342f321e1fd102574893ef6dd98f7h
426292c83337d75417a65de254b5b0a7537cd0bed85ece93¢c7fd30b4408410398580dceaca3allobab
4333d722954333031dc8dc18cha91badache8f5530deeb6db8af8475b241ale43e135468afl117ef36c2
98096678339c028ce28c31c382e4d2ff236d4744eca24ebb0417b9a63e2d09ceb9a40ab6ffbf12feed’
6150c4f026007cc500682033a5aafch4c994cae01c8c37347b8a7f635093bd41531de78911658eabcl
5583bbd4ab3ef632cdab

Securing Your Critical Workloads with IBM Hyper Protect Services

$ pkcsll-tool --module=/usr/local/1ib/pkcsll-grepll-amd64.s0.2.3.90 --login --pin
$API_KEY --list-object

Using slot 0 with a present token (0x0)

Public Key Object; RSA 2048 bits

label: itso extraction pub
Usage: verify, wrap
Access: none

Private Key Object; RSA

label: itso extraction priv

Usage: unwrap
warning: PKCS11 function C_GetAttributeValue(ALWAYS_AUTHENTICATE) failed: rv =
CKR_ATTRIBUTE_TYPE_INVALID (0x12)

warning: PKCS11 function C_GetAttributeValue(ALWAYS_SENSITIVE) failed: rv
CKR_ATTRIBUTE_TYPE_INVALID (0x12)

Access: sensitive, extractable, local

Secret Key Object; AES length 16

label: aes key to be moved

Usage: encrypt, decrypt, verify
warning: PKCS11 function C_GetAttributeValue(ALWAYS_SENSITIVE) failed: rv
CKR_ATTRIBUTE_TYPE_INVALID (0x12)

Access: sensitive, extractable, local

$ pkcsll-tool --module=/usr/local/1ib/pkcsll-grepll-amd64.s0.2.3.90 --login --pin
$API_KEY --delete-object --type secrkey --label "aes key to be moved"
Using sTot 0 with a present token (0x0)

We can restore our AES key by using the hexadecimal dump, as shown in Example 2-139.
You might notice the label changed because we specified it in the unwrap.go program.

Example 2-139 Restoring the AES key with a different label

$./unwrap
54e1e8dc8b37b40dcedbb149d56d21c26c50caec190cba040db0ff8aa8213dbbd9a7bd789bf31189d9
159¢3a0778cc94eb6babb7b90f1labc39c53cedbd85d044bb205d23421321e1fd102574893ef6dd98f7h
426292c83337d75417a65de254b5b0a7537cd0bed85ece93c7fd30b44084f0398580dceaca3all9bab
4333d722954333031dc8dc18c5a91badacse8f5530dee6db8af8475b241aled43e135468afl117ef36c2
98096678339c028ce28c31c382e4d2ff236d4744eca24ebb0417b9a63e2d09ceb9a40ab6ffbfl2feed’
6150c4f026007cc500682033a5aafcb4c994cae01c8c37347b8a71635093bd4f531de78911658eabcl
5583bbd4a53ef632cdab

$ pkcsll-tool --module=/usr/local/lib/pkcsll-grepll-amd64.s0.2.3.90 --Togin --pin
$API_KEY --list-object --type secrkey

Using slot 0 with a present token (0x0)

warning: PKCS11 function C_GetAttributeValue(VALUE LEN) failed: rv =
CKR_ATTRIBUTE_TYPE_INVALID (0x12)

Secret Key Object; AES

label: aes key

Usage: none
warning: PKCS11 function C_GetAttributeValue(ALWAYS SENSITIVE) failed: rv =
CKR_ATTRIBUTE_TYPE_INVALID (0x12)

Chapter 2. IBM Cloud Hyper Protect Crypto Services 181

Access: sensitive, extractable

Using Oracle and IBM Db2 with a PKCS #11 native library
In this section, we describe IBM Db2® native encryption and Oracle Transparent Data
Encryption (TDE).

Db2 native encryption

IBM Db2 native encryption protects key database files and database backup images from
inappropriate access while they are stored on external storage media. The database system
automatically encrypts and decrypts data when it is used by authorized users and
applications.

Db2 native encryption uses a two-tiered key hierarchy:

» Data is encrypted with a DEK. The DEK is encrypted with a master key and stored in the
database or a backup image. A unique DEK is generated by Db2 for each encrypted
database and for each encrypted backup.

» A master key is used to encrypt a DEK. Each encrypted database is associated with one
master key at one time.

Hyper Protect Crypto Services provides a secure solution to the master key. The online
tutorial at Using Hyper Protect Crypto Services PKCS #11 for IMB Db2 native encryption
explains how to store your master keys in an Hyper Protect Crypto Services instance.

Oracle Transparent Data Encryption

TDE encrypts sensitive data in databases like the Oracle database. With TDE, a database
system encrypts data on database storage media, such as table spaces and files, and on
backup media. The database system automatically and transparently encrypts and decrypts
data when it is used by authorized users and applications. Database users do not need to be
aware of TDE, and database applications do not need to be adapted specifically for TDE.

TDE uses a two-tiered key hierarchy, which is composed of the following items:

» A TDE DEK, which is used to encrypt and decrypt data.
» A TDE master encryption key that is used to encrypt and decrypt the TDE DEK.

Hyper Protect Crypto Services provides a secure solution to the TDE master key.

An online tutorial to configure Oracle TDE is available at Using Hyper Protect Crypto Services
PKCS #11 for Oracle Transparent Database Encryption.

2.5.2 How to use the IBM Enterprise PKCS #11 over gRPC API

182

GREP11 implements the IBM Enterprise PKCS #11 API over the Google Remote Procedure
Call (RPC) protocol (gRPC). GREP11 is a stateless interface that is like the industry-standard
PKCS #11 API but with the following differences:

» The application is responsible for storing the PKCS #11 objects: GREP11 is stateless and
does not use any keystores. Cryptographic material, such as keys, is stored (encrypted)
outside of the HSM by the application. You might consider using Key Protect standard
keys for this purpose. This material is safe because it wrapped with the HSM master key of
IBM Hyper Protect Crypto Services. It is unusable outside the HSM.

Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-tutorial-db2-pkcs11
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-tutorial-tde-pkcs11
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-tutorial-tde-pkcs11

» PKCS #11 libraries that are available in different programming languages cannot be used
with GREP11. Instead, IBM publicly provides a GREP11 SDK for Go and Node.js and
JavaScript that implements the calls to the GREP11 Hyper Protect Crypto Services

instance.

» GREP11 offers convenient functions to process data in one pass: EncryptSingle(),
ReencryptSingle(), DecryptSingle(), DigestSingle(), SignSingle(), and

VerifySingle().

GREP11 provides the RewrapKeyBlob () function, which reencrypts generated key binary
large objects (BLOBs) with a new committed master key. You use this function if you rotate
the master key of your Hyper Protect Crypto Services HSM. Your application is
responsible for rewrapping the application cryptographic material by using the future key,
much like PKCS #11 keystore materials.

The IBM Hyper Protect Crypto Services GREP11 API reference documentation is available at
Cryptographic operations: GREP11 API.

Table 2-5 lists the various GREP11 functions that are available.

Table 2-5 GREP11 functions

Category

Function names

Key generation

GenerateKey ()

GenerateKeyPair()
DeriveKey ()

Message digest DigestInit()
Digest()
DigestUpdate()
DigestFinal()
DigestSingle()

Signature SignSingle() and VerifySingle()
SignInit(), Sign(), SignUpdate(), and SignFinal ()
VerifyInit(), Verify(), VerifyUpdate(), and VerifyFinal ()

Encryption and decryption EncryptSingle() and DecryptSingle()
DecryptInit(), Decrypt(), DecryptUpdate(), and
DecryptFinal ()

EncryptInit(), Encrypt(), EncryptUpdate(), and
EncryptFinal ()

Random number generation GenerateRandom()

Key protection WrapKey (), UnwrapKey (), and RewrapKeyBlob()
Retrieving and modifying GetAttributeValue(), GetMechanismInfo(), and
attributes for keys GetMechanismList()

Administration SetAttributeValue()

Using GREP11 APl is like using the PKCS #11 API in the following ways:
» You establish a session object when you establish the connection with the GREP11

service.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 183

https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-grep11-api-ref

» You prepare a message that corresponds to a PKCS #11 function. The message includes
the following components:

— The PKCS #11 mechanism, which can include its required parameter, such as type of
elliptic curve or an initialization vector.

— The templates of the keys that are created within the HSM by the PKCS #11 function.

» The message is sent to the GREP11 Hyper Protect Crypto Services that performs the
cryptographic operation and returns the results wrapped with the HSM Master Key. This
return data is equivalent to what is stored in the keystores for a PKCS #11 call. This data is
unusable outside the crypto units of the Hyper Protect Crypto Services.

For more information about the GREP11 API cryptographic operations, see Cryptographic
operations: GREP11 API.

For more information about how to set up the GREP11 API IBM libraries for Go, Node.js, and
JavaScript programming languages with examples, see GitHub.

Retrieving IBM Hyper Protect Crypto Services connection information

To establish the connection between your application and the GREP11 service, you need the
following pieces of information:

» Your IBM Cloud IAM endpoint, which can be found at:

https://iam.cloud.ibm.com

» Your Hyper Protect Crypto Services instance ID and its PKCS #11 endpoint URL, as
shown in the IBM Console in Figure 2-89.

Resource list |
hpCS-SVC °Anwe e z petalts
Getting started Crypto units Location
Overview

us-south].[AZ3-CS91.[001.[03] © INITIALIZED
Instance policies
Key management service key [us-south].[AZ1-C57].[01].[16] © INITIALIZED
ngs L]

"

Key management service keys

Enterprise PKCS #11 keystores .

Enterprise PKCS #11 keys

Instance Key management endpoint URL Enterprise PKCS #11 endpoint URL ‘

Instance 1D

d300bb83 - 1807 -4d6b- 3927 - 3a1a2882e2bT,

Resource gr Private
25bBB6 (=} epll.private.us-south. hs-crypto.cloud. ibm. com: 113098 ’?@

Figure 2-89 Retrieving the PKCS #11 endpoint and IBM Hyper Protect Crypto Services instance ID

o

The Hyper Protect Crypto Services instance ID also can be retrieved in a terminal by
running ibmcloud resource service-instances --long command or the command
ibmcloud tke cryptounits with the CLOUDTKEFILES environment variable.

184 Securing Your Critical Workloads with IBM Hyper Protect Services

https://github.com/ibm-developer/ibm-cloud-hyperprotectcrypto
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-grep11-api-ref#
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-grep11-api-ref#
https://iam.cloud.ibm.com

» An API key to access your service that can be generated in the following ways:

— By creating a service ID, as described in “Creating an IBM service 1D on your IBM
Cloud account” on page 107.

— By creating an API key for your IBM Cloud account, as shown in Example 2-140.

Example 2-140 Creating an API key for your IBM Cloud account

$ ibmcloud iam api-key-create apikeyhpcs -d "API key for Hyper Protect
Crypto Services PKCS11"

Creating API key apikeyhpcs under 537544c2222297f40ed689e8473e7849 as
itso.author@ibm.com...

0K

API key apikeyhpcs was created

Preserve the API key! It cannot be retrieved after it's created.

1D ApiKey-4cbfb9ab-5835-4b19-9¢99-b0cff1b9679d

Name apikeyhpcs

Description API key for Hyper Protect Crypto Services PKCS11
Created At 2021-05-11T13:01+0000

API Key Yh7CXSg4qnK-VcqeKgsjZwXefAB7 jSCKMCMz4b-Bn_Zm
Locked false

Using GREP11 with the Go programming language
In this section, we guide you in the installation of Go, and we provide some examples of using
of Go with GREP11.

Go GREP11 IBM SDK installation
Install the Go run time on your OS. On RHEL, run the following command:

yum module install go-toolset
Make sure that your GOPATH and GOROOT environment variables are set up.

You can install the necessary modules by using the go get command, as shown in
Example 2-141. Example 2-143 on page 186 demonstrates how to create your own program.

Example 2-141 Installing the IBM GREP11 Go module on your system

$ go get github.com/IBM-Cloud/hpcs-grepll-go/epll
$ go get github.com/IBM-Cloud/hpcs-grepll-go/grpc
$ go get github.com/IBM-Cloud/hpcs-grepll-go/util

Using GREP11 with Go examples
Create and edit the files for this section in your $GOPATH/src directory.

A complete list of code examples and cryptographic operations can be found at GitHub.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 185

https://github.com/IBM-Cloud/hpcs-grep11-go/blob/master/examples/server_test.go

In this section, we create three programs for use as examples:

» genkey.go creates an AES key and a random number as an initialization vector. The
results are encoded by using hexadecimal, and they are reused by the two other programs
as arguments.

» encrypt.go encrypts a message that is provided as a third argument that outputs the
encrypted result in hexadecimal encoding. This result is wrapped by the HSM master key.

» decrypt.go decrypts the encrypted text by using the AES wrapped key and initialization
vector.

You can easily reuse the skeleton of these examples by writing a function with your business
logic that is called by the main() function. Replace the genkey(), encrypt(), and decrypt()
functions with your own naming conventions.

The main() function initializes the connection with the Hyper Protect Crypto Services
instance. It creates a grpc.ClientConn object that is used to create the CryptoClient session
object whose functions send the request to the Hyper Protect Crypto Services instance. They
are defined as global variables in our examples.

To establish the connection, four environment variables must be provided for your service.
Ours are shown in Example 2-142. To see how to retrieve these parameters for your Hyper
Protect Crypto Services instance, see “Retrieving IBM Hyper Protect Crypto Services
connection information” on page 184.

Example 2-142 Environment variables

$ export HPCS_INSTANCE_ID=34b5af99-c165-4863-af2e-aaa6d7af8137
$ export API_KEY=8vFwZ3yQIyG8iDIOk2UYKRAWNh40i31-vawAvcZE50DX

$ export EP11 ADDR=epll.us-south.hs-crypto.cloud.ibm.com:11491
$ export IAM_ENDPOINT=https://iam.cloud.ibm.com

In Example 2-143, we show the genkey () function in the genkey.go program. Note the
following items:

» The util.AttributeMap function creates a PKCS #11 key template.

» The epll.EP11Attribute function creates a PKCS #11 object by using an array of pair of
PKCS #11 attributes, which are defined as ep11.CKA_XXX, and their PKCS #11 value,
which is defined as ep11.CKX_XXX.

Example 2-143 The genkey.go package

package main

import (
"os";"context";"crypto/tls";"fmt";"encoding/hex"
"github.com/IBM-Cloud/hpcs-grepll-go/epll"
pb "github.com/IBM-Cloud/hpcs-grepll-go/grpc"
"github.com/IBM-Cloud/hpcs-grepll-go/util"
"google.golang.org/grpc/credentials"
grpc "google.golang.org/grpc";

var eplladdr string

var callOpts []grpc.DialOption
var conn *grpc.ClientConn

var cryptoClient pb.CryptoClient

186 Securing Your Critical Workloads with IBM Hyper Protect Services

func Genkey() {

keyLen := 128 // bits

keyTemplate := epll.EP11Attributes{
epl1.CKA_KEY_TYPE: epll.CKK_GENERIC_SECRET,
epll.CKA_CLASS: epl1.CKO_SECRET_KEY,
epll.CKA_VALUE_LEN: keylen / 8,
epll.CKA_EXTRACTABLE: false,

}

keygenmsg := &pb.GenerateKeyRequest{
Mech: &pb.Mechanism{Mechanism: epll.CKM_AES_KEY_GEN},
Template: util.AttributeMap(keyTemplate),

}

generateKeyStatus, err := cryptoClient.GenerateKey(context.Background(),
keygenmsg)

keyhex := make([]byte, hex.EncodedLen(Ten(generateKeyStatus.KeyBytes)))
hex.Encode(keyhex, generateKeyStatus.KeyBytes)
fmt.PrintIn("AES key: " +string(keyhex))

if err != nil { panic(fmt.Errorf("GenerateKey Error: %s", err)) }

rngTemplate := &pb.GenerateRandomRequest {
Len: (uint64)(epll.AES_BLOCK SIZE),
}

rng, err := cryptoClient.GenerateRandom(context.Background(), rngTemplate)

if err != nil { panic(fmt.Errorf("GenerateRandom Error: %s", err)) }

iv := rng.Rnd[:epl1.AES_BLOCK_SIZE]

ivhex := make([]byte, hex.EncodedLen(Ten(iv)))
hex.Encode(ivhex, iv)

fmt.PrintIn("Generated IV: "+string(ivhex))

}

func main() {
instanceld, ok := os.LookupEnv("HPCS_INSTANCE_ID")
if lok { panic("Must set HPCS_INSTANCE_ID") }
apiKey, ok := os.LookupEnv("API_KEY")
if lok { panic("Must set IBMCLOUD_API_KEY") }
jamurl , ok := os.LookupEnv("IAM_ENDPOINT")
if lok { panic("Must set IAM_ENDPOINT ") }
eplladdr , ok = os.LookupEnv("EP11_ADDR")
if lok { panic("Must set EP11_ADDR") }

callOpts = [Jgrpc.DialOption{
grpc.WithTransportCredentials(credentials.NewTLS(&t1s.Config{})),
grpc.WithPerRPCCredentials (&util.IAMPerRPCCredentials{
APIKey: apiKey,
Endpoint: iamurl,
Instance: instanceld,

1,

Chapter 2. IBM Cloud Hyper Protect Crypto Services

187

var err error

conn, err = grpc.Dial(eplladdr, callOpts...)

if err != nil { panic(fmt.Errorf("Could not connect to server: %s
defer conn.Close()

, err)) }

cryptoClient = pb.NewCryptoClient(conn)

Genkey ()
}

The PCKCS #11 C_GenerateKey () call is performed in two steps with GREP11:

1. A message is prepared by creating a pb.GenerateKeyRequest object that takes the
mechanism and the key templates as input parameters.

2. The request is sent to the IBM Hyper Protect Crypto Services instance by using the
cryptoClient.GenerateKey() call that uses the crytoClient connection object.

As result, the function returns the generated key that is wrapped by using the HSM master
key.

You can retrieve more code snippets for each GREP11 call with inputs and output messages,
as described at Cryptographic operations: GREP11 API.

Example 2-144 shows the program encrypt.go, which takes the AES key and IV initialization
vector as parameters and a text file as a third argument.

The wrapped key is passed by the program to the Hyper Protect Crypto Services instance
when building the pb.EncryptInitRequest message. The encryption mechanism and the
initialization vector are passed as a parameter. The mechanism pb.Mechanism{Mechanism
builds the message structure. The function util.SetMechParm is a helper function that returns
a mechanism parameter with the correct format.

Example 2-144 The encrypt.go package

package main

import (
"os";"context";"crypto/tls";"fmt";"encoding/hex"
"github.com/IBM-Cloud/hpcs-grepll-go/epll"”
pb "github.com/IBM-Cloud/hpcs-grepll-go/grpc"
"github.com/IBM-Cloud/hpcs-grepll-go/util"
"google.golang.org/grpc/credentials";grpc "google.golang.org/grpc"
)

var eplladdr string

var callOpts [Jgrpc.DialOption
var conn *grpc.ClientConn

var cryptoClient pb.CryptoClient

func Encrypt() {

cipher := make([]byte, hex.DecodedLen(len(os.Args[1])))
hex.Decode(cipher, []Jbyte(os.Args[1]))

iv := make([]byte, hex.DecodedLen(Ten(os.Args[2])))
hex.Decode(iv, []byte(os.Args[2]))

188 Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-grep11-api-ref

encryptInitRequest := &pb.EncryptInitRequest{
Mech: &pb.Mechanism{Mechanism: epll.CKM_AES_CBC_PAD, Parameter:
util.SetMechParm(iv)},
Key: cipher, // you may want to store this

}

encryptInitResponse, err := cryptoClient.EncryptInit(context.Background(),
encryptInitRequest)
if err = nil {
panic(fmt.Errorf("Failed EncryptInit [%s]", err))
}

plain := []byte(os.Args[3])

encryptUpdateRequest := &pb.EncryptUpdateRequest{
State: encryptlnitResponse.State,
Plain: plain[:20],
}
encryptUpdateResponse, err := cryptoClient.EncryptUpdate(context.Background(),
encryptUpdateRequest)
if err = nil {
panic(fmt.Errorf("Failed EncryptUpdate [%s]", err))
}

ciphertext := encryptUpdateResponse.Ciphered[:]
encryptUpdateRequest = &pb.EncryptUpdateRequest{
State: encryptUpdateResponse.State,
Plain: plain[20:],
}
encryptUpdateResponse, err = cryptoClient.EncryptUpdate(context.Background(),
encryptUpdateRequest)
if err != nil { panic(fmt.Errorf("Failed EncryptUpdate [%s]", err)) }
ciphertext = append(ciphertext, encryptUpdateResponse.Ciphered...)
encryptFinalRequest := &pb.EncryptFinalRequest{
State: encryptUpdateResponse.State,
}
encryptFinalResponse, err := cryptoClient.EncryptFinal(context.Background(),
encryptFinalRequest)
if err != nil { panic(fmt.Errorf("Failed EncryptFinal [%s]", err)) }
ciphertext = append(ciphertext, encryptFinalResponse.Ciphered...)
ciphertexthex := make([]byte, hex.EncodedLen(len(ciphertext)))
hex.Encode(ciphertexthex, ciphertext)
fmt.PrintIn("Encrypted message: "+string(ciphertexthex)+"\n")

}

func main() {
instanceld, ok := os.LookupEnv("HPCS_INSTANCE_ID")
if lok { panic("Must set HPCS_INSTANCE_ID") }
apiKey, ok := os.LookupEnv("API_KEY")
if lok { panic("Must set IBMCLOUD_API_KEY") }
jamurl , ok := os.LookupEnv("IAM_ENDPOINT")
if lok { panic("Must set IAM_ENDPOINT ") }
eplladdr , ok = os.LookupEnv("EP11_ADDR")
if lok { panic("Must set EP11_ADDR") }

Chapter 2. IBM Cloud Hyper Protect Crypto Services 189

callOpts = [Jgrpc.DialOption{
grpc.WithTransportCredentials(credentials.NewTLS(&t1s.Config{})),
grpc.WithPerRPCCredentials (&util.IAMPerRPCCredentials{
APIKey: apiKey,
Endpoint: iamurl,
Instance: instanceld,

1,

var err error
conn, err = grpc.Dial(eplladdr, callOpts...)

if err != nil { panic(fmt.Errorf("Could not connect to server: %s
defer conn.Close()

, err)) }

cryptoClient = pb.NewCryptoClient(conn)

Encrypt ()

In Example 2-145, decrypt.go works in a similar way as encrypt.go.

Example 2-145 The decrypt.go package

package main

import (
"os";"context";"crypto/tis";"fmt";"encoding/hex"
"github.com/IBM-Cloud/hpcs-grepll-go/epll”
pb "github.com/IBM-Cloud/hpcs-grepll-go/grpc"
"github.com/IBM-Cloud/hpcs-grepll-go/util™
"google.golang.org/grpc/credentials";grpc "google.golang.org/grpc"

)

var eplladdr string

var callOpts [Jgrpc.DialOption

var conn *grpc.ClientConn

var cryptoClient pb.CryptoClient

func Decrypt() {
cipher := make([]byte, hex.DecodedLen(len(os.Args[1])))
hex.Decode(cipher, []byte(os.Args[1]))

iv := make([]byte, hex.DecodedLen(len(os.Args[2])))
hex.Decode(iv, []byte(os.Args[2]))

ciphertext := make([]byte, hex.DecodedLen(Ten(os.Args[3])))
hex.Decode(ciphertext, []byte(os.Args[3]))

decryptInitRequest := &pb.DecryptInitRequest{
Mech: &pb.Mechanism{Mechanism: epll.CKM_AES CBC_PAD, Parameter:
util.SetMechParm(iv)},
Key: cipher,
}
decryptInitResponse, err := cryptoClient.DecryptInit(context.Background(),
decryptInitRequest)
if err != nil { panic(fmt.Errorf("Failed DecryptInit [%s]", err)) }

decryptUpdateRequest := &pb.DecryptUpdateRequest {

190 Securing Your Critical Workloads with IBM Hyper Protect Services

State: decryptInitResponse.State,
Ciphered: ciphertext[:16],
}
decryptUpdateResponse, err := cryptoClient.DecryptUpdate(context.Background(),
decryptUpdateRequest)
if err != nil { panic(fmt.Errorf("Failed DecryptUpdate [%s]", err)) }

plaintext := decryptUpdateResponse.Plain[:]
decryptUpdateRequest = &pb.DecryptUpdateRequest{
State: decryptUpdateResponse.State,
Ciphered: ciphertext[16:],
}
decryptUpdateResponse, err = cryptoClient.DecryptUpdate(context.Background(),
decryptUpdateRequest)
if err != nil { panic(fmt.Errorf("Failed DecryptUpdate [%s]", err)) }
plaintext = append(plaintext, decryptUpdateResponse.Plain...)

decryptFinalRequest := &pb.DecryptFinalRequest{
State: decryptUpdateResponse.State,

}

decryptFinalResponse, err := cryptoClient.DecryptFinal(context.Background(),
decryptFinalRequest)

if err != nil { panic(fmt.Errorf("Failed DecryptFinal [%s]", err)) }

plaintext = append(plaintext, decryptFinalResponse.Plain...)

fmt.Printf("Decrypted message: %s\n", plaintext)
}

func main() {
instanceld, ok := os.LookupEnv("HPCS_INSTANCE_ID")
if lok { panic("Must set HPCS_INSTANCE_ID") }
apiKey, ok := os.LookupEnv("API_KEY")
if ok { panic("Must set IBMCLOUD API_KEY") }
jamurl , ok := os.LookupEnv("IAM_ENDPOINT")
if lok { panic("Must set IAM_ENDPOINT ") }
eplladdr , ok = os.LookupEnv("EP11 ADDR")
if lok { panic("Must set EP11_ADDR") }

callOpts = [Jgrpc.DialOption{
grpc.WithTransportCredentials(credentials.NewTLS(&t1s.Config{})),
grpc.WithPerRPCCredentials(&util.IAMPerRPCCredentials
APIKey: apiKey,
Endpoint: iamurl,
Instance: instanceld,
})’
}
var err error
conn, err = grpc.Dial(eplladdr, callOpts...)
if err != nil { panic(fmt.Errorf("Could not connect to server: %s", err)) }
defer conn.Close()
cryptoClient = pb.NewCryptoClient(conn)
Decrypt()

Chapter 2. IBM Cloud Hyper Protect Crypto Services

191

192

To compile the three programs, run the commands that are shown in Example 2-146.

Example 2-146 Compiling the GREP11 encryption example

$ cd $GOPATH/src

$ go build genkey.go
$ go build encrypt.go
$ go build decrypt.go

You can test the example by running the command that is shown in Example 2-147.

The AES key and the IV initialization vector are used as arguments to the encrypt and decrypt
program. These arguments were generated by the HSM, but they must be stored within your
shell environment. The shell environment is safe because they are wrapped by the HSM
master key that we cannot access.

Using the HSM master key, we encrypt and decrypt, inside the HSM, the message "Hello
world, this message is going to be ciphered", which is passed as a third argument. This
operation is also performed within the HSM.

Example 2-147 Running the GREP11 encryption example

$./genkey

AES key:
006€a0671d84899442dd073cabe35
61abf0000000000008d260000000000000001123411f43eabce6362ed1b6d72f26119c9e82b165f9ab6f4a409dba
966d5de7e832e6b703chb79870ba9e847ce80605c592289a35¢c2085ee08b163ca7a8d7dalab28c24447ch997f3b
1a39¢759419a9ab75212070d14a94d3b7cf5afda879ch77a3215493f02889ac2a86e7037debf4a51d757bcf5207
90f22bh95f1dcc3d043e46c7461442bba3e87a2ff715a43a9€22367081994e10c6290fd28eb5d696ed899265chca
b0e6811cdb8e549e867fall3db6f4b594c8f6041ff9372f4741259¢e6

Generated IV: 64e08c81325e9ad4efl2a9c3baf0695e7

$./encrypt
006€a0671d84899442dd073cabe35
61abf0000000000008d260000000000000001123411f43eabce6362ed1b6d72f26119c9e82b165f9ab6f4a409dba
966d5de7e832e6b703chbb79870ba9e847ce80605¢c592289a35c2085ee08b163ca7a8d7dalab28c24447ch997f3b
1a39c759419a9ab75212070d14a94d3b7cf5afda879ch77a32f54931f02889ac2a86e7037debf4a51d757bcf5207
90f22b95f1dcc3d043e46c7461442bba3e87a2ff715a43a9e2236708f994e10c6290fd28eb5d696ed899265chca
b0e6811cdb8e549e8617fall3db6T4b594c8T60411f9372f474F259e6 64e08c81325e9a4ef12a9c3baf0695e7
"Hello world, this message is going to be ciphered"

Encrypted message:
d6b963a8h66da5855e752174d2848ebc6310e9646908a4776852f3c9823acc85ce6356e8587dbc8c4a00b829641
299441536d139c7f4ba7635bff9c3c30c822a

$./decrypt
006€a0671d84899442dd073ca5e35
61abf0000000000008d260000000000000001123411f43eabce6362ed1b6d72f26119c9e82b165f9a6f4a409dba
966d5de7e832e6b703chbb79870ba9e847ce80605¢c592289a35c2085ee08b163ca7a8d7dalab28c24447ch997f3b
1a39¢759419a9ab75212070d14a94d3b7cf5afda879ch77a3215493f02889ac2a86e7037debf4a51d757bcf5207
90f22b95f1dcc3d043ed46c7461442bba3e87a2ff715a43a9€22367081994e10c6290fd28eb5d696ed899265chca
b0e6811cdh8e549e86f7fall3db6f4b594c8f6041ff9372f4741259e6 64e08c81325e9adefl2a9c3baf0695e7
d6b963a8b66da5855e752174d2848ebc6310e9646908a477685213c9823acc85ce6356e8587dbc8c4a00b829641
299441536d139c7f4ba7635bff9c3c30c822a

Decrypted message: Hello world, this message is going to be ciphered

Securing Your Critical Workloads with IBM Hyper Protect Services

HSM Master key rotation and the RewrapKeyBlob GREP11 function

A master key rotation invalidates all the wrapped keys that your application might have stored.
One of the differences between the PKCS #11 keys and Key Protect root keys is that it is the
responsibility of the application to rewrap its cryptographic material by using the future master
key.

The external application keys rewrap should be carefully planned with the Hyper Protect
Crypto Services instance administrator because the operation must be done by using the
Hyper Protect Crypto Services HSM while the new master key is generated, loaded, and
committed, but not yet activated because no master key can be read until this process is
complete. In this state, the application keys are still readable by the HSM by using the old
master key (still in the current master key register).

The basic rewrap.go program (Example 2-148) takes the encrypted AES encryption key that
was used in Example 2-147 on page 192 and rewraps it with the future master key that is not
yet committed. This function can be used only in a master key that is committed in the new
master key register, and the function takes a key bytes array as the input parameter to return
the wrapped version of the key with the future master key.

Example 2-148 The rewrap.go package

package main

import (
"os";"context";"crypto/tls";"fmt";"encoding/hex"
pb "github.com/IBM-Cloud/hpcs-grepll-go/grpc"
"github.com/IBM-Cloud/hpcs-grepll-go/util™®
"google.golang.org/grpc/credentials"”
grpc "google.golang.org/grpc";

)

var eplladdr string

var callOpts [Jgrpc.DialOption

var conn *grpc.ClientConn

var cryptoClient pb.CryptoClient

func Rewrap() {
cipher := make([]byte, hex.DecodedLen(len(os.Args[1])))
hex.Decode(cipher, []byte(os.Args[1]))

RewrapKeyBlobRequest := &pb.RewrapKeyBlobRequest {
WrappedKey: cipher,
}

RewrapKeyBlobResponse, err := cryptoClient.RewrapKeyBlob(context.Background(),
RewrapKeyB1lobRequest)
if err != nil { panic(fmt.Errorf("Could not connect to server: %s", err)) }

ciphertexthex := make([]byte,
hex.EncodedLen (1en(RewrapKeyBlobResponse.RewrappedKey)))
hex.Encode(ciphertexthex, RewrapKeyBlobResponse.RewrappedKey)
fmt.PrintIn("New AES wrapped key: "+string(ciphertexthex)+"\n")
}

func main() {
instanceld, ok := os.LookupEnv("HPCS_ INSTANCE_ ID")
if lok { panic("Must set HPCS_INSTANCE_ ID") }
apiKey, ok := os.LookupEnv("API_KEY")

Chapter 2. IBM Cloud Hyper Protect Crypto Services 193

194

if lok { panic("Must set IBMCLOUD_API_KEY") }
jamurl , ok := os.LookupEnv("IAM_ENDPOINT")
if lok { panic("Must set IAM_ENDPOINT ") }
eplladdr , ok = os.LookupEnv("EP11_ADDR")

if lok { panic("Must set EP11_ADDR") }

callOpts = [Jgrpc.DialOption{
grpc.WithTransportCredentials(credentials.NewTLS(&t1s.Config{})),
grpc.WithPerRPCCredentials (&util.IAMPerRPCCredentials{
APIKey: apiKey,
Endpoint: iamurl,
Instance: instanceld,
DR
}

var err error
conn, err = grpc.Dial(eplladdr, callOpts...)
if err = nil { panic(fmt.Errorf("Could not connect to server: %s",

err)) }

defer conn.Close()

cryptoClient = pb.NewCryptoClient(conn)
Rewrap ()
}

We generate an AES key in Example 2-149 to encrypt a message.

Example 2-149 Generating an AES key

$./genkey

AES key:
00d451b1a6e694592d88
5ef89ee8b0b4760000000000008d260000000000000001123450971f059c46ea487a2795d7e7632271
2455efd73d81229fad47221593c092964e871ec8dd5b9dc1929chf5b0e28cb554b0f85e4486e6e 1848
b6fd4a517c00f012c720bce72812eb62cf8df9fb15701f9c5d900a33a6e23a33fa87ae467dabe63706
2c4a7cb52b01c7c6d1703a1f42f749bbaca3270a00bec08280640d9¢c118cf4816fbddbab54a647e7cca
2b0c1e3d260915b869a3c5a3ce31c3e6205484338399b7a974e74bddd991a47992f83fda07159eb59f
dccf5a520daa95d807a5

Generated IV: 0768f1bbfb444430d5c829f3439e6b2c

$./encrypt
00d451b1a6e694592d88
5ef89ee8b0b4760000000000008d260000000000000001123450971f059c46ea487a2795d7e7632271
2455efd73d81229fad47221593c092964e871ec8dd5b9dc1929chf5b0e28chb554b0f85e4486e6e 1848
b6fd4a517c00f012c720bce72812eb62cf8df9fb15701f9c5d900a33a6e23a33fa87ae467dabe63706
2c4a7c52b01c7c6d1703alf42f749bbaca3270a00bec08280640d9c118cf4816fbd4bab54a647e7cca
2b0c1e3d260915b869a3c5a3ce31c3e6205484338399b7a974e74bddd991a47992f83fda07159eb59f
dccfbab20daa95d807a5 0768f1bbfb444430d5c¢829f3439e6b2c "Hello world, this is a new
secret message"

Encrypted message:
584¢2959d8575166636fefablf3cedfc44020784340aa27523b15¢c73f1d940630b91bb01b1166ebfa9
f9e7a32eeead07

$./decrypt
00d451b1a6e694592d88
5ef89ee8b0b4760000000000008d2600000000000000011234509711059c46ea487a2795d7e7632271

Securing Your Critical Workloads with IBM Hyper Protect Services

2455efd73d81229fad47221593c092964e871ec8dd5b9dc1929chf5b0e28ch554b0f85e4486e6ef848
b6fd4a517c00f012c720bce72812eb62cf8df9fb15701f9c5d900a33a6e23a33fa87ae467dabe63706
2c4a7c52b01c7c6d1703a1f42f749bbaca3270a00bec08280640d9c118cf4816fbd4bab54a647e7cca
2b0c1e3d260915b869a3cha3ce31c3e6205484338399b7a974e74bddd991a47992f83fda07f59eb59f

dccfbab20daad5d807a5 0768f1bbfb444430d5c82913439e6b2c

584¢2959d8575166636fefablf3cedfc44020784340aa27523b15¢c73f1d940630b91bb01b1166ebfa9

f9e7a32eeead07

Decrypted message: Hello world, this is a new secret message

To generate a new master key, we rotate the previous master key part in our workstation and

generate two new key parts, as shown in Example 2-150.

Example 2-150 Rotating the HSM master key: Generating new key parts

$ cd $CLOUDTKEFILES

$ mkdir SAV

$ mv *.mkpart SAV

$ ibmcloud tke mks

No files containing an EP11 master key part were found

$ ibmcloud tke mk-add --random

Enter a description for the key part:

> key part first

Enter a password to protect the key part:
>

Reenter the password to confirm:

>

Passwords did not match. Try again.
Enter a password to protect the key part:
>

Reenter the password to confirm:

>

0K

A key part was created.

The available EP11 master key parts on this workstation are:

KEYNUM DESCRIPTION VERIFICATION PATTERN
1 key part first afd5ach33e82a9bdb5¢c5705638b639cc
b8161cc8048c7aa015154959b45e3f0e

$ ibmcloud tke mk-add --random

Enter a description for the key part:

> key part last

Enter a password to protect the key part:
>

Reenter the password to confirm:

>

0K

A key part was created.

The available EP11 master key parts on this workstation are:

KEYNUM DESCRIPTION VERIFICATION PATTERN

1 key part first afdbacb33e82a9bdb5¢c5705638b639cc
b8161cc8048c7aa015154959b45e3f0e

2 key part last 171dc2cf0931e317c82c0edc96f1c465

86c8765f4b94d9b24189a0cfOfdd43cf

Chapter 2. IBM Cloud Hyper Protect Crypto Services

195

We load the new key parts into the new master key register by using the ibmcloud tke
cryptounit-mk-load command (Example 2-151).

Example 2-151 Rotating the HSM master key: Loading the new key into the new master key register

$ ibmcloud tke cryptounit-mk-load

KEYNUM DESCRIPTION VERIFICATION PATTERN

1 key part first afdbach33e82a9bdb5¢5705638b639cc
b8161cc8048c7aa015154959b45e3f0e

2 key part Tast 171dc2cf0931e317c¢82c0edc96f1c465

86c876514b94d9b24189a0cf0fdd43cf

Enter the KEYNUM values of the master key parts you want to load.
2 or 3 values must be specified, separated by spaces.

>12

Enter the password for the signature key identified by:

adminl (48d998c79b703b91bcOblbc529b369...)

>

Enter the password for key file 1

>

Enter the password for key file 2

>

0K

The new master key register has been loaded in the selected crypto units.

NEW MASTER KEY REGISTER
SERVICE INSTANCE: 34b5af99-c165-4863-af2e-aaabd7af8137

CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

1 Full Uncommitted c¢d388da4397efl61lcec7a698d559e07
569c7c855a4546dch3ea27ef149bf207

2 Full Uncommitted c¢d388da4397efl61llcec7a698d559e07
569c7c855a4546dch3ea27ef149bf207

3* Full Uncommitted c¢d388da4397efl61lcec7a698d559e07
569c7c855a4546dch3ea27ef149bf207

4% Full Uncommitted c¢d388da4397efl61lcec7a698d559e07

569c7c855a4546dch3ea27ef149bf207

* Indicates a recovery crypto unit that is used only to hold a backup master key
value.

We see that the key is not committed in the new master key register. Use the ibmcloud tke
cryptounit-mk-commit command to commit it, as shown in Example 2-152. The status of the
crypto-card switches to Full Committed.

Example 2-152 Rotating the master key: Committing the key in the new master key register

$ ibmcloud tke cryptounit-mk-commit

Enter the password for the signature key identified by:

admin2 (840f77fd9079d713c5527fc1f4f027...)

>

Enter the password for the signature key identified by:

admin3 (6d733334d57eae3ec7e5ced0197991...)

>

0K

The new master key register has been committed in the selected crypto units.

196 Securing Your Critical Workloads with IBM Hyper Protect Services

NEW MASTER KEY REGISTER
SERVICE INSTANCE: 34b5af99-c165-4863-af2e-aaabd7af8137

CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

1 Full Committed ¢d388da4397efl6llcec7a698d559e07
569c7c855a4546dch3ea27ef149bf207

2 Full Committed ¢d388da4397efl6llcec7a698d559e07
569c7c855a4546dch3ea27ef149bf207

3* Full Committed ¢d388da4397efl6llcec7a698d559e07
569c7c855a4546dch3ea27ef149bf207

4* Full Committed ¢d388da4397efl6llcec7a698d559e07

569c7c855a4546dcb3ea27ef149bf207

* Indicates a recovery crypto unit that is used only to hold a backup master key
value.

The new key is not yet active. We can decrypt our message by using the old key and generate
the new AES key that is wrapped with the new master key register. In the committed state, we
can rewrap our application keys, as shown in Example 2-153.

Example 2-153 Rewrapping application keys

$./rewrap
00d451b1a6e694592d88
5ef89ee8b0b4760000000000008d260000000000000001123450971f059c46ea487a2795d7e7632271
2455efd73d81229fad47221593c092964e871ec8dd5b9dc1929chf5b0e28cb554b0f85e4486e6e 1848
b6fd4a517c00f012c720bce72812eb62cf8df9fb15701f9c5d900a33a6e23a33fa87ae467dabe63706
2c4a7c52b01c7c6d1703al1f42f749bbaca3270a00bec08280640d9c118cf4816fbd4bab54a647e7cca
2b0cle3d260915b869a3c5a3ce31c3e6205484338399b7a974e74bddd991a47992f83fda07f59eb59f
dccf5a520daa95d807a5

New AES wrapped key:

00cd388da4397efl611c
ec7a698d559e070000000000008d2600000000000000011234d75928a77494c773ce031e64a7f0cOce
8c288364ed50ab4ea7f5c01c08e683c39bee76540f2cafe7eb8dc67e0d19385ee87adadlcd62e5909a
00c91cedf92a400441e8e93ded74423ebdd7delfe6751209¢c761c73e749711d9385aafe6a505b8t450
a5903890c471801b6034f5536548e89c78fab3a7ebafl3c4ee05d8f71f8ba01b933a04210afefaa77c8
c97478ec26442b653860fale741d1302db7a208cfcace39903b35b35a0707f0a994e3600373668531
le2dd27d6d0eb3e30e0d

We can now activate the new master key register key, which loads the current master key
register with a new value by using the ibmcloud tke cryptounit-mk-setimm command, as
shown in Example 2-154.

Example 2-154 HSM Master Key rotation: Activating the new master key register to the current one

$ ibmcloud tke cryptounit-mk-setimm

Warning! Any key storage that is associated with the targeted service instance
must be prepared to accept the new master key value before running this command.
Otherwise, key storage may become unusable.

Do you want to continue?

Answer [y/N]:

>y

Enter the password for the signature key identified by:

adminl (48d998c79b703b91bcOblbc529b369...)

>

Chapter 2. IBM Cloud Hyper Protect Crypto Services 197

0K
Set immediate completed successfully in the selected crypto units.

NEW MASTER KEY REGISTER
SERVICE INSTANCE: 34b5af99-c165-4863-af2e-aaabd7af8137
CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

1 Empty 00000000000000000000000000000000
00000000000000000000000000000000
2 Empty 00000000000000000000000000000000
00000000000000000000000000000000
3* Empty 00000000000000000000000000000000
00000000000000000000000000000000
4* Empty 00000000000000000000000000000000

00000000000000000000000000000000

CURRENT MASTER KEY REGISTER
SERVICE INSTANCE: 34b5af99-c165-4863-af2e-aaabd7af8137
CRYPTO UNIT NUM STATUS VERIFICATION PATTERN

1 Valid cd388da4397efl611lcec7a698d559e07
569c7c855a4546dcb3ea27ef149bf207
2 Valid cd388da4397efl611lcec7a698d559e07
569c7c855a4546dcb3ea27ef149bf207
3* Valid cd388da4397efl611lcec7a698d559e07
569c7c855a4546dcb3ea27ef149bf207
4* Valid cd388da4397efl611lcec7a698d559e07

569c7c855a4546dchb3ea27ef149bf207

* Indicates a recovery crypto unit that is used only to hold a backup master key
value.

The current master key register is now loaded with the new master key. Use the command
that is shown in Example 2-155 to verify that the previous wrapped key does not work
anymore, indicating that you must use the newly wrapped key.

Example 2-155 Checking that the new wrapped key decrypts the encrypted message

$./decrypt
00d451b1a6e694592d88
5ef89ee8b0b4760000000000008d260000000000000001123450971f059c46ea487a2795d7e7632271
2455efd73d81229fad47221593c092964e871ec8dd5b9dc1929chf5b0e28chb554b0f85e4486e6et848
b6fd4a517c00f012c720bce72812eb62cf8df9fb15701f9c5d900a33a6e23a33fa87ae467dabe63706
2c4a7c52b01c7c6d1703alf42f749bbaca3270a00bec08280640d9c118cf4816fbd4bab54a647e7cca
2b0c1e3d260915b869a3c5a3ce31c3e6205484338399b7a974e74bddd991a47992f83fda07f59eb59f
dccfb5ab20daa95d807a5 0768f1bbfb444430d5¢829f3439e6b2c
584¢2959d8575166636fefablf3cedfc44020784340aa27523b15¢73f1d940630b91bb01b1166ebfad
f9e7a32eeead07

panic: Failed DecryptInit [rpc error: code = Unknown desc = CKR _IBM WKID MISMATCH]

goroutine 1 [running]:
main.Decrypt()

/home/girardjy/go/src/decrypt.go:33 +0Oxabf
main.main()

/home/girardjy/go/src/decrypt.go:96 +0x3ch

198 Securing Your Critical Workloads with IBM Hyper Protect Services

$./decrypt
00cd388da4397efl611c
ec7a698d559e070000000000008d2600000000000000011234d75928a77494c773ce031e64a7f0cOce
8c288364ed50ab4ea7f5c01c08e683c39bee76540f2cafe7eb8dc67e0d19385ee87adadlcd62e5909a
00c91cedf92a400441e8e93ded74423ebdd7delfe6751209¢761c73e7497f1d9385aafe6a505b8f450
a5903890c471801b6034f5536548e89c78fab3a7ebafl3c4ee05d8f7f8ba01b933a04210afefaa77c8
€97478ec26442b653860fale741d1302db7a208cfcace39903b35b35a0707f0a994e3600373668531
le2dd27d6d0eb3e30e0d 0768f1bbfb444430d5¢82913439e6b2c
584¢2959d8575166636fefablf3cedfc44020784340aa27523b15¢73f1d940630b91bb01b1166ebfad
f9e7a32eeead07

Decrypted message: Hello world, this is a new secret message

Using JavaScript and Node.js with GREP11
In this section, we demonstrate the installation and setup of the GREP11 IBM libraries.

GREP11 IBM libraries installation and setup

On a Linux terminal, install the git command and copy the IBM JavaScript sample directory
on to your workstation, as shown in Example 2-156.

Example 2-156 Cloning the IBM samples repository on your workstation

$ git clone https://github.com/IBM-Cloud/hpcs-grepll-js
Cloning into 'hpcs-grepll-js'...

remote: Enumerating objects: 33, done.

remote: Counting objects: 100% (33/33), done.

remote: Compressing objects: 100% (22/22), done.

remote: Total 33 (delta 7), reused 30 (delta 7), pack-reused 0
Receiving objects: 100% (33/33), 73.83 KiB | 1.34 MiB/s, done.
Resolving deltas: 100% (7/7), done.

If you plan to run only the samples, follow the instructions at GitHub and run the
start_test.sh script.

Example 2-156 creates a directory that is called hpcs-grep-js that you can rename to the
name of your application.

In this directory, the samples are in the examples directory, which you can rename, for
example, as myapp. You can create your own programs in this directory by running the
commands that are shown in Example 2-157.

Example 2-157 Renaming a directory

$ mv hpcsgrepll-js newsvc
$ cd newsvc
$ mv examples myapp

Install the missing dependency by using npm tools by running the command that is shown in
Example 2-158.

Example 2-158 Installing Node.js modules

$ npm install @grpc/grpc-js --save
+ @grpc/grpc-js@1.3.2

Chapter 2. IBM Cloud Hyper Protect Crypto Services 199

https://github.com/IBM-Cloud/hpcs-grep11-js

200

To setup the connection with your Hyper Protect Crypto Services instance, you can use either
of the following methods:

» Edit the file myapp/client.js and edit the four variables:

— apiKey = '<YOUR API KEY>',

— iamEndpoint = 'https://iam.cloud.ibm.com',
— instanceld = '<Your HPVS INSTANCE ID>',

— epllAddress = '<Your GREP11 URL:PORT>';

» Define the following four environment variables that specify the parameters to connect the
Hyper Protect Crypto Services instance:

— IAM_API_KEY
— IAM_ENDPOINT
— INSTANCE_ID
— EP11_ADDRESS

Example 2-159 demonstrates specifying the environment variables by using the export
command in a Linux terminal.

Example 2-159 Connection setup: Specifying environment variables in a Linux terminal

$ export IAM_API KEY=8vFwZ9yQlyG8iDI10j2UzKRdWdh401i31-vBwAvcZd50DX
$ export IAM_ENDPOINT=https://iam.cloud.ibm.com

$ export INSTANCE ID=34b5af99-c165-4863-af2e-aaabd7af8137

$ export EP11 ADDRESS=epll.us-south.hs-crypto.cloud.ibm.com:11491

Using JavaScript and Node.js with GREP11

IBM provides several program examples for the different PCKS#11 cryptographic operations.
These cryptographic operations are listed in Table 2-6.

Table 2-6 GREP11 JavaScript and Node.js examples

Domain Sample

Listing HSM cards mechanisms | https://github.com/IBM-Cloud/hpcs-grepll-js/blob/master/e
xamples/mechanism-info.js
https://github.com/IBM-Cloud/hpcs-grepll-js/blob/master/e
xamples/mechanism-Tist.js

Encryption and decryption https://github.com/IBM-Cloud/hpcs-grepll-js/blob/master/e
Symmetric key generation xamples/encrypt-and-decrypt.js
Signing and verifying https://github.com/IBM-Cloud/hpcs-grepll-js/blob/master/e
Asymmetric key generation xamples/sign-and-verify-dsa.js

https://github.com/IBM-Cloud/hpcs-grepll-js/blob/master/e
xamples/sign-and-verify-ecdsa.js
https://github.com/IBM-Cloud/hpcs-grepll-js/blob/master/e
xamples/sign-and-verify-rsa.js

Key wrapping and unwrapping | https://github.com/IBM-Cloud/hpcs-grepll-js/blob/master/e
xamples/wrap-and-unwrap-key.js

Securing Your Critical Workloads with IBM Hyper Protect Services

https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/mechanism-info.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/mechanism-info.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/mechanism-list.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/mechanism-list.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/encrypt-and-decrypt.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/encrypt-and-decrypt.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/sign-and-verify-dsa.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/sign-and-verify-dsa.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/sign-and-verify-ecdsa.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/sign-and-verify-ecdsa.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/sign-and-verify-rsa.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/sign-and-verify-rsa.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/wrap-and-unwrap-key.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/wrap-and-unwrap-key.js

Domain Sample

Key derivation https://github.com/IBM-Cloud/hpcs-grepll-js/blob/master/e
xamples/derive-keys.js
https://github.com/IBM-Cloud/hpcs-grepll-js/blob/master/e
xamples/derive-keys-dh.js

Digest https://github.com/IBM-Cloud/hpcs-grepll-js/blob/master/e
xamples/digest-multiple.js
https://github.com/IBM-Cloud/hpcs-grepll-js/blob/master/e
xamples/digest-single.js
https://github.com/IBM-Cloud/hpcs-grepll-js/blob/master/e
xamples/derive-keys-dh.js

To test your cryptographic functions, follow the instructions in “GREP11 IBM libraries
installation and setup” on page 199 and run the commands that are shown in Example 2-160.

Example 2-160 Testing the Node.js functions

$ node myapp/derive-keys.js

MESSAGE: Hello World!

CIPHERTEXT: f0725e76ed15e6900f81ccal73ccfc4d
PLAINTEXT: Hello World!

$ node myapp/wrap-and-unwrap-key.js

AES KEY:
006€a0671d84899442dd
073cabe3561abf0000000000008d250000000000000001123474ef435470a036518a842aafclbde34a
82ad254fd56bab74e847dd8ebb83d55cc3chbd5ad266536de0ff330df5d983635060269609507720bd
154452h3b56fdd797bf00ael3191226af7f9ad3e00f3e36df8d3b8d7de671daa8ffa69bb34b5bbaldf
e43cf9deeb8ab5f0ba851263517cfcd14bf10fb6f9051e67bc3bfa5a098da9fe98bfd5362557¢ca9059
185ffcaed06ae2d12541fceded431f95f7c358ada87e5ec9fdal3bed32d238a64eb9b2fbb5f3ca29353
d358716702f9ced81ce8

WRAPPED:
23337d7bfbb9c855bdd02d17fa598fc02a79cf7cd45d9977f1b29a6ff53b539cc4c87eee977ad418cd
1f9eel97dcac6b5dch4b2e46d815e273e452c10e06ed88delad093e8e574a444c81h8576ee2dad0b823
7495922¢24324b03250346T095f23ed8fd0e3421cfbb9f8f5c2865edc3cac759eel7dbbef0ee23f554
405491a33f65e6dac7087040c479b9181b6c3b3c60b3f967ef21c3896e7fd5c84d747a7232¢ch637a3b
46d659fee315b128e39a0990a42eb33f5c7e9cf540a742alc31da2fd3e25425b1746b8be8434d1950f
6b642bef82606dc5b97c6b9547a8af701212a9ed2f647220da9d6796b012d284be65f0b03166763e54
303401c4e362fad31lcec

CHECKSUM: 22120500000080

UNWRAPPED KEY:
006€a0671d84899442dd
073cabe3561abf0000000000000c0100000000000000011234c6ch9e81e258bb3a22d3ccel9edc18el
1d1498add636ac3758189db7b2524b1b0fe3b15868fceacfa8033bc4df7754b13fe0825ccleaaablas
edd9164e794dac25325299e2510c601476b54e8b857b936a1b3442f08786ect188e75bdd21034c7d22
c86afc9lcc2d5a6c81leb6fbd769e19452de9ea95501d9d73d07f012ad224afd97a71ad9177bea3cech
f41fcdf8ec035df6b361746340b6dd1T0947a071627f52cf41e3d0178339e4fdad0c755256€625c688
69d90d7af722b34818a64489f80e1414f2fhe723a0bcd591ac39

$ node myapp/sign-and-verify-ecdsa.js

DATA: 9fab6c619db022915ff788599c81c27ac5a349834146¢cfc5034e7353ed5d92727

VERIFIED SIGNATURE:
a611561b6fc2bd53890544h19¢c3290ae615a371fcbf84192e5e37671b5078ebd9aed7695ccbaaf982a
5ca657279003bab3b7c69526553f8e7abe5b03312e46e7

Chapter 2. IBM Cloud Hyper Protect Crypto Services 201

https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/digest-multiple.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/digest-multiple.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/digest-single.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/digest-single.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/derive-keys-dh.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/derive-keys-dh.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/derive-keys.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/derive-keys.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/derive-keys-dh.js
https://github.com/IBM-Cloud/hpcs-grep11-js/blob/master/examples/derive-keys-dh.js

$ node myapp/sign-and-verify-rsa.js
DATA: 9fa6c619db022915ff788599c81c27ac5a349834146¢cfc5034e7353ed5d92727

VERIFIED SIGNATURE:

8ed680800d0ac95f5ad0ec290ede8bd3a4b812b9c2f4e9110b2dce52c4e0a6692b6c164c7342c769c4
028741629a5fbe03da8b75a29990132c6c24133fbfe274c1f30113101c53fdbaaldaalfedbd21caae?
bec3adfel6f465fd77b314bc3f41f591191bedab759e34f9be9649c7a8d3b509e557¢c713d1746866fa
94303166ddbf18bfaa9aabbdc7eebd34da560d9fa046fc3458dcd6560a9fdd9584d0860abefb12449a
75ch9eea33f362b7f462f5136eacel110bbcb65cad87a0fa2e03¢cf37d4191724b95¢c1¢3358354d0c28d
7¢c27d6404100c724f3cd1e8dbba739e9555aeb4fd510a814bf4dbb785fcd33d561c3b1229b534bb810

c85a16f3al08be09a249

$ node myapp/digest-multiple.js

DATA: This data is the data that is longer than 64 bytes This data is the data
that is Tonger than 64 bytes

DIGEST: ad4e0b6e309d192862ec6db692d17072ddd3a98ccd37afe642a04f7ca554c94c

To use the IBM GREP11 toolkit in your application file, complete the following steps:

1. Create a JavaScript source file in the myapp directory.

2. Add the lines that are shown in Example 2-161 at the beginning of your JavaScript source

file.

Example 2-161 Specifying the GREP11 JavaScript library

const client = require('./client'),
epll = require('./..'),

{pb, util} =

epll;

The protos/server.proto file can be helpful to retrieve the available functions and the
structure of the message that is sent as input and received as output (Table 2-7).

Table 2-7 GREP11 JavaScript and node.js examples

Domain

Client function

Listing HSM cards
mechanisms

GetMechanismList (GetMechanismListRequest) returns
(GetMechanismListResponse).
GetMechanismInfo(GetMechanismInfoRequest) returns
(GetMechanismInfoResponse).

Key generation

GenerateKey (GenerateKeyRequest) returns (GenerateKeyResponse).
GenerateKeyPair (GenerateKeyPairRequest) returns
(GenerateKeyPairResponse).
GenerateRandom(GenerateRandomRequest) returns
(GenerateRandomResponse).

Manage PCKS#11 object
attributes

GetAttributeValue(GetAttributeValueRequest) returns
(GetAttributeValueResponse).
SetAttributeValue(SetAttributeValueRequest) returns
(SetAttributeValueResponse).

202 Securing Your Critical Workloads with IBM Hyper Protect Services

Domain

Client function

Encryption and decryption

EncryptInit(EncryptInitRequest) returns (EncryptInitResponse).
DecryptInit(DecryptInitRequest) returns (DecryptInitResponse).

EncryptUpdate (EncryptUpdateRequest) returns
(EncryptUpdateResponse).

DecryptUpdate (DecryptUpdateRequest) returns
(DecryptUpdateResponse).

Encrypt (EncryptRequest) returns (EncryptResponse).
Decrypt (DecryptRequest) returns (DecryptResponse).
EncryptFinal (EncryptFinalRequest) returns
(EncryptFinalResponse).

DecryptFinal (DecryptFinalRequest) returns
(DecryptFinalResponse).
EncryptSingle(EncryptSingleRequest) returns
(EncryptSingleResponse).
DecryptSingle(DecryptSingleRequest) returns
(DecryptSingleResponse).

Signing and verifying

SignInit(SignInitRequest) returns (SignInitResponse).
VerifyInit(VerifyInitRequest) returns (VerifyInitResponse).
SignUpdate(SignUpdateRequest) returns (SignUpdateResponse).
VerifyUpdate (VerifyUpdateRequest) returns
(VerifyUpdateResponse).

SignFinal (SignFinalRequest) returns (SignFinalResponse).

VerifyFinal (VerifyFinalRequest) returns (VerifyFinalResponse).

Sign(SignRequest) returns (SignResponse).
Verify(VerifyRequest) returns (VerifyResponse).
SignSingle(SignSingleRequest) returns (SignSingleResponse).
VerifySingle(VerifySingleRequest) returns
(VerifySingleResponse).

Key wrapping and
unwrapping

WrapKey (WrapKeyRequest) returns (WrapKeyResponse).
UnwrapKey (UnwrapKeyRequest) returns (UnwrapKeyResponse).

Key derivation

DeriveKey (DeriveKeyRequest) returns (DeriveKeyResponse).

RewrapKeyB1ob RewrapKeyBlob (RewrapKeyBlobRequest) returns
(RewrapKeyBlobResponse) {}.
Digest DigestInit(DigestInitRequest) returns (DigestInitResponse).

Digest(DigestRequest) returns (DigestResponse).
DigestUpdate (DigestUpdateRequest) returns
(DigestUpdateResponse).

DigestKey (DigestKeyRequest) returns (DigestKeyResponse).

DigestFinal (DigestFinalRequest) returns (DigestFinalResponse).

DigestSingle(DigestSingleRequest) returns
(DigestSingleResponse).

In protos/server.proto, you retrieve the input and output parameters of each of these
functions, as shown in Example 2-162.

Example 2-162 GenerateKeyRequest and Response objects as defined in protos/server.proto

message GenerateKeyRequest {
Mechanism Mech = 1;
map<uint64,AttributeValue> Template = 6;

}

message GenerateKeyResponse {

bytes KeyBytes

4

Chapter 2. IBM Cloud Hyper Protect Crypto Services

203

bytes CheckSum = 5;
KeyBlob Key = 7;

We see that the GenerateKeyResponse message that is received from the Hyper Protect
Crypto Services instance includes:

» The key and a checksum as a byte array.
» A KeyBlob structure that is used to manage key rewrapping in an HSM key rotation
operation.

The functions are asynchronous and use a callback function as the last argument. The
callback is invoked when the Hyper Protect Crypto Services response is received. The async
JavaScript module is used in samples to manage this behavior and makes it more readable.

In Example 2-163, the function generatekeyResponse() is called when the new wrapped key
is received from the Hyper Protect Crypto Services. The key is displayed by using the
KeyBytes attribute of the service response.

Example 2-163 Simple GREP11 JavaScript function call snippet: generateaeskey.js

const client = require('./client'),
epll = require('./.."),
{pb, util} = epll;

const aesKeyTemplate = new util.AttributeMap(

new util.Attribute(epll.CKA_VALUE_ LEN, 128/8),

new util.Attribute(epll.CKA_ENCRYPT, true),

new util.Attribute(epll.CKA_DECRYPT, true),

new util.Attribute(epll.CKA EXTRACTABLE, true), // must be true to be wrapped
);

function generatekeyReponse(err,response) {
console.log(response.KeyBytes.toString('hex'))

}

client.GenerateKey({
Mech: {
Mechanism: epll.CKM_AES_KEY GEN
b,
Template: aesKeyTemplate,
KeyId: uuidv4()
}s

generatekeyReponse);

You can test this example by using the command that is shown in Example 2-164.

Example 2-164 Testing the generateaeskey.js program

$ node myapp/generateaeskey.js
006ea0671d84899442dd073ca5e35
61abf0000000000008d25000000000000000112346538d4abh155899e6fd5fa27962600b696e1188ec512b43edcc
7ac491104597c897875550f863a6¢ch743faf52209faebc4ab3a88411f02act8b57200571d45d758f57b2fed784ef
1a014ca3fb1b8cda789d804466701e373bfbch9b182c71953ebbae2ebb7aaelafec8330f37aadbbal0f9f48c3fe
a485f211d7aa48e3db154d6acd0al6ff249b105785035f6e436ea35dad84cddfe01e1355330b7766ddbedaa000d
7905cfa33b316693f08f3aaldadB8aabdad2960a84d1c578aee9981d87

204 Securing Your Critical Workloads with IBM Hyper Protect Services

https://caolan.github.io/async/v3/

The IBM GREP11 JavaScript libraries provide helpers (1ib/util.js and
1ib/header_consts.js) that do the following actions:

» Specify PKCS #11 key templates with their argument by using util.AttributeMap and
util.Attribute.

» Specify some DER parameters like Elliptic cure OID lib/util.js, for example,
util.0IDNamedCurveP256.

» Specify PKCS #11 constants like ep11.CKM_EC_KEY PAIR GEN, epl1.CKA EXTRACTABLE, and
epll.CKA_EXTRACTABLE.

To create your own application:

» Use the provided samples for the different cryptographic operations.

» Use JavaScript code snippets that are available at Cryptographic operations: GREP11
API, which includes the input and output parameters.

» Consider using the Key Protect API standard key to store your cryptographic material.

Chapter 2. IBM Cloud Hyper Protect Crypto Services 205

https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-grep11-api-ref
https://cloud.ibm.com/docs/hs-crypto?topic=hs-crypto-grep11-api-ref

206 Securing Your Critical Workloads with IBM Hyper Protect Services

IBM Cloud Hyper Protect
Database as a Service

This chapter introduces IBM Cloud Hyper Protect Database as a Service (DBaaS).

This chapter includes the following topics:

>

>

>

Introducing IBM Cloud Hyper Protect DBaaS

Sizing and topology

Public Cloud service instantiation

Administration and operations

Security and compliance

Use case: Encrypting databases with your keys protected

API interaction and code samples

© Copyright IBM Corp. 2020, 2022. All rights reserved.

207

3.1 Introducing IBM Cloud Hyper Protect DBaaS

IBM Cloud Hyper Protect DBaaS is a solution that offers clients the ability to easily provision
fully managed and highly secured database environments for enterprise workloads with
sensitive information without the need for specialized database administration skills.

IBM Hyper Protect DBaaS is built upon IBM LinuxONE technologies that provide built-in
encryption along with abilities for excellent scaling and performance. These features allow for
workload isolation that keeps data owners in complete control of their data. The solution
provides a developer-friendly platform with fully managed logging, monitoring, backups, high
availability (HA), and scaling solutions, which enable developers to focus on higher value
application development rather than the management of the environment.

Figure 3-1 shows an IBM Hyper Protect DBaa$S service instance for HA.

DB user access

Cluster

Primary node

.

Database |*

IAM role access

Availability Zone 1

Replication Replication

Secondary node

Secondary node

.

.

Database |*

Catabase |-

Availability Zone 2 Availability Zone 3

Figure 3-1 IBM Hyper Protect DBaa$S service instance for high availability

208 Securing Your Critical Workloads with IBM Hyper Protect Services

3.2 Sizing and topology

IBM Hyper Protect DBaaS provides different plans in terms of database instances. The Free
Plan offers a service instance with a fixed 1 GB Memory and 2 GB of data storage, and the
instance is deleted after 30 days. The Flexible Plan allows a choice of configuration, as shown
in Table 3-1.

Table 3-1 Acceptable resource allocation values for Flexible Plan

Resource Unit Value range

Memory GB per node {2,3,4,5, 8, 12, 16, 24, 32, 64, 96, 128}

Disk GB per node {5, 10, 16, 24, 32, 64, 128, 160, 256, 320, 512, 640, 1280}
vCPU vCPU per node {1,2,3,4,5,6, 8,9, 12, 16}

You can select a suitable initial size of a database instance based on your workload
requirements, and if it is a Flexible Plan instance, you can change it at any time after
provisioning is done.

After an instance is created, you can migrate your own data to the database by using a
memory dump and the restore function of the databases. For more information about
migrating databases to IBM Hyper Protect DBaaS see Migrating PostgreSQL databases to
Hyper Protect DBaaS for PostgreSQL and Migrating MongoDB databases to the Hyper
Protect DBaaS for MongoDB.

At the time of writing, the IBM Cloud Hyper Protect DBaa$S service provides 99.95% of HA
and reliability for mission-critical workloads. After an instance is created, IBM Hyper Protect
DBaas$S provides automatic in-region data redundancy and failover by default.

By default, your IBM Hyper Protect DBaa$S service instance consists of three nodes: one
primary and two secondary nodes in three different availability zones in your selected IBM
Cloud region. The data in your primary node is automatically replicated to secondary nodes
(replicas) with low latency, as shown in Figure 3-2.

IBM Cloud Multi Zone Region
Availability Zone A Availability Zone B Availability Zone C

Cucomer 1 Hameopaos

Cucomar 2 Hameopaos

Daillly bsodupc

1.?

Local Storage

Figure 3-2 IBM Hyper Protect DBaa$S high availability diagram

Chapter 3. IBM Cloud Hyper Protect Database as a Service 209

https://cloud.ibm.com/docs/hyper-protect-dbaas-for-mongodb?topic=hyper-protect-dbaas-for-mongodb-migration_mongodb
https://cloud.ibm.com/docs/hyper-protect-dbaas-for-mongodb?topic=hyper-protect-dbaas-for-mongodb-migration_mongodb
https://cloud.ibm.com/docs/services/hyper-protect-dbaas-for-postgresql?topic=hyper-protect-dbaas-for-postgresql-migration_postgre
https://cloud.ibm.com/docs/services/hyper-protect-dbaas-for-postgresql?topic=hyper-protect-dbaas-for-postgresql-migration_postgre
https://cloud.ibm.com/docs/hyper-protect-dbaas-for-mongodb?topic=hyper-protect-dbaas-for-mongodb-migration_mongodb

When your primary node fails, a secondary node in the cluster is selected as the primary to
prevent your applications from being affected. In this way, you have automatic HA within one
region for your data.

To create cross-region data redundancy for disaster recovery (DR), you must regularly back
up your complete databases from your service instance in a region. When the region is
unavailable, you can provision a service instance in another available region to restore your
database manually. The time that it takes to restore varies because it depends on the size of
your data and network condition.

Also, IBM Cloud Hyper Protect DBaaS automatically triggers a backup of your complete
database once every 24 hours. These encrypted backups are available for the last 7 days and
redundantly available on local storage in all availability zones of the supported regions. You
can open a support request to restore your database through IBM Cloud support.

3.3 Public Cloud service instantiation

The IBM Hyper Protect DBaa$S service has different options that are available for service
instantiation through the following methods:

» Web interface (GUI)
» IBM Cloud Command-Line Interface (CLI)
» The IBM Hyper Protect DBaaS RESTful application programming interface (API)

3.3.1 Prerequisites

The IBM Hyper Protect DBaaS service shares a set of prerequisites with the other IBM Cloud
Hyper Protect Services. To begin the service instantiation process, it is assumed that the
following prerequisites were met:

» IBM Cloud Account and access permission.
» Supported browser. For more information, see What are the IBM Cloud prerequisites?
» Installations of the following items:

— IBM Cloud CLI. For more information, see Installing the stand-alone IBM Cloud CLI.
— IBM Cloud DBaaS CLI plug-in. For more information, see Installing the DBaa$S CLI
components (by operating system).

Note: It is also possible to use CLI commands by using IBM Cloud Shell directly on the
browser, as described in Getting started with IBM Cloud Shell.

3.3.2 Web interface

This section describes creating an IBM Hyper Protect DBaaS service instance on IBM Cloud
by using the web interface (GUI). It is assumed that you meet the prerequisites that are
described in 3.3.1, “Prerequisites” on page 210.

Complete the following steps:

1. Log in to your IBM Cloud account at https://cloud.ibm.com/Togin.

2. From the IBM account dashboard, click Catalog in the upper menu toolbar, as shown in
Figure 3-3 on page 211.

210 Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/login
https://cloud.ibm.com/docs/cloud-shell?topic=cloud-shell-getting-started
https://cloud.ibm.com/docs/cli?topic=cli-install-ibmcloud-cli
https://cloud.ibm.com/docs/cli?topic=cli-install-ibmcloud-cli
https://cloud.ibm.com/docs/hyper-protect-dbaas-for-mongodb?topic=hyper-protect-dbaas-for-mongodb-install-dbaas-cli-plugin#dbaas_cli_instr
https://cloud.ibm.com/docs/hyper-protect-dbaas-for-mongodb?topic=hyper-protect-dbaas-for-mongodb-install-dbaas-cli-plugin#dbaas_cli_instr
https://cloud.ibm.com/docs/overview?topic=overview-prereqs-platform
https://cloud.ibm.com/docs/overview?topic=overview-prereqs-platform
https://cloud.ibm.com/docs/cli?topic=cli-install-ibmcloud-cli
https://cloud.ibm.com/docs/hyper-protect-dbaas-for-mongodb?topic=hyper-protect-dbaas-for-mongodb-install-dbaas-cli-plugin#dbaas_cli_instr
https://cloud.ibm.com/docs/hyper-protect-dbaas-for-mongodb?topic=hyper-protect-dbaas-for-mongodb-install-dbaas-cli-plugin#dbaas_cli_instr

IEM Cloud Q, Catalog | Docs Support Manage

Dashboard Customize & U

Resource summary

Services

Figure 3-3 IBM Cloud Dashboard

3. Enter Hyper Protect DBaaS$ into the search toolbar and choose which database offering to
provision for use, such as Hyper Protect DBaaS for MongoDB or Hyper Protect DBaaS
for PostgreSQL, as shown in Figure 3-4.

Hyper Protect DBaa$ for MongoDB Hyper Protect DBaaS for PostgreSQL

IBM « Services « Databases IBM « Services « Datahases

Deploy and manage a MongoDB cluster to protect Deploy and manage a PostgreSQL cluster to protect
your sensitive data in a Secure Service Container on your sensitive data in a Secure Service Container on
IBM LinuxONE. IBM LinuxONE.

Free « IAM-enabled « Service Endpoint Supported Free « IAM-enabled « Service Endpoint Supported

Figure 3-4 Catalog search results for IBM Hyper Protect DBaaS for MongoDB and PostgreSQL

4. After selecting which database offering to provision, choose a deployment region on the
service create page.

Note: IBM Cloud offers multiple availability zones in regions across the globe to host
your IBM Hyper Protect DBaaS service instance, such as Dallas, Washington DC,
Frankfurt, or Sydney.

Chapter 3. IBM Cloud Hyper Protect Database as a Service 211

5. Choose a pricing plan and sizing. An example pricing option for IBM Hyper Protect DBaaS
is shown in Figure 3-5. For more information about sizing, see 3.2, “Sizing and topology”
on page 209.

Plan Features Pricing
MongoDB Free 30 days availability Free
1 GB Memory

2 GB of data storage

MongoDB Flexible High availability: 3 nodes per instance $69.00 USD/Virtual Processor Core (]
$24.40 USD/GB-RAM
$0.89 USD/GB-Disk

A MongoDB service instance consisting of one primary node and two secondary nodes for high availability within the region

Figure 3-5 IBM Hyper Protect DBaaS for MongoDB pricing plans

Note: Free Plan instances are for evaluation only and not suitable for production
workloads. Free Plan IBM Hyper Protect DBaasS services are automatically deleted
after a period of 30 days.

6. Configure your resource by setting the Service Name, Resource Group, Tags (optional),
Access Management Tags (optional), Database Cluster Name, Database Administrator
User Name, Database Administrator Password, Initial RAM Allocation, Initial Disk
Allocation, Initial vCPU Allocation, Key Management Service (KMS) Instance, Root Ky,
and Endpoint (Public or Private), as shown in Figure 3-6.

Configure your resource

Service name Select a resource group @

Hyper Protect DBaa$ for MongoDB-RedBook Default v
Tags @ Access management tags @

Exal
Cluster name Database admin name
The name of the database cluster to be created Database admin user name
Database admin password Confirm password
Database admin user password Confirm database admin user password
©® [}

Select a database version Select an initial RAM allocation

MongoDB Enterprise 4.4 2 GB-RAM/node (6 GB-RAM total) v
Select an initial disk allocation Select an initial VCPU allocation

5 GB-Disk/node (15 GB-Disk total) & 1vCPU/node (3 vCPU total) v
Select a KMS instance Select a root key
Please ensure Hyper Protect DBaa$ for MongoDB has been authorized to cted KMS instance. You can Warning: deleting this root key will result in the loss of all data stored in this MongoDB instance
manage service-to-service authorizations at any time by visiting Mana. nd choosing Authorizations.

Automatic disk encryption key (default) v Automatic disk encryption key (default)
Endpoints

Public network v @

Figure 3-6 Example of “Configure your Resource” for IBM Hyper Protect DBaaS for MongoDB

7. Agree to the terms and select Create.

212 Securing Your Critical Workloads with IBM Hyper Protect Services

3.3.3 IBM Cloud Command-Line Interface

This section describes creating an IBM Hyper Protect DBaaS service instance on IBM Cloud
by using the IBM Cloud CLI and DBaaS CLI plug-in. It is assumed that the prerequisites that
are outlined in 3.3.1, “Prerequisites” on page 210 are met.

To verify the installation of the IBM Cloud CLI and the DBaa$S plug-in, run the ibmc1oud
command. The system shows dbaas in the list of available commands.

Logging in to the IBM Cloud CLI

Before issuing a create service command, authenticate the IBM Cloud CLI by issuing the
following example command:

ibmcToud Togin --sso -a https://cloud.ibm.com

For more information and reference material about all options for authentication, see
ibmcloud login.

The CLI prompts for a one-time authorization code that can be opened in the default browser
or by copying the link into a supported browser, as shown in the output in Example 3-1.

Example 3-1 Authentication output from IBM Cloud CLI by using SSO

Get One Time Code from
https://identity-2.us-south.iam.cloud.ibm.com/identity/passcode to proceed.
Open the URL in the default browser? [Y/n] > n

One Time Code >

Authenticating...

0K

Targeting a resource group

After authenticating with the IBM Cloud CLI, target a resource group by using the ibmc1oud
target command to direct your deployments. In the following example, the resource group
Default is used:

ibmcloud target -g Default

For more information about resource groups, see Managing resource groups.

Choosing a target region

IBM Cloud provides various service endpoints in regions across the globe that can be used to
deploy services. You select a region that corresponds to the geographical deployment of the
IBM Hyper Protect DBaa$S service instance.

To find a region, use the ibmcloud regions command, as shown in Example 3-2.

Example 3-2 IBM Cloud CLI output of regions

~$ ibmcloud regions
Listing regions...

Name Display name
au-syd Sydney
in-che Chennai
jp-osa Osaka
jp-tok Tokyo
kr-seo Seoul

Chapter 3. IBM Cloud Hyper Protect Database as a Service 213

https://cloud.ibm.com/docs/account?topic=account-rgs
https://cloud.ibm.com/docs/cli/reference/ibmcloud?topic=cloud-cli-ibmcloud_cli&locale=en-US#ibmcloud_login

eu-de Frankfurt

eu-gb London

ca-tor Toronto
us-south Dallas
us-east Washington DC
br-sao Sao Paulo

Note: At the time of writing, IBM Cloud Hyper Protect DBaaS is supported in the us-south,
us-east, eu-de, and au-syd regions. The supported regions can be referenced in the
documentation for the service.

Creating a service instance

To create a service instance by using the IBM Cloud CLI, run the ibmcloud resource
service-instance-create command, as shown in Example 3-3.

Example 3-3 IBM Cloud CLI syntax to create a service

~$ ibmcloud resource service-instance-create

NAME :
service-instance-create - Create a service instance

USAGE:

ibmcloud resource service-instance-create NAME (SERVICE_NAME | SERVICE_ID)
(SERVICE_PLAN_NAME | SERVICE_PLAN ID) LOCATION [-d, --deployment DEPLOYMENT NAME]
[-p, --parameters @JSON_FILE | JSON_STRING] [-g RESOURCE_GROUP]
[--service-endpoints SERVICE _ENDPOINTS TYPE] [--allow-cleanup] [--Tock] [-q,
--quiet]

OPTIONS:

-d value, --deployment value Name of deployment

-p value, --parameters value JSON file or JSON string of parameters to create
service instance

-g value, Resource group name

--service-endpoints value, Types of the service endpoints. Possible values are
'public', 'private', 'public-and-private'.

--allow-cleanup, Whether the service instance should be deleted (cleaned up)
during the processing of a region instance delete call

--lock, Whether to create the service instance with Tocked state

-q, --quiet, Suppress verbose output

To see all the services that are available to be created in the IBM Cloud Catalog, run the
ibmcloud catalog service-marketplace command. IBM Hyper Protect DBaaS is listed in the
catalog, as shown in Example 3-4.

Example 3-4 IBM Cloud CLI Catalog list results for IBM Hyper Protect DBaaS

Name Provider
hyperp-dbaas-mongodb.......ccoviiiiiiiiininnnnnnnn. 1BM
hyperp-dbaas-postgresql....coviiiiiiiiininnnennnnnn. IBM

After deciding on the type of database to provision, Example 3-5 on page 215 and
Example 3-6 on page 215 show how the command can be issued. A sample of CLI
parameters is listed in Table 3-2 on page 215.

214 Securing Your Critical Workloads with IBM Hyper Protect Services

Example 3-5 Creating a MongoDB service instance by using the IBM CLI

~$ ibmcloud resource service-instance-create ExampleMongoDB hyperp-dbaas-mongodb
mongodb-free us-east -p '{"name":"DBaaSMongoCLICluster",
"admin_name":"admin","password":"passWORD4User19",

"confirm password":"passWORD4User19", "license agree":["agreed"]}'

Example 3-6 Creating a PostgreSQL service instance by using the IBM CLI

~$ ibmcloud resource service-instance-create ExamplePostgreSQL
hyperp-dbaas-postgresql postgresql-free us-east -p
"{"name":"DBaaSPostgresCLICluster",

"admin_name":"admin","password":"passWORD4User19",
"confirm password":"passWORD4User19", "license agree":["agreed"]}'

Table 3-2 CLI parameters

Parameter Definition

ExamplePostgreSQL The name of the service instance.

hyperp-dbaas-postgresql The catalog name of IBM Hyper Protect DBaaS for PostgreSQL.
postgresql-free The service plan name.

us-east The region where the service is deployed.

-p A JSON string that contains parameters for instantiation.

This creation process takes a few minutes to complete. The status of the new service can be
verified through the IBM Cloud CLI by running the ibmcloud resource service-instances
command, as shown in Example 3-7. When the service state is active, the database is ready
to use.

Example 3-7 Output of a DBaaS$ instance that is ready to use in the active state

~$ ibmcloud resource service-instances

Retrieving instances with type service instance in resource group Default in all
locations under account Jordan Cartwright as Jordan.Cartwright@ibm.com...

0K
Name Location State Type
MyDBaaSIns03 us-east active service_instance

Alternatively, the service creation progress also can be seen in the web interface for
IBM Cloud on the Resource list page.

Note: For more information about other DBaaS CLI plug-in commands, see Hyper Protect
DBaaS for MongoDB CLI.

3.3.4 The IBM Hyper Protect DBaaS RESTful API

This section describes creating an IBM Hyper Protect DBaaS service instance on IBM Cloud
by using the IBM Hyper Protect DBaaS RESTful API. It is assumed that you meet the
prerequisites that are outlined in 3.3.1, “Prerequisites” on page 210.

Chapter 3. IBM Cloud Hyper Protect Database as a Service 215

https://cloud.ibm.com/docs/services/hyper-protect-dbaas-for-postgresql?topic=hyper-protect-dbaas-for-postgresql-dbaas_cli_create_service
https://cloud.ibm.com/docs/services/hyper-protect-dbaas-for-postgresql?topic=hyper-protect-dbaas-for-postgresql-dbaas_cli_create_service
https://cloud.ibm.com/docs/services/hyper-protect-dbaas-for-mongodb?topic=hyper-protect-dbaas-for-mongodb-dbaas_cli_plugin&locale=en-US
https://cloud.ibm.com/docs/services/hyper-protect-dbaas-for-mongodb?topic=hyper-protect-dbaas-for-mongodb-dbaas_cli_plugin&locale=en-US
https://cloud.ibm.com/docs/services/hyper-protect-dbaas-for-mongodb?topic=hyper-protect-dbaas-for-mongodb-dbaas_cli_plugin&locale=en-US
https://cloud.ibm.com/docs/services/hyper-protect-dbaas-for-mongodb?topic=hyper-protect-dbaas-for-mongodb-dbaas_cli_plugin&locale=en-US

Generating an API key

A customer API key is needed for communicating with the DBaaS RESTful API. To obtain a
key to use with the account, complete the following steps:

1. On the IBM Cloud dashboard, select Manage — Access (IAM).

2. From the Identity and Access Management (IAM) dashboard, select IBM Cloud API
Keys.

3. Click Create an IBM Cloud API Key on this page. In the modal window, enter a name and
description for the API key. Click Create.

You can copy your APl key and download a JSON file that contains information about your
API key. An example of this file is shown in Example 3-8.

Note: This information cannot be seen after leaving the page. Take note of this value now.
An option to download the API key JSON file also is available.

Example 3-8 Generated API key output

{
"name": "My API key",
"description": "DBaaS Manager Key",
"createdAt": "2021-05-05T718:58+0000",
"apiKey": Nxkkkkkll

Choosing a DBaaS Manager

Creating an IBM Hyper Protect Service instance requires direct communication to the dbaas
manager in the region of deployment. This requirement exists because the dbaas manager
represents the region to which you are deploying.

The supported regions at the time of writing are shown in Table 3-3.

Table 3-3 DBaaS managers

URL Port number | Region City
dbaas900.hyperp-dbaas.cloud.ibm.com | 20000 us-south | Dallas
dbaas902.hyperp-dbaas.cloud.ibm.com | 20000 eu-de Frankfurt
dbaas904.hyperp-dbaas.cloud.ibm.com | 20000 au-syd Sydney
dbaas906.hyperp-dbaas.cloud.ibm.com | 20000 us-east Washington DC

Authenticating by using the API

After obtaining an API key to use with the IBM Hyper Protect DBaaS API, users must
authenticate with the API directly to request an access token for commands to be issued
against the DBaaS service.

Example 3-9 on page 217 shows the API authentication call by using the API that is
generated from Example 3-8. We also are communicating directly with the Dallas DBaaS
manager by using the Dallas hosthame from Table 3-3.

216 Securing Your Critical Workloads with IBM Hyper Protect Services

Example 3-9 API authentication call: Syntax and example

Syntax

~§ curl -X GET \
"https://<ip>:<port>/api/v2/auth/token" \
-H "accept: application/json" \

-H "api_key: <api_key>"

Example

~§ curl -X GET\
"https://dbaas900.hyperp-dbaas.cloud.ibm.com:20000/api/v2/auth/token" \
-H "accept: application/json" \

-H "api_key: nDSP8SQ...... ywkB"

This authentication request returns the user ID of the account and the access token for use in
subsequent API calls for interacting with the IBM Hyper Protect DBaa$S service. An example
of this output is shown in Example 3-10.

Example 3-10 Authentication request output

{

"access_token":"eyJdraWQ...... AyBfjXc81w",
"user_id":"dd38...... c80aac",
"expires_in":3600,
"expiration":1620340975

1

Tip: The generated access token expires in 1 hour from the time that it is generated. After
this time, another call to the authentication endpoint is required to continue issuing API
calls to the DBaaS Managers.

Issuing a create service request

Using the access token that was generated in “Generating an API key” on page 216, it is
possible to create a service call to provision an instance of the IBM Hyper Protect DBaaS
service on IBM Cloud by following the example that is shown in Example 3-11.

Example 3-11 Creating a PostgreSQL service instance by using the API: Syntax and example

Syntax

~$ curl -X POST \

"https://<ip>:<port>/api/v2/{user_id}/services" \

-d '{"catalog": "hyperp-dbaas-postgresql", "name": "<Service_Name>",
"resource_group": "Default", "plan": "postgresql-free", "cpu": 2, "memory":
"1gib", "storage": "2gib", "admin_name": "admin", "password":
"<password_for_admin>", "kms_instance":"<crn_of_kms_instance>",
"kms_key":"<id_of_kms_key>"}' \

-H "x-auth-token: {access_token}" \

-H "content-type: application/json" \

-H "accept: application/json" \

-H "accept-license-agreement: yes"

Example

Chapter 3. IBM Cloud Hyper Protect Database as a Service 217

~$ curl -X POST \
"https://dbaas900.hyperp-dbaas.cloud.ibm.com:20000/api/v2/dd38...... c80aac/service
s"\

-d '{"catalog": "hyperp-dbaas-postgresql", "name": "HPDBaaSPostgreSQLAPI",
"resource_group": "Default", "plan": "postgresql-free", "cpu": 2, "memory":
"lgib", "storage": "2gib", "admin_name": "admin", "password": "passWORD4Userl9"}
-H "x-auth-token: eyJdraWQ...... AyBfjXc81lw" \

-H "content-type: application/json" \

-H "accept: application/json" \

-H "accept-license-agreement: yes"

This command from Example 3-11 on page 217 is issuing a POST request against the IBM
Hyper Protect DBaaS API services endpoint to create a PostgreSQL cluster on the IBM Cloud
account with the associated API key.

We are creating a Free Plan IBM Hyper Protect DBaaS PostgreSQL instance with an
administrator user that is named admin.

For more information about IBM Cloud APIs, see IBM Cloud Docs.

3.4 Administration and operations

IBM Hyper Protect DBaaS supports various levels of administration oversight for the service.

3.4.1 Managing an IBM Hyper Protect DBaa$S service

Managing an IBM Hyper Protect DBaaS service can be done through the IBM Cloud Portal
dashboard under the Services section on the Resource List page. On this page, users can
use the actions menu by clicking the hamburger menu that is to the right of the targeted
service instance.

Clicking the name of an IBM Hyper Protect DBaa$S service brings administrators to the
service dashboard for that selected service. This management interface enables the use of
more fine-tuned options for administrative management of an IBM Hyper Protect DBaaS
service. The dashboard shows the menu items Getting started, Manage, Resources,
Databases, Users, Nodes, Observability, and Plan, as shown in Figure 3-7.

Getting started
Manage
Resources
Databases
Users

Nodes
Observability

Plan

Figure 3-7 Example of IBM Hyper Protect DBaaS for PostgreSQL dashboard

218 Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs?tab=api-docs

Getting started

The Getting started menu shows an overview with the requirements and some guidelines
about how to use the IBM Hyper Protect DBaaS service.

Manage

The Manage menu shows the status of the service and of each node, storage consumption,
location, information about the plan and the version, and information about how to connect to
the database. This menu is also the location for users to retrieve their certificate authority
(CA) file to form a secure connection to their database, as shown in Figure 3-8.

Figure 3-8 Example of IBM Hyper Protect DBaaS$ for PostgreSQL Manage menu

Resource

The Resource menu shows the current allocation of memory, disk, and vCPU for the IBM
Hyper Protect DBaasS service, as shown in Figure 3-9. In this section, is also possible to scale
any one of the resources by clicking a new plan and then clicking Apply.

Hyper Protect DBaaS for PostgreSQL-RB @ active fesibiepian & Details | Actions... v
Getting started Resources
EnE You can flexibly scale vCPU, RAM, and disk to meet your requirements. Your changes will automatically be reflected sequentially on all three nodes without
interrupting your workload. Alternatively you can make your changes through the CLI or the APL.
Resources |
Databases R
Memory Disk vCPU
Users
Nodes ‘ 2GB Current @ ‘ ‘ 5GB Current @ ‘ ‘ 1VCPUs Current @
Observability 368 +$7.5 USD / month 1068 +$4.45 USD / month 2VCPUs +$46 USD / month
Plan
4GB +$15 USD / month 16 GB +$9.79 USD / month 3 VCPUs +$92 USD / month
5GB +$22.5 USD / month 24GB +$16.91 USD / month 4vCPUs +$138 USD / month
8GB +$45 USD / month 32GB +$24.03 USD / month 5vCPUs +$184 USD / month
12GB +$75 USD / month 64GB +$52.51 USD / month 6 VCPUS +$230 USD / month
16 GB +$105 USD / month 128 GB +$109.47 USD / month 8 vCPUs +$322 USD / month
24GB +$165 USD / month 160 GB +$137.95 USD / month 9 VCPUs +$368 USD / month
32GB +$225 USD / month 256 GB +$223.39 USD / month 12 VCPUs +$506 USD / month
64 GB +$465 USD / month 320GB +$280.35 USD / month 16 vCPUs +$690 USD / month
96 GB. +$705 USD / month 512 GB +$451.23 USD / month
128 GB +$945 USD / month 640 GB +$565.15 USD / month
>
1280 GB. +$1134.75 USD / month

Figure 3-9 Example of IBM Hyper Protect DBaaS for PostgreSQL Resource menu

Chapter 3. IBM Cloud Hyper Protect Database as a Service 219

Databases

The Databases menu shows information about the databases with Name and Size, as shown
in Figure 3-10.

betalls

Hyper Protect DBaaS for PostgreSQL-RB @ actve flexibiepian &

Getting started Databases
Manage Q Filter table @
Resources
Name Size
Databases
Users admin 7.73 MB
Nodes
Items per page: 25 1-1of 1 item 1v 1oflpage “« >
Observability
Plan

Figure 3-10 Example of IBM Hyper Protect DBaa$S for PostgreSQL Databases menu

Users

The Users menu shows the Name, Role Attributes, and Role Details, as shown in
Figure 3-11.

Hyper Protect DBaasS for PostgreSQL-RB © Active [EEED) - Details AT <

Get

tarted

Users
Name Role Attributes Role

show details

y INHERIT, CREATEROLE, CREATEDB,
admin e

Observability

Figure 3-11 Example of IBM Hyper Protect DBaaS for PostgreSQL Users menu

Nodes

The Nodes menu shows the status of the service and the log files for each one of the three
nodes (one primary and two secondaries), as shown in Figure 3-12.

Hyper Protect DBaaS for PostgreSQL-RB @ active flexiblepian 2 Details
Getting started
g dbaas51-29094 @ Primary dbaas50-29160 e dbaas52-29200 e
Manage
Resources
dbaas51-29094 @ Primary node is running smoothly
Databases
Node ID
Users
9661e5b9b2730b510c08238b59134e8d VD
Nodes
Observability
Start date End date
Plan Log files
g m/d/Y (] m/d/Y 8
Q_ Filter table «
O Name Date last modified File size
O auditlog 5/5/2021, 9:00:01 PM 08 L
[0 postgresql.log 5/7/2021,11:15:11 AM 39.05 KB L
[0 postgresql.log.20210507-1620345601.gz 5/6/2021, 8:54:23 PM 9.26 KB L
O postgresql.log.20210506-1620259201.gz 5/5/2021, 8:54:22 PM 6.43 KB X
O auditlog.20210506-1620259201.gz 5/5/2021, 12:39:05 PM 3.78 KB L
Items perpage: 25 ~ 1-50f 5items 1v 1oflpage « >

Figure 3-12 Example of IBM Hyper Protect DBaa$S for PostgreSQL Nodes menu

220 Securing Your Critical Workloads with IBM Hyper Protect Services

Observability

The Observability menu is used to enable the forwarding of data to IBM Cloud observability
services. By using this menu, it is possible to have visibility into the performance and health of
the applications and infrastructure by using IBM Cloud Monitoring with Sysdig and IBM Cloud
Logging with LogDNA, as shown in Figure 3-13.

Hyper Protect DBaa$S for PostgreSQL-RB @ active flexibiepian & Details

Getting started Observability
SETEES You can forward your data to IBM Cloud observability services and have visibility into the performance and health of your applications and infrastructure.

Resources

Databases Monitoring Logging

Ueore Use IBM Cloud Monitoring with Sysdig to gain operational visibility into Use 1BM Cloud Logging with LogDNA to add log management capabilities
the performance and health of your applications. to your Hyper Protect DBaas$ service instance.

Nodes

Observability

Plan
» »
| ‘
n “
[1 agree with sending my platform metrics to IBM Cloud Monitoring, [1 agree with sending my platform logs to IBM Cloud Monitoring with
with Sysdig to add monitoring. Meanwhile, your database content LogDNA to add logging. Meawhile, your database content remains
remains hyper protected hyper protected.

E e for monitorir Enabl

Figure 3-13 Example of IBM Hyper Protect DBaa$S for PostgreSQL Observability menu

Plan

The Plan menu shows the pricing plan of the IBM Hyper Protect DBaa$S service. You can
change your Plan (Flexible / Free) here, as shown in Figure 3-14.

Hyper Protect DBaaS for PostgreSQL-RB @ active flexibieptan 2. Details

Getting started

Change pricing plan

Manage
Resources .
Plan Features Pricing
Databases
PostgreSQL Free 30 days availability Free
Users 1 GB Memory
Nodes 2 GB of data storage

Observability
PostgreSQL Flexible High availability: 3 nodes per instance $46.00 USD/Virtual Processor Core ©
Rlan $7.50 USD/GB-RAM
$0.89 USD/GB-Disk

Next Steps:

Changing the pricing plan of this service requires that you take steps to restage your app.
Learn more about changing plans.
Click Save to complete your pricing plan change.

Figure 3-14 Example of IBM Hyper Protect DBaa$S for PostgreSQL Plan menu

Changing the name of a service

From the Resource List page, account administrators can select the actions menu and select
the Edit Name option to update the name of the service.

Under the service dashboard for an IBM Hyper Protect DBaa$S service, administrators can
click the Service Instance Actions menu to the right of the overview page and select
Rename Service to edit the service name.

Chapter 3. IBM Cloud Hyper Protect Database as a Service 221

Deleting a service

From the Resource List page, account administrators can select the actions menu and
choose the Delete option to remove the service from your account. When a service is
deleted, all data that is associated with the IBM Hyper Protect DBaaS service is gone and
permanently inaccessible.

3.4.2 Managing database instances

After creating an IBM Hyper Protect DBaaS PostgreSQL or MongoDB database, it is
necessary to use a client tool to connect to the databases and perform all the management
tasks like create, delete, and modify databases, table spaces, and users. The IBM Cloud
Hyper Protect DBaaS Dashboard in the Manage menu, which is shown in Figure 3-8 on
page 219, has information about how to do this connection.

IBM Hyper Protect DBaaS allows only SSL-secured client connections.

Connecting to databases

To connect to the IBM Hyper Protect DBaaS database, it is necessary to follow one of the two
options that are presented at the bottom of the Manage menu, as shown in Figure 3-15 for
PostgreSQL and in Figure 3-16 on page 223 for MongoDB.

How to connect How to connect
pgAdmin Interactive terminal pgAdmin
1. Download and install the PostgreSQL interactive terminal as described in 1. Download and install pgAdmin as described in the pgAdmin documentation.
the PostgreSQL documentation. If you are using the interactive installer, at ~ . sy Trupd
least install the Command Line Tools package. 2. Download certificate authority (CA) file and store it in a directory of your
choice.

2. Download certificate authority (CA) file and store it in a directory of your
choice.

3. To connect as user admin, run the following command: 4. On the pgAdmin dashboard, select Add New Server from Quick links section.

In the Create Server dialog provide the required values.

3. Open pgAdmin

= On the General page, fill in Name and leave the Connect now? option
checked.

= On the Connection page, fill out the basic connection information.

= On the 551 page, for S5L mode, select any option but not Disable.

4. Substitute CA_FILE_NAME with the relative or absolute path to that CA file Verify-Full is recommended. For Root certificate, select the CA file
downloaded in step 2. downloaded in step 2.
5. Run the command. 5. Click Save.

See documentation for more details See documentation for more details

Figure 3-15 Example of IBM Hyper Protect DBaa$S for PostgreSQL connection methods

222 Securing Your Critical Workloads with IBM Hyper Protect Services

How to connect

Shell Compass

1. Download and install the mongo shell as described in the MongoDB
documentation. The mongo shell version needs to be compatible with
MongoDB Enterprise 4.4.1,

2. Download certificate authority (CA) file and store it in a directory of your
choice.

3. To connect as user cguarany, run the following command:

4, Substitute CA_FILE_NAME with the relative or absolute path to that CA file
downloaded in step 2.

5. Run the command

see documentation for more details

How to connect

Shell Compass

1. Download and install the MengoDB Compass as described in the MongaDB
documentation

2. Download certific
choice,

ite authorty (CA) file and store it in a directory of your

3. Copy the following MongoDB connection string to the clipboard:

. Dn the "New Connection" page, paste the cluster URL.

wom

. Click *Fill in connection fields individually".

=

« For Auth
name a rd

3n, salect option "Username/Password”, Enter your user

7. Click the "More Options" tab.

= Inthe 55L field, select "Server Validation”.

+ Far Certificate Authority select the CA file downloaded in step 2.

B. Click "Connect”

Figure 3-16 Example of IBM Hyper Protect DBaaS for MongoDB connection methods

3.4.3 Logging and monitoring

In this section, the logging and monitoring functions are described.

Logging

IBM Hyper Protect DBaa$ allows for log downloading through the Nodes page under the
management interface dashboard for a database cluster. On the Nodes page, users can
choose a replica to download specific log files or all log files for the database replica. An
example of the Nodes page is shown in Figure 3-17.

Log files

Filter table

Q
[J Name
O

audit.log

[J postgresql.log

m/d/Y i m/d/|
Date last modified File size
5/7/2021, 5:10:02 PM 0B
5/10/2021, 2:01:16 PM 62 KB

Figure 3-17 Log files from the Nodes page

IBM Log Analysis with LogDNA

In addition to downloading the logs, users can set up external logging through integration with
a Log DNA instance on IBM Cloud for more log analysis.

To set up your IBM Hyper Protect DBaaS, complete the following steps:

1. Ensure that you are logged in to an IBM account on IBM Cloud.

2. Create a LogDNA instance by browsing to the Observability dashboard on IBM Cloud. To
do this task, click the hamburger menu on the left side of the IBM Cloud dashboard and

select Observability.

Chapter 3. IBM Cloud Hyper Protect Database as a Service

223

224

3. On the Observability page, select Logging — Create instance under IBM Log Analysis

with LogDNA. The following page prompts you for information that is needed to create the
logging instance. Enter a meaningful name for the LogDNA instance, and then choose a

deployment region, resource group, and a pricing plan for your instance to determine log

retention.

Note: The region that is selected is the region that features monitored logging. This
region is the same region to which the IBM Hyper Protect DBaaS instance was
deployed.

. After providing the information to create your IBM LogDNA instance, select Create and

browse back to your DBaaS service to enable logging. To enable logging on the DBaaS
cluster, browse to the service management page and click the Observability tab.

. Select the | agree with sending my platform logs to IBM Cloud Monitoring with

LogDNA to add logging. Meanwhile, your database content remains hyper protected
checkbox, and then click Enable for logging, as shown in Figure 3-18.

Logging
Use IBM Cloud Logging with LogDNA to add log management capabilities to your
Hyper Protect DBaaS service instance.

I agree with sending my platform logs to IBM Cloud Monitoring with LogDNA
to add logging. Meawhile, your database content remains hyper protected.

Enable for logging
1

Figure 3-18 Example of Enabling Logging for IBM Hyper Protect DBaaS: Enable for logging

6. Next, click Add Logging, as shown in Figure 3-19 on page 225.

Securing Your Critical Workloads with IBM Hyper Protect Services

Logging
Use IBM Cloud Logging with LogDNA to add log management capabilities to your
Hyper Protect DBaa$ service instance.

@ Step 1: This service instance is enabled to send platform logs

@ Step 2: This service instance has not been added to logDNA yet

Add logging =2
=

Figure 3-19 Example of Enabling Logging for IBM Hyper Protect DBaaS: Add logging

7. Select the LogDNA Instance that was created in this procedure and click Select, as
shown in Figure 3-20.

Select an IBM Log Analysis with LogDNA instance to receive
platform logs

Choose which IBM Log Analysis with LogDNA instance will receive platform logs
from enabled service instances across IBM Cloud. You may also create an instance.

Instance(s) in Frankfurt

IBM Log Analysis-RedBook v

Cancel Select

Figure 3-20 Example of Enabling Logging for IBM Hyper Protect DBaaS: Selecting a LogDNA
instance

Chapter 3. IBM Cloud Hyper Protect Database as a Service 225

8. The LogDNA instance is configured to display the logs from the IBM Hyper Protect DBaaS
service. Start LogDNA by clicking Launch logging, as shown in Figure 3-21.

Logging
Use IBM Cloud Logging with LogDNA to add log management capabilities to your
Hyper Protect DBaaS service instance.

@ Step 1: This service instance is enabled to send platform logs

@ Step 2: This service instance has been added to logDNA

Launch logging 4

Figure 3-21 Example of Enabling Logging for IBM Hyper Protect DBaaS: Launch logging

9. The LogDNA dashboard opens, as shown in Figure 3-22, with th logs of the IBM Hyper
Protect DBaa$ instance.

Note: It can take some time for LogDNA to register the DBaa$ instance as a source for
logs initially. After the source for the logs is registered, the registered logs are shown in
the main window.

Figure 3-22 LogDNA user interface

226 Securing Your Critical Workloads with IBM Hyper Protect Services

Monitoring a database

As with logging, database monitoring is disabled on an IBM Hyper Protect DBaaS service by
default. To enable monitoring on your cluster and set up your IBM Hyper Protect DBaaS,
complete the following steps:

1. Ensure that you are logged in to an IBM account on IBM Cloud.

2. Create an IBM Cloud Monitoring instance by browsing to the Observability dashboard on
IBM Cloud. To do this task, open the hamburger menu on the left side of the IBM Cloud
dashboard and select Observability.

3. On the Observability page, select Monitoring — Create instance under Monitoring. The
following page prompts you for information that is needed to create the monitoring
instance. Enter a meaningful name for the IBM Cloud Monitoring instance, and choose a
deployment region, resource group, and a pricing plan.

Note: The region that is selected is the region that features monitored logging. This
region is the same region to which the IBM Hyper Protect DBaaS instance was
deployed.

4. After providing the information to create your IBM Cloud Monitoring instance, make sure
that IBM platform metrics is set to Enable, and then select Create.

5. Browse back to your DBaa$S service to enable monitoring. To enable monitoring on the
DBaas cluster, browse to the service management page and click the Observability tab.

6. Select the | agree with sending my platform metrics to IBM Cloud Monitoring with
Sysdig to add monitoring. Meanwhile, your database content remains hyper
protected checkbox, and then click Enable for monitoring, as shown in Figure 3-23.

Monitoring

Use IBM Cloud Monitoring with Sysdig to gain operational visibility into the
performance and health of your applications.

I agree with sending my platform metrics to IBM Cloud Monitoring with
Sysdig to add monitoring. Meanwhile, your database content remains hyper
protected.

Enable for monitoring

Figure 3-23 Example of Enabling Monitoring for IBM Hyper Protect DBaaS: Enable for monitoring

Chapter 3. IBM Cloud Hyper Protect Database as a Service 227

7. After enabled the monitoring of the IBM Hyper Protect DBaaS, the service takes a few
minutes to send information to the IBM Cloud Monitoring instance, as shown in
Figure 3-24.

Monitoring

Use IBM Cloud Monitoring with Sysdig to gain operational visibility into the
performance and health of your applications.

@ Step 1: This service instance is enabled to send platform metrics

@ Step 2: This service instance has not been added to sysdig yet

Add monitoring

Figure 3-24 Example of Enabling Monitoring for IBM Hyper Protect DBaaS: Information being sent

8. The Monitoring instance is configured to display the logs from the IBM Hyper Protect
DBaasS service. Start Sysdig by clicking Launch monitoring, as shown in Figure 3-25.

Monitoring

Use IBM Cloud Monitoring with Sysdig to gain operational visibility into the
performance and health of your applications.

@ Step 1: This service instance is enabled to send platform metrics

@ Step 2: This service instance has been added to sysdig

Launch monitoring =

Figure 3-25 Example of Enabling Monitoring for IBM Hyper Protect DBaaS

9. The Sysdig monitoring dashboard opens, as shown in Figure 3-26 on page 229, with
information about CPU, Memory, and Disk usage of the IBM Hyper Protect DBaaS
instance.

228 Securing Your Critical Workloads with IBM Hyper Protect Services

Hyper Protect DBaa$ for PostgreSQL - Overview

TeamScope + ibm_service_name is hyperp_dbaas_postgresql + ibm_service_instance is 41444eb6-71cb-4f34-975d-379.. + ibm_hyperp_node

CPU Idle Percentage

May 10, 4:10:00 PM value

Memory Usage

Database Disk Usage

May 10, 4:10:00 PM

) [4610B401B49075634f1. used

Figure 3-26 Example of IBM Cloud Monitoring Dashboard for IBM Hyper Protect DBaaS for
PostegreSQL

Note: In addition to IBM Cloud monitoring, external tools can be used, such as MongoDB
Compass and pgAdmin, to connect to and interact with an IBM Hyper Protect DBaaS
instance.

3.4.4 Backing up and restoring

As described in 3.2, “Sizing and topology” on page 209, IBM Hyper Protect DBaa$ includes
automatic database backups in all availability zones every 24 hours by default. You can
restore from those backups within the last 7 days by way of IBM Support.

In some cases, you want to make more backups manually to increase your data availability.
For example, in a DR scenario, you might want to back up your database to IBM Cloud Object
Storage in a different region and restore it on another database instance.

This section describes manual backup a database, with PostgreSQL and MongoDB, to
IBM Object Storage and restoring the data to another database instance.

Before you back up your database to IBM Object Storage, you must create an IBM Object
Storage instance in another IBM Cloud region (for example, in the UK) while your database is
in Dallas, US. For more information about creating an IBM Object Storage instance, bucket,
and service credentials, see Provisioning storage.

After you create an IBM Object Storage instance, you can use an object storage client to
access the data that is in the storage bucket.

Note: Many third-party object storage clients are available. You can use any S3 client that
you prefer. In this section, s3cmd is used to complete the object storage operations.

The s3cmd tool is available at the GitHub website.

Chapter 3. IBM Cloud Hyper Protect Database as a Service 229

https://github.com/s3tools/s3cmd
https://cloud.ibm.com/docs/services/cloud-object-storage?topic=cloud-object-storage-provision

Backing up a PostreSQL database to IBM Object Storage

In this example, a sample database sakila is in the Dallas region. Example 3-12 shows the
command to back up the data to your local disk.

Example 3-12 Backing up database to your local disk

pg_dump -h dbaas901.hyperp-dbaas.cloud.ibm.com -p 28154 -U db01l -d sakila -f
sakila.dump

After the backup is done, you can use the S3 client to upload the data to the IBM Object
Storage instance (see Example 3-13).

Example 3-13 Uploading data to IBM Object Storage

s3cmd 1s
2019-12-05 16:18 s3://s3-bucket-database

s3cmd put sakila.dump s3://s3-bucket-database
upload: 'sakila.dump' -> 's3://s3-bucket-database/sakila.dump' [1 of 1]
3084689 of 3084689 100% in 0s 3.95 MB/s done

s3cmd la
2019-12-05 21:34 3084689 s3://s3-bucket-database/sakila.dump

When it is needed, you can download the file from the IBM Object Storage instance and
restore the data to a database instance (see Example 3-14).

Example 3-14 Restoring data

psql -h dbaas901.hyperp-dbaas.cloud.ibm.com -p 28154 -U db01l -d sakila -f
sakila.dump

SET

SET

SET

SET

SET

set_config

(1 row)

SET

SET

SET

SET

ALTER SCHEMA
CREATE EXTENSION
CREATE EXTENSION
CREATE TYPE
ALTER TYPE
CREATE DOMAIN
ALTER DOMAIN
CREATE FUNCTION
ALTER FUNCTION
CREATE FUNCTION
ALTER FUNCTION

230 Securing Your Critical Workloads with IBM Hyper Protect Services

CREATE FUNCTION
ALTER FUNCTION
CREATE FUNCTION

Backing up a MongoDB database to IBM Object Storage

In this example, a sample database that is named inventory is in the Dallas region.
Example 3-15 shows the command to back up the data to your local disk.

Example 3-15 Backing up a MongoDB database

#mongodump --host
"mongo/dbaas30.hyperp-dbaas.cloud.ibm.com:28032,dbaas31.hyperp-dbaas.cloud.ibm.com
:28117 ,dbaas29.hyperp-dbaas.cloud. ibm.com:28242" --ss1 --username mongo
--authenticationDatabase admin --db inventory --ss1CAFile cert_mongo.pem --out
listing.dump

2019-12-06T16:06:19.681+0000writing inventory.listings to

2019-12-06T16:06:20.846+0000[....cvvvvrninnnnnnnnnn. 1 inventory.listings
101/48377 (0.2%)

2019-12-06T16:06:23.846+0000[###.....cvvvvvinnnnnnn. 1 inventory.listings
7821/48377 (16.2%)

2019-12-06T16:06:26.846+0000 [########.ovvnnnnn.. 1 inventory.listings
16459/48377 (34.0%)

2019-12-06T16:06:29.846+0000 [##########4#. oouns. 1 inventory.listings
24890/48377 (51.5%)

2019-12-06T16:06:32.846+0000 [###########4#444. 1 inventory.listings

33463/48377 (69.2%)

2019-12-06T16:06:35.846+0000 [#############4####4#....] inventory.listings
41847/48377 (86.5%)

2019-12-06T16:06:37.742+0000 [############ 444 ###4###44] inventory.listings
48377/48377 (100.0%)

2019-12-06T16:06:37.742+0000done dumping inventory.listings (48377 documents)

After the backup is complete, you can use the S3 client to upload the data to IBM Object
Storage, as shown in Example 3-13 on page 230.

Chapter 3. IBM Cloud Hyper Protect Database as a Service 231

When it is needed, you can download the files from IBM Object Storage and restore the data
to a database instance, as shown in Example 3-16.

Example 3-16 Restoring data to a MongoDB database

mongorestore --host
"mongo/dbaas30.hyperp-dbaas.cloud.ibm.com:28032,dbaas31.hyperp-dbaas.cloud.ibm.com
:28117 ,dbaas29.hyperp-dbaas.cloud. ibm.com:28242" --ss1 --username mongo
--authenticationDatabase admin --db inventory_new --ss1CAFile cert_mongo.pem
listing.dump/inventory

2019-12-06T16:22:53.585+0000the --db and --collection args should only be used
when restoring from a BSON file. Other uses are deprecated and will not exist in
the future; use --nsInclude instead

2019-12-06T16:22:53.585+0000building a list of collections to restore from
Tisting.dump/inventory dir

2019-12-06T16:22:53.627+0000reading metadata for inventory new.listings from
Tisting.dump/inventory/listings.metadata.json
2019-12-06T16:22:53.674+0000restoring inventory new.listings from
Tisting.dump/inventory/listings.bson

2019-12-06T16:22:56.142+0000[####. ... covvviiinnnnnn.. 1 inventory new.listings
49.6MB/275MB (18.1%)

2019-12-06T16:22:59.142+0000 [#########. ... oovnnnn... 1 inventory new.listings
111MB/275MB (40.4%)

2019-12-06T16:23:02.142+0000 [######## 4444444 1 inventory new.listings

178MB/275MB (64.9%)

2019-12-06T16:23:05.142+0000 [##################44#...] inventory new.listings
247MB/275MB (89.7%)

2019-12-06T16:23:06.691+0000 [########################] inventory new.listings
275MB/275MB (100.0%)

2019-12-06T16:23:06.692+0000n0 indexes to restore
2019-12-06T16:23:06.692+0000finished restoring inventor new.listings (48377
documents)

2019-12-06T16:23:06.692+0000done

3.5 Security and compliance

Data at rest and data in transit of IBM Hyper Protect DBaaS is encrypted by a dedicated
Hardware Security Module (HSM) by default. The entire database environment is a secure
enclave.

The data is encrypted on a Federal Information Processing Standard (FIPS) 140-2 Level
4-certified HSM, which is the highest level of security in the industry. Access to the service
occurs over HTTPS, which is the service that uses Transport Layer Security (TLS) 1.2
protocol to encrypt data in transit. Therefore, no one else, including IBM Cloud administrators,
can access the data in your databases in the cloud without keys. Only Environment Log
information is included outside of a secure enclave for the IBM Support team.

The IBM Hyper Protect DBaa$S service features the following industry and security
compliance certifications:

» FIPS 140-2 Level 4
» General Data Protection Regulation (GDPR)

232 Securing Your Critical Workloads with IBM Hyper Protect Services

» 1SO 27001, 27017, and 27018
» Health Insurance Portability and Accountability Act (HIPPA)

For more information about IBM Cloud regulatory compliance, see IBM Cloud compliance
programs.

3.6 Use case: Encrypting databases with your keys protected

The data in the IBM Hyper Protect DBaaS service on IBM Cloud is pervasively encrypted with
HSM by default by randomly generated keys. The IBM Hyper Protect DBaaS service supports
scenarios of Keep Your Own Key (KYOK) and Bring Your Own Key (BYOK).

Therefore, you can use IBM Cloud Hyper Protect Crypto Services to create, add, and manage
encryption keys and associate the keys with your IBM Hyper Protect DBaaS service
instances to encrypt your databases. In that way, you can control your encryption keys.

To integrate IBM Hyper Protect Crypto Services and IBM Hyper Protect DBaaS, complete the
following steps:

1. Create an instance of IBM Hyper Protect Crypto Services.
2. In the IBM Hyper Protect Crypto Services instance, create or import a root key.

3. Grant authorization to IBM Hyper Protect DBaaS instances by using the IBM Hyper
Protect Crypto Services with IAM in your account:

From the menu toolbar, click Manage — Access (IAM).

In the side navigation, click Authorizations.

Click Create.

In the Source service menu, select Hyper Protect DBaa$S for MongoDB.

In the Source service instance menu, select All service instances.

In the Target service menu, select Hyper Protect Crypto Services.

In the Target service instance menu, select the service instance to authorize.
Enable the Reader role.

Click Authorize.

TSQ@ ™0 00T

Chapter 3. IBM Cloud Hyper Protect Database as a Service 233

https://www.ibm.com/cloud/compliance
https://www.ibm.com/cloud/compliance

4. Create an instance of IBM Hyper Protect DBaaS and select your IBM Hyper Protect
Crypto Services instance and root key. An example of creating an IBM Hyper Protect
DBaaS for MongoDB is shown in Figure 3-27.

Conﬁgure your resource
Service name Select a resource group @
Hyper Protect DBaa$S for MongoDB-RedBook default v
Tags @ Access management tags @
Examples: env:dey, version-1 Examples: access:dev, proj:version-1
Cluster name Database admin name
The name of the database cluster to be created Database admin user name
mongodb-clusterl admin
Database admin password Confirm password
Database admin user password Confirm database admin user password
................. © cecescencnnennen ©
Select a database version Endpoints
MongoDB Enterprise 4.4 Public network v
Select a KMS instance Select a root key
Please ensure Hyper Protect DBaaS for MongoDB has been authorized to access Warning: deleting this root key will result in the loss of all data stored in this
the selected KMS instance. You can manage service-to-service authorizations at MongoDB instance
any time by visiting Manage > Access(IAM) and choosing Authorizations. @
hpcs-sve v mynewrootkey v

Figure 3-27 Creating IBM Hyper Protect DBaaS for MongoDB with KYOK and BYOK

Note: If you delete your keys in the IBM Hyper Protect Crypto Services instance, you
cannot recover your data from the backups because even the IBM Cloud administrator
cannot access your data. However, if you have manual backups and store the backups in
other places, you might recover your data by restoring a backup into a new DB instance.

3.7 API interaction and code samples

IBM Hyper Protect DBaaS supports interaction through a robust API that is built on the
principles of RESTful interaction. For more information about the methods that are available
to customers in the API, see IBM Cloud Hyper Protect DBaaS RESTful APls.

The IBM Hyper Protect DBaaS API uses token authentication. Therefore, before issuing
requests against a DBaaS manager, an access token must be requested from the API. This
process can be done by sending a POST request to the auth/token endpoint. An example of
this process is shown in Example 3-9 on page 217, which uses the curl package.

After receiving an authentication token from the API, users can interact with various
endpoints that interact with the DBaaS clusters, service, users, databases, and instances. For
more information about these interaction methods, see the APl documentation.

234 Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/apidocs/hyperp-dbaas

The examples from the documentation pages were created by using the cur1 command.
However, the API also can be wrapped by other languages, such as Python, to interact with
the DBaaS REST API. The example from this GitHub repository provides basic wrapping
options for some of the DBaaS API endpoints by using Python 3 and the Requests package.

Note: This example app was created to connect and run in IBM Cloud Hyper Protect
DBaa$S for MongoDB.

3.7.1 Cloning the GitHub example Python code

The example code from GitHub can be cloned from this repository. Example 3-17 shows the
git command that is used.

Example 3-17 Cloning the GitHub example repository

$ git clone
https://github.com/IBMRedbooks/SG248469-Securing-your-critical-workloads-with-IBM-
Hyper-Protect-Services.git

Cloning into
'SG248469-Securing-your-critical-workloads-with-IBM-Hyper-Protect-Services'...
remote: Enumerating objects: 3, done.

remote: Counting objects: 100% (3/3), done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused O

Unpacking objects: 100% (3/3), done.

3.7.2 Setting up a Python virtual environment with requests

After cloning the repository from GitHub, you can initialize a Python virtual environment to
keep an installation of Python separate, as shown in Example 3-18.

Example 3-18 Setting up a Python virtual environment

$ python3 -m venv venv

$ source venv/bin/activate

(venv) § pip install requests

Requirement already satisfied: requests in ./venv/1ib/python3.9/site-packages
(2.25.1)

Requirement already satisfied: idna<3,>=2.5 in ./venv/1ib/python3.9/site-packages
(from requests) (2.10)

Requirement already satisfied: certifi>=2017.4.17 in
./venv/1ib/python3.9/site-packages (from requests) (2020.12.5)

Requirement already satisfied: urllib3<1.27,>=1.21.1 in
./venv/1ib/python3.9/site-packages (from requests) (1.26.4)

Requirement already satisfied: chardet<5,>=3.0.2 in
./venv/1ib/python3.9/site-packages (from requests) (4.0.0)

A virtual environment can be created by using many methods, which can be used instead of
this example. After setting up the environment for the example code, open the variables.py
file in the repository to input the cluster ID, IBM Cloud API Key, and the DBaaS manager IP

address and port for the region to which your cluster is deployed.

Chapter 3. IBM Cloud Hyper Protect Database as a Service 235

https://github.com/IBMRedbooks/SG248469-Securing-your-critical-workloads-with-IBM-Hyper-Protect-Services
https://github.com/IBMRedbooks/SG248469-Securing-your-critical-workloads-with-IBM-Hyper-Protect-Services

Note: The variables.py file can be found in the
/SG248469-Securing-your-critical-workloads-with-IBM-Hyper-Protect-Services/hype
rprotectdbaas/ folder in this repository.

Also, include the path to the downloaded cert.pem file from the IBM Cloud dashboard.
Including this path ensures that API communication is carried out over SSL for optimal secure
communication with the DBaaS Manager. A sample of the variables file is shown in

Example 3-19.

Note: The DBaaS Manager IP address is shown in Table 3-3 on page 216.

Example 3-19 Sample variables.py file

User Configuration Structure
dbaas_manager_ip = "{dbaas-manager-ip}"
port = "20000"

cluster_guid = "{cluster-id}"

api_key = “{ibmcloud_api_key}”
path_to_cert = "cert.pem"

User Configuration Example
dbaas_manager_ip = "dbaas902.hyperp-dbaas.cloud.ibm.com" # Frankfurt DBaaS

DBaaSManager

port = "20000"

cluster_guid = "8a8f2244-...... -c7ac2d75f5f3"
api_key = "nDSP8SQ3jWbB...... W-ywKkB"

path_to_cert = "/Users/cguarany/Desktop/RedBook/cert-dbaas-mongodb-redbook.pem"

3.7.3 Running the example file

With the user variables configured, the example code can now be run. Example 3-20 shows a
valid command that can be used to run the example file.

Note: Run the command within the
/SG248469-Securing-your-critical-workloads-with-IBM-Hyper-Protect-Services/hype
rprotectdbaas/ folder.

Example 3-20 Running the example.py file

(venv) $ python3 example.py

Running the command runs the example.py file with Python3 and output information about
your cluster, a list of users on the cluster, details about the administrator user on the cluster,
and a list of all users on the cluster with their details. The example file also prints all cluster
names on the account and their IDs.

This feature can be helpful when API calls are mixed to return more complex information.
Example 3-21 on page 237, which is from the GitHub repository example.py file, uses the
Python API class to combine the list users endpoint with user details endpoint to return a list
of all users and their information on a cluster.

236 Securing Your Critical Workloads with IBM Hyper Protect Services

https://github.com/IBMRedbooks/SG248469-Securing-your-critical-workloads-with-IBM-Hyper-Protect-Services

Example 3-21 Code that returns a list of all users and their details

cluster_users = dbaas_manager.user list(cluster_id=cluster_guid).json()['users']
all _users with _details = []
for user in cluster _users:
response = dbaas_manager.user_show(
cluster_id=cluster_guid,
user_id=f"{user['auth _db']}.{user['name']}"
)
all _users with _details.append(response.json())
print(all_users with details)

The examples from this folder are a brief demonstration on how Python can be used to write a
wrapper around the DBaaS APIs to be used within programs or automation.

Chapter 3. IBM Cloud Hyper Protect Database as a Service 237

238 Securing Your Critical Workloads with IBM Hyper Protect Services

IBM Cloud Hyper Protect Virtual
Servers

This chapter introduces IBM Cloud Hyper Protect Virtual Servers.

This chapter includes the following topics:

» Introducing IBM Cloud Hyper Protect Virtual Servers
» IBM Cloud Hyper Protect Virtual Servers use cases
» Sizing

» Public cloud service instantiation

» Administration and operations

© Copyright IBM Corp. 2020, 2022. All rights reserved. 239

4.1 Introducing IBM Cloud Hyper Protect Virtual Servers

IBM Cloud Hyper Protect Virtual Servers is the industry’s first customer-managed LinuxONE
based virtual servers offering in the public cloud. The offering gives clients complete authority
over their workloads, and it ensures confidentiality of code, data, and business IP within a
secure environment. This solution allows a client’s public cloud to use IBM LinuxONE, the
industry’s most secure enterprise server for Linux-based workloads.

IBM Cloud Hyper Protect Virtual Servers includes the following benefits:

» Run workloads and protect sensitive data, code, and business IP through built-in data at
rest and runtime encryption.

» Ensure security and confidentiality through industry compliance and certifications.

» Easily provision, manage, maintain, and monitor instances in the IBM Cloud by using a
standard UL.

» No IBM Z hardware and sKkills are required. IBM Z technology is accessed without having
to purchase, install, and maintain the required hardware.

Note: This chapter focuses on the public cloud offering. For more information about
IBM Hyper Protect Virtual Servers on-premises, see Chapter 5, “IBM Hyper Protect Virtual
Servers on-premises” on page 253.

4.2 I1BM Cloud Hyper Protect Virtual Servers use cases

The following IBM Cloud Hyper Protect Virtual Servers use cases are described:
» Digital asset custody

Financial technology (fintech) start-ups are rapidly upending the established financial
services industry by innovating on traditional and blockchain banking services. Institutional
investors, crypto-hedge funds, exchanges, token issuance platforms, private banking, Wall
Street titans, and others started using digital assets for lending, depository, escrow, and
payments services.

This new financial infrastructure is built on a foundation of institutional digital asset
custody. IBM Hyper Protect Virtual Servers offer a global, standardized, resilient, and
compliant custody service for the safekeeping of institutional digital asset investments. In a
highly regulated industry with valuable, digitized assets, security is a top priority.

This solution provides all the security without sacrificing scale or performance.
Concurrently, it is important for fintech companies and their establishment competitors to
remain innovative and competitive in this changing market, which makes cloud adoption
inevitable. Clients need a solution that is resilient, compliant, and secure because of cloud
security policies and best practices that are also enforced at the hardware level.

IBM Cloud Hyper Protect Virtual Servers provide the highest level of security at the
hardware level and can be adopted by fintech companies to grow and innovate with the
cloud without worrying about the security of their data.

240 Securing Your Critical Workloads with IBM Hyper Protect Services

>

4.3 Sizing

Migrating monolithic applications to the cloud

For many companies, migrating business-critical applications to the cloud is hindered by
fears around security, privacy, and regulation. Companies spent decades hardening the
security around their on-premises data and workloads, so the idea of trusting a third-party
organization to manage business and mission-critical applications was out the question.

Many clients in regulated industries, such as government, banking, healthcare, and
telecommunications, require highly secure compute resources to meet data privacy and
geo-and industry-specific regulations. This reason is why so many companies migrated
only their supporting applications to a public cloud, but did not touch their critical
applications.

For example, in the US healthcare industry, the Health Insurance Portability and
Accountability Act (HIPAA) is the primary law that covers the collection, use, exchange,
and protection of patient information. Although most (if not all) public cloud providers are
actively working to make their platforms HIPAA-compliant, steep penalties and potentially
dangerous results for patients because of a breach slowed public cloud adoption for
critical applications in the industry. HIPAA is one of many industry certifications that

IBM Hyper Protect Virtual Servers supports.

IBM Hyper Protect Virtual Servers enable healthcare companies to move their critical
workloads and applications to the cloud while maintaining on-premises level security,
privacy, and compliance.

LinuxONE clients who want to use IBM Cloud for development, testing, and backup

IBM LinuxONE users who are familiar with the platform and understand its strengths
around security, resiliency, and availability are often uncertain about the use of a different
platform (especially a public cloud) for workloads that are typically run on LinuxONE.
However, cloud platforms feature unmatched ability to scale across multiple geographies
to provide benefits that clients cannot usually find in an on-premises server infrastructure.
The combination of that level of horizontal agility with the LinuxONE unmatched dynamic
vertical scaling of cores, memory, and 1/O, and the security benefits of the hardware
creates the ideal host for development and testing, backups, and innovation in the cloud.

IBM Cloud Hyper Protect Virtual Servers are ideal for LinuxONE clients looking for cost
efficient ways of developing and testing, hosting disaster recovery (DR), and
experimenting with new capabilities in the cloud.

IBM Hyper Protect Virtual Servers provides different plans. The Free Plan offers a service
instance that is deleted after 30 days. The pricing plans configuration options are shown in

Table 4-1.

Table 4-1 The pricing plans options for IBM Hyper Protect Virtual Servers
Plan vCPU Memory Storage boot Storage data
Free One vCPU 2GB 25 GB 25 GB
Entry One vCPU 4GB 25 GB 75 GB
Small Two vCPUs | 8 GB 25GB 75 GB
Medium Four vCPUs | 16 GB 25 GB 75 GB

Chapter 4. IBM Cloud Hyper Protect Virtual Servers 241

4.4 Public cloud service instantiation

The IBM Cloud Hyper Protect Virtual Servers service has different options that are available
for service instantiation through the following methods of interaction:

» Web interface (GUI)
» IBM Cloud Command-Line Interface (CLI)

4.4.1 Prerequisites

The IBM Hyper Protect Virtual Servers service shares a set of prerequisites with the other
IBM Cloud Hyper Protect Services. To begin the service instantiation process, it is assumed
that the following prerequisites are met:

» IBM Cloud Account and access permission.
» Supported browser. For more information, see What are the IBM Cloud prerequisites?
» The following items are installed:

— IBM Cloud CLI. For more information, see Installing the stand-alone IBM Cloud CLI.
— IBM Cloud Database as a Service (DBaaS) CLI plug-in. For more information, see
Installing the DBaaS CLI components (by operating system).

» Have a Secure Shell (SSH) key pair ready, which you need for creating and connecting to
your virtual server instance. For more information, see Generating SSH keys.

Note: It is also possible to use CLI commands through the IBM Cloud shell directly on the
browser. For more information, see Getting started with IBM Cloud Shell.

4.4.2 Web interface

This section describes creating an IBM Hyper Protect Virtual Servers service instance on
IBM Cloud by using the web interface (GUI). It is assumed that you meet the prerequisites
that are described in 4.4.1, “Prerequisites” on page 242.

Complete the following steps:

1. Log in to your IBM Cloud account at https://cloud.ibm.com/Togin.

2. From the IBM account dashboard, click Catalog in the upper menu toolbar, as shown in

Figure 4-1.
= IBMCloud (@] Catalog Docs Support Manage Jordan Cartwright's ..
D as h board Customize & Upgrade account
Resource summary View resources
Services 3

Figure 4-1 IBM Cloud Dashboard

3. Enter Hyper Protect Virtual Server into the search toolbar and choose the card that is
shown in Figure 4-2 on page 243.

242 Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs/services/hp-virtual-servers?topic=hp-virtual-servers-generate_ssh
https://cloud.ibm.com/docs/overview?topic=overview-prereqs-platform
https://cloud.ibm.com/docs/cli?topic=cli-install-ibmcloud-cli
https://cloud.ibm.com/docs/cli?topic=cli-install-ibmcloud-cli
https://cloud.ibm.com/docs/hyper-protect-dbaas-for-mongodb?topic=hyper-protect-dbaas-for-mongodb-install-dbaas-cli-plugin#dbaas_cli_instr
https://cloud.ibm.com/docs/cloud-shell?topic=cloud-shell-getting-started
https://cloud.ibm.com/login
https://cloud.ibm.com/docs/overview?topic=overview-prereqs-platform
https://cloud.ibm.com/docs/overview?topic=overview-prereqs-platform
https://cloud.ibm.com/docs/cli?topic=cli-install-ibmcloud-cli

Y

Hyper Protect Virtual Server
IBM - Services = Compute

Create and run LinuxONE-based virtual servers with
exclusive access to your data and complete authority
over your sensitive workloads.

Free « IAM-enabled

Figure 4-2 Catalog search results for IBM Hyper Protect Virtual Server

4. After selecting which database offering to provision, choose a deployment data center on
the service creation page.

Note: IBM Cloud offers multiple data centers across the globe to host your IBM Hyper
Protect Virtual Servers service instance, such as Dallas (dal10, dal12, or dal13),
Washington DC (wdc04, wdc06, or wdc 07) Frankfurt (fra02, fra04, or fra05), or Sydney
(syd01, syd04, or syd05).

Chapter 4. IBM Cloud Hyper Protect Virtual Servers 243

244

5. Choose the location, pricing plan, instance name, resource group, and SSH public key, as
shown in Figure 4-3. Then, click Create to create an instance.

% Hyper Protect Virtual Server

+ Cumim o Loect sp

Craambs

Dallas 10 Cdall e

Select a prican
Displayed prices o Clocie o Mestly prices shown ane Tar couniry o lacaiiorc Un e Stabes
Flan L] Pricing
Free 1 Py Froa L]
2 o an
S0 8 Srocage (25 G5 baot. 35 B data)
warlak
e0 plan uang 1 #0802 00 al marra v and 50 GE o sl age Feeg clan ataces &) ba deiesad pfrar 10 day
Enirp LY [ET RN
 soal, Lai
Beraii ¥ Py 60,00 UED T

madurr

8 Storage (25 08 2021, 75 G5 dals

Configure your rescurce

Hyper Probect Wrtual Server-RedBook

Figure 4-3 Deploying an IBM Hyper Protect Virtual Servers instance in IBM Cloud

6. Check the instance status in the Resource list page, as shown in Figure 4-4. It takes
several minutes to complete the deployment. After the deployment is done, the status
shows as provisioned.

Resource list

Collapse all | Expand all
Name = Group Location Status

Q. redbook S Filter by group or org. ~ Filter... -~ (@]

Devices (0 / 0)
VPC infrastructure (0 / 0)
Clusters (0 / O)

Cloud Foundry apps (0 / 0)

V V. .V Vv V

Cloud Foundry services (0 / 1)
~ Services (1 / 4)

& Hyper Protect Virtual Server-redb... default Dallas 10 Provisioned .-

> Storage (0 / 1)

Figure 4-4 IBM Cloud Hyper Protect Virtual Servers instance status

Securing Your Critical Workloads with IBM Hyper Protect Services

4.4.3 IBM Cloud Command-Line Interface

This section describes instantiating an IBM Hyper Protect Virtual Servers service instance on
IBM Cloud by using the IBM Cloud CLI plug-in. It is assumed that the 4.4.1, “Prerequisites” on
page 242 are met.

Logging in to the IBM Cloud CLI

Before issuing a create service command, authenticate the IBM Cloud CLI by issuing the
following example command:

ibmcloud Togin --sso -a https://cloud.ibm.com

For more information and reference material about all options for authentication, see
ibmcloud login.

The CLI prompts for a one-time authorization code that can be opened in the default browser
or by copying the link into a supported browser, as shown in the output in Example 4-1.

Example 4-1 Authentication output from IBM Cloud CLI by using SSO

Get One Time Code from
https://identity-2.us-south.iam.cloud.ibm.com/identity/passcode to proceed.
Open the URL in the default browser? [Y/n] > n

One Time Code >

Authenticating...

0K

Creating a service instance

To create a service instance by using the IBM Cloud CLI, run the ibmcloud hpvs
instance-create command, as shown in Example 4-2.

Example 4-2 IBM Cloud CLI syntax to create a service

~$ ibmcloud hpvs instance-create NAME PLAN LOCATION [(--ssh SSH-KEY | --ssh-path
SSH-KEY-PATH)] [(--rd REGISTRATION-DEFINITION | --rd-path
REGISTRATION-DEFINITION-PATH)] [-i IMAGE-TAG] [-e ENV-CONFIG1 -e ENV-CONFIG2 ...]
[-g RESOURCE-GROUP-ID] [-t TAGl -t TAG2 ...] [--outbound-only]

PARAMETERS
NAME
Is the name of your instance.

PLAN
Is the name or ID of your service plan, for example, the plan name for a Free
Plan is lite-s. The possible values for plan name are: lite-s, entry, small,
and medium.

LOCATION
Is the target Tocation to create the service instance. The possible values are:
dal10, dall2, dal13, fra02, fra04, fral05, syd0l, syd04, syd05, wdc04, wdc06,
wdc07.

Chapter 4. IBM Cloud Hyper Protect Virtual Servers 245

https://cloud.ibm.com/docs/cli/reference/ibmcloud?topic=cloud-cli-ibmcloud_cli&locale=en-US#ibmcloud_login

Example 4-3 shows how the command can be issued. The CLI parameters syntax and
descriptions are listed in Example 4-2 on page 245.

Example 4-3 Creating an IBM Hyper Protect Virtual Servers service instance by using the IBM CLI

~$ ibmcloud hpvs instance-create MyHPVS-CLI lite-s dall3 -g default --ssh "ssh-rsa
AAAAB3NzaClyc2...... 1YxnPow=="

0K

Provisioning request for service instance
‘crn:vl:bluemix:public:hpvs:dall3:a/537544c2222297f40ed689e8473e7849:a35e2592-d51a
-4ce9-a456-1dbbd6b606ed::' was accepted.

This creation process takes a few minutes to complete. The status of the new service can be
verified through the IBM Cloud CLI by using the ibmcloud hpvs instance crn:ID command,
as shown in Example 4-4. When the service state is active, the server is ready to use.

Example 4-4 Output of an IBM Hyper Protect Virtual Servers instance ready to use in the active state

~$ ibmcloud hpvs instance
crn:vl:bluemix:public:hpvs:dall3:a/537544c2222297f40ed689e8473e7849:a35e2592-d51a-
4ce9-a456-1dbbd6b606ed: :

Getting instance details for MyHPVS-CLI
(crn:vl:bluemix:public:hpvs:dall3:a/537544c2222297f40ed689e8473e7849:a35e2592-d51a
-4ce9-a456-1dbbd6b606ed::) ...

Name MyHPVS-CLI

CRN
crn:vl:bluemix:public:hpvs:dall3:a/537544c2222297f40ed689e8473e7849:a35e2592-d51a-
4ce9-a456-1dbbd6b606ed: :

Location dall3

Cloud tags

Cloud state active

Server status running

Plan Free

Public IP address 67.228.222.19
Internal IP address 172.18.152.226
Boot disk 25 GiB

Data disk 25 GiB

Memory 2048 MiB
Processors 1 vCPUs

Image type ibm-provided
Image 0S ubuntul8.04
Public key fingerprint VdOsiHnV68/VC1WKKUFDRqSHqDEZD23xd+MgPkZKHkM
Last operation create succeeded
Last image update -

Created 2021-05-12

Using your own image

It is also possible to create an IBM Hyper Protect Virtual Servers instance with a custom
image. The IBM Cloud CLI can be used only on the officially supported operating systems
(OSs) or architectures. IBM Hyper Protect Virtual Servers supports only Linux-based Open
Container Initiative (OCI) Images, which are built for IBM LinuxONE and IBM Z platform
(s390x architecture). For more information, see Using your own image.

246 Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs/hp-virtual-servers?topic=hp-virtual-servers-byoi
https://cloud.ibm.com/docs/hp-virtual-servers?topic=hp-virtual-servers-disaster_hpvs

Use the IBM Cloud CLI to create an IBM Hyper Protect Virtual Servers instance with a custom
image, as shown in Example 4-5.

Example 4-5 Creating an IBM Hyper Protect Virtual Servers service instance by using a custom image

~ § ibmcloud hpvs instance-create myServerName lite-s dall3 --rd-path
"/MyRegistrationDefinitions/registration.json.asc" -i latest

4.5 Administration and operations

In this section, we describe how IBM Hyper Protect Virtual Servers supports various levels of
administration oversight for the service.

4.5.1 Managing an IBM Hyper Protect Virtual Servers service

Managing an IBM Hyper Protect Virtual Servers service can be done by using the IBM Cloud
Portal dashboard under the Services section on the Resource List page. On this page, users
can use the actions menu by clicking the hamburger menu that is at the right of the targeted
service instance.

Clicking the name of an IBM Hyper Protect Virtual Servers service brings administrators to
the service dashboard for that selected service. This management interface enables the use
of more fine-tuned options for administrative management. The dashboard shows the
sections Manage and Getting Started, as shown in Figure 4-5.

Hyper Protect Virtual Server-RedBook

Manage

Getting started

Figure 4-5 Example of the IBM Hyper Protect Virtual Servers dashboard

Chapter 4. IBM Cloud Hyper Protect Virtual Servers 247

Manage

The Manage page shows the status of the service, server configuration (Processors, RAM,
Boot disk, and Data disk), information about the plan and data creation, service location, and
information about how to connect to the virtual server, as shown in Figure 4-6.

Hyper Protect Virtual Server-RedBook @ smie

I

Your virtual sener

L

G Conmect & Locate

{T'r Tdontify ¥ Your grsrcnment varables

S -

Figure 4-6 Example of the IBM Hyper Protect Virtual Servers Manage section

Getting started

The Getting started page provides an overview with the requirements and some guidelines
about how to use the IBM Hyper Protect Virtual Servers service.

Changing the name of a service

From the Resource List page, account administrators can select the actions menu and select
the Edit Name option to update the name of the service.

Under the service dashboard for an IBM Hyper Protect Virtual Servers service, administrators
can click the service instance actions menu to the right of the overview page and select
Rename Service to edit the service name.

Securing Your Critical Workloads with IBM Hyper Protect Services

Deleting a service

From the Resource List page, account administrators can select the actions menu and
choose the Delete option to remove the service from your account. When a service is
deleted, all data that is associated with the IBM Hyper Protect Virtual Servers service is gone
and permanently inaccessible.

4.5.2 Managing IBM Hyper Protect Virtual Servers instances

After creating an IBM Hyper Protect Virtual Servers instance, it is necessary to connect to the
server and perform all the management tasks, such as create, delete, and modify users, and
install applications. The IBM Cloud Hyper Protect Virtual Servers Dashboard in the Manage
page, which is shown in Figure 4-6 on page 248, has information about how to make this
connection.

Connecting to a virtual server

You can get the virtual server’s public and internal IP addresses from the instance details
page and access the virtual server by using SSH, as shown in Example 4-6.

Example 4-6 Accessing the IBM Hyper Protect Virtual Servers instance

ssh root@169.63.212.116

The authenticity of host '169.63.212.116 (169.63.212.116)' can't be established.
Elliptic Curve Digital Signature Algorithm (ECDSA) key fingerprint is

SHA256 :QSCObQURhcY8CJLT1TKna89tvIul6R5zzYmYFsME6XxAU.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '169.63.212.116' (ECDSA) to the Tist of known hosts.
Unauthorized access to this machine is prohibited.

Welcome to Ubuntu 18.04.5 LTS (GNU/Linux 4.15.0-99-generic s390x)

* Documentation: https://help.ubuntu.com
* Management: https://Tandscape.canonical.com
* Support: https://ubuntu.com/advantage

The programs that are included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

Unauthorized access to this machine is prohibited.
You have mail.
root@49f81d370bfd:™#

4.5.3 Topology

This section describes the following topics:
» High availability and disaster recovery
» Backup

» Securing your data in IBM Hyper Protect Virtual Servers

Chapter 4. IBM Cloud Hyper Protect Virtual Servers 249

High availability and disaster recovery

The IBM Cloud Hyper Protect Virtual Servers service runs on a highly available (HA) and
reliable IBM LinuxONE infrastructure with no single point of failure. However, a single virtual
server can still have an outage in a disaster scenario. Therefore, deploy your workload in
active-active mode across multiple virtual server instances, which are running in different data
centers (for example, Dallas 10, Dallas 12, and Dallas 13). This setup ensures an operable
workload with fault tolerance on the underlying virtual servers.

Example workloads that you can deploy this way are databases (PostgreSQL, MongoDB, or
MySQL) or applications with no local state.

If the latency requirements or types of workload do not allow you to run an active-active
configuration across data centers, you can perform regular backups from one virtual server to
another instance in a different data center. In a disaster, the amount of lost data depends on
the frequency of the backups and the time to restore a backup. For more information, see
High availability and disaster recovery.

Backup

Back up the data from business-relevant virtual servers (primary virtual servers) to recovery
virtual server instances. A virtual server that is created with IBM Hyper Protect Virtual
Servers is configured with two disks: One for the OS and the other one for data (mounted as
/data/). One possible way to back up the data disk is to set up a cron job, which copies the
content of the disk to a recovery virtual server instance. Choose the appropriate backup
frequency for the workload. For example, for a maximum loss of data changes of 1 hour, add
the text file (for example, cron_backup) that is shown in Example 4-7 to /etc/cron.hourly.

Example 4-7 Backup command to be used in the cron job

#1/bin/sh

rsync -a /data/ <public HPVS IP or internal HPVS IP>:/data

It is necessary to exchange the SSH keys so that the cron job script can run. How this task
works depends on the backup server's SSH server configuration. With the default
configuration, you must place the public SSH key as a line in the

$HOME/ . ssh/authorized_keys file of the user that is used on the backup server. To make
rsync use the private SSH key, this key must be placed in the cron jobs user's $HOME/ . ssh
with a default name, for example, for RSA keys, use the name id_rsa. Other options are to
configure the SSH client for this user or to adjust the rsync command.

If needed, quiesce the application before the backup operation. If the primary and the
recovery virtual servers are in one region, use the internal IP address for the backup.

To maintain multiple backups outside virtual server instances that are created with IBM Hyper
Protect Virtual Servers, it is possible to package the data into a compressed file, encrypt it
with GnuPG, and store it in IBM Cloud Object Storage.

Also, install the application to the recovery virtual server instance to enable a quick failover.

Finally, always access the application that should be recoverable by using a URL that is
pointing to the virtual server IP address. Never access the IP address directly.

In a recovery scenario, you can adjust the URL to point to the recovery virtual server.

For more information, see High availability and disaster recovery.

250 Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs/hp-virtual-servers?topic=hp-virtual-servers-disaster_hpvs
https://cloud.ibm.com/docs/hp-virtual-servers?topic=hp-virtual-servers-disaster_hpvs

Securing your data in IBM Hyper Protect Virtual Servers

To ensure that you can securely manage your data when you use IBM Cloud Hyper Protect
Virtual Servers, it is important that you know exactly what data is stored and encrypted and
how you can delete any personal data. All data that is stored on IBM Hyper Protect Virtual
Servers disks is automatically encrypted, and the encryption key is stored on a secure
enclave.

Data at rest

The data that you store in IBM Hyper Protect Virtual Servers is encrypted securely at rest by
using a randomly generated key, which the underlying IBM Secure Service Container (SCC)
technology manages. Use the Linux CLI tools to delete data in a virtual server.

Data in flight

The IBM LinuxONE infrastructure components for the IBM Hyper Protect Virtual Servers
service are colocated with the data centers, which means that these components are placed
in the same data centers as the IBM Cloud infrastructure but have their own network setup,
which affects the network connection, as shown in Figure 4-7. For more information, see
Securing your data in Hyper Protect Virtual Servers.

IBM Cloud Colocation IBM Cloud Infrastructure

Multi Zone Region Dallas

Dallas 10 Dallas 12 Dallas 13 Compute Services

] : " Container Services
Virtual Server Virtual Server B Virtual Server

) \ . Network Services
Virtual Server Virtual Server Virtual Server 1

Storage Services

il

Virtual Server Virtual Server Virtual Server

Al Services
Virtual Server Virtual Server Virtual Server

Analytics Services

Virtual Server Virtual Server Virtual Server

Virtual Server Virtual Server 1 Virtual Server

(intemmal) C inlerrm

network network

public public
network network

Database Services

11

IBM Cloud
> Service
Endpoint

internal)
network

public
network

— Network 1BM Cloud Account 1
Network IBM Cloud Account 2

s Network IBM Cloud Account 3

A

Customer

Figure 4-7 IBM Hyper Protect Virtual Servers architecture network isolation

Chapter 4. IBM Cloud Hyper Protect Virtual Servers 251

https://www.ibm.com/us-en/marketplace/secure-service-container
https://www.ibm.com/us-en/marketplace/secure-service-container
https://cloud.ibm.com/docs/hp-virtual-servers?topic=hp-virtual-servers-mng-data
https://cloud.ibm.com/docs/hp-virtual-servers?topic=hp-virtual-servers-disaster_hpvs

252 Securing Your Critical Workloads with IBM Hyper Protect Services

IBM Hyper Protect Virtual
Servers on-premises

This chapter introduces the IBM Hyper Protect Services on-premises offering.

This chapter includes the following topics:

» Introducing IBM Hyper Protect Virtual Servers on-premises

» IBM Hyper Protect Virtual Servers key features

» IBM Hyper Protect Virtual Servers use cases

» IBM Hyper Protect Virtual Servers architecture overview

» A sample use case: IBM Hyper Protect Virtual Servers for secure storage

© Copyright IBM Corp. 2020, 2022. All rights reserved. 253

5.1 Introducing IBM Hyper Protect Virtual Servers on-premises

IBM Hyper Protect Virtual Servers on-premises (referred to as IBM Hyper Protect Virtual
Servers) is a virtualization platform that protects and hosts Linux container workloads on
IBM Z and IBM LinuxONE servers throughout their lifecycle, build, management, and
deployment phases. This solution delivers the security that is needed to protect
mission-critical applications in hybrid multicloud deployments.

The IBM Hyper Protect Virtual Servers offering provide an encrypted environment (data
at-rest and data in-flight) with peer-to-peer and peer-to-host isolation that protects container
applications from access by using hardware and operating system (OS) administrator
credentials whether access is accidental or malicious or internal or external to an
organization.

These servers ensure that your applications can be deployed and managed from trusted
sources without providing the possibility for the infrastructure team to access the data,
secrets, or application.

IBM Cloud Hyper Protect Virtual Servers address the security concerns of regulated
enterprises. To provision one of these Linux Virtual Servers in the public cloud, the user must
provide a public Secure Shell (SSH) key, which means that only the user with the
corresponding private key part can access it. There is no technical possibility for an
administrator of the cloud to get access to the data inside the virtual server.

The same operational principle is true with IBM Hyper Protect Virtual Servers on-premises.
Built-in workload isolation, tamper protection from privileged user access, and encryption of
all data at rest and in flight provides data protection and security in your own data center
without sacrificing vertical scalability or performance.

IBM Hyper Protect Virtual Servers enable the following users:

» Developers to securely build their applications in a trusted environment with integrity.

» IT infrastructure providers to manage the servers and virtualized environment where the
applications are deployed without accessing those applications or their sensitive data.

» Application users to validate that those securely built applications originate from a trusted
source by integrating this validation into their own auditing processes.

» Chief Information Security Officers (CISOs) to be confident that their data is protected and
private from internal and external threats.

IBM Hyper Protect Virtual Servers includes the following key benefits:

» Protect workloads from internal threats.

IBM Hyper Protect Virtual Servers is the evolution of the IBM Secure Service Container
(SCC) for IBM Cloud Private. As with IBM SSC technology, IBM Hyper Protect Virtual
Servers protect your workloads from internal and external threats. On-premises, the
enhanced capabilities provide developers with security throughout the entire development
lifecycle.

» Apply cloud-native application development.

Empower developers with familiar tools and an automated, continuous software delivery
pipeline to develop in a private, public, or hybrid cloud. IBM Hyper Protect Services
provide secure cloud services for on- and off-premises deployments.

254 Securing Your Critical Workloads with IBM Hyper Protect Services

» Simplify management.

Integrate IBM Z and LinuxONE into a hybrid, multicloud environment and manage
everything from behind the firewall. IBM Hyper Protect Virtual Servers reduces user
management of low-level execution environment and uses Enterprise Assurance Level
(EAL) 5+ certified logical partitions (LPARSs) for peer isolation. Although cloud and
infrastructure providers cannot access your sensitive data, they can manage images by
using application programming interfaces (APIs).

» Extend encryption everywhere.

Advanced data encryption, key management, and tamper-resistance incorporates security
and compliance as a part of DevSecOps rather than adding in security measures after the
fact. Application secrets are encrypted, which ensures that the confidentiality of the
application is protected. Cloud providers and system administrators cannot access data,
which protects against insider threats and malicious attacks.

» Maintain image integrity.

With IBM Hyper Protect Virtual Servers, developers can securely build source files,
starting with the containerized application. Solution developers can keep image integrity,
knowing that it contains only what is intended, and maintain confidence in the deployed
application’s origin.

» Build securely with trusted Continuous Integration and Continuous Delivery (CI/CD).

All images can be encrypted and securely built with a trusted CI/CD flow. Developers can
build images and ensure that users can validate their origin, which removes the possibility
of a back-door introduction during the build process. Signed container images inherit
security without any code changes, which prevent access to data while it is being
processed in the database.

5.2 IBM Hyper Protect Virtual Servers key features

An IBM Hyper Protect Virtual Servers solution is deployed to an IBM SSC based LPAR. It
uses IBM SSC technology to integrate security directly into the solution.

Although security policies and best practices are still a fundamental piece of enterprise
security, a technological layer of security bolsters the enterprise’s ability to protect its sensitive
data and workloads, even from threat vectors such as internal threats and leaked privileged
credentials.

IBM Hyper Protect Virtual Servers expand on the security benefits of IBM SSCs. This
expansion creates a secure enclave to host the most secure data and applications by
deploying into the virtual machine (VM), with no need to modify the code of the application
itself.

Chapter 5. IBM Hyper Protect Virtual Servers on-premises 255

‘1BM

Based on:

IBM Hyper Protect Virtual Servers use technical assurance to protect data instead of
operational assurance (see Figure 5-1).

access your dala” “IBM access your data”™

Based on:

» Trust (external certifications) * Technical proof

+ Visibility (audit log via ActivityTracker) » Data Encryption
» Control (crypto erase via BYOK) * Runtime Isolation

...and if we would you would find out and could ... and it is NOT technically possible...
pull the plug...

0 IBM

abd ©rs

Visibility o
Customer
LI

e & B

Qs ops

O Customer
B

Figure 5-1 Operational assurance versus technical assurance

Operational assurance uses trust, visibility, and controls, which mean that you trust that a
service provider or internal administrator will not allow unauthorized access to your data and
they promise to not access your data. With audit logging, you can control and identify bad
behavior, but that is always after the data is compromised.

With technical assurance, you use technology so that administrators cannot allow access to
your data for unauthorized use when the data is hosted in the cloud or on-premises. You can
be assured that your own data is concealed from everybody else, including whoever is
hosting the service. With IBM Hyper Protect Virtual Servers, it is not technically possible for
IBM or other parties to access your data, which introduces the idea of confidential computing.

The following features are described in this section:

» Trusted CI/CD

GREP11

User management

Bring Your Own Image (BYOI)

>
>
>
» Encryption

5.2.1 Trusted CI/CD

CI/CD is a core principle of DevOps, and one of the main drivers behind cloud computing.

Continuous integration (Cl) is a DevOps practice in which each developer integrates their
work with the main branch of code regularly and consistently (preferably once a day, or many
times a day). Continuous delivery (CD) is another DevOps practice that focuses on delivering
any validated changes to code (updates, bug fixes, and even new features) to users as
quickly and safely as possible.

CD picks up where Cl ends. It automates the delivery of applications to selected infrastructure
environments. It also ensures automated pushing of code changes to different environments,
such as development, testing, and production.

256 Securing Your Critical Workloads with IBM Hyper Protect Services

This practice of automated pushing and delivering of new code opens the door for
vulnerabilities that might pass unnoticed. What occurs when a malicious actor gains access
to the build process or repository from which the code is automatically updated?

Secure Build

The first step to ensure that the code or application that is running in your virtual server is safe
is to ensure that the build process is not vulnerable. Without the proper security at build,
application developers can deliberately or accidentally introduce vulnerabilities into the
source. Application builders also can build alternative source code and introduce harmful
artifacts.

IBM SSC technology contains features that alleviate this risk, such as static code scanning to
identify common coding errors, and image scanning to identify whether an image contains a
component that is known to be vulnerable.

IBM Hyper Protect Virtual Servers contains a component that is called the Secure Build
Server (SBS), which is packaged as a container and loaded into the SSC by using a
command-line interface (CLI) tool. By using the securebuild command, you can build, tag,
sign, and push images to a trusted repository.

For more information about Trusted CI/CD and Secure Build, see 7.2, “Trusted Continuous
Integration and Continuous Delivery: Building and deploying containers securely” on
page 325.

Repository Registration

The Secure Build feature works hand-in-hand with the Repository Registration feature. From
a Secure Build, containerized application images are signed with GNU Privacy Guard (GPG)
keys when published, and verified again when it is deployed. The signing keys are generated
within the Secure Build process and your private keys are never revealed. Only the images
that are generated by using the Secure Build procedure can be uploaded to the organization’s
container repository and installed onto the SSC partitions. The repository and the
containerized images are protected with different keys on different stages.

The SSC partition pulls images from only the registered repository, and it creates IBM Hyper
Protect Virtual Servers instances of those images on the partition. Registration is simple with
a few standard commands.

For more information about the commands that are required to register and use your
repository with IBM Hyper Protect Virtual Servers images, see IBM Hyper Protect Virtual
Servers.

For more information about Repository Registration, see 7.5, “Bring Your Own Image
(deploying your applications securely)” on page 341.

5.2.2 Enterprise PKCS #11 over gRPC

IBM Hyper Protect Virtual Servers provides Enterprise Public Key Cryptography Standards
(PKCS) #11 over gRPC (GREP11) containers for crypto operations, such as key generation,
encryption and decryption, and data wrapping and unwrapping. With the GREP11 containers,
you can integrate your application with the asymmetric (public and private) key pairs that are
generated by the Hardware Security Modules (HSMs) on the IBM Z or LinuxONE servers.
GREP11 is a stateless interface for cryptographic operations on cloud.

Several algorithms are supported by the GREP11 virtual server, like Schnorr, Ed25519,
BIP32, or SLIP-0010.

Chapter 5. IBM Hyper Protect Virtual Servers on-premises 257

https://www.ibm.com/docs/en/hpvs/1.2.x
https://www.ibm.com/docs/en/hpvs/1.2.x

For more information about GREP11, see 7.4, “Enterprise Public Key Cryptography
Standards #11 over gRPC” on page 337 or IBM Hyper Protect Virtual Servers 1.2.x.

5.2.3 User management

One of the primary concerns that IBM Hyper Protect Virtual Servers mitigates are attack
vectors from internal threats. Historically, enterprise security is focused on building walls
around the organization to protect from external threats. However, recent studies show that
most data leaks and breaches are the result of malicious actors inside the organization, or the
leaking of those individuals’ internal credentials. Firewalls, remediation of vulnerable
software, and strict security policies do not do much to prevent an employee with root access
to the system from stealing sensitive data.

On traditional cloud platforms (public cloud and on-premises), typically a single superuser
(cluster administrator or similar role) has full access to the solution stack, from hardware to
the containerized applications that are running in the environment.

With IBM Hyper Protect Virtual Servers, administrative responsibilities are split between
various roles, and each role accesses only the parts of the environment for which that role is
responsible. If each administrative role is granted to separate individuals in the organization,
one person cannot access all of the data that is present in the VM.

For more information about user management, see 7.1, “User roles in IBM Hyper Protect
Virtual Servers” on page 324.

5.2.4 Bring Your Own Image

IBM Hyper Protect Virtual Servers allow the deployment of images from only trusted,
registered repositories into the hosting appliance. This feature prevents users from loading
potentially harmful images from external repositories that are not officially trusted by the
organization. Because this feature is part of IBM SSC technology and the hosting appliance,
registered repositories are not a new feature.

However, a limitation with registered repositories was that only IBM can create the necessary
JSON registration files. IBM Hyper Protect Virtual Servers introduces BYOI, a new feature
that allows users to create their own JSON registration files so organizations can decide for
themselves which registry they want to trust, and then deploy images from that registry.

For more information about BYOI, see 7.5, “Bring Your Own Image (deploying your

applications securely)” on page 341.

5.2.5 Encryption

IBM Hyper Protect Virtual Servers provide various security advantages by using the IBM SSC
as the solution’s hosting environment.

IBM SSC supports the deployment of software container technology without requiring
application changes to use the security capabilities. To gain these security capabilities, a user
must deploy only their workload into the SSC.

258 Securing Your Critical Workloads with IBM Hyper Protect Services

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=later-working-grep11-virtual-servers

This feature is especially useful considering the regulatory focus on protecting critical data
from internal and external threats, as shown in the following examples:

» The infrastructure and data are protected against access and abuse by root users, system
administrator credentials, and other privileged user access.

» Infrastructure management organizations can manage the physical IT infrastructure
without having visibility into the user’s applications and customer data.

As a system or appliance administrator who manages the underlying infrastructure, you can
download the appliance, deploy it, and then make it available on their system for their
developers.

A developer can focus on creating their containerized solution and deploy it into this
environment, and still know that their solution is not visible to the system administrator.

Various security mechanisms are applied to protect the data in the IBM Hyper Protect Virtual
Servers. For more information, see 5.5, “A sample use case: IBM Hyper Protect Virtual
Servers for secure storage” on page 266.

For more information about the cryptographic capabilities of the SSC web server and other
solution components, see IBM Documentation.

5.3 IBM Hyper Protect Virtual Servers use cases

As enterprises move their data to the cloud, concerns around security, privacy, and regulation
inhibit many enterprises from moving their sensitive data and workloads. As the probability of
a breach rises every day, so too does the costs that are associated with breaches: downtime,
fines, and damage to brand image.

IBM Hyper Protect Virtual Servers incorporates the security capabilities of SSCs with the
cloud or on-premises so that stakeholders can be comfortable knowing that their data and
workloads are protected by the IBM LinuxONE platform.

IBM Hyper Protect Virtual Servers also provide a way to deploy a virtual server in an SSC to
ensure confidentiality of data and code that is run within that virtual server. No external
access to data is possible, even for privileged users, such as administrators. Only the user
who provisioned the virtual server with the public keys can access the virtual server.

A virtual server with this high level of security is applicable to use cases across businesses
and workloads of all types for on-premises and public cloud environments. The following
sections describe a few examples of IBM Hyper Protect Virtual Servers that are in use around
the world.

An organization might be inclined to keep all of their data and workloads on their own
hardware, in their own data center, or managed by their own people for many reasons,
including the following examples:

» Compliance

Many regulated industries, such as financial services, healthcare, and government, have
strict requirements about where data is located and who can access it. Many countries,
states, and other levels of government have their own compliance standards that must
also be met.

Chapter 5. IBM Hyper Protect Virtual Servers on-premises 259

https://www.ibm.com/docs/en/hpvs/1.2.x

260

» Protection of intellectual property

Some companies are not limited by compliance, but because of the sensitive nature of
their data and intellectual property, they do not trust a third party to host it. Instead, they
want to rely on themselves to manage the security and privacy responsibilities.

However, the need to keep data in-house does not need to be a reason to avoid cloud
technology altogether. IBM Hyper Protect Virtual Servers can be integrated into an
on-premises, private cloud infrastructure to gain all of the benefits of a cloud platform while
retaining complete control of the data, security, and management.

IBM Hyper Protect Virtual Servers protect Linux workloads on IBM Z and LinuxONE
throughout their lifecycle build management and deployment. This solution delivers the
security that is needed to protect mission-critical applications in hybrid multi-cloud
deployments.

Consider the following IBM Hyper Protect Virtual Servers on-premises use cases:
» Digital asset custody

In recent years, the video game industry transformed into an online and digital market
instead of distributing physical copies of their games for consoles. This digital
transformation means that the gaming industry is a prime candidate for a cloud platform.

A large gaming company wanted on-demand environments for their developers with easy
integration into existing facilities, services instead of hardware purchases, and
environmental control. The company tapped into IBM Hyper Protect Virtual Servers in a
private cloud that is connected to customer facilities, which gives developers the needed
environments while satisfying administrators’ requirement for control and visibility.

» Workload sensitivity

A financial services firm wanted a retail payment fraud prevention production environment.
Because of workload sensitivity, the firm did not consider a public cloud an option. Its IT
leaders wanted environmental control and security, bare metal database servers for
performance, advanced storage features, and reliable, consistent pricing. IBM created
three interconnected private clouds (two in North America and one in Europe), which
provided the environments they needed and were close to their operations and customers.

» Simplified audibility

Audits are needed for certifications and trust. But with every audit, there is time and costs
that are involved, and with growing businesses, the cost can rise exponentially in a
regulated environment. With IBM Hyper Protect Virtual Servers and technical assurance,
the whole group of administrators have no technical way to access the contents of a virtual
server.

Securing Your Critical Workloads with IBM Hyper Protect Services

5.4 IBM Hyper Protect Virtual Servers architecture overview

Figure 5-2 shows the IBM Hyper Protect Virtual Servers on-premises architecture.

Source code &

repository docker

App User

Virtual Virtual irtual
Server Server $erver

Virtual
Server Command Line

Interface

CLI

Appliance

Monitoring Appliance Secure
Monitoring Build Application

kernel

kernel kernel kernel

gemu

rung

qemu
runq

gemu
rung

Grep11
Registration Files
Secure Build
Monitoring
Virtual Servers
Secure Service Container for IBM Z
Cloud Private

Docker Engine

Secure Service Container H°St'“iEA:Tp"a“°e
SSC LPAR X86/s390x Machine

PR/SM

More Information on runQ repository :

Container emu instance Runc instance Runq instance
Q https://github.com/gotoz/runqg

Figure 5-2 IBM Hyper Protect Virtual Servers on-premises architecture

The following components are part of the IBM Hyper Protect Virtual Servers on-premises
solution:

» IBM Z or LinuxONE (Processor Resource/Systems Manager (PR/SM))

IBM Z and LinuxONE provide a Type1 hypervisor that allows multiple LPARs to share
resources (such as CPU, I/O channels, and local area network (LAN) interfaces) with
EAL5+ certified isolation from other workloads.

» SSC LPAR

A partition with LPAR-type SSC that is based on the SSC framework. It contains its own
embedded OS, security mechanisms, and other features that are designed for simplifying
the installation of appliances and securely hosting them.

» SSC

SSC is a container technology that is a rung-based, virtualized Docker container
environment that provides containers isolation and data protection on top of the IBM Z or
LinuxONE servers.

» Hosting appliance

A software appliance that supports REST API access to the resources on the SSC.

Chapter 5. IBM Hyper Protect Virtual Servers on-premises 261

» Docker Engine

Open-source containerization technology with workflows to build and containerize
applications.

> rung

rung is a specialized Docker runtime environment that is used to create a dedicated Quick
Emulator (QEMU) VM for each instantiated Docker image. It also provides a dedicated
guest OS kernel for each of those QEMU VMs, which are later used as the runtime
environment for workloads.

It is an open-sourced hypervisor-based Docker runtime environment, which is based on
runc to run regular containerized images in a lightweight kernel-based virtual machine
(KVM) or QEMU VM.

> runc

runc is a CLlI tool for creating and running containers according to the Open Container
Initiative (OCI) specification.

» IBM Hyper Protect Virtual Servers

IBM Hyper Protect Virtual Servers for on-premises provides a secure, virtualized
infrastructure for private cloud deployments. It protects the entire lifecycle of critical Linux
workloads during their build, deployment, and management on-premises.

» CLlI tool

A management server or node where the CLI is available to manage the lifecycle
operations of various containers that are deployed on IBM Hyper Protect Virtual Servers
on-premises solution. It provides the following command set:

— Automate the base infrastructure of the IBM Cloud Private worker and proxy nodes by
using the isolated VM image.

— Create and manage the IBM Hyper Protect Virtual Servers container.
— Securely build and publish your applications as containerized workloads.
— Deploy your containerized workloads to the SSC framework.

— Monitor IBM Hyper Protect appliance health, such as the usage of CPU, memory, disk,
and uptime.

— Provide Enterprise PKCS #11 (EP11) interfaces for crypto operations, such as key
generation, encryption, decryption, and data wrapping and unwrapping in EP11 over
gRPC (GREP11) client applications.

» SBS

The container that provides an environment for building the application code from a
Git-like source repository into a container image for s390x architecture. It signs the image
by using the authentication keys, and then it publishes the image to the remote repository
for later integration.

Figure 5-3 on page 263 shows the SBS.

262 Securing Your Critical Workloads with IBM Hyper Protect Services

Git API
compatible
repository

DockerHub
API
compatible
repository

S3 API
compatible
storage

-
e Secure Build Server
securebuild CLI commands

* ‘ < Build
y — - P Status
Update

Docker notary

IBM Hyper Protect Virtual Servers

SBS Actions

— —
Manif | @
-——_———-- est

HPVS Base Image

kernel
gemu
und securebuild
config
Docker EngiREs (securebuild.ya
ml)

Secure Service
Container

Figure 5-3 Secure Build Server

Repository

A repository is a set of containerized images. A repository can be shared by pushingitto a
registry server. Different images in the repository can be labeled by using tags, for
example, hpvsop-base.

Registry

A registry is a hosted service that contains repositories of container images that respond
to the Registry API, for example, Docker Hub.

Registration files

A registration file is used to register the repository for authentication or validation reasons,
such that a hosting appliance trusts that the image is authentic when pulled from the
registry.

BYOI

A base image of an IBM Hyper Protect Virtual Servers container that can be used to host
customer application code. A customer can create and build an image by using this base
image and application code that uses the BYOI capability that is provided in the IBM Hyper
Protect Virtual Servers on-premises solution.

Chapter 5. IBM Hyper Protect Virtual Servers on-premises 263

Figure 5-4 shows the BYOI registration files flow.

——Application Builder Flow

L
Application — Application Manager Flow

Manager

: §
s\i1 @ ISV Repository Private Key

@ ISV Repository Public Key
IBM Public Key
ISV Private Key
ISV Public Key

g # e oy &
| | © il ockerhub

@ wDocker notary

1BM Public Key Q
\ﬁ JSON Registration File

{j} ISV Docker Image

@ ISV Repository Public Key
Secure Build

Figure 5-4 Bring Your Own Image

» hpvsop-base

The Docker image of the base IBM Hyper Protect Virtual Servers image without the SSH
daemon.

» hpvsop-base-ssh

The Docker image of the base IBM Hyper Protect Virtual Servers image with the SSH
daemon for debugging your application.

» Appliance monitoring

Monitoring images that help gather metrics, such as CPU, memory, disk, uptime, and load
from the SSC. Two containers support monitoring appliance level metrics, such as CPU,

memory, disk, up-time, and load from the SSC: One container operates on runq, and the
other container operates on runc.

Figure 5-5 on page 265 shows the monitoring containers integration.

264 Securing Your Critical Workloads with IBM Hyper Protect Services

https

runc runq

Host
Container

Monitoring
Container

Docker Engine

Secure Service Container

SSC LPAR

Figure 5-5 Monitoring containers integration

» PKCS #11 and EP11

PKCS #11 is a Public Key Cryptography Standard that defines a platform-independent API
to cryptographic tokens, such as HSM and smart cards. EP11 is a library that is
implemented by the Cryptographic Service Providers (CSP) back end.

» GREP11

GREP11 is a container (GREP11 container) that provides EP11 interfaces over gRPC,
which communicates with HSM. This container provides interfaces for crypto operations,
such as encrypt, decrypt, get mechanisms, wrap, and unwrap.

Chapter 5. IBM Hyper Protect Virtual Servers on-premises 265

Figure 5-6 shows the GREP11 integration architecture.

Domain-1 Domain-2

Container

Container

. Libep11 r
HSM — Hardware : library client

Security Module

Libep11
library

client

A Y

Docker Engine

. .
Zonpt(Secure Service Container

HSM Zcrypt (
device HSM

SSC LPAR e

driver)

HSM to LPAR domain
configuration

Figure 5-6 GREP11 integration architecture

5.5 A sample use case: IBM Hyper Protect Virtual Servers for
secure storage

In a cloud-native environment, applications are deployed as microservices. Using stateless
systems does not work well for applications that are prone to failure. To enable effective
recovery from application failures, data persistence is necessary. To persist the data, system
administrators must provision volumes that must be used by the applications for storage.

With more data, the responsibility of securing it also increases. System administrators must
answer the following questions before configuring these data volumes:

Where should the secondary volumes be stored?
How will the volumes be managed?

How are applications going to access these volumes?
Should the data be replicated or distributed storage?

vyvyyy

Third-party software-defined storage (SDS) solutions are available that can help system
administrators with challenges. But, how do you secure this environment? With more security
in place, a chance of overdoing it is possible, which results in a complicated environment that
is difficult to manage and troubleshoot.

While deploying any new applications, system administrators must ensure that enough
security is in place to prevent unauthorized application deployment. With images built into
Docker, a probability exists that those images might include vulnerable software.

266 Securing Your Critical Workloads with IBM Hyper Protect Services

When new applications are deployed, a system administrator must answer the following
questions:

» How secure is this application?

» Is it going to make my platform vulnerable?

» How can any unauthorized application be prevented from being deployed in my platform?
» How can applications be prevented from accessing unauthorized directories?

When developers want to deploy a custom application in a private cloud, they must answer
the following questions:

Does the platform support custom applications?

How can the application be deployed in the cloud environment?
How it is going to be accessible by others?

Will it get enough resources?

vyvyyy

IBM Hyper Protect Virtual Servers answers most of these questions through the following
features:

» Because SSH is disabled, no user can log in to the LPAR, which is the host of these
applications.

» Every Docker image must be signed and uploaded into the repository.
» Unsigned Docker images are not deployed into the LPAR.

» Developers can configure the required storage and CPU requirements for their application
by using a configuration file. The IBM Hyper Protect Virtual Servers CLI uses this script to
deploy the container.

» All containers that are deployed are runq containers as opposed to runc containers. The
runc containers are a process that is running within a namespace, and runq containers
are almost a VM.

» Users cannot mount any system directory into a container, so the host is secured against
any unauthorized access and data leakage.

» Every image is associated with a repository definition file. These repository definition files
are blueprints of runq containers. They contain information, such as the location of the
image in repository and access credentials. Encrypting these files ensures the prevention
of unnecessary data breaches.

» Monitoring servers enable system administrators to collect system-related data. Users can
deploy the Prometheus server to publish the details.

» With features such as BYOI and SBS, customers can deploy their own custom images
security. Also, unauthorized application deployment is prevented.

» GREP11 enables customers to take advantage of the hardware-accelerated support of
crypto operations. At the time of writing, this feature enables developers and customers to
manage keys and secrets securely.

The communication follows the gRPC standard along with the PKCS 11 standard for
cryptographic operations. IBM Hyper Protect Virtual Servers makes it impossible to steal
secrets and keys, and customers do not need to worry about the performance implications
because of the cryptographic operation.

Chapter 5. IBM Hyper Protect Virtual Servers on-premises 267

5.5.1 Creating a Secure Storage Server in IBM Hyper Protect Virtual Servers

As described in 5.5, “A sample use case: IBM Hyper Protect Virtual Servers for secure
storage” on page 266, in the world of cloud-native applications where microservices come
and go, it is important to persist data for effective recovery. Various technologies exist in the
marketplace that provide data persistence. For this solution, we use GlusterFS which is a
popular SDS solution that is used for managing volumes. It is open source in nature and
enables system administrators to provision distributed, replicated, or distributed-replicated
volumes.

Customers can build GlusterFS containers with glusterfs-server and glusterfs-client
packages, sign the image, and host it in an image repository by using an SBS. Then, this
image can be deployed in an IBM Hyper Protect Virtual Servers environment by using the
hpvs-c1i command, such as HPVS create.

Containers in an IBM Hyper Protect Virtual Servers environment are not typical Docker
containers, and they are not VMs. For clarity, we say that they are virtual servers, which are
little more than a Docker container, but a little less than a VM (see Figure 5-7).

HPVS Lpar

Gluster Container

Gluster Daemons
24006
240070

/var/data

A

| Mounted

Figure 5-7 Sample container

268 Securing Your Critical Workloads with IBM Hyper Protect Services

Because the GlusterFS server listens to port 24006 and 24007, applications can use
GlusterFS client packages to communicate with the server and run volume management
commands. Developers can write their own application to monitor the GlusterFS server by

using API calls that use Python.

Chapter 5. IBM Hyper Protect Virtual Servers on-premises 269

270 Securing Your Critical Workloads with IBM Hyper Protect Services

IBM Hyper Protect Virtual
Servers on-premises installation

This chapter describes IBM Hyper Protect Virtual Servers on-premises prerequisites and
installation.

This chapter includes the following topics:

» Planning and prerequisites for IBM Hyper Protect Virtual Servers on-premises

» Downloading the package to the management server

» Setting up the Secure Service Container LPAR

» Networking for IBM Hyper Protect Virtual Servers

» Installing the IBM Hyper Protect Virtual Servers CLI on the management server

» Configuring the IBM Hyper Protect Virtual Servers environment

» Public Cloud service instantiation

Note: For more information about IBM Hyper Protect Virtual Servers and IBM Secure
Service Container (SCC) logical partitions (LPARs) see the following resources:

» |IBM Documentation
» Secure Service Container User‘s Guide, SC28-7005.

© Copyright IBM Corp. 2020, 2022. All rights reserved. 271

https://www.ibm.com/support/knowledgecenter/SSHPMH_1.2.0/topics/setup_env.html
https://www.ibm.com/docs/en/hpvs/1.2.x
https://www.ibm.com/docs/en/hpvs/1.2.x

6.1 Planning and prerequisites for IBM Hyper Protect Virtual
Servers on-premises

In this section, we describe the requirements for IBM Hyper Protect Virtual Servers
on-premises (which is referred to as IBM Hyper Protect Virtual Servers) installation. For a
basic installation, you need:

» One Linux management server (x86 or s390x)

» One IBM Secure Service Container (SSC) LPAR

As an overall guidance, the installation requires the following steps:

1. Download the IBM Hyper Protect Virtual Servers package to the management server.
2. Set up the SSC LPAR with a basic network and a master user ID.

3. Install and configure the appliance on the prepared SSC LPAR with the proper storage
and network.

4. Install the IBM Hyper Protect Virtual Servers command-line interface (CLI) on the
management server.

5. Build and deploy your virtual server containers.

Hardware requirements for the Linux management server
The management server is used to download the IBM Hyper Protect Virtual Servers

installation binary files and install the IBM Hyper Protect Virtual Servers CLI tool.
The minimal management server requirements are:

» Two or more x86 cores with at least 2.4 GHz or 1 Integrated Facility for Linux (IFL) on the
mainframe

» 8 GBRAM
» 150 GB disk space

Hardware requirements for the Secure Service Container LPAR
An SSC LPAR can be configured on the following IBM Z and LinuxONE systems:

» IBMz15™

» IBMz14®

» IBM LinuxONE Il

» IBM Linux ONE Emperor Il or IBM LinuxONE Rockhopper Il

The following minimum hardware requirements must be met to deploy IBM Hyper Protect

Virtual Servers services (one IBM Hyper Protect Virtual Servers container and one Secure
Build container):

» 2IFLs
» Container Hosting Foundation (#0104)
» 12 GB RAM

» 190 GB storage (50 GB for the hosting appliance, 100 GB in the storage pool for one
IBM Hyper Protect Virtual Servers container, and 40 GB for one Secure Build container)

272 Securing Your Critical Workloads with IBM Hyper Protect Services

Note: To get an overall understanding of what information you need to run the offering and
where to get such information see Appendix A, “Configuration parameters” on page 385.
For more information and a downloadable worksheet, see IBM Documentation.

6.2 Downloading the package to the management server

You can download the IBM Hyper Protect Virtual Servers package from the IBM Passport
Advantage® website. Go to My Programs, and then select the IBM Hyper Protect Virtual
Servers program.

After the package is downloaded, copy it to an installation directory such as /opt/hpvs/ and
extract the contents of the compressed file by using the following command:

gunzip <file name>.tar.gz
tar -xvf <file name>.tar

Depending on the version, the extracted file names start with the following <part_numbers>:

For Version 1.2.3, the <part_number> is GOOGWZX.

For Version 1.2.2.1, or 1.2.2, the <part_number> is CC7L3EN.
For Version 1.2.1.1, or 1.2.1, the <part_number> is CC75CEN.
For Version 1.2.0.1, or 1.2.0, the <part_number> is CC37UEN.

vyvyyvyy

You see the following files in the directory with Version 1.2.3:

» GOOGWZX.tar.gz is the offering’s image compressed file.

» GOOGWZX.sig is the signature file for the offering’s image.

» GOOGWZX.pub is the public key that is issued by IBM for the offering’s image.

To verify the integrity of the IBM Hyper Protect Virtual Servers image compressed file, run the

following sample command by using the signature file with the .s1ig suffix and the public key
that is issued by IBM with the suffix . pub along with the image compressed file:

openss1 dgst -sha256 -verify <part_number>.pub -signature <part_number>.sig
<part_number>.tar.gz

After verifying the integrity of the compressed file, extract the compressed file onto the x86 or
IBM Z and LinuxONE management server by using the following command (our command
uses Version 1.2.3):

tar -xvzf GOOGWZX.tar.gz
As a result, you see the layout of files in your directory, as shown in Example 6-1.

Example 6-1 File structure of GOOGWZX.tar.gz

- bin
+ hpvs_s390x
- hpvs_x86
- config
- mustgather.sh
- templates
-+- virtualserver.template.readme.yml
-+- virtualserver.template.yml
-+« yaml
-++ secure_build.yml.example

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 273

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment
https://www.ibm.com/software/passportadvantage/index.html

- secure_create.yml.example
- vs_configfile_readme.yml
+ vs_grepll.yml
- vs_hpvsopbasessh.yml
- vs_hpvsopbase.ym]
- vs_monitoring.yml
- vs_regfiledeployexample.yml
- vs_securebuild.yml
-+ envcheck.sh
- GOOGWZX.tar.gz
- images
-++ CollectdHost.tar.gz
+ hpcsKpGrepll rung.tar.gz
- HpvsopBaseSSH.tar.gz
- HpvsopBase.tar.gz
- Monitoring.tar.gz
- SecureDockerBuild.tar.gz
- License
« ** 311 Languges files **
+ non_ibm_license
- notices
- mustgather.sh
- readme.txt
- secure-service-container-for-hpvs.appliance.3.17.0.img.gz
-+ setup.sh
- SSC4ICP
- config
- ICPIsolatedvm.tar.gz
+ hpvs-cli-installer.docker-image.tar
- readme.txt
- version

The red marked image file is used to install the IBM Hyper Protect Virtual Servers appliance
on the SSC LPAR, as described in step 3 on page 278.

For more information about the individual files, see Downloading IBM Hyper Protect Virtual
Servers.

6.3 Setting up the Secure Service Container LPAR

274

In this section, we show how to set up SSC partitions for using with IBM Hyper Protect Virtual
Servers. This section describes the following topics:

» Creating the Secure Service Container LPAR
» Installing the IBM Hyper Protect Virtual Servers appliance
» Configuring storage disks on the hosting appliance

Note: To get an overall understanding of what information you need to run the offering and

where to get such information, see Appendix A, “Configuration parameters” on page 385.
For more information and a downloadable worksheet, see Planning for the environment.

Securing Your Critical Workloads with IBM Hyper Protect Services

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=downloading-installation-package
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=downloading-installation-package
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=downloading-installation-package

6.3.1 Creating the Secure Service Container LPAR

To create and manage SSC partitions, you can use specific tasks on the Hardware

Management Console (HMC) for a host system running either in standard mode or with
Dynamic Partition Manager (DPM) enabled.

In this book, we use a system running in standard mode. For more information about DPM
mode, see Creating the Secure Service Container partition.

Complete the following steps:

1

. Open the Customize/Delete Activation Profiles task, and then select SSC mode on the

Customize Image Profiles General page, as shown in Figure 6-1.

IBM Hardware Management Console

Customize/Delete Activat... [0 X

El Customize Image Profiles: ARIES:ARIES38 : ARIES38 : General

= ARIES:ARIES38

=- ARIES38
General
Processor
Security
Storage
Options
Crypto
S5C

Profile name: ARIES38 R Assigned for activation
Description: [This is the ARIES38 Image profile

Partition identifier: |ﬁ

Hock: I

Clock Type Assignment — General
(O

e Standard time of day Coupling facility
O Logical partition time of{ LINUX only
EEnsure that the image pr| the current maximum LICCC configuration.
ssc_________|

Figure 6-1 SSC mode

2.

Configure the processor requirements on the Processor page (minimum of two IFLs),
specify the partition security options on the Security page, and specify the amount of
storage that is required on the Storage page (minimum of 12 GB).

Provide or modify any cryptographic controls on the Crypto page.

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 275

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=partition-creating-secure-service-container

4. On the SSC page, ensure that the Secure Service Container installer option is selected
under Boot selection if you are creating the partition for the first time, and then provide
values for the default Master user ID (we use root), password, and IP address of the
network adapter for the SSC LPAR, as shown in Figure 6-2.

Home Customize/Delete Activat... (4 X
‘ u Customize Image Profiles: ARIES:ARIES38 : ARIES38 : SSC 1]
=- ARIES:ARIES38
=- ARIES38 Boot selection:
General @8Secure Service Container installer
Processor O Secure Service Container
Security
Storage
Options
Crypto Master user ID: ‘rooi
SSC Master password: ‘
Confirm master password: ‘
Host name: Irdbkssc2
Network Adapters
o F @ @# | --- Select Action --- v
Select ~ CHPID ~ Port ~ VLAN ~ IP address ~ Mask/Prefix ~
C e2 0 9.76.61.179 24
IPv4 gateway:g.76.61.1
IPv6 gateway:‘
DNS Servers
w2 g @2 # |- Select Action --- v
Select ~ IP address ~
C 9.0.128.50
C 9.0.130.50
Cancel ‘ Save | | ‘ ‘ Help ‘

Figure 6-2 SSC Boot selection, master user ID, and network

5. Click Save to save the changes and wait for the partition to be created.
6. Select the image of the SSC partition, and start the SSC LPAR by using the Activate task.
6.3.2 Installing the IBM Hyper Protect Virtual Servers appliance

Complete the following tasks:

1. Open the web interface of the SSC installer by using the IP address and master user ID
that you created in step 4 (see Figure 6-3 on page 277).

276 Securing Your Critical Workloads with IBM Hyper Protect Services

e0e @ Installer - Login X zhmorSa: Welcome to the Hare X | +

< C A Nichtsicher | 9.76.61.179/ibmapp/

Login

Welcome to Appliance Installer
Please login with your credentials.

User ID*

Password*

i Secure
Service
Eontainer

Figure 6-3 SSC installer login

2. On the main page, click the plus (+) icon to install image files from your local disk
(Figure 6-4). The page display changes to the Install Software Appliance page.

Welcome, root! Logout

You are logged in to the Secure Service Container Installer. In this panel you can select a Secure Service Container appliance to
be installed. Appliances with valid license are marked with a key symbol(€). In addition you can install image files from local media by

clicking the plus icont@}.

Filter ¥

Available Appliances Version Description

Mo items to display

Total: 0 Selected: 0

Instal

Secure
gErlee
ontainer

Figure 6-4 SSC Installer main page

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 277

3. On the Install Software Appliance page (Figure 6-5), select the Upload image to target
disk option, and then locate the appliance image file on your local disk under the Local
Installation Image section (the file is marked in red in Example 6-1 on page 273).

Install Software Appliance Logout

To use a Software Appliance you can upload an image file from the local machine to a target disk on the server or attach a disk with an already installed Software Appliance.
@® Upload image to target disk

(C) Attach existing disk

HHEO IR Y
secure-service-container

Image Details

Name: IBM Secure Service Container
Version: 3.17.0

Desaription: IBM Secure Service Container

Appliance
Size: 0.36GB
Target Disk on Server Device Type @® FICON DASD) FCP
Disk 0.0.92ad (3390/0e) -

Secure
Service
Container

Figure 6-5 Uploading the installation image

4. Under Target Disk on Server, select the device type FICON DASD or FCP. In the

drop-down menu, select a disk, and then click Apply to upload the appliance image to the
target disk.

Note: You can specify only one type of disk (either DASD or FCP) during the appliance
installation stage. Target FCP disks must be large enough to fit the uncompressed
appliance, with an extra 2 GB for the SSC installer to use.

5. Click Yes on the confirmation dialog (Figure 6-6 on page 279) to have the installer
automatically reactivate the partition. The SSC installer uploads the appliance image to
the target disk and prepares the partition to load the appliance after the next restart. When
the restart process begins, the installer displays the Reboot window.

278 Securing Your Critical Workloads with IBM Hyper Protect Services

Confirm Appliance Installation

You are about to install the following appliance:
A MName: IBM Secure Service Container
Version 3.17.0
Description IBM Secure Service Container Appliance
Disk: 0.0.92ad

This appliance will reboot automatically after installation completes(You
will be logged off)

Do you want to continue with the installation?

Figure 6-6 Confirm Appliance Installation

6. When the restart completes, you are redirected to the appliance page. Accept the
self-signed certificate for the SSL connection, and log in to the SSC user interface by
using the master user ID and password.

6.3.3 Configuring storage disks on the hosting appliance

Note: To get an overall understanding of what information you need to run the offering and
where to get such information, see Appendix A, “Configuration parameters” on page 385.
For more information and a downloadable worksheet, see Planning for the environment.

Complete the following steps:
1. Log in to the user interface of the SSC by using the IP address of the SSC.
2. In the navigation pane, click the Storage icon.

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation =~ 279

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment

3. Inthe LV Data Pool area, click the plus sign (+) to add a disk to the LV Data Pool
(Figure 6-7).

IBM Secure Service Container V3.17.0

Log
Users Storage Disks By Storage Pool
Networks
Q All Storage Pools ~
Storage
Ex-/Import Disk ID Status Disk Type Capacity (GB)
Sumps LV Data Pool @ @ used:0%

Maintenance
Mo items to display

Appliance Operation © used:11%
0.0.92ad @ 3390/0e 6.38
Swap Pool @ @ used:0%

No items to display

Figure 6-7 Storage configuration

280 Securing Your Critical Workloads with IBM Hyper Protect Services

4. Inthe Available Devices area, select the disks that you want to add, and click the >> icon
to move the selected disks to the Assigned Devices list (Figure 6-8).

IBM Secure Service Container V3.17.0

l.2g out

Log

Users FICON DASD FCP
Networks
Soaga Add Storage Disks to Storage Pool LV Data Pool
i You can add devices by moving them from the list of available devices to the list of assigned devices. Devices already assigned are
- displayed but cannot be removed.
Dumps
Available Devices Assigned Devices
[Maintenance
Q. 90D X
D o _
] o0.0.90d0
»
0.0.90d1 display
0.0.90d2
— A0 Oneds
Items: 10 1-10 of 17 items 1w of 2 pages 3

Selected: 2/4611 Selected: 0/0

Figure 6-8 Selecting the available devices

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 281

5. Verify the disks and click Apply (Figure 6-9).

vice ContainerV3.17.0 aat 1.og out

Log
Users FICON DASD FCP
Networks
oo Add Storage Disks to Storage Pool LV Data Pool
T You can add devices by moving them from the list of available devices to the list of assigned devices. Devices already assigned are displayed but cannot
: be removed.
Dumps
e Available Devices Assigned Devices
aintenance
Q ‘*‘hw table Q

[0 0.0.3e00 O 0.0.90d1

[0 0.03e01 O 0.0.90d2

[] 0.0.3e02] 0.0.91d1

[] 0.0.3e03 [0 0.0.91d2

<<
e oaps oy
1-10 of 4607 fa61

Items: 10 ne%sj / 1 ~ J\:ages 3 Items: 10 1-4 of 4 items 1~ of 1 pages
Selected: 0/4607 Selected: 0/4

A

Figure 6-9 Verifying the assigned disks

6. The Confirm Add disk page opens (Figure 6-10 on page 283).

282 Securing Your Critical Workloads with IBM Hyper Protect Services

Confirm Add Disk

A You are about to add the following 4 disk(s):

1)0.0.90d1
2)0.0.90d2
3)0.0.91d1
4)0.0.91d2

IMPORTANT: The disk(s) will be formatted.

Do you want to continue adding the disk(s)?

Figure 6-10 Confirming adding a disk

7. Review your selection and click Yes to proceed.

Attention: The disk will be formatted with this step.

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 283

8. You can view the status of the attachment and formatting of the disks (Figure 6-11).
Depending on the size of the disks, the format takes some time. As an example, it takes
300 GB disks about 30 minutes to format.

Storage Disks By Storage Pool
Q All Storage Pools ™
Disk ID Status Disk Type Capacity (GB)
LV Data Pool @ 0 Used: ==
0.0.91d2 o 3390/0e
0.0.90d2 o 3390/0e
0.0.90d1 o 3390/0e
0.0.91d1 o 3390/0e
Appliance Operation 0 Used: 11%

Figure 6-11 Format in progress

9. A green indicator appears when the attachment and formatting of the disks are complete.
You can view the details of the disks that you added in the LV Data Pool area, as shown in

Figure 6-12.
Storage Disks By Storage Pool

Q All Storage Pools g
Disk ID Status Disk Type Capacity (GB)
LV Data Pool ® @ vusedin
0.0.90d2 @ 3390/0e 305.57
0.0.91d2 o 3390/0e 305.57
0.0.90d1 o 3390/0e 305.57
0.0.91d1 @ 3390/0e 305.57
Appliance Operation © used:11%

Figure 6-12 Format disk complete

284 Securing Your Critical Workloads with IBM Hyper Protect Services

The volumes for IBM Hyper Protect Virtual Servers containers and Secure Build containers
can be created and allocated from this storage pool when those containers are created on the
appliance.

6.4 Networking for IBM Hyper Protect Virtual Servers

IBM Hyper Protect Virtual Servers support Open Systems Adapter (OSA) for networking on
IBM Z and LinuxONE servers that are configured for the SSC LPAR. HiperSockets are now
also supported by IBM Hyper Protect Virtual Servers V1.2.3 or later. You can configure the
network devices for the hosting appliance by using the appliance user interface.

The containers on the SSC partitions communicate through the Ethernet-type or VLAN-type
connections over the network devices that are bound to Open Systems Adapter-Express
(OSA-Express) devices, or HiperSockets.

If you want the IBM Hyper Protect Virtual Servers container on the SSC partition to be
accessed by external services, you must configure two network devices with one for internal
communication, and another one for external access. You can configure one network device
to each of the OSA-Express devices on the SSC partitions, or multiple network devices on
one OSA-Express device. You also can achieve internal network communication between
IBM Hyper Protect Virtual Servers within the same IBM Z or LinuxONE system by configuring
a HiperSockets device.

6.4.1 Networking to the hosting appliance (SSC LPAR)

The network interface is a software driver component of the operating system (OS) that uses
OSA or HiperSockets for networking. The following types of network interfaces are supported:

» Ethernet
This interface works in promiscuous mode and forwards all packets to and from the switch.
Whenever any other LPAR broadcasts a packet for address resolution (ARP), that LPAR
interacts with this interface type. As a result, the network can experience slow periods if

many LPARs are connected to the same switch and running concurrent start and stop
operations frequently.

» VLAN

This interface supports Ethernet packets that are tagged with a VLAN for network
isolation. In addition, IP ranges may be reused by using a different VLAN ID.

» Bond
This interface can be used for failover scenarios. A bond interface might be connected to

more than one OSA, and if one OSA is not functioning, the bond interface steers network
traffic to another OSA, which enables the failover scenario.

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 285

Figure 6-13 shows the network architecture.

LPAR 1

HPV3
Container

HPVS
Container

l

l

Bridge /
Qverlay MacVLAN

C D

LPAR 2

HPVS
Caontainer

HPVS
Container

l

l

Bridge /
MacVLAN
1

Underlay VLAN/
Ethernet /
Bond

0SA CARD

i 4
VLAN /
Ethernet /
BEond

Hipersocket

Underlay Network
Fabric

l

O

v

MNetwork Admin

4

Switch

=

Router

Firewall

Loadbalancer

Figure 6-13 Network architecture

6.4.2 Networking inside the hosting appliance (networking for IBM Hyper
Protect Virtual Servers containers through the CLI)

IBM Hyper Protect Virtual Servers is based on a Docker (runq) engine. Therefore, it often
uses a Docker bridge interface to communicate between IBM Hyper Protect Virtual Servers
containers and components that are outside of the LPAR. The Docker bridge interface can be
created by the IBM Hyper Protect Virtual Servers CLI on top of a network interface of the SSC
LPAR (Ethernet, VLAN, or Bond).

The following types of Docker bridge interfaces are available:

» Bridge

This type of Docker bridge interface is used when virtual machines (VMs) want to
communicate among themselves and VMs can access data that is outside of the LPAR
through NAT. However, the problem with this type of networking is that we cannot
communicate with VMs from outside of the same network that our VMs use. To access the
VM'’s services, we must use a Port Address Tranglation (PAT) to access VMs from outside
of the network by using the LPAR’s network (not directly by using the VM's network).

» macvlan

This type of Docker bridge interface is used to communicate with VMs in the LPAR from
outside the LPAR by using the same network that the VM acquired. In this case, the VM’s
MAC address is registered to the OSA and switch and it directly falls under the switch

network.

Figure 6-14 on page 287 shows the networking in the hosting appliance.

286 Securing Your Critical Workloads with IBM Hyper Protect Services

LPAR 1 LPAR 2

HPVE Containar #3 HFYS Cortainer #4 HFVS Corfainer #5 HPVE Container #6 HFVS Containar #7

HPVE Contalner #1 HPVE Container 72
7216101 17246102 102 168 £0.12 162168 4013 7247101

10152151 110 1921684010 192162 4011
; - .
\ ff // /
¥ ¥ ™ ¥ ™y ¥
[MACVLAM bradge J MACVLAN Dridge 1 MABCYLAN tiiage

[KBS DR MBCVLAN biioge

\ L 3 i l
[Emamet l VLAN 10 } VLAN 20 | VLAN 10 WLAN 30
J L L J

B B -
l N B - 2
Q(L8

Figure 6-14 Networking in the hosting appliance
Setting up the internal network is described in 6.6.1, “Configuring the internal network” on
page 300.

6.4.3 Creating an Ethernet interface

In this section, we describe how to create an Ethernet interface.

Note: To get an overall understanding of what information that you need to run the offering
and where to get such information, see Appendix A, “Configuration parameters” on
page 385. For more information and a downloadable worksheet, see Planning for the

environment.

To create an Ethernet interface, complete the following steps:
1. In your appliance Ul (https://<ssc_Tpar_ip>), click the Networks section.
2. Click the plus (+) icon and select Ethernet, as shown in Figure 6-15.

Log out

IBM Secure Service Container V3.17.0

Log

Network Connections

Users

d L Q @
Storage Name Status Type Device IPV4
Ex-/Import VLAN
O encle?20 [] 802-3-ethernet encle20 9.76.61.178/24
Bond

Dumps

Maintenance

Figure 6-15 Network Connections window

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation =~ 287

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment

A window opens in which you are prompted for the network information, as shown in
Figure 6-16.

1BM Secure Service Container

V3.17.0 et Log out

Usere Add Ethernet Connection
General 1Pvd IPV6
Storage
Ex=/Import . .
Network Device* v Device Details
Dumps
No device selected to view details.
1aintenance| Connection Name*
Connection State* ® Active
O 1nactive

Figure 6-16 Entering network information

3. In the General tab, add the following information (see Figure 6-17 on page 289):

Network Device: Add any device in the range that is allocated to your OSA. Select from
the available devices in the list (for example, 0.0.1e29).

Connection Name: Automatically populated as enccw0.0.f1e29 (information can be
added to the name for usability, such as “external®).

Port: 0.

Device Details: List extra information like Device Type, CHPID, and Device Numbers.

288 Securing Your Critical Workloads with IBM Hyper Protect Services

Log out

IBM Secure Service Container ¥3.17.0

Log

Add Ethernet Connection

Users

Networks General IPv4 IPve
Storage

Ex-/Import

Device Details

Network Device* 0.0.1e29 X
Dumps
Device Type: 0SA (QDIO)
Maintenance Connection Name* enccw0.0.1e29 CHPID: E2

Device Numbers: 0.0.1e29

- v 0.0.1e2a

i 0 0.0.1e2b

(® Active

Connection State®

O 1nactive

Figure 6-17 General tab information

If you chose a HiperSockets device, more information is needed (see Figure 6-18). For the
Layer2 field, you must select a value of 1 from the list if you want to communicate between
different SSC LPARs on the same machine. When you select a value of 0, your network is
limited to connections inside the LPAR.

IBM Secure Service Container V3.17.0 Log out
Log
. Add Ethernet Connection
General 1Pv4 IPv6
Storage
Ex-/Import - ;
Network Device* 0.0.0100 X v Device Details
Dumps
Device Type: HiperSockets
Maintenance Connection Name* enccw0.0.0f00 CHPID: F4
Device Numbers: 0.0.0f00
i " 0.0.0f01
bor g 0.0.0f02
Layer2 | 1 o
Connection State® @ Active
O Inactive

Figure 6-18 HiperSockets

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation =~ 289

4. In the IPV4 tab, make the following selections (see Figure 6-19):

Addresses: Manual.
Gateway: 192.168.0.1.
Address: 192.168.0.10.
Prefix: 24.

IBM Secure Service Container V3.17.0

Log out

Log
Users Add Ethernet Connection
General 1Pv4 IPV6

Storage

Ex-/Import
Addresses™ Manual 5
Dumps
192.168.0.1
Maintenance Gateway
Address* Prefix*
192.168.0.10 24

Figure 6-19 IPv4 tab information

5. Click Add (see Figure 6-20).

IBM Secure Service Container ¥3.17.0

+

Hvle

Log out

Log
_— Network Connections
) @ O21
Storage
Name Status Type Device 1PV4 IPV6
Ex-/Import
) encle20_external @ 802-3-ethernet enc1e20 9.76.61.178/24
Dumps
Maint
Lnienance O enccw0.0.0f00_internal ® 802-3-ethernet enctoo
) enccw0.0.1e26 @ 802-3-ethernet encle26 9.76.61.224/24
@ enccw0.0.1e29 & 802-3-ethernet encle29 192.168.0.10/24

Figure 6-20 New Ethernet device

A enccw0.0.1e29 device is now added to the 192.168.0.0/24 network on which you can

create your containers.

By selecting the interface, you can also change the settings, or start, stop, or delete it by

using the icons in the upper right.

290 Securing Your Critical Workloads with IBM Hyper Protect Services

The hosting appliance is now set up on the SSC LPAR.

Note: The SSC partition requires configuration of the necessary DNS entries if you plan to
explore the following features in IBM Hyper Protect Virtual Servers:

» Configure appropriate DNS entry or entries for Secure Build containers on the
IBM Hyper Protect Virtual Servers partition so that the Secure Build containers can
access the GitHub source code URLs. This DNS configuration is performed on the
HMC as part of the SSC LPAR profile's network configuration.

» Configure a DNS entry for the monitoring infrastructure so that the monitoring client
tools can access the monitoring infrastructure on the IBM Hyper Protect Virtual Servers
partition.

» Configure a DNS entry for the GREP11 container so that the client application code can
access the GREP11 container on the IBM Hyper Protect Virtual Servers partition.

For more information abut how to configure DNS entries on the SSC patrtition, see the

following references:

» For z15 and LinuxONE lll, see “Viewing and managing network connections” and
Chapter 3, “Configuring a Secure Service Container partition on a standard mode
system” in the IBM Z Secure Service Container User's Guide, SC28-7005-01.

» Forzi14, z14 ZR1, LinuxONE Emperor Il, or LinuxONE Rockhopper Il, see Chapter 3,
“Configuring a Secure Service Container partition on a standard mode system”, in the
Secure Service Container User's Guide, SC28-6978-02a.

6.4.4 Creating a VLAN interface

For a VLAN-type connection, ensure that your OSA or HiperSockets device is tagged with a
VLAN ID (for example, 1121) and that it is connected with the trunk port of the switch.

To create a VLAN interface, complete the following steps:

1. In your SSC UlI, click the Networks section.

2. Click the plus (+) icon and select VLAN (see Figure 6-21).

IBM Secure Service Container V3.17.0 roct Log out

Log

Network Connections

a @

Storage e
Name Status Type Device 1PV4 . Ethernet
Ex-/Import o
encle20_external] 802-3-ethernet encle20 9.76.61.178/24 |

Dumps

Users

Bond

enecw0.0.0f00_jnternal B 802-3-ethernet encf00
enccw0.0.1e26 & 802-3-ethernet encle26 9.76.61.224/24
O enccw0.0.1e29) 802-3-ethernet encle29 192.168.0.10/24

Figure 6-21 Selecting a VLAN

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 291

3. A window opens in which you are prompted to enter the network information, as shown in
Figure 6-22. If you click the plus sign (+) that is marked in blue, you can create a device,
as described in 6.4.3, “Creating an Ethernet interface” on page 287.

IBM Secure Service Container V3.17.0 oct Log out

Add VLAN Connection

General IPv4 IPvé
Storage
Ex-/1 1 . ‘—
Hermpar Parent Device* v @
Dumps
VLAN ID*

Connection Name*

VLAN Device

(® Active

O Inactive

Connection State™

Figure 6-22 Add VLAN Connection: General tab

292 Securing Your Critical Workloads with IBM Hyper Protect Services

IBM Secure Service Container V3.17.0

4. Under the General tab (see Figure 6-23.), add the following information:

Parent Device: Select the device that you added. In this case, enc1e29.
VLAN ID: Add your VLAN ID, for example, 1121.

Connection Name: Automatically populated with vian01e29.1121.
VLAN Device: Automatically populated with vian01e29.1121.

Log out

Storage

Ex-/Import

Add VLAN Connection

General

Parent Device*

VLAN ID*

Connection Name*

IPv6

encle29

1121

vlan0le29.1121

VLAN Device vlan01e29.1121 inectior
Connection State* @ Active
O Inactive

Figure 6-23 Completing information in the General tab

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 293

5. Click the IPV4 tab and enter the following information, as shown in Figure 6-24:

Address: Manual.
Gateway: 192.168.40.1.
Address: 192.168.40.2.
Prefix: 24.

IBM Secure Service Container V3.17.0

Log out

Log
S Add VLAN Connection
General 1Pv4 IPvé

Storage
Sximport Addresses* Manual e

Dumps

Gateway 192.164.40.1
Maintenance
Address* Prefix*
192.164.40.2 24|

Figure 6-24 Completing information in the IPV4 tab

294 Securing Your Critical Workloads with IBM Hyper Protect Services

6. Click Add (see Figure 6-25).

IBM Secure Service Container ¥3.17.0 roct Log out

Log

Network Connections

Q @

Users

Storage
Name Status Type Device IPV4 IPV6
Ex-/Import
O encle20_external [] 802-3- encle20 9.76.61.178/24
Dumps ethernet
Maintenance
O enccw0.0.0f00_internal [] 802-3- encf0o
ethernet
O enccw0.0.1e26 [] 802-3- encle26 9.76.61.224/24
ethernet
O enccw0.0.1e29 [] 802-3- encle29 192.168.0.10/24
ethernet
O vian0l1e29.1121 [] vlan vlan01e29.1121 192.164.40.2/24

Figure 6-25 VLAN created

You created a vlan01e29.1121 device that is added to the 192.168.40.0/24 network, on which
you can create your containers.

6.5 Installing the IBM Hyper Protect Virtual Servers CLI on the
management server

In this section, we describe how to install and set up the CLI on the management server. In
our environment, the Linux management server is on a mainframe LPAR (s390x), but you
also can use a x86 based system.

6.5.1 Setting up the environment by using the setup script

The installation script should be in the directory that you created in 6.2, “Downloading the
package to the management server” on page 273.

Check that the x86 or Linux on IBM Z/LinuxONE (s390x architecture) management server
has the following required software packages:

» The haveged utility (for example, by running sudo apt install haveged)

» One of the supported Docker versions (V19.03.2 or later)

» OpenSSL or a similar tool

» GNU Privacy Guard (GPG)

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 295

Note: To get an overall understanding of what information that you need to run the offering
and where to get such information, see Appendix A, “Configuration parameters” on

page 385. For more information and a downloadable worksheet, see Planning for the
environment.

Before you start, make sure that you have the information that you need to access the
appliance and your registry (Docker Hub or IBM Cloud Container Registry). On your x86 or
Linux on IBM Z/LinuxONE (s390x architecture) management server, complete the following
steps under the <installation_directory> directory:

1. Run the setup.sh shell script to complete the environment preparation on the
management server. When you run the setup script the first time, you must accept the
license to continue with the setup.

./setup.sh -e LICENSE=accept

A message is displayed stating that the license was accepted and the setup continues.
To view the license, run the following command:

./setup.sh -e LICENSE=view -e LANG=xx

xx is your language code. For more information, see “Available language codes” in the
./License directory. If no language code is specified, the default language is used, which
is English.

If you already accepted the license earlier and want to run the setup script again, run the
following command:

./setup.sh

Note: If you have not accepted the license once, then running the script results in an
error, and you are prompted to accept the license.

The setup.sh shell script automates the following actions:

— Starts the envcheck. sh script to validate the prerequisites. The envcheck. sh shell script
automates the checking of the following requirements of the management server by
doing the following tasks:

¢ The system architecture: When the system architecture is not x86 or Linux on IBM
Z or LinuxONE (a s390x architecture), the script fails, and a message stating that
the architecture is not supported is displayed.

e The Linux distribution: When the Linux distribution is not Ubuntu or Red Hat
Enterprise Linux (RHEL), the script fails and a message is displayed stating that the
script is supported only Ubuntu and RHEL-based systems.

e The Ubuntu or RHEL Version: When the Ubuntu version is not 18.04 or later or
16.04 or later, or the RHEL Version is not 7.X or later or 8.X or later, a warning
message is displayed indicating that the Ubuntu or RHEL versions are not
supported, and the script continues execution.

* GPG version: When the GPG version is not 2.2.4 or later, the script fails and a
message is displayed stating that the GPG version must be upgraded.

¢ Docker Installation: When Docker is not installed, the script fails. Also, when Docker
is not at V19.03.2 or later for x86 or V18.06.3 or later for s390x, the script fails.

* Number of CPU cores: When number of cores is less than 4 for x86 and 1 for
x390x, a warning message is displayed that there are fewer cores than required,
and the script continues execution.

296 Securing Your Critical Workloads with IBM Hyper Protect Services

https://hub.docker.com/
https://www.ibm.com/cloud/container-registry
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment

* Amount of memory: When the memory is less than 8 GB, a warning message is
displayed that the memory is less than required, and the script continues execution.

» Disk space: When the disk space is less than 150 GB, a warning message is
displayed that the disk space is less than required, and the script continues
execution.

¢ OpenSSL: When OpenSSL is not installed, the script fails. A message prompting
you to install OpenSSL and retry the script is displayed.

* The haveged utility: When haveged is not installed, the script fails. A message
prompting you to install haveged and retry the script is displayed.

— Sets the PATH for the hpvs commands.

— Creates the $HOME/hpvs (working directory) directory structure and copies all the keys,
registry files, and the required config files, and creates symbolic links of the images to
this folder.

— Extracts and verifies the base images in the installation directory.

— Loads the base images hpvsop-base and hpvsop-base-ssh into your local Docker
registry and uploads both to the repositories on your remote Docker registry server.
You must enter the required information for your remote Docker registry server when
prompted.

— Creates and updates the $HOME/hpvs/config/reg.json config file with the registry
details for your remote Docker registry server or with the IBM Cloud Registry details.
The credentials are encrypted after the script completes.

— Updates the $HOME/hpvs/hosts config file with the SSC partition information. You must
enter the IP address of the partition and the connection credentials.

. You are prompted to select an option for configuring the container registry, as shown in
Example 6-2.

Example 6-2 Selecting the registry

Setting up registry list...
Select option for configuring container registry 1.Docker Hub(publicly hosted)
2.IBM Cloud Registry?

Select a value of 1 when you want to use Docker Hub (publicly hosted). Select a value of 2
when you want to use the IBM Cloud Registry. Use one of the following sets of
instructions, depending on the option that you choose for configuring the container

registry.
You can use IBM Hyper Protect Virtual Servers only with Docker Hub or IBM Cloud
Container Registry.

a. When the script is running the setup of the Docker registry (when you chose a value of
1), you are prompted to enter the following information:

¢ The Docker registry name, for example, docker_hub/repo.
* The Docker registry username, for example, docker_username.
e The Docker registry password. Type in the password of the Docker registry.

b. When the script is running the setup of the IBM Cloud Registry (when you chose a
value of 2), you are prompted to enter the following information:

* The IBM Cloud Registry name, for example, cToud_reg.
e The IBM Cloud Registry Server URL, for example, us.icr.io.

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 297

https://hub.docker.com/
https://www.ibm.com/cloud/container-registry
https://www.ibm.com/cloud/container-registry

e The CONTENT_TRUST_SERVER URL, for example, https://us.icr.io0:4443/.

e The IBM Cloud application programming interface (API) key: Type in the IBM Cloud
API key. (For more information, see “Creating an IBM Cloud API Key”
at IBM Cloud).

3. When the script is running the setup of the hosts config file, you are prompted to enter the
following information to access the appliance:

The SSC LPAR (Host) IP address, for example, 10.20.4.23.
The SSC LPAR (Host) Name, for example, redbooksscl.
The username of the SSC LPAR, for example, root.

The password.

After the script completes, you can run the hpvs command locally to validate that the
environment is ready to use. The hpvs --help command shows you a list of supported
actions to manage IBM Hyper Protect Virtual Servers. For more information about the
hpvs command, see Commands in IBM Hyper Protect Virtual Servers.

4. To push base images to the container registry, see 6.6.2, “Pushing the base images to a
remote Docker repository” on page 302.

Example 6-3 shows the directory structure (working directory) that is created by the setup
script and the symbolic links that were created.

Example 6-3 Working directory

/root/hpvs/
- config
- grepll
-+« images
- hpcsKpGrepll rung.tar.gz ->
/opt/hpvs/1mages/hpcstGrepl1 rung.tar.gz
-+ keys
-+ regfiles
- vs_grepll.yml
- hpvsopbase
- images
- HpvsopBase.tar.gz -> /opt/hpvs/images/HpvsopBase.tar.gz
- keys
- regfiles
- vs_hpvsopbase.ym]
- hpvsopbasessh
- images
- HpvsopBaseSSH.tar.gz -> /opt/hpvs/images/HpvsopBaseSSH.tar.gz
- keys
- regfiles
- vs_hpvsopbasessh.yml
- monitoring
- images
- CollectdHost.tar.gz -> /opt/hpvs/images/CollectdHost.tar.gz
-+ Monitoring.tar.gz -> /opt/hpvs/images/Monitoring.tar.gz
- keys
- regfiles
- vs_monitoring.yml
- reg.json
- securebuild
- images

298 Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/unifiedsupport/supportcenter/iam
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-commands-in-hyper-protect-virtual-servers
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-commands-in-hyper-protect-virtual-servers

. - SecureDockerBuild.tar.gz ->
/opt/hpvs/1mages/SecureDockerBu11d tar.gz
- keys
- regfiles
- secure_build.yml.example
- secure_create.yml.example
- vs_securebuild.yml
- templates
- virtualserver.template.readme.yml
- virtualserver.template.yml
- vs_configfile_readme.yml
- vs_regfiledeployexample.ym]
- hosts
- logs
- hpvs_2021May.log

images/HpvsopBase.tar.gz is the base image of an IBM Hyper Protect Virtual Servers
container without Secure Shell (SSH) access.

images/HpvsopBaseSSH.tar.gz is the base image of an IBM Hyper Protect Virtual Servers
container with the SSH access.

images/CollectdHost.tar.gz is the base image of the collectd-host container of the
monitoring infrastructure.

images/SecureDockerBuild.tar.gz is the Docker image of the Secure Build container.

images/Monitoring.tar.gz is the base image of the monitoring-host container of the
monitoring infrastructure.

images/hpcsKpGrepll rung.tar.gz is the base image of the GREP11 container.

config/templates/virtualserver.template.yml is the template example of network,
quotagroup, and resource definitions for the virtual server.

config/*/vs_*.yml contains configuration example files for the IBM Hyper Protect Virtual
Servers containers of each type.

config/*/keys and config/*/regfiles. You can use these folders to save the keys or the
.enc files that you generate.

6.6 Configuring the IBM Hyper Protect Virtual Servers
environment

In this section, the following sections explain the setup of the different services.

>

>

>

Configuring the internal network

Pushing the base images to a remote Docker repository

Setting up an IBM Hyper Protect Virtual Servers instance

Backing up and restoring IBM Hyper Protect Virtual Servers
Setting up the Secure Build container

Setting up the monitoring instance

Integrating with Enterprise Public Key Cryptography Standards #11

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 299

6.6.1 Configuring the internal network

300

In 6.4, “Networking for IBM Hyper Protect Virtual Servers” on page 285, the networking
environment was set up. To use the defined interfaces, two different methods are available:

» Method 1: “Creating networks manually” on page 300

» Method 2: “Creating networks automatically” on page 301 by using the hpvs deploy
command

The more convenient way is to use the hpvs deploy and undeploy commands because the
system takes care of the creation and removal of the resources.

Note: To get an overall understanding of what information that you need to run the offering
and where to get such information, see Appendix A, “Configuration parameters” on

page 385. For more information and a downloadable worksheet, see Planning for the
environment.

Creating networks manually
To have networks available all the time, you can create them manually by completing the
following steps:

1. Define the network by running the hpvs network command:

hpvs network create --driver macvlan --name external_network --parent encle23
--subnet 9.76.61.0/24 --gateway 9.76.61.1

hpvs network create --driver bridge --name internal_network --parent encf00
--subnet 192.168.0.0/24 --gateway 192.168.0.1

2. Verify the available networks by running the hpvs network 1ist command. The output
looks like the following string:

| external network |
| host |
| none |
| internal _network |

3. The network details can be viewed by running the hpvs network show --name <network
name> command:

hpvs network show --name external network

The result shows the details that you defined:

Fo——_—_——_—————— - Fo_—_—_—_————————— - +
| PROPERTIES | VALUES |
Fo——_—_——_—————— - Fo_—_—_—_————————— - +
Name external_network
Driver macvlan
Containers [
IPAM Gateway:9.76.61.1

Subnet:9.76.61.0/24
ParentDevice | encle23
Scope local

Securing Your Critical Workloads with IBM Hyper Protect Services

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment

Creating networks automatically

By running the hpvs deploy command, the networks (and all other resources) are created by
the system automatically. In this case, you specify the possible settings in the template file
that is in your installation directory.

Update the template file $HOME/hpvs/config/templates/virtualserver.template.yml based
on the networking configuration. You must specify the details for the network based on your
network configurations. Example 6-4 provides an example of the YAML file.

Example 6-4 Example virtualserver.template.yml|

version: vl

type: virtualserver-template

networktemplates:

name: external network
subnet: "9.76.61.0/22"
gateway: "9.76.61.1"
parent: encle23
driver: macvlan

- name: internal network
subnet: "192.168.0.0/24"
gateway: "192.168.0.1"
parent: encf00
driver: bridge

When a new container is deployed by running the hpvs deploy command, you specify only
the network name (such as external_network in Example 6-4) and the IP address to be used
by the container in the virtual server configuration YAML file (vs_config.yml), as shown in
Example 6-5. If not already present, the corresponding network is created automatically.
Optionally, you can also use port mapping.

Example 6-5 Example network in the vs_config.yml file

networks:
- ref: external_network
ipaddress: 9.76.61.200
ports: #optional
- hostport: 21443
protocol: tcp
containerport: 443

If you use port mapping for a Secure Build virtual server, monitoring infrastructure, and a
GREP11 virtual server, ensure that the ports or configured mapping ports (shown in

Table 6-1) are available on the SSC partition. Otherwise, you must request an IP address for
each virtual server that uses the external network on the SSC patrtition.

Table 6-1 shows the required ports on the SSC patrtition.

Table 6-1 Ports on the SSC partition for port mapping

Port number Required by module

443 Hosting appliance REST API

443 Secure Build Server (SBS) or Bring Your Own Image (BYOI) with
macvlan

Any non-reserved port SBS

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 301

Port number Required by module

8443 To access monitoring by Prometheus
25826 Used by the collectd host
9876 GREP11 container

6.6.2 Pushing the base images to a remote Docker repository

You must register the base images in the remote Docker repository by using your ID and
password. The remote Docker repository can be a Docker Hub or IBM Cloud Container
Registry. In our example, we use Docker Hub.

The base images are the default IBM Hyper Protect Virtual Servers container images that can
be used to host your application code, and they include two different types of container
images for your development and production environments:

» HpvsopBaseSSH packages the SSH daemon into the default IBM Hyper Protect Virtual
Servers container image so that you can log in to the IBM Hyper Protect Virtual Servers by
using the SSH and your private key for debugging and development.

» HpvsopBase excludes the SSH daemon on the default IBM Hyper Protect Virtual Servers
container image, and it can be used in the production environment.
For more information, see IBM Hyper Protect Virtual Servers.

To push the base images to the Docker repository, complete the following steps:

1. Check that you enabled Docker Content Trust (DCT) for your remote Docker registry
server by running the following command:

export DOCKER_CONTENT_TRUST=1

To set DCT permanently, add it to your shell configuration file, which is found in either
$HOME/ .bashrc or as a global setting in /etc/environment.

2. Run the docker images command to check whether the base images are loaded into the
local registry successfully (Example 6-6).

Example 6-6 The docker images command

root@rdbkhpvm: /home/Tnxadmin# docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
ibmzcontainers/hpvsop-base 1.2.3-release-d0651e4 ab3aae0lb3ef 2 months ago 1.37 GB
ibmzcontainers/hpvsop-base-ssh 1.2.3-release-d0651e4 cd4e5704ae92 2 months ago 1.31 GB

3. Use the docker tag command to tag base images with the same ID that is used by the CLI
tool. For example, 1.2.3 is the tag ID of the CLI tool that you get by running the docker
images command. Run the commands that are shown in Example 6-7 to tag both base
images. In our example, our user ID is hpvsrdbk.

Example 6-7 Tagging the base images command

sudo docker tag ibmzcontainers/hpvsop-base-ssh:1.2.3-release-d0651e4
hpvsrdbk/hpvsop-base-ssh:1.2.3-release-d0651e4

sudo docker tag ibmzcontainers/hpvsop-base:1.2.3-release-d0651e4 hpvsrdbk/hpvsop-base:1.2.3-release-d0651ed

302 Securing Your Critical Workloads with IBM Hyper Protect Services

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=later-registering-base-images-in-remote-registry-server

4. Run the docker images command to check whether the tags for the base images are as
expected, as shown in Example 6-8.

Example 6-8 Newly tagged Docker images

root@rdbkhpvm: /opt/hpvs# docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

hpvsrdbk/hpvsop-base 1.2.3-release-d0651e4 ab3aae0lb3ef 2 months ago 1.37 GB
ibmzcontainers/hpvsop-base 1.2.3-release-d0651le4 ab3aae0lb3ef 2 months ago 1.37 GB
hpvsrdbk/hpvsop-base-ssh 1.2.3-release-d0651e4 cd4e5704ae92 2 months ago 1.31 GB
ibmzcontainers/hpvsop-base-ssh 1.2.3-release-d0651e4 cd4e5704ae92 2 months ago 1.31 GB

5. Push the base images to your remote Docker repositories, as shown in Example 6-9.

Example 6-9 Pushing the base images

sudo docker push hpvsrdbk/hpvsop-base-ssh:1.2.3-release-d0651e4
sudo docker push hpvsrdbk/hpvsop-base:1.2.3-release-d065led

If your repository does not exist, it is created for you, and you see a message similar to
what is shown in Example 6-10.

Example 6-10 Repository creation

Signing and pushing trust metadata

You are about to create a new root signing key passphrase. This passphrase will
be used to protect the most sensitive key in your signing system. Choose a
long, complex passphrase and be careful to keep the password and the key file
itself secure and backed up. It is highly recommended that you use a password
manager to generate the passphrase and keep it safe. There will be no way to
recover this key. You can find the key in your config directory.

Enter passphrase for new root key with ID 87ffl8c:

Repeat passphrase for new root key with ID 87ffl8c:

Enter passphrase for new repository key with ID f9579e6:

Repeat passphrase for new repository key with ID f9579e6:

The output looks like what is shown in Example 6-11.

Example 6-11 Output of the docker push command

root@rdbkhpvm:/root/hpvs# sudo docker push hpvsrdbk/hpvsop-base:1.2.3-release-d0651e4
The push refers to repository [docker.io/hpvsrdbk/hpvsop-base]

b35fb91a5173: Preparing

d94a20bcb941: Preparing

03ala3ccOfb5: Preparing

97f487669d09: Preparing

db82f9aa280b: Pushed

756lafdecc29: Pushed

669a052684c9: Pushed

Oeffledc710b: Pushed

6fa715d34ch2: Pushed

1.2.3-release-d0651e4: digest:
sha256:aa866c3a90334ff48629f6cf63bd6b32294dec1b9c57b835184d90226500459¢ size: 12805
Signing and pushing trust metadata

You are about to create a new root signing key passphrase. This passphrase will be used to
protect the most sensitive key in your signing system. Choose a Tong, complex passphrase and be
careful to keep the password and the key file itself secure and backed up. It is highly

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 303

recommended that you use a password manager to generate the passphrase and keep it safe. There
will be no way to recover this key. You can find the key in your config directory.

Enter passphrase for new root key with ID 87ffl8c:

Repeat passphrase for new root key with ID 87ffl8c:

Enter passphrase for new repository key with ID f9579e6:

Repeat passphrase for new repository key with ID f9579e6:

Finished initializing "docker.io/hpvsrdbk/hpvsop-base"

Successfully signed docker.io/hpvsrdbk/hpvsop-base:1.2.3-release-d0651ed

6. Verify the results on http://hub.docker.com, as shown in Figure 6-26.

w Q, Search for great content (e.g., mysql) Explore Repositories hpvsrdbk ~ ﬁ:ﬁﬁl

hpvsrdbk Q, Search by repository name Create Repository
hpvsrdbk / hpvsop-base o % :
Updated 4 minutes ago) wo 4 @ Fublic
hpvsrdbk / hpvsop-base-ssh & e 8 ¥ 0 1 a ® Public

Updated & days ago

Figure 6-26 Docker Hub

6.6.3 Setting up an IBM Hyper Protect Virtual Servers instance

The base images are the default IBM Hyper Protect Virtual Servers container images that can
be used to host your application code, and they include two different types of container
images for your development and production environments:

» HpvsopBaseSSH packages the SSH daemon into the default IBM Hyper Protect Virtual
Servers container image so that you can log in to the IBM Hyper Protect Virtual Servers by
using the SSH and your private key for debugging and development.

» HpvsopBase excludes the SSH daemon on the default IBM Hyper Protect Virtual Servers
container image, and it can be used in the production environment.

To start an instance, you can use the hpvs deploy or the hpvs vs create commands. As a
best practice, use the hpvs deploy command to provision an instance because of its ease of
use and the ability to create multiple instances quickly. The definitions are stored in . ym1 files.
As an alternative, you can use the hpvs vs create command, where all definitions are set by
parameters. In this book, we use only the hpvs deploy command. The complete hpvs
command reference can be found at Commands in IBM Hyper Protect Virtual Servers.

Note: To get an overall understanding of what information that you need to run the offering
and where to get such information, see Appendix A, “Configuration parameters” on

page 385. For more information and a downloadable worksheet, see Planning for the
environment.

304 Securing Your Critical Workloads with IBM Hyper Protect Services

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-commands-in-hyper-protect-virtual-servers
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment
http://hub.docker.com

To set up an IBM Hyper Protect Virtual Servers instance based on the HpvsopBaseSSH image,
complete the following steps.

1. Generate an SSH key pair:

ssh-keygen -t rsa -b 4096 -C "your_email@example.com" -f
$HOME/hpvs/config/hpvsopbasessh/id rsa

2. Run the following command to convert the .pub file to base64 format and save it to the
keys directory of the hpvsopbasessh configuration file
($HOME/hpvs/config/hpvsopbasessh/keys/) as follows:

echo $(cat id_rsa.pub | base64)| tr -d ' ' >>
/$HOME/hpvs/config/hpvsopbasessh/keys/id rsa_base64.pub

3. Export the SSH public key as the environment variable for instance provisioning by using
the following command:

export key=$(cat $HOME/hpvs/config/hpvsopbasessh/keys/id_rsa_base64.pub)

To make this environmental variable permanent, add it to your shell configuration file, for
example, $HOME/ .bashrc.

4. The vs_hpvsopbasessh.yml file that has the configuration details for the virtual server
refers to the corresponding sections of the virtualserver.template.yml when you run the
hpvs deploy command:

a. Update the template file $HOME/hpvs/config/templates/virtualserver.template.yml
based on the networking configuration of the IBM Hyper Protect Virtual Servers
instance. For more information, see 6.6.1, “Configuring the internal network” on
page 300.

b. Create the configuration YAML file demo_hpvsopbasessh.yml for the instance by
referring to the example file $HOME/hpvs/config/securebuild/vs_hpvsopbasessh.yml.
The following command shows an example:

cp vs_hpvsopbasessh.yml demo_hpvsopbasessh.yml
c. Change the configuration to meet your environment. Example 6-12 shows our
vs_hpvsopbasessh.yml file.

Example 6-12 vs_shpvsopbasessh.ym|

version: vl
type: virtualserver
virtualservers:
- name: test-hpvsopbasessh
host: SSC_LPAR_NAME # insert your SSC lpar name as shown with “hpvs host
list”
hostname: hpvsopbasessh-container
repoid: HpvsopBaseSSH
imagetag: 1.2.3-release-d0651e4
imagefile: HpvsopBaseSSH.tar.gz
imagecache: true
resourcedefinition:
ref: small
environment:
- key: LOGTARGET
value: "/dev/console"
- key: ROOTFS_LOCK
value: "y"
- key: ROOT_SSH_KEY

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 305

value: "@/root/hpvs/config/hpvsopbasessh/keys/id_rsa_base64.pub" #
provide ssh key in base64 format
- key: RUNQ_ROOTDISK
value: newroot
networks:
- ref: external_network # update the network as defined
ipaddress: 10.20.4.112 # set your IP address
volumes:
- name: qg_hpvsopbasessh
ref : np-medium
mounts:
- mount_id: newroot
mountpoint: /newroot
filesystem: ext4
size: 10GB
reset_root: false
- mount_id: data
mountpoint: /data
filesystem: ext4
size: 10GB

Note:

» You must configure the mount point as /newroot when you deploy the
HpvsopBaseSSH image.

» For creating a virtual server by using the hpvs-op base image, use the
vs_hpvsopbase.yml configuration file.

» The resourcedefinition: ref value refers to the resourcedefinitiontemplate
definition in the template file.

» The quotagroup: ref value refers to the quotagrouptemplates definition in the
template file.

» The network: ref value refers to the networktemplates definition in the template
file.

» When you specify @ at the beginning of a file path, it indicates that the path is read
as a file, and the content within the file is assigned as the value.

For more information about the configuration file, see Configuration files of IBM Hyper
Protect Virtual Servers.

5. Create the instance by using the configurations in the YAML file and the hpvs deploy
command, as shown here:

hpvs deploy --config $HOME/hpvs/config/hpvsopbasessh/demo_hpvsopbasessh.yml

306 Securing Your Critical Workloads with IBM Hyper Protect Services

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-configuration-files-in-hyper-protect-virtual-servers
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-configuration-files-in-hyper-protect-virtual-servers

Example 6-13 shows our detailed output.

Example 6-13 Output of the hpvs deploy command

root@rdbkhpvm:~/hpvs/config/hpvsopbasessh# hpvs deploy --config
/root/hpvs/config/hpvsopbasessh/demo_hpvsopbasessh.yml

kkhkkkhkkhhkkhhkhhhkhhkkhhkhkhkkhhkhhkkhhkhkhhkhhhkhhkhkhhkhhkkhhkhhhkhhkhkhhkhkhkkhhkhkhkkhhkhkhkkhhkkhkkkhkkhkhkk*x

Starting virtual server deployment...
Khkkkhkhhkhhkhhkhhhhkhhkhhhhkhhhhkhhkhhkhhhhkhhhhkhhhhkhhhkhhhhkhkhhhkhkdhhkhkhhhkhkhhkhkhhkhkdhkhkikdhkhkxx*,

Skipping Loading image as image tag 1.2.3-release-d065led4 is present.

kkhkkkhkkhkhkkhhkhhhkhhkkhhkhkhkkhhkhkhkkhhkhhhkhhhkhhkhkhhkhhkkhhkhhhkhhkhkhhkhkhkkhhkhkhkkhhkhkhkkhhkkhkkkhkkhkhkk*x

kkhkkkhkkhhkkhhkhhhkhhkkhhkhhkkhhkhkhkkhhkhkhkhkhhhkhhkhkhhkhhkhkhhkhhhkhhkhkhhkhkhkkhhkhkhkkhhkhkhkkhhkhkhkkkhkkhkhkk*x

Creating virtual server demo_hpvsopbasessh ...

Fommmr e Fom e - +
| PROPERTIES | VALUES
Fommmr e Fom e - +
Name demo_hpvsopbasessh
CPU 2
Memory 2048
State running
Status Up Less than a second
Networks Subnet:24

Gateway:9.76.61.1
IPAddress:9.76.61.225
MacAddress:02:42:09:4c:3d:el
Network:external_network
IPAddress:192.168.0.22
MacAddress:02:42:c0:a8:00:16
Network:internal_network
Subnet:24
Gateway:192.168.0.1

Ports
Quotagroups | [qg_hpvsopbasessh]

Fo——_——_—————— - - - +
kkhkkkhkkhkhkkhhkhhhkhhkkhhkhkhkkhhkhkhkkhhkhkhhkhhhkhhkhkhhkhhkkhhkhkhhkhhkhkhhkhhkkhhkhkhkkhhkhkhkkhhkkhkkhkhkkhkhkk*x

Virtual server demo_hpvsopbasessh creation successful.
KhRkKhrkhhkhhkhhkhhhhkhhkhhhhkhhhhkhhkhhkhhhhkhhhhkhhhhkhhhkhhhhkhkhhhkhkhhhkhhhkhkhhkhkhhkhkdhkhkikkhkhkxx*,

***Completed virtual server deployment
Khkkkhkhhkhhkhhkhhkhkhhkhhhhkhhhhkhkhhkhhhhkhhhhkhhhhkhhhkhhhhkhkhhhkhkhhkhkhhhkhkhhkhkhhkhkdhkhkikkkhkx*,

6. The command hpvs vs 1ist shows the running containers, and hpvs vs show --name
<container name> shows the details of container (see Example 6-14).

Example 6-14 Output of hpvs list and show commands

root@rdbkhpvm:~/hpvs/config/hpvsopbasessh# hpvs vs list

Fo e o Fom e R il +
| NAMES | STATE | STATUS | IMAGE |
Fom - Fommm - Fommm - o - +
| demo_hpvsopbasessh | running | Up 5 minutes | ibmzcontainers/hpvsop-base-ssh:1.2.3-release-d0651e4 |
R ittt B Fommmm e itk +
root@rdbkhpvm:~/hpvs/config/hpvsopbasessh# hpvs vs show --name demo_hpvsopbasessh
SR Fmm +

| PROPERTIES | VALUES

SR Fmm +

| Name | demo_hpvsopbasessh

| cpu | 2

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 307

Memory 2048

State running

Status Up 8 minutes

Networks MacAddress:02:42:09:4c:3d:el
Network:external_network
Subnet:24
Gateway:9.76.61.1
IPAddress:9.76.61.225
Gateway:192.168.0.1
IPAddress:192.168.0.22
MacAddress:02:42:c0:a8:00:16
Network:internal_network
Subnet:24

Ports

Quotagroups | [gg_hpvsopbasessh]

Fommmmmmee e o e +

7. You can connect to the provisioned IBM Hyper Protect Virtual Servers instance by using
the SSH and the private key. For example:

ssh root@9.76.61.225 -i $HOME/hpvs/config/hpvsopbasessh/id rsa
Note: This step is applicable only for a virtual server that is created by using the

HpvsopBaseSSH image. The HpvsopBase image excludes the SSH daemon on the default
IBM Hyper Protect Virtual Servers container image.

To work with your container, use the hpvs vs start, hpvs vs stop, hpvs vs restart, hpvs vs
delete or hpvs undeploy commands.

6.6.4 Backing up and restoring IBM Hyper Protect Virtual Servers

You can create backups and restore from those backups as part of your disaster recovery
(DR) plan by using the hpvs snapshot command.

To create a backup for an IBM Hyper Protect Virtual Servers container with your application,
use the command that is shown in Example 6-15.

Example 6-15 Creating a backup

root@rdbkhpvm# hpvs snapshot create --name hpvs_snapshotl --vs testVSl

SR o +
| PROPERTY | VALUE |
S S o +
| VS Name | testvsl

| Snapshot Name

|
| Status | created

| Quotagroups | [qg_hpvsopbasessh]
T b +

|
hpvs_snapshotl |
|
|

Note: The snapshots of the IBM Hyper Protect Virtual Servers containers are stored on the
SSC partition.

To restore the IBM Hyper Protect Virtual Servers container from a snapshot, use the hpvs
snapshot restore command that is shown in Example 6-16 on page 309. You must restart
the IBM Hyper Protect Virtual Servers container after it is restored from a snapshot.

308 Securing Your Critical Workloads with IBM Hyper Protect Services

Example 6-16 Restoring from a backup

root@rdbkhpvm# hpvs snapshot restore --name hpvs_snapshotl --vs testVS1

L e LT +
| PROPERTY | VALUE |
L e LT +
VS Name	testvsi
Snapshot Name	hpvs_snapshotl
Status	restored
L e LT +

Note: This command restores all the quotagroups that are associated with the virtual
server. To restore a specific quotagroup, run the following command. In the following
example, only myquotagroup is restored.

hpvs snapshot restore --name hpvs snapshotl --vs testVS1l --quotagroup
myquotagroup

6.6.5 Setting up the Secure Build container

You can use the Secure Build virtual server to build your source code, which is stored in the
GitHub repository, deploy it into the IBM Hyper Protect Virtual Servers as an IBM Hyper
Protect Virtual Servers instance, and publish the built image to the remote Docker repository.

During the Secure Build process, the Secure Build virtual server performs the following
actions:

» Retrieves the source code from your GitHub repository. Your private key to access the
GitHub repository is required for authentication.

» Pulls the hpvsop-base or hpvsop-base-ssh images that you choose in the Dockerfile from
the remote Docker registry to host your application in an IBM Hyper Protect Virtual
Servers instance on the SSC partition, which uses the Docker credential that is stored by
using the hpvs registry add command.

» Builds the image and signs the tag of the image.

» Pushes the built image to the remote Docker repository, such as Docker Hub or
IBM Container Registry, which uses credentials that you added when you used the hpvs
registry add command. It also signs the repository registration file with your own key pair
so that only an authorized repository registration file is allowed into the SSC partition.
Also, it encrypts the repository registration file by using an IBM key.

» Optional: Archive the Secure Build manifest file for your applications in the IBM Cloud
Object Storage service for audit purposes.

If you want other developers or independent software vendors (ISVs) to build their image
based on your published image in the IBM Hyper Protect Virtual Servers, you also can create
a dedicated user ID for them to pull your image.

Note: To get an overall understanding of what information that you need to run the offering
and where to get such information, see Appendix A, “Configuration parameters” on

page 385. For more information and a downloadable worksheet, see Planning for the
environment.

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 309

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment

To allow other developers to build their image based on your published image, complete the
following steps:

1. Create the certificate and key to securely communicate with the SBS.

2. Create a virtual SBS by using the YAML configuration file and the hpvs deploy command.
3. Generate the signing keys.

4. Build the application by using Secure Build.

On your x86, IBM Z, or LinuxONE (s390x architecture) management server, complete the
following steps with root user authority:
1. Create the certificate and key to securely communicate with the SBS:

a. Go to the keys directory of the Secure Build service in the IBM Hyper Protect Virtual
Servers installation directory by running the following command:

cd $HOME/hpvs/config/securebuild/keys

b. Create the certificate and key to securely communicate with the SBS. The key file
(sbs.key) and the certificate (shs.cert) are created by running the following
command:

openss1 req -newkey rsa:2048 -new -nodes -x509 -days 3650 -out sbs.cert
-keyout sbs.key -subj "/C=US/0=I1BM/CN=SBS.example.com"

The output look like the output in Example 6-17.

Example 6-17 Generating a key and certificate for Secure Build Server

root@rdbkhpvm:~/hpvs/config/securebuild/keys# openssl req -newkey rsa:2048
-new -nodes -x509 -days 3650 -out sbs.cert -keyout sbs.key -subj
"/C=US/0=IBM/CN=SBS.example.com"

Generating an RSA private key

c. To change the certificate to base64-encoding, run the following command:
echo $(cat sbs.cert | base64) | tr -d ' ' >> sbs_base64.cert

2. Create a Secure Build virtual server by using the YAML configuration file and the hpvs
deploy command. As an alternative, you can use the hpvs vs create command (not
described in this procedure).

The vs_securebuild.yml file that has the configuration details for the virtual server refers
to the corresponding sections of the virtualserver.template.yml file when you run the
hpvs deploy command.

a. Update the template file $HOME/hpvs/config/templates/virtualserver.template.yml
based on the networking configuration of the IBM Hyper Protect Virtual Servers
instance. For more information, see 6.6.1, “Configuring the internal network” on
page 300.

b. Create the configuration YAML file demo_securebuild.yml for the instance by referring
to the example file $HOME/hpvs/config/securebuild/vs_securebuild.yml and running
the following command:

cp vs_securebuild.yml demo_securebuild.yml

310 Securing Your Critical Workloads with IBM Hyper Protect Services

c. Change the configuration to meet your environment. Here is an example of the
vs_securebuild.yml file (Example 6-18).

Example 6-18 The vs_securebuild.yml file

version: vl
type: virtualserver
virtualservers:
- name: securebuildserver
host: SSC_LPAR_NAME
repoid: SecureDockerBuild
imagetag: 1.2.3-release-f78a642
imagefile: SecureDockerBuild.tar.gz
imagecache: true
resourcedefinition:
ref: small
environment:
- key: ROOTFS_LOCK
value: "y"
- key: CLIENT CRT
value: "@/root/hpvs/config/securebuild/keys/shs_base64.cert" # provide
certificate file in base64 format
- key: RUNQ ROOTDISK
value: newroot
networks:
- ref: external_network
ipaddress: 10.20.4.67

For more information about the configuration file, see Configuration files of IBM Hyper
Protect Virtual Servers.

d. Create the instance by using the configuration in the YAML file and the following hpvs
deploy command:

hpvs deploy --config $HOME/hpvs/config/securebuild/demo_securebuild.yml

3. Generate the signing key pair for signing the repository registration file by using the
GnuPG tool:

a. List the GPG keys by running the following commands:

gpg --list-keys
gpg --list-secret-keys

b. The following commands create a GPG key pair, export the public key isv_user.pub
and the private key isv_user.private. The key pair is protected by using the
passphrase over-the-lazy-dog. If isv_user is listed when you run the gpg
--list-keys command, then you must use another name.

export keyName=isv_user
export passphrase=over-the-Tazy-dog
cat >isv_definition_keys <<EOF
%echo Generating registration definition key
Key-Type: RSA
Key-Length: 4096
Subkey-Type: RSA
Subkey-Length: 4096
Name-Real: isv_user
Expire-Date: 0
Passphrase: over-the-lazy-dog

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 311

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-configuration-files-in-hyper-protect-virtual-servers
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-configuration-files-in-hyper-protect-virtual-servers

Do a commit here so that we can Tater print "done" :-)
%commit
%echo done
EOF
gpg -a --batch --generate-key isv_definition_keys
gpg --armor --pinentry-mode=loopback --passphrase ${passphrase}
--export-secret-keys ${keyName} > ${keyName}.private
gpg --armor --export ${keyName} > ${keyName}.pub

The export keyName=isv_user and Name-Real: isv_user must be unique. You cannot
use the same keys to sign multiple images. You should not have multiple keys with the
same username, and you should not have multiple images that are singed with same
key in an SSC.

c. Copy the generated key pair isv_user.pub and isv_user.private to the
$HOME/hpvs/config directory.

4. Build your application by using Secure Build.

Using the Secure Build configuration file (secure_build.ym1.example) and the deployment
of your application by using the YAML file and the hpvs deploy command are explained in
7.2.3, “Using the Secure Build application to build and store an image in a repository” on

page 327.

6.6.6 Setting up the monitoring instance

312

You can monitor various components by using the monitoring infrastructure that is provided
by IBM Hyper Protect Virtual Servers.

Note: The monitoring metrics are collected from SSC partitions. Only the Hyper Protect
hosting appliance and SSC partition level metrics are supported for IBM Hyper Protect
Virtual Servers V1.2.x.

For more information about this collection of metrics, see Metrics collected by the
monitoring infrastructure.

To get an overall understanding of what information that you need to run the offering and
where to get such information, see Appendix A, “Configuration parameters” on page 385.
For more information and a downloadable worksheet, see Planning for the environment.

To set up monitoring, complete the following steps:

1. Create certificate authority (CA) signed certificates for the monitoring infrastructure.
2. Update the virtualserver.template.ym] file.

3. Create and deploy the monitoring instance.

Before you begin, ensure that the following prerequisites are met:

» The IP address of the SSC partition is available.

» Ports 8443 and 25826 are available for the monitoring infrastructure on the SSC partition.

For monitoring, the following containers are created:

» Monitoring
» Collectd-Host

Securing Your Critical Workloads with IBM Hyper Protect Services

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=others-metrics-collected-by-monitoring-infrastructure
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=others-metrics-collected-by-monitoring-infrastructure
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment

Creating CA signed certificates for the monitoring infrastructure

You can generate CA root and CA signed certificates for the monitoring infrastructure by
using the openss1 utility or any other certificate generation tools that comply with your
organization rules.

Tip: If you are new to OpenSSL and CA, make yourself familiar with your environment. A
good starting point is your OpenSSL configuration file at /etc/openss1/openss].cnf.

Complete the following steps:

1. Go to the following directory on your workstation to run the openss1 command or any
similar tool:

cd $HOME/hpvs/config/monitoring/keys/ca-certificates

So, as the root user (used in this procedure), the directory is
/root/hpvs/config/monitoring/keys/ca-certificates.

2. Create CA Root certificates by using the following procedure. The root CA certificate is
used to sign CA certificates.

a. Create the CA root private key. After the command completes, the CA root private key
myrootCA. key is generated under the current directory.

openss] genrsa -out myrootCA.key 4096

b. Create the Certificate Signing Request (CSR) based on the CA root private key. After
the command completes, the CSR myrootCA.csr is generated under the current
directory. The command prompts you to enter values for various certificate fields, such
as Organization Unit (OU), Common Name (CN), Email, Country Code, State/Province
name, City, Organization, or Company Name. Here is an example of our openss]
command:

openss1 req -verbose -new -key myrootCA.key -out myrootCA.csr -sha256
c. Create the CA root certificate by using the following command:

openss] ca -out myrootCA.crt -keyfile myrootCA.key -verbose -selfsign -md
sha256 -infiles myrootCA.csr

d. Validate the CA root certificate by using the following command. After the command
completes, the details of the CA root certificate are printed in the output.

openss1 x509 -noout -text -in myrootCA.crt

3. Create the CSR for the CA signed server certificate and client certificate by completing the
instructions. Generate certificates for the secure communication between the Hyper
Protect monitoring infrastructure (server) and the monitoring client. The monitor client
launches the collectd-exporter endpoint on the server to show the collected metrics.

Note: When you generate certificates, use
collectdhost-<metric-dn-suffix>.<dns-name> or *.<dns-name> as the Common
Name. A wildcard certificate with *.<dns-name> Common Name can be used across
multiple partitions.

a. Create a private key by using the following command. After the command completes, a
private key is created under the current directory.

For a server certificate, use the following command:

openss] genrsa -out server.key 4096

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 313

For a client certificate, use the following command:
openss1 genrsa -out client.key 4096

b. Create a CSR based on the private key that you created. You are prompted to enter
values for various certificate fields, such as OU, CN, Email, Country Code, State or
Province name, City, Organization, or Company Name. After the command completes,
a CSR file is created under the current directory.

To create the server certificate, use the following command:
openss] req -new -key server.key -out server-certificate.csr
To create the client certificate, use the following command:
openss1 req -new -key server.key -out server-certificate.csr
c. Finally, create the CA signed certificates by using the CA root certificate.
To create the CA signed server certificate, use the following command:

openss1 x509 -req -days 365 -in server-certificate.csr -CA myrootCA.crt
-CAkey myrootCA.key -CAcreateserial -out ./server-certificate.crt

To create the CA signed client certificate, use the following command:

openss1 x509 -req -days 365 -in client-certificate.csr -CA myrootCA.crt
-CAkey myrootCA.key -CAcreateserial -out ./client-certificate.crt

d. Copy the certificate and key files for the monitoring infrastructure into the ./keys
directory. The certificates and keys are used by the monitoring infrastructure to encrypt
the metric data in transit.

cp -p server.key /root/hpvs/config/monitoring/keys/server.key

cp -p server.key /root/hpvs/config/monitoring/keys/client.key

cp -p server-certificate.crt
/root/hpvs/config/monitoring/keys/server-certificate.crt

cp -p client-certificate.crt
/root/hpvs/config/monitoring/keys/client-certificate.crt

cp -p myrootCA.crt /root/hpvs/config/monitoring/keys/myrootCA.crt

Creating the YAML configuration files and deploy the monitoring
container

As a best practice, use the hpvs deploy command to provision the instance because it is an
easier method for creating multiple instances quickly. The definitions are stored in .ym1 files.

As an alternative, you can use the hpvs vs create command (not described in this
procedure).

The vs_monitoring.yml file that has the configuration details for the virtual server refers to the
corresponding sections of the virtualserver.template.yml when you run the hpvs deploy
command.

Complete the following steps:

1. Update the template file $HOME/hpvs/config/templates/virtualserver.template.yml
based on the networking configuration of the IBM Hyper Protect Virtual Servers instance.
For more information, see 6.6.1, “Configuring the internal network” on page 300.

2. Create the configuration YAML file demo_monitoring.yml for the instance. Copy the
sample file $HOME/hpvs/config/monitoring/vs monitoring.ymlas a template:

cp vs_monitoring.yml demo_monitoring.ym]

314 Securing Your Critical Workloads with IBM Hyper Protect Services

Change the configuration to meet your environment. Example 6-19 shows our
vs_monitoring.yml file.

Example 6-19 The vs_monitoring.yml file

version: vl
type: virtualserver
virtualservers:
- name: test-monitoring
host: SSC_LPAR_NAME
hostname: monitoring-host-container
repoid: Monitoring
imagetag: 1.2.3
imagefile: Monitoring.tar.gz
imagecache: true
environment:
- key: "PRIVATE_KEY SERVER"
value: "@/root/hpvs/config/monitoring/keys/server.key"
- key: "PUBLIC CERT_SERVER"
value: "@/root/hpvs/config/monitoring/keys/server-certificate.crt"
- key: "PUBLIC CERT CLIENT"
value: "@/root/hpvs/config/monitoring/keys/myrootCA.crt"
- key: "METRIC_DN_SUFFIX"
value: "first"
- key: "COMMON_NAME"
value: "example.com"
ports:
- hostport: 8443
protocol: tcp
containerport: 8443
- hostport: 25826
protocol: udp
containerport: 25826
- name: test-collectd
host: SSC_LPAR_NAME
hostname: collectd-host-container
repoid: CollectdHost
imagetag: 1.2.3
imagefile: CollectdHost.tar.gz
imagecache: true

Because an external IP is not specified for the monitoring container, this container can be
reached by using the SSC partition's IP address over port 8443. If you want to customize
the network, resource, or storage settings, see the parameters and examples of a virtual

server configuration file on IBM Documentation.

. Create the instance by using the configurations in the YAML file:
hpvs deploy --config /root/hpvs/config/monitoring/demo_monitoring.yml

. After the containers are successfully created, you can collect the metrics by using the wget
command or by configuring any one of the tools that show the metrics in a graphical
manner (for example, Prometheus). In this example, we use the wget method to collect the
metrics of the SSC LPAR, as shown in the following example:

wget https://collectdhost-first.example.com:8443/metrics
-ca-certificate=myrootCA.crt --certificate=client-certificate.crt
--private-key=client.key

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 315

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-configuration-files-in-hyper-protect-virtual-servers#vs_configfile_readme_yml

Example 6-20 shows the output of this command.

Example 6-20 Output of the wget command

[root@hurinxa5:keys]# wget https://collectdhost-first.example.com:8443/metrics
-ca-certificate=myrootCA.crt --certificate=client-certificate.crt --private-key=client.key
--2021-05-16 10:12:57-- https://collectdhost-first.example.com:8443/metrics

Resolving collectdhost-first.example.com (collectdhost-first.example.com)... 9.20.6.57
Connecting to collectdhost-first.bell.com (collectdhost-first.example.com)|9.20.6.57|:8443...
connected.

HTTP request sent, awaiting response... 200 OK

Length: 6929 (6.8K) [text/plain]

Saving to: 'metrics'

2021-05-16 10:12:57 (49.8 MB/s) - 'metrics' saved [6929/6929]

For more information about monitoring, see 7.3, “Monitoring” on page 334.

6.6.7 Integrating with Enterprise Public Key Cryptography Standards #11

The GREP11 virtual server supports the Schnorr signature when the IBM Hyper Protect
Virtual Servers is at least Version 1.2.3. The Schnorr algorithm can be used as a signing
scheme to generate digital signatures. It is proposed as an alternative algorithm to the Elliptic
Curve Digital Signature Algorithm (ECDSA) for cryptographic signatures in the Bitcoin
system. The Schnorr signature is known for simplicity and efficiency.

The GREP11 virtual server supports the Ed25519 public-key signature system when
IBM Hyper Protect Virtual Servers is at Version 1.2.2 or later. Ed25519 provides various
advantages, such as fast single and batch-signature verification, signing ability, key
generation, and compact signatures and keys.

The GREP11 virtual server supports BIP32 when IBM Hyper Protect Virtual Servers is at
Version 1.2.2.1 or later. BIP32 defines how to derive the private and public keys of a wallet
from a binary master seed (m) and an ordered set of indexes.

The GREP11 virtual server also supports SLIP-0010 when IBM Hyper Protect Virtual Servers
is at Version 1.2.2.1 or later. SLIP-0010 describes how to derive private and public key pairs
for curve types that are different from secp256k1.

You can connect to your Enterprise Public Key Cryptography Standards (PKCS) #11 (EP11)
instantiation by using a GREP11 container on the SSC patrtition, and then use the Hardware
Security Module (HSM) to perform numerous cryptographic operations, such as generating
asymmetric (public and private) key pairs for digital signing and verification, or generating
symmetric keys for encrypting data as needed by the deployed applications.

Before you begin, complete the following tasks:

» Check with your system administrator to ensure that the Crypto Express domain is
configured in EP11 mode.

» Check with your system administrator to ensure that the master key is initialized.

» Ensure that the IBM Hyper Protect Virtual Servers CLI tools are installed on the x86,
IBM Z, or LinuxONE (such as s390x architecture) management server.

316 Securing Your Critical Workloads with IBM Hyper Protect Services

Note: To get an overall understanding of what information that you need to run the offering
and where to get such information, see Appendix A, “Configuration parameters” on

page 385. For more information and a downloadable worksheet, see Planning for the
environment.

Creating the CA certificate for GREP11 virtual servers

To configure the GREP11 service for your IBM Hyper Protect Virtual Servers container,
create certificates that are used for secure communication. The certificates can be generated
by using one-way Transport Layer Security (TLS) communication or mutual TLS
communication. In our example, we use mutual TLS communication to generate certificates.

To generate CA signed certificates for the GREP11 infrastructure by using the openss1 utility
with root user authority, complete the following steps:
1. Generate the CA key by running the following command:
openss1 genrsa -out ca.key 2048
2. Create the CA certificate by running the following command:
openss] req -new -x509 -key ca.key -days 730 -out ca.pem
3. Generate the Server key by running the following command:
openss1 genrsa -out server-key.pem 2048

4. Export the COMMON_NAME (fully qualified domain name), path length, and Subject Alternative
Name (to indicate all the domain names and IP addresses that are secured by the
certificate) by running the following commands. These values are used to generate the
server certificate.

export COMMON_NAME=grepll.example.com
export PATHLEN=CA:true
export SUBJECT ALT_NAME=DNS:<domain-name:port>,IP:<ip>

For example:
export SUBJECT_ALT_NAME=DNS:grepll.example.com:9876,IP:10.20.6.62
5. Create the openssl.cnf file and copy the content that is shown in Example 6-21.

Example 6-21 An openssl.conf example

OpenSSL configuration file.
#
Establish working directory.

dir =.

[cal
default ca = CA default

[CA default]

serial = $dir/serial

#database = ${ENV::DIR}/index.txt
#new_certs_dir = $dir/newcerts
#private_key = $dir/ca.key
#certificate = $dir/ca.cer
default_days = 730

default md = sha256

preserve = no

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation 317

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment

email_in_dn = no
nameopt = default_ca
certopt = default_ca
default_crl_days = 45
policy = policy match

[policy match]

countryName = match
stateOrProvinceName = optional
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]

default_md = sha256

distinguished_name = req_distinguished_name
prompt yes

[req_distinguished name]
#countryName = Country
#countryName_default = US
#countryName_min = 2
#countryName_max = 2
#localityName = Locality
#localityName_default = Los Angeles
#organizationName = Organization
#organizationName_default = IBM
#commonName = Common Name
#commonName_max = 64

C =1US

ST = California

L = Los Angeles

0 = IBM

CN = ${ENV::COMMON_NAME}

[certauth]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer:always

keyUsage = digitalSignature, keyEncipherment, dataEncipherment, keyCertSign,
CRLSign

keyUsage = digitalSignature, keyEncipherment, dataEncipherment, keyCertSign,
CRLSign

basicConstraints = ${ENV::PATHLEN}

#cri1DistributionPoints = @crl

[server]

basicConstraints = CA:FALSE

keyUsage = digitalSignature, keyEncipherment, dataEncipherment
extendedKeyUsage = serverAuth

nsCertType = server

criDistributionPoints = @crl

subjectAltName = ${ENV::SUBJECT_ALT_NAME}

318 Securing Your Critical Workloads with IBM Hyper Protect Services

[client]

basicConstraints = CA:FALSE

keyUsage = digitalSignature, keyEncipherment, dataEncipherment
extendedKeyUsage = clientAuth,msSmartcardLogin

nsCertType = client

criDistributionPoints = @crl

authorityInfoAccess = @ocsp_section

subjectATtName = @alt_names

[selfSignedServer]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer:always

keyUsage = digitalSignature, keyEncipherment, dataEncipherment
basicConstraints = CA:FALSE

subjectAltName = ${ENV::SUBJECT_ALT_NAME}

extendedKeyUsage = serverAuth

[selfSignedClient]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer:always

keyUsage = digitalSignature, keyEncipherment, dataEncipherment
basicConstraints = CA:FALSE

subjectATtName = @alt_names

extendedKeyUsage = clientAuth

[server_client]

subjectKeyIdentifier = hash

keyUsage = digitalSignature, keyEncipherment, dataEncipherment
basicConstraints = CA:FALSE

subjectAltName = ${ENV::SUBJECT_ALT_NAME}
criDistributionPoints = @crl

extendedKeyUsage = serverAuth,clientAuth

[v3_intermediate_ca]

Extensions for a typical intermediate CA (“man x509v3_config~).
subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer

basicConstraints = critical, ${ENV::PATHLEN}

keyUsage = critical, digitalSignature, cRLSign, keyCertSign
criDistributionPoints = @crl

authorityInfoAccess = @ocsp_section

[crl]
URI=http://localhost/ca.cr]l

[ocsp_section]
OCSP;URI.O = http://localhost:2560/ocsp

[ocsp]

Extension for OCSP signing certificates ("man ocsp™).
basicConstraints = CA:FALSE

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid,issuer

keyUsage = critical, digitalSignature

extendedKeyUsage = critical, O0CSPSigning

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation

319

320

[alt_names]
email= ${ENV::SUBJECT_ALT_NAME}
0therName=msUPN;UTF8:${ENV::SUBJECT_ALT_NAME}

[v3_conf]

keyUsage = digitalSignature, keyEncipherment, dataEncipherment, keyCertSign,
CRLSign

basicConstraints = CA:FALSE

Create the server CSR by running the following command:
openss1 req -new -key server-key.pem -out server.csr
Create the server certificate by running the following command:

openss1l x509 -sha256 -req -in server.csr -CA ca.pem -CAkey ca.key -set serial
8086 -extfile openssl.cnf -extensions server -days 730 -outform PEM -out
server.pem

Create the client key by running the following command:
openss] genrsa -out client-key.pem 2048
Create the client CSR by running the following command:

openss1 req -new -key client-key.pem -out client.csr

10.Create the client certificate by running the following command:

11

openss1 x509 -req -days 730 -in client.csr -CA ca.pem -CAcreateserial -CAkey
ca.key -out client.pem

.Copy the keys to the <§HOME/hpvs>/config/grepll/keys directory on your management

server by running the following commands:

cp -p server.pem /root/hpvs>/config/grepll/keys/
cp -p server-key.pem /root/hpvs>/config/grepll/keys/
cp -p ca.pem /root/hpvs>/config/grepll/keys/

Creating the GREP11 container by using a YAML configuration file
Complete the following commands:

1.

Check the available crypto domains on the HSM by using the hpvs crypto Tist
command:

root@rdbkhpvm# hpvs crypto Tist
Here is the output of the command:

Fomm = e ki +
| CRYPTODOMAIN | STATUS |
Fomm = e ki +
01.001f	online
03.0020	online
05.001f	online
06.001e	online
Fomm = e ki +

Securing Your Critical Workloads with IBM Hyper Protect Services

2. Update the template file $HOME/hpvs/config/templates/virtualserver.template.yml

based on the networking configuration of the IBM Hyper Protect Virtual Servers instance if
necessary. For more information, see 6.6.1, “Configuring the internal network” on

page 300.

3. Create the configuration YAML file $HOME/hpvs/config/grepll/demo_grepll.yml for the
instance by copying the example file $HOME/hpvs/config/grepll/vs_grepll.yml:

cp vs_grepll.yml demo_grepll.yml

Change the configuration to suit your environment. Example 6-19 on page 315 shows our

vs_grepll.yml file.

Example 6-22 Sample vs_grep11.yml file

version: vl

type: virtualserver

virtualservers:

- name: test-grepll

host: SSC_LPAR_NAME
repoid: hpcsKpGrepll rung
imagetag: 1.2.3
hostname: grepll.example.com
imagefile: hpcsKpGrepll rung.tar.gz
imagecache: true
crypto:
crypto_matrix:
- 01.001f
networks:
- ref: external_network
ipaddress: 10.20.4.12
environment:
- key: EP11SERVER_EP11CRYPTO_DOMAIN
value: "01.001f"
- key: EP11SERVER_EP11CRYPTO_CONNECTION_TLS_CERTFILEBYTES
value: "@/root/hpvs/config/grepll/keys/server.pem"
- key: EP11SERVER_EP11CRYPTO_CONNECTION_TLS_KEYFILEBYTES
value: "@/root/hpvs/config/grepll/keys/server-key.pem"
- key: EP11SERVER_EP11CRYPTO_CONNECTION_TLS_CACERTBYTES
value: "@/root/hpvs/config/grepll/keys/ca.pem"
- key: EP11SERVER_EP11CRYPTO_CONNECTION_TLS_ENABLED
value: "true"
- key: EP11SERVER_EP11CRYPTO_CONNECTION_TLS_MUTUAL
value: "true"
- key: TLS_GRPC_CERTS_DOMAIN_CRT
value: "\\n"
- key: TLS_GRPC_CERTS_DOMAIN_KEY
value: "\\n"
- key: TLS_GRPC_CERTS_ROOTCA_CRT
value: "\\n"

4. Create the instance by using the configuration in the YAML file and running the following

command:

hpvs deploy --config $HOME/hpvs/config/grepll/demo_grepll.yml

Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation

321

You can update your application to use the asymmetric key pairs that are provided by the
GREP11 containers. For more information about how to verify whether the GREP11 virtual
server is working as expected, see Testing the GREP11 virtual server.

For more information about to use the APIs, see 2.5.2, “How to use the IBM Enterprise PKCS
#11 over gRPC API” on page 182.

6.7 Public Cloud service instantiation

The IBM Hyper Protect Virtual Servers service is also available in IBM Cloud, as described in
4.4, “Public cloud service instantiation” on page 242.

322 Securing Your Critical Workloads with IBM Hyper Protect Services

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=servers-testing-grep11-virtual-server

IBM Hyper Protect Virtual
Servers key features

In this chapter, we describe the key features of IBM Hyper Protect Virtual Servers, and for
each feature, explain step by step how to enable and start using that feature.

This chapter includes the following topics:

» User roles in IBM Hyper Protect Virtual Servers

» Trusted Continuous Integration and Continuous Delivery: Building and deploying
containers securely

» Monitoring
» Enterprise Public Key Cryptography Standards #11 over gRPC
» Bring Your Own Image (deploying your applications securely)

© Copyright IBM Corp. 2020, 2022. All rights reserved. 323

7.1 User roles in IBM Hyper Protect Virtual Servers

In this section, we describe the different roles and responsibilities that are involved in the
administration of an IBM Hyper Protect Virtual Servers cloud platform. We also describe how
this separation of user roles and limiting of the permissions of each role achieves a
heightened level of security for critical workloads in the public cloud and the private cloud.

In a typical cloud platform, public or private, user roles that have low-level administrative
permissions to access the infrastructure underlying the cloud typically can access the
containers that are running in the cloud, the workloads that are running in those containers,
and the data those containers use. Even if the administrators secure the cloud from threats
from outside the organization, a threat exists from persons inside the organization who hold
administrative user roles, tamper with the workloads that are running on the cloud, or steal
data or secrets that the cloud stores.

The IBM Hyper Protect Virtual Servers feature has many administrator roles, each with their
own responsibilities. A best practice is that a different person in the organization holds each of
the following user roles to prevent one person from having administrative access to too many
of the resources in the cloud:

» IBM Z and LinuxONE System Administrator

Creates and manages logical partitions (LPARs). They are responsible for the low-level
provisioning and management of the IBM Z mainframe or IBM LinuxONE server systems.

» Appliance Manager

Deploys and manages the Secure Service Container (SSC) application that allows the
dynamic provisioning of network, storage, and container resources onto which the LPAR
on the Appliance Manager installs SSC. An Application Manager can build a secure cloud
on the LPAR by using the SCC application.

» Application Manager

Deploys containerized applications onto the LPAR that is running an SSC application
(SSC LPAR).

» Application Builder
Builds and validates containerized applications to run on the SSC LPAR.
» Application Developer

Writes containerized applications that the Application Builder builds, and the Application
Manager deploys to the SSC LPAR.

» Application User

Interacts with the containerized applications or virtual servers that are deployed on the
SSC LPAR.

» Independent software vendor (ISV)

Creates and distributes applications to for Application Managers from different businesses
or organizations to run on their private cloud. In IBM Hyper Protect Virtual Servers, the
ISV creates containerized applications to run on the SSC LPARs that the ISV’s customers
create.

324 Securing Your Critical Workloads with IBM Hyper Protect Services

The Appliance Manager, Application Manager, and the LinuxONE system administrator
cannot access the containerized applications or the data those applications use when the
containers run inside an SSC LPAR. Therefore, a cloud for your critical workloads that uses
IBM Hyper Protect Virtual Servers, which uses the SSC technology along with advanced
security features that are native to the IBM Z platform, such as encryption of data at rest and
in-flight, is secure from insider threats.

IBM Cloud Hyper Protect Virtual Servers uses the same SSC technology to protect your
critical workloads that are running in the IBM public cloud. Therefore, IBM Service Engineers
who act as the Application Manager, Appliance Manager, and LinuxONE system
administrator roles cannot access an IBM Cloud Hyper Protect Virtual Servers instance.
Those IBM administrators also cannot access the data and secrets that are associated with
an instance.

Access to containers and the data that the containers use is possible only by using private
credentials (such as a Secure Shell (SSH) private key or authentication token) that only the
Application User knows and can access. A typical use case for interaction with an IBM Hyper
Protect Virtual Servers container is to restrict the methods by which an Application User can
interact with the container to only the end points of that containerized application’s REST
application programming interface (API). This restriction further reduces the attack surface of
the container because it does not include general-purpose access by using SSH or a similar
interface. This best practice is for designing containerized applications that run on IBM Hyper
Protect Virtual Servers.

7.2 Trusted Continuous Integration and Continuous Delivery:
Building and deploying containers securely

In this section, we describe how, for on-premises installations, IBM Hyper Protect Virtual
Servers enables a heightened level of security and traceability in your Continuous Integration
and Continuous Delivery (CI/CD) pipeline through the IBM Hyper Protect Virtual Servers
Trusted CI/CD infrastructure. By using an example, we also demonstrate how to use this
infrastructure to build an application image, sign it, and push it to a trusted repository in a
container registry.

7.2.1 Importance of establishing a trusted CI/CD pipeline

An organization that wants to build a highly secure cloud to run critical workloads requires a
solution where only trusted images can run on the secure cloud. Allowing any workload to run
on the cloud introduces exploitable vulnerabilities, including the following examples:

» The Application Manager can create an instance of an insecure application from an image
in a public container registry. Public registries, such as Docker Hub, contain many
unofficial repositories that include widely varying standards of quality that an image must
meet before a developer can push an image to that repository. For example, a particular
repository can allow developers to push an image to it even if that image has known
vulnerabilities.

Allowing the Application Manager to deploy a container from any public repository means
that the Application Manager can deploy images with vulnerabilities into your cloud.

» An Application Developer can build a malicious image and upload it to a repository that an
Application Manager decided to trust. The Application Developer understands the image
build pipeline and can use that knowledge to build an image with a vulnerability that the
build pipeline does not detect.

Chapter 7. IBM Hyper Protect Virtual Servers key features 325

An Application Manager must audit how the Application Builder built an image and what
source code the Application Builder used to build it before deploying the image.

» A bad actor can tamper with an Application Builder’s build environment or the CI/CD

pipeline. This tampering results in the Application Builder unintentionally building and
uploading a compromised image to the repository. This process can happen if a user with
lower-level administrative role, such as the Appliance Manager, can access the container
or virtual machine (VM) that is building the image.

The result of this tampering is that the build process pushes an image to your trusted
repository, which is not the same as the image Application Builder thinks they built.

The Trusted CI/CD feature of IBM Hyper Protect Virtual Servers establishes trust, security,
and provenance at every step of the image deployment process (build, storage, and
instantiation) to avoid introducing these attack vectors into your build process. It prevents you
from introducing compromised containers into your cloud.

7.2.2 Trusted CI/CD pipeline architecture

326

In this section, we describe the pipeline that creates trusted images that an Application
Manager can deploy as IBM Hyper Protect Virtual Servers container instances.

The Application Manager creates one instance of the Secure Build application, an IBM Hyper
Protect Virtual Servers container, on the SSC LPAR for each image the Application Builder
wants to build. The IBM Hyper Protect Virtual Servers software package includes the Secure
Build container image. The Application Manager loads this image onto the SSC LPAR during
installation. For more information about the process for loading this image onto the SSC
LPAR and creating an instance of a Secure Build container, see 6.6.5, “Setting up the Secure
Build container” on page 309.

A Secure Build instance reviews the source code for a containerized application from GitHub
and builds the application image by using Docker. Because the Secure Build instance runs in
the SSC LPAR, administrative users cannot access the Secure Build instance and they
cannot tamper with the image build process.

Each Secure Build instance must push the image that it builds to a separate repository. An
Application Builder cannot reconfigure a Secure Build instance to make it push images to a
different repository after the Secure Build image pushes an image to its associated repository.

Also, a new Secure Build instance cannot push an image to a repository that is associated
with a different Secure Build instance. This feature ensures that only one build machine can
push images to a particular repository, which ensures the provenance of the images in that
repository.

The Secure Build instance also generates a signed manifest file whenever it completes a
build. The manifest file can be used to audit what source code of the Secure Build instance is
used during the build that generated the manifest file and how it built the image.

After a Secure Build instance pushes an image to a repository, the Application Manager
cannot deploy that image immediately. The Application Manager must first register the
repository on the SSC before deploying images from it by using a registration file that the
Application Builder or ISV signed and encrypted.

Securing Your Critical Workloads with IBM Hyper Protect Services

7.2.3 Using the Secure Build application to build and store an image in a

repository

In this section, we describe the steps to build an application image and push it to a repository
by using an instance of the Secure Build application. The Application Builder must run this
procedure.

The Application Builder needs one uninitialized Secure Build instance running on the SSC
LPAR to complete these steps. For more information about how to set up a Secure Build
Container, see 6.6.5, “Setting up the Secure Build container” on page 309.

For more information about creating an uninitialized Secure Build instance, see Chapter 6,
“IBM Hyper Protect Virtual Servers on-premises installation” on page 271.

Additionally, the Application Builder needs the following items to build an application image
and push it to a repository:

» The IP address and port that the Application Manager assigned to the new Secure Build
instance.

» An account on GitHub, where you must add your SSH public key. For more information
about how to generate a public and private SSH key pair and add the public key from the
key pair to your GitHub account, see Generating a new SSH key and adding it to the
ssh-agent.

» An account on a supported container registry service (Docker Hub or IBM Cloud
Container Registry) that can pull and push images to a repository in that container registry.

» A workstation or server to use as your management server. For more information about
the prerequisites, see 6.1, “Planning and prerequisites for IBM Hyper Protect Virtual
Servers on-premises” on page 272.

In IBM Hyper Protect Virtual Servers V1.2.3, installing the HPVS base image requires the
command-line interface (CLI) tool to manage different containers, such as Secure Build
Container.

The rest of this example involves building a containerized application that is based on the
Disaster Donations Website code pattern. The GitHub repository for this book (see
Appendix B, “Additional material” on page 393) links to the Disaster Donations Website
repository. For more information about finding the code pattern, click
IBM/disaster-donations-website at GitHub.

To build the application by using Secure Build, complete the following steps to define the
configuration of your Secure Build instance for building the Disaster Donations Website code
pattern images:

1. Create the Secure Build configuration file securebuild.yml. This file contains the
configuration information that defines the Secure Build instances that run on your LPAR.
You can use the $HOME/hpvs/config/securebuild/secure build.yml.example file as a
reference when updating the file.

cp secure_build.yml.example securebuild.yml
2. Update the YAML file based on your configuration. Example 7-1 shows an example of the
securebuild.yml file.

Example 7-1 The securebuild.yml file

secure_build workers:
sbs:
url: 'https://9.76.61.105'

Chapter 7. IBM Hyper Protect Virtual Servers key features 327

https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://github.com/IBM/disaster-donations-website
https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

<url of the Secure Build service. for example, https://9.76.61.105>
port: '443'
cert_path: '/root/hpvs/config/securebuild/keys/sbs_cert'
<complete path of certificate. >
key path: '/root/hpvs/config/securebuild/keys/sbs_key'
<complete path of key.>
regfile:
id: 'RB_regfile'
github:
url: 'git@github.com:MyOrg/my-docker-app.git'
branch: 'master'
ssh_private_key path: '/root/github/github.rsa’
<complete path of key github private key.
recurse_submodules: 'False’
dockerfile_path: './Dockerfile'
docker_build_path: 'docker_base_user/My DockerAPP'
<Enter the path to the subdirectory within the Github project to be used as
the build context for the Docker build>
docker:
push_server: 'docker'
<get this from hpvs registry Tist. for example, docker_push>
base_server: 'docker'
<get this from hpvs registry Tist. for example, docker_base>
pull_server: 'docker'
<get this from hpvs registry Tist. for example, docker_pull>
repo: 'docker_user_name/docker_image_name'
image_tag_prefix: 'latest'
content_trust_base: 'True'
manifest_cos:
bucket _name: 'my-cos-bucket1’
<Enter the bucket name on the S3 object store where manifest files will be
transferred to after each build>
api_key: 'OviPH...kliJ"'
<Enter the API key used to authenticate with the S3 object store>
resource_crn: ‘crn:vi..:t!
<Enter the resource instance ID for the S3 object store>
auth_endpoint: 'iam.cloud.ibm.com'
<Enter the authentication endpoint for the S3 object store>
endpoint: 's3.....cloud'
<Enter the endpoint for the S3 object store>
Add all allowlist environment variables that are required in your virtual
server. If you try to create a virtual server with environment variables that
are not added to the allowlist, then creating the virtual server fails. This is
an optional parameter and if you do not have any environment variable for the
virtual server, you can comment this parameter.
env:
whitelist: [KEY1,KEY2]
build:
args:
<ARG1>: '<valuel>'
<ARG2>: '<value2>'
signing_key:
private_key path: '/root/hpvs/isv_user.private'
<Enter the absolute private key path.
public_key path: '/root/hpvs/isv_user.pub'

328 Securing Your Critical Workloads with IBM Hyper Protect Services

<Enter the absolute public key path.

#Add linux capabilities to Hyper Protect Virtual Server. List of linux # # #
#capabilities are available here
#https://man7.org/linux/man-pages/man7/capabilities.7.html.

A1l the capabilities that are listed are supported except "CAP_PERFMON",
"CAP_BPF", and CAP_CHECKPOINT_RESTORE".

While adding capabilities remove the prefix "CAP".

For example, CAP_AUDIT_CONTROL will be AUDIT_CONTROL cap_add: ["ALL"]

For example, ["NET_ADMIN","NET_RAW"], or ["ALL"]

Notes:

>

If the base image in the Dockerfile is not signed, then the base_server parameter is
not required and content_trust_base must be False.

If you want to specify a non-default SSH port, then you can add the value of the port
that you want to use in the GitHub URL parameter, as shown in Example 7-1, when
IBM Hyper Protect Virtual Servers is at Version 1.2.3 or later. When no port is
specified, the GitHub URL can be specified as
"git@github.com:MyOrg/my-docker-app.git".

The cap_add: [] parameter is applicable for IBM Hyper Protect Virtual Servers
V1.2.3 or later. To enable all privileges, you can use cap_add: ["ALL"], but as a best
practice, provide the least possible privileges to your virtual server.

Build parameters (build args) are used to give more information that might be
required for the specific application that you want to run on the virtual server.

You must provide a valid GitHub URL and ensure that you use a .git extension
when specifying the URL.

As a best practice, choose an endpoint URL that is in the same region as your
service or application, and specify this URL as the value for the endpoint parameter
in the manifest_cos section of the secure_build.yml file. For more information
about identifying the endpoint URL, see Endpoints and storage locations.

For a full list of supported parameters in the configuration file, see Secure Build configuration.

To configure an IBM Cloud Object Storage service to archive the application manifest files of
your applications that are built by your Secure Build container, ensure that you have the
following information about your IBM Cloud Object Storage available:

The API key to the IBM Cloud Object Storage service
The object storage bucket to store the manifest

>

>

>

The resource instance name of the IBM Cloud Object Storage service

The authentication endpoint for the IBM Cloud Object Storage service

The endpoint for the IBM Cloud Object Storage service

Chapter 7. IBM Hyper Protect Virtual Servers key features 329

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-configuration-files-in-hyper-protect-virtual-servers#secure-build-configuration
https://cloud.ibm.com/catalog/services/cloud-object-storage
https://cloud.ibm.com/docs/cloud-object-storage?topic=cloud-object-storage-endpoints

Table 7-1 lists the important parameters of the securebuild.yaml configuration file and the
values that you must set those parameters to build the images for the back-end and front-end
services for the Disaster Donations Website.

Table 7-1 Parameters in the securebuild.yaml configuration file

instance pushes the image to which it
builds.

You cannot change this value after
you initialize a Secure Build
container.

Category Name Description Example value
SBS url URL of the Secure Build Service. https://10.20.4.67
port The port that the Secure Build Obtain this value from your Application
instance’s REST API is accessible Manager. The value is 443 if the Secure Build
on. instance has its own dedicated IP address.
cert_path Complete path of the certificate. /root/hpvs/config/securebuild/keys/shs_c
ert
key_path Complete path of the key. /root/hpvs/config/securebuild/keys/sbs_k
ey
GitHub url GitHub SSH URL of the GitHub git@github.com:IBM/disaster-donations-we
repository from which you are bsite.git
building.
branch Branch of the GitHub projectto check | master
out and build from.
ssh_private | Complete path of the GitHub private | /home/itso/github/github_rsa
_key_path key.
docker_buil | Path to the directory in the GitHub frontend/
d_path repository to use as the build context | (If building the front-end image)
when building the image. backend/
(If building the back-end image)
key Private key for the public key thatis | (You must add your own GitHub private key
associated with your GitHub account. | here.)
The Secure Build instance uses this
key to clone the GitHub repository.
Docker repo Repository that the Secure Build mynamespace/ddwbackend

or
mynamespace/ddwfrontend

push_server

Container registry to which the
Secure Build Server (SBS) pushes
the image that it builds.

us.icr.io

base_server

Container registry from which the
Secure Build instance pulls the base
image.

docker.io

pull_server

Container registry to which the SBS
pulls down the image it builds.

itsorepo

docker_cont
ent_trust_b
ase

True or false value that controls
whether the SBS can build images
only where Docker Content Trust
(DCT) signed the image’s base
image.

False

330 Securing Your Critical Workloads with IBM Hyper Protect Services

Category Name Description Example value
Env whitelist Allowlist of environment variables For the back-end image:
that an Application Manager can PASSWORD, USERNAME,,
pass into an instance of an image DBNAME, ENDPOINT,
when its container starts. REPLICASET
Not required for the front-end image.
signing_key private_key | The absolute private key path. /root/hpvs/config/isv_user.private
_path
public_key_ | The absolute public key path. /root/hpvs/config/isv_user.pub
path

You can use the example values that are provided in Table 7-1 on page 330 to build a
Node.js front end and a Python back end for the Disaster Donations Website application.

You must add your own GitHub private key, container registry credentials, and your Secure
Build instance port and IP address to securebuild.yaml for each Secure Build instance
that you want to create.

You can define multiple Secure Build configurations in securebuild.yaml. For example,
you can define one configuration to build the front-end image, and one configuration to
build the back-end image. If you have two Secure Build instances that are available, you
can initialize one Secure Build instance with the configuration to build the front end, and
the other Secure Build instance with the configuration to build the back end.

. Build your application and upload the application manifest file to IBM Cloud Object
Storage by using Secure Build. You can choose either of the following options:

a. Use one command to perform all the Secure Build actions including initializing,
building, and generating the encrypted repository registration file. This option is a best
practice if you are building the application by using the Secure Build for the first time.

hpvs sb init --config $HOME/hpvs/config/securebuild/secure_build.yml.example
--out $HOME/hpvs/config/MyDockerAppImageRegfile.enc --build

b. Use individual commands to perform each step of building the application by using the
Secure Build virtual server. This option is a best practice if you plan to build the
application by using the Secure Build multiple times. In this scenario, you can run the
hpvs sb build command for subsequent builds.

hpvs sb build --config
$HOME/hpvs/config/securebuild/secure_build.yml.example

hpvs sb regfile --config
$HOME/hpvs/config/securebuild/secure_build.yml.example --out
$HOME/hpvs/config/MyDockerAppImageRegfile.enc

You can log in to your cloud account and check that the application manifest file was
transferred to its bucket in your IBM Cloud Object Storage service after the commands
complete.

You can use the hpvs sb manifest command to download the manifest file of the Secure
Build:

hpvs sb manifest --config
$HOME/hpvs/config/securebuild/secure_build.yml.example --name <build_name>

Chapter 7. IBM Hyper Protect Virtual Servers key features 331

You can get the <build_name> by using the hpvs sb status command after the build
completes. When the command completes, the manifest file is downloaded to the current
directory from which the hpvs sb manifest command was run. To verify the signature of the
manifest file, see Verifying the signature of the manifest file.

Note:

» If the hpvs sb init, hpvs sb build, or hpvs sb regfile commands fail for any
reason, for example, if you specified incorrect parameters, then you can use the
hpvs sb update command to update the configuration of the Secure Build
configuration and rerun the commands with the updated configuration. The
regfile[id] and docker[repo] parameters cannot be updated by using this
command.

» You can use the hpvs sb Tog command to view the runtime logs of the Secure Build
process, or for troubleshooting or debugging. The logs are available when you run
the hpvs sb init, hpvs sb build, or hpvs sb regfile commands.

» You can use the hpvs sb status command to view the status of the last Secure
Build process.

» You can use the hpvs sb clean command to clean the logs of the Secure Build
process. Build artifacts from the earlier builds are deleted.

» For more information about the Secure Build commands, see hpvs sb.

4. You can select from the following options to deploy the application:

— Deploy the application by using the YAML configuration file and hpvs deploy
command:

i. Create the configuration YAML file $HOME/hpvs/config/demo_app.yml for the
instance by referring to the example file
$HOME/hpvs/config/vs_regfiledeployexample.yml, which is shown in
Example 7-2.

Example 7-2 The vs_regfiledeployexample.yml file

version: vl

type: virtualserver

virtualservers:

- name: testcontainer
host: SSC_LPAR_NAME
repoid: MyDockerRepo
imagetag: Tatest
reporegfile: /HOME/hpvs/config/MyDockerAppImageRegfile.enc
imagecache: true
resourcedefinition:

ref: small
networks:

- ref: external_network
ipaddress: 10.20.4.61

volumes:

- name: myquotagroup
ref : np-medium
mounts:

- mount_id: new
mountpoint: /new
filesystem: ext4

332 Securing Your Critical Workloads with IBM Hyper Protect Services

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-commands-in-hyper-protect-virtual-servers
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-commands-in-hyper-protect-virtual-servers
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=later-verifying-signature-manifest-file
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-commands-in-hyper-protect-virtual-servers#hpvs-sb

size: 10GB

ii. Deploy the image by using the configuration in the YAML file and the following
command:

hpvs deploy --config $HOME/hpvs/config/demo_app.yml

Note:

» You can use the hpvs undeploy command to delete this virtual server. This
command is supported in IBM Hyper Protect Virtual Servers V1.2.2, or later.

» You can update the resources or configuration of a virtual server after the
completion of the deployment operation by using the -u (--update) flag of the
hpvs deploy command.

— Deploy the application by using the hpvs vs create command:

i. Register the repository on the SSC partition for the application image by using the
generated repository registration file:

hpvs repository register
--pgp=$HOME/hpvs/config/MyDockerAppImageRegfile.enc --id=MyDockerRepo

ii. Create the quotagroup of the application image on the SSC partition:
hpvs quotagroup create --name myquotagroup --size=30GB

If you create a non-pass through quotagroup for the Secure Build virtual server, as a
best practice, ensure that 20% of disk space is always available to address any 1/0O
errors.

ii. Deploy the application image into the IBM Hyper Protect Virtual Servers as an
IBM Hyper Protect Virtual Servers instance:

hpvs vs create --name testcontainer --repo MyDockerRepo --tag latest

--cpu 2 --ram 2048 --env={env_varl=valuel,env_var2=value2} --quotagroup
"{quotagroup = myquotagroup, mountid = new, mount = /newroot, filesystem
= btrfs, size = 25GB}" --network "{name = external_net,ip = 10.20.4.73}"

7.2.4 Building an image from a trusted base image

Building your image by using the Secure Build builds trust into the parts of the image build
process under your direct control. Most Application Builders build images from a base image
rather than building the image from scratch. Therefore, control over part of the image build
process (the part that builds the base image) is under control of a different person or entity.

Building an image from a base image introduces a possible attack vector because the
Application Builder does not have control over who builds the base image and how the base
image builder does so. Therefore, it is possible that the base image build was tampered with,
or a base image builder knowingly pushed a version of the base image with a known
vulnerability to the base image’s repository.

The mitigation for this attack vector is to build only your images to run as IBM Hyper Protect
Virtual Servers from a base image that the base image builder also built by using the Trusted
CI/CD process.

IBM provides two base images that IBM built by using the Trusted CI/CD and validated that
they passed the IBM quality assurance and security testing process for images that are
designed for IBM Hyper Protect Virtual Servers. You can use these images as trusted base
images for building your own images to run on IBM Hyper Protect Virtual Servers.

Chapter 7. IBM Hyper Protect Virtual Servers key features 333

IBM distributes a trusted base image that includes SSH that you can use to build your
development images, and an image without SSH that you can use to build a locked-down
production image for your production environments.

For more information about these base images, see 6.6.5, “Setting up the Secure Build
container” on page 309.

7.3 Monitoring

In this section, we describe how to deploy a monitoring service onto your SSC LPAR to
monitor the containers that are running on the SSC LPAR. This service enables you to
monitor the status and health of your SSC LPAR.

7.3.1 Deploying a monitoring container

The Application Manager must run this procedure.

To deploy the IBM Hyper Protect Virtual Servers’ monitoring service and connect a metrics
viewing service to it, you must create CA signed certificates for the monitoring infrastructure,
update the virtualserver.template.yml file, and create and deploy the monitoring instance.

For more information about how to deploy the monitoring service, see 6.6.6, “Setting up the
monitoring instance” on page 312.

Consider the following points:

» A monitoring service consists of two containers: A monitoring container that is called
monitoring-host-containerinthe vs _monitoring.yaml file, and a collectd container
that is called collectd-host-container in the vs_monitoring.yaml file.

» To complete the vs_monitoring.yaml configuration file, you must define the container
templates for these two containers under the virtualservers: subsection. Table 7-2 lists
the important parameters for these two container templates along with example values.

Table 7-2 Parameters for the monitoring-host and the collectd-host containers

Container template
name

Container template
parameter

Parameter description

Example value

monitoring-host

private-key-server

Path to the private key to use

with the monitoring container.

@/root/hpvs/config/monitoring
/keys/server.key

public-cert-server

Path to the public server
certificate to use with the
monitoring container.

@/root/hpvs/config/monitoring
/keys/server-certificate.crt

public-cert-client

Path to the public client
certificate to use with the
monitoring container.

@/root/hpvs/config/monitoring
/keys/myrootCA.crt

metric_dn_suffix

Domain suffix for the
monitoring service.

first

common_name

DNS name for the monitoring
service.

example.com

334 Securing Your Critical Workloads with IBM Hyper Protect Services

Container template
name

Container template
parameter

Parameter description

Example value

collectd-host

Name of the collectd host
container.

collectd-host-container

monitoring-host

Name of the monitoring host

monitoring-host-container

container.

7.3.2 Viewing the metrics from the monitoring service

The monitoring service must send the metrics that it collects to a separate service that makes
the metrics viewable. The preferred software to use with the IBM Hyper Protect Virtual
Servers monitoring service is Prometheus.

You can download the Prometheus software package at Prometheus Downloads.

In the unpackaged file, a YAML file, prometheus.yml, is included that contains the
configuration settings that the Prometheus executable file uses when it runs.

Table 7-3 lists the parameters in the prometheus.yml file that you must set to make the
Prometheus service connect to the monitoring service that is running on your SSC LPAR.
This example assumes that you copied the server certificate (server-certificate.crt), the
client certificate (c1ient-certificate.crt), and the client private key (client.key) to the
directory on your management server that contains the Prometheus executable file and the
prometheus.yml configuration file. In the following example, this directory is
/opt/hpvs/prom/prometheus-2.27.1.1inux-s390x.

Table 7-3 Parameters in the prometheus.yml file that you must configure

Category Name Example Value
global:tls_config ca_file /opt/hpvs/prom/prometheus-2.27.1.1inux-s39
Ox/server-certificate.crt
cert_file /opt/hpvs/prom/prometheus-2.27.1.7Tinux-s39
Ox/client-certificate.crt
key_file /opt/hpvs/prom/prometheus-2.27.1.7inux-s39
0x/client.key
server_name collectd-host-container
global:static_configs targets collectd-host-container:8443 (array)

In Table 7-3 for the example parameters, the value of the targets must be an array with a
single element, collectd-host-container:8443. For example:

targets: ['collectd-host-container:8443']
To start Prometheus and connect it to the monitoring service that you deployed onto your

SSC LPAR so that you can view the metrics that the monitoring service collects, complete the
following steps:

1. Download the Prometheus software package to your management server.
2. On your management server, extract the Prometheus software package file.

Chapter 7. IBM Hyper Protect Virtual Servers key features 335

https://prometheus.io/download/

3. Replace the parameters in the prometheus.yml file with the parameters for your monitoring
service, including the paths to your server certificate, client certificate, and client key that

you use with your monitoring service.

4. Run the Prometheus executable file prometheus:

./prometheus --config.file=prometheus.yml

5. Open a web browser.

6. Browse to http://MANAGEMENT_SERVER_IP:9090/graph to view the Prometheus web GUI.

7. To view the data for a metric that the monitoring service collects, complete the following

steps:

a. Select the Graph tab (listed as #1 in Figure 7-1).

b. Select the metric that you want to view from the drop-down list next to the Execute

button (listed as #2 in Figure 7-1).

c. Click Execute (listed as #3 in Figure 7-1).

Prometheus Alerts Graph Status ¥ Help

O Enable query history

collectd_cpu_percent

1. Select the tab ‘Graph’
2. Select the metric to view from the drop down list
3. Select Execute

Add Graph

O stacked

Figure 7-1 Prometheus: Selecting a metric

336 Securing Your Critical Workloads with IBM Hyper Protect Services

Figure 7-2 shows an example of a graph that Prometheus can display for one of the metrics
(collectd_load_shortterm) that the monitoring service collects.

Prometheus Alerts Graph Status ~ Help

O Enable query history Try experimental React Ul

Load time: 509m:
collectd_load_shortterm Resolution: 14s

Y. Total time series:
collectd_load_shortterm ¢

Graph Console

= 1h + « » O stacked

1 A e N

® collectd_load_shortterm{exported_instance="monitoring-host-container,instance="collectdhost-first bell.com:8443" job="prometheus",load="relative"}

collectd_load_shorttermfexported_instance="collectd-host-container",instance="collectdhost-first bell.com:8443" job="prometheus" load="relative"}

Remove Grapl

Figure 7-2 Prometheus: Monitoring load

7.4 Enterprise Public Key Cryptography Standards #11 over
gRPC

In this section, we describe the requirements for deploying an IBM Hyper Protect Virtual
Servers GREP11 service. This service enables you to use the IBM Z or IBM LinuxONE
server’s Hardware Security Module (HSM) to generate secrets, such as public and private key
pairs, and store the private part of the secret securely in the HSM.

A GREP11 container is a microservice that runs on your SSC LPAR that provides an
Enterprise Public Key Cryptography Standards (PKCS) #11 over gRPC (GREP11) API that
enables you to call the cryptographic functions on the HSM from other microservices or
applications, including from a virtual server that is running on your SSC LPAR. You can use
the HSM cryptographic functions to encrypt and decrypt data, calculate the digest (hash
value) of data, and sign and verify data. The HSM securely stores the private keys that the
cryptographic operations use without exposing the private keys to system administrators.

Note: Two crypto domains across two crypto express cards are recommended for
production environments for high availability (HA) purposes.

7.4.1 Deploying a GREP11 container

Client programs or services authenticate with a GREP11 service by using one-way
authentication over Transport Layer Security (TLS) or mutual authentication over TLS. This
method is different from the method a client uses to authenticate with a Hyper Protect Crypto
Services instance, which uses your IBM Cloud API key and an IBM Cloud Identity and Access
Management (IAM) endpoint for authentication.

Chapter 7. IBM Hyper Protect Virtual Servers key features 337

For your client applications to authenticate with your GREP11 container, you must generate a
set of certificates and private keys. Which and what type of certificates and private keys you
generate depends on the authentication method that you choose to use:

» If you use one-way authentication over TLS, you must generate a self-signed certificate
and private key, which the client application and GREP11 service use.

» If you use mutual authentication over TLS, you must generate a certificate authority (CA)
certificate and private key. Then, use the CA certificate to generate a server certificate and
private key pair, which you pass into the GREP11 container when you create it, and a
client certificate and private key pair, which the client application uses.

For more information about GREP11 container deployment including CA certificate creation,
see 6.6.7, “Integrating with Enterprise Public Key Cryptography Standards #11” on page 316.

7.4.2 Adding GREP11 functions into your applications

This GitHub repository provides a source code example for using the GREP11 API that the
GREP11 container provides. This book uses the examples for the Golang programming
language. You can reuse code from these examples to add GREP11 functions to your own
applications.

To authenticate with an IBM Hyper Protect Virtual Servers GREP11 service, use your client
certificate if you use one-way authentication over TLS. If you use mutual authentication over
TLS, use the CA certificate and your client private key. The following example explains how to
run the suite of tests the Golang examples in the ibm-cloud-hyperprotectcrypto repository
provide against a gREP11 container by using mutual authentication over TLS:

1. Install Golang on your management server. You can download Golang from
https://go.dev/.

Check and make a note of your GOPATH directory by running the go env command.
Create the src/github.com/ibm-developer/ subdirectory in your GOPATH directory.
Browse to the ibm-developer/ subdirectory in the directories that you created.

ok~ 0D

Clone the repository
https://github.com/mattarnoatibm/ibm-cloud-hyperprotectcrypto in to the
ibm-developer/ directory.

6. Browse to the ibm-cloud-hyperprotectcrypto/golang/examples directory in the GitHub
project that is cloned to your management server.

7. Open the server_test.go file.

8. Add the imports crypto/x509 and io/ioutil to the list of imports to use in the Golang
program.

9. Replace the value of const address with the address and port of your gREP11 service.

10.Remove grpc.WithPerRPCCredentials(...) from [Jgrpc.DialOption { ... }, whichis
the value of callOpts.

11.Add the keys and values that are listed in Table 7-4 on page 339 to the t1s.Config data
structure grpc.WithTransportCredentials uses.

338 Securing Your Critical Workloads with IBM Hyper Protect Services

https://github.com/mattarnoatibm/ibm-cloud-hyperprotectcrypto
https://github.com/mattarnoatibm/ibm-cloud-hyperprotectcrypto
https://github.com/mattarnoatibm/ibm-cloud-hyperprotectcrypto
https://go.dev/

Table 7-4 Keys and values for the tls.Config file

Key name Key value

ServerName Address and port on which the GREP11 service is accessible. Usually, the
address of your SSC and the port that you assigned to your GREP11 container.

Certificates Array of TLS Certificate objects. For your GREP11 service, the key value must
be a Certificate object that you use your client certificate and client private key
to create.

RootCAs CertPool (certificate pool) object containing your CA certificate.

You can find it helpful to define a function getCal10pts so that the function that provides your
array of grpc.DialOption objects for calling your GREP11 service is like the code example
that is shown in Example 7-3.

Example 7-3 Code example

const address = "myssc.mydatacenter.com:9876"

const cert = "client.pem"

const key = "client-key.pem"

const ca = "ca.pem"

func getCall0pts() [lgrpc.DialOption {
certificate, _ := tls.LoadX509KeyPair(cert, key)
cacert, _ := ioutil.ReadFile(ca)

certPool

:= x509.NewCertPool ()

certPool.AppendCertsFromPEM(cacert)

callOpts

}

:= []grpc.DialOption{
grpc.WithTransportCredentials(credentials.NewTLS(&t1s.Config{
ServerName: address,
Certificates: []Jtls.Certificate{certificate},
RootCAs: certPool,

1),

return callOpts

}

For brevity, the code example that is shown in Example 7-3 omits error handling code.

12.1f you write a getCal10pts function, such as the function in Example 7-3, add the line of

code callOpts

Option.

:= getCallOpts() at the start of each test case to retrieve the gRPC Diall

Chapter 7. IBM Hyper Protect Virtual Servers key features 339

13.1f you are using one-way authentication over TLS, Figure 7-3 shows how to modify
server_test.go to test your GREP11 container.

// The following IBM Cloud items need to be changed prior to running the sample program
const address = "grepll.example.com:9876"
var cert, _ = credentials.NewClientTLSFromFile("cert.pem", "")
var callOpts = []grpc.DialOption{
grpc.WithTransportCredentials(cert),

I}

//var callOpts = []grpc.DialOption{

I/ grpc.WithTransportCredentials(credentials.NewTLS(&tls.Configit)),
!/ grpc.WithPerRPCCredentials (&util.IAMPerRPCCredentials{

!/ APIKey: "<ibm_cloud_apikey>",

!/ Endpoint: "<https://<iam_ibm_cloud_endpoint>",

I/ Instance: "<hpcs_instance_id>",

// 3.

/1%

Figure 7-3 How to modify server_test.go to test your GREP11 container

14.Run the go test -v command to run the suite of tests.

15.Look for the following output messages in the output of the command, which indicate each
test in the test suit ran successfully and that the test suite demonstrated each crypto
function of gRPC11 and the HSM works for your HSM and GREP11 service:

=== RUN Example_getMechanismInfo

--- PASS: Example_getMechanismInfo (1.04s)

=== RUN Example_encryptAndDecrypt

--- PASS: Example_encryptAndDecrypt (2.34s)

=== RUN Example_digest

--- PASS: Example_digest (1.90s)

=== RUN Example_signAndVerifyUsingRSAKeyPair

--- PASS: Example_signAndVerifyUsingRSAKeyPair (2.21s)
=== RUN Example_signAndVerifyUsingECDSAKeyPair

--- PASS: Example_signAndVerifyUsingECDSAKeyPair (1.64s)
=== RUN Example_signAndVerifyToTestErrorHandling

--- PASS: Example_signAndVerifyToTestErrorHandling (1.54s)
=== RUN Example_wrapAndUnwrapKey

--- PASS: Example_wrapAndUnwrapKey (2.00s)

=== RUN Example_deriveKey

--- PASS: Example_deriveKey (2.10s)

=== RUN Example_t1s

--- PASS: Example_tl1s (1.11s)

340 Securing Your Critical Workloads with IBM Hyper Protect Services

7.5 Bring Your Own Image (deploying your applications
securely)

The Application Manager must register a repository on the SSC as a trusted repository before
the Application Manager can deploy instances of images from that repository to the SSC
LPAR.

In this section, we describe how to deploy your own Linux based container image as an
IBM Hyper Protect Virtual Servers instance on IBM Hyper Protect Virtual Servers. This
feature is also known as Bring Your Own Image (BYOI).

You complete the following subsections with root authority.

» Signing your image by using Docker Content Trust

» Adding the registry

» Generating the signing keys

» Registering a repository as a trusted repository

» Preparing the configuration

» Deploying a securely built image from a trusted repository

7.5.1 Signing your image by using Docker Content Trust

Ensure that your Linux-based images are signed by using DCT. If the images are not signed,
complete the following steps:

1. Run the following command to load the image from Docker Hub on to your management
server.

docker image pull <your_docker_id>/<result_image_name>:<tag>
2. To enable DCT, specify the server for the DCT service by running the following commands:

export DOCKER_CONTENT_TRUST=1
export DOCKER_CONTENT TRUST SERVER=https://notary.docker.io

3. Retag your Docker images by running the following command:

docker tag <your_docker_id>/<result_image_name>:<tag>
<your_docker_id>/<result_image_name>:<new-tag>

4. Push the tagged images to Docker Hub by running the following command:
docker push <your_docker_id>/<result_image_name>:<new-tag>

Enter your root passphrase and repository passphrase when you are prompted. The

generated public key is stored in the following directory:

~/.docker/trust/tuf/docker.io/<your docker_ id>/<result_image_name>/metadata/root.j
son/

7.5.2 Adding the registry

Verify whether you already have a registry by running the following command:

hpvs registry list

Chapter 7. IBM Hyper Protect Virtual Servers key features 341

If there are no registries that are displayed, then add a registry by running the following
command:

hpvs registry add --name registry name --user <username> --dct
https://notary.docker.io --url docker.io

In the command:

» registry name: Specify a name for your registry.

» <username>: Docker registry username.

7.5.3 Generating the signing keys

This step is also included in the SBS setup.

Generate the signing key pair for signing the repository registration file by using the GnuPG
tool:

1.

List the GNU Privacy Guard (GPG) keys by running the following commands:

gpg --list-keys
gpg --list-secret-keys

The following commands create a GPG key pair and export the public key isv_user.pub
and the private key isv_user.private. The key pair is protected by using the passphrase
over-the-lazy-dog. If isv_user is listed when you run the gpg --1ist-keys command,
then you must use another name.

export keyName=isv_user
export passphrase=over-the-lazy-dog
cat >isv_definition_keys <<EOF
%echo Generating registration definition key
Key-Type: RSA
Key-Length: 4096
Subkey-Type: RSA
Subkey-Length: 4096
Name-Real: isv_user
Expire-Date: 0
Passphrase: over-the-lazy-dog
Do a commit here so that we can later print "done" :-)
%commit
%echo done
EOF
gpg -a --batch --generate-key isv_definition_keys
gpg --armor --pinentry-mode=loopback --passphrase ${passphrase}
--export-secret-keys ${keyName} > ${keyName}.private
gpg --armor --export ${keyName} > ${keyName}.pub

Both "export keyName=isv_user" and "Name-Real: isv_user" must be unique. You cannot
use the same keys to sign multiple images. You should not have multiple keys with the
same username, and you should not have multiple images that are signed with the same
key in an SSC.

Copy the generated key pair isv_user.pub and isv_user.private to the
$HOME/hpvs/config directory.

342 Securing Your Critical Workloads with IBM Hyper Protect Services

7.5.4 Registering a repository as a trusted repository

Before you deploy the image that your Secure Build instance or a generic build server that is
built, you must register the repository that stores the image on your SSC LPAR. To register
the repository, the Application Builder must retrieve an unsigned and unencrypted repository
definition file from the Secure Build instance that built the image, sign and encrypt the file, and
then give the signed and encrypted repository definition file to the Application Manager. Then,
the Application Manager can register the repository by using the repository definition file.

A different process for creating the repository definition file exists if a generic build server
builds and pushes the images to the repository that you want to register. This process allows
you to deploy images that your Secure Build instances did not build, but you trust and want to
run on your SSC LPAR anyway.

7.5.5 Preparing the configuration

Note: The Application Builder must complete this process.

To create a signed and encrypted repository registration file, complete the following steps:

1. Create the configuration YAML secure_create.yaml file so that the repository registration
file for your image can be generated. You can use the
$HOME/hpvs/config/securebuild/secure create.yaml.example file as a reference when
updating the file. Example 7-4 shows our file.

Example 7-4 The secure_create.yaml file

repository_registration:

docker:

repo: 'docker_user_name/docker_image_name'

pull_server: '<get this from hpvs registry Tist. for example, -
docker_pull>'

this root.json you will get after once you push image to DockerHub by
using DCT

optional - if you signed your image from the same management server
that you are running the commands from, then this parameter is optional.

Otherwise, you must copy the
'/root/.docker/trust/tuf/docker.io/docker_user name/docker image name/metadata/
root.json' to the machine you are running the commands from and provide the
complete path to the root.

content _trust _json file path:
'/root/.docker/trust/tuf/docker.io/docker_user name/docker image name/metadata/
root.json'

Add all whitelist environment variables that are required in your virtual
server. You cannot create a virtual server if you try to create a virtual
server with environment variables that are not added to the whitelist. This is
an optional parameter and if you do not have any environment variable for the
virtual server, you can comment this parameter.

env:

whitelist: ["env_varl","env_var2"]

signing_key:

complete path of signing private key

private_key path: '/root/hpvs/config/isv_user.private'

complete path of signing public key

public_key path: '/root/hpvs/config/isv_user.pub'

Chapter 7. IBM Hyper Protect Virtual Servers key features 343

Add Linux capabilities to Hyper Protect Virtual Server. List of linux
capabilities

are available here
https://man7.org/Tinux/man-pages/man7/capabilities.7.html.

A1l the capabilities that are 1isted are supported except "CAP_PERFMON",
"CAP_BPF", and CAP_CHECKPOINT_RESTORE".

While adding capabilities remove the prefix "CAP".

For example, CAP_AUDIT_CONTROL will be AUDIT_CONTROL

cap_add: [] # for example, ["NET_ADMIN","NET_RAW"], or ["ALL"]

Note: The cap_add: [] parameter is applicable for IBM Hyper Protect Virtual Servers
V1.2.3 or later. To enable all privileges, use cap_add: ["ALL"], but as a best practice,
provide the least possible privileges to your virtual server. For a complete list of
supported parameters in the secure_create.yaml file, see Create repository
registration.

2. Generate the repository registration file for your image:

hpvs regfile create --config $HOME/hpvs/config/securebuild/secure create.yaml
--out $HOME/hpvs/config/encryptedRegfile.enc

7.5.6 Deploying a securely built image from a trusted repository

Note: The Application Manager must complete the following procedure.

To deploy an instance of an image to your SSC LPAR from an image that is stored in a trusted
repository that you registered on your SSC, you must add information that describes the
container deployment that you want to run in your IBM Hyper Protect Virtual Servers
configuration file.

Deploy your own image by using either of the following options:

» The hpvs deploy command:

a. Update the virtual server template if necessary. Normally, this template is initially
updated in the setup of SBS.

b. Create the configuration YAML file $HOME/hpvs/config/demo_byoi.ym1 for the instance
by referring to the example file $HOME/hpvs/config/vs_regfiledeployexample.yml.
Example 7-5 shows our vs_regfiledeployexample.yml file.

Example 7-5 The vs_regfiledeployexample.yml file

version: vl

type: virtualserver

virtualservers:

- name: testcontainer
host: SSC_LPAR_NAME
repoid: MyOwnRepo
imagetag: latest
reporegfile: /root/hpvs/config/encryptedRegfile.enc
imagecache: true
resourcedefinition:

ref: small

344 Securing Your Critical Workloads with IBM Hyper Protect Services

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-configuration-files-in-hyper-protect-virtual-servers#secure-build-server-for-byoi
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-configuration-files-in-hyper-protect-virtual-servers#secure-build-server-for-byoi
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-configuration-files-in-hyper-protect-virtual-servers#secure-build-server-for-byoi

C.

networks:

- ref: external_network
ipaddress: 10.20.4.61

volumes:

- name: myquotagroup
ref : np-medium
mounts:

- mount_id: new
mountpoint: /new
filesystem: ext4
size: 10GB

The imagecache parameter is supported when IBM Hyper Protect Virtual Servers is at
Version 1.2.3 or later. In this example, the network definition is for an external network.

Deploy the image by using the configuration in the YAML file:
hpvs deploy --config $HOME/hpvs/config/demo_byoi.yml

» The hpvs vs create command:

a.

Register the repository on the SSC partition:

hpvs repository register --pgp=$HOME/hpvs/config/encryptedRegfile.enc
--id=MyOwnRepo

Pull the image from the registered Docker Hub or IBM Cloud Registry by running the
following command (run this command to avoid cache issues):

hpvs image pull --tag=Tatest --repo MyOwnRepo

Create the quotagroup on the SSC partition for the IBM Hyper Protect Virtual Servers
instance that will host your own Linux based image:

hpvs quotagroup create --name myquotagroup --size=50GB

Note: If you create a non-pass through quotagroup, ensure that you specify a value
that is at least 5 GB greater than the size that you require for the virtual server. For
more information about the hpvs quotagroup command, see Commands in IBM
Hyper Protect Virtual Servers.

Create the network on the SSC partition for the IBM Hyper Protect Virtual Servers
instance that will host your own Linux based image:

hpvs network create --driver macvlan --gateway 10.20.4.1 --name
external_network --parent encf900 --subnet 10.20.4.0/22

Deploy your image as an IBM Hyper Protect Virtual Servers instance:

hpvs vs create --name testcontainer --repo MyOwnRepo --tag Tatest --cpu 2
--ram 2048 --env={env_varl=valuel,env_var2=value2} --quotagroup
"{quotagroup = myquotagroup, mountid = new, mount = /new, filesystem =
btrfs, size = 30GB}" \

--network "{name = external network, ip = 10.20.4.188}"

In the command, --repo MyOwnRepo is the repository name when registering the
repository.

With SBS, you can securely build your own image that you can then use with BYOI. This task
is possible by using the SBS function to sign your applications and also to sign and encrypt
the registration definition for deployment. When you build your image securely, you can
validate your build code and reassure your users of the integrity level of their applications.

Chapter 7. IBM Hyper Protect Virtual Servers key features 345

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-commands-in-hyper-protect-virtual-servers#hpvs-quotagroup
https://www.ibm.com/docs/en/hpvs/1.2.x?topic=reference-commands-in-hyper-protect-virtual-servers#hpvs-quotagroup

346 Securing Your Critical Workloads with IBM Hyper Protect Services

Secure Bitcoin Wallet: A sample
use case that spans multiple IBM
Hyper Protect Services

This chapter provides a Secure Bitcoin Wallet use case that uses multiple IBM Hyper Protect
Services instances.

This chapter includes the following topics:

» Secure Bitcoin Wallet application

» Building the Secure Bitcoin Wallet application container

» Testing the Secure Bitcoin Wallet application

© Copyright IBM Corp. 2020, 2022. All rights reserved. 347

8.1 Secure Bitcoin Wallet application

The popularity of digital asset investment is on the rise. With more than 20% of institutional
investors that are already exposed and many more exploring this new investment class, the
safekeeping or custody of these assets became a critical aspect of the business.

CNBC reported that $1.1 billion USD worth of cryptocurrency was stolen in just the first half of
2018." Many hacks were due to insider attacks in which a system administrator was
compromised or socially engineered to perform malicious actions.

According to Unbound Tech, a rogue insider was the reason behind Bithumb’s third hack in
two years during which $20 million USD worth of crypto currencies were stolen.2 Another
popular attack is to target the cryptocurrency exchange or digital asset service provider
directly. These companies must use multiple security practices and security technologies to
safeguard their clients’ assets.

IBM LinuxONE with IBM Hyper Protect Services offers a unique platform for digital asset
service providers. With IBM Hyper Protect Virtual Servers, clients have a secure enclave that
protects against insider attacks and offers pervasive encryption at rest and in-flight.

With IBM Hyper Protect Crypto Services, clients have Federal Information Processing
Standard (FIPS) 140-2 level 4 Hardware Security Modules (HSMs) that provide key
management and an application programming interface (API) to use for encryption of
keystores, wallets, and application data. The IBM Hyper Protect Virtual Servers on-premises
offering also provides a Secure Build process to ensure that the image that is deployed to the
IBM Hyper Protect Virtual Servers instance is signed and validated by authorized parties.

As a demonstration of some of these capabilities, IBM Research® ported over a version of
the popular Bitcoin Wallet called Electrum over to the s390x architecture. The Secure Bitcoin
Wallet runs inside an IBM Hyper Protect Virtual Servers instance and encrypts the wallet file
by using the IBM Hyper Protect Crypto Services instance to protect the encryption key.

The Secure Bitcoin Wallet GitHub repository is available at GitHub.

The repository readme file describes the Wallet code pattern in more detail and includes an
architectural diagram of the components.

This section reviews the steps that you perform to deploy the Secure Bitcoin Wallet to an
IBM Hyper Protect Virtual Servers instance running in either an IBM Cloud or on-premises
system that accesses an IBM Hyper Protect Crypto Services instance running in IBM Cloud.

The Secure Bitcoin Wallet repository is constantly being updated with new features. Review
the repository often to get the latest code.

Note: The Secure Bitcoin Wallet is a demonstration code pattern. It connects to a Bitcoin
Testnet, which is a test network and not the real Bitcoin network. The Bitcoin Testnet is
used by developers to send and receive Bitcoins for testing purposes, so the
cryptocurrencies that are traded have no real value.

1 https://www.cnbc.com/2018/06/07/1-point-1b-in-cryptocurrency-was-stolen-this-year-and-it-was-easy-to
-do.html
2 https://www.unboundtech.com/crypto-hacks-the-rise-of-the-rogue-insider/

348 Securing Your Critical Workloads with IBM Hyper Protect Services

https://www.cnbc.com/2018/06/07/1-point-1b-in-cryptocurrency-was-stolen-this-year-and-it-was-easy-to-do.htm
https://www.cnbc.com/2018/06/07/1-point-1b-in-cryptocurrency-was-stolen-this-year-and-it-was-easy-to-do.htm
https://www.unboundtech.com/crypto-hacks-the-rise-of-the-rogue-insider/
https://github.com/IBM/secure-bitcoin-wallet/tree/monolithic-multistage
https://github.com/IBM/secure-bitcoin-wallet

8.1.1 Planning for the installation by using IBM Hyper Protect Services

The Secure Bitcoin wallet operational model is shown in Figure 8-1. It can be deployed on two
IBM Hyper Protect Services:

» One IBM Hyper Protect Virtual Servers instance
» One IBM Hyper Protect Crypto Services instance
The Secure Bitcoin Wallet application uses the Enterprise PKCS #11 over gRPC (GREP11)

API. The keys that are stored by the application are wrapped by the HSM Master key of the
IBM Hyper Protect Crypto Services instance and stored by the application.

IBM CLOUD

IBM CLOUD HYPER
PROTECT VIRTUAL
SERVER

0\ ©
= > QB
LAVAREL A
FRAMEWORK

USER

USER (PHE)
ey IBM CLOUD HYPER
_BITCOIN PROTECT CRYPTO
SERVICES

@ p.q

PYTHON {(BI

s)

ELECTRUM
BITCOIN CLIENT

Figure 8-1 Secure Bitcoin Wallet operational model

Provision an IBM Hyper Protect Crypto Services instance and initialize its HSM Master key,
as described in 2.2, “IBM Hyper Protect Crypto Services provisioning” on page 14. The virtual
server deployment is described in 8.2.1, “Using IBM Cloud Hyper Protect with Bring Your Own
Image” on page 350.

We want to deploy the Secure Bitcoin Wallet application as a container image. This container
image should be built on the LinuxONE s390x hardware platform.

To build the Secure Bitcoin Wallet application, you deploy the following instances:
» One IBM Hyper Protect Virtual Servers instance
» One IBM Cloud container registry

Provision one IBM Hyper Protect Virtual Servers instance, as described in 4.4, “Public cloud
service instantiation” on page 242. The container registry is created later in this chapter.

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 349

8.2 Building the Secure Bitcoin Wallet application container

In this section, we describe the following topics:

» Using IBM Cloud Hyper Protect with Bring Your Own Image
» Using IBM Hyper Protect Secure Build Servers on-premises
» Using IBM Cloud Hyper Protect Secure Build Server

8.2.1 Using IBM Cloud Hyper Protect with Bring Your Own Image

This procedure consists of two steps:

1. Building the Secure Bitcoin Wallet application container in an IBM Hyper Protect Virtual
Servers instance.

2. Creating an IBM Hyper Protect registration file for this image and starting it as an
IBM Hyper Protect Virtual Servers instance in IBM Cloud.

Planning for a build server
Complete the following steps:

1. As a prerequisite, provision an IBM Hyper Protect Virtual Servers instance. An IBM Hyper
Protect container image must be built with the s390x hardware architecture and binary
files.

2. Retrieve the IP address of your provisioned build server, as shown in Example 8-1 or by

350

using the IBM Cloud console.

Example 8-1 Retrieving the details of your s390x build server

$ ibmcloud hpvs instances hpvs-build

Name
CRN

crn:vl:bluemix:public:hpvs:dal10:a/537544¢c2222297f40ed689e8473e7849:476fhdfc-15

hpvs-build

0d-4ca0-adee-54bacc7fe592::

Location dall10
Cloud tags

Cloud state active
Server status running
Plan Small

Public IP address
Internal IP address

169.63.212.73
172.18.24.227

Boot disk 25 GiB

Data disk 75 GiB
Memory 8192 MiB
Processors 2 vCPUs
Image type ibm-provided
Image 0S ubuntul8.04

Public key fingerprint
Last operation

Last image update
Created

1ArRU1KM1sZiRHB+1LbK61eJdXyg3arEsOgjM35xLZ+Q
create succeeded

2021-05-20

Securing Your Critical Workloads with IBM Hyper Protect Services

3. Connect to your IBM Hyper Protect Virtual Servers instance by using Secure Shell (SSH)
(such as PUTTY on MS Windows), as shown in Example 8-2. Use your virtual server
public IP address and your passphrase for your key if you set up one. If you did not set up
a passphrase for your RSA key, you are logged in immediately without being prompted to
enter one.

Example 8-2 Logging in to IBM Hyper Protect Virtual Servers

$ ssh root@169.63.212.73
Enter passphrase for key '/Users/newuser/.ssh/id_rsa':
Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-55-generic s390x)

* Documentation: https://help.ubuntu.com
* Management: https://Tandscape.canonical.com
Support: https://ubuntu.com/advantage

*

* Qverheard at KubeCon: "microk8s.status just blew my mind".

https://microk8s.io/docs/commands#microk8s.status
Last login: Thu Dec 19 17:53:23 2019 from 47.18.17.156

4. To build the image, install the git and Docker software packages, as shown in
Example 8-3.

Example 8-3 Installing the git and Docker packages

$ apt-get update
$ apt install git

$ apt install 1ib1td17

5. Install Docker, as shown in Example 8-4.

Example 8-4 Installing Docker on the IBM Hyper Protect Virtual Servers instance

$ curl
https://download.docker.com/1inux/ubuntu/dists/bionic/pool/stable/s390x/docker-
ce_18.06.37ce~3-0"ubuntu_s390x.deb -o docker.deb

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 28.4M 100 28.4M 0 0 46.1M 0 --t--t-- -=1--1-- --:1--:1-- 46.1M

$ dpkg -i docker.deb

(Reading database ... 16601 files and directories currently installed.)
Preparing to unpack docker.deb ...

Unpacking docker-ce (18.06.3%ce™3-0"ubuntu) over (18.06.3%ce™3-0"ubuntu) ...
Setting up docker-ce (18.06.3%ce™3-0"ubuntu) ...

Processing triggers for systemd (237-3ubuntul0.45) ...

Processing triggers for man-db (2.8.3-2ubuntu0.1) ...

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 351

Retrieving the application source code and building the container

Retrieve the Secure Bitcoin Wallet source code by running the git command, as shown in
Example 8-5.

Example 8-5 Retrieving the Secure Bitcoin Wallet source code

$ git clone https://github.com/IBM/secure-bitcoin-wallet.git

Cloning into 'secure-bitcoin-wallet'...

remote: Enumerating objects: 532, done.

remote: Counting objects: 100% (200/200), done.

remote: Compressing objects: 100% (136/136), done.

remote: Total 532 (delta 119), reused 129 (delta 63), pack-reused 332
Receiving objects: 100% (532/532), 1.45 MiB | 8.92 MiB/s, done.
Resolving deltas: 100% (290/290), done.

The build stage can take up to 30 minutes to complete because the process is a multi-stage
Docker build that requires pulling down other Docker images and building many prerequisite
packages (see Example 8-6).

Example 8-6 Building the Secure Bitcoin Wallet Docker image

root@cc648b49b9d7:~# cd secure-bitcoin-wallet
root@cc648b49b9d7:~/secure-bitcoin-wallet# docker build -t secure-bitcoin-wallet .

Successfully tagged secure-bitcoin-wallet:latest

Take care to place the period after the Docker build command. The output of the build
command is not shown here. You see a stream of output as the Docker build progresses
through this multi-stage build process.

After the build process completes, you see secure-bitcoin-wallet listed in your docker
images output, as shown in Example 8-7.

Example 8-7 Output of the docker images command

root@cc648b49b9d7:~# # docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

secure-bitcoin-wallet Tatest 2fbale837a98 2 hours ago 1.27GB
python 3.7-slim 0dd76f657ba9 8 days ago 111MB
node 10.16.0-stretch-s1im dcdc4bb90ch0 22 months ago 156MB

Creating a container registry on IBM Cloud
Complete the following steps:

1. On your notebook, log in to IBM Cloud in a region and a resource group.

2. Create a container registry by using your own namespace (in this example, we chose
bitcoin-wallet) in the region and resource group where you logged in by using the IBM
Cloud Command-Line Interface (CLI), as shown in Example 8-8.

Example 8-8 Creating a container registry in IBM Cloud by using the IBM Cloud CLI

$ ibmcloud cr namespace-add bitcoin-wallet
Adding namespace 'bitcoin-wallet' in resource group 'zsb006' for account ITSO's
Account in registry us.icr.io...

352 Securing Your Critical Workloads with IBM Hyper Protect Services

Successfully added namespace 'bitcoin-wallet'

0K
$ ibmcloud cr namespace-list
Listing namespaces for account 'ITSO's Account' in registry 'us.icr.io'...

Namespace
bitcoin-wallet

0K

Pushing the image to the IBM Cloud container registry

To push your build image to the IBM Cloud container registry, run the commands that are
shown in Example 8-9. Modify the commands as follows:

» The name of the container (secure-bitcoin-wallet in our example).
» The region where you provision the container registry (us in our example).
» The namespace that you created in the registry (bitcoin-wallet in our example).

» The API key that you used to access your IBM Hyper Protect Crypto Services instance, as
described in “Generating an API key for your service ID” on page 107 and Example 2-111
on page 157.

Example 8-9 Pushing the Secure Bitcoin Wallet to the IBM Cloud container registry

root@adl0ea72f634:™# docker login -u iamapikey -p
8vFwZ9yQIyG8iDI0j2UYKRAWNh40i31-vBwAvcZd50Z us.icr.io/bitcoin-wallet

root@adl0ea72f634:~# docker tag secure-bitcoin-wallet:latest
us.icr.io/bitcoin-wallet/secure-bitcoin-wallet:1atest

root@adl0ea72f634:™~# DOCKER_CONTENT_TRUST=1
DOCKER_CONTENT_TRUST_SERVER=https://us.icr.i0:4443 docker push
us.icr.io/bitcoin-wallet/secure-bitcoin-wallet:1atest
£770e89c0al0: Pushed

5a609f3679d3: Pushed

61340dc2e377: Pushed

a3fdsfabcca3: Pushed

c89cbe3al6ce: Pushed

30dcfcce8c59: Pushed

a4501a9ea647: Pushed

c1d41d83610b: Pushed

c91b7592d9d1: Pushed

513ec28debbe: Pushed

861b9f6bf85e: Pushed

e7051c94bd12: Pushed

26fdc37ecbbc: Pushed

976554603927: Pushed

c4507921c48c: Pushed

800d9a3ae26¢c: Pushed

3b1cf9764ea7: Pushed

b5d42e6941c0: Pushed

2b84080d96f1: Pushed

2009480efc84: Pushed

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 353

test-1: digest:
sha256:2c4fef3ce9c86casd35ef30ef34e37a511db8e8455e83b388411d8h685824a0f2 size: 5339
Signing and pushing trust metadata

You are about to create a new root signing key passphrase. This passphrase

will be used to protect the most sensitive key in your signing system. Choose a
long, complex passphrase and be careful to keep the password and the

key file itself secure and backed up. It is highly recommended that you use a
password manager to generate the passphrase and keep it safe. There will be no
way to recover this key. You can find the key in your config directory.

Enter passphrase for new root key with ID 44be513:

Repeat passphrase for new root key with ID 44be513:

Enter passphrase for new repository key with ID 37ab635:

Repeat passphrase for new repository key with ID 37ab635:

Passphrases do not match. Retry.

Enter passphrase for new repository key with ID 37ab635:

Repeat passphrase for new repository key with ID 37ab635:

Finished initializing "us.icr.io/bitcoin-wallet/secure-bitcoin-wallet"
Successfully signed us.icr.io/bitcoin-wallet/secure-bitcoin-wallet:latest

For more information about how Docker Content Trust (DCT) is supported by the IBM Cloud
container registry, see Signing images for trusted content.

Tip: The first time that you push a signed image to a new repository, the command creates
two signing keys (the root key and repository key) and stores them in your local computer.
You are the repository owner. They are stored in the following directories:

» On Linux and Mac: ~/.docker/trust/private
» On Windows: $HOMEPATH%\ .docker\trust\private

Enter and save secure passphrases for each key, and then back up your keys.

The repository key signs the image tags and manages delegations. The root key is created
once. Backing up your keys is critical because your recovery options are limited. You might
be in a situation where you cannot push your images if you are missing a key.

Add delegation to users to allow them to push new container images onto this repository by
completing the following steps:
1. The user generates their key pair:
$ docker trust key generate userl
2. As repository owner, add the generated public key to the repository:

root@adl0ea72f634:“# export
DOCKER_CONTENT_TRUST_SERVER=https://us.icr.i0:4443

root@adl0ea72f634:~# docker trust signer add --key userl.pub userl
us.icr.io/bitcoin-wallet/secure-bitcoin-wallet

Adding signer "jyg" to us.icr.io/bitcoin-wallet/secure-bitcoin-wallet...
Enter passphrase for repository key with ID 37ab635:

Successfully added signer: jyg to
us.icr.io/bitcoin-wallet/secure-bitcoin-wallet

3. The user pushes their image by using the following command:

$ docker trust sign us.icr.io/bitcoin-wallet/secure-bitcoin-wallet:new

354 Securing Your Critical Workloads with IBM Hyper Protect Services

https://cloud.ibm.com/docs/Registry?topic=Registry-registry_trustedcontent

Retrieving container image signatures from your registry
Complete the following steps:

1. On your Linux workstation, make sure that the GNU Privacy Guard (GPG) software is
installed.

2. Log in with your IBM Cloud account.
To create your registration file, you need the following information:
— Your container repository name.

— Your Docker username. In our example, we use an IBM Cloud Container Registry, so
the username is iamapikey.

— Your Docker password. In our example, we use an IBM Cloud Container Registry, so
we use the API key that is associated with the service ID.

— The public key ID of the image that you retrieve from the repository.
— Three public keys:
¢ The public key that identifies the container that is pushed to the container registry.

* The public key of the application packager of the container that signs the
registration file.

e An IBM Cloud public key that is used to encrypt the registration file.
3. Retrieve your repository name by using the ibmcloud cr image-1ist command, as shown
in Example 8-10.

Example 8-10 Retrieving your image repository name

$ ibmcloud cr image-list
Listing images...

Repository Tag Digest
Namespace Created Size Security status
us.icr.io/bitcoin-wallet/secure-bitcoin-wallet latest 2c4fef3ce9c8
bitcoin-wallet 11 hours ago 470 MB 6 Issues

0K

4. On your Linux notebook, log in to the container registry with your API key as the first
command, as shown in Example 8-11.

5. Extract the root key ID that is used by the developer by using the docker trust inspect
command on your container repository name by using, for example, the jq command, as
shown in Example 8-11.

Example 8-11 Retrieving the public key ID parameter

$ docker login -u iamapikey -p 8vFwZ9yQIyG3iDIO0j7UYKRAWNh40i31-vBwAvcZd50DW
us.icr.io/bitcoin-wallet

WARNING! Using --password through the CLI is insecure. Use --password-stdin.
Login Succeeded

$ DOCKER_CONTENT_TRUST_SERVER=https://us.icr.io:4443 docker trust inspect
us.icr.io/bitcoin-wallet/secure-bitcoin-wallet:latest | jq -r
'. [0].Administrativekeys[] | select(.Name=="Root").Keys[0].ID'

25bd40b8729bb219ad6819b4d57371e4dc66d853cdf9c71698fh9b00593ba004

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 355

You receive your first parameter, as shown in Table 8-1.

Table 8-1 Registration file parameters

Key Value

Public key ID 25bd40b8729bb219ad6819b4d57371e4dc66d853c
(root key ID) df9c71698fb9b00593ba004

Public key

Vendor key

6. Open a terminal and connect to your build server by using SSH.

7. Install the jq tool, as shown in Example 8-12.

8. Use the previous root key ID and your container repository name to extract the public key,
as shown in Example 8-12.

Example 8-12 Retrieving the public key parameter

root@adl0ea72f634:™# apt install jq
root@adl0ea72f634:~# IMG=us.icr.io/bitcoin-wallet/secure-bitcoin-wallet

root@adl0ea72f634: #
KEY=25bd40b8729bb219ad6819b4d57371e4dc66d853cdf9c71698fb9b00

root@adl0ea72f634:~# jq -r .signed.keys.\"$KEY\".keyval.public
~/.docker/trust/tuf/$IMG/metadata/root.json
LSOtLS1CRUdJTiBDRVJUSUZJIQOFURSOtLSOtCk1JISUIwakNDQVV1ZOF3SUJBZOTRUELIdndgSThBcWg
zSkF2YkpCQzBxVEFLQmdncWhrak9QUVFEQWpBNULUY3cKT1FZRFZRUURFeTUxY3k1cFkzSXVhVzh2WW
1sMFkyOXBiaTEzWVd4c1pYUXZjM1ZgZFhKbExXSnBkR052YVcOdApkMkZzYkdWMELCNFhEVET4TURVe
UL1ESXhOREOXTVZVWERUTXhNRFV4TORJEESETTFNVmMI3T1IRFMO1EVUABMVVFCKFATXVKWEL1YVdOeUxt
bHZMMkpwZEdOdmFXNHRKkMkZzYkdWMEwz TmxZM1Z5W1MxaWFYUmpiMmx1TFhkaGJHeGwKZERCWk1CTUd
CeXFHUOOOOUFnRUdDQ3FHUOOOOUF3RUhBMETBQk1tamFDWFFCdndyczk1d2ZNandMVGdXcURnVgpISC
9x0VpmQjJSTWFwcOdodDTxUEEvQXdsbjUwQmlyVzBFMOhhcGd6T11yR1plcXptMTgzNW1BKytoeWpOV
EF6Ck1BNEdBMVVKRHAFQi93UUVBdOTGbORBVEINT1ZIU1VFRERBS0INnZ3JCZOVGQ1FjREF6QUICZO5W
SFINQkFmOEUKQWpBQU1Bb0OdDQ3FHUOOOOUJBTUNBMGtBTUVZQOTRQONhdVV2ZHFObEXxzUGZmaW1 pSG4
4M1JMdjRJIUOXNRNREZwpBSVNqRDQ1a1NRSWhBUHNrTVV6QXhqa09jWit0UGdmaks5dFF5dHp2a3FCK1
ZYRnRzaH1i1QORiMgotLSOtLUVORCBDRVJUSUZJQOFURSOtLSOtCg==

Tip: To read the root. json file, use the following command:

Jq . root.json

356 Securing Your Critical Workloads with IBM Hyper Protect Services

You now have two parameters (shown in Table 8-2), and the remaining key is a PGP key,
which is described in “Planning your GPG container signature keys” on page 357.

Table 8-2 Registration file parameters

Key

Value

Public key ID

25bd40b8729bb219ad6819b4d57371e4dc66d853cd
f9¢71698fb9b00593ba004

Public key

LSOtLS1CRUAJTiBDRVJIUSUZJIQOFURSOtLSOtCk1JSU
JwakNDQVV1Z0F3SUJBZOTRUEtIdndqSThBcWgzSkF2
YkpCQzBxVEFLQmdncWhrak9QUVFEQWpBNULUY3cKT1
FZRFZRUURFeTUxY3k1cFkzSXVhVzh2WW1sMFkyOXBi
aTEzWVd4c1pYUXZjM1ZqZFhKbExXSnBkR0O52YVcOdA
pkMkZzYkdWMEL1CNFhEVET4TURVeU1ESXhOREOXTVZv
WERUTXhNRFV4TORJeESETTFNVm93T1RFMO1EVUdBMY
VFCkF4TXVKWE11YVdOeUxtbHZMMkpwZEdOdmFXNHRk
MkZzYkdWMEwz TmxZM1Z5W1MxaWFYUmpiMmx1TFhkaG
JHeGwKZERCWk1CTUdCeXFHUOOOOUFnRUdDQ3FHUO0O
OUF3RUhBME1BQk1...more

Vendor key

Planning your GPG container signature keys

Your PGP key is used to sign the container definition. It is also encrypted by a public key that
is provided by IBM Cloud. On the Linux notebook, check your GPG keys for two specific

identifiers:
» Your identifier (It is myapp in our example.)

» rtoa_destination

These keys are stored in the .gnupg directory of your $HOME directory of your Linux notebook.
You can list the available keys by using the gpg command, as shown in Example 8-13. We use
the existing myapp identifier keys to sign our images, as shown Example 8-13. If if you have no
available keys, see “Creating your vendor GPG keys” on page 358.

Example 8-13 Listing the keys in your GPG directory by using the GPG CLI

$ gpg --list-keys
/home/girardjy/.gnupg/pubring.kbx

pub rsa4096 2020-10-12 [SCEA]
35B08C134D6CBCDEE718010845AF13D76F7FC702

uid [ultimate] jyg

sub rsad096 2020-10-12 [SEA]

pub rsa4096 2021-05-21 [SCEA]
4BFDOOF49C5E76222895D453C3A82A8D001F145C

uid [ultimate] myapp

sub rsad096 2021-05-21 [SEA]

pub rsa4096 2020-03-13 [SC]
DB4C5FCCDOA466F87A05C2E1190EA90A5CCDDAF5

uid [unknown] rtoa_destination

sub rsa4096 2020-03-13 [E]

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services

357

If rtoa_destination is not listed in your keys, see “Loading the rtoa_destination key” on
page 358.

Creating your vendor GPG keys

If needed, create a GPG batch file to create your keys by using a name for your user and your
own passphrase, as shown in Example 8-14.

Example 8-14 Batch file that is used to create your GPG public and private keys

%echo Generating registration definition key
Key-Type: RSA

Key-Length: 4096

Subkey-Type: RSA

Subkey-Length: 4096

Name-Real: myapp

Expire-Date: 0

Passphrase: mypass

Do a commit here so that we can later print "done" :-)
Fcommit

%echo done

Generate the keys by running the command that is shown in Example 8-15.

Example 8-15 Generating your GPG signature keys

$ gpg -a --batch --generate-key batchfile

gpg: Generating registration definition key

gpg: key C3A82A8D001F145C marked as ultimately trusted

gpg: revocation certificate stored as
'/home/itsouser/.gnupg/openpgp-revocs.d/4BFDO0F49C5E76222895D453C3A82A8D001F145C. r
ev'

gpg: done

Loading the rtoa_destination key

If the public key is missing in your list of PGP keys, you can build your own image key by
following the instructions at “The rtoa_destination PGP public key” on page 391. Then, you
can import that key by using the command that is shown in Example 8-16.

Create a file and copy and paste the public key so that you can provide the file name as an
argument for the import.

Example 8-16 Importing the rtoa_destination public key on your notebook

$ gpg --import <the rtoa_destination public key filename>

Signing the container registration file
Complete the following steps:

1. Extract your GPG myapp public key by using the command that is shown in Example 8-17.

Example 8-17 Extracting the myapp public and private keys

$ gpg --armor --export myapp > myapp.pub

358 Securing Your Critical Workloads with IBM Hyper Protect Services

2. Format the key as shown in Example 8-18 so that you can insert it into the registration file.

Example 8-18 Formatting the myapp public key to include it in the container

$ sed -z "s/\n/\\n/g"' myapp.pub

————— BEGIN PGP PUBLIC KEY

BLOCK----- \n\nmQINBGCnXR4BEAD1Uv10sJSI9P7g/Uth/bVmvgDPyT3TvqubCmBaQXST01dZ97Am\
n6xktWmDuHRde5tt1yLH/QnenRkRcDjNh1xhib/FLR5cyADUTGTSxQjKnWBqirJNh\nOwFL/ZBNY717
1vCtQ028VgxxiDJgrknwzsvEeKXugWVRF14Bvb/vzUb41iH400Np\nTHxSq6U/e00Jj6BVgMwOkX0Ha
tjDAFVYb07zaWu+q9Gm12d3F31LQSGj0YE2dkcF\nXa/VR4XugKQdUeD3RWGK2Qkr5zIBgkCbUJngH+
kzexTybXxAr+....

bD2\n=TRg8\n----- END PGP PUBLIC KEY BLOCK----- \n

You now have all the required parameters for your container file, as listed in Table 8-3.

Table 8-3 Registration file parameters

Key Value

Public key ID 25bd40b8729bb219ad6819b4d57371e4dc66d853c
df9c71698fb9b00593ba004

Public key LSOtLS1CRUdJTiBDRVJUSUZJQOFURSOtLSOtCk1JS
UJwakNDQVV1ZOF3SUJBZOTRUEtIdndqSThBcWgzSk
F2YkpCQzBxVEFLQmdncWhrak9QUVFEQWpBNU1UY3c
KT1FZRFZRUURFeTUxY3k1cFkzSXVhVzh2WW1sMFky
OXBiaTEzWVd4clpYUXZjM1ZqZFhKbExXSnBkR052Y
VcOdApkMkZzYkdWMELICNFhEVET4TURVeU1ESXhORE
OXTVZVWERUTXhNRFV4TORJeESETTFNVm93T1RFMO1
EVUdBMVVFCkKF4TXVKWE11YVdOeUxtbHZMMkpwZEdO
dmFXNHRKMkZ zYkdWMEwz TmxZM1Z5WTMxaWFYUmpiM
mx1TFhkaGJHeGwKZERCWk1CTUdCeXFHUOOOOUFNnRU
dDQ3FHUOOOOUF3RUhBMETBQk1. . .more

Vendorkey | -===- BEGIN PGP PUBLIC KEY

BLOCK----- \n\nmQINBGCnXR4BEADTUv10sJSI9P7
g/Uth/bVmvgDPyT3TvqubCmBaQXST01dZ97Am\n6x
ktWmDuHRde5tt1yLH/QnenRkRcDjNh1xhib/FLR5c
yADUTGTSxQjKnWBqirJdNh\nOwFL/ZBNY7i71vCtQ0
28VgxxiDJgrKknwzsvEeKXugWVRF14Bvb/vzUb4TiH
400Np\nTHxSq6U/e00J j6BVgMwOkXOHatjD4FVYbO
7zaWu+q96m12d3F31LQSGj0YE2dkcF\nXa/VR4Xuq
KQdUeD3RWGK2Qkr5zIBgkCbUJdngH+kzexTybXxAr+

...more ...
bD2\n=TRg8\n----- END PGP PUBLIC KEY
BLOCK----- \n

3. Create the Secure Bitcoin Wallet container registration file, as shown in Example 8-19.

Example 8-19 The secure_bitcoin_wallet.reg file: Editing the container registration file with all
parameters

{

"repository_name": "us.icr.io/bitcoin-wallet/secure-bitcoin-wallet",

"docker_username": "iamapikey",

"docker_password": "8vFwZ9yQIyG8iDIO0j2UYKRAWNh40i31-vBwAvcZd50DWS" ,

"envs_whitelist": ["RUNQ_ROOTDISK", "RUNQ RUNQENV", "RUNQ_SYSTEMD",
"IMAGE_TAG", "REGION", "PHASE", "LPAR_NAME", "CPC", "RUNQ_CPU", "RUNQ_MEM",
"POD","ZHSM", "APIKEY", "INSTANCE_ID", "IAM_ENDPOINT"],

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 359

360

"public_key id":
"25bd40b8729bb219ad6819b4d57371e4dc66d853cdf9c71698fb9b00593ba004" ,

"public_key":
"LSOtLSICRUdJTiBDRVJUSUZJQOFURSOtLS0tCk1JSUIwakNDQVV1ZOF3SUJBZOIRUEtIdndqSThBcW
gzSkF2YkpCQzBxVEFLQmdncWhrak9QUVFEQWpBNU1UY3cKT1FZRFZRUURFeTUXxY3k1cFkzSXVhVzh2W
W1sMFkyOXBiaTEzWVd4c1pYUXZjM1ZqZFhKbExXSnBkR052YVcOdApkMkZzYkdWMEICNFhEVEL4TURY
eUIESXhOREOXTVZvWERUTXhNRFV4ATORJeESETTFNVm93TIRFMO1EVUdBMVVFCkFATXVKWEL1YVdOelUx
tbHZMMkpwZ EdOdmFXNHRKMkZz Y kdWMEwz TmxZM1Z5WIMxaWFYUmp iMmx1TFhkaGJHeGwKZERCWk1CTU
dCeXFHUOOOOUFnRUADQ3 FHUOOOOUF3RUhBME1BQk1tamFDWFFCdnJyczkld2ZNandMVGdXcURnVgpIS
C9x0VpmQjJSTWFwcOdodDIxUEEvQXdshjUwQmlyVzBFMOhhcGd6T11yRIplcXptMTgzNW1BKytoelWp0
VEF6Ck1BNEdBMVVKRHAFQi93UUVBAO1GbORBVEJnT1ZIUIVFRERBS0JnZ3JCZOVGQLFjREF6QUICZ05
WSFINQkFmOEUKQWpBQU1Bb0dDQ3 FHUOOOOUJBTUNBMGtBTUVZQOLRQONhdVV2ZHFObEXxzUGZmalW1pSG
44M1IMdjRIUOXxnRNREZwpBSVNGRDQ1a INRSWhBUHNrTVV6QXhqa09jWit0UGdmaks5dFF5dHp2a3 FCK
1ZYRnRzaH1iQORiMgotLSOtLUVORCBDRVJUSUZJQOFURSOtLSO0tCg=="

"vendor_key": "----- BEGIN PGP PUBLIC KEY
BLOCK----- \n\nmQINBGCnXR4BEAD1Uv10sJSI9P7g/Uth/bVmvgDPyT3TvqubCmBaQXST01dZ97Am\
n6xktWmDuHRde5tt1lyLH/QnenRkRcDjNhixhib/FLR5cyADUTGFSxQjKnWBqirJdNh\nOwFL/ZBNY7i7
1vCtqo. .
niINdWkcDeAF8r/2aAFpLbdqP4w6MzBzkqZDevkCXbay ToGgKEYo4woCIn+yFhNg1\n2rNX3oWp61lv3
nJPqRWy1dmVTRr9C/YCGejsL/jTvjoXCCHIX47wzuPJ8FCORQC7H\nrW04nUsKcPOSOdWRyQtYqSiBw
ZCchcaAUlxUHPTHHcd4qTakMFcwHby T5NrRCox1\nPsuwMZymfz1LYL9cvfsAYgVr1CLXpcdAOUKwkO
/bFSpuPI2mi3g5Vf109671SPCY\nIjZF2sRwibD2\n=TRg8\n----- END PGP PUBLIC KEY
BLOCK----- \n"
}

You might notice in the environment allowlist that we authorized the four environment
variables that enable you to specify the connection to a specific IBM Hyper Protect Crypto
Services instance:

— ZHSM: The Enterprise Public Key Cryptography Standards (PKCS) #11 (EP11) endpoint
URL.

— APIKEY: The API key for the HPCS instance.
— INSTANCE_ID: The instance ID of the HPCS instance.

— IAM_ENDPOINT: The URL of an Identity and Access Management (IAM) endpoint, which
is optional. The default value https://iam.cloud.ibm.com is used if the endpoint is not
specified.

You also can generate the registration file by using environment variables on your
notebook after you retrieve the DOCKER_TRUST information from your build virtual server, as
shown in Example 8-20.

Example 8-20 Using the IMG, API_KEY, and GPG environment variables

$ IMG=us.icr.io/bitcoin-wallet/secure-bitcoin-wallet

$ API_KEY=azhejui-2313jklmgsdazoslqsd34al2kim2313

$ KEY=25bd40b8729bb219ad6819b4d57371e4dc66d853cdf9c71698fb9b00

$
PUB=LS0tLSICRUdJTiBDRVJIUZJQOFURSOtLOtCk1JSUIwakNDQVVIZOF3SUJBZOIRUEL IdndqSThBclW
g
XVhVzh2WW1sMFkyOXBiaTEzWVd4c1pYUXZjM1ZqZFhKbExXSnBkR0O52YVcOdApkMkZzYkdWME1CNFhE
VET4TURVeU1ESXhOREOXTVZVWERUTXhNRFVATORJeESETTFNVMI3T1RFMO1EVUdBMVVFCKFATXVKWEL
1YVdOeUxtbHZMMkpwZEdOdmFXNHRKMkZ zYkdWMEwz TmxZM1Z5W1MxaWFYUmpiMmx1TFhkaGJHeGwKZE
RCWk1CTUdCeXFHUOOOOUFnRUADQ3FHUOOOOUF3RUNBMETBQk1tamFDWFFCdndyczkld2ZNandMVGdXc
URNnVgpISCIx0VpmQjJSTWFwcOdodDTxUEEVQXdshjUwQmlyVzBFMOhhcGd6T1TyR1plcXptMTgzNW1B
KytoeWpOVEF6Ck1BNEdBMVVKRHAFQi93UUVBAO1GbORBVEINT1ZIU1VFRERBS0InZ3JCZOVGQTFjREF
6QU1CZ05WSFINQkFmOEUKQWpBQU1Bb0OdDQ3FHUOOOOUJBTUNBMGtBTUVZQOTRQONhdVV2ZHFObEXZUG

Securing Your Critical Workloads with IBM Hyper Protect Services

ZmaW1pSG44M1JIMdjRIUOXNRNREZwpBSVNGRDQ1a1NRSWhBUHNYTVV6QXhqa09jWit0UGdmaks5dFF5d
Hp2a3FCK1ZYRnRzaH11iQO0
$ GPG=$(gpg --armor --export myapp | sed -z 's/\n/\\n/g')

$ jq -n --arg API_KEY $API_KEY --arg IMG $IMG --arg KEY $KEY --arg PUB "$PUB"
--arg GPG "$GPG" '{ "repository_name": "\($IMG)", "docker_username" :
"iamapikey","docker_password" : "\($API_KEY)", "envs_whitelist":
["RUNQ_ROOTDISK", "RUNQ_RUNQENV", "RUNQ_SYSTEMD", "IMAGE_TAG", "REGION",
"PHASE", "LPAR_NAME", "CPC", "RUNQ_CPU", "RUNQ_MEM", "POD",], "public_key id":
"\ ($KEY)","public_key": "\($PUB)","vendor_key": "\ ($GPG)","ZHSM", "APIKEY",
"INSTANCE_ID", "IAM_ENDPOINT" }' > secure_bitcoin_wallet.reg

4. Create the registration file by using the gpg command in a terminal on Linux, as shown in
Example 8-21.

Example 8-21 Signing a registration file

$ gpg --encrypt --sign --local-user myapp --armor -r rtoa_destination
secure_bitcoin_wallet.reg

gpg: 8005C6CC3C619DEB: There is no assurance that this key belongs to the named
user

sub rsa4096/8005C6CC3C619DEB 2020-03-13 rtoa_destination
Primary key fingerprint: DB4C 5FCC DOA4 66F8 7A05 C2E1 190E A90A 5CCD DA4F5
Subkey fingerprint: 6B16 D151 FB1A 3EF2 D1CB 2551 8005 C6CC 3C61 9DEB

It is NOT certain that the key belongs to the person named
in the user ID. If you *really* know what you are doing,

you may answer the next question with yes.

Use this key anyway? (y/N) y

This registration file is used to provision an IBM Hyper Protect Virtual Servers instance by
using this container image.

Note: Make sure that the rtoa_destination public key is imported. Check your list of keys
by using the command gpg --1ist-public-keys. You should see the following lines:

pub rsa4096 2020-03-13 [SC]
DB4C5FCCDOA466F87A05C2E1190EA90A5CCDDAF5

uid [unknown] rtoa_destination

sub rsa4096 2020-03-13 [E]

If you do not see the line, see “Loading the rtoa_destination key” on page 358.

You should have a new (encrypted) file in your directory that is called
secure_bitcoin_wallet.reg.asc. This file is used as input by IBM Cloud to provision an
IBM Hyper Protect Virtual Servers instance by using your build container that is stored on
your registry.

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 361

Starting an IBM Hyper Protect Virtual Servers instance with your
container image

You can now securely deploy this application by using a description file that is signed by your
PGP key.

Without using an IBM Hyper Protect Crypto Services instance

To start the application in the US South region with the zsb006 resource group, run the
command that is shown in Example 8-22.

Example 8-22 Running the Secure Bitcoin Wallet application without an IBM Hyper Protect Crypto
Services instance

$ ibmcloud hpvs instance-create itso-bitcoinwallet lite-s dall3 --rd-path
secure_bitcoin_wallet.reg.asc -g zsb006 -i latest
0K

Provisioning request for service instance
"crn:vl:bluemix:public:hpvs:dall3:a/537544¢c2222297f40ed689e8473e7849:0d1e935¢c-25d2
-4a86-a463-fa40eb91c50d::"' was accepted.

To check the provisioning status run:

ibmcloud hpvs instance
crn:vl:bluemix:public:hpvs:dall3:a/537544c2222297f40ed689e8473e7849:0d1e935c-25d2-
4a86-a463-fa40eb91c50d: :

Using an IBM Hyper Protect Crypto Services instance
Complete the following steps:

1. Using the IBM Cloud console or CLI, retrieve your EP11 endpoint. In our example, we use
hpcs-smartcardreader, as shown in Example 8-23.

Example 8-23 Retrieving your IBM Hyper Protect Crypto Services endpoint address

$ ibmcloud resource service-instances

Retrieving instances with type service instance in resource group zsb006 in all
locations under account Lydia Parziale's Account as
jeanyves.girard@fr.ibm.com...

0K

Name Location State Type

hpcs-svc us-south active service_instance
hpcs-itso us-south active service_instance
hpcs-smartcardreader us-south active service_instance
kube-certmgr-c2j70q5d0341b80154p0 us-south active service_instance
hpvs-build dall0 active service_instance

$ ibmcloud resource service-instance hpcs-smartcardreader --output json | jq
-r '.[].extensions.endpoints.public' | sed 's/api/epll/’
https://epll.us-south.hs-crypto.cloud.ibm.com:11633

2. Create your IBM Hyper Protect Virtual Servers instance, as shown in Example 8-24 on
page 363.

You can pass the following four environment variables (ZHSM, APIKEY, INSTANCE_ID, and
IAM_ENDPOINT) as parameters while creating the virtual server by using the -e option.

362 Securing Your Critical Workloads with IBM Hyper Protect Services

Example 8-24 Creating your IBM Hyper Protect Virtual Servers instance in the dal13 data center in
the zsb006 resource group

$ export INSTANCE_ID=$(ibmcloud resource service-instance hpcs-smartcardreader
--output json | jq -r '.[].guid")

$ export APIKEY=8vFwZ9yQIyG8iDxxxxxxxh40i31-vBwAvcZd50DX

$ export ZHSM=$(ibmcloud resource service-instance hpcs-smartcardreader
--output json | jq -r '.[].extensions.endpoints.public' | sed 's/api/epll/')
$ export IAM_ENDPOINT=https://iam.cloud.ibm.com

$ ibmcloud hpvs instance-create itso-bitcoinwallet entry dall3 --rd-path
secure_bitcoin_wallet.reg.asc -g zsh006 -i latest -e ZHSM=$ZHSM -e
IAM_ENDPOINT=$IAM_ENDPOINT -e APIKEY=$APIKEY -e INSTANCE_ID=$INSTANCE_ID
0K

Provisioning request for service instance
‘crn:vl:bluemix:public:hpvs:dall3:a/537544¢c2222297f40ed689e8473e7849:dd00afh3-b
1le-41cc-b63d-4c65c3e5d05f:: "' was accepted.

To check the provisioning status run:

ibmcloud hpvs instance
crn:vl:bluemix:public:hpvs:dall3:a/537544c2222297f40ed689e8473e7849:dd00afb3-bl
le-41cc-b63d-4c65c3e5d05F::

Retrieving your IP address

Retrieve the IP address of your provisioned server by using the IBM Cloud console, as in
Figure 8-2, or by using the IBM Cloud CLI.

IBM Cloud

R rce list

itso-bitcoinwallet ©active Addtass 2 Details

Manage
Getting started

° Virtual server running smoothly
{8 Your virtual server

1 vCPUs 4 GiB 2 5 GiB 7 5 GIB

Entry Bf21/2021
Qg Connect
i 1 | IF a)
67.228.222.14 | 172.18.152.228 U]

Figure 8-2 Getting your service public IP address by using the IBM Cloud console

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 363

8.2.2 Using IBM Hyper Protect Secure Build Servers on-premises

In this scenario, we start the Secure Bitcoin Wallet application within an IBM Hyper Protect
hosting appliance that is installed and configured on a LinuxONE IBM Secure Service
Container (SSC) partition.

The Secure Bitcoin Wallet container is built by using the Secure Build process, and it is stored
in the same IBM container registry, as described in 8.2.1, “Using IBM Cloud Hyper Protect
with Bring Your Own Image” on page 350.

Prerequisites
You need the following items:

» A Secure Build Server (SBS) that is configured and running in an IBM Hyper Protect
Virtual Servers appliance on an on-premises system. The hpvs command on the CLI
allows connection to the host.

» An IBM Cloud container registry, as described in “Retrieving container image signatures
from your registry” on page 355.

» An IBM Cloud API key that is defined with access to the IBM Cloud Container Registry
service.

» A provisioned and initialized IBM Hyper Protect Crypto Services instance that can be
accessed with the same API key.

As an example, in our IBM Redbooks lab environment, we have the virtual servers that are
shown in Example 8-25.

Example 8-25 IBM Redbooks hosting appliance virtual servers

itso@rdbkhpvm:™~# hpvs vs Tist

o S S S e e e +
| NAMES | STATE | STATUS | IMAGE |
o S S e e e +
| demo_securebuild | running | Up 6 days |ibmzcontainers/secure-docker-build-...
| test-monitoring | running | Up 27 hours | ibmzcontainers/monitoring:1.2.3

| test-collectd | running | Up 27 hours | ibmzcontainers/collectd-host:1.2.3

R et B e itttk B e it +

itso@rdbkhpvm:™~# hpvs vs show --name demo_securebuild

Fomm e Fe e - +
| PROPERTIES | VALUES |
Fomm e Fe e - +

Name demo_securebuild

CPU 2

Memory 2048

State running

Status Up 3 hours

Networks Gateway:9.76.61.1

IPAddress:9.76.61.101
MacAddress:02:42:09:4c:3d:65
Network:external_network
Subnet:24

Ports

Quotagroups | [qg_securebuild]
Fommmr e Fem - +

364 Securing Your Critical Workloads with IBM Hyper Protect Services

Registries definition
For our example, we plan for the following actions:

» The Secure Build virtual server uploads the created container on to an IBM Cloud
Container registry.

» The hosting appliance pulls the container image from the same IBM Cloud Container
Registry when the virtual server is created.

» The Secure Build virtual server pulls the base image, as defined in the Secure Bitcoin
Wallet Dockerfile, from Docker Hub.

Define the following registry entries for both the IBM Cloud Container registry as itsoRepo
and Docker Hub as docker in the hosting appliance, as shown in Example 8-26.

Both registries use different credentials, as shown in Table 8-4.

Table 8-4 Container registries credentials

Registry type User Password
IBM Cloud Container Registry <API Key> jamapikey
Docker Hub Docker Hub username Docker Hub password

Example 8-26 Defining your container registries credentials within the hosting appliance

$ echo <8vFwZ9yQIyG Your API Key -vBwAvcZd5oDX> | hpvs registry add --name
itsoRepo --dct https://us.icr.io:4443 --url us.icr.io --user iamapikey

$ hpvs registry add --name docker --dct https://notary.docker.io:4443 --url
docker.io --user itsouser

$ hpvs registry list

Fomm e +
| REGISTRY NAME |
Fomm e +
| itsoRepo |
| docker |
Fomm e +

Building your container
Complete the following steps:

1. Create a Secure Build configuration file for the wallet_db.yaml file.
2. Specify the following parameters according to your own environment:

— The itsoRepo in the docker section for pull and push operations because we use an
IBM Cloud container registry to store our container image.

— The image name in the Docker section as a repo attribute, where you include the
namespace (bitcoin-wallet) that was created in the IBM Cloud registry container. In
our example, we used the following name:

repo: 'bitcoin-wallet/secure-bitcoin-wallet-hpvs'
— The IP address and certificates that are defined for your SBS in the sbs section.

— A public and private key pair that is used to authenticate the GitHub website. In our
example, the private key is stored as /home/itso/github/github_rsa.

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 365

366

— Thegit url repo in the github section of the Secure Bitcoin Wallet application:

git@github.com:IBM/secure-bitcoin-wallet.git

The IBM Cloud Object Storage configuration that you provision in IBM Cloud, as shown
in Figure 8-3. The configuration stores the build manifest files. In our example, we
named it itso-sbs. From the IBM Console, retrieve the endpoint URL and the CRN and
specify them in the manisfest cos. Specify the API key used to access this service as
well. We used the same key to provision the Hyper Protect Crypto Services in our
example.

IBM Cloud

Storage [itso-cos

|t50'5b5 Transfers Details Actions. ~

Getting started . .
= ° Bucket configuration >

Buckets
Objects
Jump to Show less ~
Configuration
e i ric e Bucket details Endpoints Versioning Key management Activity Tracker
Integrations Ne SysDig Archive rule Quota enforcement Retention policy Expiration rule
i s New!
Bucket details Show less ~
Connections Bucket name itso-sbs Total bytes 17.5 MB
Usage details Service instance cloud-object-storage Resiliency Regional
Total objects 6 Location eu-de
Plan
Storage class Smart Tier (I Date created 2021-05-27 8:28 AM

Cloud Functions trigger Disabled Learn more

Bucket instance CRN
This value identifies the service instance when listing or creating buckets via the APL. Learn maore

crnivl:ibluemix:public:cloud-object-storage:global:a/5375440222220746ed6B%eB47327849: dREDECOS-T405 - 4084 - ad9 [}
b-8056aa834878:bucket:itso-sbs

Endpoints Show less ~

Endpoints are used hand in hand with your credentials (i.e. keys, CRN, bucket name) to tell your service where to look for this bucket.
Depending on where your service or applications is located you will want to use one of the below endpoint types.

Private (1)
Use private endpoints to point applications or services that are hosted in the 1BM cloud (excluding Cloud Foundry services).

s3.private.eu-de.cloud-object-storage.appdomain. cloud

()

public @)
Use public endpeints to point applications or services that are hosted outside of the IBM cloud or for Cloud Foundry applications host:
in the IBM cloud.

-

s3.eu-de.cloud-object- storage.appdonain. cloud

Figure 8-3 IBM Cloud Object Storage service configuration

Your GPG keys in the signing_key section. For more information, see step 3a., “List
the GPG keys by running the following commands:” on page 311.

You can extract your GPG keys by using the commands that are shown in
Example 8-27.

Example 8-27 Retrieving your GPG keys after they are created

$ gpg --export-secret-keys --armor myapp > /home/itso/myapp.private
$ gpg --export --armor myapp > /home/itso/myapp.pub

Securing Your Critical Workloads with IBM Hyper Protect Services

— Specify the content_trust_base parameter as False because the Dockerfile of the
application specifies a non-trusted image that is pulled from Docker Hub. The image
should accept the following environment variables: ZHSM, APIKEY, INSTANCE_ID, and
IAM_ENDPOINT, which we specify in the env whitelist parameter.

Example 8-28 shows the wallet sb.yaml Secure Build configuration file.

Example 8-28 The wallet_sb.yaml Secure Build configuration file

secure_build_workers:

shs:
url: 'https://9.76.61.101"
port: '443'

cert path: '/home/itso/config/securebuild/keys/sbs.cert'
key path: '/home/itso/config/securebuild/keys/sbs.key'
regfile:
id: 'myapp'
github:
url: 'git@github.com:IBM/secure-bitcoin-wallet.git'
branch: 'master'
ssh_private_key path: '/home/itso/github/github_rsa'
recurse_submodules: 'False’
dockerfile path: './Dockerfile’
docker_build_path: './'
docker:
push_server: 'itsoRepo'
#base_server: 'docker'
pull_server: 'itsoRepo'
repo: ‘'bitcoin-wallet/secure-bitcoin-wallet-hpvs'
image_tag_prefix: 'latest’
content_trust_base: 'False'
content_trust_base: 'True'
manifest _cos:
bucket_name: itso-sbs
api_key: 8vFwZ9yQIyG8iDIO dWNh40i31-vBwAvcZd50DX
resource_crn:
'ern:vl:bluemix:public:cloud-object-storage:global:a/537544¢c2222297f40ed689e
8473e7849:d06b0c95-7405-4084-ad9b-8056aa834878: bucket:itso-sbs'
auth_endpoint: https://iam.cloud.ibm.com/identity/token
endpoint: https://s3.eu-de.cloud-object-storage.appdomain.cloud
env:
whitelist: ["ZHSM", "APIKEY","INSTANCE_ID","IAM_ENDPOINT"]
build:
args:
signing_key:
private _key path: '/home/itso/myapp.private'
public_key path: '/home/itso/myapp.pub'

3. Build the container by using the file that is named wallet_sb.yaml (from our home
directory in this example), as shown in Example 8-29.

Example 8-29 Building your containers by using Secure Build

itso@rdbkhpvm:™# hpvs sb init --config wallet_sb.yaml
{"status":"0K"}

itso@rdbkhpvm:™~# hpvs sb build --config wallet_sb.yaml
S Fmm e +

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 367

| status | OK: async build started |

S Fmm e +
idgddgddgasdaddadaddsddadsdddasdaddaddaddgddsddasdadaddsddaddddgagasdadidia
idgddgddasdaddaddaddsddadsdddasdaddaddaddaddsddaddadaddsdaddadgagasdaddia
ifgddgddasdaddaddaddsddadsdddasdaddaddaddaddpddasdadaddsddaddadgdagasdaddia
ifgddgddasdaddaddaddsddadsdddasdaddaddaddaddsddasdadtaddsddaddadgddgagdadidia
ifgddgddgasdaddadaddsddadsdddasdaddaddaddaddsddaddadtaddsddaddadgagasdaddia
idgddgddgssgaddaddaddsddaddadddasagtadadsddaddaddaddaddiad

Interactive build timed out but build is in progress, check "hpvs sb Tog"
command to check the bu

itso@rdbkhpvm:™# hpvs sb log --config wallet_sb.yaml

t-369f09c.2021-05-27_10-38-32.831022.s1g.thz

2021-05-27 10:38:47,552 root INFO manifest bucket_name: itso-sbs
2021-05-27 10:38:47,553 root INFO cleaning up the build environment
2021-05-27 10:38:47,553 root INFO github_dir=secure-bitcoin-wallet
2021-05-27 10:38:47,556 root INFO completed a build

You might see the following messages in the build log regarding a rate limit issue:

2021-05-27 08:33:23,557 root INFO run: Step 1/47 : FROM
node:10.16.0-stretch-sTim AS node
2021-05-27 08:33:24,025 root INFO run: toomanyrequests: You have

reached your pull rate limit. You may increase the 1imit by authenticating and
upgrading: https://www.docker.com/increase-rate-T1imit

If so, you can try to use your Docker hub credentials by completing the following steps:
a. Modify the Secure Build file wallet_sb.yaml to specify the following settings:

base_server: 'docker'
content_trust_base: 'True'

b. Run the build again until it fails:

hpvs sb update --config wallet_sb.yaml
hpvs sb build --config wallet_sb.yaml

¢. Modify the Secure Build file wallet_sb.yaml to specify the following settings:

#base_server: 'docker'
content_trust base: 'False'

d. Relaunch the build:

hpvs sb update --config wallet_sb.yaml
hpvs sb build --config wallet sb.yaml

. When the build completes, register the repository in the hosting appliance by using the
commands that are shown in Example 8-30.

Example 8-30 Registering the repository in the hosting appliance

$ ibmcloud cr image-list
Listing images...

Repository Tag Digest Namespace Created Size
Security status

us.icr.io/bitcoin-wallet/secure-bitcoin-wallet-hpvs latest 2c4fef3ce9c8 bitcoin-wallet 6 days ago 470 MB 6 Issues
us.icr.io/bitcoin-wallet/secure-bitcoin-wallet-hpvs latest-369f09c a06c8380e329 bitcoin-wallet 1 hour ago 470 MB 6 Issues

hpvs sb regfile --config wallet_sh.yaml --out wallet.enc
Enter Signing Private key passphrase:

hpvs repository register --pgp=wallet.enc --id=SecureBitcoinWallet
Fomm e R ettt +

368 Securing Your Critical Workloads with IBM Hyper Protect Services

| repository name | us.icr.io/bitcoin-wallet/secure-bitcoin-wallet-hpvs |
| runtime | rung

R ittt e ettt Fommmmm e +
| REPOSITORY ID | REPOSITORY NAME | RUN TIME |
R ittt T ittt Fommmmm e +
HpvsopBaseSSH	docker.io/ibmzcontainers/hpvsop-base-ssh	rung
Monitoring	docker.io/ibmzcontainers/monitoring	rung
SecureDockerBuild	docker.io/ibmzcontainers/secure-docker-build	rung
Securewaliet	us.icr.io/bitcoin-wallet/secure-bitcoin-wallet-hpvs-new	rung
CollectdHost	docker.io/ibmzcontainers/collectd-host	runc
+

IBM Cloud

Storage | itso-cos [

it50'5b5 Transfers Details

Getting started

Objects

Buckets

Objects

Configuration

Access policies 5 ENCOUrag:

API or an SDK.

it incomplete uploads using

Integrations New!

Endpoints Q. Prefix filte [&l Upload

Service credentials N
1 Object name Archived (T Size Last modified
Ceonnections

. 2 21-05-27 12:2
Usage details O manifest.us.icrio.bitcoin-wall... 5-27_10-24-41.337624.sig.tbz 29 2021-05-2712:24

- ME PM
Plan
2 21-05-27 12:35
[0 manifestus.icrio.bitcoin-wall... 5-27_10-35-13.486888.sig.thz ;,'g 233‘1 psRTAzEs
R - 29 2021-05-2712:38
[0 manifestus.icrio.bitcoin-wall... 5-27_10- .thz ME BM
manifest.us.icrie.bitcoin-wall... 5-27_07-29-55.077694.5ig.tbz y 021-05-27 9:30 AM
] IL... 5-27_07-29-55.077694 Fr; 2021-05-27 9:30 AM
2 21-05-27 10:25
[0 manifestus.icrio.bitcoin-wall... 5-27_08-24-52.710594.5ig.thz F,'Z i'ﬁ{l pearaes
[N — 29 2021-05-2710:29
[0 manifestus.icrio.bitcoin-wall... 5-27_0 .tbz ME AM

! Dragand drop

Figure 8-4 The build manifest files after many successful builds

Starting your container on the hosting appliance

Create a storage instance and start your container by using the hpvs vs create command, as
shown in Example 8-31.

Example 8-31 Starting the Secure Wallet application on the hosting appliance

hpvs network show --name external_network

Fomm = Fer e - +
| PROPERTIES | VALUES |
Fomm = Fer e - +
Name	external network
Driver	macvlan
Containers	[demo_securebuild]
1PAM	Gateway:9.76.61.1
	Subnet:9.76.61.0/24

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 369

370

| ParentDevice | encle26 |
| Scope | Tocal |
S SRR +

hpvs quotagroup create --name itso --size=200GB
S o e e +

| PROPERTIES | VALUES |

Name itso

Filesystem | btrfs

Passthrough | false

Pool1ID 1v_data_pool

Size 200 GB

Containers |
Available 190 GB

hpvs vs create --name itsowallet --repo SecureWallet --tag latest --cpu 1 --ram
4048 --quotagroup "{quotagroup = itso, mountid = new, mount = /newroot,

filesystem = btrfs, size = 25GB}" --network "{name = external_network,ip =
9.76.61.150}"
--env={IAM_ENDPOINT=$IAM_ENDPOINT,ZHSM=$ZHSM,APIKEY=$APIKEY,INSTANCE_ID=$INSTANCE_
1D}
oo S +
| PROPERTIES | VALUES
oo S +
Name itsowallet
CPU 1
Memory 4048
State running
Status Up Less than a second
Networks MacAddress:02:42:09:4c:3d:96
Network:external_network
Subnet:24
Gateway:9.76.61.1
IPAddress:9.76.61.150
Ports
Quotagroups | [itso]
oo S +

Make sure that the environment variables are defined in your environment, as shown
previously in Example 8-24 on page 363. These variables are used as parameters by the
container to specify which IBM Hyper Protect Crypto Services instance that it should connect
to.

We specified the IP address 9.76.61.150 in the hpvs vs create command for this virtual
server. This address was the IP address from our IBM Redbooks lab environment.

Securing Your Critical Workloads with IBM Hyper Protect Services

8.2.3 Using IBM Cloud Hyper Protect Secure Build Server

The procedure for this Secure Bitcoin Wallet application is documented at GitHub.

Tool installation

Using the SBS on the IBM Cloud requires that you install Python tools on your workstation so
that you can build, configure, and use the SBS.

Example 8-32 shows the set of commands you use to install the Python tools if you are
running Ubuntu on your notebook.

Example 8-32 Tool installation for a Linux notebook

$ apt-get update
$ apt-get install python3 python3-pip
$ python3 -m pip install -U pip

$ git clone git@github.com:ibm-hyper-protect/secure-build-cli.git
$ cd secure-build-cli
$ pip3 install -r requirements.txt

Creating your Secure Build instance
Create a file that is named sbs-config.json, as shown in Example 8-33.

Example 8-33 The sbs-config.json file

{
"CICD_PUBLIC_IP": "",

"CICD_PORT": "443",
"IMAGE_TAG": "1.3.0",
"GITHUB_KEY_FILE": "~/github/github_rsa",
"GITHUB_URL": "git@github.com:IBM/secure-bitcoin-wallet.git",
"GITHUB BRANCH": "master",
"CONTAINER NAME": "SBContainer",
"REPO_ID": "sbs",
"DOCKER_REPQ": "bitcoin-wallet/secure-bitcoin-wallet-sbscloud",
"DOCKER_BASE_SERVER": "",
"DOCKER_PUSH_SERVER": "us.icr.io",
"DOCKER_USER": "iamapikey",
"DOCKER_PASSWORD": "8vFwZ9yQIyG8iDIO0j2 <your IBM CLoud API key >wAvcZd50DX",
"IMAGE_TAG_PREFIX": "Tatest",
"DOCKER_CONTENT_TRUST_BASE": "False",
"DOCKER_CONTENT_TRUST_BASE_SERVER": "",
"DOCKER_RO_USER": "iamapikey",
"DOCKER_RO_PASSWORD": "8vFwZ9yQIyG8iDIO0j2 <your IBM CLoud API keywAvcZd50DX",
"DOCKER_CONTENT_TRUST_PUSH_SERVER": "https://us.icr.io:4443",
"ENV_WHITELIST": [
"ZHSM",
"APIKEY",
"INSTANCE_ID",
"IAM_ENDPOINT"
1,
"ARG": {}

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 371

https://github.com/ibm-hyper-protect/secure-build-cli

You should have SSH key-authenticated access to the GitHub website. Specify your private
key as the GITHUB_KEY_FILE attribute.

To use an IBM Cloud Container Registry, specify the address depending on your IBM Cloud
region where it was created for the DOCKER_PUSH_SERVER and
DOCKER_CONTENT_TRUST_PUSH_SERVER attributes. For the root user password, specify
iamapikey and your API key for DOCKER_USER, DOCKER_PASSWORD, DOCKER_RO_USER, and
DOCKER_RO_PASSWORD.

For the Secure Bitcoin Wallet application, DOCKER_CONTENT_TRUST_BASE must be set to False
because the base image that is specified in the Dockerfile in the source code is not trusted.

For the DOCKER_REPO attribute, select a container image name and add the namespace that
you created for your IBM Cloud registry, as described in “Creating a container registry on IBM
Cloud” on page 352.

The ENV_WHITELIST attribute specifies the list of environment variables that you use to specify
the IBM Hyper Protect Crypto Services endpoint to the Secure Bitcoin Wallet application.

Starting your Secure Build Server on IBM Cloud
Complete the following steps:

1. Create your certificates, as shown in Example 8-34. This command also updates your
sbs-config. json file with two new parameters: UUID and SECRET.

Example 8-34 Creating certificates

$./build.py create-client-cert --env shs-config.json

INFO: _main__ :parameter file sbhs-config.json renamed to
sbs-config.json.2021-05-27 16-22-50.975567

INFO:root:client certificate: generating client CA and certificate

2. To retrieve the certificate authority (CA) and client certificates that will be used as
parameters to star the SBS, run the command that is shown in Example 8-35.

Example 8-35 Retrieving the -e CLIENT_CRT and -e CLIENT_CA parameter values

$./build.py instance-env --env sbs-config.json

INFO:root:client_certificate: using supplied pem files
client_crt_key=.SBContainer-edc53f02-519c-4d4b-a291-8a9dd766ed80
capath=./.SBContainer-edc53f02-519c-4d4b-a291-8a9dd766ed80.d/client-ca.pem
cakeypath=./.SBContainer-edc53f02-519c-4d4b-a291-8a9dd766ed80.d/client-ca-key.p
em

-e

CLIENT CRT=LSOtLS1CRUdJTiBDRVJUSUZJQOFURSOtLSOtCk1JSUR3RENDQXFpZOF3SUJBZ01FQk5C
djTG....d3g5NXJsbWhpUToxN3A1Zm52MW9uZmltKzdURUsxbkdTTUdtYUhYeUEKTWXxxRjh1dzFydWx
SdUdietLUVORCBDRVJUSUZJQOFURSOtLS0tCg== -e

CLIENT CA=LSOtLS1CRUdJTiBDRVJUSUZJQOFURSOtLSOtCk1JSUR4akNDQXE2Z0F3SUJBZ01FQS9hM
TRqGCcOTFRnpjM1YwY3pFUO1CQUABMVVFQXd3STEyeHBaVzUwSUVOQk1CNFhEVET4Ck1EVXT10ekUyTWp
JMU1Wb1h....THOXcwQkFRc0ZBQUIDQVFFQW8wZVpwVGFsCmhpN3V1bzJHO0GZ1a05Dc1FTcm5xYmJFR
zRhZGdXcGFTO9Ci0tLSOtRUSEIENFUTRJRKTDQVRFLSOtLSOK

372 Securing Your Critical Workloads with IBM Hyper Protect Services

3. Start the SBS on IBM Cloud, as shown in Example 8-36.

Example 8-36 Starting the IBM Cloud build server with the CLIENT_CRT and CLIENT_CA
parameters

$ ibmcloud login --sso -g zsh006

$ ibmcloud hpvs instance-create SBContainer entry dall2 --rd-path
"secure_build.asc" -i 1.3.0 -g zsb006 -e
CLIENT_CRT=LSOtLS1CRUdJTiBDRVJUSUZJQOFURSOtLSOtCk1JSUR3RENDQXFpZOF3SUJBZ01FQk5C
dj1G....d3g5NXIsbWhpUloxN3A1Zm52MW9uZmltKzdURUsxbkdTTUdtYUhYeUEKTWxxRjh1dzFydWx
SdUdietLUVORCBDRVJUSUZJQOFURSOtLSOtCg== -e
CLIENT_CA=LSOtLSICRUdJTiBDRVJUSUZJQOFURSOtLSOtCk1JSUR4akNDQXE2Z0F3SUJBZ01FQS9hM
TRgGcOTFRnpjM1YwY3pFUO1CQUdBMVVFQXd3STEyeHBaVzUwSUVOQk1CNFhEVET4Ck1EVX10ekUyTWp
JMUIWb1h....THOXcwQkFRc0ZBQUIDQVFFQW8wZVpwVGFsCmhpN3V1bzJH0GZ1a05Dc1FTcm5xYmJFR
zRhZGdXcGFTO9Ci0tLSOtRUSEIENFUTRJRKTDQVRFLSOtLSOK

Provisioning request for service instance
‘crn:vl:bluemix:public:hpvs:dall2:a/537544c2222297f40ed689e8473e7849:0a91a%ef-7
d69-488d-b9b8-2292h46d3997::"' was accepted.

To check the provisioning status run:

ibmcToud hpvs instance
crn:vl:bluemix:public:hpvs:dall2:a/537544c2222297f40ed689e8473e7849:0a91a9ef-7d
69-488d-b9b8-2292b46d3997: :

We specify the zsb006 resource group and da112 data center in this example. Modify these
parameters according to your own environment.

The secure_build.asc IBM Cloud registration file of the SBS can be retrieved at
Protecting your image build.

4. Retrieve the IP address of your Secure Build container and specify this address for the
CICD_PUBLIC IP attribute of your sbs-config.json file, as shown in Example 8-37.

Example 8-37 Retrieving the Secure Build service IP address

$ ibmcloud hpvs instance SBContainer

Getting instance details for SBContainer
(crn:vl:bluemix:public:hpvs:dall2:a/537544c2222297140ed689e8473e7849:0a91a9ef-7
d69-488d-h9b8-2292b46d3997::) ...

Name SBContainer

CRN
crn:vl:bluemix:public:hpvs:dall2:a/537544¢c2222297f40ed689e8473e7849:0a91a9ef-7d
69-488d-b9b8-2292b46d3997: :

Location dall2
Cloud tags

Cloud state active
Server status running
Plan Entry

Public IP address 52.116.250.234
Internal IP address 172.18.88.227

Boot disk 25 GiB

Data disk 75 GiB

Memory 4096 MiB

Processors 1 vCPUs

Image type self-provided

Image 0S self-defined

Image name ibmzcontainers/secure-docker-build:1.3.0

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 373

https://cloud.ibm.com/docs/hp-virtual-servers?topic=hp-virtual-servers-imagebuild

374

Environment
CLIENT_CA=LSOtLS1CRUdJTiBDRVJUSUZJIQOFURSOtLSOtCk1JSUR4akNDQXEZ2Z0F3SUJBZ01FQS9hM
1Rqg...
CLIENT_CRT=LSOtLS1CRUdJTiBDRVJUSUZJQOFURSOtLSOtCk1JSUR3RENDQXFpZOF3SUJBZ01FQk5C
djl....

Last operation create succeeded
Last image update -
Created 2021-05-27

Generating IBM Cloud Secure Build Server certificates
To finalize the installation, run the commands that are shown in Example 8-38.

Example 8-38 Creating the IBM Cloud Secure Build Server certificates

$./build.py status --env sbs-config.json --noverify
INFO: _main__ :status: response={
Ilstatusll: nn

}

$./build.py get-server-csr --env shs-config.json --noverify
INFO: _main__:get-server-csr: response={

"csr": Me---- BEGIN CERTIFICATE
REQUEST----- \nMIIDADCCAegCAQAwgZgxCzAJBgNVBAYTATVTMQswCQYDVQQIDAJOWTEPMAOGALUE\nBw
wGQXJtb25rMTQwMgYDVQQKDCtJIbnR1cm5hdG1vbmFsIEJ1c2TuZXNzIELhY2hp\nbmVzIENvcnBvcmFOaW
9uUMRYwFAYDVQQLDA1IeXB1ciBQcm90ZWNOMROWGWYDVQQD\nDBRTZWN1cmUgQnVpbGQgU2Vydm1jZTCCAS
IwDQYJKoZIhvcNAQEBBQADggEPADCC\nAQoCggEBAMCcS162iwZ8BQnQBQrv72qpuCGMT+DHpP920m3T51G
nVzmLjd3STgyNY\nw41gAI9PoQ4vytAFOvAzevY5eVI/CYnciOAd886YSWiNYUfLuL+LFOBZzYXccj5U\n
h+W+B2jmQwhTQLcU9SSs0baiCutf01xhQ1P2kNE5Sy+C/zjQYT1bDkiZCjE+9yX8r\n/y+148ind+pIwEal
6gBMMLOL6psI4BA7ICDTIalwOCt2K07JD8pnPigXx6etDiow\n90Eb3jTAtNIEAtzg7nk9Zd07VIMLewTn
ZBpAXDnEwL/TdD3PiurJAthVp284pSVo\naMWYoTaHHxA+zZ3T7ahCzKV8hGaTIucCAwWEAAaAiMCAGCSqG
SIb3DQEJDjETMBEW\nDwYDVRORBAgwBoCENHT66jANBgkghkiGIwOBAQs FAAOCAQEAWVWESq61NPO7nEwe
\nJCtuN2YKqrS4/b7D7F20ve0VQMaLsAyrhiZfM1rFbPvfJo4NtZWdoGbaU+s007Df\n8eoUKDZAy0frCg
aEvgcPnJCosrUI0/t7QUmxz+YAwbeiwWrG2VI1cST11bd+3LOW\nehlhsozgGOINj610sngnIxOKRPraqr
wBSImnGmUqV62011yBpjthMDRMfjuldt+J\nqpWf2+7sWpwvKZZwzotN6AgXF3Kc7z9AbH+xuFalQqkt00
dCk07Dot94NYp0+0CVA\nt7zrdBh2cuJSfyEUIMgQOAFHK1107JzkWJ4k9KiNX8I/nUImrQm9uWla/3npRG
XR\n/GCSYA==\n----- END CERTIFICATE REQUEST----- \n"
}

$./build.py sign-csr --env shs-config.json

$./build.py post-server-cert --env sbs-config.json --noverify
INFO: _main__:post-server-cert: response={

"status": "OK"
}

$./build.py status --env sbs-config.json
INFO: _main__ :status: response={
"status": "restarted nginx"

}

Securing Your Critical Workloads with IBM Hyper Protect Services

Building your container image
You can now build a container image by using the commands that are shown in
Example 8-39. The container uses the specification of the shs-config.json file.

Example 8-39 Building your container: An ideal case with no error

$./build.py init --env sbs-config.json !
INFO:__main__:init: response={

"status": "OK"
}
$./build.py build --env sbs-config.json @ and [
INFO: _main__:build: response={

"status": "OK: async build started"

}

$./build.py status --env shs-config.json E
INFO:__main__:status: response={

"build_image_tag": "1.3.0",

"build_name":
"us.icr.io.bitcoin-wallet.secure-bitcoin-wallet-sbscloud.latest-369f09c.2021-05-27
_16-58-09.553022",

"image_tag": "latest-369f09c",

"manifest_key gen": "soft_crypto",

"manifest_public_key":
"manifest.us.icr.io.bitcoin-wallet.secure-bitcoin-wallet-sbscloud.latest-369f09c.2
021-05-27_16-58-09.553022-pubTlic.pem",

"status": "success"

}

In Example 8-39, the following steps take place:
Initialize the build.

A Start the build and check the status.

Monitor the build log if necessary.

[Restart the build if necessary.

You can check your build log by using the command that is shown in Example 8-40.

Example 8-40 Checking whether your build has any problems

$./build.py log --log build --env sbs-config.json

When the build is successful, you can check that the image was pushed to your IBM Cloud
Container Registry by using the command that is shown in Example 8-41.

Example 8-41 Listing your container images in the IBM Cloud Container Registry

$ ibmcloud cr image-list
Liste des images...

Référentiel Balise Condensé Espace de
nom Créé Taille Statut de sécurité
us.icr.io/bitcoin-wallet/secure-bitcoin-wallet-shscloud Tlatest c27bla7d429b

bitcoin-wallet 1 hour ago 470 MB 6 problémes
us.icr.io/bitcoin-wallet/secure-bitcoin-wallet-shbscloud Tatest-369f09c c27bla7d429b
bitcoin-wallet 1 hour ago 470 MB 6 problémes

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 375

Creating your registration file
Create a container registration file by using the command that is shown in Example 8-42.

The key ID parameter is your GPG “vendor” key that is stored in your PGP wallet. To create or
retrieve an existing key, see “Creating your vendor GPG keys” on page 358.

Example 8-42 Creating your registration file: myapp is the key identifier in your GPG wallet

$./build.py get-config-json --env sbs-config.json --key-id myapp
INFO: _main__:a json config file has been written to sbs.enc.

sbs is specified by using the REPO_ID attribute of the shs-config. json file.

The registration file sbs.enc is used to provision the image as input to the ibmcloud hpvs
command. The file can be decrypted only by IBM Cloud, and it includes the deployment file
that is signed by your GPG key.

Starting your application

You can now start your Secure Bitcoin Wallet container by using the commands that are
shown in Example 8-43, where we create the virtual server in the dal12 data center and
zsb006 resource group. We name the virtual server securewallet.

Be sure that the environment variables that are used to specify the connection to the

IBM Hyper Protect Crypto Services are defined in your environment, as shown in

Example 8-24 on page 363. The environment variables are specified with the -e option in the
container environment. Also, specify the image tag.

Example 8-43 Starting your securely built Secure Bitcoin Wallet application on IBM Cloud

$ ibmcloud hpvs instance-create securewallet entry dall2 --rd-path shs.enc -i
latest -g zsb006 -e ZHSM=$ZHSM -e IAM_ENDPOINT=$IAM_ENDPOINT -e APIKEY=$APIKEY -e
INSTANCE_ID=$INSTANCE_ID

Provisioning request for service instance
‘crn:vl:bluemix:public:hpvs:dall2:a/537544¢c2222297f40ed689e8473e7849:97e92922-bf05
-4fb0-9284-7a7d7ahd220b::"' was accepted.

To check the provisioning status run:

ibmcToud hpvs instance
crn:vl:bluemix:public:hpvs:dall2:a/537544c2222297f40ed689e8473e7849:97e92922-bf05-
4fb0-9284-7a7d7abd220b: :

$ ibmcloud hpvs instance securewallet

Getting instance details for securewallet
(crn:vl:bluemix:public:hpvs:dall2:a/537544c2222297f40ed689e8473e7849:97e92922-bf05
-4fb0-9284-7a7d7abd220b::) ...

Name securewallet

CRN
crn:vl:bluemix:public:hpvs:dall2:a/537544c2222297f40ed689e8473e7849:97€92922-bf05-
4fb0-9284-7a7d7abd220b: :

Location dall2
Cloud tags

Cloud state active
Server status running
Plan Entry

Public IP address 52.116.250.148
Internal IP address 172.18.88.228

376 Securing Your Critical Workloads with IBM Hyper Protect Services

Boot disk 25 GiB

Data disk 75 GiB

Memory 4096 MiB

Processors 1 vCPUs

Image type self-provided

Image 0S self-defined

Image name

us.icr.io/bitcoin-wallet/secure-bitcoin-wallet-shscloud:Tatest

Environment INSTANCE_ID=269dad25-4ae9-4f55-9dfe-d0036fdelf38
ZHSM=https://epll.us-south.hs-crypto.cloud.ibm.com:11633
APTKEY=8vFwZ9yQIyG8i.....ccvvvvuen.n. 40131-vBwAvcZd50DX
IAM_ENDPOINT=https://iam.cloud.ibm.com

Last operation create succeeded

Last image update -

Created 2021-05-27

8.3 Testing the Secure Bitcoin Wallet application

After you use one of the three deployment methods in 8.2, “Building the Secure Bitcoin Wallet
application container” on page 350, retrieve the IP address of the IBM Hyper Protect Virtual
Servers instance that runs the Secure Bitcoin Wallet application y completing the following
steps:

1. Start a web browser on your notebook and open https://<ip-of-your-HPVS>/electrumto
access the Electrum wallet. You should see the Electrum wallet page, as shown in
Figure 8-5.

Secure Bitcoin Wallet on IBM LinuxONE Login Register

Login
E-Mail Address =2
Password -]

Remember Me

Forgot Your Password?

Figure 8-5 Login page of the Electrum wallet

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 377

378

2. Select Register and register a user, as shown in Figure 8-6.

Secure Bitcoin Wallet on IBM LinuxONE Login Register

Register
Name Alice
E-Mail Address alice@inwonderland.com
Password | eeeeees

Confirm Password | eeeeeee

Figure 8-6 Registering a user to the Electrum wallet

. After you click Register, you are automatically logged on as the user that you registered,

and you will see a window that is like Figure 8-7.

Secure Bitcoin Wallet on IBM LinuxONE Alice ~

Wallet

Figure 8-7 User’s login view

. Click the Wallet tab, and you see the page that is shown in Figure 8-8 on page 379. Enter

a Wallet password and leave the Seed field blank. Then, click Create wallet. After a few
seconds, you see the following message:

Your wallet created! Load your wallet after recording your seed.

You also see that the seed field is populated now. Record your seed value.

Securing Your Critical Workloads with IBM Hyper Protect Services

Secure Bitcoin Wallet on IBM LinuxONE Alice ~

Wallet

Please create your wallet! Multisig wallet

Your wallet created! Please load your wallet after recording your seed.

Wallet password (Please input if you want to encrypt your wallet)

Seed (Please input if you already have a seed)

bomb income antique bench render oppose crunch cube trip mixed minor face @

Load wallet

Figure 8-8 Your wallet was created view

Note: You can also choose to create a multi-signature wallet (multisig wallet), which
allows another person to cosign the wallet with you. You need your cosigner’s public
certificate to create this type of wallet.

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 379

5. After you record your seed information, click Load wallet. You see the window that is
shown in Figure 8-9.

Secure Bitcoin Wallet on IBM LinuxONE Alice ~

Wallet

Please create your wallet! Multisig wallet

Your wallet loaded! Please reload to look at your wallet.

Wallet password (Please input if you want to encrypt your wallet)

Seed (Please input if you already have a seed)

bomb income antique bench render oppose crunch cube trip mixed minor face W

Figure 8-9 Wallet loaded

6. Reload (press the F5 key) the wallet on your browser. Wait a few seconds, and then your
test wallet is displayed, as shown in Figure 8-10.

Secure Bitcoin Wallet on IBM LinuxONE Alice ~

Histoy ~ Requests Receive Send Sign UsD @~

Balance: 0 BTC (0.00 USD) 1 BTC~7146.6 USD Electrum 3.3.6 | Synchronized: yes

Figure 8-10 Wallet home page

7. Go to the Receive tab of the wallet and copy the receiving address. In the example that is
shown in Figure 8-11, the receiving address is myBQabMFy528pr9Se4JJppszhFhjTWRed1.

Secure Bitcoin Wallet on IBM LinuxONE Alice ~

History Requests Receive Send Sign UsD @) v

Receiving address

myBQabMFy528pr9Se4JJppszhFhjTWRedl Copy
Memo
2
Amount in BTC Amount in USD Expires
0 BTC 0 usbD Never v
Balance: 0 BTC (0.00 USD) 1 BTC~7176.38 USD Electrum 3.3.6 | Synchronized: yes

Figure 8-11 Copying the wallet’s receiving address

8. Use the Bitcoin Testnet Faucet to test receiving and sending Bitcoin to the testnet.

380 Securing Your Critical Workloads with IBM Hyper Protect Services

https://bitcoinfaucet.uo1.net/send.php

9. Paste your wallet’s receiving address into the Bitcoin address box, as shown in
Figure 8-12. Enter the number of Bitcoins that you want to send from the testnet to your
wallet, and click Send testnet bitcoins (see Figure 8-12).

Bitcoin Testnet Faucet

Current wallet balance is B 476.225. You can get up to B 0.00084.

Stop seeing this ad |

Bots are not allowed here

B matrc6JiKGgBRS2v8a14VT4hyhfhvYyKsh 0.0001

Figure 8-12 Bitcoin testnet to test receiving and sending Bitcoin to the test network

10.Return to the test wallet view and go to the History tab. You see that the transaction is in
the test wallet, as shown in Figure 8-13.

History Requests Receive Send Sign UsD) ~

#Date Transaction Amount Balance

---- 9581e4585d626c1990b24e5dc9117b5d395dfbbf@42450092390dc463a51886a 0.0001 0.0001

Balance: 0 BTC (+ 0.0001 BTC unconfirmed) (0.00 USD) 1 BTC~7195.38 USD Electrum 3.3.6 | Synchronized: yes

Figure 8-13 Wallet History view to see the receive transaction

11.After waiting a few minutes, you see a green checkmark next to the transaction, which
indicates that the transaction was committed to the Bitcoin Testnet (see Figure 8-14).

Secure Bitcoin Wallet on IBM LinuxONE Alice ~

History Requests Receive Send Sign USD @) v

Date Transaction Amount Balance

v 2019-12-20 22:03 9581e4585d626c1990b24e5dc9117b5d395dfbbf042450092390dc463a51886a 0.0001 0.0001

Balance: 0.0001 BTC (0.72 USD) 1 BTC~7187.74 USD Electrum 3.3.6 | Synchronized: yes

Figure 8-14 Wallet History view to see the committed receive transaction

12.You also see the previous transaction in the Transaction history on the Bitcoin Testnet
Faucet page (see Figure 8-15).

9581e4585d626c1990b24e5dc9117b5d395dfbbf@42450092390dc463a51886a Fri, 20 Dec 2019 22:02:30
mqtrc6JiKGqBRS2v8a14VT4hyhfhvYyKsh -0.0001
5 confirmations 0.00000234 fee

Figure 8-15 Bitcoin Testnet Faucet transaction history showing the send transaction

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 381

https://bitcoinfaucet.uo1.net/send.php
https://bitcoinfaucet.uo1.net/send.php

382

13.Test sending the money back to the address at the Bitcoin Testnet page. The Testnet
address that is listed on the web page is 2NGZrVvZG92qGYqzTLjCAewvPZ7JEBS8VXE.

As shown in Figure 8-16, paste that address into the Destination address field, enter the
wallet password that was set when the wallet was registered, and click Max to return
everything in the wallet. You see that it is returning only 0.00009734 Bitcoins because a
small transaction fee was deducted when the wallet received the Bitcoins.

History ~ Requests Receive = Send Sign usD @®) ~

Destination address

2NGZrWZG92qGYGZTLICAeWVPZ7JEBSBVXE -]

Wallet password

------- [}
Amount in BTC Amount in USD
0.00009734 BTC 0.7 usb A Max A Send
Partial transaction
Copy
Signed transaction
Balance: 0.0001 BTC (0.72 USD) 1 BTC~7183.18 USD Electrum 3.3.6 | Synchronized: yes

Figure 8-16 Sending Bitcoins to the testnet address

14.After you click Send, you see that the Partial transaction and Signed transaction fields are
populated, as shown in Figure 8-17.

History Requests Receive Send Sign UsD §) v

Destination address

2NGZ\WZG92qGYqzTLiCAeWvPZ7JEBSBVXE @

Wallet password

Amount in BTC Amount in USD

0.00009734 BTC 0.7 usD A Max

Partial transaction

02000000016088513046dc902309502404bf fb5d395d7b11c95d4eb290196c625d58e48195000000006a4730440220111647a053. Copy

Signed transaction

b4c@fab4edfd36d28da26235f95482ff6323f f2f87eaabdeefaa7al6d7a91cbe

Balance: 0.0001 BTC (0.72 USD) 1 BTC~7182.39 USD Electrum 3.3.6 | Synchronized: yes

Figure 8-17 Sent Bitcoins to the testnet address

15.Return to the testnet web page. In the Transaction history section, you see a green box
that indicates that a receive transaction is pending (see Figure 8-18).

Last Transactions

b4c@fabdedfd36d28da26235f95482ff6323ff2f87eaabdeefaa7aléd7a91che Fri, 20 Dec 2019 22:13:48
2NGZrVvZG92qGYqzTLjCAewvPZ7JEBS8VXE +0.00009734
pending

Figure 8-18 Testnet page transaction history shows that a receive transaction is pending

Securing Your Critical Workloads with IBM Hyper Protect Services

16.In your Wallet history, another transaction is displayed that indicates that the send action is

pending, as shown in Figure 8-19.

History Requests Receive Send Sign
Date Transaction

2019-12-20 22:14 b4c@fab4edfd36d28da26235f95482ff6323ff2f87eaabdeefaa7aléd7a91cbe

v 2019-12-20 22:03 9581e4585d626c1990b24e5dc9117b5d395dfbbf042450092390dc463a51886a

Balance: 0 BTC (0.00 USD) 1 BTC~7182.2 USD

usD)~

Amount Balance
-0.0001 0

0.0001 0.0001

Electrum 3.3.6 | Synchronized: yes

Figure 8-19 Wallet transaction history showing that a send transaction is pending

17.After waiting approximately 1 minute, refresh the Wallet, and you see that the send

transaction completed (see Figure 8-20).

History =~ Requests Receive ~ Send Sign
Date Transaction

¥ 2019-12-20 22:14 b4c@fab4edfd36d28da26235f95482ff6323ff2f87eaabdeefaaraléd7ad1lcbe

v 2019-12-20 22:03 9581e4585d626c1990b24e5dc9117b5d395dfbbf@42450092390dc463a51886a

Balance: 0 BTC (0.00 USD) 1 BTC~7183.26 USD

USD ()~

Amount Balance
-0.0001 0

0.0001 ©0.0001

Electrum 3.3.6 | Synchronized: yes

Figure 8-20 Wallet history view showing the completed send transaction

What keeps the wallet secure is that administrators of the IBM Hyper Protect Virtual Servers
instance cannot see the transactions. They do not have SSH access to the instance (only you
do), and even when they take a memory dump, the memory dump is encrypted.

The wallet is also encrypted by using a key that is wrapped by a root key that is protected by

IBM Hyper Protect Crypto Services, which is FIPS 140-2 Level 4 compliant.

For more information about these services, see Chapter 2, “IBM Cloud Hyper Protect Crypto
Services” on page 13, and Chapter 3, “IBM Cloud Hyper Protect Database as a Service” on

page 207.

Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services 383

384 Securing Your Critical Workloads with IBM Hyper Protect Services

Configuration parameters

This appendix contains some configuration parameters for the installation of IBM Hyper
Protect Virtual Servers on-premises. It can be useful for collecting all the needed information
in advance to speed up the setup phase.

This appendix includes the following topics:

» Configuration parameters for the management server

» Configuration parameters for the IBM Secure Service Container logical partition

» Configuration parameters for the Secure Build container server

» Configuration parameters for repository definition files

» Configuration parameters for IBM Hyper Protect Virtual Servers

» Configuration parameters for the monitoring component

» Configuration parameters for the Enterprise PKCS #11 over gRPC container

» The rtoa_destination PGP public key

For more information and a downloadable worksheet, see IBM Documentation.

© Copyright IBM Corp. 2020, 2022. 385

https://www.ibm.com/docs/en/hpvs/1.2.x?topic=planning-environment

Configuration parameters for the management server

Table A-1 lists the configuration parameters that are used for the management server.

Table A-1 Configuration parameters for the management server

address

Parameter Resource Value Example Where to get
1 Architecture x86 or s390x $390x Cloud administrator
Linux
2 Hostname management_server Hostname
3 Primary Network eth0 ifconfig -a
Interface Controller (NIC)

4 Management Server IP 10.152.151.100 ifconfig -a (inetaddr
parameter in the
result)

5 Password for the user root_user_password System administrator

root

6 Internal IP address 192.168.40.251 Network administrator

7 NIC for internal network ethl Network administrator

8 Subnet mask for internal 192.168.40.0/24 Network administrator

IP address
9 Gateway for internal IP 192.168.40.1 Network administrator

Configuration parameters for the IBM Secure Service Container
logical partition

Table A-2 lists the configuration parameters that are used for the IBM Secure Service

Container (SSC) logical partition (LPAR).

Table A-2 Configuration parameters for the SSC LPAR

(IBM FICON DASD)

Parameter Resource Value Example Where to get
1 Partition IP address 10.152.151.105 System administrator
2 Master ID ssc_master_user System administrator
3 Master password ssc_master_password System administrator
4 Storage disks for 3600507630affc42700 | System administrator
quotagroups resizing 0000000002000 (FCP)
or0.0.78CA

386 Securing Your Critical Workloads with IBM Hyper Protect Services

Configuration parameters for the Secure Build container server

Table A-3 lists the configuration parameters that are used for the Secure Build container

server.

Table A-3 Configuration parameters for the Secure Build container server

external (only needed if
an external IP address
is not assigned)

Parameter Resource Value Example Where to get
1 Partition IP address 10.152.151.105 System administrator
2 Secure Build container securebuildl Cloud administrator
name
3 CPU thread number 2 System administrator
4 Memory (GB) 12 System administrator
5 Storage for the Secure 10 System administrator
Build container
application (GB)
6 Storage for the Docker 16 System administrator
images built by Secure
Build (GB)
7 Storage for log 2 System administrator
configuration data for
the Secure Build
container (GB)
8 Quotagroup of Secure myquotagroup Cloud administrator
Build container
9 Connection method IP System administrator
(port-mapping/IP)
10 Internal network name encf900_internal_net | Cloud administrator
work (Because the
internal network name
is dynamically
generated (depending
on the customer’s
hardware), this
parameter might be
different in your
environment.)
11 Internal IP address 192.168.40.6 Cloud administrator
(only needed if an
internal network is
used)
12 External IP address 164.23.2.77 System administrator
(only needed if an
external network is
used)
13 Forward port for 10433 System administrator

Appendix A. Configuration parameters 387

Parameter

Resource

Value

Example

Where to get

14

Repository ID of the
Secure build container
image

SecureDockerBuild

Cloud administrator

15

Tag of the Secure Build
container image

latest

Cloud administrator

16

Repository ID for your
apps

MyDockerApp

Cloud administrator

17

Source code repository
URL

github.com:MyOrg/my-
docker-app.git

App developer or
independent software
vendor (ISV)

18

Source code branch

dev

App developer or ISV

19

Private key for Source
code repository

App developer or ISV

20

Remote Docker
registry server

docker.io

Cloud administrator

21

Remote Docker
repository name for
built images

docker_base_user/MyD
ockerApp

Cloud administrator

22

Remote Docker
registry username to
register the base
images

docker_base_user

Cloud administrator

23

Remote Docker
registry user password
to register the base
images

passwOrd

Cloud administrator

24

Remote Docker
registry username to
push the images

docker_writable_user

Cloud administrator

25

Remote Docker
registry user password
to push the images

passwOrd

Cloud administrator

26

IBM Cloud Object
Storage service
application
programming interface
(API) key (optional)

OviPH...k1iJ

Cloud administrator

27

IBM Cloud Object
Storage service bucket
(optional)

my-cos-bucketl

Cloud administrator

28

IBM Cloud Object
Storage service
resource crn (optional)

Cloud administrator

388 Securing Your Critical Workloads with IBM Hyper Protect Services

Parameter Resource Value Example Where to get

29 IBM Cloud Object iam.cloud.ibm.com Cloud administrator
Storage service
auth_endpoint
(optional)

30 IBM Cloud Object s3..... cloud Cloud administrator

Storage service
end_point (optional)

Configuration parameters for repository definition files

Table A-4 lists the configuration parameters that are used to create repository definition files.

Table A-4 Configuration parameters to create repository definition files

Parameter Resource Value Example Where to get
1 Repository name docker.io/docker_bas | Cloud administrator
e_user/MyDockerApp

2 Read-only Docker Hub docker_readonly_user | Cloud administrator
user ID

3 Docker Hub user docker_password Cloud administrator
password

4 The public key isv_user.pub App developer or ISV

5 The private key isv_user.private App developer or ISV

Configuration parameters for IBM Hyper Protect Virtual Servers

Table A-5 lists the configuration parameters that are used to create IBM Hyper Protect Virtual

Servers.

Table A-5 Configuration parameters to create IBM Hyper Protect Virtual Servers

Parameter Resource Value Example Where to get

1 Partition IP address 10.152.151.105 System administrator

2 External network name encf900_network Cloud administrator

3 Container external IP 164.20.5.78 Cloud administrator

address
4 Internal network name encf900_internal_net | Cloud administrator
work?

5 Internal IP address 192.168.40.188 Cloud administrator

6 Parent device encf900 Appliance
administrator

7 Gateway 192.168.40.1 Cloud administrator

8 Subnet 192.168.40.0/24 Cloud administrator

Appendix A. Configuration parameters 389

Parameter Resource Value Example Where to get

9 Repository name MyDockerApp Cloud administrator
10 Image tag latest Cloud administrator
11 CPU threads number 2 Cloud administrator
12 Memory size (GB) 12 Cloud administrator
13 Quotagroup size (GB) 100G Cloud administrator

a. Because an internal network name is dynamically generated (depending upon the customer’s hardware), this
parameter might be different in your environment.

Configuration parameters for the monitoring component

Table A-6 lists the configuration parameters that are used to create the monitoring
component.

Table A-6 Configuration parameters to create the monitoring component

Parameter Resource Value Example Where to get

1 Partition IP address 10.152.151.105 System administrator
2 Domain suffix first System administrator
3 DNS name example.com System administrator
4 Connection method 8443 System administrator

(port-mapping/IP)

5 Private key for the server.key openss] utility
monitoring
infrastructure

6 Certificate for the server-certificate.p | openss1 utility
monitoring em
infrastructure

7 Certificates for the client-certificate.p | openss1 utility
monitoring client em

Configuration parameters for the Enterprise PKCS #11 over
gRPC container

Table A-7 lists the configuration parameters to create and configure the Enterprise PKCS #11
over gRPC (GREP11) container.

Table A-7 configuration parameters to create and configure the GREP11 container

Parameter | Resource Value Example Where to get
1 Partition IP address 10.152.151.105 System
administrator
2 Crypto domain 09.000b System
name administrator

390 Securing Your Critical Workloads with IBM Hyper Protect Services

Parameter | Resource Value Example Where to get
3 Domain suffix grepll System
administrator
4 DNS name example.com System
administrator
5 Connection method Ip System
(port-mapping/IP) administrator
6 Internal network my-private- System
name network-name? administrator
7 IP address 192.168.10.106 System
administrator
8 Transport Layer key.pem and The openss1 utility
Security (TLS) key cert.pem
and certificate

a. Because an internal network name is dynamically generated (depending on the customer’s
hardware), this parameter might be different in your environment.

The rtoa_destination PGP public key

Example A-1 shows the PGP rtoa_destination Build Your Own Image key.

Example A-1 PGP rtoa_destination Build Your Own Image key'

mQINBF5q0TYBEACXx5qW0p9JuiK7gKInYuBiqQp8Ac29e27XqGRt 1k5UWbKOXP4Awz
zm6chk2LM1pKx53YOMbQc7D08QWQE2W/6EAFqi/1T/iWWddE4sv9qg29usFel7d5t
cXk4oBorT/gd13KiATXuYUalllopdETmPUam6GyMXc9eZEZ+0rFno4RJ0+1Sp8CX
14ejnsd1+NFt7eYmECd9ZqOADdV2wNZvrA7vjOfaATSqVvXqMCkAosF5HGNTY5vs
rMwL3SRagPHOCjg/Tx5K1nugTh+W6nH4c2P52X3a06q7jCZ9JkGb5ZudVCwmZNI1
4ANhPkp9rNUCPEUS+hOL5C2ZBok5rwr59tXkZEnHT5gRdpSD4htLiCQVys+TUHkFu
STrLihgGaFXYtAT3N6q/0EM5tBX4kwTsDuRefW71Kxa0X/f6s3dpyTALdZox504U
BeA9AtZi43cp48uDEIVGUC5mMoP2Z5hL/yANFRCQNFeWy52ghhsUGdL21BKvgFbzp
AqtoJGA9+1ymo1VQXYrBNmFcAdHYa06W3det2q9fhF2nBdI4Abr0g4TOhuebNTBN
qurf6+PZLF+NmCzE1j1gSrnsionuhBJIn2Myb10+uQIfifLmvPYXgpRG490jfNNI2
i3sdBThhb3a3aaEEKmMQn5C3mUyYYwFJ8cQqj56/uzv7AsxZ1rneBgZvowARAQAB
tBBydG9hX2R1c3RpbmFOaW9uiQIxBBMBCgAbBQJeatE2AhsDAgsJAhUKBRYCAWEA
Ah4BAheAAA0JEBkOqQpczdTlef4P+wRqr83AaeRW6ck jdaeSA2YgAGL/alydpOAK
z/iQv7jj1cdP+/IcRvpSX6C7/G/+/4WLyG3EMHNDgwBCzvvTASbvVexY2HcKqt69
rTBv8757rWTiz0TE/IoNsjHPwqiSBWEHzc5/Mdy51hwy5k ISEnHStt1tPMHi4cb2
P+Iq+wzz72jjJT810Q8mp+cKpBPPaGRLB2BciBpY4Zu0z6P/s/30D4Y1W7 rSUBNw
J1pKUndhgpOhokpNgsASmPERwWJI j8LS+qs3dCyMOYLOABuas5YPJIw3Cc2CBkROuz
JIci7P33+dbg7cZDMh00eiEeh5jXrr5YgywiQP6oVA/n1J0p4G+Rta8fQJlz/TeDy
olt+akBXyWSRZV8XJoviqltDu71Q4zyupDI9NvVKe7VKwqvWypXJ1dObbkS/W88i
Xp1sTWSJIWDKjY/0595zCrNy/BT2/uPRya9UrHoRcwzNVOXxk9cVSqSkaNBC7CU/1
QnDw8A/up/x4iNJf6z5PKCqUzJAWbgVQws9ATHZLr+CeCPOFAXZKEOA10dV2jNdi
01ZXAZarFCL/xQA1cJYX05dQMsBKr7s04VZ8omSOYU6KY6XEifBoIs6395g5+yxq
T1YDZYstPx1Rf1mYMuoQ5wIRCsA7jdK5A0aASqwFnJdGEwXR2Tu/b4DqISwRr48S
90VahzPKuQINBF5q0TYBEACVCOW16MFimC6FbAHyL fHrF7rzNkObPUoxeTnP0J8X
AxzVhoOzYt9pwvfVaZxSFOEoOMGFDdunhEE4apLfQRfN2q50XFGDBWToJddY/10Cs

1 Source: https://cloud.ibm.com/docs/hp-virtual-servers?topic=hp-virtual-servers-byoi

Appendix A. Configuration parameters 391

https://cloud.ibm.com/docs/hp-virtual-servers?topic=hp-virtual-servers-byoi

392

12FGWjs+n00IaBBm1G2uMJ+zdn0/96aHZiwu5x1kAY+v91xR3gkhoRd/GDFgJQBd
ZZXFJIMIZMNI+wKN/K9oBF38IE3HzM70sQuzUcfmz4fx1LOATASCAGXFEWtJO0j/p
B6fjJz/n8g9Yhi1B77wgxAEJLMZ99wkugK2EWm+0fzy9xg+/sLskI5dIUZhFDpwM
fVK46gA+14c/WK5NTJujYp5p61xhqK7Ja8zTRCHF1cOpFiJm3nRDZeMIcufpZelA
mWgr8FMDQIA/0co8Axx6V7af7j3tXHmKEZMSXE2/SrkKNYE131+Lrm13TLBOhvJRd
ous5RI7M14vPcJIN+/4gLpdznR7EjhMPZ362CtGwiJ5tDDFDISKIKNKTNXIF2gYsC
KCzppGMsL40dMKEzK35w50tCvr8DBhnBIY/DuZyb15kt10cnmzPTkOvO6F5fM1E4
E/bi/UDDctwKzEdYg1SXMfY30HZcduVELYRNn+70716EBiASuQU7wIz73+rzKSQLy
tTkH4/96ah7Tf04ulZHpXgbikY2r8AhTFR/njqRk11adCU/gyAKVImUGH+ah0+ZZ
sQARAQABiQIfBBgBCgAJBQJeatE2AhsMAA0JEBkOqQpczdT1NeOP/RPiMBCVUrk6
IA/PuiHygaDrhVFgWtRmVm6vQkhE7 fxNXUiDf/Ud+iX+3Y3XQM2vFgXjHVpI66il
0hJ8mV9TwuRh601/gUBL24xXWJS+JY0Z1C963v05ZRIVTg33p8y9F8k1Dx1GzpHr
oepo0vsF4CkdpnHOv1fpKV3tSWhTh2JP/5P0VGZZLdWVHsJsMbcQBMTPrfbPnacM
J7DzRRfcjxjEBOCISimiYwDPDKUqB9AMykp7DPb/wl/vBtcT22s909Mg4ZQDiCBx
NtRPGMXma01SjpJH3dfj1H+YDa/UNOn7pltyhz8eyeoVPMLEATfQoX72pXLSPEuUro
tMyHcpos14WbZAyxyr04K3oeHjhr/z0qgsimu08Umb8TGhYPv27FMqVXTGiAwuWAI
0DXVralMrEzxx6XXywQa4wA8enP95ZZD8xHB7YGvCgwb/FyR8TMtp/jOneGD+wAC
9SgWLbYqqJ IFFSWWNGXWHZ1iwfThTTWWsE6W50d0AX0APArXLXKagkvtVrNz9127
SwagEnr10kGfmbpnOEnJYk4AvCHylelrL5To01U4uPBacs5vQNLc41r0i23NXQ/q
cIbBbZ+zely1x9cOuRpRVV47Zm2 fvaMMMh40GT09x0C3WaWE5CRITfOpmOqybI9i
mae7WLtydkQnM7Shc112CmBCHH8CTSJN

=DsnN

Securing Your Critical Workloads with IBM Hyper Protect Services

Additional material

This book refers to additional material that can be downloaded from the internet as described
in the following sections.

Locating the GitHub material

The web material that is associated with this book is available in softcopy on the internet from
the IBM Redbooks GitHub web page:

https://github.com/IBMRedbooks/SG248469-Securing-your-critical-workloads-with-IBM-
Hyper-Protect-Services

Cloning the GitHub material

To clone the GitHub repository for this book, complete the following steps:
1. Download and install the git client if it is not installed from Git.
2. Clone the GitHub repository by running the following command:

git clone
https://github.com/IBMRedbooks/SG248469-Securing-your-critical-workloads-with-I
BM-Hyper-Protect-Services.qgit.

© Copyright IBM Corp. 2020, 2022. All rights reserved. 393

https://github.com/IBMRedbooks/SG248469-Securing-your-critical-workloads-with-IBM-Hyper-Protect-Services
https://git-scm.com/downloads

394 Securing Your Critical Workloads with IBM Hyper Protect Services

Related publications

The publications that are listed in this section are considered suitable for a more detailed
description of the topics that are covered in this book.

IBM Redbooks

The following IBM Redbooks publication provides more information about the topics in this
document. This publication might be available in softcopy only.

Implementation Guide for IBM Blockchain Platform for Multicloud, SG24-8458

You can search for, view, download, or order this document and other Redbooks, Redpapers,
web docs, drafts, and additional materials at the following website:

ibm.com/redbooks

Online resources

The following websites are also relevant as further information sources:

>

Creating a root key with the IBM Hyper Protect Crypto Services GUI:

https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-create-root-keys#
root-key-gui

Creating a root key with the Key Management application programming interface (API):

https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-create-root-keys#
root-key-api

Creating a standard key with the IBM Hyper Protect Crypto Services GUI:

https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-create-standard-k
eys#standard-key-qui

Creating a standard key with the Key Management API:

https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-create-standard-k
eys#create-standard-key-api

GREP11 API reference:
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-grepll-api-ref
GREP11 sample code for the Go language:

https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-grepll-api-ref#co
de-example

IBM Cloud console:
https://cloud.ibm.com
IBM Hyper Protect Crypto Services tutorials:

https://cloud.ibm.com/docs/services/hs-crypto

© Copyright IBM Corp. 2020, 2022. All rights reserved. 395

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-create-root-keys#root-key-gui
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-create-root-keys#root-key-api
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-create-standard-keys#standard-key-gui
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-grep11-api-ref#code-example
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-create-standard-keys#create-standard-key-api
https://cloud.ibm.com
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-grep11-api-ref

396

IBM Hyper Protect Virtual Servers V1.2.0 documentation:
https://www.ibm.com/support/knowledgecenter/SSHPMH 1.2.0/kc_welcome_page.htm]
IBM Secure Service Container (SCC) for IBM Cloud Private installation:

https://www.ibm.com/support/knowledgecenter/SSUPZ7 1.1.0/topics/install_sscédicp
.html

The Identity and Access Management (IAM) endpoint for IBM Cloud:
https://iam.cloud.ibm.com
Importing a root key with the IBM Hyper Protect Crypto Services GUI:

https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-import-root-keys#
import-root-key-gui

Importing a root key with the Key Management API:

https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-import-root-keys#
import-root-key-api

Importing a standard key with the IBM Hyper Protect Crypto Services GUI:

https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-import-standard-k
eys#import-standard-key-qui

Importing a standard key with the Key Management API:

https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-import-standard-k
eys#import-standard-key-api

Listing all keys from the IBM Hyper Protect Crypto Services GUI:

https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-view-keys#view-ke
y-gui
Listing all keys from the Key Management API:

https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-view-keys#retriev
e-keys-api

Official Federal Information Processing Standard (FIPS) 140-2 specification:
https://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

To set up Go tools:

https://golang.org/doc/install

To set up your Go workspace:
https://golang.org/doc/code.html#Workspaces

Unwrapping a standard key with the Key Management API:

https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-wrap-keys#wrap-ke
ys-api
Wrapping a standard key with the Key Management API:

https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-wrap-keys#wrap-ke
ys-api

Securing Your Critical Workloads with IBM Hyper Protect Services

https://www.ibm.com/support/knowledgecenter/SSHPMH_1.2.0/kc_welcome_page.html
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-import-root-keys#import-root-key-gui
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf.
https://iam.cloud.ibm.com
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-view-keys#retrieve-keys-api
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-wrap-keys#wrap-keys-api
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-wrap-keys#wrap-keys-api
https://www.ibm.com/support/knowledgecenter/SSHPMH_1.2.0/kc_welcome_page.html
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-import-root-keys#import-root-key-api
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-import-standard-keys#import-standard-key-gui
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-import-standard-keys#import-standard-key-api
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-view-keys#view-key-gui
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-wrap-keys#wrap-keys-api
https://cloud.ibm.com/docs/services/hs-crypto?topic=hs-crypto-grep11-api-ref
https://golang.org/doc/code.html#Workspaces
https://www.ibm.com/support/knowledgecenter/SSUPZ7_1.1.0/topics/install_ssc4icp.html

Help from IBM

IBM Support and downloads:

ibm.com/support

IBM Global Services:

ibm.com/services

Related publications

397

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

398 Securing Your Critical Workloads with IBM Hyper Protect Services

Abbreviations and acronyms

AAD
API
ARP
BLOB
BYOI
BYOK
CA
CCA

CD
Cl/CD

Cl
Ciso
CLI

CN
CPACF

CSP
CSR
DBA
DBaa$S
DCT
DEK
DPM
DR
EAL
ECDSA

EDB
EdDSA

EP11
FFDC
fintech
FIPS

GDPR
GPG
GREP11
GUID
HA

additional authentication data
application programming interface
address resolution

binary large object

Bring Your Own Image

Bring Your Own Key

certificate authority

Common Cryptographic
Architecture

continuous delivery

Continuous Integration and
Continuous Delivery

continuous integration

Chief Information Security Officer
command-line interface

Common Name

CP Assist for Cryptographic
Functions

Cryptographic Service Providers
Certificate Signing Request
database administrator
database as a service

Docker Content Trust

data encryption key

Dynamic Partition Manager
disaster recovery

Enterprise Assurance Level

Elliptic Curve Digital Signature
Algorithm

Enterprise DB

Edwards-curve Digital Signature
Algorithm

Enterprise PKCS #11
first-failure data capture
financial technology

Federal Information Processing
Standard

General Data Protection Regulation

GNU Privacy Guard

Enterprise PKCS #11 over gRPC
Globally Unique Identifier

high availability or highly available

© Copyright IBM Corp. 2020, 2022.

HIPAA

HMC
HSM
1AM
IBM

IFL
ISV
KMIP

KMS
KVM
KYOK
LAN
LPAR
LUKS
MZR
OClI
(0]
OSA
ou
PAT
PCSC
PKCS
PR/SM

PU
QEMU
RHEL
RPC
SBS
SCuUP
SDK
SDS
SE
SO
SSC
SSH
SSL
TDE

Health Insurance Portability and
Accountability Act

Hardware Management Console
Hardware Security Module
Identity and Access Management

International Business Machines
Corporation

IBM Integrated Facility for Linux
independent software vendor

Key Management Interoperability
Protocol

Key Management Service
kernel-based virtual machine
Keep Your Own Key

local area network

logical partition

Linux Unified Key Setup
Multi-Zone Region

Open Container Initiative
operating system

Open Systems Adapter
Organization Unit

Port Address Translation
Personal Computers/Smart Card
Public Key Cryptography Standards

Processor Resource/Systems
Manager

processor unit

Quick Emulator

Red Hat Enterprise Linux
Remote Procedure Call
Secure Build Server

Smart Card Utility Program
software developer kit
software-defined storage
Support Element

Security Officer

Secure Service Container
Secure Shell

Secure Sockets Layer
Transparent Data Encryption

399

TKE Trust Key Entry

TLS Transport Layer Security
uuiD Universally Unique Identifier
VM virtual machine

VPC Virtual Private Cloud

VPE virtual private endpoint

VPN virtual private network
wDEK wrapped data encryption key

400 Securing Your Critical Workloads with IBM Hyper Protect Services

SG24-8469-01

Securing Your Critical Workloads with IBM Hyper Protect Services
ISBN 0738460338
(0.5” spine)

Redbhooks
0.475"<->0.873”

250 <-> 459 pages

“llil

SG24-8469-01
0738460338

Printed in U.S.A.

&® Redhooks .

ibm.com/redbooks

http://www.redbooks.ibm.com
https://www.facebook.com/IBMRedbooks
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/groups/2130806

	Go to the current abstract on ibm.com/redbooks
	Securing Your Critical Workloads with IBM Hyper Protect ServicesFro nt cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introducing IBM Hyper Protect Services
	1.1 Industry and IBM Hyper Protect Services portfolio overview
	1.2 IBM Hyper Protect Crypto Services
	1.3 IBM Cloud Hyper Protect Database as a Service
	1.4 IBM Cloud Hyper Protect Virtual Servers
	1.5 IBM Hyper Protect Virtual Servers on-premises
	1.5.1 Building images with integrity: Securing Continuous Integration and Continuous Delivery
	1.5.2 Managing infrastructure with least privilege access to applications and data
	1.5.3 Deploying images with trusted provenance

	1.6 Security features
	1.6.1 Cryptography
	1.6.2 IBM Secure Service Container

	Chapter 2. IBM Cloud Hyper Protect Crypto Services
	2.1 Overview
	2.2 IBM Hyper Protect Crypto Services provisioning
	2.2.1 Provisioning an instance by using the IBM Cloud console
	2.2.2 Provisioning your instance by using the IBM Cloud CLI

	2.3 Service initialization: Crypto units master key initialization
	2.3.1 Activating your service’s master key
	2.3.2 Using the IBM Cloud TKE CLI plug-in and master key part files
	2.3.3 Getting the crypto units details and enabling cryptocurrency cryptography
	2.3.4 Zeroing out the crypto unit master key
	2.3.5 Selecting administrator signature keys when working in secure mode
	2.3.6 Initializing your IBM Hyper Protect Crypto Services master key by using recovery crypto units
	2.3.7 Initializing your IBM Hyper Protect Crypto Services master key by using smart cards and the Management Utilities

	2.4 Using the IBM Key Protect REST API
	2.4.1 Key Protect concepts and programming language software developer kits
	2.4.2 Setting your authentication configuration to call API functions
	2.4.3 Retrieving connection information to your IBM Hyper Protect Crypto Services instance
	2.4.4 Creating IBM Key Protect keys
	2.4.5 Working with Key Protect root keys
	2.4.6 Key Protect root key rotation
	2.4.7 Bring Your Own Key to the cloud: importing a Key Protect root key
	2.4.8 Integrating IBM Cloud services with IBM Hyper Protect Crypto Services

	2.5 Using the Public Key Cryptography Standards #11 API with IBM Hyper Protect Crypto Services
	2.5.1 The PKCS #11 API
	2.5.2 How to use the IBM Enterprise PKCS #11 over gRPC API

	Chapter 3. IBM Cloud Hyper Protect Database as a Service
	3.1 Introducing IBM Cloud Hyper Protect DBaaS
	3.2 Sizing and topology
	3.3 Public Cloud service instantiation
	3.3.1 Prerequisites
	3.3.2 Web interface
	3.3.3 IBM Cloud Command-Line Interface
	3.3.4 The IBM Hyper Protect DBaaS RESTful API

	3.4 Administration and operations
	3.4.1 Managing an IBM Hyper Protect DBaaS service
	3.4.2 Managing database instances
	3.4.3 Logging and monitoring
	3.4.4 Backing up and restoring

	3.5 Security and compliance
	3.6 Use case: Encrypting databases with your keys protected
	3.7 API interaction and code samples
	3.7.1 Cloning the GitHub example Python code
	3.7.2 Setting up a Python virtual environment with requests
	3.7.3 Running the example file

	Chapter 4. IBM Cloud Hyper Protect Virtual Servers
	4.1 Introducing IBM Cloud Hyper Protect Virtual Servers
	4.2 IBM Cloud Hyper Protect Virtual Servers use cases
	4.3 Sizing
	4.4 Public cloud service instantiation
	4.4.1 Prerequisites
	4.4.2 Web interface
	4.4.3 IBM Cloud Command-Line Interface

	4.5 Administration and operations
	4.5.1 Managing an IBM Hyper Protect Virtual Servers service
	4.5.2 Managing IBM Hyper Protect Virtual Servers instances
	4.5.3 Topology

	Chapter 5. IBM Hyper Protect Virtual Servers on-premises
	5.1 Introducing IBM Hyper Protect Virtual Servers on-premises
	5.2 IBM Hyper Protect Virtual Servers key features
	5.2.1 Trusted CI/CD
	5.2.2 Enterprise PKCS #11 over gRPC
	5.2.3 User management
	5.2.4 Bring Your Own Image
	5.2.5 Encryption

	5.3 IBM Hyper Protect Virtual Servers use cases
	5.4 IBM Hyper Protect Virtual Servers architecture overview
	5.5 A sample use case: IBM Hyper Protect Virtual Servers for secure storage
	5.5.1 Creating a Secure Storage Server in IBM Hyper Protect Virtual Servers

	Chapter 6. IBM Hyper Protect Virtual Servers on-premises installation
	6.1 Planning and prerequisites for IBM Hyper Protect Virtual Servers on-premises
	6.2 Downloading the package to the management server
	6.3 Setting up the Secure Service Container LPAR
	6.3.1 Creating the Secure Service Container LPAR
	6.3.2 Installing the IBM Hyper Protect Virtual Servers appliance
	6.3.3 Configuring storage disks on the hosting appliance

	6.4 Networking for IBM Hyper Protect Virtual Servers
	6.4.1 Networking to the hosting appliance (SSC LPAR)
	6.4.2 Networking inside the hosting appliance (networking for IBM Hyper Protect Virtual Servers containers through the CLI)
	6.4.3 Creating an Ethernet interface
	6.4.4 Creating a VLAN interface

	6.5 Installing the IBM Hyper Protect Virtual Servers CLI on the management server
	6.5.1 Setting up the environment by using the setup script

	6.6 Configuring the IBM Hyper Protect Virtual Servers environment
	6.6.1 Configuring the internal network
	6.6.2 Pushing the base images to a remote Docker repository
	6.6.3 Setting up an IBM Hyper Protect Virtual Servers instance
	6.6.4 Backing up and restoring IBM Hyper Protect Virtual Servers
	6.6.5 Setting up the Secure Build container
	6.6.6 Setting up the monitoring instance
	6.6.7 Integrating with Enterprise Public Key Cryptography Standards #11

	6.7 Public Cloud service instantiation

	Chapter 7. IBM Hyper Protect Virtual Servers key features
	7.1 User roles in IBM Hyper Protect Virtual Servers
	7.2 Trusted Continuous Integration and Continuous Delivery: Building and deploying containers securely
	7.2.1 Importance of establishing a trusted CI/CD pipeline
	7.2.2 Trusted CI/CD pipeline architecture
	7.2.3 Using the Secure Build application to build and store an image in a repository
	7.2.4 Building an image from a trusted base image

	7.3 Monitoring
	7.3.1 Deploying a monitoring container
	7.3.2 Viewing the metrics from the monitoring service

	7.4 Enterprise Public Key Cryptography Standards #11 over gRPC
	7.4.1 Deploying a GREP11 container
	7.4.2 Adding GREP11 functions into your applications

	7.5 Bring Your Own Image (deploying your applications securely)
	7.5.1 Signing your image by using Docker Content Trust
	7.5.2 Adding the registry
	7.5.3 Generating the signing keys
	7.5.4 Registering a repository as a trusted repository
	7.5.5 Preparing the configuration
	7.5.6 Deploying a securely built image from a trusted repository

	Chapter 8. Secure Bitcoin Wallet: A sample use case that spans multiple IBM Hyper Protect Services
	8.1 Secure Bitcoin Wallet application
	8.1.1 Planning for the installation by using IBM Hyper Protect Services

	8.2 Building the Secure Bitcoin Wallet application container
	8.2.1 Using IBM Cloud Hyper Protect with Bring Your Own Image
	8.2.2 Using IBM Hyper Protect Secure Build Servers on-premises
	8.2.3 Using IBM Cloud Hyper Protect Secure Build Server

	8.3 Testing the Secure Bitcoin Wallet application

	Appendix A. Configuration parameters
	Configuration parameters for the management server
	Configuration parameters for the IBM Secure Service Container logical partition
	Configuration parameters for the Secure Build container server
	Configuration parameters for repository definition files
	Configuration parameters for IBM Hyper Protect Virtual Servers
	Configuration parameters for the monitoring component
	Configuration parameters for the Enterprise PKCS #11 over gRPC container
	The rtoa_destination PGP public key

	Appendix B. Additional material
	Locating the GitHub material
	Cloning the GitHub material

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Abbreviations and acronyms
	Back cover

