
Redbooks

In partnership with
IBM Academy of Technology

Front cover

IBM Cloud Private System
Administrator’s Guide

Ahmed Azraq

Wlodek Dymaczewski

Fernando Ewald

Luca Floris

Rahul Gupta

Vasfi Gucer

Anil Patil

Sanjay Singh

Sundaragopal Venkatraman

Dominique Vernier

Zhi Min Wen

IBM Redbooks

IBM Cloud Private System Administrator’s Guide

April 2019

SG24-8440-00

© Copyright International Business Machines Corporation 2019. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (April 2019)

This edition applies to IBM Cloud Private Version 3.1.2.

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

Preface . xi
Authors. xii
Now you can become a published author, too .xv
Comments welcome. xvi
Stay connected to IBM Redbooks . xvi

Part 1. IBM Cloud Private overview, architecture, and installation . 1

Chapter 1. Introduction to IBM Cloud Private. 3
1.1 IBM Cloud Private overview . 4
1.2 IBM Cloud Private node types. 6

1.2.1 Boot node . 6
1.2.2 Master node . 7
1.2.3 Worker node . 7
1.2.4 Management node . 8
1.2.5 Proxy node . 8
1.2.6 VA (Vulnerability Advisor) node . 9
1.2.7 An etcd node. 10

1.3 IBM Cloud Private architecture . 10
1.4 IBM Cloud Private features and benefits. 12

1.4.1 A unified installer. 12
1.4.2 Robust logging with ELK stack . 12
1.4.3 Monitoring and alerts . 13
1.4.4 Metering . 13
1.4.5 Identify and access . 13
1.4.6 Security . 13
1.4.7 IBM Vulnerability Advisor . 13
1.4.8 IBM Cloud Automation Manager . 14
1.4.9 IBM Cloud Transformation Advisor . 15
1.4.10 IBM Microclimate. 16
1.4.11 IBM Cloud Private management console . 16
1.4.12 Kubernetes . 17
1.4.13 Private Docker image registry . 17
1.4.14 Helm with enhanced security controls. 17
1.4.15 Catalog . 18
1.4.16 Kubernetes Service Catalog for managing service brokers 18

1.5 Helm . 19
1.5.1 Helm components and terminology. 19
1.5.2 Why you should use Helm . 20

1.6 IBM Multicloud Manager . 21
1.7 IBM Cloud Paks . 22
1.8 IBM Cloud Private Editions . 23
1.9 Persistent volumes . 24

1.9.1 Volume and claim lifecycle . 25
1.9.2 IBM Cloud Private Storage providers . 26

1.10 IBM Cloud Private terms . 26
© Copyright IBM Corp. 2019. All rights reserved. iii

Chapter 2. High availability installation . 31
2.1 High availability considerations . 32

2.1.1 Fault tolerance . 32
2.1.2 Considerations for sizing the IBM Cloud Private cluster . 33
2.1.3 Sample sizing for your IBM Cloud Private cluster . 34

2.2 High Availability models for IBM Cloud Private cluster . 35
2.2.1 Intra cluster . 36
2.2.2 Intra cluster with multiple availability zones . 36
2.2.3 Inter Cluster with federation on different availability zones. 37

2.3 Performance considerations for IBM Cloud Private setup. 38
2.3.1 Nodes considerations . 38
2.3.2 Tuning the IBM Cloud Private setup . 39

2.4 Step-by-step installation guide using Terraform . 40
2.4.1 Environment preparation. 42
2.4.2 Upload IBM Cloud Private binaries . 43
2.4.3 Configure the Terraform template . 46
2.4.4 Apply the Terraform template . 51

2.5 Post installation verification. 53
2.5.1 IBM Cloud Private command line interface. 53
2.5.2 IBM Cloud Private Console user interface . 57

2.6 Installing IBM Cloud Private on other Cloud platforms . 63
2.6.1 Typical scenario of running IBM Cloud Private on other Cloud platforms. 64
2.6.2 Installing IBM Cloud Private on AWS using Terraform . 64
2.6.3 Installing IBM Cloud Private on Microsoft Azure using Terraform. 64
2.6.4 Installing IBM Cloud Private on Google Cloud using Terraform 64
2.6.5 Installing IBM Cloud Private on RedHat OpenShift. 64
2.6.6 Installing IBM Cloud Private on OpenStack Cloud provider 65
2.6.7 Installing IBM Cloud Private on VMware vSphere Cloud provider 65
2.6.8 Install IBM Cloud Private on existing Virtual Machines . 65

2.7 Setting up IBM Cloud Private catalog in an airgap environment 65
2.7.1 Prerequisites . 66
2.7.2 Steps to follow. 66

2.8 Changing certificates post installation. 67

Part 2. IBM Cloud Private system administration tasks . 69

Chapter 3. Backup and restore of an IBM Cloud Private cluster 71
3.1 The purpose of backing up a cluster . 72
3.2 Backup versus high availability, disaster recovery, and continuous availability 72
3.3 Backup options . 73

3.3.1 Infrastructure backups . 73
3.3.2 Platform backups . 74

3.4 Backup and restore strategy . 76
3.4.1 Infrastructure backup process. 77
3.4.2 Infrastructure restore process . 79
3.4.3 Platform backup process . 84
3.4.4 Platform restore process. 100

Chapter 4. Managing persistence in IBM Cloud Private . 115
4.1 Designing the cluster for data persistence . 116

4.1.1 Workload specific requirements . 116
4.1.2 Maintainability requirements . 117
4.1.3 Windows worker node support . 117

4.2 Persistent storage for platform services . 118
iv IBM Cloud Private System Administrator’s Guide

4.3 Configuring persistent storage for application containers . 118
4.3.1 Configuring vSphere storage provider for IBM Cloud Private 119
4.3.2 Configuring NFS Storage for IBM Cloud Private. 120
4.3.3 Configuring GlusterFS for IBM Cloud Private . 125
4.3.4 Configuring Ceph and Rook for IBM Cloud Private. 131
4.3.5 Configuring Portworx in IBM Cloud Private. 140
4.3.6 Configuring Minio in IBM Cloud Private . 147

4.4 Managing the storage hosted on IBM Cloud Private. 147
4.4.1 Monitoring storage status and performance . 147
4.4.2 Extending the available storage . 150

4.5 Performance considerations . 151
4.5.1 Performance test using dbench . 151
4.5.2 PostgreSQL database performance . 152

Chapter 5. Logging and monitoring . 153
5.1 Introduction . 154

5.1.1 Elasticsearch, Logstash and Kibana. 154
5.2 IBM Cloud Private Logging . 155

5.2.1 ELK architecture . 155
5.2.2 How Elasticsearch works . 156
5.2.3 Default logging configuration . 161
5.2.4 ELK security . 163
5.2.5 Capacity planning . 164
5.2.6 Role based access control . 181
5.2.7 Using Kibana. 182
5.2.8 Management . 188
5.2.9 Forwarding logs to external logging systems . 200
5.2.10 Forwarding logs from application log files . 211

5.3 IBM Cloud Private Monitoring . 222
5.3.1 How Prometheus works . 222
5.3.2 How AlertManager works . 225
5.3.3 How Grafana works . 225
5.3.4 Accessing Prometheus, Alertmanager and Grafana dashboards. 227
5.3.5 Configuring Prometheus Alertmanager and Grafana in IBM Cloud Private 227
5.3.6 Creating Prometheus alert rules . 229
5.3.7 Configuring Alertmanager to integrate external alert service receivers 230
5.3.8 Using Grafana. 233

Chapter 6. Security . 237
6.1 How IBM Cloud Private handles authentication . 238

6.1.1 OIDC-based authentication. 238
6.1.2 SAML-based authentication . 239

6.2 How authorization is handled in IBM Cloud Private . 239
6.2.1 Cloud resource names (CRN) specification . 239
6.2.2 Role-based access control (RBAC) for pods . 241

6.3 Isolation on IBM Cloud Private . 241
6.3.1 Scenarios . 242

6.4 The significance of the admission controller in IBM Cloud Private 246
6.4.1 Pod security policy . 246
6.4.2 ResourceQuota. 247
6.4.3 LimitRange . 248
6.4.4 AlwaysPullImages. 248

6.5 Image security . 248
 Contents v

6.5.1 Pushing and pulling images . 249
6.5.2 Enforcing container image security . 250

Chapter 7. Networking . 257
7.1 Introduction to container networking . 258
7.2 Pod network . 259

7.2.1 Calico . 259
7.2.2 NSX-T . 261

7.3 High availability . 262
7.3.1 External load balancer . 262
7.3.2 Virtual IP addresses . 263
7.3.3 Ingress controller . 265

7.4 Service discovery (kube-dns) . 270
7.4.1 Headless services. 272
7.4.2 External services. 272

Chapter 8. Troubleshooting . 273
8.1 Common errors during the IBM Cloud Private installation . 274

8.1.1 Customizing the config.yaml file . 274
8.1.2 Customizing the /cluster/hosts file. 274
8.1.3 SSH key error . 275
8.1.4 Missing the IBM Cloud Private binary files in the installation folder 275
8.1.5 Missing the minimum system requirements . 276
8.1.6 Perform the system cleanup when the installation fails 276

8.2 Network configuration errors . 277
8.2.1 Calico troubleshooting . 277
8.2.2 IPsec troubleshooting . 279

8.3 Common errors when installing a Helm chart . 281
8.3.1 When accessing an application getting the 504 error . 281
8.3.2 No CPU available . 283
8.3.3 The required port is in use . 285
8.3.4 Deployment fails due to a missing permission . 286

8.4 Common errors when running applications. 286
8.4.1 Getting the 504 or 500 errors when trying to access the application 286

8.5 Opening a support case . 287

Chapter 9. Service mesh implementation using Istio . 289
9.1 Overview . 290
9.2 Role of the service mesh. 290

9.2.1 Service registry . 291
9.2.2 Service discovery . 291
9.2.3 Load balancing . 291
9.2.4 Traffic encryption . 291
9.2.5 Observability and traceability . 291
9.2.6 Access control. 292
9.2.7 Circuit breaker pattern support . 292

9.3 Istio architecture . 292
9.3.1 Components . 292
9.3.2 Istio functions . 295

9.4 Installation of Istio and enabling the application for Istio . 295
9.4.1 Install Istio with the helm command . 296
9.4.2 Enable application for Istio . 298
9.4.3 Uninstallation . 301

9.5 Service resiliency . 301
vi IBM Cloud Private System Administrator’s Guide

9.5.1 Retry . 302
9.5.2 Timeout . 305
9.5.3 Load balancer . 307
9.5.4 Simple circuit breaker . 307
9.5.5 Pool ejection . 311

9.6 Achieving E2E security for microservices using Istio . 311
9.6.1 Inbound traffic . 311
9.6.2 Outbound traffic . 313
9.6.3 Mutual TLS authentication . 315
9.6.4 White or black listing . 317
9.6.5 Istio authorization . 319

Part 3. Cloud Foundry related topics . 323

Chapter 10. IBM Cloud Private Cloud Foundry and common systems administration
tasks. 325

10.1 Introduction . 326
10.1.1 IaaS flavors . 326
10.1.2 Technology BOSH versus Kubernetes . 326

10.2 Installation and extensions . 327
10.2.1 Installation of the installer container in a Cloud Foundry Full Stack environment. .

327
10.2.2 Installation of the installer container in a CFEE environment 328
10.2.3 Config-manager role . 329
10.2.4 Extensions . 330

10.3 High availability installation . 333
10.3.1 Zoning . 333
10.3.2 External database . 334
10.3.3 External objects store . 335

10.4 Backup and restore strategy . 335
10.4.1 Installation data. 335
10.4.2 Director . 335
10.4.3 Cloud Foundry database. 336

10.5 Storage and persistent volumes . 336
10.5.1 Cloud Foundry Full Stack . 336
10.5.2 Cloud Foundry Enterprise Environment (CFEE) technology preview 337

10.6 Sizing and licensing . 337
10.7 Networking . 338
10.8 Security . 338

10.8.1 TLS encryption . 338
10.8.2 Inbound routing . 339
10.8.3 Credentials and certificates. 339

10.9 Monitoring and logging . 340
10.9.1 Monitoring . 340
10.9.2 Logging . 341

10.10 Integrating external services . 342
10.10.1 IBM Cloud Private services. 342
10.10.2 IBM Cloud services . 343
10.10.3 Legacy services . 343

10.11 Applications and buildpacks . 343
10.11.1 Installing extra buildpacks. 343
10.11.2 Application for an airgap environment. 344

10.12 iFix and releases . 344
 Contents vii

10.12.1 Zero downtime . 345

Appendix A. Command line tools . 347
Helm command line interface (helmcli) . 348

Installing the Helm CLI . 348
Verifying the installation . 348
Using helmcli. 349

IBM Cloud Private CLI (cloudctl) . 350
Installing the IBM Cloud Private CLI . 350
General cloudctl commands . 351
cloudctl catalog commands. 352
cloud cm commands . 353

Kubectl . 353
kubectl get. 355
kubectl get namespace . 356
kubectl get nodes . 356
kubectl get pods . 356
kubectl logs . 357
kubectl describe . 358

Cheat sheet for production environment . 361
Use kubectl drain to remove a node from service. 361
Enabling autocomplete for kubectl . 361
Removing a pod from a service . 361
Editing kubernetes resources . 361
Taints and tolerations . 362
Viewing and finding resources . 362
Updating resources. 363
Scaling resources . 363
Interacting with running pods . 363
Additional kubectl commands . 364

Appendix B. Additional material . 365
Locating the GitHub material . 365
Cloning the GitHub material . 365

Related publications . 367
IBM Redbooks . 367
Online resources . 367
Help from IBM . 368
viii IBM Cloud Private System Administrator’s Guide

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2019. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Cognos®
DataPower®
DataStage®
Domino®
Global Business Services®
IBM Watson™

IBM®
Lotus®
Passport Advantage®
PowerPC®
Redbooks®
Redpapers™

Redbooks (logo) ®
SPSS®
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

ITIL is a registered trademark, and a registered community trademark of The Minister for the Cabinet Office,
and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency
which is now part of the Office of Government Commerce.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
x IBM Cloud Private System Administrator’s Guide

http://www.ibm.com/legal/copytrade.shtml

Preface

IBM® Cloud Private is an application platform for developing and managing containerized
applications across hybrid cloud environments, on-premises and public clouds. It is an
integrated environment for managing containers that includes the container orchestrator
Kubernetes, a private image registry, a management console, and monitoring frameworks.

This IBM Redbooks® covers tasks performed by IBM Cloud Private system administrators,
such as installation for high availability, configuration, backup and restore, using persistent
volumes, networking, security, logging and monitoring, Istio integration, troubleshooting and
so on.

The authors team has many years of experience in implementing IBM Cloud Private and
other cloud solutions in production environments, so throughout this document we took the
approach of providing you the recommended practices in those areas.

As part of this project, we also developed several code examples. You can download those
from the IBM Redbooks GitHub location (https://github.com/IBMRedbooks).

If you are an IBM Cloud Private system administrator, this book is for you. If you are
developing applications on IBM Cloud Private, you can see the IBM Redbooks publication
IBM Cloud Private Application Developer's Guide, SG24-8441.
© Copyright IBM Corp. 2019. All rights reserved. xi

https://github.com/IBMRedbooks

Authors

This book was produced by a team of specialists from around the world working at IBM
Redbooks, Austin Center.

Ahmed Azraq is a Cloud Solutions Leader in IBM. He works
as part of IBM Cloud Solutioning Center, and his primary
responsibility is to help clients across Middle East and Africa
(MEA) and Asia Pacific to realize their journey towards
adopting IBM Cloud and IBM Watson. Since joining IBM in
2012, Ahmed worked as a technical team leader and architect.
He has successfully led and won several IBM Cloud Private
deals as a pre-sales architect in the region, and eagerly
participated in Academy of Technology studies related to IBM
Cloud Private. Ahmed has acquired several professional
certifications, including Open Group IT Specialist, and
contributed to developing and authoring six professional IBM
Cloud Certification Exams. Ahmed has also delivered training
on IBM Cloud, DevOps, hybrid cloud Integration, Node.js, and
Watson APIs to IBM clients, IBM Business Partners, university
students, and professors around the world. He is the recipient
of several awards, including Eminence and Excellence Award
in the IBM Watson worldwide competition Cognitive Build, the
IBM Service Excellence Award for showing excellent client
value behaviors, and knowledge-sharing award. Ahmed is a
platinum IBM Redbooks author and has authored several other
IBM Redbooks publications.

Wlodek Dymaczewski is a Cloud Solution Architect in IBM
Poland. He has over 25 years of experience in IT in the field of
systems and network management. He was part of IBM Cloud
unit since the beginning, focusing on hybrid cloud management
and devops solutions. Since 2017, he works as IBM Cloud
Private Technical Lead for Central and Eastern Europe.
Wlodek holds MSc degree from Pozna· University of
Technology and MBA degree from Warwick Business School.

Fernando Ewald holds a Bachelor Degree in Computer
Science and a Masters Degree in Computer Networking.
Currently he works as the IBM Cloud Private Technical Team
Lead - L2 Support in IBM Austin. He has over 20 years of
experience in IT solutions. Fernando joined IBM Brazil in 2009
and there he was a member of the Innovation and Technical
Leadership Team. In 2016, Fernando relocated to Austin, TX to
work at the Hybrid Cloud division with DevOps tools and in
2018 he become the Technical Team Lead for IBM Cloud
Private Support L2 team. Before joining IBM, Fernando
worked with a Sugar and Alcohol Company, creating high
availability solutions for the industry and headquarters. He also
has worked as a Teacher at Universidade de Franca - Brazil,
where he taught at the Computer Science and System of
Information Bachelor courses.
xii IBM Cloud Private System Administrator’s Guide

Luca Floris is a Cloud Technical Consultant in IBM EMEA.
Luca joined IBM 4 years ago as a graduate through the IBM
Graduate Scheme and he has 8 years of experience in IT,
graduating from Plymouth University with a degree in
Computer Science. His primary focus is containerization and
application modernization through IBM Cloud Private and
related technologies. He is well recognized as a technical focal
point for IBM Cloud Private from IBM Cloud Innovation Labs in
EMEA, and has written extensively about IBM Cloud Private on
Kubernetes.

Rahul Gupta is a Cloud Native Solutions Architect in IBM
Cloud Solutioning Centre in USA. Rahul is a IBM Certified
Cloud Architect with 14 years of professional experience in IBM
Cloud technologies, such as Internet of Things, Blockchain,
and Container Orchestration Platforms. Rahul has been a
technical speaker in various conferences worldwide. Rahul has
authored several IBM Redbooks publications about messaging,
mobile, and cloud computing. Rahul is a IBM Master Inventor
and also works on MQTT protocol in OASIS board for open
source specifications.

Vasfi Gucer is an IBM Redbooks Project Leader with the IBM
International Technical Support Organization. He has more
than 23 years of experience in the areas of cloud computing,
systems management, networking hardware, and software. He
writes extensively and teaches IBM classes worldwide about
IBM products. His focus has been on cloud computing for the
last three years. Vasfi is also an IBM Certified Senior IT
Specialist, Project Management Professional (PMP), IT
Infrastructure Library (ITIL) V2 Manager, and ITIL V3 Expert.

Anil Patil is a senior Solution Architect at IBM US. He is a
Certified Cloud Solution Architect and Solution Advisor -
DevOps with more than 18 years of IT experience in Cognitive
Solutions, IBM Cloud, Microservices, IBM Watson API, and
Cloud-Native Applications. His core experience is in
Microservices, AWS, Cloud Integration, API Development, and
Solution Architecture. He is currently a Lead Solution Architect
and Cloud Architect for various clients in North America. Anil
has been a Redbooks author and technical contributor for
various IBM material and blogs, such as Cognitive Solution,
IBM Cloud, API Connect, and Docker Container.

Sanjay Singh is a senior Software Engineer. He has worked
on various cloud products over 11 years of his career with IBM.
As a technical consultant and Lab Advocate he has been
engaged with customers in making their Cloud Adoption and
implementation successful. He has lead adoption of IBM Cloud
Private in one of the largest Telecom providers in India over
eight months of engagement. His core experience is in
Kubernetes, Openstack, AWS, Node.JS, JavaScript, Python,
and Scripting. He holds a Btech degree in Computer Science
from NIT Trichy (India).
 Preface xiii

Thanks to the following people for their contributions to this project:

Ann Lund, Erica Wazewski
IBM Redbooks, Poughkeepsie Center

Robin Hernandez, Atif Siddiqui, Jeff Brent, Budi Darmawan. Eduardo Patrocinio, Eswara
Kosaraju, David A Weilert, Aman Kochhar, Surya V Duggirala, Kevin Xiao, Brian Hernandez,
Ling Lan, Eric Schultz, Kevin G Carr, Nicholas Schambureck, Ivory Knipfer, Kyle C Miller, Sam
Ellis, Rick Osowski, Justin Kulikauskas, Christopher Doan, Russell Kliegel, Kip Harris
IBM USA

Juliana Hsu, Radu Mateescu, Stacy Pedersen, Jeffrey Kwong
IBM Canada

Sundaragopal Venkatraman (Sundar) is a cloud evangelist
and a Thought Leader on application infrastructure, application
modernization, performance, scalability, and high availability of
enterprise solutions. With experience spanning over two
decades, he has been recognized as a trusted advisor to
various MNC Banks & other IBM clients in India/Asia-Pacific.
He has been recognized as a technical focal point for IBM
Cloud Private from IBM Cloud Innovation Labs in India. He has
delivered deep dive sessions on IBM Cloud Private on
International forums and conducts boot camps worldwide. He
pioneered the IBM Proactive Monitoring toolkit, a lightweight
Monitoring solution which was highlighted on IBM showcase
events. He has authored various IBM Redbooks publications
and Redpapers, and is a recognized author. He thanks his wife
and his family for supporting him in all his endeavors.

Dominique Vernier is a Senior Software Developer in IBM US.
He holds a degree in Computer Science from the Université
libre de Bruxelles. Over his 30 years of IT experience he
covered different technologies including system integration,
service-oriented architecture, and Cloud public and private as a
developer, IT architect, analyst, and technical sales with
worldwide positions. He has a broad knowledge of IT
environments, working in banking, supply chain management,
telecommunications, and other IT Sectors. He has written
several articles on developer Works, IBM Social media
platform, and his own blog. During his carrier, he applied for a
number of patents. His current expertise is on the private cloud,
where he automates the installation of Cloud Foundry on IBM
Cloud Private.

Zhi Min Wen is a senior managing consultant at IBM
Singapore. He has 20+ years of experience in IT industry
specialised in IT service management and cloud. He is
passionate about open source solutions, and he enjoys
exploring the new edge of technology. He was an early explorer
of Docker and Kubernetes, and he has written extensively on
IBM Cloud Private and Kubernetes. He attained IBM
Outstanding Technical Achievement Awards 2018.
xiv IBM Cloud Private System Administrator’s Guide

Brad DesAulniers, Mihai Criveti, Hans Kristian Moen
IBM Ireland

Raffaele Stifani
IBM Italy

Ahmed Sayed Hassan
IBM Singapore

Santosh Ananda, Rachappa Goni, Shajeer Mohammed, Sukumar Subburaj, Dinesh Tripathi
IBM India

Qing Hao, Xiao Yong, AZ Zhang
IBM China

The team would also like to express thanks to the following IBMers for contributing content to
the Cloud Foundry section of the book while continuing to develop the next IBM Cloud Private
Cloud Foundry release:

Chris Ahl, Subbarao Meduri
IBM US

Kevin Cormier, Roke Jung, Colton Nicotera, Lindsay Martin, Joshua Packer
IBM Canada

Now you can become a published author, too

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time. Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies. Your
efforts will help to increase product acceptance and customer satisfaction, as you expand
your network of technical contacts and relationships. Residencies run from two to six weeks
in length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form:

ibm.com/redbooks

� Send your comments in an email:

redbooks@us.ibm.com

� Mail your comments:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xvi IBM Cloud Private System Administrator’s Guide

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Part 1 IBM Cloud Private
overview, architecture,
and installation

This first part of the book provides an overview of IBM Cloud Private including the
architecture and major features. It also covers installing IBM Cloud Private in a high
availability configuration.

Part 1
© Copyright IBM Corp. 2019. All rights reserved. 1

2 IBM Cloud Private System Administrator’s Guide

Chapter 1. Introduction to IBM Cloud Private

This chapter provides an introduction to IBM Cloud Private and related technologies and has
the following sections:

� 1.1, “IBM Cloud Private overview” on page 4
� 1.2, “IBM Cloud Private node types” on page 6
� 1.3, “IBM Cloud Private architecture” on page 10
� 1.4, “IBM Cloud Private features and benefits” on page 12
� 1.5, “Helm” on page 19
� 1.6, “IBM Multicloud Manager” on page 21
� 1.7, “IBM Cloud Paks” on page 22
� 1.8, “IBM Cloud Private Editions” on page 23
� 1.9, “Persistent volumes”
� 1.10, “IBM Cloud Private terms” on page 26

1

GitHub materials: If you’d like to follow the code examples in this IBM Redbooks
publication, you can download the GitHub repository of this book. See Appendix B,
“Additional material” on page 365 for instructions.
© Copyright IBM Corp. 2019. All rights reserved. 3

1.1 IBM Cloud Private overview1

IBM Cloud Private is an application platform for developing and managing containerized
applications across hybrid cloud environments, on-premises and public clouds. It is an
integrated environment that includes the container orchestrator Kubernetes, a private image
registry, a management console, and monitoring frameworks.

IBM Cloud Private is a next-generation, pre-packaged, enterprise-class solution and platform
for developing and managing containerized applications. This integrated environment can be
deployed behind firewalls, and managed or controlled by whomever the enterprise
determines. It is built on Kubernetes.

With a lightweight footprint and powerful platform capabilities, IBM Cloud Private enables
enterprises to unleash their developmental creativity, using industry-common technologies
and process guidance, in a minimal time frame.

Platform technologies enabling cloud native development include Docker containers and
Kubernetes with integrated operations management for security, logging, monitoring and
event management. IBM Cloud Private also provides access to necessary application
runtimes and data services.

Figure 1-1 shows the IBM Cloud Private capabilities.

Figure 1-1 IBM Cloud Private capabilities

Use cases for IBM Cloud Private include the following situations:

� Create new cloud-native apps.
� Modernize your existing apps on cloud.
� Open your data center to work with cloud services.

See What is IBM Cloud Private for more information.

IBM Cloud Private is differentiated by providing production application services, application
runtimes, data and analytics services, messaging services, caching services, plus many
more that are necessary for developers to quickly and iteratively innovate based on their
enterprise business needs.

1 Parts of this section are based on the whitepaper “IBM Cloud Private: The cloud-native application platform for the enterprises” written
by Raffaele Stifani (Executive Architect - Software Group) from IBM Italy.
4 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/blogs/cloud-computing/2017/10/31/what-is-ibm-cloud-private/

This private cloud platform is part of the broader IBM Cloud portfolio and provides choice with
consistency across IBM public, private, and dedicated cloud models. IBM Cloud Private
delivers a choice of open-source application runtimes, consistent with IBM public cloud
offerings: Kubernetes and containers or Cloud Foundry technology.

Your enterprise can choose the prescriptive development approach of Cloud Foundry, or the
more customizable and portable approach of Kubernetes and Docker Containers.

Along with the application runtime frameworks, IBM delivers a core set of management
services for these frameworks and the applications being developed on top. Some examples
of the management services include logging, monitoring, access control, and event
management.

Enterprises can use these management tools integrated with the platform and ready to use.
These are tools frequently used by enterprise clients today and leverage existing skills. If
needed, these tools can be integrated with enterprise instantiations, so that the management
needs are operationalized from one location.

One of the most beneficial aspects of the IBM Cloud Private platform is the application
services that move innovation from idea to reality. As shown in Figure 1-2, IBM Cloud Private
includes services for data, messaging, Java, integration, Blockchain, DevOps, analytics, and
others. These services are crucial for enterprise application creation, and with IBM Cloud
Private they can be deployed rapidly and ready to accelerate new ideas.

Figure 1-2 IBM Cloud Private components

IBM Cloud Private supports choice in application development with Kubernetes, Cloud
Foundry, and function-based programming models. It provides these benefits:

� Containers and orchestration that are based on Kubernetes for creating
microservices-based applications.

� A common catalog of enterprise and open services to accelerate developer productivity.

� A choice of compute models for rapid innovation, including Kubernetes and Cloud
Foundry.

� Common base services to support the scalable management of microservices, including
Istio, monitoring with Prometheus, logging with Elasticsearch, Logstash, and Kibana
(ELK).

� Automatic horizontal and non-disruptive vertical scaling of applications.
Chapter 1. Introduction to IBM Cloud Private 5

� Network and storage policy-based controls for application isolation and security.

� Automated application health checking and recovery from failures.

� Support over IaaS infrastructure, including OpenStack and VMware.

� Through the Cloud Automation Manager component, support for Terraform and Chef to
allow the orchestration of infrastructure.

1.2 IBM Cloud Private node types

An IBM Cloud Private cluster has the following node types:

� Boot node
� Master node
� Worker node
� Management node
� Proxy node
� VA node
� etcd node

1.2.1 Boot node

A boot or bootstrap node is used for running installation, configuration, node scaling and
cluster updates. Only one boot node is required for any cluster. A single node can be used for
both master and boot. See Figure 1-3.

Figure 1-3 Boot node

Note: In the following images, the clusters represent minimal IBM Cloud Private
configurations. Actual production configurations can vary.

Note: You can use a single boot node for multiple clusters. In such a case, the boot and
master cannot be on a single node. Each cluster must have its master node. On the boot
node, you must have a separate installation directory for each cluster. If you are providing
your own certificate authority (CA) for authentication, you must have a separate CA domain
for each cluster.
6 IBM Cloud Private System Administrator’s Guide

1.2.2 Master node

A master node provides management services and controls the worker nodes in a cluster.
Master nodes host processes that are responsible for resource allocation, state maintenance,
scheduling, and monitoring. Multiple master nodes are used in a high availability (HA)
environment to allow for failover if the leading master host fails.

Hosts that can act as the master are called master candidates. See Figure 1-4.

Figure 1-4 Master node

1.2.3 Worker node

A worker node is a node that provides a containerized environment for running tasks. As
demands increase, more worker nodes can easily be added to the cluster to improve
performance and efficiency. A cluster can contain any number of worker nodes, but a
minimum of one worker node is required. See Figure 1-5.

Note: if you do not specify a separate proxy, management, or etcd node, those
components are also handled by the master node.
Chapter 1. Introduction to IBM Cloud Private 7

Figure 1-5 Worker node

1.2.4 Management node

A management node is an optional node that only hosts management services, such as
monitoring, metering, and logging. By configuring dedicated management nodes, you can
prevent the master node from becoming overloaded. See Figure 1-6.

Figure 1-6 Management node

1.2.5 Proxy node

A proxy node is a node that transmits external requests to the services created inside the
cluster. Multiple proxy nodes are deployed in a high availability (HA) environment to allow for
failover if the leading proxy host fails. While a single node is used as both master and proxy, it
is best to use dedicated proxy nodes to reduce the load on the master node. A cluster must
contain at least one proxy node if load balancing is required inside the cluster. See Figure 1-7
on page 9.
8 IBM Cloud Private System Administrator’s Guide

Figure 1-7 Proxy node

1.2.6 VA (Vulnerability Advisor) node

A VA (Vulnerability Advisor) node is an optional node that is used for running the Vulnerability
Advisor services. Vulnerability Advisor services are resource intensive. If you use the
Vulnerability Advisor service, specify a dedicated VA node. See Figure 1-8.

Figure 1-8 VA node
Chapter 1. Introduction to IBM Cloud Private 9

1.2.7 An etcd node

An etcd node is an optional node that is used for running the etcd distributed key value store.
Configuring an etcd node in an IBM Cloud Private cluster that has many nodes, such as 100
or more, helps to improve the etcd performance. See Figure 1-9.

Figure 1-9 etcd node

1.3 IBM Cloud Private architecture

The IBM Cloud Private architecture provides container-as-a-service (CaaS) and
platform-as-a-service (PaaS) capabilities.

Figure 1-10 on page 11 shows the IBM Private Cloud architecture.

Supported platforms: For the most recent information on supported platforms for each
IBM Cloud Private version 3.1.2 node type, see the Supported operating systems and
platforms IBM Knowledge Center link.
10 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_system_config/supported_os.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_system_config/supported_os.html

Figure 1-10 IBM Private Cloud architecture2

The architecture provides several benefits, as shown in Figure 1-10:

� Container orchestration, which is at the core of the architecture; this layer provides cluster
management, security capabilities, image repositories, routing services and microservices
mesh.

� A PaaS layer, which can enhance a container environment by providing higher-level
runtimes and service bindings that allow for an easier development experience.

� The CaaS and PaaS layer, which sit over an infrastructure layer that provides compute
through virtual machines, network, storage and security.

� Automation and orchestration for the underlying infrastructure, allowing for an
infrastructure-neutral software-defined data center; infrastructure automation can provide
predefined infrastructure templates to create repeatable patterns.

� A private cloud platform provides monitoring for container-based applications to provide
logging, dashboards and automation; it supports network and storage policy-based
controls for application isolation and security, and automated application health checking
and recovery from failures.

� The ability to run containerized workloads for several patterns, such as cloud-native, data
workloads, integration workloads, tooling workloads and some middleware, such as Java
Application Server.

� A developer catalog of workloads that you can provision over containers to automate the
developer experience.

2 Image taken from IBM Cloud Architecture Center
https://www.ibm.com/cloud/garage/architectures/private-cloud/reference-architecture

PUBLIC CLOUD IBM CLOUD PRIVATE ENTERPRISE

TRANSFROMATION &
CONNECTIVITY

OPENSORCE
TOOLS

EXISTING
ENTERPRISE

SYSTEMS

CACHES AUTOMATION
TOOLS

ANALYTICS CONTAINER
CATALOG

APP
SERVER

PROVISION

SERVICE
BROKER

ENTERPRISE
MIDDLEWARE

TRANSFORMATION
& CONNECTIVITY

ENTERPRISE
DATA

CONTAINER
ORCHESTRATION

CLOUD
MANAGMENT

LOGGING MONITORING DASHBOARD

INFRASTRUCTURE
SERVICES

DATA
SOURCES

OTHER
WORKLOADS

CLUSTER
MANAGEMENT

CONTAINER
SECURITY

IMAGE
REPOSITORY

MICROSERVICES
MESH

ROUTING
SERVICES

INFRASTRUCTURE
SECURITY

Developer Automation

Next Generation Management

PaaS (Platform as a Service) CaaS (Container as a Service)

Infrastructure Infrastructure Automation

ROUTING
SERVICES PROVISION

BLOCKCHAIN DATABASES

Cloud Native Containerized Middleware Data Workloads DevOps & Tools

MICROSERVICES

MICROSERVICES

MICROSERVICES

SERVICESRUNTIME

Workloads

SERVICES

AI
SERVICES

IBM PUBLIC
CLOUD

IoT CLOUD

EDGE
SERVICES
Chapter 1. Introduction to IBM Cloud Private 11

https://www.ibm.com/cloud/garage/architectures/private-cloud/reference-architecture

The private cloud architecture is supported by IBM Cloud Private, as shown in Figure 1-11.
By supporting Kubernetes and Cloud Foundry, IBM Cloud Private provides choice in
application development. You get a wealth of content that can be containerized, tools for
end-to-end automation, and management tools.

Figure 1-11 IBM Private Cloud architecture with product names3

For more information about the IBM Cloud Private architecture, visit the following IBM Cloud
Architecture link:
https://www.ibm.com/cloud/garage/architectures/private-cloud/reference-architecture

1.4 IBM Cloud Private features and benefits

The following sections describe the major features in IBM Cloud Private.

1.4.1 A unified installer

Rapidly set up a Kubernetes based cluster that contains master, worker, proxy, and optional
management and Vulnerability Advisor nodes by using an Ansible based installer. This
Ansible based installer is fast and simple to use. Run a few simple commands from a single
boot node, and your cluster is up and running in a few minutes.

See Chapter 2, “High availability installation” on page 31 for details on installing IBM Cloud
Private.

1.4.2 Robust logging with ELK stack

Logs are critical for debugging and post-mortem in production failures. Twelve-factor
applications break down into many microservices, which increases the number of logs across
the containers you need to debug. IBM Cloud Private uses the ELK (Elasticsearch, Logstash,
Kibana) stack and Filebeat for monitoring and logging.

3 Image taken from IBM Cloud Architecture Center
https://www.ibm.com/cloud/garage/architectures/private-cloud/reference-architecture

OpenStack
12 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/cloud/garage/architectures/private-cloud/reference-architecture
https://www.ibm.com/cloud/garage/architectures/private-cloud/reference-architecture

This process provides a centralized store for all logs and metrics, better performance, and
increased stability when you access and query logs and metrics. You can use the results from
these queries to produce insightful graphs and reports: that is the dashboard part.

See Chapter 5, “Logging and monitoring” on page 153 for more information on the ELK stack.

1.4.3 Monitoring and alerts

Every container must have its health monitored. Basic liveness probes in Kubernetes ensure
failed pods are restarted.

IBM Cloud Private configures custom Prometheus collectors for custom metrics. Custom
metrics help provide insights and building blocks for customer alerts and custom dashboards.
IBM Cloud Private uses a Prometheus and Grafana stack for system monitoring.

See Chapter 5, “Logging and monitoring” on page 153 for more information on monitoring
and alerts in IBM Cloud Private.

1.4.4 Metering

Every container must be managed for license usage. You can use the metering service to
view and download detailed usage metrics for your applications and cluster. Fine-grained
measurements are visible through the metering UI and the data is kept for up to three months.
Monthly summary reports are also available for you to download and are kept for up to 24
months.

1.4.5 Identify and access

IBM Cloud Private introduces the concept of teams on top of raw Kubernetes roles and
cluster roles. Teams bind a collection of resources, both inside and outside of Kubernetes, to
a set of users with defined roles. The team model is based on the access control model from
IBM UrbanCode Deploy.

See Chapter 6, “Security” on page 237 for more information on this topic.

1.4.6 Security

IBM Cloud Private ensures data in transit and data at rest security for all platform services. All
services expose network endpoints via TLS and store data which is encrypted at rest. You
need to configure IPsec and dm-crypt in order to accomplish that.

All services must provide audit logs for actions performed, when they were performed, and
who performed the action. The security model ensures consistent audit trails for all platform
services and compliance across all middleware.

See Chapter 6, “Security” on page 237 for details on managing security in IBM Cloud Private.

1.4.7 IBM Vulnerability Advisor

Vulnerability Advisor checks the security status of container images that are provided by IBM,
third parties, or added to your organization’s registry namespace. If the Container Scanner is
installed in each cluster, Vulnerability Advisor also checks the status of containers that are
running.
Chapter 1. Introduction to IBM Cloud Private 13

When you add an image to a namespace, the image is automatically scanned by Vulnerability
Advisor to detect security issues and potential vulnerabilities. If security issues are found,
instructions are provided to help fix the reported vulnerability.

Vulnerability Advisor provides security management for IBM Cloud Container Registry,
generating a security status report that includes suggested fixes and best practices.

Any issues that are found by Vulnerability Advisor result in a verdict that indicates that it is not
advisable to deploy this image. If you choose to deploy the image, any containers that are
deployed from the image include known issues that might be used to attack or otherwise
compromise the container. The verdict is adjusted based on any exemptions that you
specified. This verdict can be used by Container Image Security Enforcement to prevent the
deployment of nonsecure images in IBM Cloud Kubernetes Service.

Fixing the security and configuration issues that are reported by Vulnerability Advisor can
help you to secure your IBM Cloud infrastructure.

1.4.8 IBM Cloud Automation Manager

IBM Cloud Automation Manager (CAM) is a multi-cloud, self-service management platform
running on IBM Cloud Private that empowers developers and administrators to meet business
demands. This platform allows to efficiently manage and deliver services through end-to-end
automation while enabling developers to build applications aligned with enterprise policies.

IBM Cloud Private with Cloud Automation Manager provides choice and flexibility for multiple
IT across the organization to build and deliver applications and application environments into
production more quickly, with greater consistency and control.

With IBM Cloud Private, developers can get up and running quickly with a lightweight
development environment optimized for delivering Docker containerized applications with an
integrated DevOps toolchain.

With Cloud Automation Manager, IT infrastructure managers can help provision and maintain
cloud infrastructure and traditional VM application environments with a consistent operational
experience across multiple clouds.

With the Cloud Automation Manager Service Composer, IT service managers can graphically
compose complex cloud services that can be consumed as a service from a DevOps
toolchain or delivered in a cloud service catalog.

With a large and growing catalog of pre-built automation content for popular open source and
IBM middleware, built to best practices, developers and IT architects can get productive fast.

The main capabilities are:

� Accelerate innovation: it helps to provision into multi-cloud environments through a
self-service catalog. it easily integrates with existing processes and tools through
automated workflow capabilities.

� Multi-cloud operations: it consistently manage and govern across all of your cloud
environments.

� Open source technology: it simplifies your multi-cloud provisioning by utilizing open
source and industry standards such as Terraform. you can reuse your existing skills and
Chef scripts and avoid vendor lock-in.
14 IBM Cloud Private System Administrator’s Guide

� Integration with your existing data center: It allows to use your existing tools (IBM
Cloud Brokerage, IBM DevOps, IT management, etc.) to extend IBM Cloud Automation
Manager capabilities.

� Infrastructure as code: Infrastructure as code (IaC) is the process of managing and
provisioning computer data centers through machine-readable definition files, rather than
physical hardware configuration or interactive configuration tools.

See the following link for more information on IBM Cloud Automation Manager:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.1/featured_applications/
cam.html

1.4.9 IBM Cloud Transformation Advisor

The Transformation Advisor is an interactive analyzer tool for modernizing monolith
Java/J2EE workloads of an enterprise. IBM Transformation Advisor scans the application
artefact for its compatibility on IBM Cloud Private and produces a report. It highlights code
correction if needed, to make the code compatible to run on IBM Cloud Private. Apart from
traditional WebSphere Application Server applications, it also supports other competitor
server runtime application for the compatibility to be ported on IBM Cloud Private.

The scan report highlights any gaps and efforts needed to make the application cloud ready
for deployment.The result of the Application Binary scan also provides the deployment YAML,
docker file for containerizing the application and a liberty server.xml file. If an application is
fully compliant and does not requires any changes, then it can be directly deployed to an IBM
Cloud Private thorough Transformation Advisor console itself for testing.

Benefits:

� Included and deployed on IBM Cloud Private

� Introspects applications running on most popular runtime environments

� Spits out effort estimates for application modernization for the workload

� Deploy application to a target IBM Cloud Private environment if the application is fully
compliant.

� Provides recommendations for application modernization

Figure 1-12 on page 16 shows the IBM Cloud Transformation Advisor. See the following link
for more information on IBM Cloud Transformation Advisor:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.1/featured_applications/
transformation_advisor.html.
Chapter 1. Introduction to IBM Cloud Private 15

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.1/featured_applications/transformation_advisor.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.1/featured_applications/transformation_advisor.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.1/featured_applications/cam.html.
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.1/featured_applications/cam.html

Figure 1-12 IBM Cloud Transformation Advisor

1.4.10 IBM Microclimate

Microclimate provides an end-to-end, cloud-native solution for creating, building, testing and
deploying applications. The solution offers services and tools to help you create and
modernize applications in one seamless experience. It covers each step of the process from
writing and testing code to building and deployment. The solution enables containerized
development, rapid iteration with real-time performance insights, intelligent feedback,
diagnostic services, an integrated DevOps pipeline and deployment to the cloud.

You can see the IIBM Cloud Private Application Developer's Guide, SG24-8441 IBM
Redbooks for detailed information on IBM Microclimate installation and configuration and how
to use it in a sample scenario.

1.4.11 IBM Cloud Private management console

Manage, monitor, and troubleshoot your applications and cluster from a single, centralized,
and secure management console.

Figure 1-13 on page 17 shows the IBM Cloud Private management console.
16 IBM Cloud Private System Administrator’s Guide

Figure 1-13 IBM Cloud Private management console

1.4.12 Kubernetes

To run a container in production, Kubernetes brings orchestration primitives to support
different styles of workloads:

� Stateless ReplicaSets
� Stateful StatefulSets
� Batch Jobs
� System DaemonSets

1.4.13 Private Docker image registry

The Private Docker registry integrates with the Docker registry V2 API to provide a local
registry service that functions in the same way as the cloud-based registry service, Docker
Hub. This local registry has all the same features as Docker Hub, but you can also restrict
which users can view or pull images from this registry.

1.4.14 Helm with enhanced security controls

Helm, the Kubernetes native package management system, is used for application
management inside an IBM Cloud Private cluster. The Helm GitHub community curates and
continuously expands a set of tested and preconfigured Kubernetes applications. You can
add items from this catalog of stable applications to your cluster from the management
console. Installing this Helm community catalog provides an extra 80+ Kubernetes
applications that are ready for deployment in your cluster.

Helm charts describe even the most complex applications; provide repeatable application
installation, and serve as a single point of authority. Helm charts are easy to update with
in-place upgrades and custom hooks. Charts are also easy to version, share, and host on
public or private servers. You can use helm rollback to roll back to an older version of a
release with ease. See 1.5, “Helm” on page 19 for more information on Helm components.
Chapter 1. Introduction to IBM Cloud Private 17

Also you can see the IIBM Cloud Private Application Developer's Guide, SG24-8441 IBM
Redbooks on how Helm is used for application management.

1.4.15 Catalog

IBM Cloud Private provides an easy to use, extend, and compose catalog of IBM and
third-party content. The following are some key concepts:

� Charts: A bundle of Kubernetes resources

� Repository: A collection of charts

� Releases: A chart instance loaded into Kubernetes. The same chart can be deployed
several times and each becomes its own release

The catalog provides a centralized location from which you can browse for and install
packages in your cluster

Packages for additional IBM products are available from curated repositories that are included
in the default IBM Cloud Private repository list. Your environment must be connected to the
internet for you to access the charts for these packages. To view a list of all the IBM Cloud.

Figure 1-14 shows the IBM Cloud Private catalog.

Figure 1-14 IBM Cloud Private catalog

1.4.16 Kubernetes Service Catalog for managing service brokers

IBM Cloud Private supports the Kubernetes Service Catalog. You can configure the service
broker applications to manage the Service Catalog resources and details.
18 IBM Cloud Private System Administrator’s Guide

The Service Catalog component adds the following Kubernetes resources:

� ClusterServiceBrokers
� ClusterServiceClasses
� ClusterServicePlans
� ServiceInstances
� ServiceBindings

The service broker is a component that implements the service broker API to view the
available services and plans, create an instance from the available services and plans, and
create bindings to connect to the service instance.

1.5 Helm

Helm is a package manager. Package managers automate the process of installing,
configuring, upgrading, and removing applications on a Kubernetes cluster.

An application in Kubernetes typically consists of at least two resource types: a deployment
resource, which describes a set of pods to be deployed together, and a services resource,
which defines endpoints for accessing the APIs in those pods. The application can also
include ConfigMaps, Secrets, and Ingress.

For any application deployment, several Kubernetes commands (kubectl) are needed to
create and configure resources. Instead of manually creating each application dependency
resource separately, Helm creates many resources with one command. A Helm chart defines
several Kubernetes resources as a set in a YAML file. A default chart contains a minimum of
a deployment template and a service template.

1.5.1 Helm components and terminology

Helm has two elements. A client (Helm) and a server (Tiller). The server element runs inside
a Kubernetes cluster and manages the installation of the charts. Figure 1-15 on page 20
shows how Helm components are related to each other.
Chapter 1. Introduction to IBM Cloud Private 19

Figure 1-15 Helm components

� Helm: A command-line interface (CLI) that installs charts into Kubernetes, creating a
release for each installation. To find new charts, search Helm chart repositories.

� Chart: An application package that contains templates for a set of resources that are
necessary to run the application. A template uses variables that are substituted with
values when the manifest is created. The chart includes a values file that describes how to
configure the resources.

� Repository: Storage for Helm charts. The namespace of the hub for official charts is
stable.

� Release: An instance of a chart that is running in a Kubernetes cluster. You can install the
same chart multiple times to create many releases.

� Tiller: The Helm server-side templating engine, which runs in a pod in a Kubernetes
cluster. Tiller processes a chart to generate Kubernetes resource manifests, which are
YAML-formatted files that describe a resource. YAML is a human-readable structured data
format. Tiller then installs the release into the cluster. Tiller stores each release as a
Kubernetes ConfigMap.

1.5.2 Why you should use Helm

Helm charts describe even the most complex applications, provide repeatable application
installation and are easy to share, version and publish.
20 IBM Cloud Private System Administrator’s Guide

With Helm, configuration settings are kept separate from the manifest formats. You can edit
the configuration values without changing the rest of the manifest. Configuration settings are
in a values.yaml file. You update the runtime parameters in that file to deploy each application
instance differently. A single command used to install, upgrade and deleting releases as
represented below in Figure 1-16 for lifecyle of a release.

Figure 1-16 Release lifecycle using Helm

1.6 IBM Multicloud Manager

IBM Multicloud Manager is the single dashboard that lets your enterprise oversee multiple
Kubernetes clusters wherever they are—public cloud or private.

Working with more than one or two clouds means you can pick the best providers and
services across clouds, geographies and functions for specific needs. This helps potentially
lower costs, increase performance and solidify governance.

Multicloud enterprises rely on private clouds for better data center performance and
availability. They depend on public clouds to be more competitive, get to market faster and
build new capabilities like analytics and artificial intelligence.

But successfully developing and deploying these new capabilities means that the average
multicloud enterprise uses six or more clouds and hundreds of Kubernetes clusters. This
creates a complex, error-prone environment that’s expensive and time-consuming to manage.
IBM Multicloud Manager supports enterprises to manage resources across clouds and
helping decreasing compliance risks and reduce cost.
Chapter 1. Introduction to IBM Cloud Private 21

1.7 IBM Cloud Paks

One key technology contributing to the ability to run software components more efficiently,
with improved lifecycle management, scalability and resilience, is known as containerization.
IBM delivers Kubernetes as part of its IBM Cloud Private offering as well as in its IBM Cloud
Kubernetes Service. IBM is committed to containerization across its enterprise software
portfolio.

While still supporting traditional packaging and deployment models (installing software as
usual on a supported operating system), an increasing number of products are available as
container images. As mentioned, deploying containerized software in a manner suitable for
production requires more than an image.

IBM Cloud Paks provide enterprise software container images that are pre-packaged in
production-ready configurations that can be quickly and easily deployed to IBM’s container
platforms, with support for resiliency, scalability, and integration with core platform services,
like monitoring or identity management. For customers who don’t want to operate the
software and its underlying infrastructure, in containers or otherwise, IBM also makes many of
its products available as-a-Service, where they are hosted and maintained by IBM in its public
cloud.

Figure 1-17 shows the three ways IBM software is delivered and consumed as containers.
Not all IBM products are available in all three delivery models.

Figure 1-17 IBM software as containers

IBM Cloud Paks use Helm charts to describe how IBM software should be deployed in a
Kubernetes environment. These resource definitions can be easily customized during
deployment, and upgrades can be easily rolled out or rolled back using the management
interfaces provided by IBM Cloud Private or IBM Cloud Kubernetes Service.

An IBM Cloud Pak is more than a simple Helm chart. IBM Cloud Paks accelerate time to
value and improve enterprise readiness at lower cost than containers alone.
22 IBM Cloud Private System Administrator’s Guide

IBM Cloud Pak is a collection of assets for container native applications, many based on open
technologies. IBM Cloud Pak delivers higher value than containers alone. Certified IBM Cloud
Pak are enterprise ready out of the box.

IBM Cloud Paks are identified in the Catalog by one of two badges with the entry. An entry
with an IBM Cloud Pak badge meets the criteria for that badge. An entry that displays a
Certified IBM Cloud Pak badge indicates that it meets the requirements of the Certified IBM
Cloud Pak badge, which are more stringent than what is required for the IBM Cloud Pak
badge.

IBM Cloud Paks can be created by IBM or 3rd party software solutions that are offered by IBM
Partners. Figure 1-18 shows the comparison between IBM Cloud Pak and Certified IBM
Cloud Pak.

Figure 1-18 Comparison between IBM Cloud Pak and Certified IBM Cloud Pak

For more information visit the IBM Knowledge Center link
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/app_center/cloud_paks_
over.html.

1.8 IBM Cloud Private Editions

The following are the IBM Cloud Private Editions:

� IBM Cloud Private delivers a customer-managed container solution for enterprises. It is
also in a community edition, IBM Cloud Private-Community Edition, which provides a
limited offering that is available at no charge and is ideal for test environments.

� IBM Cloud Private Cloud Native Edition is licensed and provides an high availability
topology for an enterprise production runtime. Cloud Automation Manager, Vulnerability
Advisor is also packaged as part of Cloud Native edition.

� IBM Cloud Private Enterprise Edition has all the offerings of IBM Cloud Private Native
Edition plus IBM WebSphere Application Server Network Deployment MQ Advanced,
APIConnect.
Chapter 1. Introduction to IBM Cloud Private 23

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/app_center/cloud_paks_over.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/app_center/cloud_paks_over.html

Figure 1-19 shows the IBM Cloud Private Editions.

Figure 1-19 IBM Cloud Private Editions

1.9 Persistent volumes

Persistent volume is a storage resource within the cluster. Persistent volumes have a lifecycle
independent of any individual pod that uses it. This API object encapsulates the details of the
storage implementation or cloud-provider-specific storage system, as shown in Figure 1-20
on page 25.

A persistent volume claim is a storage request, or claim, made by the developer. Claims
request specific sizes of storage, as well as other aspects such as access modes.

A StorageClass describes an offering of storage and allow for the dynamically provisioning of
PVs and PVCs based upon these controlled definitions.

IBM Cloud Private for Data: In addition to these IBM Cloud Private Editions, there is
another related product called IBM Cloud Private for Data. This product is a native cloud
solution that enables you to put your data to work quickly and efficiently. It lets you do both
by enabling you to connect to your data (no matter where it lives), govern it, find it, and use
it for analysis. IBM Cloud Private for Data also enables all of your data users to collaborate
from a single, unified interface, so your IT department doesn’t need to deploy and connect
multiple applications.

We will not discuss this product in this document. You can see the product page at
https://www.ibm.com/analytics/cloud-private-for-data for more information.
24 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/analytics/cloud-private-for-data

Figure 1-20 Persistent volumes

1.9.1 Volume and claim lifecycle

The Reclaim policy informs the cluster what to do with the volume after it has been released
from its claim

Retain allows for the manual reclamation of the storage asset. The PVC is deleted but the PV
remains.

Delete reclaim policy removes both the objects from within the cluster, as well as the
associated storage asset from the external infrastructure.

Recycle has been deprecated and should no longer be used.

Access Modes define how volumes can be mounted in the manner supported by the storage
provider

� ReadWriteOnce (RWO) can be mounted as read-write by a single node and pod

� ReadOnlyMany (ROX) can be mounted read-only by many nodes and pods

� ReadWriteMany (RWX) can be mounted as read-write by many nodes and pods

Note: Reclaim policy and Access Modes may be defined differently by each storage
provider implementation.
Chapter 1. Introduction to IBM Cloud Private 25

1.9.2 IBM Cloud Private Storage providers

Kubernetes and IBM Cloud Private offer many options for managing persistent storage within
the cluster. IBM Cloud Private features the following:

� GlusterFS enterprise grade of storage to K8s pods offering ease of configuration, scaling,
encryption support, replication, striping and dynamic provisioning.

� vSphere Cloud Provider (vSphereVolume Plug-in) gives access to enterprise grade
storage (vSAN, VMFS, vVol) that is native to and already supported by the VMware
infrastructure.

� IBM Spectrum Scale for solutions not hosted in VMware provides direct access to IBM
block storage via dynamic provisioning.

� NFS provides a versatile and easy to use method of getting persistent storage to pods that
is already available in most customer environments.

� HostPath is ideal for testing persistence in non-production environments.

� Ceph (Rook) is an industry proven option that can provide several storage options along
with persistent volumes for Kubernetes.

See Chapter 4, “Managing persistence in IBM Cloud Private” on page 115 for more
information on managing storage in IBM Cloud Private.

1.10 IBM Cloud Private terms

The following IBM Cloud Private terms are used throughout this book. Table 1-1 shows the
definition of these terms.

Table 1-1 IBM Cloud Private terms

IBM Cloud Private term Definition

airgap environment A network environment that does not have
internet access.

API key A unique code that is passed to an API to identify
the calling application or user. An API key is used
to track and control how the API is being used, for
example, to prevent malicious use or abuse of the
API.

application log (applog) A log that is produced from applications that are
deployed in the Cloud Foundry environment.

application One or more computer programs or software
components that provide a function in direct
support of a specific business process or
processes.

audit log A log file containing a record of system events
and responses.

Availability Zone An operator-assigned, functionally independent
segment of network infrastructure.

boot node A node that is used for running installation,
configuration, node scaling, and cluster updates.
26 IBM Cloud Private System Administrator’s Guide

buildpack A collection of scripts that provide framework and
runtime support for apps.

catalog A centralized location that can be used to browse
for and install packages in a cluster.

Cloud Foundry deployment tool The user interface that is used to manage the
deployment of Cloud Foundry.

cluster A set of resources, worker nodes, networks, and
storage devices that keep apps highly available
and ready to deploy in containers.

container image In Docker, standalone, executable software,
including code and system tools, that can be
used to run an application.

container A system construct that allows users to
simultaneously run separate logical operating
system instances. Containers use layers of file
systems to minimize image sizes and promote
reuse.

deployment A process that retrieves the output of a build,
packages the output with configuration
properties, and installs the package in a
pre-defined location so that it can be tested or
run.

Docker An open platform that developers and system
administrators can use to build, ship, and run
distributed applications.

ELK stack The three products, Elasticsearch, Logstash,
and Kibana, that comprise a stack of tools that
stream, store, search, and monitor data,
including logs.

endpoint A network destination address that is exposed by
Kubernetes resources, such as services and
ingresses.

extension A package that contains a deployment process
and its required scripts and files.

fault tolerance The ability of a system to continue to operate
effectively after the failure of a component part.

Helm chart A Helm package that contains information for
installing a set of Kubernetes resources into a
Kubernetes cluster.

Helm release An instance of a Helm chart that runs in a
Kubernetes cluster.

Helm repository A collection of charts.

IBM Cloud Private term Definition
Chapter 1. Introduction to IBM Cloud Private 27

high availability The ability of IT services to withstand all outages
and continue providing processing capability
according to some predefined service level.
Covered outages include both planned events,
such as maintenance and backups, and
unplanned events, such as software failures,
hardware failures, power failures, and disasters.

image manager A centralized location for managing images
inside a cluster.

image A file system and its execution parameters that
are used within a container runtime to create a
container. The file system consists of a series of
layers, combined at runtime, that are created as
the image is built by successive updates. The
image does not retain state as the container
executes.

inception container See “installer container.”

ingress A collection of rules to allow inbound
connections to the Kubernetes cluster services.

installer container The Docker container that runs the configuration
manager and the Cloud Foundry deployment
tool.

isolation segment A division that can be used to separate
applications as if they were in different
deployments without the need for redundant
management and network complexity.

isolation The process of confining workload deployments
to dedicated virtual and physical resources to
achieve multi-tenancy support.

Kubernetes An open-source orchestration tool for containers.

layer A changed version of a parent image. Images
consist of layers, where the changed version is
layered on top of the parent image to create the
new image.

load balancer Software or hardware that distributes workload
across a set of servers to ensure that servers are
not overloaded. The load balancer also directs
users to another server if the initial server fails.

machine type A configuration that is used to instantiate a virtual
machine.

management console The graphical user interface for IBM Cloud
Private.

management logging service An ELK stack that is used to collect and store all
Docker-captured logs.

IBM Cloud Private term Definition
28 IBM Cloud Private System Administrator’s Guide

management node An optional node that only hosts management
services such as monitoring, metering, and
logging and can be used to prevent the master
node from becoming overloaded.

marketplace A list of enabled services from which users can
provision resources.

master node A node that provides management services and
controls the worker nodes in a cluster. Master
nodes host processes that are responsible for
resource allocation, state maintenance,
scheduling, and monitoring.

mesh A network topology in which devices are
connected with many redundant interconnections
between network nodes. Every node has a
connection to every other node in the network.

microclimate An end-to-end, cloud-native solution for creating,
building, testing, and deploying applications.

microservice A set of small, independent architectural
components, each with a single purpose, that
communicate over a common lightweight API.

multicloud A cloud computing model in which an enterprise
uses a combination of on-premises, private
cloud, and public cloud architecture.

Network File System A protocol that allows a computer to access files
over a network as if they were on its local disks.

organization (org) In Cloud Foundry, the top-most meta object
within the infrastructure that is managed by an
account with administrative privileges.

persistent volume claim A request for cluster storage.

persistent volume Networked storage in a cluster that is
provisioned by an administrator.

placement policy A policy that defines where the application
components should be deployed and how many
replicas there should be.

Pod Security Policy A policy that is used to set up cluster-level control
over what a pod can do or what it can access.

pod A group of containers that are running on a
Kubernetes cluster. A pod is a runnable unit of
work, which can be a either a stand-alone
application or a microservice.

proxy node A node that transmits external requests to the
services that are created inside a cluster.

registry A public or private container image storage and
distribution service.

repository A persistent storage area for data and other
application resources.

IBM Cloud Private term Definition
Chapter 1. Introduction to IBM Cloud Private 29

resource A physical or logical component that can be
provisioned or reserved for an application or
service instance. Examples of resources include
database, accounts, and processor, memory, and
storage limits.

role-based access control The process of restricting integral components of
a system based on user authentication, roles,
and permissions.

service broker A component of a service that implements a
catalog of offerings and service plans, and
interprets calls for provisioning and
deprovisioning, binding and unbinding.

storage node A node that is used to provide the backend
storage and file system to store the data in a
system.

system log (syslog) A log that is produced by Cloud Foundry
components.

taint To mark a particular input, such as a variable, as
being unsafe in order to subject it to security
checking.

team An entity that groups users and resources.

vCPU A virtual core that is assigned to a virtual
machine or a physical processor core if the server
isn’t partitioned for virtual machines.

Virtual Machine File System (VMFS) A cluster file system that allows virtualization to
scale beyond a single node for multiple VMware
ESX servers.

virtual storage area network (VSAN) A fabric within the storage area network (SAN).

worker node In a cluster, a physical or virtual machine that
carries the deployments and services that make
up an app.

workload A collection of virtual servers that perform a
customer-defined collective purpose. A workload
generally can be viewed as a multitiered
application. Each workload is associated with a
set of policies that define performance and
energy consumption goals.

IBM Cloud Private term Definition
30 IBM Cloud Private System Administrator’s Guide

Chapter 2. High availability installation

This chapter provides a step by step guide on how to install IBM Cloud Private in a high
availability (HA) configuration. It also discusses the recommended HA configuration options.

This chapter covers the following topics:

� 2.1, “High availability considerations” on page 32
� 2.2, “High Availability models for IBM Cloud Private cluster” on page 35
� 2.3, “Performance considerations for IBM Cloud Private setup” on page 38
� 2.4, “Step-by-step installation guide using Terraform” on page 40
� 2.5, “Post installation verification” on page 53
� 2.6, “Installing IBM Cloud Private on other Cloud platforms” on page 63
� 2.7, “Setting up IBM Cloud Private catalog in an airgap environment” on page 65
� 2.8, “Changing certificates post installation” on page 67

2

© Copyright IBM Corp. 2019. All rights reserved. 31

2.1 High availability considerations

In a container-as-a-Service (CaaS) platform such as IBM Cloud Private, two levels of high
availability exists for resiliency:

� High availability for platform components.

� High availability of the workloads and applications hosted on this platform.

High availability installations of IBM Cloud Private platform are only supported through
Cloud Native and Enterprise Edition only. See section 1.3, “IBM Cloud Private architecture”
on page 10 for details on the IBM Cloud Private architecture and section 1.2, “IBM Cloud
Private node types” on page 6 for a discussion of the IBM Cloud Private node types.

System administrators should determine the high availability requirements of the IBM Cloud
Private platform installation before the software is installed.

Kubernetes technology provides built-in functions to support the resiliency of a cluster. When
administrators install IBM Cloud Private, the installation process installs all the components
that they need. However, it is always good to know how Kubernetes works. Administrators can
deploy the master nodes and the proxy nodes in plurality for achieving high availability.
System administrators can configure high availability for only the master nodes, only the
proxy nodes, or for both types of nodes.

2.1.1 Fault tolerance

System administrators must have an odd number of masters in the IBM Cloud Private cluster.
Having an odd master size does not change the numbers needed for majority. Majority is the
number of master nodes needed for the cluster to be able to operate. However, adding extra
master nodes provide a higher tolerance for failure. For N number of masters in a cluster, the
cluster can tolerate up to (N-1)/2 permanent failures. For example, in a cluster that has three
masters, if one master fails, then the fault tolerance is as (3-1)/2=1. System administrators
must aim for a fault tolerance of one or more.

Important: It is not possible to convert a standard installation into a high availability
installation, or add new master nodes to a highly available installation.

Note: Every instance of the master node has its own etcd database and runs the API
Server. The etcd database contains vital data of the cluster used in orchestration. Data in
etcd is replicated across multiple master nodes. This applies incase the etcd is included
within the masters, you can also separate etcd nodes from the master nodes.

Note: Scheduler and Control managers of Kubernetes are in all the master nodes, but they
are active only in one master node. They work in leader election mode so that only one is
active. If a failure occurs, another instance of master node takes over.
32 IBM Cloud Private System Administrator’s Guide

Table 2-1 shows how fault tolerance in a cluster is affected by even and odd sized clusters.

Table 2-1 Fault tolerance for the HA clusters

2.1.2 Considerations for sizing the IBM Cloud Private cluster

System administrators should consider following points while sizing the cluster.

Worker node considerations
Consider the following when planning your worker nodes:

� If your cluster has a few worker nodes, consider increasing the number of worker nodes
while decreasing the size of the nodes for adequate headspace, efficiency, mobility, and
resiliency.

� Accommodate the workload mobility.

� Consider the memory that is required for a specific type of workload.

� Consider the memory that is required for other application frameworks.

� The maximum pod per node is 500 and the maximum pod per CPU core is 10 (This is for
Intel based workload).

� The cluster size depends on the worker node number. The pod number depends on the
application type and the worker node’s configuration.

Proxy node considerations
The following needs to be considered when planning your proxy nodes:

� If your cluster has a few worker nodes, consider increasing the number of worker nodes
while decreasing the size of the nodes for adequate headspace, efficiency, mobility, and
resiliency.

� Accommodate the workload mobility.

� Consider the memory that is required for a specific type of workload.

� Consider the memory that is required for other application frameworks.

� The maximum pod per node is 500 and the maximum pod per CPU core is 10.

� The cluster size depends on the worker node number. The pod number depends on the
application type and the worker node’s configuration.

Cluster Size Majority Fault Tolerance

1 1 0

2 2 0

3 2 1

4 3 1

5 3 2

6 4 2

7 4 3
Chapter 2. High availability installation 33

Management node considerations
Larger clusters with more workload require larger management nodes. Management nodes
can be added at any time if they were originally externalized.For proxy nodes, consider the
headspace requirements to carry the workload due to a node failure.

Large cluster considerations
The following are the large cluster considerations:

� The node-to-node mesh starts to fail with 700 nodes in the cluster. You must create a
router reflector for BGP (Border Gateway Protocol) daemons.

� Consider to use etcd outside of your master nodes if you plan on having a cluster with
several hundred worker nodes. A separated etcd cluster is ideal to reduce the impact on
the master node.

� Be sure to implement load balancing on your master node.

� The number of services in your cluster affects the load on each node. In large clusters with
more than 5000 services, you must run your nodes in IP Virtual Server (IPVS) mode.

2.1.3 Sample sizing for your IBM Cloud Private cluster

This section gives some sample configurations for sizing your IBM Cloud Private cluster.

Small size environment with medium resiliency
Table 2-2 shows sizing of small sized IBM Cloud Private cluster environment.

Section 2.4, “Step-by-step installation guide using Terraform” shows installation of IBM Cloud
Private cluster with number of nodes of each type, shown in Table 2-2 with an additional
vulnerability advisor node.

Table 2-2 Small size environment with medium resiliency

Medium size environment with medium resiliency
Table 2-3 below shows sizing of medium sized IBM Cloud Private cluster environment.

Table 2-3 Medium size environment with medium resiliency

Node Type Number of
Nodes

CPU Memory (Gb) Disk (Gb)

Boot 1 2 8 250

Master 3 16 32 500

Management 2 8 16 500

Proxy 2 4 16 400

Worker 3+ 8 32 400

Node Type Number of
Nodes

CPU Memory (Gb) Disk (Gb)

Boot 1 2 8 250

Master 3 16 32 500

Management 2 16 32 500
34 IBM Cloud Private System Administrator’s Guide

Large size environment (worker nodes < 500) with high resiliency
Table 2-4 below shows sizing for large sized IBM Cloud Private cluster environment with 500
or less worker nodes.

Table 2-4 Large size environment with 500 worker nodes

Large size environment (worker nodes < 1000) with high resiliency
Table 2-5 shows sizing for large sized IBM Cloud Private cluster environment with 1000 or
less worker nodes.

Table 2-5 Large size environment with 1000 worker nodes

2.2 High Availability models for IBM Cloud Private cluster

Listed below are three classification models for highly available IBM Cloud Private cluster:

� Intra Cluster
� Intra Cluster with multiple availability zones
� Inter Cluster with federation on different availability zones

Proxy 3 4 16 400

Worker 3+ 8 32 400

Vulnerability advisor 3 6 24 500

Node Type Number of
Nodes

CPU Memory (Gb) Disk (Gb)

Boot 1 4 8 250

Master 3 16 128 500

Management 2 16 128 500

Proxy 2 4 16 400

Worker 500 8 32 400

Vulnerability
advisor

3 6 48 500

Node Type Number of
Nodes

CPU Memory (Gb) Disk (Gb)

Boot 1 4 8 250

Master 3 16 128 500

Management 5 16 128 500

Proxy 2 4 16 400

Worker 1000 8 32 400

Vulnerability
advisor

3 6 48 500

Node Type Number of
Nodes

CPU Memory (Gb) Disk (Gb)
Chapter 2. High availability installation 35

2.2.1 Intra cluster

A cluster is composed of at least master nodes and worker nodes. This model consists of HA
inside an IBM Cloud Private cluster. The redundancy is implemented by deploying multiple
nodes for master and for workers that are distributed in a single site.

This scenario uses Kubernetes functions but can’t protect applications from site failure. If
system administrators need site-based protection, they should combine this model with other
protection solutions, including a disaster recovery solution. Figure 2-1 shows the IBM Cloud
Private intra cluster topology.

Figure 2-1 Intra cluster topology

2.2.2 Intra cluster with multiple availability zones

This kind of scenario is often referred to as business continuity. It combines intra cluster HA
with the capability to protect from a site failure.

The cluster is distributed among multiple zones. For example, you might have three, or five, or
seven master nodes and several worker nodes distributed among three zones. Zones are
sites on the same campus or sites that are close to each other. If a complete zone fails, the
master still survives and can move the pods across the remaining worker nodes.

Potential challenges in this form of workload deployment
� The spread across multiple zones must not introduce latency. A high latency can

compromise the overall Kubernetes work with unpredictable results. For example,
because of latency, the master might consider a group of workers as unreachable and
start to uselessly move pods. Or, one of the master nodes might be considered down only
because of a long latency.

Note: This scenario is possible, but might present a few challenges. It must be
implemented carefully.
36 IBM Cloud Private System Administrator’s Guide

� In any failure condition, make sure that most of the master nodes survive. Distributing the
cluster in only two zones is almost useless. However, configuring three zones implies
more costs and complexity.

Figure 2-2 shows the intra cluster with multiple availability zone topology.

Figure 2-2 Intra cluster with multiple availability zone topology

2.2.3 Inter Cluster with federation on different availability zones

For this model, think of two Kubernetes clusters, each with its own master and worker nodes.
If one cluster fails, its pods are run on the other cluster. Kubernetes supports this model by
implementing a cluster federation. A higher-level master is deployed as a federated control
plane. If a cluster fails, the master control plane instructs the masters of the surviving cluster
to redeploy the failed pods.

The federation model is possible; however, beyond the orchestrator, you must consider all the
other components of IBM Cloud Private to recover. For example, you must recover all the
tools to manage the logs and to monitor your platform and workloads.

While the federation for Kubernetes is a built-in feature, you still must take care of all the other
components. As in the “Intra cluster with multiple zones” model, you must also be aware of
possible latency problems.

Support for federation is relatively new in Kubernetes. Before you apply federation to
business-critical workloads, look at its evolution and maturity.
Chapter 2. High availability installation 37

Figure 2-3 shows the inter cluster with federation on different availability zones topology.

Figure 2-3 Inter cluster with federation on different availability zones topology

2.3 Performance considerations for IBM Cloud Private setup

This chapter covers some of best practises to consider in an IBM Cloud Private cluster setup.
These are baselines and the optimal varies based on specific environment needs.

2.3.1 Nodes considerations

This section gives summary of the nodes considerations that we have discussed in the
previous section.

� Boot node considerations:

– Externalizing your boot node alleviates some resource constraints during cluster
installation.

� Master node considerations:

– At least 3 nodes ensures a quorum can be reached upon failure.

– Additional nodes help ensure the ability to recovery from failure.

– Consider minimum recommendations to be applicable to only non-production
environments.

– Can Load Balance masters, but only one is the primary master.

– Only one master node is active at any point in time:
38 IBM Cloud Private System Administrator’s Guide

� Management node considerations:

– Larger clusters with more workload thus require larger management nodes.
– Fewer large nodes will have the same impact as many small nodes.
– Your production clusters should use independent management nodes.

� Proxy node considerations:

– For compute sizing consider total resource sizing versus the # of nodes.
– You can tune your ingress controller to your workload.
– Your proxy VIP will point only to a single node at a time.
– Consider optionally load balancer to spread workload to your proxy nodes.
– Understand your workload to tune and size appropriately.

� Worker node considerations:

– If your cluster has a small amount of workload consider increasing the number of
worker nodes while decreasing the size of the nodes (for adequate headspace,
efficiency, mobility, resiliency).

– If you have large pods your worker nodes should be larger to accommodate workload
mobility.

– Java workloads typically use 4 x CPU for memory.

– Other application frameworks may be closer to 2 x CPU = memory.

– Consider your workload to size your worker nodes.

2.3.2 Tuning the IBM Cloud Private setup

The first thing with tuning is to look at the overhead of logging when talking about high
transaction rates. It all depends on your environment, but especially in some network
intensive loads this can accumulate an additional overhead that you should take into account.
The overhead is mostly attributable to the ELK stack activity.

Impact of the proxy size and upstream keep-alive
Proxy node capacity is vital, ensure yours is sufficient. For network intensive workloads,
bigger proxy node can be more efficient than multiple smaller proxy nodes. Default keep-alive
is 64: consider tuning this based upon your workload. For more information, see the following
IBM Knowledge Center link
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/installing/proxy_resou
rce.html.

IBM Cloud Private application logging
Configure log rotate for Docker (max-size, max-file). Without log rotate disk may fill and
trigger pod eviction and image garbage collection as shown in Figure 2-4.

Figure 2-4 Docker log rotation
Chapter 2. High availability installation 39

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/installing/proxy_resource.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/installing/proxy_resource.html

If Docker is installed independently, update the Docker services with —log-opt max-size=10m
–log-opt max-file=10. Add the config to /etc/docker/daemon.json as shown in Figure 2-5.

Figure 2-5 etc/docker/daemon.json

In summary:

� Consider your workload volumes. Do you have a high number of transactions? Is the
workload variable?

� Consider your workload personality. Are your services network intensive? What are the
programming frameworks you are using?

� Consider your performance requirements. How do your applications scale: horizontal,
vertical, or sharding?

2.4 Step-by-step installation guide using Terraform

In this section, you learn how to install IBM Cloud Private step-by-step using Terraform.
Terraform is a tool that allows provisioning and automating the infrastructure using scripts.
The infrastructure can include the low level infrastructure as well as the software components
on top of it.

In case of IBM Cloud Private, you use Terraform to perform the following automation:

� Create Security Groups to allow intercluster communication, allow specific port range for
the public communication to the load-balancer, and to allow ssh between the boot node
and all nodes for installation.

� Create two local load balancers in-front of the proxy nodes and the master nodes.

� Create virtual machines for boot node, master nodes, proxy nodes, management nodes,
vulnerability advisor, and worker nodes.

� Create file storage for master nodes shared storage.

� Deploy IBM Cloud Private 3.1.2 Enterprise Edition on top of the provisioned infrastructure.

Figure 2-6 on page 41 shows an architecture diagram for the IBM Cloud Private highly
available configuration. You learn how to deploy IBM Cloud Private based on the
recommendations described in 2.1, “High availability considerations” on page 32. In this
example, you deploy IBM Cloud Private on top of IBM Cloud infrastructure using the following
configuration:

� 3 master nodes

� 2 management nodes

� 2 proxy nodes

� 1 vulnerability advisor node

� 3 worker nodes
40 IBM Cloud Private System Administrator’s Guide

� Endurance NFS storage for the directories that should be shared across all master nodes

� Local load balancer in front of the proxy node to allow public to the applications

� Local load balancer in front of the master nodes to allow access by admins to the IBM
Cloud Private cluster.

Figure 2-6 Architecture diagram for IBM Cloud Private cluster

You perform the following steps explained in this section:

1. Environment preparation.

2. Upload IBM Cloud Private installation binaries to the file server.

3. Configure the Terraform template.

4. Configure security.

5. Apply the Terraform template.
Chapter 2. High availability installation 41

2.4.1 Environment preparation

In this section, you prepare your local environment with the pre-requisites needed to do the
installation.You install Terraform, IBM Cloud provider for Terraform, and git client in this
section. Skip this section in case you have these tools installed. You do this environment
preparation on your local machine or in a Virtual Server Instance in IBM Cloud.

Install Terraform
Install Terraform on your machine as you use it to run the scripts needed to install IBM Cloud
Private. Perform the following steps to install Terraform:

1. Download the package corresponding to your operating system and architecture from the
following URL:

https://www.terraform.io/downloads.html

Ubuntu: wget
https://releases.hashicorp.com/terraform/0.11.11/terraform_0.11.11_linux_amd64.
zip

2. Extract the compressed folder. Perform the steps in Example 2-1 in case you have Ubuntu
operating system.

Example 2-1 Extract the binaries of Terraform

sudo apt-get update
sudo apt-get install wget unzip
unzip terraform_0.11.11_linux_amd64.zip

3. Update your PATH environment variable to point to the directory that have the extracted
binary or move the binary to binary directory:

Ubuntu: sudo mv terraform /usr/local/bin/

4. Verify that Terraform is installed successfully.

Open Terminal and write this command terraform --version, the Terraform version
should appear if installed successfully.

Install IBM Cloud Provider plug-in for Terraform
In this step by step guidance, you perform installation of IBM Cloud Private on top of IBM
Cloud infrastructure. For that Terraform needs to interact with IBM Cloud through its APIs.
Terraform understands the provider APIs to access and manage its resources through
Provider plug-ins.

Perform the following steps to install and configure IBM Cloud Provider plug-in:

1. Download the package corresponding to your operating system and architecture from the
following URL:

https://github.com/IBM-Cloud/terraform-provider-ibm/releases

Note: These steps have been tested on MacOs and Ubuntu 18.04 Minimal LTS. Provision
an Ubuntu 18.04 Virtual Server Instance in case you use other Operating System locally
and run into a problem while preparing your environment or while applying the Terraform
script. The specification of the machine needs to be at least 2 virtual cores with 4 GB of
RAM.
42 IBM Cloud Private System Administrator’s Guide

https://www.terraform.io/downloads.html
https://github.com/IBM-Cloud/terraform-provider-ibm/releases

Ubuntu: wget
https://github.com/IBM-Cloud/terraform-provider-ibm/releases/download/v0.14.1/l
inux_amd64.zip

2. Extract the compressed folder:

Ubuntu: unzip linux_amd64.zip

3. Create plugins directory in the following directory corresponding to your platform then
move the extracted binary into it:

Windows: mkdir %APPDATA%\terraform.d\plugins
Linux/Unix/OS X: mkdir ~/.terraform.d/plugins
mv terraform-provider-ibm_v0.14.1 .terraform.d/plugins/

Install Git client
You use git client to clone the Terraform script. Perform the following steps to install Git client
on your local machine.

1. Download and install the package corresponding to your operating system and
architecture from the following URL:

https://git-scm.com/download/

Ubuntu: sudo apt install git

2. Verify that git is installed through running the command git --version from terminal.

2.4.2 Upload IBM Cloud Private binaries

The installation of IBM Cloud Private happens from the boot node. In this example, the boot
node is a Virtual Server Instance (VSI) on IBM Cloud. That boot node needs access to the
installation binaries.

Perform the steps in “Upload IBM Cloud Private binaries to a File Server” in case you run
Terraform from your local machine in order to upload the binaries to File Server.

Upload IBM Cloud Private binaries to a File Server
In this section you upload the IBM Cloud Private installation binaries to a File Server
accessible to the boot node on IBM Cloud. Skip the first two steps in case you have already a
File Server.

1. Create Virtual Server Instance in IBM Cloud. You use this to install your File Server on top
of it.

a. Navigate to https://cloud.ibm.com/ and login as shown in Figure 2-7 on page 44.
Chapter 2. High availability installation 43

https://git-scm.com/download/
https://cloud.ibm.com/

Figure 2-7 IBM Cloud console Login Page

b. Click on Catalog from the above toolbar.

c. Select Virtual Server from the catalog.

d. Select Public Virtual Server then click Continue.

e. Keep everything as default, and choose Ubuntu in Image Panel as shown in
Figure 2-8.

Figure 2-8 Create IBM Cloud Virtual Server Instance
44 IBM Cloud Private System Administrator’s Guide

f. Read the terms and conditions then click on I have read and agree to the Third-Party
Service Agreements listed below: then click on Create.

g. Wait till the virtual server is provisioned.

2. Install Apache HTTP Server on your Virtual Server Instance.

a. SSH to your server with your root username and password.

b. Update your local Linux packages:

sudo apt update

c. Install apache2 package:

sudo apt install apache2

d. Verify that the web server is running as shown in Example 2-2.

Example 2-2 Verify that the HTTP server is working

sudo systemctl status apache2

? apache2.service - The Apache HTTP Server
 Loaded: loaded (/lib/systemd/system/apache2.service; enabled; vendor
preset:
 Drop-In: /lib/systemd/system/apache2.service.d
 ••apache2-systemd.conf
 Active: active (running) since Tue 2019-02-19 17:54:06 UTC; 1min 12s ago
 Main PID: 2446 (apache2)
 Tasks: 55 (limit: 1145)
 CGroup: /system.slice/apache2.service
 ••2446 /usr/sbin/apache2 -k start
 ••2448 /usr/sbin/apache2 -k start
 ••2449 /usr/sbin/apache2 -k start

Feb 19 17:54:05 virtualserver01 systemd[1]: Starting The Apache HTTP
Server...
Feb 19 17:54:06 virtualserver01 systemd[1]: Started The Apache HTTP Server.

Note: The following steps shows the basic steps in order to create an Apache HTTP
Server. Make sure to apply the security considerations to secure it. Skip this step if you
have an existing HTTP Server or NFS server.
Chapter 2. High availability installation 45

e. Verify that the HTTP Server is accessible over the internet through navigating to
http://PUBLIC_IP from your web browser. You should see the default page as shown in
Figure 2-9.

Figure 2-9 Apache HTTP server default page

3. Download IBM Cloud Private binaries from Passport Advantage such as
ibm-cloud-private-x86_64-3.1.2.tar.gz for IBM Cloud Private Enterprise Edition
V3.1.2.

4. Copy ibm-cloud-private-x86_64-3.1.2.tar.gz from your local machine to the HTTP
Server on /var/www/html/.

5. Verify that you can access and download the binary file by navigating to
http://PUBLIC_IP/ibm-cloud-private-x86_64-3.1.2.tar.gz from your web browser.

2.4.3 Configure the Terraform template

In this section, you configure the Terraform template with the instance specification. Perform
the following steps in order to configure Terraform.

1. git clone the Terraform script project in your machine as shown in Example 2-3.

Example 2-3 Clone the GitHub repo that has the Terraform IBM Cloud Private installation script

git clone --branch 3.1.2_redbook \
https://github.com/ibm-cloud-architecture/terraform-icp-ibmcloud.git

Cloning into 'terraform-icp-ibmcloud'...
remote: Enumerating objects: 59, done.
remote: Counting objects: 100% (59/59), done.
remote: Compressing objects: 100% (34/34), done.
remote: Total 215 (delta 31), reused 36 (delta 25), pack-reused 156
Receiving objects: 100% (215/215), 296.70 KiB | 334.00 KiB/s, done.
Resolving deltas: 100% (96/96), done.
Note: checking out '62eb61a8fd1b8434b7460591e73038e7b7635960'.

You are in 'detached HEAD' state. You can look around, make experimental

Note: The tag 3.1.2_redbook is included in the git clone command. This is because
the installation has been tested on this code base. Feel free to remove this tag in case
you would like to work with the latest version of the script.
46 IBM Cloud Private System Administrator’s Guide

changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

 git checkout -b
<new-branch-name>

2. In order to allow Terraform to access your Cloud account, you need to provide the API
username and API key of your IBM Cloud infrastructure account.

a. Navigate to your user profile on IBM Cloud infrastructure account through opening
https://control.softlayer.com/account/user/profile.

b. Copy the API Username and Authentication Key from the portal, as shown in
Figure 2-10.

Figure 2-10 IBM Cloud infrastructure user profile

c. On your local machine, navigate to terraform-icp-ibmcloud/templates/icp-ee/.

d. Create a new file and name it terraform.tfvars that holds the configurations of your
environment.

Note: The terraform templates contained in this Github repository will be continuously
updated by IBM team for upcoming IBM Cloud Private releases.

Note: In case you are not an account owner or Superuser, make sure you have the
following permissions with IBM Cloud infrastructure:

� Manage Storage.

� Manage Security Groups.
Chapter 2. High availability installation 47

https://control.softlayer.com/account/user/profile

e. Add in the file the two lines shown in Example 2-4. Replace API_USERNAME and
API_AUTH_KEY with your IBM Cloud infrastructure Username and API key as retrieved
in Figure 2-10.

Example 2-4 terraform.tfvars username and API key content

sl_username = "API_USERNAME"
sl_api_key = "API_AUTH_KEY"

3. Specify the data-center that will host all the Virtual Server Instances by add the following
line to terraform.tfvars. Replace dal10 with the intended data-center code.

datacenter = "dal10"

Figure 2-11 Data-Center code identification

4. Set the IBM Cloud Private Image to use for installation as shown. Get the image
corresponding to your version from knowledge center.

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/install_
containers.html

For IBM Cloud Private Enterprise Edition 3.1.2, the image is
ibmcom/icp-inception-amd64:3.1.2-ee. Add the following line to terraform.tfvars:

icp_inception_image = "ibmcom/icp-inception-amd64:3.1.2-ee"

5. Specify the location for the image by adding the following line to terraform.tfvars.
Image Location can NFS, HTTP, or a private registry. Replace IMAGE_LOCATION with the
location of your image that you have defined in 2.4.2, “Upload IBM Cloud Private binaries”
on page 43.

image_location = "IMAGE_LOCATION"

6. Set IBM Cloud Private admin password by adding the following line to terraform.tfvars

icppassword = "IBM-Cloud-Private-Admin-Redbooks".

Note: Some customers have data residency requirements. Make sure that in these
situations that the data-center configured in this step resides in the country of the
customer. For example, if it is a Singaporian customer that has data-residency
requirements, you will need to pick a data-center in Singapore, for example SNG01 as
shown in Figure 2-11.

Note: Starting from IBM Cloud Private 3.1.2, by default the admin password should
comply with a specific regular expression enforcement rule '^([a-zA-Z0-9\-]{32,})$'.
This regular expression can be changed during installation.
48 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/install_containers.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/install_containers.html

7. Specify the cluster name by adding the following line to terraform.tfvars:

deployment = "redbooks-deployment"
domain = "redbooks-deployment.icp"

8. Specify which management services will be disabled by adding the following line to
terraform.tfvars. For IBM Cloud Private 3.1.2, the following management services can
be disabled (custom-metrics-adapter, image-security-enforcement, istio, metering,
logging, monitoring, service-catalog, storage-minio, storage-glusterfs, and
vulnerability-advisor).

disabled_management_services = ["storage-glusterfs", "storage-minio"]

9. Specify the number and configuration of nodes as described in 2.1, “High availability
considerations” on page 32. Add the following lines shown in Example 2-5 to
terraform.tfvars with the specifications.

Example 2-5 IBM Cloud Private nodes specification

master = {
 nodes = "3"
 cpu_cores = "8"
 memory = "32768"
 disk_size = "100" // GB
 docker_vol_size = "400" // GB
}

mgmt = {
 nodes = "2"
 cpu_cores = "8"
 memory = "16384"
 disk_size = "100" // GB
 docker_vol_size = "400" // GB
}

va = {
 nodes = "1"
 cpu_cores = "8"
 memory = "16384"
 disk_size = "100" // GB
 docker_vol_size = "400" // GB
}

proxy = {
 nodes = "2"
 cpu_cores = "4"
 memory = "16384"
 disk_size = "100" // GB
 docker_vol_size = "300" // GB
}

worker = {
 nodes = "3"
 cpu_cores = "8"
 memory = "32768"
 disk_size = "100" // GB
 docker_vol_size = "400" // GB
}

Chapter 2. High availability installation 49

10.Check variables.tf to know the other options that you can change by overriding in
terraform.tfvars.

11.In case you plan to run glusterfs or ceph in your worker nodes, then you need to have a
dedicated disk for each to run. Perform the following steps to add two additional disks on
the worker nodes.

a. Open instances.tf and locate disks variable under resource
"ibm_compute_vm_instance" "icp-worker"

b. Add the following two lines to define a pointer for the two new variables defining the
additional disks for worker nodes:

"${var.worker["disk3_size"]}",
"${var.worker["disk4_size"]}"

c. Your disks variable should look as Example 2-6.

Example 2-6 disks variable inside “ibm_compute_vm_instance" "icp-worker"

disks = [
 "${var.worker["disk_size"]}",
 "${var.worker["docker_vol_size"]}",

 "${var.worker["disk3_size"]}",
 "${var.worker["disk4_size"]}"

]

d. Notice in the previous step, you added a reference to worker["disk3_size"], and
"${var.worker["disk4_size"]}" variables. Define this variables in variables.tf
inside variable “worker” block and add a default value for it. Your variable “worker”
block should now look as shown in Example 2-7.

Example 2-7 Variable worker in variables.tf after adding the two additional variables

variable "worker" {
 type = "map"

 default = {
 nodes = "3"

 cpu_cores = "4"
 memory = "16384"

 disk_size = "100" // GB
 docker_vol_size = "100" // GB
 local_disk = false

 network_speed= "1000"

 hourly_billing = true

disk3_size = "100" // GB
disk4_size = "100" //GB

 }
}

e. Override the values in terraform.tfvars with the intended size of disk 3 and disk 4 as
shown in Example 2-8.
50 IBM Cloud Private System Administrator’s Guide

Example 2-8 Defining the size of disk 3 and disk 4 for worker nodes

worker = {
 disk3_size = "200"
 disk4_size = "200"
}

2.4.4 Apply the Terraform template

Perform the following steps in order to apply the Terraform template:

1. Initialize Terraform in the script by writing the command shown in Example 2-9.

Example 2-9 Init Terraform

terraform init

Initializing modules...
- module.icpprovision
 Getting source
"git::https://github.com/IBM-CAMHub-Open/template_icp_modules.git?ref=2.3//publ
ic_cloud"

Initializing provider plugins...
- Checking for available provider plugins on https://releases.hashicorp.com...
- Downloading plugin for provider "tls" (1.2.0)...
- Downloading plugin for provider "null" (2.0.0)...
- Downloading plugin for provider "random" (2.0.0)...

The following providers do not have any version constraints in configuration,
so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking
changes, it is recommended to add version = "..." constraints to the
corresponding provider blocks in configuration, with the constraint strings
suggested below.

* provider.ibm: version = "~> 0.14"
* provider.null: version = "~> 2.0"
* provider.random: version = "~> 2.0"
* provider.tls: version = "~> 1.2"

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

2. Run terraform plan to know the changes that Terraform will make. The output you
receive should be similar to Example 2-10.
Chapter 2. High availability installation 51

Example 2-10 terraform plan output

Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

--

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 + create

Terraform will perform the following actions:
....
....

Plan: 66 to add, 0 to change, 0 to destroy.

--

Note: You didn't specify an "-out" parameter to save this plan, so Terraform
can't guarantee that exactly these actions will be performed if
"terraform apply" is subsequently run.

3. Run terraform apply to start the deployment then confirm the action by typing yes. It
takes around 3 hours.

4. Example 2-11 shows a successful completion.

Example 2-11 Successful completion of the IBM Cloud Private installation

Apply complete! Resources: 66 added, 0 changed, 0 destroyed.

Outputs:

ICP Admin Password = IBM-Cloud-Private-Admin-Redbooks
ICP Admin Username = admin
ICP Console URL =
https://redbooks-deployment-0665b912-1673867-dal10.lb.bluemix.net:8443
ICP Console load balancer DNS (external) =
redbooks-deployment-0665b912-1673867-dal10.lb.bluemix.net
ICP Kubernetes API URL =
https://redbooks-deployment-0665b912-1673867-dal10.lb.bluemix.net:8001
ICP Proxy load balancer DNS (external) =
redbooks-deployment-proxy-0665b912-1673867-dal10.lb.bluemix.net

Troubleshooting: In case the apply fails for any reason like network failure, you can
perform terraform apply again; terraform preserves the state and will not start from
scratch.

In some cases you may need to delete a resource manually, make any needed
modifications, and perform terraform apply again. For example in case you would like to
change the image location, you need to delete the resource image_load using terraform
destroy -target null_resource.image_load. This is to make sure it reloads the image
from the new path.
52 IBM Cloud Private System Administrator’s Guide

ICP Registry URL =
redbooks-deployment-0665b912-1673867-dal10.lb.bluemix.net:8500

2.5 Post installation verification

As a sanity validation step, perform the following steps in order to verify that your IBM Cloud
Private cluster is installed successfully. You do the verification through the IBM Cloud Private
Command Line Interface and IBM Cloud Private Console User Interface.

2.5.1 IBM Cloud Private command line interface

In this section, you verify that you can login to the IBM Cloud Private CLI and do some sanity
commands.

For more details on how to install these tools, see Appendix A, “Command line tools” on
page 347.

1. Perform the instructions in this Knowledge Center to install IBM Cloud Private CLI
(Cloudctl):

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/manage_cluster/install
_cli.html.

2. Follow the instructions in this Knowledge Center to download and install Kubernetes CLI
(Kubectl):

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/manage_cluster/install
_kubectl.html.

3. Verify that Cloudctl and Kubectl are installed by performing the following commands:

cloudctl version
kubectl version

4. Log in to your cluster with the following command, where ibm_cloud_private_console_url
is the external host name or IP address for your master:

cloudctl login -a https://<ibm_cloud_private_console_url>:8443
--skip-ssl-validation

5. Make sure that there are no errors during login.

Note: You can use similar steps to install IBM Cloud Private Community Edition in case
you don’t have a license for IBM Cloud Private. The Community Edition is free of charge
and its terraform template exist in the same GitHub repository under folder
icp-ce-minimal.

https://github.com/ibm-cloud-architecture/terraform-icp-ibmcloud/tree/master/te
mplates/icp-ce-minimal.

You can also install IBM Cloud Private Community Edition locally to your PC through
Vagrant.

https://github.com/IBM/deploy-ibm-cloud-private/blob/master/docs/deploy-vagrant
.md.
Chapter 2. High availability installation 53

https://github.com/ibm-cloud-architecture/terraform-icp-ibmcloud/tree/master/templates/icp-ce-minima
https://github.com/IBM/deploy-ibm-cloud-private/blob/master/docs/deploy-vagrant.md
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/manage_cluster/install_cli.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/manage_cluster/install_cli.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/manage_cluster/install_kubectl.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/manage_cluster/install_kubectl.html
https://github.com/ibm-cloud-architecture/terraform-icp-ibmcloud/tree/master/templates/icp-ce-minimal
https://github.com/ibm-cloud-architecture/terraform-icp-ibmcloud/tree/master/templates/icp-ce-minimal
https://github.com/IBM/deploy-ibm-cloud-private/blob/master/docs/deploy-vagrant.md
https://github.com/IBM/deploy-ibm-cloud-private/blob/master/docs/deploy-vagrant.md
https://github.com/IBM/deploy-ibm-cloud-private/blob/master/docs/deploy-vagrant.md
https://github.com/IBM/deploy-ibm-cloud-private/blob/master/docs/deploy-vagrant.md

6. Make sure that all pods are in either status Running or Completed in kube-system through
performing the command shown in Example 2-12.

Example 2-12 Verifying that pods are running

kubectl get pods -n kube-system

NAME READY STATUS RESTARTS AGE
audit-logging-fluentd-ds-2fdws 1/1 Running 1 8d
audit-logging-fluentd-ds-6bcp6 1/1 Running 0 8d
audit-logging-fluentd-ds-dt6pd 1/1 Running 0 8d
audit-logging-fluentd-ds-hd7lp 1/1 Running 0 8d
audit-logging-fluentd-ds-m7nlc 1/1 Running 0 8d
audit-logging-fluentd-ds-mhkw5 1/1 Running 0 8d
audit-logging-fluentd-ds-tvsx9 1/1 Running 0 8d
audit-logging-fluentd-ds-v4v9f 1/1 Running 0 8d
audit-logging-fluentd-ds-xspfz 1/1 Running 0 8d
auth-apikeys-f45sd 1/1 Running 0 8d
auth-apikeys-sllwj 1/1 Running 1 8d
auth-apikeys-wq9dk 1/1 Running 0 8d
auth-idp-6p52r 4/4 Running 2 8d
auth-idp-fsnw4 4/4 Running 3 8d
auth-idp-k6zmh 4/4 Running 7 8d
auth-pap-7wpdp 2/2 Running 3 8d
auth-pap-jhp7f 2/2 Running 0 8d
auth-pap-skd5j 2/2 Running 0 8d
auth-pdp-6q76t 2/2 Running 0 8d
auth-pdp-cd9wm 2/2 Running 3 8d
auth-pdp-lcm8t 2/2 Running 0 8d
calico-kube-controllers-85676f8998-dt2dv 1/1 Running 0 8d
calico-node-2l4ld 2/2 Running 1 8d
calico-node-8c65m 2/2 Running 0 8d
calico-node-8txd6 2/2 Running 2 8d
calico-node-9z28f 2/2 Running 0 8d
calico-node-cbrmm 2/2 Running 0 8d
calico-node-djvlf 2/2 Running 0 8d
calico-node-k4nlg 2/2 Running 0 8d
calico-node-wn9g9 2/2 Running 0 8d
calico-node-zcpg4 2/2 Running 0 8d
catalog-ui-9s2pc 1/1 Running 0 8d
catalog-ui-qfqsm 1/1 Running 2 8d
catalog-ui-zt2vx 1/1 Running 0 8d
custom-metrics-adapter-597f7645cf-74n5d 1/1 Running 0 8d
default-http-backend-54987cd76b-2rvbq 1/1 Running 0 8d
heapster-545458b4ff-q8d8k 1/1 Running 0 28h
heapster-545458b4ff-rd8pq 1/1 Running 0 8d
heapster-545458b4ff-tgv9f 1/1 Running 0 8d
helm-api-56fb65c854-tzgsd 3/3 Running 0 8d
helm-repo-847fbc5cd8-mc7q6 2/2 Running 0 8d
ibmcloud-image-enforcement-6d47d6d485-mwpq8 1/1 Running 0 8d
ibmcloud-image-enforcement-6d47d6d485-nkz9w 1/1 Running 0 28h
ibmcloud-image-enforcement-6d47d6d485-w6jnp 1/1 Running 0 8d
icp-management-ingress-b2tl8 1/1 Running 0 8d
icp-management-ingress-g94gj 1/1 Running 1 8d
icp-management-ingress-th2w8 1/1 Running 0 8d
icp-mongodb-0 1/1 Running 2 8d
54 IBM Cloud Private System Administrator’s Guide

icp-mongodb-1 1/1 Running 1 8d
icp-mongodb-2 1/1 Running 1 8d
image-manager-0 2/2 Running 2 8d
image-manager-1 2/2 Running 3 8d
image-manager-2 2/2 Running 1 8d
k8s-etcd-10.177.233.177 1/1 Running 0 8d
k8s-etcd-10.177.233.184 1/1 Running 0 8d
k8s-etcd-10.93.221.119 1/1 Running 1 8d
k8s-kmsplugin-10.177.233.177 1/1 Running 0 8d
k8s-kmsplugin-10.177.233.184 1/1 Running 0 8d
k8s-kmsplugin-10.93.221.119 1/1 Running 1 8d
k8s-master-10.177.233.177 3/3 Running 3 8d
k8s-master-10.177.233.184 3/3 Running 1 8d
k8s-master-10.93.221.119 3/3 Running 4 8d
k8s-proxy-10.171.37.135 1/1 Running 0 8d
k8s-proxy-10.177.233.176 1/1 Running 0 8d
k8s-proxy-10.177.233.177 1/1 Running 0 8d
k8s-proxy-10.177.233.181 1/1 Running 0 8d
k8s-proxy-10.177.233.184 1/1 Running 0 8d
k8s-proxy-10.93.221.105 1/1 Running 0 8d
k8s-proxy-10.93.221.119 1/1 Running 1 8d
k8s-proxy-10.93.221.68 1/1 Running 0 8d
k8s-proxy-10.93.221.97 1/1 Running 0 8d
key-management-api-787d976f79-7qnjz 1/1 Running 0 8d
key-management-crypto-558dff975-82kgj 1/1 Running 0 8d
key-management-lifecycle-5bfdf7978c-l8bfc 2/2 Running 0 8d
key-management-onboarding-pgwvg 0/1 Completed 0 8d
key-management-pep-7b864d6c88-9dlts 1/1 Running 0 8d
key-management-persistence-75ff587647-9kw5g 1/1 Running 0 8d
kube-dns-29r6d 1/1 Running 0 8d
kube-dns-5td8z 1/1 Running 1 8d
kube-dns-klbk7 1/1 Running 0 8d
logging-elk-client-564c6c7894-b7t4b 2/2 Running 0 8d
logging-elk-data-0 1/1 Running 0 8d
logging-elk-elasticsearch-curator-1550619000-7n6cc 0/1 Completed 0 45h
logging-elk-elasticsearch-curator-1550705400-s8wvp 0/1 Completed 0 21h
logging-elk-elasticsearch-pki-init-kml4g 0/1 Completed 0 8d
logging-elk-filebeat-ds-26g4l 1/1 Running 0 8d
logging-elk-filebeat-ds-9ns27 1/1 Running 0 8d
logging-elk-filebeat-ds-f9dt2 1/1 Running 0 8d
logging-elk-filebeat-ds-fb9bt 1/1 Running 1 8d
logging-elk-filebeat-ds-jr26q 1/1 Running 0 8d
logging-elk-filebeat-ds-k8f4x 1/1 Running 1 8d
logging-elk-filebeat-ds-nhf5v 1/1 Running 0 8d
logging-elk-filebeat-ds-zdxv6 1/1 Running 1 8d
logging-elk-filebeat-ds-zt7s5 1/1 Running 0 8d
logging-elk-kibana-578c8dcc6c-q58st 2/2 Running 0 8d
logging-elk-kibana-init-q8gw2 0/1 Completed 6 8d
logging-elk-logstash-b54c9bb89-4glgr 1/1 Running 0 8d
logging-elk-master-9d5866588-xrpsw 1/1 Running 0 8d
mariadb-0 2/2 Running 0 8d
mariadb-1 2/2 Running 12 8d
mariadb-2 2/2 Running 0 8d
metering-dm-57b569b5c9-jxf2t 1/1 Running 0 8d
metering-reader-7c74p 1/1 Running 0 8d
Chapter 2. High availability installation 55

metering-reader-7fj9f 1/1 Running 0 8d
metering-reader-g5767 1/1 Running 0 8d
metering-reader-gcd47 1/1 Running 0 8d
metering-reader-jx8zx 1/1 Running 0 8d
metering-reader-l8d29 1/1 Running 0 8d
metering-reader-lwzxv 1/1 Running 3 8d
metering-reader-tlq52 1/1 Running 0 8d
metering-reader-v546l 1/1 Running 0 8d
metering-ui-7d68d4dc79-r5fhx 1/1 Running 0 8d
metrics-server-6d47b6dc6b-przdl 1/1 Running 0 8d
mgmt-repo-7c9cf9dc89-2djtq 2/2 Running 0 8d
monitoring-grafana-5fc5676bdf-794bd 3/3 Running 0 8d
monitoring-prometheus-56988655cf-j66ht 4/4 Running 0 8d
monitoring-prometheus-alertmanager-8c5fcb784-f55bs 3/3 Running 0 8d
monitoring-prometheus-collectdexporter-cc9f4656c-d7bxq 2/2 Running 0 8d
monitoring-prometheus-elasticsearchexporter-6565fb986-z7df8 2/2 Running 0 8d
monitoring-prometheus-kubestatemetrics-5fb65cd8b-gwtv8 2/2 Running 0 8d
monitoring-prometheus-nodeexporter-28z4n 2/2 Running 0 8d
monitoring-prometheus-nodeexporter-845cl 2/2 Running 2 8d
monitoring-prometheus-nodeexporter-fbd5s 2/2 Running 0 8d
monitoring-prometheus-nodeexporter-hfxtw 2/2 Running 0 8d
monitoring-prometheus-nodeexporter-mns4t 2/2 Running 0 8d
monitoring-prometheus-nodeexporter-qrjtp 2/2 Running 0 8d
monitoring-prometheus-nodeexporter-sxgl9 2/2 Running 0 8d
monitoring-prometheus-nodeexporter-w7f5t 2/2 Running 0 8d
monitoring-prometheus-nodeexporter-xq8zj 2/2 Running 0 8d
nginx-ingress-controller-lcz9k 1/1 Running 0 8d
nginx-ingress-controller-znqr7 1/1 Running 0 8d
nvidia-device-plugin-5gpxt 1/1 Running 0 8d
nvidia-device-plugin-7g7p4 1/1 Running 1 8d
nvidia-device-plugin-82dp7 1/1 Running 0 8d
nvidia-device-plugin-cb9lw 1/1 Running 0 8d
nvidia-device-plugin-hgrnx 1/1 Running 0 8d
nvidia-device-plugin-jt4j6 1/1 Running 0 8d
nvidia-device-plugin-mb4x5 1/1 Running 0 8d
nvidia-device-plugin-qvgsp 1/1 Running 0 8d
nvidia-device-plugin-xmlf7 1/1 Running 0 8d
oidc-client-registration-x7hgh 0/1 Completed 0 8d
platform-api-758ff75d7b-b8wlk 2/2 Running 0 8d
platform-api-758ff75d7b-cg5lt 2/2 Running 0 28h
platform-api-758ff75d7b-j6ggv 2/2 Running 0 8d
platform-deploy-6744cfb478-77stf 1/1 Running 0 8d
platform-deploy-6744cfb478-pk48z 1/1 Running 0 28h
platform-deploy-6744cfb478-qng4v 1/1 Running 0 8d
platform-ui-kz6jn 1/1 Running 0 8d
platform-ui-mmvlg 1/1 Running 0 8d
platform-ui-vffd4 1/1 Running 1 8d
secret-watcher-777978d867-qvg78 1/1 Running 0 8d
security-onboarding-bk4qv 0/1 Completed 0 8d
service-catalog-apiserver-5n5rn 1/1 Running 1 8d
service-catalog-apiserver-bk5k6 1/1 Running 0 8d
service-catalog-apiserver-jlqr7 1/1 Running 0 8d
service-catalog-controller-manager-6cd6684cf7-jztjh 1/1 Running 0 28h
tiller-deploy-854fc7d5d-pkbv7 1/1 Running 0 28h
unified-router-86jnr 1/1 Running 0 8d
56 IBM Cloud Private System Administrator’s Guide

unified-router-8zbh4 1/1 Running 0 8d
unified-router-zvf6p 1/1 Running 1 8d
web-terminal-cd5674776-pmxf9 1/1 Running 0 8d

7. Verify that all nodes are in Ready Status through performing the command in
Example 2-13.

Example 2-13 Verify that all nodes are created

kubectl get nodes

NAME STATUS ROLES AGE VERSION
10.171.37.135 Ready proxy 8d v1.12.4+icp-ee
10.177.233.176 Ready worker 8d v1.12.4+icp-ee
10.177.233.177 Ready etcd,master 8d v1.12.4+icp-ee
10.177.233.181 Ready worker 8d v1.12.4+icp-ee
10.177.233.184 Ready etcd,master 8d v1.12.4+icp-ee
10.93.221.105 Ready management 8d v1.12.4+icp-ee
10.93.221.107 Ready management 8d v1.12.4+icp-ee
10.93.221.119 Ready etcd,master 8d v1.12.4+icp-ee
10.177.233.171 Ready worker 8d v1.12.4+icp-ee
10.93.221.68 Ready proxy 8d v1.12.4+icp-ee
10.93.221.97 Ready va 8d v1.12.4+icp-ee

2.5.2 IBM Cloud Private Console user interface

In this section, you make sure that you can access the Console UI, access the catalog, and
perform a sample application deployment.

1. Navigate to the URL of your IBM Cloud Private Console as displayed at the end of the
installation output in ibm_cloud_private_console_url.
Chapter 2. High availability installation 57

2. In the log in page, enter the admin username and password that you have specified during
installation then click Log in as shown in Figure 2-12.

Figure 2-12 IBM Cloud Private login screen

3. After you login, you should be able to see “Welcome to IBM Cloud Private” screen as
shown in Figure 2-13.

Figure 2-13 IBM Cloud Private welcome screen
58 IBM Cloud Private System Administrator’s Guide

4. Click on Catalog in the above toolbar and make sure that the Helm charts are loaded as
shown Figure 2-14.

Figure 2-14 IBM Cloud Private Catalog

5. Try to deploy a sample helm-chart like ibm-nodejs-sample. Select ibm-nodejs-sample
from the catalog.
Chapter 2. High availability installation 59

6. The documentation of the helm-chart should appear as shown in Figure 2-15. Click
Configure to proceed.

Figure 2-15 ibm-nodejs-sample Info page
60 IBM Cloud Private System Administrator’s Guide

7. Input nodejs-test in Helm release name and choose default in Target namespace then
click on Install as shown in Figure 2-16.

Figure 2-16 Configure Helm chart
Chapter 2. High availability installation 61

8. Click on View Helm Release as shown in Figure 2-17 to see the status of the deployment.

Figure 2-17 View Helm release dialog
62 IBM Cloud Private System Administrator’s Guide

9. Wait till the deploy is successful, your screen should be similar to Figure 2-18. Make sure
that the available deployment is 1, Pod is in running status.

Figure 2-18 Helm release status

2.6 Installing IBM Cloud Private on other Cloud platforms

Kubernetes has become the de facto standard in managing container-based workloads. IBM
Cloud Private builds on top of the Kubernetes orchestrator and provides a private cloud
platform for developing and running a container workload solely for one organization. It is a
reliable way of running containerized IBM middleware given the knowledge and verification
test applied to both.
Chapter 2. High availability installation 63

2.6.1 Typical scenario of running IBM Cloud Private on other Cloud platforms

Below are four “why” scenarios for clients considering IBM Cloud Private running on other
Cloud infrastructure:

� Multicloud strategy: Customers would like to leverage the strength and unique offerings
from different cloud vendors, but also want to have a consistent operation and runtime
environment that they can achieve portability without cloud platform lock-in. For example,
running digital innovation on both IBM public cloud and AWS.

� Cloud bursting: If you have private cloud environments running on-prem and would like
to expand the cluster or private cloud to external infrastructure only in certain special
condition or bursting workload.

� Disaster recovery: Since the same workload can be easily and quickly provisioned,
external cloud providers can also be a great place to act as a disaster recovery data
center. IBM Cloud Private on other cloud provider fits this use case nicely.

� Existing other cloud users with IBM Middleware workload: IBM middleware
investments are further extended with an app modernization strategy. IBM’s middleware
also benefits from associated data analytic services, such as IBM Cognos Analytics to
gain a deeper understanding of your business and IBM SPSS statistical analysis to predict
outcomes; you can continue deploying them in your cloud environment by leveraging ICP.
This approach gives the best of both worlds.

2.6.2 Installing IBM Cloud Private on AWS using Terraform

This repository url below contains a collection of Terraform templates to install IBM Cloud
Private on Google Cloud.

https://github.com/ibm-cloud-architecture/terraform-icp-aws.git

2.6.3 Installing IBM Cloud Private on Microsoft Azure using Terraform

This repository url below contains a collection of Terraform templates to install IBM Cloud
Private on Google Cloud.-CAMHub-Open/template_icp_azure.git

https://github.com/ibm-cloud-architecture/terraform-icp-azure.git

2.6.4 Installing IBM Cloud Private on Google Cloud using Terraform

This repository url below contains a collection of Terraform templates to install IBM Cloud
Private on Google Cloud.

https://github.com/ibm-cloud-architecture/terraform-icp-gcp.git

2.6.5 Installing IBM Cloud Private on RedHat OpenShift

IBM and Red Hat have partnered to provide a joint solution that uses IBM Cloud Private and
OpenShift. You can deploy IBM certified software containers running on IBM Cloud Private
onto Red Hat OpenShift. Similar to IBM Cloud Private, OpenShift is a container platform built
on top of Kubernetes. You can install IBM Cloud Private on OpenShift by using the IBM Cloud
Private installer for OpenShift.
64 IBM Cloud Private System Administrator’s Guide

https://github.com/ibm-cloud-architecture/terraform-icp-gcp.git
https://github.com/ibm-cloud-architecture/terraform-icp-aws.git
https://github.com/ibm-cloud-architecture/terraform-icp-azure.git

For more details, see the following IBM Knowledge Center URL:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_environments
/openshift/overview.html

2.6.6 Installing IBM Cloud Private on OpenStack Cloud provider

This repository url below contains a collection of Terraform templates to install IBM Cloud
Private on OpenStack Cloud provider. This Terraform example configurations uses the
OpenStack provider to provision virtual machines on OpenStack and TerraForm Module ICP
Deploy to prepare VMs and deploy IBM Cloud Private on them.

https://github.com/ibm-cloud-architecture/terraform-icp-openstack.git

2.6.7 Installing IBM Cloud Private on VMware vSphere Cloud provider

This repository url below contains a collection of Terraform templates to install IBM Cloud
Private on VMWare vSphere Cloud provider. This Terraform example configurations uses the
VMware vSphere provider to provision virtual machines on VMware and TerraForm Module
ICP Deploy to prepare VMs and deploy IBM Cloud Private on them. This Terraform template
automates best practices learned from installing ICP on VMware at numerous client sites in
production.

https://github.com/ibm-cloud-architecture/terraform-icp-vmware.git

2.6.8 Install IBM Cloud Private on existing Virtual Machines

This repository url below contains a collection of Terraform templates to install IBM Cloud
Private on Vans already provisioned on-premise or on any cloud provider. This Terraform
module can be used to deploy IBM Cloud Private on any supported infrastructure vendor.
Tested on Ubuntu 16.04 and RHEL 7 on SoftLayer, VMware, AWS and Azure.

https://github.com/ibm-cloud-architecture/terraform-module-icp-deploy.git

2.7 Setting up IBM Cloud Private catalog in an airgap
environment

An airgapped environment is an environment where a computer or network is prevented from
establishing an external connection due to security reasons.

Generally post installing IBM Cloud Private on a internet connection enabled host, the IBM
Charts will be synced automatically and all the IBM charts with its respective images are
synced to the local IBM Cloud Private cluster.

Note: Pre-requisites to install IBM Cloud Private on other Cloud providers:

� Basic understanding of IBM Cloud Private

� Cloud account

� Access to IBM Cloud Private Images
Chapter 2. High availability installation 65

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_environments/openshift/overview.html
https://github.com/ibm-cloud-architecture/terraform-icp-openstack.git
https://github.com/ibm-cloud-architecture/terraform-icp-vmware.git
https://github.com/ibm-cloud-architecture/terraform-module-icp-deploy.git

However, in production environments due to client security policies, direct access to internet
is disabled resulting in empty catalog on the IBM Cloud Private admin GUI. The below steps
are documented in getting the desired chart to be available on IBM Cloud Private. IBM Liberty
chart is taken as an example in the below steps.

2.7.1 Prerequisites

The following are the prerequisites for setting up IBM Cloud Private catalog in an airgap
environment:

� Ensure you have git configured on the local system.

� Ensure Docker is installed on the local system, and has internet access.

� Install and configure Helm on the local system.

� Install IBM Cloud Private command line interface (CLI).

2.7.2 Steps to follow

Perform the following steps:

1. Obtain the Helm chart for the image. Clone the /IBM/Charts repository from git using: git
clone https://github.com/IBM/charts.git.

2. Open the values.yaml file from the chart and locate the image that it uses. In this example,
the repository is “websphere-liberty”, and tag is “latest” as shown in Figure 2-19.

Figure 2-19 Liberty chart

3. Pull the image locally using the repository and tag information from the values.yaml file:
docker pull <repository>:<tag>. In this example, it would be:

docker pull websphere-liberty:latest

4. Upload the image to the private image repository on IBM Cloud Private:

docker login <cluster_CA_domain>:8500

Tag the image: docker tag image_name.

<cluster_CA_domain:8500>/namespace/imagename:tagname. In our example:

docker tag websphere-liberty:latest
mycluster.icp:8500/default/websphere-liberty:latest.

5. Push the image to private repository:

docker push mycluster.icp:8500/default/websphere-liberty:latest

6. Open the values.yaml file again, and update the location of the Docker image, as shown in
Figure 2-20 on page 67:

repository: <cluster_CA_domain>:8500/namespace/imagename tag: <tagname>
66 IBM Cloud Private System Administrator’s Guide

Figure 2-20 Modify chart repository

7. Repackage the Helm chart: helm package <path_to_helm_directory> where
<path_to_helm_directory> is the directory that contains the Helm chart. On running this,
a .tgz file containing the Helm chart is created. In our example, the file
ibm-websphere-liberty-1.0.1.tar.tgz was created.

8. Upload the new Helm chart to your IBM Cloud Private cluster:

bx pr login –a <ICP_master_ip>:8443 –skip-ssl-validation

To upload the Helm chart ibm-websphere-liberty-1.0.1.tgz, use the following command:

bx pr load-helm-chart –archive ibm-websphere-liberty-1.0.1.tgz

9. Update the package repository using the IBM Cloud Private management console. You
should be able to see the Helm chart deployed as shown in Figure 2-21.

Figure 2-21 Catalog showing IBM Liberty chart

2.8 Changing certificates post installation

You can replace certificates for Image Manager (Docker Registry) and Management ingress
created by the installer in your IBM Cloud Private environment. Before trying to replace
certificate verify that your IBM Cloud Private cluster is running. Complete the following steps
to replace certificates.

1. Generate a new certificate key pair for the certificate that you want to replace. The
following sample creates an icp-router certificate and key pair. See Example 2-14.

Example 2-14 Generate a new certificate key pair

openssl req sxw -newkey rsa:4096 -sha256 -nodes -keyout icp-router.key -x509
-days 36500 -out icp-router.crt -subj "/C=US/ST=California/L=Los
Angeles/O=Your Domain Inc/CN=mycluster.icp"

2. Log in to the boot node as a cluster administrator.

Note: You must replace mycluster.icp with your own cluster_CA_domain that you
configured in the <installation_directory>/cluster/config.yaml file.
Chapter 2. High availability installation 67

3. Change to the cluster/cfc-certs/ directory. See Example 2-15.

Example 2-15 Change to the cluster/cfc-certs/ directory

cd <installation_directory>/cluster/cfc-certs/

4. Back up the original certificate directory or file. The following example (Example 2-16)
backs up the router directory which contains the icp-router.crt and icp-router.key.

Example 2-16 Back up the original certificate directory

mv router router.bak

5. Replace router/icp-router.key and router/icp-router.crt with your own key pair and
certificate that you generated in step 1. See Example 2-17.

Example 2-17 Replace router/icp-router.key and router/icp-router.crt

mkdir ./router
cp <custom_certificate_directory>/icp-router.crt ./router/icp-router.crt
cp <custom_certificate_directory>/icp-router.key
./router/icp-router.key

6. Change to the cluster directory: cd ..

7. Run the following command to replace the certificate. See Example 2-18.

Example 2-18 Replace the certificate

docker run -t --net=host -v $(pwd):/installer/cluster -e LICENSE=accept
ibmcom/icp-inception-$(uname -m | sed 's/x86_64/amd64/g'):3.1.2-ee
replace-certificates -v
68 IBM Cloud Private System Administrator’s Guide

Part 2 IBM Cloud Private
system administration
tasks

This part includes common scenarios targeted for IBM Cloud Private system administrators.

Part 2
© Copyright IBM Corp. 2019. All rights reserved. 69

70 IBM Cloud Private System Administrator’s Guide

Chapter 3. Backup and restore of an IBM
Cloud Private cluster

A backup and restore strategy plays an important role in any IBM Cloud Private cluster, as it
defines how the whole environment, it’s configuration and it’s applications are restored to a
working state in the event of a disaster.

This chapter describes the various options available to Cluster Administrators when thinking
about backing up an IBM Cloud Private cluster, ranging from each individual core component
to the infrastructure itself. It will discuss the various alternatives and considerations to a
backup strategy, and provide several approaches to backing up and restoring the
configuration to the same or a different instance of IBM Cloud Private 3.1.2.

This chapter has the following sections:

� 3.1, “The purpose of backing up a cluster” on page 72
� 3.2, “Backup versus high availability, disaster recovery, and continuous availability” on

page 72
� 3.3, “Backup options” on page 73
� 3.4, “Backup and restore strategy” on page 76

3

© Copyright IBM Corp. 2019. All rights reserved. 71

3.1 The purpose of backing up a cluster

A properly defined resiliency strategy is a key part in keeping your applications running
continuously, and most of the time a backup plan is one of the core features for any form of
resiliency effort to provide peace of mind, knowing that your infrastructure and application
data is able to be recovered in the event of some failure or disaster that disrupts day to day
operations.

For IBM Cloud Private, there are three common options for defining a backup strategy

� Backup the infrastructure

� Backup the core components

� Backup using a preferred third party tool

Due to the vast range of tools available, backing up using third party software is not covered
in detail in this book. Instead, this chapter will focus on how to effectively backup and restore
the infrastructure and the core components.

In any case, regular backups should be taken so that you’re able to restore to a recent point in
time. This point in time entirely depends on your own policies, but backups are recommended
to be take immediately after installation and prior to any major changes or upgrades, where
the risk of a cluster failure is higher than the normal day to day business operations.

Taking a full infrastructure backup can be quite storage intensive, so this chapter will provide
a variety of methods to backup the core IBM Cloud Private components in a flexible manner,
using both manual and automated methods to ensure the most efficient process is put in
place on a regular basis without worrying about the manual effort involved.

The main purpose of a backup plan is to actually restore it, so in addition to backups, the
relevant processes should be in place to test that the backups are actually good backups.
This helps to avoid nasty surprises in the event something does go wrong and to provide
peace of mind knowing that you can recover from failures.

3.2 Backup versus high availability, disaster recovery, and
continuous availability

Whilst backup and restore is the main subject for this chapter, there are other alternatives that
should be considered when designing the cluster architecture, and in all case the architecture
should be designed in such a way that gracefully caters for failure. This is applicable on both
the infrastructure level and the application level, although the latter is less of a concern as the
IBM Cloud Private platform takes care of keeping applications highly available. Before
designing the processes to backup a cluster, consider the use of High Availability (HA),
Continuous Availability (CA) and Disaster Recovery (DR) methodologies

HA is the ability to withstand failures, by eliminating any single points of failure from the whole
system. This typically entails having two or more instances of any component so that the
system is able to continue providing services by switching to instance 2, when instance 1 fails.
CA is the ability to withstand both unplanned and planned downtime for any given component,
providing greater flexibility for maintenance periods, or general component failures. DR on the
other hand, is the capability to recover from a failure.
72 IBM Cloud Private System Administrator’s Guide

A common example used in DR discussions is the failure of an entire datacenter, and will
typically involve all the hardware in one geographic location simultaneously shut down. A
good DR strategy will be able to recover from this by recreating the same infrastructure
(compute, networking and storage) in another geographical location within a specific
Recovery Time Objective (RTO).

These methods can be combined with the backup strategy to ensure you are backing up the
platform effectively to allow you to recover from any given failure. When doing the system
architecture it is important to consider the backup strategy and also if there is a need for high
availability (HA) or disaster recovery (DR). The following specifications must be taken into
account: Recovery Point Objective (RPO) and Recovery Time Objective (RTO).

The backup strategy will grant that the system is restored to a given time when the backup
was taken and in a case of the disaster, the data created between the time that the backup
was taken and the moment of the failure will be lost in most of cases. This should be
considered when creating the backup policy

The high availability environment will grant that the servers still responsive including when
one or more nodes fail. So other servers will remain online and perform the tasks. When
thinking about HA it is frequently referred as the local system redundancy and each of HA
environments should be able to handle the full load. The main difference between the HA and
backup is that if data gets corrupted in one of the nodes, it will be propagated to the other
nodes, with that both nodes will having the failure, and will need the backup to resume to its
normal operation.

The disaster recovery (DR) environment is a copy of the production (or running) environment
and in case of failure this environment will take over the requests and all operation, when the
main system is ready to be put back online the data should be replicated from the DR side to
the main system.

3.3 Backup options

When considering the backup strategy, it is recommended to verify the most suitable types of
backup to meet the requirements. This section will briefly discuss each of the components
within the IBM Cloud Private infrastructure and platform, and if/why each should be backed
up.

3.3.1 Infrastructure backups

Infrastructure backups are the most common method to ensure a full copy of an IBM Cloud
Private node exists in the event of a failure. Suitable tools for infrastructure backups are
usually available with the hypervisor hosting IBM Cloud Private.

At the time of writing, there are 6 different types of IBM Cloud Private nodes; boot, master,
proxy, management, Vulnerability Advisor and worker nodes. Each node plays a specific role
in the cluster, and each will have a different impact on the backup and restore strategy.

� Boot nodes: A boot (or bootstrap) node is used for running installation, configuration, node
scaling, and cluster updates. Only one boot node is required for any cluster, and a single
boot node can cater for multiple installations of IBM Cloud Private. This node stores the
cluster configuration data and is important to at least backup the filesystem so that the
original configuration and cluster certificates are able to be reused if necessary. In small
clusters, boot nodes are typically combined with the master nodes.
Chapter 3. Backup and restore of an IBM Cloud Private cluster 73

� Master nodes: A master node provides management services and controls the worker
nodes in a cluster. Master nodes host processes that are responsible for resource
allocation, state maintenance, scheduling and monitoring. Because a high availability (HA)
environment contains multiple master nodes, if the leading master node fails, failover logic
automatically promotes a different node to the master role. Hosts that can act as the
master are called master candidates. The master nodes hosts the most important core
components, such as etcd (if etcd is not externalized) and MongoDB and should almost
certainly be the main focus for platform level backups.

� Proxy nodes: A proxy node is a node that transmits external request to the services
created inside your cluster. These are not considered important to backup, as they are
generally easily replaced in any cluster.

� Management nodes: A management node hosts management services such as Istio,
monitoring, metering, and logging. The importance of backing up this node entirely
depends on how valuable you consider the data stored on it. For example, the logging data
(by default) will retain the platform log data for one day, so it may not always make sense
to keep infrastructure backups of the data if it will be deleted again shortly after
restoration.

� Vulnerability Advisor nodes: A Vulnerability Advisor (VA) node is an optional node that is
used for running the Vulnerability Advisor services. The importance of backing up this
node entirely depends on how valuable you consider the data stored on it. VA data is a
representation of the current cluster, so if a cluster fails and becomes unrecoverable,
recovering the data to another cluster is not meaningful for reporting, but may be desired if
you require all data to be retained.

� Worker nodes: A worker node is a node that provides a containerized environment for
running tasks. It’s generally not recommended to backup these nodes as they are easily
replaced, but if applications running on the worker nodes depend on a file path on the host
file system then an appropriate backup method (or a different storage method) should be
considered.

� etcd nodes: An etcd node is an optional node that contains the etcd distributed key store
components for the IBM Cloud Private cluster. The etcd components are hosted by the
master nodes by default, but in large clusters with more than 100 worker nodes, it’s
recommended to separate etcd to reduce the volume of network traffic and resource
requirements for heavy etcd usage.

Application storage considerations
As a Cluster Administrator, you need to think about the storage methods and how it fits in with
the backup and restore strategy. There are a range of storage solutions for IBM Cloud Private
that provide different storage capabilities and the most suitable solution(s) should be used to
ensure you’re able to backup the data from the PersistentVolume mounted to the application
and restore it as necessary. This chapter does not provide a specific method to backing up
and restoring PersistentVolume data and it’s recommended to agree with the application
owners on how to ensure the application is resilient to failures.

3.3.2 Platform backups

There are several components of the IBM Cloud Private platform that require persisted data
to be backed up and retained in order restore the same working configuration to a fresh
installation, either on the same infrastructure (local) or different infrastructure entirely
(remote). In all cases, the backup data should be stored externally to the cluster outside the
failure range (for example a different datacenter in a multiple datacenter environment), to
ensure the data is globally available in the event of a disaster.
74 IBM Cloud Private System Administrator’s Guide

Platform components to back up
The following are components requiring a backup.

Cluster installation data
The cluster directory used for the IBM Cloud Private installation has several directories that
contain core data generated during the cluster installation. It’s important to back up this data
as it will need to be reused in a situation where a cluster is considered unrecoverable,
requiring a fresh installation of IBM Cloud Private on the same infrastructure. The following
data should be backed up to a storage medium situated outside of the cluster.

etcd
etcd is a distributed key-value store that maintains all of the configuration data for an IBM
Cloud Private cluster. Without a fully functioning and healthy etcd, the cluster will be
inoperable. etcd is a core component of IBM Cloud Private that should be backed up at
regular intervals so that a cluster can be restored to the most recent state in the event of a
failure.

MongoDB
MongoDB is a database used in IBM Cloud Private to store data for the metering service,
Helm repository, Helm API server, LDAP configuration and team/user/role information. This is
a core component of IBM Cloud Private that should be backed up at regular intervals so that a
cluster can be restored to the most recent state in the event of a failure.

MariaDB
MariaDB is a database used to store OpenIDConnect (OIDC) data used for the authentication
to IBM Cloud Private. By default IBM Cloud Private refreshes the user access tokens every 12
hours, so the data in MariaDB is transient and therefore an optional component to back up.
It’s worth noting that whilst the content of the MariaDB database is not essential, it is worth
backing up at least once to store the database structure, in the event that it becomes corrupt
and the authentication modules in IBM Cloud Private cannot authenticate users.

Private image registry
The private image registry is a Docker image registry used to store all the images for the IBM
Cloud Private platform. It contains all the system images and user images segregated by
repositories. It is important that the image registry data is backed up to ensure that both the
platform and user deployed workloads can reliably pull the same images regardless of
whether the workloads are running on the same or a restored cluster. In a Highly Available
configuration, the image repository is mounted on shared storage, so does not require a
backup unless the cluster administrator wishes to do so.

Helm repository
The Helm repository stores all the Helm charts uploaded to the IBM Cloud Private catalog.
This should be backed up to ensure the same Helm charts are available for deployment from
the catalog.

Elasticsearch logging data
In IBM Cloud Private, an Elasticsearch cluster consists of Elasticsearch, Logstash and
Kibana and is used to collect and process all the log data generated from all containers
running on the platform. By default, the collected log data is stored for 24 hours, after which it
is removed from the system and no longer available for querying. Whilst the Elasticsearch
cluster itself is a core component and fundamental to cluster administrators and users that
wish to view log data for their workloads, the log data stored is not essential to maintaining a
functioning cluster, therefore it is optional to back up the logging data.
Chapter 3. Backup and restore of an IBM Cloud Private cluster 75

The Vulnerability Advisor and Mutation Advisor management services use Elasticsearch to
store data, therefore in a cluster configuration where the Vulnerability Advisor and Mutation
Advisor management services are enabled (and the cluster administrator deems the data
valuable) then it is advised to back up the Elasticsearch log data.

Monitoring data
In IBM Cloud Private, the monitoring stack includes Alert Manager, Prometheus, and
Grafana. These components provide the capabilities to expose metrics about the whole
cluster and the applications running within it, trigger alerts based on data analysis and
provide a graphical view of the collected metrics to the users. The monitoring stack is
deployed, by default, with no persistent storage and therefore does not require backing up.
After installation, if persistent storage is added to each component then backing up the
Persistent Volume data is necessary to ensure any changes made can be restored.

Vulnerability Advisor
Vulnerability Advisor (VA) is an optional management service that actively scans the images
used in an IBM Cloud Private cluster and identifies security risks in these images. The
reporting data for VA is stored in Kafka and Elasticsearch. Therefore, to enable a time-based
analysis of the cluster image security, the VA components should be backed up.

This means that the logging data also needs to be backed up to ensure VA data is available
upon restoring VA functionality. The scans and reports are generated based on the current
environment, so restoring this data to a new cluster means that the restored data is no longer
meaningful, and depending on the requirements for VA reporting, it may not be necessary to
restore the backup data at all.

Mutation Advisor
Mutation Advisor (MA) is an optional management service (installed with Vulnerability
Advisor) that actively scans running containers for any changes in system files, configuration
files, content files, or OS process within the container. Time-based reports are generated and
stored in the same way as Vulnerability Advisor, and therefore the same conditions apply.

Application persistent volume data
Persistent volume data mounted by user deployed workloads can be hosted on a variety of
storage solutions, and cluster administrators should ensure that the right tools/methods are
used to backup the relevant storage platform accordingly. In a situation where a cluster
becomes unrecoverable, and persistent volumes need to be recreated on a different cluster, it
is the Cluster Administrators (or application owners, whichever is applicable) responsibility to
know the data restoration process for the implemented storage solution(s).

3.4 Backup and restore strategy

The IBM Cloud Private backup and restore process described in this section is based on a
best-effort basis. There are many different combinations of cluster configurations and user
customizations that may impact how the whole infrastructure or individual platform
components should be backed up, as well as different user preferences on exactly what data
is considered ‘meaningful’ to restore.
76 IBM Cloud Private System Administrator’s Guide

Figure 3-1 shows each of the components to backup as mentioned earlier and their
respective host.

Figure 3-1 Components to backup

The general strategy for successful IBM Cloud Private backup cycles is shown in Figure 3-2.
It’s a typical iterative approach during operations where periodic backups are taken at either
regular intervals (for example daily) or before maintenance.

Figure 3-2 General strategy for IBM Cloud Private backup cycles

The backup process needs to be carefully planned to minimise disruption to end users. The
following sections will explain the use of several options for backing up and restoring both
infrastructure and platform components to allow cluster administrators to apply the most
efficient process for their environment.

3.4.1 Infrastructure backup process

It is recommended to take an infrastructure level snapshot immediately after a successful
installation of IBM Cloud Private, where there are no user deployed workloads running. This
ensures that a clean cluster installation is always available in the event of failure and to
reduce the time required to restore a working cluster.
Chapter 3. Backup and restore of an IBM Cloud Private cluster 77

Stopping an IBM Cloud Private node
To gracefully stop an IBM Cloud Private node the recommended approach is to stop kubelet
and docker on the node first, then shut down the node. This ensures a clean shut down for
Docker. For worker nodes containing user deployments that should be kept available, it may
be necessary to drain the node first, using kubectl drain <node>. It’s important to stop the
Kubelet process prior to stopping Docker, because Kubelet will continue to run, attempting to
access the containers that were previously running on the host:

1. First, stop Kubelet:

sudo systemctl stop kubelet

2. With Kubelet stopped, stop Docker:

sudo systemctl stop docker

3. Stopping Docker may take some time. When Docker is stopped (dockerd should no longer
be running), shut down the node:

shutdown now

More information about taking nodes offline can be found in the IBM Knowledge Center:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/node_ma
intenance.html

Hot backups of an IBM Cloud Private cluster
Depending on the virtualization platform hosting the cluster nodes, it is possible to take a
running (hot) backup of each IBM Cloud Private node and later use it for restoration. As hot
backups can be taken while nodes are running, it is recommended to backup the nodes
simultaneously, if possible, so that the cluster can be restored in a unified state in the event
of failure. Hot backups are generally seen as a short term point-in-time snapshot and should
not be used as the sole method of backing up cluster nodes.

Cold backups of an IBM Cloud Private cluster
When taking a cold backup of an IBM Cloud Private topology, shutting down the whole cluster
at the same time is not required, but it’s important to consider the order in which nodes are
shut down. The master nodes contain core processes such as etcd, the Kubernetes
api-server, controller manager and scheduler that will attempt to recover pods that have
‘failed’ due to the host becoming unavailable.

This recovery effort is normal behavior for a running system, but is not considered an
organized state that provides a stable backup of the cluster. Therefore, stopping the master
nodes first will provide the most stable backup to recover from.

The most stable approach, when taking cold backups of an IBM Cloud Private cluster, is to
shut down all master nodes (and etcd nodes, if they are separate from the masters) at the
same time, take a backup, then start up the node again. This ensures that all the core
components are backed up in exactly the same state. However, the drawback to this
approach is that the cluster is temporarily offline while backups are taken, and therefore is not
suitable for production installation beyond the point of initial installation.

The recommended time to use this approach is immediately after installation with a stable
cluster, so that it’s possible to quickly revert back to a fresh installation if required. Generally,
backups should be taken of all nodes after installation but proxy and worker nodes are easily
replaced and only need backups if the workload data resides on the node itself. Management
and Vulnerability Advisor nodes are also easily replaced, but many of the management
services write data directly to the host filesystem, so at a minimum the management node
filesystems should have a backup.
78 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/node_maintenance.html

In a HA installation, it is possible that the cluster can be kept in a running state by taking node
backups one by one. This ensures that the cluster is still available for end users, and also
provides a stable state for etcd. It’s crucial that etcd is kept in a stable state and still able to
serve requests, as without a healthy etcd cluster, neither Kubernetes or IBM Cloud Private will
function correctly. In topologies where etcd is separated from the master nodes, backups
must also be in a similar fashion to ensure etcd is always kept in a stable state.

However, there is a caveat to this process; if too much time has passed in between taking a
cold backup of each node, the risk of the etcd database becoming too inconsistent is
increased. Furthermore, in a very active cluster, there may have been too many write
operations performed on a particular etcd instance, which means etcd will not be able to
properly recover.

The cluster administrator needs to consider the use of an active-active style architecture, as
discussed earlier, if they require as close to zero-downtime as possible for running
applications that rely on the cluster (or management) services on IBM Cloud Private (such as
the api-server, or Istio). In most cases, workloads running on worker nodes (using the IBM
Cloud Private proxy nodes for access to the applications) are not affected by master node
downtime unless there is an event on the application host node that requires attention from
the core IBM Cloud Private components whilst the master nodes are offline.

Based on the 1.3, “IBM Cloud Private architecture” on page 10, the following nodes contain
core components that persist data and should backed up regularly

� etcd/master

� management (optional but recommended)

� Vulnerability Advisor (optional but recommended)

The other nodes not mentioned in the list above (proxy and worker nodes) are generally
replaceable without consequence to the health of the cluster. Information on replacing various
IBM Cloud Private nodes can be found in the IBM Knowledge Center documentation:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/add_node.ht
ml

3.4.2 Infrastructure restore process

Care should be taken when restoring IBM Cloud Private nodes. It’s important to ensure that
the backup process is followed carefully to maximise the chance of a successful cluster
restore and attempting to restore a bad backup will almost certainly result in an unstable
cluster. The etcd component carries the greatest weight to keep Kubernetes running and
should always be validated immediately after restoration to validate the cluster integrity.

There are several other crucial components that also require quorum, such as MongoDB and
MariaDB, but as they are Kubernetes resources it is always possible to recover it (assuming
the host filesystem is intact. If etcd is permanently failed, so is the whole cluster, so the main
focus in this section is retaining a healthy etcd cluster. The key thing to understand when
restoring infrastructure backups is that etcd will rebuild it’s cluster state using the latest
available data on the current “leader”, and the elected leader will have the highest raft index.

When the etcd/master nodes are brought back online, the etcd instances will continue to
operate where they left off at the point in time where the backup was taken, requesting new
elections and updating the current raft term. If any other etcd members making requests to
the cluster (becoming a ‘follower’) have a different raft index that the leader does not
recognise (for example a different copy of the data) and an inconsistent raft term then it will no
longer be a member of the cluster.
Chapter 3. Backup and restore of an IBM Cloud Private cluster 79

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/add_node.html

Consider the following example: In a HA cluster with 3 masters, a cold backup is taken
sequentially starting from master 1, then 2, then 3. Each master is powered off (using the
recommended approach in the previous sections), backed up, then powered on again. During
this time period, master 2 and 3 are still running, and the cluster is still fully operational for end
users. When restoring, the same order is used so master 1 is restored first, then 2, then 3.

The issue here is that each backup for the master nodes is taken at a completely different
time, with master 3 being the last. This means that master 3 will have different data when
restored, and when brought online last it will attempt to communicate with the existing cluster.
Therefore, it’s essential to ensure that in the event of a cluster failure, and all 3 masters need
to be restored from a backup, that the order of restoration is the reverse of the order of
backup. This process applies to restoring both hot and cold backups.

Verifying a restored backup
Restoring a cluster entirely depends on the hosting virtualization platform. The examples in
this section uses VMWare to host the IBM Cloud Private installation, and therefore uses the
Virtual Machine (VM) snapshot capabilities provided with the platform. Note that a VMWare
snapshot is not a complete backup mechanism and is used here to demonstrate the practical
application of the backup methods described in this chapter.

Using the previous example of a HA cluster, master nodes 1, 2, and 3 were backed up using
VMWare snapshots while the machines were offline (cold snapshot) in sequence starting
from master 1. Nginx workloads were deployed to simulate user deployments so that the
cluster state in etcd was changed. To simulate a disaster, masters 1 and 2 were destroyed. At
this point etcd is now running as a single node cluster, in read-only mode and cannot accept
any write requests from Kubernetes.

The CoreOS documentation (found at
https://coreos.com/etcd/docs/latest/op-guide/failures.html) provides a good
explanation about different etcd failure scenarios and what it can or can’t tolerate. In this
situation, quorum is lost and as you cannot currently replace IBM Cloud Private master nodes
using different IP addresses, you cannot recover. Therefore, the snapshots must be used to
deploy masters 1 and 2, and restore all 3 masters to a previously working state.

Restore all 3 masters to a previous snapshot, power on the nodes and allow some time for all
the containers to start. To ensure the etcd cluster has started successfully and the cluster is
healthy, etcd provides a useful command line utility to query the cluster status, which can be
downloaded to your local machine or ran from the etcd container itself. To get the cluster
health status, complete the following steps from the IBM Cloud Private boot node (or
whatever system has cluster access with kubectl):

1. Run kubectl -n kube-system get pods | grep k8s-etcd to retrieve the etc pod name
(the format is k8s-etcd-<node-ip>):

[root@icp-ha-boot ~]# kubectl -n kube-system get pods -o name| grep k8s-etcd
k8s-etcd-172.24.19.201
k8s-etcd-172.24.19.202
k8s-etcd-172.24.19.203

2. Use any one of the pod names returned to execute an etcdctl cluster-health
command, using one of the master node IP addresses in the endpoint parameter:

[root@icp-ha-boot ~]# kubectl -n kube-system exec k8s-etcd-172.24.19.201 -- sh
-c "export ETCDCTL_API=2; etcdctl --cert-file /etc/cfc/conf/etcd/client.pem
--key-file /etc/cfc/conf/etcd/client-key.pem --ca-file
/etc/cfc/conf/etcd/ca.pem --endpoints https://172.24.19.201:4001
cluster-health"
80 IBM Cloud Private System Administrator’s Guide

https://coreos.com/etcd/docs/latest/op-guide/failures.html

member 8a2d3ec6df19666f is healthy: got healthy result from
https://172.24.19.201:4001
member ae708d12aa012fdc is healthy: got healthy result from
https://172.24.19.202:4001
member dd2afb46d331fdd2 is healthy: got healthy result from
https://172.24.19.203:4001
cluster is healthy

This outputs the cluster state for all etcd endpoints, and will either state cluster is
healthy, or cluster is unhealthy as a final status. If the output is cluster is healthy,
then restoring etcd was successful. If the output is cluster is unhealthy, then further
investigation is needed.

It’s also important to check the other core components, such as MongoDB and MariaDB to
ensure they are running correctly. See the troubleshooting section for more information
about verifying a successful IBM Cloud Private cluster state.

Further testing
This section provides some real-world testing of hot and cold backups where a cluster is
under heavier stress from continuous workload deployment. The testing in this section was
conducted in a VMWare lab environment using VMWare snapshot capabilities and does not
represent a real customer deployment, it is only intended for simulation purposes.

To test the backup process resiliency for master nodes, the following test plan was used, as
shown in Figure 3-3.

Figure 3-3 VMWare snapshot simulation action list
Chapter 3. Backup and restore of an IBM Cloud Private cluster 81

This test plan took “hot” and “cold” snapshots of nodes at different times, In items 1 to 18,
there was a minimal workload in the cluster, but this does not simulate an active cluster. At
item 19, heavy workload was applied to the cluster, by deploying a random number of replicas
of Nginx containers to different namespaces every 10 seconds.

Prior to taking backups, the etcd cluster was queried to retrieve information about the current
database size, current raft term and current raft index. Below shows the output of an etcdctl
endpoint status command.

[root@icp-ha-boot ~]# docker run --entrypoint=etcdctl -e ETCDCTL_API=3 -v
/etc/cfc/conf/etcd:/certs -v /var/lib/etcd:/var/lib/etcd -v /tmp:/data
mycluster.icp:8500/ibmcom/etcd:3.2.24 --cert=/certs/client.pem
--key=/certs/client-key.pem --cacert=/certs/ca.pem --endpoints
https://172.24.19.201:4001,https://172.24.19.202:4001,https://172.24.19.203:4001
-w table endpoint status
+----------------------------+------------------+---------+---------+-----------+-----------+------------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | RAFT TERM | RAFT INDEX |
+----------------------------+------------------+---------+---------+-----------+-----------+------------+
https://172.24.19.201:4001	8a2d3ec6df19666f	3.2.24	30 MB	false	1617	1879006
https://172.24.19.202:4001	ae708d12aa012fdc	3.2.24	31 MB	true	1617	1879006
https://172.24.19.203:4001	dd2afb46d331fdd2	3.2.24	31 MB	false	1617	1879006
+----------------------------+------------------+---------+---------+-----------+-----------+------------+

After 30 seconds, the same query was run to analyze the changes in data.

+----------------------------+------------------+---------+---------+-----------+-----------+------------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | RAFT TERM | RAFT INDEX |
+----------------------------+------------------+---------+---------+-----------+-----------+------------+
https://172.24.19.201:4001	8a2d3ec6df19666f	3.2.24	30 MB	false	1617	1879291
https://172.24.19.202:4001	ae708d12aa012fdc	3.2.24	31 MB	true	1617	1879292
https://172.24.19.203:4001	dd2afb46d331fdd2	3.2.24	31 MB	false	1617	1879293
+----------------------------+------------------+---------+---------+-----------+-----------+------------+

The leader and raft term is still the same, so there is no issues around frequent elections, but
the raft index has changed, which represents changes in the data.

Master 1 was taken offline, snapshot, then left offline for some time to simulate maintenance.
After 10 minutes, master 1was brought back online, and the process repeated for master 2
and 3. Once all masters were available and running, the etcd status now shows the following.

+----------------------------+------------------+---------+---------+-----------+-----------+------------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | RAFT TERM | RAFT INDEX |
+----------------------------+------------------+---------+---------+-----------+-----------+------------+
https://172.24.19.201:4001	8a2d3ec6df19666f	3.2.24	43 MB	true	1619	1931389
https://172.24.19.202:4001	ae708d12aa012fdc	3.2.24	43 MB	false	1619	1931391
https://172.24.19.203:4001	dd2afb46d331fdd2	3.2.24	43 MB	false	1619	1931395
+----------------------------+------------------+---------+---------+-----------+-----------+------------+

This maintenance simulation process took place over 47 minutes, providing a realistic test for
restoring the snapshots to a point in time before maintenance took place on the masters.

Prior to restoring the nodes, the endpoint status resembles the following.

+----------------------------+------------------+---------+---------+-----------+-----------+------------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | RAFT TERM | RAFT INDEX |
+----------------------------+------------------+---------+---------+-----------+-----------+------------+
https://172.24.19.201:4001	8a2d3ec6df19666f	3.2.24	46 MB	true	1619	1945597
https://172.24.19.202:4001	ae708d12aa012fdc	3.2.24	46 MB	false	1619	1945597
https://172.24.19.203:4001	dd2afb46d331fdd2	3.2.24	46 MB	false	1619	1945597
+----------------------------+------------------+---------+---------+-----------+-----------+------------+

To verify that restoring the masters in the original sequential order yields an inconsistent
cluster, the masters were brought online starting from master 1. The endpoint status shows
the following.

Failed to get the status of endpoint https://172.24.19.203:4001 (context deadline
exceeded)
+----------------------------+------------------+---------+---------+-----------+-----------+------------+
82 IBM Cloud Private System Administrator’s Guide

| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | RAFT TERM | RAFT INDEX |
+----------------------------+------------------+---------+---------+-----------+-----------+------------+
| https://172.24.19.201:4001 | 8a2d3ec6df19666f | 3.2.24 | 44 MB | false | 1638 | 1927603 |
| https://172.24.19.202:4001 | ae708d12aa012fdc | 3.2.24 | 43 MB | true | 1638 | 1927603 |
+----------------------------+------------------+---------+---------+-----------+-----------+------------+

This test was repeated 5 times, of which every test produced consistent results; the third
master could not join the cluster.

Upon restoring the nodes in reverse order (from master 3 to 1), the endpoint status resembles
the following.

+----------------------------+------------------+---------+---------+-----------+-----------+------------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | RAFT TERM | RAFT INDEX |
+----------------------------+------------------+---------+---------+-----------+-----------+------------+
https://172.24.19.201:4001	8a2d3ec6df19666f	3.2.24	43 MB	false	1661	1928697
https://172.24.19.202:4001	ae708d12aa012fdc	3.2.24	43 MB	false	1661	1928697
https://172.24.19.203:4001	dd2afb46d331fdd2	3.2.24	43 MB	true	1661	1928697
+----------------------------+------------------+---------+---------+-----------+-----------+------------+

This test was repeated 5 times, of which every test produced consistent results; the etcd
cluster recovered successfully.

Other combinations were also tested. The below tables show the results per varying
combinations of restoration order for both hot and cold snapshots.

Figure 3-4 Tables showing simple test results for hot and cold restores

The results above reiterate the need to restore cold backups in reverse order. Restoring
backups in any other order yielded unpredictable results, and in some cases, an unstable
cluster. Hot backups were much more effective at restoring the original cluster state a lot
quicker (less time to start up services as memory was preserved). Hot snapshots were taken
within a much closer time frame, which means etcd had a very high chance of recovering
from minor inconsistencies between instances.

In most cases, hot snapshots are not used as the sole backup method and should be used
appropriately as documented by the platform provider. However, based on the above results
they can be reliable to quickly recover from fatal changes to the cluster.
Chapter 3. Backup and restore of an IBM Cloud Private cluster 83

3.4.3 Platform backup process

As described in section 3.2, the recommended approach is to regularly backup the individual
components of an IBM Cloud Private cluster. More frequent backups mean that a cluster
administrator always has a recent backup of all the core components to successfully restore a
cluster in the event of a failure, without reverting to a previous infrastructure backup. This
section will describe the steps required to back up the various components to external
storage using the tools available in IBM Cloud Private.

It’s advised that the core components are backed up in the following order:

1. etcd

2. MongoDB

3. MariaDB (Optional)

This is not a strict backup order, just an advised order. MongoDB persists Team and User
data, and etcd persists the relevant Role Base Access Control (RBAC) Kubernetes resources
associated to those Teams and users. If you were to back up etcd first, add a new Team with
Users, then back up MongoDB, you would end up with out of sync data as etcd would not
contain the data to restore the RBAC Kubernetes resources for the new Team.

Alternatively, if you backup MongoDB first, add a new Team and Users, then back up etcd,
data would still be out of sync as MongoDB would not contain the Team and User data upon
restore. Based on this, the backup order is entirely the choice of the Cluster Administrator, but
following the approach in the infrastructure backup sections this chapter takes a backup of
etcd first and everything else after. Ideally, both etcd and MongoDB should be backed up
within a close time frame, at a period of time where cluster activity is low.

The non-core components can be backed up in any order. When restoring the Vulnerability
Advisor, it’s recommended to restore full functionality to the Elasticsearch stack first, as
Vulnerability Advisor and Mutation Advisor both rely on a healthy Elasticsearch to store and
retrieve data.

The recommended approach is to regularly back up these core components by using a
CronJob. This creates an instance of a Kubernetes job on a time-based schedule, allowing
users to execute jobs at any time using the Unix crontab format. In IBM Cloud Private,
CronJobs can be used to run etcd and MongoDB backups periodically, using a
PersistentVolume so the data can be stored on an external storage provider. This has the
major benefit of keeping the latest backups, with no cluster down time and no heavy storage
implications, which would normally be the case for full infrastructure backups.

For all of the components that require a PersistentVolume (PV) and PersistentVolumeClaim
(PVC), the same PV for an NFS server is used. If the backups should be segregated on
different volumes, create additional PVs and PVCs for each component.

Creating the core-backup PersistentVolume and PersistentVolumeClaim
Create a new PersistentVolume (PV) and PersistentVolumeClaim (PVC) to use to store the
backups. Use Example 3-1 as a template for a new NFS PV, and Example 3-2 as a template
for an NFS PVC.

Example 3-1 YAML definition for core-backup PV

apiVersion: v1
kind: PersistentVolume
metadata:
 name: core-backup
84 IBM Cloud Private System Administrator’s Guide

spec:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 200Gi
 nfs:
 path: /backup
 server: 198.0.0.1
 persistentVolumeReclaimPolicy: Retain

Example 3-2 YAML definition for core-backup PV

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: core-backup
 namespace: kube-system
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 200Gi
 storageClassName: ""

The use of accessModes: ReadWriteMany here allows multiple containers to write to the
volume simultaneously. Some storage types do not provide this capability and in such
scenarios, one PV and PVC should be created per component. The storage capacity of
200Gi is used as an example and the real-world value depends on the size of the backups,
and the duration the backup data is kept (which typically depends on internal customer
requirements/policies). As this is reused among all components that require a PV and PVC,
the directory structure is the following:

backup
••• etcd
••• logging
••• mariadb
••• mongodb

The volumes will be mounted to the appropriate directories on the NFS server.

etcd and MongoDB CronJob
This CronJob creates a job every day at 23:30pm to deploy two containers: one to snapshot
etcd and one to export the current MongoDB database content. Each container has the same
shared storage mounted (NFS in this example).

The easiest way to determine how much storage etcd and MongoDB require is to manually
run a backup of etcd and MongoDB using kubectl and check the backup size. From this, the
storage capacity required for the PVs can be calculated from the CronJob schedule. “Manual
etcd and MongoDB backups” on page 89 provides more information on manual backups.

Complete the following steps to run a manual backup:

1. Copy the CronJob YAML definition in Example 3-3 on page 86 to your local machine and
save to a file named core-backup_cronjob.yaml. For security and isolation from the
worker nodes, the pods created in this job are scheduled to a master node.
Chapter 3. Backup and restore of an IBM Cloud Private cluster 85

Example 3-3 core-backup_cronjob.yaml

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: core-backup
 namespace: kube-system
spec:
 schedule: "30 23 * * *"
 jobTemplate:
 spec:
 template:
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: beta.kubernetes.io/arch
 operator: In
 values:
 - amd64
 - ppc64le
 - s390x
 - key: master
 operator: In
 values:
 - "true"
 containers:
 - name: etcddump
 image: ibmcom/etcd:3.2.24
 command: ["/bin/sh","-c","cat /certs/etcd-cert > client.pem; cat
/certs/etcd-key > client-key.pem; cat /certs/etcd-ca > ca.pem; etcdctl
--cert=client.pem --key=client-key.pem --cacert=ca.pem --endpoints
https://$(ENDPOINT):4001 snapshot save /backup/etcd/etcd.$(date
+%Y-%m-%d_%H:%M:%S).db"]
 env:
 - name: ENDPOINT
 value: "#ETCD-ENDPOINT"
 - name: ETCDCTL_API
 value: "3"
 volumeMounts:
 - mountPath: "/backup"
 name: backup
 - mountPath: "/certs"
 name: etcd-certs
 - name: mongodbdump
 image: ibmcom/icp-mongodb:4.0.5
 command: ["/bin/bash","-c","cat /certs/tls.crt certs/tls.key >
mongo.pem; export PRIMARY=$(mongo --host rs0/mongodb:27017 --username admin
--password $ADMIN_PASSWORD --authenticationDatabase admin --ssl --sslCAFile
/ca/tls.crt --sslPEMKeyFile mongo.pem --eval=\"db.isMaster()['\"'primary'\"']\" |
grep ^icp-mongodb-); mongodump --host $PRIMARY --username admin --password
$ADMIN_PASSWORD --authenticationDatabase admin --ssl --sslCAFile /ca/tls.crt
--sslPEMKeyFile mongo.pem --oplog --verbose --gzip
--archive=/backup/mongodb/mongodb-backup-$(date +%Y-%m-%d_%H:%M:%S).gz"]
86 IBM Cloud Private System Administrator’s Guide

 env:
 - name: ADMIN_PASSWORD
 valueFrom:
 secretKeyRef:
 key: password
 name: icp-mongodb-admin
 volumeMounts:
 - mountPath: "/backup"
 name: backup
 - mountPath: "/ca"
 name: cluster-ca
 - mountPath: "/certs"
 name: mongodb-certs
 tolerations:
 - effect: NoSchedule
 key: dedicated
 operator: Exists
 volumes:
 - name: backup
 persistentVolumeClaim:
 claimName: core-backup
 - name: cluster-ca
 secret:
 secretName: cluster-ca-cert
 - name: mongodb-certs
 secret:
 secretName: icp-mongodb-client-cert
 - name: etcd-certs
 secret:
 secretName: etcd-secret
 restartPolicy: Never

This file can also be downloaded from the following location:

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-
s-Guide/tree/master/Ch3-Backup-and-Restore/Backup/core-backup_cronjob.yaml

2. The ETCD-ENDPOINT environment variable for the etcd container should be changed to
reflect an actual etcd IP address. Modify the containers section in Example 3-4 and
replace #ETCD-ENDPOINT with an appropriate etcd IP address.

Example 3-4 etcd container definition

containers:
- name: etcddump
 image: ibmcom/etcd:3.2.24
 command: ["/bin/sh","-c","cat /certs/etcd-cert > client.pem; cat /certs/etcd-key
> client-key.pem; cat /certs/etcd-ca > ca.pem; etcdctl --cert=client.pem
--key=client-key.pem --cacert=ca.pem --endpoints https://$(ENDPOINT):4001 snapshot
save /data/etcd.$(date +%Y-%m-%d_%H:%M:%S).db"]
 env:
 - name: ENDPOINT
 value: "#ETCD-ENDPOINT"

3. Alternatively, sed can be used to easily do this, by executing sed -i -e
s/#ETCD-ENDPOINT/<etcd-endpoint>/g core-backup_cronjob.yaml replacing
<etcd-endpoint> with your own.
Chapter 3. Backup and restore of an IBM Cloud Private cluster 87

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch3-Backup-and-Restore/Backup/core-backup_cronjob.yaml

CronJob schedules use the Unix crontab format, so adjust the spec.schedule value as
required. For more information and guidance in generating a valid crontab schedule, see
https://crontab.guru/. As an example, to run a job every 10 minutes, the schedule value
would be */10 * * * *, for every hour 0 */1 * * *, and every Friday at 9pm 0 21 * * FRI.

4. The ibmcom/etcd:3.2.24 image is the default etcd image for IBM Cloud Private 3.1.2. If
the environment does not have internet access, replace ibmcom with the private image
registry local to the cluster, for example, mycluster.icp:8500/ibmcom/etcd:3.2.24.

5. Create the CronJob using kubectl create -f core-backup_cronjob.yaml. The CronJob
should be visible in the Workloads → Jobs → CronJobs tab in IBM Cloud Private
(Figure 3-5).

Figure 3-5 Running CronJob

6. All generated jobs (at the defined schedule) should be visible in the Workloads →
Jobs → BatchJobs tab (Figure 3-6).

Figure 3-6 Running jobs

7. If a job is completed successfully, it will show a 1 in the Successful column. If the job was
not successful, troubleshoot it using the guidance provided in the troubleshooting chapter.
Verify that the backups exist on the storage provider (external NFS server in this example)
as demonstrated in Example 3-5.
88 IBM Cloud Private System Administrator’s Guide

https://crontab.guru/

Example 3-5 Tree output of NFS backup directory

[root@icp-nfs backup]# tree --du -h
.
••• [87M] etcd
• ••• [29M] etcd.2019-02-26_02:50:08.db
• ••• [29M] etcd.2019-02-26_03:00:02.db
• ••• [29M] etcd.2019-02-26_03:10:05.db
••• [2.8M] mongodb
 ••• [966K] mongodb-backup-2019-02-26_02:50:09.gz
 ••• [967K] mongodb-backup-2019-02-26_03:00:03.gz
 ••• [967K] mongodb-backup-2019-02-26_03:10:06.gz

89M used in 2 directories, 6 files

This output also provides a baseline to calculate the necessary storage requirements. For
example, if etcd data should be kept for 30 days and each backup is about ~30 Mb, the
total needed for etcd backups is 900 Mb. Similarly for MongoDB, ~30 Mb is required for 30
days worth of backup data. Naturally, the backup size is likely to grow as the cluster is
used over time, so ensure the backup sizes are monitored periodically and adjust the PV
size as required.

Manual etcd and MongoDB backups
Manual backups of etcd and MongoDB can be taken in a variety of ways. This section will
cover how to do this using Docker, kubectl, and Kubernetes jobs.

Backup etcd using Docker
Perform the following steps on an IBM Cloud Private master node to backup etcd using
Docker. If etcd is running on dedicated nodes, perform the steps on that node.

1. Find the k8s-etcd container (Linux grep and awk tools are used to simplify the output):

[root@icp-ha-master-1 ~]# docker ps | grep k8s_etcd_k8s-etcd | awk
'FNR==1{print $1}'
af39b9392d85

2. Execute the snapshot command:

[root@icp-ha-master-1 ~]# docker run --entrypoint=etcdctl -e ETCDCTL_API=3 -v
/tmp/backup:/backup -v /etc/cfc/conf/etcd:/certs -v /var/lib/etcd:/var/lib/etcd
mycluster.icp:8500/ibmcom/etcd:3.2.24 --cert /certs/client.pem --key
/certs/client-key.pem --cacert /certs/ca.pem --endpoints
https://172.24.19.201:4001 snapshot save /backup/snapshot.db
Snapshot saved at /backup/snapshot.db

3. Verify the backup exists:

[root@icp-ha-master-1 ~]# ls -sh /tmp/backup/
total 30M
30M snapshot.db

4. Copy the snapshot to a backup storage location outside of the cluster.

Backup etcd using kubectl
Perform the following steps on any machine that has kubectl configured to access to the
cluster:

1. Get the etcd pod name:
Chapter 3. Backup and restore of an IBM Cloud Private cluster 89

[root@icp-ha-boot ~]# kubectl -n kube-system get pods | grep "k8s-etcd" | awk
'NR==1{print $1}'
k8s-etcd-172.24.19.201

2. Run the snapshot command:

[root@icp-ha-boot ~]# kubectl -n kube-system exec k8s-etcd-172.24.19.201 -- sh
-c "export ETCDCTL_API=3; etcdctl --cert /etc/cfc/conf/etcd/client.pem --key
/etc/cfc/conf/etcd/client-key.pem --cacert /etc/cfc/conf/etcd/ca.pem
--endpoints https://172.24.19.201:4001 snapshot save snapshot.db"
Snapshot saved at snapshot.db

3. Copy the snapshot.db file from the etcd container to the local machine:

[root@icp-ha-boot ~]# kubectl cp kube-system/k8s-etcd-172.24.19.201:snapshot.db .

4. Verify the backup exists:

[root@icp-ha-boot ~]# ls -sh .
total 30M
30M snapshot.db

Backup etcd using a Kubernetes job
etcd can be snapshot to a PersistentVolume using a Kubernetes job. For security and
isolation from the worker nodes, the pods created in this job are scheduled to a master node.
Perform the following steps on any machine that has kubectl configured to access to the
cluster:

1. Create a PersistentVolume (PV) and PersistentVolumeClaim (PVC), similar to the
examples in Example 3-1 on page 84 and Example 3-2 on page 85 to store the etcd
snapshot. This job definition uses the same PV and PVC created in those examples.

2. Create the etcd-backup_job.yaml file shown in Example 3-6. Alternatively, download the
file from the following location:

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-
s-Guide/tree/master/Ch3-Backup-and-Restore/Backup/etcd-backup_job.yaml

Example 3-6 The etcd-backup_job.yaml file

apiVersion: batch/v1
kind: Job
metadata:
 name: etcddump
 namespace: kube-system
spec:
 template:
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: beta.kubernetes.io/arch
 operator: In
 values:
 - amd64
 - ppc64le
 - s390x
 - key: master
 operator: In
90 IBM Cloud Private System Administrator’s Guide

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch3-Backup-and-Restore/Backup/etcd-backup_job.yaml

 values:
 - "true"
 containers:
 - name: etcddump
 image: ibmcom/etcd:3.2.24
 command: ["/bin/sh","-c","cat /certs/etcd-cert > client.pem; cat
/certs/etcd-key > client-key.pem; cat /certs/etcd-ca > ca.pem; etcdctl
--cert=client.pem --key=client-key.pem --cacert=ca.pem --endpoints
https://$(ENDPOINT):4001 snapshot save /backup/etcd/etcddump.$(date
+%Y-%m-%d_%H:%M:%S).db"]
 env:
 - name: ENDPOINT
 value: "#ETCD-ENDPOINT"
 - name: ETCDCTL_API
 value: "3"
 volumeMounts:
 - mountPath: "/backup"
 name: backup
 - mountPath: "/certs"
 name: etcd-certs
 tolerations:
 - effect: NoSchedule
 key: dedicated
 operator: Exists
 volumes:
 - name: backup
 persistentVolumeClaim:
 claimName: core-backup
 - name: etcd-certs
 secret:
 secretName: etcd-secret
 restartPolicy: Never
 backoffLimit: 1

The ETCD-ENDPOINT environment variable for the etcd container should be changed to
reflect an actual etcd IP address. Modify the containers section in Example 3-7 and
replace #ETCD-ENDPOINT with an appropriate etcd IP address.

Example 3-7 etcd container definition

containers:
- name: etcddump
 image: ibmcom/etcd:3.2.24
 command: ["/bin/sh","-c","cat /certs/etcd-cert > client.pem; cat /certs/etcd-key
> client-key.pem; cat /certs/etcd-ca > ca.pem; etcdctl --cert=client.pem
--key=client-key.pem --cacert=ca.pem --endpoints https://$(ENDPOINT):4001 snapshot
save /data/etcd.$(date +%Y-%m-%d_%H:%M:%S).db"]
 env:
 - name: ENDPOINT
 value: "#ETCD-ENDPOINT"

Alternatively, sed can be used to easily do this, by executing sed -i -e
s/#ETCD-ENDPOINT/<etcd-endpoint>/g core-backup_cronjob.yaml replacing
<etcd-endpoint> with your own.
Chapter 3. Backup and restore of an IBM Cloud Private cluster 91

The ibmcom/etcd:3.2.24 image is the default etcd image for IBM Cloud Private 3.1.2. If
the environment does not have internet access, replace ibmcom with the private image
registry local to the cluster, for example, mycluster.icp:8500/ibmcom/etcd:3.2.24.

3. Create the job:

[root@icp-ha-boot ~]# kubectl create -f etcd-backup_job.yaml
job.batch "etcddump" created

4. Verify that the job was successful:

[root@icp-ha-boot ~]# kubectl -n kube-system get jobs etcddump
NAME DESIRED SUCCESSFUL AGE
etcddump 1 1 1m

5. Verify that the etcd snapshot exists:

[root@icp-nfs etcd]# ls -sh etcddump*
30M etcddump.2019-02-26_04:49:06.db

Backup MongoDB using kubectl
Perform the following steps on any machine that has kubectl configured to access to the
cluster:

1. Get the MongoDB pod name:

[root@icp-ha-boot ~]# kubectl -n kube-system get pods -l app=icp-mongodb
-o=jsonpath='{.items[0].metadata.name}'
icp-mongodb-0

2. Retrieve the primary replica:

[root@icp-ha-boot ~]# kubectl -n kube-system exec icp-mongodb-0 -n kube-system
-- sh -c 'mongo --host rs0/mongodb:27017 --username admin --password
$ADMIN_PASSWORD --authenticationDatabase admin --ssl --sslCAFile
/data/configdb/tls.crt --sslPEMKeyFile /work-dir/mongo.pem
--eval="db.isMaster()[\"primary\"]" | grep ^icp-mongodb-'
icp-mongodb-1.icp-mongodb.kube-system.svc.cluster.local:27017

3. Run the mongodump command using the primary replica retrieved from step 2:

[root@icp-ha-boot ~]# kubectl -n kube-system exec icp-mongodb-0 -- sh -c 'mkdir
-p /work-dir/backup/; mongodump --host
icp-mongodb-1.icp-mongodb.kube-system.svc.cluster.local:27017 --username admin
--password $ADMIN_PASSWORD --authenticationDatabase admin --ssl --sslCAFile
/data/configdb/tls.crt --sslPEMKeyFile /work-dir/mongo.pem --oplog --quiet
--gzip --archive="/work-dir/backup/backup.gz"'

4. Copy the backup.gz file from the icp-mongodb-0 container to the local machine:

[root@icp-ha-boot ~]# kubectl cp
kube-system/icp-mongodb-0:/work-dir/backup/backup.gz .

5. Verify that the backup exists:

[root@icp-ha-boot ~]# ls -sh .
total 972K
972K backup.gz

Backup MongoDB using a Kubernetes job
MongoDB can be backed up to a PersistentVolume using a Kubernetes job. For security and
isolation from the worker nodes, the pods created in this job are scheduled to a master node.
Perform the following steps on any machine that has kubectl configured to access to the
cluster:
92 IBM Cloud Private System Administrator’s Guide

1. Create a PersistentVolume (PV) and PersistentVolumeClaim (PV), similar to the examples
in Example 3-1 and Example 3-2 to store the backup file. This job definition uses the same
PV and PVC created in those examples.

2. Create the mongodb-backup_job.yaml file from Example 3-8 below.

Example 3-8 mongodb-backup_job.yaml

apiVersion: batch/v1
kind: Job
metadata:
 name: mongodbdump
 namespace: kube-system
spec:
 template:
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: beta.kubernetes.io/arch
 operator: In
 values:
 - amd64
 - ppc64le
 - s390x
 - key: master
 operator: In
 values:
 - "true"
 containers:
 - name: mongodbdump
 image: ibmcom/icp-mongodb:4.0.5
 command: ["/bin/bash","-c","cat /certs/tls.crt certs/tls.key > mongo.pem;
export PRIMARY=$(mongo --host rs0/mongodb:27017 --username admin --password
$ADMIN_PASSWORD --authenticationDatabase admin --ssl --sslCAFile /ca/tls.crt
--sslPEMKeyFile mongo.pem --eval=\"db.isMaster()['\"'primary'\"']\" | grep
^icp-mongodb-); mongodump --host $PRIMARY --username admin --password
$ADMIN_PASSWORD --authenticationDatabase admin --ssl --sslCAFile /ca/tls.crt
--sslPEMKeyFile mongo.pem --oplog --verbose --gzip
--archive=/backup/mongodb/mongodbdump-$(date +%Y-%m-%d_%H:%M:%S).gz"]
 env:
 - name: ADMIN_PASSWORD
 valueFrom:
 secretKeyRef:
 key: password
 name: icp-mongodb-admin
 volumeMounts:
 - mountPath: "/backup"
 name: backup
 - mountPath: "/ca"
 name: cluster-ca
 - mountPath: "/certs"
 name: mongodb-certs
 tolerations:
 - effect: NoSchedule
Chapter 3. Backup and restore of an IBM Cloud Private cluster 93

 key: dedicated
 operator: Exists
 volumes:
 - name: backup
 persistentVolumeClaim:
 claimName: core-backup
 - name: cluster-ca
 secret:
 secretName: cluster-ca-cert
 - name: mongodb-certs
 secret:
 secretName: icp-mongodb-client-cert
 restartPolicy: Never
 backoffLimit: 1

Alternatively, download the file from the following link:

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-
s-Guide/tree/master/Ch3-Backup-and-Restore/Backup/mongodb-backup_job.yaml

The ibmcom/icp-mongodb:4.0.5 image is the default MongoDB image for IBM Cloud
Private 3.1.2. If the environment does not have internet access, replace ibmcom with the
private image registry local to the cluster, for example:
mycluster.icp:8500/ibmcom/icp-mongodb:4.0.5.

3. Create the job:

[root@icp-ha-boot ~]# kubectl create -f mongodb-backup_job.yaml
job.batch "mongodbdump" created

4. Verify that the job was successful:

[root@icp-ha-boot ~]# kubectl get jobs mongodbdump
NAME DESIRED SUCCESSFUL AGE
mongodbdump 1 1 3m

5. Verify that the etcd snapshot exists:

[root@lf-icp-nfs mongodb]# ls -sh mongodbdump*
976K mongodbdump-2019-02-26_05:58:22.gz

Backing up MariaDB
MariaDB in IBM Cloud Private is only used for storing the transient OpenIDConnect data. The
default refresh period for user tokens is 12 hours. If this data is lost between restores, the data
can simply be regenerated by logging in to the platform. If there is a use case to retain the
MariaDB data, you can back up the database using kubectl or a Kubernetes job.

Backing up MariaDB using kubectl
Perform the following steps on any machine that has kubectl configured to access to the
cluster:

1. Get the MariaDB pod name:

[root@icp-ha-boot ~]# kubectl -n kube-system get pods -l release=mariadb
-o=jsonpath='{.items[0].metadata.name}'
mariadb-0

2. Run the mysql command:

[root@icp-ha-boot ~]# kubectl -n kube-system exec -it mariadb-0 -c mariadb --
sh -c 'mysqldump --host=$MARIADB_SERVICE_HOST --user=root
--password=$MYSQL_ROOT_PASSWORD --all-databases > /backup.sql'
94 IBM Cloud Private System Administrator’s Guide

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch3-Backup-and-Restore/Backup/mongodb-backup_job.yaml

3. Copy the backup file from the mariadb-0 container to the local machine:

[root@icp-ha-boot ~]# kubectl cp kube-system/mariadb-0:backup.sql -c mariadb .

4. Move the backup.sql to a location outside of the cluster.

Backing up MariaDB using a Kubernetes job
The mariadb-backup_job.yaml and mariadb-backup_cronjob.yaml can be retrieved here:

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-G
uide/tree/master/Ch3-Backup-and-Restore/Backup/mariadb-backup_job.yaml

Run the job in the same way as the etcd and MongoDB jobs.

Backing up the private image registry
The private image registry stores all system and user deployed images in the
/var/lib/registry directory on the master nodes. When backing up this data, it is sufficient
to create an archive of the data using the OS tools available, such as tar. The loss of this data
means losing all users images which will result in failed deployments when the cluster is
restored. You can copy the whole contents of /var/lib/registry and move to a location
outside of the cluster.

When later restoring a cluster, the system images will already exist after installation, so it
does not always make sense to back up the whole /var/lib/registry directory unless it is
easier to do so. It’s recommended to also store the application images in a location external to
the cluster, so that each individual image can be pushed to the image repository if needed.

To back up an individual image, you can use commands such as docker save -o
<backup-name>.tar <repo>/<namespace>/<image-name>:<tag>

For example, to back up a user deployed python image:

docker save -o python-image.tar mycluster.icp:8500/development/python:v1.0.0

Backing up the Helm repository
All Helm charts pushed to the IBM Cloud Private Helm repository are stored in MongoDB,
and the deployable chart data can be located on the master nodes. Due to this method it’s not
mandatory to back up the chart archives from the master nodes, but it’s recommended to do
so in the event of a MongoDB failure, resulting in data loss.

Only one helm-repo pod is running at one time and is scheduled to a master node, using a
LocalVolume PersistentVolume. This means that the most up to date chart information from
MongoDB is stored on the master node hosting the helm-repo pod, so chart backups should
be retrieved from that node.

Backing up the contents of the /var/lib/icp/helmrepo directory on the master node hosting
the helm-repo pod is sufficient. Example 3-9 shows how to retrieve the host node name or IP
address using kubectl.

Example 3-9 Retrieve helm-repo host IP

[root@icp-ha-boot cluster]# kubectl -n kube-system get pods -l app=helm-repo
-o=custom-columns=NAME:.metadata.name,NODE:.spec.nodeName
NAME NODE
helm-repo-866cd5f9bd-c7cxt 172.24.19.203
Chapter 3. Backup and restore of an IBM Cloud Private cluster 95

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch3-Backup-and-Restore/Backup/mariadb-backup_job.yaml

Use your preferred methods to retrieve the contents of /var/lib/icp/helmrepo from the
master node and store the data outside of the cluster.

Backing up the Elasticsearch cluster
As the Elasticsearch, Logstash and Kibana (ELK) stack provides users with the ability to
retrieve historical log data it is an important component to backup so the same data can be
restored in the event of cluster failure. The current logging release does not provide the
capability to backup the logging data without suspending the logging service (only partially for
installations with multiple management node).

General considerations
By default, IBM Cloud Private configures the ELK stack to retain log data using the logstash
index for one day, and in this configuration, it is worth considering whether or not the platform
log data is actually meaningful enough to keep. In most cases, the platform log data is
transient, especially if the default curation is kept and logs are removed after 24 hours.

Backing up log data is only really valuable if the default 24 hours is extended to a longer
duration and where the platform ELK stack is the primary source of application log data. The
Logging and Monitoring Chapter provides information on the various use cases for platform
and application logging and the alternative approaches to consider, such as deploying a
dedicated ELK for applications.

Backing up the logging filesystem
This method requires downtime of management nodes to be able to accurately backup the
logging data. This is because Elasticsearch is constantly reading/writing data to the
filesystem at /var/lib/icp/logging on the management nodes especially when the cluster is
active. Attempting to copy the logging data from the filesystem whilst the Elasticsearch cluster
is online has a high chance of creating a faulty backup and some shards will be corrupted
upon restoration, resulting in data loss.

The recommended way to backup the logging file system is to ensure Elasticsearch is not
running on the management node by stopping all containers running on it. Use the method
described in “Stopping an IBM Cloud Private node” on page 78 to stop kubelet and docker,
then the /var/lib/icp/logging/elk-data/nodes/0/indices directory can be safely copied.
During this time, no log data generated by the platform or application will be persisted.

In environments with more than one management node, multiple Elasticsearch data pods are
deployed (one on each management node), so it is possible to keep the logging services
running by repeating the above approach on each management node one by one. During this
time, Elasticsearch will persist the data only to the available data pods, which means that
there will be an imbalance of spread of replicas per shard on each management node.

Elasticsearch will attempt to correct this as data pods are brought back online so higher CPU
utilization and disk I/O is normal in this situation. More information about how replica shards
are stored and promoted when data pods are taken offline can be found here:

https://www.elastic.co/guide/en/elasticsearch/guide/current/replica-shards.html

Backing up the monitoring data
The monitoring stack comprises of the Alert Manager, Prometheus and Grafana. By default,
IBM Cloud Private does not deploy these components with a PersistentVolume (PV) or
PersistentVolumeClaim (PVC), so any data stored by these components will be deleted if the
container gets restarted. The platform does, however, store any user-configured AlertRules
and MonitoringDashboard resources within Kubernetes itself, so these will persist during
container restarts.
96 IBM Cloud Private System Administrator’s Guide

https://www.elastic.co/guide/en/elasticsearch/guide/current/replica-shards.html

Alerts and Dashboards
If you have created custom alert rules or Grafana dashboards and modified them in
Prometheus or Grafana directly, you should export the YAML definitions to a file and store
these resources outside of the cluster, as part of your backup routine.

To export an AlertRule to a file, use the command kubectl -n <namespace> get alertrule
<name> > <name>.yaml replacing <namespace> with the hosting namespace and <name>
with the AlertRule name.

To export a Dashboard to a file, use the command kubectl -n <namespace> get
monitoringdashboard <name> > <name>.yaml replacing <namespace> with the hosting
namespace and <name> with the Dashboard name.

Adding persistence to the monitoring stack
The recommended approach to persisting data in the monitoring stack is by adding a PV and
PVC to the deployments using helm upgrade. The following steps will create a new PV and
PVC and mount them to the Alert Manager, Prometheus and Grafana deployments.

1. If you do not have dynamic storage provisioning, create a separate PV and PVC for the
Alert Manager (1 Gb), Prometheus (10 Gb) and Grafana (10 Gb). Examples of PVs and
PVCs can be found throughout this chapter and the Kubernetes documentation at
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistent-volu
mes.

2. Retrieve the current monitoring Helm chart and the release values, replacing
mycluster.icp with a value suitable for your environment:

wget --no-check-certificate
https://mycluster.icp:8443/mgmt-repo/requiredAssets/ibm-icpmonitoring-1.4.0.tgz

Important: These steps will force the containers to be restarted in order to mount the new
volume, so any existing data stored in the containers will no longer be available. AlertRules
and Dashboards are stored as Kubernetes resources and can be exported, but current
monitoring data in Prometheus or additional configurations from modifying ConfigMaps
directly may be lost. Be sure to export your additional configurations prior to executing
these steps.
Chapter 3. Backup and restore of an IBM Cloud Private cluster 97

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistent-volumes

3. Create a new YAML file called monitoring-override.yaml containing the PV definition in
Example 3-10.

Example 3-10 monitoring-override.yaml

prometheus:
 persistentVolume:
 enabled: true
 useDynamicProvisioning: false
 size: 10Gi
 storageClass: ""
 existingClaimName: "monitoring-prometheus"
 selector:
 label: ""
 value: ""

alertmanager:
 persistentVolume:
 enabled: true
 useDynamicProvisioning: false
 size: 1Gi
 storageClass: ""
 existingClaimName: "monitoring-alertmanager"
 selector:
 label: ""
 value: ""

grafana:
 persistentVolume:
 enabled: true
 useDynamicProvisioning: false
 size: 1Gi
 storageClass: ""
 existingClaimName: "monitoring-grafana"
 selector:
 label: ""
 value: ""

Replace the values for useDynamicProvisioning and storageClass to suit your
environment.

4. Use helm upgrade to apply the changes to the monitoring release:

helm upgrade monitoring ibm-icpmonitoring-1.4.0.tgz -f monitoring-override.yaml
--reuse-values --recreate-pods --tls

The data stored by the monitoring stack is portable and can be reused in different instances,
so use the storage backup tools available to backup the PV data. If the monitoring data may
be restored on a different cluster, you need to ensure that the configuration is the same (for
example the Grafana ConfigMap is the same) for the data to be reused in a new deployment
of Alert Manager, Prometheus or Grafana.

Using your preferred methods, copy the PV data to a location outside of the IBM Cloud
Private cluster.
98 IBM Cloud Private System Administrator’s Guide

Backing up Vulnerability Advisor
As discussed in the section “Vulnerability Advisor” on page 76, consider whether it is worth
backing up Vulnerability Advisor (VA) and Mutation Advisor (MA) at all. Imported data in to a
new cluster will mean that the restored VA and MA data is no longer relevant to the current
environment and would not offer any benefit other than analysis of the previous environment.
If backing up the VA and MA data is required then this section is relevant.

VA and MA store all its data in two places; on the hosts filesystem and in Elasticsearch. The
data stored by VA and MA is not configured to a specific host so data can be transported
between installations of IBM Cloud Private. The VA and MA filesystems that require backup
are as follows:

� /var/lib/icp/va/minio
� /var/lib/icp/va/zookeeper
� /var/lib/icp/va/kafka

In high availability (HA) deployments, the /var/lib/icp/va/minio is on shared storage so
back this up using the preferred methods.

Copy this data to a location outside of the IBM Cloud Private cluster.

Backing up the cluster installation data
Depending on how an IBM Cloud Private cluster is restored, it may be necessary to copy the
cluster installation data. If IBM Cloud Private needs to be reinstalled on the existing nodes
with the same IP addresses, copy the following data in the
<installation-directory>/cluster directory on the boot node.

� cfc-certs (directory)
� config.yaml (optional)
� hosts (optional)
� ssh_key (optional)

The most important data to be backed up is the cfc-certs directory, as it contains the
certificates and keys generated for the existing cluster that are used for the whole platform.
The config.yaml, hosts and ssh_key files can be easily replaced.

Copy this data to a location outside of the IBM Cloud Private cluster.

Backing up PersistentVolume data
Each storage provider used in IBM Cloud Private will typically have it’s own method for
backing up data or replicating it to another system. For example, GlusterFS can snapshot
volumes, Ceph can export images, vSphere volumes can make use of VMWare native
backup functions and hostpath/LocalVolumes benefit from any standard Linux file copy
methods.

The platform components mostly store data on the host node, simplifying the backup
procedures by allowing the use of common tools to backup the data. For applications that rely
on PersistentVolumes, it is the cluster administrators responsibility to ensure that they are
familiar with the storage technologies they offer to application developers.

The use of a storage provider running as containers on IBM Cloud Private, such as GlusterFS
and Ceph, can complicate the backup process as these technologies typically require the
write operations to be suspended while the volume/block is backed up using the native
snapshot tools. If the cluster fails and you can no longer interact with the storage provider,
there is a higher risk of data loss unless the application can handle such scenarios gracefully.
Chapter 3. Backup and restore of an IBM Cloud Private cluster 99

The recommended way to reduce the risk of application data loss is to use storage providers
such as GlusterFS or Ceph on Virtual Machines external to the cluster. This way the
dependency on the IBM Cloud Private platform itself is removed and the use of dynamic
volume provisioning is still enabled. Regardless of the storage provider, ensure backups of
the application data are taken regularly.

3.4.4 Platform restore process

No backup is good without first testing it can be restored, and this process should be
thoroughly tested to ensure that each backup can be restored multiple times for any given
environment. The information in this section assumes that a new IBM Cloud Private cluster
needs to be installed on new or existing infrastructure and that the guidelines in “Platform
backup process” on page 84 has been followed to for each of the necessary components.

In the example commands provided, the same backup files created in the “Platform backup
process” section will be used. It’s important to take a full infrastructure backup of the new
environment before attempting to restore the cluster. It’s also recommended to use the steps
in “Backup etcd using kubectl” on page 89 to create an etcd backup of the current
environment, in case the restore process fails and you end up in a situation where some
nodes are restored and others are not. There are several steps that involve replacing core
data files and there is a high margin for error.

The restore process will address the following use cases:

� Restore an IBM Cloud Private configuration and data to an existing cluster
� Restore an IBM Cloud Private configuration and data to a remote cluster

The local cluster restore steps in this section were performed in a lab environment with LDAP
configured and light workloads, tested on the following cluster configurations:

� Single master, management, proxy, Vulnerability Advisor and 3 x worker nodes
� 3 x masters, 2 x management, 2 x proxies, 3 x Vulnerability Advisor and 3 x worker nodes
� 3 x etcd, 3 x masters, 2 x management, 2 x proxies, 3 x Vulnerability Advisor and 3 x

worker nodes

The remote cluster restore steps in this section were performed in a lab environment with
LDAP configured and light workloads, tested on the following cluster configurations: Single
master, management, proxy, Vulnerability Advisor, and 3 x worker nodes.

The core components should be restored in the following order:

1. MongoDB
2. Private image registry
3. etcd
4. Persistent Volume data

The other components can be restored in any order, although it is recommended that the
logging data is restored before the Vulnerability Advisor. The Persistent Volume Data is
restored last so that when a cluster is restored, the backed up data is not overwritten with new
cluster data, which would later corrupt the restored applications.

Local cluster restore prerequisites
If IBM Cloud Private is reinstalled on the existing infrastructure, the content in the cfc-certs
directory must be copied to the <installation_directory>/cluster directory before
installation. This ensures the same certificates from the previous installation are used in the
new installation and that any restored components are able to interact with the cluster.
100 IBM Cloud Private System Administrator’s Guide

Remote cluster restore prerequisites
If IBM Cloud Private is reinstalled on new infrastructure (for example different nodes with
different IP addresses) then you need to ensure that the cluster configuration is as close as
possible to the old configuration, in particular the cluster name. The cluster name is used for
the image repository (for example, mycluster.icp:8500), so all deployments restored from
etcd will use the old cluster image repository and if this is different between clusters, you’ll
need to manually edit each deployed resource to use a different image.

Before restoring the cluster, you’ll need to extract all of the platform ConfigMaps and Secrets
immediately post-installation, as these will contain the certificates and keys specific to this
cluster. When etcd is restored, it will restore the same resources that existed in the backed up
installation, which means the new installation will not function correctly if these are not
replaced with the current ones. To export all of the current ConfigMaps and Secrets to your
local machine, run the script in Example 3-11.

Example 3-11 The save-yamls.sh script

#!/bin/bash
namespaces=(kube-system kube-public services istio-system ibmcom cert-manager)
echo "Saving all ConfigMaps, Secrets, Deployments and Daemonsets..."
for ns in ${namespaces[@]}
do
 mkdir $ns.configmap $ns.secret $ns.deployment.extensions
$ns.daemonset.extensions
 # save configmap, secret, deployment, daemonset
 for n in $(kubectl get -o=name configmap,secret,ds,deployment -n $ns)
 do
 kubectl get -o yaml -n $ns $n > $ns.$n.yaml
 done
done

kubectl get APIService -n kube-system -o yaml v1beta1.servicecatalog.k8s.io >
kube-system.servicecatalog.yaml

echo "Done."

It’s important to note that unlike the local cluster installation, you do not need to use the same
certificates from the backed up cfc-certs directory.

Restoring MongoDB
The recommended way to restore MongoDB from a backup is by using the mongorestore
utility. This section will cover two methods; using kubectl and using a Kubernetes job. The
use of each method entirely depends on the method used to backup MongoDB. For example,
if you used kubectl to backup the database, it makes sense to use kubectl to restore it. If a
CronJob or Job was used, then the core-backup PersistentVolume created in the backup
steps can be used to remove the manual effort of copying the file to the local machine.

It’s worth checking the current database statistics as a reference point, to know whether the
mongorestore command has successfully repopulated the database.

1. Use kubectl exec to create a shell session in the icp-mongodb-0 pod.

[root@icp-ha-boot cluster]# kubectl -n kube-system exec -it icp-mongodb-0 -c
icp-mongodb sh
$

Chapter 3. Backup and restore of an IBM Cloud Private cluster 101

2. Log in to the primary replica:
$ mongo --host rs0/mongodb:27017 --username admin --password $ADMIN_PASSWORD
--authenticationDatabase admin --ssl --sslCAFile /data/configdb/tls.crt
--sslPEMKeyFile /work-dir/mongo.pem

This will output some connectivity information and eventually show the rs0:PRIMARY>
prompt.

3. Use the show dbs command to view the current list of databases and each databases
current size.

rs0:PRIMARY> show dbs
HELM_API_DB 0.000GB
admin 0.000GB
config 0.000GB
helm-repo_DB 0.001GB
key_protect_metadata 0.000GB
key_protect_secrets 0.000GB
local 0.018GB
metering_DB 0.001GB
platform-db 0.000GB

Restoring using kubectl
Perform the following steps to restore MongDB. Ensure the backup exists on the local
machine, and that you can access the cluster using kubectl.

1. Find the primary MongoDB replica. During testing this process, some observations were
made where the database did not restore correctly when explicitly using the --host
rs0/mongodb:27017 replicaset instead of the hostname of the primary replica. This step,
shown in Example 3-12, ensures that the correct primary instance is used.

Example 3-12 Find the primary MongoDB replica

[root@icp-ha-boot cluster]# kubectl exec icp-mongodb-0 -n kube-system -- sh -c
'mongo --host rs0/mongodb:27017 --username admin --password $ADMIN_PASSWORD
--authenticationDatabase admin --ssl --sslCAFile /data/configdb/tls.crt
--sslPEMKeyFile /work-dir/mongo.pem --eval="db.isMaster()[\"primary\"]" | grep
^icp-mongodb-'
icp-mongodb-0.icp-mongodb.kube-system.svc.cluster.local:27017

2. Copy the backup file to the pod from the previous step.

[root@icp-ha-boot ~]# kubectl cp backup.gz
"kube-system/icp-mongodb-0:/work-dir/backup.gz" -c icp-mongodb

3. Verify the file was copied successfully.

[root@icp-ha-boot ~]# kubectl -n kube-system exec icp-mongodb-0 -c icp-mongodb
ls /work-dir
backup.gz
credentials.txt
log.txt
mongo.pem
openssl.cnf
peer-finder

4. Execute the restore.

[root@icp-ha-boot ~]# kubectl exec icp-mongodb-0 -n kube-system -- sh -c
'mongorestore --host
icp-mongodb-0.icp-mongodb.kube-system.svc.cluster.local:27017 --username admin
102 IBM Cloud Private System Administrator’s Guide

--password $ADMIN_PASSWORD --authenticationDatabase admin --ssl --sslCAFile
/data/configdb/tls.crt --sslPEMKeyFile mongo.pem --oplogReplay --gzip
--archive=/work-dir/backup.gz'

2019-03-05T13:07:57.309+0000 preparing collections to restore from
2019-03-05T13:07:57.373+0000 reading metadata for metering_DB.usage from
/work-dir/backup/metering_DB/usage.metadata.json
2019-03-05T13:07:57.373+0000 restoring metering_DB.usage from
/work-dir/backup/metering_DB/usage.bson
2019-03-05T13:07:57.406+0000 reading metadata for helm-repo_DB.mgmtrepo-assets
from /work-dir/backup/helm-repo_DB/mgmtrepo-assets.metadata.json
2019-03-05T13:07:57.406+0000 restoring helm-repo_DB.mgmtrepo-assets from
/work-dir/backup/helm-repo_DB/mgmtrepo-assets.bson
...
2019-03-05T13:08:41.235+0000 done

5. Repeat step 1 on page 101 to verify that the mongorestore has been successful and
added data to the database. The output might look similar to the following:

rs0:PRIMARY> show dbs
HELM_API_DB 0.000GB
admin 0.000GB
config 0.000GB
helm-repo_DB 0.003GB
key_protect_metadata 0.000GB
key_protect_secrets 0.000GB
local 2.174GB
metering_DB 0.177GB
platform-db 0.001GB

Restoring using a Kubernetes job
Execute the following steps to restore the MongoDB using a job.

1. Create a PersistentVolume (PV) and PersistentVolumeClaim (PVC), similar to the
examples in Example 3-1 and Example 3-2 on page 85. This job definition uses the same
PV and PVC created in those examples.

2. Create the mongodb-restore_job.yaml as defined in Example 3-13.

Example 3-13 YAML definition for mongodb-restore_job.yaml

apiVersion: batch/v1
kind: Job
metadata:
 name: mongodbrestore
 namespace: kube-system
spec:
 template:
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: beta.kubernetes.io/arch
 operator: In
 values:
 - amd64
 - ppc64le
Chapter 3. Backup and restore of an IBM Cloud Private cluster 103

 - s390x
 - key: master
 operator: In
 values:
 - "true"
 containers:
 - name: mongodbrestore
 image: ibmcom/icp-mongodb:4.0.5
 command: ["/bin/bash","-c","cat /certs/tls.crt certs/tls.key > mongo.pem;
export PRIMARY=$(mongo --host rs0/mongodb:27017 --username admin --password
$ADMIN_PASSWORD --authenticationDatabase admin --ssl --sslCAFile /ca/tls.crt
--sslPEMKeyFile mongo.pem --eval=\"db.isMaster()['\"'primary'\"']\" | grep
^icp-mongodb-); mongorestore --host $PRIMARY --username admin --password
$ADMIN_PASSWORD --authenticationDatabase admin --ssl --sslCAFile /ca/tls.crt
--sslPEMKeyFile mongo.pem --oplogReplay --gzip
--archive=/backup/mongodb/$BACKUP_NAME"]
 env:
 - name: BACKUP_NAME
 value: "#BACKUP"
 - name: ADMIN_PASSWORD
 valueFrom:
 secretKeyRef:
 key: password
 name: icp-mongodb-admin
 volumeMounts:
 - mountPath: "/backup"
 name: backup
 - mountPath: "/ca"
 name: cluster-ca
 - mountPath: "/certs"
 name: mongodb-certs
 tolerations:
 - effect: NoSchedule
 key: dedicated
 operator: Exists
 volumes:
 - name: backup
 persistentVolumeClaim:
 claimName: core-backup
 - name: cluster-ca
 secret:
 secretName: cluster-ca-cert
 - name: mongodb-certs
 secret:
 secretName: icp-mongodb-client-cert
 restartPolicy: Never
 backoffLimit: 1

This file can also be downloaded from the following link:

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-G
uide/tree/master/Ch3-Backup-and-Restore/Backup/mongodb-backup_job.yaml

The BACKUP_NAME environment variable should be changed to reflect the name of an actual
MongoDB backup file that exists on the PV. If the MongoDB backup job or CronJob in this
chapter was used to create the backup, the file name format is
104 IBM Cloud Private System Administrator’s Guide

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch3-Backup-and-Restore/Backup/mongodb-backup_job.yaml

mongodb-backup-<year-month-day_hour:minutes:seconds>.gz. Alternatively, sed can be used
to easily do this, by executing sed -i -e s/#BACKUP/<name.gz>/g mongodb-restore_job.yaml
replacing <name.gz> with your own.

The ibmcom/icp-mongodb:4.0.5 image is the default MongoDB image for IBM Cloud Private
3.1.2. If the environment does not have internet access, replace ibmcom with the private image
registry local to the cluster, for example, mycluster.icp:8500/ibmcom/icp-mongodb:4.0.5.

Create the job using kubectl create -f mongodb-restore_job.yaml. The job should be
visible in the Workloads → Jobs → BatchJobs tab in IBM Cloud Private. If the job did not
complete successfully, troubleshoot the failure using the guidance provided in the
troubleshooting chapter. If the job ran successfully, use the same method of verification using
show dbs as described earlier. At this point, MongoDB should be restored.

Restoring the private image registry
Copy the contents of the private image registry backup to the /var/lib/registry directory on
the master node. In high availability environments, the data should be restored to the shared
filesystem and all master nodes should be able to access this directory. The system images
will already exist after installing IBM Cloud Private, so it may be preferable to restore the user
images from other image backups by pushing these images to the image repository before
restoring etcd.

After filesystem data is restored, use kubectl to delete the image manager pods running on
all master nodes:

[root@icp-ha-boot ~]# kubectl delete pods -l app=image-manager
pod "image-manager-0" deleted
pod "image-manager-1" deleted
pod "image-manager-2" deleted

When the image-manager pods are running again, the restored images should now be
available. If you backed up images using docker save, you can reload them using dockerload.
For example, use the following command:

docker load -i backup-image.tar

PersistentVolumes
Due to the large number of storage providers available in IBM Cloud Private, restoring the
data to the PersistentVolumes is not covered in this chapter. When restoring etcd, the original
PersistentVolume and PersistentVolumeClaim names will be restored so at this point, the
original data should be restored as per the storage providers recommendations.

The restored volumes will use the same configuration from the backed up cluster, so restoring
this data is a good idea to do before restoring etcd, so that there is minimal disruption to the
applications that start up and expecting data to be present. For hostPath or LocalVolume type
volumes and any external storage volumes where the data points on the host/remote storage
have not moved, the data restoration should be straight forward.

If you’re restoring a cluster that previously used a containerized storage provider such as
GlusterFS or Ceph, you will need to ensure that any LVM groups/volumes and disk paths
used in the storage configuration are identical to the backed up cluster. Restoring a cluster
with containerized storage providers was not tested in this chapter, and may yield unpredicted
results.
Chapter 3. Backup and restore of an IBM Cloud Private cluster 105

Restoring etcd on local cluster
Restoring etcd is not a trivial task and there are several steps required, including modifying
core files. Ensure the following pre-requisites are met before restoring etcd:

� You have backed up the cluster at the infrastructure level

� You have access to the master and management nodes

� The etcd backup file exists on your local machine

Most steps are run on the etcd/master nodes but the management nodes also require some
actions.

Restoring etcd on single and High-Availability installations
The restore procedure for etcd on both single and multi-master installations (where etcd is
running on the master nodes) use the same set of steps. Ensure that any steps directed at
master nodes are repeated on all master nodes. It’s also important to perform each step on all
specified nodes before moving on to the next step, to ensure all nodes are at the same stage.
This helps with reversing the process if a step should fail. Perform the following steps:

1. On all master nodes, create a backup directory and move the etcd pods to it. This will stop
the etcd container, so verify that it is stopped:

a. Create the backup directories:

mkdir -p /etc/cfc/podbackup
mkdir -p /var/lib/etcdbackup
mkdir -p /var/lib/etcdwalbackup

b. Move the pod data to the backup directory:

mv /etc/cfc/pods/* /etc/cfc/podbackup/

c. Move the current etcd data to the backup directory:

mv /var/lib/etcd/* /var/lib/etcdbackup/
mv /var/lib/etcd-wal/* /var/lib/etcdwalbackup/

d. Verify the etcd pod has stopped.

docker ps | grep etcd

2. On the master and management nodes, stop kubelet and restart docker to stop all running
pods:

systemctl stop kubelet
systemctl restart docker

3. Copy the etcd snapshot file to all masters.

4. Copy the script in Example 3-14 and run it on all masters. This script will retrieve the
current environment information from the /etc/cfc/podbackup/etcd.json file on the
master nodes, then construct and execute a docker command to generate the new etcd
data from the snapshot provided.

When running the script ensure the etcd snapshot file name is passed as a parameter and
it is located in the current directory (where the script is run), as the docker container will
mount the current directory and use the snapshot file.

Example 3-14 The etcd-restore.sh script

#!/bin/bash
[-z "$1"] && { echo "Please provide the etcd snapshot file name"; exit 1; }
data_dir="/var/lib/etcd"
restore_dir="/var/lib/etcd/restored"
106 IBM Cloud Private System Administrator’s Guide

Get etcd docker image details
[-z $etcd_image] && etcd_image=$(grep '"image"' /etc/cfc/podbackup/etcd.json |
sed -e 's/^\s*//' -e 's/\",//g' -e 's/\"//g' -e 's/--//g' -e 's/image://g')

Set volume mounts
volume_mounts="-v $(pwd):/data -v /etc/cfc/conf/etcd:/certs -v
/var/lib/etcd:/var/lib/etcd"
self=$(grep 'advertise-client-urls=' /etc/cfc/podbackup/etcd.json | sed -e
's/^\s*//' -e 's/\",//g' -e 's/\"//g')

Get etcd cluster settings
node_name=$(grep 'name=' /etc/cfc/podbackup/etcd.json | sed -e 's/^\s*//' -e
's/\",//g' -e 's/\"//g')
initial_advertise_peer_urls=$(grep 'initial-advertise-peer-urls='
/etc/cfc/podbackup/etcd.json | sed -e 's/^\s*//' -e 's/\",//g' -e 's/\"//g')
initial_cluster=$(grep 'initial-cluster=' /etc/cfc/podbackup/etcd.json | sed -e
's/^\s*//' -e 's/\",//g' -e 's/\"//g')
initial_cluster_token=$(grep 'initial-cluster-token=' /etc/cfc/podbackup/etcd.json
| sed -e 's/^\s*//' -e 's/\",//g' -e 's/\"//g')

Delete the etcd data
rm -rf /var/lib/etcd

Run the restore on the node
docker run --entrypoint=etcdctl -e ETCDCTL_API=3 ${volume_mounts} ${etcd_image}
--cert /certs/client.pem --key /certs/client-key.pem --cacert /certs/ca.pem
--endpoints ${self} snapshot restore /data/$1 --data-dir=$restore_dir $node_name
$initial_advertise_peer_urls $initial_cluster_token $initial_cluster

Print result
[$? -eq 0] && echo "etcd restore successful" || echo "etcd restore failed"

Alternatively, download and run the etcd-restore.sh script from the following link:

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-
s-Guide/tree/master/Ch3-Backup-and-Restore/Restore/etcd-restore.sh

If successful, the output should be etcd restore successful.

[root@icp-master ~]# ./etcd-restore.sh snapshot.db
etcd restore successful

If etcd failed to restore, review the error message and take appropriate action. A common
error is providing the snapshot name but failing to copy/move it to the current director, so
etcd will report that the snapshot file was not found.

5. Move the data in /var/lib/etcd/restored to /var/lib/etcd and remove the empty
/var/lib/etcd/restored directory:

Tip: There are other ways to read the correct variable values from the etcd.json file by
using tools such as jq, but the method used here is designed to be as generic as possible.
If this script fails with an error similar to Unable to find image, the etcd.json file may not
have been parsed correctly, potentially due to double hyphens or similar characters in the
cluster name. Set the etcd_image environment variable manually by getting the docker
image name using docker images | grep etcd and then setting etcd_image using export
etcd_image=<docker-image>.
Chapter 3. Backup and restore of an IBM Cloud Private cluster 107

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch3-Backup-and-Restore/Restore/etcd-restore.sh

mv /var/lib/etcd/restored/* /var/lib/etcd/
rmdir /var/lib/etcd/restored

6. The current kubelet pods need to be deleted so that the cache will be consistent between
the kubelet and etcd data. Do this on the master and management nodes:

mount | grep kubelet | awk '{ system("umount "$3)}'
rm -rf /var/lib/kubelet/pods

7. Start kubelet on the master and management nodes:

systemctl start kubelet

8. Enable the etcd pods on all master nodes:

mv /etc/cfc/podbackup/* /etc/cfc/pods/

9. Allow around 30 seconds for etcd to rebuild its cluster state and verify it is healthy,
replacing 172.24.19.201 with the IP address of any master node. See Example 3-15.

Example 3-15 Verify that etcd is healthy,

[root@icp-master ~]# docker run --entrypoint=etcdctl -v
/etc/cfc/conf/etcd:/certs -v /var/lib/etcd:/var/lib/etcd ibmcom/etcd:3.2.24
--cert-file=/certs/client.pem --key-file=/certs/client-key.pem
--ca-file=/certs/ca.pem --endpoints https://172.24.19.201:4001 cluster-health

member 8a2d3ec6df19666f is healthy: got healthy result from
https://172.24.19.201:4001
cluster is healthy

Note that the ibmcom/etcd:3.2.24 image may need to be replaced with the private image
registry name for the environment. For example,
mycluster.icp:8500/ibmcom/etcd:3.2.24.

10.Clear your web browser cache.

11.The IBM Cloud Private platform may take some time to start up all the pods on the master
node and become available for use. Once the dashboard is accessible. verify that the
cluster has started recreating the previous state by redeploying workloads from the
backed up cluster. You may experience a few pod failures for some time until the system
becomes stable again. Logging may be particularly slow as it deals with the sudden influx
of log data from newly recreated pods all at once.

Restoring etcd on dedicated etcd installations
To restore etcd on an installation with dedicated etcd nodes, you can use the same steps for
single and multi-master installations, but using the dedicated etcd nodes in place of the
masters. All etcd data resides on the dedicated etcd nodes so the only steps that apply to the
masters in this case is the same steps that apply to the management nodes.

Failed etcd restores
If the etcd snapshot was not restored, it may be possible to recover the initial state of the
cluster. A common error on RHEL systems is that systemd becomes unresponsive when
Docker is stopped and started. A usual symptom of this is when the docker restart command
takes a long time to run, and simple commands that depend on systemd (such as reboot) just
hang. In this situation, only a reboot from the hypervisor will fix a hung systemd.

If the etcd snapshot restore was successful on some nodes and failed on others, you will
need to either address the issue on the failed nodes and try again, or revert the successful
nodes to the original state by restoring the etcd snapshot taken from the new installation.
108 IBM Cloud Private System Administrator’s Guide

To revert successful nodes back to the previous state, try the following steps. If these
commands do not restore a healthy state, you may need to reinstall the cluster.

On all master nodes (or dedicated etcd nodes if they are separate)

1. Stop Kubelet:

systemctl stop kubelet

2. Restart Docker:

systemctl restart docker

3. Remove existing etcd data:

rm -rf /var/lib/etcd

4. Recreate Etcd directory:

mkdir -p /var/lib/etcd

5. Copy data from backup:

cp -r /var/lib/etcdbackup/* /var/lib/etcd/
cp -r /var/lib/etcdwalbackup/* /var/lib/etcd-wal/

6. Recreate pods directory:

mkdir -p /etc/cfc/pods

7. Restore pod data:

mv /etc/cfc/podbackup/* /etc/cfc/pods/

8. Remove kubernetes pods:

rm -rf /var/lib/kubelet/pods

9. Start kubelet:

systemctl start kubelet

10. Check the Etcd health:

docker run --entrypoint=etcdctl -v /etc/cfc/conf/etcd:/certs -v
/var/lib/etcd:/var/lib/etcd ibmcom/etcd:3.2.24 --cert-file=/certs/client.pem
--key-file=/certs/client-key.pem --ca-file=/certs/ca.pem --endpoints
https://172.24.19.201:4001 cluster-health

member 8a2d3ec6df19666f is healthy: got healthy result from
https://172.24.19.201:4001
cluster is healthy

Replace 172.24.19.201 with any etcd/master node IP address.

10.On all management nodes (and master nodes too if etcd is running on dedicated nodes)

a. Move the pod files back to the original directory:

mv /etc/cfc/podbackup/* /etc/cfc/pods/

b. Start kubelet:

systemctl start kubelet

Allow some time for all pods to start up. The cluster should be returned to a normal working
state.
Chapter 3. Backup and restore of an IBM Cloud Private cluster 109

Restoring etcd on remote cluster
To restore etcd in a remote cluster, repeat steps 1 to 9 in the section “Restoring etcd on local
cluster” on page 106. Some further steps need to be performed to clean up the old nodes and
data from the restored etcd snapshot and apply the working configuration. Perform the
following steps:

1. After restoring etcd, all the cluster nodes from the initial installation are not present in the
new Kubernetes cluster, so for each node kubelet and docker should be restarted. You can
check which nodes currently exist using kubectl get nodes. Restart kubelet and docker
on all cluster nodes using systemctl stop kubelet && systemctl restart docker &&
systemctl start kubelet. After this, the new cluster nodes should be visible using
kubectl get nodes.

2. Wait for about 90 seconds after restoring etcd for the restored nodes to change from
Ready to NotReady state, then remove the NotReady nodes. Be sure to only remove the
nodes that contain the old cluster IP addresses. If nodes with the current cluster IP
addresses are in NotReady state, you should investigate whether the node is online first.

a. Get the current list of nodes in the NotReady state.

kubectl get nodes | grep NotReady | awk '{print $1}'

b. Remove the old nodes.

kubectl delete node $(kubectl get nodes | grep NotReady | awk '{print $1}')

3. Replace the ConfigMap and Secrets restored by etcd with the data exported in the section
“Restoring MongoDB” on page 101. Run the script in Example 3-16.

Example 3-16 The restore-yamls.sh script

#!/bin/bash
echo "Restoring..."
re-genereate default secret
kubectl get secret -n kube-system -o wide | grep "\-token-" | awk
'{system("kubectl delete secret "$1 " -n kube-system")}'
kubectl get secret -n services -o wide | grep "\-token-" | awk '{system("kubectl
delete secret "$1 " -n services")}'
kubectl get secret -n istio-system -o wide | grep "\-token-"| awk
'{system("kubectl delete secret "$1 " -n istio-system")}'
kubectl get secret -n kube-public -o wide | grep "\-token-"| awk '{system("kubectl
delete secret "$1 " -n kube-public")}'
kubectl get secret -n ibmcom -o wide | grep "\-token-"| awk '{system("kubectl
delete secret "$1 " -n ibmcom")}'
kubectl get secret -n cert-manager -o wide | grep "\-token-"| awk
'{system("kubectl delete secret "$1 " -n cert-manager")}'

namespaces=(kube-system services istio-system kube-public ibmcom cert-manager)

for ns in ${namespaces[@]}
do
 #secret
 for s in $(ls $ns.secret/ | grep -v "\-token-")
 do
 kubectl delete -f $ns.secret/$s && kubectl create -f $ns.secret/$s
 done

 #configmap
 for s in $(ls $ns.configmap/)
 do
110 IBM Cloud Private System Administrator’s Guide

 kubectl delete -f $ns.configmap/$s && kubectl create -f $ns.configmap/$s
 done
done

kubectl --force --grace-period=0 delete pv $(kubectl get pv | grep -e
"image-manager-" -e "icp-mongodb-" -e "mariadb-" -e "logging-datanode-" -e
"kafka-" -e "zookeeper-" -e "minio-" | awk '{print $1}')

kubectl patch pv $(kubectl get pv | grep Terminating | awk '{print $1}') -p
'{"metadata":{"finalizers":null}}'

kubectl delete pvc -n kube-system $(kubectl get pvc -n kube-system | grep -e
"image-manager-image-manager-" -e "mongodbdir-icp-mongodb-" -e
"mysqldata-mariadb-" -e "data-logging-elk-data-" -e "-vulnerability-advisor-" -e
"datadir-vulnerability-advisor-kafka-" -e
"datadir-vulnerability-advisor-zookeeper-" -e
"datadir-vulnerability-advisor-minio-" | awk '{print $1}')

echo "Done."

Alternatively download and run the script from the following link:

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-
s-Guide/tree/master/Ch3-Backup-and-Restore/Restore/restore-yamls.sh

If Vulnerability Advisor is not installed, ignore the errors.

4. Several files created during the initial cluster installation need to be reapplied:

a. Change the directory to <installation_directory>/cluster/cfc-components/:

cd <installation_directory>/cluster/cfc-components/

b. Apply the bootstrap-secret.yaml file:

kubectl apply -f bootstrap-secret.yaml

c. Apply the tiller.yaml file:

kubectl apply -f tiller.yaml

d. Apply the image-manager.yaml file:

kubectl apply -f image-manager/image-manager.yaml

e. Apply the whole storage directory:

kubectl apply -f storage/

5. Restore the resources that use IP addresses in the YAML configuration. Run the script in
Example 3-17.

Example 3-17 The restore-ip-yamls.sh script

#!/bin/bash

Set files
files=(
servicecatalog.yaml
daemonset.extensions/service-catalog-apiserver.yaml
daemonset.extensions/auth-idp.yaml
daemonset.extensions/calico-node.yaml
Chapter 3. Backup and restore of an IBM Cloud Private cluster 111

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch3-Backup-and-Restore/Restore/restore-yamls.sh

daemonset.extensions/nginx-ingress-controller.yaml
daemonset.extensions/icp-management-ingress.yaml
deployment.extensions/helm-api.yaml
deployment.extensions/helm-repo.yaml
deployment.extensions/metering-ui.yaml
deployment.extensions/metering-dm.yaml
deployment.extensions/monitoring-prometheus-alertmanager.yaml
deployment.extensions/monitoring-prometheus.yaml
)

Delete and recreate resources
for f in ${files[@]}
do
 kubectl delete -f kube-system.$f && kubectl create -f kube-system.$f
done

Alternatively, download and run the script from the following link:

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-
s-Guide/tree/master/Ch3-Backup-and-Restore/Restore/restore-ip-yamls.sh

6. Restart kubelet and docker on all nodes again. When restarted, the pod should start
scheduling across all the cluster nodes.

7. After all nodes are online, all kube-system pods need to be deleted so they inherit the
Secrets and ConfigMaps restored earlier.

kubectl -n kube-system delete pods $(kubectl -n kube-system get pods | awk
'{print $1}')

Check that all the pods start being deleted, using kubectl -n kube-system get pods.
Some pods may be stuck in Terminating state, which can prevent the new pods from
starting up properly.

To delete all stuck pods, using the following code:

kubectl delete pod --force --grace-period=0 -n kube-system $(kubectl get pods -n
kube-system | grep Terminating | awk '{print $1}')

You may also need to delete all pods running in the istio-system and cert-manager
namespaces, so use the same approach as above.

kubectl delete pod -n istio-system $(kubectl get pods -n istio-system | awk
'{print $1}')

kubectl delete pod -n cert-manager $(kubectl get pods -n cert-manager | awk
'{print $1}')

Allow some time for all pods to start up, which may take 10 - 40 minutes, depending on the
size of the cluster. The logging pods might take even longer than this to cater for the influx of
logs generated from the restore. If individual pods are still in error state, review the errors and
attempt to resolve the problems. Issues will vary with each environment, so there is no
common resolution. If the restore was successful, you should be able to access and operate
the cluster again.

Restoring MariaDB
As discussed in “Backing up MariaDB” on page 94, it’s not usually necessary to restore
MariaDB data, however for completeness, the information is provided here. The
recommended way to restore MariaDB from a backup is by using the mysql utility. This section
will cover two methods; using kubectl and using a Kubernetes job. The use of each method
entirely depends on the method used to backup MariaDB.
112 IBM Cloud Private System Administrator’s Guide

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch3-Backup-and-Restore/Restore/restore-ip-yamls.sh

For example, if you used kubectl to back up the database, it makes sense to use kubectl to
restore it. If a job was used, then the core-backup PersistentVolume created in the backup
steps can be used to remove the manual effort of copying the file to the local machine.

Restore MariaDB using kubectl
Perform the following steps to restore MariaDB. Ensure that the backup exists on the local
machine, and that you can access the cluster using kubectl.

1. Get the MariaDB pod name:

kubectl -n kube-system get pods -l release=mariadb
-o=jsonpath='{.items[0].metadata.name}'
mariadb-0

2. Copy the backup file to the mariadb-0 container:

kubectl cp backup.sql kube-system/mariadb-0:/backup.sql

3. Execute the mysql command:

kubectl -n kube-system exec -it mariadb-0 -c mariadb -- sh -c 'mysql
--host=$MARIADB_SERVICE_HOST --user=root --password=$MYSQL_ROOT_PASSWORD <
/backup.sql'

Restore MariaDB using a Kubernetes job
If MariaDB was backed up using a job, recreate the PersistentVolume and
PersistentVolumeClaim definition that was used for the backup job. Download the
mariadb-restore_job.yaml from
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-G
uide/tree/master/Ch3-Backup-and-Restore/Restore/mariadb-restore_job.yaml, replacing
the volumeClaimName with your own, and create it using kubectl create -f
mariadb-restore_job.yaml.

Restoring the logging data
You can restore the logging data by copying the backed up data back to the management
node filesystem.

Use the preferred tools to restore the backed up data to
/var/lib/icp/logging/elk-data/nodes/0/indices on each management node. The
Elasticsearch data node(s) need to be restarted to reload the new indices. You can do this by
using kubectl -n kube-system delete pods logging-elk-data-0, and allowing some time
for the pod to start up again. Once it is started, all the backed up indices should be restored
and available in Elasticsearch.

Restoring the monitoring data
Restore the monitoring data by recreating the PersistentVolume (PV) and
PersistentVolumeClaim used during the backup steps. Assuming that the appropriate restore
methods for the storage technology used for this PV, the monitoring pods should continue
from the backed up data.

As AlertRules and Dashboards are stored in CustomResourceDefinitions, these should be
restored when etcd is restored. Alternatively, you can recreate the resources from the YAML
definitions used to create the AlertRule or Dashboard, or from the exported YAML definitions
as described in “Backing up the monitoring data” on page 96. See the Logging and
Monitoring chapter for more information about creating monitoring resources.
Chapter 3. Backup and restore of an IBM Cloud Private cluster 113

Restoring Vulnerability Advisor data
The complete restoration of Vulnerability Advisor (VA) and Mutation Advisor (MA) in this step
depends on whether or not the logging data (specifically the indices related to VA and MA)
was restored successfully, as VA stores data in Elasticsearch. To restore the VA and MA data,
extract the backed up filesystem data to /var/lib/icp/va on the VA node(s) using the
preferred OS tools.

Restoring Helm charts
All Helm chart data is stored in MongoDB and should be recreated on the master nodes when
the helm-repo pod is restored. However, in the event this does not happen, perform the
following steps:

1. Make sure that helm-repo is running and that the /var/lib/icp/helmrepo directory exists
all master nodes.

2. Move the charts that you backed up to the /var/lib/icp/helmrepo directory on all master
nodes.

3. Delete the helm-repo deployment pod, and then the index.yaml repopulates with the
restored charts.
114 IBM Cloud Private System Administrator’s Guide

Chapter 4. Managing persistence in IBM
Cloud Private

While initially Kubernetes environments were used primarily to run stateless applications,
benefits of the platform attracted also workloads which require data persistence. Additionally,
by design IBM Cloud Private requires persistent storage for running multiple platform services
added on top of the regular Kubernetes cluster like: logging, monitoring, identity and access
management, and so forth.

IBM Cloud Private cluster needs to be prepared for the data persistence and in this chapter
we discuss options available to the IBM Cloud Private administrator regarding data
persistence for running containerized applications.

We assume that the reader is familiar with persistent volume and persistent volume claim
terminology and in this chapter we are not going to discuss basic storage concepts which you
can find in the Kubernetes documentation
(https://kubernetes.io/docs/concepts/storage/persistent-volumes/).

This chapter has the following sections:

� 4.1, “Designing the cluster for data persistence” on page 116
� 4.2, “Persistent storage for platform services” on page 118
� 4.3, “Configuring persistent storage for application containers” on page 118
� 4.4, “Managing the storage hosted on IBM Cloud Private” on page 147
� 4.5, “Performance considerations” on page 151

4

© Copyright IBM Corp. 2019. All rights reserved. 115

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

4.1 Designing the cluster for data persistence

Starting with version 1.9 Kubernetes implements Container Storage Interface (CSI)
specification, which was designed to provide a standard and consistent way of attaching
persistent volumes to running containers. As other container-related specifications, CSI is
pretty open and allows for wide variety of implementations. Some of the storage provisioners
are provided with the Kubernetes, while others need to be installed additionally. See
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner for a list of
Kubernetes supported provisioners. Thanks to the pluggable architecture users can define
multiple storage providers and multiple storage classes, but it is important to understand that
there are significant differences related to the performance and stability of available options.

The following sections discuss the key persistent storage aspects that need to be considered.

4.1.1 Workload specific requirements

The following paragraphs list the workload specific requirements when designing the cluster
for data persistence.

Size and performance
The fundamental question related to running workloads that require persistent volumes is
related to the size of the data volumes and performance in terms of the required I/O
operations per second (IOPS). Obviously the storage available to the containers will not be
faster than the underlying disks, so the equipment used for building the cluster is a
consideration factor as well.

Data sensitivity and isolation
The next question that needs to be considered is the sensitivity of the data that will be stored
and the isolation level required for different workloads. If the data is classified as sensitive (in
any sense), you should choose the storage technology that provides encryption at rest and in
transit. Most of the dynamic Kubernetes provisioners do not provide the possibility to specify
the per-volume encryption, which means that the encryption must be managed at the storage
provider level.

For GlusterFS and Ceph you can use the disk volume encryption using dm-crypt. For
FlexVolume based drivers that use external storage providers, the encryption level can often
be part of the storage class specification (If supported by the back-end hardware). If data
isolation is required you can define multiple dedicated hostgroups and create a separate data
cluster that uses one of the supported distributed file systems (in such case storageclass
used will determine the data placement).

Access mode
Another question is related to concurrency while accessing the data. Kubernetes
PersitentVolumesClaim can specify one of the three access modes: ReadWriteOnce (RWO),
ReadOnlyMany (ROX) and ReadWriteMany (RWX). If any of the latter two are required, then
the underlying storage technology must support concurrent access to the storage volume
from multiple worker nodes.

At the time of writing multi-attach was not supported by storage providers implementing
FlexVolumes based on the iSCSI protocol as well as the VMware vSphere provider. If your
application requires ReadOnlyMany and ReadWriteMany modes, then you should select
either any of supported distributed file systems (such as GlusterFS or IBM Spectrum Scale),
container native storage provider like Portworx or NFS as your storage technology.
116 IBM Cloud Private System Administrator’s Guide

https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner

Dynamic versus static provisioning
Storage volumes can be provisioned either manually by cluster administrator or dynamically
when the PersistentVolumeClaim object is created. At the time of writing IBM Cloud Private
did not support dynamic provisioning for NFS volumes, however there is an open source
nfs-client-provisioner implementing this functionality, which can be installed in an IBM Cloud
Private cluster. The detailed procedure is described in section “Configuring the dynamic NFS
provisioner” on page 123.

For production clusters it is highly recommended to pick the storage option that supports
dynamic provisioning.

Snapshots and Data cloning
Finally, do you need ability to easily snapshot and clone persistent volumes? This
functionality can prove very useful for testing the applications as well as for performing
backup of the data on persistent volumes. At the time of writing such functionality was
available from specialized commercial storage solutions like Trident by NetApp, Portworx
(with Stork), or IBM Storage Solutions for Containers.

System architecture heterogeneity
IBM Cloud Private is one of the Kubernetes distributions that supports a variety of processor
architectures (x86, ppc64le and s390). Some of the distributed file systems may be not
available on the specific architecture that you want to use for your work. In case you plan to
have heterogeneous worker nodes, we recommend that you check the latest support
statement
(https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_system_conf
ig/supported_os.html).

4.1.2 Maintainability requirements

Another consideration area is about ease and cost of maintaining the storage solution. Is your
organization familiar with the selected technology? Do you have a skilled personnel available
to monitor, tune and troubleshoot the selected storage provider? Do you have a backup
solution in place for the selected provider type?

The answers to the above mentioned questions affect also another choice: whether to use
storage provider external to the cluster or the internal one, installed directly on the IBM Cloud
Private. When using the distributed file systems installed on IBM Cloud Private nodes the
appropriate configuration of the provider is done automatically during the installation and will
be automatically upgraded with the future releases of IBM Cloud Private. The drawback of
this option is related to the additional CPU load that storage containers will introduce to your
worker nodes.

For additional backup considerations see “Backing up PersistentVolume data” on page 99.

4.1.3 Windows worker node support

With IBM Cloud Private version 3.1.2 the initial support for Windows worker nodes was
introduced (as a Technology Preview). If any of the worker nodes in your cluster is Windows
based, this affects the storage technologies that you may use for your persistent volumes. At
the time of writing the Windows worker nodes provided no support for dynamic storage
provisioning and the only supported volume types were: local, emptyDir and hostPath.
Chapter 4. Managing persistence in IBM Cloud Private 117

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_system_config/supported_os.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_system_config/supported_os.html

So in case you want to use persistent volumes on Windows worker nodes, you must provide
the shared storage statically with one of the Windows supported technologies like CIFS or
NFS and mount the volumes as hostPath.

4.2 Persistent storage for platform services

IBM Cloud Private uses persistent volumes for multiple platform services like MariaDB and
MongoDB that are required by Identity and Access Management service or ElasticSearch
Data Node used by the Logging service. Those volumes are created at the time of installation
as Hostpath and LocalVolume types on the designated master and management nodes as
shown in Figure 4-1.

Figure 4-1 Persistent volumes created by IBM Cloud Private during default installation

If you are installing IBM Cloud Private in a high availability topology with multiple master
nodes, certain directories on the master nodes must use a shared storage. Those directories
are used for storing the platform internal image registry as well as some platform logs.

You can either provide an existing shared storage that uses the NFS protocol or use any other
distributed file system like GluserFS. The section “Configuring persistent storage for
application containers” discusses mounting a volume from an external GlusterFS storage
cluster.

4.3 Configuring persistent storage for application containers

Apart from using persistent storage for platform services, another hot topic is the selection of
the storage option for running containerized applications. Which one should you choose?
There is only one right answer to this question: It depends on your specific circumstance.

Luckily Kubernetes provides an open architecture which allows for multiple storage options to
coexist within the same cluster. Using the storageclass definition users can pick the storage
option that is best for their specific workload.
118 IBM Cloud Private System Administrator’s Guide

However, it should be noted that while multiple storage technologies provide more flexibility, it
comes at the cost of increased operational complexity. In an enterprise environment, the
assumption that users will perform backups on their own is a risky one. The same is true for
troubleshooting the performance or access problems, so for the operations team careful
selection of the storage technology is crucial.

In this section, we describe how to configure some of the popular storage technologies that
are supported in IBM Cloud Private environments:

� In “Configuring vSphere storage provider for IBM Cloud Private” on page 119 we discuss
how to set up and use the VMware storage provider.

� In “Configuring NFS Storage for IBM Cloud Private” on page 120 we present a short
cookbook on setting up the NFS storage provider for IBM Cloud Private.

� In “Configuring GlusterFS for IBM Cloud Private” on page 125 we present how to
configure a GlusterFS distributed file system.

� In “Configuring Ceph and Rook for IBM Cloud Private” on page 131 we show you how to
configure a Ceph RBD cluster.

� In “Configuring Portworx in IBM Cloud Private” on page 140 we present how to configure a
Portworx cluster.

� Finally in “Configuring Minio in IBM Cloud Private” on page 147 we present how to
configure Minio, a ligthweight S3-compatible object storage in your IBM Cloud Private
cluster.

4.3.1 Configuring vSphere storage provider for IBM Cloud Private

Since IBM Cloud Private is often installed on machines running in VMware vSphere
environments, using the VMware cloud provider for dynamic storage provisioning comes as a
natural choice. The product documentation on configuring the VMware cloud provider is quite
extensive (see
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/vsphere
_land.html for more information) so we are not going to replicate it in this book.

We mention a few caveats below that are often omitted.

� Pay attention to the prerequisites of the VMware cloud provider. See
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/vsph
ere_prereq.html. All of these requirements must be met and the provisioning will not work
if any of them are omitted. In vSphere 6.7 or newer, the disk.EnableUUID property must be
added to each virtual machine configuration (for all cluster nodes) and set to true.

The best option is to set this property on a template used to create virtual machines for the
cluster nodes. This way when adding additional nodes to the cluster later, you will not
forget to perform this step.

� Be aware of limitations. Even though the documentation states that ReadWriteMany
access mode can be used with the VMware storage when pods are collocated on a single
worker node, persistent volumes with RWX and ROX access modes will not be
provisioned dynamically.

If you create a persistent volume claim with access mode ReadWriteMany or
ReadOnlyMany specifying the storageclass that uses the VMware cloud provider, the
provisioner just ignores such a request and your claim will be unbound until you create the
appropriate persistent volume manually. This may also happen when provisioning services
from IBM Cloud Private catalog, as some of the Helm charts available there may use the
RWX access mode for persistent volumes.
Chapter 4. Managing persistence in IBM Cloud Private 119

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/vsphere_land.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/vsphere_land.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/vsphere_prereq.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/vsphere_prereq.html

4.3.2 Configuring NFS Storage for IBM Cloud Private

Below we present a short cookbook on setting up an NFS server on RedHat Linux server that
can be used for test installations of IBM Cloud Private. It is not recommended to use such an
NFS server for performing the HA installation, because the NFS server will be a single point of
failure in such a setup. If you plan to use NFS as a shared storage for master nodes, consider
using a proper NFS server with replication.

Prerequisites
In order to setup an NFS server you must meet the following prerequisites:

� Linux machine (in this case, we will use a Red Hat Enterprise Linux system) with a
sufficient disk space available.

� Yum repository configured to install NFS packages.

� The designated NFS server and its clients (in our case the cluster nodes) should be able
to reach each other over a network.

Setting up the NFS Server
On the NFS server, run the following command to install the required NFS packages:

sudo yum install -y nfs-utils nfs-utils-lib

Start the NFS service and enable it to persist after reboots:

sudo systemctl start nfs
sudo systemctl enable nfs

In case your Linux machine has a firewall turned on, open the ports required for NFS.

sudo firewall-cmd --permanent --zone=public --add-service=nfs
sudo firewall-cmd --permanent --zone=public --add-service=mountd
sudo firewall-cmd --permanent --zone=public --add-service=rpc-bind
sudo firewall-cmd --reload

Create the directories on the local file system
On the NFS server create a directory that will be used by the clients.

mkdir -p <path_to_share>

Run the following commands to add the entry to /etc/exports.

echo '<path_to_share> <subnet_address>/24(no_root_squash,rw,sync)' >> /etc/exports

Replace the <path_to_share> with the path on the file system that you have sufficient disk
space and <subnet_address> with the subnet of your worker nodes. In case you are using a
different mask than 255.255.255.0 for your worker nodes, replace the ‘24’ with the correct
value. Optionally, instead of a subnet you may specify multiple entries with IP addresses of
worker nodes and /32 mask as shown below:

echo '<path_to_share> <node1_IP>/32(no_root_squash,rw,sync)' >> /etc/exports
echo '<path_to_share> <node2_IP>/32(no_root_squash,rw,sync)' >> /etc/exports
...
echo '<path_to_share> <nodeX_IP>/32(no_root_squash,rw,sync)' >> /etc/exports

Tip: Do not put any spaces between the netmask value and the opening bracket ‘(‘ -,
otherwise you will allow the NFS share to be mounted by any IP address.
120 IBM Cloud Private System Administrator’s Guide

Refresh the NFS server with the following command.

exportfs -r

You can verify if the directory was successfully exported by running the exportfs command
without parameters as shown in Example 4-1.

Example 4-1 Verification of the exported directories on NFS server

exportfs

/storage/vol001 10.10.99.0/24
/storage/vol002 10.10.99.0/24
/storage/vol003 10.10.99.0/24
/storage/vol004 10.10.99.0/24
/storage/vol005 10.10.99.0/24

Configuring NFS clients
On all of the worker nodes install the NFS packages.

sudo yum install -y nfs-utils nfs-utils-lib

You can verify that the shared directories are visible from the NFS client by running the
showmount command on the worker node as shown in Example 4-2.

Example 4-2 Verification of shared directories from NFS client

showmount -e 10.10.99.30

Export list for 10.10.99.30:
/storage/vol005 10.10.99.0/24
/storage/vol004 10.10.99.0/24
/storage/vol003 10.10.99.0/24
/storage/vol002 10.10.99.0/24
/storage/vol001 10.10.99.0/24

Testing the NFS configuration
On any worker node try mounting the exported directory.

mount -t nfs <nfs_server_IP>:<path_to_share> /mnt

If the mount works, you are ready to use NFS in your IBM Cloud Private cluster.

Create a persistent volume
Create a new persistent volume in IBM Cloud Private with the path to the shared directory
(Example 4-3). Using the Create Resource menu option, paste the code into the dialog box.

Example 4-3 YAML file for creating an NFS PersistentVolume

apiVersion: v1
kind: PersistentVolume
metadata:
 name: demo-pv
 labels:
 app: demo-app
spec:
 accessModes:
Chapter 4. Managing persistence in IBM Cloud Private 121

 - ReadWriteMany
 capacity:
 storage: 1Gi
 nfs:
 path: <path_to_share>
 server: <nfs_server_IP>
 persistentVolumeReclaimPolicy: Retain

Replace the <path_to_share> and <nfs_server_IP> with your own values.

Create a persistent volume claim for the new volume
Using the Create Resource menu option, paste the following into the dialog box as shown in
Example 4-4.

Example 4-4 YAML file for creating a PersitstentVolumeClaim

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: demo-pvc

namespace: default
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 selector:
 matchLabels:
 app: demo-app

Testing the volume
Create a new deployment to use the new volume. See Example 4-5.

Example 4-5 YAML file for creating a Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-nfs

namespace: default
labels:
 app: nginx-nfs
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx-nfs
 template:
 metadata:
 labels:
 app: nginx-nfs
 spec:
 volumes:
122 IBM Cloud Private System Administrator’s Guide

 - name: demo-nfs-storage
 persistentVolumeClaim:
 claimName: demo-pvc
 containers:
 - name: nginx-nfs-container
 image: nginx
 ports:
 - containerPort: 80
 name: "http-server"
 volumeMounts:
 - mountPath: "/usr/share/nginx/html"
 name: demo-nfs-storage

Once the deployment is ready, get the pod name. Execute a shell session on the pod and
create a test file as shown in Example 4-6.

Example 4-6 Create a test file

kubectl get pods -l app=nginx-nfs

NAME READY STATUS RESTARTS AGE
nginx-nfs-5b4d97cb48-2bdt6 1/1 Running 0 4m

kubectl exec -it nginx-nfs-5b4d97cb48-2bdt6 /bin/bash

root@nginx-nfs-5b4d97cb48-2bdt6:/# cd /usr/share/nginx/html/

root@nginx-nfs-5b4d97cb48-2bdt6:/usr/share/nginx/html# touch pod-file-check

A file pod-file-check should be created on your NFS server.

Configuring the dynamic NFS provisioner
In Example 4-6 we have created a static NFS share and then manually created the
PersistentVolume and PersistentVolumeClaim objects. This approach is good for testing, but
does not scale well and is not useful in real-life environments. In order to allow for dynamic
creation of NFS based PerststentVolume based on the claims, you can install the NFS
dynamic provisioner using the Helm chart from the public Kubernetes Helm repo:

https://github.com/helm/charts/tree/master/stable/nfs-client-provisioner

The nfs-client-provisioner requires existing NFS share to be precreated, so we will reuse the
one defined in the section “Create the directories on the local file system” on page 120.

Whitelisting nfs-client-provisioner image
Before installing the Helm chart with the provisioner, we need to allow the provisioner image
to be run in our cluster. Create the YAML file with the ClusterImagePolicy as shown in
Example 4-7.

Example 4-7 ClusterImagePolicy yaml definition

apiVersion: securityenforcement.admission.cloud.ibm.com/v1beta1
kind: ClusterImagePolicy
metadata:

Note: Dynamic provisioning of NFS persistent volumes is not supported by IBM, so use it
at your own risk.
Chapter 4. Managing persistence in IBM Cloud Private 123

https://github.com/helm/charts/tree/master/stable/nfs-client-provisioner

 name: nfs-client-provisioner-whitelist
spec:
 repositories:
 - name: quay.io/external_storage/nfs-client-provisioner:*

Use the following command:

kubectl create -f nfs-provisioner-imagepolicy.yaml

Installing a nfs-client-provisioner Helm chart
In order to follow the procedure below you need cloudctl and Helm CLIs installed. Login to
your IBM Cloud Private cluster using cloudctl.

cloudctl login -a https://<cluster_address>:8443 --skip-ssl-validation

Install the Helm chart with the following command:

helm install --name nfs-client-provisioner --tls --set \
nfs.server=<nfs_server_address> --set nfs.path=<path_to_share> --set \
podSecurityPolicy.enabled=true --set rbac.pspEnabled=true \
stable/nfs-client-provisioner

Setting the values podSecurityPolicy.enabled and rbac.pspEnabled to ‘true’ is required in
default IBM Cloud Private 3.1.x installations that have the podSecurityPolicies enabled by
default. See the output in Example 4-8.

Example 4-8 Sample output of nfs-client-provisioner Helm chart installation

NAMESPACE: kube-public
STATUS: DEPLOYED

RESOURCES:
==> v1beta1/PodSecurityPolicy
NAME DATA CAPS SELINUX RUNASUSER FSGROUP SUPGROUP
READONLYROOTFS VOLUMES
nfs-client-provisioner false RunAsAny RunAsAny RunAsAny RunAsAny false
secret,nfs

==> v1/Pod(related)
NAME READY STATUS RESTARTS AGE
nfs-client-provisioner-5f7bf7f77d-7x7cn 0/1 ContainerCreating 0 0s

==> v1/StorageClass
NAME PROVISIONER AGE
nfs-client cluster.local/nfs-client-provisioner 0s

==> v1/ServiceAccount
NAME SECRETS AGE
nfs-client-provisioner 1 0s

==> v1/ClusterRole
NAME AGE
nfs-client-provisioner-runner 0s

==> v1/ClusterRoleBinding
NAME AGE
run-nfs-client-provisioner 0s
124 IBM Cloud Private System Administrator’s Guide

==> v1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nfs-client-provisioner 1 1 1 0 0s

As shown in Example 4-8 on page 124, the Helm chart creates a new storage class named
“nfs-client”. You can test the dynamic provisioning of the NFS persistent volumes by creating
a new persistent volume claim, as shown in Example 4-9.

Example 4-9 YAML file for creating new PersistentVolumeClaim using nfs-client storageclass

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: test-nfs-client
 namespace: default
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 storageClassName: nfs-client

As a result you should get the new persistent volume claim bound to the dynamically
provisioned persistent volume using a subdirectory from your NFS server as shown in
Example 4-10.

Example 4-10 Verification of PersistentVolumeClaim status

kubectl get pvc test-nfs-client -n default

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE
test-nfs-client Bound pvc-9dfa0156-349a-11e9-9666-0687b75cc59f 1Gi
RWO nfs-client 9m52s

When you delete the persistent volume claim the nfs-client-provisioner will automatically
remove the associated persistent volume, however the subdirectories created on the NFS
share will not be deleted, but renamed with the “archived.” prefix. This is the default behavior
of the nfs-client-provisioner and can be changed with the storageClass.archiveOnDelete
parameter.

4.3.3 Configuring GlusterFS for IBM Cloud Private

In this section. we demonstrate the steps that are required to enable the GlusterFS dynamic
storage capabilities in an existing IBM Cloud Private cluster. IBM Cloud Private supports
configuring GlusterFS both during and after installation and the configuration steps are the
same, except that when configuring GlusterFS on existing worker nodes they must be
manually labeled.
Chapter 4. Managing persistence in IBM Cloud Private 125

What is GlusterFS?
GlusterFS is a scalable, distributed file system that aggregates disk storage resources from
multiple servers into a single global namespace. For more information on GlusterFS see
https://docs.gluster.org/en/latest/

What is Heketi?
Heketi is a dynamic provisioner for GlusterFS that exposes REST API and is capable of
creating storage volumes on request. More information on Heketi can be obtained from the
project page: https://github.com/heketi/heketi

GlusterFS prerequisites
The following prerequisites have to be met when configuring GlusterFS within an IBM Cloud
Private cluster.

� There must be a minimum of 3 worker nodes.

� Each worker node should have at least one spare disk volume of at least 25GB.

� Each worker node must be connected to a yum repository or have the glusterfs-client
package already installed.

Preparing the GlusterFS storage nodes
GlusterFS requires at least 3 nodes in the cluster to be designated as GlusterFS peers. While
it is possible to install GlusterFS on master nodes, it is not recommended because GlusterFS
will introduce additional workload on the nodes. The following steps describe how to prepare
worker nodes for installing GlusterFS. These steps should be repeated for each spare volume
that will be used by GlusterFS on each of the worker nodes.

Enabling the GlusterFS Client on the worker nodes
Each cluster node that will use a persistent volume created on GlusterFS needs to have a
glusterFS client installed. To install and configure a glusterFS client on Red Hat run the
following commands:

sudo yum install glusterfs-client
sudo modprobe dm_thin_pool
echo dm_thin_pool | sudo tee -a /etc/modules-load.d/dm_thin_pool.conf

For other operating systems you can find the appropriate commands here:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/prepare
_nodes.html.

Identifying the device to be used by GlusterFS
Access the terminal on worker nodes and run the following command:

fdisk -l

The output will be a list of attached disk volumes, along with their details.

The sample output is shown in Example 4-11.

Example 4-11 Sample output of fdisk command

fdisk -l

Disk /dev/loop0: 870 MiB, 912261120 bytes, 1781760 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
126 IBM Cloud Private System Administrator’s Guide

https://docs.gluster.org/en/latest/
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/prepare_nodes.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/prepare_nodes.html
https://github.com/heketi/heketi

Disklabel type: dos
Disk identifier: 0x13982071

Device Boot Start End Sectors Size Id Type
/dev/loop0p1 * 0 1781759 1781760 870M 0 Empty
/dev/loop0p2 448612 453347 4736 2.3M ef EFI (FAT-12/16/32)

Disk /dev/sda: 200 GiB, 214748364800 bytes, 419430400 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x9cc95f36

Device Boot Start End Sectors Size Id Type
/dev/sda1 * 2048 419430366 419428319 200G 83 Linux

Disk /dev/sdb: 200 GiB, 214748364800 bytes, 419430400 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

In this example, the disk name we are looking for is /dev/sdb. You may see other names such
as /dev/vdb, /dev/sdc as this depends on the hypervisor type and number of disks that are
attached to the virtual machine.

Wiping the disk
Run the following command to wipe the disk ready for use.

sudo wipefs --all --force /dev/sdb

Getting the SymLink
The config.yaml file requires a symlink for the hard disk device to use on the virtual machine.
Run the following command to retrieve the symlink path.

ls -ltr /dev/disk/* | grep ‘sdb’

This should return a line similar to the following:

lrwxrwxrwx 1 root root 9 Mar 5 21:34 pci-0000:00:10.0-scsi-0:0:1:0 -> ../../sdb

This gives the /dev/disk/by-path symlink, which we will use in this example. Note that there
are other methods available such as /dev/disk/by-id, /dev/disk/by-uuid, or
/dev/disk/by-label, but only by-path has been used in this example.

Make a note of the symlink and its link path. For the example device sdb, /dev/disk/by-path
is the link path and pci-0000:00:10.0-scsi-0:0:1:0 is the symlink. For each device that you
are using for the GlusterFS configuration, you need to add the line in the config.yaml file. For
the example device sdb, you would add /dev/disk/by-path/pci-0000:00:10.0-scsi-0:0:1:0
in the config.yaml file.

Note: In some environments, such as IBM Cloud Virtual Servers or SUSE Linux Enterprise
Server (SLES), no symlinks are automatically generated for the devices. In such case, you
have to manually create the symlinks. See
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/prep
are_disks.html#manual for the detailed procedure.
Chapter 4. Managing persistence in IBM Cloud Private 127

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/prepare_disks.html#manual
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/prepare_disks.html#manual

Configuring the GlusterFS hostgroup in the hosts file
When the nodes are prepared, the next step is to modify the hosts file in the installation
directory on the boot node. Create a new stanza named [hostgroup-glusterfs] and add the
IP addresses of the worker nodes that you prepared before, as shown in Example 4-12.

Example 4-12 Adding hostgroup stanza for glusterfs nodes

[master]
...
[management]
..

[worker]
...

[proxy]
...

[hostgroup-glusterfs]
<worker_1_ip>
<worker_2_ip>
<worker_3_ip>

Labeling worker nodes for GlusterFS
When installing GlusterFS on an existing cluster you must manually label the worker nodes
which are listed in the [hostgroup-glusterfs] stanza in the previous step. Run the following
command:

kubectl label nodes <worker_1_ip> <worker_2_ip> <worker_3_ip> \
hostgroup=glusterfs --overwrite=true

Configuring the GlusterFS volume information in config.yaml
The GlusterFS configuration needs to be added to the config.yaml. This is applicable to both
new installations, or when adding GlusterFS to an existing IBM Cloud Private cluster.

In the default configuration, glusterfs is disabled in the config.yaml supplied by IBM in the
icp-inception image. To enable GlusterFS in the config.yaml file located in the installation
directory on the boot node find the management_services section and change the value
storage-glusterfs to enabled.

Example 4-13 Enabling the glusterfs management service

management_services:
...

storage-glusterfs: enabled
...

Important: While symlinks may be identical on different nodes, the actual value will
depend on the number and type of the disks in the particular node. So it is better to
double-check the symlink path on each node individually.

Note: In some environments where the nodes names use hostnames instead of the IP
addresses, replace the worker node IPs with the appropriate worker node names, as listed
in the output of kubectl get nodes command.
128 IBM Cloud Private System Administrator’s Guide

Next, edit the GlusterFS Storage Settings section (which is commented out by default) by
providing the following properties as shown in Example 4-14.

Example 4-14 Sample GlusterFS configuration section in the config.yaml

GlusterFS Storage Settings
storage-glusterfs:
 nodes:
 - ip: <worker_1_ip>
 devices:
 - /dev/disk/by-path/pci-0000:03:00.0-scsi-0:0:2:0
 - ip: <worker_2_ip>
 devices:
 - /dev/disk/by-path/pci-0000:03:00.0-scsi-0:0:1:0
 - ip: <worker_3_ip>
 devices:
 - /dev/disk/by-path/pci-0000:03:00.0-scsi-0:0:2:0
 storageClass:
 create: true
 name: glusterfs
 isDefault: false
 volumeType: replicate:3
 reclaimPolicy: Delete
 volumeBindingMode: Immediate
 volumeNamePrefix: icp
 additionalProvisionerParams: {}
 allowVolumeExpansion: true
 gluster:
 resources:
 requests:
 cpu: 500m
 memory: 512Mi
 limits:
 cpu: 1000m
 memory: 1Gi
 heketi:
 backupDbSecret: heketi-db-backup
 authSecret: heketi-secret
 maxInFlightOperations: 20
 resources:
 requests:
 cpu: 500m
 memory: 512Mi
 limits:
 cpu: 1000m
 memory: 1Gi
 nodeSelector:
 key: hostgroup
 value: glusterfs
 prometheus:
 enabled: true
 path: "/metrics"
 port: 8080
 tolerations: []
 podPriorityClass: system-cluster-critical
Chapter 4. Managing persistence in IBM Cloud Private 129

You will find below the description of the important elements of the configuration that were
marked as bold in Example 4-14 on page 129:

ip is the IP address of the worker node where you want to deploy
GlusterFS (you must add at least three worker nodes).

device is the full path to the symlink of the storage device.

storageClass this section defines if the storageclass should automatically be created
(created: true) and the properties of a storage class for GlusterFS,
such as the name, reclamationPolicy, replicacount, and so forth.

nodeSelector this section refers to the labels that are added to the worker nodes.
Make sure that the key and value are identical to those used in the
step “Labeling worker nodes for GlusterFS” on page 128.

prometheus this section enables automatic collection of the performance metrics
related to glusterFS in the Prometheus database. It is recommended
that you turn it on by providing the enabled: true value.

The GlusterFS cluster volumes, as well as the hosts and the config.yaml on the boot node,
are now ready. You can run the installation with the following command:

docker run --rm -t -e LICENSE=accept --net=host -v $(pwd):/installer/cluster \
<icp_inception_image_used_for_installation> addon

The GlusterFS cluster nodes are now ready. You can test the storage provisioning with the
following yaml file:

Example 4-15 Testing glusterfs storageclass

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: glusterfs-pvc
 namespace: default
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 storageClassName: glusterfs

apiVersion: apps/v1beta2
kind: Deployment
metadata:
 name: nginx-glusterfs
 labels:
 app: nginx-glusterfs
spec:
 replicas: 2
 selector:
 matchLabels:

Tip: The entries shown in Example 4-14 are already present in the config.yaml, but are
commented out. Uncomment and change them to suit your needs. The resources specified
for gluster pods are minimal.
130 IBM Cloud Private System Administrator’s Guide

 app: nginx-glusterfs
 template:
 metadata:
 labels:
 app: nginx-glusterfs
 spec:
 volumes:
 - name: demo-glusterfs-storage
 persistentVolumeClaim:
 claimName: glusterfs-pvc
 containers:
 - name: nginx-glusterfs-container
 image: nginx
 ports:
 - containerPort: 80
 name: "http-server"
 volumeMounts:
 - mountPath: "/usr/share/nginx/html"
 name: demo-glusterfs-storage

To test the volume, follow the steps described in “Testing the volume” on page 122 by using
the selector app=nginx-glusterfs and creating a file on one pod and verifying its existence
on the other one.

4.3.4 Configuring Ceph and Rook for IBM Cloud Private

In this section we demonstrate how to create a Ceph RBD cluster and a Rook management
agent in IBM Cloud Private.

What is Ceph?
Ceph is open source software designed to provide highly scalable object, block and file-based
storage under a unified system.

Ceph storage clusters are designed to run on commodity hardware, using an algorithm called
CRUSH (Controlled Replication Under Scalable Hashing) to ensure data is evenly distributed
across the cluster and that all cluster nodes can retrieve data quickly without any centralized
bottlenecks. See https://ceph.com/ceph-storage/ for more information.

What is Rook
Rook is an open source orchestrator for distributed storage systems running in cloud native
environments.

Rook turns distributed storage software into self-managing, self-scaling, and self-healing
storage services. It does this by automating deployment, bootstrapping, configuration,
provisioning, scaling, upgrading, migration, disaster recovery, monitoring, and resource
management. Rook uses the facilities that are provided by the underlying cloud-native
container management, scheduling and orchestration platform to perform its duties.

Rook integrates deeply into cloud native environments leveraging extension points and
providing a seamless experience for scheduling, lifecycle management, resource
management, security, monitoring, and user experience.

See https://rook.io for more information.
Chapter 4. Managing persistence in IBM Cloud Private 131

https://ceph.com/ceph-storage/
https://rook.io

Prerequisites
In order to configure a Ceph storage with Rook on an IBM Cloud Private cluster, the following
prerequisites have to be met:

� IBM Cloud Private cluster must be up and running.

� Cluster nodes that will be part of the Ceph storage must have additional raw disks
available or enough space in existing filesystems.

� You must have at least a Cluster Administrator role.

This guide assumes you have a cluster with internet access to pull the required Helm
packages and images.

At the time of writing this book, the installation of a Rook Ceph cluster was a three-step
process:

1. Configure role-based access control (RBAC).

2. Install the Rook Ceph Operator Helm chart.

3. Install the Rook Ceph cluster (ibm-rook-rbd-cluster) chart.

Configure role-based access control (RBAC)
A Rook Ceph Operator chart is provided by the Rook project. It does not include definitions of
the appropriate RBAC roles required in the IBM Cloud Private environment. Thus, as an initial
step you must configure some of the security objects. Authenticate to your cluster with the
admin user using the cloudctl command and run the following steps.

Create a PodSecurityPolicy
PodSecurityPolicy, as shown in Example 4-16, is required for the Rook Operator and Rook
Ceph chart to install properly.

Example 4-16 Sample YAML file defining PodSecurityPolicy for Rook

apiVersion: extensions/v1beta1
kind: PodSecurityPolicy
metadata:
 name: rook-privileged
spec:
 fsGroup:
 rule: RunAsAny
 privileged: true
 runAsUser:
 rule: RunAsAny
 seLinux:
 rule: RunAsAny
 supplementalGroups:
 rule: RunAsAny
 volumes:
 - Ð*Ð
 allowedCapabilities:

Attention: While Ceph provides file based and object storage interfaces, the content
provided by IBM creates a distributed storage cluster for block devices (RADOS Block
Devices or RBD in short). At the time of writing Rook did not support mounting RBD
volumes to multiple nodes at the same time, so this class of storage cannot be used for
RWX and ROX access modes.
132 IBM Cloud Private System Administrator’s Guide

 - Ð*Ð
 hostPID: true
 hostIPC: true
 hostNetwork: true
 hostPorts:
 # CEPH ports
 - min: 6789
 max: 7300
 # rook-api port
 - min: 8124
 max: 8124

Create the file rook-priviledged-psp.yaml with the content shown in Example 4-16 and run
the following command:

kubectl create -f rook-priviledged-psp.yaml

As the result you should see the following output:

podsecuritypolicy.extensions/rook-privileged created

Create a ClusterRole
Next, you need to create a ClusterRole that uses the PodSecurityPolicy which was defined
above, as shown in Example 4-17.

Example 4-17 Sample YAML file with ClusterRole definition for Rook

privilegedPSP grants access to use the privileged PSP.
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: privileged-psp-user
rules:
- apiGroups:
 - extensions
 resources:
 - podsecuritypolicies
 resourceNames:
 - rook-privileged
 verbs:
 - use

Create a file rook-priviledged-psp-user.yaml with the content of Example 4-17 and run the
following command:

kubectl create -f rook-priviledged-psp-user.yaml

As the result you should see the following output:

clusterrole.rbac.authorization.k8s.io/privileged-psp-user created

Tip: Copying the content from the book PDF may mess up indentation, which results in
parsing errors. Access the examples source code at GitHub:
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-
s-Guide.git.
Chapter 4. Managing persistence in IBM Cloud Private 133

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide.git
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide.git

Create a namespace for Rook operator
The ClusterRole defined above must be bound to a namespace in which you install the Rook
operator chart. In our example we will create a new namespace for that purpose with the
following command:

kubectl create namespace rook

As the result you should see the following output:

namespace/rook created

Create a ClusterRoleBinding for Rook operator
To bind the privileged-psp-user role to the namespace created above, you need to create a
ClusterRoleBinding object. See Example 4-18.

Example 4-18 Sample YAML file for ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: rook-agent-psp
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: privileged-psp-user
subjects:
- kind: ServiceAccount
 name: rook-agent
 namespace: rook

Create a file rook-clusterrolebinding.yaml with the content of Example 4-18 and run the
following command:

kubectl create -f rook-clusterrolebinding.yaml

As the result you should see the following output:

clusterrolebinding.rbac.authorization.k8s.io/rook-agent-psp created

Create RBAC for Pre-validation checks (Optional)
Rook Ceph Cluster (ibm-rook-rbd-cluster V 0.8.3) Helm chart includes a pre-validation check
that requires additional RBAC permissions. You can either create the resources listed in
Example 4-19 or set preValidation.enabled=false during the installation.

Example 4-19 Sample YAML file for creating RBAC for pre-validation checks

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
 name: pod-reader
rules:
- apiGroups: [""] # "" indicates the core API group
 resources: ["pods"]
 verbs: ["get", "list"]

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
134 IBM Cloud Private System Administrator’s Guide

 name: pod-reader-binding
subjects:
- kind: ServiceAccount
 name: default
 namespace: rook
roleRef:
 kind: ClusterRole
 name: pod-reader
 apiGroup: rbac.authorization.k8s.io

You need a ClusterRoleBinding for each namespace in which you install the Rook Ceph
Cluster chart. In our example, we use the same namespace rook we have created in step
“Create a namespace for Rook operator” on page 134. Create a rook-pre-validation.yaml
file with content of the Example 4-19 on page 134 and run the command:

kubectl create -f rook-pre-validation.yaml

As the result you should see the following output:

clusterrole.rbac.authorization.k8s.io/pod-reader created
clusterrolebinding.rbac.authorization.k8s.io/pod-reader-binding created

Install the Rook Ceph Operator Helm chart
At the time of writing this book IBM Cloud Private supported the Rook Ceph Operator in
version 0.8.3. Follow the steps below to install Rook Ceph Operator chart using the Helm CLI.

Add the rook Helm repo with the following command:

helm repo add rook-beta https://charts.rook.io/beta

Create the rook-values.yaml file with the content shown in Example 4-20.

Example 4-20 The values.yaml file used for Rook Ceph Operator chart installation

image:
 prefix: rook
 repository: rook/ceph
 tag: v0.8.3
 pullPolicy: IfNotPresent

resources:
 limits:
 cpu: 100m
 memory: 128Mi
 requests:
 cpu: 100m
 memory: 128Mi

rbacEnable: true
pspEnable: true

Then, run the following command to install the Rook Ceph Operator chart:

helm install --tls --namespace rook --name rook-ceph rook-beta/rook-ceph \
--version v0.8.3 -f rook-values.yaml
Chapter 4. Managing persistence in IBM Cloud Private 135

Example 4-21 shows the sample output.

Example 4-21 Sample output

helm install --tls --namespace rook --name rook-ceph rook-beta/rook-ceph -f
rook-values.yaml

NAME: rook-ceph
LAST DEPLOYED: Fri Feb 22 00:29:10 2019
NAMESPACE: rook
STATUS: DEPLOYED

RESOURCES:
==> v1beta1/PodSecurityPolicy
NAME DATA CAPS SELINUX RUNASUSER FSGROUP SUPGROUP
READONLYROOTFS VOLUMES
00-rook-ceph-operator true * RunAsAny RunAsAny RunAsAny RunAsAny false
*

==> v1beta1/CustomResourceDefinition
NAME AGE
clusters.ceph.rook.io 0s
volumes.rook.io 0s
pools.ceph.rook.io 0s
objectstores.ceph.rook.io 0s
filesystems.ceph.rook.io 0s

==> v1beta1/ClusterRole
rook-ceph-system-psp-user 0s
rook-ceph-global 0s
rook-ceph-cluster-mgmt 0s

==> v1beta1/Role
rook-ceph-system 0s

==> v1beta1/RoleBinding
NAME AGE
rook-ceph-system 0s

==> v1/ServiceAccount
NAME SECRETS AGE
rook-ceph-system 1 0s

==> v1beta1/ClusterRoleBinding
NAME AGE
rook-ceph-global 0s
rook-ceph-system-psp-users 0s

==> v1beta1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
rook-ceph-operator 1 1 1 0 0s

==> v1/Pod(related)
NAME READY STATUS RESTARTS AGE
rook-ceph-operator-f4cd7f8d5-ks5n5 0/1 ContainerCreating 0 0s
136 IBM Cloud Private System Administrator’s Guide

NOTES:
The Rook Operator has been installed. Check its status by running:
 kubectl --namespace rook get pods -l "app=rook-ceph-operator"

Visit https://rook.io/docs/rook/master for instructions on how
to create & configure Rook clusters

You can verify the successful installation, as shown in Example 4-22.

Example 4-22 Verification of Rook Ceph Operator pods status

kubectl get pods -n rook

NAME READY STATUS RESTARTS AGE
rook-ceph-agent-g2r9g 1/1 Running 0 2m49s
rook-ceph-agent-nscs5 1/1 Running 0 2m49s
rook-ceph-agent-qdwz7 1/1 Running 0 2m49s
rook-ceph-operator-6d7f98d49d-shtp9 1/1 Running 0 3m1s
rook-discover-976cj 1/1 Running 0 2m49s
rook-discover-gmkj5 1/1 Running 0 2m49s
rook-discover-jgd7q 1/1 Running 0 2m49s

Install the Rook Ceph cluster (ibm-rook-rbd-cluster) chart
As the last step we install the Rook Ceph cluster chart. You can do this from the IBM Cloud
Private catalog. However, below we show the command to install it with the Helm CLI.

Prepare the values.yaml file for Rook RBD Cluster chart
Create a rbd-values.yaml file that contains the nodenames and disk devices as shown in
Example 4-23 or node names and directory paths as shown in Example 4-24.

Example 4-23 Sample rbd-values.yaml file specifying target disk devices

rookOperatorNamespace: "rook"
cluster:
 storage:
 nodes:
 - name: "10.73.147.205"
 devices:
 - name: "xvde"
 - name: "10.73.147.237"
 devices:
 - name: "xvde"
 - name: "10.73.147.243"
 devices:
 - name: "xvde"

Example 4-24 Sample values.yaml file specifying target paths

rookOperatorNamespace: "rook"
cluster:
 storage:
 nodes:
 - name: "1.2.3.4"
 directories:
Chapter 4. Managing persistence in IBM Cloud Private 137

 - path: "/rook/storage-dir"
 - name: "1.2.3.5"
 directories:
 - path: "/rook/storage-dir"
 - name: "1.2.3.6"
 directories:
 - path: "/rook/storage-dir"

Install the Rook RBD Cluster using the command line
To install the charts from a remote repository using the Helm CLI, you must add this repo on
the workstation from which you run the Helm commands. Add the ibm-charts repo with the
following commands:

export HELM_HOME=~/.helm
helm init --client-only
helm repo add ibm-charts \
https://raw.githubusercontent.com/IBM/charts/master/repo/stable

You can verify that this step has been completed successfully as shown in Example 4-25.

Example 4-25 Sample output of helm repo list command

helm repo list

NAME URL
stable https://kubernetes-charts.storage.googleapis.com
local http://127.0.0.1:8879/charts
rook-beta https://charts.rook.io/beta
ibm-charts https://raw.githubusercontent.com/IBM/charts/master/repo/stable

Install the ibm-rook-rbd-cluster chart as shown in Example 4-26. It will be deployed to the
namespace selected in kubectl context. To target different namespace add --namespace
<namespace> to the command.

Example 4-26 Installation of ibm-rook-rbd-cluster Helm chart

helm install --name rook-rbd-cluster -f rbd-values.yaml \
ibm-charts/ibm-rook-rbd-cluster --tls

NAME: rook-rbd-cluster
LAST DEPLOYED: Fri Feb 22 00:33:16 2019
NAMESPACE: kube-system
STATUS: DEPLOYED

RESOURCES:
==> v1beta1/Cluster
NAME AGE
rook-rbd-cluster-ibm-rook-rbd-cluster-rook-ceph-cluster 0s

==> v1beta1/Pool
rook-rbd-cluster-ibm-rook-rbd-cluster-rook-ceph-pool 0s

==> v1/StorageClass

Important: You should use only one of the above examples either raw devices or directory
paths.
138 IBM Cloud Private System Administrator’s Guide

NAME PROVISIONER AGE
rbd-storage-class rook.io/block 0s

==> v1/ServiceAccount
NAME SECRETS AGE
rook-ceph-cluster 1 0s

==> v1beta1/Role
NAME AGE
rook-ceph-cluster 0s

==> v1beta1/RoleBinding
NAME AGE
rook-ceph-cluster 0s
rook-ceph-cluster-mgmt 0s

==> v1/RoleBinding
rook-ceph-osd-psp 0s
rook-default-psp 0s

NOTES:
1. Installation of Rook RBD Cluster
rook-rbd-cluster-ibm-rook-rbd-cluster-rook-ceph-cluster successful.

 kubectl get cluster rook-rbd-cluster-ibm-rook-rbd-cluster-rook-ceph-cluster
--namespace kube-system

2. A RBD pool kube-system-pool is also created.

 kubectl get pool --namespace kube-system

3. Storage class rbd-storage-class can be used to create RBD volumes.

 kubectl get storageclasses rbd-storage-class

You can verify that the resources were created as shown in Example 4-27. Target namespace
may be different depending on to which namespace you have deployed the chart.

Example 4-27 Verify that the resources were created

kubectl get cluster rook-rbd-cluster-ibm-rook-rbd-cluster-rook-ceph-cluster \
--namespace kube-system

NAME AGE
rook-rbd-cluster-ibm-rook-rbd-cluster-rook-ceph-cluster 3m

kubectl get pool --namespace kube-system

NAME AGE
rook-rbd-cluster-ibm-rook-rbd-cluster-rook-ceph-pool 4m

kubectl get storageclasses rbd-storage-class

NAME PROVISIONER AGE
rbd-storage-class rook.io/block 4m8s
Chapter 4. Managing persistence in IBM Cloud Private 139

Verification of the ceph storage cluster
To verify if everything works fine, create a new persistent volume claim with the storage class
rbd-storage-class. Create the ceph-test-pv.yaml file that contains the lines shown in
Example 4-28.

Example 4-28 ceph-test-pv.yaml file

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: ceph-test
 namespace: default
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 storageClassName: rbd-storage-class

Run the following command to create a persistent volume claim:

kubectl create -f ceph-test-pv.yaml

The output of the command should be:

persistentvolumeclaim/ceph-test created

Finally, you can verify that the persistent volume was dynamically created and bound as
shown in Example 4-29.

Example 4-29 Verification of the PersistentVolumeClaim status

kubectl get pvc -n default

NAME STATUS VOLUME CAPACITY ACCESS
MODES STORAGECLASS AGE
ceph-test Bound pvc-e6a6d1e8-3635-11e9-a33b-06d591293f01 1Gi RWO
rbd-storage-class 13s

4.3.5 Configuring Portworx in IBM Cloud Private

Portworx is a commercial, cloud native storage and data management solution for
Kubernetes. There is a Portworx community helm chart provided in IBM Cloud Private
catalog. When installing the helm chart you automatically get a 30 day Trial license for
PX-Enterprise product. Limited free PX-Developer version is also available from Portworx.
More info on Portworx here: https://portworx.com/products/introduction/.

Portworx Helm chart has multiple options regarding what drives/filesystems to use as well as
set of optional components (for example, a dedicated UI to manage Portworx cluster). The
described procedure uses default settings and installs the PX-Enterprise Trial version with
Storage Operator Runtime for Kubernetes (Stork), as described on github.com:

Stork can be used to co-locate pods with where their data is located. This is achieved by
using a kubernetes scheduler extender. The scheduler is configured to use stork as an
extender. Therefore, every time a pod is being scheduled, the scheduler will send filter and
prioritize requests to stork.
140 IBM Cloud Private System Administrator’s Guide

https://portworx.com/products/introduction/

Stork will then check with the storage driver. You can either configure the default Kubernetes
scheduler to communicate with stork or launch another instance of kube-scheduler.1

More information on Stork can be found here: https://github.com/libopenstorage/stork.

Prerequisites
To install the Portworx Helm chart you need at least 1 node with 4 CPU cores, 4 GB RAM and
available free unmounted volumes or filesystems of at least 8 GB size. (See the full list of
prerequisties here:
https://docs.portworx.com/start-here-installation/#installation-prerequisites).

Portowrx requires an existing key-value database to be available at the installation time (for
example etcd or consul). When installing on IBM Cloud Private it is not recommended to
reuse cluster etcd database.

Installing etcd database for portworx
The easiest way to provide etcd database for Portworx is to install one on IBM Cloud Private.
In our environment we install single node instance (not recommended for production use)
using the Bitnami Helm chart. To install the etcd Helm chart, follow the steps below:

1. Authenticate to IBM Cloud Private cluster using cloudctl login command.

2. Add the Bitnami chart repo:

helm repo add bitnami https://charts.bitnami.com

3. Install the etcd Helm chart to a <namespace> providing existing <storage_class> name. If
you don’t yet have the storage class with dynamic provisioning available, you can create a
static persistent volume with any name as the storage class and then use it in the
command.

helm install bitnami/etcd --version 2.0.0 --name px --namespace <namespace> \
--set persistence.storageClass=<storage_class> --tls

4. Verify that the etcd service has been created. Note down the clusterIP address.

kubectl get svc px-etcd

Installing the Portworx Helm chart
To install the Portworx Helm chart version 1.0.1 (was available in the community catalog at
the time of writing the book) you need the following steps:

1. Add ImagePolicy or ClusterImagePolicy to allow the docker images required by the
Portworx chart to be run in your cluster. As the Portworx chart has to be installed into the
kube-system we used ImagePolicy. Create a px-imagepolicy.yaml file with the content
shown in Example 4-30.

Example 4-30 ImagePolicy for portworx images

apiVersion: securityenforcement.admission.cloud.ibm.com/v1beta1
kind: ImagePolicy
metadata:
 name: "portworx-image-policy"
 namespace: "kube-system"
spec:
 repositories:
 - name: "docker.io/portworx/*"
 policy:

1 https://github.com/libopenstorage/stork#hyper-convergence
Chapter 4. Managing persistence in IBM Cloud Private 141

https://github.com/libopenstorage/stork#hyper-convergence
https://github.com/libopenstorage/stork
https://docs.portworx.com/start-here-installation/#installation-prerequisites

 va:
 enabled: false
 - name: "docker.io/openstorage/*"
 policy:
 va:
 enabled: false
 - name: "gcr.io/google-containers/*"
 policy:
 va:
 enabled: false
 - name: "docker.io/lachlanevenson/*"
 policy:
 va:
 enabled: false
 - name: "docker.io/hrishi/*"
 policy:
 va:
 enabled: false
 - name: "quay.io/k8scsi/*"
 policy:
 va:
 enabled: false

Add the Image policy with the command:

kubectl create -f portwokx-imagepolicy.yaml

2. By default IBM Cloud Private in version 3.1.x uses the restricted mode, which means that
the service account used to run pods needs a binding to a cluster role with the proper
cluster RBAC permissions. Portworx chart creates a set of service accounts and roles, but
these are not sufficient in an IBM Cloud Private environment. Create an additional set of
clusterrolebindings as shown Example 4-31.

Example 4-31 Additional ClusterRoleBindings for portworx chart

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: px-account-anyuid-binding
roleRef:
 kind: ClusterRole
 name: ibm-anyuid-hostaccess-clusterrole
 apiGroup: rbac.authorization.k8s.io
subjects:
- kind: ServiceAccount
 name: px-account
 namespace: kube-system

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: px-account-privileged-binding
roleRef:
 kind: ClusterRole
 name: ibm-privileged-clusterrole
142 IBM Cloud Private System Administrator’s Guide

 apiGroup: rbac.authorization.k8s.io
subjects:
- kind: ServiceAccount
 name: px-account
 namespace: kube-system

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: stork-sa-anyuid-binding
roleRef:
 kind: ClusterRole
 name: ibm-anyuid-clusterrole
 apiGroup: rbac.authorization.k8s.io
subjects:
- kind: ServiceAccount
 name: stork-account
 namespace: kube-system

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: stork-sched-sa-anyuid-binding
roleRef:
 kind: ClusterRole
 name: ibm-anyuid-clusterrole
 apiGroup: rbac.authorization.k8s.io
subjects:
- kind: ServiceAccount
 name: stork-scheduler-account
 namespace: kube-system

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: portworkx-hook-anyuid-binding
roleRef:
 kind: ClusterRole
 name: ibm-anyuid-clusterrole
 apiGroup: rbac.authorization.k8s.io
subjects:
- kind: ServiceAccount
 name: portworx-hook
 namespace: kube-system

Create a portworx-clusterrolebindings. yaml file with the content of Example 4-31 and
install it with the following command:

kubectl apply -f portworx-clusterrolebindings.yaml
Chapter 4. Managing persistence in IBM Cloud Private 143

If the ibm-anyuid-clusterrole is not bound to service accounts used by Portworx, you
will notice that the pods will stall in ConatinerCreatingError state with the following
message in kubectl describe pod output:

Error: container has runAsNonRoot and image will run as root

You can now install a Portworx chart either from the IBM Cloud Private catalog page or
using the Helm client. Below we show how to install Portworx with the Helm CLI.

3. Add the community chart repo to you local Helm client using:

helm repo add ibm-community-charts \
https://raw.githubusercontent.com/IBM/charts/master/repo/community

4. Install the Portworx chart as shown in Example 4-32. Use <ClusterIP_of_etcd_service>
from the px-etcd service (See step 4 of “Installing etcd database for portworx” section.) In
our installation when we used the px-etcd.<namespace>.svc.cluster.local service
name, the Portworx pods were not able to resolve the name.

Example 4-32 Installation of the Portworx Helm chart

helm install --name portworx ibm-community-charts/portworx --namespace \
kube-system --set etcdEndPoint=etcd:http://<ClusterIP_of_etcd_service>:2379 --tls

NAME: portworx
LAST DEPLOYED: Sun Mar 10 17:56:36 2019
NAMESPACE: kube-system
STATUS: DEPLOYED

RESOURCES:
==> v1/ConfigMap
NAME DATA AGE
stork-config 1 0s

==> v1/ClusterRole
NAME AGE
node-get-put-list-role 0s
stork-scheduler-role 0s
stork-role 0s

==> v1/Service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
portworx-service ClusterIP 10.0.0.246 <none> 9001/TCP 0s
stork-service ClusterIP 10.0.118.214 <none> 8099/TCP 0s

==> v1beta1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
stork-scheduler 3 3 3 0 0s
stork 3 3 3 0 0s

==> v1beta1/StorageClass
NAME PROVISIONER AGE

Attention: By default, the Portworx chart creates a daemonset that means that the
Portworx pods will spread on all of the worker nodes in the cluster, scanning for available
disk drives. To prevent this behaviour, label the nodes where you don’t want Portworx to be
installed with the following command:

kubectl label nodes <nodes list> px/enabled=false --overwrite
144 IBM Cloud Private System Administrator’s Guide

portworx-null-sc kubernetes.io/portworx-volume 0s
portworx-db2-sc kubernetes.io/portworx-volume 0s
portworx-db-sc kubernetes.io/portworx-volume 0s
portworx-shared-sc kubernetes.io/portworx-volume 0s

==> v1/StorageClass
stork-snapshot-sc stork-snapshot 0s

==> v1/ServiceAccount
NAME SECRETS AGE
px-account 1 0s
stork-scheduler-account 1 0s
stork-account 1 0s

==> v1/ClusterRoleBinding
NAME AGE
node-role-binding 0s
stork-scheduler-role-binding 0s
stork-role-binding 0s

==> v1beta1/DaemonSet
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
portworx 3 3 0 3 0 <none> 0s

==> v1/Pod(related)
NAME READY STATUS RESTARTS AGE
portworx-6qlvp 0/1 ContainerCreating 0 0s
portworx-c4h4t 0/1 ContainerCreating 0 0s
portworx-p86qn 0/1 ContainerCreating 0 0s
stork-scheduler-679f999679-5gbt7 0/1 ContainerCreating 0 0s
stork-scheduler-679f999679-jq6gp 0/1 ContainerCreating 0 0s
stork-scheduler-679f999679-w5mv5 0/1 ContainerCreating 0 0s
stork-86bb9cb55d-467wr 0/1 ContainerCreating 0 0s
stork-86bb9cb55d-969vf 0/1 ContainerCreating 0 0s
stork-86bb9cb55d-khwrv 0/1 ContainerCreating 0 0s

NOTES:

Your Release is named "portworx"
Portworx Pods should be running on each node in your cluster.

Portworx would create a unified pool of the disks attached to your Kubernetes
nodes.
No further action should be required and you are ready to consume Portworx Volumes
as part of your application data requirements.

For further information on usage of the Portworx in creating Volumes please refer
 https://docs.portworx.com/scheduler/kubernetes/preprovisioned-volumes.html

For dynamically provisioning volumes for your Stateful applications as they run on
Kubernetes please refer
 https://docs.portworx.com/scheduler/kubernetes/dynamic-provisioning.html

Want to use Storage Orchestration for hyperconvergence, Please look at STork here.
(NOTE: This isnt currently deployed as part of the Helm chart)
Chapter 4. Managing persistence in IBM Cloud Private 145

 https://docs.portworx.com/scheduler/kubernetes/stork.html

Refer application solutions such as Cassandra, Kafka etcetera.
 https://docs.portworx.com/scheduler/kubernetes/cassandra-k8s.html
 https://docs.portworx.com/scheduler/kubernetes/kafka-k8s.html

We tsted this procedure on an IBM Cloud Private 3.1.2 cluster running Centos 7 nodes.
Additional steps might be required while running it on IBM Cloud Virtual Servers and SLES.

If the installation succeeds you can verify the Portworx cluster status as shown in
Example 4-33.

Example 4-33 Verification of portworx cluster status

PX_POD=$(kubectl get pods -l name=portworx -n kube-system -o \
jsonpath='{.items[0].metadata.name}')
kubectl exec $PX_POD -n kube-system -- /opt/pwx/bin/pxctl status

Status: PX is operational
License: Trial (expires in 31 days)
Node ID: dc9ddffb-5fc3-4f5d-b6df-39aee43325df
 IP: 10.10.27.120
 Local Storage Pool: 1 pool
 POOL IO_PRIORITY RAID_LEVEL USABLE USED STATUS ZONE
REGION
 0 HIGH raid0 50 GiB 6.0 GiB Online default
default
 Local Storage Devices: 1 device
 Device Path Media Type Size Last-Scan
 0:1 /dev/sdb STORAGE_MEDIUM_MAGNETIC 50 GiB 10 Mar 19
10:14 UTC
 total - 50 GiB
Cluster Summary
 Cluster ID: px-cluster-1a2f8f7b-f4e8-4963-8011-3926f00ac9bc
 Cluster UUID: 91f47566-cac4-46f0-8b10-641671a32afd
 Scheduler: kubernetes
 Nodes: 3 node(s) with storage (3 online)
 IP ID SchedulerNodeName
StorageNode Used Capacity Status StorageStatus Version
Kernel OS
 10.10.27.120 dc9ddffb-5fc3-4f5d-b6df-39aee43325df icp-worker3
Yes 6.0 GiB 50 GiB Online Up (This node) 2.0.2.3-c186a87
3.10.0-957.5.1.el7.x86_64 CentOS Linux 7 (Core)
 10.10.27.118 85019d27-9b33-4631-84a5-7a7b6a5ed1d5 icp-worker1
Yes 6.0 GiB 50 GiB Online Up 2.0.2.3-c186a87
3.10.0-957.5.1.el7.x86_64 CentOS Linux 7 (Core)
 10.10.27.119 35ab6d0c-3e3a-4e50-ab87-ba2e678384a9 icp-worker2
Yes 6.0 GiB 50 GiB Online Up 2.0.2.3-c186a87
3.10.0-957.5.1.el7.x86_64 CentOS Linux 7 (Core)
Global Storage Pool
 Total Used : 18 GiB
 Total Capacity : 150 GiB
146 IBM Cloud Private System Administrator’s Guide

5. The Portworx chart does not automatically create a storage class. To enable dynamic
storage provisioning, create a portworx-sc.yaml file containing the lines in Example 4-34.

Example 4-34 Portworx storage class definition

kind: StorageClass
apiVersion: storage.k8s.io/v1beta1
metadata:
 name: portworx-sc
provisioner: kubernetes.io/portworx-volume
parameters:
 repl: "1"

Apply the definition with command:

kubectl create -f portworx-sc.yaml

There are many other parameters that you can define in the Portworx storage class:

https://docs.portworx.com/portworx-install-with-kubernetes/storage-operations/c
reate-pvcs/dynamic-provisioning/#using-dynamic-provisioning

Your portworx storage cluster should be ready with active Trial license for 30 days. In case
you want to purchase a production license visit Portworx website.

4.3.6 Configuring Minio in IBM Cloud Private

Minio is the special kind of persistent storage available in IBM Cloud Private. It does not
provide Kubernetes persistent volumes as NFS, GlusterFS or Rook Ceph as described
above, but it exposes existing persistent storage for the applications using a S3-compatible
object storage interface. Consider using Minio if any of the applications that will run in your
IBM Cloud Private cluster require object storage.

Because the IBM Knowledge Center provides detailed step-by-step instructions on deploying
Minio Helm chart we will not replicate this in this book. See
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/configu
re_minio.html.

4.4 Managing the storage hosted on IBM Cloud Private

In this section, we briefly describe the features provided by IBM Cloud Private to help users
with managing the second day operations on the storage used for persistent volumes.

4.4.1 Monitoring storage status and performance

Monitoring of the storage performance for storage like vSphere datastores, NFS or any
external storage clusters is outside of the scope of this book. Usually these storage
technologies have dedicated monitoring tools available to the storage teams. In this section
we focus on the monitoring of the storage solution hosted within IBM Cloud Private.

Attention: The procedure described in this section will not work in the air-gapped
environments as Portworx pods downloads the content and activate Trial license on the
Portworx site. For air-gapped installation see Portworx manuals at
https://docs.portworx.com/portworx-install-with-kubernetes/on-premise/airgapped.
Chapter 4. Managing persistence in IBM Cloud Private 147

https://docs.portworx.com/portworx-install-with-kubernetes/on-premise/airgapped
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/configure_minio.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/configure_minio.html
https://docs.portworx.com/portworx-install-with-kubernetes/storage-operations/create-pvcs/dynamic-provisioning/#using-dynamic-provisioning

In order to help users manage their storage hosted on an IBM Cloud Private cluster, both
GlusterFS as well as Rook Ceph solutions provided by IBM have the Pometheus endpoints
enabled. This means that they automatically collect performance metrics related to storage in
the platform monitoring service.

1. To see the dashboards that are provided out-of-the-box open the IBM Cloud Private
Console and from the lefthand side menu. Select Platform and Monitoring as shown in
Figure 4-2. This will open the default Grafana interface.

Figure 4-2 Opening the IBM Cloud Private monitoring UI

2. On the default Grafana dashboard click the Home dropdown in the upper left corner, as
shown in Figure 4-3.

Figure 4-3 Opening the list of available dashboards
148 IBM Cloud Private System Administrator’s Guide

3. This opens the list of dashboards that are loaded in your environment. IBM Cloud Private
V 3.1.2 provides out-of-the-box dashboards for storage solutions as shown in Figure 4-4.

Figure 4-4 List of predefined Grafana dashboards available in IBM Cloud Private
Chapter 4. Managing persistence in IBM Cloud Private 149

4. Selecting any item on the list will open the dashboard. In Figure 4-5 we show a sample
Rook Ceph dashboard.

Figure 4-5 Sample Rook Ceph dashboard

If you do not see any data, make sure that the user account that you have used for
authenticating to the IBM Cloud Private Console has the access rights to the namespace
hosting the Rook Ceph Helm chart.

4.4.2 Extending the available storage

One of the common tasks related to the storage is extending available capacity. For solutions
hosted on the IBM Cloud Private cluster described in this book, it can be achieved by adding
more raw disks to the distributed filesystem clusters. New devices can be mounted either on
the worker nodes that are already used as storage providers or on new nodes - extending not
only the storage space, but also the I/O performance.

IBM Knowledge Center provides detailed step-by-step instructions on configuring additional
storage space for GlusterFS. See
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/increas
e_vol.html.
150 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/increase_vol.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/increase_vol.html

4.5 Performance considerations

During writing this chapter we set up an IBM Cloud Private environment with different types of
persistent storages:

� NFS

� GlusterFS

� Ceph

� VMware vSphere

� Portworx

All of the persistent volumes used for tests were hosted on datastore residing on local drives
inside the ESXi server.

We have run series of performance benchmarks using dbnech and pgbench tools. All the
volumes used were hosted on SSD drives inside a ESXi server used for the test.

Below we present the results of these tests.

4.5.1 Performance test using dbench

The first test we performed using a dbench image is available here:
https://github.com/logdna/dbench which makes use of the Flexible I/O tester (FIO) tool
(https://github.com/axboe/fio).

Table 4-1 shows the results averaged over several runs of the test jobs.

Table 4-1 Performance test using dbench

Note: All of the storage providers were used with the default settings as of IBM Cloud
Private V 3.1.2. It is very likely that some tuning could improve the results, especially for
the distributed filesystems.

Attention: The results are provided on a as-is basis using the output that was produced by
the FIO tool. Note that NFS uses the client caching feature, which allows the data to be
cached on the NFS client and read out of local memory instead of remote disk. This might
affect the results for NFS. Also, Portworx applies some I/O optimization techniques which
might affect the results.

Provider Random Read
[IOPS]

Random Write
[IOPS]

Random Read
[MB/s]

Random Write
[MB/s]

Vmware 2 184 2 021 121 135

Gluster 1 023 465 55 23

Ceph RBD 855 438 47 77

NFS 16 300 1 664 660 73

Portworx 126 000 31 500 4 277 279
Chapter 4. Managing persistence in IBM Cloud Private 151

https://github.com/logdna/dbench
https://github.com/axboe/fio

4.5.2 PostgreSQL database performance

The raw IOPS (Input/Output Operations Per Second) test may not be relevant for a real
application workload, so in our econd test we used a standard PostgreSQL performance test
pgbench. For each of the storage classes in our test environment we installed one instance of
the ibm-postgres-dev Helm chart (version 1.1.3) using default settings. Each PostgreSQL
deployment was exposed using the NodePort. From an external system we ran the following
commands:

pgbench -i -d -s 64 -h $PGHOST -p $PGPORT -U admin postgres

This command creates the sample database of 1 GB size. After that we ran the test
command:

pgbench -c 10 -j 2 -t 10000 -h $PGHOST -p $PGPORT -U admin postgres

The command runs 10 clients in parallel with 2 threads each, where each client executes
10000 transactions.

Neither the database nor the storage were not optimized in any way as the goal of this test
was to just show the relative performance of different storage options using the same
environment.

The results returned by the benchmark are shown in Table 4-2.

Table 4-2 Results of pgbench benchmark

The results are in general consistent with IOPS test, showing significant performance
advantage of Vmware over the other providers. This is not very surprising in our test setup.
However, it is worth noticing that Ceph RBD performed over 2 times better than GlusterFS
(while both storage providers reported similar IOPS performances). From the distributed
storage providers, Portworx showed almost 6 times better performance than GlusterFS and 3
times better than Ceph RBD.

Additionally, on GlusterFS the benchmark returned few errors such as:

ERROR: unexpected data beyond EOF in block 105200 of relation base/16384/16503
HINT: This has been seen to occur with buggy kernels; consider updating your
system.

A brief search on the Internet returns the hint from GlusterFS documentation: “Gluster does
not support so called ‘structured data’, meaning live, SQL databases.”

This might change with the newer versions of GlusterFS.

Provider Transactions
per Second

Vmware 1898

Gluster 103

Ceph RBD 225

NFS 1283

Portworx 676
152 IBM Cloud Private System Administrator’s Guide

Chapter 5. Logging and monitoring

The logging and monitoring tools used in IBM Cloud Private are at the core of how users
interact with their application log data and metrics. The Elasticsearch, Logstash and Kibana
(also called ELK) stack is a suite of open source tools designed to provide extensive log
capture, retention, visualization and query support for application log data, and is the primary
way for users to interact with their application log data. Alert Manager, Prometheus and
Grafana is another suite of open source tools that provides the user with powerful capabilities
to query metrics for their application containers, and raise alerts when something isn’t quite
right.

This chapter explores each of these components in depth, describing their function in an IBM
Cloud Private cluster and how the logging and monitoring systems can be leveraged to cover
a range of common use cases when used with IBM Cloud Private.

This chapter has the following sections:

� 5.1, “Introduction” on page 154
� 5.2, “IBM Cloud Private Logging” on page 155
� 5.3, “IBM Cloud Private Monitoring” on page 222

5

© Copyright IBM Corp. 2019. All rights reserved. 153

5.1 Introduction

This section will provide an overview and describe the main functions of each of the
components within the logging and monitoring tools used in IBM Cloud Private. It will discuss
the importance of each role and how each technology plays a key part in providing the user
with all the tools necessary to store, view, query and analyze log data and performance
metrics for their deployed application containers.

5.1.1 Elasticsearch, Logstash and Kibana

Elasticsearch, Logstash and Kibana are the three components that make up the ELK stack.
Each component has a different role, but is heavily integrated with each other to allow
application log analysis, visualization and RESTful access to the data generated by the whole
IBM Cloud Private platform. The ELK stack is coupled with a Filebeat component that deals
with collecting the raw log data from each node in the cluster.

Elasticsearch
Elasticsearch is a NoSQL database that is based on the Lucene search engine. Elasticsearch
In IBM Cloud Private has three main services that process, store and retrieve data; the client,
master and data nodes.

The client (also known as a ‘smart load-balancer’) is responsible for handling all requests to
Elasticsearch. It is the result of a separation of duty from the master node and the use of a
separate client enables stability by reducing the workload on the master.

The master node is responsible for lightweight cluster-wide actions such as creating or
deleting an index, tracking which nodes are part of the cluster and deciding which shards to
allocate to which nodes.

Data nodes hold the shards that contain the documents you have indexed. Data nodes
handle data related operations like CRUD, search and aggregations. These operations are
I/O and memory intensive. It is important to monitor these resources and to add more data
nodes if they are overloaded. The main benefit of having dedicated data nodes is the
separation of the master and data roles to help stabilise the cluster when under load.

Logstash
Logstash is a log pipeline tool that accepts inputs from various sources, executes different
transformations, and exports the data to various targets. In IBM Cloud Private, it acts as a
central input for different log collectors, such as Filebeat, to rapidly buffer and process data
before sending it to Elasticsearch. Logstash can be configured to output data not just to
Elasticsearch, but a whole suite of other products to suit most other external log analysis
software.

Kibana
Kibana is an open source analytics and visualization layer that works on top of Elasticsearch
that allows end users to perform advanced data analysis and visualize your data in a variety
of charts, tables and maps. The lucene search syntax allows users to construct complex
search queries for advanced analysis and, feeding in to a visualization engine to create
dynamic dashboards for a real time view of log data.
154 IBM Cloud Private System Administrator’s Guide

Filebeat
Filebeat is a lightweight shipper for forwarding and centralizing log data. Filebeat monitors the
specified log locations to collect log events and data from containers running on a host and
forwards them to Logstash.

5.2 IBM Cloud Private Logging

The ELK stack plays a key role in an IBM Cloud Private cluster, as it acts as a central
repository for all logging data generated by the platform and the only method to access log
data without accessing the Kubernetes API server directly. This section will explore how the
whole logging system works and how it can be used effectively to satisfy several common use
cases seen by Cluster Administrators when faced with configuring or customizing IBM Cloud
Private to suit their requirements for viewing and storing application log data.

5.2.1 ELK architecture

Figure 5-1 shows the architecture overview for the IBM Cloud Private platform ELK stack and
the logical flow between the components.

Figure 5-1 ELK high level overview

In IBM Cloud Private, the platform logging components are hosted on the management
nodes, with the exception of Filebeat that runs on all nodes, collecting log data generated by
Docker. Depending on the cluster configuration, there are multiples of each component. For
example, in a High Availability (HA) configuration with multiple management nodes, multiple
instances of the Elasticsearch components will be spread out across these nodes. The
overview in Figure 5-2 shows how the Elasticsearch pods are spread across management
nodes
Chapter 5. Logging and monitoring 155

Figure 5-2 Logging on IBM Cloud Private with multiple management nodes

Each of the components are configured to run only on management nodes and, where
possible, spread evenly across them to ensure that the logging service remains available in
the event a management node goes offline.

5.2.2 How Elasticsearch works

This section will explore how raw log data is collected by Filebeat and transformed into an
Elasticsearch document ready for analysis and querying. Figure 5-3 shows an overview of the
process from Filebeat collecting the data, to Elasticsearch storing it in an IBM Cloud Private
environment with multiple management nodes.
156 IBM Cloud Private System Administrator’s Guide

Figure 5-3 Elasticsearch data flow overview with multiple management nodes

Collecting the data
On every IBM Cloud Private cluster node, an instance of Filebeat is running. The Filebeat
pods are controlled by a Daemonset that is actively keeping at least one Filebeat pod running
on each cluster node to ensure all node are collecting log data across the whole cluster. By
default, ELK is configured to be cluster-wide, monitoring all namespaces on all nodes.

All containers running on a host write out data to stdout and stderr, which is captured by
Docker and stored on the host filesystem. In IBM Cloud Private, Docker is configured to use
the json-file logging driver, which means that Docker captures the standard output (and
standard error) of all the containers and writes them to the filesystem in files using the JSON
format. The JSON format annotates each line with its origin (stdout or stderr) and its
timestamp and each log file contains information about only one container. For each
container, Docker stores the JSON file in a unique directory using the container ID. A typical
format is /var/lib/docker/containers/<container-id>/<container-id>-json.log.

The /var/lib/docker/containers/ directory has a symlink for each file to another location at
/var/log/pods/<uid>/<container-name>/<number>.log.

Filebeat then continuously monitors the JSON data for every container, but it does not know
anything about the container IDs. It does not query Kubernetes for every container ID, so the
kubelet service creates a series of symlinks pointing to the correct location (useful for
centralized log collection in Kubernetes) and it retrieves the container logs from the host
filesystem at /var/log/containers/<container-name>_<namespace>_<uid>.log. In the
Filebeat configuration, this filepath is used to retrieve log data from all namespaces using a
wildcard filepath /var/log/containers/*.log to retrieve everything, but it’s also possible to
configure more accurate filepaths for specific namespaces.
Chapter 5. Logging and monitoring 157

As a reference, it’s worth noting that this filepath is not the same as the one generated by
Docker. Using a the ls -l command shows that the
/var/log/containers/<pod_name>_<namespace>_<container_name>-<uid>.log contains a
symlink to /var/log/pods/<id>/<container-name>/<index>.log. Following the trail, the
<index>.log file contains yet another symlink to finally arrive at
/var/lib/docker/containers/<uid>/<uid>-json.log. Example 5-1 shows the symlinks for
the icp-mongodb-0 container in a real environment.

Example 5-1 Container log symlink trail

[root@icp-boot ~]# ls -l /var/log/containers/
...
lrwxrwxrwx 1 root root 66 Feb 11 09:44
icp-mongodb-0_kube-system_bootstrap-c39c7b572db78c957d027f809ff095666678146f8d04dc102617003
f465085f2.log -> /var/log/pods/96b4abef-2e24-11e9-9f38-00163e01ef7a/bootstrap/0.log
...
[root@icp-boot ~]# ls -l /var/log/pods/96b4abef-2e24-11e9-9f38-00163e01ef7a/bootstrap/
lrwxrwxrwx 1 root root 165 Feb 11 09:44 0.log ->
/var/lib/docker/containers/c39c7b572db78c957d027f809ff095666678146f8d04dc102617003f465085f2
/c39c7b572db78c957d027f809ff095666678146f8d04dc102617003f465085f2-json.log

Filebeat consists of two components; inputs and harvesters. These components work
together to tail files and send event data to a specific output. A harvester is responsible for
reading the content of a single file. It reads each file, line by line, and sends the content to the
output. An input is responsible for managing the harvesters and finding all sources to read
from. If the input type is log, the input finds all files on the drive that match the defined glob
paths and starts a harvester for each file.

Filebeat keeps the state of each file and, if the output (such as Logstash) is not reachable,
keeps track of the last lines sent so it can continue reading the files as soon as the output
becomes available again, which improves the overall reliability of the system. In IBM Cloud
Private, Logstash is pre-configured as an output in the Filebeat configuration, so Filebeat is
actively collecting logs from all cluster nodes and sending the data to Logstash.

Filtering and sending the data
Logstash has 3 main stages; inputs, filters, and outputs. The input stage is the means in
which Logstash receives data. It can be configured to receive data from a number of sources,
such as the file system, Redis, Kafka, or Filebeat. The filters stage is where the inbound data
from Filebeat is transformed to extract certain attributes, such as the pod name and
namespace, remove sensitive data such as the host and drop empty lines from the log file in
an effort to remove unnecessary processing in Elasticsearch. Logstash has many different
outputs and available plug-ins. A full list of outputs can be found at
https://www.elastic.co/guide/en/logstash/5.5/output-plugins.html. In IBM Cloud
Private, the default is Elasticsearch. Logstash send the data, along with the index name
(defaults to logstash-<year.month.day>) to Elasticsearch to process and store.

Indexing and storing the data
When Elasticsearch receives a new request, it gets to work processing and storing the data,
ready for searching at a later stage. When discussing how it stores and searches the data it
holds, it’s important to understand a few key terms, such as indices, shards and documents.

First and foremost, Elasticsearch is built on top of Lucene. Lucene is Java based information
retrieval software primarily designed for searching text based files. Lucene is able to achieve
fast search responses because, instead of searching the text directly, it searches an ‘index’. In
this context, an index is a record of all the instances in which a keyword exists. To explain the
theory, a typical example is to think about searching for a single word in a book where all the
158 IBM Cloud Private System Administrator’s Guide

https://www.elastic.co/guide/en/logstash/5.5/output-plugins.html

attributes of the word are ‘indexed’ at the back of the book, so you know on which page, line
and letter number that word exists, for all instances of the word. This act of ‘reverse search’ is
called an inverted index. As the name suggests, it is the inverse of a forward index, where a
word would be searched starting from the front of the book and sequentially working through
all the pages. So where a forward index would resolve all instances of a word from searching
pages to find words (pages > words), the inverted index uses a data-centric approach and
searches words to find pages (words > pages). This is how data is retrieved from text based
files quicker than a traditional database, where a single query sequentially searches a
database record by record until it finds the match.

In Elasticsearch, an index is a single item that defines a collection of shards and each shard
is an instance of a Lucene index. A shard is a basic scaling unit for an index, designed to
sub-divide the whole index in to smaller pieces that can be spread across data nodes to
prevent a single index exceeding the limits of a single host. A Lucene index consists of one or
more segments, which are also fully functioning inverted indexes. The data itself is stored in a
document, which is the top level serialized JSON object (with key-value pairs), stored in the
index and the document is indexed and routed to a segment for searching. Lucene will search
each of these segments and merge the results, which is returned to Elasticsearch.

Figure 5-4 Anatomy of an Elasticsearch index

Elasticsearch also provides the capability to replicate shards, so ‘primary’ and ‘replica’ shards
are spread across the data nodes in the cluster. If a data node hosting a primary shard goes
down, the replica is promoted to primary, thus still able to serve search queries.
Chapter 5. Logging and monitoring 159

Figure 5-5 ELK primary-replica spread

For more information about the individual concepts, see the Elasticsearch documentation at
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/_basic_concepts.html
with other useful articles available at
https://www.elastic.co/guide/en/elasticsearch/guide/current/inverted-index.html
and https://www.elastic.co/blog/found-elasticsearch-from-the-bottom-up

IBM Cloud Private, by default, will set 5 shards per index and 1 replica per shard. This means
that in a cluster with 300 indices per day the system will, at any one time, host 3000 shards
(1500 primary + 1500 replicas). To verify, in Example 5-2 an index is used to check the
number of shards, replicas and the index settings.

Example 5-2 Verifying number of shards per index

#Get index settings
GET /logstash-2019.03.03/_settings

{
 "logstash-2019.03.03": {
 "settings": {
 "index": {
 "creation_date": "1551791346123",
 "number_of_shards": "5",
 "number_of_replicas": "1",
 "uuid": "xneG-iaWRiuNWHNH6osL8w",
 "version": {
 "created": "5050199"
 },
 "provided_name": "logstash-2019.03.03"
 }
 }
 }
}

#Get the index
GET _cat/indices/logstash-2019.03.03

health status index uuid pri rep docs.count
docs.deleted store.size pri.store.size
160 IBM Cloud Private System Administrator’s Guide

https://www.elastic.co/guide/en/elasticsearch/reference/6.2/_basic_concepts.html
https://www.elastic.co/blog/found-elasticsearch-from-the-bottom-up
https://www.elastic.co/guide/en/elasticsearch/guide/current/inverted-index.html

green open logstash-2019.03.03 xneG-iaWRiuNWHNH6osL8w 5 1 1332
0 2.8mb 1.4mb

#Get the shards for the index
GET _cat/shards/logstash-2019.03.03

index shard prirep state docs store ip node
logstash-2019.03.03 3 p STARTED 251 363.3kb 10.1.25.226 logging-elk-data-1
logstash-2019.03.03 3 r STARTED 251 319.3kb 10.1.92.13 logging-elk-data-0
logstash-2019.03.03 2 p STARTED 219 294.8kb 10.1.25.226 logging-elk-data-1
logstash-2019.03.03 2 r STARTED 219 225.1kb 10.1.92.13 logging-elk-data-0
logstash-2019.03.03 4 p STARTED 263 309.4kb 10.1.25.226 logging-elk-data-1
logstash-2019.03.03 4 r STARTED 263 271.2kb 10.1.92.13 logging-elk-data-0
logstash-2019.03.03 1 p STARTED 230 599.1kb 10.1.25.226 logging-elk-data-1
logstash-2019.03.03 1 r STARTED 230 324.9kb 10.1.92.13 logging-elk-data-0
logstash-2019.03.03 0 p STARTED 216 283.7kb 10.1.25.226 logging-elk-data-1
logstash-2019.03.03 0 r STARTED 216 340.8kb 10.1.92.13 logging-elk-data-0

Each time Logstash sends a request to Elasticsearch, it will create a new index if it does not
exist, or the existing index will be updated with additional documents. The Elasticsearch data
pod is responsible for indexing and storing data, so during this time the CPU utilization,
memory consumption and disk I/O will increase.

5.2.3 Default logging configuration

The default logging configuration is designed to be a baseline and it provides the minimum
resources required to effectively run a small IBM Cloud Private cluster. The default resource
limits are not the ‘production ready’ values and therefore the Cluster Administrator should
thoroughly test and adjust these settings to find the optimal resource limits for the workloads
that will be running on the production environment. IBM Cloud Private Version 3.1.2 logging
installs with the following resource limits by default (See Table 5-1).

Table 5-1 Default ELK resource limits

Attention: Throughout this chapter, there are references to using the
ibm-icplogging-2.2.0 Helm chart for helm upgrade or helm install commands. This
chart can be used in a variety of ways, but the examples in this chapter use a locally stored
copy of the Helm chart. You can retrieve this by using the following methods:

1. Use wget --no-check-certificate
https://mycluster.icp:8443/mgmt-repo/requiredAssets/ibm-icplogging-2.2.0.tgz
to download the file locally, replacing mycluster.icp with your cluster name.

2. Add the mgmt-charts repository to your local Helm repositories by using helm repo add
icp-mgmt https://mycluster.icp:8443/mgmt-repo/charts --ca-file ~/.helm/ca.pem
--key-file ~/.helm/key.pem --cert-file ~/.helm/cert.pem. Replace
mycluster.icp with your cluster name. The chart can then be referenced using
icp-mgmt/ibm-icplogging --version 2.2.0 in place of the ibm-icplogging-2.2.0.tgz
file. Helm should be configured to access the cluster.

Name CPU Memory

client - 1.5GB (1GB Xmx/Xms)

master - 1.5GB (1GB Xmx/Xms)

data - 3GB (1.5GB Xmx/Xms)
Chapter 5. Logging and monitoring 161

100 GB of storage via a LocalVolume PersistentVolume (PV) is allocated to the Elasticsearch
data pods, which resides at /var/lib/icp/logging on the management node filesystem.
Each PV has affinity in place so that the PV is bound to one management node only, to
ensure consistency across data nodes. Each Elasticsearch data node also has affinity rules
in place so that only one data pod runs on one management node at any one time.

The size of the Elasticsearch cluster deployed in an environment entirely depends on the
number of management nodes in the cluster. The default number of Elasticsearch master and
data pods are calculated based on the available management nodes and take on the
following rules:

� One Elasticsearch data pod per IBM Cloud Private management node

� Number of Elasticsearch master pods is equal to number of management nodes

� One Logstash pod per IBM Cloud Private management node

� One Elasticsearch client pod per IBM Cloud Private management node

Elasticsearch client and Logstash replicas can be temporarily scaled as required using the
default Kubernetes scaling methods. If any scaling is permanent, it’s recommended to use the
Helm commands to update the number of replicas.

Data retention
The default retention period for logs stored in the platform ELK stack is 24 hours. A curator is
deployed as a CronJob that will remove the logstash indices from Elasticsearch every day at
23:30 UTC. If Vulnerability Advisor is enabled, another CronJob runs at 23:59 UTC to remove
the indices related to Vulnerability Advisor older than 7 days.

Modifying the default retention period without proper capacity planning may be destructive to
the ELK stack. Increasing the retention period will increase the resources required to search
and store the data in Elasticsearch, so ensure the cluster has the required resources to be
able to do so. For more information about resource allocation, see “Capacity planning” on
page 164.

Configuring data retention during installation
It’s possible to specify the default data retention period before installing IBM Cloud Private by
adding the curator configuration to the config.yaml. Use Example 5-3 to set a default index
retention of 14 days.

Example 5-3 Curator config in config.yaml

logging:
 curator:
 schedule: "30 23 * * *"

logstash - 1GB (512MB Xmx/Xms)

filebeat - -

Tip: Some users experience high CPU utilization by the java processes on the host. This is
due to no limit specified on the containers, allowing them to consume all the available host
CPU, if necessary. This is intentional and setting limits may impact the ELK stack stability.
It is worth noting that high CPU utilization may be an indication of memory pressure due to
garbage collection and should be investigated.

Name CPU Memory
162 IBM Cloud Private System Administrator’s Guide

 app:
 unit: days
 count: 14

Configuring data retention after installation
The recommended way to permanently increase the default retention period is to use a helm
upgrade command, passing the new value as a parameter. This ensures that any future chart
or IBM Cloud Private upgrades do not overwrite the value with the default value used during
chart installation. To update the retention period to 14 days using helm upgrade from the
command line, use helm upgrade logging ibm-icplogging-2.2.0.tgz --reuse-values
--recreate-pods --set curator.app.count=14 --force --no-hooks --tls

For testing purposes, the default retention period is easily customized by modifying the
logging-elk-elasticsearch-curator-config ConfigMap. To modify the retention period from
1 day to 14 days edit the logging-elk-elasticsearch-curator-config ConfigMap and
modify the unit_count in the first action named delete_indices. The result should look
similar to Example 5-4.

Example 5-4 Curator modified configuration

actions:
 1:
 action: delete_indices
 description: "Delete user log indices that are older than 1 days. Cron
schedule: 30 23 * * *"
 options:
 timeout_override:
 continue_if_exception: True
 ignore_empty_list: True
 disable_action: False
 filters:
 - filtertype: pattern
 kind: prefix
 value: logstash-
 - filtertype: age
 source: name
 direction: older
 timestring: '%Y.%m.%d'
 unit: days
 unit_count: 14

After saving and closing the file, the new curator configuration will be automatically reloaded
and indices will be retained for 14 days.

Also within this ConfigMap, cleanup actions are provided for the Vulnerability Advisor indices.

5.2.4 ELK security

The platform ELK is deployed with mutual TLS security enabled by default, using Search
Guard to provide PKI. It’s possible to disable this during IBM Cloud Private installation by
adding the following to the config.yaml
Chapter 5. Logging and monitoring 163

logging:
 security:
 enabled: false

If you already have a valid X-Pack license, you can use the X-Pack security features instead,
by adding the following to the config.yaml at installation time

logging:
 security:
 provider: xpack

The Certificate Authority (CA) is created during installation, but the IBM Cloud Private installer
offers the capability to supply your own CA that will be used for all other certificates in the
cluster. For more information, see
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/create_cert
.html

5.2.5 Capacity planning

Capacity planning for Elasticsearch is one of the most over-looked topics and one of the most
common causes of a failing Elasticsearch cluster. Lack of resources is usually the root-cause
of failures at cluster installation, when audit logging is enabled or during random surges of log
traffic. Allocating sufficient resources towards the capture, storage and management of
logging and metrics is crucial, especially under stressful conditions. No universally,
cost-effective recommendation for the capture, storage and management of logs and metrics
is available, but this section provides some insights based on observations of workload
behavior in IBM Cloud Private.

The default configuration should not be relied upon to meet the needs of every deployment. It
is designed to provide a baseline that the Cluster Administrator should use as a starting point
to determine the resources required for their environment. There are a number of factors that
affect the logging performance, mostly centered around CPU and memory consumption.
Elasticsearch is based on Lucene, which uses Java, and therefore has a requirement for
sufficient memory to be allocated to the JVM heap. The entire JVM heap is assigned to
Lucene and the Lucene engine will consume all of the available memory for its operations,
which can lead to out-of-memory errors if the heap size is not sufficient for all the indexing,
searching and storing that the Lucene engine is trying to do. By default, there are no CPU
limits on the Elasticsearch containers, as the requirements vary depending on workload. On
average, the CPU load is generally low, but will significantly rise during active periods where
heavy indexing or searches are taking place and could consume the entire available CPU
from the host. Restricting the CPU usage to only a few cores will create too much of a backlog
of logs to process, increasing the memory usage and ultimately resulting in an unusable
Elasticsearch cluster during this time. Therefore, it is almost impossible to predict the required
resources for every use case and careful analysis should be made in a pre-production
environment to determine the required configuration for the workload that will be running, plus
additional margins for spikes in traffic.

It is not uncommon for the logging pods to be unresponsive immediately after installation of
an IBM Cloud Private cluster, especially when left at the default configuration. In a basic
installation, whilst all pods are starting up, they are producing hundreds of logs per second
that all need to be catered for by the logging pods, which are also trying to start up at the
same time. During cluster installation, an observed average across several installations by the
development team was around 1500 messages per second and it takes around 30 minutes
for the logging platform to stabilise with the normal rate of 50-100 messages per second in a
lightly active cluster. When Vulnerability Advisor is enabled, the rate during installation can
rise to observed rate of around 2300 messages per second, taking Elasticsearch up to 90
164 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/create_cert.html

minutes to fully stabilise. When audit logging is enabled, the default resources are not
sufficient and if audit logging will be enabled during cluster installation, it’s recommended that
increased resource limits for logging are applied at the same time, using the config.yaml.

Estimating the required CPU and memory
Estimating the CPU and memory required for any environment really comes down to one
thing - experience. Without knowing what applications will be running, how much data the
application produces, the rate at which data is produced etc it’s difficult to know what
resources are required. This information plays a valuable role in setting the values for a
production cluster and these values must be determined from testing the workload and
analyzing the data in a pre-production cluster. There are several tools at hand that enable
analysis of the current resource consumption. Prior to analyzing how much storage is being
consumed by an index, it’s important to ensure that a realistic workload is deployed,
preferably with the ability to test failover or other tests than can simulate a rise in log traffic, to
allow visibility of the additional resource margins required.

X-Pack monitoring
IBM Cloud Private logging comes with a trial license for X-Pack enabled by default, but the
trial functionality is not enabled during deployment. The trial is aimed at users who need more
advanced capabilities that may eventually need to purchase the full X-Pack license.
Information about X-Pack can be found at
https://www.elastic.co/guide/en/x-pack/current/xpack-introduction.html as it is not
covered in this chapter. However, for the purpose of estimating the logging requirements, the
X-Pack monitoring can be enabled.

To enable the X-Pack monitoring, if it is not already enabled at installation time, use the helm
upgrade command.

The logging Helm chart is located in a Helm repository called mgmt-charts. Instead of adding
the mgmt-charts repository to the local machine, the URL of the chart can be used instead.

Run the helm upgrade command and set the xpack.monitoring value to true. You’ll need to
pass the default installation values in this command too, found in the cluster installation
directory.

helm upgrade logging ibm-icplogging-2.2.0.tgz --reuse-values --recreate-pods --set
xpack.monitoring=true --force --tls

Attention: Using helm upgrade can result in some down time for the logging service while
it is replaced by new instances, depending on what resources have changed. Any changes
made to the current logging configuration that was not changed through Helm will be lost.
In some cases, the cluster may be unresponsive and requires initialization by sgadmin. This
is a known issue, so if it occurs follow the IBM Knowledge Center steps at
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/getting_started/kno
wn_issues.html.

Restriction: The helm upgrade command may not run without first deleting the
logging-elk-kibana-init job. The use of --force in the above command typically
removes the need for this, but if you receive an error related to the
logging-elk-kibana-init job, delete this prior to running helm upgrade using kubectl -n
kube-system delete job logging-elk-kibana-init.
Chapter 5. Logging and monitoring 165

https://www.elastic.co/guide/en/x-pack/current/xpack-introduction.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/getting_started/known_issues.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/getting_started/known_issues.html

Once the upgrade is complete, the monitoring data is now available in Kibana. The monitoring
dashboards present a wealth of information about the Elasticsearch cluster, including
valuable information about how much log data is running through it.

Figure 5-6 Kibana monitoring

Navigate to the Monitoring → Elasticsearch (cluster) → > Nodes section. All the nodes
that make up the current Elasticsearch cluster are displayed, along with extremely useful data
about JVM memory consumption and CPU usage per node. Assuming that the workload in
the current cluster is realistic, it’s more clear to see if the current resource allocation for the
management node CPU cores, or the JVM heap, is enough to handle the current workload
plus additional spikes.

Figure 5-7 Monitoring dashboard for Elasticsearch nodes

Currently, in the above cluster, JVM memory usage for the data nodes is around 60% which is
suitable for the current environment, plus a 40% overhead to handle temporary excess log
data. If this value was around 80% or 90% consistently, it would be beneficial to double the
allocated resources in the logging-elk-data StatefulSet. The current data nodes’ CPU usage
is around 30% and the maximum value the nodes have hit is around 60%, so for the current
workload, the CPU cores assigned to the management nodes are sufficient. In all cases,
these values should be monitored for changes and adjusted as required to keep the logging
services in a stable state. High CPU usage is an indicator that there is memory pressure in
the data nodes due to garbage collection processes.
166 IBM Cloud Private System Administrator’s Guide

Navigate to the Monitoring → Elasticsearch → Indices section. Here, all the currently
stored indices in the system are displayed and gives a good overview of what storage is taken
up by each index.

Figure 5-8 Monitoring indices list

Note that this may only be the current and previous day’s indices due to the curator cleaning
up indices older than the default 24 hours (unless configured differently). Selecting the
previous day’s index will provide information about how much storage the index is using, the
rate at which data is indexed, growth rate over time and other metrics. Assuming that these
values are realistic representations of the actual log data the production workloads would
produce, it becomes easier to realize whether or not the current storage is sufficient for the
length of time the data should be retained. Figure 5-8 shows that 6 days worth of data
retention has yielded around 30GB of storage, so the default value of 100GB is sufficient, for
now.

The advanced dashboard provides further analytics and insights in to some key metrics that
enable better fine tuning of the cluster. Tuning Elasticsearch for better performance during
indexing and querying is a big subject and is not covered in this book. More information about
tuning Elasticsearch can be found in the Elasticsearh documentation at
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/general-recommendation
s.html.

Prometheus monitoring
Elasticsearch exposes metrics to Prometheus, which can be viewed using a default Grafana
dashboard (Figure 5-9 on page 168), or queried using the Prometheus User Interface (UI). An
Elasticsearch dashboard is provided by the development team out-of-the-box with IBM Cloud
Private Version 3.1.2 to easily view various metrics about the Elasticsearch cluster, similar to
those provided by the X-Pack monitoring.
Chapter 5. Logging and monitoring 167

https://www.elastic.co/guide/en/elasticsearch/reference/5.5/general-recommendations.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/general-recommendations.html

Figure 5-9 Grafana Elasticsearch dashboard

The Prometheus UI is also available, but is used to submit Prometheus search queries and
return the raw results, with no additional layers on top. Access the Prometheus UI at
https://<icp-cluster-ip>:8443/prometheus and this should display the graph page allowing
you to input queries and view the results as values or a time-series based graph.

There are numerous metrics available to use, from both the standard Prometheus container
metrics scraped by Kubernetes containers and those provided by the Elasticsearch
application. As an example, start typing ‘elasticsearch_’ in to a search box and a list of
available Elasticsearch specific metrics to use will show in the drop down list. It’s worth noting
that Grafana also uses these metrics to construct the Elasticsearch dashboard mentioned
previously, so all the same data is available here too.

As a starting point, use the query in Example 5-5 to view the current memory usage as a
percentage of all master, data, client and logstash pods. Copy the query to the search box,
select Execute and then Graph, to see the time-series data graphically.

Example 5-5 Prometheus query for Elasticsearch pod memory consumption %

sum(round((container_memory_working_set_bytes{pod_name=~"logging-elk-.+",container
_name=~"es-.+|logstash"} /
container_spec_memory_limit_bytes{pod_name=~"logging-elk-.+",container_name=~"es-.
+|logstash"})*100)) by (pod_name)

In the current environment, this produces the output in Figure 5-10 on page 169.
168 IBM Cloud Private System Administrator’s Guide

Figure 5-10 Prometheus graph

Here we can see the overall memory consumption for the whole container, not just the JVM
heap usage. The query in Example 5-6 also displays the current memory usage in GB.

Example 5-6 Prometheus query for Elasticsearch pod memory consumption GB

sum(container_memory_working_set_bytes{pod_name=~"logging-elk-.+",container_name=~
"es-.+|logstash"}) by (pod_name)

Example 5-7 shows a query for viewing the average rate of the current CPU usage of the
same Elasticsearch containers, also providing valuable information about how accurate the
CPU resource allocation is in this cluster.

Example 5-7 Prometheus query for Elasticsearch pod CPU consumption

sum(rate(container_cpu_usage_seconds_total{pod_name=~"logging-elk-.+",container_na
me=~"es-.+|logstash"}[2m])) by (pod_name)

Figure 5-11 on page 170 shows the output of this query for this cluster.
Chapter 5. Logging and monitoring 169

Figure 5-11 CPU usage of the Elasticsearch containers

The container_cpu_usage_seconds_total metric used here contains the total amount of CPU
seconds consumed by container, by core. The output represents the number of cores used by
the container, so a value of 2.5 in this example would mean 2500 millicores in terms of
Kubernetes resource requests and limits.

Estimating the required storage capacity
The default storage value is 100GB, which is typically sufficient for normal cluster operations,
however this should scale with the amount of data that applications are expected to generate
plus an additional margin for spikes and multiplied by the number of days the data is retained.

When planning the amount of storage required, use the following rule:

(Total index GB) x (retention period) = (GB per day)

In this equation, there is an unknown; the Total index GB, which is the sum of the storage
consumed for each index. Without this information, it’s difficult to estimate how much storage
to allocate to each data node. However, using the same monitoring methods from the
previous sections it’s possible to see the current storage usage for each index and therefore
making it possible to measure the amount of storage capacity used on a daily basis. In the
default Elasticsearch deployment in IBM Cloud Private 3.1.2, there is only one index
configured to store logging data, but if audit logging and Vulnerability Advisor is enabled there
are additional indices to cater for, each varying in size.

As an example, based on the information gathered by the X-Pack monitoring dashboard, for
the logstash-2019.03.05 index, it takes up ~18GB storage space. This includes the replicas,
so the primary shards consume 9GB and the replica shards also consume 9GB. Depending
on the configuration (e.g. HA) this will be spread across management nodes. Typically, if there
is only one management node, then use the 9GB value as replica shards will remain
unassigned. Therefore, retaining 14 days worth of logging data (using this as an average)
requires a minimum of ~126GB. This figure however, does not represent a real production
value, only that of a minimally used lab environment. In some cases, a single days worth of
logging data may be around 100GB for a single index. Therefore in a typical cluster with 2
management nodes, 50GB per management node per day of retention is required. In a use
170 IBM Cloud Private System Administrator’s Guide

case where 14 days of retention is required, each management node would need 700GB
each at a minimum to simply retain the log data.

Similar methods can be used by using the Kibana UI and executing API commands directly to
Elasticsearch to gather data on the storage used per index. For example, the storage size on
disk can be retrieved using GET _cat/indices/logstash-2019.03.05/, producing the output in
Example 5-8.

Example 5-8 API response

health status index uuid pri rep store.size pri.store.size
green open logstash-2019.03.05 qgH-QK35QLiBSmGHe0eRWw 5 1 18gb 9gb

There does appear to be some correlation between the storage capacity and the data node
resource consumption during idle indexing. A simple advisory rule is to set the data node
memory to around 15% of the storage capacity required on disk. So for example, storing
100GB of log data would mean setting the data node memory limits to around 15G. So in
practice, this would be 8GB JVM Xmx/Xms and 16GB container memory for each data node.

Based on the examples in this section, the daily index requires around 18GB of storage per
node, per day, and the observed memory usage of the data nodes is around 2.5GB, which is
roughly 14%.

In another cluster, similar behavior was observed where the index storage size was at 61GB
for the current day and the observed memory consumption for the data node (configured with
6gb JVM Xmx/Xms and 12GB container memory) was 8.1GB, so the memory usage was
around 13%.

This is just a baseline to help start with a simple estimate and the ‘15%’ value is likely to
increase if users perform a lot of queries on large sets of data.

JVM heap sizing
A common question when deciding on the memory requirements for an Elasticsearch data
node is how much JVM heap to allocate in proportion to the amount of memory given to the
whole container. Whilst it may seem like something to overlook, the JVM heap size plays an
extremely important role. Elasticsearch is built on the Java programming language and when
the node starts up, the heap is allocated to the Java processes. Java uses this heap to store
data in-memory, enabling faster data processing. Lucene on the other hand is designed to
use the host Operating System (OS) for caching data, so allocating too much heap leaves the
OS and Lucene without enough memory to function correctly, which can cause
out-of-memory (OOM) errors and resulting in an OOM Killed signal from Kubernetes to restart
the container.

When setting the heap size, the following rules should be followed:

� JVM heap should be no more than 50% of the total container memory

� JVM heap should not exceed 32GB (which means the maximum size for an Elasticsearch
node is 64GB memory)

More information about JVM heap sizing can be found at
https://www.elastic.co/guide/en/elasticsearch/guide/master/heap-sizing.html.

These rules also apply to the master, client and Logstash containers however, there is no
Lucene engine running on these nodes so around 60% of the total memory can be allocated
to the JVM heap.
Chapter 5. Logging and monitoring 171

https://www.elastic.co/guide/en/elasticsearch/guide/master/heap-sizing.html

Garbage collection
Java is a garbage-collected language, which means the JVM is in charge of allocating
memory and releasing it. The garbage collection process has some ‘halt’ scenarios where the
JVM halts execution of Elasticsearch so it can trace and collect dead objects in memory to
release it. During this time, nothing happens within Elasticsearch, so no requests are
processed and shards are not relocated. A cluster experiencing long garbage collection
processes will be under heavy loads and Elasticsearch nodes will appear to go offline for brief
periods of time. This instability causes shards to relocate frequently as Elasticsearch tries to
keep the cluster balanced and enough replicas available, as well as increased network traffic
and disk I/O. Therefore, long garbage collection processes are more obvious when
Elasticsearch is slow to respond to requests and experiences high CPU utilization.

Elasticsearch reports that garbage collection is configured to start when the JVM heap usage
exceeds 75% full. If the Elasticsearch nodes are constantly above 75%, the nodes are
experiencing memory pressure, which means not enough is allocated to the heap. If nodes
constantly exceed 85-95% the cluster is at high risk of becoming unstable with frequent
response delays and even out-of-memory exceptions. Elasticsearch provides useful
information about the garbage collector usage on each node using the _nodes/stats API. In
particular, the heap_used_percent metric in the jvm section is worth looking at if you’re
experiencing issues to ensure it is generally below 75% during normal operation. See
Example 5-9.

Example 5-9 Partial API Response for _node/stats endpoint

...
"jvm": {
 "timestamp": 1552999822233,
 "uptime_in_millis": 100723941,
 "mem": {
 "heap_used_in_bytes": 967083512,
 "heap_used_percent": 62,
 "heap_committed_in_bytes": 1556938752,
 "heap_max_in_bytes": 1556938752,
 "non_heap_used_in_bytes": 118415128,
 "non_heap_committed_in_bytes": 127152128,
 "pools": {
 "young": {
 "used_in_bytes": 244530624,
 "max_in_bytes": 429522944,
 "peak_used_in_bytes": 429522944,
 "peak_max_in_bytes": 429522944
 },
 "survivor": {
 "used_in_bytes": 5855696,
 "max_in_bytes": 53673984,
 "peak_used_in_bytes": 53673984,
 "peak_max_in_bytes": 53673984
 },
 "old": {
 "used_in_bytes": 716697192,
 "max_in_bytes": 1073741824,
 "peak_used_in_bytes": 844266000,
 "peak_max_in_bytes": 1073741824
 }
 }
 }
172 IBM Cloud Private System Administrator’s Guide

...

More information on garbage collection monitoring can be found in the Elasticsearch
documentation at
https://www.elastic.co/guide/en/elasticsearch/guide/current/_monitoring_individual
_nodes.html.

Example sizing of an Elasticsearch data node
This section will attempt to provide a base sizing for the Elasticsearch master and data nodes
in a production environment based on the observations in the previous sections. Whilst the
values can’t really be carried over to other environments, the methodology is the same. This
section assumes that workloads representing a realistic production cluster have been used to
test resource consumption, as this analysis is based on that information. The following tests
will use 6 WebSphere Liberty deployments, each one executing a loop to log data to stdout
indefinitely, to simulate a constant log stream. At random periods, a burst of log traffic is
executed by scaling 2 of the deployments temporarily to 2 replicas to simulate some event
and replacement of pods. Whilst this test is performed over only one day, it will be assumed
that this is the normal operational behavior and therefore provide a baseline for the
Elasticsearch cluster sizing.

3 hours into load testing, the index size was monitored and logs were, on average, generated
at a rate of about 0.9GB per hour. See Figure 5-12.

Figure 5-12 Index rate increase

Over 24 hours, this gives 21.6GB of data per day. Retaining this for 14 days gives 302GB and
as this is cluster is installed with two management nodes, each management node requires at
least 151GB available storage. Based on this information, the memory for data nodes can
also be estimated using the ‘15%’ rule mentioned in the previous section. 15% of 21.6GB is
3.25GB, so in this example, setting the JVM Xmx/Xms to 2GB and container limit to 4GB is a
good estimate.

Configuring the resources for Elasticsearch containers
The resource for the ELK stack can be provided during installation, via the config.yaml, or
post-installation using kubectl patch commands. It’s recommended to set the values during
installation, especially if audit logging is enabled, but it does typically require existing
knowledge of the resources needed for the current cluster configuration. Depending on the
resources available on the management nodes, setting the resources for logging too high
may hinder the successful installation of the other management services that may be
enabled, so be sure to have planned the sizing of the management nodes correctly.

Configuring resources during installation
This is the recommended approach, especially if audit logging is enabled as the default
configuration is too low to cater for the platform plus audit logs. To configure the logging
Chapter 5. Logging and monitoring 173

https://www.elastic.co/guide/en/elasticsearch/guide/current/_monitoring_individual_nodes.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_monitoring_individual_nodes.html

resources in the config.yaml, use XX as a template to set the resources for each component.
The installer will then use these values during installation of the logging chart.

Example 5-10 config.yaml values for logging

logging:
 logstash:
 heapSize: "512m"
 memoryLimit: "1024Mi"
 elasticsearch:
 client:
 heapSize: "1024m"
 memoryLimit: "1536Mi"
 data:
 heapSize: "1536m"
 memoryLimit: "3072Mi"
 storage:
 size: "100Gi"
 master:
 heapSize: "1024m"
 memoryLimit: "1536Mi"

elasticsearch_storage_size: "100Gi"

Note that the additional parameter elasticsearch_storage_size is required in addition to
when setting the Elasticsearch data node volume sizes. Additional information and values for
other components such as Filebeat and the curator can be found at
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_metrics/logging
_elk.html.

Configuring resources after installation
Using the kubectl patch command, it’s simple to increase the resources for each component
after they are deployed in IBM Cloud Private. Each component has a rolling update strategy,
so the logging services should still be available while Kubernetes is redeploying a new node
with the additional resources.

Use the below examples as templates to set the memory limits for a given component,
replacing values where necessary.

Example 5-11 kubectl patch for Elasticsearch client node

kubectl -n kube-system patch deployment logging-elk-client --patch '{ "spec": {
"template": { "spec": { "containers": [{ "env": [{ "name": "ES_JAVA_OPTS",
"value": "-Xms2048m -Xmx2048m" }], "name": "es-client", "resources": { "limits":
{ "memory": "3072M" } } }] } } } }'

Example 5-12 kubectl patch for Elasticsearch Logstash node

kubectl -n kube-system patch deployment logging-elk-logstash --patch '{ "spec": {
"template": { "spec": { "containers": [{ "env": [{ "name": "ES_JAVA_OPTS",
"value": "-Xms1024m -Xmx1024m" }], "name": "logstash", "resources": { "limits": {
"memory": "2048M" } } }] } } } }'

Example 5-13 kubectl patch for Elasticsearch data node

kubectl -n kube-system patch statefulset logging-elk-data --patch '{ "spec": {
"template": { "spec": { "containers": [{ "env": [{ "name": "ES_JAVA_OPTS",
174 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_metrics/logging_elk.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_metrics/logging_elk.html

"value": "-Xms3072m -Xmx3072m" }], "name": "es-data", "resources": { "limits": {
"memory": "6144M" } } }] } } } }'

Example 5-14 kubectl patch for Elasticsearch master node

kubectl -n kube-system patch deployment logging-elk-master --patch '{ "spec": {
"template": { "spec": { "containers": [{ "env": [{ "name": "ES_JAVA_OPTS",
"value": "-Xms2048m -Xmx2048m" }], "name": "es-master", "resources": { "limits":
{ "memory": "4096M" } } }] } } } }'

These commands are sufficient to scale the containers vertically, but not horizontally. Due to
the cluster settings being integrated in to the Elasticsearch configuration, you cannot simply
add and remove master or data nodes using standard Kubernetes capabilities such as the
HorizontalPodAutoscaling resource.

Using kubectl patch should be used for testing to find a suitable value. Updating the logging
resources in this way will not persist during chart or IBM Cloud Private upgrades. Permanent
configuration changes can only be made using helm upgrade. To update the JVM and
container memory for the data nodes, for example, run the upgrade:

helm upgrade logging ibm-icplogging-2.2.0.tgz --reuse-values --set
elasticsearch.data.heapSize="3072m" --set elasticsearch.data.memoryLimit="6144Mi"
--force --no-hooks --tls

Scaling an Elasticsearch cluster
Scaling an Elasticsearch node in IBM Cloud Private entirely depends on the type of node, the
volume of logs and the performance of the Elasticsearch cluster against the logs generated.
Sending thousands of smaller, simple log messages per second may have a different impact
than a fewer number of larger log messages, so the data nodes may perform differently when
configured as several smaller nodes or a few larger nodes. What works best in an
environment generally comes down to experience by tuning the Elasticsearch cluster against
your workloads to find which configuration provides the best performance for the type of log
data the deployed applications are producing. Consider the following scenarios if a banking
application is sending thousands of transactions and transaction logs to Elasticsearch every
second:

� Logstash may be the bottle neck (assuming the host network can handle this volume of
traffic anyway) and will require either more memory or additional replicas deployed to meet
the high demand.

� if the transaction data generated is a very large data set with lots of fields, then the data
node may be the bottle neck as it has to index such a large volume of data, so additional
memory or even additional data nodes may be required.

� Logstash may also struggle with low resources and large volumes of JSON formatted
data, as it will parse the JSON and bring fields to the root level.

� As the master node is responsible for tracking which data nodes all the documents are
stored on, thousands of logs means the master node has to track thousands of documents
which can be difficult to achieve without enough memory and CPU.

� When querying the stored data, the client node has to parse the potentially complex or
time-based lucene query and lack of memory can result in request timeouts.

With the above in mind it’s important to be able to scale the components as and when it is
required.

� Logstash and client pods - increase the number of replicas by using Helm:
Chapter 5. Logging and monitoring 175

helm upgrade logging ibm-icplogging-2.2.0.tgz --reuse-values --set
elasticsearch.client.replicas=3 --set logstash.replicas=3 --force --no-hooks
--tls

� Master pods - run the helm upgrade command passing the desired number of replicas
(this should ideally be the number of management nodes in the cluster, however it will still
work).

helm upgrade logging ibm-icplogging-2.2.0.tgz --reuse-values --set
elasticsearch.master.replicas=3 --recreate-pods --force --tls

� Data pods - ensure there are sufficient management nodes available. Data nodes have an
affinity to management nodes and a hard anti-affinity to other data pods, so no more than
one data pod will run on a single management node at any one time.

helm upgrade logging ibm-icplogging-2.2.0.tgz --reuse-values --set
elasticsearch.data.replicas=3 --recreate-pods --force --no-hooks --tls

Impacts of audit logging
Planning for audit logging is crucial to allow the logging services to start successfully and
have enough resources to handle the large volume of data being sent to the Elasticsearch
cluster. This section shows the how enabling audit logging can affect a cluster and the tests
were performed in a lab environment, which may differ from your results. The tests, however
can provide a helpful insight in to methodology used for analyzing the cluster and deriving the
resources required when enabling audit logging by using the trial X-Pack monitoring and
Prometheus tools already available in IBM Cloud Private. The audit logging in this example
was configured after installation of IBM Cloud Private, following the IBM Knowledge Center
article at
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/user_management/auditi
ng_icp_serv.html.

Whilst audit logging was being enabled, the workloads from the previous sections were left
running to determine the effect of enabling audit logging has on a running cluster with an
already active Elasticsearch.

Figure 5-13 on page 177 shows that the cluster became unresponsive for a short period of
time whilst the main pods that generate audit logs (plus kubernetes api-server audit logging)
were restarted and began generating data in the newly added audit index.
176 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/user_management/auditing_icp_serv.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/user_management/auditing_icp_serv.html

Figure 5-13 Audit log enabled

Figure 5-14 shows one of the data nodes becoming unresponsive after being overloaded due
to high CPU utilization.

Figure 5-14 Data node becoming unresponsive
Chapter 5. Logging and monitoring 177

The graph of the JVM heap size on a data node shows that the value of 3GB Xmx/Xms and
6GB container memory was sufficient, as it maintained a steady maximum of around 2.3GB
(Figure 5-15).

Figure 5-15 JVM heap size

Checking the total memory consumed during this time period in Prometheus also shows
similar results, with the container memory peaking at around 4.5GB. See Figure 5-16.

Figure 5-16 Container memory usage with audit logging

As the audit log generation uses Fluentd, data is sent directly to Elasticsearch, so there is no
need to consider Logstash.

The client and master nodes generally stayed stable throughout the test. The sudden hike for
one of the client nodes in Figure 5-17 on page 179 is due to a new replica starting in advance
of enabling audit logging.
178 IBM Cloud Private System Administrator’s Guide

Figure 5-17 New replica starting

Based on the above results, Table 5-2 shows the minimum advised resources for a small High
Availability cluster using 3 master nodes, 2 proxy nodes, 2 management nodes, 1
Vulnerability Advisor node and 3 worker nodes.

Table 5-2 Advised ELK resource limits for audit logging with high availability

In smaller clusters, resources can be reduced. Audit logging was tested on a smaller, 6 node
cluster (1 master, 1 proxy, 1 management and 3 workers) and the minimum resource limits in
Table 5-3 are sufficient for audit logging.

Table 5-3 Minimum ELK resource limits for audit logging in small clusters

In larger, more active clusters, or during installation of IBM Cloud Private with audit logging
and Vulnerability Advisor enabled these values will almost certainly increase, so plan
accordingly and be patient when finding the correct resource limits. During times of heavy
use, it may appear as though Elasticsearch is failing, but it usually does a good job of
catching up after it has had time to process, provided it has the appropriate resources. An
easy mistake users often make is thinking that it’s taking too long and pods are stuck, so they
are forcefully restarted and the process takes even longer to recover from. During busy
periods of heavy indexing or data retrieval, it’s common to observe high CPU utilization on the
management nodes, however this is usually an indicator that there is not enough memory

Name Number of Nodes Memory

client 2 3GB (2GB Xmx/Xms)

master 2 1.5GB (1GB Xmx/Xms)

data 2 6GB (3GB Xmx/Xms)

logstash 2 1GB (512MB Xmx/Xms)

Name Number of Nodes Memory

client 1 3GB (2GB Xmx/Xms)

master 1 1.5GB (1GB Xmx/Xms)

data 1 4GB (2GB Xmx/Xms)

logstash 1 1GB (512MB Xmx/Xms)
Chapter 5. Logging and monitoring 179

allocated to the JVM heap and it should be monitored carefully to ensure that the CPU returns
to a normal idle value.

Careful monitoring of the container memory is advised and container memory should be
increased if there are several sudden dips or gaps in the Prometheus graphs while the
container is under heavy load, as this is typically a sign that the container is restarting.
Evidence of this is in Figure 5-18 on page 180, where a data pod had reached it’s 3GB
container limit (monitored using Prometheus) and suddenly dropped, indicating an
out-of-memory failure.

Figure 5-18 Out-of-memory failure

As a reference, Example 5-15 provides the base YAML to add to the config.yaml to set the
logging resources to the above recommendations.

Example 5-15 Recommended initial logging values in the config.yaml

logging:
 logstash:
 heapSize: "512m"
 memoryLimit: "1024Mi"
 elasticsearch:
 client:
 heapSize: "2048m"
 memoryLimit: "3072Mi"
 data:
 heapSize: "3072m"
 memoryLimit: "6144Mi"
 master:
 heapSize: "1024m"
180 IBM Cloud Private System Administrator’s Guide

 memoryLimit: "1536Mi"

Other factors to consider
As mentioned throughout this chapter, tuning the resources for the platform ELK can take
considerable effort if capacity planning has not been done for this configuration before.
Despite audit logging, a range of other factors can also play a part in deciding the resources
required for both the ELK stack and the management nodes hosting the components:

� Data-at-rest encryption - IBM Cloud Private provides the capability to encrypt data stored
on disk using dm-crypt. This, for many Cluster Administrators, is a must-have feature to be
security compliant. This does, however, mean that there may be a performance penalty in
terms of CPU utilization on the management nodes hosting ELK, so plan for additional
resources on the management nodes to cater for encryption. More information can be
found at
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/installing/fips_encryp
t_volumes.html.

� Data-in-transit encryption - IBM Cloud Private provides the capability to encrypt data traffic
across the host network using IPSec. Similarly to data-at-rest encryption, this may have a
performance impact on the CPU utilization. More information can be found at
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/installing/fips_encryp
t_volumes.html.

� Number of nodes - the number of nodes in a cluster largely affects the performance,
mainly due to the number of additional Filebeat containers all streaming data to Logstash.
Consider scaling Logstash to more replicas or increasing CPU when additional worker
nodes with workloads are added to the cluster.

� Storage - Elasticsearch performs better with high performance storage. It’s recommended
to use the highest performing storage available for more efficient indexing, storage and
retrieval of data.

5.2.6 Role based access control

The platform ELK has role based access control (RBAC) built in to the deployments that will
filter API responses to the Elasticsearch client pods to only return results relevant to the
requesting users accessible namespaces. This means that a user that only has access to
namespace1 should not see logs related to namespace2.

The RBAC modules consists of Nginx containers bundled with the client and Kibana pods to
provide authentication and authorization to use the ELK stack. These Nginx containers use
the following rules

1. A user with the role ClusterAdministrator can access any resource, whether audit or
application log.

2. A user with the role Auditor is only granted access to audit logs in the namespaces for
which that user is authorized.

3. A user with any other role can access application logs only in the namespaces for which
that user is authorized.

4. Any attempt by an auditor to access application logs, or a non-auditor to access audit logs,
is rejected.

The RBAC rules provide basic data retrieval control for users that access Kibana. The rules
do not prevent seeing metadata such as log field names or saved Kibana dashboards.
User-saved artifacts in Kibana are all saved in Elasticsearch in the same default index of
/.kibana. This means that all users using the same instance of Kibana can access each
Chapter 5. Logging and monitoring 181

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/installing/fips_encrypt_volumes.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/installing/fips_encrypt_volumes.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/installing/fips_encrypt_volumes.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/installing/fips_encrypt_volumes.html

others saved searches and dashboards and view any other custom fields added to the data.
Without an X-Pack or Search Guard Enterprise license, no other native multi-tenant features
are available to address this situation in a single Kibana instance. For information about
deploying multiple Kibana instances, see 5.2.8, “Management” on page 188.

5.2.7 Using Kibana

This section will cover some basic tools available in the Kibana User Interface (UI) to provide
some useful functions that allow a user to view logs, create graphical representations of the
data and custom dashboards.

The Kibana User Interface (UI) is split in to 6 sections:

� Discover

� Visualize

� Dashboards

� Timelion

� Dev Tools

� Management

If X-Pack functions were enabled during deployment, they will also appear in the UI.

Discover
This is the first page shown automatically when logging in to Kibana. By default, this page will
display all of your ELK stack’s 500 most recently received logs in the last 15 minutes from the
namespaces you are authorized to access. Here, you can filter through and find specific log
messages based on search queries.

The Kibana Discover UI contains the following elements:

� Search Bar: Use this to search specific fields and/or entire messages

� Time Filter: Top-right (clock icon). Use this to filter logs based on various relative and
absolute time ranges

� Field Selector: Left, under the search bar. Select fields to modify which ones are
displayed in the Log View

� Log Histogram: Bar graph under the search bar. By default, this shows the count of all
logs, versus time (x-axis), matched by the search and time filter. You can click on bars, or
click-and-drag, to narrow the time filter

The search bar is the most convenient way to search to string of text in log data. It uses a
fairly simple language structure, called the Lucene Query Syntax. The query string is parsed
into a series of terms and operators. A term can be a single word or a phrase surrounded by
double quotes which searches for all the words in the phrase, in the same order. Figure 5-19
on page 183 shows searching Kibana for log data containing the phrase “websphere-liberty”
182 IBM Cloud Private System Administrator’s Guide

Figure 5-19 Searching logs in Kibana

Searches can be further refined, for example by searching only for references to the default
namespace. Using filters enables users to restrict the results shown only to contain the
relevant field filters, as shown in Figure 5-20.

Figure 5-20 Kibana search filter

And the results are restricted to this filter only, as seen in Figure 5-21.
Chapter 5. Logging and monitoring 183

Figure 5-21 Kibana filtered search

The use of fields also allows more fine grained control over what is displayed in the search
results, as seen in Figure 5-22 where the fields kubernetes.namespace,
kubernetes.container_name and log are selected.

Figure 5-22 Kibana filtered search with selected fields

More detailed information is available in the Elasticsearch documentation at
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl-query-string
-query.html#query-string-syntax.

Visualize
The Visualize page lets you create graphical representations of search queries in a variety of
formats, such as bar charts, heat maps, geographical maps and gauges.

This example will show how a simple pie chart is created, configured to show the top 10
containers that produce the highest number of logs per namespace from a Websphere
Liberty Deployment that is running in different namespaces.

To create a visualization, select the + icon, or Create Visualization, if none exist, then
perform the following steps

1. Select the indices that this visualization will apply to, such as logstash. You may only have
one if the default configuration has not been modified or audit logging is not enabled.

2. Select Pie Chart from the available chart selection.
184 IBM Cloud Private System Administrator’s Guide

https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl-query-string-query.html#query-string-syntax
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl-query-string-query.html#query-string-syntax

3. In the search box, enter the query that will generate the data and apply the relevant filters.
This is the same as writing a query and filters in the Discover section. In this example the
term ‘websphere’ is used to search for instances of ‘websphere’ in the log data.

4. In the left side pane, select the data tab, select metrics, then set slice size to Count.

5. In the buckets section, select Split Slices and set the following values:

a. Set Aggregation to Terms.

b. Set Field to kubernetes.namespace.keyword.

c. Set Order By to metric: Count.

d. Set Order to Descending and Size to 10.

6. Select the Play icon at the top of this pane and the pie chart should display with the data
from the search query. In this case, it will show the top 10 namespaces that contain the
highest number of logs generated by websphere containers. You can use the filters to
exclude certain namespaces, such as kube-system.

The result should look similar to Figure 5-23. Save the visualization using the Save link at the
top of the page, as this will be used later to add to a dashboard.

Figure 5-23 Kibana visualization pie chart

Explore the other visualizations available, ideally creating a few more as these can be used to
create a more meaningful Kibana Dashboard.

Dashboards
The Kibana Dashboard page is where you can create, modify and view your own custom
dashboards where multiple visualizations can be combined on to a single page and filter them
by providing a search query or by selecting filters. Dashboards are useful for when you want
to get an overview of your logs and make correlations among various visualizations and logs.

To create a new Dashboard, select the + icon, or Create Visualization, if none exist. Select
Add Visualization, then select the visualizations created earlier you want to display in this
dashboard. From here, you further filter the data shown in the individual visualizations by
entering a search query, changing the time filter, or clicking on the elements within the
visualization. The search and time filters work just like they do in the Discover page, except
Chapter 5. Logging and monitoring 185

they are only applied to the data subsets that are presented in the dashboard. You can save
this dashboard by selecting Save at the top of the page. Figure 5-24 shows how this
dashboard looks with two visualizations added.

Figure 5-24 Kibana dashboard

Timelion
Timelion is a time series data visualizer that enables you to combine totally independent data
sources within a single visualization. It’s driven by a simple expression language you use to
retrieve time series data, perform calculations to tease out the answers to complex questions
and visualize the results.

The following example uses Timelion to compare time-series data about the number of logs
generated in the past hour, compared to the number of logs generated this hour. From this,
you can compare trends and patterns in data at different periods of time. For IBM Cloud
Private, this can be useful to see trends in the logs generated on a per-pod basis. For
example, the chart in Figure 5-25 compares the total number of logs in the current hour
compared with the previous hour and the chart in Figure 5-26 on page 187 compares the
number of logs generated by the image-manager pods in the last hour.

Figure 5-25 Timelion chart comparing total logs in the current hour compared to the previous hour
186 IBM Cloud Private System Administrator’s Guide

Figure 5-26 Timelion chart comparing image-manager log count in the last hour

These charts can also be saved and added to a Dashboard to provide even more analysis on
the log data stored in Elasticsearch.

More information about Timelion can be found in the Elasticsearch documentation at
https://www.elastic.co/guide/en/kibana/5.5/timelion.html.

Dev Tools
The Dev Tools page is primarily used to query the Elasticsearch API directly and can be used
in a multitude of ways to retrieve information about the Elasticsearch cluster. This provides an
easy way to interact with the Elasticsearch API without having to execute the commands from
within the Elasticsearch client container. For example, Figure 5-27 shows executing the
_cat/indices API command to retrieve a list of indices

Figure 5-27 API command to retrieve the list of indices

Important: One thing to note about this tool is that all users with access to Kibana
currently have access to the Elasticsearch API, which at the time of writing is not RBAC
filtered, so all users can run API commands against Elasticsearch. It is possible to disable
the Dev Tools page, by adding console.enabled: false to the kibana.yml content in the
logging-elk-kibana-config ConfigMap in the kube-system namespace and restarting the
Kibana pod.
Chapter 5. Logging and monitoring 187

https://www.elastic.co/guide/en/kibana/5.5/timelion.html

Elasticsearch extensively covers the use of the API in it’s documentation at
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/cat.html, so it is not
covered in this chapter.

5.2.8 Management

The Management page allows for modifying the configuration of several aspects of Kibana.
Most of the settings are not configurable, as they are controlled by the use of a configuration
file within the Kibana container itself, but the Management page lets you modify settings
related to the stored user data, such as searches, visualizations, dashboards and indices.

Deploying ELK in IBM Cloud Private
Deploying ELK stacks to an IBM Cloud Private cluster is a common practice when there is a
need to segregate the platform logging from the application logging. Elasticsearch is excellent
at handling many user deployments at scale, but it makes sense to use separate logging
systems, especially when a specific application has a high demand for logging and could
potentially disrupt the platform logging services by overloading it in the event of a disaster.

Adding additional ELK stacks does not come without it’s price. As described throughout this
chapter, logging takes a toll on the resources available within a cluster, favoring a lot of
memory to function correctly. When designing a cluster, it’s important to take in to
consideration whether multiple ELK stacks are required, and if so, the resources required
using the capacity planning methods discussed in “Capacity planning” on page 164. The
same care should be taken when designing clusters for production that include multiple ELK
stacks for applications and the configuration should be thoroughly tested in the same way the
platform ELK is tested for resiliency. Failure to do so will result in the loss of logging services
and potentially loss of data if Kubernetes has to restart some components due bad design by
not having enough memory to fulfill the logging requirements for an application.

Planning for multiple ELK stacks should, in theory, be a little easier than figuring out how
much the platform ELK should be scaled to meet the needs of both the platform and the
applications it is hosting. This is because developers typically know how much log data their
application (or group of applications) produces based on experience or native monitoring
tools. In this situation, you can solely focus on what the application needs, as opposed to
catering for the unknowns that the platform brings.

Architectural considerations
Before deploying additional ELK stacks to the cluster, think about how it will affect any
resources available for the namespace. Resource requirements for ELK can be quite high, so
if you are deploying ELK to an individual namespace where users operate, take this into
consideration when designing Resource Quotas for that namespace. Best practice is to
deploy ELK to it’s own namespace to isolate it from user workloads, and users themselves if
necessary.

The ELK stack requires elevated privileges in order to function correctly, in particular, it
requires the IPC_LOCK privilege which is not included in the default Pod Security Policy. If ELK
is not being deployed to the kube-system namespace, the Service Account that ELK will use
(typically the default Service Account for the hosting namespace) should be configured to use
a Pod Security Policy that permits the use of IPC_LOCK. This can be done by creating a new
Pod Security Policy for ELK and by creating a new ClusterRole and RoleBinding. Here there
are two options to consider:

1. Deploying the ELK stack to the kube-system namespace

2. Deploying the ELK stack to the user namespace
188 IBM Cloud Private System Administrator’s Guide

https://www.elastic.co/guide/en/elasticsearch/reference/5.5/cat.html

3. Deploying the ELK stack to another dedicated namespace

Deploying the ELK stack to the users namespace means that the users that have access to
the namespace also have access to view the resources within it. This means that users will be
able to perform operations on the ELK pods (depending on the user roles) including viewing
the CA certificates used to deploy the ELK stack security configuration (if ELK is deployed
with security). By giving a service account within the user namespace elevated privileges,
you’re also allowing users to acquire those privileges, so ensure that the IPC_LOCK capability
does not conflict with any security policies. IPC_LOCK enables mlock to protect the heap
memory from being swapped. You can read more about mlock at
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_MRG/1.3/html/Real
time_Reference_Guide/sect-Realtime_Reference_Guide-Memory_allocation-Using_mlock_t
o_avoid_memory_faults.html.

If this is an issue, consider deploying the additional ELK stacks to a separate namespace.
Additional namespaces can be used to host the additional ELK stacks and utilise the standard
RBAC mechanisms within IBM Cloud Private to prevent unauthorized users from accessing
the ELK pods. However in this scenario (providing security is enabled), users in other
namespaces would not be able to access the Kibana pods to view logs or the status for
troubleshooting. If, as a Cluster Administrator, you do not require users to monitor the Kibana
pods, then restricting access to it is recommended. If users should be able to view logs and
the status of the Kibana pod (to troubleshoot access issues), an additional namespace can be
used to host the Kibana pod, where users can be given a 'Viewer' role. This still provides
access to the Kibana pods for diagnostics but prevents users from making any changes to it’s
state or configuration, further protecting the ELK stack from malicious intent.

For development clusters, deploying the ELK stack to user namespaces may be sufficient. For
production clusters where access to the core ELK components should be restricted,
deploying the ELK stack to a dedicated management namespace is recommended.

Standard versus managed mode
The ELK Helm chart provides a mode parameter that defines whether or not ELK is deployed
as ‘managed’ or ‘standard’. Managed mode is generally reserved to replace the platform ELK
and contains several core functions that are only enabled when the ELK stack is deployed to
the kube-system namespace, which of course is where the platform ELK is hosted. Deploying
several managed ELK stacks will not work without additional modification and is not a
recommended configuration. It is possible to deploy a managed ELK stack to another
namespace, but additional configuration is still needed and is not covered in this book. The
main functional differences between managed and managed mode are summarized in
Table 5-4.

Table 5-4 Comparison of managed and standard mode

Each mode has pros and cons and the mode to choose entirely depends on what the ELK
requirements are. For example, if the requirement is to deploy only one additional ELK stack
dedicated to application logs, but it should be secure, implement RBAC mechanisms and not
consume worker node resources, then the managed mode is suitable. The drawback is that it

Attribute Standard Managed

Kibana Access method NodePort Ingress

Access Security None ICP Management Ingress

RBAC No Yes

Host Affinity Worker nodes Management nodes
Chapter 5. Logging and monitoring 189

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_MRG/1.3/html/Realtime_Reference_Guide/sect-Realtime_Reference_Guide-Memory_allocation-Using_mlock_to_avoid_memory_faults.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_MRG/1.3/html/Realtime_Reference_Guide/sect-Realtime_Reference_Guide-Memory_allocation-Using_mlock_to_avoid_memory_faults.html

requires modifications to the deployed resources to work alongside the platform ELK. If
multiple ELK stacks are needed for team or application dedicated ELK stacks where the use
of NodePort (no authentication required) is acceptable, then standard mode is suitable.

The recommended way to deploy additional ELK stacks is by using the standard mode.
Managed mode is possible to achieve, but introduces a lot of additional configuration to
enable all the beneficial features of managed mode and it is not covered in this book.

Storage
Data node replicas in each deployment of ELK require a dedicated PersistentVolume (PV)
and PersistentVolumeClaim (PVC). If a dynamic storage provider is available, ELK can be
configured to use this during deployment. If dynamic provisioning is not available, then
suitable PVs must be created first.

Deploying ELK stacks
This section will deploy a new standard mode ELK stack to the elk namespace and this
namespace will be used in all subsequent example commands.

To create the namespace, use kubectl create namespace elk and then label is using
kubectl label namespace elk -l name=elk. Alternatively, use the YAML definition in
Example 5-16.

Example 5-16 elk namespace YAML definition

apiVersion: v1
kind: Namespace
metadata:
 labels:
 name: elk
 name: elk

RBAC
The ELK stack requires privileged containers, IPC_LOCK and SYS_RESOURCE capabilities,
which means giving the default Service Account (SA) in the elk namespace elevated
privileges, as the default restricted policy is too restrictive for ELK to function. To allow this, a
new Pod Security Policy (PSP) is required, as well as a Cluster Role and Role Binding to the
new PSP. To create the required RBAC resources perform the following steps

1. Copy the elk-psp.yaml in Example 5-17 to a local file called elk-psp.yaml and create it in
Kubernetes using kubectl create -f elk-psp.yaml.

Example 5-17 elk-psp.yaml

apiVersion: extensions/v1beta1
kind: PodSecurityPolicy
metadata:
 name: ibm-elk-psp
spec:
 allowPrivilegeEscalation: true
 privileged: true
 allowedCapabilities:
 - CHMOD
 - CHOWN
 - IPC_LOCK
 - SYS_RESOURCE
 forbiddenSysctls:
190 IBM Cloud Private System Administrator’s Guide

 - '*'
 fsGroup:
 rule: RunAsAny
 runAsUser:
 rule: RunAsAny
 seLinux:
 rule: RunAsAny
 supplementalGroups:
 rule: RunAsAny
 volumes:
 - configMap
 - emptyDir
 - projected
 - secret
 - downwardAPI
 - persistentVolumeClaim
 - hostPath

Alternatively, download it from
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-
s-Guide/tree/master/Ch7-Logging-and-monitoring/Deploying-ELK/elk-psp.yaml

2. Create a Cluster Role to enable the use of the new PSP

kubectl -n elk create clusterrole elk-clusterrole --verb=use
--resource=podsecuritypolicy --resource-name=ibm-elk-psp

3. In the elk namespace, create a Role Binding to the ibm-elk-psp Cluster Role

kubectl -n elk create rolebinding elk-rolebinding --clusterrole=elk-clusterrole
--serviceaccount=elk:default

4. Verify the default Service Account in the elk namespace can use the ibm-elk-psp PSP

kubectl auth can-i --as=system:serviceaccount:elk:default -n elk use
podsecuritypolicy/ibm-elk-psp

This should output a simple yes or no. If the output is no, check the correct names have
been used when creating the Cluster Role or Role Binding.

After the above steps, RBAC is configured with the correct privileges for ELK.

Pulling images
As ELK is deployed to a dedicated namespace, it’s necessary to create an image pull secret
so that it can pull the ELK images from the ibmcom namespace that contains the platform
images.

Create an image pull secret in the elk namespace using the platform admin credentials.

kubectl -n elk create secret docker-registry ibmcomregkey
--docker-server="mycluster.icp:8500/ibmcom" --docker-username="admin"
--docker-password="admin" --docker-email="admin@docker.io"

Replace mycluster.icp and the username/password credentials with the values for the
environment. This Secret will be used later to allow the ELK pods to pull images from the
ibmcom namespace.

Security
It’s recommended to enable security on all deployed ELK stacks. You have the option of using
the platform generated Certificate Authority (CA), supplying your own or letting Elasticsearch
Chapter 5. Logging and monitoring 191

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Deploying-ELK/

generate certificates internally. The recommended approach is to supply your own CA, or
create an entirely new CA specifically for each ELK stack to provide as much isolation as
possible in clusters using multiple ELK stacks. If a malicious user has access to the CA
key-pair used for each ELK deployment, it’s possible for that user to gain access to the other
ELK stacks. If the cluster is a ‘trusted environment’ model, then this may not be a problem, but
for other clusters where security and isolation of log data is a key requirement, it is
recommended to use a new CA key-pair for each ELK deployment.

To create a dedicated CA for each ELK stack use the openssl command in Example 5-18
replacing the subject details if necessary.

Example 5-18 Creating a new CA using openssl

openssl req -newkey rsa:4096 -sha256 -nodes -keyout ca.key -x509 -days 36500 -out
ca.crt -subj "/C=US/ST=NewYork/L=Armonk/O=IBM Cloud Private/CN=www.ibm.com"

This will output a ca.crt and ca.key file to your local machine. Run the command in
Example 5-20 to create a new key-pair Kubernetes Secret from these files.

Example 5-19 Create secret from new CA

kubectl -n elk create secret generic elk-ca-secret --from-file=ca.crt
--from-file=ca.key

This secret can be used later when deploying ELK.

To specify your own CA to use when deploying additional ELK stacks, three requirements
must be met:

� The CA must be stored in a Kubernetes secret.

� The secret must exist in the namespace to which the ELK stack is deployed.

� The contents of the certificate and its secret key must be stored in separately named fields
(or keys) within the Kubernetes secret.

If the keys are stored locally, run the command in Example 5-20 to create a new secret,
replacing <path-to-file> with the file path of the files.

Example 5-20 Create secret from custom CA

kubectl -n elk create secret generic elk-ca-secret
--from-file=<path-to-file>/my_ca.crt --from-file=<path-to-file>/my_ca.key

Alternatively, Example 5-21 shows the YAML for a sample secret using defined CA
certificates. You’ll need to paste the contents of the my_ca.crt and my_ca.key in the YAML
definition in your preferred editor.

Example 5-21 YAML definition for my-ca-secret

apiVersion: v1
 kind: Secret
 metadata:
 name: my-ca-secret
 type: Opaque
 data:
 my_ca.crt: ...
 my_ca.key: ...
192 IBM Cloud Private System Administrator’s Guide

This secret can be used later when deploying ELK.

If your own CA is not supplied, and the default IBM Cloud Private cluster certificates are
suitable, they are located in the cluster-ca-cert Secret in the kube-system namespace. As
ELK is deployed to another namespace, it’s important to copy this Secret to that namespace,
otherwise the deployment will fail trying to locate it. This is only relevant if you are not using
your own (or generated) CA for ELK. Use the command in Example 5-22 to copy the
cluster-ca-cert to the elk namespace, using sed to replace the namespace name without
manually editing it.

Example 5-22 Copying cluster-ca-cert to elk namespace

kubectl -n kube-system get secret cluster-ca-cert -o yaml | sed 's/namespace:
kube-system/namespace: elk/g' | kubectl -n elk create -f -

Deploying ELK
The ibm-icplogging Helm chart contains all the Elasticsearch, Logstash, Kibana and Filebeat
components required to deploy an ELK stack to an IBM Cloud Private cluster. The chart
version used in this deployment is 2.2.0, which is the same as the platform ELK stack
deployed during cluster installation in IBM Cloud Private Version 3.1.2 to ensure the images
used throughout the platform are consistent between ELK deployments. This Helm chart can
be retrieved from the mgmt-charts repository, as it is not (at the time of writing) published in
the IBM public Helm chart repository.

The chart will install the following ELK components as pods in the cluster:

� client

� data

� filebeat (one per node)

� logstash

� master

� kibana (optional)

The goal of this example ELK deployment is to provide logging capabilities for applications
running in the production namespace. ELK will be configured to monitor the dedicated
production worker nodes, retrieving log data from applications in that namespace only.

To deploy the ELK Helm chart, perform the following steps:

1. Log in to IBM Cloud Private using cloudctl to ensure kubectl and helm command line
utilities are configured.

2. If dynamic storage provisioning is enabled in the cluster, this can be used. If dynamic
storage is not available, PersistentVolumes should be created prior to deploying ELK. In
this deployment, the namespace isolation features in IBM Cloud Private 3.1.2 have been
used to create a dedicated worker node for ELK. This means that a LocalVolume
PersistentVolume can be used, as ELK will be running on only one node. Example 5-23 is
a YAML definition for a PersistentVolume that uses LocalVolume, so the data node uses
the /var/lib/icp/applogging/elk-data file system on the hosting dedicated worker node.

Example 5-23 YAML definition for a Persistent Volume using LocalVolume on a management node

apiVersion: v1
kind: PersistentVolume
metadata:
 name: applogging-datanode-172.24.19.212
Chapter 5. Logging and monitoring 193

spec:
 accessModes:
 - ReadWriteOnce
 capacity:
 storage: 20Gi
 local:
 path: /var/lib/icp/applogging/elk-data
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - 172.24.19.212
 persistentVolumeReclaimPolicy: Retain
 storageClassName: logging-storage-datanode

In this deployment, two of these volumes are created; one for each management node in
the cluster.

3. Retrieve the current platform ELK chart values and save to a local file. These values can
be used to replace the defaults set in the Helm chart itself so that the correct images are
used.

helm get values logging --tls > default-values.yaml

4. Create a file called override-values.yaml. This will be the customized configuration for
ELK and is required to override some of the default values to tailor the resource names,
curator duration, security values or number of replicas of each component in this
deployment. Use the values in Example 5-24 as a template.

Example 5-24 override-values.yaml

cluster_domain: cluster.local
mode: standard
nameOverride: elk
general:
 mode: standard
image:
 pullPolicy: IfNotPresent
 pullSecret:
 enabled: true
 name: ibmcomregkey
curator:
 name: log-curator
 app:
 count: 28
elasticsearch:
 client:
 replicas: "1"
 name: client
 data:
 name: data
 replicas: "1"
 storage:
 persistent: true
 size: 20Gi
194 IBM Cloud Private System Administrator’s Guide

 storageClass: logging-storage-datanode
 useDynamicProvisioning: false
 master:
 name: master
 replicas: "1"
 name: elasticsearch
filebeat:
 name: filebeat-ds
 scope:
 namespaces:
 - production
 nodes:
 production: "true"
kibana:
 name: kibana
 install: true
 external:
logstash:
 name: logstash
 replicas: "1"
security:
 ca:
 external:
 certFieldName: ca.crt
 keyFieldName: ca.key
 secretName: elk-ca-secret
 origin: external
 enabled: true
xpack:
 monitoring: true

These values should be tailored to meet the requirements. If dynamic provisioning is
enabled in the cluster, set elasticsearch.data.storageClass to the appropriate storage
class name and elasticsearch.data.useDynamicProvisioning value to true.

In this values file, the kibana.external is intentionally left empty, so that Kubernetes will
automatically assign a NodePort value from the default NodePort range. At the time of
writing, the Helm chart does not support automatic NodePort assignment when deploying
through the IBM Cloud Private catalog user interface, due to validation on empty fields.
Therefore auto-assignment is only possible by deploying the Helm chart through the Helm
CLI.

Additional values not in the override-values.yaml can also be assigned using the --set
parameter in the helm install command.

5. Deploy the ibm-icplogging-2.2.0.tgz Helm chart using helm install, passing the values
files created earlier. The values files order is important as Helm will override the values
from each file in sequence. For example, the values set in override-values.yaml will
replace any values in the default-values.yaml file as priority is given to the right-most file
specified.

helm install ibm-icplogging-2.2.0.tgz --name app-logging --namespace elk -f
default-values.yaml -f override-values.yaml --tls

After some time, all resources should have been deployed to the elk namespace. To view
all pods in the release, use kubectl -n elk get pods -l release=app-logging

[root@icp-ha-boot cluster]# kubectl -n elk get pods -l release=app-logging
NAME READY STATUS RESTARTS AGE
Chapter 5. Logging and monitoring 195

app-logging-elk-client-868db5cbd9-6mhjl 1/1 Running 0 1h
app-logging-elk-data-0 1/1 Running 0 1h
app-logging-elk-elasticsearch-pki-init-78bzt 0/1 Completed 0 1h
app-logging-elk-kibana-86df58d79d-wfgwx 1/1 Running 0 1h
app-logging-elk-kibana-init-m9r92 0/1 CrashLoopBackOff 22 1h
app-logging-elk-logstash-68f996bc5-92gpd 1/1 Running 0 1h
app-logging-elk-master-6c64857b5b-x4j9b 1/1 Running 0 1h

6. Retrieve the NodePort for the Kibana service:

kubectl -n elk get service kibana
-o=jsonpath='{.spec.ports[?(@.port==5601)].nodePort}'

7. Use the returned port to access Kibana via an IBM Cloud Private node. For example using
the proxy

http://<proxy-ip>:<nodeport>

This will display the Kibana dashboard. See Figure 5-28.

Figure 5-28 New Kibana user interface

8. Set the default index to whichever value you choose. The default is logstash- but this may
change depending on how you modify Logstash in this instance. Note that it is not possible
to set the default index until data with that index actually exists in Elasticsearch, so before
this can be set, ensure log data is sent to Elasticsearch first.

Configuring namespace based indices
The default Logstash configuration forwards all log data to an index in the format
logstash-<year-month-day>. Whilst this is suitable for the platform logs, it makes sense for
additional ELK stacks, designed to collect logs for specific namespaces, to create indices
based on the namespace the logs originate from. This can be achieved by editing the
Logstash ConfigMap and modifying the output to use the kubernetes namespace field as the
index name instead of the default logstash. To do this for the ELK stack deployed in previous
sections, edit the app-logging-elk-logstash-config ConfigMap in the elk namespace and
change the output.elasticsearch.index section from

output {
 elasticsearch {
 hosts => "elasticsearch:9200"
 index => "logstash-%{+YYYY.MM.dd}"
 document_type => "%{[@metadata][type]}"

Tip: If the kibana-init pod fails, it’s because it could not initialize the default index in Kibana.
This is not a problem, as the default index can be set through the Kibana UI.
196 IBM Cloud Private System Administrator’s Guide

 ssl => true
 ssl_certificate_verification => true
 keystore =>
"/usr/share/elasticsearch/config/tls/logstash-elasticsearch-keystore.jks"
 keystore_password => "${APP_KEYSTORE_PASSWORD}"
 truststore => "/usr/share/elasticsearch/config/tls/truststore.jks"
 truststore_password => "${CA_TRUSTSTORE_PASSWORD}"
 }
 }

to

output {
 elasticsearch {
 hosts => "elasticsearch:9200"
 index => "%{kubernetes.namespace}-%{+YYYY.MM.dd}"
 document_type => "%{[@metadata][type]}"
 ssl => true
 ssl_certificate_verification => true
 keystore =>
"/usr/share/elasticsearch/config/tls/logstash-elasticsearch-keystore.jks"
 keystore_password => "${APP_KEYSTORE_PASSWORD}"
 truststore => "/usr/share/elasticsearch/config/tls/truststore.jks"
 truststore_password => "${CA_TRUSTSTORE_PASSWORD}"
 }
 }

Save and close to update the ConfigMap. Logstash will automatically reload the new
configuration. If it does not reload after 3 minutes, delete the Logstash pod(s) to restart them.

As Logstash does the buffering and transformation of log data, it contains a variety of useful
functions to translate, mask or remove potentially sensitive fields and data from each log
message, such as passwords or host data. More information about mutating the log data can
be found at
https://www.elastic.co/guide/en/logstash/5.5/plugins-filters-mutate.html.

Configuring the curator
If the default logstash index has been removed in favor of namespace based indices, The
curator with this ELK stack also needs to be modified to cleanup the log data older than the
number of days specified in the ELK deployment. As this Elasticsearch may contain a single
or multiple namespace logs that should be deleted after a certain time period, the default
‘logstash-’ prefix filter can be removed to catch all time-based indices. Use kubectl -n elk
edit configmap app-logging-elk-elasticsearch-curator-config to edit the curator
configuration and remove the first filtertype in action 1

- filtertype: pattern
 kind: prefix
 value: logstash-

The resulting filters should look similar to the following, which applies to all indices in this ELK
deployment

filters:
- filtertype: age
 source: name
 direction: older
 timestring: '%Y.%m.%d'
Chapter 5. Logging and monitoring 197

https://www.elastic.co/guide/en/logstash/5.5/plugins-filters-mutate.html

 unit: days
 unit_count: 28

If only namespace1, namespace2 and namespace3 indices should be deleted, you can use a
regex pattern, similar to the following

filters:
- filtertype: pattern
 kind: regex
 value: '^(namespace1-|namespace2-|namespace3-).*$'
- filtertype: age
 source: name
 direction: older
 timestring: '%Y.%m.%d'
 unit: days
 unit_count: 28

Securing access to Kibana
As Kibana was installed with NodePort as the access method, it leaves Kibana exposed to
users outside of the cluster, which in most environment is not suitable. To secure Kibana, the
NodePort should be removed and an Ingress added with the appropriate annotations to
restrict access to Kibana only to users of IBM Cloud Private. At the time of writing, there is no
segregation of access to Ingress resources via RBAC. To do this, perform the following steps

1. Edit the kibana service to remove the spec.ports.nodePort field and value and change
spec.type to ClusterIP, using kubectl -n elk edit service kibana. The Service should
look similar to Example 5-25.

Example 5-25 Kibana service definition

apiVersion: v1
kind: Service
metadata:
 labels:
 app: app-logging-elk-elasticsearch
 chart: ibm-icplogging-2.2.0
 component: kibana
 heritage: Tiller
 release: app-logging
 name: kibana
 namespace: elk
spec:
 clusterIP: 10.0.144.80
 ports:
 - port: 5601
 protocol: TCP
 targetPort: ui
 selector:
 app: app-logging-elk-elasticsearch
 component: kibana
 role: kibana
 type: ClusterIP

2. Create an ingress using Example 5-26 as a template, replacing the ingress name and
path if necessary.
198 IBM Cloud Private System Administrator’s Guide

Example 5-26 Kibana secure ingress

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: app-kibana-ingress
 namespace: elk
 annotations:
 icp.management.ibm.com/auth-type: "access-token"
 icp.management.ibm.com/rewrite-target: "/"
 icp.management.ibm.com/secure-backends: "true"
 kubernetes.io/ingress.class: "ibm-icp-management"
spec:
 rules:
 - http:
 paths:
 - path: "/app-kibana"
 backend:
 serviceName: "kibana"
 servicePort: 5601

3. Modify the Kibana ConfigMap to add the server.basePath value. This is required to
prevent targeting the default Kibana instance when the /app-kibana ingress path is used
in the browser. Edit the Kibana ConfigMap using kubectl -n elk edit configmap
app-logging-elk-kibana-config and add ‘server.basePath: "/app-kibana"’ anywhere
in the data section.

4. Test the new URL by logging out of IBM Cloud Private and trying to access
https://<master-ip>:8443/app-kibana. This should redirect you to the log in page for
IBM Cloud Private.

Scaling Filebeat namespaces
Filebeat is in control of deciding from which namespaces log data is sent to Elasticsearch.
After deploying ELK, you can modify the Filebeat ConfigMap to add or remove namespaces.

To do this with Helm, create a file called fb-ns.yaml with the content in Example 5-27

Example 5-27 fb-ns.yaml

filebeat:
 scope:
 namespaces:
 - production
 - pre-production

Use Helm to push the new configuration, passing the default parameters used during initial
chart installation. These values are required as the default chart values are different, and
Helm will use the default chart values as a base for changes.

Run the helm upgrade by using helm upgrade:

helm upgrade app-logging ibm-icplogging-2.2.0.tgz --reuse-values -f fb-ns.yaml
--namespace elk --recreate-pods --tls

You can also do this without Helm by modifying Kubernetes resources directly. Edit the
following input paths in the app-logging-elk-filebeat-ds-config ConfigMap in the elk
namespace. For example, to add the pre-production namespace, add the line
Chapter 5. Logging and monitoring 199

- "/var/log/containers/*_pre-production_*.log" to the input paths

For example:

filebeat.prospectors:
 - input_type: log
 paths:
 - "/var/log/containers/*_production_*.log"
 - "/var/log/containers/*_pre-production_*.log"

This method may be preferred if additional modifications have been made to the ELK stack.

5.2.9 Forwarding logs to external logging systems

A common requirement in IBM Cloud Private installations is to integrate with an existing
logging solution, where the platform (and all workloads) logs should be sent to a another
external logging system, either instead of, or as well as, the platform deployed Elasticsearch.

To achieve this, there are two options to consider:

� Logs are sent only to the external logging system, Elasticsearch is redundant.

� Logs are sent to both Elasticsearch and the external logging system.

In the case of option 1, the current Filebeat and Logstash components already deployed can
be repurposed to ship all log data to the external logging system. Depending on the external
system, only Filebeat may need to be retained. The output configuration for Filebeat and
Logstash can be redirected to the external system instead of the platform Elasticsearch, but
additional security certificates may need to be added as volumes and volume mounts to both
Filebeat and/or Logstash, if the external system uses security.

For option 2, depending on the external system, it’s recommended to deploy an additional
Filebeat and Logstash to IBM Cloud Private. It’s possible to add an additional ‘pipeline’ to
Logstash, so that it can stream logs to the platform Elasticsearch and the external system
simultaneously, but this also introduces additional effort to debug in the event one pipeline
fails. With separate deployments, it’s easy to determine which Logstash is failing and why.

Both Filebeat and Logstash have a number of plugins that enable output to a variety of
endpoints. More information about the available output plugins for Filebeat can be found at
https://www.elastic.co/guide/en/beats/filebeat/current/configuring-output.html and
information about the available output plugins for Logstash can be found at
https://www.elastic.co/guide/en/logstash/5.5/output-plugins.html.

If Vulnerability Advisor is deployed, it’s recommended to retain the current Elasticsearch, as
Vulnerability Advisor stores data within Elasticsearch and may not function properly if it
cannot reach it.

Deploying Filebeat and Logstash
At the time of writing, there is no independent Helm chart available to deploy Fliebeat or
Logstash separately. The deployment configuration will entirely depend on the level of
security the external system has for example basic authentication versus TLS authentication.

In this example, an external Elasticsearch has been set up using HTTP demonstrate how
Filebeat and Logstash can be used in IBM Cloud Private to send logs to an external ELK.
Filebeat and Logstash will use the default certificates generated by the platform to secure the
communication between these components. Filebeat and Logstash are deployed to a
dedicated namespace. Perform the following steps
200 IBM Cloud Private System Administrator’s Guide

https://www.elastic.co/guide/en/beats/filebeat/current/configuring-output.html
https://www.elastic.co/guide/en/logstash/5.5/output-plugins.html

1. Create a new namespace called external-logging that will host the Filebeat Daemonset
and Logstash Deployment containers:

kubectl create namespace external-logging

2. Create a new namespace called external that will host the containers to generate logs for
this example:

kubectl create namespace external

3. Copy the required Secret and ConfigMaps to the external-logging namespace. Note that
doing this provides any users with access to this namespace the ability to view the
authentication certificates for the platform ELK. In this example, only the required
certificates are extracted from the logging-elk-certs in kube-system.

a. Copy the required files from the logging-elk-certs Secret

i. Copy the logging-elk-certs Secret:

kubectl -n kube-system get secret logging-elk-certs -o yaml | sed
"s/namespace: kube-system/namespace: external-logging/g" | kubectl -n
external-logging create -f -

ii. Remove all entries in data except for the following, using kubectl -n
external-logging edit secret logging-elk-certs:

- ca.crt
- logstash.crt
- logstash.key
- filebeat.crt
- filebeat.key

b. Copy the logging-elk-elasticsearch-pki-secret Secret to the external-logging
namespace:

kubectl -n kube-system get secret logging-elk-elasticsearch-pki-secret -o
yaml | sed "s/namespace: kube-system/namespace: external-logging/g" |
kubectl -n external-logging create -f -

c. Copy the logging-elk-elasticsearch-entrypoint ConfigMap:

kubectl -n kube-system get configmap logging-elk-elasticsearch-entrypoint -o
yaml | sed "s/namespace: kube-system/namespace: external-logging/g" |
kubectl -n external-logging create -f -

4. Create a RoleBinding to the ibm-anyuid-hostaccess-clusterrole so that the Logstash
pod can use the host network to reach the external Elasticsearch:

kubectl -n external-logging create rolebinding
ibm-anyuid-hostaccess-rolebinding --clusterrole
ibm-anyuid-hostaccess-clusterrole --serviceaccount=external-logging:default

5. Create the filebeat-config.yaml in Example 5-28.

Example 5-28 filebeat-config.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 labels:
 app: filebeat-ds

Tip: This step is not needed if Logstash is being deployed to kube-system namespace, as
it automatically inherits this privilege from the ibm-privileged-psp Pod Security Policy.
Chapter 5. Logging and monitoring 201

 name: filebeat-config
 namespace: external-logging
data:
 filebeat.yml: |-
 filebeat.prospectors:
 - input_type: log
 paths:
 - /var/log/containers/*_external_*.log
 scan_frequency: 10s
 symlinks: true
 json.message_key: log
 json.keys_under_root: true
 json.add_error_key: true
 multiline.pattern: '^\s'
 multiline.match: after
 fields_under_root: true
 fields:
 type: kube-logs
 node.hostname: ${NODE_HOSTNAME}
 pod.ip: ${POD_IP}
 tags:
 - k8s-app
 filebeat.config.modules:
 # Set to true to enable config reloading
 reload.enabled: true
 output.logstash:
 hosts: logstash:5044
 timeout: 15
 ssl.certificate_authorities: ["/usr/share/elasticsearch/config/tls/ca.crt"]
 ssl.certificate: "/usr/share/elasticsearch/config/tls/filebeat.crt"
 ssl.key: "/usr/share/elasticsearch/config/tls/filebeat.key"
 ssl.key_passphrase: "${APP_KEYSTORE_PASSWORD}"
 logging.level: info

Alternatively, download the file from
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-G
uide/tree/master/Ch7-Logging-and-monitoring/Deploying-Filebeat-and-Logstash/filebe
at-config.yaml.

6. Create the logstash-config.yaml in Example 5-29, replacing
output.elasticsearch.hosts with your own Elasticsearch host.

Example 5-29 logstash-config.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 labels:
 app: logstash
 name: logstash-config
 namespace: external-logging
data:
 k8s.conf: |-
 input {
 beats {
 port => 5044
202 IBM Cloud Private System Administrator’s Guide

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Deploying-Filebeat-and-Logstash/filebeat-config.yaml
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Deploying-Filebeat-and-Logstash/filebeat-config.yaml

 ssl => true
 ssl_certificate_authorities =>
["/usr/share/elasticsearch/config/tls/ca.crt"]
 ssl_certificate => "/usr/share/elasticsearch/config/tls/logstash.crt"
 ssl_key => "/usr/share/elasticsearch/config/tls/logstash.key"
 ssl_key_passphrase => "${APP_KEYSTORE_PASSWORD}"
 ssl_verify_mode => "force_peer"
 }
 }

 filter {
 if [type] == "kube-logs" {
 mutate {
 rename => { "message" => "log" }
 remove_field => ["host"]
 }

 date {
 match => ["time", "ISO8601"]
 }

 dissect {
 mapping => {
 "source" =>
"/var/log/containers/%{kubernetes.pod}_%{kubernetes.namespace}_%{container_file_ex
t}"
 }
 }

 dissect {
 mapping => {
 "container_file_ext" => "%{container}.%{?file_ext}"
 }
 remove_field => ["host", "container_file_ext"]
 }

 grok {
 "match" => {
 "container" =>
"^%{DATA:kubernetes.container_name}-(?<kubernetes.container_id>[0-9A-Za-z]{64,64})
"
 }
 remove_field => ["container"]
 }
 }
 }

 filter {
 # Drop empty lines
 if [log] =~ /^\s*$/ {
 drop { }
 }
 # Attempt to parse JSON, but ignore failures and pass entries on as-is
 json {
 source => "log"
Chapter 5. Logging and monitoring 203

 skip_on_invalid_json => true
 }
 }

 output {
 elasticsearch {
 hosts => ["9.30.123.123:9200"]
 index => "%{kubernetes.namespace}-%{+YYYY.MM.dd}"
 document_type => "%{[@metadata][type]}"
 }
 }
 logstash.yml: |-
 config.reload.automatic: true
 http.host: "0.0.0.0"
 path.config: /usr/share/logstash/pipeline
 xpack.monitoring.enabled: false
 xpack.monitoring.elasticsearch.url: "http://9.30.123.123:9200"

Alternatively, download the file from
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-G
uide/tree/master/Ch7-Logging-and-monitoring/Deploying-Filebeat-and-Logstash/logsta
sh-config.yaml.

7. Create the logstash-service.yaml in Example 5-30.

Example 5-30 logstash-service.yaml

apiVersion: v1
kind: Service
metadata:
 labels:
 app: logstash
 name: logstash
 namespace: external-logging
spec:
 ports:
 - name: beats
 port: 5044
 protocol: TCP
 targetPort: 5044
 selector:
 app: logstash
 type: ClusterIP

Important: This configuration does not use security. To enable security using keystores,
add the following section to output.elasticsearch

ssl => true
ssl_certificate_verification => true
keystore => "/usr/share/elasticsearch/config/tls/keystore.jks"
keystore_password => "${APP_KEYSTORE_PASSWORD}"
truststore => "/usr/share/elasticsearch/config/tls/truststore.jks"
truststore_password => "${CA_TRUSTSTORE_PASSWORD}"
204 IBM Cloud Private System Administrator’s Guide

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Deploying-Filebeat-and-Logstash/logstash-config.yaml
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Deploying-Filebeat-and-Logstash/logstash-config.yaml

Alternatively, download the file from
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-G
uide/tree/master/Ch7-Logging-and-monitoring/Deploying-Filebeat-and-Logstash/logsta
sh-service.yaml.

8. Create the logstash-deployment.yaml in Example 5-31. In this deployment, the Logstash
container will run on the management node, so the management node in your
environment should have network connectivity to the external ELK. It is scheduled to the
management node to prevent unauthorized access to the Logstash pod and protect the
target Elasticsearch from unauthorized commands if a worker node is compromised.

Example 5-31 logstash-deployment.yaml

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 app: logstash
 name: logstash
 namespace: external-logging
spec:
 replicas: 1
 selector:
 matchLabels:
 app: logstash
 strategy:
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 1
 type: RollingUpdate
 template:
 metadata:
 annotations:
 productID: none
 productName: Logstash
 productVersion: 5.5.1
 scheduler.alpha.kubernetes.io/critical-pod: ""
 labels:
 app: logstash
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: beta.kubernetes.io/arch
 operator: In
 values:
 - amd64
 - ppc64le
 - s390x
 - key: management
 operator: In
 values:
 - "true"
 containers:
 - command:
Chapter 5. Logging and monitoring 205

 - /bin/bash
 - /scripts/entrypoint.sh
 env:
 - name: LS_JAVA_OPTS
 value: -Xmx512m -Xms512m
 - name: CFG_BASEDIR
 value: /usr/share/logstash
 - name: CA_TRUSTSTORE_PASSWORD
 valueFrom:
 secretKeyRef:
 key: caTruststorePassword
 name: logging-elk-elasticsearch-pki-secret
 - name: APP_KEYSTORE_PASSWORD
 valueFrom:
 secretKeyRef:
 key: appKeystorePassword
 name: logging-elk-elasticsearch-pki-secret
 image: ibmcom/icp-logstash:5.5.1-f2
 imagePullPolicy: IfNotPresent
 name: logstash
 ports:
 - containerPort: 5044
 protocol: TCP
 resources:
 limits:
 memory: 1Gi
 terminationMessagePath: /dev/termination-log
 terminationMessagePolicy: File
 volumeMounts:
 - mountPath: /usr/share/logstash/pipeline
 name: pipeline-config
 - mountPath: /usr/share/logstash/config/logstash.yml
 name: logstash-config
 subPath: logstash.yml
 - mountPath: /usr/share/logstash/data
 name: data
 - mountPath: /scripts
 name: entrypoint
 - mountPath: /usr/share/elasticsearch/config/tls
 name: certs
 readOnly: true
 restartPolicy: Always
 securityContext: {}
 terminationGracePeriodSeconds: 30
 tolerations:
 - effect: NoSchedule
 key: dedicated
 operator: Exists
 volumes:
 - configMap:
 defaultMode: 420
 items:
 - key: k8s.conf
 path: k8s.conf
 name: logging-elk-logstash-config
206 IBM Cloud Private System Administrator’s Guide

 name: pipeline-config
 - configMap:
 defaultMode: 420
 items:
 - key: logstash.yml
 path: logstash.yml
 name: logging-elk-logstash-config
 name: logstash-config
 - configMap:
 defaultMode: 365
 items:
 - key: logstash-entrypoint.sh
 path: entrypoint.sh
 - key: map-config.sh
 path: map-config.sh
 name: logging-elk-elasticsearch-entrypoint
 name: entrypoint
 - name: certs
 secret:
 defaultMode: 420
 secretName: logging-elk-certs
 - emptyDir: {}
 name: data

Alternatively, download the file from
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-G
uide/tree/master/Ch7-Logging-and-monitoring/Deploying-Filebeat-and-Logstash/logsta
sh-deployment.yaml

9. Create the filebeat-ds.yaml in Example 5-32.

Example 5-32 filebeat-ds.yaml

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 labels:
 app: filebeat
 name: filebeat-ds
 namespace: kube-system
spec:
 selector:
 matchLabels:
 app: filebeat
 template:
 metadata:
 annotations:
 productID: none
 productName: filebeat
 productVersion: 5.5.1
 scheduler.alpha.kubernetes.io/critical-pod: ""
 labels:
 app: filebeat
 spec:
 containers:
 - env:
Chapter 5. Logging and monitoring 207

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Deploying-Filebeat-and-Logstash/logstash-deployment.yaml

 - name: NODE_HOSTNAME
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: spec.nodeName
 - name: POD_IP
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: status.podIP
 - name: CA_TRUSTSTORE_PASSWORD
 valueFrom:
 secretKeyRef:
 key: caTruststorePassword
 name: logging-elk-elasticsearch-pki-secret
 - name: APP_KEYSTORE_PASSWORD
 valueFrom:
 secretKeyRef:
 key: appKeystorePassword
 name: logging-elk-elasticsearch-pki-secret
 image: ibmcom/icp-filebeat:5.5.1-f2
 imagePullPolicy: IfNotPresent
 livenessProbe:
 exec:
 command:
 - sh
 - -c
 - ps aux | grep '[f]ilebeat' || exit 1
 failureThreshold: 3
 periodSeconds: 30
 successThreshold: 1
 timeoutSeconds: 1
 name: filebeat
 readinessProbe:
 exec:
 command:
 - sh
 - -c
 - ps aux | grep '[f]ilebeat' || exit 1
 failureThreshold: 3
 initialDelaySeconds: 10
 periodSeconds: 10
 successThreshold: 1
 timeoutSeconds: 1
 resources: {}
 terminationMessagePath: /dev/termination-log
 terminationMessagePolicy: File
 volumeMounts:
 - mountPath: /usr/share/filebeat/filebeat.yml
 name: config
 subPath: filebeat.yml
 - mountPath: /usr/share/filebeat/data
 name: data
 - mountPath: /usr/share/elasticsearch/config/tls
 name: certs
208 IBM Cloud Private System Administrator’s Guide

 readOnly: true
 - mountPath: /var/log/containers
 name: container-log
 readOnly: true
 - mountPath: /var/log/pods
 name: pod-log
 readOnly: true
 - mountPath: /var/lib/docker/containers/
 name: docker-log
 readOnly: true
 restartPolicy: Always
 securityContext:
 runAsUser: 0
 terminationGracePeriodSeconds: 30
 tolerations:
 - effect: NoSchedule
 key: dedicated
 operator: Exists
 volumes:
 - configMap:
 defaultMode: 420
 items:
 - key: filebeat.yml
 path: filebeat.yml
 name: logging-elk-filebeat-ds-config
 name: config
 - name: certs
 secret:
 defaultMode: 420
 secretName: logging-elk-certs
 - emptyDir: {}
 name: data
 - hostPath:
 path: /var/log/containers
 type: ""
 name: container-log
 - hostPath:
 path: /var/log/pods
 type: ""
 name: pod-log
 - hostPath:
 path: /var/lib/docker/containers
 type: ""
 name: docker-log
 updateStrategy:
 rollingUpdate:
 maxUnavailable: 1
 type: RollingUpdate

Alternatively, download the file from
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-G
uide/tree/master/Ch7-Logging-and-monitoring/Deploying-Filebeat-and-Logstash/filebe
at-ds.yaml.

10.After all resources are deployed, check the pods are running:
Chapter 5. Logging and monitoring 209

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Deploying-Filebeat-and-Logstash/filebeat-ds.yaml
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Deploying-Filebeat-and-Logstash/filebeat-ds.yaml

[root@icp-ha-boot ~]# kubectl -n external-logging get pods
NAME READY STATUS RESTARTS AGE
filebeat-ds-4pf52 1/1 Running 0 81s
filebeat-ds-7hshw 1/1 Running 0 87s
filebeat-ds-bm2dd 1/1 Running 0 89s
filebeat-ds-ddk55 1/1 Running 0 87s
filebeat-ds-l5d2v 1/1 Running 0 84s
filebeat-ds-t26gt 1/1 Running 0 90s
filebeat-ds-x5xkx 1/1 Running 0 84s
logstash-6d7f976b97-f85ft 1/1 Running 0 11m

11.Create some workload in the external namespace, so that some log data is generated. In
this example, two WebSphere Liberty Helm charts were deployed from the IBM public
Helm chart repository. During start up the containers create log data which is sent to the
external Elasticsearch, as shown in Figure 5-29.

Figure 5-29 Logs sent to external ELK

Reconfiguring the platform Logstash
If all platform and application logs are sent to an external system, requiring no use of the
platform ELK, you can modify the Logstash outputs to send logs to the external system
instead. This can be done by modifying the output section in the
logging-elk-logstash-config ConfigMap in the kube-system namespace. The default
configuration looks like the following:

output {
 elasticsearch {
 hosts => ["9.30.231.235:9200"]
 index => "%{kubernetes.namespace}-%{+YYYY.MM.dd}"
 document_type => "%{[@metadata][type]}"
 }
}

This output uses the Elasticsearch plug-in. A list of all available plug-ins can be found at
https://www.elastic.co/guide/en/logstash/5.5/output-plugins.html. For example, to
use a generic HTTP endpoint, use the following example:

output {
210 IBM Cloud Private System Administrator’s Guide

https://www.elastic.co/guide/en/logstash/5.5/output-plugins.html

 http {
 http_method => "post"
 url => "http://<external_url>"
 <other_options>
 ...
 ...
 }

5.2.10 Forwarding logs from application log files

In many containerised applications today, not all the log data generated by the application is
sent to stdout and stderr and instead writes to a log file. Unless this particular log file is on a
filesystem mounted from a PersistentVolume, every time Kubernetes restarts the container,
the log data will be lost. There are several ways in which log data from a log file in a container
can make it’s way to Elasticsearch, but this section will focus on two commons methods:

1. Using a Filebeat side car to read data from specific directories or files and stream the
content to stdout or stderr.

2. Using a Filebeat side car to read data from specific directories or files and stream the
output directly to Logstash.

Option 1 is the recommended option as all the log data is sent to stdout and stderr, which also
gives the advantage of allowing tools such as kubectl logs to read the log data, as Docker
handles storing stdout and stderr data on the host, which is read by kubelet. This data is also
automatically sent to Elasticsearch using the default logging mechanisms. See Figure 5-30.

Figure 5-30 Side car logging to stdout and stderr

Option 2 is also a useful solution, as the data from specific log files can be parsed or
transformed in the side car and pushed directly to a logging solution, whether it’s the platform
ELK, an application dedicated logging system or an external logging system entirely. See
Figure 5-31.
Chapter 5. Logging and monitoring 211

Figure 5-31 Side car logging directly to logging system

Using a Filebeat side car to forward log file messages to stdout and
stderr
This example will use a simple WebSphere Liberty deployment and Filebeat side car to send
log data from a file populated by WebSphere within the WebSphere container to stdout, to
simulate typical application logging. This functionality can be achieved in a similar way, by
mounting another image, such as busybox, to tail the file and redirect to stdout in the busybox
container, but this is not scalable and requires multiple busybox side car containers for
multiple log files. Filebeat has a scalability advantage, as well as advanced data processing to
output the data to stdout and stderr flexibly.

To create a WebSphere and Filebeat side car Deployment, perform the following steps:

1. Create a new namespace called sidecar for this example

kubectl create namespace sidecar

2. Creating a ConfigMap for the Filebeat configuration allows you to reuse the same settings
for multiple deployments without redefining an instance of Filebeat every time.
Alternatively, you can create one ConfigMap per deployment if your deployment requires
very specific variable settings in Filebeat. This ConfigMap will be consumed by the
Filebeat container as its core configuration data.

Create the ConfigMap in Example 5-33 to store the Filebeat configuration using kubectl
create -f filebeat-sidecar-config.yaml.

Example 5-33 filebeat-sidecar-config.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: filebeat-sidecar-config
 namespace: sidecar
data:
 filebeat.yml: |-
 filebeat.prospectors:
 - input_type: log
 paths: '${LOG_DIRS}'
 exclude_lines: '${EXCLUDE_LINES:[]}'
 include_lines: '${INCLUDE_LINES:[]}'

Important: At the time of writing, the current Filebeat image runs as the root user within
the container, so ensure this complies with your security policies before giving the
namespace access to a PodSecurityPolicy that allows containers to be run with the root
user.
212 IBM Cloud Private System Administrator’s Guide

 ignore_older: '${IGNORE_OLDER:0}'
 scan_frequency: '${SCAN_FREQUENCY:10s}'
 symlinks: '${SYMLINKS:true}'
 max_bytes: '${MAX_BYTES:10485760}'
 harvester_buffer_size: '${HARVESTER_BUFFER_SIZE:16384}'

 multiline.pattern: '${MULTILINE_PATTERN:^\s}'
 multiline.match: '${MULTILINE_MATCH:after}'
 multiline.negate: '${MULTILINE_NEGATE:false}'

 filebeat.config.modules:
 # Set to true to enable config reloading
 reload.enabled: true

 output.console:
 codec.format:
 string: '%{[message]}'

 logging.level: '${LOG_LEVEL:info}'

Alternatively, download from
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-
s-Guide/tree/master/Ch7-Logging-and-monitoring/Forwarding-logs-from-application
-log-files/stdout/filebeat-sidecar-config.yaml.

This configuration will capture all log messages from the specified files and relay them to
stdout. It’s worth noting that this will simply relay all message types to stdout, which is later
captured by the Filebeat monitoring the docker logs. If you require additional formatting of
log messages, then consider using the approach to send formatted log data directly to
something such as Logstash.

3. Create a RoleBinding to the ibm-anyuid-clusterrole to enable the Filebeat container to
run as the root user:

kubectl -n sidecar create rolebinding sidecar-anyuid-rolebinding
--clusterrole=ibm-anyuid-clusterrole --serviceaccount=sidecar:default

4. Create some workloads that writes data to a file, with a Filebeat side car. Example 5-34
uses a simple WebSphere Liberty deployment and a Filebeat side car to output the
contents of /var/log/applogs/app.log to stdout. In this example, the string Logging data
to app.log - <number>: <current-date-time> is output to the app.log file every second.
Create the Deployment using kubectl create -f websphere-liberty-fb-sidecar.yaml.

Example 5-34 websphere-liberty-fb-sidecar-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: websphere-sidecar
 name: websphere-sidecar
 namespace: sidecar
spec:
 replicas: 1
 selector:
 matchLabels:
 app: websphere-sidecar
 strategy:
Chapter 5. Logging and monitoring 213

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Forwarding-logs-from-application-log-files/stdout/filebeat-sidecar-config.yaml
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Forwarding-logs-from-application-log-files/stdout/filebeat-sidecar-config.yaml

 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 1
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: websphere-sidecar
 spec:
 securityContext:
 runAsUser: 0
 containers:
 - name: ibm-websphere-liberty
 args: [/bin/sh, -c,'i=0; while true; do echo "Logging data to app.log -
$i: $(date)" >> /var/log/app.log; i=$((i+1)); sleep 1; done']
 image: websphere-liberty:latest
 imagePullPolicy: IfNotPresent
 env:
 - name: JVM_ARGS
 - name: WLP_LOGGING_CONSOLE_FORMAT
 value: json
 - name: WLP_LOGGING_CONSOLE_LOGLEVEL
 value: info
 - name: WLP_LOGGING_CONSOLE_SOURCE
 value: message,trace,accessLog,ffdc
 - name: POD_IP
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: status.podIP
 - name: HTTPENDPOINT_HTTPSPORT
 value: "9443"
 - name: KEYSTORE_REQUIRED
 value: "false"
 resources: {}
 volumeMounts:
 - name: was-logging
 mountPath: /var/log
 - name: filebeat-sidecar
 image: ibmcom/icp-filebeat:5.5.1-f2
 env:
 - name: LOG_DIRS
 value: /var/log/applogs/app.log
 - name: NODE_HOSTNAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 volumeMounts:
 - name: was-logging
 mountPath: /var/log/applogs
 - name: filebeat-config
214 IBM Cloud Private System Administrator’s Guide

 mountPath: /usr/share/filebeat/filebeat.yml
 subPath: filebeat.yml
 volumes:
 - name: was-logging
 emptyDir: {}
 - name: filebeat-config
 configMap:
 name: filebeat-sidecar-config
 items:
 - key: filebeat.yml
 path: filebeat.yml

Alternatively, download from
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-
s-Guide/tree/master/Ch7-Logging-and-monitoring/Forwarding-logs-from-application
-log-files/stdout/websphere-liberty-fb-sidecar-deployment.yaml.

In this deployment, there are two volumes specified. The filebeat-config volume mounts
the ConfigMap data and the was-logging volume stores the application logs in the
container. For each folder containing logs, you should create a new volume in a similar
way for fine grained control over each file. For deployments that require persistent storage,
replace emptyDir: {} with a PersistentVolumeClaim definition, as this deployment will lose
it’s log data if it is restarted. The was-logging volume is mounted to the container running
WebSphere and both the was-logging and filebeat-config volumes are mounted to the
Filebeat container.

When adding this to an existing deployment, there are several new sections that should be
added. This section defines the Filebeat container with the environment variables that set
the directories for Filebeat to use. For the variables LOG_DIRS you can provide a single
directory path or a comma-separated list of directories. The was-logging volume is
mounted on the /var/log/applogs directory, which will be equal to the /var/log directory
after mounting the same volume on the ibm-websphere-liberty container. In a real world
example, this would be the filepath to the log file(s) you want Filebeat to scan and should
match up with the mount path on the volume mount for the WebSphere container.

- name: filebeat-sidecar
 image: ibmcom/icp-filebeat:5.5.1-f2
 env:
 - name: LOG_DIRS
 value: /var/log/applogs/app.log
 - name: NODE_HOSTNAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 volumeMounts:
 - name: was-logging
 mountPath: /var/log/applogs
 - name: filebeat-config
 mountPath: /usr/share/filebeat/filebeat.yml
 subPath: filebeat.yml

The key integration here is the volume mounts between the ibm-websphere-liberty
container and the filebeat-sidecar container. This is what provides the Filebeat side car
container access to the log files from the ibm-websphere-liberty container. If multiple log
Chapter 5. Logging and monitoring 215

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Forwarding-logs-from-application-log-files/stdout/websphere-liberty-fb-sidecar-deployment.yaml
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Forwarding-logs-from-application-log-files/stdout/websphere-liberty-fb-sidecar-deployment.yaml

files need to be monitored from different locations within the file system, consider using
multiple volumeMounts and update the filebeat-sidecar-config paths accordingly.

After a few minutes (to cater for the containers starting up) the log data should now be visible
in Kibana after the platform Filebeat instance has successfully collected logs from Docker and
pushed them through the default logging mechanism. See Figure 5-32 on page 216.

Figure 5-32 Data collected by the Filebeat

Using a Filebeat side car to forward log file messages to Logstash
This example will use a simple WebSphere Liberty deployment and Filebeat side car to send
log data from a file populated by WebSphere within the WebSphere container to the external
Elasticsearch used earlier in this chapter, to simulate typical application logs that need to be
sent off-site. As the instance of Logstash uses TLS encryption to secure communications
within the cluster, it’s important to understand that some certificates will need to be imported
to allow this solution to work. This example will use only the minimum certificates required to
allow communication between the Filebeat sidecar and Logstash. To use a Filebeat side car
to stream logs directly to Logstash, perform the following steps:

1. Copy the required Secret and ConfigMaps to the sidecar namespace. Note that doing this
provides any users with access to this namespace the ability to view the authentication
certificates for the platform ELK. In this example, only the required certificates are
extracted from the logging-elk-certs in kube-system.

a. Copy the required files from the logging-elk-certs Secret:

i. Copy the logging-elk-certs Secret:

kubectl -n kube-system get secret logging-elk-certs -o yaml | sed
"s/namespace: kube-system/namespace: sidecar/g" | kubectl -n sidecar
create -f -

ii. Remove all entries in data except for the following, using kubectl -n sidecar edit
secret logging-elk-certs:

- ca.crt
- filebeat.crt
216 IBM Cloud Private System Administrator’s Guide

- filebeat.key

b. Copy the logging-elk-elasticsearch-pki-secret Secret to the external-logging
namespace:

kubectl -n kube-system get secret logging-elk-elasticsearch-pki-secret -o
yaml | sed "s/namespace: kube-system/namespace: sidecar/g" | kubectl -n
sidecar create -f -

2. Create the filebeat-sidecar-logstash-config.yaml ConfigMap in Example 5-35 using
kubectl create -f filebeat-sidecar-logstash-config.yaml.

Example 5-35 filebeat-sidecar-logstash-config.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: filebeat-sidecar-logstash-config
 namespace: sidecar
data:
 filebeat.yml: |-
 filebeat.prospectors:
 - input_type: log
 paths: '${LOG_DIRS}'
 exclude_lines: '${EXCLUDE_LINES:[]}'
 include_lines: '${INCLUDE_LINES:[]}'

 ignore_older: '${IGNORE_OLDER:0}'
 scan_frequency: '${SCAN_FREQUENCY:10s}'
 symlinks: '${SYMLINKS:true}'
 max_bytes: '${MAX_BYTES:10485760}'
 harvester_buffer_size: '${HARVESTER_BUFFER_SIZE:16384}'

 multiline.pattern: '${MULTILINE_PATTERN:^\s}'
 multiline.match: '${MULTILINE_MATCH:after}'
 multiline.negate: '${MULTILINE_NEGATE:false}'

 fields_under_root: '${FIELDS_UNDER_ROOT:true}'
 fields:
 type: '${FIELDS_TYPE:kube-logs}'
 node.hostname: '${NODE_HOSTNAME}'
 pod.ip: '${POD_IP}'
 kubernetes.namespace: '${NAMESPACE}'
 kubernetes.pod: '${POD_NAME}'
 tags: '${TAGS:sidecar-ls}'

 filebeat.config.modules:
 # Set to true to enable config reloading
 reload.enabled: true

 output.logstash:

Important: These commands will copy the certificates used within the target ELK stack,
which could be used to access Elasticsearch itself. If this does not conform to security
standards, consider deploying a dedicated ELK stack for a specific application, user or
namespace and provide these certificates for that stack.
Chapter 5. Logging and monitoring 217

 hosts: '${LOGSTASH:logstash.kube-system:5044}'
 timeout: 15
 ssl.certificate_authorities: ["/usr/share/elasticsearch/config/tls/ca.crt"]
 ssl.certificate: "/usr/share/elasticsearch/config/tls/filebeat.crt"
 ssl.key: "/usr/share/elasticsearch/config/tls/filebeat.key"
 ssl.key_passphrase: ${APP_KEYSTORE_PASSWORD}

 logging.level: '${LOG_LEVEL:info}'

Alternatively, download from
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-G
uide/tree/master/Ch7-Logging-and-monitoring/Forwarding-logs-from-application-log-f
iles/logstash/filebeat-sidecar-logstash-config.yaml

This ConfigMap applies JSON formatted output to the platform Logstash, with added field
identifiers that Logstash will use to filter data.

3. Create the websphere-sidecar-logstash-deployment.yaml in Example 5-36 using
kubectl create -f websphere-sidecar-logstash-deployment.yaml.

Example 5-36 websphere-liberty-fb-sidecar-logstash-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: websphere-sidecar-logstash
 name: websphere-sidecar-logstash
 namespace: sidecar
spec:
 replicas: 1
 selector:
 matchLabels:
 app: websphere-sidecar-logstash
 strategy:
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 1
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: websphere-sidecar-logstash
 spec:
 securityContext:
 runAsUser: 0
 containers:
 - name: ibm-websphere-liberty
 args: [/bin/sh, -c,'i=0; while true; do echo "Using Logstash - Logging
data to app.log - $i: $(date)" >> /var/log/app.log; i=$((i+1)); sleep 1; done']
 image: websphere-liberty:latest
 imagePullPolicy: IfNotPresent
 env:
 - name: JVM_ARGS
 - name: WLP_LOGGING_CONSOLE_FORMAT
 value: json
 - name: WLP_LOGGING_CONSOLE_LOGLEVEL
218 IBM Cloud Private System Administrator’s Guide

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Forwarding-logs-from-application-log-files/logstash/filebeat-sidecar-logstash-config.yaml

 value: info
 - name: WLP_LOGGING_CONSOLE_SOURCE
 value: message,trace,accessLog,ffdc
 - name: POD_IP
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: status.podIP
 - name: HTTPENDPOINT_HTTPSPORT
 value: "9443"
 - name: KEYSTORE_REQUIRED
 value: "false"
 resources: {}
 volumeMounts:
 - name: was-logging
 mountPath: /var/log
 - name: filebeat-sidecar
 image: ibmcom/icp-filebeat:5.5.1-f2
 env:
 - name: LOG_DIRS
 value: /var/log/applogs/app.log
 - name: NODE_HOSTNAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 - name: CA_TRUSTSTORE_PASSWORD
 valueFrom:
 secretKeyRef:
 key: caTruststorePassword
 name: logging-elk-elasticsearch-pki-secret
 - name: APP_KEYSTORE_PASSWORD
 valueFrom:
 secretKeyRef:
 key: appKeystorePassword
 name: logging-elk-elasticsearch-pki-secret
 - name: NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 volumeMounts:
 - name: was-logging
 mountPath: /var/log/applogs
 - name: filebeat-config
 mountPath: /usr/share/filebeat/filebeat.yml
 subPath: filebeat.yml
 - mountPath: /usr/share/elasticsearch/config/tls
 name: certs
Chapter 5. Logging and monitoring 219

 readOnly: true
 volumes:
 - name: was-logging
 emptyDir: {}
 - name: filebeat-config
 configMap:
 name: filebeat-sidecar-logstash-config
 items:
 - key: filebeat.yml
 path: filebeat.yml
 - name: certs
 secret:
 defaultMode: 420
 secretName: logging-elk-certs

Alternatively, download at
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-
s-Guide/tree/master/Ch7-Logging-and-monitoring/Forwarding-logs-from-application
-log-files/logstash/websphere-liberty-fb-sidecar-logstash-deployment.yaml.

This is similar to Example 5-34, but with a few key differences. First, the certificates in the
logging-elk-certs Secret mounted as volumes in the filebeat-sidecar container
definition, allowing it to communicate securely using TLS with the Logstash instance.
Second, the introduction of additional environment variables provides the Filebeat side car
with additional information that is forwarded to Logstash.

- name: NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name

Without this, the log entries in Elasticsearch would not contain the namespace and pod
name fields.

After a few minutes (to cater for the containers starting up) the log data should now be visible
in Kibana after the platform Filebeat instance has successfully collected logs from Docker and
pushed them through the default logging mechanism. See Figure 5-33.
220 IBM Cloud Private System Administrator’s Guide

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Forwarding-logs-from-application-log-files/logstash/websphere-liberty-fb-sidecar-logstash-deployment.yaml
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/Ch7-Logging-and-monitoring/Forwarding-logs-from-application-log-files/logstash/websphere-liberty-fb-sidecar-logstash-deployment.yaml

Figure 5-33 Logs collected by the Filebeat instance
Chapter 5. Logging and monitoring 221

5.3 IBM Cloud Private Monitoring

IBM Cloud Private Version 3.1.2 uses AlertManager, Prometheus, and Grafana stack for
system monitoring. It uses components listed in Table 5-5 on page 222 on the management
nodes.

Table 5-5 Monitoring and alerting components

5.3.1 How Prometheus works

Prometheus is a monitoring platform that collects metrics from monitored targets by scraping
metrics HTTP endpoints on these targets. Prometheus offers a richer data model and query
language, in addition to being easier to run and integrate into the environment to be
monitored. Figure 5-34 shows the Prometheus internal architecture.

Component Version Role

AlertManager - AlertManager (0.5.0) Handles alerts sent by the
Prometheus server. It takes
care of de-duplicating,
grouping, and routing them to
the correct receiver integration
such as slack, Email, or
PagerDuty.

Grafana - Grafana (5.2.0) Data visualization & Monitoring
with support for Prometheus as
datasource.

Prometheus
- Prometheus (2.3.1)
- collectd_exporter (0.4.0)
- node_exporter (0.16.0)
- configmap_reload (0.2.2)
- elasticsearch-exporter(1.0.2)
-kube-state-metrics-exporter(1.
3.0)

Collects metrics from
configured targets at given
intervals, evaluates rule
expressions, displays the
results, and can trigger alerts if
some condition is observed to
be true.
222 IBM Cloud Private System Administrator’s Guide

Figure 5-34 Prometheus internal architecture

Prometheus discovers targets to scrape from service discovery. The scrape discovery
manager is a discovery manager that uses Prometheus’s service discovery functionality to
find and continuously update the list of targets from which Prometheus should scrape metrics.
It runs independently of the scrape manager which performs the actual target scrape and
feeds it with a stream of target group updates over a synchronization channel.

Prometheus stores time series samples in a local time series database (TSDB) and optionally
also forwards a copy of all samples to a set of configurable remote endpoints. Similarly,
Prometheus reads data from the local TSDB and optionally also from remote endpoints. The
scrape manager is responsible for scraping metrics from discovered monitoring targets and
forwarding the resulting samples to the storage subsystem.

Every time series is uniquely identified by its metric name and a set of key-value pairs, also
known as labels. The metric name specifies the general feature of a system that is measured
(for example http_requests_total - the total number of HTTP requests received). It may
contain ASCII letters and digits, as well as underscores and colons. It must match the regex
[a-zA-Z_:][a-zA-Z0-9_:]*.

The Prometheus client libraries offer four core metric types. These are currently only
differentiated in the client libraries (to enable APIs tailored to the usage of the specific types)
and in the wire protocol: These types are:

� Counter - A counter is a cumulative metric that represents a single monotonically
increasing counter whose value can only increase or be reset to zero on restart. For
example, you can use a counter to represent the number of requests served, tasks
completed, or errors.

� Gauge - A gauge is a metric that represents a single numerical value that can arbitrarily
go up and down. Gauges are typically used for measured values like temperatures or
Chapter 5. Logging and monitoring 223

current memory usage, but also “counts” that can go up and down, like the number of
concurrent requests.

� Histogram - A histogram samples observations (usually things like request durations or
response sizes) and counts them in configurable buckets. It also provides a sum of all
observed values.

� Summary - Similar to a histogram, a summary samples observations (usually things like
request durations and response sizes). While it also provides a total count of observations
and a sum of all observed values, it calculates configurable quantiles over a sliding time
window.

The Prompt engine is responsible for evaluating Prompt expression queries against
Prometheus’s time series database. The engine does not run as its own actor goroutine, but
is used as a library from the web interface and the rule manager. PromQL evaluation happens
in multiple phases: when a query is created, its expression is parsed into an abstract syntax
tree and results in an executable query. The subsequent execution phase first looks up and
creates iterators for the necessary time series from the underlying storage. It then evaluates
the PromQL expression on the iterators. Actual time series bulk data retrieval happens lazily
during evaluation (at least in the case of the local TSDB (time series database)). Expression
evaluation returns a PromQL expression type, which most commonly is an instant vector or
range vector of time series.

Prometheus serves its web UI and API on port 9090 by default. The web UI is available at /
and serves a human-usable interface for running expression queries, inspecting active alerts,
or getting other insight into the status of the Prometheus server.

For more information on Prometheus see the documentation in url below:

https://prometheus.io/docs/introduction/overview/

IBM Cloud Private provides the following exporters to provide metrics as listed in Table 5-6
below:

Table 5-6 IBM Cloud Private exporters

Role-based access control to IBM Cloud Private monitoring
A user with role ClusterAdministrator, Administrator or Operator can access monitoring
service. A user with role ClusterAdministrator or Administrator can perform write operations in
monitoring service, including deleting Prometheus metrics data, and updating Grafana
configurations. Starting with version 1.2.0, the ibm-icpmonitoring Helm chart introduces an
important feature. It offers a new module that provides role-based access controls (RBAC) for
access to the Prometheus metrics data.

Exporter Types Exporter Details

node-exporter Provides the node-level metrics, including metrics for CPU,
memory, disk, network, and other components

kube-state-metrics Provides the metrics for Kubernetes objects, including
metrics for pod, deployment, statefulset, daemonset,
replicaset, configmap, service, job, and other objects

elasticsearch-exporter Provides metrics for the IBM Cloud Private Elasticsearch
logging service, including the status for Elasticsearch
cluster, shards, and other components

collectd-exporter Provides metrics that are sent from the collectd network
plug-in
224 IBM Cloud Private System Administrator’s Guide

https://prometheus.io/docs/introduction/overview/

The RBAC module is effectively a proxy that sits in front of the Prometheus client pod. It
examines the requests for authorization headers, and at that point, enforces role-based
controls. It does this by retrieving the users current IBM Cloud Private access token, retrieved
when logging in to the IBM Cloud Private dashboard. From the access token, the proxy can
identify the user and their roles, and use this information to filter the query results, ensuring
users can only see metrics they are authorized to see.

5.3.2 How AlertManager works

Alerting with Prometheus is separated into two parts. Alerting rules in Prometheus servers
send alerts to an Alertmanager. The Alertmanager then manages those alerts, including
silencing, inhibition, aggregation and sending out notifications via methods such as:

� Email
� Generic Webhooks
� HipChat
� OpsGenie
� PagerDuty
� Pushover
� Slack

The rule manager in Prometheus is responsible for evaluating recording and alerting rules on
a periodic basis (as configured using the evaluation_interval configuration file setting). It
evaluates all rules on every iteration using PromQL and writes the resulting time series back
into the storage. The notifier takes alerts generated by the rule manager via its Send()
method, enqueues them, and forwards them to all configured Alertmanager instances. The
notifier serves to decouple generation of alerts from dispatching them to Alertmanager (which
may fail or take time).

The Alertmanager handles alerts sent by client applications such as the Prometheus server. It
takes care of deduplicating, grouping, and routing them to the correct receiver integration.
The following describes the core concepts the Alertmanager implements:

Grouping - Grouping categorizes alerts of similar nature into a single notification. This is
especially useful during larger outages when many systems fail at once and hundreds to
thousands of alerts may be firing simultaneously.

Inhibition - Inhibition is a concept of suppressing notifications for certain alerts if certain
other alerts are already firing.

Silences - Silences are a straightforward way to simply mute alerts for a given time. A silence
is configured based on matchers, just like the routing tree. Incoming alerts are checked
whether they match all the equality or regular expression matchers of an active silence. If they
do, no notifications will be sent out for that alert.

For more information on Alertmanager refer the url below:

https://prometheus.io/docs/alerting/overview/

5.3.3 How Grafana works

Grafana includes built-in support for Prometheus. Grafana exposes metrics for Prometheus
on the /metrics endpoint. IBM Cloud Private comes with a Grafana dashboard to display the
health status and various metrics about the cluster. Users can access the Prometheus UI
directly at https://<master-ip>:8443/prometheus.
Chapter 5. Logging and monitoring 225

https://prometheus.io/docs/alerting/overview/

Grafana.com maintains a collection of shared dashboards which can be downloaded and
used with standalone instances of Grafana. Prebuilt dashboards could be downloaded from
url below:

https://grafana.com/dashboards?dataSource=prometheus

Prometheus data source could be configured and then data could be used in graphs. For
more details refer the document below:

https://prometheus.io/docs/visualization/grafana/

IBM Cloud Private following Grafana dashboards listed in Table 5-7 below.

Table 5-7 IBM Cloud Private Grafana dashboards

Dashboard type Dashboard details

ElasticSearch Provides information about ElasticSearch cluster
statistics, shard, and other system information

Etcd by Prometheus Etcd Dashboard for Prometheus metrics scraper

Helm Release Metrics Provides information about system metrics such
as CPU and Memory for each Helm release that is
filtered by pods

ICP Namespaces
Performance IBM Provided
2.5

Provides information about namespace
performance and status metrics

Cluster Network Health
(Calico)

 Calico hosts workload and system metric
performance information

ICP Performance IBM
Provided 2.5

Provides TCP system performance information
about Nodes, Memory, and Containers

Kubernetes Cluster
Monitoring

Monitors Kubernetes clusters that use
Prometheus. Provides information about cluster
CPU, Memory, and File system usage. The
dashboard also provides statistics for individual
pods, containers, and systemd services

Kubernetes POD Overview Monitors pod metrics such as CPU, Memory,
Network pod status, and restarts

NGINX Ingress controller Provides information about NGINX Ingress
controller metrics that can be sorted by
namespace, controller class, controller, and
ingress

Node Performance
Summary

Provides information about system performance
metrics such as CPU, Memory, Disk, and Network
for all nodes in the cluster

Prometheus Stats Dashboard for monitoring Prometheus v2.x.x

Storage GlusterFS Health Provides GlustersFS Health metrics such as
Status, Storage, and Node

Rook-Ceph Dashboard that provides statistics about Ceph
instances

Storage Minio Health Provides storage and network details about Minio
server instances
226 IBM Cloud Private System Administrator’s Guide

https://grafana.com/dashboards?dataSource=prometheus
https://prometheus.io/docs/visualization/grafana/

5.3.4 Accessing Prometheus, Alertmanager and Grafana dashboards

To access the Prometheus, Alertmanager and Grafana dashboard first log in to the IBM Cloud
Private management console.

� To access the Grafana dashboard, click Menu → Platform → Monitoring. Alternatively,
you can open https://<IP_address>:<port>/grafana, where <IP_address> is the DNS or
IP address that is used to access the IBM Cloud Private console. <port> is the port that is
used to access the IBM Cloud Private console.

� To access the Alertmanager dashboard, click Menu → Platform → Alerting. Alternatively,
you can open https://<IP_address>:<port>/alertmanager.

� To access the Prometheus dashboard, open https://<IP_address>:<port>/prometheus.

5.3.5 Configuring Prometheus Alertmanager and Grafana in IBM Cloud Private

Users can customise the monitoring service pre-installation or post-installation. If configuring
pre-installation then make changes to config.yaml file located in the
/<installation_directory>/cluster folder. Users can customize the values of the parameters,
as required.

The monitoring.prometheus section has the following parameters:

� prometheus.scrapeInterval - is the frequency to scrape targets in Prometheus

� prometheus.evaluationInterval - is the frequency to evaluate rules in Prometheus

� prometheus.retention - is the duration of time to retain the monitoring data

� prometheus.persistentVolume.enabled - is a flag that users set to use a persistent volume
for Prometheus. The flag false means that prometheus do not use a persistent volume

� prometheus.persistentVolume.storageClass - is the storage class to be used by
Prometheus

� prometheus.resources.limits.cpu - is the CPU limit that you set for the Prometheus
container. The default value is 500 millicpu.

� prometheus.resources.limits.memory - is the memory limit that you set for the Prometheus
container. The default value is 512 million bytes.

The monitoring.alertmanager section has the following parameters:

� alertmanager.persistentVolume.enabled - is a flag that you set to use a persistent volume
for Alertmanager. The flag false means that you do not use a persistent volume

� alertmanager.persistentVolume.storageClass - is the storage class to be used by
Alertmanager

� alertmanager.resources.limits.cpu - is the CPU limit that you set for the Alertmanager
container. The default value is 200 millicpu.

� alertmanager.resources.limits.memory - is the memory limit that you set for the
Alertmanager container. The default value is 256 million bytes.

The monitoring.grafana section has the following parameters:

� grafana.user - is the user name that you use to access Grafana.

� grafana.password - is the password of the user who is specified in the grafana.user
parameter.

� grafana.persistentVolume.enabled - is a flag that you set to use a persistent volume for
Grafana. The flag false means that you do not use a persistent volume.
Chapter 5. Logging and monitoring 227

� grafana.persistentVolume.storageClass - is the storage class to be used by Grafana

� grafana.resources.limits.cpu - is the CPU limit that you set for the Grafana container. The
default value is 500 millicpu.

� grafana.resources.limits.memory - is the memory limit that you set for the Grafana
container. The default value is 512 million bytes.

The resulting entry in config.yaml might resemble the YAML in Example 5-37.

Example 5-37 Monitoring configuration in config.yaml

monitoring:
 prometheus:
 scrapeInterval: 1m
 evaluationInterval: 1m
 retention: 24h
 persistentVolume:
 enabled: false
 storageClass: "-"
 resources:
 limits:
 cpu: 500m
 memory: 2048Mi
 requests:
 cpu: 100m
 memory: 128Mi
 alertmanager:
 persistentVolume:
 enabled: false
 storageClass: "-"
 resources:
 limits:
 cpu: 200m
 memory: 256Mi
 requests:
 cpu: 10m
 memory: 64Mi
 grafana:
 persistentVolume:
 enabled: false
 storageClass: "-"
 resources:
 limits:
 cpu: 500m
 memory: 512Mi
 requests:
 cpu: 100m
 memory: 128Mi

For more information and additional parameters to set, see
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/monitoring.
html
228 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/monitoring.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/monitoring.html

Example 5-38, Example 5-39, and Example 5-40 show the kubectl command to verify the
configurations set for Prometheus, Alertmanager, and Grafana after they are deployed.

Example 5-38 Command to verify the configurations for Prometheus

kubectl -n kube-system get configmap monitoring-prometheus -o yaml

Example 5-39 Command to verify the configuration for Alertmanager

kubectl -n kube-system get configmap monitoring-prometheus-alertmanager -o yaml

Example 5-40 Command to verify the configuration for Grafana

kubectl -n kube-system get configmap monitoring-grafana -o yaml

5.3.6 Creating Prometheus alert rules

You can use the Kubernetes custom resource, AlertRule, to manage alert rules in IBM Cloud
Private. Example 5-41 shows an example of alert rule to trigger alert of the node memory
consumption is greater than 60%.

Create a rule file sample-rule.yaml, as shown in Example 5-41.

Example 5-41 Alert rule to monitor node memory

apiVersion: monitoringcontroller.cloud.ibm.com/v1
kind: AlertRule
metadata:
 name: sample-redbook-rule
spec:
 enabled: true
 data: |-
 groups:
 - name: redbook.rules
 rules:
 - alert: NodeMemoryUsage
 expr: ((node_memory_MemTotal_bytes - (node_memory_MemFree_bytes +
node_memory_Buffers_bytes + node_memory_Cached_bytes))/
node_memory_MemTotal_bytes) * 100 > 60
 annotations:
 DESCRIPTION: '{{ $labels.instance }}: Memory usage is above the 60%
threshold. The current value is: {{ $value }}.'
 SUMMARY: '{{ $labels.instance }}: High memory usage detected'

To create the rule, run the command, as shown in Example 5-42.

Example 5-42 Create node memory monitoring rule

$ kubectl apply -f sample-rule.yaml -n kube-system
alertrule "sample-redbook-rule" configured

When the rule is created, you will be able to see the new alert in the Alerts tab in the
Prometheus dashboard.
Chapter 5. Logging and monitoring 229

Figure 5-35 shows the Node Memory Alert rule created and started for one of the nodes.

Figure 5-35 Node memory usage alert rule

5.3.7 Configuring Alertmanager to integrate external alert service receivers

IBM Cloud Private has a built-in Alertmanager that will provide the status and details of each
triggered alert. You then have the options to view more details, or silence the alert.
Figure 5-36 on page 231 shows alert triggered in Alertmanager dashboard.
230 IBM Cloud Private System Administrator’s Guide

Figure 5-36 Alert triggered for NodeMemoryUsage Alert rule

This example will configure Alertmanager to send notifications on Slack. The Alertmanager
uses the Incoming Webhooks feature of Slack, so first we need to set that up. Go to the
Incoming Webhooks page in the App Directory and click Install (or Configure and then Add
Configuration if it is already installed). Once the channel is configured to the incoming
webhook, slack will provide a webhook URL. This URL will have to configured in the Alertrule
configuration.

On the IBM Cloud Private boot node (or wherever kubectl is installed) run the following
command to pull the current ConfigMap data into a local file. Example 5-43 shows how to get
the alertmanager ConfigMap.

Example 5-43 Pull the current ConfigMap data into a local file

kubectl get configmap monitoring-prometheus-alertmanager -n kube-system -o yaml >
monitoring-prometheus-alertmanager.yaml

Edit monitoring-prometheus-alertmanager.yaml as shown in Example 5-44.

Example 5-44 Slack configuration in Alertmanager ConfigMap

apiVersion: v1
data:
 alertmanager.yml: |-
 global:
 receivers:
 - name: default-receiver
 slack_configs:
Chapter 5. Logging and monitoring 231

 - api_url:
https://hooks.slack.com/services/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
 channel: '#icp-notification'
 route:
 group_wait: 10s
 group_interval: 5m
 receiver: default-receiver
 repeat_interval: 3h
kind: ConfigMap
metadata:
 creationTimestamp: 2019-02-20T17:07:20Z
 labels:
 app: monitoring-prometheus
 chart: ibm-icpmonitoring-1.4.0
 component: alertmanager
 heritage: Tiller
 release: monitoring
 name: monitoring-prometheus-alertmanager
 namespace: kube-system
 resourceVersion: "3894"
 selfLink:
/api/v1/namespaces/kube-system/configmaps/monitoring-prometheus-alertmanager
 uid: fbd6cd7c-3531-11e9-99e8-06d591293f01

Example 5-44 on page 231 shows the Alertmanager ConfigMap with updated Slack
configuration including the webhook URL and channel name. Save this file and run the
command in Example 5-45 to update the Alertmanager configuration.

Example 5-45 Update Alertmanager configuration command

kubectl apply -f monitoring-prometheus-alertmanager.yaml

Figure 5-37 on page 233 shows that the Node memory usage alert is sent as a notification on
Slack for the operations teams to look at.
232 IBM Cloud Private System Administrator’s Guide

Figure 5-37 Node memory usage notification on Slack

5.3.8 Using Grafana

As discussed in section 5.3.3, “How Grafana works” on page 225, users can use various
types of dashboards using the Prometheus datasource. Grafana is already configured to use
the Prometheus timeseries datasource.

Users can use existing dashboards like Prometheus stats to see various statistics of
Prometheus monitoring system. Figure 5-38 shows the Prometheus statistics dashboard.

Figure 5-38 Prometheus Statistics dashboard in Grafana
Chapter 5. Logging and monitoring 233

To import dashboards available on Grafana website, click Import and add the Grafana
dashboard URL or ID. In this case we want to import a dashboard for Kubernetes
Deployment, Statefulset, and Daemonset metrics from URL below.

https://grafana.com/dashboards/8588

Figure 5-39 shows how to import an external Prometheus dashboard published on
grafana.com.

Figure 5-39 Import and external Prometheus dashboard

Configure the datasource to Prometheus and set unique identifier for the dashboard. You can
alternatively import the dashboard by exporting the JSON from grafana.com and importing
inside your grafana user interface.
234 IBM Cloud Private System Administrator’s Guide

https://grafana.com/dashboards/8588

This dashboard should now be available in the list of dashboards. Figure 5-40 shows the
Kubernetes Deployment Statefulset Daemonset metrics dashboard.

Figure 5-40 Kubernetes Deployment Statefulset Daemonset metrics dashboard
Chapter 5. Logging and monitoring 235

236 IBM Cloud Private System Administrator’s Guide

Chapter 6. Security

This chapter describes some of the recommended practices for implementing IBM Cloud
Private security. This section has the following sections:

� 6.1, “How IBM Cloud Private handles authentication” on page 238
� 6.2, “How authorization is handled in IBM Cloud Private” on page 239
� 6.3, “Isolation on IBM Cloud Private” on page 241
� 6.4, “The significance of the admission controller in IBM Cloud Private” on page 246
� 6.5, “Image security” on page 248

6

© Copyright IBM Corp. 2019. All rights reserved. 237

6.1 How IBM Cloud Private handles authentication

There are two types of entities (clients) that can authenticate with IBM Cloud Private. These
are:

� Actual humans (users)

� Pods (service account)

Users are meant to be managed by an external system, such as a LDAP (Lightweight
Directory Access Protocol), but pods use a mechanism called the service account, which is
created and stored in the cluster as a service account resource.

Pods can authenticate by sending the contents of the file
/var/run/secrets/kubernetes.io/serviceaccount/token, which is mounted into each
container’s file system through a secret volume. Every pod is associated with a service
account, which represents the identity of the app running in the pod. The token file holds the
service account’s authentication token. Service accounts are resources just like pods,
secrets, configmaps, and so on, and are scoped to the individual namespaces. A default
service account is automatically created for each namespace.

You can assign a service account to a pod by specifying the account’s name in the pod
manifest. If you don’t assign it explicitly, the pod will use the default service account in the
namespace.

IBM Cloud Private supports the following two authentication protocols for users:

� OIDC (OpenID Connect) based authentication
� SAML (Security Assertion Markup Language) based federated authentication

6.1.1 OIDC-based authentication

IBM Cloud Private provides an OIDC-based authentication through the WebSphere Liberty
Server. This is backed by the Liberty-based OIDC server for providing local and LDAP
directory-based authentication.

Lightweight Directory Access Protocol (LDAP) support
IBM Cloud Private can be configured with a single or multiple LDAP servers for authentication
and authorization. IBM Cloud Private supports the following LDAP types:

� IBM Tivoli® Directory Server
� IBM Lotus® Domino®
� IBM SecureWay Directory Server
� Novell eDirectory
� Sun Java System Directory Server
� Netscape Directory Server
� Microsoft Active Directory

With IBM Cloud Private, you can authenticate across multiple LDAPs. You can add multiple
directory entries to the LDAP config in the server.xml file. Liberty automatically resolves the
domain name from the login and authenticates against the targeted LDAP directory. IBM
Cloud Private users and user groups are associated with an enterprise directory during the
time of the user and user group onboarding via import. When the new LDAP directory entry is
created, the domain name also gets added as a new entry. At the time of login, you can
specify the domain against which this authentication should be validated.
238 IBM Cloud Private System Administrator’s Guide

It is possible to have a mix of directory types, for example Active Directory, IBM Tivoli
Directory Server and OpenLDAP. Role-based access control (RBAC) is enforced on the
LDAP domain. Cluster administrators have access to all LDAP domains, whereas team
administrators are restricted to only those domains they are authorized to.

For more information on configuring LDAP connection with IBM Cloud Private see the
following document:

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/user_management/configure
_ldap.html?view=kc

6.1.2 SAML-based authentication

IBM Cloud Private can be configured to use SAML (Security Assertion Markup Language)
based authentication from an enterprise SAML server. The steps to configure SAML-based
federated authentication with IBM Cloud Private are discussed in the following document:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/user_management/saml_c
onfig.html.

For configuring single sign-on see the following link:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/user_management/saml.h
tml.

6.2 How authorization is handled in IBM Cloud Private

IBM Cloud Private supports role-based access control (RBAC) as the authorization
mechanism. RBAC is enforced in IBM Cloud Private through teams. A team is an entity that
groups users and resources. The resources can be Kubernetes type resources such as
namespace, pod, and broker or a non-Kubernetes type, such as the Helm chart, DB instance,
and cloud connection. The assignment of the resources to the team happens through the
resource CRNs. The responsible services have to expose the resource CRNs through an API
so that they become available on the team’s Add Resource dialogue.

The Kubernetes resources, such as namespaces, are exposed through the
https://icp-ip:8443/idmgmt/identity/api/v1/k8resources/getK8Resources?resourceType
=namspaceAPI.

It is possible to fetch the resources that are attached to a specific user through their teams by
using the https://icp-ip:8443/idmgmt/identity/api/v1/users/{id}/getTeamResourcesAPI.

6.2.1 Cloud resource names (CRN) specification

IBM Cloud Private follows the CRN convention:

crn:version:cname:ctype:service-name:region:scope:service-instance:resource-type:r
esource-instance.

Let us take an example. We will create a team in IBM Cloud Private, onboard LDAP user in
the team and assign a role to the user.
Chapter 6. Security 239

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/user_management/configure_ldap.html?view=kc
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/user_management/saml_config.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/user_management/saml_config.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/user_management/saml.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/user_management/saml.html

1. Create a team in IBM Cloud Private UI name it icp-team as shown in Figure 6-1.

Figure 6-1 Create team icp-team

2. Add user carlos to the team icp-team and assign the Administrator role for this team. See
Figure 6-2.

Figure 6-2 Add user carlos to team icp-team
240 IBM Cloud Private System Administrator’s Guide

3. Assign namespace development to icp-team as shown in Figure 6-3.

A

Figure 6-3 Assign namespace development to iicp-team

This will conclude the scenario. For details on which role has permission to perform actions
on which resources, see the url below:

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/user_management/assign_ro
le.html

Within a team, each user or user group can have only one role. However, a user might have
multiple roles within a team when you add a user both individually and also as a member of a
team’s group. In that case, the user can act based on the highest role that is assigned to the
user. For example, if you add a user as an Administrator and also assign the Viewer role to
the user’s group, the user can act as an Administrator for the team.

6.2.2 Role-based access control (RBAC) for pods

Every pod has an associated service account. Always associate service account with a
fine-grained RBAC policy. Only grant this service account the actions and resources that the
pod requires to function properly.

6.3 Isolation on IBM Cloud Private

IBM Cloud Private offers multi-tenancy support through user, compute, and network isolation
within a cluster. Dedicated physical and logical resources are required for the cluster to
achieve workload isolation. Multi-tenancy requires applying various isolation techniques that
are described in this topic. User, compute, and network isolation are enforced by confining
workload deployments to virtual and physical resources. The enforced isolation also allows
the cluster administrator to control the footprint that is allocated to various teams based on
their requirements.

The following are some of the key prerequisites to achieve isolation of deployments on cluster
nodes.

IBM Cloud Private provides several levels of multi-tenancy. The cluster administrator must
analyze workload requirements to determine which levels are required. The following isolation
features can be used to satisfy these requirements:

� Host groups: As part of preinstall configuration, the cluster administrator can configure
groups of nodes to worker host groups and proxy host groups. This operation also involves
pre-planning the namespaces, as each host group is mapped to a namespace.
Chapter 6. Security 241

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/user_management/assign_role.html

� VLAN subnet: The network infrastructure administrator can plan various subnet ranges
for each node or host groups before IBM Cloud Private installation.

� Multiple LDAP supports: Multiple LDAP servers can be configured and the cluster
administrator can form teams of users and user groups from various LDAP domains. For
the steps to add multiple LDAP registration see
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/user_management/iso_ld
ap.html.

� Namespaces: The cluster administrator can create namespaces for logical grouping of
resources. These namespaces can be created after the IBM Cloud Private installation. If
the cluster administrator chooses to have host groups, then the namespace planning is
done before installation.

� Network ingress controllers: The cluster administrator must plan the ingress controllers
before installation to allow the installer to create ingress controllers for each controller that
are mapped to one host group and one namespace.

� Users, user groups and teams: The users and user groups can be on boarded on to IBM
Cloud platform and they can be grouped in teams that are mapped to namespaces and
other resources.

� Network policies: Team administrators and operators can create network policies to
create firewall rules at the namespace scope.

� Pod security policies: The cluster administrator can create policies that either allow or
deny container images from running in select namespaces or nodes.

6.3.1 Scenarios

Let us consider the following scenario. In an organization there are two teams, team1, team2
who want to enforce user, compute, and network isolation by confining workload deployments
to virtual and physical resources. During the IBM Cloud Private installation we created
isolated worker and proxy nodes. Post installation, we onboarded team members from both
teams in IBM Cloud Private and assigned them namespaces ns-team1, ns-team2
respectively.

� Namespace ns-team1 is bound to the worker node workerteam1 and the proxy node
proxyteam1.

� Namespace ns-team2 is bound to the worker node workerteam2 and the proxy node
proxyteam2.

Example 6-1 shows that team1 and team2 has dedicated worker and proxy nodes.

Example 6-1 Output of the kubectl get nodes command

root@acerate1:~# kubectl get nodes

NAME STATUS ROLES AGE VERSION
172.16.16.233 Ready workerteam2 19h v1.12.4+icp-ee
172.16.16.234 Ready proxyteam2 19h v1.12.4+icp-ee
172.16.236.223 Ready etcd,management,master,proxy,worker 20h v1.12.4+icp-ee
172.16.237.124 Ready workerteam1 19h v1.12.4+icp-ee
172.16.237.225 Ready proxyteam1 19h v1.12.4+icp-ee

For both teams users and groups information are onboarded from LDAP into IBM Cloud
Private. Deployment that is done from users of team1 will go under the namespace ns-team1
and will be deployed on the worker node workerteam1 and use the proxy node proxyteam1.
242 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/user_management/iso_ldap.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/user_management/iso_ldap.html

Deployment that is done from users of team2 will go under the namespace ns-team2 and will
be deployed on the worker node workerteam2 and use the proxy node proxyteam2.
Figure 6-4 shows that team1 and team2 from LDAP are onboarded in IBM Cloud Private.

Figure 6-4 Team1 and team2 from LDAP have been onboarded

So, in the above scenario we were able to achieve the following isolation features:

� Host groups: We are able to isolate proxy node and worker node for each team.

� VLAN subnet: Worker and proxy nodes are in same subnet for each team. Team1 is
using the subnet 172.16.236.0/24 and team2 is using the subnet 172.16.16.0/24.

� Namespaces: Both teams have been assigned to different namespaces for logical
grouping of resources. This means team1 has been assigned to the namespace ns-team1
and team2 has been assigned to the namespace ns-team2.

� Network ingress controllers: Both teams have isolated proxy nodes, so they will use an
ingress controller from their respective proxy nodes.

� Users, user groups and teams: Both teams can onboard any group and users from
LDAP in a team, Cluster administrator can create new teams.

Note that the pods deployed from team1 can still talk to the pods of team2. For example both
teams deployed the node js sample application from the IBM Cloud Private Helm chart. To
stop the communication between the pods of team1 and team2 we should execute the
following steps in this order.

See Example 6-2, Example 6-3, Example 6-4 on page 244, Example 6-5 on page 244, and
Example 6-6 on page 244. First we start with some prerequisite steps.

Example 6-2 Getting he details of the pod deployed by team1

root@acerate1:~# kubectl get po -n ns-team1 -o wide | awk {' print $1" " $6" " $7'} | column -t
NAME IP NODE
nodejs-deployment-team1-nodejssample-nodejs-c856dff96-z84gv 10.1.5.5 172.16.237.124

Example 6-3 Getting the details of the pod deployed by team2

root@acerate1:~# kubectl get po -n ns-team2 -o wide | awk {' print $1" " $6" " $7'} | column -t
NAME IP NODE
nodejs-deployment-team2-nodejssample-nodejs-7c764746b9-lmrcc 10.1.219.133 172.16.16.233
Chapter 6. Security 243

Example 6-4 Getting the service details of the pod deployed by team1

root@acerate1:~# kubectl get svc -n ns-team1 | awk {' print $1" " $5'} | column -t
NAME PORT(S)
nodejs-deployment-team1-nodejssample-nodejs 3000:31061/TCP

Example 6-5 Getting the service details of the pod deployed by team2

root@acerate1:~# kubectl get svc -n ns-team2 | awk {' print $1" " $5'} | column -t
NAME PORT(S)
nodejs-deployment-team2-nodejssample-nodejs 3000:30905/TCP

Example 6-6 Accessing the pod of team2 from the pod of team1

root@acerate1:~# kubectl exec -it nodejs-deployment-team1-nodejssample-nodejs-c856dff96-z84gv -n
ns-team1 -- /bin/bash -c "curl 10.1.219.133:3000"
<!--
 Licensed Materials - Property of IBM
 (C) Copyright IBM Corp. 2018. All Rights Reserved.
 US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
-->
<!DOCTYPE html>
<html lang="en">
<head>
....
....
<div class="footer">
 <p>Node.js is a trademark of Joyent, Inc. and is used with its permission. We are not
endorsed by or affiliated with Joyent.</p>
 </div>
 </div>
</body>

At this point, we need to create network policies to create firewall rules at the namespace
scope. This will stop the communication between pods of team1 and team2. Example 6-7,
Example 6-8, Example 6-9 on page 245, Example 6-10 on page 245, and Example 6-11 on
page 245 show how to do it.

Example 6-7 Patching the namespace for team1 with label name: ns-team1

apiVersion: v1
kind: Namespace
metadata:
 name: ns-team1
 labels:
 name: ns-team1

Example 6-8 Patching the namespace for team2 with label name: ns-team2

apiVersion: v1
kind: Namespace
metadata:
 name: ns-team2
 labels:
 name: ns-team2
244 IBM Cloud Private System Administrator’s Guide

Example 6-9 Creating a network policy for team1 to stop communication from any pods except its own pods

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: networkpolicy-team1
 namespace: ns-team1
spec:
 policyTypes:
 - Ingress
 podSelector: {}
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 name: ns-team1

Example 6-10 Creating a network policy for team2 to stop communication from any pods except its own pods

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: networkpolicy-team2
 namespace: ns-team2
spec:
 policyTypes:
 - Ingress
 podSelector: {}
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 name: ns-team2

Example 6-11 Trying to access the pod of team2 from the pod of team1 or vice versa will fail

root@acerate1:~# kubectl exec -it nodejs-deployment-team1-nodejssample-nodejs-c856dff96-z84gv -n
ns-team1 -- /bin/bash -c "curl 10.1.219.133:3000"
[curl: (7) Failed to connect to 10.1.219.133 port 3000: Connection timed out

If team1 wants to use a different level of security for its pods then team2, they can create its
own pod security policy and bind it with namespace. For detailed steps see the following URL:

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.1/user_management/create_na
mespace_pspbind.html.
Chapter 6. Security 245

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.1/user_management/create_namespace_pspbind.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.1/user_management/create_namespace_pspbind.html

6.4 The significance of the admission controller in IBM Cloud
Private

After authentication and authorization, the next step that IBM Cloud Private performs is the
admission control. By the time we have reached this phase, it has already been determined
that the request came from an authenticated user and that the user is authorized to perform
this request. What we care about right now is whether the request meets the criteria for what
we consider to be a valid request and if not, what actions need to be taken. Should we reject
the request entirely, or should we alter it to meet our business policies?

Admission control is where an administrator can really start to wrangle the users’ workloads.
With admission control, you can limit the resources, enforce policies, and enable advanced
features.

In the following sections you can find some examples of the admission controller.

6.4.1 Pod security policy

The pod security policies can be used to enforce container image security for the pods in your
cluster. A pod security policy is a cluster level resource that controls the security sensitive
aspects of a pod’s specification and the set of conditions that must be met for a pod to be
admitted into the cluster. The pod security policy is applied to the namespace by creating a
ClusterRoleBinding or RoleBinding with the respective pod security policy ClusterRole for all
service accounts in the namespace.

The pod security policies allow cluster administrators to create pod isolation policies and
assign them to namespaces and worker nodes. IBM Cloud Private provides predefined
policies that you can apply to your pod by associating them with a namespace during the
namespace creation. These predefined pod security policies apply to most of the IBM content
charts.

The following list shows the types and descriptions that range from the most restrictive to the
least restrictive:

� ibm-restricted-psp: This policy requires pods to run with a non-root user ID, and prevents
pods from accessing the host.

� ibm-anyuid-psp: This policy allows pods to run with any user ID and group ID, but
prevents access to the host.

� ibm-anyuid-hostpath-psp: This policy allows pods to run with any user ID and group ID
and any volume, including the host path.

� ibm-anyuid-hostaccess-psp: This policy allows pods to run with any user ID and group
ID, any volume, and full access to the host.

Attention: This policy allows hostPath volumes. Ensure that this is the level of access
that you want to provide.

Attention: This policy allows full access to the host and network. Ensure that this is the
level of access that you want to provide.
246 IBM Cloud Private System Administrator’s Guide

� ibm-privileged-psp: This policy grants access to all privileged host features and allows a
pod to run with any user ID and group ID and any volume.

If you install IBM Cloud Private version 3.1.1, or later as a new installation, the default pod
security policy setting is restricted. When it is restricted, the ibm-restricted-psp policy is
applied by default to all of the existing and newly created namespaces.You can also create
your own pod security policy. For more information see the following link:

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.1/manage_cluster/enable_pod
_security.html.

In the following you can find some of the recommended practices when using the pod security
policy:

Running privileged pods separately from un-privileged pods
Unprivileged pods are those that can run with the ibm-restricted-psp pod security policy.
These containers do not require any elevated privileges and are less likely to affect other
containers on the same node. You should separate any pods that require special privileges,
especially if the workload is not completely trusted or documented.

Binding pod security policies to namespaces instead of service
accounts
Kubernetes does not check for elevated role-based access control (RBAC) permissions when
a cluster administrator assigns a service account to a pod. It only checks for elevated
permissions when a RoleBinding or ClusterRoleBinding is created. If a cluster administrator
creates several service accounts in a namespace with various levels of privileges, then the
namespace is only as secure as the service account that has the most privileges. It is safer
and easier for a cluster administrator to examine the security settings of a namespace when a
pod security policy is bound to all of the service accounts rather than the individual ones.

Specifying one pod security policy per namespace
The pod security policies are assigned to pods by the pod admission controller based on the
user that creates the pod. For pods created by controllers, such as Deployments, the
namespace user is the service account. If more than one policy matches the pod’s declared
security context, then any of the policies could match.

Avoid creating pods directly
Pods can be created directly, with the user’s credentials. This can circumvent the pod security
policy that is bound to the service accounts in the target namespace. A cluster administrator
can run a privileged pod in a namespace that is configured as an un-privileged namespace.

6.4.2 ResourceQuota

This admission controller will observe the incoming requests and ensure that they do not
violate any of the constraints enumerated in the ResourceQuota object in a namespace.

Attention: This policy is the least restrictive and must be used only for cluster
administration. Use with caution.
Chapter 6. Security 247

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.1/manage_cluster/enable_pod_security.html.

6.4.3 LimitRange

This admission controller will observe the incoming request and ensure that it does not violate
any of the constraints enumerated in the LimitRange object in a namespace.

6.4.4 AlwaysPullImages

This admission controller modifies every new pod to force the image pull policy to Always.
This is useful in a multitenant cluster so that users can be assured that their private images
can be used only by those who have the credentials to pull them. Without this admission
controller, once an image has been pulled to a node, any pod from any user can use it simply
by knowing the image’s name (assuming the pod is scheduled onto the right node), without
any authorization check against the image. When this admission controller is enabled,
images are always pulled prior to starting containers, which means valid credentials are
required.

IBM Cloud Private supports all of the Kubernetes admission controllers. For more details see
the following link:

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

6.5 Image security

IBM Cloud Private component Image Manager runs on top of the Docker registry V2 API. It
integrates with the Docker registry to provide a local registry service, The Image Manager
uses the cluster’s authentication service to authenticate the end user. The Docker command
line client is used to push or pull images in your cluster.

Figure 6-5 on page 249 shows the Image Manager architecture.
248 IBM Cloud Private System Administrator’s Guide

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

Figure 6-5 Image Manager architecture

6.5.1 Pushing and pulling images

In order to push or pull an image we need to log in to our private image registry.

docker login <cluster_CA_domain>:8500

<cluster_CA_domain> is the certificate authority (CA) domain that was set in the config.yaml
file during installation. If you did not specify a CA domain name, the default value is
mycluster.icp.

You can push or pull the image only if the namespace resource is assigned to a team for
which you have the correct role. Administrators and operators can push or pull the image.
Editors and viewers can pull images. Unless you specify an imagePullSecret, you can access
the image only from the namespace that hosts it.

We can push or pull the image only if the namespace resource is assigned to a team for
which you have the correct role. Administrators and operators can push or pull the image.
Editors and viewers can pull images. Unless you specify an imagePullSecret, you can access
the image only from the namespace that hosts it.

The service account defined in a PodSpec can pull the image from the same namespace
under the following conditions:

� The PodSpec is using default service account.

� The service account is patched with a valid image pull secret.

� The PodSpec includes the name of a valid image pull secret.

� The image scope is changed to global after the image is pushed.
Chapter 6. Security 249

How to change image scope?
There are two ways to change the image scope:

Change image scope using the command line
To change the scope from namespace to global, run the following command:

kubectl get image <image name> -n=namespace -o yaml \
| sed 's/scope: namespace/scope: global/g' | kubectl replace -f -

To change the scope from global to namespace, run the following command:

kubectl get image <image name> -n=namespace -o yaml \
| sed 's/scope: global/scope: namespace/g' | kubectl replace -f -

where <image name> value is the name of the image for which scope is changed.

Change the image scope using IBM Cloud Private UI
Perform the following steps to change the image scope using IBM Cloud Private UI:

1. From the navigation menu, click Container Images.

2. For the image that you want to update, click Open and close the List of options button and
select Change Scope.

3. Select the scope from the drop-down menu in the Image dialog box.

4. Click Change Image Scope.

6.5.2 Enforcing container image security

Using the container image security enforcement feature, IBM Cloud Private can verify the
integrity of a container image before it is deployed to an IBM Cloud Private cluster. For each
image in a repository, an image policy scope of either the cluster or the namespace is applied.
When you deploy an application, IBM container image security enforcement checks whether
the namespace that you are deploying to has any policy regulations that must be applied.

If a namespace policy does not exist, then the cluster policy is applied. If the namespace
policy and the cluster policy overlap, the cluster scope is ignored. If neither a cluster or
namespace scope policy exists, your deployment fails to start.

Pods that are deployed to namespaces, which are reserved for the IBM Cloud Private
services, bypass the container image security check.

The following namespaces are reserved for the IBM Cloud Private services:

� kube-system
� cert-manager
� istio-system

Example 6-12 shows a sample image policy.

Example 6-12 Sample image policy.

apiVersion: securityenforcement.admission.cloud.ibm.com/v1beta1
kind: <ClusterImagePolicy_or_ImagePolicy>
metadata:
 name: <crd_name>
spec:
 repositories:
 - name: <repository_name>
250 IBM Cloud Private System Administrator’s Guide

 policy:
 va:
 enabled: <true_or_false>

In this example, repository_name specifies the name of repository from which the image will
be to pulled from. A wildcard (*) character is allowed in the repository name. This wildcard (*)
character denotes that the images from all of the repositories are allowed or trusted. To set all
your repositories to trusted, set the repository name to (*) and omit the policy subsections.

Repositories by default require a policy check, with the exception of the default
mycluster.icp:8500 repository. An empty or blank repository name value blocks deployment
of all the images.

When va is set to enabled: true (See Example 6-12 on page 250), vulnerability advisor policy
is enforced. It works only for the default IBM Cloud Private built-in container registry. With the
other image registries this option should be false, otherwise the image will not be pulled.

ClusterImagePolicy or ImagePolicy for a namespace can be viewed or edited like any other
Kubernetes object.

Default image security enforcement
Since the release of IBM Cloud Private Version 3.1.1, IBM container Image Security
Enforcement is turned on by default. Any image that does not meet the policy will not be
deployed successfully.

Let us check this out with an example: Hello-world image enforcement with kubectl. We run
the sample hello-world docker image, as shown in Example 6-13.

Example 6-13 Hello-world docker image

kubectl run -it --rm imagepolicy --image=hello-world --restart=Never

Error from server (InternalError): Internal error occurred: admission webhook
"trust.hooks.securityenforcement.admission.cloud.ibm.com" denied the request:
Deny "docker.io/hello-world", no matching repositories in ClusterImagePolicy and
no ImagePolicies in the "default" namespace

The security enforcement hook blocks the running of the image. This is a great security
feature enhancement that prevents any unwanted images to be run in the IBM Cloud Private
cluster.

Now we will create a whitelist to enable this specific docker image from the Docker Hub. For
each repository that you want to enable the pulling of an image, you have to define the name
for the repository, where the wildcard(*) is allowed. You can also define the policy of the
vulnerability advisor (VA). If you enable the VA enforcement as true, then only those images
that have passed the vulnerability scanning can be pulled. Otherwise, they will be denied.

Create the following image policy YAML as shown in Example 6-14.

Example 6-14 Image policy yaml

apiVersion: securityenforcement.admission.cloud.ibm.com/v1beta1
kind: ImagePolicy
metadata:
 name: my-cluster-images-whitelist
namespace: default
Chapter 6. Security 251

spec:
 repositories:
 - name: docker.io/hello-world
 policy:
 va:
 enabled: false

Here we create an image policy which applies to the default namespace. We give the exact
match of the image and set the VA policy disabled. Save it as image-policy.yaml, and apply it
with the kubectl apply -f image-policy.yaml command.

Now run the same command again. You will see the docker’s hello world message as shown
in Example 6-15.

Example 6-15 Hello world message displayed

kubectl run -it --rm imagepolicy --image=hello-world --restart=Never

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (amd64)
 3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
 https://hub.docker.com/

For more examples and ideas, visit:
 https://docs.docker.com/get-started/

pod "imagepolicy" deleted

Perform the following steps for the hello-world image enforcement example with dashboard:

1. Login to dashboard.

2. Go to Manage Resource Security → Image Policies.

3. Select the my-cluster-images-whitelist that was created with the kubectl command.

4. Remove the policy as shown in Figure 6-6 on page 253.
252 IBM Cloud Private System Administrator’s Guide

Figure 6-6 Remove the image policy

5. Now the hello-world image will be prevented to run again.

6. Click the Create Image Policy button at the up right corner to pop up in Figure 6-7.

Figure 6-7 Add image policy
Chapter 6. Security 253

7. Give it a name such as "my-white-list".

8. Specify the scope as Cluster, which applies the enforcement to the whole cluster. Unlike
the above namespace based example, once this policy is created, then any namespace
can run the image at the cluster level.

9. Set the VA scan to “not enforced”. Currently only the default IBM Private Cloud registry
has the VA scanning feature. The rest of the docker registry doesn’t have this feature. If
you enabled it, none of the images can be run.

10.Click the Add button. By adding this, you can run the image at any namespace. As an
example see Example 6-16.

Example 6-16 Run the hello-world in kube-public namespace

kubectl run -it --namespace=kube-public --rm imagepolicy --image=hello-world
--restart=Never

Example 6-17 shows the list of the images that are allowed at the cluster level by default in
IBM Cloud Private 3.1.2.

Example 6-17 Default enabled image list in IBM Cloud Private 3.1.2

<your icp cluster name>:8500/*
registry.bluemix.net/ibm/*
cp.icr.io/cp/*
docker.io/apache/couchdb*
docker.io/ppc64le/*
docker.io/amd64/busybox*
docker.io/vault:*
docker.io/consul:*
docker.io/python:*

docker.io/centos:*
docker.io/postgres:*
docker.io/hybridcloudibm/*
docker.io/ibmcom/*
docker.io/db2eventstore/*
docker.io/icpdashdb/*
docker.io/store/ibmcorp/*
docker.io/alpine*
docker.io/busybox*
docker.io/dduportal/bats:*
docker.io/cassandra:*
docker.io/haproxy:*
docker.io/hazelcast/hazelcast:*
docker.io/library/busybox:*
docker.io/minio/mc:*
docker.io/minio/minio:*
docker.io/nginx:*
docker.io/open-liberty:*
docker.io/openwhisk/*
docker.io/rabbitmq:*
docker.io/radial/busyboxplus:*
docker.io/ubuntu*
docker.io/websphere-liberty:*
docker.io/wurstmeister/kafka:*
docker.io/zookeeper:*
254 IBM Cloud Private System Administrator’s Guide

docker.io/ibmcloudcontainers/strongswan:*
docker.io/opsh2oai/dai-ppc64le:*
docker.io/redis*
docker.io/f5networks/k8s-bigip-ctlr:*
docker.io/rook/rook:*
docker.io/rook/ceph:*
docker.io/couchdb:*
docker.elastic.co/beats/filebeat:*
docker.io/prom/statsd-exporter:*
docker.elastic.co/elasticsearch/elasticsearch:*
docker.elastic.co/kibana/kibana:*
docker.elastic.co/logstash/logstash:*
quay.io/k8scsi/csi-attacher:*
quay.io/k8scsi/driver-registrar:*
quay.io/k8scsi/nfsplugin:*
quay.io/kubernetes-multicluster/federation-v2:*
k8s.gcr.io/hyperkube:*
registry.bluemix.net/armada-master/ibm-worker-recovery:*

For any image that is not in the default list, you have to create either a namespace based
image policy or a cluster level policy to allow the image to run.
Chapter 6. Security 255

256 IBM Cloud Private System Administrator’s Guide

Chapter 7. Networking

This chapter provides an overview of the network component in IBM Private Cloud and
discusses how communication flows between the pods and the external network and how a
pod is exposed to the network.

The chapter has the following sections:

� 7.1, “Introduction to container networking” on page 258
� 7.2, “Pod network” on page 259
� 7.3, “High availability” on page 262
� 7.4, “Service discovery (kube-dns)” on page 270

7

© Copyright IBM Corp. 2019. All rights reserved. 257

7.1 Introduction to container networking1

A container needs to have at least one network interface. Through this interface, the container
communicates with the other containers or endpoints. Kubernetes has its own network on top
of the physical network to enable communication between nodes and external systems.

A pod could consist of various containers that are collocated at the same host, share the
same network stack, and share other resources (such as volumes). From an application
developer point of view, all containers in a Kubernetes cluster are considered on a flat subnet.

Figure 7-1 shows the communication coming from the physical Interface (eth0) going to the
Docker0 and then to the virtual network.

Each docker instance creates its own network and enables the pod communication.

Figure 7-1 Overview of pod network

As shown in Figure 7-1, the communication is bidirectional.

The next sections demonstrate the networking concepts in Kubernetes, such as pod
networking, load balancing, and ingress.

1 Some of the content in this chapter is based on the following GitHub document created by Rachappa Goni, Eswara Kosaraju, Santosh
Ananda, and Jeffrey Kwong.
258 IBM Cloud Private System Administrator’s Guide

7.2 Pod network

Pod network enables the pods, and all containers that are associated with the pods are
network addressable. This basic network is implemented by Kubernetes and allows a pod to
communicate with the other pods as though they were on their own dedicated hosts.

It is important to note that all containers in a single pod share the same port space. If
container A uses port 80, you cannot have container B inside the same pod that uses port 80
as well. Using the same port would only work if these containers are on different pods. An
additional component, called the pod network namespace, is provided by the Kubernetes
pause container. This component creates and owns the network namespace.

Another component that is present on the pod network is the container network interface
(CNI). This consists of a plug-in that connects the pod network namespace to the rest of the
pods in the Kubernetes cluster. The most widely used CNIs in IBM Cloud Private are the
Calico and NSX.

7.2.1 Calico

Calico enables networking and network policy in Kubernetes clusters across the cloud. It
combines flexible networking capabilities with run anywhere security enforcement, providing
performance similar to a native kernel and enabling real cloud-native scalability. Calico is
implemented without encapsulation or overlays, providing high-performance networking. It
also provides a Network security policy for Kubernetes pods through its distributed firewall.

When using Calico, policy engine enforces the same policy model at the host networking
layers (and at the service mesh if using Istio) helping to protect the infrastructure from
workloads from compromised infrastructures.

Because Calico uses the Linux Kernel’s forwarding and access control, it provides a
high-performance solution without the resources used by encapsulation and decapsulation.

Calico creates a flat layer-3 network, and assigns a fully routable IP address to every pod. To
do that, it divides a large network of CIDR (Classless Inter-Domain Routing) into smaller
blocks of IP addresses, and assigns one or more of these smaller blocks to the nodes in the
cluster. This configuration is specified at the IBM Cloud Private installation time using the
network_cidr parameter in config.yaml in CIDR notation.

By default, Calico creates a BGP (Border Gateway Protocol) mesh between all nodes of the
cluster, and broadcasts the routes for container networks to all of the worker nodes. Each
node is configured to act as a layer 3 gateway for the subnet assigned to the worker node,
and serves the connectivity to pod subnets hosted on the host.

All nodes participate in the BGP mesh, which advertises the local routes that the worker node
owns to the rest of the nodes. BGP peers external to the cluster can participate in this mesh
as well, but the size of the cluster affects how many BGP advertisements these external peers
will receive. Route reflectors can be required when the cluster scales past a certain size.

When routing the pod traffic, Calico uses the system capabilities, such as the node’s local
route tables and iptables. All pod traffic traverses iptables rules before they are routed to
their destination.

Calico maintains its state using an etcd key/value store. By default, in IBM Cloud Private
Calico uses the same etcd key/value store as Kubernetes to store the policy and network
configuration states.
Chapter 7. Networking 259

Calico can be configured to allow pods to communicate with each other with or without
IP-in-IP tunneling. IP-in-IP adds an additional header for all packets as part of the
encapsulation, but containers can communicate on its overlay network through almost any
non-overlapping underlay network. In some environments where the underlay subnet address
space is constrained and there is no access to add additional IP Pools, like on some public
clouds, Calico can be a good fit.

However, in environments that do not require an overlay, IP-in-IP tunneling should be disabled
to remove the packet encapsulation resource use, and enable any physical routing
infrastructure to do packet inspection for compliance and audit. In such scenarios, the
underlay network should be made aware of the additional pod subnets by adding the underlay
network routers to the BGP mesh. See the discussion about this in “Calico components”.

Calico components
The calico network is created by the following 3 components: node agent, CNI, and
kube-controller.

Calico/node agent
This entity has three components: felix, bird, and confd.

� Felix’s primary responsibility is to program the host’s iptables and routes to provide the
wanted connectivity to and from the pods on that host.

� Bird is an open source BGP agent for Linux that is used to exchange routing information
between the hosts. The routes that are programmed by felix are picked up by bird and
distributed among the cluster hosts.

� Confd monitors the etcd data store for changes to the BGP configuration, such as IPAM
information and AS number, and accordingly changes the bird configuration files and
triggers bird to reload these files on each host. The calico/node creates veth-pairs to
connect the Pod network namespace with the host’s default network namespace.

Calico/cni
The CNI plug-in provides the IP address management (IPAM) functionality by provisioning IP
addresses for the Pods hosted on the nodes.

Calico/kube-controller
The calico/kube-controller watches Kubernetes NetworkPolicy objects and keeps the Calico
data store in sync with the Kubernetes. calico/node runs on each node and uses the
information in the Calico etcd data store and program the local iptables accordingly.

Calico network across different network segments
When nodes are on different network segments, they are connected using a router in the
underlay infrastructure network. The traffic between two nodes on different subnets happens
through the router, which is the gateway for the two subnets. If the router is not aware of the
pod subnet, it will not be able to forward the packets between the hosts.

There are two scenarios that can be used to the Calico communication:

� Calico can be configured to create IP-in-IP tunnel end points on each node for every
subnet hosted on the node. Any packet originated by the pod and egressing the node is
encapsulated with the IP-in-IP header, and the node IP address is utilized as the source.
This way, the infrastructure router does not see the pod IP addresses.

The IP-in-IP tunneling brings in extra resource use in terms of network throughput and
latency due to the additional packet resource and processing at each endpoint to
encapsulate and decapsulate packets.
260 IBM Cloud Private System Administrator’s Guide

On bare metal, the resource use is not significant, because certain network operations can
be offloaded to the network interface cards. However, on virtual machines, the resource
use can be significant and also affected by the number of CPU cores and network I/O
technologies configured and used by the hypervisors. The additional packet encapsulation
resources might also be significant when smaller MTU (maximum transmission unit) sizes
are used, because it might introduce packet fragmentation; jumbo frames should be
enabled whenever possible.

� The second option is to make the infrastructure router aware of the pod network. This can
be done by enabling BGP on the router and adding the nodes in the cluster as BGP peers
to it. With these actions, the router and the hosts can exchange the route information
between each other. The size of the cluster in this scenario might come in to play because
in the BGP mesh, every node in the cluster is BGP peering to the router.

7.2.2 NSX-T

NSX-T is a network virtualization and security platform that automates the implementation of
network policies, network objects, network isolation, and micro-segmentation.

Figure 7-2 shows an overview of NSX-T.

Figure 7-2 NSX-T configuration

NSX-T network virtualization for Kubernetes
The NSX-T network virtualization for Kubernetes consists of L2 and L3 segregation, micro
segmentation, and NAT pools.

L2 and L3 segregation
NSX-T creates a separate L2 switch (virtual distributed switch, or VDS) and L3 router
(distributed logical router, or DLR) for every namespace. The namespace level router is called
a T1 router. All T1 routers are connected to the T0 router, which acts like an edge gateway to
the IBM Cloud Private cluster, as well as an edge firewall and load balancer. Due to separate
L2 switches, all the broadcast traffic is confined to the namespace. In addition, due to the
separate L3 router, each namespace can host its own pod IP subnet.
Chapter 7. Networking 261

Micro segmentation
NSX-T provides distributed firewall (DFW) for managing the east-west traffic. The Kubernetes
network policy gets converted into the NSX-T DFW rules. With L2 segmentation, dedicated
L3 subnets for namespaces and network policies, one can achieve micro segmentation within
and across a namespace.

NAT pools
Edge appliance is an important component of the NSX-T management cluster. It offers
routing, firewall, load balancing, and network address translation, among other features. By
creating pods on the NSX-T pod network (and not relying on the host network), all traffic can
be traversed though the edge appliance using its firewall, load balancing, and network
address translation capabilities.

The edge appliance assigns SNAT (Source Network Address Translation) IPs to the outbound
traffic, and DNAT (Destination Network Address Translation) IPs to the inbound traffic from
the NAT pool (created as part of the NSX-T deployment). By relying on the network address
translation, the cluster node IPs are not exposed on the outbound traffic.

7.3 High availability

For high availability, master and proxy nodes should be deployed redundantly (at different
physical locations, if possible) to tolerate hardware failures and network partitions. The
following discusses options for network high availability considerations in IBM Cloud Private.

7.3.1 External load balancer

If possible, a highly available external load balancer should be leveraged to spread the traffic
among separate master or proxy node instances in the cluster. The external load balancer
can either be a DNS URL or an IP address, and specified using cluster_lb_address at
config.yaml during install time. The cluster_CA_domain and any TLS certificates should be
configured to be a CNAME (Canonical Name Record) or a record pointing at the external load
balancer DNS name or IP address. In addition, all nodes in the cluster should be able to
resolve this CNAME for internal communication.

When using an external load balancer, the master load balancer should monitor the
Kubernetes API server port 8001 for health on all master nodes, and the load balancer needs
to be configured to accept connections on the following locations:

� Forward traffic to 8001 (Kubernetes API)

� 8443 (platform UI), 9443 (authentication service)

� 8500 and 8600 (private registry)

When using an external load balancer, each master node can be in different subnets if the
round-trip network time between the master nodes is less than 33 ms for etcd. Figure 7-3 on
page 263 illustrates the load balancer option.
262 IBM Cloud Private System Administrator’s Guide

Figure 7-3 Load balancer in an IBM Cloud Private environment

7.3.2 Virtual IP addresses

In case a load balancer is not available, high availability of the master and proxy nodes can be
achieved using a virtual IP address, which is in a subnet shared by the master/proxy nodes.
IBM Cloud Private supports three types of virtual IP management solutions:

� etcd (default)

� ucarp

� keepalived

This setting is done once as part of the installation of IBM Cloud Private, using the
vip_manager setting in config.yaml. For ucarp and keepalived, the advertisements happen
on the management interface, and the virtual IP will be held on the interface provided by
cluster_vip_iface and proxy_vip_iface. In situations where the virtual IP will be accepting
a high load of client traffic, the management network performing the advertisements for
master election should be separate from the data network accepting client traffic.

Note: Considerations when using a virtual IP address are as follows:

� At any point of time, only one master or proxy node holds the lease for the virtual IP
address.

� Using a virtual IP, traffic is not load balanced among all replicas. Using a virtual IP
requires that all candidate nodes use a cluster_vip_iface or proxy_vip_iface
interface on the same subnet.

� Any long-running and stateful TCP connections from clients will be broken during a
failover and must be reestablished.
Chapter 7. Networking 263

The etcd solution
Etcd is a distributed key value store used internally by IBM Cloud Private to store state
information. It uses a distributed census algorithm called raft. The etcd-based VIP manager
leverages the distributed key/value store to control which master or proxy node is the instance
holding the virtual IP address. The virtual IP address is leased to the leader, so all traffic is
routed to that master or proxy node.

The etcd virtual IP manager is implemented as an etcd client that uses a key/value pair. The
current master or proxy node holding the virtual IP address acquires a lease to this key/value
pair with a TTL of 8 seconds. The other standby master or proxy nodes observe the lease
key/value pair.

If the lease expires without being renewed, the standby nodes assume that the first master
has failed and attempt to acquire their own lease to the key to be the new master node. The
master node that is successful writing the key brings up the virtual IP address. The algorithm
uses randomized election timeout to reduce the chance of any racing condition where one or
more nodes tries to become the leader of the cluster.

The ucarp solution
Ucarp is an implementation of the common address redundancy protocol (CARP) ported to
Linux. Ucarp allows the master node to “advertise” that it owns a particular IP address using
the multicast address 224.0.0.18.

Each node sends out an advertisement message on its network interface that it can have a
virtual IP address every few seconds. This is called the advertise base. Each master node
sends a skew value with that CARP (Common Address Redundancy Protocol) message. This
is similar to its priority of holding that IP, which is the advskew (advertising skew). Two or more
systems both advertising at one second intervals (advbase=1), the one with the lower advskew
will win.

Any ties are broken by the node that has the lower IP address. For high availability, moving
one address between several nodes in this manner enables you to survive the outage of a
host, but you must remember that this only enables you to be more available and not more
scalable.

A master node will become master if one of the following conditions occurs:

� No one else advertises for 3 times its own advertisement interval (advbase).

� The --preempt option is specified by the user, and it “hears” a master with a longer
(advertisement) interval (or the same advbase but a higher advskew).

An existing master node becomes a backup if on of the following conditions occur:

� Another master advertises a shorter interval (or the same advbase, but a lower advskew).

� Another master advertises the same interval, and has a lower IP address.

After failover, ucarp sends a gratuitous ARP message to all of its neighbors so that they can
update their ARP caches with the new master’s MAC address.

Note: Gratuitous ARP is not used with the etcd virtual IP manager when it fails over.
Therefore, any existing client connections to the virtual IP address after it fails over will fail
until the client’s ARP cache has expired and the MAC address for the new holder of the
virtual IP is acquired. However the etcd virtual IP manager avoids the use of multicast as
ucarp and keepalived requires.
264 IBM Cloud Private System Administrator’s Guide

The keepalived solution
Keepalived provides simple and robust facilities for load balancing and high-availability,
originally used for high availability of virtual routers. Keepalived uses VRRP (Virtual Router
Redundancy Protocol) as an election protocol to determine which master or proxy node holds
the virtual IP. The keepalived virtual IP manager implements a set of checkers to dynamically
and adaptively maintain and manage load balanced server pool according to the health.

VRRP is a fundamental brick for failover. The keepalived virtual IP manager implements a set
of hooks to the VRRP finite state providing low-level and high-speed protocol interactions.

To ensure stability, the keepalived daemon is split into the following parts:

� A parent process called as watchdog in charge of the forked children process monitoring.
� A child process for VRRP.
� Another child process for health checking.

The keepalived configuration included with IBM Cloud Private uses the multicast address
224.0.0.18 and IP protocol number 112. This must be allowed in the network segment where
the master advertisements are made. Keepalived also generates a password for
authentication between the master candidates which is the MD5 sum of the virtual IP.

Keepalived by default uses the final octet of the virtual IP address as the virtual router ID
(VRID). For example, for a virtual IP address of 192.168.10.50, it uses VRID 50. If there are
any other devices using VRRP on the management layer 2 segment that are using this VRID,
it might be necessary to change the virtual IP address to avoid conflicts.

7.3.3 Ingress controller

Ingress resources in Kubernetes are used to proxy layer 7 traffic to containers in the cluster.
An ingress is a collection of rules to allow inbound connections to the Kubernetes cluster
services. It can be configured to give Kubernetes services externally reachable URLs,
terminate TLS connections, offer name-based virtual hosting, and more.

Ingress resources require an ingress controller component to be running as a Layer 7 proxy
service inside the cluster. In IBM Cloud Private, an nginx-based ingress controller is provided
by default that is deployed on the proxy or master (in case master acts as proxy) nodes. The
default ingress controller watches Kubernetes ingress objects on all namespaces through the
Kubernetes API and dynamically programs the nginx proxy rules for upstream services based
on the ingress resource. By default, the ingress controller is bootstrapped with some load
balancing policies, such as load-balancing algorithms and a back-end weight scheme.

More than one ingress controller can also be deployed if isolation between namespaces is
required. The ingress controller itself is a container deployment that can be scaled out and is
exposed on a host port on the proxy nodes. The ingress controller can proxy all of the pod
and service IP mesh running in the cluster.

IBM Cloud Private installation defines some node roles dedicated to running the shared IBM
Cloud Private ingress controller called proxy nodes. These nodes serve as a layer 7 reverse
proxy for the workload running in the cluster. In situations where an external load balancer
can be used, this is the suggested configuration, because it can be difficult to secure and
scale proxy nodes, and using a load balancer avoids additional network hops through proxy
nodes to the pods running the actual application.

Note: Ingress controller in an IBM Cloud Private environment is also known as the proxy
node.
Chapter 7. Networking 265

If you are planning to use an external load balancer, set up the cluster to label the master
nodes as proxy nodes using the hosts file before installation. This marks the master nodes
with the additional proxy label, as shown in Example 7-1, and the shared ingress controller
will be started on the master nodes. This ingress controller can generally be ignored for
“northbound” traffic, or used for lightweight applications exposed “southbound”, such as
additional administrative consoles for some applications that are running in the cluster.

Example 7-1 The config.yaml file

[master]
172.21.13.110
172.21.13.111
172.21.13.112

[proxy]
172.21.13.110
172.21.13.111
172.21.13.112

If an ingress controller and ingress resources are required to aggregate several services that
use the built-in ingress resources, a good practice is to install additional isolated ingress
controllers using the included Helm chart for the namespace, and expose these individually
through the external load balancer.

Single service ingress
It is possible to expose a single service through ingress. In Example 7-2, a Node.js server
was created with service name mynode-ibm-nodejs-sample on port 3000.

Example 7-2 Ingress controller configuration

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: myingressexample
spec:
 backend:
 serviceName: test-app-using-nodejs
 servicePort: 3000

In this case, all traffic on the ingress controller’s address and port (80 or 443) will be
forwarded to this service.

Simple fanout
With the simple fanout approach you can define multiple HTTP services at different paths and
provide a single proxy that routes to the correct endpoints in the back end. When there is a
highly available load balancer managing the traffic, this type of ingress resource will be helpful
in reducing the number of load balancers to a minimum.

In the Example 7-3 on page 267, “/” is the rewrite target for two services: employee-api on
port 4191 and manager-api on port 9090. The context root for both of these services is at /;
the ingress will rewrite the path /hr/employee/* and /hr/manager/* to / when proxying the
requests to the back ends.
266 IBM Cloud Private System Administrator’s Guide

Example 7-3 Example of rewriting

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 annotations:
 ingress.kubernetes.io/rewrite-target: /
 name: api
spec:
 rules:
 - host: icpdemo.mydomain.com
 http:
 paths:
 - backend:
 serviceName: employee-api
 servicePort: 4191
 path: /hr/employee/*
 - backend:
 serviceName: manager-api
 servicePort: 9090
 path: /hr/manager/*

Example 7-3 demonstrates that it is possible to expose multiple services and rewrite the URI.

Name-based virtual hosting
Name-based virtual hosting provides the capability to host multiple applications using the
same ingress controller address. This kind of ingress routes HTTP requests to different
services based on the Host header.

In Example 7-4 and Example 7-5 on page 268, two Node.js servers are deployed. The
console for the first service can be accessed using the host name myserver.mydomain.com
and the second using superserver.mydomain.com. In DNS, myserver.mydomain.com and
superserver.mydomain.com can either be an A record for the proxy node virtual IP 10.0.0.1, or
a CNAME for the load balancer forwarding traffic to where the ingress controller is listening.

Example 7-4 First service

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 annotations:
 name: myserver
spec:
 rules:
 - host: myserver.mydomain.com
 http:
 paths:
 - backend:
 serviceName: nodejs-myserver
 servicePort: 3000
Chapter 7. Networking 267

Deploying the second service is shown in Example 7-5.

Example 7-5 Second service

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 annotations:
 name: mysuperserver
spec:
 rules:
 - host: superserver.mydomain.com
 http:
 paths:
 - backend:
 serviceName: nodejs-superserver
 servicePort: 3000

It is usually a good practice to provide some value for the host, because the default is *, which
forwards all requests to the back end.

Transport Layer Security (TLS)
An ingress service can be secured using a TLS private key and certificate. The TLS private
key and certificate should be defined in a secret with key names tls.key and tls.crt. The
ingress assumes TLS termination and traffic is proxied only on port 443. Example 7-6 shows
how to create this.

Example 7-6 TLS configuration

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 annotations:
 ingress.kubernetes.io/rewrite-target: /
 name: api
spec:
 rules:
 - host: myserver.mydomain.com
 http:
 paths:
 - backend:
 serviceName: main-sales-api
 servicePort: 4191
 path: /api/sales/*
 - backend:
 serviceName: backorder-api
 servicePort: 9090
 path: /api/backorder/*
 tls:
 - hosts:
 - myserver.mydomain.com
 secretName: api-tls-secret

In Example 7-6, the TLS termination is added to the myserver.mydomain.com ingress
resource.
268 IBM Cloud Private System Administrator’s Guide

The certificate’s subject name or subject alternative names (SANs) should match the host
value in the ingress resource and should be unexpired. In addition, the full certificate chain
(including any intermediate and root certificates) should be trusted by the client. Otherwise,
the application gives a security warning during the TLS handshake. In the example, the
tls.crt subject name contains either api.example.com or is a wildcard certificate for
*.mydomain.com. The DNS entry for myserver.mydomain.com is an A record for the proxy
nodes’ virtual IP address.

The secret api-tls-secret is created in the same namespace as the ingress resource using
the command:

kubectl create secret tls api-tls-secret --key=/path/to/tls.key
--cert=/path/to/tls.crt

The secret can also declaratively be created in a YAML file if the TLS key and certificate
payloads are base-64 encoded, as shown in Example 7-7.

Example 7-7 TLS configuration

apiVersion: v1
type: Opaque
kind: Secret
metadata:
 name: api-tls-secret
data:
 tls.crt: <base64-encoded cert>
 tls.key: <base64-encoded key>

Shared ingress controller
By default in IBM Cloud Private, a global ingress controller is installed and deployed on all
proxy nodes. This provides the capability to define the ingress resources for applications
across all namespaces. The global ingress controller runs in the kube-system namespace; if
a NetworkPolicy is used to isolate namespace traffic, another one needs to be created to
allow traffic from the ingress controller to any proxied back-end services in other
namespaces.

Advantages:

� A common ingress controller reduces compute resources required to host applications.
� Ready for use.

Disadvantages:

� All client traffic passes through a shared ingress controller. One service’s client traffic can
affect the other.

� Limited ability to isolate northbound ingress resource traffic from southbound ingress
traffic, such as a public-facing API versus an operations dashboard running in the same
cluster would share the same ingress controller.

� If an attacker were to gain access to the ingress controller they would be able to observe
unencrypted traffic for all proxied services.

� Need to maintain different ingress resource documents for different stages. For example,
the need to maintain multiple copies of the same ingress resource YAML file with different
namespace fields.

� The ingress controller needs access to read ingress, service, and pod resources in every
namespace in the Kubernetes API to implement the ingress rules.
Chapter 7. Networking 269

Isolated ingress controllers per namespace
An ingress controller can be installed as a Helm chart in an isolated namespace and perform
ingress for services in the namespace. In this deployment type, the ingress controller is given
a role that can only access ingress and resources in the namespace.

Advantages:

� Delineation of ingress resources for various stages of development, production.

� Performance for each namespace can be scaled individually.

� Traffic is isolated; when combined with isolated worker nodes on separate VLANs, true
Layer 2 isolation can be achieved as the upstream traffic does not leave the VLAN.

� Continuous integration and continuous delivery teams can use the same ingress resource
document to deploy (assuming that the dev namespace is different from the production
namespace) across various stages.

Disadvantages:

� Additional ingress controllers must be deployed, using extra resources.

� Ingress controllers in separate namespaces might require either a dedicated node or a
dedicated external load balancer.

7.4 Service discovery (kube-dns)

Kubernetes expects that a service should be running within the pod network mesh that
performs name resolution and should act as the primary name server within the cluster. In
IBM Cloud Private, this is implemented using CoreDNS running on the master nodes, which
resolves names for all services running in Kubernetes. In addition, the service forwards name
lookups against upstream name servers on behalf of containers. The DNS service itself runs
as a ClusterIP service that is backed by one or more containers for high availability. See
Figure 7-4.

Figure 7-4 Kube-dns
270 IBM Cloud Private System Administrator’s Guide

Kubernetes service names are resolved to ClusterIPs representing one or more pods
matching a label selector. The cluster is assigned a cluster domain that is specified at
installation time that uses cluster_domain (this is cluster.local by default) to distinguish
between names local to the cluster and external names.

Each Kubernetes cluster is logically separated into namespaces, and each namespace acts
as a subdomain for name resolution. Upon examining a container’s /etc/resolv.conf,
observe that the name server line points at an IP address internal to the cluster, and the
search suffixes are generated in a particular order, as shown in Example 7-8.

Example 7-8 The /etc/resolv.conf

cat /etc/resolv.conf
Name server <kube-dns ClusterIP>
search <namespace>.svc.<cluster_domain> svc.<cluster_domain> <cluster_domain>
<additional ...>
options ndots:5

The <additional ...> is a list of search suffixes obtained from the worker node’s
/etc/resolv.conf file. By default, a short host name like account-service has
<namespace>.svc.<cluster_domain> appended to it, so a pod matching the label selector that
is running in the same namespace as the running pod will be selected. A pod can look up the
ClusterIP of a pod in a different namespace by appending the namespace to the host name.

For example, account-service.prod will target account-service running in the prod
namespace, because the search suffix svc.<cluster_domain> is appended to the end.
Figure 7-5 shows how the naming segmentation works.

Figure 7-5 KubeDNS with namespace segmentation
Chapter 7. Networking 271

Note the last line in /etc/resolv.conf, options ndots:5, which indicates to the container’s
system resolver that any host names being resolved that have fewer than five dots in the
name should have the search domain suffixes appended to it. This might affect performance
because lookups of external network resources with fewer than 5 dots in the name results in
lookups for every entry in the search line.

For example, a lookup of www.ibm.com results in lookups of
www.ibm.com.<namespace>.svc.<cluster_domain>, www.ibm.com.svc.<cluster_domain>,
www.ibm.com.<cluster_domain>, and so on before finally trying www.ibm.com. To resolve this
issue, adding an additional period (“.”) to the end of the fully qualified domain names used in
the application configuration will prevent the system resolver from cycling through the list of
suffixes in the name lookups (for example www.ibm.com.).

7.4.1 Headless services

In some cases, it is desirable not to create a ClusterIP service at all; this can be achieved by
specifying a service type of None. This will create A records for each pod matching the label
selector in the DNS, but no ClusterIP. This is typically used with StatefulSets where each of
the pods needs to have a resolvable name for communication between all pods in the set (for
example, a clustered database, such as MongoDB). When a service without a ClusterIP is
created, each pod’s A record will be in the following format:

<pod-name>.<service-name>.<namespace>.svc.<cluster-domain>

7.4.2 External services

It is possible to have Kubernetes proxy endpoints outside of the cluster by creating a Service
resource with no label selector, and by either creating Endpoints resources manually
containing the IPs outside of the cluster to proxy, or creating a Service resource with the type
ExternalName containing an external DNS name, which creates a CNAME record in the
cluster’s DNS. By using these functions, the cluster DNS can be leveraged as service
discovery for services both inside and outside of the cluster.
272 IBM Cloud Private System Administrator’s Guide

Chapter 8. Troubleshooting

This chapter provides information about how to fix some common issues with IBM Cloud
Private. It shows you how to collect log information and open a request with the IBM Support
team.

This chapter has the following sections:

� 8.1, “Common errors during the IBM Cloud Private installation” on page 274
� 8.2, “Network configuration errors” on page 277
� 8.3, “Common errors when installing a Helm chart” on page 281
� 8.4, “Common errors when running applications” on page 286
� 8.5, “Opening a support case” on page 287

8

© Copyright IBM Corp. 2019. All rights reserved. 273

8.1 Common errors during the IBM Cloud Private installation

This section gives you some tips on how to troubleshoot IBM Cloud Private installation
problems.

8.1.1 Customizing the config.yaml file

While installing IBM Cloud Private, you need to customize the config.yaml file located at
/<installation_directory>/cluster/config.yaml.

The list of required parameters to be configured on a config.yaml file is available at
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/install_con
tainers.html see step #3 “Customize your cluster”.

The first parameter that you need to configure in the config.yaml file is the admin user and
password. The admin password policy has been changed in IBM Cloud Private version 3.1.2
and now requires, by default, at least 32 characters. If the password does not match the
requirements, the installation log will show an error as shown in Example 8-1.

Example 8-1 Password problem

TASK [Checking if setting password or not] *************************************
fatal: [localhost]: FAILED! => changed=false
 msg: 'The password is not set. You must specify a password that meets the
following criteria: ''^([a-zA-Z0-9\-]{32,})$'''

NO MORE HOSTS LEFT ***

To fix the previous issue, go to /<installation_directory>/cluster/config.yaml and define
a password that matches the standard that has at least 32 alphanumeric characters.

If you want to change the policy, you can use the regular expression that best fits your
company policy as described at the following link:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/install_con
tainers.html

If your server has more than one Ethernet adapter and you are installing the IBM Cloud
Private Enterprise Edition, you also need to configure the following parameters:

� cluster_lb_address: <external address>

� proxy_lb_address: <external address>

The external address is the IP address of the adapter from which the incoming traffic will be
coming to the server.

For the full options of the cluster.yaml file configuration, see the following URL:

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/installing/config_yaml.html

8.1.2 Customizing the /cluster/hosts file

The hosts file in the cluster directory is used to define the cluster architecture and configures
how the workers, masters, and management servers are distributed.
274 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/install_containers.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/installing/config_yaml.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/install_containers.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/install_containers.html

When configuring persistence storage, you need to group them in the hosts file. See the full
specification of the hosts file configuration at the following link:

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/installing/hosts.html

If the hosts file configuration is not done, the error described in Example 8-2 will be displayed.

Example 8-2 The hosts file configuration error

fatal: [...]: UNREACHABLE! => changed=false
 msg: |-
 Failed to connect to the host via ssh: ssh: Could not resolve hostname ...:
Name does not resolve
 unreachable: true

If you plan to use storage for persistent data, you might need to add the host group in the
hosts file for that particular type of storage. Read the documentation about the storage
system you are using and make sure that the prerequisites are met before running the IBM
Cloud Private installation. For more information, see Chapter 4, “Managing persistence in
IBM Cloud Private” on page 115.

8.1.3 SSH key error

During the installation preparation, it is required to generate and exchange the SSH key
between the nodes. In addition, you need to copy the SSH key to the IBM Cloud Private
cluster installation folder (/<installation_directory>/cluster). If this step is not performed,
you will receive the error message in Example 8-3 during the installation.

Example 8-3 SSH key error

fatal: [9.46.67.246]: UNREACHABLE! => changed=false
 msg: |-
 Failed to connect to the host via ssh: Load key "/installer/cluster/ssh_key":
invalid format
 Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).
 unreachable: true

To correct the error, copy the ~/.ssh/id_rsa to
/<installation_directory>/cluster/ssh_key

This procedure is described in “Step 2: Set up the installation environment item 9” at the
following link:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/install_con
tainers.html

8.1.4 Missing the IBM Cloud Private binary files in the installation folder

To have the IBM Cloud Private installed you need to copy the binary files to the
/<installation_directory>/cluster/images folder.

Tip: When planning for the installation of IBM Cloud Private, it is highly advised that you
define all of the functions that you want your server to run, because some of the
customizations on the hosts file require IBM Cloud Private to be uninstalled and installed
again.
Chapter 8. Troubleshooting 275

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/installing/hosts.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/install_containers.html

If this step is not performed, the error shown in Example 8-4 is displayed during the
installation.

Example 8-4 Missing binary files error

TASK [icp-registry-image : Aborting installation process] **********************
fatal: [9.46.67.246]: FAILED! => changed=false
 msg: Unable to find offline package under images directory

This procedure is described in step 2: Set up the installation environment item 10 at the
following link:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/install_con
tainers.html

8.1.5 Missing the minimum system requirements

Missing the minimum system requirements could cause random errors during the installation.
If the installation completes, it might present an error during a new Helm chart deployment, or
when trying to access an existing chart or running a function in your IBM Cloud Private
environment.

To avoid these kinds of errors, it is required that the system matches at least the minimum
system requirements. You can see the system requirements at this link:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_system_confi
g/hardware_reqs.html

Also, it is suggested that you need to evaluate the sizing of the cluster before the installation.
See this link for information about how to size your cluster:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/plan_capaci
ty.html

8.1.6 Perform the system cleanup when the installation fails

If the installation fails, you need to uninstall IBM Cloud Private with the uninstall command
before trying a new installation.

Run the uninstall command:

sudo docker run --net=host -t -e LICENSE=accept -v "$(pwd)":/installer/cluster
ibmcom/icp-inception-amd64:3.1.2-ee uninstall

After running the uninstaller, you need to run the commands described in Example 8-5 to
make sure that the system is clean and ready for a new installation.

Example 8-5 Making sure the system is ready for a new installation

sudo systemctl stop kubelet docker
sudo systemctl start docker
sudo docker rm $(sudo docker ps -qa)
if sudo mount | grep /var/lib/kubelet/pods; then sudo umount $(sudo mount | grep
/var/lib/kubelet/pods | awk '{print $3}'); fi
sudo rm -rf /opt/cni /opt/ibm/cfc /opt/kubernetes
sudo rm -rf /etc/cfc /etc/cni /etc/docker/certs.d
sudo rm -rf /var/lib/etcd/* /var/lib/etcd-wal/*
sudo rm -rf /var/lib/mysql/*
276 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/install_containers.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/installing/plan_capacity.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_system_config/hardware_reqs.html

sudo rm -rf /var/lib/kubelet/* /var/lib/icp/* /var/lib/calico
echo done
sudo rm -rf {{ .icpInstallDir }}/cluster/cfc-certs {{ .icpInstallDir
}}/cluster/cfc-components {{ .icpInstallDir }}/cluster/cfc-keys {{ .icpInstallDir
}}/cluster/.addon {{ .icpInstallDir }}/cluster/.misc ; echo done

After completing the previous steps, perform the installation again.

8.2 Network configuration errors

This section describes how to troubleshoot the IBM Cloud Private networking components,
such as Calico and IPsec.

8.2.1 Calico troubleshooting

Calico network issues might show up during or after an IBM Cloud Private installation. During
the installation, the installer runs checks to ensure seamless pod-to-pod connectivity in the
cluster. However, if there are issues, the following information might help to identify the
possible causes and resolve the issues.

Problems during the installation
To avoid Calico network issues during the installation, ensure that the following settings are
correctly configured.

The calico_ipip_enabled parameter must be set to true if all the nodes in the cluster do not
belong to the same subnet. This parameter must be set to true if the nodes are deployed in a
cloud environment such as OpenStack, where source and destination checks prevent the IP
traffic from unknown IP ranges, even if all the nodes belong to the same subnet. This
configuration enables encapsulation of pod to pod traffic over the underlying network
infrastructure.

The calico_ip_autodetection_method parameter must be set, so that Calico uses the correct
interface on the node. If there are multiple interfaces, aliases, logical interfaces, bridge
interfaces, or any other type of interfaces on the nodes, use either the following settings to
ensure that the auto-detect mechanism chooses the correct interface.

� calico_ip_autodetection_method: can-reach= (This is the default setting.)

� calico_ip_autodetection_method: interface=

� The calico_tunnel_mtu parameter must be set based on the MTU of the interface that is
configured to be used by Calico.

� If the calico_ipip_enabled parameter is set to true, 20 bytes are used for IP-IP tunnel
header. It is required to set the calico_tunnel_mtu parameter to be at least 20 bytes less
than the actual MTU of the interface.

� If IPsec is enabled, 40 bytes are needed for the IPsec packet header. Because when you
enable IPsec, calico_ipip_enabled to true is set, you also need the 20 bytes for the
IP-IP tunnel header. Therefore, you must set the calico_tunnel_mtu parameter to be at
least 60 bytes less than the actual MTU of the interface.

� The network CIDR (Classless Inter-Domain Routing), existing host network, and the
service cluster IP range must not be in conflict with each other.
Chapter 8. Troubleshooting 277

Problems after the installation of IBM Cloud Private
After the cluster is installed, it could present IP connectivity issues across the pods. Service
name resolution issues are a symptom of pods not being able to reach the DNS service.
These problems are not always related to Calico networks.

In these situations, gather the following information from the cluster for support:

1. Get the node list:

kubectl get nodes -o wide

2. Get the logs:

Collect logs from the calico-node-* pod running on the node which is experiencing the
mesh problem. Example 8-6 shows how to get the logs from calico-node-* running on
node 10.10.25.71.

Example 8-6 Getting the logs

kubectl get pods -o wide | grep calico-node

calico-node-amd64-2cbjh 2/2 Running 0 7h 10.10.25.70 10.10.25.70
calico-node-amd64-48lf9 2/2 Running 0 7h 10.10.25.71 10.10.25.71
calico-node-amd64-75667 2/2 Running 0 7h 10.10.25.7 10.10.25.7

3. Retrieve the logs from the calico-node container in the pod:

kubectl logs calico-node-amd64-48lf9 -c calico-node-amd64

4. Get the routing table and interface details to complete this. Run the commands on master
node(s) + nodes on which pods are experiencing the connectivity issues.

route -n
ifconfig -a

5. Get Calico node list running the command on the master node:

calicoctl get nodes

6. Get all the pods and endpoints on Calico mesh by running the command on the IBM Cloud
Private master node:

calicoctl get workload endpoints

7. Get calico node status and diagnostics. Run the commands on the IBM Cloud Private
master node and the nodes on which pods are experiencing connectivity problem:

calicoctl node status
calicoctl node diags

8. Provide config.yaml and host files from boot node.

Configuring calicoctl
Perform the following steps:

1. Log in to the node. Find the calico-ctl docker image and copy the calicoctl to node as
shown in Example 8-7.

Example 8-7 Copy the calicoctl to node

docker images | grep "icp-inception"

ibmcom-amd64/icp-inception 3.1.0-ee c816bd4546f9
2 days ago 746MB
278 IBM Cloud Private System Administrator’s Guide

docker run -v /usr/local/bin:/data -t --rm -e LICENSE=accept
ibmcom-amd64/icp-inception:3.1.0-ee cp /usr/local/bin/calicoctl /data
ls /usr/local/bin/calicoctl
/usr/local/bin/calicoctl

2. Configure calicoctl to authenticate to the etcd cluster. Copy the etcd cert, key, and ca
files to a node from boot node’s cluster directory:

– cert file: cluster/cfc-certs/etcd/client.pem

– key file: cluster/cfc-certs/etcd/client-key.pem

– ca file: cluster/cfc-certs/etcd/ca.pem

3. Create a calicoctl.cfg file at /etc/calico/calicoctl.cfg, with the following contents, as
shown in Example 8-8.

Example 8-8 The calicoctl.cfg file

apiVersion: projectcalico.org/v3
kind: CalicoAPIConfig
metadata:
spec:
 datastoreType: "etcdv3"
 etcdEndpoints: "https://<master node IP>:4001"
 etcdKeyFile: <File path of client-key.pem>
 etcdCertFile: <File path of client.pem>
 etcdCACertFile: <file path of ca.pem>

4. Change the value between <... > by the actual name.

8.2.2 IPsec troubleshooting

To configure IPSec on IBM Cloud Private, every node in the cluster you must have least two
network interfaces. The first one is a management interface. The second interface provides
secure networking for the pods. Specify the IP address of the management interface in
cluster/hosts and the other interface name (data plane interface) in the Calico and IPsec
configurations in cluster/config.yaml.

Calico networks must be enabled in IP-in-IP mode. Calico tunnel MTU must be set correctly.

The IPsec package used for encryption must be installed on all the nodes in the cluster. The
IPsec package used for RHEL is libreswan. On Ubuntu and SLES, it is strongswan.

Configuration
When performing the configuration to use IPSec, ensure that the following Calico
configurations are provided in the config.yaml file (Example 8-9).

Example 8-9 The config.yaml file

network_type: calico
calico_ipip_enabled: true
calico_tunnel_mtu: 1390
calico_ip_autodetection_method: interface=eth0

Note: All nodes in the cluster must run the same operating system.
Chapter 8. Troubleshooting 279

In Example 8-9 on page 279, the following components have these attributes:

� calico_ipip_enabled must be true. IPIP tunnelling must be enabled for IPsec.

� calico_tunnel_mtu must be at least 60 bytes less than the interface MTU. If the eth0
interface mtu is 1450 bytes, the calico_tunnel_mtu must be set to at most 1390 bytes.

� calico_ip_autodetection_method must be configured to choose the data plane interface.

Then, verify the IPsec configuration in config.yaml, as shown in Example 8-10.

Example 8-10 Check the IPsec configuration

ipsec_mesh:
 enable: true
 interface: eth0
 subnets: [10.24.10.0/24]
 exclude_ips: [10.24.10.1/32, 10.24.10.2, 10.24.10.192/28]
 cipher_suite: aes128gcm16!

Where:

� interface must be the same interface that was set in the
calico_ip_autodetection_method parameter.

� subnets are the address ranges. The packets destined for such subnet ranges are
encrypted. The IP address of the data plane interface must fall in one of the provided
subnet ranges.

� exclude_ips are the IP addresses that are excluded from the IPsec subnet. Traffic to these
IP addresses is not encrypted.

� cipher_suite: aes128gcm16! is the list of Encapsulating Security Payload (ESP)
encryption/authentication algorithms to be used. The default cipher suite that is used is
aes128gcm16!. Ensure that this module is available and loaded in the operating system on
all the hosts. It is also possible to change it to another cipher suite.

Post installation
For the RHEL installation, perform the following steps:

1. Check the libreswan configuration:

cat /etc/ipsec.conf
cat /etc/ipsec.d/ipsec-libreswan.conf

2. Check the status of the ipsec process:

ipsec status

3. If the ipsec status does not display the established connections, check
/var/log/messages for errors related to IPsec. Enable the libreswan logging by enabling
plutodebug in the /etc/ipsec.conf file, as shown in Example 8-11.

Example 8-11 Enable libreswan logging

/etc/ipsec.conf - libreswan IPsec configuration file

 config setup
 ...
 ...
 plutodebug = all # <<<<<<<<<<<<
280 IBM Cloud Private System Administrator’s Guide

For the Ubuntu/SLES installations, perform the following steps:

1. Check the strongswan configuration:

cat /etc/ipsec.conf

2. Check the status of the ipsec process:

ipsec status
service strongswan status

3. If the ipsec status does not display the established connections, check /var/log/syslog
for errors related to IPsec.

4. Enable strongswan logging by enabling charondebug in the /etc/ipsec.conf file, as shown
in Example 8-12.

Example 8-12 Enable strongswan logging

/etc/ipsec.conf - libreswan IPsec configuration file

 config setup
 ...
 ...
 charondebug="ike 2, knl 2, cfg 2" # <<<<<<<<<<<<

If the problem persists, you can open a support ticket as described in 8.5, “Opening a support
case” on page 287.

8.3 Common errors when installing a Helm chart

In this section we will describe some of the common errors when installing a Helm chart.

8.3.1 When accessing an application getting the 504 error

When you try to access an application and get a 504 error or the message that the page
cannot be displayed, as seen in Figure 8-1, the best approach is to check the pod description
and pod logs (if the pod was already running and stopped).

Figure 8-1 Gateway timeout
Chapter 8. Troubleshooting 281

To access the pod description, you can check the pod status and pod information:

kubectl describe pods <pod> -n <namespace>

See the sample output in Example 8-13.

Example 8-13 Pod description

Name: mydatapower-ibm-datapower-dev-d95f656dd-rjk5x
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: <none>
Labels: app=mydatapower-ibm-datapower-dev
 chart=ibm-datapower-dev-2.0.4
 heritage=Tiller
 pod-template-hash=d95f656dd
 release=mydatapower
Annotations: kubernetes.io/psp: ibm-privileged-psp
 productID:
IBMDataPowerGatewayVirtualEdition_2018.4.1.2.306098_Developers
 productName: IBM DataPower Gateway Virtual Edition for
Developers
 productVersion: 2018.4.1.2.306098
 prometheus.io/module: dpStatusMIB
 prometheus.io/path: /snmp
 prometheus.io/port: 63512
 prometheus.io/scrape: true
 prometheus.io/target: 127.0.0.1:1161
Status: Pending
IP:
Controlled By: ReplicaSet/mydatapower-ibm-datapower-dev-d95f656dd
Containers:
 ibm-datapower-dev:
 Image: ibmcom/datapower:2018.4.1.2.306098
 Port: 8443/TCP
 Host Port: 0/TCP
 Command:
 sh
 -c
 exec /start.sh --log-format json-icp

 Limits:
 cpu: 8
 memory: 64Gi
 Requests:
 cpu: 4
 memory: 8Gi
 Liveness: http-get http://:service/ delay=120s timeout=5s period=10s
#success=1 #failure=3
 Readiness: http-get http://:service/ delay=120s timeout=5s period=10s
#success=1 #failure=3
 Environment:
 DATAPOWER_ACCEPT_LICENSE: true
 DATAPOWER_INTERACTIVE: true
 DATAPOWER_LOG_COLOR: false
 DATAPOWER_WORKER_THREADS: 4
282 IBM Cloud Private System Administrator’s Guide

 Mounts:
 /drouter/config from mydatapower-ibm-datapower-dev-config-volume (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-j82nq (ro)
Conditions:
 Type Status
 PodScheduled False
Volumes:
 mydatapower-ibm-datapower-dev-config-volume:
 Type: ConfigMap (a volume populated by a ConfigMap)
 Name: mydatapower-ibm-datapower-dev-config
 Optional: false
 default-token-j82nq:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-j82nq
 Optional: false
QoS Class: Burstable
Node-Selectors: <none>
Tolerations: node.kubernetes.io/memory-pressure:NoSchedule
 node.kubernetes.io/not-ready:NoExecute for 300s
 node.kubernetes.io/unreachable:NoExecute for 300s
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedScheduling 52s (x2 over 52s) default-scheduler 0/1 nodes are
available: 1 Insufficient cpu, 1 Insufficient memory.

In Example 8-13 on page 282, it is possible that the pod was not able to run due to insufficient
CPU or memory. This would cause the error. To fix this issue, make sure that the server
(worker) has sufficient memory and CPU to run the pod.

8.3.2 No CPU available

When looking at the pod description sometimes the message that there is not enough CPU to
run the pod is displayed.

To fix the issue, add more CPU and restart the docker and Kubernetes to get the pod running.

To determine the amount of CPU being used, run the following command:

kubectl describe node <node>

The output of the command will be like that shown in Example 8-14.

Example 8-14 Check the amount of CPU being used

Name: 9.46.73.206
Roles: etcd,management,master,proxy,worker
Labels: beta.kubernetes.io/arch=amd64
 beta.kubernetes.io/os=linux
 etcd=true
 kubernetes.io/hostname=9.46.73.206
 management=true
 master=true
 node-role.kubernetes.io/etcd=true
 node-role.kubernetes.io/management=true
 node-role.kubernetes.io/master=true
Chapter 8. Troubleshooting 283

 node-role.kubernetes.io/proxy=true
 node-role.kubernetes.io/worker=true
 proxy=true
 role=master
Annotations: node.alpha.kubernetes.io/ttl: 0
 volumes.kubernetes.io/controller-managed-attach-detach: true
CreationTimestamp: Wed, 20 Feb 2019 14:58:20 -0800
Taints: <none>
Unschedulable: false
Conditions:
 Type Status LastHeartbeatTime LastTransitionTime
Reason Message
 ---- ------ ----------------- ------------------
------ -------
 OutOfDisk False Mon, 25 Feb 2019 14:49:08 -0800 Wed, 20 Feb 2019
14:58:20 -0800 KubeletHasSufficientDisk kubelet has sufficient disk space
available
 MemoryPressure False Mon, 25 Feb 2019 14:49:08 -0800 Wed, 20 Feb 2019
14:58:20 -0800 KubeletHasSufficientMemory kubelet has sufficient memory
available
 DiskPressure False Mon, 25 Feb 2019 14:49:08 -0800 Wed, 20 Feb 2019
14:58:20 -0800 KubeletHasNoDiskPressure kubelet has no disk pressure
 PIDPressure False Mon, 25 Feb 2019 14:49:08 -0800 Wed, 20 Feb 2019
14:58:20 -0800 KubeletHasSufficientPID kubelet has sufficient PID available
 Ready True Mon, 25 Feb 2019 14:49:08 -0800 Wed, 20 Feb 2019
15:49:34 -0800 KubeletReady kubelet is posting ready status
Addresses:
 InternalIP: 9.46.73.206
 Hostname: 9.46.73.206
Capacity:
 cpu: 8
 ephemeral-storage: 244194820Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 16265924Ki
 pods: 80
Allocatable:
 cpu: 7600m
 ephemeral-storage: 241995268Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 15114948Ki
 pods: 80
System Info:
 Machine ID: cbb00030e5204543a0474ffff17ec26f
 System UUID: 79E65241-2145-4307-995A-B3A5C6401F48
 Boot ID: c8e1b505-e5cf-4da4-ab04-63eb5ad2d360
 Kernel Version: 3.10.0-957.el7.x86_64
 OS Image: Red Hat Enterprise Linux Server 7.6 (Maipo)
 Operating System: linux
 Architecture: amd64
 Container Runtime Version: docker://18.3.1
 Kubelet Version: v1.12.4+icp-ee
 Kube-Proxy Version: v1.12.4+icp-ee
Non-terminated Pods: (58 in total)
284 IBM Cloud Private System Administrator’s Guide

 Namespace Name
CPU Requests CPU Limits Memory Requests Memory Limits
 --------- ----
------------ ---------- --------------- -------------
 cert-manager ibm-cert-manager-cert-manager-7dbc9c8db6-5d84q
0 (0%) 0 (0%) 0 (0%) 0 (0%)
 kube-system audit-logging-fluentd-ds-dzswg
0 (0%) 0 (0%) 0 (0%) 0 (0%)
 kube-system auth-apikeys-sc4k8
200m (2%) 1 (13%) 300Mi (2%) 1Gi (6%)
 kube-system auth-idp-j457s
300m (3%) 3200m (42%) 768Mi (5%) 3584Mi (24%)
 kube-system auth-pap-thf7x kube-system
unified-router-n5v2f 20m (0%) 0
(0%) 64Mi (0%) 0 (0%)
 kube-system web-terminal-6488cfff5d-mgzgw
10m (0%) 100m (1%) 64Mi (0%) 512Mi (3%)
Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 Resource Requests Limits
 -------- -------- ------
 cpu 6049m (79%) 10506m (138%)
 memory 19087040Ki (126%) 23525056Ki (155%)
Events: <none>

To solve this issue, you need to add more CPUs to the instance or remove some of the
unused pods.

After adding more CPUs, check the node description again.

8.3.3 The required port is in use

When deploying a Helm chart, you might see the message shown in Example 8-15 on the
pod description.

Example 8-15 Required port is in use

Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedScheduling 32s (x2 over 32s) default-scheduler 0/1 nodes are
available: 1 node(s) didn't have free ports for the requested pod ports.

In this case, you can check the full list of ports that have conflicts with the following command:

kubectl describe pods <pod>

To fix the problem, remove the deployment and change the port that is being used so that
there are no conflicts.

Attention: Be careful if removing a pod on a kube-system, because this action could
impact the whole system.
Chapter 8. Troubleshooting 285

8.3.4 Deployment fails due to a missing permission

When deploying a pod with a missing permission, the error message described in Figure 8-2
is displayed.

Figure 8-2 Pod security missing

To fix the problem, you need to grant the pod security to the namespace. Run the command:

kubectl -n appsales create rolebinding ibm-anyuid-clusterrole-rolebinding
--clusterrole=ibm-anyuid-clusterrole --group=system:serviceaccounts:appsales

After the command completion, try to deploy the pod again.

See the following URL on this troubleshooting:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/user_management/psp_ad
dbind_ns.html

8.4 Common errors when running applications

The following sections describe some of the common errors when running applications on
IBM Cloud Private, and their solutions.

8.4.1 Getting the 504 or 500 errors when trying to access the application

After deploying a pod or during the execution of the pod, you might get the error message 504
or 500 when trying to access the application from a browser as shown in Figure 8-3.

Figure 8-3 Connection time out error

There are some common cases where this error is displayed, such as the pod entering in
CrashLoopBack or not starting. Those errors discussed in the next sections.
286 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/user_management/psp_addbind_ns.html

Pod in CrashLoopBack
When a pod enters in a CrashLoopBack, it means that the pod is trying to start, crashes, and
then tries to restart again. At the server console, run the kubectl get pods --all-namespaces
command to observe the output, as shown in Example 8-16.

Example 8-16 The kubectl get pods --all-namespaces command

kubernetes get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS
AGE
[..]
my-server-demo myapp-web-55-84kkm 0/1 CrashLoopBackOff 3774 9h

in Example 8-16, you can see that the pod has been restarted 3774 times in the last 9 hours.
Usually this error happens when the pod is starting and failing in a loop.

To try to understand where the error is, you can run the following commands:

kubectl logs <pod>
kubectl describe <pod>

With the output of both commands you can determine where the error is and how to solve it.

Pod not starting
When there is an issue with starting the pod, you can run the kubectl get pods -n
<namespace> command. If you see the status of the pod as ErrImagePull or
ImagePullBackOff, this means that there is a problem with the deployment. Possible problems
include pointing to an image that does not exist, having an incorrect image tag, or not giving
Kubernetes permission to run the image.

The details about the error are observed when running the description of the pod (the kubectl
describe <pod> command).

8.5 Opening a support case

When you try the troubleshooting methods that are discussed in this chapter and they do not
fix the issue, you can open a request to IBM support team. You need to be an IBM Customer
with a valid product ID and license for this.

Follow the directions at https://ibm.biz/icpsupport for opening a support ticket and
sending the related data to IBM Support:

Note: if you are using the IBM Cloud Private Community Edition it is possible to get
support through the Slack channel and community forum or ask the Watson Chatbot. See
the following addresses:

The slack channel is at https://slack-invite-ibm-cloud-tech.mybluemix.net.

The stack overflow is at https://stackoverflow.com/search?q=ibm-cloud-private.

IBM Watson Chatbot is at https://ibm.biz/icpsupport.
Chapter 8. Troubleshooting 287

https://ibm.biz/icpsupport
https://slack-invite-ibm-cloud-tech.mybluemix.net.
https://stackoverflow.com/search?q=ibm-cloud-private.
https://ibm.biz/icpsupport.

When opening the ticket, it is suggested that you include the following information:

� Title: High level description of the issue
� Product version
� Platform (architecture): Specify whether it is a PowerPC®, x86, or other
� Operating system (OS)
� Virtualization platform: Where it is installed (VMWARE, Azure, other)
� High availability (HA) environment or not
� Problem area
� Severity
� Detailed error description
� Business impact: Is this a PoC, development environment, or production cluster?

Collect the following general troubleshooting data, along with any other data for your problem
area:

� hosts file (located at /<installation_directory>/cluster): This provides IBM the server
topology details

� config.yaml file (located at /<installation_directory>/cluster): This provides details
about customization, including the load balancer details.

� Run the following command and attach the output to the case:

sudo docker run --net=host -t -e LICENSE=accept -v "$(pwd)":/installer/cluster
ibmcom/icp-inception-<architecture>:<version> healthcheck -v

Tip: You can find the cheat sheet in “Cheat sheet for production environment” on page 361
useful when troubleshooting the IBM Cloud Private problems.
288 IBM Cloud Private System Administrator’s Guide

Chapter 9. Service mesh implementation
using Istio

This chapter discusses the service mesh implementation using Istio and has the following
sections:

� 9.1, “Overview” on page 290
� 9.2, “Role of the service mesh” on page 290
� 9.3, “Istio architecture” on page 292
� 9.4, “Installation of Istio and enabling the application for Istio” on page 295
� 9.5, “Service resiliency” on page 301
� 9.6, “Achieving E2E security for microservices using Istio” on page 311

9

© Copyright IBM Corp. 2019. All rights reserved. 289

9.1 Overview

When talking to many enterprise customers who are at the beginning of their application
modernization journey, the question that often pops up is: “What about a service mesh?”. This
usually prompts many follow-up questions:

� How should we implement traffic control (firewall rules) for services?

� How to control ingress and egress from the Kubernetes cluster?

� What service registry to use?

� How to implement load balancing between the microservices?

� How to integrate the microservices on Kubernetes with existing ESB?

� Can the whole traffic be encrypted?

There are a lot of articles on the internet about different service registry and discovery
solutions, and about microservices and cloud native programing frameworks. Many of them
relate to a specific product or technology, but it is not obvious how these solutions relate to
Kubernetes or to what extent they are applicable in hybrid, multi-cloud, enterprise-centric
environments. Things that work fine for an enthusiastic cloud startup developer might not be
easy for an enterprise developer who often operates in a highly regulated environment.

In the following section we briefly summarize the role of the service mesh and discuss which
functions are fulfilled by Kubernetes itself and which ones need to be augmented by
additional solution – in case of IBM Cloud Private the product of choice is Istio.

9.2 Role of the service mesh

In traditional applications, the communication pattern was usually built into application code
and service endpoint configuration was usually static. This approach does not work in
dynamic cloud-native environments. Therefore, there is a requirement for an additional
infrastructure layer that helps manage communication between complex applications
consisting of a large number of distinct services. Such a layer is usually called a service mesh.

The service mesh provides several important capabilities like:

� Service discovery

� Load balancing

� Encryption

� Observability and traceability

� Authentication and authorization

� Support for the circuit breaker pattern

The following sections describe each of these functionalities in more detail.
290 IBM Cloud Private System Administrator’s Guide

9.2.1 Service registry

Modern, cloud-native applications are often highly distributed and use a large number of
components or microservices that are loosely coupled. In a dynamic, cloud environments
placement of any service instance can change at any time, so there is a need for an
information repository which will hold current information about which services are available
and how they can be reached. This repository is called service registry. There are several
popular implementations of service registry, for example Eureka developed by Netflix, Consul
from Hashicorp, and Apache Zookeeper. None of these solutions are not Kubernetes specific,
and their functions to some extent overlap with what Kubernetes natively provides.

IBM Cloud Private uses Kubernetes technology as its foundation. In Kubernetes, services are
of primary importance, and Kubernetes provides implicit service registry using DNS. When a
controller alters Kubernetes resources, for example starting or stopping some pods, it also
updates the related service entries. Binding between pod instances and services that expose
them is dynamic, using label selectors.

Istio leverages Kubernetes service resources, and does not implement a separate service
registry.

9.2.2 Service discovery

The process of locating the service instance is called service discovery. There are 2 types of
service discoveries:

Client-side discovery Application that requests a service network location gets all service
instances from the service registry, and decides which one to
contact. This approach is implemented, for example, by the Netflix
Ribbon library.

Server-side discovery Application that sends a request to a proxy that routes a request to
one of the available instances. This approach is used in that
Kubernetes environment and in Istio.

9.2.3 Load balancing

When there are multiple instances of a target service available, the incoming traffic should be
load balanced between them. Kubernetes natively implements this functionality, but Istio
greatly enhances the available configuration options.

9.2.4 Traffic encryption

In Kubernetes internal data traffic can be either be all plain or all encrypted using IPSec. Istio
allows dynamically to encrypt traffic to and from specific services based on policies and it
does not require any changes to the application code.

9.2.5 Observability and traceability

This capability is not implemented in standard Kubernetes, and can be provided by the CNI
network implementation. However project Calico used by IBM Cloud Private does not provide
this capability. To trace traffic between applications, the applications must embed some
distributed tracing libraries, such as Zipkin. Istio implements this capability, allowing all traffic
to be traced and visualized, without any modification to the application code.
Chapter 9. Service mesh implementation using Istio 291

9.2.6 Access control

Kubernetes, by default, defines network policies that govern which pods can communicate
but implementation of network policies is done at the Container Network Interface (CNI)
network level. Project Calico used by IBM Cloud Private allows for defining firewall rules
between pods based on IP and port combinations. Istio enhances access control up to L7
(layer 7).

9.2.7 Circuit breaker pattern support

By default, Kubernetes does not provide this capability. It can be embedded in application
code using, for example, Hystrix from Netflix OSS, but can be also implemented at the proxy
level like in Istio or Consul.

9.3 Istio architecture

An Istio service mesh is logically split into a data plane and a control plane1.

The data plane is composed of a set of intelligent proxies (Envoy) deployed as
sidecars. These proxies mediate and control all network
communication between microservices along with Mixer, a
general-purpose policy and telemetry hub.

The control plane manages and configures the proxies to route traffic. Additionally, the
control plane configures Mixers to enforce policies and collect
telemetry.

9.3.1 Components

The following section describes the components of the planes.

Figure 9-1 on page 293 shows the different components that make up each plane.

1 Excerpt from https://istio.io/docs/concepts/what-is-istio/
292 IBM Cloud Private System Administrator’s Guide

https://istio.io/docs/concepts/what-is-istio/

Figure 9-1 Istio architecture2

Envoy
Istio uses an extended version of the Envoy proxy. Envoy is a high-performance proxy
developed in C++ to mediate all inbound and outbound traffic for all services in the service
mesh. Istio leverages Envoy’s many built-in features, for example:

� Dynamic service discovery

� Load balancing

� TLS termination

� HTTP/2 and gRPC proxies

� Circuit breakers

� Health checks

� Staged rollouts with percentage-based traffic split

� Fault injection

� Rich metrics

2 Image taken from Istio documentation at https://istio.io/docs/concepts/what-is-istio/
Chapter 9. Service mesh implementation using Istio 293

Envoy is deployed as a sidecar to the relevant service in the same Kubernetes pod. This
deployment allows Istio to extract a wealth of signals about traffic behavior as attributes. Istio
can, in turn, use these attributes in Mixer to enforce policy decisions, and send them to
monitoring systems to provide information about the behavior of the entire mesh.

The sidecar proxy model also allows you to add Istio capabilities to an existing deployment
with no need to rearchitect or rewrite code. You can read more about why we chose this
approach in our Design Goals.

Mixer
Mixer is a platform-independent component. Mixer enforces access control and usage
policies across the service mesh, and collects telemetry data from the Envoy proxy and other
services. The proxy extracts request level attributes, and sends them to Mixer for evaluation.
You can find more information about this attribute extraction and policy evaluation in Mixer
Configuration documentation.

Mixer includes a flexible plug-in model. This model enables Istio to interface with a variety of
host environments and infrastructure backends. Thus, Istio abstracts the Envoy proxy and
Istio-managed services from these details.

Pilot
Pilot provides service discovery for the Envoy sidecars, traffic management capabilities for
intelligent routing (e.g., A/B tests, canary deployments, etc.), and resiliency (timeouts, retries,
circuit breakers, etc.).

Pilot converts high level routing rules that control traffic behavior into Envoy-specific
configurations, and propagates them to the sidecars at run time. Pilot abstracts
platform-specific service discovery mechanisms and synthesizes them into a standard format
that any sidecar conforming with the Envoy data plane APIs can use. With this loose coupling,
Istio can run on multiple environments, such as Kubernetes, Consul, or Nomad, while
maintaining the same operator interface for traffic management.

Citadel
Citadel provides strong service-to-service and end-user authentication with built-in identity
and credential management. You can use Citadel to upgrade unencrypted traffic in the
service mesh. Using Citadel, operators can enforce policies based on service identity rather
than on network controls. Starting from release 0.5, you can use Istio’s authorization feature
to control who can access your services.

Galley
Galley validates user authored Istio API configuration on behalf of the other Istio control plane
components. Over time, Galley will take over responsibility as the top-level configuration
ingestion, processing and distribution component of Istio. It will be responsible for insulating
the rest of the Istio components from the details of obtaining user configuration from the
underlying platform (for example Kubernetes).
294 IBM Cloud Private System Administrator’s Guide

9.3.2 Istio functions

Istio has the following major functions.

Connect
Istio provides traffic management for services. The traffic management function includes:

� Intelligent routing: The ability to perform traffic splitting and traffic steering over multiple
versions of the service

� Resiliency: The capability to increase micro services application performance and fault
tolerance by performing resiliency tests, error and fault isolation and failed service
ejection.

Secure
Istio implements a Role-based Access Control (RBAC) which allow a specific determination
on which service can connect to which other services. Istio uses Secure Production Identity
Framework for Everyone (SPIFFE) to identify the ServiceAccount of a micro service uniquely
and use that to make sure communication are allowed.

Control
Istio provides a set of Policies that allows control to be enforced based on data collected. This
capability is performed by Mixer.

Observe
While enforcing the policy, Itsio also collects data that is generated by the Envoy proxies. The
data can be collected as metrics into Prometheus or as tracing data that can be viewed
through Jaeger and Kiali.

This chapter describes mainly the resiliency (9.5, “Service resiliency” on page 301) and
security (9.6, “Achieving E2E security for microservices using Istio” on page 311)
implementation using Istio, while intelligent routing is discussed in “Chapter 4 Manage your
service mesh with Istio” of the IBM Redbooks IIBM Cloud Private Application Developer's
Guide, SG24-8441.

9.4 Installation of Istio and enabling the application for Istio

Istio can be enabled during IBM Cloud Private installation time, or it can be installed after the
cluster is set up. The IBM Knowledge Center for Cloud Private provides good guidance. You
can see
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/manage_cluster/istio.html
for more details.

Here we will introduce another approach by installing the Istio using the command-line
interface, where you have more control on the options.

In addition, we will also demonstrate the sample bookInfo application deployed in IBM Cloud
Private, where you must pay extra attention due to the enhanced security management
features starting from IBM Cloud Private version 3.1.1.

Tip: This approach can be used as a base in the airgap environment where you must use
a local chart.
Chapter 9. Service mesh implementation using Istio 295

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/manage_cluster/istio.html

9.4.1 Install Istio with the helm command

Before the installation, we assume that you have downloaded the couldctl, kubectl, and
helm tools for your platform from the IBM Cloud Private dashboard.

1. Log in to IBM Cloud Private:

Run the command cloudctl -a https://Your_ICP_Host:8443/. Log in with the admin ID
and password. Upon successful login, the tool sets up the kubctl and the Helm client.

2. Next you will set up the Helm repository. Run the command in Example 9-1 to add a Helm
repository that points to the management repository from IBM Cloud Private.

Example 9-1 Command to add a Helm repository

helm repo add --ca-file ~/.helm/ca.pem --key-file ~/.helm/key.pem --cert-file
~/.helm/cert.pem icp https://Your_ICP_Host:8443/mgmt-repo/charts

Note that the ca-file, the key-file, and the cert-file are created automatically when you
perform the first step.

Refresh the repository with the helm repo update command.

3. Create the secret for Grafana and Kali. We enable Grafana and Kali for this deployment.
The secret for the console login is required. Create the files as in Example 9-2 and in
Example 9-3 on page 296.

Example 9-2 Secret object for Kiali

apiVersion: v1
kind: Secretometadata:
 name: kiali
 namespace: istio-system
 labels:
 app: kiali
type: Opaque
data:
 username: YWRtaW4K
 passphrase: YWRtaW4K

Example 9-3 Secret object for Grafana

apiVersion: v1
kind: Secret
metadata:
 name: grafana
 namespace: istio-system
 labels:
 app: grafana
type: Opaque
data:
 username: YWRtaW4K
 passphrase: YWRtaW4K

Notice that the username and passphrase are base64 encoded. You can get the encoded
value by running echo yourtext | base64.
296 IBM Cloud Private System Administrator’s Guide

4. Run the commands in Example 9-4 to apply the objects.

Example 9-4 Commands to apply the secret objects

kubectl apply -f grafana.yaml
kubectl apply -f kail.yaml

5. Now you need to customize your settings. Create a YAML file as shown in Example 9-5 to
override the default settings of the istio Helm chart. Save it as vars.yaml.

You can see the values.yaml file in the chart. The default chart tarball can be downloaded
with the following command:

curl -k -LO https://<Your
Cluster>:8443/mgmt-repo/requiredAssets/ibm-istio-1.0.5.tgz

Example 9-5 Override the default settings of the Istio Helm chart

grafana:
 enabled: true
tracing:
 enabled: true
kiali:
 enabled: true

Here we enable the grafana, tracing, and kiali, which are disabled by default.

6. Next you will deploy the Istio chart by running the command in Example 9-6 on page 297.

Example 9-6 Deploy the Istio Helm chart

helm.icp install --name istio --namespace istio-system -f vars.yaml icp/ibm-istio
--tls

Note that the CostumResourceDefintions (CRD) no longer needs to be created separately
before the deployment.

7. To validate the installation, run the command shown in Example 9-7.

Example 9-7 Validation

kubectl -n istio-system get pods -o wide
NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE
grafana-cbc8c66bb-bqdll 1/1 Running 0 103m
172.20.72.180 10.93.221.105 <none>
istio-citadel-7cc85b9986-vk7nn 1/1 Running 0 103m
172.20.72.138 10.93.221.105 <none>
istio-egressgateway-79895bb8f7-k6zfw 1/1 Running 0 103m
172.20.121.208 10.93.221.68 <none>
istio-galley-77554979fc-j2qcg 1/1 Running 0 103m
172.20.72.189 10.93.221.105 <none>
istio-ingressgateway-56758bf968-4gfmt 1/1 Running 0 103m
172.20.61.77 10.171.37.135 <none>
istio-ingressgateway-56758bf968-zjzjz 1/1 Running 0 65m
172.20.121.209 10.93.221.68 <none>
istio-pilot-599f699d55-479ct 2/2 Running 0 103m
172.20.72.185 10.93.221.105 <none>
istio-policy-f8fcb8496-sgmck 2/2 Running 0 103m
172.20.72.184 10.93.221.105 <none>
Chapter 9. Service mesh implementation using Istio 297

istio-sidecar-injector-864d889459-zzlq2 1/1 Running 0 103m
172.20.72.190 10.93.221.105 <none>
istio-statsd-prom-bridge-75cc7c6c45-xq72c 1/1 Running 0 103m
172.20.72.131 10.93.221.105 <none>
istio-telemetry-665689b445-vfvqb 2/2 Running 0 103m
172.20.72.150 10.93.221.105 <none>
istio-tracing-694d9bf7b4-8tlhs 1/1 Running 0 103m
172.20.72.186 10.93.221.105 <none>
kiali-749cfd5f6-5kgjw 1/1 Running 0 103m
172.20.72.183 10.93.221.105 <none>
prometheus-77c5cc6dbd-h8bxv 1/1 Running 0 103m
172.20.72.187 10.93.221.105 <none>

All the pods under the namespace istio-system are running. Notice that other than the
ingressgateway and egressgateway that run on the proxy node, the rest of the services all
run on the management node.

9.4.2 Enable application for Istio

With the release of IBM Cloud Private Version 3.1.1, many security enhancements are turned
on by default. This section documents what extra configurations are required in order for your
application to be managed by Istio.

The bookinfo application is a sample application that was developed by istio.io to
demonstrate the various Istio features. We will deploy the application into a dedicated
namespace, istio-exp, instead of the default namespace, which you will more likely face in a
real project.

1. Create the namespace as follows:

a. You can create the namespace with the Dashboard console. Go to Menu →Manage →
Namespaces, then click Create Namespace. This action displays a dialog, as shown
in Figure 9-2 on page 299.
298 IBM Cloud Private System Administrator’s Guide

Figure 9-2 Create a namespace

b. Name the namespace istio-exp, then select ibm-privileged-psp as the Pod Security
Policy.

c. Click Create.

d. Create the file named as rolebinding.yaml with the content shown in Example 9-8.

Example 9-8 Rolebinding to bind service account to predefined cluster role

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: ibm-privileged-clusterrole-rolebinding
 namespace: istio-exp
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: ibm-privileged-clusterrole
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: system:serviceaccounts:istio-exp

e. Then run the command kubectl apply -f rolebinding.yaml.

Note: You can also create these using the kubectl create ns istio-exp kubectl
command.
Chapter 9. Service mesh implementation using Istio 299

When Istio injects the sidecar into the pod through initContainer, it needs the privileged
right. Therefore, we assign the ibm-privileged-clusterrole to the service account of the
namespace. If not, you might see the error message as Example 9-9.

Example 9-9 Error message when proper PSP is nor assigned

message: 'pods "details-v1-876bf485f-m84f8" is forbidden: unable to validate
against
 any pod security policy:
[spec.initContainers[0].securityContext.capabilities.add:
 Invalid value: "NET_ADMIN": capability may not be added]'

2. Next you will create the image policy.

a. The images for the bookInfo application are not in the whitelist. To run the application,
create the file, image.policy.yaml, as in Example 9-10.

Example 9-10 Image policy for the bookInfo app

apiVersion: securityenforcement.admission.cloud.ibm.com/v1beta1
kind: ImagePolicy
metadata:
 name: book-info-images-whitelist
 namespace: istio-exp
spec:
 repositories:
 - name: docker.io/istio/*

b. Then apply the policy with kubectl apply -f image.policy.yaml.

3. Now you will label the namespace for istio injection. Run the command kubectl label
namespace istio-exp istio-injection=enabled to tag the target namespace with the flag
of istio-injection to enable the automatic sidecar injection for the namespace.

4. Deploy the application by running the command:

kubectl -n istio-exp apply -f
istio/istio-1.0.6/samples/bookinfo/platform/kube/bookinfo.yaml

5. Validate that the pods are running as shown in Example 9-11.

Example 9-11 Validate that the pods are running

kubectl -n istio-exp get pods

NAME READY STATUS RESTARTS AGE
details-v1-876bf485f-k58pb 2/2 Running 0 45m
productpage-v1-8d69b45c-6thb9 2/2 Running 0 45m
ratings-v1-7c9949d479-sbt8p 2/2 Running 0 45m
reviews-v1-85b7d84c56-pntvg 2/2 Running 0 45m
reviews-v2-cbd94c99b-hbpzz 2/2 Running 0 45m
reviews-v3-748456d47b-qtcs5 2/2 Running 0 45m

Notice the 2/2 of the output. The sidecar injection adds the additional istio-proxy container
and makes it into two containers.
300 IBM Cloud Private System Administrator’s Guide

9.4.3 Uninstallation

To uninstall Istio, run the command helm delete istio --tls --purge to delete and purge
the release.

You will also need to delete the CustomResourceDefinition objects that are left over in this
version. To delete these object run the command kubectl delete -f
istio/ibm-mgmt-istio/templates/crds.yaml.

9.5 Service resiliency

In a distributed system, dealing with unexpected failures is one of the hardest problems to
solve. For example what happens when an instance of microservice is unhealthy? Apart from
detecting it, we need a mechanism to auto-correct it. With an appropriate liveness/readiness
probe in POD specification we can detect if the pod is working correctly, and Kubernetes will
restart it if pod is not functioning properly.

But to achieve service resiliency we need to address the following challenges.

� How to handle services which are working, but taking too long to respond due to certain
environment issue?

� How to handle services that respond after certain number of retries and within a certain
amount of time?

� How to stop the incoming traffic for sometime (if the service has a problem), wait for the
service to “heal” itself and when it is working resume the inbound traffic automatically.

� How to set a timeout for a request landed on Kubernetes so that in a definite time frame a
response is given to the client?

� How to auto-remove a pod, which is unhealthy for quite sometime?

� How to do load balancing for pods to increase the throughput and lower the latency?

Kubernetes does not fulfill the previous challenges as ready-for-use functionality; we need
service mesh for it. Service mesh provides critical capabilities including service discovery,
load balancing, encryption, observability, traceability, authentication, and authorization and
support for the circuit breaker pattern. There are different solutions for service mesh, such as
Istio, Linkerd, Conduit, and so on. We will use the Istio service mesh to discuss how to
achieve service resiliency.

Istio comes with several capabilities for implementing resilience within applications. Actual
enforcement of these capabilities happens in the sidecar. These capabilities will be discussed
in the following sections within the context of a microservices example.

To understand the Istio capabilities we will use the example published on the following IBM
Redbooks GitHub url:

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-G
uide/tree/master/CH8-Istio.

The details about microservices setup are given in the readme file.
Chapter 9. Service mesh implementation using Istio 301

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/CH8-Istio
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide/tree/master/CH8-Istio

9.5.1 Retry

In the two following scenarios, the retry capability of Istio can be used:

� Transient, intermittent errors can come due to environment issues for example network,
storage.

� The service or pod might have gone down only briefly.

With Istio’s retry capability, it can make a few retries before having to truly deal with the error.

Example 9-12 the virtual service definition for the catalog service.

Example 9-12 Virtual service definition for the catalog service

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:s
 name: catalog
spec:
 hosts:
 - catalog
 http:
 - route:
 - destination:
 host: catalog
 retries:
 attempts: 3
 perTryTimeout: 2s

1. Create a virtual service for the catalog. See Example 9-13.

Example 9-13 Create virtual service for catalog

root@scamp1:~/istio_lab# kubectl create -f catalog_retry.yaml

virtualservice.networking.istio.io/catalog created

2. Create a destination rule for all three microservices. See Example 9-14.

Example 9-14 Create a desalination rule for all three microservices

root@scamp1:~/istio_lab# istioctl create -f destination_rule.yaml

Created config destination-rule/default/user at revision 2544618
Created config destination-rule/default/catalog at revision 2544619
Created config destination-rule/default/product at revision 2544621

3. Get cluster IP for the user microservice. See Example 9-15.

Example 9-15 Get cluster I for user microservice

root@scamp1:~/istio_lab# kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
catalog ClusterIP 10.0.0.31 <none> 8000/TCP 23h
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 23h
product ClusterIP 10.0.0.221 <none> 8000/TCP 23h
user ClusterIP 10.0.0.55 <none> 8000/TCP 23h
302 IBM Cloud Private System Administrator’s Guide

4. Launch the user microservice to check the responses. See Example 9-16.

Example 9-16 Launch the user microservice to check the responses

root@scamp1:~/istio_lab# ./execute.sh 10.0.0.55

user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v2==>product::Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v2==>product::Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v2==>product::Able to fetch infromation from product service
user==>catalog:v2==>product::Able to fetch infromation from product service
user==>catalog:v2==>product::Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service

5. As we can see from the output in Example 9-16, the user microservice is randomly calling
different versions of the catalog microservice. Now add a bug in catalog:v2 microservice
and check how it behaves. See Example 9-17.

Example 9-17 Add a bug in the catalog:v2 microservice to make it unhealthy?

root@scamp1:~/istio_lab# kubectl get po

NAME READY STATUS RESTARTS AGE
catalog-v1-5bf8c759b9-vbmv5 2/2 Running 0 1m
catalog-v2-547b5f6769-6qgzq 2/2 Running 0 1m
catalog-v3-569bd6c7d9-p9sgr 2/2 Running 0 1m
product-v1-747cf9f795-c4z5l 2/2 Running 0 1m
user-v1-6b5c74b477-cqr6b 2/2 Running 0 1m

root@scamp1:~/istio_lab# kubectl exec -it catalog-v2-547b5f6769-6qgzq -- curl
localhost:8000/unhealthy

Defaulting container name to catalog.
service got unhealthy

We will launch the user microservice to determine how it responds. See Example 9-18.

Example 9-18 Start the user microservice

root@scamp1:~/istio_lab# ./execute.sh 10.0.0.55
user==>catalog:v1==>product:Able to fetch infromation from product service
catalog:v2 service not available
catalog:v2 service not available
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
catalog:v2 service not available
user==>catalog:v3==>product:Able to fetch infromation from product service
Chapter 9. Service mesh implementation using Istio 303

user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
catalog:v2 service not available
catalog:v2 service not available
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
catalog:v2 service not available

As we can see in the output, catalog:v2 microservice is not responding and all calls
made to it from the user microservice fail.

6. We will add retry logic for virtualservice of the catalog and check how it behaves. See
Example 9-19.

Example 9-19 Add retry logic in virtualservice of the catalog

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: catalog
spec:
 hosts:
 - catalog
 http:
 - route:
 - destination:
 host: catalog
 retries:
 attempts: 3
 perTryTimeout: 2s

7. The previous virtualservice definition for the catalog will make sure that each call to the
catalog service will do 3 attempts of calling the catalog microservices before failure. Next,
create a virtual service for the catalog using the definition in Example 9-20.

Example 9-20 Create a virtual service for catalog

root@scamp1:~/istio_lab# istioctl create -f catalog_retry.yaml

Created config virtual-service/default/catalog at revision 2553113

8. Then, examine the output of starting the user microservice, as shown in Example 9-21.

Example 9-21 Launching the user microservice

root@scamp1:~/istio_lab# ./execute.sh 10.0.0.55

user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
304 IBM Cloud Private System Administrator’s Guide

user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service

As we can see in Example 9-21 on page 304, the user microservice no longer starts
catalog:v2. As it tries to launch, the call fails. The user microservice retries 2 more times to
start catalog:v2, and then launches catalog:v1 or catalog:v3, which succeeds.

9.5.2 Timeout

Calls to services over a network can result in unexpected behavior. We can only guess why
the service has failed? Is it just slow? Is it unavailable? Waiting without any timeouts uses
resources unnecessarily, causes other systems to wait, and is usually a contributor to
cascading failures. Your network traffic should always have timeouts in place, and you can
achieve this goal with the timeout capability of Itsio. It can wait for only a few seconds before
giving up and failing.

1. We will delete any virtualservice, destinationrule definitions on setup. Add 5 second delay
in response of the catalog:v2 microservice, as shown in Example 9-22.

Example 9-22 Add 5 second delay in response of the catalog:v2 microservice

root@scamp1:~/istio_lab# kubectl get po

NAME READY STATUS RESTARTS AGE
catalog-v1-5bf8c759b9-vbmv5 2/2 Running 0 1h
catalog-v2-547b5f6769-6qgzq 2/2 Running 0 1h
catalog-v3-569bd6c7d9-p9sgr 2/2 Running 0 1h
product-v1-747cf9f795-c4z5l 2/2 Running 0 1h
user-v1-6b5c74b477-cqr6b 2/2 Running 0 1h

root@scamp1:~/istio_lab# kubectl exec -it catalog-v2-547b5f6769-6qgzq -- curl
localhost:8000/timeout
Defaulting container name to catalog.
delayed added in microservice

2. Try to start the user microservice in Example 9-23.

Example 9-23 Launch user microservice

root@scamp1:~/istio_lab# ./execute.sh 10.0.0.55
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v2==>product::Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service

As the script is run, you will notice that whenever a call goes to catalog:v2 microservice, it
takes more than 5 seconds to respond, which is unacceptable for service resiliency.
Chapter 9. Service mesh implementation using Istio 305

3. Now we will create a VirtualService for the catalog and add 1 second as the timeout value.
This is shown in Example 9-24.

Example 9-24 Create a VirtualService for the catalog and add 1 second as timeout

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: catalog
spec:
 hosts:
 - catalog
 http:
 - route:
 - destination:
 host: catalog
 timeout: 1.000s

4. Create a virtual service for the catalog as shown in Example 9-25.

Example 9-25 Create a virtual service for the catalog

root@scamp1:~/istio_lab# istioctl create -f catalog_timeout.yaml
Created config virtual-service/default/catalog at revision 2561104

5. We will now start the user microservice as shown in Example 9-26.

Example 9-26 Launch the user microservice

root@scamp1:~/istio_lab# ./execute.sh 10.0.0.55
user==>catalog:v3==>product:Able to fetch infromation from product service
upstream request timeout
upstream request timeout
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
upstream request timeout
user==>catalog:v1==>product:Able to fetch infromation from product service
upstream request timeout
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v3==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
upstream request timeout
user==>catalog:v1==>product:Able to fetch infromation from product service
user==>catalog:v1==>product:Able to fetch infromation from product service
upstream request timeout
user==>catalog:v1==>product:Able to fetch infromation from product service

As we can see in Example 9-26, whenever a call is made to catalog:v2, it timeouts in 1 sec
according to the virtual service definition for the catalog.
306 IBM Cloud Private System Administrator’s Guide

9.5.3 Load balancer

All HTTP traffic bound to a service is automatically rerouted through Envoy. Envoy distributes
the traffic across instances in the load balancing pool. Istio currently allows three load
balancing modes: round robin, random and weighted least request.

9.5.4 Simple circuit breaker

Circuit breaking is an important pattern for creating resilient microservice applications. Circuit
breaking allows you to write applications that limit the impact of failures, latency spikes, and
other undesirable effects of network peculiarities.

We will show an example where we will not define circuit breaker rule and see how it works.
See Example 9-27.

Example 9-27 Add timeout of 5 seconds for catalog:v2 microservice

root@scamp1:~/istio_lab/cb# kubectl get po

NAME READY STATUS RESTARTS AGE
catalog-v1-5bf8c759b9-fjzp8 2/2 Running 0 2m
catalog-v2-547b5f6769-h4rkr 2/2 Running 0 2m
catalog-v3-569bd6c7d9-7l4c4 2/2 Running 0 2m
product-v1-747cf9f795-zwgt4 2/2 Running 0 2m
user-v1-6b5c74b477-r84tn 2/2 Running 0 2m

root@scamp1:~/istio_lab/cb# kubectl exec -it catalog-v2-547b5f6769-h4rkr -- curl
localhost:8000/timeout

delayed added in microservice

1. We have added 5 seconds in the catalog:v2 microservice, it will take a minimum of 5
seconds to respond. ClusterIP for the catalog microservice in the setup is 10.0.0.31. See
Example 9-28.

Example 9-28 Create a destinationrule for the catalog microservice

root@scamp1:~/istio_lab/cb# cat destination_rule.yaml

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: catalog
spec:
 host: catalog
 subsets:
 - labels:
 version: v1
 name: version-v1
 - labels:
 version: v2
 name: version-v2
 - labels:
 version: v3
 name: version-v3
Chapter 9. Service mesh implementation using Istio 307

root@scamp1:~/istio_lab/cb# kubectl create -f destination_rule.yaml

destinationrule.networking.istio.io/catalog created

2. Next, create a virtual service and destination rule for the catalog microservice. See
Example 9-29.

Example 9-29 Create a virtual service for the catalog microservice

root@scamp1:~/istio_lab/cb# cat virtual_service_cb.yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: catalog
spec:
 hosts:
 - catalog
 http:
 - route:
 - destination:
 host: catalog
 subset: version-v1
 weight: 25
 - destination:
 host: catalog
 subset: version-v2
 weight: 50
 - destination:
 host: catalog
 subset: version-v3
 weight: 25

root@scamp1:~/istio_lab/cb# kubectl create -f virtual_service_cb.yaml

virtualservice.networking.istio.io/catalog created

3. Now, try to check how the catalog microservice responds to requests. Use the seige tool
to make a request to the catalog microservice. In Example 9-30 you can see that 5 clients
are sending 8 concurrent requests to the catalog.

Example 9-30 Five clients are sending eight concurrent requests to the catalog

root@scamp1:~/istio_lab/cb# siege -r 8 -c 5 -v 10.0.0.31:8000

** SIEGE 4.0.4
** Preparing 5 concurrent users for battle.
The server is now under siege...
HTTP/1.1 200 0.02 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.03 secs: 74 bytes ==> GET /
HTTP/1.1 200 5.05 secs: 75 bytes ==> GET /
HTTP/1.1 200 5.06 secs: 75 bytes ==> GET /
HTTP/1.1 200 5.04 secs: 75 bytes ==> GET /
HTTP/1.1 200 0.03 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.03 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.02 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.01 secs: 74 bytes ==> GET /
308 IBM Cloud Private System Administrator’s Guide

HTTP/1.1 200 5.09 secs: 75 bytes ==> GET /
HTTP/1.1 200 0.02 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.03 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.02 secs: 74 bytes ==> GET /
HTTP/1.1 200 5.14 secs: 75 bytes ==> GET /
HTTP/1.1 200 0.02 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.02 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.03 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.01 secs: 74 bytes ==> GET /
HTTP/1.1 200 5.03 secs: 75 bytes ==> GET /
HTTP/1.1 200 5.05 secs: 75 bytes ==> GET /
HTTP/1.1 200 5.01 secs: 75 bytes ==> GET /
.
.
Transactions: 40 hits
Availability: 100.00 %
Elapsed time: 25.17 secs
Data transferred: 0.00 MB
Response time: 2.03 secs
Transaction rate: 1.59 trans/sec
Throughput: 0.00 MB/sec
Concurrency: 3.22
Successful transactions: 40
Failed transactions: 0
Longest transaction: 5.14

As we can see in Example 9-30 on page 308, all requests to our system were successful,
but it took some time to complete the test, as the v2 instance of catalog was a slow
performer. But suppose that in a production system this 5 second delay was caused by too
many concurrent requests to the same instance. This might cause cascade failures in your
system.

4. Now, add a circuit breaker that will open whenever there is more than one request that is
handled by the catalog microservice. See Example 9-31.

Example 9-31 Add a circuit breaker

root@scamp1:~/istio_lab/cb# cat destination_rule_cb.yaml

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: catalog
spec:
 host: catalog
 trafficPolicy:
 connectionPool:
 http:
 http1MaxPendingRequests: 1
 maxRequestsPerConnection: 1
 tcp:
 maxConnections: 1
 outlierDetection:
 baseEjectionTime: 120.000s
 consecutiveErrors: 1
 interval: 1.000s
 maxEjectionPercent: 100
Chapter 9. Service mesh implementation using Istio 309

 subsets:
 - labels:
 version: v1
 name: version-v1
 - labels:
 version: v2
 name: version-v2
 - labels:
 version: v3
 name: version-v3

kubectl apply -f destination_rule_cb.yaml

Warning: kubectl apply should be used on resource created by either kubectl create
--save-config or kubectl apply
destinationrule.networking.istio.io/catalog configured

5. Because the circuit breaker for the catalog is in place, make a request to the catalog
microservice. Example 9-32 shows 5 clients sending 8 concurrent requests to the catalog
microservice.

Example 9-32 Make a request to the catalog microservice

root@scamp1:~/istio_lab/cb# siege -r 8 -c 5 -v 10.0.0.31:8000

** SIEGE 4.0.4
** Preparing 5 concurrent users for battle.
The server is now under siege...
HTTP/1.1 200 0.05 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.05 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.05 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.05 secs: 74 bytes ==> GET /
HTTP/1.1 503 0.02 secs: 57 bytes ==> GET /
HTTP/1.1 503 0.04 secs: 57 bytes ==> GET /
HTTP/1.1 200 0.04 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.05 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.04 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.02 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.01 secs: 74 bytes ==> GET /
HTTP/1.1 503 0.02 secs: 57 bytes ==> GET /
HTTP/1.1 503 0.00 secs: 57 bytes ==> GET /
HTTP/1.1 200 0.01 secs: 74 bytes ==> GET /
HTTP/1.1 503 0.01 secs: 57 bytes ==> GET /
HTTP/1.1 200 0.04 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.04 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.03 secs: 74 bytes ==> GET /
HTTP/1.1 503 0.02 secs: 57 bytes ==> GET /
HTTP/1.1 200 0.01 secs: 74 bytes ==> GET /
HTTP/1.1 200 5.05 secs: 75 bytes ==> GET /
HTTP/1.1 503 0.01 secs: 57 bytes ==> GET /
HTTP/1.1 200 0.01 secs: 74 bytes ==> GET /
HTTP/1.1 200 0.02 secs: 74 bytes ==> GET /

In Example 9-32, you can see the 503 errors being displayed. As the circuit breaker is being
opened, whenever Istio detects more than one pending request being handled by the catalog
microservice, it opens circuit breaker.
310 IBM Cloud Private System Administrator’s Guide

9.5.5 Pool ejection

Pool ejection is a strategy that works when you have a pool of pods to serve the requests. If a
request that was forwarded to a pod fails, Istio will eject this pod from the pool for a sleep
window. After the sleep window is over, it will be added to the pool again. This strategy makes
sure we have functioning pods participating in the pool of instances. For more information,
see the following link:

https://istio.io/docs/reference/config/istio.networking.v1alpha3/#OutlierDetection

9.6 Achieving E2E security for microservices using Istio

To achieve E2E security for microservices using Istio the following items should be taken into
consideration.

9.6.1 Inbound traffic

For Inbound traffic in a Kubernetes environment, Kubernetes ingress resource is used to
specify services that should be exposed outside the cluster. In an Istio service mesh, a better
approach (which also works in both Kubernetes and other environments) is to use a different
configuration model, namely Istio gateway. A gateway allows Istio features such as monitoring
and route rules to be applied to the traffic entering the cluster. The following example shows
inbound traffic.

1. Find the ingress port and ingress host IP for the Kubernetes cluster as shown in
Example 9-33.

Example 9-33 Find the ingress port and ingress host IP for the Kubernetes cluster

export INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')

export SECURE_INGRESS_PORT=$(kubectl -n istio-system get service
istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="https")].nodePort}')

root@scamp1:~# echo $INGRESS_PORT
31380

root@scamp1:~# echo $SECURE_INGRESS_PORT
31390

root@scamp1:~# export INGRESS_HOST=$(kubectl get po -l istio=ingressgateway -n
istio-system -o 'jsonpath={.items[0].status.hostIP}')

root@scamp1:~# echo $INGRESS_HOST
XX.XX.XX.XX

2. Create an ingress gateway and attach it to the user virtual service, as shown in
Example 9-34.

Example 9-34 Create an ingress gateway and attach it the user virtual service

root@scamp1:~/istio_lab# cat gateway.yaml

apiVersion: networking.istio.io/v1alpha3
Chapter 9. Service mesh implementation using Istio 311

https://istio.io/docs/reference/config/istio.networking.v1alpha3/#OutlierDetection

kind: Gateway
metadata:
 name: app-gateway
spec:
 selector:
 istio: ingressgateway # use istio default controller
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: app
spec:
 hosts:
 - "*"
 gateways:
 - app-gateway
 http:
 - match:
 - uri:
 exact: /
 route:
 - destination:
 host: user
 port:
 number: 8000

root@scamp1:~/istio_lab# kubectl create -f gateway.yaml
gateway.networking.istio.io/app-gateway created
virtualservice.networking.istio.io/app created

We have now created a virtual service configuration for the user service containing one
route rule that allows traffic for path /. The gateways list specifies that only requests
through your app-gateway are allowed. All other external requests will be rejected with a
404 response. Note that in this configuration, internal requests from other services in the
mesh are not subject to these rules, but instead will default to round-robin routing. To apply
these or other rules to internal calls, you can add the special value mesh to the list of the
gateways.

3. Try to access the user service using the curl command shown in Example 9-35.

Example 9-35 Access the user service

root@scamp1:~/istio_lab# curl $INGRESS_HOST:$INGRESS_PORT

user==>catalog:v1==>product:Able to fetch infromation from product service

If you want to expose HTTPs endpoint for inbound traffic, see the following link:

https://istio.io/docs/tasks/traffic-management/secure-ingress/
312 IBM Cloud Private System Administrator’s Guide

https://istio.io/docs/tasks/traffic-management/secure-ingress/

9.6.2 Outbound traffic

By default, Istio-enabled services are unable to access URLs outside of the cluster, because
the pod uses iptables to transparently redirect all outbound traffic to the sidecar proxy, which
only handles intra-cluster destinations.

This section describes how to configure Istio to expose external services to Istio-enabled
clients. You will learn how to enable access to external services by defining ServiceEntry
configurations, or alternatively, to bypass the Istio proxy for a specific range of IPs.

Configuring the external service
Using Istio ServiceEntry configurations, you can access any publicly accessible service from
within your Istio cluster. Example 9-36 shows that you can access httpbin.org and
www.google.com.

Example 9-36 Access httpbin.org and www.google.com

cat <<EOF | kubectl apply -f -

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: google
spec:
 hosts:
 - www.google.com
 ports:
 - number: 443
 name: https
 protocol: HTTPS
 resolution: DNS
 location: MESH_EXTERNAL

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: google
spec:
 hosts:
 - www.google.com
 tls:
 - match:
 - port: 443
 sni_hosts:
 - www.google.com
 route:
 - destination:
 host: www.google.com
 port:
 number: 443
 weight: 100
EOF
Chapter 9. Service mesh implementation using Istio 313

In Example 9-36 on page 313 we have created a serviceentry and a virtualservice to allow
access to an external HTTP service. Note that for TLS protocols, including HTTPS, the TLS
virtualservice is required in addition to the serviceentry.

1. Create a ServiceEntry to allow access to an external HTTP service Example 9-37.

Example 9-37 Create a ServiceEntry

root@scamp1:~/istio_lab#kubectl apply -f -

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: httpbin-ext
spec:
 hosts:
 - httpbin.org
 ports:
 - number: 80
 name: http
 protocol: HTTP
 resolution: DNS
 location: MESH_EXTERNAL
EOF

2. Make requests to the external services. Make an HTTP outbound request to httpbin.org
from the user pod, as shown in Example 9-38.

Example 9-38 HTTP outbound request to httpbin.org from the user to the pod

root@scamp1:~/istio_lab# export SOURCE_POD=$(kubectl get pod -l app=user -o
jsonpath={.items..metadata.name})

root@scamp1:~/istio_lab# kubectl exec -it $SOURCE_POD -c user curl
http://httpbin.org/headers
{
 "headers": {
 "Accept": "*/*",
 "Cache-Control": "max-stale=0",
 "Host": "httpbin.org",
 "If-Modified-Since": "Thu, 14 Mar 2019 06:00:44 GMT",
 "User-Agent": "curl/7.38.0",
 "X-B3-Sampled": "1",
 "X-B3-Spanid": "51c9d4d21b2e4f7c",
 "X-B3-Traceid": "51c9d4d21b2e4f7c",
 "X-Bluecoat-Via": "6f5b02aba0abb15e",
 "X-Envoy-Decorator-Operation": "httpbin.org:80/*",
 "X-Istio-Attributes":
"CikKGGRlc3RpbmF0aW9uLnNlcnZpY2UubmFtZRINEgtodHRwYmluLm9yZwoqCh1kZXN0aW5hdGlvbi5zZ
XJ2aWNlLm5hbWVzcGFjZRIJEgdkZWZhdWx0CiQKE2Rlc3RpbmF0aW9uLnNlcnZpY2USDRILaHR0cGJpbi5
vcmcKPQoKc291cmNlLnVpZBIvEi1rdWJlcm5ldGVzOi8vdXNlci12MS02YjVjNzRiNDc3LXd4dGN6LmRlZ
mF1bHQKKQoYZGVzdGluYXRpb24uc2VydmljZS5ob3N0Eg0SC2h0dHBiaW4ub3Jn"
 }
}

314 IBM Cloud Private System Administrator’s Guide

Similarly, we can access https://google.com from any pod on the Kubernetes setup. We will
be able to access it because we have created a relevant serviceentry and virtualservice for
the same.

9.6.3 Mutual TLS authentication

Istio tunnels service-to-service communication through the client-side and server-side Envoy
proxies. For a client to call a server, the steps followed are:

1. Istio reroutes the outbound traffic from a client to the client’s local sidecar Envoy.

2. The client-side Envoy starts a mutual TLS handshake with the server-side Envoy. During
the handshake, the client-side Envoy also performs a secure naming check to verify that
the service account presented in the server certificate is authorized to run the target
service.

3. The client-side Envoy and the server-side Envoy establish a mutual TLS connection, and
Istio forwards the traffic from the client-side Envoy to the server-side Envoy.

4. After the authorization, the server-side Envoy forwards the traffic to the server service
through local TCP connections.

We will use an example for mutual TLS. See Example 9-39.

Example 9-39 Create mutual TLS mesh-wide policy

root@scamp1:~# cat <<EOF | kubectl apply -f -

> apiVersion: "authentication.istio.io/v1alpha1"
> kind: "MeshPolicy"
> metadata:
> name: "default"
> spec:
> peers:
> - mtls: {}
> EOF
meshpolicy.authentication.istio.io/default created

This policy specifies that all workloads in the service mesh will only accept encrypted
requests using TLS. As you can see, this authentication policy has the kind: MeshPolicy. The
name of the policy must be default and it contains no targets specification (as it is intended to
apply to all services in the mesh). At this point, only the receiving side is configured to use the
mutual TLS. If you run the curl command between the Istio services (for example those with
the sidecars), all requests will fail with a 503 error code as the client side is still using
plain-text. See Example 9-40.

Example 9-40 Try to access the catalog microservice from the user microservice

root@scamp1:~# kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
catalog ClusterIP 10.0.0.31 <none> 8000/TCP 4d
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 4d
product ClusterIP 10.0.0.221 <none> 8000/TCP 4d
sleep ClusterIP 10.0.0.249 <none> 80/TCP 5h
user ClusterIP 10.0.0.55 <none> 8000/TCP 4d

root@scamp1:~# kubectl get po
Chapter 9. Service mesh implementation using Istio 315

https://google.com

NAME READY STATUS RESTARTS AGE
catalog-v1-5bf8c759b9-pcphd 2/2 Running 0 1h
catalog-v2-547b5f6769-7sdkd 2/2 Running 0 1h
catalog-v3-569bd6c7d9-sgz8h 2/2 Running 0 1h
product-v1-747cf9f795-z5ps2 2/2 Running 0 1h
sleep-64cbb8bf78-2w85v 2/2 Running 0 1h
user-v1-6b5c74b477-svtj7 2/2 Running 0 1h

root@scamp1:~# kubectl exec -it user-v1-6b5c74b477-svtj7 -- curl 10.0.0.31:8000

Defaulting container name to user.
upstream connect error or disconnect/reset before headers

To configure the client side, you need to set destination rules to use mutual TLS. It is possible
to use multiple destination rules, one for each applicable service (or namespace). However, it
is more convenient to use a rule with the * wildcard to match all services so that the
configuration is on par with the mesh-wide authentication policy. See Example 9-41.

Example 9-41 Set the destination rule to use the mutual TLS

root@scamp1:~# cat <<EOF | kubectl apply -f -
> apiVersion: "networking.istio.io/v1alpha3"
> kind: "DestinationRule"
> metadata:
> name: "default"
> namespace: "default"
> spec:
> host: "*.local"
> trafficPolicy:
> tls:
> mode: ISTIO_MUTUAL
> EOF
destinationrule.networking.istio.io/default created

Now, try to make a call to the catalog microservice from the user microservice. See
Example 9-42.

Example 9-42 Make a call to the catalog microservice from the user microservice

root@scamp1:~# kubectl exec -it user-v1-6b5c74b477-svtj7 -- curl 10.0.0.31:8000

Defaulting container name to user.
user==>catalog:v2==>product::Able to fetch infromation from product service
316 IBM Cloud Private System Administrator’s Guide

9.6.4 White or black listing

Istio supports attribute-based whitelists and blacklists. Using Istio you can control access to a
service based on any attributes that are available within Mixer.

White listing
The whitelist is a deny everything rule, except for the approved invocation paths:

1. In the following example, you white list calls from the user microservice to the catalog
microservice. See Example 9-43.

Example 9-43 White listing calls from user microservice to catalog microservice

root@scamp1:~/istio_lab# cat catalog_whitelist.yaml

apiVersion: "config.istio.io/v1alpha2"
kind: listchecker
metadata:
 name: catalogwhitelist
spec:
 overrides: ["user"]
 blacklist: false

apiVersion: "config.istio.io/v1alpha2"
kind: listentry
metadata:
 name: catalogsource
spec:
 value: source.labels["app"]

apiVersion: "config.istio.io/v1alpha2"
kind: rule
metadata:
 name: checkfromuser
spec:
 match: destination.labels["app"] == "catalog"
 actions:
 - handler: catalogwhitelist.listchecker
 instances:
 - catalogsource.listentry

root@scamp1:~/istio_lab# istioctl replace -f catalog_whitelist.yaml

Updated config listchecker/default/catalogwhitelist to revision 3251839
Updated config listentry/default/catalogsource to revision 3251840
Updated config rule/default/checkfromuser to revision 3251841

2. We will try to make calls from the user microservice to the catalog microservice. See
Example 9-44.

Example 9-44 Make calls from the user microservice to the catalog microservice

root@scamp1:~/istio_lab# kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
catalog ClusterIP 10.0.0.31 <none> 8000/TCP 4d
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 4d
Chapter 9. Service mesh implementation using Istio 317

product ClusterIP 10.0.0.221 <none> 8000/TCP 4d
sleep ClusterIP 10.0.0.249 <none> 80/TCP 6h
user ClusterIP 10.0.0.55 <none> 8000/TCP 4d

root@scamp1:~/istio_lab# kubectl get po

NAME READY STATUS RESTARTS AGE
catalog-v1-5bf8c759b9-pcphd 2/2 Running 0 1h
catalog-v2-547b5f6769-7sdkd 2/2 Running 0 1h
catalog-v3-569bd6c7d9-sgz8h 2/2 Running 0 1h
product-v1-747cf9f795-z5ps2 2/2 Running 0 1h
sleep-64cbb8bf78-2w85v 2/2 Running 0 1h
user-v1-6b5c74b477-svtj7 2/2 Running 0 1h

root@scamp1:~/istio_lab# kubectl exec -it user-v1-6b5c74b477-svtj7 -- curl
10.0.0.31:8000

Defaulting container name to user.
user==>catalog:v3==>product:Able to fetch infromation from product service

As we can see in Example 9-44 on page 317, the user microservice call can be made to
the catalog microservice.

3. Now we will try to make a call from the product microservice to the catalog microservice.
See Example 9-45.

Example 9-45 Make a call from the product microservice to the catalog microservice

root@scamp1:~/istio_lab# kubectl exec -it product-v1-747cf9f795-z5ps2 -- curl
10.0.0.31:8000

Defaulting container name to product.
NOT_FOUND:catalogwhitelist.listchecker.default:product is not whitelisted

Example 9-45 shows that the call from the product microservice to the catalog microservice
has failed, as we had only white listed the user microservice. This is the wanted result.

Black listing
The black list is explicit denials of particular invocation paths.

1. In Example 9-46 we black list the user microservice in the catalog microservice, so that it
cannot make calls to the catalog microservice.

Example 9-46 Black listing the user microservice to the catalog microservice

root@scamp1:~/istio_lab# cat catalog_blacklist.yaml

apiVersion: "config.istio.io/v1alpha2"
kind: denier
metadata:
 name: denyuserhandler
spec:
 status:
 code: 7
 message: Not allowed

apiVersion: "config.istio.io/v1alpha2"
318 IBM Cloud Private System Administrator’s Guide

kind: checknothing
metadata:
 name: denyuserrequests
spec:

apiVersion: "config.istio.io/v1alpha2"
kind: rule
metadata:
 name: denycustomer
spec:
 match: destination.labels["app"] == "catalog" && source.labels["app"]=="user"
 actions:
 - handler: denyuserhandler.denier
 instances: [denyuserrequests.checknothing]

2. We will make a call from the user microservice to the catalog microservice as shown in
Example 9-47.

Example 9-47 Make a call from the user microservice to the catalog microservice

root@scamp1:~/istio_lab# kubectl exec -it user-v1-6b5c74b477-svtj7 -- curl
10.0.0.31:8000

Defaulting container name to user
PERMISSION_DENIED:denyuserhandler.denier.default:Not allowed

As we had blacklisted user microservice to the catalog microservice so call has failed in
Example 9-47.

3. Make a call from the product microservice to the user microservice. See Example 9-48.

Example 9-48 Make a call from the product microservice to the user microservice

root@scamp1:~/istio_lab# kubectl exec -it product-v1-747cf9f795-z5ps2 -- curl
10.0.0.31:8000

Defaulting container name to product.
user==>catalog:v2==>product::Able to fetch infromation from product service

The previous call has succeeded because we did not blacklist the product microservice.

9.6.5 Istio authorization

Istio’s authorization feature, also known as role-based access control (RBAC), provides
namespace-level, service-level, and method-level access control for services in an Istio
mesh. It features:

� Role-based semantics, which are simple and easy to use.

� Service-to-service and end-user-to-service authorization.

� Flexibility through custom properties support, for example conditions, in roles and
role-bindings.

� High performance, as Istio authorization is enforced natively on Envoy.
Chapter 9. Service mesh implementation using Istio 319

See the Istio authorization architecture in Figure 9-3.

Figure 9-3 Istio authorization architecture3

Figure 9-3 shows the basic Istio authorization architecture. Operators specify Istio
authorization policies by using .yaml files. When Itsio is deployed, it saves the policies in the
Istio Config Store. Pilot watches for changes to Istio authorization policies. It fetches the
updated authorization policies if it sees any changes. Pilot distributes Istio authorization
policies to the Envoy proxies that are colocated with the service instances.

Each Envoy proxy runs an authorization engine that authorizes requests at run time. When a
request comes to the proxy, the authorization engine evaluates the request context against
the current authorization policies, and returns the authorization result, ALLOW or DENY.

1. The first thing to do is enable Istio authorization by using the RbacConfig object. See
Example 9-49.

Example 9-49 Enable Istio authorization

root@scamp1:~/istio_lab# cat << EOF | kubectl apply -f -

> apiVersion: "rbac.istio.io/v1alpha1"
> kind: RbacConfig
> metadata:
> name: default
> spec:
> mode: 'ON_WITH_INCLUSION'
> inclusion:
> namespaces: ["default"]
> EOF
rbacconfig.rbac.istio.io/default created

3 Image taken from https://istio.io/docs/concepts/security/
320 IBM Cloud Private System Administrator’s Guide

https://istio.io/docs/concepts/security/

2. Try to make a call to the user microservice. See Example 9-50.

Example 9-50 Make a call to the user microservice

root@scamp1:~/istio_lab# curl 10.0.0.55:8000

RBAC: access denied

By default, Istio uses a deny by default strategy, meaning that nothing is permitted until
you explicitly define access control policy to grant access to any service.

3. Now, grant access to any user to any service of our mesh (user, catalog, or product) only if
the communication goes through the GET method. See Example 9-51.

Example 9-51 Grant access to any user to any service

root@scamp1:~/istio_lab# cat << EOF | kubectl apply -f -

> apiVersion: "rbac.istio.io/v1alpha1"
> kind: ServiceRole
> metadata:
> name: service-viewer
> spec:
> rules:
> - services: ["*"]
> methods: ["GET"]
> constraints:
> - key: "destination.labels[app]"
> values: ["user", "catalog", "product"]
> ---
> apiVersion: "rbac.istio.io/v1alpha1"
> kind: ServiceRoleBinding
> metadata:
> name: bind-service-viewer
> namespace: default
> spec:
> subjects:
> - user: "*"
> roleRef:
> kind: ServiceRole
> name: "service-viewer"
> EOF

4. Now if you make a GET call to the user microservice, it should succeed as seen in
Example 9-52.

Example 9-52 Make a GET call to the user microservice

root@scamp1:~/istio_lab# curl 10.0.0.55:8000

user==>catalog:v2==>product::Able to fetch infromation from product service

For more information about RBAC, see the following link:

https://istio.io/docs/tasks/security/role-based-access-control/
Chapter 9. Service mesh implementation using Istio 321

https://istio.io/docs/tasks/security/role-based-access-control/

322 IBM Cloud Private System Administrator’s Guide

Part 3 Cloud Foundry related
topics

The last part of this book covers Cloud Foundry related topics.

Part 3
© Copyright IBM Corp. 2019. All rights reserved. 323

324 IBM Cloud Private System Administrator’s Guide

Chapter 10. IBM Cloud Private Cloud
Foundry and common systems
administration tasks

In this chapter we introduce Cloud Foundry on IBM Cloud Private and the related
technologies. We also discuss installation and common systems administration tasks for IBM
Cloud Private Cloud Foundry.

This chapter has the following sections:

� 10.1, “Introduction” on page 326
� 10.2, “Installation and extensions” on page 327
� 10.3, “High availability installation” on page 333
� 10.4, “Backup and restore strategy” on page 335
� 10.5, “Storage and persistent volumes” on page 336
� 10.6, “Sizing and licensing” on page 337
� 10.7, “Networking” on page 338
� 10.8, “Security” on page 338
� 10.9, “Monitoring and logging” on page 340
� 10.10, “Integrating external services” on page 342
� 10.11, “Applications and buildpacks” on page 343
� 10.12, “iFix and releases” on page 344
© Copyright IBM Corp. 2019. All rights reserved. 325

10.1 Introduction

Cloud Foundry continues to evolve as an application service platform. It allows developers to
focus on code and not application infrastructure. Its ease of use allows new developers to
publish applications from day one, without having to worry about hosting, routing, scaling, and
high availability. Cloud Foundry provides all these operational capabilities in a way that’s easy
for developers to consume, while being scalable and easily maintained by operations.

Cloud Foundry allows development in several languages, and has provisions to allow for
containers or binaries to be incorporated as applications. This gives an enterprise endless
flexibility, while maintaining ease of operation at scale.

Operationally, networking, applications, routing, and services are ritualized, so the physical
infrastructure requirements are related to configuring an appropriate IaaS. IBM provides the
stemcell, which guarantees that all platform VMs are cut from the same binaries, and also
allows for a single stemcell patch to easily be propagated to all systems in the platform. This
helps to lower the operational workload usually spent patching and maintaining systems.

Cloud Foundry takes this concept one step further to the garden containers. By basing each
application container on the cflinuxfs base, security and container improvements are
propagated to each application. This means that operations does not need to worry about
container security on a per application basis. It frees operations to work on maintenance at a
higher scale, and development can focus on coding and not application hosting foundations.

10.1.1 IaaS flavors

IBM Cloud Private Cloud Foundry is available on VMWare, OpenStack, AWS and on IBM
Cloud Foundry (technical preview) itself.

10.1.2 Technology BOSH versus Kubernetes

One is not necessarily better then the other, but both can be used to serve the needs of your
teams. BOSH (https://bosh.io/docs/) works well if you have a large virtual machine
infrastructure such as VMware or OpenStack, where an IaaS team has been managing and
dealing with these types of resources for many years. Full stack works seamlessly in these
scenarios deploying, using native infrastructure APIs and then managing and monitoring the
virtual systems.

Kubernetes abstracts the IaaS from the platform, so there is no need to worry about IaaS
information or dealing with the systems. Kubernetes allows the focus to be shifted to
platform management and development pursuits. It deploys quickly and scales fast. It
consumes Kubernetes resources, no matter what underlying IaaS is being used.

This lowers the entry bar to Cloud Foundry when Kubernetes is already deployed, as well as
provides a base for local services to be provisioned on demand for Cloud Foundry. This does
preclude that Kubernetes has been configured, and it will be sitting on an IaaS, so this
management piece is pushed down the stack.

In most cases you have both the IaaS and the Kubernetes. If you’re not running Cloud
Foundry on Kubernetes, you will likely still use IBM’s Cloud Private platform for shared
monitoring, logging, and data services.
326 IBM Cloud Private System Administrator’s Guide

https://bosh.io/docs

10.2 Installation and extensions

In this section we introduce the installation process and the notions of extensions which
allows the deployer to customize the installation.

The installation is done in two steps, first the creation of the installer container and second
Cloud Foundry deployment itself using the Cloud Foundry deployment tool.

The customer must download the installation kit from (link). The installation kit, if needed,
must be copied to a Linux base server that has network connectivity with the targeted
environment.

The installer host has different requirements depending if the target environment is Cloud
Foundry Enterprise Environment (CFEE) or Cloud Foundry Full Stack.The installer container
is created either by using the provided scripts or by deploying the provided Cloud Pak in IBM
Cloud Private. Once the installer container is created, the installation is similar on all
supported platforms. The installer container is used only for deployment and upgrades. Once
deployment or upgrade of Cloud Foundry is done, the installer container is not needed
anymore.

10.2.1 Installation of the installer container in a Cloud Foundry Full Stack
environment

For Cloud Foundry Full Stack, the installer host is the server where the installation kit is
downloaded and run. In case of an airgap environment, the deployer needs to copy the
installation kit to a server that has access to the target environment. One prerequisite is to
have Docker installed on that server. The deployer decompresses the installation kit and then
runs the import_image.sh script which reads the installer kit directory.

It then uploads all images into Docker and executes launch.sh with some parameters to
create the installation container. One of the parameters is the directory where the installation
data should reside. It is useful to have a backup of the data directory and this eases the
subsequent upgrade of the Cloud Foundry Full Stack as this directory contains all
configuration parameters for the installation and upgrades. Once the installer container is
installed, the environment is ready to get deployed.

Frequently asked questions:

� Does IBM Cloud Private Cloud Foundry Enterprise Environment install IBM Cloud
Private?

IBM Cloud Private is a pre-requirement for the installation of IBM Cloud Private CFEE.
IBM Cloud Private CFEE gets installed on top of an IBM Cloud Private installation.

� Do I need IBM Cloud Private to install IBM Cloud Private Cloud Foundry?

IBM Cloud Private Cloud Foundry (not the CFEE flavor) doesn’t need IBM Cloud
Private to get installed. IBM Cloud Private is only needed for the IBM Cloud Private
CFEE flavor. The IBM Cloud Private Cloud Foundry can be installed on different
platforms (AWS, OpentStack and VMWare) and it relies on BOSH CPI to request
resources on these platforms.
Chapter 10. IBM Cloud Private Cloud Foundry and common systems administration tasks 327

Figure 10-1 shows the installation flow for a Cloud Foundry Full Stack environment.

Figure 10-1 Installation flow for a Cloud Foundry Full Stack environment

10.2.2 Installation of the installer container in a CFEE environment

For CFEE the installation is similar to the process for the Cloud Foundry Full Stack
environment. The deployer downloads and copies the installation kit to a server which has
access to IBM Cloud Private. After that the deployer launches the load_cloudpak.sh, which
loads all artifacts to IBM Cloud Private. Browsing the IBM Cloud Private catalog, the deployer
selects the ibm-cfee-installer. Check the listed prerequisite (for example, persistent volume)
and deploy it.

A pod is created with the “installer container” as it is for the Cloud Foundry Full Stack solution.
The deployer uses the Cloud Foundry deployment tool to start the deployment of Cloud
Foundry. It is useful to have the installer persistent volume backed up to ease the Cloud
Foundry upgrades in case of data lost.
328 IBM Cloud Private System Administrator’s Guide

Figure 10-2 shows the installation flow for a Cloud Foundry Enterprise Environment.

Figure 10-2 Installation flow for a Cloud Foundry Enterprise Environment

10.2.3 Config-manager role

The installer container runs the “config-manager” server. Its role is to orchestrate the
deployment of the different extensions that compose the Cloud Foundry deployment. Each
extension is wrapped as a Docker volume image and it provides the orchestration template,
scripts, and assets to execute its own deployment. The main extensions are the
“cfp-kubernetes-cf” for CFEE and “cfp-bosh-template” for Cloud Foundry Full Stack platforms.

The “config-manager” server reads the orchestration template from the
extension-manifest.yml of the extension and starts its execution. The deployer can interact
with the “config-manager” through the “cm cli” which is installed on the installation directory.

When the installer container is installed, either the installation can be executed using the
script launch_deployment.sh for Cloud Foundry Full Stack, or through the deployment tool for
Cloud Foundry Full Stack and CFEE. For Cloud Foundry Full Stack the deployment tool is
accessible at the url http://<installer_host_ip>:8180. For CFEE, the deployer can launch
the installer deployment tool from the IBM Cloud Private management console.
Chapter 10. IBM Cloud Private Cloud Foundry and common systems administration tasks 329

Figure 10-3 and Figure 10-4 show some screen captures of the Cloud Foundry deployment
tool.

Figure 10-3 Configuration page

Figure 10-4 States page

10.2.4 Extensions

As mentioned, the base role of the config-manager is to deploy extensions.

IBM provides a number of embedded extensions to integrate external services. For example
for Cloud Foundry Full Stack, IBM provides ready to use extensions to integrate LDAP,
application logs, and system logs.
330 IBM Cloud Private System Administrator’s Guide

Figure 10-5 shows the extensions page.

Figure 10-5 Extensions page

An extension developer can create their own extensions by using the extension framework
provided in the CFEE and Cloud Foundry Full Stack solution. These extensions are called
“custom” extensions.

An extension is first developed, then registered, and then integrated in the main deployment
flow.

An extension is basically composed of an extension-manifest.yml, script, and assets. The
extension-manifest.yml contains different sections:

� global parameters: These define how the extension should behave when getting
registered.

� states: These define the different steps of the extension deployment. Each step calls a
command (script or executable), and provides the log path.

� ui_metadata: If defined, the Cloud Foundry deployment tool provides pages to enter the
parameters needed for that extension.

Once the extension is developed, it is compressed in a .zip file. Through the deployment
console or the command line, the deployer can register the extension and integrate it in the
deployment flow.

An extension can be also set to auto-place itself into the flow by defining in the
extension-manifest.yml where the extension needs to be placed.
Chapter 10. IBM Cloud Private Cloud Foundry and common systems administration tasks 331

Figure 10-6 shows the extension directory structure.

Figure 10-6 Extension directory structure

Example 10-1 shows an extension-manifest.yml file.

Example 10-1 An extension-manifest.yml file

extension:
 name: extension-sample
 version: 1.0
 type: bosh-release
ui_metadata:
 default:
 groups:
 - name: "ext_example"
 title: "Extension example"
 properties:
 - name: "param_1"
 label: "First parameter"
 description: "This is a sample"
 type: "text"
 validation-regex: ".*"
 mandatory: true
 sample-value: "E.g. my sample value"
 default: "my sample value"
states:
- name: task1
 phase: ""
 script: scripts/success.sh task1
 next_state:s [task2]
- name: task2
 phase: ""
 script: scripts/success.sh task2
 next_states: [task3]
- name: task3
 phase: ""
 script: scripts/success.sh task3

This configuration generates the following state sequence.
332 IBM Cloud Private System Administrator’s Guide

Figure 10-7 shows the extension states page.

Figure 10-7 Extension states page

Figure 10-8 shows this deployment tool page.

Figure 10-8 Generated user interface page

More information can be found at
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/cloud_foundry/integrating
/extensions.html

10.3 High availability installation

This section describes the different options to install a Cloud Foundry high availability
environment.

10.3.1 Zoning

Availability zones represent functionally independent segments of infrastructure where an
issue or outage is likely to affect only a single availability zone. This means that resources in
other availability zones continue to function as normal. This concept is implemented by most
public IaaS providers, usually in the form of geographically distinct data centers.
Chapter 10. IBM Cloud Private Cloud Foundry and common systems administration tasks 333

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/cloud_foundry/integrating/extensions.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/cloud_foundry/integrating/extensions.htm

The same concept can be implemented to some degree with on-premises IaaS solutions by
dividing compute, storage, and networking infrastructure into groups.

Cloud Foundry supports deployment of its components into different availability zones for
better high availability. It is often beneficial to have two instances of a component in separate
availability zones, so that if one zone becomes unavailable, the remaining instance can keep
the platform running. When three or more availability zones are configured, platform
availability can usually be maintained as long as the majority of the zones remain operational.

By default, Cloud Foundry Full Stack uses two availability zones, z1 and z2, but both are
configured with a single set of Cloud Provider Interface properties that you provide when
configuring your Cloud Foundry installation. The effect of this is that if a single instance of a
Cloud Foundry component fails you might still have some protection for components that
deploy multiple instances. But if the entire availability zone experiences an outage, the Cloud
Foundry platform will as well.

You can customize the z2 availability zone to use different infrastructure, thereby enhancing
the high availability of your deployment, because for several of the components, multiple
instances are deployed by default, and these instances are distributed over zones z1 and z2.

While availability zones cannot be configured in the main configuration file that you create for
your Cloud Foundry installation, additional configuration files do provide a placeholder for a
third availability zone, z3. If you want to use this third availability zone, you edit it to provide
the applicable Cloud Provider Interface properties.

Next, you must modify the deployment to specify which Cloud Foundry components will be
deployed over the three availability zones and to adjust the instance counts as desired. (With
the exception of the number of Diego cells, which is specified in the main configuration file,
the instance counts of all other Cloud Foundry components are fixed.) Instances are
distributed in a round-robin fashion over the specified zones.

Further information about how to plan the number of instances of each Cloud Foundry
component can be found in the article High Availability in Cloud Foundry. Full instructions for
customizing the availability zones for your Cloud Foundry Full Stack deployment can be found
in the Knowledge Center. See Configuring Availability Zones for IBM Cloud Private Cloud
Foundry.

10.3.2 External database

IBM Cloud Private Cloud Foundry deployment is managed by the BOSH Director. Some
components of the Director store its deployment data in several databases. Various
component instances of IBM Cloud Private Cloud Foundry store their environmental and
operational data in multiple databases. The BOSH Director and IBM Cloud Private Cloud
Foundry are deployed with internal Postgres database servers.

It also comes with the default backup and restore configuration which utilizes internal NFS or
GlusterFS servers. This might be sufficient but a highly-available external database might be
a better choice in production environments for improved performance, scalability and
protection against data loss.

The default BOSH Director deployment manifest needs to be modified to use external
databases. The instruction is available at the following link:

https://github.com/cloudfoundry/bosh-deployment
334 IBM Cloud Private System Administrator’s Guide

https://github.com/cloudfoundry/bosh-deployment

We provide a custom extension that can be registered and configured prior to IBM Cloud
Private Cloud Foundry installation to use external PostgreSQL or MySQL database servers.
The extension is available at
https://github.com/ibm-cloud-architecture/cfp-cf-ext-db-extension. Follow the
instructions in the extension’s README.

10.3.3 External objects store

Support for external object store is used to add availability, performance, and resources to the
location where build packs and droplets are stored. The default deployment uses a singleton
blobstore. This is sufficient for normal use, and when two Cloud Foundry deployments are
created in different data centers for disaster recovery, this is sufficient for the environment. We
provide an example of using S3 on AWS as a blobstore alternative. The extension can be
found at https://github.com/jnpacker/cfp-s3-objectstore-extension.

In AWS you would create the three buckets that are recommended by the extension, update
the extension .yaml file if you changed the bucket names, then follow the instructions to load
the extension. Loading the extension does not transfer existing data, but will reset the
blobstore, so objects like apps might need to be pushed again.

10.4 Backup and restore strategy

In a Cloud Foundry environment, there are two main types of data: first the data used to
install the Cloud Foundry environment which includes the environment configuration, the
deployment configuration for each component that comprises the Cloud Foundry
environment, and second, the runtime data like the user account and authorization database
and the deployed application configuration. In this section we discuss the different backup
procedures that have to be put in place to quickly recover after a disaster.

10.4.1 Installation data

In the installation procedure it is requested that you provide a directory where installation data
will be stored. It contains the environment configuration, the configuration and release assets
of each extension, and also certificates and credentials auto-generated during the
installation. This directory, depending of the type of installation, can be a local directory, an
NFS, or a GlusterFS. For a quick recovery, it is recommended to back up this directory after
each installation and upgrade.

10.4.2 Director

In a Cloud Foundry Full Stack environment, the BOSH Backup and Restore (BBR) is
responsible for backing up the BOSH director as well as the BOSH deployment of the Cloud
Foundry environment. Backups can be configured to be copied to an external customer NFS
server. BBR backup can be set up by configuring values in the uiconfig.yml files to define
when backups occur, where the files should be copied to, and how many backups to keep
before being overwritten.

Configuration options are explained in detail at
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/installi
ng/common_params.html.
Chapter 10. IBM Cloud Private Cloud Foundry and common systems administration tasks 335

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/installing/common_params.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/installing/common_params.html
https://github.com/ibm-cloud-architecture/cfp-cf-ext-db-extension
https://github.com/jnpacker/cfp-s3-objectstore-extension

The restore procedure allows recovery of the BOSH director and deployment should a
significant error occur. The restore produce is detailed at
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/configur
ing/backups.html.

10.4.3 Cloud Foundry database

The db_nfs_copy backup is responsible for the backup of the UAADB and CCDB. These are
configured to back up hourly and if configured can be copied to a customer NFS share.

10.5 Storage and persistent volumes

In this section we discuss the storage and persistent volume options for a Cloud Foundry
environment.

10.5.1 Cloud Foundry Full Stack

The traditional Cloud Foundry deployment requires both persistent and ephemeral storage
allocation used by various deployed VMs. Specifically, persistent storage is needed in three
categories of areas:

� Inception Container: The Inception container uses persistent storage mounted on
“/data” of the container that it uses to store various deployment-related data. The data is
used during the Cloud Foundry upgrade process, as well as for collecting deployment
logs.

– Deployment configuration data, certificates and secrets, and their backup copies.
(Future versions of Cloud Foundry will provide an option to host the deployment data in
a secure store such as CredentialHub as an alternative.)

– Deployment extensions and the associated state files, scripts, and binaries

– Deployment log files for troubleshooting

� BOSH Director: The Director is the orchestrator of the Cloud Foundry deployment. It
needs persistent storage to store various BOSH releases and related binaries (blobstore),
as well as storing the BOSH deployment state, secrets, and certificates information. Both
blobstore and database information can be stored local to the Director VM on a persistent
disk, or can be stored on an external persistent store via a configuration option.

� Cloud Foundry components: Persistent storage is needed by various components of
Cloud Foundry.

– Blobstore: An object store used for storing application binaries (can be internal or
external) and buildpacks.

– Database: Stores various databases such as Cloud Controller DB, UAA database,
Locket, Consul (if present).

– Backup-restore: Backs up deployment data for various Cloud Foundry releases

– NFS WAL (Write-ahead logging) server: Hosts continuous backups of various
databases, object stores and Director data.

– External NFS server: It is recommended that an external NFS server is configured for
taking a secondary backup to offload data from NFS WAL server for holding backups
longer than one week.
336 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/configuring/backups.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/configuring/backups.html

Storage requirements also vary depending on whether you are deploying “developer”
environment vs. “production” environment. Detailed description of storage requirements for
various IaaS platforms can be found at:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/configur
ing/prep_cf.html.

10.5.2 Cloud Foundry Enterprise Environment (CFEE) technology preview

The Cloud Foundry Enterprise Environment (CFEE) is a technology preview at the time of this
writing, and leverages storage services provided by IBM Cloud Private Kubernetes. This
includes support for GlusterFS, NFS Volume service, or other storage services provided IBM
Cloud Private platform. There are some differences between CFEE and Cloud Foundry Full
Stack environment.

1. Inception container is deployed via the ibm-cfee Helm chart, it hosts containers and
provides function similar to the Inception container in Cloud Foundry Full Stack
environment. It needs persistent storage for storing Cloud Foundry Enterprise
Environment configuration parameters, deployment extensions configuration data, and
their states, and execution logs of various deployment extensions. You can configure your
environment to use GlusterFS or NFS storage with inception container Helm chart.

2. Cloud Foundry Full Stack environments do not use BOSH for deployment. Instead they
use IBM Cloud Private Kubernetes services for deployment orchestration of various Cloud
Foundry services. Certificates and secrets are stored as Kubernetes secrets objects. The
logic for various BOSH releases is built into Docker images, which are deployed as Helm
charts delivered via a Cloud Foundry Enterprise Environment Cloud Pak.

3. Cloud Foundry components are deployed via Helm charts, and require persistent and
ephemeral storage similar to Cloud Foundry Full stack deployment. You can configure
GlusterFS or NFS storage to be used for persistent storage while deploying Cloud
Foundry Enterprise Environment Helm charts.

Similar to Cloud Foundry Full Stack, Cloud Foundry Enterprise Environment supports both
developer and high availability configuration modes. For detailed storage requirements for
each of the modes, see
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/tech_pre
view/install_cfee.htm.

10.6 Sizing and licensing

The basic sizing for the management plane can be found here:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/configur
ing/prep_cf.html. There are also sizing for the application hosts (Diego cells). The
reference size we use for these is 4x vCPU, 32 GB RAM, and 300 GB of ephemeral disk.
This is the default Diego cell size for VMware and OpenStack. AWS uses a t2.2xlarge which
is 8x vCPU, 32 GB RAM and 300 GB of attached storage (ephemeral). Each vCPU is
counted as one VPC license unit.

This means if you have 3 Diego Cells in VMware or OpenStack, you would license IBM Cloud
Private Cloud Foundry for 12x VPC because you would be using 12x vCPU. Now that we
understand the mappings of vCPU to VPC (1:1) and Diego cells to memory, a sizing
calculation can be made. Most sizings are done based on memory. You might want 64 GB,
128 GB, or 256 GB of application memory. If you want to buy 256 GB of application memory,
the VPC calculation would be as follows: 256 GB / 32 GB = 8 (Diego Instances) x 4
(vCPU/VPC) = 32 (vCPU/VPC).
Chapter 10. IBM Cloud Private Cloud Foundry and common systems administration tasks 337

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/tech_preview/install_cfee.htm
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/tech_preview/install_cfee.htm
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/configuring/prep_cf.html.
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/configuring/prep_cf.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/configuring/prep_cf.html

You would want to purchase 32 VPCs of IBM Cloud Private Cloud Foundry. This would
support running the required number of instances, until it hits the memory maximum. The
default overcommit is 2:1, so the platform’s users would have approximately 512 GB of virtual
application memory available if an overcommit of 2:1 is used. 2:1 is fine for development and
test, and a 1:1 is recommended in production, but this can be changed if the application
profile warrants.

From a hardware perspective, the link provides a Totals table, that allows you to calculate the
full hardware requirements based on management systems and Diego cells. You should also
keep in mind, as the number of cells is increased, as you approach 512 GB of memory, your
application profile might dictate that the management systems be horizontally scaled (routers,
loggregators, or cloud controllers). This does not incur a licensing cost, but does require
additional virtualization resources to host.

10.7 Networking

This section describes the network implementation for IBM CLoud Private Cloud Foundry.

The Cloud Foundry container-to-container networking feature enables application instances
to communicate with each other directly. It uses an overlay network to manage
communication between application instances without going through the router, thereby
enabling efficient communication between applications in a controlled fashion. Each
application container gets a unique IP address in the overlay network. Container networking
is enabled by default in the IBM Cloud Private Cloud Foundry offering.

Cloud Foundry administrators can specify a set of network policies that enable
communication between application instances. Each of the policy specifications typically
includes source application, destination application, protocol (both TCP and UDP are
supported) and port. The policies are dynamically applied and take effect immediately without
the need to restart Cloud Foundry applications. Network policies also continue to work when
applications are redeployed, scaled up or down, or placed in different containers.

By default, Cloud Foundry includes a Silk CNI plug-in for providing overlay IP address
management and a VXLAN policy agent to enforce network policy for traffic between
applications. These network components are designed to be swappable components in Cloud
Foundry so they can be replaced with an alternate network implementation.

More details on customizing container networking in IBM Cloud Private Cloud Foundry can be
found at
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/configur
ing/configure_container_networking.html.

10.8 Security

In this section, we describe the encryption, credentials, and certificates aspects of IBM Cloud
Private Cloud Foundry.

10.8.1 TLS encryption

The Cloud Foundry deployment is encrypted throughout with TLS. Cloud Foundry uses its
own encryption starting at the ingress routers. The router is TLS-encrypted to the cell, where
the traffic then travels over the cell’s private network to the container.
338 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/configuring/configure_container_networking.html

TLS is also used to guarantee routes to the application. Other traffic between cell and the
Diego components as well as the Cloud Foundry management back end use TLS to remain
encrypted at every step.

10.8.2 Inbound routing

Domain SSL is terminated at the router. The management as well as the application domains
are hosted on the router. Certificates loaded for management and application (can be
multiple) domains are specified in the installer. These certificates are loaded in the router,
which allow for customer-provided wildcard certificates to be used. This means a company
can use its own certificates, for a domain like https://acme.company.com. These certificates
can be signed by the company’s root certificate, or a commercial registrar.

10.8.3 Credentials and certificates

Changing credentials can be straight forward, but requires the equivalent changes to the
environment of a major version upgrade. This means that your standard procedure for
maintenance must be followed. This can be a notification of possible disruptions, or shifting
traffic to an alternate production deployment.

This procedure can be used to either have the installer auto-generate new certificates,
secrets, or tokens. It can also be used to update values generated by you or your security
department. If the user or certificates are not part of the uiconfig file (has wildcard
certificates and the admin password), then you need to locate the installer configuration
directory. This is the directory that was specified when running the launch.sh command.
Inside this directory, you will find a “CloudFoundry” directory.

This directory contains a certificates.yml and credentials.yml file. These files might be
encrypted and stored elsewhere when the installer is not being used. Make sure these files
are restored and editable. Open the appropriate file and find the certificate, secret, or token
you want to change. If you want to let the installer generate a new value, remove the entry.
Alternately you can replace the entry with your won value, making sure to meet the
complexity and length described for the value.

When all of the changes have been made, make sure that the launch.sh has been run and
the installer is available. Run cm engine reset and then re-run the launch_deployment.sh
command you used to install or update the system last. If you used the Install Deployment
Console, you can launch the installer there. The cm command sets all the installation and
update states to “READY”.

After the installer has completed, the new certificates, secrets, or tokens will have been
applied. This works for both the director and the Cloud Foundry installation. The process can
take a long time if director certificates are involved, because this might require all of the
BOSH virtual machines to be rebuilt.
Chapter 10. IBM Cloud Private Cloud Foundry and common systems administration tasks 339

10.9 Monitoring and logging

This section discusses how to manage monitoring and logging in an IBM Cloud Foundry
environment.

10.9.1 Monitoring

Logging is supported through internal and external options. External options include
Prometheus, Splunk, and third party Cloud Foundry compatible tools. Internal monitoring is
provided through a shared Prometheus and Grafana tool set. The internal monitoring is
provided in IBM Cloud Private Kubernetes and is accessible by that administrator. To enable
the capability, you can use Prometheus exporters, which are configured by the installer.

The exporters are provided as a configured Helm chart that can be loaded, and automatically
starts tracking monitoring metrics for the Cloud Foundry deployment. This monitoring is
available through Full Stack and Enterprise Environment (Kubernetes-based Cloud
Foundry).

Figure 10-9 shows the flow from IBM Cloud Foundry to Exporter to Prometheus and pull from
Grafana.

Figure 10-9 The flow from IBM Cloud Foundry to Exporter to Prometheus and pull from Grafana

When the Helm chart is loaded, you have access to BOSH, API, and Firehose metrics. In
Grafana, you still need to find or define dashboards. There are a number of dashboards
available in the community to choose from and you can create your own.

The following are recommended BOSH dashboards found in the files bosh_overview and
bosh_deployments located at:
https://github.com/bosh-prometheus/prometheus-boshrelease/tree/master/jobs/bosh_da
shboards/templates.
340 IBM Cloud Private System Administrator’s Guide

https://github.com/bosh-prometheus/prometheus-boshrelease/tree/master/jobs/bosh_dashboards/templates
https://github.com/bosh-prometheus/prometheus-boshrelease/tree/master/jobs/bosh_dashboards/templates

The following are recommended Cloud Foundry dashboards found in the files cf_summary,
cf_router, and cf_cell_summary, located at:
https://github.com/bosh-prometheus/prometheus-boshrelease/tree/master/jobs/cloudfo
undry_dashboards/templates.

10.9.2 Logging

A Cloud Foundry deployment can produce a lot of log output, both from the components that
make up the Cloud Foundry platform itself and the applications you run in the environment.

Logs produced by Cloud Foundry components, which we see as syslogs, can be viewed
directly on the BOSH instances (for Cloud Foundry Full Stack) or the Kubernetes pods (for
Cloud Foundry Enterprise Environment). Most logs are output to a subdirectory
corresponding to the job name under the /var/vcap/sys/log directory.

Syslogs are subject to rotation to avoid using up all the storage available to the Cloud
Foundry components, so their lifespan is limited.

Logs from applications deployed in the environment, or applogs, can be accessed using the
Cloud Foundry CLI or any tooling that integrates with the Cloud Foundry firehose, such as the
Cloud Foundry management console. These logs are a real-time stream, with a limited
amount of history available.

Cloud Foundry Full Stack provides extensions for log forwarding that allow you to forward logs
to a logging system of your choice for retention and analysis. An integration with the Elastic
Stack logging system in IBM Cloud Private is also provided.

The cfp-ext-syslog-forwarder and cfp-ext-applog-forwarder are embedded extensions
for the Cloud Foundry deployment tool that allow you to configure forwarding of syslogs and
applogs. When you add either extension, it is automatically inserted after the “Prepare Cloud
Foundry” state and before the “Deploy Cloud Foundry” state. You configure the extensions by
providing the details of where and how the logs should be forwarded.

Then, when the deployment is run, the extensions insert the configuration values in the
required configuration files so that the “Deploy Cloud Foundry” state will configure the Cloud
Foundry components to forward logs according to the configuration. For syslog forwarding, all
Cloud Foundry components are modified and individually forward their logs according the
configuration. For applog forwarding, the Doppler instances (typically 4), a core component of
the Cloud Foundry logging system, are modified to forward all application logs. Both
extensions can be configured automatically if you are using the integration with the Elastic
Stack provided in IBM Cloud Private.

Integration with Elastic Stack in IBM Cloud Private is achieved by using a Helm chart that
Cloud Foundry Full Stack exports during the “Prepare Helm charts” state. After running this
state of the deployment, an archive file containing the ibm-cflogging Helm chart and required
images can be found in the IBMCloudPrivate subdirectory of the installation configuration
directory.

The ibm-cflogging Helm chart provides a Logstash deployment that can be configured to
accept syslogs and applogs from the cfp-ext-syslog-forwarder and cfp-ext-applog-forwarder
extensions. This deployment of Logstash outputs logs to the Elasticsearch deployment
provided by IBM Cloud Private, which allows you to view, search, and visualize logs in
Kibana. By default, all connections are made securely using mutual TLS.
Chapter 10. IBM Cloud Private Cloud Foundry and common systems administration tasks 341

https://github.com/bosh-prometheus/prometheus-boshrelease/tree/master/jobs/cloudfoundry_dashboards/templates
https://github.com/bosh-prometheus/prometheus-boshrelease/tree/master/jobs/cloudfoundry_dashboards/templates

If you provide the Configuration Manager endpoint address and access token when installing
the ibm-cflogging Helm chart, a job is run during installation that adds the chosen extensions
(cfp-ext-syslog-forwarder or cfp-ext-applog-forwarder or both) to the deployment and
configures them with the required IP addresses, ports, certificates, keys, and other settings. A
typical setup process looks like this:

1. If not already installed, deploy the Cloud Foundry Full Stack environment, then obtain the
ibm-cflogging Helm chart archive from the installation configuration directory.

2. Use the cloudctl CLI to load the Helm chart archive into IBM Cloud Private.

3. Obtain the Configuration Manager address and token from your Cloud Foundry Full Stack
deployment. Create a Kubernetes secret containing the token.

4. Install the ibm-cflogging chart from the IBM Cloud Private catalog, configuring as desired
and providing the Kubernetes secret for the Configuration Manager token.

5. In the Cloud Foundry deployment tool, launch deployment to run the newly inserted
logging extensions. The “Deploy Cloud Foundry” state will be rerun with new configuration
and the affected instances will be updated to forward syslogs or applogs to the Logstash
deployment created by ibm-cflogging.

Full instructions for installing the ibm-cflogging chart for integration with Elastic Stack in IBM
Cloud Private, and for installing the logging extensions to forward syslogs and applogs to
other logging solutions, are available in the Knowledge Center. See the following articles:

� Connecting to Elastic Stack in IBM Cloud Private:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/integ
rating/icplogging.html

� Configuring platform system log forwarding:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/confi
guring/syslog_forwarding.html

� Configuring application log forwarding:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/confi
guring/applog_forwarding.html

10.10 Integrating external services

This section describes the integration process with external services.

10.10.1 IBM Cloud Private services

IBM Cloud Private comes with some database and messaging software Helm charts:
MongoDB, PostgreSQL, MariaDB, Db2 Developer-C Edition, and RabbitMQ. The
ibm-osb-database which comes with IBM Cloud Private Cloud Foundry implements Open
Service Broker API to make these IBM Cloud Private database and messaging Helm charts
available as services in IBM Cloud Private Cloud Foundry’s marketplace. That way the cloud
application developers can provision instances of these services and bind applications to the
service instances to use them. The lifecycle of these service instances can also be managed
by the Cloud Foundry administrative console or the CLI.

The ibm-osb-database is installed and run on IBM Cloud Private using these high-level steps.

1. The ibm-osb-database IBM Cloud Private catalog archive can be found in the IBM Cloud
Private Cloud Foundry installation configuration directory. The archive contains a Docker
image and a Helm chart.
342 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/configuring/applog_forwarding.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/configuring/syslog_forwarding.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/cloud_foundry/integrating/icplogging.html

2. Use the IBM Cloud Private cloudctl CLI to load the archive into IBM Cloud Private.

3. Install the ibm-osb-database Helm chart.

4. Then once the ibm-osb-database is registered in IBM Cloud Private Cloud Foundry, the
services and their service plans are available in the marketplace.

For more information, see the following articles:

� https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/cloud_foundry/configurin
g/osb.html

� https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/cloud_foundry/integratin
g/icp_db_srvc.html

10.10.2 IBM Cloud services

IBM provides a number of syndicated services. These services are running in the IBM
datacenter and now are available for IBM Cloud Private Cloud Foundry, too. The administrator
can decide which services are available for each organization and space. The Cloud Foundry
administrator creates a Cloud Foundry service broker. Then the administrator can enable the
service and the service plans that the end user can use.

More details at:
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/cloud_foundry/buildpacks/
service_broker.html.

10.10.3 Legacy services

The integration with legacy services can be done by following the standard Cloud Foundry
process. See https://docs.cloudfoundry.org/devguide/services/user-provided.html.

10.11 Applications and buildpacks

This section provides information about applications and buildpack management in an airgap
environment.

10.11.1 Installing extra buildpacks

The IBM Cloud Private Cloud Foundry comes with a number of IBM supported buildpacks but
the environment allows authorized users to upload their own or community buildpacks and
choose the order in which they are used.

The standard Cloud Foundry CLI commands are used to manage the buildpacks: cf
create-buildpacks, cf delete-builpacks. The position can be changed by using cf
update-buildpacks.

For more details see the following URL:
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/cloud_foundry/buildpacks/
buildpacks_cloudprivate.html
Chapter 10. IBM Cloud Private Cloud Foundry and common systems administration tasks 343

https://docs.cloudfoundry.org/devguide/services/user-provided.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/cloud_foundry/integrating/icp_db_srvc.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/cloud_foundry/buildpacks/service_broker.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/cloud_foundry/configuring/osb.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/cloud_foundry/buildpacks/buildpacks_cloudprivate.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/cloud_foundry/buildpacks/buildpacks_cloudprivate.html

10.11.2 Application for an airgap environment

There are several Cloud Foundry buildpacks that assume the environment has internet
access and has the ability to access external websites and download additional prerequisite
software artifacts during cf push operations for an application. If you have an airgap
environment and do not have internet access, cf push operations will fail anytime something
needs to be downloaded from the internet. An example of this would be a Node.js app where
Node modules are typically downloaded when the app is pushed.

To avoid these node module downloads in an airgap environment, there are some additional
steps to perform prior to the cf push of the application. These steps need to be performed
on a machine that has internet connectivity. For example:

1. Download the NodeJS app from the Git repository:\

git clone https://github.com/IBM-Bluemix/get-started-node

2. Change to the app directory
cd get-started-node

3. Install all the tools we need to create a Node.js airgap buildpack using the following
commands:

a. apt-get update

b. apt install nodejs

c. apt install npmapt

d. install nodejs-legacy

4. Force all the Node.js modules to be downloaded and packaged with the application. Run
the following:

a. npm install

b. npm dedupe

c. npm shrinkwrap

Now that the Nodes.js application is built to work in an airgap environment, a simple cf push
can be used to deploy the application. If you need to copy the application files to the airgap
environment, create a tar file and copy it to the airgap machine. After an untar of the file, the
cf push can be performed.

If you make any changes to the package.json file, rerun:

a. npm dedupe

b. npm shrinkwrap

10.12 iFix and releases

IBM releases iFixes and fix packs between its quarterly releases. There is no set number of
interim releases, and it is usually dictated by the severity of the security fixes that become
available between major releases. Major releases are delivered every quarter, with one or
more iFix or fix packs delivered in between. iFixes are small deliverables, affecting only one
component and are made up of a quick start guide, container (used for binary packaging),
and a BOM.yml (bill of materials that includes the new container). Most of the time, there are
multiple security fixes to be delivered, so a fix pack is used. This is a standalone installable
fix, available on Fix Central if you have the appropriate license.
344 IBM Cloud Private System Administrator’s Guide

10.12.1 Zero downtime

There are a few ways to obtain zero downtime updates. One is to deploy your infrastructure
using external database and blobstores for the Cloud Foundry environment. These
extensions are detailed in this book. In this scenario, there are no singleton elements in the
deployment, so our deployment configuration which targets only one BOSH job at a time, is
able to maintain full capability of the platform.

An alternative option to using external databases and blobstores is to deploy to instances of
IBM Cloud Private Cloud Foundry. This has the added disaster recovery capability of using
geographically separate data centers. In this scenario, traffic is drained from one deployment
while it is being updated. This allows maintenance to appear seamless to the end user. Once
maintenance is complete traffic is restored to both deployments.

There is also the option of doing both. This gives you seamless updates, with no need to
scale either deployment to handle the additional load while traffic is being redirected. This
gives you full HA in each data center, while allowing for disaster recovery through
geographically separate deployments.
Chapter 10. IBM Cloud Private Cloud Foundry and common systems administration tasks 345

346 IBM Cloud Private System Administrator’s Guide

Appendix A. Command line tools

This appendix provides introduction to Command line tools like Helm cli, kubectl, cloudctl and
a cheat sheet for kubectl/cloudctl that are handy in production environment.

This appendix has the following sections:

� “Helm command line interface (helmcli)” on page 348
� “Installing the Helm CLI” on page 348
� “Using helmcli” on page 349
� “IBM Cloud Private CLI (cloudctl)” on page 350
� “Kubectl” on page 353
� “Cheat sheet for production environment” on page 361

A

© Copyright IBM Corp. 2019. All rights reserved. 347

Helm command line interface (helmcli)

The helmcli commands manage the application lifecycle in IBM Cloud Private cluster. Before
you set up the Helm CLI, you need to perform the following steps:

1. Install the Kubernetes command line tool, kubectl, and configure access to your cluster.
See Kubernetes section on page 353.

2. Install the IBM Cloud Private CLI and log in to your cluster. See IBM Cloud Private CLI
section on page 350.

3. Obtain access to the boot node and the cluster administrator account, or request that
someone with that access level create your certificate. If you cannot access the cluster
administrator account, you need an IBM Cloud Private account that is assigned to the
administrator role for a team and can access the kube-system namespace.

Installing the Helm CLI

You can install the Helm CLI by downloading it from the Helm GitHub site. Complete the
following steps to install the Helm CLI:

1. Download the Helm v2.9.1 binary from helm GitHub site.

2. Make a helm-unpacked directory and unpack the installation file into that directory with the
following commands:

mkdir helm-unpacked
tar -xvzf ./<path_to_installer> -C helm-unpacked

3. Change the file to an executable, then move the file to your directory:

a. For Linux and MacOS, run the following commands to change the permissions and
move the file:

chmod 755 ./helm-unpacked/<unpacked_dir>/helm
sudo mv ./helm-unpacked/<unpacked_dir>/helm /usr/local/bin/helm

b. For Windows, rename the downloaded file to Helm and place the file in a directory that
is listed in the PATH environment variable.

4. Delete the installer and the unpacked archives:

 rm -rf ./helm-unpacked ./<path_to_installer>.

Verifying the installation

Perform the following steps to verify the installation:

1. If you are using Helm 2.9.1, you must set HELM_HOME:

 export HELM_HOME=~/.helm

2. Initialize your Helm CLI. Do not use the --upgrade flag with the helm init command.
Adding the --upgrade flag replaces the server version of Helm Tiller that is installed with
IBM Cloud Private.

3. For environments with Internet access, run the following command:

helm init --client-only

4. For environments that do not have Internet access, run the following command:

helm init --client-only --skip-refresh
348 IBM Cloud Private System Administrator’s Guide

5. Verify that the Helm CLI is initialized. Run the following command:

helm version --tls

The output should be similar to Example A-1.

Example A-1 Helm CLI is initialized

: Client: &version.Version{SemVer:"v2.9.1",
GitCommit:"20adb27c7c5868466912eebdf6664e7390ebe710", GitTreeState:"clean"}
Server: &version.Version{SemVer:"v2.9.1+icp",
GitCommit:"843201eceab24e7102ebb87cb00d82bc973d84a7", GitTreeState:"clean"}

Using helmcli

Follow the steps to review a list of available or installed packages:

1. Add a Helm repository. To add the Kubernetes Incubator repository, run the following
command:

helm repo add incubator
https://kubernetes-charts-incubator.storage.googleapis.com/

2. View the available charts by running the following command:

 helm search -l

3. Install a chart. Run the following command:

 helm install --name=release_name stable/chart_in_repo --tls

4. In the above command, release_name is the name for the release to be created from the
chart, and chart_in_repo is the name of the available chart to install. For example, to
install the WordPress chart, run the following command:

 helm install --name=my-wordpress stable/wordpress --tls

5. List the releases by running the following command:

 helm list --tls

The output should be similar to Example A-2.

Example A-2 helm list charts

NAME REVISION UPDATED STATUS CHART NAMESPACE
 my-wordpress 1 Wed Jun 28 22:15:13 2017 DEPLOYED wordpress-0.6.5 default

6. To remove a release, run the following command:

 helm delete release_name --purge --tls

7. In this command, release_name is the name of the release to remove. For example, to
remove the WordPress release, run the following command:

 helm delete my-wordpress --purge --tls
Appendix A. Command line tools 349

IBM Cloud Private CLI (cloudctl)

The cloudctl commands are executed to view information about your IBM Cloud Private
cluster, manage your cluster, install Helm charts, and more.

Installing the IBM Cloud Private CLI

After IBM Cloud Private is installed, install the CLI on Windows, Linux, or macOS using the
following steps:

1. Synchronize the clocks between the client computer and the nodes in the IBM Cloud
Private cluster. To synchronize your clocks, use the network time protocol (NTP). For more
information about setting up the NTP, see the user documentation for your operating
system.

2. From the IBM Cloud Private management console, click Menu → Command Line
Tools → Cloud Private CLI to download the installer by using a curl command. Copy
and run the curl command for your operating system, then continue the installation
procedure.

3. Choose the curl command for the applicable operating system. For example, you can run
the following command for macOS:

curl -kLo <install_file> https://<cluster
ip>:<port>/api/cli/cloudctl-darwin-amd64

4. After you run the curl command for your operating system, continue to install the IBM
Cloud Private CLI.

5. To install the IBM Cloud Private CLI, run the command that matches your node
architecture. <path_to_installer> is the path to the directory where you downloaded the
CLI file and <install_file> is the downloaded file name. For Linux and MacOS, run the
following commands to change the permissions and move the file:

chmod 755 <path_to_installer>/<install_file>
sudo mv <path_to_installer>/<install_file> /usr/local/bin/cloudctl

6. For Windows, rename the downloaded file to cloudctl and place the file on the PATH
environment variable.

7. Confirm that the IBM Cloud Private CLI is installed:

 cloudctl --help

The IBM Cloud Private CLI usage is displayed.

8. Log in to your cluster:

 cloudctl login -a https://<cluster_host_name>:8443 --skip-ssl-validation

Where cluster_host_name is the external host name or IP address for your master or
leading master node.

9. Use the IBM Cloud Private CLI to view information about your first cluster, install more
content for your cluster, or configure more clusters. If you use the IBM Cloud Private CLI to
configure a new cluster, you can use the CLI to add or remove worker nodes to and from it.

10.You can configure the single sign-on by using cloudctl commands. More information on
how to configure is documented here:

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/manage_cluster/cli_sso
_configure.html
350 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/manage_cluster/cli_sso_configure.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/manage_cluster/cli_sso_configure.html

General cloudctl commands

To log in to IBM Cloud Private cluster use cloudctl login to interactively enter the password,
which is invisible, as shown in Figure A-1.

Figure A-1 The cloudctl login

You can follow the prompt for choosing the account and namespace or provide those options
except the username and password in the command. The same action can be performed in
one command:

cloudctl login [-a CLUSTER_URL] [-c ACCOUNT_ID or ACCOUNT_NAME] [-n namespace]
[--skip-ssl-validation]

cloudctl logout will log out the session from the IBM Cloud Private cluster.

For more information, see IBM Knowledge center or use cloudctl - -help or cloudctl -h
as shown in Figure A-2 on page 352.

Important: Providing your password as a command line option is not recommended. Your
password might be visible to others and might be recorded in your shell history.
Appendix A. Command line tools 351

Figure A-2 The cloudctl help command

To manage the API keys, IDs, and the service policies of an IBM Cloud Private cluster, use
the cloudctl iam commands. Run the following to see the list of available commands:
cloudctl iam - -help.

For more information about using the cloudctl iam commands visit
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/manage_cluster/cli_iam
_commands.html.

cloudctl catalog commands

To manage the Helm charts, use the following cloudctl catalog commands:

� cloudctl catalog charts: Lists helm charts of the cluster helm repositories.

� cloudctl catalog create-archive: Creates a catalog archive files containing Docker
images and Helm charts.

� cloudctl catalog delete-chart - delete-helm-chart: Deletes a Helm chart from the
IBM Cloud Private internal registry.

� cloudctl catalog load-archive - load-ppa-archive: Load Docker images and Helm
charts from a catalog archive file.

� cloudctl catalog load-chart - load-helm-chart: Loads a Helm chart archive to an
IBM Cloud Private cluster.
352 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/manage_cluster/cli_iam_commands.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/manage_cluster/cli_iam_commands.html

� cloudctl catalog load-images: Loads Docker images into an IBM Cloud Private internal
Docker registry.

� cloudctl catalog repos: Lists helm repositories.

cloud cm commands

To manage an IBM Cloud Private cluster, use the following cloud cm commands:

� cloudctl cm credentials-set-openstack: Sets the infrastructure account credentials for
the OpenStack cloud provider.

� cloudctl cm credentials-set-vmware: Sets the infrastructure account credentials for the
VMware cloud provider.

� cloudctl cm credentials-unset: Removes cloud provider credentials. After you remove
the credentials, you cannot access the cloud provider.

� cloudctl cm machine-type-add-openstack: Adds an openstack machine type. A
machine type determines the number of CPUs, the amount of memory, and disk space
that is available to the node.

� cloudctl cm machine-type-add-vmware: Adds a VMware machine type. A machine type
determines the number of CPUs, the amount of memory, and disk space that is available
to the node.

� cloudctl cm machine-types: Lists available machine types. A machine type determines
the number of CPUs, the amount of memory, and disk space that is available to the node.

� cloudctl cm master-get: Views the details about a master node.

� cloudctl cm masters: Lists all master nodes.

� cloudctl cm nodes: Lists all nodes.

� cloudctl cm proxies: Lists all proxy nodes.

� cloudctl cm proxy-add: Adds a proxy node to a cluster.

� cloudctl cm proxy-get: Views the details about a proxy node.

� cloudctl cm proxy-rm: Removes proxy nodes.

� cloudctl cm registry-init: Initializes cluster image registry.

� cloudctl cm worker-add: Adds a worker node to a cluster.

� cloudctl cm worker-get: Views the details about a worker node.

� cloudctl cm worker-rm: Removes worker nodes.

� cloudctl cm workers: Lists all worker nodes in an existing cluster.

Kubectl

To manage Kubernetes clusters and IBM Cloud Private you can use the kubectl commands.
In this section we show you some of the kubectl commands that would help you manage
your cluster and IBM Cloud Private Installation.

To see the details about how to install the kubectl see the Knowledge Center link:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/install
_kubectl.html.
Appendix A. Command line tools 353

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/install_kubectl.htm
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/install_kubectl.htm

After installing the kubectl command line, you need to perform the authentication for the IBM
Cloud Private cluster that you want to manage. For more information on kubectl
authentication see the following link:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/install
_kubectl.html.

Example A-3 The kubectl --help command

kubectl --help
kubectl get --help
kubectl describe pods--help

As you can see in Example A-3, it is possible to see the details specifically for each
command.

The full list of options is available when you run kubectl as shown on Example A-4.

Example A-4 The kubectl command options

kubectl
kubectl controls the Kubernetes cluster manager.

Find more information at: https://kubernetes.io/docs/reference/kubectl/overview/

Basic Commands (Beginner):
 create Create a resource from a file or from stdin.
 expose Take a replication controller, service, deployment or pod and
expose it as a new Kubernetes Service
 run Run a particular image on the cluster
 set Set specific features on objects

Basic Commands (Intermediate):
 explain Documentation of resources
 get Display one or many resources
 edit Edit a resource on the server
 delete Delete resources by filenames, stdin, resources and names, or by
resources and label selector

Deploy Commands:
 rollout Manage the rollout of a resource
 scale Set a new size for a Deployment, ReplicaSet, Replication
Controller, or Job
 autoscale Auto-scale a Deployment, ReplicaSet, or ReplicationController

Cluster Management Commands:
 certificate Modify certificate resources.
 cluster-info Display cluster info
 top Display Resource (CPU/Memory/Storage) usage.
 cordon Mark node as unschedulable
 uncordon Mark node as schedulable
 drain Drain node in preparation for maintenance
 taint Update the taints on one or more nodes

Tip: You can run kubectl --help to see the options for this command. See Example A-3.
354 IBM Cloud Private System Administrator’s Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/install_kubectl.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/manage_cluster/install_kubectl.html

Troubleshooting and Debugging Commands:
 describe Show details of a specific resource or group of resources
 logs Print the logs for a container in a pod
 attach Attach to a running container
 exec Execute a command in a container
 port-forward Forward one or more local ports to a pod
 proxy Run a proxy to the Kubernetes API server
 cp Copy files and directories to and from containers.
 auth Inspect authorization

Advanced Commands:
 apply Apply a configuration to a resource by filename or stdin
 patch Update field(s) of a resource using strategic merge patch
 replace Replace a resource by filename or stdin
 wait Experimental: Wait for a specific condition on one or many
resources.
 convert Convert config files between different API versions

Settings Commands:
 label Update the labels on a resource
 annotate Update the annotations on a resource
 completion Output shell completion code for the specified shell (bash or
zsh)

Other Commands:
 alpha Commands for features in alpha
 api-resources Print the supported API resources on the server
 api-versions Print the supported API versions on the server, in the form of
"group/version"
 config Modify kubeconfig files
 plugin Provides utilities for interacting with plugins.
 version Print the client and server version information

Usage:
 kubectl [flags] [options]

Use "kubectl <command> --help" for more information about a given command.
Use "kubectl options" for a list of global command-line options (applies to all
commands).

The full list of commands for kubectl can be found at
https://kubernetes.io/docs/reference/kubectl/overview/

In this section we describe the commonly used commands for server management and
troubleshooting.

kubectl get

The kubectl get command is used to get information about the Kubernetes environment
such as resources, pods and node information.

The kubectl get command runs against the namespace that was selected during the login. If
needed it could be specified with the flag -n <namespace>.
Appendix A. Command line tools 355

https://kubernetes.io/docs/reference/kubectl/overview/

kubectl get namespace

The command kubectl get namespace is used to get all namespaces from the cluster, and
also to get information on whether the namespace is active or not. See Example A-5 as a
sample output.

Example A-5 The kubectl get namespace command

kubectl get namespace
NAME STATUS AGE
cert-manager Active 13d
default Active 13d
development Active 13d
finance Active 13d
ibmcom Active 13d
istio-system Active 13d
kube-public Active 13d
kube-system Active 13d
marketing Active 13d
platform Active 13d
services Active 13d

kubectl get nodes

This command is used to get the nodes that are part of a cluster, including their roles and
status.

If you need more information, you can see the command kubectl get nodes -o wide.

Example A-6 shows the output of the command kubectl get nodes.

Example A-6 The kubectl get node command

NAME STATUS ROLES AGE VERSION
10.21.9.173 Ready etcd,master 13d v1.12.4+icp-ee
10.21.9.176 Ready proxy 13d v1.12.4+icp-ee
10.21.9.177 Ready management 13d v1.12.4+icp-ee
10.21.9.179 Ready va 13d v1.12.4+icp-ee
10.21.9.180 Ready worker 13d v1.12.4+icp-ee
10.21.9.181 Ready worker 13d v1.12.4+icp-ee
10.21.9.184 Ready worker 13d v1.12.4+icp-ee

Optionally, if you need to get the status or information about a specific node, you can specify
the name of the node in the command.

kubectl get pods

The kubectl get pods command is used to get the list of pods running in a specific
namespace. By adding the flag --all-namespaces, you can list all pods of a specific cluster.
356 IBM Cloud Private System Administrator’s Guide

See the output of it at Example A-7.

Example A-7 The kubectl get pods command

[root@icp-312-node-1 cluster]# kubectl get pods --all-namespaces
NAMESPACE NAME
READY STATUS RESTARTS AGE
cert-manager ibm-cert-manager-cert-manager-7c77d68c7f-sp64b
1/1 Running 0 13d
development test-ibm-nginx-dev-nginx-8677c69574-bqk8w
1/1 Running 0 12d
kube-system audit-logging-fluentd-ds-4xkjp
1/1 Running 0 13d
kube-system audit-logging-fluentd-ds-bssb8
1/1 Running 0 13d
kube-system audit-logging-fluentd-ds-h6vch
1/1 Running 0 13d
kube-system audit-logging-fluentd-ds-j2px9
1/1 Running 0 13d
kube-system audit-logging-fluentd-ds-jtfv4
1/1 Running 0 13d

This command is useful when trying to get the status of the pod. It is frequently used when
troubleshooting a pod issue as described in Chapter 8, “Troubleshooting” on page 273.

kubectl logs

The kubectl logs command shows the logs of a resource or a pod. This command is useful
when troubleshooting an application and when you need more information about it.

See Example A-8 to get the logs from a container.

Example A-8 The kubectl logs command

kubectl logs web-terminal-597c796cc-r5czh -n kube-system
App listening on https://0.0.0.0:443
Created terminal with PID: 184 for user: admin
Connected to terminal 184
admin login complete with exit code 0:
Targeted account mycluster Account (id-mycluster-account)

Select a namespace:
1. cert-manager
2. default
3. development
4. finance
5. ibmcom
6. istio-system
7. kube-public
8. kube-system
9. marketing
10. platform
11. services
Enter a number> 1
Targeted namespace cert-manager
Appendix A. Command line tools 357

The kubectl exec command is used to run commands on pods, such as running the name
resolution, or even accessing the container shell.

Example A-9 shows how to get access to the container’s shell.

Example A-9 Accessing the pod shell

[root@icp-312-node-1 ~]#kubectl exec web-terminal-597c796cc-r5czh -n kube-system
-i -t -- bash -il
Welcome to the IBM Cloud Private Web Terminal

Type "cloudctl" to use IBM Cloud Private CLI
Run "ls -m /usr/local/bin" for a list of tools installed

root@web-terminal-597c796cc-r5czh:/usr/local/web-terminal# ls
app.js index.html node_modules package.json style.css
certs main.js package-lock.json static
root@web-terminal-597c796cc-r5czh:/usr/local/web-terminal#

To return to the server, just type exit.

It is also possible to run a specific command, such as ls -ltr /tmp. See Example A-10.

Example A-10 Running ls -ltr /tmp

[root@icp-312-node-1 ~]# kubectl exec web-terminal-597c796cc-r5czh -n kube-system
-i -t -- ls -ltr /tmp
total 0
-rw------- 1 admin nogroup 0 Feb 27 22:43 sh-thd-939284318
[root@icp-312-node-1 ~]#

As you can see in this example, this command runs the pod as a local VM.

kubectl describe

The command kubectl describe is used to get information about pods, nodes, and other
Kubernetes resources:

To get information on a specific node run:

kubectl describe nodes <node_Name>

To get information on a specific pod run:

kubectl describe pods/nginx

To get information on all pods run:

kubectl describe pods

To get information on pods by label (for example name=myLabel) run:

kubectl describe po -l name=myLabel
358 IBM Cloud Private System Administrator’s Guide

Example A-11 shows an example.

Example A-11 The describe nodes command output

kubectl describe nodes
Name: 10.21.9.173
Roles: etcd,master
Labels: beta.kubernetes.io/arch=amd64
 beta.kubernetes.io/os=linux
 etcd=true
 kubernetes.io/hostname=10.21.9.173
 master=true
 node-role.kubernetes.io/etcd=true
 node-role.kubernetes.io/master=true
 role=master
Annotations: node.alpha.kubernetes.io/ttl: 0
 volumes.kubernetes.io/controller-managed-attach-detach: true
CreationTimestamp: Wed, 27 Feb 2019 12:09:04 -0800
Taints: dedicated=infra:NoSchedule
Unschedulable: false
Conditions:
 Type Status LastHeartbeatTime LastTransitionTime
Reason Message
 ---- ------ ----------------- ------------------
------ -------
 OutOfDisk False Wed, 13 Mar 2019 14:39:25 -0700 Wed, 27 Feb 2019
12:09:04 -0800 KubeletHasSufficientDisk kubelet has sufficient disk space
available
 MemoryPressure False Wed, 13 Mar 2019 14:39:25 -0700 Wed, 27 Feb 2019
12:09:04 -0800 KubeletHasSufficientMemory kubelet has sufficient memory
available
 DiskPressure False Wed, 13 Mar 2019 14:39:25 -0700 Wed, 27 Feb 2019
12:09:04 -0800 KubeletHasNoDiskPressure kubelet has no disk pressure
 PIDPressure False Wed, 13 Mar 2019 14:39:25 -0700 Wed, 27 Feb 2019
12:09:04 -0800 KubeletHasSufficientPID kubelet has sufficient PID available
 Ready True Wed, 13 Mar 2019 14:39:25 -0700 Wed, 27 Feb 2019
12:36:18 -0800 KubeletReady kubelet is posting ready status
Addresses:
 InternalIP: 10.21.9.173
 Hostname: 10.21.9.173
Capacity:
 cpu: 8
 ephemeral-storage: 245640Mi
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 16266504Ki
 pods: 80
Allocatable:
 cpu: 7600m
 ephemeral-storage: 243492Mi
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 15115528Ki
 pods: 80
System Info:
 Machine ID: f7bbe4af93974cbfa5c55b68c011d41c
Appendix A. Command line tools 359

 System UUID: C08E1133-DBDD-4345-BEB9-6BABCEE56B08
 Boot ID: e2216849-3090-4860-94da-b3c1a34e3823
 Kernel Version: 3.10.0-862.14.4.el7.x86_64
 OS Image: Red Hat Enterprise Linux Server 7.4 (Maipo)
 Operating System: linux
 Architecture: amd64
 Container Runtime Version: docker://18.3.1
 Kubelet Version: v1.12.4+icp-ee
 Kube-Proxy Version: v1.12.4+icp-ee
Non-terminated Pods: (37 in total)
 Namespace Name
CPU Requests CPU Limits Memory Requests Memory Limits
 --------- ----
------------ ---------- --------------- -------------
 cert-manager ibm-cert-manager-cert-manager-7c77d68c7f-sp64b
0 (0%) 0 (0%) 0 (0%) 0 (0%)
 kube-system audit-logging-fluentd-ds-j2px9
0 (0%) 0 (0%) 0 (0%) 0 (0%)
 kube-system auth-apikeys-pjj8w
200m (2%) 1 (13%) 300Mi (2%) 1Gi (6%)
 kube-system auth-idp-5qmct
300m (3%) 3200m (42%) 768Mi (5%) 3584Mi (24%)
 kube-system auth-pap-7j8hs
150m (1%) 1200m (15%) 456Mi (3%) 1536Mi (10%)
 kube-system auth-pdp-bmgqc
600m (7%) 200m (2%) 768Mi (5%) 512Mi (3%)
 kube-system calico-kube-controllers-79ff4c4cff-lwzsk
250m (3%) 0 (0%) 100Mi (0%) 0 (0%)
 kube-system calico-node-2krkk
300m (3%) 0 (0%) 150Mi (1%) 0 (0%)
 kube-system catalog-ui-2srgr
300m (3%) 300m (3%) 300Mi (2%) 300Mi (2%)
 kube-system heapster-745c899b68-pg4zx
20m (0%) 0 (0%) 64Mi (0%) 0 (0%)
 kube-system helm-api-567f86b4f6-djtdw
Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 Resource Requests Limits
 -------- -------- ------
 cpu 5083m (66%) 10206m (134%)
 memory 6878Mi (46%) 12364Mi (83%)
Events: <none>

With the previous command it is possible to see the details for the running nodes, including
pods and used resources.
360 IBM Cloud Private System Administrator’s Guide

Cheat sheet for production environment

In the following section we list some of the commands that are commonly used in a
production environment.

Use kubectl drain to remove a node from service

You can use kubectl drain to safely evict all of your pods from a node before you perform
maintenance on the node (for example for kernel upgrade or hardware maintenance). Safe
evictions allow the pod’s containers to gracefully terminate and respect the
PodDisruptionBudgets that you have specified:

1. First, identify the name of the node you wish to drain. You can list all of the nodes in your
cluster with:

kubectl get nodes

2. Next, tell Kubernetes to drain the node:

kubectl drain <node name>

3. Once it returns without giving an error, you can power down the node (or on a cloud
platform, delete the virtual machine backing the node). If you leave the node in the cluster
during the maintenance operation, you need to run:

kubectl uncordon <node name>

This will instruct Kubernetes that it can resume scheduling of new pods onto the node.

Enabling autocomplete for kubectl

It might be difficult to remember all of the commands and their arguments for the kubectl
command. kubectl provides an autocomplete function to help you remember the commands
and their arguments. You can enable kubectl autocompletion in your current shell using the
following command:

source <(kubectl completion bash)

Removing a pod from a service

Let’s assume we have a service backed by a number of pods. If one of the pods starts
misbehaving we need to find out the root cause for the same. We need to remove the failing
pod from the list of pods to investigate the problem later.

Suppose we have pod foo with the label ‘test’. We update the pod foo by removing the label
named test if it exists with the following command:

$ kubectl label pods foo test-

As you remove the label, the pod will be out of service and deployment will spawn a new pod
with the label test.

Editing kubernetes resources

Sometimes in a production environment you need to fine tune Kubernetes resources by
editing them. You can edit the resources using kubectl edit <resource_name>.
Appendix A. Command line tools 361

Example A-12 shows changing the port number for the service production.

Example A-12 Change the port number for the service

kubectl edit svc/product

app: product
 name: product
 namespace: default
 resourceVersion: "2336715"
 selfLink: /api/v1/namespaces/default/services/product
 uid: de98218d-42ea-11e9-9217-0016ac1010ec
spec:
 clusterIP: 10.0.0.221
 ports:
 - name: http
 port: 8000
 protocol: TCP
 targetPort: 8000

Taints and tolerations

Taints and tolerations work together to ensure that pods are not scheduled onto inappropriate
nodes. One or more taints are applied to a node; this marks that the node should not accept
any pods that do not tolerate the taints. Tolerations are applied to pods, and allow (but do not
require) the pods to schedule onto nodes with matching taints.

You add a taint to a node using kubectl taint. For example:

kubectl taint nodes node1 key=value:NoSchedule

places a taint on node node1. The taint has a key, a key value, and the taint effect NoSchedule
parameter. This means that no pod will be able to schedule onto node1 unless it has a
matching toleration.To remove the taint added by the command above, you can run:

kubectl taint nodes node1 key:NoSchedule-

You specify a toleration for a pod in the PodSpec. Both of the following tolerations match the
taint created by the kubectl taint line above, thus a pod with either toleration would be able
to schedule onto node1.

Viewing and finding resources

The following lists some example commands for viewing and finding resources:

� List all services in the namespace:

kubectl get services

� List all pods in all namespaces:

kubectl get pods --all-namespaces

� List all pods in the namespace, with more details:

kubectl get pods -o wide
362 IBM Cloud Private System Administrator’s Guide

� List a particular deployment:

kubectl get deployment my-dep

� List all pods in the namespace, including uninitialized ones:

kubectl get pods --include-uninitialized

Updating resources

The following list describes some example commands for updating resources:

� Rolling update “www” containers of “frontend” deployment, updating the image:

kubectl set image deployment/frontend www=image:v2

� Rollback to the previous deployment:

kubectl rollout undo deployment/frontend

� Watch rolling update status of “frontend” deployment until completion:

kubectl rollout status -w deployment/frontend

� Create a service for a replicated nginx, which serves on port 80 and connects to the
containers on port 8000:

kubectl expose rc nginx --port=80 --target-port=8000

� Update a single-container pod’s image version (tag) to v4:

kubectl get pod mypod -o yaml | sed 's/\(image: myimage\):.*$/\1:v4/' | kubectl
replace -f

Scaling resources

The following lists some example commands for scaling resources:

� Scale a replicaset named ‘foo’ to 3:

kubectl scale --replicas=3 rs/foo

� Scale a resource specified in “foo.yaml” to 3:

kubectl scale --replicas=3 -f foo.yaml

� If the deployment named mysql’s current size is 2, scale mysql to 3:

kubectl scale --current-replicas=2 --replicas=3 deployment/mysql

� Scale multiple replication controllers:

kubectl scale --replicas=5 rc/foo rc/bar rc/baz

Interacting with running pods

The following lists some example commands for scaling resources:

� Dump pod logs (stdout):

kubectl logs my-pod

� Dump pod logs (stdout) for a previous instantiation of a container:

kubectl logs my-pod --previous

� Dump pod container logs (stdout, multi-container case):

kubectl logs my-pod -c my-container
Appendix A. Command line tools 363

� Dump pod container logs (stdout, multi-container case) for a previous instantiation of a
container:

kubectl logs my-pod -c my-container --previous

� Stream pod logs (stdout):

kubectl logs -f my-pod

� Stream pod container logs (stdout, multi-container case):

kubectl logs -f my-pod -c my-container

� Run pod as interactive shell:

kubectl run -i --tty busybox --image=busybox -- sh

� Attach to a running container:

kubectl attach my-pod -i

� Listen on port 5000 on the local machine and forward to port 6000 on my-pod:

kubectl port-forward my-pod 5000:6000

� Run command in an existing pod (1 container case):

kubectl exec my-pod -- ls /

� Run command in an existing pod (multi-container case):

kubectl exec my-pod -c my-container -- ls /

� Show metrics for a given pod and its containers:

kubectl top pod POD_NAME --containers

Additional kubectl commands

For a full list of supported kubectl commands see
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
364 IBM Cloud Private System Administrator’s Guide

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

Appendix B. Additional material

This book refers to additional material that can be downloaded from the Internet, as described
in the following sections.

Locating the GitHub material

The web material associated with this book is available in softcopy on the Internet from the
IBM Redbooks GitHub repository:

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-G
uide.git

Cloning the GitHub material

Perform the folllowing steps to clone the GitHub repository for this book:

1. Download and install Git client if not installed from https://git-scm.com/downloads.

2. Perform the following command to clone the GitHub repository

git clone
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-
s-Guide.git

B

© Copyright IBM Corp. 2019. All rights reserved. 365

https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide.git
https://github.com/IBMRedbooks/SG248440-IBM-Cloud-Private-System-Administrator-s-Guide.git
https://git-scm.com/downloads

366 IBM Cloud Private System Administrator’s Guide

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� IBM Cloud Private Application Developer's Guide, SG24-8441

You can search for, view, download, or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� IBM Cloud Private v3.1.2 documentation

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/kc_welcome_containe
rs.html

� IBM Cloud Paks Knowledge Centerl ink:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/app_center/cloud_pa
ks_over.html

� IBM Cloud Private for Data ink:

https://www.ibm.com/analytics/cloud-private-for-data

� IBM Cloud Private v3.1.2 supported platforms:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_system_co
nfig/supported_os.html

� IBM Cloud Automation Manager Knowledge Center link:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.1/featured_applicatio
ns/cam.html

� IBM Cloud Transformation Advisor Knowledge Center link:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.1/featured_applicatio
ns/transformation_advisor.html

� IBM Cloud Architecture Center:

https://www.ibm.com/cloud/garage/architectures/private-cloud/reference-architec
ture

� Downloading Terraform:

https://www.terraform.io/downloads.html
© Copyright IBM Corp. 2019. All rights reserved. 367

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://www.terraform.io/downloads.html
https://www.ibm.com/cloud/garage/architectures/private-cloud/reference-architecture
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/kc_welcome_containers.html
https://www.ibm.com/analytics/cloud-private-for-data
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_system_config/supported_os.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_system_config/supported_os.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.1/featured_applications/transformation_advisor.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.1/featured_applications/cam.html

� Downloading the IBM plugin for Terraform:

https://github.com/IBM-Cloud/terraform-provider-ibm/releases

� Downloading the Git Package:

https://git-scm.com/download/

� Istio concepts:

https://istio.io/docs/concepts/what-is-istio/

� Knowledge Center link for installing Istio:

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/manage_cluster/istio.h
tml

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
368 IBM Cloud Private System Administrator’s Guide

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://github.com/IBM-Cloud/terraform-provider-ibm/releases
https://istio.io/docs/concepts/what-is-istio/
https://git-scm.com/download/
https://github.com/IBM-Cloud/terraform-provider-ibm/releases
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/manage_cluster/istio.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.2/manage_cluster/istio.html

ISBN 0738457639

SG24-8440-00

(0.5” spine)
0.475”<->0.873”

250 <-> 459 pages

IBM Cloud Private System Administrator’s Guide

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738457639

SG24-8440-00

®

https://www.facebook.com/IBMRedbooks
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too
	Comments welcome
	Stay connected to IBM Redbooks

	Part 1 IBM Cloud Private overview, architecture, and installation
	Chapter 1. Introduction to IBM Cloud Private
	1.1 IBM Cloud Private overview
	1.2 IBM Cloud Private node types
	1.2.1 Boot node
	1.2.2 Master node
	1.2.3 Worker node
	1.2.4 Management node
	1.2.5 Proxy node
	1.2.6 VA (Vulnerability Advisor) node
	1.2.7 An etcd node

	1.3 IBM Cloud Private architecture
	1.4 IBM Cloud Private features and benefits
	1.4.1 A unified installer
	1.4.2 Robust logging with ELK stack
	1.4.3 Monitoring and alerts
	1.4.4 Metering
	1.4.5 Identify and access
	1.4.6 Security
	1.4.7 IBM Vulnerability Advisor
	1.4.8 IBM Cloud Automation Manager
	1.4.9 IBM Cloud Transformation Advisor
	1.4.10 IBM Microclimate
	1.4.11 IBM Cloud Private management console
	1.4.12 Kubernetes
	1.4.13 Private Docker image registry
	1.4.14 Helm with enhanced security controls
	1.4.15 Catalog
	1.4.16 Kubernetes Service Catalog for managing service brokers

	1.5 Helm
	1.5.1 Helm components and terminology
	1.5.2 Why you should use Helm

	1.6 IBM Multicloud Manager
	1.7 IBM Cloud Paks
	1.8 IBM Cloud Private Editions
	1.9 Persistent volumes
	1.9.1 Volume and claim lifecycle
	1.9.2 IBM Cloud Private Storage providers

	1.10 IBM Cloud Private terms

	Chapter 2. High availability installation
	2.1 High availability considerations
	2.1.1 Fault tolerance
	2.1.2 Considerations for sizing the IBM Cloud Private cluster
	2.1.3 Sample sizing for your IBM Cloud Private cluster

	2.2 High Availability models for IBM Cloud Private cluster
	2.2.1 Intra cluster
	2.2.2 Intra cluster with multiple availability zones
	2.2.3 Inter Cluster with federation on different availability zones

	2.3 Performance considerations for IBM Cloud Private setup
	2.3.1 Nodes considerations
	2.3.2 Tuning the IBM Cloud Private setup

	2.4 Step-by-step installation guide using Terraform
	2.4.1 Environment preparation
	2.4.2 Upload IBM Cloud Private binaries
	2.4.3 Configure the Terraform template
	2.4.4 Apply the Terraform template

	2.5 Post installation verification
	2.5.1 IBM Cloud Private command line interface
	2.5.2 IBM Cloud Private Console user interface

	2.6 Installing IBM Cloud Private on other Cloud platforms
	2.6.1 Typical scenario of running IBM Cloud Private on other Cloud platforms
	2.6.2 Installing IBM Cloud Private on AWS using Terraform
	2.6.3 Installing IBM Cloud Private on Microsoft Azure using Terraform
	2.6.4 Installing IBM Cloud Private on Google Cloud using Terraform
	2.6.5 Installing IBM Cloud Private on RedHat OpenShift
	2.6.6 Installing IBM Cloud Private on OpenStack Cloud provider
	2.6.7 Installing IBM Cloud Private on VMware vSphere Cloud provider
	2.6.8 Install IBM Cloud Private on existing Virtual Machines

	2.7 Setting up IBM Cloud Private catalog in an airgap environment
	2.7.1 Prerequisites
	2.7.2 Steps to follow

	2.8 Changing certificates post installation

	Part 2 IBM Cloud Private system administration tasks
	Chapter 3. Backup and restore of an IBM Cloud Private cluster
	3.1 The purpose of backing up a cluster
	3.2 Backup versus high availability, disaster recovery, and continuous availability
	3.3 Backup options
	3.3.1 Infrastructure backups
	3.3.2 Platform backups

	3.4 Backup and restore strategy
	3.4.1 Infrastructure backup process
	3.4.2 Infrastructure restore process
	3.4.3 Platform backup process
	3.4.4 Platform restore process

	Chapter 4. Managing persistence in IBM Cloud Private
	4.1 Designing the cluster for data persistence
	4.1.1 Workload specific requirements
	4.1.2 Maintainability requirements
	4.1.3 Windows worker node support

	4.2 Persistent storage for platform services
	4.3 Configuring persistent storage for application containers
	4.3.1 Configuring vSphere storage provider for IBM Cloud Private
	4.3.2 Configuring NFS Storage for IBM Cloud Private
	4.3.3 Configuring GlusterFS for IBM Cloud Private
	4.3.4 Configuring Ceph and Rook for IBM Cloud Private
	4.3.5 Configuring Portworx in IBM Cloud Private
	4.3.6 Configuring Minio in IBM Cloud Private

	4.4 Managing the storage hosted on IBM Cloud Private
	4.4.1 Monitoring storage status and performance
	4.4.2 Extending the available storage

	4.5 Performance considerations
	4.5.1 Performance test using dbench
	4.5.2 PostgreSQL database performance

	Chapter 5. Logging and monitoring
	5.1 Introduction
	5.1.1 Elasticsearch, Logstash and Kibana

	5.2 IBM Cloud Private Logging
	5.2.1 ELK architecture
	5.2.2 How Elasticsearch works
	5.2.3 Default logging configuration
	5.2.4 ELK security
	5.2.5 Capacity planning
	5.2.6 Role based access control
	5.2.7 Using Kibana
	5.2.8 Management
	5.2.9 Forwarding logs to external logging systems
	5.2.10 Forwarding logs from application log files

	5.3 IBM Cloud Private Monitoring
	5.3.1 How Prometheus works
	5.3.2 How AlertManager works
	5.3.3 How Grafana works
	5.3.4 Accessing Prometheus, Alertmanager and Grafana dashboards
	5.3.5 Configuring Prometheus Alertmanager and Grafana in IBM Cloud Private
	5.3.6 Creating Prometheus alert rules
	5.3.7 Configuring Alertmanager to integrate external alert service receivers
	5.3.8 Using Grafana

	Chapter 6. Security
	6.1 How IBM Cloud Private handles authentication
	6.1.1 OIDC-based authentication
	6.1.2 SAML-based authentication

	6.2 How authorization is handled in IBM Cloud Private
	6.2.1 Cloud resource names (CRN) specification
	6.2.2 Role-based access control (RBAC) for pods

	6.3 Isolation on IBM Cloud Private
	6.3.1 Scenarios

	6.4 The significance of the admission controller in IBM Cloud Private
	6.4.1 Pod security policy
	6.4.2 ResourceQuota
	6.4.3 LimitRange
	6.4.4 AlwaysPullImages

	6.5 Image security
	6.5.1 Pushing and pulling images
	6.5.2 Enforcing container image security

	Chapter 7. Networking
	7.1 Introduction to container networking
	7.2 Pod network
	7.2.1 Calico
	7.2.2 NSX-T

	7.3 High availability
	7.3.1 External load balancer
	7.3.2 Virtual IP addresses
	7.3.3 Ingress controller

	7.4 Service discovery (kube-dns)
	7.4.1 Headless services
	7.4.2 External services

	Chapter 8. Troubleshooting
	8.1 Common errors during the IBM Cloud Private installation
	8.1.1 Customizing the config.yaml file
	8.1.2 Customizing the /cluster/hosts file
	8.1.3 SSH key error
	8.1.4 Missing the IBM Cloud Private binary files in the installation folder
	8.1.5 Missing the minimum system requirements
	8.1.6 Perform the system cleanup when the installation fails

	8.2 Network configuration errors
	8.2.1 Calico troubleshooting
	8.2.2 IPsec troubleshooting

	8.3 Common errors when installing a Helm chart
	8.3.1 When accessing an application getting the 504 error
	8.3.2 No CPU available
	8.3.3 The required port is in use
	8.3.4 Deployment fails due to a missing permission

	8.4 Common errors when running applications
	8.4.1 Getting the 504 or 500 errors when trying to access the application

	8.5 Opening a support case

	Chapter 9. Service mesh implementation using Istio
	9.1 Overview
	9.2 Role of the service mesh
	9.2.1 Service registry
	9.2.2 Service discovery
	9.2.3 Load balancing
	9.2.4 Traffic encryption
	9.2.5 Observability and traceability
	9.2.6 Access control
	9.2.7 Circuit breaker pattern support

	9.3 Istio architecture
	9.3.1 Components
	9.3.2 Istio functions

	9.4 Installation of Istio and enabling the application for Istio
	9.4.1 Install Istio with the helm command
	9.4.2 Enable application for Istio
	9.4.3 Uninstallation

	9.5 Service resiliency
	9.5.1 Retry
	9.5.2 Timeout
	9.5.3 Load balancer
	9.5.4 Simple circuit breaker
	9.5.5 Pool ejection

	9.6 Achieving E2E security for microservices using Istio
	9.6.1 Inbound traffic
	9.6.2 Outbound traffic
	9.6.3 Mutual TLS authentication
	9.6.4 White or black listing
	9.6.5 Istio authorization

	Part 3 Cloud Foundry related topics
	Chapter 10. IBM Cloud Private Cloud Foundry and common systems administration tasks
	10.1 Introduction
	10.1.1 IaaS flavors
	10.1.2 Technology BOSH versus Kubernetes

	10.2 Installation and extensions
	10.2.1 Installation of the installer container in a Cloud Foundry Full Stack environment
	10.2.2 Installation of the installer container in a CFEE environment
	10.2.3 Config-manager role
	10.2.4 Extensions

	10.3 High availability installation
	10.3.1 Zoning
	10.3.2 External database
	10.3.3 External objects store

	10.4 Backup and restore strategy
	10.4.1 Installation data
	10.4.2 Director
	10.4.3 Cloud Foundry database

	10.5 Storage and persistent volumes
	10.5.1 Cloud Foundry Full Stack
	10.5.2 Cloud Foundry Enterprise Environment (CFEE) technology preview

	10.6 Sizing and licensing
	10.7 Networking
	10.8 Security
	10.8.1 TLS encryption
	10.8.2 Inbound routing
	10.8.3 Credentials and certificates

	10.9 Monitoring and logging
	10.9.1 Monitoring
	10.9.2 Logging

	10.10 Integrating external services
	10.10.1 IBM Cloud Private services
	10.10.2 IBM Cloud services
	10.10.3 Legacy services

	10.11 Applications and buildpacks
	10.11.1 Installing extra buildpacks
	10.11.2 Application for an airgap environment

	10.12 iFix and releases
	10.12.1 Zero downtime

	Appendix A. Command line tools
	Helm command line interface (helmcli)
	Installing the Helm CLI
	Verifying the installation
	Using helmcli

	IBM Cloud Private CLI (cloudctl)
	Installing the IBM Cloud Private CLI
	General cloudctl commands
	cloudctl catalog commands
	cloud cm commands

	Kubectl
	kubectl get
	kubectl get namespace
	kubectl get nodes
	kubectl get pods
	kubectl logs
	kubectl describe

	Cheat sheet for production environment
	Use kubectl drain to remove a node from service
	Enabling autocomplete for kubectl
	Removing a pod from a service
	Editing kubernetes resources
	Taints and tolerations
	Viewing and finding resources
	Updating resources
	Scaling resources
	Interacting with running pods
	Additional kubectl commands

	Appendix B. Additional material
	Locating the GitHub material
	Cloning the GitHub material

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

