
Redbooks

Front cover

Liberty in IBM CICS
Deploying and Managing
Java EE Applications

Phil Wakelin

Carlos Donatucci

Jonathan Lawrence

Mitch Johnson

Michael Jones

Tito Paiva

International Technical Support Organization

Liberty in IBM CICS: Deploying and Managing Java EE
Applications

January 2018

SG24-8418-00

© Copyright International Business Machines Corporation 2018. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (January 2018)

This edition applies to Version 5, Release 4 of IBM CICS Transaction Server.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors. ix
Now you can become a published author, too! .x
Comments welcome. xi
Stay connected to IBM Redbooks . xi

Chapter 1. Installation and configuration . 1
1.1 Getting your CICS region ready . 2
1.2 zFS file system configuration . 2

1.2.1 zFS configuration files. 2
1.2.2 Autoconfiguration . 3
1.2.3 zFS structure. 3
1.2.4 zFS output files . 5
1.2.5 zFS file permissions . 5
1.2.6 zFS file encodings and editing tools . 7

1.3 Setting up a Liberty JVM Server . 11
1.3.1 JVM profile . 11
1.3.2 Tailoring the JVM profile . 11
1.3.3 Liberty specific options . 14
1.3.4 IBM Language Environment runtime options . 15
1.3.5 Creating a JVMSERVER resource . 16

1.4 Tailoring server.xml . 18
1.4.1 Adding Liberty features . 18
1.4.2 Include files . 19
1.4.3 Configuring the HTTP and HTTPS endpoints . 19
1.4.4 CICS bundle deployed applications . 21
1.4.5 Default web application. 21
1.4.6 Liberty transaction log files . 23
1.4.7 Sample server.xml file. 24
1.4.8 Welcome page . 25

Chapter 2. Deploying a web application . 27
2.1 Building the restapp sample . 28

2.1.1 Obtaining the sample code . 28
2.1.2 Creating the Eclipse projects . 29

2.2 Deploying a web application to Liberty . 32
2.2.1 Deployment by using Liberty dropins . 33
2.2.2 Deployment as an application element in server.xml . 37
2.2.3 Deployment in a CICS bundle. 40
2.2.4 Comparison of the deployment options. 52

2.3 Advanced deployment options . 53
2.3.1 Shared libraries . 53
2.3.2 Global libraries . 54
2.3.3 Deploying a prebuilt Java archive in a CICS bundle . 54
2.3.4 Pausing and resuming a server . 58
© Copyright IBM Corp. 2018. All rights reserved. iii

Chapter 3. Link to Liberty . 61
3.1 Overview . 62

3.1.1 Prerequisites . 63
3.1.2 How it works . 63

3.2 Link to Liberty sample application . 65
3.2.1 Building the sample application . 65
3.2.2 Sample application . 72
3.2.3 Deploying the sample . 74
3.2.4 Running the sample . 78
3.2.5 Manual program definition . 80
3.2.6 Updating a Link to Liberty program. 81

3.3 Qualities of service . 82
3.3.1 Transactions . 82
3.3.2 Exception and abend processing . 83
3.3.3 Security . 86
3.3.4 Summary. 89

Chapter 4. Connecting to Db2 by using JDBC . 91
4.1 JDBC overview . 92

4.1.1 JDBC drivers. 92
4.1.2 Data sources. 93
4.1.3 Static and dynamic SQL . 94

4.2 Installing the JDBC Employee application . 94
4.2.1 Liberty features . 95
4.2.2 Data source definition . 95
4.2.3 CICS resources. 95

4.3 Using JDBC type 2 connectivity . 97
4.3.1 Configuring CICS resources . 98
4.3.2 Configuring server.xml . 100
4.3.3 Binding the plan . 102
4.3.4 Running the application . 103

4.4 Using JDBC type 4 connectivity . 104
4.4.1 Configuring CICS resources . 104
4.4.2 Configuring server.xml . 105
4.4.3 Running the application . 107
4.4.4 Container managed security . 107

4.5 Transactional support with JDBC . 108
4.6 Tracing JDBC . 110

Chapter 5. Connecting to IBM MQ by using JMS . 113
5.1 Introduction to JMS . 114

5.1.1 Java Message Service . 114
5.1.2 Message Driven Beans. 114
5.1.3 Java Naming and Directory Interface . 114
5.1.4 Connection pooling . 116

5.2 JMS sample application . 116
5.2.1 Modifying the JMS sample application . 117
5.2.2 Deploying the JMS sample application . 119
5.2.3 Configuring Liberty for the JMS sample application . 119
5.2.4 Describing the JMS updates to the JVM server profile . 121

5.3 Required CICS resources . 122
5.3.1 BUNDLE resources. 122
5.3.2 URIMAP resource . 123
5.3.3 Transaction resources . 124
iv Liberty in IBM CICS: Deploying and Managing Java EE Applications

5.4 Required IBM MQ resources. 125
5.4.1 Configuring IBM MQ Explorer . 125
5.4.2 Defining the queues . 125

5.5 Testing the sample applications . 126
5.5.1 Testing the MQJMSDemo application. 126
5.5.2 Testing the MySimpleMDB application . 128
5.5.3 Use of the Execution Diagnostic Facility . 129

5.6 Security . 129
5.6.1 RACF resources . 129
5.6.2 JMS security scenarios . 131
5.6.3 Summary. 135

5.7 Transport Layer Security . 136
5.7.1 RACF resources . 136
5.7.2 TLS debugging hints and tips . 139

Chapter 6. Configuring Transport Layer Security support . 141
6.1 JSSE and JCE . 142

6.1.1 Updating the JCE policy files . 142
6.2 TLS server authentication by using a Java keystore. 143
6.3 TLS server authentication by using a RACF key ring . 149
6.4 TLS client authentication. 152
6.5 Hints and tips when using TLS . 156

6.5.1 Tracing TLS . 156
6.5.2 Enforcing TLS for web applications. 157
6.5.3 HTTP persistent connections . 158
6.5.4 TLS session timeout . 160
6.5.5 Controlling the TLS version. 160
6.5.6 Controlling the cipher suite . 161
6.5.7 Restricting weak algorithms . 162

6.6 Using cryptographic hardware with JSSE . 164
6.6.1 Cryptographic hardware . 164
6.6.2 Cryptographic software . 165
6.6.3 Configuring TLS to use the cryptographic coprocessors 167
6.6.4 Monitoring cryptographic hardware . 168

Chapter 7. Securing web applications . 175
7.1 Overview . 176
7.2 z/OS security configuration for Liberty JVM servers . 177

7.2.1 Starting the angel process . 177
7.2.2 Setting up access to the angel process . 177
7.2.3 Profile prefix and required SAF profiles . 179
7.2.4 SAF profile summary. 180

7.3 Configuring a Liberty security registry . 180
7.3.1 Configuring a basic user registry. 181
7.3.2 Configuring a SAF registry . 182
7.3.3 Configuring an LDAP registry . 184

7.4 Authentication scenarios . 186
7.4.1 Basic authentication with a SAF registry. 187
7.4.2 Basic authentication by using LDAP credentials. 190
7.4.3 Form-based login . 193
7.4.4 Certificate-based client authentication . 197

7.5 Authorization scenarios. 201
7.5.1 URL-specific authorization by using EJBROLEs. 201
 Contents v

7.5.2 Programmatic role authorization by using EJBROLEs . 206
7.5.3 CICS transaction security with URIMAPs . 211

7.6 Configuring SSO by using Lightweight Third-Party Authentication 214
7.6.1 Configuring LTPA . 215
7.6.2 Disabling SSO in Liberty . 217
7.6.3 Requiring TLS when using SSO . 217

7.7 JSON client code with cookie printer . 217

Chapter 8. Logging and monitoring . 221
8.1 Message and log files . 222

8.1.1 CICS logs . 222
8.1.2 Java logs. 223
8.1.3 Liberty server logs. 224
8.1.4 JVM server trace output . 228

8.2 Monitoring tools . 232
8.2.1 CICS statistics records . 232
8.2.2 CICS performance records . 234
8.2.3 CICS Performance Analyzer . 236
8.2.4 CICS Explorer . 238
8.2.5 IBM Health Center . 239
8.2.6 IBM Application Metrics for Java. 244
8.2.7 Runaway tasks . 247
8.2.8 CICS policies . 248

Chapter 9. Port sharing and cloning regions . 253
9.1 Sharing ports . 254

9.1.1 Using WLMHEALTH . 256
9.2 Cloning regions . 258

9.2.1 Sharing application definitions . 258
9.2.2 Sharing SSL configuration . 260
9.2.3 Sharing feature configuration . 261
9.2.4 Sharing LTPA keys . 262
vi Liberty in IBM CICS: Deploying and Managing Java EE Applications

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2018. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

CICS®
CICS Explorer®
CICSPlex®
Db2®
DB2®
developerWorks®
IBM®

IBM z13®
IMS™
Language Environment®
MVS™
RACF®
Redbooks®
Redpaper™

Redpapers™
Redbooks (logo) ®
RMF™
WebSphere®
z/OS®
z13®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii Liberty in IBM CICS: Deploying and Managing Java EE Applications

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication is intended for IBM CICS® system programmers and IBM
Z architects. It describes how to deploy and manage Java EE 7 web-based applications in an
IBM CICS Liberty JVM server and access data on IBM Db2® for IBM z/OS® and IBM MQ for
z/OS sub systems.

In this book, we describe the key steps to create and install a Liberty JVM server within a
CICS region. We then describe how to best use the different deployment techniques for Java
EE applications and the specific considerations when deploying applications that use JDBC,
JMS, and the new CICS link to Liberty API.

Finally, we describe how to secure web applications in CICS Liberty, including transport-level
security and request authentication and authorization by using IBM RACF® and LDAP
registries. Information is also provided about how to build a high availability infrastructure and
how to use the logging and monitoring functions that are available in the CICS Liberty
environment.

This book is based on IBM CICS Transaction Server (CICS TS) V5.4 that uses the embedded
IBM WebSphere® Application Server Liberty technology. It is also applicable to CICS TS
V5.3 with the fixes for the continuous delivery APAR PI77502 applied. Sample applications
are used throughout this publication and are freely available for download from the IBM
CICSDev GitHub organization along with detailed deployment instructions.

Authors

This book was produced by a team of specialists from around the world.

Phil Wakelin works for CICS development at IBM UK in Hursley, and is a member of the
CICS strategy and design team. He has worked with many CICS technologies for the last 25
years, and is currently responsible for Java Adoption with new CICS customers. He is the
author of many white papers, SupportPacs, and IBM Redbooks publications in the areas of
CICS integration and Java support.

Carlos Donatucci is a certified IT specialist expert working at IBM Buenos Aires Global
Delivery Center as CICS Subject Matter Expert specialist for several accounts in the US and
Canada. He is a member of the Americas Certification Board and the Technical Counsel of
Argentina. He has more than 27 years working as a Mainframe specialist in several areas,
such as software management, automation, scheduling, and online and batch optimization.

Jonathan Lawrence is a Software Engineer in the CICS Level 3 Service team at IBM Hursley
UK, specializing in Java, Liberty, and related technologies. He previously held roles as an IBM
Software Services CICS integration specialist and in the Java Technology Center. He was
also an author of another IBM Redbooks publication.
© Copyright IBM Corp. 2018. All rights reserved. ix

Mitch Johnson is currently working as a Subject Matter Expert for IBM MQ, z/OS Connect
EE, and ODM in the Washington System Center in the United States. Before this role, Mitch
was a consultant in IBM Software Services for WebSphere where he was a Subject Matter
Expert for WebSphere Application Server on z/OS. He has worked on previous IBM
Redbooks publications and IBM Redpapers™ pubications that primarily focused on
connectivity to z/OS resources from WebSphere Application Server and other resources. His
areas of expertise include CICS; IBM DB2®; IBM IMS™; IBM MQ; z/OS; Java; Java Platform,
Enterprise Edition Connectors; and security.

Michael Jones is a Software Engineer working at IBM Hursley UK. He has over 10 years of
experience in Java. He also works as the lead tester for Java in CICS and as a Java SME on
IBM CICS TS modernization projects.

Tito Paiva has worked as a developer, DBA, and application development support since the
1980s. He worked for 5 years as a WebSphere for z/OS pre-sales specialist at IBM SWG in
Brazil. He now is working as a Subject Matter Expert for middleware at IBM GTS in Poland.
His areas of expertise include WebSphere, Java, DB2, CICS, IMS, IBM MQ, and security.

This IBM Redbooks publication was managed and edited by Martin Keen.

Special thanks to Robert Haimowitz for his outstanding support.

Thanks to the following people for their contributions to this project:

� Ivan Hargreaves
� Nigel Williams
� Eric Phan
� Jason Katonica
� Eysha Powers
� Ian Burnett
� David Roberts
� Christopher Meyer
� Matthew Wilson
� Matt Leming
� Lyn Elkins
� Alexander Brown
� Mark Cocker
� Andy Wharmby

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
x Liberty in IBM CICS: Deploying and Managing Java EE Applications

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xii Liberty in IBM CICS: Deploying and Managing Java EE Applications

Chapter 1. Installation and configuration

In this chapter, we describe how we configured our Liberty JVM server in CICS to run our web
applications during this IBM Redbooks publication project. This configuration process
includes modifying our CICS region and setting up UNIX System Services resources.

This chapter includes the following topics:

� 1.1, “Getting your CICS region ready” on page 2
� 1.2, “zFS file system configuration” on page 2
� 1.3, “Setting up a Liberty JVM Server” on page 11
� 1.4, “Tailoring server.xml” on page 18

1

© Copyright IBM Corp. 2018. All rights reserved. 1

1.1 Getting your CICS region ready

The first step to run Java in CICS TS is to ensure that the UNIX System Services and Java
environment are enabled in CICS. Complete the following steps:

1. Add the SDFJAUTH library to the CICS region’s STEPLIB:

//STEPLIB DD DISP=SHR,DSN=CICSTS54.CICS.SDFHAUTH
// DD DISP=SHR,DSN=CICSTS54.CICS.SDFJAUTH

2. If you are planning a CMCI stand-alone connection with IBM CICS Explorer®, you should
also include the SEYUAUTH library in the STEPLIB concatenation:

// DD DISP=SHR,DSN=CICSTS54.CICS.SEYUAUTH

3. Set the USSHOME SIT parameter to the location where the CICS UNIX System Services
libraries are installed. In our example, we use the following location:

USSHOME=/usr/lpp/cicsts/cicsts54

4. Determine where your Java runtime is installed. For the purposes of our environment, our
setting is </usr/lpp/java/J8.0_64_SR4>.

1.2 zFS file system configuration

Liberty bases its configuration around zFS files. It is important to understand how these files
are structured and used.

1.2.1 zFS configuration files

The following zFS configuration files are required to run a Liberty JVM server in CICS:

1. JVM profile: This configuration file is for the JVM server. It must be Extended Binary
Coded Decimal Interchange Code (EBCDIC) that is encoded and includes the
environment variables and JVM settings that are necessary to support the JVM server.

The JVM profile is located by using the JVMPROFILEDIR system initialization parameter for
your CICS region. CICS provides a set of fully commented examples in the
USSHOME/JVMProfiles zFS directory. In our example, we show you how to configure your
Liberty JVM server by using the sample JVM profile and editing it for a first startup.

We set the following JVMPROFILEDIR location:

/var/cicsts/&applid;/JVMProfiles

This location is resolved to the following zFS directory:

/var/cicsts/SC8CICS7/JVMProfiles

2. server.xml: This configuration file is for the Liberty server. It is encoded in ASCII and is an
XML-based configuration file. It is normally created on the first startup of the Liberty JVM
server by using autoconfigure support; then, it can be edited at any time to introduce
modifications.

Tip: You also must ensure that SDFJAUTH and SEYUAUTH libraries are
APF-authorized in the same manner as used for the SDFHAUTH library.
2 Liberty in IBM CICS: Deploying and Managing Java EE Applications

We set the location of our server.xml by using the WLP_USER_DIR option in the JVM
server profile:

WLP_USER_DIR=/var/cicsts/&APPLID;/wlp

This setting caused our server.xml to be created in the following location:

/var/cicsts/SC8CICS7/wlp/servers/itsowlp1/server.xml

1.2.2 Autoconfiguration

The server.xml configuration files define the Liberty configuration that you want to use for
your Liberty JVM server. If you create a Liberty JVM server for the first time with the
autoconfigure option enabled in your JVM profile, this file is created for you with the rest of the
Liberty server zFS structure. We suggest that you start your Liberty JVM servers with this
option enabled for at least the first startup of the Liberty JVM server.

To enable autoconfiguration, set the following JVM system property to true in your JVM
profile:

-Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true

1.2.3 zFS structure

We defined the zFS structure as follows in our IBM Redbooks project. The root directory for
our zFS is defined as /var/cicsts/<applid>/, under which the following directories were
defined:

� ITSOJVM1: JVM server output files and application deployment directories.
� JVMProfiles: JVM server configuration profiles.
� wlp: Liberty server configuration and output files.

This configuration provides all of the main subdirectories under a single parent directory so
that they can be easily traversed.
Chapter 1. Installation and configuration 3

Our file system structure is shown in Figure 1-1, which shows the directories under
/var/cicsts/SC8CICS7/ root directory.

Figure 1-1 File system structure of /var/cicsts

The following directories are included in our zFS configuration:

� ITSOJVM1/apps: This directory is created for Liberty applications that are deployed by using
the <application> element.

� ITSOJVM1/bundles: This directory is where the output for exported CICS bundle projects is
stored.

� ITSOJVM1/dropins: This directory is used for applications that are deployed by using the
drop-ins mechanism.

� JVMProfiles: This directory includes our JVM profile ITSOJVM1.jvmprofile for our
JVMSERVER ITSOJVM1.

� wlp/servers/itsowlp1: This directory is the Liberty ${server.config.dir} and
${server.config.dir} for Liberty configuration and output files.

� wlp/servers/itsowlp1/installedApps: This directory is used as a temporary installation
area for applications that are installed by CICS bundles. When a CICS bundle is enabled,
CICS installs any Liberty web applications into the ${server.output.dir}/installedApps
directory.

� wlp/servers/itsowlp1/logs: Liberty output logs are written to this directory, including
FFDC, messages.log, and the optional HTTP access log.

� wlp/servers/itsowlp1/resources: Resources that are related to security administration
are stored in this directory.

� wlp/servers/itsowlp1/tranlog: The Liberty transaction manager stores its recoverable
log files in the zFS filing system in this directory. An entry in the server.xml file modifies
this location, if required.

Tip: For more information about the location that is used for deploying applications, see
Chapter 2, “Deploying a web application” on page 27.
4 Liberty in IBM CICS: Deploying and Managing Java EE Applications

1.2.4 zFS output files

Several output files are used by the JVM server, such as the stdout, stderr, JVM server
trace, Liberty first-failure data capture (FFDC), and message logs. These files are stored in
region-specific subdirectories that are based on the WORK_DIR and WLP_USER_DIR
settings in the JVM profile. Because we used WORK_DIR=/var/cicsts and
WLP_USER_DIR=/var/cicsts/&APPLID;/wlp in our example, the zFS output files are in the
/var/cicsts/SC8CICS7/wlp directory, as shown in Figure 1-2.

Figure 1-2 zFS output files

1.2.5 zFS file permissions

Access to zFS files in a JVM server is granted by using the CICS region user ID and the UNIX
System Services file permission bits. You must ensure that the CICS region user ID includes
a UNIX System Services segment, and that the CICS region user ID or the group it belongs to
include the following permissions:

� Read, write, and execute access to the JVM server working directory for creating log files
and the Liberty server configuration files.

� Read and execute access to the directory tree that contains the JVM profiles.

� Read access to the JVM profile.

Note: The zFS file system settings that are used in our scenario were chosen to shorten
the directory paths, which makes it easier to browse to the related zFS artifacts for each
CICS region.

Note: In UNIX environments, read and execute access to all directories in the tree is
required to enter a directory and read a file in the specific directory.
Chapter 1. Installation and configuration 5

In our environment, we used the RACF groups and user IDs that are listed in Table 1-1.

Table 1-1 User IDs and group IDs

By using these credentials, we issued the following UNIX System Services commands to
grant the CICS administrators group (CICSADMN) and the CICS region user ID (CICSREGN)
read/write access to the working directory structure, and all other users read access only:

chown CICSREGN /var/cicsts/SC8CICS7
chgrp ADMIN /var/cicsts/SC8CICS7
chmod 775 /var/cicsts/SC8CICS7
chown CICSREGN /var/cicsts/SC8CICS7/ITSOJVM1
chgrp ADMIN /var/cicsts/SC8CICS7/ITSOJVM1
chmod 775 /var/cicsts/SC8CICS7/ITSOJVM1

The output of the ls -l command for the working directory /var/cicsts/SC8CICS7/ITSOJVM1
that shows the assigned permissions rwxrwxr-x is shown in Figure 1-3.

Figure 1-3 UNIX directory permissions

We then granted the CICS region user ID read access and the CICS administrators group
read/write access to the JVM profile, as shown in the following example:

chown -R CICSREGN /var/cicsts/SC8CICS7/JVMProfiles
chgrp -R ADMIN /var/cicsts/SC8CICS7/JVMProfiles
chmod 570 /var/cicsts/SC8CICS7/JVMProfiles
chmod 460 /var/cicsts/SC8CICS7/JVMProfiles/ITSOJVM1.jvmprofile

User file creation mask (UMASK)
The JVM profile option _DFH_UMASK sets the UNIX System Services process UMASK that
applies when any files are created by a JVM server. This value is a three-digit octal, which
determines the permission bits that are not set.

User IDs Group ID Description

CICSREGN CICSPROD CICS region user ID

CARLOS, PHIL ADMIN Administrator user IDs

WEBUSER,
LDAPUSER

CICSUSRS User IDs for web application authorization, as
described in Chapter 7, “Securing web applications ”
on page 175
6 Liberty in IBM CICS: Deploying and Managing Java EE Applications

The default value of 007 allows the intended read/write/execute permissions of owner and
group to be respected, while preventing read/write/execute being granted to other users when
a file is created.

In our scenario, we set _DFH_UMASK=002, which gives rw-rw-r-- permissions when files are
created and rwxrwxr-x permission for directories. This configuration allows the CICS region
and the administrators to view and manage the log files and other users that are not in the
ADMIN group to view the log files.

The z/OS UNIX directory list that displays the permission bits for the
/var/cicsts/SC8CICS7/wlp/servers/itsowlp1/logs directory and its files (when this value is
used) is shown in Figure 1-4.

Figure 1-4 ISPF option 3.4 logs directory

1.2.6 zFS file encodings and editing tools

The JVM can use a different code page from CICS for character encoding. Although CICS
must always use an EBCDIC code page, a Liberty JVM server must use an American
Standard Code for Information Interchange (ASCII) encoding, such as iso8859_1. This
requirement means that the Liberty server configuration and output files are encoded in
ASCII, whereas the JVM server profile is encoded in EBCDIC along with any JVM server
stdout, stderr, and trace files.

Several different editing tools are available with which you can view zFS files on z/OS. Each
of these tools features different mechanisms to use for handling ASCII versus EBCDIC files.
Next, we describe the following common tools and options each provides:

� Enhanced ASCII
� ISPF
� File Transfer Protocol (FTP)
� CICS Explorer
� UNIX tools

Enhanced ASCII
Enhanced ASCII introduces automatic conversion of z/FS files between ASCII, Unicode, and
EBCDIC encodings. It is controlled by using the zFS file tags, which describe an individual file
encoding and the conversion behavior controlled that uses the _BPXK_AUTOCVT=ALL variable in
the user’s profile or by setting the USS BPXPRMxx AUTOCVT parameter to ALL.
Chapter 1. Installation and configuration 7

The output of the UNIX System Services ls -lT command is shown in Example 1-1. In the
example, a JVM profile that is tagged with the EBCDIC encoding IBM-1047 also is shown.

Example 1-1 UNIX System Services list of EBCDIC tagged jvm profile

$ [SC80] /cicsts/SC8CICS7: ls -lT JVMProfiles
total 16
t IBM-1047 T=on -rwxrwxr-x 1 CICSREGN ADMIN 1548 Nov 18 03:59
ITSOJVM1.jvmprofile

ISPF option 3.4
The z/OS UNIX directory list function, which is accessed by using ISPF option 3.4, is a
popular means for editing files on z/OS. It supports IBM MVS™ datasets and zFS file
browsing and editing. By entering the '/' action, you can edit and view files by using
EBCDIC, ASCII, and UTF-8 options, as shown in Figure 1-5. This action makes it easy to
manage any type of file.

Figure 1-5 ISPF option 3.4 directory list actions

File Transfer Protocol
FTP is a standard protocol for transmitting files between computers over TCP/IP connections.
It is used by many third-party tools to transfer files, and can also be started by using the FTP
command line utility. The FTP utility can transfer files in binary mode, without conversion, or
in ASCII mode, with conversion between client and server encodings.

If set up correctly, the z/OS FTP utility transfers and converts ASCII and EBCDIC zFS files
that are correctly tagged. Any files that are not tagged are converted by using the default
settings that are provided by the SBDATACONN in the FTP server in the
SYS1.TCPPARMS(FTPDATA) member. In our system, this setting was configured by using the
following values, which assume an EBCDIC encoding of IBM-1047 for zFS files and an ASCII
encoding of ISO8859-1 for workstation files:

SBDATACONN (IBM-1047,ISO8859-1)

Tip: Starting with CICS TS V5.3, all CICS zFS files are tagged with the relevant file
encoding: ISO8859-1 or IBM-1047.
8 Liberty in IBM CICS: Deploying and Managing Java EE Applications

The FTP transfer of the ASCII encoded server.xml from z/OS to our Windows workstation is
shown in Example 1-2.

Example 1-2 FTP transfer of tagged server.xml

ftp> get server.xml
200 Port request OK.
125-Tagged ASCII file translated with table built using file system cp=ISO8859-1,
network transfer cp=ISO8859-1
125 Sending data set /var/cicsts/SC8CICS7/wlp/servers/itsowlp1/server.xml
250 Transfer completed successfully.
ftp: 4170 bytes received in 0.09Seconds 47.39Kbytes/sec.

CICS Explorer: z/OS perspective
The z/OS UNIX Files view (see Figure 1-6) is provided in the CICS Explorer z/OS
perspective. It provides a Windows Explorer-like interface for zFS that is based on FTP
connectivity to z/OS. If set up correctly, editing ASCII and EBCDIC files can be managed
based on the file encodings that are specified for each file.

Figure 1-6 z/OS UNIX Files view

To configure this function, the SBDATACONN value in the FTP server or the default EBCDIC
encoding for the CICS Explorer FTP connection must be set, as shown in Figure 1-7 on
page 10.
Chapter 1. Installation and configuration 9

Figure 1-7 z/OS FTP Connection settings

If this Remote character set is not set correctly, each file that contains ASCII content must be
individually tagged as being transferred in binary FTP mode to prevent any file conversion
during the FTP transfer (see Figure 1-8).

Figure 1-8 File properties pop-up window

UNIX tools
UNIX System Services provide a set of standard UNIX tools, such as more, vi, and cat for
viewing and editing zFS files. These tools can be configured to manage tagged ASCII files
that use the Enhanced ASCII function in UNIX System Services by setting the
_BPXK_AUTOCVT=ALL environment variable in the user’s shell.
10 Liberty in IBM CICS: Deploying and Managing Java EE Applications

1.3 Setting up a Liberty JVM Server

We are now ready to create and start our JVM server. In the following sections, we describe
the process that is used to create a JVM profile and install the JVMSERVER resource
definition into CICS.

1.3.1 JVM profile

The JVM profile is a zFS configuration file that lists the variables and system properties that
are used by CICS when starting a JVM server. Some of the options are specific to, and others
are standard for, the JVM runtime environment. For example, the JVM profile controls the
initial size of the JVM storage heap and how far it can expand. The profile can also define the
destinations for messages and dump output that is produced by the JVM. The JVM profile is
named in the JVMPROFILE attribute in a JVMSERVER resource definition.

You can copy one of the sample JVM profiles that is provided by CICS in the
USSHOME/JVMProfiles directory and customize it for your own application.

The sample JVM profiles in the USSHOME installation location are overwritten if you apply an
APAR that includes changes to these files. To avoid losing your modifications, always copy the
sample from USSHOME to a different location before adding or changing any options.

For more information about the properties that you can edit in a Liberty JVM server profile,
see the Options for JVMs in a CICS environment in IBM Knowledge Center.

1.3.2 Tailoring the JVM profile

To begin tailoring your own JVM profile, complete the following steps:

1. Copy the sample JVM profile for a Liberty JVM server, as delivered with your CICS
installation:

<USSHOME>/JVMProfiles/DFHWLP.jvmprofile

2. Copy the profile to your JVMPROFILEDIR directory as defined in the SIT. We used the
following location:

/var/cicsts/SC8CICS7/JVMProfiles/ITSOJVM1.jvmprofile

You then must modify the options that are described next.

Java home directory
The JAVA_HOME directory specifies the installation location for the IBM Java SDK for z/OS. This
location contains subdirectories and Java archive files that are required for Java support.

The supplied sample JVM profiles contain a path that was generated by the JAVADIR
parameter in the DFHISTAR CICS installation job. The default for the JAVADIR parameter is
/usr/lpp/java/J8.0/, which is the default installation location for the IBM 64-bit SDK for
z/OS, Java Technology Edition.

Working directory
WORK_DIR is the working directory in zFS that the CICS region uses for activities that are
related to the JVM server. The CICS JVM server uses this directory for configuration and
output. A period (.) is defined in the supplied JVM profiles and indicates that the home
directory of the CICS region user ID is to be used as the working directory. If the directory
does not exist or if WORK_DIR is omitted, /tmp is used as the zFS directory name.
Chapter 1. Installation and configuration 11

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/java/dfha2_jvmprofile_options.html

You can also specify your own zFS directory for the working directory. In this situation, you
must also ensure that the relevant directory is created on zFS and that access permissions
are granted to the correct CICS regions.

We specified the following pattern for our WORK_DIR under which CICS dynamically creates
subdirectories for each region and JVM server:

WORK_DIR=/var/cicsts/

Output files
Output from Java applications that are running in a Liberty JVM server can be written to zFS
or to JES. The destination for the logs is defined by using the STDOUT, STDERR, and JVMTRACE
options in the JVM profile.

Standard output
The following standard output options are available:

� STDERR

This option specifies the location to which the stderr stream is directed from the JVM
server. It often contains useful output, such as Java exception messages. By default, files
are placed in the WORK_DIR/<applid>/<jvmserver> directory in zFS; however, it can be
redirected to the JES log. If you left STDERR undefined, the output is written to the following
default location in your working directory:

/var/cicsts/SC8CICS7/ITSOJVM1/Dyyyymmdd.Thhmmss.dfhjvmerr

� STDOUT

This option specifies the location to which the stdout stream is directed from the JVM
server. By default, files are placed in the WORK_DIR/<applid>/<jvmserver> directory in
zFS. Although CICS JVM servers do not log output to this file, it can be used by Java
applications or other components. If you left STDOUT undefined, the output is written to
the following location in your working directory:

/var/cicsts/SC8CICS7/ITSOJVM1/Dyyyymmdd.Thhmmss.dfhjvmout

� JVMTRACE

This option specifies the name of the zFS file or JES DD to which Java tracing is written
during the operation of a JVM server. If you do not set a value for this option, CICS
automatically creates unique trace files for each JVM server, although it can also be
redirected to the JES log. This option is a CICS Java trace and the amount of tracing is
controlled by setting the trace levels for the SJ and AP domains by using the CETR
transaction:

/var/cicsts/SC8CICS7/ITSOJVM1/Dyyyymmdd.Thhmmss.dfhjvmtrc

� Liberty messages.log

This option contains all messages that are written out from the Liberty server. It also
contains information, such as the message time stamp and the ID of the thread that wrote
the message. In our scenario, the file is in zFS in the following location:

/var/cicsts/SC8CICS7/wlp/servers/itsowlp1/logs/messages.log

Tip: Always create the working directory in a different mount point than your CICS
USSHOME directory because CICS requires read/write access to the working directory.
The USSHOME should be mounted read-only because it is part of the product installation.
12 Liberty in IBM CICS: Deploying and Managing Java EE Applications

JVM server stdout and stderr streams can be redirected to JES instead of zFS, which
enables the JVM server logs to be kept with the CICS output. For example, to log output to a
specific JES DD file, you must specify the following options for the STDOUT and STDERR in the
JVM profile:

STDOUT=//DD:JVMOUT
STDERR=//DD:JVMERR

We added the following JCL DD cards to our production CICS region to match the DD
destination that was specified in the profile. The parameter LRECL is used to avoid excessive
message wrapping and limits line length to 1024 characters:

// JVMOUT DD SYSOUT=*,LRECL=1024
// JVMERR DD SYSOUT=*,LRECL=1024
// JVMTRACE DD SYSOUT=*,LRECL=1024

For more information about how to manage logging output from the JVM server, see
Chapter 8, “Logging and monitoring” on page 221.

Maximum number of zFS log or trace files
The LOG_FILES_MAX value in the JVM server profile specifies the number of old log JVM server
stdout, stderr, and dfhjvmtrc files are kept on zFS. A default setting of 0 ensures that all old
versions of the log file are retained. This value can be modified to specify how many old log
files you want to remain on the file system, as shown in the following example:

LOG_FILES_MAX=<n>

If STDOUT, STDERR, and JVMTRACE use the default scheme, or if they are customized to include
the &DATE;.&TIME; pattern, only the newest instance of each log type is kept on the system.
If your customization does not include any variables that make the output unique, the files are
appended to, and no requirement is necessary for deletion. This clean-up function does not
apply if the output variables were customized to route output to JES.

Time zone
The time zone (TZ) environment variable specifies the local time of a system. You can set this
variable for a JVM server by adding it to the JVM profile.

When setting the time zone for a JVM server, consider the following points:

� The TZ variable in your JVM profile must match your local MVS system offset from
Greenwich mean time (GMT).

� If you do not set the TZ variable, the system defaults to Coordinated Universal Time
(UTC).

� Customized time zones are not supported and result in failover to UTC or a mixed time
zone output in the JVMTRACE file.

� If you see LOCALTIME as the time zone string, an inconsistency occurs in your
configuration. This inconsistency can be between your local MVS time and the TZ you are
setting, or between your local MVS time and your default setting in the JVM profile. The
output is in mixed time zones, although each entry is correct.

� The short form of Portable Operating System Interface (POSIX) TZ can be used and
reduces the chances of input errors and uses the following format:

TZ=CET-1CEST

The long form uses the following format:

TZ=CET-1CEST,M3.5.0,M10.5.0
Chapter 1. Installation and configuration 13

1.3.3 Liberty specific options

The following variables are specific to a Liberty JVM server environment:

� WLP_INSTALL_DIR

This variable specifies the installation directory of the Liberty server product. The Liberty
files are installed in the CICS USSHOME directory in a subdirectory that is named wlp. The
default installation directory is /usr/lpp/cicsts/cicsts54/wlp. Always use the &USSHOME;
symbol to set the correct file path and append the wlp directory, as shown in the following
example:

WLP_INSTALL_DIR=&USSHOME;/wlp

� WLP_USER_DIR

This variable specifies the directory that contains the configuration files for the Liberty JVM
server. This environment variable is optional. If you do not specify this variable, CICS
defaults to the following subdirectory of the JVM server working directory:

WLP_USER_DIR=./&APPLID;/&JVMSERVER;/wlp/usr.

In our configuration we used:

WLP_USER_DIR=/var/cicsts/&APPLID;/wlp

� WLP_OUTPUT_DIR

This optional variable specifies the directory that contains output files for the Liberty
server. By default, Liberty stores logs, the work area, and configuration files for the server
in a directory that is named after the server. If you do not specify this variable, CICS
defaults to the following subdirectory of the JVM server working directory:

WLP_OUTPUT_DIR=./&APPLID;/&JVMSERVER;/wlp/usr/servers

In our configuration, this variable defaulted to the following directory:

WLP_USER_DIR=/var/cicsts/&APPLID;/wlp/usr/servers

The following system properties are specific to the Liberty JVM server environment:

� Encoding

A Liberty JVM server requires that JVM encoding be set to ASCII rather than the usual
EBCDIC default for CICS. This setting is controlled by using the file.encoding JVM
system property. You must set your encoding as shown in the following example to start a
Liberty JVM server:

-Dfile.encoding=ISO-8859-1

� Autoconfigure

Enable autoconfigure for at least the first startup of the Liberty JVM server in CICS, which
builds the CICS Liberty server environment. This process requires setting the following
system property:

-Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true

This property instructs CICS to build the Liberty server and configuration file (server.xml)
during startup. The default JVM profile supplies this line and you must remove the ‘#’
comment and set the value to true.

After you start your JVM server and it is working correctly, you can continue to leave
autoconfigure enabled or you can disable autoconfigure and perform all further changes
manually to server.xml.
14 Liberty in IBM CICS: Deploying and Managing Java EE Applications

� HTTP/HTTPS ports

Change your default ports so that they do not conflict with any port usage. Delete the ‘#’
before the following two lines and change ‘9080’ and ‘9443’ to valid free ports:

-Dcom.ibm.cics.jvmserver.wlp.server.http.port=57080
-Dcom.ibm.cics.jvmserver.wlp.server.https.port=57443

You can also add the com.ibm.cics.jvmserver.wlp.server.host property to restrict the
HTTP endpoint to bind to a specific host:

-Dcom.ibm.cics.jvmserver.wlp.server.host=wtsc80

For more information about configuring SSL, see Chapter 6, “Configuring Transport Layer
Security support” on page 141.

� Our sample JVM profile

The result of editing ITSOJVM1.jvmprofile is shown in Example 1-3.

Example 1-3 JVM profile

WORK_DIR=/var/cicsts/
WLP_INSTALL_DIR=&USSHOME;/wlp
WLP_USER_DIR=/var/cicsts/&APPLID;/wlp
TZ=EST5EDT
LOG_FILES_MAX=5
-Xms128
-Xmx256
-Xmso128-Xgcpolicy:gencon
-Xscmx128-Xshareclasses:name=cicsts540%g,groupAccess,nonfatal
-Dcom.ibm.tools.attach.enable=no

-Dcom.ibm.ws.logging.max.files=5
-Dfile.encoding=ISO-8859-1

Autoconfigure options
-Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true
-Dcom.ibm.cics.jvmserver.wlp.server.name=itsowlp
-Dcom.ibm.cics.jvmserver.wlp.server.http.port=57080
-Dcom.ibm.cics.jvmserver.wlp.server.https.port=57443
-Dcom.ibm.cics.jvmserver.wlp.server.host=wtsc80

1.3.4 IBM Language Environment runtime options

The IBM Language Environment® runtime options module is specified in the JVMSERVER
resource definition and defines the runtime options for the Language Environment enclave
that is used by the JVM server. DFHAXRO is the supplied program that provides a set of
default values. The source for DFHAXRO is in the hlq.SDFHSAMP library and can be used to
modify the Language Environment storage options that are used by the JVM server, if
required.

Tip: If you are using autoconfigure, the HTTP ports and host are configured by using
system properties; therefore, they are not modified directly in the server.xml file.
Chapter 1. Installation and configuration 15

1.3.5 Creating a JVMSERVER resource

The CICS JVMSERVER resource definition must be created next. This definition is used to
set the JVM profile location and to control the lifecycle of the JVM server within the CICS
runtime environment.

We used the values that are listed in Table 1-2.

Table 1-2 Values for the defining the JVMSERVER

You can define the JVMSERVER resource by using the following tools:

� Resource definition online (RDO) by using the CEDA transaction
� Submitting offline batch jobs by using the DFHCSDUP batch utility program
� CICS Explorer

We used the CEDA transaction to define the JVM server. Complete the following steps:

1. Using the CEDA transaction, copy the sample JVMSERVER DFHWLP resource definition
from the sample CSD group DFH$WLP to a new CSD group of your choice to enable it to
be modified.

2. Create a JVMSERVER definition by using CEDA with your user-specific changes, as
shown in Figure 1-9.

Figure 1-9 CEDA JVMSERVER definition.

Attribute Default Value Description

JVMSERVER DFHWLP ITSOJVM1 JVM server resource name

Group DFH$WLP LIBERTY CSD group name

Jvmprofile DFHWLP ITSOJVM1 Prefix for .jvmprofile in zFS

Liberty server
Name

defaultServer itsowlp1 Liberty server name as set by property
com.ibm.cics.jvmserver.wlp.server.name
16 Liberty in IBM CICS: Deploying and Managing Java EE Applications

3. Install and enable the JVMSERVER resource into your CICS region that uses CEDA by
using the CEDA EXPAND GROUP(LIBERTY) command, as shown in Figure 1-10.

Figure 1-10 Install JVMSERVER using CEDA

4. Check the status of the JVM server by using CEMT INQ JVMSERVER transaction, as shown in
Figure 1-11.

Figure 1-11 CEMT INQUIRE JVMSERVER

If the status shows Enabled, your JVM server environment should be running. You completed
your first step and successfully validated the Java environment on CICS. If it fails to enable,
check the CSMT log, SYSOUT log, and stderr log in the zFS working directory for more
information about any errors.
Chapter 1. Installation and configuration 17

Restarting the JVM server
Although changes to the Liberty server configuration are dynamic, any changes to the JVM
profile require restarting the JVM server. To stop the JVM server, you can use the CEMT SET
JVMSERVER DISABLED command. The default action is to phase-out the JVM server; however,
the following actions are available if shutdown does not proceed as wanted:

� PHASEOUT is the default action and shuts down the JVM server. All running tasks
continue until completion, but no new work is accepted by the JVM server. When all of the
tasks are finished, the JVMSERVER resource enters the DISABLED state.

� The PURGE action purges tasks that are running in the specified JVM server. Any threads
that are running in the JVM are instructed to stop. CICS purges tasks only when system
and data integrity can be maintained. If the JVMSERVER resource remains in the BEING
DISABLED state, some tasks cannot be purged.

� FORCEPURGE forces purge tasks that are running in the specified JVM server. Any
threads that are running in the JVM are instructed to stop. If the JVMSERVER resource
remains in the BEING DISABLED state, some tasks could not be force purged. Data
integrity is not ensured.

� KILL ends tasks that are running in the specified JVM server. Any threads that are running
in the JVM are stopped. The JVMSERVER resource enters the DISABLED state and all
work is ended.

1.4 Tailoring server.xml

In this section, we describe how you can manually configure your server.xml file and set up
the XML elements within it. Performing a manual configuration is important in a production
environment in which you might want to more tightly control the server configuration.

One of the major advantages of Liberty is its composability, which is based on features. You
can add all the functionality that you need for your specific set of applications by choosing the
features that they require. Being composable allows you to keep the server lightweight
because you add only the features that you need.

1.4.1 Adding Liberty features

You can add various features in the <featureManager> list in server.xml. The following key
features were used in our initial configuration (see Example 1-4 on page 19):

� The CICS feature cicsts:core-1.0 is the core integration feature that provides the
runtime integration, JCICS API, and transaction support for JTA. It should always be
configured.

� The ssl-1.0 feature enables Secure Sockets Layer (SSL) support for the HTTP listeners
by using Java keystores or RACF key rings.

� The jsp-2.3 feature enables support for servlet and JavaServer Pages (JSP) applications
at the Java EE 7 web profile standard. This feature is required by Dynamic Web projects
(WAR files) and OSGi Application Projects that contain OSGi bundle projects with web
support and also enables the servlet-3.1 feature.

Note: In CICS TS V5.4, the SET TASK PURGE command is now supported for ending tasks
that are running in a JVM server. This command is also available for CICS TS V5.3 with the
fix for APAR PI77502.
18 Liberty in IBM CICS: Deploying and Managing Java EE Applications

� The jaxrs-2.0 feature enables support for RESTful Java applications developed using the
JAXRS APIs. This feature is required by our restapp and restapp extensions projects.

Example 1-4 Server.xml after adding new features

<featureManager>
 <feature>cicsts:core-1.0</feature>
 <feature>ssl-1.0</feature>
 <feature>jsp-2.3</feature>
 <feature>jaxrs-2.0</feature>
</featureManager>

CICS TS V5.4 and V5.3 support all of the features from the Java EE 7 full profile that are
provided by WebSphere Liberty. This configuration enables Java EE web applications to be
deployed into a Liberty JVM server.

To verify that the features are installed, check the message CWWKF0012I in the MSGLOG file,
as shown in Example 1-5.

Example 1-5 Liberty messages.log installed features

CWWKF0012I: The server installed the following features: [jsp-2.3, servlet-3.1,
ssl-1.0, jndi-1.0, appSecurity-2.0, jaxrs-2.0, jaxrsClient-2.0, el-3.0,
blueprint-1.0, cicsts:core-1.0, json-1.0, distributedMap-1.0, wab-1.0].

We can see each of the features from our configuration list, along with several other features,
such as jndi-1.0, appSecurity-2.0, jaxrsClient-2.0, el-30, distributedMap-1.0, and
wab-10, that were included as part of other features.

1.4.2 Include files

If configuration information is in an external .xml file, you can use the <include> element to
add the configuration information to the server.xml file. For example, as described in
Chapter 5, “Connecting to IBM MQ by using JMS” on page 113, we used an include file that is
named jms.xml with IBM MQ JMS-specific definitions for our JMS application. The following
example shows how the include element in our server.xml appeared:

<include location="/var/cicsts/SC8CICS7/wlp/servers/itsowlp/jms.xml"
optional="true"/>

You can configure the onConflict attribute on the <include> element file to manage conflict
between the server.xml file and the include file when duplicate values are defined. This
attribute can be configured to one of the following values:

� merge: Allows Liberty to merge conflicting elements (default setting)
� replace: Causes the include elements to override server.xml
� ignore: Ignores elements in the include that conflict with the server.xml

1.4.3 Configuring the HTTP and HTTPS endpoints

If HTTP and HTTPS ports are not defined, they default to 9080 (HTTP) and 9443 (HTTPS). If
you want to change the port or IP address that is used by the Liberty HTTP listener, update
the <httpEndpoint> element with the host name and port numbers that you require, as shown
in Example 1-6 on page 20.
Chapter 1. Installation and configuration 19

Example 1-6 HTTP and HTTPS port definitions in server.xml

<httpEndpoint id="defaultHttpEndpoint"
 host="wtsc80"
 httpPort="57080"
 httpsPort="57443" />

Use a port number that is not in use anywhere else; for example, by a TCPIPSERVICE in
CICS. HTTPS is available only if SSL is configured.

If a multi-homed TCP/IP configuration with multiple IP addresses defined is used, you can
configure a Liberty server to listen on different IP endpoints by creating multiple
<httpEndpoint> elements.

How we defined three listeners on port 57080 for each of the three host names that are
defined on our system (wtsc80, wtsc80oe, and localhost) is shown in Example 1-7. You can
also control specific functionality for each endpoint because SSL is disabled by setting
httpsPort="-1 in the defaultHttpEndpoint3, as shown in Example 1-7.

Example 1-7 Multiple HTTP endpoints in server.xml

<httpEndpoint id="defaultHttpEndpoint"
 host="wtsc80"
 accessLoggingRef="accessLogging"
 httpOptionsRef="httpoptions"
 httpPort="57080"
 httpsPort="57443" />

<httpEndpoint id="defaultHttpEndpoint2"
 host="wtsc80oe"
 httpOptionsRef="httpoptions"
 httpPort="57080"
 httpsPort="57443" />

<httpEndpoint id="defaultHttpEndpoint3"
 host="localhost"
 httpOptionsRef="httpoptions2"
 httpPort="57080"
 httpsPort="-1"/>

To verify the status of the HTTP listeners, use the NETSTAT command to verify the active
listeners in use by a specific job, as shown in Example 1-8.

Example 1-8 Active listeners for job SC8CICS7

/D TCPIP,,NETSTAT,ALLCONN,CLIENT=SC8CICS7
MVS TCP/IP NETSTAT CS V2R3 TCPIP Name: TCPIP 11:30:15
User Id Conn Local Socket Foreign Socket State
------ ---- ------------ -------------- -----
SC8CICS7 00007C7B 127.0.0.1..57080 0.0.0.0..0 Listen
SC8CICS7 00007C79 9.76.61.131..57080 0.0.0.0..0 Listen
SC8CICS7 00007D4D 9.76.61.132..57080 0.0.0.0..0 Listen
20 Liberty in IBM CICS: Deploying and Managing Java EE Applications

1.4.4 CICS bundle deployed applications

If you want to deploy Liberty applications in a CICS bundle, the server.xml file must include
the entry that is shown in Example 1-9.

Example 1-9 Setting the include location for CICS bundles

<!-- CICS Bundle Installed Applications -->
<include location="${server.output.dir}/installedApps.xml"/>

The included installedApps.xml file is used to define the CICS bundle-deployed applications
when they are enabled in CICS.

1.4.5 Default web application

The CICS default web application CICSDefaultApp is a built-in web application that can be
used to validate that the Liberty JVM server started with the correct configuration. Although it
is not suited to a production system, it is useful for verifying the configuration.

If autoconfigure is used, add the statement that is shown in Example 1-10 to your JVM profile
file. A new feature (cicsts:defaultApp-1.0) is added to your server.xml file. If
autoconfiguration is not used, manually add the feature to server.xml.

Example 1-10 Enabling the default web application

-Dcom.ibm.cics.jvmserver.wlp.defaultapp=true
Chapter 1. Installation and configuration 21

You can run the application by using the following URL, which returns a web page that is
similar to the page that is shown in Figure 1-12:

http://<server>:<port>/com.ibm.cics.wlp.defaultapp/

Figure 1-12 Default web application output
22 Liberty in IBM CICS: Deploying and Managing Java EE Applications

1.4.6 Liberty transaction log files

The Java Transaction API (JTA) can be used in a Java EE application to coordinate
transactional updates to third-party XA resource managers, such as connections to DB2 that
use JDBC type 4 connectivity. In this scenario, the Liberty transaction manager is the
transaction coordinator and stores its recovery information in the JTA transaction logon zFS.

On restart, the Liberty transaction manager starts XA transaction recovery when the JVM
server initialization is complete. This process ensures that any transactions in the remote
resource managers are recovered together with any in-doubt units-of-work in CICS.

The integrity of the CICS system log and the Liberty transaction log is critical in enabling
CICS to perform successful recovery if the Liberty JVM server fails while recoverable updates
are still in-flight. The default location for the transaction logs is ${WLP_USER_DIR}/tranlog/.
This location can be overridden by modifying the <transaction> element in server.xml as
shown in the following example:

<transaction transactionLogDirectory=”${server.config.dir}/tranlog/” />

These logs files are used to recover JVM status at start (see Figure 1-13). To preserve
system consistency, they should not be deleted.

Figure 1-13 Liberty JTA transaction log directory
Chapter 1. Installation and configuration 23

1.4.7 Sample server.xml file

Example 1-11 shows what our server.xml file looked like when the configuration was
complete.

Example 1-11 Sample server.xml with the updates

<?xml version="1.0" encoding="UTF-8"?>
<server description="CICS Liberty profile sample configuration">
 <featureManager>
 <feature>cicsts:core-1.0</feature>
 <feature>ssl-1.0</feature>
 <feature>jsp-2.3</feature>
 <feature>jaxrs-2.0</feature>
 <feature>cicsts:defaultApp-1.0</feature>
 </featureManager>

<safRegistry enableFailover="false" id="saf"/>

<!-- HTTP End Point -->
<httpEndpoint id="defaultHttpEndpoint"
 accessLoggingRef="accessLogging"
 host="wtsc80"
 httpPort="57080"
 httpsPort="57443" />

<httpAccessLogging id="accessLogging"
 filepath="${server.output.dir}/logs/http_access.log"
 logFormat="%t %a %i %r %s %u %D %B" />

<httpOptions id="httpoptions"
 keepAliveEnabled="false"
 maxKeepAliveRequests="1" />

<!-- CICS Bundle Installed Applications -->
<include location="${server.output.dir}/installedApps.xml"/>

<config monitorInterval="5s"
 updateTrigger="polled" />

<!-- Monitoring of application updates -->
<applicationMonitor
 dropins="dropins"
 dropinsEnabled="true"
 pollingRate="5s"
 updateTrigger="disabled" />

<!-- Enable specific applications by includes -->
<include
 location="/var/cicsts/SC8CICS7/wlp/servers/itsowlp/jms.xml"
 optional="true" />

 <executor id="allowCICSconfigure" maxThreads="50"/>
</server>
24 Liberty in IBM CICS: Deploying and Managing Java EE Applications

1.4.8 Welcome page

A quick way to check your Liberty JVM server status is to use the home page that is created
by the Liberty server. This page is a simple welcome page, which is displayed by Liberty
when a browser attempts to access its HTTP or HTTPS port without a URL path. You can
access this page by at the URL <hostname>:<port>.

In our example, we used http://wtsc80.cpolab.ibm.com:57080/, which displayed the page
that is shown in Figure 1-14.

Figure 1-14 Liberty welcome page

If you want to disable this welcome page in a production environment, use the following
parameter:

<httpDispatcher enableWelcomePage="false" />

If you want to give a customized message to user in this situation, you can add another
parameter to <httpDispatcher> element, as shown in the following example:

<httpDispatcher enableWelcomePage="false"
 appOrContextRootMissingMessage="Page unavailable" />
Chapter 1. Installation and configuration 25

26 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Chapter 2. Deploying a web application

In this chapter, we describe the three options that are available to deploy a web application
into a CICS Liberty JVM server and the key differences between these options.

We used the CICSDev sample restapp, which is a simple RESTful web application that is
deployed by using an Eclipse dynamic web project as a WAR archive and is available at the
GitHub website. Similar considerations and procedures apply to any web application that you
want to build from source and deploy to a CICS Liberty server.

This chapter includes the following topics:

� 2.1, “Building the restapp sample ” on page 28
� 2.2, “Deploying a web application to Liberty ” on page 32
� 2.3, “Advanced deployment options” on page 53

2

© Copyright IBM Corp. 2018. All rights reserved. 27

https://github.com/cicsdev/cics-java-liberty-restapp
https://github.com/cicsdev/cics-java-liberty-restapp

2.1 Building the restapp sample

In this section, we describe how to download the application from GitHub, import it into a
CICS Explorer development environment, and build the .war file.

2.1.1 Obtaining the sample code

The source project for restapp is available at the cicsdev GitHub website (search for
“cics-java-liberty-restapp”). The results for matching repositories are shown in Figure 2-1.

Figure 2-1 GitHub cicsdev repositories view

The following related RESTful web applications are available:

� cics-java-liberty-restapp

The restapp sample is a sample Java web application that provides RESTful APIs that
uses JAX-RS. The following services are provided:

– cicsinfo: Includes no intrinsic CICS dependency, and might be on any Java EE server.
– reverse: Uses a CICS COBOL program to reverse an input string.

� cics-java-liberty-restapp-ext

The restapp-ext sample differs from the basic restapp because it consists of a suite of
examples that use the JCICS API to access various CICS resources, and a specially
annotated linkable Java class.
28 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://github.com/cicsdev
http://wtsc80.cpolab.ibm.com:57080/com.ibm.cicsdev.restapp/

Complete the following steps to download restapp:

1. Select the cics-java-liberty-restapp repository, click Clone or download → Download
ZIP (see Figure 2-2). The master branch of the repository is downloaded as
cics-java-liberty-restapp-master.zip into your download directory.

Figure 2-2 GitHub restapp repository download

2. Extract the downloaded repository .zip files to a suitable location on your workstation.
The /cics-java-liberty-restapp-master directory is created, which includes the artifacts
for the sample.

2.1.2 Creating the Eclipse projects

To build and deploy the sample application, you need an Eclipse development environment.
We used CICS Explorer version 5.4 with the CICS SDK for Java EE and Liberty plug-in, which
was installed by using into the IBM Explorer for z/OS Aqua V3.1. This installation is available
at the IBM Installation Manager website.

After your Eclipse development environment is installed, complete the following steps to
create a dynamic web project and a CICS bundle project:

1. In CICS Explorer, switch to the Java EE perspective by clicking Window →
Perspective → Open Perspective → Other → Java EE. Create a dynamic web project
that is named com.ibm.cicsdev.restapp by using clicking File → New → Dynamic Web
Project. Add the Project name com.ibm.cicsdev.restapp, as shown in Figure 2-3 on
page 30.
Chapter 2. Deploying a web application 29

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_dep_war.html
https://developer.ibm.com/mainframe/products/downloads/eclipse-tools/#im

Figure 2-3 Creating dynamic web project for restapp

2. Click Finish to complete (the defaults that are shown in the next windows of the process
are used). A project is created that is named com.ibm.cicsdev.restapp.

3. Add the Java source code to the src folder in the Eclipse project. In the Windows OS,
complete the following steps:

a. Open the cics-java-liberty-restapp-master folder. Select the src/com folder and
drag this folder into the src folder in the Eclipse project.

b. Click Copy files and folders when prompted in the File and Folder Operation window
(see Figure 2-4 on page 31). Click OK to finish.

Note: A web.xml deployment descriptor is not created now. Such a descriptor is not
essential, although one is needed to specify some advanced deployment options that
are used in Chapter 7, “Securing web applications ” on page 175.
30 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 2-4 File and Folder Operation window

Two new packages, com.ibm.cicsdev.restapp and com.ibm.cicsdev.restapp.bean, are
added to the /src folder, as shown in Figure 2-5. Build errors are flagged within the
com.ibm.cicsdev.restapp package because the build path is incomplete at this stage.

Figure 2-5 Eclipse project after import

4. Complete the following steps to add the Liberty JVM server libraries to the build path of
your project:

a. Right-click the Eclipse com.ibm.cicsdev.restapp project and select Build Path →
Configure Build Path in the Java Build Path window.

b. Select the Libraries tab and click Add Library.

c. Select library type CICS with Java EE and Liberty and click Next.

d. Select version CICS TS 5.4 and click Finish. Then, click OK to complete the process.

The project build path is updated and the build errors in the project are removed as it is
rebuilt.

5. Now we need to ensure that the web project is targeted to compile at a level that is
compatible with the Java level that is being used on CICS. The compiler target level must
be less than or equal to the CICS runtime Java level. We used the Java V8 SDK in CICS;
therefore, the web application Java target level must be 1.8 or earlier.

A compatible level can be selected or checked in the Java project facet. Right-click the
Eclipse com.ibm.cicsdev.restapp project and select Properties. Then, enter Project
Facets. Click Project Facets and the configured facets are displayed (see Figure 2-6 on
page 32). The Java Version should be equal or less than the Java level that is used in the
Liberty JVM server (1.7 or 1.8). Correct this information if needed.
Chapter 2. Deploying a web application 31

Figure 2-6 Project facets: Java version

2.2 Deploying a web application to Liberty

The following projects can be used to package Java EE web projects for deployment into
Liberty:

� Dynamic web projects, for deployment as a WAR file archive
� Enterprise application projects, for deployment as an EAR file archive
� OSGi application projects, for deployment as an EBA file archive

In our example, we use dynamic web projects with the .war file archive type.

The following options are available for a Liberty JVM server to provide for the deployment of
web applications (see Figure 2-7):

� By using the Liberty dropins directory
� As a Liberty application
� As a CICS bundle

Figure 2-7 CICS Liberty application deployment options
32 Liberty in IBM CICS: Deploying and Managing Java EE Applications

In the following sections, we describe how each of these deployment options can be used.

Common deployment tasks
Whichever one of the three deployment options is used, the following common tasks must be
performed before our restapp application can be deployed:

� A Liberty JVM server must be configured. For more information, see Chapter 1,
“Installation and configuration ” on page 1.

� The JAX-RS feature must be enabled in Liberty. If this feature is not enabled, the JAX-RS
annotations in the REST classes are not recognized and the REST URIs are not found,
which causes 404 error responses to be returned.

� Any dependent CICS resources that are used by the application must be available. For
restapp, the COBOL program EDUCHAN that is linked to by the reverse service should
also be download from the GitHub website and deployed to a library in the CICS region.

2.2.1 Deployment by using Liberty dropins

The simplest options to deploy a web application to Liberty in CICS is to copy the web
application archive (.war or .ear file) to the Liberty dropins directory. Liberty then
automatically installs and activates the application.

This option is available only if the dropins directory deployment option was enabled in the
server.xml for Liberty. The CICS auto-generated server.xml includes a default
applicationMonitor configuration element with this option disabled, as shown in
Example 2-1.

Example 2-1 applicationMonitor in server.xml

<applicationMonitor
dropins="dropins"

 dropinsEnabled="false"
 pollingRate="5s"
 updateTrigger="disabled" />

Complete the following steps to deploy the restapp sample by using the dropins method:

1. Enable the dropins capability by setting dropinsEnabled="true" and adding the dropins
directory to the applicationMonitor element in server.xml, as shown in Example 2-2.

Example 2-2 Enabling dropins in server.xml

<applicationMonitor
 dropins="/var/cicsts/SC8CICS7/ITSOJVM1/dropins"

 dropinsEnabled="true"
 pollingRate="5s"
 updateTrigger="disabled" />

Note: The dropins mechanism offers limited qualities of service. It does not set security
roles and it incurs more runtime CPU cost in directory scanning. For these reasons, the
dropins deployment option is best-suited to development systems.

Note: At this stage, the attribute updateTrigger="disabled" causes Liberty to not detect
application updates in the dropins folder; however, it does allow any new files to be
detected and installed.
Chapter 2. Deploying a web application 33

2. Complete the following steps to export the application as a .war file:

a. In CICS Explorer right-click the com.ibm.cicsdev.restapp project and select File →
Export → WAR file. In the WAR Export window, select Browse to choose a suitable
local directory for the exported .war file. Then, click Finish.

b. Transfer the .war file from the workstation to the dropins directory in zFS.

In our example, we used a binary FTP transfer from the export directory to our zFS
directory /var/cicsts/SC8CICS7/ITSOJVM1/dropins.

c. Validate that the CICS region user ID includes read access to the
com.ibm.cicsdev.restapp.war file in the dropins directory.

We modified the file owner to our CICS region user ID (CICSREGN) and the group
owner to our CICS admin group (ADMIN), and verified both had read/write permissions
by using ISPF option 3.4 (see Figure 2-8).

Figure 2-8 ISPF z/OS UNIX directory list of dropins

3. Check the Liberty messages.log for the application enablement messages. A few seconds
after copying the .war file to the dropins directory, messages that are similar to messages
that are shown in Example 2-3 should appear in the Liberty messages.log file.

Example 2-3 Liberty messages after enabling dropins

[10/27/17 6:58:07:239 EDT] 000067fa com.ibm.ws.webcontainer.osgi.webapp.WebGroup
I SRVE0169I: Loading Web Module: com.ibm.cicsdev.restapp.
[10/27/17 6:58:07:240 EDT] 000067fa com.ibm.ws.webcontainer
I SRVE0250I: Web Module com.ibm.cicsdev.restapp has been bound to default_host.
[10/27/17 6:58:07:240 EDT] 000067fa com.ibm.ws.http.internal.VirtualHostImpl
A CWWKT0016I: Web application available (default_host):
http://wtsc80.cpolab.ibm.com:57080/com.ibm.cicsdev.restapp/
[10/27/17 6:58:07:240 EDT] 000067fa com.ibm.ws.app.manager.AppMessageHelper
A CWWKZ0001I: Application com.ibm.cicsdev.restapp started in 0.040 seconds.

Now, you can test the restapp cicsinfo service by sending an HTTP GET request to the
application by using the following URI in a web browser:

http://wtsc80.cpolab.ibm.com:57080/com.ibm.cicsdev.restapp/rest/cicsinfo

This test should result in a JSON response that includes information about the CICS region,
as shown in Figure 2-9 on page 35.
34 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 2-9 Liberty: restapp cicsinfo service

Further scanning of the dropins directory can be performed to detect application updates or
the addition and removal of applications to the dropins directory. This feature is enabled by
setting updateTrigger to polled. The pollingRate attribute determines how often the dropins
directory is scanned for updates (see Example 2-4).

Example 2-4 Enabling updateTrigger for dropins

<applicationMonitor
 dropins="/var/cicsts/SC8CICS7/ITSOJVM1/dropins"
 dropinsEnabled="true"
 pollingRate="5s"
 updateTrigger="polled" />

Removing web applications from the dropins directory
A web application that was deployed by using the dropins mechanism can be removed by
deleting the application archive from the dropins directory. When the deletion is detected by
Liberty, the application is stopped and the messages that are shown in Example 2-5 are
written to the Liberty messages.log file.

Example 2-5 Application removal by using dropins

[10/27/17 7:21:18:669 EDT] 00006516 com.ibm.ws.http.internal.VirtualHostImpl
A CWWKT0017I: Web application removed (default_host):
http://wtsc80.cpolab.ibm.com:57080/com.ibm.cicsdev.restapp/
[10/27/17 7:21:18:682 EDT] 00006516 com.ibm.ws.app.manager.AppMessageHelper
A CWWKZ0009I: The application com.ibm.cicsdev.restapp has stopped successfully.
[10/27/17 7:21:18:822 EDT] 00006550
com.ibm.ws.webcontainer.osgi.mbeans.PluginGenerator I SRVE9103I: A
configuration file for a web server plugin was automatically generated for this
server at /var/cicsts/SC8CICS7/wlp/servers/itsowlp1/logs/state/plugin-cfg.xml.

Subsequent requests to the application fail, and an HTTP GET to the restapp returns the
Context Root Not Found error page to the browser (see Figure 2-10 on page 36) because the
web application context root com.ibm.cicsdev.restapp no longer is known.
Chapter 2. Deploying a web application 35

Figure 2-10 Context Root Not Found error message

Updating applications by using dropins directory
An application can be dynamically updated in the dropins directory by overwriting the version
of an application with a new version in the directory. To enable this function, the
updateTrigger on the applicationMonitor element must be set to polled.

When Liberty detects that an application archive is updated in the dropins directory, it stops
the old version and loads the new version of the application. Messages similar to the
messages that are shown in Example 2-6 are written to the messages.log file.

Example 2-6 Updating dropins

[10/27/17 7:45:30:009 EDT] 00006ea7 com.ibm.ws.http.internal.VirtualHostImpl
A CWWKT0017I: Web application removed (default_host):
http://wtsc80.cpolab.ibm.com:57080/com.ibm.cicsdev.restapp/
[10/27/17 7:45:30:023 EDT] 00006ea7 com.ibm.ws.app.manager.AppMessageHelper
A CWWKZ0009I: The application com.ibm.cicsdev.restapp has stopped successfully.
[10/27/17 7:45:30:044 EDT] 000065bf
com.ibm.ws.webcontainer.osgi.mbeans.PluginGenerator I SRVE9103I: A
configuration file for a web server plugin was automatically generated for this
server at /var/cicsts/SC8CICS7/wlp/servers/itsowlp1/logs/state/plugin-cfg.xml.
[10/27/17 7:45:30:045 EDT] 00006ea7 com.ibm.ws.app.manager.AppMessageHelper
I CWWKZ0018I: Starting application com.ibm.cicsdev.restapp.
[10/27/17 7:45:30:092 EDT] 00006ea7 com.ibm.ws.webcontainer.osgi.webapp.WebGroup
I SRVE0169I: Loading Web Module: com.ibm.cicsdev.restapp.
[10/27/17 7:45:30:092 EDT] 00006ea7 com.ibm.ws.webcontainer
I SRVE0250I: Web Module com.ibm.cicsdev.restapp has been bound to default_host.
[10/27/17 7:45:30:092 EDT] 00006ea7 com.ibm.ws.http.internal.VirtualHostImpl
A CWWKT0016I: Web application available (default_host):
http://wtsc80.cpolab.ibm.com:57080/com.ibm.cicsdev.restapp/
[10/27/17 7:45:30:092 EDT] 00006ea7 com.ibm.ws.app.manager.AppMessageHelper
A CWWKZ0003I: The application com.ibm.cicsdev.restapp updated in 0.047 seconds.
36 Liberty in IBM CICS: Deploying and Managing Java EE Applications

2.2.2 Deployment as an application element in server.xml

The second deployment option we describe uses an application element in the Liberty
server.xml file. This option is highly customizable and allows the context root, security roles,
and classloader definitions to be modified. For more information, see 2.3.1, “Shared libraries”
on page 53 and 2.3.2, “Global libraries” on page 54.

Liberty supports several different elements that can be used in server.xml to define
applications. You can use the <application> element, or you can use one of specific
elements <webApplication>, <osgiApplication>, or <ejbApplication> as appropriate to the
file archive type.

We used the <webApplication> element that is shown in Example 2-7 in our server.xml to
install restapp into our Liberty JVM server. The application bindings that are shown in the
<application-bnd> element use the same pattern as used in the installedApps.xml, which
uses the cicsAllAuthenticated role to grants access to all authenticated Liberty users.
However, these permissions can be further customized as described in Chapter 7, “Securing
web applications ” on page 175.

Example 2-7 Liberty server.xml - webApplication element

<webApplication id="com.ibm.cicsdev.restapp"
 location="/var/cicsts/SC8CICS7/ITSOJVM1/apps/com.ibm.cicsdev.restapp.war"
 name="com.ibm.cicsdev.restapp">
 <application-bnd>
 <security-role name="cicsAllAuthenticated">
 <special-subject type="ALL_AUTHENTICATED_USERS" />
 </security-role>
 </application-bnd>
</webApplication>

Using a server.xml include file
A variation of this deployment method is to define the application in a separate XML fragment
file, and then include this fragment in server.xml by using the <include> element in the
server.xml. In our configuration, we added the following include into our server.xml file:

<include location="${server.output.dir}/restapp.xml"/>

Although the referenced restapp.xml fragment needs to contain only the webApplication
element as shown in Example 2-7, it can also contain more resources, such as library
definitions or features.

For more information about how we used server.xml include files, see Chapter 5,
“Connecting to IBM MQ by using JMS” on page 113.

Configuration dropins directory
An alternative to using a specific include file is to use the Liberty server configuration
dropins directory. This directory is a specifically named directory structure, which is
automatically scanned by Liberty to dynamically add server.xml configuration fragments.
This technique can allow self-contained server.xml fragments to be deployed for an
application without needing to modify the configuration files.
Chapter 2. Deploying a web application 37

To enable this function, we created the configDropins directory in the
/var/cicsts/SC8CICS2/wlp/servers/itsowlp1/ directory. Then, we created the overrides
directory within this directory, as shown in Figure 2-11.

Figure 2-11 configDropins directory structure

We then created the restapp.xml fragment that includes a <server/> element and a
<webApplication/> element, as shown in Example 2-8.

Example 2-8 configDropins/overrides/restapp.xml fragment

<server>
 <webApplication id="com.ibm.cicsdev.restapp"
 location="/var/cicsts/SC8CICS7/ITSOJVM1/apps/com.ibm.cicsdev.restapp.war"
 name="com.ibm.cicsdev.restapp">
 <application-bnd>
 <security-role name="cicsAllAuthenticated">
 <special-subject type="ALL_AUTHENTICATED_USERS"/>
 </security-role>
 </application-bnd>
 </webApplication>
</server>
38 Liberty in IBM CICS: Deploying and Managing Java EE Applications

When the restapp.xml file was deployed to the configDropins directory, we noted that the
Liberty server scanned the configDropins/overrides directory and installed the new restapp
application, as shown in the messages.log file (see Example 2-9).

Example 2-9 Liberty messages with configDropins enabled

[11/14/17 10:02:55:983 EST] 00000068 com.ibm.ws.config.xml.internal.ConfigRefresher
A CWWKG0016I: Starting server configuration update.
[11/14/17 10:02:55:988 EST] 00000068 com.ibm.ws.config.xml.internal.XMLConfigParser
A CWWKG0028A: Processing included configuration resource:
/var/cicsts/SC8CICS2/wlp/servers/itsowlp1/installedApps.xml
[11/14/17 10:02:55:992 EST] 00000068 com.ibm.ws.config.xml.internal.ServerXMLConfiguration
A CWWKG0093A: Processing configuration drop-ins resource:
/var/cicsts/SC8CICS2/wlp/servers/itsowlp1/configDropins/overrides/restapp.xml
[11/14/17 10:02:56:019 EST] 00000068 com.ibm.ws.config.xml.internal.ConfigRefresher
A CWWKG0017I: The server configuration was successfully updated in 0.035 seconds.
[11/14/17 10:02:56:034 EST] 00000055 com.ibm.ws.app.manager.AppMessageHelper
I CWWKZ0018I: Starting application com.ibm.cicsdev.restapp.
[11/14/17 10:02:56:118 EST] 00000055 com.ibm.ws.webcontainer.osgi.webapp.WebGroup
I SRVE0169I: Loading Web Module: com.ibm.cicsdev.restapp.
[11/14/17 10:02:56:118 EST] 00000055 com.ibm.ws.webcontainer
I SRVE0250I: Web Module com.ibm.cicsdev.restapp has been bound to default_host.
[11/14/17 10:02:56:119 EST] 00000055 com.ibm.ws.http.internal.VirtualHostImpl
A CWWKT0016I: Web application available (default_host):
http://wtsc80.cpolab.ibm.com:52080/com.ibm.cicsdev.restapp/
[11/14/17 10:02:56:119 EST] 00000055 com.ibm.ws.app.manager.AppMessageHelper
A CWWKZ0001I: Application com.ibm.cicsdev.restapp started in 0.085 seconds.

Removing a Liberty application
A web application that is deployed by using the Liberty application definition mechanism is
removed by deleting the application element from server.xml or any included fragment. If the
include method was used, it is sufficient to delete the include reference in the server.xml.

Updating a Liberty application
An application can be dynamically updated in Liberty by overwriting the deployed archive file
with a new version. To enable this function, the updateTrigger attribute on the
<applicationMonitor> element must be set to polled as shown in the following example:

<applicationMonitor pollingRate="5s" updateTrigger="polled" />

The use of this technique causes the application to be stopped and then started when the
polling mechanism detects that the .war file was updated.

Deploying with a modified context root
In Liberty, only one application per context root can be deployed. A second version of an
application that shares the context root as another installed application fails to install.
However, an alternative way to deploy an application update is by deploying a new version of
the application to a new location on the file system with a different web context root. This
process installs the new version of the application alongside the previous version and allows
any updates to be tested by using a different URI for each version.

Note: Updating Liberty applications requires a stop and restart of the web application.
During this period, a Context Root Not Found response is returned because the HTTP
listener is still active, but the web context root is unavailable.
Chapter 2. Deploying a web application 39

To demonstrate this method, we installed a new version of restapp into our Liberty server by
using the context-root tag on the webApplication element, as shown in Example 2-10. The
second version of the restapp was deployed as the com.ibm.cicsdev.restapp2.war and
accessed by using the URL
http://wtsc80.cpolab.ibm.com:57080/com.ibm.cicsdev.restapp2/rest/cicsinfo

Example 2-10 Liberty server.xml: webApplication element

<webApplication id="com.ibm.cicsdev.restapp2"
 context-root="com.ibm.cicsdev.restapp2"
 location="/var/cicsts/SC8CICS7/ITSOJVM1/apps/com.ibm.cicsdev.
restapp2.war"
 name="com.ibm.cicsdev.restapp2">
 <application-bnd>
 <security-role name="cicsAllAuthenticated">
 <special-subject type="ALL_AUTHENTICATED_USERS" />
 </security-role>
 </application-bnd>
</webApplication>

Other methods can be used to control the web application’s context root (such as in the
ibm-web-ext.xml or application.xml deployment descriptors), depending on the type of web
application. For more information about these options, see the topic “Deploying a web
application to Liberty” at IBM Knowledge Center.

2.2.3 Deployment in a CICS bundle

The third deployment method you can use for application deployment to Liberty is a CICS
bundle project. A CICS bundle project is a specific type of Eclipse project that is supported by
the CICS Explorer SDK. It allows a collection of CICS resources (known as bundle parts) to
be defined within it.

The bundle parts can include one or more Liberty Web applications that are packaged as a
.war, .ear, or .eba file archive types. Bundle projects also support various other CICS
resources to be defined, such as transactions, programs, files, and URI map definitions.

CICS bundles are defined as BUNDLE resource definitions in the CSD, which then refer to a
zFS directory that includes all of the assembled bundle components.

In the following sections, we describe how to define a web application in a CICS bundle,
export the bundle directory structure, and install it into CICS. To show some of the
advantages of this deployment approach, we create a single CICS bundle to deploy the
restapp sample web application and an associated CICS transaction definition and URI map.

The starting point for CICS bundle deployment assumes that the sample web application
restapp was downloaded from GitHub and imported into the CICS Explorer development
environment, as described in 2.1, “Building the restapp sample ” on page 28. It is also
assumed that the WAR was removed from the dropins directory if this method was used as
described in 2.2.1, “Deployment by using Liberty dropins” on page 33.
40 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_dep_war.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_dep_war.html

Creating a CICS bundle project
Complete the following steps to create the CICS bundle project:

1. In CICS Explorer, switch to the Java EE perspective and click New → Other. The Select a
wizard window opens, as shown in Figure 2-12.

Figure 2-12 Select a wizard: CICS Bundle Project

2. Enter CICS Bundle Project and select CICS Bundle Project from the list. Click Next.

3. Enter a name for the new project. In our example, we used
com.ibm.cicsdev.restapp.cicsbundle, as shown in Figure 2-13.

Figure 2-13 New CICS bundle project

4. Click Finish to complete the process. The project is created and the bundle manifest
editor is displayed, as shown in Figure 2-14 on page 42.
Chapter 2. Deploying a web application 41

Figure 2-14 Bundle manifest editor for com.ibm.cicsdev.restapp.bundle

Adding the web applications to the CICS bundle
The next task is to add the web project to a CICS bundle project, which is required for
deployment of the application in a CICS bundle. Complete the following steps:

1. In the CICS bundle editor, the Bundle Overview window includes is a section for Defined
Resources. These CICS resources are included in the bundle.

2. Click New and select Dynamic Web Project Include. The Dynamic Web Project Include
window opens and displays the com.ibm.cicsdev.restapp project as a potential
candidate, as shown in Figure 2-15.

Figure 2-15 Dynamic Web Project Include window
42 Liberty in IBM CICS: Deploying and Managing Java EE Applications

3. Select the project com.ibm.cicsdev.restapp and enter the name of the JVM server to use
(see Figure 2-16). In our example, we used ITSOJVM1. Click Finish.

Figure 2-16 Bundle Overview that shows the defined WARBUNDLE part

Adding CICS resources to the CICS bundle
The restapp application requires minimal extra CICS resources for operation. We chose to
define a URI map and a specific request processor transaction rather than allow requests to
run under the default transaction ID CJSA. We can add these resource definitions to the CICS
bundle rather than define them in the CSD, which allows all the application component to be
defined in a single package for deployment.
Chapter 2. Deploying a web application 43

Complete the following steps:

1. In the Defined Resources section of the CICS Bundle Editor, click New. Select URIMAP
Definition. A Create URI Map Definition window opens. Add the following attributes as
shown in Figure 2-17 on page 44:

– Name: RESTAPP
– Host: *
– Path: /com.ibm.cicsdev.restapp/*
– Usage: JVM Server
– Port: NO

Figure 2-17 Create URI Map Definition window
44 Liberty in IBM CICS: Deploying and Managing Java EE Applications

2. Click Finish. The attribute editor is displayed and shows the resulting URIMAP.

Next, we must modify the transaction ID to which this URI map refers. Click Transaction
and enter JRES as the value, as shown in Figure 2-18.

Figure 2-18 Editing the URI map attributes

3. Close the attribute editor and click Yes to save the changes when prompted.

Next, we must create a TRANSACTION definition for the JRES transaction that we
referred to in our URI map definition.
Chapter 2. Deploying a web application 45

4. In the Defined Resources section of the CICS Bundle Editor, click New then, select
Transaction Definition. The Create Transaction Definition window opens. Add the
following attributes that are shown in Figure 2-19. You must enter the program name as
DFHSJTHP because it handles the security checking of inbound Java EE requests to the
Liberty server.

Figure 2-19 Create Transaction Definition window

Exporting the CICS bundle to zFS
We must build the bundle and export it to z/OS. We can build the bundle from CICS Explorer
or use the CICS build toolkit to automate this process as a batch job. Both methods
automatically build the Java web application in a .war file and include this file with the
transaction and URI map in the assembled CICS bundle directory on zFS.

In CICS Explorer, complete the following steps:

1. Ensure that a connection to z/OS is configured. CICS Explorer can use FTP, RSE, or z/OS
MF to export CICS bundles. Complete the following steps to create an FTP connection:

a. In the CICS SM perspective, open the Host Connections view. Click Add → z/OS FTP
to define a new connection (see Figure 2-20 on page 47).
46 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 2-20 Add z/OS FTP Connection

b. Enter the host name of the FTP server and add the default remote EBCDIC character
set. In our example, we supplied the value IBM-1047 for US EBCDIC.

c. Click Save and Connect. You are prompted to create a user ID and the connection
status icon should now be green.

2. Now a connection is available to which we can export the CICS bundle project to zFS.
Complete the following steps:

a. Using the Project Explorer in the Java EE perspective, right-click the CICS bundle
project com.ibm.cicsdev.restapp.bundle and select Export Bundle Project to z/OS
UNIX File System.

b. Select Export to a specific location in the file system. Click Next.

c. The Export to z/OS UNIX File System window opens. For Parent Directory, enter the
target zFS directory you chose to contain your exported CICS bundles (see
Figure 2-21 on page 48 and Figure 2-22 on page 48).

d. Click Finish to complete the export.

For our example, we used the parent directory
/var/cicsts/SC8CICS7/ITSOJVM1/bundles/ and CICS Explorer then, we created the
sub-directory com.ibm.cicsdev.restapp.cicsbundle_1.0.0 within this directory that
contains the following components (see Figure 2-21 on page 48):

• com.ibm.cicsdev.restapp.war: WAR archive
• com.ibm.cicsdev.restapp.warbundle: XML WAR bundle part descriptor
• JRES.transaction: XML transaction bundle part descriptor

Tip: Instead of setting the default EBCDIC encoding for each connection in CICS
Explorer, this encoding can be set on z/OS by using the SBDATACONN parameter in
the SYS1.TCPPARMS(FTPDATA) member, as shown in the following example:

SBDATACONN (IBM-1047,ISO8859-1)
Chapter 2. Deploying a web application 47

• RESTAPP.urimap: XML URI map bundle part descriptor
• META-INF/cics.xml: XML CICS bundle manifest

Figure 2-21 Restapp bundle directory structure

Figure 2-22 Export to z/OS UNIX File System

Tip: When bundles are exported to zFS, you can copy the fully qualified target bundle
directory name to the clipboard before completing the export porcess. This copying is
useful when the CICS BUNDLE resource is defined in the next step.
48 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Installing the CICS bundle
Complete the following steps to install the CICS bundle:

1. A CICS BUNDLE resource definition must be defined and installed to install the exported
CICS bundle project into our target CICS region. You can use various tools to perform this
task, including CEDA, CICS Explorer, DFHCSDUP, or DFHDPLOY. We used CEDA, as
shown in Figure 2-23 to add the BUNDLE definition to our CSD.

Figure 2-23 CEDA - DEFINE BUNDLE

The CICS BUNDLE features an attribute that is named BUNDLEDIR, which is the fully
qualified path to the bundle directory in zFS where the bundle was exported and should be
set to the bundle root directory, as shown in the following example:

/var/cicsts/SC8CICS7/ITSOJVM1/bundles/com.ibm.cicsdev.restapp.cicsbundle_1.0.0

2. The BUNDLE definition must be installed and added to a CSD group list to ensure it is
also installed on a CICS cold start. We installed the BUNDLE resource and checked the
Liberty messages.log file for the messages SRVE0250I and CWWKT0016I, which indicate
that com.ibm.cicsdev.restapp is now available, as shown in Example 2-11.

Example 2-11 Liberty messages.log - installing CICS bundle

[10/31/17 10:51:37:448 EDT] 0002a80c com.ibm.ws.webcontainer
I SRVE0250I: Web Module com.ibm.cicsdev.restapp has been bound to default_host.
[10/31/17 10:51:37:448 EDT] 0002a80c com.ibm.ws.http.internal.VirtualHostImpl
A CWWKT0016I: Web application available (default_host):
http://wtsc80.cpolab.ibm.com:57080/com.ibm.cicsdev.restapp/
Chapter 2. Deploying a web application 49

3. In CICS Explorer, we can now validate that the URI map and transaction resources were
installed. Switch to the CICS SM perspective in CICS Explorer and select Operations →
Bundles. The RESTAPP bundle is shown. It should be in the ENABLED status with the
Enabled Count, Part Count, and Target Count set to 3 because three bundle parts are
used (see Figure 2-24).

Figure 2-24 RESTAPP bundle

To validate the bundle parts, right-click the RESTAPP bundle and select Show Bundle
Parts. The components that are in the bundle are shown (see Figure 2-25). In our
example, the WAR bundlepart, JRES transaction, and RESTAPP URI map are all marked
as ENABLED.

Figure 2-25 Show bundle parts

4. We can now test the restapp again by sending a simple HTTP request to the application
by using the following URI:

http://wtsc80.cpolab.ibm.com:57080/com.ibm.cicsdev.restapp/rest/cicsinfo

This test returns a JSON response that includes information about the CICS region, as
shown in Figure 2-26 on page 51.
50 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 2-26 Liberty - restapp - cicsinfo service

Removing a CICS bundle
To uninstall a web application that is installed by using a CICS bundle, the CICS bundle must
be disabled. This process disables all of the resources that are defined by the bundle,
including web application bundle parts, which stop the applications within Liberty.

Disabling a web application causes CICS to remove the .war file from the /installedApps
directory and to remove the application entry from the installedApps.xml file. This process in
turn causes Liberty to remove the web application because the installedApps.xml is
included as part of the server.xml configuration.

Updating a CICS bundle
To update a web application that was deployed as a CICS bundle, update the application in
the development environment. Then, reexport the CICS bundle project to zFS by following the
deployment instructions that are described in 2.2.1, “Deployment by using Liberty dropins” on
page 33.

Then, disable and re-enable the BUNDLE resource by using the CICS SPI. This task can be
completed by using one of the following methods:

� CEMT SET BUNDLE() DISABLED and ENABLED commands
� CICS Explorer Bundle Operations view
� Batch job by using DFHDPLOY SET BUNDLE STATE(DISABLED) and (ENABLED) commands
� CICS SPI program by using EXEC CICS SET BUNDLE() DISABLED and ENABLED

Note: The installation mechanism that CICS uses for web applications in a CICS bundle
involves copying the web application archive into the /installedApps directory and then
adding an application element for each Liberty application to the installedApps.xml,
which is included as part of the server.xml. The addition of new application elements in
the installedApps.xml causes Liberty to install the web applications by using its standard
application installation process.
Chapter 2. Deploying a web application 51

These commands cause the web application to be removed from the installedApps.xml file
when the bundle is disabled, and then, added again when the bundle is enabled. Liberty
messages that indicate that this process occurred are written to the Liberty messages.log, as
shown in Example 2-12.

Example 2-12 Liberty messages.log - updating a CICS bundle

[11/2/17 11:46:23:345 EDT] 00003282 com.ibm.ws.config.xml.internal.ConfigRefresher
A CWWKG0016I: Starting server configuration update.
[11/2/17 11:46:23:348 EDT] 00003282 com.ibm.ws.config.xml.internal.XMLConfigParser
A CWWKG0028A: Processing included configuration resource:
/var/cicsts/SC8CICS7/wlp/servers/itsowlp1/installedApps.xml
[11/2/17 11:46:23:374 EDT] 00003282 com.ibm.ws.config.xml.internal.ConfigRefresher
A CWWKG0017I: The server configuration was successfully updated in 0.029 seconds.
[11/2/17 11:46:23:390 EDT] 000027b3 com.ibm.ws.app.manager.AppMessageHelper
I CWWKZ0018I: Starting application com.ibm.cicsdev.restapp.
[11/2/17 11:46:23:440 EDT] 000027b3 com.ibm.ws.webcontainer.osgi.webapp.WebGroup
I SRVE0169I: Loading Web Module: com.ibm.cicsdev.restapp.
[11/2/17 11:46:23:440 EDT] 000027b3 com.ibm.ws.webcontainer
I SRVE0250I: Web Module com.ibm.cicsdev.restapp has been bound to default_host.
[11/2/17 11:46:23:440 EDT] 000027b3 com.ibm.ws.http.internal.VirtualHostImpl
A CWWKT0016I: Web application available (default_host):
http://wtsc80.cpolab.ibm.com:57080/com.ibm.cicsdev.restapp/

2.2.4 Comparison of the deployment options

The three deployment options we described can all achieve the basic effect of deploying and
activating a web application in a Liberty JVM server. However, each option features different
characteristics in other respects.

Liberty dropins directory
This option includes the following features:

� Requires minimal setup
� Not integrated with CICS security because of a lack of security role support
� Requires dropins scanning mechanism to be enabled
� Does not support customization of the application element
� Best-suited to development systems
� Deployment artifact is a single Java archive

Liberty application element in server.xml
This option includes the following features:

� Highly customizable
� Supports custom class loaders, security roles, and context root modification
� Deployment artifact is a single Java archive

Warning: If the CICS bundle contains any other bundle parts aside from a Liberty web
application, these bundle parts are updated only if the CICS bundle is discarded and
reinstalled.
52 Liberty in IBM CICS: Deploying and Managing Java EE Applications

CICS bundles
This option includes the following features:

� Integrated with CICS Explorer, CICS build toolkit, and DFHDPLOY tooling
� Supports packaging of multiple applications and CICS resources in the same bundle
� CICS SET BUNDLE SPI and CICS Explorer can be used to manage lifecycle
� Does not support customization of web application elements
� Deployment artifact is a directory structure

2.3 Advanced deployment options

In this section, we describe some of the other options that are available to customize the
deployment process for web applications in a Liberty JVM server.

2.3.1 Shared libraries

Shared libraries are files that are used by multiple applications. You can use shared libraries
and global libraries to reduce the number of duplicate library files on your system.

Shared libraries are named by using a <library> element and then specified on an individual
application by modifying the application class loader. This configuration enables libraries to
be shared between multiple applications, or other libraries to be added to the application.

As shown in Example 2-13, the userlib.jar library was added to our restapp by using the
<classloader> child element on the <webApplication>.

Example 2-13 Adding library to class loader

<webApplication id="com.ibm.cicsdev.restapp"
 location="/var/cicsts/SC8CICS7/ITSOJVM1/apps/com.ibm.cicsdev.restapp.war"
 name="com.ibm.cicsdev.restapp">
 <classloader commonLibraryRef="privatelib" />
</webApplication>
<library id="privatelib">
 <fileset dir="/var/cicsts/SC8CICS7/ITSOJVM1/apps"
 includes="userlib.jar" />
</library>

Note: OSGi applications do not use shared libraries. Instead, they should use a shared
bundle repository for sharing common libraries between applications.
Chapter 2. Deploying a web application 53

2.3.2 Global libraries

When CICS bundle-defined applications are used, the application elements that are
automatically created by CICS cannot be modified. However, you can use a global library to
make a library available to all deployed applications, including web applications that are
defined in CICS bundles.

As shown in Example 2-14, the library is defined by using id=global, which indicates that it is
a global library that can be used by any web application that is deployed into the Liberty
server.

Example 2-14 Liberty server.xml - global library

<library id="global">
 <fileset dir="/var/cicsts/SC8CICS7/ITSOJVM1/apps"
 includes="library.jar" />
</library>

For more information about how we used a global library in a web application to make the
DB2 libraries available to our SQLJ application, see Chapter 4, “Connecting to Db2 by using
JDBC” on page 91.

2.3.3 Deploying a prebuilt Java archive in a CICS bundle

If you want to deploy a web application in a CICS bundle by using a Java archive that is built
or is being ported from another application server, add the archive directly into a CICS bundle
project. Complete the following steps:

1. In CICS Explorer, switch to the Java EE perspective and click File → New → Other. The
Select a wizard window opens.

2. Enter CICS Bundle Project in the search field and select CICS Bundle Project from the
resulting list, as shown in Figure 2-27 on page 55. Click Next.

Note: A class in a global library takes precedence over the same class that is deployed
within an application. Therefore, it must be used with caution for any application that might
require modification.
54 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 2-27 Creating a CICS Bundle Project

3. Enter a name for the new project. In our example, we used
com.ibm.cicsdev.restapp2.cicsbundle, as shown in Figure 2-28.

Figure 2-28 Creating a CICS Bundle Project

4. Browse to the folder on your workstation where the Java archive is stored and drag the
Java archive into the root of the newly created CICS bundle project in Eclipse.
Chapter 2. Deploying a web application 55

5. You are prompted to select how files should be imported into the project. Select Copy
files and click OK to proceed.

The CICS bundle project should now show the .war file in the root of the project, as shown
in Figure 2-29.

Figure 2-29 CICS bundle project with .war file

6. The .war file can now be added directly to the CICS bundle under Defined Resources by
clicking New → Dynamic Web project include. The current project
(com.ibm.cicsdev.restapp2) is listed because it now contains a web artifact, as shown in
Figure 2-30.

Figure 2-30 CICS bundle project with WAR artifact

7. Select the com.ibm.cicsdev.restapp2 project and add the name of the JVM server, which
in our environment is ITSOJVM1.
56 Liberty in IBM CICS: Deploying and Managing Java EE Applications

8. The CICS bundle project now displays the .war file and the .warbundle part file as the two
components in the project, as shown in Figure 2-31.

Figure 2-31 CICS bundle project completed

The CICS bundle project is now ready to be exported to zFS by using the same method as
described in 2.2.2, “Deployment as an application element in server.xml ” on page 37. We
exported this project to the following zFS directory location:

/var/cicsts/SC8CICS7/ITSOJVM1/bundles/com.ibm.cicsdev.restapp2_1.0.0/

9. A CICS BUNDLE resource definition is also needed. We created another CICS BUNDLE
that is named RESTAPP2 with the BUNDLEDIR attribute pointing to this bundle directory
and installed this BUNDLE into our CICS region.

The Liberty messages.log now shows that this application was installed by using the URL
http://wtsc80:57080/com.ibm.cicsdev.restapp2, as shown in Example 2-15.

Example 2-15 Installing restapp2

11/2/17 11:31:17:120 EDT¨ 000025b5 com.ibm.ws.config.xml.internal.ConfigRefresher
 A CWWKG0016I: Starting server configuration update.
11/2/17 11:31:17:131 EDT¨ 000025b5 com.ibm.ws.config.xml.internal.XMLConfigParser
 A CWWKG0028A: Processing included configuration resource:
/var/cicsts/SC8CICS7/wlp/servers/itsowlp1/restapp.xml
11/2/17 11:31:17:160 EDT¨ 000025b5 com.ibm.ws.config.xml.internal.ConfigRefresher
 A CWWKG0017I: The server configuration was successfully updated in 0.041
seconds.
11/2/17 11:31:17:175 EDT¨ 000027b3 com.ibm.ws.app.manager.AppMessageHelper
 I CWWKZ0018I: Starting application com.ibm.cicsdev.restapp2.
11/2/17 11:31:17:263 EDT¨ 000027b3 com.ibm.ws.webcontainer.osgi.webapp.WebGroup
 I SRVE0169I: Loading Web Module: com.ibm.cicsdev.restapp2.
11/2/17 11:31:17:263 EDT¨ 000027b3 com.ibm.ws.webcontainer
 I SRVE0250I: Web Module com.ibm.cicsdev.restapp2 has been bound to
default_host.
11/2/17 11:31:17:264 EDT¨ 000027b3 com.ibm.ws.http.internal.VirtualHostImpl
 A CWWKT0016I: Web application available (default_host):
http://wtsc80.cpolab.ibm.com:57080/com.ibm.cicsdev.restapp2/
11/2/17 11:31:17:264 EDT¨ 000027b3 com.ibm.ws.app.manager.AppMessageHelper
 A CWWKZ0001I: Application com.ibm.cicsdev.restapp2 started in 0.089 seconds.
Chapter 2. Deploying a web application 57

2.3.4 Pausing and resuming a server

When a web application is deployed or updated into a Liberty JVM server, a period can occur
when not all of the dependent resources are available, which results in application level
errors. During the update process, a web application also must be removed to allow the new
version to be installed. During this period, the Liberty server returns an HTTP 404 response
code and a Context Root Not Found error page for any requests to the web application.

In this situation, pausing and resuming the Liberty server HTTP endpoint can allow updates
to proceed while the application is taken offline, which prevents application-level errors from
occurring during the update. When combined as part of a highly available port sharing cluster,
this pausing and resuming the Liberty server can be used to provide a continuously available
application environment. For more information, see Chapter 9, “Port sharing and cloning
regions” on page 253.

The Liberty server pause function is started by using the Liberty server script, which can be
driven from the UNIX System Services command line or BPXBATCH shell by using the
CICS-supplied wlpenv script, which is in the JVM server working directory, as shown in
Example 2-16.

Example 2-16 Server pause

> cd /var/cicsts/SC8CICS7/ITSOJVM1/
> ./wlpenv server pause itsowlp1

Executing: /usr/lpp/cicsts/cicsts54/wlp/bin/server pause itsowlp1
JAVA_HOME=/usr/lpp/java/J8.0_64_SR4
WLP_INSTALL_DIR=/usr/lpp/cicsts/cicsts54/wlp
WLP_USER_DIR=/var/cicsts/SC8CICS7/wlp
WLP_OUTPUT_DIR=/var/cicsts/SC8CICS7/wlp/servers
SERVER_NAME=itsowlp1

Pausing the itsowlp1 server.
Pausing the itsowlp1 server completed.
58 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Running the server pause command for our Liberty server itsowlp1 produced the messages
that are shown in Example 2-17. These messages indicate that the defaultHttpEndpoint
was stopped and the restapp and restapp2 applications were removed.

Example 2-17 Liberty messages.log: Server pause

[11/14/17 7:08:04:292 EST] 00000027
m.ws.kernel.launch.internal.PauseableComponentControllerImpl I CWWKE0924I: A request was
received to pause the following components in the server: defaultHttpEndpoint
[11/14/17 7:08:04:293 EST] 00000027 com.ibm.ws.tcpchannel.internal.TCPChannel
I CWWKO0220I: TCP Channel defaultHttpEndpoint has stopped listening for requests on host
wtsc80.cpolab.ibm.com (IPv4: 9.76.61.131) port 57080.
[11/14/17 7:08:04:293 EST] 00000027 com.ibm.ws.http.internal.VirtualHostImpl
A CWWKT0028I: Web application moved (default_host):
https://wtsc80.cpolab.ibm.com:57443/restapp2/
[11/14/17 7:08:04:293 EST] 00000027 com.ibm.ws.http.internal.VirtualHostImpl
A CWWKT0028I: Web application moved (default_host):
https://wtsc80.cpolab.ibm.com:57443/com.ibm.cicsdev.restapp/
[11/14/17 7:08:04:295 EST] 00000027 com.ibm.ws.tcpchannel.internal.TCPChannel
I CWWKO0220I: TCP Channel defaultHttpEndpoint-ssl has stopped listening for requests on
host wtsc80.cpolab.ibm.com (IPv4: 9.76.61.131) port 52443.
[11/14/17 7:08:04:295 EST] 00000027 com.ibm.ws.http.internal.VirtualHostImpl
A CWWKT0017I: Web application removed (default_host):
https://wtsc80.cpolab.ibm.com:57443/restapp2/
[11/14/17 7:08:04:295 EST] 00000027 com.ibm.ws.http.internal.VirtualHostImpl
A CWWKT0017I: Web application removed (default_host):
https://wtsc80.cpolab.ibm.com:57443/com.ibm.cicsdev.restapp/
[11/14/17 7:08:04:295 EST] 00000027
m.ws.kernel.launch.internal.PauseableComponentControllerImpl
I CWWKE0938I: A pause request completed.

After an application is updated, the Liberty server or a specific endpoint can then be resumed
by using the following command:

> ./wlpenv server resume itsowlp1

Note: In addition to pausing a server, an HTTP endpoint can be started in the paused state
by setting the attribute enabled="false" on the httpEndpoint element. This configuration
allows applications to then be made available after server startup by using the server
resume command.
Chapter 2. Deploying a web application 59

60 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Chapter 3. Link to Liberty

In this chapter, we describe how a CICS program can link to a Java EE application in Liberty
in CICS and pass data to and from it by using a channel. This process is shown by using a
simple example that is available from the GitHub website.

This chapter includes the following topics:

� 3.1, “Overview” on page 62
� 3.2, “Link to Liberty sample application” on page 65
� 3.3, “Qualities of service” on page 82

3

© Copyright IBM Corp. 2018. All rights reserved. 61

https://github.com/cicsdev/cics-java-liberty-restapp-ext

3.1 Overview

Link to Liberty is a new CICS Liberty feature that is available in CICS TS v5.3 and later. This
feature enables Java methods in Liberty in CICS to be started by using an EXEC CICS LINK,
which passes data in CICS containers by using a channel. The Java methods must be in a
Plain Old Java Object (POJO), which is packaged as part of a web application.

This feature extends the ability to link to Java programs in a Liberty JVM server, alongside the
capability to link to programs in an OSGi JVM server. How Link to Liberty fits into the
architecture of the Liberty JVM server in CICS TS is shown in Figure 3-1.

Figure 3-1 Link to Liberty feature architecture

As shown in Figure 3-1, Link to Liberty also provides an indirect means for an external caller
to transmit requests to a Java method in a Liberty JVM server.

For more information about Link to Liberty reference documentation, see IBM Knowledge
Center.

After a suitable Java method is enabled for Link to Liberty and the web application is started,
Link to Liberty can be used as the target of an EXEC CICS LINK command as with any other
CICS program. It can be started by using a link from non-Java languages because of the
initial program of a transaction or by using the START and START CHANNEL CICS API
commands.

You might want to link to a Java EE application from a CICS program for the following
reasons:

� Some reusable Java code is available as part of a web application and you want to link to
it from a CICS application as well. By using Link to Liberty as an entry point, you must
maintain only a single piece of logic. Your Java code can also access CICS resources by
using JCICS APIs.

� You use Liberty in CICS and you want to simplify your infrastructure by moving other Java
applications into Liberty so that you can consolidate the footprint of CICS JVMs. This
consolidation reduces the number and variety of JVMs in your environment.

� You use CICS Java business logic, which currently runs in a CICS OSGi JVM server and
you want to port it to run within Liberty in CICS. By using this configuration, you can use it
within a web application, while still calling it from a CICS program.
62 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.4.0/applications/developing/java/link_2_liberty.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.4.0/applications/developing/java/link_2_liberty.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.4.0/applications/developing/java/link_2_liberty.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.4.0/applications/developing/java/link_2_liberty.html

These scenarios require some programming to create new Link to Liberty methods or to
rework code to be suitable for Link to Liberty. The calling code also might need to be modified.

A Link to Liberty program also can be used, as shown in the following examples:

� As the target of a remote ECI call
� To call from Java to Java within the same CICS region
� As a target for dynamic program routing

3.1.1 Prerequisites

To use Link to Liberty, the following minimum prerequisites must be met:

� CICS TS V5.4 or CICS TS V5.3 with APAR PI63005 applied
� A configured Liberty JVM server that is running in integrated mode
� CICS Explorer or CICS build toolkit V5.3.0.8, or later

We used CICS TS V5.4 on z/OS 2.3 that is running Java 1.8 SR4, and IBM CICS Explorer
Version 5.4.2.

3.1.2 How it works

In this section, we describe how to develop, deploy, and run Link to Liberty applications and
what occurs at each stage in the process.

Developing Link to Liberty applications
Your Java code must be a Plain Old Java Object (POJO), which is packaged in WAR or an
EAR. It makes sense to call Java code that implements business logic rather than web layers,
such as servlets or JAX-RS resource classes. If you want to call an EJB, you must create a
POJO wrapper that CICS can call.

For more information about restrictions on the Java methods that are eligible as targets for
Link to Liberty, see IBM Knowledge Center.

Because of these restrictions, CICS cannot pass any arguments to any method (including
Constructors), which is the target of a Link to Liberty call. Also, the method might not include
a return value; therefore, it is declared as void.

In practice, it is unlikely that you can use the methods in Java code as Link to Liberty targets
by adding CICSProgram annotations. However, you can easily create Link to Liberty entry
point methods, which then start methods and pass appropriate arguments.

Link to Liberty methods can be in new or existing Java classes, if the eligibility criteria are
satisfied. However, it likely makes more sense to create Java classes specifically to contain
the Link to Liberty entry points so that the CICS-specific code (which deals with input and
output containers, data marshalling, and so on) is all encapsulated and kept separate from
Java web application logic.

Note: To use Link to Liberty, you likely must create methods for the Link to Liberty
endpoints, and encapsulate the methods within a Link to Liberty-specific class.
Chapter 3. Link to Liberty 63

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.4.0/applications/developing/java/link_app_annotate.html

@CICSProgram annotation
After you decide on the method you want to call by using Link to Liberty, add an
@CICSProgram annotation to the method, as shown in Example 3-1.

Example 3-1 An @CICSProgram annotation example

@CICSProgram("GETSUPPI")
public void getSupplierInfo() throws CicsConditionException { }

If you use the CICS Explorer, validation occurs automatically to ensure that your annotation is
correctly positioned and that the method that it annotates is eligible for Link to Liberty.

The annotation must be on a suitable method. The method must conform to the rules for
eligible Link to Liberty methods. The annotation also must include a value attribute of a
PROGRAM name. This name must be a Java String and can be a constant, such as a static
final variable.

The process of annotating and building Link to Liberty methods is shown in Figure 3-2.

Figure 3-2 Annotation and build process for Link to Liberty

The Java class that contains the annotated Link to Liberty methods is included in a web
application with annotation processing enabled. When exported as a WAR, the methods
feature associated artifacts that identify them to CICS as Link to Liberty methods. Therefore,
they are made available as linkable programs when they are installed into the Liberty JVM
server.

Invoke
When deployed into Liberty, the Link to Liberty method can be started as a linkable CICS
program (as with any other CICS program) and passes a channel to be used for input and
output containers. Link to Liberty calls the method with the corresponding @CICSProgram
annotation and passes the channel in the environment, as shown in Figure 3-3 on page 65.
64 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 3-3 Link to Liberty runtime processing.

The caller populates input containers in a channel and then links to the generated PROGRAM
definition that is passing the channel. The target Java method receives control and can
access the data in the container and create response containers in the channel, if required. At
the end of the method, control returns to the calling program, as it does for a normal CICS
LINK.

3.2 Link to Liberty sample application

In this section, we describe the process of developing a simple Link to Liberty application.
This process includes annotating the code, building the web application, deploying to Liberty
in CICS, and calling it by using a link from a COBOL terminal program.

As a starting point to demonstrate this process, we use the LinkToLiberty.java example that
is included as part of the restapp-ext sample from the GitHub cicsdev organization.

3.2.1 Building the sample application

The procedure to download and build the restapp-ext sample is similar to that process that is
used for the restapp sample documented in Chapter 2, “Deploying a web application” on
page 27. A few minor differences exist between the processes (those differences are
highlighted in this section).

Complete the following steps:

1. Download the restapp-ext sample from the GitHub website:

a. Click Clone or download → Download ZIP.

b. When the repository download completes, decompress the file to a suitable directory
on your workstation.

2. Import the Java source:

a. By using the CICS Explorer development environment and the Java EE perspective,
create a dynamic web project that is named com.ibm.cicsdev.restappext and add the
Java samples to the src folder.

Tip: The Java source files can be dragged directly from the repository subdirectory
/src/Java instead of using the import process in this step.
Chapter 3. Link to Liberty 65

https://github.com/cicsdev/cics-java-liberty-restapp-ext

b. The Java samples are in the repository subdirectory /src/Java. Add these samples to
the src folder.

c. Expand the dynamic web project com.ibm.cicsdev.restappext.

d. Expand Java Resources, right-click src, and then, select Import.

e. In the Import window, expand General and select File System. Then, click Next.

f. In the File System Import window, click Browse to choose a From directory for the
import and browse to select the src/Java subdirectory of the decompressed repository
cics-java-liberty-restapp-ext-master directory, as shown in Figure 3-4.

Figure 3-4 Selecting the src/Java directory from which to import

g. Click OK to return to the File System Import window.

h. Expand the src/Java folder and select the com directory, as shown in Figure 3-5.

Figure 3-5 Importing the com subdirectory into /src
66 Liberty in IBM CICS: Deploying and Managing Java EE Applications

i. Click Finish to complete the import process. Although the Java source files are
imported into the project /src folder, build errors occur, which are corrected next.
Other methods are available to complete the same import; however, it is important that
the com directory and its content are imported into /src.

3. Add the CICS Liberty JVM server libraries to the build path:

a. Right-click the dynamic web project and select Build Path → Configure Build Path.

b. Select the Libraries tab of the Java Build Path and click Add Library.

c. Select library type CICS with Java EE and Liberty, as shown in Figure 3-6.

Figure 3-6 Select CICS with Java EE and Liberty library type

d. Click Next.

e. Select Version CICS TS 5.4 to deploy your project to, and click Finish. In the Java
Build Path window, a new entry for CICS with Java EE and Liberty Library is shown
(see Figure 3-7).

Figure 3-7 Adding CICS with Java EE and Liberty Library to the project build path

Note: The restapp-ext sample includes several sample Java programs, which show the
use of the JCICS API in Java. Because only the LinkToLiberty.java source file is needed
in package com.ibm.cicsdev.restappext, all of the other Java content can be deleted from
the project. However, the other sample files in the project can be retained.
Chapter 3. Link to Liberty 67

f. Click OK. The project is rebuilt and the number of errors is reduced, although some
errors remain. The process that is used to correct this issue is described next.

4. Import the IBM Record Generator for Java generated jar file.

Many of the Java samples in restapp-ext, including LinkToLiberty.java, use JCICS to
transmit structured data between Java and native CICS resources, such as programs,
files, or temporary storage queues.

The restapp-ext sample includes a pre-built Java archive file that contains IBM Record
Generator for Java-generated helper classes to marshal data for the data structures that
are used in the sample. This Java archive file must be imported into the web application
project so that these classes are available.

Complete the following steps to copy the com.ibm.cicsdev.restappext.generated.jar file
to the folder /WebContent/WEB-INF/lib relative to the root of your dynamic web project:

a. Expand the dynamic web project and click WebContent → WEB-INF.

b. Right-click /lib and select Import.

c. Click General → File System. Click Next.

d. Click the Browse button, and browse to the decompressed restapp-ext directory.
Select the /lib subdirectory, as shown in Figure 3-8.

Figure 3-8 Browsing to the repository directory and selecting /lib

Tip: The com.ibm.cicsdev.restappext.generated.jar file can be dragged directly from
the repository subdirectory /lib into /WebContent/WEB-INF/lib, instead of using the
wizard import process in this step.
68 Liberty in IBM CICS: Deploying and Managing Java EE Applications

e. Click OK. In the File System Import window, select
com.ibm.cicsdev.restappext.generated.jar, as shown in Figure 3-9.

Figure 3-9 Selecting the generated Java archive and import into /WEB-INF/lib

f. Click Finish to complete the import.

The com.ibm.cicsdev.restappext.generated.jar file is added automatically to the
project build path as a Web App Library. The remaining build errors in the project
should be resolved.

5. Enable annotations for the project.

Eligible Java methods are enabled for Link to Liberty by using the CICSProgram
annotation on the method. This method specifies the name of the CICS program to be
created when the method is installed. For this process to work, annotation processing
must be enabled for the dynamic web project. A Java compiler warning against
LinkToLiberty.java might be generated, which results from a warning on the
@CICSProgram annotation on the getSupplierInfo() method, as shown in Figure 3-10.

Figure 3-10 Warning flag in CICS Explorer because annotations are not enabled
Chapter 3. Link to Liberty 69

Complete the following steps:

a. Right-click the project and select Properties.

b. Locate and expand the Java Compiler category and select Annotation Processing. If
necessary, select the Enable project specific settings option.

c. Select both of the Enable annotation options, as shown in Figure 3-11.

Figure 3-11 Enable annotation processing in the dynamic web project properties

d. Click OK to complete the update. The warning on the @CICSProgram annotation
should be resolved, as shown in Figure 3-12.

Figure 3-12 Annotation Processing Settings Changed window

e. Click Yes to rebuild the project after enabling the annotations.

An alternative method to enable annotations in the project is to hover over the warning that
is next to the annotation in the Java source editor for the Link to Liberty method and use
the Enable annotation processing quick fix. For more information, see the Link to Liberty
now available in CICS TS V5.3 page of the IBM developerWorks® website.

Important: Ensure that you enable annotations for the dynamic web project. Although
this enablement might generate only a warning in the development environment, the
Link to Liberty program is not available when deployed.
70 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://developer.ibm.com/cics/2016/11/14/link-to-liberty-now-available-in-cics-ts-v5-3/
https://developer.ibm.com/cics/2016/11/14/link-to-liberty-now-available-in-cics-ts-v5-3/

The restrictions for method eligibility for Link to Liberty enablement are checked in the
CICS Explorer development environment. For example, we made a copy of
LinkToLiberty.java and introduced an eligibility problem by adding a String argument to
the method, which is not permitted for Link to Liberty. CICS Explorer reported this issue as
an error (see Table 3-1).

Table 3-1 Example annotation problem reported by CICS Explorer for @CICSProgram

This issue appears in the CICS Explorer, editor as shown in Figure 3-13.

Figure 3-13 CICS Explorer reports methods that are not eligible to be enabled for Link to Liberty

6. Check the Java compiler target level.

Ensure that the web project is targeted to compile at a level that is compatible with the
Java level that is used on CICS. Specifically, the Java Compiler compliance level must be
less than or equal to the Java level of the Liberty JVM server.

Complete the following steps:

a. Right-click the dynamic web project and select Properties.

b. Select Java Compiler and review the JDK Compliance settings. We enabled
project-specific settings and chose to use the compliance from execution environment
(which was 1.8), as shown in Figure 3-14 on page 72.

Description A method with the annotation @CICSProgram must have no arguments

Resource LinkToLiberty2.java

Path /com.ibm.cicsdev.restappext/src/com/ibm/cicsdev/restappext

Location Line 40

Type Annotation Problem (Java 6 processor)

Note: A Link to Liberty method should not have a return value. As shown in Figure 3-13,
the return type is void instead of int, although this issue is not flagged.
Chapter 3. Link to Liberty 71

Figure 3-14 Reviewing Java Compiler compliance settings

A suitable compiler compliance level can be achieved by setting it at the workspace level,
or by using project-specific settings.

c. Click OK to confirm any changes and close the Properties window.

7. Create a CICS bundle project for deployment.

This step is optional and is required only if you plan to use the CICS Bundle deployment
method for the application. For more information about deployment methods and how to
create a CICS bundle project, see Chapter 2, “Deploying a web application” on page 27.

If you want to deploy as a CICS bundle, create a CICS bundle project that is named
com.ibm.cicsdev.restappext.cicsbundle and add a dynamic web project include for
project com.ibm.cicsdev.restappext, as shown in Figure 3-15.

Figure 3-15 CICS Bundle definition including the dynamic web project

3.2.2 Sample application

The sample LinkToLiberty.java class that is shown in Example 3-2 is a simple POJO. It
shows how the @CICSProgram annotation can be used to enable a Java method for Link to
Liberty.

Example 3-2 Annotated Java source for the LinkToLiberty.java sample

import com.ibm.cics.server.Channel; 1
import com.ibm.cics.server.CicsConditionException;
import com.ibm.cics.server.Container;
import com.ibm.cics.server.Task;
72 Liberty in IBM CICS: Deploying and Managing Java EE Applications

import com.ibm.cics.server.invocation.CICSProgram; 2
import com.ibm.cicsdev.restappext.generated.StockPart; 3
import com.ibm.cicsdev.restappext.generated.Supplier;
public class LinkToLiberty 4
{

 @CICSProgram("GETSUPPI") 5
 public void getSupplierInfo() throws CicsConditionException 6
 {
 Channel ch = Task.getTask().getCurrentChannel(); 7

 Container contStockPart = ch.getContainer("STOCK-PART"); 8

 StockPart sp = new StockPart(contStockPart.get()); 9

 int iSupplierId = sp.getSupplier(); 10

 Supplier supplier = new Supplier(); 11

 supplier.setSupplierId(iSupplierId); 12

 String name = "Supplier #" + iSupplierId; 13
 supplier.setSupplierName(name);

 Container contSupplier = ch.createContainer("SUPPLIER");14
 contSupplier.put(supplier.getByteBuffer());
 } 15
}

The main features of the code are highlighted by the following numbered annotations that are
shown in Example 3-2 on page 72:

1. Imports for JCICS classes.
2. Import that is required for the @CICSProgram annotation.
3. Imports for the IBM Record Generator for Java generated marshalling classes.
4. The LinkToLiberty class is concrete and includes a default constructor.
5. @CICSProgram annotation specifies the program name GETSUPPI.
6. getSupplierInfo() is the target method for the GETSUPPI PROGRAM definition.
7. Get the Channel passed on the LINK.
8. Get the input Container that is named STOCK-PART.
9. Get the content of STOCK-PART and create an IBM Record Generator for Java helper class.
10.Use the helper class to extract the Supplier ID from the container data.
11.Create a Supplier helper to construct the response container.
12.Use the helper class to set the SupplierId field in the response.
13.Use the helper class to set the SupplierName field in the response.
14.Put the structured response data into a response Container SUPPLIER.
15.Return to caller at the end of the method; equivalent to CICS RETURN.

When included in a web application and deployed in Liberty, a PROGRAM definition for GETSUPPI
is created. This creation then allows a LINK call to GETSUPPI, which starts the
getSupplierInfo() method and passes a channel for input and output.
Chapter 3. Link to Liberty 73

3.2.3 Deploying the sample

After the dynamic web application project is cleanly built in the development environment and
a CICS bundle project is created (if needed), it can be deployed into Liberty by any of the
deployment methods that are described in Chapter 2, “Deploying a web application” on
page 27.

Adding features to the Liberty server
Add <feature>cicsts:link-1.0</feature> to the featureManager tag in server.xml. This
addition must be done before a web application is deployed that contains Link to Liberty
programs for them to be made available by using program link.

Add the security feature <feature>cicsts:security-1.0</feature> to the Liberty server, if
required. If you use CICS security and your application requires the Java subject to be
available when started by using Link to Liberty, you must add the CICS security Liberty
feature to the featureManager section in server.xml, as shown in Example 3-3.

Example 3-3 The cicsts:link-1.0 and cicsts:security-1.0 features in server.xml

<featureManager>
 <feature>cicsts:core-1.0</feature>
 <feature>cicsts:link-1.0</feature>
 <feature>cicsts:security-1.0</feature>
</featureManager>

The Java Subject might be required to be available for the following reasons:

� You are starting EJBs from your application and they use EJB role security authorization.

� Other application code that you are starting by using Link to Liberty include a dependency
on the Java Subject being present; for example, if you use Java EE role-based security.

Adding the cicsts:link-1.0 feature to Liberty results in messages, such the message in the
Liberty messages.log file that is shown in Example 3-4.

Example 3-4 messages.log output when the Link to Liberty feature is installed

A CWWKG0017I: The server configuration was successfully updated in 2.532 seconds.
I J2CA7018I: Installing resource adapter com.ibm.cics.wlp.program.link.connector.
A CWWKF0012I: The server installed the following features: [cicsts:link-1.0,
jaxb-2.2, jcaInboundSecurity-1.0].
A CWWKF0008I: Feature update completed in 2.600 seconds.
A J2CA7001I: Resource adapter com.ibm.cics.wlp.program.link.connector installed in
0.378 seconds.

Deploying the sample application
For more information about deployment options for the web application, see Chapter 2,
“Deploying a web application” on page 27. Any of the deployment methods can be used for
applications that contain Link to Liberty methods.

Important: Ensure that you add the cicsts:link-1.0 feature to Liberty before you deploy
the Link to Liberty methods. Although no warning or message is provided if this feature is
not added, the Link to Liberty methods are unavailable when deployed.
74 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Deployment
Installing a web application into a suitably configured Liberty JVM server with the
cicsts:link-1.0 feature installed triggers CICS to examine the web archive. It also identifies
any artifacts that are generated by the annotation processor as a result of the
@CICSProgram annotation.

In the Liberty messages.log and the CICS job log, the usual messages that are associated
with Liberty application deployment are observed. In addition, the messages that are shown
in Example 3-5 are written to the CICS MSGUSR log.

Example 3-5 CICS messages when deploying a Link to Liberty method.

DFHPG0101 10/26/2017 10:07:51 SC8CICS7 CICSUSER ???? Resource definition for
GETSUPPI has been added.

DFHSJ1204 10/26/2017 10:07:51 SC8CICS7 A linkable service has been registered for
program GETSUPPI in JVMSERVER ITSOJVM1 with
classname com.ibm.cicsdev.restappext.LinkToLiberty, method getSupplierInfo.

These messages indicate that a program resource for GETSUPPI was dynamically created and
that the Link to Liberty method was registered as a linkable service.

CICS dynamically creates a PROGRAM resource for each @CICSProgram annotated method in
the application, unless a PROGRAM resource with the same name exists. If a PROGRAM with the
same name is installed at the point when the Liberty application is enabled, CICS does not
attempt to create a PROGRAM. Instead, it validates that the attributes of the PROGRAM are suitable
and issue a DFHSJ1208 warning to MSGUSR if the attributes are not suitable, as shown in
Example 3-6.

Example 3-6 CICS messages issued when an unsuitable PROGRAM definition exists

DFHSJ1208 10/26/2017 15:56:53 SC8CICS7 An existing definition has been installed
for PROGRAM GETSUPPI. It is not suitable for use with a linkable service because
it does not have JVM(YES). The expected value is YES, the value found is NO.

DFHSJ1204 10/26/2017 15:56:53 SC8CICS7 A linkable service has been registered for
program GETSUPPI in JVMSERVER ITSOJVM1 with classname
com.ibm.cicsdev.restappext.LinkToLiberty, method
getSupplierInfo.
Chapter 3. Link to Liberty 75

You can find these created PROGRAM resources by using CEMT or in the programs view in
CICS Explorer and filter on the name of the JVM server. The CICS Explorer view of the
created GETSUPPI PROGRAM definition is shown in Figure 3-16. The results are filtered to show
the JVM Server and Service Name attributes.

Figure 3-16 CICS Explorer view of the dynamically generated GETSUPPI program

Looking at the same definition in CEMT, we see the GETSUPPI program, as shown in
Figure 3-17.

Figure 3-17 Program GETSUPPI created definition view in CEMT

Expanding the PROGRAM definition in CEMT displays attribute information. Attributes of
particular interest are listed in Table 3-2.

Table 3-2 Selected attributes of the automatically created GETSUPPI PROGRAM definition

Attribute Value

Status Enabled

Cedfstatus Cedf

Executionset Dplsubset

Runtime Jvm

Jvmclass wlp:com.ibm.cicsdev.restappext.LinkToLiberty#getSupplierInfo

Jvmserver ITSOJVM1

Installusrid CICSREGN

Installagent Dynamic

Definesource WLPAPP
76 Liberty in IBM CICS: Deploying and Managing Java EE Applications

The structure of the service name (Jvmclass), which is assembled from four elements, is
listed in Table 3-3.

Table 3-3 Jvmclass attribute for a Link to Liberty PROGRAM definition

Because of the constraints on methods to be eligible for Link to Liberty, service name is
sufficient to uniquely identify the Java entry point to be started when linked as a CICS
program.

If you construct manually predefined PROGRAM definitions for Link to Liberty methods, the
Jvmclass (service name) must be constructed by following the same structure.

If more than one method in an application specifies the same Link to Liberty program name,
or if another Link to Liberty method with the same name is installed, the method is not
registered and message DFHSJ1205 is issued, as shown in Example 3-7.

Example 3-7 Message issued for a duplicate Link to Liberty program name

DFHSJ1205 10/27/2017 11:58:12 SC8CICS7 A linkable service was not registered for
program GETSUPPI in JVMSERVER ITSOJVM1 because another linkable service is already
registered with that program name. The class name was
com.ibm.cicsdev.restappext.LinkToLiberty, method name getSupplierInfo

If a PROGRAM definition is installed by using program autoinstall or RDO (which matches the
name on the @CICSProgram annotation), no dynamic programs are created. A DFHSJ1208
warning message is issued to MSGUSR if the definition does not match the Link to Liberty
method. Example messages are shown in Example 3-8.

Example 3-8 Example messages

JVM(NO)
DFHSJ1208 10/26/2017 15:56:53 SC8CICS7 An existing definition has been installed
for PROGRAM GETSUPPI. It is not suitable for use with a linkable service because
it does not have JVM(YES). The expected value is YES, the value found is NO.

Element Description Value

Prefix Constant “wlp:” wlp:

Package Java package of the class containing the Link to Liberty
method.

com.ibm.cicsdev.restappext

Class Java class name containing the method to be invoked
by LINK.

LinkToLiberty

Method Specific method to invoke. getSupplierInfo

Note: If the deployment of a Link to Liberty application fails, no PROGRAM definitions are
created, and no messages are issued, check the following two configuration issues in the
first instance:

� That annotations are enabled in the development environment when the application is
built.

� The cicsts:link-1.0 feature is included in the feature manager section in Liberty.

In these cases, no other indication of the cause of the deployment problem is available.
Chapter 3. Link to Liberty 77

Incorrect Jvmclass
DFHSJ1208 10/26/2017 16:35:55 SC8CICS7 An existing definition has been installed
for PROGRAM GETSUPPI. It is not suitable for use with a linkable service because
it does not specify the correct JVMCLASS. The expected value is
wlp:com.ibm.cicsdev.restappext.LinkToLiberty#getSupplierInfo, the value found is
wlp:com.ibm.cicsdev.restappext.LinkToLiberty#getSupplierInfox.

Incorrect JVMserver
DFHSJ1208 10/26/2017 17:22:17 SC8CICS7 An existing definition has been installed
for PROGRAM GETSUPPI. It is not suitable for use with a linkable service because
it does not specify the correct JVMSERVER. The expected value is ITSOJVM1, the
value found is ITSOJVMX.

Equivalent messages are also written to the Liberty dfhjvmerr, dfhjvmtrc, and messages.log
for each of these cases, as shown in Example 3-9.

Example 3-9 Equivalent messages

[err] 10/26/2017 17:22:17.373000 UTC E [RUN_SERVICE_Thread-134237]
[com.ibm.cics.wlp.link.impl] [ProgramGenerator] @Error: validateExistingProgram()
- Existing definition installed for PROGRAM GETSUPPI with the wrong JVMSERVER
name. Found 'ITSOJVMX' but expected 'ITSOJVM1'. Problem encountered processing
Bundle RESTAPPX.

3.2.4 Running the sample

Our GETSUPPI program is now available to be started by using a program LINK call from
another CICS program. A sample LINK2SUP COBOL program is provided in the restapp-ext
GitHub repository to start the GETSUPPI Link to Liberty program.

LINK2SUP COBOL program
The provided sample LINK2SUP program is a simple CICS terminal program that shows how to
start a Java Link to Liberty method from COBOL. It passes data to and from the method in
CICS containers.

It performs the following steps:

1. Reads the terminal input and extracts a numeric supplier ID, if present.

2. Copies the Supplier ID (or CICS task number) into the STOKPART data structure and writes
it to CICS container STOCK-PART.

3. Makes the EXEC CICS LINK call to program GETSUPPI and passes the channel with the input
container.

4. Checks the response from the link, issues an error message to the terminal, and returns if
unsuccessful.

5. If the link succeeded, it reads the output container SUPPLIER from the channel.

6. Constructs a response message to the terminal with some data from the SUPPLIER
container.

7. Returns to CICS and end transaction.

Populating input containers, making the EXEC CICS LINK call, and extracting data from
response containers often must be done by any CICS program to start a Link to Liberty
method in Liberty.
78 Liberty in IBM CICS: Deploying and Managing Java EE Applications

The Link to Liberty method uses JCICS to read from and put to the containers in the channel,
which is passed between native CICS and the Liberty environment on the Link to Liberty call.

Compiling the LINK2SUP COBOL program
The LINK2SUP program source is provided in the /src/Cobol subdirectory of the downloaded
GitHub repository as LINK2SUP.cbl. Also provided are the two required copybooks
STOKPART.cpy and SUPPLIER.cpy.

Upload these source files to appropriate data set members on z/OS and compile LINK2SUP
into a load library in DFHRPL or a dynamic load library as normal. You might want to compile
with the ADATA option to regenerate the IBM Record Generator for Java-generated data
marshalling Java classes that are used in LinkToLiberty.java.

Defining program and transaction for LINK2SUP
Define a transaction and program for LINK2SUP. Suitable DFHCSDUP input definitions for these
resources are included in the /etc/DFHCSD.txt in the cics-java-liberty-restapp-ext
GitHub repository, as shown in Example 3-10.

Example 3-10 Defining transaction and program for LINK2SUP

 DEFINE PROGRAM(LINK2SUP) GROUP(RESTAPPX)
 CONCURRENCY(THREADSAFE) DATALOCATION(ANY)
 DEFINE TRANSACTION(JL2L) GROUP(RESTAPPX)
 PROGRAM(LINK2SUP) TASKDATALOC(ANY)

We included these definitions in the CICS Bundle that we created for the Link to Liberty web
application, as shown in Figure 3-18.

Figure 3-18 CICS Bundle Overview with definitions for LINK2SUP and JL2L
Chapter 3. Link to Liberty 79

Running the JL2L transaction
At a CICS terminal, enter transaction JL2L followed by a numeric ID of 8 digits or less and
press Enter, as shown in the following example:

JL2L 12345

The following response line is displayed:

SUPPLIER ID: 00012345 SUPPLIER NAME: Supplier #12345

The supplier name is constructed in the Java method from the input ID.

If you enter only the transaction name JL2L, a response line similar to the following example is
displayed:

SUPPLIER ID: 00000315 SUPPLIER NAME: Supplier #315

The Supplier ID is taken from the caller’s EIBTASKN if it is not specified in the terminal input.

3.2.5 Manual program definition

PROGRAM definitions can be installed and defined for Link to Liberty by means other than
dynamic creation for the following reasons:

� If PROGRAM autoinstall is active on the CICS region, an attempt to Link to Liberty before
the Link to Liberty program is dynamically created fails. However, a conventional
PROGRAM definition is automatically installed during that process, which then blocks
dynamic creation for the same PROGRAM name when the Link to Liberty application is
installed.

� If you want to modify other attributes of the PROGRAM definition, such as EDF
enablement.

� So that the program can be installed as disabled and then enabled when the Link to
Liberty application is installed. This configuration can help to manage the availability of
Link to Liberty programs during JVM server start and shutdown.

For the LinkToLiberty.java sample, we can define a PROGRAM with the attributes that are
listed in Table 3-4.

Table 3-4 Attributes for a manually defined GETSUPPI PROGRAM definition

Attribute Value

PROGRAM GETSUPPI

Jvm YES

Jvmclass wlp:com.ibm.cicsdev.restappext.LinkToLiberty#getSupplierInfo

Jvmserver ITSOJVM1

CONCURRENCY REQUIRED

EXECKEY CICS

Executionset Dplsubset
80 Liberty in IBM CICS: Deploying and Managing Java EE Applications

All of the following prerequisites must be met for a manual Link to Liberty PROGRAM
definition to be valid such that an EXEC CICS LINK call succeeds when the PROGRAM
definition and the Link to Liberty method are installed and enabled:

� The program name matches @CICSProgram annotation.
� JVM is YES.
� Jvmclass matches the service name of the Link to Liberty method.
� Jvmserver matches the name of the Liberty JVM server.

If a PROGRAM definition with the same name as the @CICSProgram annotation is installed
when the web application that contains the Link to Liberty method is installed in Liberty, no
dynamic creation occurs. The only message that is issued is the DFHSJ1204 linkable service
registration message to MSGUSR and not the associated DFHPG0101 resource definition
message.

The manual definition of Link to Liberty programs can result in errors from a mismatch
between the definition and the Link to Liberty linkable service. To reduce the likelihood of
such errors, one approach is to allow dynamic program creation for the Link to Liberty
methods on a test system. Then, the resulting created programs are copied when manual
definitions for RDO are defined.

3.2.6 Updating a Link to Liberty program

The method to update the target Java program for Link to Liberty depends on the original
deployment method and configuration that was used. For more information, see Chapter 2,
“Deploying a web application” on page 27.

To update a Link to Liberty program that is deployed as part of a CICS bundle, the updated
version is exported to zFS and the CICS BUNDLE definition disabled and reenabled.

In a multi-region configuration that uses IBM CICSPlex® SM, dynamic program routing can
be used to alleviate the availability interruptions that are caused during Link to Liberty
application update. If an INVREQ or PGMIDERR response is received on a dynamically
routed link request, CICSPlex SM retries the request on another configured target region. As
a result, an update can be rolled out across a set of Liberty-owning regions without an overall
availability interruption.

If a Link to Liberty program uses a manual PROGRAM definition, it can be disabled while the
Liberty application is updated, and then reenabled. The manual definition does not need to be
changed unless the signature of the Java method for the program changed.

Note: Use Link to Liberty dynamic program creation on a test system to generate the
correct program attributes. Then, copy these attributes to manual PROGRAM definitions.
This process can be done in CICS Explorer or by using CEMT and CEDA/DFHCSDUP.

A dynamically created Link to Liberty PROGRAM definition is overwritten if a manual
definition for the same program name is installed later.

Note: A Link to Liberty application cannot be updated without an availability interruption
with a single CICS Liberty server, whichever deployment method is used. The program is
unavailable and link commands to the program fail.
Chapter 3. Link to Liberty 81

3.3 Qualities of service

In this section, we describe some other important aspects of Link to Liberty. This section
features sample applications that are included in the restapp-ext project.

3.3.1 Transactions

A Link to Liberty Java program runs under the same CICS task and hence the same unit of
work as the calling program. As a result, recoverable updates to resources from the calling
program and the linked Java application are committed or backed out as a single unit of work.

However, Java Transaction API (JTA) with CICS integration within a linked Java application
cannot be used. You can use JTA with integration turned off (for example, to commit JDBC
updates performed by using a JDBC driver type 4 connection), but the JTA UserTransaction
commits or rollbacks independently of the CICS unit of work.

To turn off JTA integration for a Liberty JVM server if autoconfigure=true, add the following
option to the JVM profile and restart the server:

-Dcom.ibm.cics.jvmserver.wlp.jta.integration=false

Alternatively, add the following cicsts_jta element in server.xml and restart the server:

<cicsts_jta integration="false"/>

Because the linked Java application is restricted to the DPL subset of the CICS API, you
cannot issue Task.commit() or Task.rollback() to syncpoint the unit of work while it is active
in the JVM server.

In addition, a DPL to a Java Link to Liberty application fails with response INVREQ if
SYNCONRETURN is specified because the Java application is unable to syncpoint.

DB2 transaction considerations
When JDBC is used, it is a common practice to use the connection.commit() API to commit
a set of related updates to the database as a single unit of work. This configuration is not
permitted in a linked Java application that uses a DB2 type 2 driver connection because it
involves a CICS syncpoint.

However, connection.commit() is allowed for a type 4 driver connection. In this case, it is
disconnected from the CICS unit of work and does not cause a syncpoint. This configuration
is analogous to the case for JTA transactions with integration turned off.

Note: JTA integration in a CICS Liberty JVM applies to the entire server and all
applications that are running in it.

Note: APAR PI83589 must be applied to receive the INVREQ response. Before this
application, a syncpoint request is ignored.
82 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Transactions summary
The allowed and forbidden transaction controls when Link to Liberty is used are listed in
Table 3-5.

Table 3-5 Permitted transaction control APIs for Link to Liberty caller and target

The rules regarding transactions in this section can be summarized as that you cannot do
anything in a Link to Liberty Java program that causes the CICS task to attempt to perform a
syncpoint (commit or rollback) explicitly or implicitly.

If you must perform a syncpoint, you must find an alternative way to accomplish this task. The
following options are available:

� Pass back a response flag in a container to the caller of a Link to Liberty method to
indicate whether the transaction should be committed or rolled back. The Link to Liberty
caller can then issue a syncpoint on behalf of the linked program.

� Use JTA transactions with CICS integration turned off if CICS resources are not updated
as part of the transaction.

� Use a DB2 type 4 driver connection instead of type 2 if only the DB2 updates must be
committed together, and use the connection.commit() API.

The best option depends on the application and the resources that it updates.

3.3.2 Exception and abend processing

Exceptions are a part of the Java language. The Java application that is started by Link to
Liberty can throw and catch Exceptions as with any other Java code.

Exceptions that are thrown and caught within the Link to Liberty Java program are internal to
the program and have no external effect. For example, if you catch an Exception and handle
it, an error code can be returned to the calling program in a response container.

The JCICS API typically throws a CicsConditionException in situations where the equivalent
CICS API returns a response other than NORMAL or raise a condition.
CicsConditionException can be caught and handled as with other Java Exceptions in which
case no further action is taken and it becomes part of normal execution.

However, if a CicsConditionException is not caught in the Link to Liberty code and percolates
back up the stack, it is caught by CICS and converted to a task abend as with an unhandled
condition on the CICS API.

Transaction control Caller Target (Java program)

SYNCPOINT or Task.commit() Yes No

SYNCPOINT ROLLBACK or Task.rollback() Yes No

DB2 type 2 Connection.commit() or rollback() Not applicable No

DB2 type 4 Connection.commit() or rollback() Not applicable Yes

User transaction with CICS JTA integration Not applicable No

User transaction without CICS JTA integration Not applicable Yes

CICS LINK with SYNCONRETURN No Yes (though not to
another Link to Liberty
program)
Chapter 3. Link to Liberty 83

If an abend occurs or an Exception is thrown in a Link to Liberty method, you can choose to
allow the Exception to percolate up the stack. This configuration causes the task to end with
an AJ05 abend, or abend the task programmatically. A task abend ends the task and stops
any further processing, which causes the unit of work to be rolled back.

To show the behavior of Link to Liberty with the different types of Abend and Exception that
can occur (including transaction rollback), we used another sample Link to Liberty program
that is available in the GitHub restapp-ext repository. The source for this performAction()
method is in LinkToTransaction.java and is shown in Example 3-11.

Example 3-11 LinkToTransaction.java

private static final String CICSPROG = "L2LTRAN";
@CICSProgram(CICSPROG)
public void performAction() throws CicsConditionException,
UnsupportedEncodingException
{
 TSQ tsq = new TSQ(); 1
 tsq.setName(CICSPROG);
 String itemStr = "Written from "+CICSPROG+" by Task" +

Task.getTask().getTaskNumber();
 int item = tsq.writeItem(itemStr.getBytes("IBM037"));
 Channel ch = Task.getTask().getCurrentChannel(); 2
 Container actionCont = ch.getContainer("ACTION");
 String action = actionCont.getString().trim();

 switch(action) { 3
 case "":
 break;
 case "ABEND":
 Task.getTask().abend("AL2L");
 break;
 case "ROLLBACK":
 Task.getTask().rollback();
 break;
 case "COMMIT":
 Task.getTask().commit();
 break;
 case "THROW":
 throw new NullPointerException();
 case "CATCH":
 case "PERCOLATE":
 try {
 ItemHolder holder = new ItemHolder();
 tsq.readItem(item + 1, holder);
 }
 catch(CicsConditionException cce) {
 if (cce instanceof InvalidQueueIdException) {
 }
 if (action.equals("PERCOLATE")) {
 throw cce;
 }
 }
 break;
 default:
84 Liberty in IBM CICS: Deploying and Managing Java EE Applications

 throw new IllegalArgumentException("Invalid action: "
+action);
 }
}

In this example, the String parameter to the @CICSProgram annotation is defined as a static
final variable, which is a permitted alternative to the use of a String literal. The Link to Liberty
method performAction() that corresponds to PROGRAM L2LTRAN performs the following main
steps as shown in Example 3-11 on page 84:

1. Writes an item to the temporary storage queue L2LTRAN (including the CICS task
number) to demonstrate unit of work integration with the caller.

2. Gets the action String from the ACTION input container and trims it.

3. Runs a Java switch statement with the action as the expression. Depending on the action
String, the corresponding case performs a transaction or Exception-related action.

The COBOL CICS front-end terminal program to start this Link to Liberty program is also in
GitHub as /src/Cobol/LINK2TXN.cbl. When used as a terminal transaction, it accepts an
optional action as one of the following input parameters on the command line:

� COMMIT
� ROLLBACK
� ABEND
� THROW
� CATCH
� PERCOLATE

Program LINK2TXN performs the following steps:

1. Reads the action string from the terminal command line and converts to uppercase.

2. Writes an item to the temporary storage queue L2LTRAN (including the CICS task
number) to demonstrate unit of work integration with the target.

3. Links to the Liberty program L2LTRAN that is passing the action command in the ACTION
container.

4. If an error occurs on the link to L2LTRAN, rolls back the unit of work and issues an error
message; otherwise, issues a completion message and returns to CICS.

To start LINK2TXN and the Link to Liberty method performAction(), run transaction JL2T at
a terminal, optionally including one of the available actions as a parameter on the command
line. The results of running this test case for each action are listed in Table 3-6.

Table 3-6 Action performed by performAction() method for each JL2T input

Note: This example Link to Liberty program is provided to demonstrate the behavior of
Exception handling in different situations. It is not intended as an example of a best
practice.

Action input performAction() Result

empty No-op Normal completion, updates to TSQ are
committed.

COMMIT Task.getTask().commit() Task abend AEIP (INVREQ condition)

ROLLBACK Task.getTask().rollback() Task abend AEIP (INVREQ condition)

ABEND Task.getTask().abend("AL2L") Task abend AL2L
Chapter 3. Link to Liberty 85

To check the transaction integration between the COBOL caller and the linked Java program,
examine the contents of the temporary storage queue L2LTRAN after running the JL2T
transaction. An example is shown in Figure 3-19.

Figure 3-19 CEBR view of the L2LTRAN Temporary Storage queue

When the transaction completes successfully and commits, two items are added to the
queue, each including the same CICS task number. In all other cases, any added items are
backed out during the transaction rollback and no new items appear.

As shown in Figure 3-19, entries are seen for action ”” (none) or CATCH only because these
actions are the only actions that result in the unit of work being committed. All other actions
are backed out.

3.3.3 Security

When you link to a Java EE application from a CICS program, the user ID of the CICS task is
passed into the Java EE application. It is automatically associated with any CICS work, such
as JCICS calls that are made by the application.

The user ID of the CICS task is passed into the Liberty Java application and used to create
the Java Subject. Liberty does not authenticate the user ID, although it does check that the
user ID is present in the configured Liberty registry.

Where possible, use the SAF registry in Liberty because it checks the user ID that is passed
in from CICS. If another type of user registry is used other than the SAF registry, and the
CICS task user ID matches an ID in the non-SAF registry, that user ID is passed to the Java
EE application.

THROW throw NullPointerException() Task abend AJ05

CATCH CicsConditionException
(ITEMERR) caught within Java
method.

Normal completion, updates to TSQ are
committed.

PERCOLATE CicsConditionException
(ITEMERR) uncaught,
percolates back to CICS.

Task abend AEIZ (ITEMERR condition not
handled)

Anything else IllegalArgumentException() Task abend AJ05
86 Liberty in IBM CICS: Deploying and Managing Java EE Applications

If the same user ID is not present in the non-SAF registry, the Java EE application is linked
with the unauthenticated user ID in the Java Subject, although the CICS task user ID is still
used when any JCICS calls are made. The default unauthenticated user ID is WSGUEST,
unless overridden with an unauthenticatedUser value in server.xml.

To configure security when linking a Java EE application, include the cicsts:security-1.0
feature in your server.xml (see Example 3-12). If you do not include this feature, the user ID
from the CICS task is not used to create the Java Subject, which is null. As a result, any
authorization checks in your Java EE applications are invalid.

However, access to any CICS resources that use the JCICS API still run under the user ID of
the CICS task.

Example 3-12 Adding the CICS security feature to server.xml

<feature>cicsts:security-1.0</feature>

By using another sample Link to Liberty method, we demonstrated the propagation of the
CICS user ID that is associated with the calling task to the Java task.

The new sample is LinkToSecurity.java with its Link to Liberty method that is defined, as
shown in Example 3-13.

Example 3-13 Java source for getSecurityInfo() method in LinkToSecurity.java

@CICSProgram("L2LSEC")
public void getSecurityInfo() throws CicsConditionException
{
 java.security.AccessControlContext context =
 java.security.AccessController.getContext();

 Subject activeSubject = Subject.getSubject(context);

 String principalName;

 if (activeSubject != null) {

 Set<Principal> principalSet = activeSubject.getPrincipals();

 Iterator<Principal> principalIterator = principalSet.iterator();
 Principal principal = principalIterator.next();

 if (principal != null) { // Get name from Principal.
 principalName = principal.getName();
 }
 else { // No Principal in Subject.
 principalName = "UNKNOWN";
 }
 }
 else {
 principalName = "NOSUBJECT";

Note: If -Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true is in the JVM profile for the
Liberty JVM server and SEC=YES is specified in the SIT, CICS adds
<feature>cicsts:security-1.0</feature> and <feature>ssl-1.0</feature> to the
featureManager section of server.xml when it starts the JVM.
Chapter 3. Link to Liberty 87

 }

 Channel ch = Task.getTask().getCurrentChannel();

 Container contPrincipal = ch.createContainer("PRINCIPAL");
 contPrincipal.putString(principalName);
 Container contUserid = ch.createContainer("USERID");
 String cicsUserid = Task.getTask().getUSERID();
 contUserid.putString(cicsUserid);
}

The getSecurityInfo() method returns a response container that includes the CICS
USERID from the task and the name of the Principal from the Java Subject, if it exists.

The sample COBOL program LINK2SEC in the /src/Cobol folder provides a terminal front end
to this method and displays the results, as shown in the following example:

CICS USERID: JPLAW Java Principal: CICSUSER

The results of running this sample with different combinations of CICS security
(SEC=YES/NO) and the CICS Liberty security feature installed are listed in Table 3-7.

Table 3-7 CICS USERID and Principal Name used for a Link to Liberty call

The Java Subject is available in only the Context if CICS security is enabled and
<feature>cicsts:security-1.0</feature> is installed in the Liberty server.

CICS
Security
SEC=

Security
feature
installed

Principal name CICS USERID

NO NO No Java Subject CICSUSER (default user)

NO YES No Java Subject CICSUSER (default user)

YES NO No Java Subject JPLAW (caller user)

YES YES JPLAW (caller user) JPLAW (caller user)

Note: If a safCredentials element is in server.xml, such as <safCredentials
profilePrefix="SC8CICS" unauthenticatedUser="CICSUSER"/>, the CICS region user ID
and the Link to Liberty caller user ID must have READ access to the specified profilePrefix
profile in RACF APPL class. Otherwise, the RACF user ID check fails and the specified
unauthenticatedUser (default WSGUEST) is used as the Principal name.
88 Liberty in IBM CICS: Deploying and Managing Java EE Applications

3.3.4 Summary

In this chapter, we described the new Link to Liberty feature in CICS TS. This feature allows a
Java method in an installed Liberty web application to be started as a CICS linkable program
that passes data in CICS containers by using a channel.

After an introduction to the concepts of the new capability, we described the development,
deployment, and runtime uses with the restapp-ext sample application. This application is
available to download from the cicsdev GitHub repository.

Finally, we described some important quality of service aspects of Link to Liberty. We
concentrated on transactions, exception, and abend handling, and security. These aspects
were demonstrated with more sample Link to Liberty applications, which also are available in
the GitHub repository.
Chapter 3. Link to Liberty 89

90 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Chapter 4. Connecting to Db2 by using
JDBC

In this chapter, we describe how to use Java database connectivity (JDBC) within a Java EE
application in CICS Liberty to access data in a Db2 database. Our scenario uses Db2 v12 for
z/OS with CICS TS V5.4.

We also show how to configure a CICS Liberty JVM server to use JDBC type 2 and type 4
connectivity. Finally, we describe how to integrate Db2 updates with other CICS transactional
updates.

This chapter includes the following topics:

� 4.1, “JDBC overview” on page 92
� 4.2, “Installing the JDBC Employee application” on page 94
� 4.3, “Using JDBC type 2 connectivity” on page 97
� 4.4, “Using JDBC type 4 connectivity” on page 104
� 4.5, “Transactional support with JDBC” on page 108
� 4.6, “Tracing JDBC” on page 110

4

© Copyright IBM Corp. 2018. All rights reserved. 91

4.1 JDBC overview

JDBC is the Java specification of a standard application programming interface (API) that
allows Java programs to access database management systems. The JDBC API consists of a
set of interfaces and classes that are written in the Java programming language. The JDBC
API is divided into two packages: java.sql and javax.sql, which are included in the Java SE
and Java EE platforms.

By using these standard interfaces and classes, programmers can write applications that
connect to databases, send queries that are written in structured query language (SQL), and
process the results.

Three recent versions of the JDBC 4 specification JDBC 4.0, JDBC 4.1, and JDBC 4.2 are
available. JDBC 4.0 is supported in CICS Liberty by using the jdbc-4.0 feature; JDBC 4.1 is
supported by using the jdbc-4.1 feature.

4.1.1 JDBC drivers

Because JDBC is a standard specification, one Java program that uses the JDBC API can
connect to any database management system (DBMS) if a driver exists for that particular
DBMS.

The following commonly used types of JDBC drivers are available for use in CICS Liberty
JVM servers:

� Type 2: These drivers use the client libraries of a locally installed database and convert the
JDBC method calls into the native calls of the local database driver.

� Type 4: These drivers are pure Java drivers that connect directly to a remote database
server over the network.

Db2 for z/OS provides JDBC support through the IBM Data Server Driver for JDBC and
SQLJ, which is known as the JCC driver. This driver is a unified driver that combines the type
2 and type 4 connectivity implementations in one driver. The following versions of the JCC
driver are available with Db2 for z/OS:

� db2jcc.jar for JDBC 3.0 and earlier support
� db2jcc4.jar for JDBC 3.x and 4.x support

In this chapter, we used the db2jcc4.jar driver.
92 Liberty in IBM CICS: Deploying and Managing Java EE Applications

JDBC connectivity
Although the type 2 and type 4 modes of JDBC connectivity are different, both are supported
in the CICS Liberty JVM server environment for connecting to IBM Db2 for z/OS. Which
connectivity type is best suited to a specific CICS Liberty application depends on the factors
that are listed in Table 4-1.

Table 4-1 Comparison of type2 and type4 JDBC drivers

4.1.2 Data sources

Before you can run SQL statements in any SQL program, you must be connected to a
database. In the Java platform, the connection set up to a database from a server is known as
a data source.

A Java application can establish a connection to a data source by using the JDBC
DriverManager or DataSource interfaces, which are part of the java.sql package. The use of
the DriverManager interface limits portability and the DataSource is the standard model that is
used for most Java EE applications. The use of a DataSource allows the application code to
remain version independent of the database connection details, such as the JDBC driver
connection type.

When a Java EE application in Liberty connects to a data source by using the DataSource
interface, the connection details are typically defined in the Liberty server configuration file.
Each application can then refer to this data source by using a logical name, which is located
by using the Java Naming and Directory Interface (JNDI).

The DataSource object is obtained by using the JNDI InitialContext.doLookup() method or
the resource injection. Having obtained a DataSource instance, the
DataSource.getConnection() method is then used to obtain the database connection.

Qualities of service JDBC type 2 connectivity JDBC type 4 connectivity

Connectivity Must connect to local Db2 database
by using the CICS DB2 attachment.

Can connect to any database by
using a TCP/IP network.

Performance Shorter path length offers better
response times.a

a. For more information about the performance of JDBC type 2 and type 4 connectivity in CICS
Liberty, see the IBM Redpaper™ publication IBM CICS Performance Series: Comparing Type
2 and Type 4 JDBC Driver Performance with IBM CICS Transaction Server for z/OS V5.2
Liberty JVM server.

zIIP offload in the Java driver and in
the Db2 DDF can be used to reduce
CPU costs.

Security Security context that is inherited from
the CICS transaction.

Credentials are configured in the
data source definition.

Transactionality Integrated with CICS unit-of-work and
CICS sync point control.

Requires usage of
Connection.commit() or Java
Transaction API (JTA) to coordinate
updates.
Chapter 4. Connecting to Db2 by using JDBC 93

http://www.redbooks.ibm.com/abstracts/redp5208.html
http://www.redbooks.ibm.com/abstracts/redp5208.html
http://www.redbooks.ibm.com/abstracts/redp5208.html
http://www.redbooks.ibm.com/abstracts/redp5208.html
http://www.redbooks.ibm.com/abstracts/redp5208.html
http://www.redbooks.ibm.com/abstracts/redp5208.html

4.1.3 Static and dynamic SQL

JDBC can use dynamic or static SQL. Static SQL uses predefined SQL operations that do not
change when the program is run. Dynamic SQL operations are not predefined and the
underlying database operations can change when the program is run. Within Java, the use of
static SQL requires the use of the SQLJ API, which is a set of programming extensions that
allow Java programs to embed SQL statements.

SQLJ requires another compilation step to convert the .sqlj source files into Java code
before they are compiled by the Java compiler. The dynamic and static models feature the
following key characteristics:

� Dynamic SQL

Because it does not require any special preparation process, Dynamic SQL is easier to
develop and deploy than SQLJ.

It also can be written by using standard JDBC calls or by using the Java Persistence
Architecture (JPA). JPA simplifies programming at a cost of less control over database
events and an increased number of smaller database interactions.

� Static SQL

This model can be more efficient because the database knows what should be done. It
also can be more reliable because variable type errors are detected at compilation time.

SQLJ code is compact and partially generated by tools, such as IBM Data Studio. SQLJ
also supports more granular security options. The use of prepared statements can help
avoid SQL injection attacks.

In this chapter, we use dynamic SQL and the JDBC API, which provides the simplest route to
get started with Java access to Db2 data.

4.2 Installing the JDBC Employee application

In this IBM Redbooks publication, we provide a sample JDBC application that is named the
JDBC Employee application. This application queries employee information from the sample
Db2 EMP table and supports creating, reading, updating, and deleting actions to be
performed on the entries in the database.

The source for our application is available for download at the CICSDev GitHub repository.
The instructions for deploying the Employee application are provided in the .readme file in the
GitHub repository.

The Employee application uses a data source configuration to define the connection to the
underlying database. When Db2 for z/OS is used, this connection can be configured to use
JDBC type 2 or type 4 connectivity. Sample instructions are provided for configuring and
installing the application into CICS Liberty.

Whichever type of JDBC driver is used, you must configure the following resources:

� Liberty features

� Liberty <dataSource> element

� CICS resource definitions:

– TSMODEL
– URIMAP
– TRANSACTION
94 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://github.com/cicsdev/cics-java-liberty-employee-db

If you use JDBC type 2 connectivity in CICS, you also must define the following resources:

� DB2CONN
� DB2ENTRY
� DB2TRAN

Instructions for configuring these resources are provided in the following sections.

4.2.1 Liberty features

In addition to the JDBC feature, the Employee application uses the JNDI to locate the
DataSource and JavaServer Faces (JSF) technology to build the web pages.

We added the Java EE 7 versions of these Liberty features that are shown in Example 4-1 to
the <featureManager> list element in our Liberty server.xml configuration file.

Example 4-1 Liberty features

<featureManager>
<feature>jndi-1.0</feature>
<feature>jsf-2.2</feature>
<feature>jdbc-4.1</feature>

</featureManager>

The Employee web application can be defined into Liberty by using an application element or
a CICS bundle project. We used the application element that is shown in Example 4-2 to
deploy the Employee application.

Example 4-2 Liberty application element

<application
 location="/var/cicsts/SC8CICS2/ITSOJVM1/apps/ employee.jdbc.web.war">
</application>

4.2.2 Data source definition

In addition to the Liberty features and application definition, the data source must be defined
in the Liberty server configuration file. This configuration is achieved by using a <dataSource>
element and an associated <library> element in the server.xml file.

For more information about the configuration for the two different modes of JDBC connectivity
(type 2 and type 4), see 4.3.2, “Configuring server.xml” on page 100 and 4.4.2, “Configuring
server.xml” on page 105. Several server.xml samples are provided with the GitHub
repository.

4.2.3 CICS resources

Our sample Employee application requires the following CICS resources definitions, which
are required for type 2 and type 4 connectivity scenarios:

� TSMODEL
� URIMAP
� TRANSACTION
Chapter 4. Connecting to Db2 by using JDBC 95

More CICS resource definitions, including DB2CONN, DB2TRAN, and DB2ENTRY
definitions, are required to use type 2 connectivity. For more information, see 4.3.1,
“Configuring CICS resources” on page 98.

TSMODEL
Our ITSO Employee application uses a CICS temporary storage queue (TSQ) that is named
DB2LOG to log updates that are made to the Db2 database. This TSQ is defined as
recoverable so that updates to it are coordinated as part of the CICS unit-of-work.

We defined a TSMODEL that is named DB2LOG, as shown in Figure 4-1. The Recovery
attribute was set to Yes to define the TSQ as recoverable by CICS.

Figure 4-1 CICS TSMODEL definition

URIMAP and TRANSACTION
Next, we added a URIMAP and a TRANSACTION definition. These definitions enabled us to
map the HTTP requests to our Employee application, such that they ran under a unique
transaction ID. Using a URI map and transaction ID allows requests to this application to be
easily secured and monitored. Also, when type 2 connectivity is used, the transactions can be
mapped to the required DB2TRAN definition, which is used to specify the Db2 plan name.
96 Liberty in IBM CICS: Deploying and Managing Java EE Applications

The URI map definition EMPJDB2 is shown in Figure 4-2. It is used to map the URL path
/employee.jdbc.web/* to our transaction ID JDB2. We allowed the Host and Port parameters
to default so that these parameters were not part of the filter criteria.

Figure 4-2 URIMAP definition

Next, we created and installed the TRANSACTION definition JDB2 (see Figure 4-3). This
definition is a copy of the CJSA definition, which is the default JVM server request processor
transaction.

Figure 4-3 TRANSACTION definition JDB2

With these definitions, we installed them into our CICS region by using the CEDA INSTALL
GROUP(DB2) command.

4.3 Using JDBC type 2 connectivity

In a CICS Liberty environment, the use of the Db2 JCC driver with type 2 connectivity
converts the JDBC requests into their EXEC SQL equivalents. The converted requests flow
into the CICS Db2 attachment facility in the same way as EXEC SQL requests from COBOL
or other non-Java programs. The customization and tuning options for the CICS Db2
attachment facility apply equally to Java and non-Java programs.
Chapter 4. Connecting to Db2 by using JDBC 97

4.3.1 Configuring CICS resources

To add support for JDBC type 2 connectivity, we changed our CICS region’s configuration.
This process is described next.

CICS STEPLIB
The first step in adding Db2 support to our CICS region is to make the Db2 libraries available
to your CICS region by using the MVS LNKLIST or the region’s STEPLIB. We added the
SDSNLOAD and SDSNLOD libraries to the STEPLIB, as shown in Example 4-3.

Example 4-3 CICS region STEPLIB

//STEPLIB DD DSN=CICSTS54.CICS.SDFHAUTH,DISP=SHR
// DD DSN=CICSTS54.CPSM.SEYUAUTH,DISP=SHR
// DD DSN=CICSTS54.CICS.SDFJAUTH,DISP=SHR
// DD DSN=CICSTS54.SDFHLIC,DISP=SHR
// DD DSN=CEE.SCEECICS,DISP=SHR
// DD DSN=DB2AT.SDSNLOAD,DISP=SHR
// DD DSN=DB2AT.SDSNLOD2,DISP=SHR

CICS resource definitions
To install our Employee application by using a Db2 type 2 connection, we configured the
following CICS resource definitions:

� DB2CONN
� DB2ENTRY
� DB2TRAN

These resources definitions are described in the following sections.

DB2CONN
Next, we added a CICS DB2CONN resource definition. This resource defines the connection
from CICS to the Db2 subsystem (see Figure 4-4).

Figure 4-4 CICS DB2CONN: Part I
98 Liberty in IBM CICS: Deploying and Managing Java EE Applications

http://wtsc80:52080/employee.jdbc.web/

The DB2Groupid attribute was set to the group ID of D2AG, which was the DB2 group ID of
our Db2 data sharing group (see Figure 4-5).

Figure 4-5 CICS DB2CONN: Part II

The AUTHType attributes and the COMAUTHType attributes were allowed to default to Userid,
which signifies that authorization to the database uses the CICS task user ID.

DB2ENTRY and DB2TRAN
Next, we added a DB2ENTRY and DB2TRAN definition, as shown in Figure 4-6 and
Figure 4-7 on page 100.

Figure 4-6 CICS DB2ENTRY definition
Chapter 4. Connecting to Db2 by using JDBC 99

Figure 4-7 CICS DB2TRAN definition

4.3.2 Configuring server.xml

To configure the use of JDBC type 2 connectivity with CICS Liberty, the following resources
must be added:

� The Liberty JSF, and JDBC features that are required by the application. For more
information, see 4.2.1, “Liberty features” on page 95.

� A <library> element that refers to the JCC driver and license file.

� A <dataSource> element that defines the connection to the database by using the CICS
Db2 attachment.

Our server.xml with this updated configuration is shown in Example 4-4.

Example 4-4 Liberty server.xml: Type 2 dataSource

<featureManager>
<feature>jndi-1.0</feature>
<feature>jsf-2.2</feature>
<feature>jdbc-4.1</feature>

</featureManager>

<library id="Db2Lib">
<fileset dir="/usr/lpp/db2c10/db2a/jdbc/classes"

 includes="db2jcc4.jar db2jcc_license_cisuz.jar" />
<fileset dir="/usr/lpp/db2c10/db2a/jdbc/lib"

 includes="libdb2jcct2zos4_64.so" />
</library>

<dataSource id="db2type2"
 jndiName="jdbc/sample"
 transactional="false">
 <jdbcDriver libraryRef="jdbclib" />
 <connectionManager agedTimeout="0" />
 <properties.db2.jcc driverType="2"
 currentSchema="DSN81210" />
</dataSource>
100 Liberty in IBM CICS: Deploying and Managing Java EE Applications

<application
 location="/var/cicsts/SC8CICS2/ITSOJVM1/apps/ employee.jdbc.web.war">
</application>

Data source definition
We specified the following attributes on our <dataSource> element:

� jndiName="jdbc/sample"

This attribute is the JNDI name that is used by our Employee application to locate the
DataSource object. It is specified on the @Resource annotation on the DataSource field in
the DatabaseOperationsManager class.

@Resource(authenticationType=AuthenticationType.CONTAINER,
 name="jdbc/sample")

private DataSource ds;

� transactional="false"

The <transactional> attribute must be set to false to ensure that the data source
updates are not coordinated by the Liberty transaction manager. If this setting is left to
default to true, Liberty uses RRS as the transaction coordinator when JDBC type 2
connectivity is used, which does not function correctly in the CICS environment.

Setting this value to false disables transaction coordination by Liberty and allows the
updates to be coordinated as part of the CICS unit-of-work through the CICS Db2
attachment.

� jdbcDriver libraryRef="jdbclib"

The libraryRef attribute on the <jdbcDriver> sub-element must reference the <library>
element that is used to configure the location of the JCC driver db2jcc4.jar and the
accompanying license file db2jcc_license_cisuz.jar.

� connectionManager agedTimeout="0"

The <connectionManager> element should specify agedTimeout=0 to ensure that the
Liberty data source connection pooling is disabled because the database connections are
pooled instead by using the CICS Db2 attachment.

� properties.db2.jcc

Attributes that are supplied in the <properties.db2.jcc> child element are passed directly
to the Db2 JCC driver. We specified the following values:

– driverType

The driverType attribute must specify 2 to signify the use of JDBC type 2 connectivity
with the Db2 JCC driver.

– currentSchema

Note: In releases before CICS TS V5.4, the <dataSource> element was supported for type
4 connectivity to Db2 only. Instead, type 2 connectivity required the use of the CICS
provided <cicsts_datasource> and <cicsts_jdbcDriver> elements.

The new type 2 <dataSource> support in CICS TS V5.4 provides a more standard
implementation for JDBC support, and is supported in CICS TS V5.3 with APAR PI77502.
If applications are migrated from the use of the <cicsts_dataSource> element to the
<dataSource> element, the commit processing logic must be reviewed in your JDBC
application because of changes in the default behavior for commit on cleanup. For more
information, see 4.5, “Transactional support with JDBC” on page 108.
Chapter 4. Connecting to Db2 by using JDBC 101

The currentSchema specifies the default schema name that is used to qualify
unqualified database objects in dynamically prepared SQL statement. We used the
value currentSchema="DSN81210" because Db2 V12 uses DSN81210 as the sample
schema.

4.3.3 Binding the plan

Finally, we must bind the ITSOJCC plan with a PKLIST of NULLID.*. The ITSOJCC plan was
specified as our plan name in our DB2ENTRY definition, as shown in Example 4-5.

Example 4-5 Db2 bind plan for JDBC

//D2A1JCCP JOB (999,POK),'D2A1 INSTALL',CLASS=A,
// MSGCLASS=T,NOTIFY=&SYSUID,TIME=NOLIMIT,REGION=0M
/*JOBPARM SYSAFF=SC80,L=9999
// JCLLIB ORDER=(DB2AM.PROCLIB)
//JOBLIB DD DISP=SHR,DSN=DB2AT.SDSNLOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
//PH01PS02 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(D2AG)
 BIND PLAN(ITSOJCC) OWNER(SYSADM)ACTION(REPLACE)PKLIST(NULLID.*)+
 RETAIN CURRENTDATA(NO) ISO(CS) ENCODING(EBCDIC) SQLRULES(DB2)
 RUN PROGRAM(DSNTEP2) PLAN(DSNTEP12) +
 LIB('DB2AM.RUNLIB.LOAD') PARMS('/ALIGN(MID)')
 END
//SYSIN DD *
 SET CURRENT SQLID = 'SYSADM';
 GRANT EXECUTE, BIND ON PLAN ITSOJCC TO PUBLIC;
//*
102 Liberty in IBM CICS: Deploying and Managing Java EE Applications

4.3.4 Running the application

The Employee web application is accessed on our CICS Liberty server by using the following
URL:

http://wtsc80:52080/employee.jdbc.web/

This URL loads the Employee database list form, as shown in Figure 4-8.

Figure 4-8 Employee database list form

From this form, you can disable and enable the use of Java Transaction API (JTA) for commit
processing by selecting Toggle JTA. For more information about how to use JTA, see 4.5,
“Transactional support with JDBC” on page 108.

Next, you add entries or query entries in the EMP table. If you leave the search field blank and
click Search, all of the employees from the table are returned, as shown in Figure 4-9 on
page 104.
Chapter 4. Connecting to Db2 by using JDBC 103

Figure 4-9 Employee application search results

If the employee information is returned, this result confirms that a connection was made to the
DB2 database and that the EMP table was read successfully.

If any errors are retuned by the application, further diagnostics often can be found in the JVM
server stderr destination.

4.4 Using JDBC type 4 connectivity

The Liberty JVM server also supports type 4 connectivity. This Type 4 connectivity uses
TCP/IP to connect to a remote Db2 subsystem through the support of the Db2 Distributed
Data Facility (DDF) instead of the use of the CICS Db2 attachment and associated
DB2CONN resource. The DDF is a built-in component of Db2 and provides the network
connectivity to and from other servers or clients.

4.4.1 Configuring CICS resources

When JDBC type 4 connectivity is used, it is not necessary to define any specific CICS
resource definitions. However, we used the same CICS TRANSACTION, URIMAP, and
TSMODEL resource definitions for our JDBC type 4 connectivity configuration as for our type
2 configuration. For more information about how to configure these resources, see 4.2.3,
“CICS resources” on page 95.
104 Liberty in IBM CICS: Deploying and Managing Java EE Applications

4.4.2 Configuring server.xml

To configure the use of JDBC type 4 connectivity with CICS Liberty, the following resources
must be added:

� The Liberty JSF, JNDI, and JDBC features that are required by the application. For more
information, see 4.2.1, “Liberty features” on page 95.

� A <library> element that refers to the JCC driver and license file.

� A <dataSource> element that defines the connection to the database.

Our server.xml with this updated configuration is shown in Example 4-6.

Example 4-6 Liberty server.xml: Type 4 data source

<featureManager>
<feature>jndi-1.0</feature>
<feature>jsf-2.2</feature>
<feature>jdbc-4.1</feature>

</featureManager>
<library id="Db2Lib">
 <fileset dir="/usr/lpp/db2c10/db2a/jdbc/classes"
 includes="db2jcc4.jar db2jcc_license_cisuz.jar" />
 <fileset dir="/usr/lpp/db2c10/db2a/jdbc/lib"
 includes="libdb2jcct2zos4_64.so" />
</library>

<dataSource id="db2type4"
 jndiName="jdbc/sample"
 type="javax.sql.XADataSource">

 <jdbcDriver libraryRef="jdbclib" />
 <connectionManager maxPoolSize="50" />
 <properties.db2.jcc driverType="4"

 databaseName="DB2A"
 currentSchema="DSN81210"
 serverName="localhost"
 portNumber="38000"
 user="DB2USER"
 password="{xor}Oz1tLz4sLA==" />
</dataSource>
<application
 location="/var/cicsts/SC8CICS2/ITSOJVM1/apps/ employee.jdbc.web.war">
</application>

The <dataSource> element specifies the following XML attributes:

� jndiName="jdbc/sample"

This attribute is the JNDI name that is used by our Employee application to locate the
DataSource object. It is specified on the @Resource annotation on the DataSource field in
the DatabaseOperationsManager class, as shown in the following example:

@Resource(authenticationType=AuthenticationType.CONTAINER,
 name="jdbc/sample")

private DataSource ds;
Chapter 4. Connecting to Db2 by using JDBC 105

� type="javax.sql.XADataSource"

The type attribute specifies the type of DataSource that is provided by the JDBC driver.
The following options are available:

– javax.sql.DataSource
– javax.sql.ConnectionPoolDataSource
– javax.sql.XADataSource

We specified javax.sql.XADataSource to enable our DataSource to support the XA
two-phase commit protocol, which allows updates to Db2 to be coordinated as part of a
JTA transaction. For more information about transaction support, see 4.5, “Transactional
support with JDBC” on page 108.

� transactional="true"

The transaction element should be allowed to default to true so that the database updates
are managed by the Liberty transaction manager. We did not specify this attribute
because the default value is true.

� jdbcDriver libraryRef="jdbclib"

The <jdbcDriver> libraryRef attribute must reference the <library> element that is used
to configure the location of the JCC driver db2jcc4.jar and the accompanying license file
db2jcc_license_cisuz.jar.

� <connectionManager maxPoolSize />

The <connectionManager> element can be used to control attributes of the connection
pool. We set the pool size to 50 to equal the number of configured JVM server threads.

� properties.db2.jcc

The following attributes can be used:

– driverType

The driverType attribute must be set to 4 to specify the use of JDBC type 4
connectivity with the Db2 JCC driver.

– databaseName

This attribute is the Db2 location value. On our Db2 subsystem, it was set to the value
DB2A.

– currentSchema

This attribute specifies the default schema name that is used to qualify unqualified
database objects in dynamically prepared SQL statement. We used the value
currentSchema="DSN81210" because Db2 V12 uses DSN81210 as the sample schema.

– serverName

This attribute is the TCP/IP host on which the Db2 DDF facility is configured to listen.
We used the value localhost because we were connecting to a local Db2 on the same
MVS image.

– portNumber

This attribute is the port on which the Db2 DDF facility is configured to listen. Our Db2
DDF was configured to use port 38000.

The location, server name, and port in use by the DDF can be discovered by using the
DB2 command -DISPLAY DDF from the DB2I primary option menu in SDSF, as shown in
Example 4-7.

Example 4-7 DISPLAY DDF command output

DSNL080I -D2A1 DSNLTDDF DISPLAY DDF REPORT FOLLOWS:
106 Liberty in IBM CICS: Deploying and Managing Java EE Applications

DSNL081I STATUS=STARTD
DSNL082I LOCATION LUNAME GENERICLU
DSNL083I DB2A USIBMSC.SCPD2A1 -NONE
DSNL084I TCPPORT=38000 SECPORT=38001 RESPORT=38002 IPNAME=-NONE
DSNL085I IPADDR=::9.76.61.131
DSNL086I SQL DOMAIN=wtsc80.cpolab.ibm.com
DSNL086I RESYNC DOMAIN=wtsc80.cpolab.ibm.com
DSNL089I MEMBER IPADDR=::9.76.61.131
DSNL105I CURRENT DDF OPTIONS ARE:
DSNL106I PKGREL = COMMIT
DSNL106I SESSIDLE = 001440
DSNL099I DSNLTDDF DISPLAY DDF REPORT COMPLETE

– user and password

These attributes supply the user ID and password credentials that are used for
authenticating with Db2. The password can be XOR or AES encrypted by using the
Liberty securityUtility script. This utility can be started by using the CICS-generated
wlpenv script, which is in the JVM server working directory, as shown in Example 4-8.

Example 4-8 Use of wlpenv to run securityUtility

$ [SC80] /cicsts/SC8CICS2/ITSOJVM1: ./wlpenv securityUtility encode <password>
Executing: /usr/lpp/cicsts/cicsts54/wlp/bin/securityUtility encode <password>
JAVA_HOME=/usr/lpp/java/J8.0_64_SR4
WLP_INSTALL_DIR=/usr/lpp/cicsts/cicsts54/wlp
WLP_USER_DIR=/var/cicsts/SC8CICS2/wlp
WLP_OUTPUT_DIR=/var/cicsts/SC8CICS2/wlp/servers
SERVER_NAME=itsowlp1
{xor}Oz1tLz4sLA==

4.4.3 Running the application

The Employee web application is accessed on our CICS Liberty server by using the following
URL:

http://wtsc80:52080/employee.jdbc.web/

This URL displays the Employee database list form and should function as before when
JDBC type 2 connectivity is used, as described in 4.3.4, “Running the application” on
page 103.

4.4.4 Container managed security

The application server can be configured to use container managed authentication aliases to
provide the user ID and password credentials for JDBC type 4 data sources. This
configuration allows the credentials to be separated from the configuration of the data source
and shared between data sources.

To enable this method of authentication, the application must use a resource injection
annotation for the JNDI lookup of the DataSource rather than a direct JNDI lookup.

A DataSource resource injection is defined in our application by using the field level annotation
in the DatabaseOperationsManager class that is shown in Example 4-9.
Chapter 4. Connecting to Db2 by using JDBC 107

Example 4-9 Resource annotation for DataSource

@Resource(authenticationType=AuthenticationType.CONTAINER,
 name="jdbc/sample")
private DataSource ds;

To enable the use of the authentication alias, we added an <authData> element to our Liberty
server.xml. Then, we updated the <dataSource> element with a containerAuthDataRef
attribute that identifies the <authData> element (see Example 4-10).

Example 4-10 server.xml updates for container managed security

<dataSource id="db2type4"
 jndiName="jdbc/sample"
 type="javax.sql.XADataSource"
 containerAuthDataRef="db2user">
 <jdbcDriver libraryRef="jdbclib" />
 <connectionManager maxPoolSize="50" />
 <properties.db2.jcc driverType="4"
 databaseName="DB2A"

 currentSchema="DSN81210"
 serverName="localhost"

portNumber="38000" />
</dataSource>
<authData id="db2user" user="DB2USER" password="{xor}Oz1tLz4sLA==" />

Having made these changes, we restarted our Liberty JVM sever and ran our Employee
application by using the updated configuration. It successfully connected to the data source
by using the supplied credentials.

4.5 Transactional support with JDBC

Db2 supports two-phase commit transactions for JDBC type 2 and type 4 modes of
connectivity. Both modes of operation can be integrated with the CICS unit-of-work. However,
the way in which this process is done is different because the commit processing is handled
differently for the two connectivity modes in CICS.

In our Employee application, the updateEmployee() method in the
DatabaseOperationsManager class is used to control how updates are committed to the CICS
TSQ and the database EMP table. The method provides commit processing logic by using
Java Transaction API (JTA) or Connection.commit() processing, based on the setting of the
Toggle JTA button in the Employee application.

The following section describes how the Employee sample application is written to provide
transactional coordination between CICS and Db2.

JDBC type 2
When JDBC type 2 connectivity is used in CICS, all JDBC commit processing is coordinated
by using CICS and the CICS Db2 attachment. The Db2 JCC driver converts any JDBC
commit calls or rollback calls into a JCICS commit or a JCICS rollback call, which results in a
CICS sync point being taken. As a result, database updates are committed and backed out
when the CICS unit-of-work performs a sync point or rolls back.
108 Liberty in IBM CICS: Deploying and Managing Java EE Applications

In addition, if the JDBC application issues a Connection.commit() when type 2 connectivity is
used, the CICS to perform a sync point that commits the Db2 and CICS updates for the
unit-of-work.

The default Db2 behavior when a JDBC data source is used is to set autocommit on, which
causes the database manager to perform a commit operation after every SQL statement
completes. When used in CICS with type 2 JDBC connectivity, significant extra CICS sync
point processing can be generated; therefore, it is set to off by using the
setAutoCommit(false) method in our sample (see Example 4-11).

Example 4-11 JDBC commit processing in updateEmployee method

// Open connection to d/b and execute
conn = ds.getConnection();
conn.setAutoCommit(false);
…
statement.execute();

// Update recoverable CICS TSQ
TSQ tsq = new TSQ();
tsq.setName("DB2LOG");
String msg = String.format("Added %s with last name: %s",
 employee.getEmpNo(), employee.getLastName());
tsq.writeString(msg);

// Commit connection causing syncpoint for type 2
conn.commit();

As an alternative to the use of the Connection.commit() method, you can also use the JTA to
control the commit processing with JDBC type 2 connectivity (see Example 4-12 on
page 110). However, the use of JTA is less efficient than the use of the Connection.commit()
method because it requires another CICS syncpoint to be taken at the start of the
UserTransaction.

JCBC type 4
When JDBC type 4 connectivity is used in CICS, JDBC commit processing is not coordinated
by the CICS recovery manager because the CICS Db2 attachment is not involved. Instead,
the JTA should be used to create a Java global transaction, which is coordinated by the
Liberty transaction manager. This Java transaction can be used to coordinate the CICS
unit-of-work and updates to XA-capable resource managers, such as an XA data source. XA
is a two-phase commit protocol that is supported by many databases and application servers,
including Db2, Liberty, and CICS.

To use XA support with JDBC type 4 connectivity, it is first necessary to ensure that the data
source is configured to use XA. Our <dataSource> element was configured with the following
attribute to denote it as supporting XA:

type="javax.sql.XADataSource"

Note: By default, the Liberty data source support (which is now the default configuration in
CICS TS V5.4) rolls back on cleanup if no commit was issued before the end of the
request. Therefore, if Connection.commit() or a JCICS Task.commit() is not issued before
the end of the Liberty request, the updates to Db2 roll back, which results in an EXEC
CICS SYNCPOINT ROLLBACK being issued by CICS. This behavior can be modified by
setting the <dataSource> attribute commitOrRollbackOnCleanup="commit".
Chapter 4. Connecting to Db2 by using JDBC 109

In our Employee application, the updateEmployee() method in the
DatabaseOperationsManager class is used to control how updates are committed. When JTA
is enabled, the updateEmployee() method instantiates a UserTransaction and uses the
UserTransaction.commit() method to coordinate the JTA transaction, which then controls the
subordinate CICS unit-of-work and JDBC connection.

The default Db2 behavior when a JDBC data source is used is to set autocommit on if no JTA
transaction is active, which causes the database manager to perform a commit operation
after every SQL statement completes. This feature is set to off by using the
setAutoCommit(false) method in our sample for consistency with the type 2 connectivity
scenario.

Our example code is shown in Example 4-12.

Example 4-12 JDBC JTA commit processing in updateEmployee method

// Create JTA transaction and syncpoint
UserTransaction utx;
utx = (UserTransaction)
 InitialContext.doLookup("java:comp/UserTransaction");
utx.begin();

// Open connection to d/b and execute
conn = ds.getConnection();
conn.setAutoCommit(false);

…
statement.execute();

// Update recoverable CICS TSQ
TSQ tsq = new TSQ();
tsq.setName("DB2LOG");
String msg = String.format("Added %s with last name: %s",
 employee.getEmpNo(), employee.getLastName());
tsq.writeString(msg);

// Commit JTA transaction and the CICS UOW and XA data source
utx.commit();

4.6 Tracing JDBC

To diagnose problems with JDBC connectivity in CICS, it can be useful to use the Db2 JCC
driver trace. We used extra properties on our <dataSource> <properties.db2.jcc>
sub-element to activate tracing for data sources that are defined in our CICS Liberty
environment, as shown in Example 4-13.

Example 4-13 Enabling JCC trace properties

<properties.db2.jcc driverType="4"
 databaseName="DB2A"

Note: If a Connection.commit() is used in a JDBC application when JDBC type 4
connectivity is used, only the updates to the Db2 data source are committed. Any updates
that are part of the CICS unit-of-work must be committed separately.
110 Liberty in IBM CICS: Deploying and Managing Java EE Applications

 traceDirectory="/var/cicsts/SC8CICS2/wlp/servers/itsowlp1/logs/"
 traceFile="jcc.trc"
 traceFileAppend="false"
 traceLevel="-1"
 user="DB2USER"
 currentSchema="DSN81210"
 password="{xor}Oz1tLz4sLA=="
 serverName="localhost"
 portNumber="38000" />

For more information about the available JCC trace properties, see the Enabling trace for a
datasource connection section of the Collecting Data: Tracing with the IBM Data Server
Driver for JDBC and SQLJ page of the IBM Support website.
Chapter 4. Connecting to Db2 by using JDBC 111

https://www.ibm.com/support/docview.wss?rs=71&uid=swg21196160#dsconnection
https://www.ibm.com/support/docview.wss?rs=71&uid=swg21196160#dsconnection

112 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Chapter 5. Connecting to IBM MQ by using
JMS

In this chapter, we introduce Java Message Service (JMS) and describe how we deployed
two sample Java Messaging Service API applications to our CICS Liberty JVM server. The
two JMS applications we used were from the CICS sample JMS application,
cics-java-liberty-mq-jms repository, which is available from the CICS development
organization’s section in GitHub.

This chapter includes the following topics:

� 5.1, “Introduction to JMS” on page 114
� 5.2, “JMS sample application” on page 116
� 5.3, “Required CICS resources” on page 122
� 5.4, “Required IBM MQ resources” on page 125
� 5.5, “Testing the sample applications” on page 126
� 5.6, “Security” on page 129
� 5.7, “Transport Layer Security” on page 136

5

Tip: Support for JMS in CICS differs from the JMS support that was added in the CICS TS
V5.2 APAR PI32151. The original support for JMS in CICS was enabled in a CICS OSGi
JVM server by adding IBM MQ OSGi JAR files to the OSGI_BUNDLES directive in a CICS
JVM profile and connectivity to a queue manager was managed by CICS using MQCONN
resource definitions.

No support was available for message-driven beans in the original support. Also, no
support was available for MQMONITOR as a resource in the Liberty JVM support.
© Copyright IBM Corp. 2018. All rights reserved. 113

https://github.com/cicsdev
https://github.com/cicsdev

5.1 Introduction to JMS

In this section, we introduce JMS and message driven beans (MDB) and describe the
importance of the Java Naming and Directory Interface (JNDI) when JMS applications are
written.

5.1.1 Java Message Service

JMS is an application programming interface (API) that is used for sending and receiving
messages between applications. When a Java application uses JMS classes and methods to
send and receive messages as described by the Java EE specification for JMS, that
application is independent of the underlying messaging services provider; for example, IBM
MQ, and IBM WebSphere Application Server. Because of this independence, the underlying
message provider can be changed without rewriting any application code.

A JMS non-MDB application interacts with ConnectionFactory and Destination objects. An
instance of a ConnectionFactory object includes instance variables that contain the
connection properties that are specific to a queue manager (for example, whether server or
client bindings, queue manager name, host, or port). A Destination object includes the
instance variables that are based on the values of the properties of the queue or topic. Both
types of objects also include the methods that are required to interact with their respective
targets.

5.1.2 Message Driven Beans

An MDB is Java code that is started or triggered when a message arrives on a designated
queue or topic. The MDB features a method that is named onMessage, which is automatically
started by the arrival of a message. The message is passed as a parameter to the onMessage
method.

5.1.3 Java Naming and Directory Interface

JNDI is a standard interface to a repository, or name space, which allows resources to be
located by name. Resources might include simple text values, JDBC data sources, JMS, and
objects. Applications can use JNDI to locate resources at run time, which minimizes the
coupling between applications and the configuration of the resource that they need.

From a JMS perspective, the resources that are defined to JNDI are Connection Factories or
Destinations (for example, queues or topics). A JMS application uses a JNDI lookup to create
a ConnectionFactory object. A JMS application also uses a JNDI lookup to create Destination
objects.

The use of JNDI lookups of JMS resources at runtime means that JMS applications can be
written without providing specific names for a queue manager, queues, or topics and without
specifying an explicit connection or destination name. That is, a JMS application can use the
same application-specific names (known as a JNDI name or alias) for queue managers,
queues, or topics during developing, test, and production. This configuration allows an
administrator or deployer to associate these application names with the actual queue
manager connection details, queue properties, and so on, at runtime.
114 Liberty in IBM CICS: Deploying and Managing Java EE Applications

http://wstc80:557080/jmsweb/?test=putq
http://wstc80:57080/jmsweb/?test=putq

Example 5-1 shows a Liberty server.xml name space configuration in which IBM MQ is the
messaging provider. It defines one JMS connection factory for a local queue manager
(LMQM) and four JMS connection factories for remote connections to queue managers
(Transport Layer Security [TLS] and non TLS). One JMS destination is defined.

Example 5-1 Liberty server.xml

<jmsConnectionFactory jndiName="jms/LMQM">
 <properties.wmqJms channel="SYSTEM.DEF.SVRCONN" queueManager="QML1"
tranportType="BINDINGS"/>
</jmsConnectionFactory>

<jmsConnectionFactory jndiName="jms/QML1">
 <properties.wmqJms channel="SYSTEM.DEF.SVRCONN" hostName="mpx1" port="1417"

queueManager="QML1"/>
</jmsConnectionFactory>

<jmsConnectionFactory jndiName="jms/QML2">
 <properties.wmqJms channel="SYSTEM.SSL.SVRCONN" hostName="mpx2" port="1418"

queueManager="QML2"
 sslCertStores="keystore.jks"/>
</jmsConnectionFactory>

<jmsConnectionFactory jndiName="jms/QML3">
 <properties.wmqJms channel="SYSTEM.DEF.SVRCONN" hostName="mpx1" port="1419"

queueManager="QML3"/>
</jmsConnectionFactory>

<jmsConnectionFactory jndiName="jms/QML4">
 <properties.wmqJms channel="SYSTEM.DEF.SVRCONN" hostName="mpx2" port="1420"

queueManager="QML4"/>
</jmsConnectionFactory>

<jmsQueue id="Queue" jndiName="jms/Queue">
 <properties.wmqJms baseQueueName="SYSTEM.DEFAULT.LOCAL.QUEUE"/>
</jmsQueue>

The JMS application can look up a JNDI name jms/QML1 to instantiate the ConnectionFactory
and lookup JNDI name jms/Queue to instantiate a destination object. The use of a JNDI
lookup means that the JMS resources can be changed with no modifications that are required
to the application when the runtime environment is changed.

For Liberty, the jmsConnectionFactory and jmsQueue elements in the server.xml binds the
resources into the JNDI name space. The JMS application performs a lookup into the name
space and the name space information is used to instantiate Java objects whose instance
variables and methods provide the means to interact with queue managers and queues.

As shown in Example 5-2 on page 116, the Java object qcf is created and its instance
variables are populated by starting a context lookup of JNDI name jms/QML1. The same
applies for the Java object destination (a queue) when a context lookup of JNDI name
jms/Queue is performed.
Chapter 5. Connecting to IBM MQ by using JMS 115

http://wstc80:557080/jmsweb/?test=putq
http://wstc80:557080/jmsweb/?test=putq

Example 5-2 JMS JNDI lookup code sample

ConnectionFactory queueConnectionFactory = null;
Destination destination = null;
// Lookup the connection factory using string "jms/QML1"
ConnectionFactory queueConnectionFactory = (ConnectionFactory)

context.lookup("jms/QML1");
Destination destination = (Destination)

context.lookup("jms/Queue");

The Java code in Example 5-2 shows the JNDI lookup of a ConnectionFactory and
Destination object.

After the ConnectionFactory objects and any destinations objects are created or instantiated,
they can be used by the Java code to connect to the queue manager, establish a session, and
to send and receive of messages to queues or publish messages to topics.

5.1.4 Connection pooling

The overhead of establishing a connection to a queue manager can be expensive in terms of
resource consumption and time. To help reduce these costs, the Liberty runtime provides for
connection pooling. Connection pooling means that the runtime container (that is, Liberty in
CICS in our scenario) maintains a pool of connections and an available connection in the pool
that is not actively being used. These connections can be reused by a new request, which
avoids the cost of creating a connection. Connection pools can be configured to specify the
following parameters:

� Maximum and minimum pool size

� Connection request timeout period, which is the time that a request waits for a response
before ending the request

� Aged timeout period, which specifies a period that an inactive connection is purged from
the pool

5.2 JMS sample application

In this section, we describe the sample application that is deployed to CICS Liberty. The JMS
sample application that we used, cics-java-liberty-mq-jms, is available on the
cicsdev/cics-java-liberty-mq-jms page of the GitHub website.

This sample application features two Java classes: MQJMSDemo and MySimpleMDB.

MQJMSDemo is started by using a web browser and accepts a query parameter with one of the
following values:

� readq: Receive a message from the test queue.
� putq: Send a message to the test queue.
� putmdbq: Send a message to the MDB queue.
� readtsq: Display the contents of the CICS temporary storage queue.

MQJMSDemo is started by entering a URL that is based on the CICS region’s host name and the
port on which the CICS Liberty JVM server is listening along with the URL path
/jms?test=parameter; for example, http://host:port/jmsweb?test=readq reads a message
from the test queue.
116 Liberty in IBM CICS: Deploying and Managing Java EE Applications

http://host:port/jmsweb?test=readq
http://host:port/jmsweb?test=readq
http://host:port/jmsweb?test=putmdbq
https://github.com/cicsdev/cics-java-liberty-mq-jms

MySimpleMDB is started by using the MQJMSDemo application to put a message on the MDB
trigger queue; for example, http://host:port/jmsweb?test=putmdbq.

The MySimpleMDB application is passed the message as a parameter and writes the
contents of the message along with a date and time stamp to a CICS temporary storage
queue.

5.2.1 Modifying the JMS sample application

To build and deploy the sample applications, we needed a development environment with the
CICS Explorer version 5.4.x with CICS SDK for Java EE and Liberty plug-in installed.

The source for the project is available on the cicsdev/cics-java-liberty-mq-jms page of the
GitHub website.

At the website, we clicked Clone or download and then, Download ZIP. The master branch
of the repository was then downloaded as a .zip file that is named
cics-java-liberty-mq-jms.master.zip in our download directory.

To modify the application, we imported it into our CICS Explorer workspace by completing the
following steps:

1. In our CICS Explorer session, we switched to the Java perspective.

2. We selected File on the toolbar.

3. From the drop-down list, we selected the Import option.

4. In the Import-Select window, we selected the Existing Projects into Workspace option
under the General folder.

5. In the Import-Import Project window, we selected the Select archive file option.

6. We clicked Browse to locate the Download directory where we selected
cics-java-liberty-mq-jms.master.zip.

7. We clicked Open to import the archive file into the workspace.

When complete, our workspace resembled the window that is shown in Figure 5-1 on
page 118.
Chapter 5. Connecting to IBM MQ by using JMS 117

https://github.com/cicsdev/cics-java-liberty-mq-jms
https://github.com/cicsdev/cics-java-liberty-mq-jms

Figure 5-1 Imported JMS sample applications

Before the bundles can be deployed into the Liberty JVM server, the bundles must be
changed to reflect the JVM server in which our Liberty JVM server is running. As provided
from GitHub, the JVM Server is set to DFHWLP, which is not the name of our JVM Server.

We expanded the two bundle projects and changed the contents of the two CICS bundles
files com.ibm.cicsdev.mqjms.cf.web.warbundle and
com.ibm.cicsdev.mqjms.mdb.ear.earbundle so that the jvmserver property is set to
ITOSJVM1, as shown in Figure 5-2.

Figure 5-2 The com.ibm.cicsdev.mqjms.cf.web.warbundle
118 Liberty in IBM CICS: Deploying and Managing Java EE Applications

5.2.2 Deploying the JMS sample application

After the bundle is updated with the target JVM Server name, the bundle is ready for
deployment.

We switched to the Remote Systems Explorer perspective and complete the following steps:

1. We opened the Host Connections tab to create an FTP connection to our z/OS image.

2. After we connected to the host, we switched to the Java EE perspective and selected the
com.ibm.cicsdev.mqjsm.cf.cicsbundle project.

3. We right-clicked and selected the Export Bundle Project to z/OS UNIX System
Filesystem option.

4. We wanted to export the bundle to the bundle directory that is configured in the CICS
region, so we selected the Export to a specific location in the file system option.

5. We clicked the Next button.

6. In the Export Bundle window, we entered /var/cicsts/SC8CICS7/ITSOJVM1/bundles in the
field that is next to Parent Directory.

7. We clicked Finish.

5.2.3 Configuring Liberty for the JMS sample application

The .zip file that was downloaded from GitHub also included a server.xml file that we used
to configure the Liberty JVM server so that JMS and this application is supported.

We modified the server.xml file (see Example 5-3) by completing the following tasks:

� Set the value of the wmqJmsClient.rar.location variable to the location of the IBM MQ
resource adapter archive (RAR) file (for example, wmq.jmsra.rar). This setting provides
runtime access to JMS Java classes and any required executables to the CICS Liberty
JVM server.

� Changed all occurrences of port attribute to the TCP/P port on which the channel initiator
task is listening.

� Changed all occurrences of the queueManager attribute to the queue manager subsystem
name.

Example 5-3 Customized server.xml file

<server description="MQ JMS Liberty sample">
 <featureManager>

 <feature>wmqJmsClient-2.0</feature>
 <feature>mdb-3.2</feature>
 <feature>jndi-1.0</feature>

 </featureManager>

Note: If the bundle was deployed, the Clear existing contents of the Bundle
directory option must be selected.

Note: A resource adapter archive file is provided by a software vendor. It contains the
Java code that is required to access vendor’s resource. For more information about the
resource adapter archive that is provided by IBM MQ, see the Using the IBM MQ
resource adapter page of IBM Knowledge Center.
Chapter 5. Connecting to IBM MQ by using JMS 119

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.dev.doc/q031610_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.dev.doc/q031610_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.dev.doc/q031610_.htm

<variable name="wmqJmsClient.rar.location"
value="/usr/lpp/mqm/V9R0M0/java/jca/wmq.jmsra.rar"/>

<jmsQueueConnectionFactory connectionManagerRef="ConMgrJms"
 jndiname="jms/qcf1">
 <properties.wmqJms channel="WAS.JMS.SVRCONN"
 hostName="localhost"
 port="1414"
 queueManager="M2A1"
 transportType="CLIENT"/>
</jmsQueueConnectionFactory>

<connectionManager id="ConMgrJms" maxPoolSize="20"/>

<jmsActivationSpec
id="com.ibm.cicsdev.mqjms.mdb.ear/com.ibm.cicsdev.mqjms.mdb/MySimpleMDB">
<properties.wmqJms destinationRef="jms/mdbq"

 destinationType="javax.jms.Queue"
 channel="WAS.JMS.SVRCONN"
 hostName="localhost"
 port="1414"
 queueManager="M2A1"
 transportType="CLIENT" />

</jmsActivationSpec>

<jmsQueue id="jms/simpleq" jndiName="jms/simpleq">
<properties.wmqJms baseQueueName="DEMO.SIMPLEQ" />

</jmsQueue>

<jmsQueue id="jms/mdbq" jndiName="jms/mdbq">
<properties.wmqJms baseQueueName="DEMO.MDBQUEUE" />

</jmsQueue>
</server>

We copied and renamed the file to a location on the host and added an include statement
(see Example 5-4) for this file to the server.xml file that is used by the CICS Liberty JVM
server.

Example 5-4 Update to the server.xml for adding support JMS

<?xml version="1.0" encoding="UTF-8"?><server description="CICS Liberty profile
sample configuration">
<include location="/var/cicsts/SC8CICS7/wlp/servers/itsowlp1/jms.xml"
optional="true"/>

 <!-- Enable features -->
 <featureManager>
 <feature>cicsts:core-1.0</feature>
 <feature>cicsts:defaultApp-1.0</feature>
 <feature>jsp-2.3</feature>
120 Liberty in IBM CICS: Deploying and Managing Java EE Applications

5.2.4 Describing the JMS updates to the JVM server profile

The following elements are added to the CICS Liberty JVM server by including jms.xml in the
server.xml configuration file:

� featureManager: The use of JMS and IBM MQ in a CICS Liberty JVM server required the
addition of the following features:

– wmqJmsClient-2.0: Adds support for the IBM MQ messaging provider by using JMS 2.0
interfaces.

– mdb-3.2: Adds support for message driven beans.

– jndi-1.0: Adds support for doing JNDI lookups.

� wmqJmsClient.rar.location: Provides the directory location for the IBM MQ provided
resource adapter that contains the required code to connect to IBM MQ.

� jmsQueueConnectionFactory: Binds a ConnectionFactory into the JNDI name space.

� jmsActivationSpec: Associates with one or more message-driven beans with the JNDI
names the destinations that are used by them to receive messages.

� jmsQueue: Binds a queue object into the JNDI name space.

� connectionManager: Provides a means to manage the connections between the CICS
Liberty JVM server and the queue managers. Properties that can be set include the
following examples:

– The maximum and minimum number of connections to be maintained in a common
pool of connections.

– Parameters that are used to remove stale or old connections from the pool.

– The frequently with which pool maintenance is performed.

Tip: In our example, IBM MQ was installed on the same image on which we were
running. If the IBM MQ file system is not available on your system, follow the
instructions that are found on the Obtaining the IBM MQ Resource Adapter for the
WebSphere Application Server Liberty Profile page of the IBM Support website. Install
the resource adapter in any directory you choose. This solution is for client connections
only.
Chapter 5. Connecting to IBM MQ by using JMS 121

https://www-01.ibm.com/support/docview.wss?uid=swg21633761
https://www-01.ibm.com/support/docview.wss?uid=swg21633761

5.3 Required CICS resources

The two applications were deployed to the CICS, as described in 5.2.2, “Deploying the JMS
sample application” on page 119. Running these applications required the CICS resources
that are described in this section.

5.3.1 BUNDLE resources

Each application required a BUNDLE resource. The BUNDLE definition for the MQJMSDemo
sample application is shown in Figure 5-3.

Figure 5-3 CICS BUNDLE definition for sample application MQJMSDemo

The BUNDLE definition for the MySimpleMDB sample application is shown in Figure 5-4.

Figure 5-4 CICS Bundle definition for sample application MySimpleMDB

These resources were installed in to the CICS region SC8CICS7.
122 Liberty in IBM CICS: Deploying and Managing Java EE Applications

5.3.2 URIMAP resource

A URIMAP resource was defined so that the MQJMSDemo application runs under its own
transaction identifier, as shown in Figure 5-5.

Figure 5-5 CICS resource definition for JMS URIMAP (1 of 2)

Scroll forward to show the JJMS transaction (), as shown in Figure 5-6.

Figure 5-6 CICS resource definition for JMS URIMAP (2 of 2)

These resources were installed in to the CICS region.
Chapter 5. Connecting to IBM MQ by using JMS 123

5.3.3 Transaction resources

Transaction JJMS was defined as alternative way to start program DFHJSTHP, which is an
alias for CJSA (see Figure 5-7).

Figure 5-7 CICS resource definition for JMS transaction JMS

After these transaction definitions are installed, they are used to isolate the JMS sample from
other applications that are running in CICS Liberty, as shown in Figure 5-8.

Figure 5-8 CICS resource definition for the JMDB JMS transaction

Tip: The transaction for the MDB application is specified by JVM profile directive
-Dcom.ibm.cics.jvmserver.unclassified.tranid=JMDB.

MDBs run under CJSU because they are unclassified requests (they are not classified as
HTTP requests). Therefore, they fall into the category of unclassified threads that need a
CICS transaction context.
124 Liberty in IBM CICS: Deploying and Managing Java EE Applications

5.4 Required IBM MQ resources

The following queues are required for the sample applications:

� Queue DEMO.SIMPLEQ is used by MQJMSDemo
� Queue DEMO.MDBQUEUE is used by MySimpleMDB

We used IBM MQ Explorer to define these queues.

5.4.1 Configuring IBM MQ Explorer

We downloaded and installed IBM MQ Explorer. We then started it and configured a
connection to the queue manager M2A1 that used port 1414 (the same port that appears in
the Liberty configuration file).

5.4.2 Defining the queues

After we were connected to the queue manager, we expanded the folder for M2A1 on
'wstc80(1414)' and right-clicked Queues.

We selected New and followed the steps to create a local queue that is named
DEMO.SIMPLEQ and DEMO.MDBQUEUE.

After the process was completed, two queues were ready for our testing. We used an
Explorer filter to limit the display to only the queues whose names began with “DEMO”, as
shown in Figure 5-9.

Figure 5-9 Using the IBM MQ Explorer to display information about the DEMO queues

Tip: IBM MQ Explorer is available as an IBM MQ Support Pac, which can be downloaded
from the MS0T: IBM MQ Explorer page of the IBM Support website. It also is provided as
part of the Linux or Windows IBM MQ installation.
Chapter 5. Connecting to IBM MQ by using JMS 125

http://www-01.ibm.com/support/docview.wss?uid=swg24021041

5.5 Testing the sample applications

The next step is to test the applications by using a web browser to start the CICS Liberty
applications.

5.5.1 Testing the MQJMSDemo application

To test the MQJMSDemo sample application, we used Firefox and browsed to
http://wstc80:57080/jmsweb/?test=putq (see Figure 5-10).

Figure 5-10 Using a browser to put a message on the DEMO.SIMPLEQ queue

For more information, see 5.2, “JMS sample application” on page 116. Clicking Refresh in
the browser window writes another message to the queue.
126 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Switching to the IBM MQ Explorer session (see Figure 5-11), we browsed the contents of the
DEMO.SIMPLEQ queue, which now contained multiple messages.

Figure 5-11 Using IBM MQ Explorer to display the messages on the DEMO.SIMPLEQ

Browsing to http://wstc80:57080/jmsweb/?test=readq starts the method in the sample
application that drains all of the messages from the queue and displays them in the browser,
as shown in Figure 5-12.

Figure 5-12 Using the browser to get all of the messages from the DEMO.SIMPLEQ
Chapter 5. Connecting to IBM MQ by using JMS 127

5.5.2 Testing the MySimpleMDB application

To test the MySimpleMDB sample application, we used Firefox (see Figure 5-13) and
browsed to http://wstc80:57080/jmsweb/?test=putmdbq.

Figure 5-13 Writing a message to the queue that triggers the MDB application

For more information, see 5.2, “JMS sample application” on page 116. Clicking Refresh in
the browser writes more message to queue.

In a CICS terminal session, we entered transaction CEBR RJMSTSQ to display the contents of
the temporary storage queue, as shown in Figure 5-14.

Figure 5-14 Displaying the contents of the default TSQ
128 Liberty in IBM CICS: Deploying and Managing Java EE Applications

5.5.3 Use of the Execution Diagnostic Facility

The CICS provided Execution Diagnostic Facility (EDF) can be used to debug the CICS
commands that are issued by the sample applications as they run.

Use of CEDX
We use the CEDX transaction to start an EDF trace on the sample applications.

Entering CEDX JMDB and browsing to the URL in a web browser allowed us to step through the
CICS commands in the MySimpleMDB application, as shown in Figure 5-15.

Figure 5-15 EDF display showing the write to TSQ RJMSTSQ in MySimpleMDB

5.6 Security

We wanted to understand the requirements for accessing IBM MQ by using JMS from the
CICS Liberty JVM server with IBM MQ security for connections and queues enabled.

5.6.1 RACF resources

We started by defining users, groups, and IBM MQ-related RACF resources (any SAF
product is supported). For more information about the RACF classes we used, see the RACF
security classes page of IBM Knowledge Center.

Users and groups
We created the following groups to control access by groups rather than by individual users:

� MQUSERS for general IBM MQ users who need access to basic IBM MQ functions
� DEMOUSR for users who run the sample applications
� MQSTC for the identities of the IBM MQ started tasks and CICS regions

We used the following RACF commands:

� ADDGROUP MQUSERS
� ADDGROUP MQSTC
� ADDGROUP DEMOUSR
Chapter 5. Connecting to IBM MQ by using JMS 129

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.sec.doc/q011430_.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.sec.doc/q011430_.html

� CONNECT (JMSUSER,OTHRUSR,CICSREGN) GROUP(MQUSER)
� CONNECT JMSUSER GROUP(DEMOUSR)
� CONNECT M2AG GROUP(MQSTC)

The following parameters are featured in these commands:

� M2AG is the identity that is used by the IBM MQ master.

� Channel initiator address spaces.

� CICSREGN is the identity that is used by the CICS region.

� JMSUSER is the JMS test user identity for the sample application.

� OTHRUSR is an IBM MQ user that should not have the ability to run the sample
applications.

MQADMIN resources
We began by enabling IBM MQ RESLEVEL checking by using the RDEFINE command to
create an RESLEVEL resource for the queue manager in the MQADMIN RACF class, as
shown in the following example:

RDEFINE MQADMIN M2A1.YES.SUBSYS.SECURITY OWNER(SYS1)
RDEFINE MQADMIN RESLEVEL OWNER(SYS1)

Protecting the latter resource means that, different identities (for example, task or address
space) are used for authorization depending on the type of connection.

MQCONN resources
We defined an MQCONN resource for the channel initiator task so it can connect to the
master task, as shown in the following example:

RDEFINE MQCONN M2A1.CHIN CLASS(MQCONN) UACC(NONE)
PERMIT M2A1.CHIN CLASS(MQCONN) RESET
PERMIT M2A1.CHIN CLASS(MQCONN) ID(MQSTC) ACCESS(READ)

MQQUEUE resources
We defined a set of MQQUEUE resources for the system-required queues and set of generic
profiles for the JMS queues, as shown in the following example:

RDEFINE MQQUEUE M2A1.DEMO.** OWNER(SYS1)
PERMIT M2A1.DEMO.** CLASS(MQQUEUE) RESET
PERMIT M2A1.DEMO.** CLASS(MQQUEUE) ID(DEMOUSR,MQSTC) ACC(UPDATE)

All of these resource changes were activated by using a SETROPTS REFRESH TSO command to
rebuild the RACF in-storage profiles, as shown in the following example:

SETROPTS RACLIST(MQADMIN,MQQUEUE,MQCONN) REFRESH

The use of an MVS modify command refreshes the queue managers that are in storage
security cache, as shown in the following example:

-M2A1 REFRESH SECURITY(*)
130 Liberty in IBM CICS: Deploying and Managing Java EE Applications

5.6.2 JMS security scenarios

We tested the following security scenarios regarding the MQJMSDemo application (the
MySimpleMDB application did not interact directly with any IBM MQ resources):

� No security
� Application managed security
� Container managed security

No security
The first scenario was the simplest. The MQJMSDemo sample application and the
server.xml did not feature any provisions for providing a user identity or password. Therefore,
we ran it as is and used the IBM MQ Explorer to identify the user’s authority was used to put
the messages on the queue.

When we ran our initial test, the user identity that was associated with the messages was the
CICS region identity CICSREGN, as shown in Figure 5-16.

Figure 5-16 No security
Chapter 5. Connecting to IBM MQ by using JMS 131

Next, we created an IBM MQ channel authentication record to map the CICS region’s identity
to another identity (for example, JMSUSER), as shown in Figure 5-17.

Figure 5-17 Channel authentication record

When we ran our test again, the user identity that was associated with the messages was the
identity that was assigned by the channel authentication rule (JMSUSER), as shown in
Figure 5-18.

Figure 5-18 Message browser
132 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Application managed security
For application managed security, we modified the createContext method in the Java code in
MQJMSDemo by adding user name and password fields.

The first scenario that we tested was with a user with access to IBM MQ and the sample
application (for example, JMSUSER), as shown in the following example:

String userName = "JMSUSER";
String password = "JMSUSER";
JMSContext context = qcf.createContext(userName,password);

Before we started testing the modified application for application managed security, we
removed the channel authentication record and cleared the queue.

We started http://wstc80:557080/jmsweb/?test=putq several times and then used the IBM
MQ Explorer to display the User identifier of the messages in the DEMO.SIMPLEQ. As
expected, it was set to JMSUSER, as shown in Figure 5-19.

Figure 5-19 Contents of DEMO.SIMPLEQ with JMS application security

Next, we tested with a user with access to IBM MQ (for example, OTHRUSR) but with no
access to the DEMO.SIMPLEQ queue, as shown in the following example:

String userName = "OTHRUSR";
String password = "OTHRUSR";

We started http://wstc80:557080/jmsweb/?test=putq, which failed with the following
message:

Error 500: javax.servlet.ServletException: ERROR on JMS send JMSWMQ2007: Failed
to send a message to destination 'DEMO.SIMPLEQ'.

Tip: We used MVS modify command -M2A1 REFRESH QMGR TYPE(CONFIGEV)
OBJECT(CHLAUTH) to refresh the channel authentication records in the queue manager.
Chapter 5. Connecting to IBM MQ by using JMS 133

The z/OS SYSLOG included these messages, which indicated that this user did not have
access to the DEMO.SIMPLEQ queue, as shown in Example 5-5.

Example 5-5 RACF messages displayed when there is no access to the DEMO queues

ICH408I USER(OTHRUSR) GROUP(SYS1) NAME(Non JMS User)
 M2A1.DEMO.SIMPLEQ CL(MQQUEUE)
 INSUFFICIENT ACCESS AUTHORITY
 FROM M2A1.DEMO.** (G)
 ACCESS INTENT(UPDATE) ACCESS ALLOWED(NONE)

Container-managed security
For container-managed security, we modified the sample application. As before, we began
testing by clearing the queue. Also, to verify that we were using the intended container
manager security values, we left the code in the sample application that set the user to
OTHRUSR.

The first modification to the sample application was to add a resource injection annotation for
the qcf ConnectionFactory, as shown in Example 5-6.

Example 5-6 Resource annotation

/** JMS connection factory */
@Resource(authenticationType=AuthenticationType.CONTAINER`,name="jms/qcf1")
private static ConnectionFactory qcf;

Adding the resource injection meant that the context lookup of the JMS ConnectionFactory
was no longer needed; therefore, this code was removed by making it a comment, as shown
in Example 5-7.

Example 5-7 Removing context lookup for a ConnectionFactory

// JNDI lookups for all the JNDI strings in this test
try {

 InitialContext ctx = new InitialContext();
 //qcf = (ConnectionFactory) ctx.lookup(JMS_CF1);
 simpleq = (Queue) ctx.lookup(JMS_SIMPLEQ);
 mdbq = (Queue) ctx.lookup(JMS_MDBQ);
} catch (NamingException ne) {
 errmsg = " ERROR: On JNDI lookup in servlet initialisation ";
 throw new ServletException(errmsg, ne);

}

The server.xml file needed to be updated to include an authData element with container user
identity and password. Also, the jmsConnectionFactory needed to be updated with a
containAuthDataRef, which identified the JMS authData element, as shown in Example 5-8.

Example 5-8 server.xml updates for container managed security

 <jmsConnectionFactory connectionManagerRef="ConMgrJms"
 containerAuthDataRef="jmsAuth"
 jndiname="jms/qcf1">
 <properties.wmqJms channel="WAS.JMS.SVRCONN"
 hostName="localhost"
 port="1414"
134 Liberty in IBM CICS: Deploying and Managing Java EE Applications

 queueManager="M2A1"
 transportType="CLIENT"/>
 </jmsConnectionFactory>

 <authData id="jmsAuth" user="JMSUSER" password="JMSUSER"/>

We started http://wstc80:557080/jmsweb/?test=putq several times and used the IBM MQ
Explorer to display the User identifier of the messages in the DEMO.SIMPLEQ. As expected,
it was set to JMSUSER, as shown in Figure 5-20.

Figure 5-20 IBM MQ Explorer list showing messages created with a container managed identity

5.6.3 Summary

We tested with no special provision for security and observed that the CICS region’s RACF
identity was used to put messages on the queue. Next, we tested the application managed
security, which means that the application provides the security information. Finally, we tested
container managed security, which means that the runtime environment (for example, Liberty)
provides the security information.
Chapter 5. Connecting to IBM MQ by using JMS 135

5.7 Transport Layer Security

Next, we wanted to enable Transport Layer Security (TLS) between the CICS Liberty JVM
server and the queue manager. This testing required defining more RACF resources and
making some other configuration changes to server.xml.

5.7.1 RACF resources

We started by defining the required digital certificates.

Certificate authority certificate
We defined a single certificate authority certificate, which is used to sign all of the personal
certificates we use during our testing.

The RACF commands that are used to define this certificate are shown in Example 5-9.

Example 5-9 Commands to generate a certificate authority certificate

RACDCERT CERTAUTH GENCERT
 SUBJECTSDN(CN('MQ CA') OU('ITSO') O('IBM') C('US'))
 WITHLABEL('MQ CA')
 NOTAFTER(DATE(2020/12/31))

Personal certificates
We used the IBM MQ CA certificate to create and signed two personal certificates, one for the
channel initiator task and one for the CICS Liberty JVM server.

We used the commands that are shown in Example 5-10 to define these certificates.

Example 5-10 Commands to create and sign personal certificates

RACDCERT ID(M2AG) GENCERT
SUBJECTSDN(CN('MQ CHIN') OU('ITSO') O('IBM') C('US'))
WITHLABEL('MQ CHIN') SIGNWITH(CERTAUTH LABEL('MQ CA'))
NOTAFTER(DATE(2020/12/31)

RACDCERT ID(CICSREGN) GENCERT

SUBJECTSDN(CN('CICSREGN') OU('ITSO') O('IBM') C('US'))
WITHLABEL('CICSREGN') SIGNWITH(CERTAUTH LABEL('MQ CA'))
NORAFTER(DATE(2020/12/31)

MQ2G is the RACF authority that is used by the IBM MQ channel initiator task and
CICSREGN is the RACF authority of the CICS region.
136 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Key rings
Next, we used the commands that are shown in Example 5-11 to define the key rings and
connect the CA and personal certificates to the respective key rings.

Example 5-11 Commands to create key rings and connect certificates to the key rings

RACDCERT ID(M2AG)
ADDRING(MQCHIN.KeyRing)

RACDCERT ID(M2AG)

CONNECT(RING(MQCHIN.KeyRing)
LABEL('MQ CA') CERTAUTH)

RACDCERT ID(M2AG)

CONNECT(RING(MQCHIN.KeyRing)
LABEL('MQ CHIN') DEFAULT)

RACDCERT ID(CICSREGN)
ADDRING(CICS.KeyRing)

RACDCERT ID(CICSREGN)

CONNECT(RING(CICS.KeyRing)
LABEL('MQ CA') CERTAUTH)

RACDCERT ID(CICSREGN)

CONNECT(RING(CICS.KeyRing)
LABEL('CICSREGN') DEFAULT)

We changed the queue manager properties to add support for TLS by using the new key ring
and personal certificate, as shown in Figure 5-21.

Figure 5-21 Configuring support for TLS in a queue manager
Chapter 5. Connecting to IBM MQ by using JMS 137

We also configured the cipher on the channel to be used for TLS, as shown in Figure 5-22.

Figure 5-22 Specify a cipher on a channel

We added a keystore for a RACF key ring and encryption cipher information to the
server.xml file, as shown in Example 5-12.

Example 5-12 server.xml updates

 <ssl id="jmsSSLConfig"
 keyStoreRef="defaultKeyStore"
 trustStoreRef="defaultKeyStore"
 sslProtocol="TLSv1.2"
 enabledCiphers="SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256"
 clientKeyAlias="CICSREGN"/>

 <keyStore id="defaultKeyStore"
 location="safkeyring:///CICS.KeyRing"
 password="password" type="JCERACFKS"
 fileBased="false" readOnly="true" />

 <jmsConnectionFactory connectionManagerRef="ConMgrJms"
 containerAuthDataRef="jmsAuth"
 jndiname="jms/qcf1">

 <properties.wmqJms channel="ITSO.SSL.SVRCONN"
 hostName="localhost"
 port="1414"
 queueManager="M2A1"
 transportType="CLIENT"
 sslcipherSuite="SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256"/>
138 Liberty in IBM CICS: Deploying and Managing Java EE Applications

 </jmsConnectionFactory> "

 <authData id="jmsAuth" user="JMSUSER" password="JMSUSER"/>

After we ran a test, we ran an IBM MQ DISPLAY command to display the SSLCERTU and
MCAUSER values on the channel, as shown in Example 5-13.

Example 5-13 Output of a IBM MQ DISPLAY CHSTATUS commands

-M2A1 DISPLAY CHSTATUS(ITSO.*) MCAUSER SSLCERTU
CSQM293I -M2A1 CSQMDRTC 1 CHSTATUS FOUND MATCHING REQUEST CRITERIA
CSQM201I -M2A1 CSQMDRTC DISPLAY CHSTATUS DETAILS 634
CHSTATUS(ITSO.JMS.SVRCONN)
CHLDISP(PRIVATE)
CONNAME(127.0.0.1)
CURRENT
CHLTYPE(SVRCONN)
STATUS(RUNNING)
SUBSTATE(RECEIVE)
STOPREQ(NO)
RAPPLTAG(IBM MQ Client for Java)
SSLCERTU(CICSREGN)
MCAUSER(JMSUSER)
 END CHSTATUS DETAILS
CSQ9022I -M2A1 CSQMDRTC ' DISPLAY CHSTATUS' NORMAL COMPLETION

This presence of the user identity that is associated with the CICS Liberty’s keyring default
certificate indicated that a successful TLS handshake was performed between the CICS
Liberty JVM server and IBM MQ and that the traffic between the two was being encrypted.

5.7.2 TLS debugging hints and tips

During our testing, we added the Liberty logging element to the server.xml to generate
security and TLS trace records, as shown in Example 5-14.

Example 5-14 Updating server.xml

<logging
 traceSpecification="com.ibm.ws.security.*=all:SSLChannel=all:SSL=all"
 traceFileName="trace.log"
 maxFileSize="20"
 maxFiles="10"
 traceFormat="BASIC

Note: The clientAuthenticationSupported was set to true in our example; however, it
was not necessary because our channel did not provide a client certificate label. If a
channel did provide a client certificate, that certificate allows mutual authentication to
occur.

The clientKeyAlias matched the label of the personal certificate connect to the CICS
region’s JMS key ring, CICS.KeyRing.
Chapter 5. Connecting to IBM MQ by using JMS 139

A Java directive element was added to the CICS JVM profile ITSOJVM1 to generate JSSE
trace records to the STDOUT output location, as shown in Example 5-15.

Example 5-15 Updating ITSOJVM1 (JVM Server profile)

-Djavax.net.debug=ssl
140 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Chapter 6. Configuring Transport Layer
Security support

In this chapter, we describe how to configure Secure Sockets Layer (SSL), which is now
known as Transport Layer Security (TLS), with a CICS Liberty JVM server. We also describe
how to configure TLS client and server authentication scenarios and provide information on
how to analyze the use of the IBM z14 cryptographic hardware when TLS is used.

This chapter includes the following topics:

� 6.1, “JSSE and JCE” on page 142
� 6.2, “TLS server authentication by using a Java keystore” on page 143
� 6.3, “TLS server authentication by using a RACF key ring” on page 149
� 6.4, “TLS client authentication” on page 152
� 6.5, “Hints and tips when using TLS” on page 156
� 6.6, “Using cryptographic hardware with JSSE” on page 164

6

© Copyright IBM Corp. 2018. All rights reserved. 141

6.1 JSSE and JCE

TLS support in Java uses the underlying Java Secure Socket Extension (JSSE) and Java
Cryptography Extension (JCE) frameworks that are provided as part of Java Standard Edition
(Java SE), as shown in Figure 6-1. This support can be integrated with the RACF security
registry to control access to digital certificates that are stored in RACF.

Figure 6-1 TLS support in Java that uses JCE and JSSE

Java Secure Socket Extension
The JSSE API provides a framework and Java implementation of the SSL and TLS protocols
as used by Liberty HTTPS support. The JSSE API is provided in the javax.net and
javax.net.ssl packages in Java SE.

Java Cryptography Extension
JCE is a standard extension to the Java Platform that provides the underlying implementation
for cryptographic services, including encryption, key generation, and Message Authentication
Codes (MAC). The IBM Java SDK for z/OS includes the following JCE providers:

� IBMJCE
� IBMJCECCA

The use of the JCE provider is controlled by editing the list of security providers. The default
provider is IBMJCE and was used in our initial usage scenarios. For more information about
how to configure the IBMJCECCA provider to use ICSF to drive the IBM Crypto Express
cards, see 6.6, “Using cryptographic hardware with JSSE” on page 164.

6.1.1 Updating the JCE policy files

Because of import regulations in some countries, the strength of certain ciphers is restricted
in the default IBMJCE configuration. Therefore, the first step in preparing our system to use
TLS is to remove the default restriction on usage of strong ciphers in the JCE policy files.

Note: IBMJSSE is IBM’s Java implementation of TLS and so does not use the facilities of
System SSL as used by CICS web support or AT-TLS as provided by IBM Communications
Server. Therefore, Liberty in CICS does not use the CICS sockets domain or CICS
TCPIPSERVICE resources to configure TLS. All configuration is performed by using the
JVM profile and the Liberty server configuration file (server.xml).
142 Liberty in IBM CICS: Deploying and Managing Java EE Applications

By default, the JCE policy files are in the $JAVA_HOME/lib/security directory. The
unrestricted versions can be found in $JAVA_HOME/demo/jce/policy-files/unrestricted/.
The latest unrestricted files are available for download from the Unrestricted SDK JCE policy
files website (login required).

For more information about support for cipher suites with the IBM SDK for Java on z/OS, see
IBM Knowledge Center.

Installing the policy files
We added the following line to our CICS JVM server profile to activate the IBM supplied
unrestricted policy files. Then, we restarted our JVM server:

-Dcom.ibm.security.jurisdictionPolicyDir=/usr/lpp/java/
J8.0_64/demo/jce/policy-files/unrestricted

6.2 TLS server authentication by using a Java keystore

The default JVM server autoconfigures behavior for TLS in CICS Liberty is to use a Java
keystore (JKS) with only server authentication. JKSs are stored in the zFS file system by
using files with a .jks extension. Because Java keystores are easy to configure, they are
useful for initial TLS connectivity testing.

To configure TLS with Liberty, you must first add the ssl-1.0 feature to the server.xml and
then, use the ssl and keyStore elements to define the required settings. These settings are
dynamically created if you set the CICS com.ibm.cics.jvmserver.wlp.server.https.port
system property in the JVM profile when JVM server autoconfigure is used.

In our CICS region, we started by adding the
com.ibm.cics.jvmserver.wlp.server.https.port property to our JVM profile, as shown in
Example 6-1. Then, we restarted the JVM server.

Example 6-1 com.ibm.cics.jvmserver.wlp.server.https.port system property

-Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true
-Dcom.ibm.cics.jvmserver.wlp.server.host=wtsc80
-Dcom.ibm.cics.jvmserver.wlp.server.http.port=57080
-Dcom.ibm.cics.jvmserver.wlp.server.https.port=57443

On restart, the JVM server autoconfigure function created the necessary TLS-related
elements in the server.xml, which caused Liberty to create its own JKS-based keystore and
self-signed certificate for use by the HTTPS endpoint.

Note: It is the user’s responsibility to verify that this action is permissible under local
regulations.

Note: If the unrestricted policy files are not installed on your system, stronger ciphers, such
as AES_256, fail to operate. In our system, we saw the following exception when the
unrestricted policy files were not available:

FFDC1015I: An FFDC Incident has been created:
"java.lang.IllegalArgumentException: Cannot support
SSL_ECDHE_RSA_WITH_AES_256_CBC_SHA with currently installed providers
com.ibm.ws.channel.ssl.internal.SSLConnectionLink 238" at …
Chapter 6. Configuring Transport Layer Security support 143

https://www.ibm.com/marketing/iwm/iwm/web/reg/pick.do?source=jcesdk
https://www.ibm.com/marketing/iwm/iwm/web/reg/pick.do?source=jcesdk
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/ciphersuites.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/ciphersuites.html

Our server.xml configuration file now contained the following new entries, as shown in
Example 6-2:

� ssl-1.0: This entry is the SSL feature, and must be added to the feature manager list.

� httpEndpoint: This entry is the HTTP endpoint that is used to define the attributes of the
HTTP and HTTPS listening ports.

� ssl: This entry is the element that defines the SSL/TLS protocol that is used and the
associated keystore.

� keyStore: This entry is the key store that holds the certificates. The type defaults to a JKS.
Although the location defaults to ${server.output.dir}/resources/security/key.jks in
zFS, it can be configured to use a RACF key ring. For more information, see 6.3, “TLS
server authentication by using a RACF key ring” on page 149. If a trustStoreRef attribute
is not defined on the ssl element, the signing certificates also are assumed to be in this
keystore.

Example 6-2 SSL support

<featureManager>
 <feature>cicsts:core-1.0</feature>
 <feature>jsp-2.3</feature>
 <feature>ssl-1.0</feature>
</featureManager>
<httpEndpoint id="defaultHttpEndpoint"
 host="wtsc80"
 httpPort="57080"
 httpsPort="57443" />

<ssl id="defaultSSLConfig"
 keyStoreRef="defaultKeyStore"
 sslProtocol="TLS" />
<keyStore id="defaultKeyStore"
 password="defaultPassword" />

For more information about the TLS configuration attributes for Liberty, see the Enabling SSL
communication in Liberty page of IBM Knowledge Center.

On startup, the Liberty messages.log now reports that the defaultHttpEndpoint-ssl endpoint
started with message CWWKO0219I, as shown in Example 6-3.

Example 6-3 HTTP endpoint started

CWWKO0219I: TCP Channel defaultHttpEndpoint-ssl has been started and is now
listening for requests on host WTSC80.CPOLAB.IBM.COM (IPv4: 9.76.61.131) port
57443.

We then connected our web browser to the Liberty default landing page by using the following
URL. We also specified the HTTPS protocol and the port 57443:

https://wtsc80:57443/

Note: If your browser cannot connect to the HTTPS endpoint in Liberty at this stage, you
might need to modify the supported TLS protocols because the supplied default
sslProtocol="TLS" restricts support to only TLS v1.0. Setting sslProtocol="SSL" allows
any TLS version to be negotiated. For more information, see 6.5.5, “Controlling the TLS
version” on page 160.
144 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://wtsc80:57443
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ssl.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ssl.html

On loading this page, our Mozilla web browser shows the warning Your connection is not
secure, as shown in Figure 6-2.

Figure 6-2 Your connection is not secure message

The error code SEC_ERROR_UNKNOWN_ISSUER clarifies the reason because the server certificate
that was presented to the browser by Liberty was auto-generated by Liberty. Therefore, it is
self-signed and defaults to specifying the host name as localhost in the Common Name
(CN).
Chapter 6. Configuring Transport Layer Security support 145

If you select Add Exception, the Add Security Exception window opens. A message
indicates that the Wrong site and Unknown Identity are being used, as shown in Figure 6-3.

Figure 6-3 Add Security Exception message
146 Liberty in IBM CICS: Deploying and Managing Java EE Applications

If you click View, you see that the distinguished name for the Issued To and Issued By are the
same, as shown in Figure 6-4. This similarity indicates that this site uses a self-signed
certificate.

Figure 6-4 Could not verify this certificate

Also, the CN includes localhost as the host name. Because this name does not match the
host name that is specified in the UR (in our case, wtsc80.cpolab.ibm.com), the Unknown
Identity warning is displayed.
Chapter 6. Configuring Transport Layer Security support 147

If you click Confirm Security Exception to store this exception, the HTTPS session is
complete and you see the Liberty welcome page (see Figure 6-5). You now have a basic TLS
setup configured. However, that setup includes a few limitations, which we describe in the
following sections.

Figure 6-5 Liberty landing page that uses TLS

Note: The application that is used for testing TLS support is not important in this scenario.
We used the Liberty landing page because it is available by default; however, you can use
your own application, if wanted.
148 Liberty in IBM CICS: Deploying and Managing Java EE Applications

6.3 TLS server authentication by using a RACF key ring

The next step in our configuration process is to use RACF to store our TLS certificates, which
provides the ability to integrate certificate access control with z/OS security policies and
procedures. Although we used RACF in our tests, other SAF-compliant z/OS security
providers can also be used.

The examples in this section use RACF to generate a self-signed certificate authority (CA)
certificate. Other third-party CAs can be used and if they are used, the sequence of
commands is slightly different.

Complete the following steps to configure RACF to store the TLS certificates:

1. Create a CA certificate for use as a signing certificate by using the following RACDCERT
GENCERT command:

RACDCERT GENCERT CERTAUTH
 SUBJECTSDN(CN('ITSO CA') O('IBM') OU('CICS'))
 SIZE(2048) WITHLABEL('ITSO CA')
 NOTAFTER(DATE(2020-12-31))

2. List the CA certificate by using the following RACF command to verify the CA:

RACDCERT CERTAUTH LIST(LABEL('ITSO CA'))

The result of the use of the command is shown in Example 6-4.

Example 6-4 Liberty CA certificate

Digital certificate information for CERTAUTH:

 Label: ITSO CA
 Certificate ID: 2QiJmZmDhZmjgcnj4tZAw8FA
 Status: TRUST
 Start Date: 2017/10/09 00:00:00
 End Date: 2020/12/31 23:59:59
 Serial Number:
 >00<
 Issuer's Name:
 >CN=ITSO CA.OU=CICS.O=IBM<
 Subject's Name:
 >CN=ITSO CA.OU=CICS.O=IBM<
 Signing Algorithm: sha256RSA
 Key Usage: CERTSIGN
 Key Type: RSA
 Key Size: 2048
 Private Key: YES
 Ring Associations:
 *** No rings associated ***

Note: The user ID that is used to issue the example RACF commands in this section
require the correct authority to the relevant IRR.DIGTCERT.* profiles. For more information,
see the z/OS Security Server RACF Command Language Reference.

Note: The certificate features a Key Usage of CERTSIGN, which signifies that this
certificate is a signing certificate.
Chapter 6. Configuring Transport Layer Security support 149

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.icha400/cmdsyn.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.icha400/cmdsyn.htm

3. Create a server certificate that is signed by the certificate authority from Step 1. This
certificate is used to identify our Liberty server and binds the server’s public key to a
subject, as identified by the distinguished name (DN).

The common name in the DN should be set to the server’s TCP/IP host name because
this name is validated by the browser. In our case, the host name is
wtsc80.cpolab.ibm.com. The label is used to identify this certificate in the RACF key store.
For our certificate label, we used the concatenation of the region name and JVM server
name SC8CICS7-ITSOWLP1, as shown in the following example:

RACDCERT ID(CICSREGN) GENCERT
 SUBJECTSDN(CN('wtsc80.cpolab.ibm.com') O('IBM') OU('CICS'))
 SIGNWITH (CERTAUTH LABEL('ITSO CA'))
 WITHLABEL('SC8CICS7-ITSOWLP1')
 NOTAFTER(DATE(2020-12-31))
 SIZE(2048)

4. List the contents of the new server certificate by using the following RACF command to
verify the certificate:

RACDCERT ID(CICSREGN) LIST(LABEL('SC8CICS7-ITSOWLP1'))

The result of the use of the command is shown in Example 6-5.

Example 6-5 Liberty server certificate

Digital certificate information for user CICSREGN:

 Label: SC8CICS7-ITSOWLP1
 Certificate ID: 2QjDycPi2cXH1eLD+MPJw+L3YMnj4tbm09fx
 Status: TRUST
 Start Date: 2017/10/09 00:00:00
 End Date: 2020/12/31 23:59:59
 Serial Number:
 >03<
 Issuer's Name:
 >CN=ITSO CA.OU=CICS.O=IBM<
 Subject's Name:
 >CN=wtsc80.cpolab.ibm.com.OU=CICS.O=IBM<
 Signing Algorithm: sha256RSA
 Key Type: RSA
 Key Size: 2048
 Private Key: YES
 Ring Associations:
 Ring Associations:
 *** No rings associated ***

5. Create a RACF key ring, which acts as a holder for the certificates in the RACF database.
We named our key ring LIBERTY.SC8CICS7 because it is associated with our CICS region
SC8CICS7 and with our CICS region user ID CICSREGN, a shown in the following
example:

RACDCERT ID(CICSREGN) ADDRING(LIBERTY.SC8CICS7)
150 Liberty in IBM CICS: Deploying and Managing Java EE Applications

6. Connect the signing certificate and the server certificate to the RACF key ring by using the
following RACDCERT commands:

RACDCERT ID(CICSREGN) CONNECT(RING(LIBERTY.SC8CICS7)
LABEL('ITSO CA') CERTAUTH)

RACDCERT ID(CICSREGN) CONNECT(RING(LIBERTY.SC8CICS7)
LABEL('SC8CICS7-ITSOWLP1'))

7. Grant the CICS region user ID the ability to read the contents of a key ring that is
associated with its own user ID, as shown in the following example:

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY)
ID(CICSREGN) ACCESS(READ)

8. Export the signing certificate to an MVS dataset to allow it to be transferred to the
workstation, as shown in the following example:

RACDCERT CERTAUTH EXPORT(LABEL('ITSO CA'))
DSN('CICSUSER.CERTS.ITSOCA') FORMAT(CERTDER)

9. Issue the following RACF command to refresh the RACF FACILITY and DIGTCERT
classes:

SETROPTS RACLIST(FACILITY DIGTCERT) REFRESH

10.Transfer the signing certificate that was exported from the MVS dataset to your
workstation. You should transfer this certificate in binary mode and save it with a .cert file
extension.

11.Import this .cert file into Firefox by clicking in Firefox Tools → Options → Advanced →
Certificates → View Certificates → Import.

12.In Firefox, click Trust this CA to identify websites and the new certificate authority is
displayed in the Firefox Certificate Manager under Authorities as IBM → ITSO CA.

13.To use this new RACF key ring with Liberty, update your server.xml be completing the
following steps:

a. Update the location attribute in the keystore element to specify
safkeyring:///LIBERTY.S8CICS7, which causes Liberty to use the CICS region user ID
(CICSREGN) to access the RACF key ring LIBERTY.SC8CICS7.

b. Update the type attribute to specify JCERACFKS, which indicates that the IBMJCE
provider is used with a RACF keystore, as shown in the following example:

<keyStore id="defaultKeyStore"
 fileBased="false"
 location="safkeyring:///LIBERTY.S8CICS7"
 password="password"
 readOnly="true"
 type="JCERACFKS" />

14.Restart the Liberty server and review the Liberty messages.log for the message
CWWKO0219I, which indicates that the HTTPS endpoint listened on port 57443.

Note: We did not specify a password on this export command because this command
only exports the public key of the certificate authority, which does not warrant password
protection.

Note: Although the password that is defined for a safkeyring keystore is not validated by
RACF because access is controlled by the DIGTCERT class, it must always be
specified as the string "password".
Chapter 6. Configuring Transport Layer Security support 151

15.Connect to the HTTPS listener that is specifying the default landing page again. You
should see that the Liberty landing page (see Figure 6-5 on page 148) is secured with the
TLS padlock symbol.

6.4 TLS client authentication

In this section, we describe how to configure a Liberty server to support TLS client
authentication for an HTTPS connection. We used RACF to create a personal certificate that
is signed by the same trust authority we used for server authentication. We then exported the
client certificate and associated private key from z/OS to our workstation and imported this
certificate into our web browser.

For more information about how to use <auth-method>CLIENT-CERT</auth-method> to map
the identity from a TLS client certificate to the identity used in the Liberty server, see
Chapter 7, “Securing web applications ” on page 175.

Complete the following steps to configure TLS client authentication:

1. Create a personal certificate that is owned by the user ID, which is to be authenticated.
Because we use the RACF user ID WEBUSER, we created this certificate by using the
following RACDCERT command (see Example 6-6) that used our ITSO CA signing
certificate that we created as described in 1.3, “Setting up a Liberty JVM Server” on
page 11.

Example 6-6 RACDCERT GENCERT personal certificate

RACDCERT ID(WEBUSER) GENCERT SUBJECTSDN(CN('WINDOWSX230')
 O('IBM') OU('CICS')) SIZE(2048)
 SIGNWITH(CERTAUTH LABEL('ITSO CA')) WITHLABEL('WEBUSER-CERT')

In the CN field of the SUBJECTDSN, we specified the local host name of our test machine
(WINDOWSX230).

2. Validate the information in this new certificate by using the following command:

RACDCERT ID(WEBUSER) LIST(LABEL('WEBUSER-CERT'))

The output of the command is shown in Example 6-7.

Example 6-7 RACDCERT LIST personal certificate

Digital certificate information for user WEBUSER:

 Label: WEBUSER-CERT
 Certificate ID: 2QTXyMnT18jJ02DDxdnj
 Status: TRUST
 Start Date: 2017/10/09 00:00:00
 End Date: 2018/10/09 23:59:59
 Serial Number:

Note: An alternative to the use of RACF to create the client certificate is to create the
certificate on a third-party platform. Then, the certificate is imported into the RACF
registry by using a PKCS12 file. This process can be done by using the following
RACDCERT ADD command:

RACDCERT ADD('dataset') TRUST ID(userid) PASSWORD (password)
152 Liberty in IBM CICS: Deploying and Managing Java EE Applications

 >05<
 Issuer's Name:
 >CN=ITSO CA.OU=CICS.O=IBM<
 Subject's Name:
 >CN= WINDOWSX230.OU=CICS.O=IBM<
 Signing Algorithm: sha256RSA
 Key Type: RSA
 Key Size: 2048
 Private Key: YES
 Ring Associations:
 *** No rings associated ***

3. Export the certificate in PKCS12 mode to an MVS dataset to enable it to be transferred to
the workstation. Ensure that the PKCS12 package is password protected because it now
contains the private key, as shown in the following example:

RACDCERT ID(WEBUSER) EXPORT(LABEL('WEBUSER-CERT'))
 DSN('CICSUSER.CERTS.WEBUSER')

 FORMAT(PKCS12DER) PASSWORD('ITSO')

4. Transfer to the workstation in binary mode by using FTP and save as a file with a .p12
extension.

5. Import the .p12 file into your web browser by clicking (in Firefox) Tools → Options →
Advanced → Certificates → View Certificate → Your Certificates.

6. Click Import and then, browse to the location of your .p12 file. You are presented with a
Password Required window in which you enter the password that is used to encrypt the
certificate. Enter the password value that was used in Step 3.

If this process is successful, you see that the certificate is installed, as shown in
Figure 6-6.

Figure 6-6 Certificate Manager window

Note: We used the PKCS12 file format because this format exports the certificate and
the private key, which are required if this format is to be used as a client certificate.
Chapter 6. Configuring Transport Layer Security support 153

7. To enforce client authentication during the TLS handshake, we now must change the
Liberty configuration in the server.xml. This process requires that the
clientAuthentication attribute in the ssl element is changed to true. The changes to the
ssl element in our server.xml is shown in Example 6-8.

Example 6-8 Server.xml: clientAuthentication attribute

<ssl id="defaultSSLConfig"
clientAuthentication="true"

 keyStoreRef="defaultKeyStore"
serverKeyAlias="SC8CICS7-ITSOWLP1" />

8. Start the JVM server and connect to the HTTPS listener that specifies the Liberty landing
page again. You are prompted to choose a client certificate to present as identification, as
shown in Figure 6-7.

Figure 6-7 User Identification Request window

9. Select the certificate that you imported and click OK. The TLS handshake should
complete and the Liberty welcome page is displayed with the lock symbol, as shown in
Figure 6-5 on page 148.

Making client authentication optional
If clientAuthentication="true" but the client does not include a certificate or the certificate
is not trusted by the server, the TLS handshake and HTTP connection fail. If you do not want
to cause a failure in this scenario, you can specify the attribute
clientAuthenticationSupported="true" instead of clientAuthentication="true". This
change causes the server to request a certificate from the client, but allow the connection to
proceed without one.
154 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Adding a truststore
When client authentication is configured, Liberty asks the client to provide its certificate for
each new HTTPS connection. Then, it validates the chain of trust for that certificate by using
its truststore. That is, it validates that the client certificate issuer is in the RACF key ring.

The server does not need access to the client certificate, only the signing certificate. In our
configuration, the truststore defaults to the keystore. However, if a separate signing certificate
is used to sign the client certificate, it can be added to a specific RACF key ring by using the
following commands (assuming that the certificate label for the client’s signing certificate is
CLIENT CA):

RACDCERT ID(CICSREGN) ADDRING(LIBERTY.TRUST.SC8CICS7)
RACDCERT ID(CICSREGN) CONNECT(RING(LIBERTY.TRUST.SC8CICS7)
 LABEL('CLIENT CA') CERTAUTH)

This key ring should then be specified in a trustStoreRef element in server.xml that refers to
another keystore that references the separate key ring, as shown in Example 6-9.

Example 6-9 Server.xml: trustStoreRef for client CA

<ssl id="defaultSSLConfig"
 clientAuthentication="true"
 keyStoreRef="defaultKeyStore"
 trustStoreRef="trustStore"
 serverKeyAlias="SC8CICS7-ITSOWLP1" />
<keyStore id="defaultKeyStore"
 fileBased="false"
 location="safkeyring:///LIBERTY.S8CICS7"
 password="password"
 readOnly="true"
 type="JCERACFKS" />
<keyStore id="trustStore"
 fileBased="false"
 location="safkeyring:///LIBERTY.TRUST.S8CICS7"
 password="password"
 readOnly="true"
 type="JCERACFKS" />

Note: If client certificate authentication is specified in the application’s web.xml by using
<auth-method>CLIENT-CERT</auth-method> and no TLS client certificate is available,
Liberty provides the following server.xml attribute:

<webAppSecurity allowFailOverToBasicAuth="true" />

If specified, this attribute causes Liberty to fail over to basic authentication for any
application in which client certificate authentication fails.
Chapter 6. Configuring Transport Layer Security support 155

6.5 Hints and tips when using TLS

In this section, we describe how to analyze and optimize the TLS support that is used in
Liberty.

6.5.1 Tracing TLS

Several methods are available for tracing the usage of TLS in Liberty. In this section, we
describe some of the techniques that we used.

JSSE tracing
JSSE-specific debug tracing support is controlled by using the system property
javax.net.debug. This support traces different components of the JSSE SSL implementation.
For more information, see IBM Knowledge Center.

To enable JSSE tracing, we set the following system property in our CICS JVM profile:

-Djavax.net.debug=ssl

This property causes JSSE tracing to be written to the JVM server stdout, which can also be
viewed in the Liberty messages.log output.

With tracing enabled at startup of the JVM, you see the output that is shown in Example 6-10
when the IBM JSSE provider initializes, which lists the installed JCE providers.

Example 6-10 JSSE trace initialization

IBMJSSEProvider2 Build-Level: -20170728
 Installed Providers =
 IBMJCECCA
 IBMJCE
 IBMJGSSProvider
 IBMJSSE2
 IBMCertPath
 IBMSASL
 IBMXMLCRYPTO
 IBMXMLEnc
 IBMSPNEGO
 SUN
……
156 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/debug.html

Liberty SSL tracing
The Liberty logging component can be controlled by using the server.xml configuration. We
used the logging element as shown in Example 6-11 to trace the SSLChannel and SSL
components in our Liberty server. The output was written to the specified ssl_trace.log in
the default ${server.output.dir}/logs directory. The trace is useful to validate if errors in the
Liberty SSL configuration existed.

Example 6-11 server.xml: traceSpecification

<logging traceSpecification="SSLChannel=all:SSL=all"
 traceFileName="ssl_trace.log"
 maxFileSize="20"
 maxFiles="10"
 traceFormat="BASIC" />

6.5.2 Enforcing TLS for web applications

The following options are available to enforce that TLS is used for HTTP connections into
Liberty:

� Disable the HTTP endpoint
� Use a security constraint in the web.xml

These options are described next.

Disabling the HTTP endpoint
The simplest option to enforce that TLS is used is to disable the use of the Liberty HTTP
endpoint. This endpoint can be disabled by updating the httpPort attribute to specify
httpPort="-1", as shown in Example 6-12.

Example 6-12 server.xml: Enforcing TLS

<httpEndpoint id="defaultHttpEndpoint"
 host="wtsc80"
 httpOptionsRef="httpoptions"
 httpPort="-1"
 httpsPort="57443" />

Security constraint
Another mechanism to enforce TLS usage is create a rule in each application by adding the
following transport-guarantee element to the security constraint in the application’s web.xml:

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

If you specify CONFIDENTIAL as the value, all requests that match the constraint pattern are
automatically redirected to the HTTPS endpoint.

We added a web.xml to our restapp sample (see Example 6-13 on page 158) and redeployed
this version of our application into our Liberty server.

Warning: If the httpPort attribute is removed from the httpEndpoint, the default value of
9080 is assumed and the server starts to listen on this port.
Chapter 6. Configuring Transport Layer Security support 157

Example 6-13 Web.xml: Enforcing TLS

<security-constraint>
 <web-resource-collection>
 <web-resource-name>restapp</web-resource-name>
 <url-pattern>/com.ibm.cicsdev.restapp/*</url-pattern>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

We then connected our browser to the insecure cicsinfo service at the following URL:

http://wtsc80:57080/com.ibm.cicsdev.restapp/rest/cicsinfo

Our browser was then redirected to the secure HTTPS listener on port 57443.

6.5.3 HTTP persistent connections

The most intensive encryption process when TLS is the RSA or Elliptic Curve Cryptography
(ECC) that is used during the handshake phase to encrypt and sign messages. It also
produces the symmetric session keys that are used for payload encryption.

The simplest mechanism to reduce this cost is to enable persistent HTTP connections
because a TLS handshake occurs only during the creation of the HTTP connection. By using
this mechanism, the cost of the handshake is spread over multiple requests.

In Liberty, the default number of persistent requests that can reuse an HTTP connection is
100. After 100 requests, the HTTP connection and the underlying socket are closed. If
HTTPS is used, a full TLS handshake occurs every 100 requests. To improve performance,
you can increase this value by using the maxKeepAliveRequests attribute on an httpOptions
element that is referenced from the httpEndpoint, as shown in Example 6-14.

Example 6-14 httpOptions element

<httpEndpoint id="defaultHttpEndpoint"
 host="wtsc80"
 httpOptionsRef="httpoptions"
 httpPort="57080"
 httpsPort="57443" />
<httpOptions id="httpoptions"
 maxKeepAliveRequests="10000" />

The setting for maxKeepAliveRequests is important because not only can this setting affect
performance, it affects workload distribution in a high availability (HA) cluster. For more
information about how we configured HA with Liberty, see Chapter 9, “Port sharing and
cloning regions” on page 253.

Note: To further improve the performance of TLS handshaking, the IBMJCECCA provider
can also be used. This provider uses the ICSF callable service to drive the IBM Crypto
Express cards. For more information, see 6.6, “Using cryptographic hardware with JSSE”
on page 164.
158 Liberty in IBM CICS: Deploying and Managing Java EE Applications

TCP/IP netstat
Liberty does not monitor HTTP persistent session usage. However, the TCP/IP NETSTAT
command can be used to query the number of socket connection requests when a TCP/IP
listening port is used.

In our configuration, we ran a workload of 100 requests by using a curl script. Then, we
issued the following MVS command, which returned the information that is shown in
Example 6-15:

/D TCPIP,,NETSTAT,ALL,PORT=57443

Example 6-15 NETSTAT display

EZZ2500I NETSTAT CS V2R3 TCPIP 584
CLIENT NAME: SC8CICS7 CLIENT ID: 00044C1A
LCLSOCK: 9.76.61.131..57443 FGNSOCK: 0.0.0.0..0
 BYTESIN: 0000000000 BYTESOUT: 0000000000
 SEGMENTSIN: 0000000000 SEGMENTSOUT: 0000000000
 STARTDATE: 10/18/2017 STARTTIME: 13:00:15
 LAST TOUCHED: 13:01:02 STATE: LISTEN
 RCVNXT: 0000000000 SNDNXT: 0000000000
 CLIENTRCVNXT: 0000000000 CLIENTSNDNXT: 0000000000
 INITRCVSEQNUM: 0000000000 INITSNDSEQNUM: 0000000000
 CONGESTIONWINDOW: 0000000000 SLOWSTARTTHRESHOLD: 0000000000
 INCOMINGWINDOWNUM: 0000000000 OUTGOINGWINDOWNUM: 0000000000
 SNDWL1: 0000000000 SNDWL2: 0000000000
 SNDWND: 0000000000 MAXSNDWND: 0000000000
 SNDUNA: 0000000000 RTT_SEQ: 0000000000
 MAXIMUMSEGMENTSIZE: 0000000536 DSFIELD: 00
 ROUND-TRIP INFORMATION:
 SMOOTH TRIP TIME: 0.000 SMOOTHTRIPVARIANCE: 1500.000
 REXMT: 0000000000 REXMTCOUNT: 0000000000
 DUPACKS: 0000000000 RCVWND: 0000032768
 SOCKOPT: 80 TCPTIMER: 00
 TCPSIG: 00 TCPSEL: 00
 TCPDET: C0 TCPPOL: 08
 TCPPRF: 00 TCPPRF2: 00
 TCPPRF3: 00
 QOSPOLICY: NO
 TTLSPOLICY: NO
 ROUTINGPOLICY: NO
 RECEIVEBUFFERSIZE: 0000016384 SENDBUFFERSIZE: 0000016384
 CONNECTIONSIN: 0000000100 CONNECTIONSDROPPED: 0000000000
 MAXIMUMBACKLOG: 0000000010 CONNECTIONFLOOD: NO
 CURRENTBACKLOG: 0000000000
 SERVERBACKLOG: 0000000000 FRCABACKLOG: 0000000000
 CURRENTCONNECTIONS: 0000000000 SEF: 100
 QUIESCED: NO

The value of the CONNECTIONSIN is 100, which indicates that our workload did not use
persistent connections because 100 socket connections were created for the 100 requests.

Note: If the NETSTAT command returns multiple records, you should use the record that
specifies STATE:LISTEN because this record is for the listening socket, rather than the
ephemeral sockets that were established for the browser sessions.
Chapter 6. Configuring Transport Layer Security support 159

6.5.4 TLS session timeout

When HTTP connections timeout, the effect of full handshakes can be avoided by reusing the
SSL session ID. Reusing the session ID is known as a null handshake, and it is considerably
cheaper to perform. The time interval in the server during which the server allows session IDs
to be resumed is configured by setting the sslSessionTimeout attribute on the sslOptions
element. The default setting is 8640 ms and can be extended to 10 minutes, as shown in the
following example:

<sslOptions id="mySSLOptions"
 sslRef="DefaultSSLSettings"
 sslSessionTimeout=“10m” />

Increasing the session timeout can be a performance benefit if HTTP connections are not
long-lived, and TLS clients must reconnect frequently. For optimum performance, the
sslSessionTimeout attribute must be set to longer than the time between client HTTP
requests. Setting this attribute allows the server to reuse session IDs.

6.5.5 Controlling the TLS version

To control the TLS version that is supported by the server, the sslProtocol attribute on the
ssl element is updated in server.xml to ensure that only a specific version is used. We found
protocol versions can be specified in the sslProtocol attribute, which results in the SSL/TLS
versions being supported on the SSL/TLS handshake, as listed in Table 6-1.

Table 6-1 SSL/TLS protocol versions in JSSE

The latest version of TLS is TLS v1.2 and provides for the most secure set of ciphers. We
made the change that is shown in Example 6-16 on page 161 to our server.xml to enforce
use of TLSv1.2 in our server. For more information about SSL protocols that are supported in
JSSE, see the Protocols section of the IBM SDK, Java Technology Edition 8.0.0 page of IBM
Knowledge Center.

sslProtocol
attribute

Supported protocol versions

SSL V3.0 TLS V1.0 TLS V1.1 TLS V1.2

SSL No * Yes Yes Yes

SSLv3 No * No No No

TLS No Yes No No

TLSv1 No Yes No No

TLSv1.1 No No Yes No

TLSv1.2 No No No Yes

SSL_TLS No * Yes No No

SSL_TLSv2 No * Yes Yes Yes

Note: * SSL v3 and v2 is disabled by default in IBMJSSE and in many browsers because
of security vulnerabilities. Its use is no longer recommended.
160 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/protocols.html

Example 6-16 Liberty server.xml - enforcing TLS v1.2

<ssl id="defaultSSLConfig"
 keyStoreRef="defaultKeyStore"
 sslProtocol="TLSv1.2" />

If the client and server do not have a mutually acceptable cipher suite, you might see the
message SSL_ERROR_NO_CYPHER_OVERLAP returned by your web browser, as shown in
Figure 6-8. This message can be caused by a too restrictive set of cipher suites being
specified, or that the client might not support the same TLS version as the server.

Figure 6-8 Secure Connection Failed message

In this situation, you might need to modify the sslProtcol attribute in server.xml to specify a
less restrictive range of TLS versions. You also can allow a less restrictive range of cipher
suites to be used (for more information, see 6.5.6, “Controlling the cipher suite” on page 161).

6.5.6 Controlling the cipher suite

The process in which the cipher that is used for a TLS connection is negotiated during the
TLS handshake includes the following steps:

1. The TLS client sends a “client hello” message that lists cryptographic information,
including the SSL or TLS version and, in the client’s order of preference, the cipher suites
that are supported by the client.

2. TLS server responds with a “server hello” message that contains a mutually agreeable
cipher suite that is chosen by the server from the list that is provided by the client.

Different TLS ciphers feature different encryption strengths and performance characteristics.
Therefore, it is often useful to understand which cipher suite was negotiated between the
client and the server.

Most browsers can display the negotiated cipher suite. You can determine which cipher suite
was negotiated on the server by using JSSE tracing, as described in 6.5.1, “Tracing TLS ” on
page 156.
Chapter 6. Configuring Transport Layer Security support 161

By using the JSSE trace log, you can search for the string %% Negotiating. In our example,
we saw that the following cipher suite was chosen during the negotiation between the browser
and the Liberty server:

%% Negotiating: [Session-100, SSL_ECDHE_RSA_WITH_AES_128_GCM_SHA256]

This cipher suite defines the use of the following encryption algorithms:

� Key exchange: Ephemeral Elliptic Curve Diffie-Hellman with RSA (ECDHE_RSA)
� Block cipher: AES_GCM encryption algorithm with a 128-bit key (AES_128_GCM)
� Data integrity: SHA hash algorithm with a 256-bit key (SHA256)

To modify the list of ciphers that are supported by the server, they can be added as a white
space-separated list in the enabledCiphers attribute on the ssl element. We modified our
server.xml as shown in Example 6-17 to support the following ciphers:

� SSL_ECDHE_RSA_WITH_AES_128_GCM_SHA256
� SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256

Example 6-17 Liberty server.xml: Enabled ciphers

<ssl id="defaultSSLConfig"
 enabledCiphers="SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256
 SSL_ECDHE_RSA_WITH_AES_128_GCM_SHA256"
 keyStoreRef="defaultKeyStore"
 sslProtocol="TLSv1.2" />

For more information about the supported ciphers in the IBM Java z/OS SDK, see the Cipher
Suites topic of the IBM SDK, Java Technology Edition 8.0.0 page of IBM Knowledge Center.

6.5.7 Restricting weak algorithms

One useful customization feature of JSSE is the ability to restrict ciphers and algorithms to a
specific minimum strength. This restriction can be achieved by using the
jdk.tls.disabledAlgorithms property, which can be specified in the Java security policy.

By default, the IBM Java SDK disables specific algorithms, such as RSA key sizes less than
1024 bits. We restricted this behavior further to RSA key sizes less than 2048 bits as shown
in the following process:

1. We copied the java.security file from $JAVA_HOME/lib/security to
/var/cics/ibmjce/java.security.2048 and set the location by using the following
java.security.properties system property in our JVM server profile:

-Djava.security.properties=/var/cicsts/ibmjce/java.security.2048

2. We modified the jdk.tls.disabledAlgorithms property in this file to restrict RSA key
sizes to 2048 bits or greater as shown in the following example:

jdk.tls.disabledAlgorithms= RSA keySize < 2048, SSLv3, RC4, MD5withRSA, DH
keySize < 768, 3DES_EDE_CBC, DESede, EC keySize < 224

3. We followed the processing (as described in 6.4, “TLS client authentication” on page 152)
to generate a personal certificate in RACF. However, this time with a key size of 1024 (see
Example 6-18 on page 163).
162 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/ciphersuites.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/ciphersuites.html

Example 6-18 RACDCERT GENCERT: Weak personal certificate

RACDCERT ID(WEBUSER) GENCERT
 SUBJECTSDN(CN('WINDOWSX230') O('IBM') OU('CICS'))
 SIZE(1024) SIGNWITH(CERTAUTH LABEL('ITSO CA'))
 WITHLABEL('WEAK-CERT')

4. We exported this personal certificate as a PKSC12 file and transferred this file to our
workstation. Then, we imported this file into our Mozilla web browser by using the same
procedure as described in 6.4, “TLS client authentication” on page 152.

5. We opened a new private tab in our Mozilla browser and connected to the Liberty HTTPS
port. Then, we specified the default Liberty landing page as https://wtsc80:57443.

We were asked to choose a client certificate to present as identification, as shown in
Figure 6-9.

Figure 6-9 User Identification Request window

6. We selected the certificate that was labeled WEAK-CERT and clicked OK.

7. The browser reported the error Secure Connection Failed.

By using javax.net.debug tracing as described in 6.5.1, “Tracing TLS ” on page 156, we
also found the following exception in the JSSE trace that explains that the TLS connection
failed because the certificate that was presented did not match our rule of RSA keySize <
2048:

java.security.cert.CertificateException: Certificates does not conform to
algorithm constraints
Chapter 6. Configuring Transport Layer Security support 163

6.6 Using cryptographic hardware with JSSE

In this section, we describe how to use the IBM Z cryptographic hardware with JSSE.

6.6.1 Cryptographic hardware

Two cryptographic hardware devices are available on IBM Z: CP Assist for Cryptographic
Function (CPACF) and IBM Crypto Express cards, which are supported in different ways by
the two IBMJCE providers we are using, as shown in Figure 6-10.

Figure 6-10 JSSE and IBM Z cryptographic hardware

CP Assist for Cryptographic Function
CPACF is a set of cryptographic instructions that are available on all CPs, including zIIPs,
IFLs, and General Purpose CPUs. The CPACF is accessible through native assembler
instructions (such as the KM cipher message), or by using the callable services that are
available with ICSF. It provides symmetric key cryptography for clear key and protected key
scenarios, along with support for hashing functions.

Various symmetric algorithms are supported by the CPACF, including DES, 3DES, and
AES-CBC and AES-GCM. CPACF also supports random number generation and SHA-based
digest algorithms.

Use of the CPACF provides the potential for significantly improved performance for symmetric
encryption with clear keys, which is the encryption mechanism that is used for block and
stream ciphers in the TLS protocol.

To ascertain whether the CPACF is enabled on your system, check the ICSF startup log for
the production of the following message:

CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE

IBM Crypto Express cards
The IBM Crypto Express cards are optional I/O attached cards that implement more
cryptographic functions. On an IBM z14, this feature is available as a Crypto Express 6S
(CEX6S) adapter, or Crypto Express 5S (CEX5S).
164 Liberty in IBM CICS: Deploying and Managing Java EE Applications

The CEX6S adapter can be configured in one of the following modes:

� CEX6C: Common Cryptographic Architecture (CCA) coprocessor

By default, this card is a coprocessor and can support a wider range of callable services,
including secure key and clear key support for PKA decrypt, digital signature verify, and
digital signature generate (including RSA and ECC variants).

� CEX6A: Common Cryptographic Architecture accelerator

This card can be configured as an accelerator. In this mode, the card supports only three
clear key cryptographic APIs that are associated with RSA public key encryption,
decryption, and verification.

When the cryptographic coprocessor is configured as an accelerator, it provides better
throughput at the expense of supporting fewer services.

� CEX6P: IBM Enterprise Public-Key Cryptography Standards (PKCS) #11 (EP11)
coprocessor

Support is available for EP11 or PKCS #11 Enterprise mode. In this mode, the card
supports only APIs associated with PKCS #11.

For more information, see the IBM Techdoc A Synopsis of z Systems Crypto Hardware,
WP100810.

6.6.2 Cryptographic software

In this section, we describe the different software components that are necessary to use the
cryptographic hardware with Java on z/OS.

Integrated Cryptographic Service Facility
The Integrated Cryptographic Service Facility (ICSF) works with the hardware cryptographic
features and RACF to provide secure, high-speed cryptographic services in the z/OS
environment. As new cryptographic functions are implemented in the hardware, new versions
of ICSF are made available to start those functions. ICSF is available as a component of and
packaged with z/OS; however, the most current versions are available at the IBM z/Os
downloads page of the IBM IT infrastructure website.

For more information about hardware support for the various versions of ICSF, see the
Techdoc z/OS: ICSF Version and FMID Cross Reference, TD103782.

Note: At least one Crypto Express card that is configured as a coprocessor is required for
IBMJCECCA to initialize. To remove the coprocessor as a single point of failure, it is
common for two Crypto Express cards to be configured in coprocessor mode when
supporting TLS usage with JSSE.

Note: The CSFSERV class controls access to ICSF callable services. This class was not
active in our testing. If it is active, access must be granted when generating keys or calling
ICSF by using the IBMJCECCA provider.
Chapter 6. Configuring Transport Layer Security support 165

https://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100810
http://www.ibm.com/systems/z/os/zos/tools/downloads/index.html
http://www.ibm.com/systems/z/os/zos/tools/downloads/index.html
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD103782

IBMJCE
The IBM JVM default security provider is IBMJCE, which is the default implementation of the
Java Cryptographic Extension (JCE) on z/OS. When Java 8 is used, the IBMJCE provider
does not use the services of ICSF; instead, it uses native assembler instructions to detect and
use the CPACF. This support for CPACF provides improved performance for symmetric key
encryption (for example, AES and 3DES) and hashing algorithms (for example, SHA1 and
SHA2) that are used in bulk encryption with TLS because the ability to avoid JNI calls to ICSF
and thus improves potential zIIP offload.

For more information about performance with Java 8 on IBM Z and IBMJCE, see the IBM Z
Development Blog and Mainframe Insights blog post.

IBMJCECCA
The IBM Java SDK on z/OS provides another security provider that is named IBMJCECCA,
which is integrated with ICSF and can use the Crypto Express cards to assist with
asymmetric key encryption. Similar to the IBMJCE provider, the IBMJCECCA provider also
uses native assembler instructions to directly call the CPACF to assist with specific symmetric
key encryption algorithms.

The following key facilities are provided by IBMJCECCA:

� Digital signing and verify functions, which are used during public key exchange for TLS.
� Secure and protected key support (that is, keys that are never available in the clear).

To benefit from the Crypto Express card, the IBMJCECCA provider must be added to the JCE
providers list at a higher position than the IBMJCE provider. ICSF must also be started.

Use of IBMJCECCA can provide a performance advantage over IBMJCE when performing
asymmetric encryption during the secret key exchange that is involved in the TLS
handshaking phase.

IBMJCEHYBRID
The IBM JCE hybrid provider is designed to enable an application to use the underlying JCE
providers without being concerned whether the hardware cryptographic features are
available. If the IBMJCEHYBRID provider is used, the HTTPS support can continue to
function, even if the underlying hardware or ICSF is not available.

Configuring the JCE providers
The different JCE providers that are available and how to configure their usage in the
server.xml configuration file are listed in Table 6-2.

Table 6-2 JCE provider and server.xml configuration settings

Note: For IBMJCECCA to initialize, ICSF must be started and at least one coprocessor
must be available. We found in our testing that if IBMJCECCA cannot be loaded at
initialization, the IBMJCE provider is loaded instead because this provider was the next
provider in our java security provider list.

JCE provider server.xml

ssl keystore location attribute ssl keystore type attribute

IBMJCE location="safkeyring:///" type="JCERACFKS"

IBMJCECCA location="safkeyringhw:///" type="JCECCARACFKS"

IBMJCEHYBRID location="safkeyringhybrid:///" type="JCEHYBRIDRACFKS"
166 Liberty in IBM CICS: Deploying and Managing Java EE Applications

http://mainframeinsights.com/ibm-java8-z13-crypto-performance-built-for-mobile-cloud/
http://mainframeinsights.com/ibm-java8-z13-crypto-performance-built-for-mobile-cloud/

For more information about configuring the JCE providers on z/OS, see the z/OS Java
Security Frequently Asked Questions.

6.6.3 Configuring TLS to use the cryptographic coprocessors

In this section, we describe how to configure IBMJCECCA to use the cryptographic
coprocessors on an IBM z14.

To use the IBMJCECCA provider on our system, we performed the following configuration
steps:

1. We downloaded and installed the latest version of ICSF to obtain the updates for z/OS 2.3
support.

2. We copied the security provider file java.security from $JAVA_HOME/lib/security to the
location /var/cicsts/ibmjce/java.security.jcecca and added IBMJCECCA to the
security provider list, as shown in Example 6-19.

Example 6-19 IBMJCECCA in the security provider list.

Java security providers
security.provider.1=com.ibm.crypto.hdwrCCA.provider.IBMJCECCA
security.provider.2=com.ibm.crypto.provider.IBMJCE
security.provider.3=com.ibm.jsse2.IBMJSSEProvider2
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.security.sasl.IBMSASL
security.provider.7=com.ibm.xml.crypto.IBMXMLCryptoProvider
security.provider.8=com.ibm.xml.enc.IBMXMLEncProvider
security.provider.9=com.ibm.security.jgss.mech.spnego.IBMSPNEGO
security.provider.10=sun.security.provider.Sun

3. We updated our JVM to use this new provider list by adding the following system property
to our JVM server profile:

-Djava.security.properties=/var/cicsts/ibmjce/java.security.jcecca

4. We updated our server.xml to use the safkeyringhw prefix in the location attribute, and
set the JCECCARACFKS type on the keyStore element, as shown in Example 6-20.

Example 6-20 Liberty server.xml - JCECCARACFKS settings

<keyStore id="racfKeyStore"
 fileBased="false"
 location="safkeyringhw:///LIBERTY.SC8CICS7"
 password="password"
 readOnly="true"
 type="JCECCARACFKS" />

5. We restarted our CICS JVM server, established an HTTPS connection to our Liberty
default application, and verified that the web page successfully loaded.

IBMJCEHYBRID
The IBMJCEHYBRID provider is designed to use cryptographic hardware and processors
when they are available, but continues without those cryptographic features when they are not
available.
Chapter 6. Configuring Transport Layer Security support 167

ftp://ftp.software.ibm.com/software/Java/Java60/IBMJCECCA/zJavaSecurityFAQ.html
ftp://ftp.software.ibm.com/software/Java/Java60/IBMJCECCA/zJavaSecurityFAQ.html
https://www.ibm.com/systems/z/os/zos/tools/downloads/index.html

To use IBMJCECCA provider, we performed the following steps after configuring
IBMJCECCA:

1. We added the IBMJCEHYBRID provider to the top of our Java security provider list in
/var/cicsts/ibmjce/java.security.jcecca, as shown in Example 6-21.

Example 6-21 IBMJCEHYBRID in the security provider

security.provider.1=com.ibm.crypto.ibmjcehybrid.provider.IBMJCEHYBRID
security.provider.2=com.ibm.crypto.hdwrCCA.provider.IBMJCECCA
security.provider.3=com.ibm.crypto.provider.IBMJCE
security.provider.4=com.ibm.jsse2.IBMJSSEProvider2
security.provider.5=com.ibm.security.jgss.IBMJGSSProvider
security.provider.6=com.ibm.security.cert.IBMCertPath
security.provider.7=com.ibm.security.sasl.IBMSASL
security.provider.8=com.ibm.xml.crypto.IBMXMLCryptoProvider
security.provider.9=com.ibm.xml.enc.IBMXMLEncProvider
security.provider.10=com.ibm.security.jgss.mech.spnego.IBMSPNEGO
security.provider.11=sun.security.provider.Sun

2. We updated our server.xml to use the safkeyringhybrid keyword and the
JCEHYBRIDRACFKS type, as shown in Example 6-22.

Example 6-22 Liberty server.xml

<keyStore id="racfKeyStore"
 fileBased="false"
 location="safkeyringhybrid:///LIBERTY.SC8CICS7"
 password="password"
 readOnly="true"
 type="JCEHYBRIDRACFKS" />

3. We restarted our CICS JVM server, established an HTTPS connection, and verified the
web page successfully loaded.

6.6.4 Monitoring cryptographic hardware

The IBMJCE and the IBMJCECCA provider can use cryptographic hardware. However, one
of the advantages of using IBMJCECCA is that various tools are available to monitor the use
of the cryptographic hardware by using the underlying ICSF support.

Use one of the following mechanisms to monitor the use of the cryptographic hardware when
the IBMJCECCA provider is used:

� IBM RMF™ - Monitor I CRYPTO report
� ICSF - DISPLAY ICSF,CARDS
� ICSF SMF 82 records - subtype 31
� Hardware event data collection

Note: In our testing, we found that if no cryptographic coprocessors were available when
the JVM server started or ICSF was not started, the IBMJCEHYBRID provider silently
failed over to use IBMJCE. However, if the cryptographic coprocessor went offline while the
JVM was running, the JVM server needed to be restarted to allow TLS requests to
continue to be successfully processed because calls to the service CSNDPKI (PKA key
import) failed, which resulted in runtime Exceptions.
168 Liberty in IBM CICS: Deploying and Managing Java EE Applications

In this section, we describe how we used the DISPLAY ICSF,CARDS command and SMF 82
records to analyze ICSF usage of the cryptographic coprocessors. We did not use RMF
because the Monitor I crypto report only analyzes processor usage, which was relatively low
in our tests.

Hardware event data collection can also be used to monitor the use of the CPACF facility. It is
useful if you want monitor the use of the CPACF by IBMJCE because it does not use the
facilities of ICSF.

Running the test
To monitor our cryptographic hardware when TLS was used, we started a Liberty JVM server
and ran a workload of 1000 HTTPS requests to our restapp by using the following cipher
suite:

SSL_ECDHE_RSA_WITH_AES_128_GCM_SHA256

The Liberty server was configured to disable persistent connections by using the following
httpOptions element to ensure that each request drove a full TLS handshake:

< httpOptions id="httpoptions" keepAliveEnabled="false" />

DISPLAY ICSF,CARDS

Before the test, we ran the /DISPLAY,ICSF,CARDS MVS command to display the configured
cryptographic coprocessors on our system, as shown in Example 6-23.

Example 6-23 DISPLAY ICSF,CARDS: Before test

RESPONSE=SC80
 CSFM668I 10.30.59 ICSF CARDS 642
 ACTIVE DOMAIN = 001
 CRYPTO EXPRESS6 COPROCESSOR 6C00
 STATUS=Active SERIAL#=DV785304 LEVEL=6.0.6z
 REQUESTS=0000006013 ACTIVE=0000
 CRYPTO EXPRESS6 ACCELERATOR 6A01
 STATUS=Active
 REQUESTS=0000002562 ACTIVE=0000

This result confirmed that we have a coprocessor (CEX6C) and an accelerator (CEX6A)
configured on the system, and both are active.

After the test, we saw the results of this command that are shown in Example 6-24.

Example 6-24 DISPLAY ICSF,CARDS: After test

RESPONSE=SC80
 CSFM668I 10.36.25 ICSF CARDS 702
 ACTIVE DOMAIN = 001
 CRYPTO EXPRESS6 COPROCESSOR 6C00
 STATUS=Active SERIAL#=DV785304 LEVEL=6.0.6z
 REQUESTS=0000009040 ACTIVE=0000
 CRYPTO EXPRESS6 ACCELERATOR 6A01
 STATUS=Active
 REQUESTS=0000002639 ACTIVE=0000

Note: Use of the ICSF display cards command and SMF82 recording requires updates to
the level of ICSF. We used ICSF FMID=HCR77C1.
Chapter 6. Configuring Transport Layer Security support 169

The difference between these two commands shows that approximately 3000 requests to the
CEX6C and 77 requests to the CEX6A during the test period. This result confirms that the
cryptographic coprocessors were being used during the test, but we did not fully understand
what services were being requested or if the CPACF facility is being driven in our tests.

ICSF SMF 82 records
To gather SMF82 subtype 31 records, we completed the following steps:

1. Before running the test, we started statistics collection in ICSF for engines, services, and
algorithms by using the following ICSF command:

/SETICSF OPT,STATS=(ENG,SRV,ALG)

We then ran the test to drive 1000 request into our restapp.

2. After running the test, we disabled statistics collection to force an SMF record to be
collected by using the following command:

/SETICSF OPT,STATS=NONE

3. We collected SMF82 subtype 31 records from SMF by using the job that is shown in
Example 6-25. This job used the IFASMFDL procedure to dump the SMF records from the
log stream for the specific day of the year (2017285), sorted them by date, and then
formatted out the SMF 82 records by using the new ICSF supplied REXX exec,
CSFSMFR.

Example 6-25 ICSF SMF82 subtype: 31 records

//CSFSMFJ JOB (999,POK),'FORMAT CRYPTO SMF',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=NOLIMIT,REGION=0M
/*JOBPARM L=999,SYSAFF=*
//DUMP EXEC PGM=IFASMFDL
//SYSPRINT DD SYSOUT=*
//DUMPOUT DD DISP=(NEW,PASS),DSN=&&VBS,UNIT=3390,
// SPACE=(CYL,(1,1)),DCB=(LRECL=32760,RECFM=VBS,BLKSIZE=4096)
//SYSIN DD *
 LSNAME(IFASMF.DEFAULT,OPTIONS(DUMP))
 OUTDD(DUMPOUT,TYPE(82))
 DATE(2017285,2017285)
 SID(SC80)
 SOFTINFLATE
 USER1(SMFDPUX1)
 USER2(SMFDPUX2)
 USER3(SMFDPUX3)
/*
//*---*
//* COPY VBS TO SHORTER VB AND SORT ON DATE/TIME *
//*---*
//COPYSORT EXEC PGM=SORT,REGION=200M
//SYSOUT DD SYSOUT=*
//SORTWK01 DD UNIT=VIO,SPACE=(CYL,10)
//SORTIN DD DISP=(OLD,DELETE),DSN=&&VBS
//SORTOUT DD DISP=(NEW,PASS),DSN=&&VB,UNIT=3390,
// SPACE=(CYL,(1,1)),DCB=(LRECL=32752,RECFM=VB)
//SYSIN DD *
 SORT FIELDS=(11,4,A,7,4,A),FORMAT=BI,SIZE=E4000
//*
//*---*
//* FORMAT TYPE 82 RECORDS *
170 Liberty in IBM CICS: Deploying and Managing Java EE Applications

//*---*
//FMT EXEC PGM=IKJEFT01,REGION=200M,DYNAMNBR=100
//SYSPROC DD DISP=SHR,DSN=SYS1.SAMPLIB
//SYSTSPRT DD SYSOUT=*
//INDD DD DISP=(OLD,DELETE),DSN=&&VB
//OUTDD DD SYSOUT=*
//SYSTSIN DD *
 %CSFSMFR

SMF test data of AES with GCM mode
CSFSMFR produced the report for our test run that is shown in Example 6-26.

Example 6-26 ICSF SMF82 subtype - 31 records.

**
 Subtype=001F Crypto Usage Statistics
 Written periodically to record crypto usage counts
 12 Oct 2017 10:35:01.99
 TME... 003A2397 DTE... 0117285F SID... SC80 SSI... 00000000 STY... 001F
 INTVAL_START.. 10/12/2017 14:30:30.003602
 INTVAL_END.... 10/12/2017 14:35:01.996442
 USERID_AS..... CICSREGN
 USERID_TK.....
 JOBID......... STC08894
 JOBNAME....... SC8CICS7
 JOBNAME2......
 PLEXNAME...... WTSCPLX8
 DOMAIN........ 1
 ENG...CARD...6C00/DV785304... 3003
 ENG...CARD...6A01/N/A ... 77
 ENG...CPACF... 8001
 ALG...AES128..... 8000
 ALG...AES256..... 1
 ALG...RSA2048.... 1059
 ALG...RSA4096.... 19
 ALG...ECCP256.... 3000
 ALG...MD5........ 280
 ALG...PRNG....... 10262
 SRV...CSFDSG..... 1000
 SRV...CSFDSV..... 102
 SRV...CSFOWH..... 280
 SRV...CSFPKI..... 1001
 SRV...CSFSYD..... 4000
 SRV...CSFSYE..... 4001
 SRV...CSFIQF..... 3
 SRV...CSFRNGL.... 10262
 SRV...CSFEDH..... 1000
 SRV...CSFPKB..... 3124
 **
Subtype=001F Crypto Usage Statistics
 Written periodically to record crypto usage counts
 12 Oct 2017 10:35:01.99
 TME... 003A2397 DTE... 0117285F SID... SC80 SSI... 00000000 STY... 001F
 INTVAL_START.. 10/12/2017 14:30:30.003602
 INTVAL_END.... 10/12/2017 14:35:01.996442
Chapter 6. Configuring Transport Layer Security support 171

 USERID_AS..... CICSREGN
 USERID_TK.....
 JOBID......... STC08894
 JOBNAME....... SC8CICS7
 JOBNAME2...... OMVS
 PLEXNAME...... WTSCPLX8
 DOMAIN........ 1
 ALG...PRNG....... 8
 SRV...CSFRNG..... 8
 **

The data in Example 6-26 shows that initialization of the IBMJCECCA security provider and
the 1000 TLS handshakes used the following ICSF callable services:

� CSFDSG - Digital Signature Generate
� CSFDSV - Digital Signature Verity
� CSFOWH - One way hash generate
� CSFPKI - PKA Key Import
� CSFSYD - Symmetric Key Decipher
� CSFSYE - Symmetric Key Encipher
� CSFIQF - ICSF Query Facility
� CSFRNGL - Random Number Generate
� CSFEDH - ECC Diffie-Hellman
� CSFPKB - PKA Token Build

For more information about the ICSF callable services, see the Resource names for CCA and
ICSF entry points topic in IBM Knowledge Center.

The engine statistics (ENG) show 8001 calls to the CPACF to assist with the bulk cipher
encrypt/decrypt of the TLS payload. It also showed 3001 calls to the crypto-coprocessor
(6C00) and 77 calls to the crypto-accelerator (6A01).

The 8001 calls to the CPACF were driven by 4001 calls to the CSFSYE (symmetric key
encipher) and 4000 calls to CSFSYD (symmetric key decipher) services, which resulted in
8000 calls that used the AES128 algorithm. This cipher is the bulk cipher that was specified in
our negotiated cipher suite SSL_ECDHE_RSA_WITH_AES_128_GCM_SHA256, which uses
Elliptic Curve Diffe Hellman with RSA for the key exchange and AES in Galois/Counter Mode
(GCM) for the bulk cipher.

Note: The SMF output from this test contained two records. Most of the ICSF activity is
performed in the CICS address space and contained in the first record; however, the calls
to the CSFRNG random number generation service require a space switch from the CICS
address space to the ICSF address space and so are contained in another record.

Note: In IBM SDK, Java Technology Edition, Version 8, SR5 new functionality was added
to the IBMJCE provider to support AES-GCM hardware acceleration on IBM z13® and
z14. this support is provided by using the CPACF; therefore, ICSF is not required to obtain
the hardware assistance.

For more information, see the IBM SDK, Java Technology Edition, Version 8, Service
Refresh 5 page of the IBM developerWorks website.
172 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://developer.ibm.com/javasdk/2017/09/14/ibm-sdk-java-technology-edition-version-8-service-refresh-5/
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb300/a_stubReference.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb300/a_stubReference.htm
https://developer.ibm.com/javasdk/2017/09/14/ibm-sdk-java-technology-edition-version-8-service-refresh-5/
https://developer.ibm.com/javasdk/2017/09/14/ibm-sdk-java-technology-edition-version-8-service-refresh-5/

SMF test data of AES with CBC mode
Finally, we ran another test workload and modified the cipher suite to use
SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256. This cipher suite uses the AES cipher-block
chaining (CBC) mode of symmetric encryption, which is an older mode of AES that is
implemented directly by the IBMJCECCA and IBMJCE providers. It does not require the
support of ICSF. The ICSF SMF82 data from this test is shown in Example 6-27.

Example 6-27 ICSF SMF82 subtype: 31 records

**
 Subtype=001F Crypto Usage Statistics
 Written periodically to record crypto usage counts
 12 Oct 2017 11:44:00.69
 TME... 00407445 DTE... 0117285F SID... SC80 SSI... 00000000 STY... 001F
 INTVAL_START.. 10/12/2017 15:42:18.555146
 INTVAL_END.... 10/12/2017 15:44:00.690368
 USERID_AS..... CICSREGN
 USERID_TK.....
 JOBID......... STC08894
 JOBNAME....... SC8CICS7
 JOBNAME2......
 PLEXNAME...... WTSCPLX8
 DOMAIN........ 1
 ENG...CARD...6C00/DV785304... 3000
 ALG...RSA2048.... 1000
 ALG...ECCP256.... 3000
 ALG...PRNG....... 14000
 SRV...CSFDSG..... 1000
 SRV...CSFPKI..... 1000
 SRV...CSFRNGL.... 14000
 SRV...CSFEDH..... 1000
 SRV...CSFPKB..... 3000
 **

In this case, we can see that we now have no use of the CPACF by ICSF because the only
engine that is started is the coprocessor (CARD...6C00). The reason for this result is that the
AES-CBC mode cipher does not require ICSF support because it is directly implemented by
the JCECCA provider that uses native assembler calls to drive CPACF directly.

Instead, we now the see that the RSA, ECC, and random number generation algorithms are
used in ICSF because they are started during the asymmetric key exchange during the 1000
TLS handshakes in our test case.

This test showed us how the new ICSF SMF statistics provide a powerful tool to analyze the
use of the cryptographic hardware by the IBMJCECCA provider when JSSE is used. For
more information about the new crypto statistics resource usage, see the Crypto Statistics
Monitor Watches Resource Usage blog post of the IBM Systems Magazine website.
Chapter 6. Configuring Transport Layer Security support 173

http://ibmsystemsmag.com/mainframe/hot-topics/crypto-statistics-monitor
http://ibmsystemsmag.com/mainframe/hot-topics/crypto-statistics-monitor

174 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Chapter 7. Securing web applications

In this chapter, we describe how to secure web applications that are running in a CICS Liberty
JVM server. You learn how to configure Liberty with your preferred security provider, and the
various ways you can request credentials from users.

Specifically, we describe the different registry types that are available to Liberty in CICS,
along with some of the more popular methods of authentication and authorization.

This chapter includes the following topics:

� 7.1, “Overview” on page 176
� 7.2, “z/OS security configuration for Liberty JVM servers” on page 177
� 7.3, “Configuring a Liberty security registry” on page 180
� 7.4, “Authentication scenarios” on page 186
� 7.5, “Authorization scenarios” on page 201
� 7.6, “Configuring SSO by using Lightweight Third-Party Authentication” on page 214
� 7.7, “JSON client code with cookie printer” on page 217

7

© Copyright IBM Corp. 2018. All rights reserved. 175

7.1 Overview

A high-level overview of security in Liberty JVM servers is shown in Figure 7-1.

Figure 7-1 Security in Liberty JVM servers overview

As you secure your web applications, consider the following points:

� Decide whether you are going to use SAF-integrated security. If you are using this security,
you must set up the Liberty angel process and some basic security profiles. For more
information, see 7.2.1, “Starting the angel process” on page 177.

� You must decide how you are going to secure the client’s connection with your server. For
more information about the use of TLS to achieve connection level security, see
Chapter 6, “Configuring Transport Layer Security support” on page 141.

� Decide which mode of authentication you are going to use in your applications. Each
application can use a different mode of authentication. The authentication method is
typically outlined in the application’s deployment descriptor (web.xml). For more
information, see 7.4, “Authentication scenarios” on page 186.

� Decide on one or more modes of authorization. After users successfully authenticate with
the server, several options are available for authorizing them. You use the deployment
descriptor (web.xml) of your applications to restrict specific URLs. You can use roles that
are specified in your source code with EJBROLEs in your SAF registry. You can also use
CICS transaction and resource security. For more information, see 7.5, “Authorization
scenarios” on page 201.

� Decide whether to use SSO in your Liberty JVM servers. For more information about IBM
SSO technology Lightweight Third Party Authentication (LTPA), see 7.6, “Configuring SSO
by using Lightweight Third-Party Authentication” on page 214.
176 Liberty in IBM CICS: Deploying and Managing Java EE Applications

http://wtsc80:57080/com.ibm.cicsdev.restappext/rest/taskInformation

7.2 z/OS security configuration for Liberty JVM servers

In this section, we describe the setup of z/OS security for use in Liberty JVM servers. You can
skip this section if you are not planning to use SAF security in your CICS Liberty JVM server.

This section, we describe how to set up everything you need and integrate z/OS security with
your Liberty JVM server. If you follow the guidelines that are presented in this section, you set
up the Liberty angel process and create the security profiles that are required for
authenticating users.

7.2.1 Starting the angel process

The Liberty angel process is a started task that allows Liberty to use z/OS authorized
services. CICS Liberty JVM servers rely on this process to communicate with a SAF security
registry, such as RACF.

The angel process started task JCL includes versions of CICS TS, which support integrated
security (that is, CICS TS v5.2 onwards).

You can find this JCL in your CICS USSHOME directory. For our example CICS regions, the
following location was used:

/usr/lpp/cicsts/cicsts54/wlp/templates/zos/procs/bbgzangl.jcl

You must change the JCL before you can run it as a started task. The value of ROOT also
must be changed to match your CICS job’s USSHOME/wlp. For our example region, the
following ROOT value was used:

/usr/lpp/cicsts/cicsts54/wlp

For each LPAR where you are planning to use a security-integrated CICS Liberty JVM server,
you need a started task for the angel process. After the JCL is updated, submit it as a started
task.

7.2.2 Setting up access to the angel process

Now that the angel task started, security must be configured to allow Liberty JVM servers to
connect to the angel process. The examples in this subsection use RACF. If you do not have
RACF, run the equivalent commands in your SAF security provider.

The user ID under which the angel process runs requires the SAF STARTED profile to be set
up. This process sets the user ID for the started task. In our system, we use the user ID
WLPUSER as the user ID for the started task; therefore, we issued the RACF commands that
are shown in Example 7-1.

Example 7-1 Creating the required SAF STARTED profile

RDEFINE STARTED BBGZANGL.* UACC(NONE) STDATA(USER(WLPUSER))
SETROPTS RACLIST(STARTED) REFRESH

Note: As of this writing, the angel process cannot communicate at a more granular level
than an address space. As a result, only one connection to an angel process from any one
address space can be made. Therefore, only one secure Liberty JVM server can be run in
a CICS region.
Chapter 7. Securing web applications 177

The user ID that is associated with your CICS region’s job requires READ access to several
profiles in the SERVER class. This access allows Liberty to successfully perform authorization
and authentication checks by using the angel process.

To allow the CICS Liberty JVM server to connect to the angel process, you must create and
set up access to the SERVER class profile BBG.ANGEL. The commands for our example region
whose job runs under the user ID CICSREGN are shown in Example 7-2.

Example 7-2 Setting up and giving access to the server class process BBG.ANGEL

RDEFINE SERVER BBG.ANGEL UACC(NONE)
PERMIT BBG.ANGEL CLASS(SERVER) ACCESS(Read) ID(CICSREGN)

Next, the CICS JVM server must be allowed to access to the services that are necessary for
the CICS Liberty security feature. This access ultimately allows Liberty to use SAF to
authenticate and authorize user credentials.

SAF uses several authorized user registries and SAF authorized services to perform
authentication and authorization. We must create a RACF profile that is named SAFCRED for
these services in the SERVER class. The CICS region’s user ID needs READ access to this
profile. How this access is set up is shown in Example 7-3 (CICSREGN is our CICS region user
ID).

Example 7-3 Setting up the SAF unauthorized services profile

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.SAFCRED UACC(NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM.SAFCRED CLASS(SERVER) ACCESS(READ) ID(CICSREGN)

In addition to the SAF services, Liberty JVM servers must use the z/OS authorized services.
We meet this requirement by setting up the BBGZSAFM profile, which allows the CICS region
user ID READ access. The RACF commands that we issued in our system to set up this
profile and the required access are shown in Example 7-4.

Example 7-4 Setting up the AUTHMOD.BBGZSAFM profile

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM UACC(NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM CLASS(SERVER) ACCESS(READ) ID(CICSREGN)

Finally, we must create a SERVER profile for the IFAUSAGE services (PRODMGR). We also
must give the CICS region user ID READ access. The commands that were issued in our
system to perform this step are shown in Example 7-5.

Example 7-5 Creating the profile for the IFAUSAGE services and giving read access

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.PRODMGR UACC(NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM.PRODMGR CLASS(SERVER) ACCESS(READ) USER(CICSREGN)

After creating all of these profiles and setting up access, the SERVER resource must be
refreshed by using the command that is shown in Example 7-6.

Example 7-6 RACF refresh command for the SERVER resource

SETROPTS RACLIST(SERVER) REFRESH

If you want to verify that the angel process was set up correctly, start a CICS Liberty JVM
server and open messages.log. If the angel process was set up correctly, the message that is
shown in Example 7-7 on page 179 is displayed in the log.
178 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Example 7-7 Liberty message indicating it successfully connected to the angel process

I CWWKB0103I: Authorized service group SAFCRED is available.

7.2.3 Profile prefix and required SAF profiles

In this chapter, we describe how to set up and specify access rights for profiles that are
specific to our Liberty JVM server. To differentiate between servers and profiles, Liberty uses
a profile prefix. The profile prefix is a High Level Qualifier (HLQ) for security profiles, which
Liberty uses when looking up profile access rights for user IDs.

Throughout this chapter, we use the profile prefix SC8CICS. The profiles do not need to be
unique (several Liberty JVM servers can use the same profile prefix). If you are using only
one Liberty JVM server, and therefore one set of profiles, we recommend that you use the
APPLID of your CICS region as the profile prefix.

For more information about the steps required to configure a profile prefix, see 7.3.2,
“Configuring a SAF registry” on page 182. Some matching profiles in advance must be set up
in advance.

First, an APPL class profile must be defined for our prefix and activated. For our SC8CICS
prefix, we used the command that is shown in Example 7-8.

Example 7-8 Creating and setting active the SC8CICS profile in the APPL class

RDEFINE APPL SC8CICS UACC(NONE)
SETROPTS CLASSACT(APPL)

For Liberty to authenticate users, their user IDs need READ access to this profile. This
access does not authorize these users to run any programs in Liberty (for more information
about setting up this access, see 7.5, “Authorization scenarios” on page 201).

How we granted access to the SC8CICS profile to the user ID WEBUSER is shown in
Example 7-9.

Example 7-9 Setting READ access for WEBUSER

PERMIT SC8CICS CLASS(APPL) ACCESS(READ) ID(WEBUSER)

Liberty uses an unauthenticated user ID to call SAF services to attach the real user IDs. This
user ID must be in your system and also needs READ access to the APPL profile. You
configure the name of this ID as described in 7.3.2, “Configuring a SAF registry” on page 182.

We use the user ID WSGUEST as our specified unauthenticated user. The WSGUEST ID is the
recommended user ID for Liberty servers on z/OS. If you want to use this ID in your system,
you must create the user ID.

To grant WSGUEST access to the SC8CICS APPL profile, we run the command that is shown in
Example 7-10.

Example 7-10 Granting READ access to WSGUEST

PERMIT SC8CICS CLASS(APPL) ACCESS(READ) ID(WSGUEST)
SETROPTS RACLIST(APPL) REFRESH

Our CICS region user ID must be granted permission to the WLP z/OS System Security
Access Domain (WZSSAD) to make authentication calls for our specified prefix.
Chapter 7. Securing web applications 179

To set up this permission, we add a profile for our prefix in BBG.SECPFX and grant READ
access to the CICS region user ID. The commands that are shown in Example 7-11 show
how we set up the profile for our prefix SC8CICS, and gave our CICS region user ID CICSREGN
READ access.

Example 7-11 Setting up the SC8CICS profile for WZSSAD

RDEFINE SERVER BBG.SECPFX.SC8CICS UACC(NONE)
PERMIT BBG.SECPFX.SC8CICS CLASS(SERVER) ACCESS(READ) ID(CICSREGN)
SETROPTS RACLIST(SERVER) REFRESH

7.2.4 SAF profile summary

Table 7-1 summarizes the RACF profiles we used in this chapter and the permissions we
granted to the different user IDs and groups.

Table 7-1 RACF security profiles

7.3 Configuring a Liberty security registry

A security registry is a store of user credentials that is used to authenticate and authorize
incoming requests. You can create this registry and specify user IDs and passwords in the
server configuration file. It also can be an existing store of user credentials, such as an LDAP
active directory or a SAF security registry. The registries are configured through the Liberty
JVM server’s configuration file (server.xml).

In this section, we describe how to set up some simple registries, which can then be used
with any of the security models.

The following types of registries are described:

Class Profile CICS region
user ID
(CICSREGN)

Unauthentica-
ted user ID
(WSGUEST)

Authenticated
user IDs or
groups
(WEBUSER,
WEB, ADMN)

Required for angel registration READ

SERVER BBG.ANGEL READ

SERVER BBG.AUTHMOD.BBGZSAFM READ

SERVER BBG.AUTHMOD.BBGZSAFM.SAFCRED READ

SERVER BBG.AUTHMOD.BBGZSAFM.PRODMGR READ

Required for authentication or authorization

SERVER BBG.SECPFX.SC8CICS READ

APPL SC8CICS READ READ

EJBROLE SC8CICS.com.ibm.cicsdev.restapp.admin
SC8CICS.com.ibm.cicsdev.restapp.webusers
SC8CICS.com.ibm.cicsdev.restapp.Administrator

READ
180 Liberty in IBM CICS: Deploying and Managing Java EE Applications

� Basic user registry: Allows you to specify user IDs and passwords directly in the
server.xml configuration file.

� SAF registry: Allows user IDs that are stored in RACF or other SAF security registries to
be used for authentication and authorization.

� LDAP registry: Allows user credentials that are stored in an LDAP server to be used for
authentication and authorization.

7.3.1 Configuring a basic user registry

A basic user registry is the simplest registry option that is available. A basic user registry
allows you to specify a list of valid users or groups directly in the server configuration file for
Liberty.

You can authenticate credentials against this registry in CICS Liberty; however, your
applications run under the default CICS user ID or the user ID that is specified in your
URIMAP.

The Liberty angel process is not required for this registry option because authentication is not
be tested against your SAF security provider.

Basic user registries list in full the credentials for all of the users and groups that you want to
make available to your applications. User names must be specified with passwords, which
can be in plain text or encrypted.

A simple user registry with three users and two groups is shown in Example 7-12.

Example 7-12 Basic user registry in server.xml that is used by our server for this scenario

<basicRegistry id="basic" realm="customRealm">
 <user name="mitch" password="pAs5w0rd"/>
 <user name="carlos" password="pa$$word!"/>
 <user name="jplaw" password="{xor}Lz4sLCgwLTs="/>
 <group name="webUsers">
 <member name="mitch"/>
 <member name="carlos"/>
 </group>
 <group name="admin">
 <member name="mitch"/>
 <member name="jplaw"/>
 </group>
</basicRegistry>

Note: If the cicsts:security feature is installed, CICS attempts to use your basic user
registry for its task attach operation. As a result, if you are planning to use a basic user
registry, we recommend that you do not use the cicsts:security feature in the same JVM
server. Ideally, set SEC=NO for the CICS region.

Note: Although encoded, passwords are not secure when stored in the server.xml.
Instead, a user that is viewing the file without knowing the encryption keys cannot read the
password. It is recommended that you restrict access to files that contain passwords for
any important user ID on the system.
Chapter 7. Securing web applications 181

As shown in Example 7-13, users mitch and carlos use a plain text password. User jplaw
features an encrypted password that was specified. Users mitch and carlos are in the group
webUsers, and the group admin contains users mitch and jplaw. These groups can be used by
applications to grant access to certain URLs or to lock out users.

7.3.2 Configuring a SAF registry

SAF is a security provider-neutral interface that is defined by MVS, which allows running
programs to use system authorization services to authenticate and authorize user IDs. In our
system SAF, a combination with the Liberty angel process allows us to use RACF user IDs to
access applications.

SAF is used in Liberty (along with the angel process as described in 7.2, “z/OS security
configuration for Liberty JVM servers” on page 177) to authenticate users. These users can
be specified in the headers of incoming HTTP requests or within the configuration of your
applications.

To configure your Liberty JVM server to use a SAF registry, start by adding the
cicsts:security-1.0 feature to your server configuration’s feature manager, as shown in
Example 7-13.

Example 7-13 Enabling the cicsts:security-1.0 feature in server.xml

<featureManager>
. . .
 <feature>cicsts:security-1.0</feature>
. . .
</featureManager>

This feature enables security integration with CICS, which means that any incoming
credentials are authenticated and authorized with your SAF security provider (for example,
RACF).

To enable SAF, a set of SAF credentials configuration must be provided in the Liberty JVM
server’s configuration file (server.xml). As part of this configuration, you can specify
something called a profile prefix. This profix is used by the angel process as the HLQ for SAF
profiles it must look up. If you do not specify a prefix, the default profile prefix (BBGZDFLT) is
used.

For our examples, we use the prefix SC8CICS because all of our regions APPLIDs start with
this prefix. This prefix matches the security prefix SIT parameter (SECPRFX) on our CICS
region. As a result, our Liberty security profiles names match up clearly with our CICS
security profiles. Our SAF credentials configuration resembles the credentials that are shown
in Example 7-14.

Example 7-14 SAF credentials for our CICS Liberty JVM server in server.xml

<safCredentials profilePrefix="SC8CICS"
 unauthenticatedUser="WSGUEST"/>

Next, the SAF registry element must be added to your server configuration. The element is
simple: You provide is an ID for the XML element. We also provide a value for “realm”, which
specifies a name for the registry. You will see the value of the realm attribute appear at times
in messages.log. The XML element we used is shown in Example 7-15.
182 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Example 7-15 SAF Registry configuration for server.xml

<safRegistry id="saf" realm="ITSO"/>

The security provider that is defined for our use is not identified. Because SAF is a security
provider-neutral interface, this same element works with RACF and any other security
provider.

This SAF registry element is all you need to enable your SAF registry. To validate your
configuration, you can attempt to connect to the CICS Liberty default application.

The CICS Liberty default application is a simple in-built application, which is automatically
installed on start. This application uses the special authorization role
CICS_ALL_AUTHENTICATED, which authorizes all authenticated users to call the application.
With this role, it also specifies a login configuration of BASIC, which requires callers to include
a user ID and password in their HTTP header or by using a browser’s prompt.

You can access the default application by browsing to the application’s address in your
browser. In our environment, we use the following URL to access the default application:

http://wtsc80:57080/com.ibm.cics.wlp.defaultapp/

If you do not know your default application’s address, you can find it in the messages.log file
for your JVM server.

The application requests a user ID and password to log on to the application. Provide a valid
user ID that is authorized to log on to CICS. If you followed the set-up process correctly, you
see a window similar to the window that is shown in Figure 7-2.

Note: We recommend disabling the CICS default application for production environments
by adding -Dcom.ibm.cics.jvmserver.wlp.defaultapp=false to the JVM profile for your
Liberty JVM server.
Chapter 7. Securing web applications 183

Figure 7-2 Output of the default application Liberty is configured with a SAF registry

7.3.3 Configuring an LDAP registry

Liberty JVM servers in CICS can connect to external LDAP servers and use them to
authenticate incoming requests. The connection is made by using HTTP or HTTPS. We
recommend the use of HTTPS to connect to the LDAP server where possible to ensure that
requests are encrypted.

The following options are available for using this registry:

� Mapping incoming LDAP credentials that are successfully authenticated to a SAF security
user ID.

� Use the LDAP without mapping for authorization, which results in CICS transactions
running under the CICS default user or under a user ID that is specified in an applicable
URIMAP.

This IBM Redbooks publication focuses on the first option because the second option
functions the same way as the basic user registry.

Note: This scenario requires a basic understanding of LDAP hierarchies because it
involves applying filters to directory information trees.
184 Liberty in IBM CICS: Deploying and Managing Java EE Applications

To enable this functionality in CICS Liberty JVM servers, you must add the LDAP registry and
distributed identity features to the feature manager’s list of features in your server
configuration file. The features are shown in Example 7-16.

Example 7-16 LDAP registry feature in Liberty in server.xml

<feature>ldapRegistry-3.0</feature>
<feature>cicsts:distributedIdentity-1.0</feature>

The ldapRegistry feature enables Liberty to connect to a specified LDAP registry over HTTP
to authenticate incoming credentials. The cicsts:distributedIdentity-1.0 enables
mapping from LDAP identities to SAF user IDs. After this process is complete, you can add an
LDAP registry to your server configuration by using the ldapRegistry XML elements, as
shown in Example 7-17.

Example 7-17 LDAP registry configuration in server.xml

<ldapRegistry baseDn="dc=example,dc=org" bindDn="cn=admin,dc=example,dc=org"
bindPassword="password" host="ldap.hostserver.com" id="ldapRegistry"
ignoreCase="true" ldapType="Custom" port="12345" recursiveSearch="true"
sslEnabled=”true” sslRef=”Ldap_SSL” realm="LdapRealm">
 <customFilters
 userFilter= "(&(cn=%v)(objectclass=inetOrgPerson))"
 userIdMap="*:cn"/>
</ldapRegistry>

<ssl id=”Ldap_SSL” keyStoreRef=”LdapKeyStore”
 trustStoreRef=”LdapTrustStore”/>

<keyStore id="LdapKeyStore" location="${server.config.dir}/LdapKeyStore.jks"
 type="JKS" password="{xor}R9MNjj8JL=" />
<keyStore id="LdapTrustStore" location="${server.config.dir}/LdapTrustStore.jks"
 type="JKS" password="{xor} R9MNjj8JL=" />

Example 7-17 shows the LDAP registry that is for this scenario. The following sets of XML
elements are used for the LDAP registry:

� The ldapRegistry element contains all of the information about the target LDAP server,
including the base Distinguished Name (DN) and the host address. The bindDN and
bindPassword that are specified in the ldapRegistry element. These credentials are used
by Liberty to log in to LDAP. The bindDN must include access rights to look up other DNs
within the specified domain. This bindDN often is an admin ID or a user ID that was
created specifically for this purpose.

� The customFilters element specifies which filters are applied to incoming user
credentials. Specifying this customFilters element allows your users to log on with
simplified credentials rather than the full LDAP DN.

Note: Liberty continues to develop and improve its features. The version number of this
feature can change. Check the latest CICS documentation to determine which versions are
supported in your version of CICS.
Chapter 7. Securing web applications 185

The elements that are shown in Example 7-17 on page 185 include a filter for user
credentials that are coming in to our server. The userFilter attribute specifies an object
class to be filtered for incoming credentials. In our case, the inetOrgPerson object is
checked for matching credentials. We also included &(amp;(cn=%v), which means that we
try to filter our credentials against the Common Name (CN) portion of the DNs that are
found in inetOrgPerson.

Ultimately, this process results in users needing to provide only the CN potion of their
LDAP credentials. If a matching inetOrgPerson object exists, the user can log in.

Consider that we use HTTPS with TLS client authentication to connect to LDAP. This
configuration is done by specifying sslEnabled=true in the ldapRegistry element. TLS
settings then can be configured by using the SSL element. For more information about
configuring TLS in CICS Liberty JVM servers, see Chapter 7, “Securing web applications ” on
page 175.

If you are planning to map LDAP credentials to SAF registry user IDs, you must enable SAF in
Liberty. To enable SAF, add the safCredentials element to your server configuration file
(server.xml).

You must specify a profile prefix as part of your SAF credentials. This prefix is used as the
HLQ for any SAF profiles that your Liberty JVM server must look up. If you do not specify this
prefix, the default prefix is BBGZDFLT. For our example, we use SC8CICS. The SAF credentials
element that we use is shown in Example 7-18.

Example 7-18 SAF credentials configuration in server.xml

<safCredentials profilePrefix="SC8CICS"
 unauthenticatedUser="WSGUEST"/>

After you complete this step, your registry is ready to use. We describe how to use this
registry for basic authentication and configure a mapping in 7.4.2, “Basic authentication by
using LDAP credentials” on page 190.

7.4 Authentication scenarios

This section describes some of the basic scenarios for configuring authentication in a Liberty
JVM server. It also describes some of the different options available to you, and shows you
how to configure applications for different authentication mode.

This section does not include instructions for setting up TLS. However, we do recommend
that TLS is set up when running these scenarios to ensure that your connection is secure. For
more information about setting up TLS, see Chapter 6, “Configuring Transport Layer Security
support” on page 141.

By default, Liberty uses Lightweight Third Party Authentication (LTPA) to attempt to optimize
the authentication process. For more information about LTPA, see 7.6, “Configuring SSO by
using Lightweight Third-Party Authentication” on page 214.

Much of this section involves changing key pieces of configuration in your applications. A
login configuration is a piece of XML configuration, which describes the authentication mode
that is used by an application. The following settings are described in this chapter:

� BASIC, which specifies that callers provide a user name and password. For more
information, see 7.4.1, “Basic authentication with a SAF registry” on page 187.
186 Liberty in IBM CICS: Deploying and Managing Java EE Applications

� FORM, which specifies that an HTML form is provided by the application, which users can
use to provide credentials. For more information, see 7.4.3, “Form-based login” on
page 193.

� CLIENT-CERT, which specifies that the TLS/SSL certificate should identify the user. For
more information, see 7.4.4, “Certificate-based client authentication” on page 197.

7.4.1 Basic authentication with a SAF registry

This section describes a simple scenario in which we enhance an application for basic
authentication by using a SAF registry.

We recommend that TLS is used with basic authentication in Liberty whenever possible. The
instructions in this section describe only the setup for basic authentication. For more
information about setting up TLS, see Chapter 6, “Configuring Transport Layer Security
support” on page 141.

The examples in this section use SAF-based credentials; that is, those credentials that are
connected to a SAF security provider. Therefore, we suggest that you complete the process
that is described in 7.3.2, “Configuring a SAF registry” before working through this scenario.
However, this scenario can be combined with any of the other registries. The security mode is
specified at the application level, and is not specific to the registry that is being used by the
server.

In this scenario, we use the sample application that is provided by the CICS team on the
cicsdev GitHub that is named cics-java-liberty-restapp-ext. The source code for this
application is available at the cics-java-liberty-restapp-ext page of the GitHub website.

To enable the basic authentication security mode, we must edit the deployment descriptor for
the REST app extensions application. That is, we must add several XML elements to the
web.xml file in the dynamic web project for the application.

If a project is not yet created for the REST application extensions application, follow the
instructions that are described in Chapter 2, “Deploying a web application” on page 27.
Ensure that you select the Generate web.xml deployment descriptor in the Web Module
pane of the New Dynamic Web Project wizard, as shown in Figure 7-3 on page 188.
Chapter 7. Securing web applications 187

https://github.com/cicsdev/cics-java-liberty-restapp-ext

Figure 7-3 Generating web.xml by using the New Dynamic Web Project wizard

If you created the project and did not create a web.xml deployment descriptor, you can use
the Eclipse Java EE tools to generate one. Right-click the dynamic web project and click Java
EE Tools → Generate Deployment Descriptor Stub.

We start by adding some security descriptions into our deployment descriptor file (web.xml).
First, we must add in a security constraint. The security constraint describes the resources
that must be protected in the application and how they are protected. The security constraints
configuration that we used in our system is shown in Example 7-19.

Example 7-19 web.xml security constraints for enabling basic authentication

<security-constraint>
<display-name>

 com.ibm.cicsdev.restappext_SecurityConstraint
</display-name>
<web-resource-collection>

<web-resource-name>
 com.ibm.cicsdev.restappext
 </web-resource-name>

<description>
 Protection for urls in restapp
 </description>

<url-pattern>/*</url-pattern>
</web-resource-collection>

<auth-constraint>
 <description>
 All authenticated users of my application
 </description>
 <role-name>cicsAllAuthenticated</role-name>
188 Liberty in IBM CICS: Deploying and Managing Java EE Applications

 </auth-constraint>

</security-constraint>

In Example 7-19 on page 188, consider the url-pattern /* in the url-pattern configuration. This
pattern specifies that any URL within the application’s context-root is subject to the specified
security requirements.

The authentication constraint in this case a special role that is named cicsAllAuthenticated.
This role allows any user who is authenticated to CICS access to the application. CICS
creates the role when you install a CICS bundle with access to the role given to anyone who
can successfully authenticate with the registry.

Finally, you must add a login configuration to the application’s web.xml file to specify basic
authentication as our security mode. The login configuration tells the server which
authentication method to use for requests that are coming into the application. The XML
elements are shown in Example 7-20.

Example 7-20 Log in configuration in web.xml, which enables basic authentication

<login-config>
<auth-method>BASIC</auth-method>

</login-config>

Deploy the application to the CICS region by using a CICS bundle, as described in Chapter 2,
“Deploying a web application” on page 27. We use the taskInformation service to verify that
our security configuration is resulting in our user ID being propagated to CICS. The
taskInformation service returns some basic information to the caller about the CICS TASK
that is running for that request, including the associated user ID.

In our environment, we can access this service at the following URL:

http://wtsc80:57080/com.ibm.cicsdev.restappext/rest/taskInformation

If you are visiting this URL for the first time, you are prompted to log in, as shown in Figure 7-4
on page 190. Enter a valid user ID and password. In our examples, we are use the user ID
WEBUSER as our login user ID.

Note: The cicsAllAuthenticated role is created automatically when you install your
application by using CICS bundles. If you intend to install your application by using the
application XML element, you must define the role manually.
Chapter 7. Securing web applications 189

Figure 7-4 Log in prompt from the application

The application returns some basic information about the CICS task that ran the request. If
your security was correctly configured, you see the user ID WEBUSER as the value of the User
ID field. The response from our environment is shown in Example 7-21.

Example 7-21 Example response from the taskInformation service

{"transid":"CJSA","userid":"WEBUSER ","tasknum":"16318"}

7.4.2 Basic authentication by using LDAP credentials

To complete this scenario, you must set up an LDAP registry in a CICS Liberty JVM server as
described in 7.3.3, “Configuring an LDAP registry”.

In this scenario, we use the sample application that is provided by the CICS team on the
cicsdev GitHub that is named cics-java-liberty-restapp. The source code for this
application is available at the cics-java-liberty-restapp-ext page of the GitHub website.

To enable the basic authentication security mode, we must edit the deployment descriptor for
the restapp application. That is, we must add some elements to the web.xml file in the
dynamic web project for the restapp application.

If you did not yet create a project for the restapp application, follow the instructions that are
described in Chapter 2, “Deploying a web application” on page 27. Ensure that you selected
the Generate web.xml deployment descriptor option in the Web Module pane of the New
Dynamic Web Project wizard, as shown in Figure 7-5 on page 191.
190 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://github.com/cicsdev/cics-java-liberty-restapp-ext

Figure 7-5 Generating web.xml by using the New Dynamic Web Project wizard

If you created the project but did not create a web.xml deployment, you can use the Eclipse
Java EE tools to generate one. Right-click the dynamic web project and select Java EE
Tools → Generate Deployment Descriptor Stub.

We start by adding some security descriptions into your deployment descriptor; that is, your
web.xml file. We must specify a security constraint in our deployment descriptor, which
informs the Liberty server that certain resources are protected. We also must add in a
configuration for the login that specifies basic authentication as our login method.

First, we must add in a security constraint. The security constraint describes the resources
that must be protected in the application and how they are protected. How the security
constraint is set up in our application is shown in Example 7-22.

Example 7-22 Security constraint configuration in web.xml for our application

<security-constraint>
 <display-name>
 com.ibm.cicsdev.restapp_SecurityConstraint
 </display-name>

 <web-resource-collection>
 <web-resource-name>
 com.ibm.cicsdev.restapp
 </web-resource-name>
 <description>Protection for urls in restapp</description>

 <url-pattern>/*</url-pattern>
 </web-resource-collection>
Chapter 7. Securing web applications 191

 <auth-constraint>
 <description>
 All authenticated users of my application
 </description>
 <role-name>cicsAllAuthenticated</role-name>
 </auth-constraint>

</security-constraint>

In Example 7-22 on page 191, consider the url-pattern /*. This pattern specifies that any URL
that is accessed in Liberty that belongs to this application is subject to the specified security
requirements.

The authentication constraint in this case is a special role that is named
cicsAllAuthenticated. This role allows any user who is authenticated to SAF access to the
application.

Finally, you must add a login configuration to the application to specify basic authentication as
our authentication method. The XML elements that were required to enable basic
authentication login are shown in Example 7-23.

Example 7-23 Log in configuration XML elements in web.xml for enabling basic authentication

<login-config>
<auth-method>BASIC</auth-method>

</login-config>

Using the value BASIC as your auth-method value prompts you to log in you attempt to
connect to the application by using your browser. We need an LDAP user to test our
application. In our environment, we use an LDAP user that is named LdapUser. The full DN for
the user ID is shown in Example 7-24.

Example 7-24 Our example LDAP user DN

cn=LdapUser,dc=example,dc=org

In our LDAP server, we use case-insensitive DNs, which is the default behavior for most
LDAP servers. However, it can be changed. We recommend that you check whether your
DNs are case-sensitive before proceeding.

We need a way of mapping LdapUser on to a valid SAF registry ID. We use RACF and
RACMAPS because RACF is the security provider on our systems. However, the mapping
mechanism works in the same way in other SAF security providers. In our system, we chose
to map the LdapUser credentials to the SAF registry user ID LDAPUSER.

To map LdapUser to LDAPUSER in RACF, we must set up a RACMAP. This RACMAP lists the full
DN for the user ID we plan to map and the LDAP server’s host name and the user ID to which
we want to map incoming requests. How we set up the mapping for our server
ldaps://ldap.hostserver.com is shown in Example 7-25.

Example 7-25 RACMAP we created for our LDAP mapping in RACF

RACMAP ID(LDAPUSER) MAP
 USERDIDFILTER(NAME('cn=LdapUser,dc=example,dc=org'))
 REGISTRY(NAME('ldaps://ldap.hostserver.com'))
 WITHLABEL('Mapping to LDAPUSER')
192 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Now, when a user logs in by using the correct credentials for LdapUser, they are mapped and
the resulting CICS task starts under the user ID LDAPUSER.

Although we created a RACMAP with a one-to-one mapping in this scenario, many-to-one
mappings can be created.

Our application is now ready to use. Deploy the REST application com.ibm.cicsdev.restapp.
We can now send an access request to the service along with the LDAP credentials we use to
log in. In our system, we use the following URL:

http://wtsc80:57080/com.ibm.cicsdev.restapp/rest/cicsinfo

If we use a browser, we are prompted for our credentials when we first connect. If we enter
our LDAP user name and its corresponding password, we receive an HTTP 200 response
and can access the services.

7.4.3 Form-based login

In this section, we describe how to set up the REST application com.ibm.cicsdev.restapp
that is provided at the cicsdev GitHub website. We also describe how to add a restraint to
web.xml, which enables form-based login.

Form-based login allows you to specify a customized login page to present to users when
they attempt to access your applications from a browser.

This scenario uses the sample application that is provided by the CICS team on the cicsdev
GitHub that is named cics-java-liberty-restapp. The source code for this application is
available the cics-java-liberty-restapp page of the GitHub website.

If a project is not yet for the REST application, ensure that you click the Generate web.xml
deployment descriptor option in the Web Module pane of the New Dynamic Web Project
wizard, as shown in Figure 7-6 on page 194.
Chapter 7. Securing web applications 193

https://github.com/cicsdev/cics-java-liberty-restapp

Figure 7-6 Generating web.xml by using the New Dynamic Web Project wizard

We start by creating two HTML pages in our com.ibm.cicsdev.restapp project. The first page
is our form login page, which is presented to our users when they attempt to access the
applications. The second page is an error page that is presented to users who fail to provide
valid login credentials.

In our project, we created a file that is named login.html, which is stored in the WebContent
directory of the project. The file login.html is a simple page with a form that features input
fields for user names and passwords, along with a submit button. The code that we used in
our application is shown in Example 7-26.

Example 7-26 The login.html page code

<html>
 <head><title>Login Form</title></head>
 <body>
 <form action="j_security_check">
 Enter your user name:
 <input type="text" name="j_username"/>

 Enter your password:
 <input type="password" name="j_password"/>
 <input type="submit"/>
 </form>
 </body>
</html>
194 Liberty in IBM CICS: Deploying and Managing Java EE Applications

This page displays two simple form entry boxes that allow a user to enter the required
information. Because the password field features type password, any information that is
entered in that field is masked.

The names and actions that start with j_ are all keywords for the form login, which tells the
application server which fields are to be used for the login.

Next, we create an error page for when the credentials that a user provides are invalid. For
our project, we created an HTML page that is named errorPage.html. This page returns a
text response that notifies the user that the authentication failed. The source code for our
error page is shown in Example 7-27.

Example 7-27 errorPage.html file source code

<html>
 <head>
 <title>Access Denied.</title>
 </head>
 <body>
 Login Failure. Access Denied.
 </body>
</html>

With these two pages created and in place, we can edit our deployment descriptor (web.xml)
to include form based login. First, we add a security constraint. The security constraint
describes the resources that must be protected in the application and how they are protected.
The configuration that we used to protect our REST application is shown in Example 7-28.

Example 7-28 Security constraint configuration in web.xml

<security-constraint>

 <display-name>
 com.ibm.cicsdev.restapp_SecurityConstraint
 </display-name>

 <web-resource-collection>
 <web-resource-name>
 com.ibm.cicsdev.restapp
 </web-resource-name>
 <description>
 Protection for urls in restapp
 </description>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <description>
 All authenticated users of my application
 </description>
 <role-name>cicsAllAuthenticated</role-name>
 </auth-constraint>

</security-constraint>
Chapter 7. Securing web applications 195

As shown in Example 7-28 on page 195, consider the URL pattern /*. This pattern specifies
that any URL in Liberty that belongs to this application is subject to the specified security
requirements.

The authentication constraint in this case is a special role that is named
cicsAllAuthenticated. This role maps to the ALL_AUTHENTICATED_USERS role, which allows
any user who is authenticated to CICS access to the application.

Finally, we add a login configuration to the application to specify form-based login as our
authentication method and the location of our login and error pages. The configuration that
we added to the web.xml deployment descriptor is shown in Example 7-29.

Example 7-29 Log in configuration in web.xml for form-based login

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/errorPage.html</form-error-page>
 </form-login-config>
</login-config>

The paths to the pages are relative, not absolute. For form-based login, they start from the
WebContent directory in our dynamic web project.

When we attempt to login to any services that are contained in the com.ibm.cicsdev.restapp
application, we are presented with the form that we specified in the deployment descriptor, as
shown in Figure 7-7.

Figure 7-7 Login form

Note: The cicsAllAuthenticated role is created automatically when you install your
application by using CICS bundles. If you intend to install your application by using the
application element, you must define the role manually.
196 Liberty in IBM CICS: Deploying and Managing Java EE Applications

If we provided incorrect user information (that is, information that normally results in an HTTP
401 response), we see with the error page that we specified, as shown in Figure 7-8.

Figure 7-8 Custom error form

7.4.4 Certificate-based client authentication

Certificate-based client authentication allows you to use information that is provided in a
client’s TLS certificate to identify and map to an associated user ID. It also provides all of the
normal benefits that are associated with a secure TLS connection, as described in Chapter 6,
“Configuring Transport Layer Security support” on page 141.

As described in Chapter 6, “Configuring Transport Layer Security support” on page 141 we
created a certificate for the user ID WEBUSER and stored it in our RACF registry and browser
key store. When we use certificate authentication as our authentication method, the
certificate that is provided by the client is looked up in the RACF registry. Because we
associated the certificate with the user ID WEBUSER in our RACF registry, WEBUSER is the user
ID that is used for the CICS task.

To run this scenario, follow the process that is described in 6.4, “TLS client authentication” on
page 152. When you complete that section, you should have a Liberty JVM server set up to
use two-way TLS handshakes (that is, a connection in which the client and server must
provide valid TLS certificates).

You should also have a certificate that is associated with WEBUSER stored in your browser’s
certificate store on your own workstation. It is a simple step from that point to enable Liberty
to use that certificate to resolve the user ID.

For this scenario, we work with the rest app extensions application that is found in the cicsdev
GitHub repository, found at the following URL.

http://wtsc80:57080/com.ibm.cicsdev.restappext/rest/taskInformation

Download the source code for this application and create a dynamic web project to store it in
your Eclipse environment. Ensure that when you are proceeding through the New Dynamic
Web Project wizard, you select the Generate web.xml deployment descriptor option in the
Web Module window, as shown in Figure 7-9 on page 198.
Chapter 7. Securing web applications 197

Figure 7-9 Selecting the Generate web.xml deployment descriptor option

Now that we have a project to work with, we must add a security constraint to the deployment
descriptor (web.xml). Open the web.xml file and add a security constraint that protects all
URLs that are provided by that application. This scenario uses the cicsAllAuthenticated role
to authenticate users. This role allows anyone who is authenticated and authorized to use
CICS to access the application.

The configuration we used to protect all URLs with this role is shown in Example 7-30.

Example 7-30 Protecting all URLs by using the cicsAllAuthenticated role in web.xml

<security-constraint>

 <display-name>client authentication restraint</display-name>

 <web-resource-collection>
 <web-resource-name>

 authentication.testing.clientauth
 </web-resource-name>

 <description>Protection for urls in the app</description>
 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>
 <description>cicsAllAuthenticated role</description>
 <role-name>cicsAllAuthenticated</role-name>
 </auth-constraint>
</security-constraint>
198 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Next, we must enable the login configuration for our extended rest application to be
CLIENT-CERT. Add the elements that are shown in Example 7-31 to your web.xml deployment
descriptor file.

Example 7-31 Log in configuration XML elements in web.xml for enabling client authentication

<login-config>
<auth-method>CLIENT-CERT</auth-method>

</login-config>

Now, we must deploy the application to CICS. For this scenario, we install the application by
adding the application XML element to the server’s configuration file (server.xml).

After you complete the basic configuration for the application is made in your server’s
configuration file, expand on it to add the cicsAllAuthenticated role. Add an application binding
configuration for the web application. Then, add the security-role to match. In our server, the
configuration that was used is shown in Example 7-32.

Example 7-32 Application binding in server.xml to create the cicsAllAuthenticated role

<webApplication id="com.ibm.cicsdev.restappext"
 location="com.ibm.cicsdev.restappext"
 name="com.ibm.cicsdev.restappext">
 <application-bnd>

<security-role name="cicsAllAuthenticated">
 <special-subject type="ALL_AUTHENTICATED_USERS"/>
 </security-role>

 </application-bnd>
</webApplication>

The ALL_AUTHENTICATED_USERS subject is a special security subject that specifies access for
any user that can be successfully authenticated in the system. However, the user must still
have the correct access to run the transaction ID that is associated with Liberty programs that
are running in your CICS region. For more information about the use of your SAF registry for
securing CICS resources, see 7.5.3, “CICS transaction security with URIMAPs” on page 211.

We can now use the TaskInformation service in our REST application to verify that our user
ID is being propagated to the CICS task. Complete the following steps:

1. Ensure that your browser still includes the certificate for WEBUSER that you created when
completing the steps that are described in 6.4, “TLS client authentication” on page 152. If
the certificate is not included, see 6.4, “TLS client authentication” on page 152 and use the
command that shown in that section to export the certificate to your machine by using the
RACDCERT EXPORT command.

2. Browse to the address of the TaskInformation service in your browser. In our system, we
did not change any of the web context root or URI extensions; therefore, we can access
our version of the TaskInformation service at the following URL:

https://wtsc80:57443/com.ibm.cicsdev.restappext/rest/taskInformation

Tip: If you install this application as CICS bundle, the cicsAllAuthenticated role is
provided for you. Therefore, you do not need to change anything in your CICS Liberty JVM
server’s configuration file.
Chapter 7. Securing web applications 199

If this is your first time visiting the URL, you are prompted to select a certificate, as shown
in Figure 7-10.

Figure 7-10 Certificate prompt

3. Select the certificate that you created for WEBUSER and select OK.

The service returns to your browser some basic information about the CICS task it is
running under, including the user ID field. This field shows WEBUSER as our current user ID.
The response we received from the service is shown in Example 7-33.

Example 7-33 The response given by the service

{"transid":"CJSA","userid":"WEBUSER ","tasknum":"16382"}

Enabling fail over to basic authentication
You can authenticate clients who do not have valid certificates by using basic authentication.

To enable this capability, you must add the web container application security element to your
Liberty JVM server’s configuration file (server.xml). Add the webAppSecurity element to your
server.xml file. Then, add the attribute allowFailOverToBasicAuth, with the value set to true.
The configuration that we used in our environment to enable this capability is shown in
Example 7-34.

Example 7-34 webAppSecurity configuration for failOverToBasicAuth in server.xml

<webAppSecurity allowFailOverToBasicAuth="true"/>
200 Liberty in IBM CICS: Deploying and Managing Java EE Applications

7.5 Authorization scenarios

In this section, we describe some of the basic scenarios for configuring the authorizing
function in CICS Liberty JVM servers.

This section also describes how to use SAF registry groups to restrict access to specific roles
by editing an application’s deployment descriptor (web.xml) and setting up corresponding
EJBROLEs. For more information, see 7.5.1, “URL-specific authorization by using EJBROLEs”
on page 201.

We also describe how to set up your SAF registry to authorize roles inside your application
code, which were defined by using the @RolesAllowed annotation. For more information, see
7.5.2, “Programmatic role authorization by using EJBROLEs” on page 206.

Finally, we provide more information about CICS transaction and resource security, which is
useful for authorizing users to certain transaction IDs and setting up URIMAPs. For more
information, see 7.5.3, “CICS transaction security with URIMAPs” on page 211.

7.5.1 URL-specific authorization by using EJBROLEs

In addition to specifying security for entire applications, individual URLs can be secured by
using SAF registry groups and EJBROLEs. In this scenario, we describe how to use EJBROLEs
and groups to set up different security levels for different URLs in the same applications.

In this section, we describe how to install an application by using CICS bundles. Although this
scenario also works for applications that are installed by using an application element in
server.xml, it does not work for applications that are installed in drop-ins because drop-ins
lacks CICS security integration.

To run through this scenario, you must set up a SAF registry. For more information, see 7.3.2,
“Configuring a SAF registry” on page 182.

Confirm that the cicsts:security-1.0 feature is still installed in your server.xml file, as
shown in Example 7-35.

Example 7-35 Enabling the cicsts:security-1.0 feature in server.xml

<featureManager>
 <feature>cicsts:security-1.0</feature>
</featureManager>

To configure Liberty use SAF security roles, we must add the safAuthorization element to
our server’s configuration file (server.xml). This element is simple; it needs only an ID
attribute specified. The configuration we used for this scenario is shown in Example 7-36.

Example 7-36 safAuthorization configuration in server.xml

<safAuthorization id="saf"/>

URLs can be restricted in web applications by using specific roles. These roles are outlined
by the application in its deployment descriptor (web.xml). You can then create corresponding
EJBROLEs in your SAF registry and grant your user groups access to different sets of groups.

First, you must have an application to which the restrictions are applied. In this scenario, we
use the com.ibm.cicsdev.restapp application that is available at the GitHub website.
Chapter 7. Securing web applications 201

https://github.com/cicsdev/cics-java-liberty-restapp

The security constraints are specified as part of the application'’ deployment descriptor; that
is, the web.xml file for the corresponding project. If you did not yet create a project for the
REST application, ensure that you enable the generate web.xml deployment descriptor
option.

If you created the REST application project while working through another section of this
publication and did not create the deployment descriptor, you can use Eclipse to generate
one for you. Right-click the project in Eclipse and then, click Java EE Tools → Generate
Deployment Descriptor Stub.

We now must add our security configuration to the application. First, we add the login
configuration to our web.xml deployment descriptor file. We add the elements that are shown
in Example 7-37 to specify basic authentication.

Example 7-37 Log in configuration in web.xml, which enables basic authentication

<login-config>
<auth-method>BASIC</auth-method>

</login-config>

Next, we add two security constraints for our application, which allows us to use different
security settings for two different URLs. The first security constraint is protecting the services
that are under InfoResource; the second protects the service under ReverseResource.

By using the configuration that is shown in Example 7-38, the application restricts access to
the URL rest/cicsinfo so that only users in the role webusers have access.

Example 7-38 Security constraint configuration that allows only webusers access

<security-constraint>
<display-name>

com.ibm.cicsdev.restapp.webusers_Restraint
</display-name>
<web-resource-collection>

<web-resource-name>
InfoResourceRestraint

</web-resource-name>
<description>

Protection for urls in restapp
</description>
<url-pattern>/rest/cicsinfo</url-pattern>

</web-resource-collection>

<auth-constraint>
<description>Web users only</description>
<role-name>webusers</role-name>

</auth-constraint>

</security-constraint>

Next, we want to restrict the services that are under /reverse so that only users in the admin
role can access it. To enable this restriction, we add the configuration that is shown in
Example 7-39 on page 203 to the web.xml deployment descriptor for the web application
alongside the one for the webusers.
202 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Example 7-39 Security constraint configuration in web.xml that limits access to reverseResource

<security-constraint>

 <display-name>
 com.ibm.cicsdev.restapp.admin_Restraint
 </display-name>

 <web-resource-collection>
 <web-resource-name>
 ReverseResourceRestraint
 </web-resource-name>
 <description>Protection for urls in restapp</description>
 <url-pattern>/rest/reverse</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <description>Admin only</description>
 <role-name>admin</role-name>
 </auth-constraint>

</security-constraint>

Our web application is now configured to handle the roles for our two user groups. We also
must create the corresponding roles in RACF.

We create two roles: webusers and admin. The EJBROLEs that are used by our applications
must be defined in a specific format, as shown in the following example:

<profilePrefix>.<application name>.<role name>

Consider the following points:

� profilePrefix must be as specified in the safCredentials element, as shown in
Example 7-39. For our example, we use SC8CICS.

� The application name value must match that of the application as it appears in Liberty. If
this value was not changed, it is com.ibm.cicsdev.restapp.

� The value of role name must match the role that is specified in the deployment descriptor.
In our example, we need one EJBROLE each for admin and for webusers.

You can change this format by using the safRoleMapper and profilePattern configuration
elements in server.xml.

The following groups are in our system:

� WEB: Contains all of the user IDs that we expect to use the web applications only.
� ADMIN: Contains all of the CICS administrator user IDs.

We can use RDEFINE and PERMIT to create and allow access to the EJBROLEs for our two
groups of user IDs. The format of the command in our system that uses RACF is shown in
Example 7-40.

Example 7-40 Setting up the EJB roles for our application

RDEFINE EJBROLE SC8CICS.com.ibm.cicsdev.restapp.webusers
 UACC(NONE)
RDEFINE EJBROLE SC8CICS.com.ibm.cicsdev.restapp.admin
 UACC(NONE)
Chapter 7. Securing web applications 203

PERMIT SC8CICS.com.ibm.cicsdev.restapp.webusers CLASS(EJBROLE)
 ACCESS(READ) ID(WEB)
PERMIT SC8CICS.com.ibm.cicsdev.restapp.admin CLASS(EJBROLE)
 ACCESS(READ) ID(ADMIN)

SETROPTS RACLIST(EJBROLE) REFRESH

If you did not install the REST application as a CICS bundle, follow the instructions that are
provided in Chapter 2, “Deploying a web application” on page 27.

Now that our groups and roles are set up, we can demonstrate the functionality by using two
user IDs that belong to two different groups. The first user ID WEBUSER (see Figure 7-11) can
access only the webusers role because it is in the WEB group. It cannot access the admin role
because it is not in the ADMIN group. The second user ID MICHAEL is part of the ADMIN group
only; therefore, the user ID can access the admin role, but cannot access the webusers role.

Figure 7-11 Log in prompt for our application by using the user ID WEBUSER

No matter which URL we attempt to access, we are prompted for the user ID. The output
when the user ID WEBUSER is used is shown in Figure 7-12 and Figure 7-13 on page 205. We
received an HTTP 200 (request successful) response when we accessed the cicsinfo
services because the cicsinfo service is protected by the webusers role. However, accessing
the reverse services results in an HTTP 403 (unauthorized) response because WEBUSER is not
in the admin group.

Figure 7-12 Response from /rest/cicsinfo for user ID WEBUSER

Note: In the current version of Liberty, Liberty issues a RACROUTE REQUEST=LIST with
GLOBAL=NO to support earlier versions of z/OS. Therefore, to pick up changes to EJBROLEs,
you must create the roles before starting CICS or restart CICS after the roles are set up.
204 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 7-13 Response from /rest/reverse for user ID WEBUSER

In Figure 7-15 and Figure 7-16 on page 206, we can see the behavior when we access the
same services by using the user ID MICHAEL (see Figure 7-14). The behavior is reversed to
what is shown in Figure 7-12 on page 204 and Figure 7-13. Because MICHAEL is in the admin
group and therefore can access the admin role, the user ID can successfully call the reverse
service. However, it is not a member of the WEB group; therefore, attempting to access the
cicsinfo services returns an HTTP 403 response code.

Figure 7-14 Login credentials that use user ID MICHAEL

Figure 7-15 Response from /rest/cicsinfo for user ID MICHAEL
Chapter 7. Securing web applications 205

Figure 7-16 Response from /rest/reverse for user ID MICHAEL

7.5.2 Programmatic role authorization by using EJBROLEs

Enterprise Java beans (EJBs) give you the option of specifying roles specifically within the
EJB code. These roles can be used with Java security roles to restrict access to certain
pieces code at the program level.

You can use programmatic roles with the URL-specific authorization, as described in 7.5.1,
“URL-specific authorization by using EJBROLEs”. If you choose to use both options, any
users need read access to the URL level role and the programmatic role. The URL level role
is checked first, followed by the programmatic role when the associated code is first started.

Java security roles are specified users or groups of users that are specified by some part of a
Java application, either in the code or within its deployment descriptor. You can use the
@RolesAllowed annotation to specify specific roles for specific pieces of code before injecting
them into other applications (see Example 7-41).

Example 7-41 Example role for Administrator

@RolesAllowed("Administrator")
public Item getItem(int id) throws IOException {
. . .
}

EJBROLEs are security profiles that are set up in a SAF registry, which can be mapped to Java
security roles in your applications.

This scenario guides you through setting up EJBROLEs in SAF for use with roles that are
specified in your applications. We use an application that is provided by the CICS team that is
named cics-java-liberty-ejb. This application is available from the GitHub website.

This application is composed of several smaller projects that contain EJBs, which are
collected as one Enterprise Archive (EAR). We also included a CICS bundle project, which
can be used to export all of the pieces to CICS and install it as a BUNDLE resource.

Before we install the CICS bundle that contains our EJBs, we must update one of the dynamic
web projects to include the required security constraints. Several projects are available for the
EJB application in your workspace. The project that must be updated is called
com.ibm.cicsdev.ejb.stock.web.

Open the deployment descriptor for com.ibm.cicsdev.ejb.stock.webproject; that is, the
web.xml file. We add a security constraint that contains our Administrator role and a
login-config that requires the caller to provide credentials.
206 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://github.com/cicsdev/cics-java-liberty-ejb

Begin by adding a security constraint that affects all URLs in this particular application. The
configuration that we used is shown in Example 7-42.

Example 7-42 Security constraint that specifies the Administrator role in web.xml

<security-constraint>
 <display-name>
 com.ibm.cicsdev.ejb.stock.web_Restraint
 </display-name>
 <web-resource-collection>
 <web-resource-name>
 com.ibm.cicsdev.ejb.stock.web
 </web-resource-name>
 <description>Protection for all URLs</description>

 <url-pattern>/*</url-pattern>
 </web-resource-collection>
</security-constraint>

Next, we must add a login configuration that defines the authentication method to be used.
For the purposes of this scenario, we use basic authentication (that is, authentication that
features a user name and password). To specify basic authentication, we can add the XML
elements that are shown in Example 7-43 to the deployment descriptor with the security
constraint we just added.

Example 7-43 Log in configuration XML elements in web.xml for enabling basic authentication

<login-config>
<auth-method>BASIC</auth-method>

</login-config>

We also must update our Liberty JVM server’s server configuration by adding features to
support roles, SAF security, JAX-RS, and EJB-Lite. The following features must be added into
the feature manager list in the server.xml file:

� <feature>ejbLite-3.2</feature>
� <feature>jaxrs-2.0</feature>
� <feature>cicsts:security-1.0</feature>

Next, we must configure Liberty to use a SAF registry to authenticate incoming requests. We
add the following XML elements:

� safRegistry: Specifies that we use SAF as our security registry
� safCredentials: Specifies the basic SAF information
� safAuthorization: Specifies that we use SAF roles and not Java security roles

All of these elements are simple pieces of configuration. How we configured our SAF settings
is shown in Example 7-44.

Example 7-44 SAF configuration in server.xml for this subsection

<safRegistry enableFailover="false" id="saf" realm="ITSO"/>
<safCredentials profilePrefix="SC8CICS"
 unauthenticatedUser="WSGUEST"/>
<safAuthorization id="saf"/>

The profilePrefix attribute in the safCredentials element specifies the HLQ for the SAF
profile. When we define our EJBROLE, we must ensure that this element is the HLQ with the
rest of the role following shortly afterward.
Chapter 7. Securing web applications 207

The EJBROLEs that are used by our applications must be defined in a specific format, as shown
in the following example:

<profilePrefix>.<application name>.<role name>

Consider the following points:

� profilePrefix must be as specified in the safCredentials element, as shown in
Example 7-44 on page 207. For our example, we use SC8CICS.

� The application name value must match the application as it appears in Liberty. If you did
not change any of our projects, by default this name is com.ibm.cicsdev.ejb because the
EJB that contains the restriction is contained within that project.

� The value of role name must match the role that is specified in the EJB. In our example,
you can see the value of this role that is annotated on the class
com.ibm.cicsdev.ejb.CatalogueBean.

You can change this format by using the safRoleMapper and profilePattern configuration
elements in server.xml.

Use RDEFINE and PERMIT RACF commands to create and allow access to the EJBROLE for user
ID WEBUSER. The format of the command in our system that uses RACF is shown in
Example 7-45.

Example 7-45 Setting up the EJB role for our application

RDEFINE EJBROLE SC8CICS.com.ibm.cicsdev.ejb.Administrator
 UACC(NONE)

PERMIT SC8CICS.com.ibm.cicsdev.ejb.Administrator CLASS(EJBROLE)
 ACCESS(READ) ID(WEBUSER)

Now that everything is set up, we can start our application. In this scenario, we assume that
the application is installed as a CICS bundle. The projects you downloaded from the cicsdev
GitHub website include a CICS bundle project that is com.ibm.cicsdev.ejb.bundle. For more
information about installing this application as a CICS bundle, see Chapter 2, “Deploying a
web application” on page 27.

After the application is started, we can make a call to the EJB store front to see what items
are listed. The store front on our systems uses the following URL:

http://wtsc80:57080/shop/

Note: If you do not specify a profile prefix in your server configuration, a default prefix of
BBGZANGL is used instead when matching a role with EJBROLEs. Accordingly, you must adjust
your SAF profiles.

Note: In the current version of Liberty, Liberty issues a RACROUTE REQUEST=LIST with
GLOBAL=NO to support earlier versions of z/OS. To pick up changes to EJBROLEs, you must
create the roles before starting CICS or restart CICS after the roles are set up.
208 Liberty in IBM CICS: Deploying and Managing Java EE Applications

On first call, you find the shop is empty. We must add stock to the catalog, which is an
operation that is protected with the @RolesAllowed(Administrator) role in the corresponding
EJB (see Figure 7-17).

Figure 7-17 Empty EJB sample shop

To add stock, we must make a call to the createItem REST service that is provided by the
EJB shop example. This particular service uses methods that are protected by the
Administrator role; therefore, we must send credentials for WEBUSER by using HTTP POST
with our JSON data.

We are sending the JSON data that is shown in Example 7-46. This data causes the web
shop to update by adding an item that is named Golf Club to its stock list.

Example 7-46 JSON data used by our HTTP POST request.

{"name":"Golf Club", "stock":1}

The following methods can be used to send data to the URL by using HTTP POST:

� You can use a JAX-RS browser extension to handle the request. Multiple options are
available for most browsers. Ensure that the extension you use can handle authentication
headers; otherwise, you receive a 401 response code from the server.

� You can use curl if it is installed on your system. Specify the JSON data with the user
credentials and URL.
Chapter 7. Securing web applications 209

� You can call the service from Java. We provided a sample program that can send an HTTP
POST request to a specified URL with some JSON data. This sample requires only base
Java 8 to run (no other libraries are required). You must update the code to use your host
name, ports, and servlet path (if you changed it) and include your own user credentials.

Now that the stock list is updated for the shop, we can reissue a request to the store front to
view the items in the shop. If your previous JAX-RS request was successful, you should see
the Golf Club item listed, as shown in Figure 7-18.

Figure 7-18 Shop front after added stock is added
210 Liberty in IBM CICS: Deploying and Managing Java EE Applications

7.5.3 CICS transaction security with URIMAPs

In addition to the web security that is provided by Liberty, applications that are running in
Liberty JVM servers are subject to CICS transaction and resource security. Any user IDs that
are authenticated in Liberty must also include the correct access rights to run transactions,
access files, or call programs.

This section describes CICS security for web applications in a Liberty JVM server.

By default, HTTP requests that are received by Liberty run under the CICS Liberty default
transaction ID of CJSA. This scenario guides you through the steps you must complete to
change the transaction ID and set up CICs transaction security for your new transaction ID.

We use the REST extensions application that is provided by the CICS team as our example
application in this chapter. The project is available from the cics-java-liberty-restapp-ext page
of the GitHub website.

Install the project as a CICS bundle in your region. For more information, see Chapter 2,
“Deploying a web application” on page 27.

We must define a new transaction for our URIMAP to use. Although we use the transaction ID
JURI, you can use any code that is not in use. To define and install our JURI transaction, we
used the command that is shown in Example 7-47.

Example 7-47 CEDA commands defining and installing our JURI transaction in CICS

CEDA DEFINE TRANSACTION(JURI) GROUP(ITSOWLP)
 PROGRAM(DFHSJTHP)

CEDA INSTALL TRANSACTION(JURI) GROUP(ITSOWLP)

You receive a warning when defining this transaction because the value of the PROGRAM
attribute started with the letters DFH. This warning can be safely ignored. The program
DFHSJTHP acts as a dummy program in this scenario. It does not run any code. Instead, it
allows your Java code to run under the specified transaction.

Now that your transaction and application are enabled in CICS, we can define a new URIMAP
for any requests that are coming in to the application. Log on to CICS and use CEDA to define
a new URIMAP.

The URIMAP must apply to the path */TaskInformation on the HTTP and the HTTPS ports
for your CICS Liberty JVM server. The command structure for our JVM server and application
is shown in Example 7-48.

Example 7-48 CEDA commands for defining and installing our URIMAP for CICS Liberty

CEDA DEFINE URIMAP(RESTMAP) GROUP(ITSOWLP)
 PATH(*/TaskInformation)
 SCHEME(HTTP) USAGE(JVMSERVER)
 HOST(wtsc80)
 PORT(*) TRANSACTION(JURI)

CEDA INSTALL URIMAP(RESTMAP) GROUP(ITSOWLP)

Note: URIMAPs that specify SCHEME(HTTP) are applied to HTTP and HTTPS requests. If
you specify SCHEME(HTTPS), the URIMAP is applied to HTTPS requests only.
Chapter 7. Securing web applications 211

https://github.com/cicsdev/cics-java-liberty-restapp-ext/

After they are installed, any web requests coming in to this application in Liberty run under the
transaction ID JURI instead of CJSA. The next step is to create a RACF profile for our new
transaction and give WEBUSER read access.

To create this profile and grant access, create a TCICSTRN profile for JURI and run a PERMIT
command for WEBUSER. The commands that we used are shown in Example 7-49.

Example 7-49 Setting up security for JURI

RDEFINE TCICSTRN SC8CICS.JURI NOTIFY(CICSREGN) UACC(NONE)
PERMIT SC8CICS.JURI CLASS(TCICSTRN) ID(WEBUSER) ACCESS(READ)
SETROPTS RACLIST(TCICSTRN) REFRESH

Our JURI profile is prefixed with SC8CICS. This security prefix is used for our production
regions. You must include any security prefix that you use. The security prefix for your CICS
region is set by using the SECPRFX SIT parameter.

The service TaskInformation in the application com.ibm.cicsdev.restappext returns to the
caller some basic information about the TASK that is assigned to it in CICS. We use this
application to establish that our URIMAP was successfully applied and check whether
WEBUSER can run the JURI transaction. To perform this check, we use basic authentication, as
described in 7.4.1, “Basic authentication with a SAF registry” on page 187.

To verify that your URIMAP is configured correctly, make a call to the TaskInformation
service from your browser. In our setup, the following URL is used:

http://wtsc80:57080/com.ibm.cicsdev.restappext/rest/TaskInformation

You should receive JSON data that resembles the data in Example 7-50.

Example 7-50 Example response from the TaskInformation service

{"transid":"JURI","userid":"WEBUSER ","tasknum":"16212"}

Our URIMAP was applied successfully because the transid field returned the value of JURI
and not CJSA.

Setting a user ID for unprotected applications
Not every application in Liberty might be running with security constraints that are specified in
their deployment descriptor. This scenario describes how to assign a user ID to requests that
are coming into an application without security constraints, by using a URIMAP in CICS. For
this scenario, we use the REST extensions application that is available from the
cics-java-liberty-restapp-ext page of the GitHub website.

Because you do not need to change this application, it can be deployed as described in
Chapter 2, “Deploying a web application” on page 27. Ensure no URIMAPs are active in your
CICS region; for example, the URIMAP RESTMAP created earlier in 7.5.3, “CICS transaction
security with URIMAPs” on page 211.

For the purposes of this section, it is assumed that your CICS region is running with security
active; that is, the SIT parameter SEC=YES is set for your CICS region.

Running the unsecured REST extensions application under a specific user ID is easy to
accomplish. Only a matching URIMAP must be installed. We use the TaskInformation
service from the REST extensions application. Therefore, we must make its URL the basis of
the URL that is specified in the URIMAP.
212 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://github.com/cicsdev/cics-java-liberty-restapp-ext/
https://github.com/cicsdev/cics-java-liberty-restapp-ext/

We also must specify the host machine for the CICS region. In our CICS region, we defined
and installed our URIMAPs by using the commands that are shown in Example 7-51.

Example 7-51 CEDA commands for defining and installing our URIMAP for CICS Liberty

CEDA DEFINE URIMAP(RESTMAP) GROUP(ITSOWLP)
 PATH(*/TaskInformation)
 SCHEME(HTTP) USAGE(JVMSERVER)
 HOST(wtsc80)
 PORT(*) USER(UMAPUSER)

CEDA INSTALL URIMAP(RESTMAP) GROUP(ITSOWLP)

The USER attribute for the URIMAP is set to UMAPUSER. This attribute redefines the user ID to be
UMAPUSER when the CICS task is attached. In this scenario, we do not change the transaction
ID; therefore, the user ID UMAPUSER must be granted access to CJSA to run.

Now, we can check the outcome of our URIMAP by calling the TaskInformation service. In
our system, we access this service at the following URL by using an HTTP GET request:

http://wtsc80:57080/com.ibm.cicsdev.restappext/rest/taskInformation

The service returns information about the user ID and transaction ID that is used by the
request. You receive get a response that includes the user field specified as UMAPUSER. The
response from the service that is running in our system is as shown in Example 7-52.

Example 7-52 Response from the taskInformation service with the URIMAP in place

{"transid":"CJSA","userid":"UMAPUSER","tasknum":"16587"}
Chapter 7. Securing web applications 213

7.6 Configuring SSO by using Lightweight Third-Party
Authentication

Lightweight Third-Party Authentication (LTPA) is an IBM single-sign on technology that
reduces the number of times a user’s credentials are checked against a security registry.
When a new authentication request occurs, the user ID and password (or other credentials)
are authenticated as normal, but on response the server returns a signed authentication
token to the requester, as shown in Figure 7-19.

Figure 7-19 Basic authentication flow by using identity tokens

The client can then provide this token in subsequent requests. If the token is still valid, the
server uses it to derive the user ID, skip the authentication step, and proceed to authorization.

This configuration can simplify the authentication process in systems where components that
must communicate with one another are spread across multiple environments. Particularly,
where users are required to enter credentials manually.

If you use the cicts:security-1.0 or appSecurity-2.0 features in your Liberty JVM server,
Liberty uses LTPA tokens by default in its authentication process. Next, we describe how to
configure theses tokens, how to disable them, and how to ensure that they are sent over SSL
only.
214 Liberty in IBM CICS: Deploying and Managing Java EE Applications

7.6.1 Configuring LTPA

LTPA is easy to set up. First, you must enable an authentication mode for use in your
applications. The authentication mode is not too important because LTPA is compatible with
most modes.

For the purposes of using tokens for the first time, we recommend the use of basic
authentication because it is the easiest to work with and does not require setting up TLS
certificates. After the basic scenario is working, you can add TLS to secure the connection
between the client and server.

LTPA does not require any other features to be added to the server configuration file
(server.xml). An LTPA configuration XML element is added to your configuration. The LTPA
keys configuration we used is shown in Example 7-53.

Example 7-53 Example configuration in server.xml for LTPA. Password is encoded.

<ltpa keysPassword="{xor}Lz4sLCgwLTs="
keysFileName="${server.output.dir}/resources/security/ltpa.keys"
/>

We chose to keep the keys in the resources/security directory. You do not need to create
these keys in advance. Liberty automatically creates the keys for you if the keys do not exist.

If you do not change the keysFileName attribute, the keys are stored in your server’s output
directory/resources/security/ltpa.keys.

When you successfully connect and authenticate to a Liberty application, the server
automatically generates and returns an LTPA token as a cookie to the requester. When the
requester sends another HTTP request to the same server, it can return the LTPA token as a
cookie. The server validates and decrypts the token and extracts the attached user ID by
using it for the request.

The cookie that is stored is named LtpaToken2. The following methods can be used to review
this cookie:

� You can use your browser to connect to the application. After you successfully
authenticate and call the backing service, you can use your browser to view the cookies
that are stored locally on your workstation.

The option to view cookies often can be found in your browser’s settings menus. In Firefox,
click Settings → Privacy → remove individual cookies. Then, enter LtpaToken2 into the
Search field, as shown in Figure 7-20 on page 216.
Chapter 7. Securing web applications 215

Figure 7-20 LTPA token as seen in the Firefox browser

� As described in 7.7, “JSON client code with cookie printer” on page 217, we provided a
simple Java HTTP client that can be used with Java 8. No libraries are required to run this
code, only base Java.

When you run this code, it prints any cookies that are returned by the server. The cookie
output from our application when we ran it in our system is shown in Example 7-54. The
cookie is encoded to prevent it from being human readable. Decrypting it requires the
encryption keys from the LTPA keys file.

Example 7-54 LTPA token returned to our client by Liberty

LtpaToken2=kPnM6XfPMXLSRCLhRHaXK0K8h2MgrPPhCOO+hrYyIvLWntHoPIl++jdyREuSEbhHXyj+PeH
LF6iSVEEVBY583eDrOB3tFa2OrB4iZA+iMjILlUe7/KLjlioQ1JCcDAg3nOaB8wCRrBj7pKyDQ8hqFiIAv
JKrnzcM2cQKox+lq1yn+lXB9gS6qPfd8a+3JXcHh5aBpjONbNxIhJwbDBOtrKI9nwJhhdMT+k1frzUjywN
dI9inIjtf7aaVFYKd/2dlFIcpHRrOYPuKXdXqAOpWNnRMF1uKCMEarH56ESMoRx3aEllFpqGvmZPQb2yqv
0nu
216 Liberty in IBM CICS: Deploying and Managing Java EE Applications

7.6.2 Disabling SSO in Liberty

In some scenarios, you might not want to use LTPA or SSO in your system. If you are using
security in your Liberty JVM server, LTPA is active by default. To turn off SSO, and thus in turn
LTPA, you can add the webAppSecurity element to your Liberty JVM server's configuration file
(server.xml). Add the element into your configuration with the element singleSignOnEnabled
set to false.

The webAppSecurity configuration element that we used in our JVM server is shown in
Example 7-55.

Example 7-55 webAppSecurity configuration with SSO disabled in server.xml

<webAppSecurity singleSignOnEnabled="false"/>

7.6.3 Requiring TLS when using SSO

You might want to add an extra layer of protection to your SSO configuration by requiring any
connection with the server that uses LTPA (or other session token) to be made by using
HTTPS rather than HTTP.

This protection can be enabled by adding the webAppSecurity configuration to your server’s
configuration file (server.xml). Add the ssorequiresssl attribute to the configuration and
specify its value as true.

The webAppSecurity configuration element that we used to enforce TLS usage with SSO in
our Liberty JVM server is shown in Example 7-56.

Example 7-56 webAppSecurity configuration with TLS for SSO in server.xml

<webAppSecurity ssorequiresssl="true"/>

7.7 JSON client code with cookie printer

The code that is shown in Example 7-57 is a simple Java 8 HTTP client that sends JSON data
with HTTP basic authentication credentials to a URL by using HTTP POST. No other libraries
are required to run this code, only base Java 8.

Example 7-57 JSON client code with cookie printer

import java.io.IOException;
import java.io.OutputStream;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.Base64;
import java.util.Base64.Encoder;

/**
 * A very basic client for calling REST services in CICS
 * Liberty.
 *
 * This client is designed to run locally on a workstation.
 * Requires Java 8.
 *
Chapter 7. Securing web applications 217

 * Note: ENCODING METHOD USED NOT SUITABLE FOR PRODUCTION
 * ENVIRONMENTS OR HIGHLY SENSITIVE INFORMATION
 *
 * @author Michael Jones/IBM-CICS (michaej8@uk.ibm.com)
 *
 */

public class JSONClient {

 // Full path to our JAX-RS service
 String target =
 http://wtsc80:57080/stock/api/items;

public static void main(String[] args) throws IOException {

 // Change the URL to point at your host and port
 URL url = new URL(target);

 // Create a very basic connection object which is configured
 // for HTTP POST
 HttpURLConnection conn =
 (HttpURLConnection)url.openConnection();
 conn.setRequestMethod("POST");

 // Encode the user's ID and password to send to the server
 // NOTE: Base64 is not a secure encoding. Not suitable for
 // production, only for personal testing
 Encoder encoder = Base64.getEncoder();
 String encodedCreds =
 encoder.encodeToString("WEBUSER:WEBUSER_PASSWORD".getBytes());
 conn.addRequestProperty("Authorization", "Basic " +
 encodedCreds);

 // Set up some basic properties on the connection to prepare
 // it to send JSON
 conn.addRequestProperty("Content-Type", "application/json");
 conn.setDoOutput(true);
 conn.setDoInput(true);

 // The actual JSON data we want to send to the server. Modify
 // this as required.
 String sendJson = "{\"name\" : \"Golf Club\", \"stock\" : 1}";

 // Send the HTTP POST request to the server with the JSON data
 OutputStream os = conn.getOutputStream();
 os.write(sendJson.getBytes());

 // Go through and get cookies
 printCookies(conn);

 // Return the response to the command line
 System.out.println("Response code was: " +
 conn.getResponseCode());
 }
218 Liberty in IBM CICS: Deploying and Managing Java EE Applications

 public static void printCookies(HttpURLConnection conn) {

 String cookieHeader = conn.getHeaderField("Set-Cookie");
 if(cookieHeader == null) {

System.out.println("No cookies");
return;

 }
 System.out.println(cookieHeader);
 }
}

You can change the target URL by changing the target field in the code. As shown in
Example 7-57 on page 217, it is listing our machine’s host name and ports and triggering the
EJB shop sample’s stock update service

You can also change the JSON data that is sent to the endpoint by updating the sendJson
String object in the main method.

When the code runs, it sends the JSON request to endpoint that is listed. Then, it prints any
cookies that are received in response from the server and the return code for the application.

The quickest way to run this code is by using Eclipse. Create a Java class in a new or existing
project and paste in the code. Then, select run from the toolbar at the top of the GUI. No
other set-up is required if Java 8 is installed.
Chapter 7. Securing web applications 219

220 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Chapter 8. Logging and monitoring

In this chapter, we describe how to configure the logging and monitoring destinations by using
in the Liberty server environment in CICS.

We also describe where the logs and other diagnostics are written, and how to use the output
to debug issues in practice. We also describe the key tools that can be used to monitor the
JVM server status, including CICS statistics and monitoring, CICS Performance Analyzer,
IBM Health Center, and Javametrics.

Finally, we review how to use CICS task runaway detection and use CICS policies to monitor
transaction activity.

This chapter includes the following topics:

� 8.1, “Message and log files” on page 222
� 8.2, “Monitoring tools” on page 232

8

© Copyright IBM Corp. 2018. All rights reserved. 221

8.1 Message and log files

This section describes the output files that are related to a Liberty JVM server.

8.1.1 CICS logs

Several CICS logs are available for messages that are related to the JVM server.

MSGUSR DD file
Most errors that occur in a JVM server result in a message that is issued to the CICS
MSGUSR DD log. This log is one of the first places to look for any CICS-related errors,
warnings, or abends. A Java-based AJ05 abend in the CSMT queue that was produced by a
NullPointerException in the Liberty CJSA transaction is shown in Figure 8-1.

Figure 8-1 AJ05 Abend message on MSGUSER sysout.

SYSPRINT and SYSOUT DD files
By default, the JVM System.out and System.err streams are sent to the Language
Environment stdout and stderr streams. When run under batch MVS, the Language
Environment stdout and stderr streams default to the SYSPRINT (stdout) and SYSOUT
(stderr) destinations.

If either DD destinations are not defined in JCL, a dynamic SYSnnnn is created in the CICS
JOBLOG for that stream.

To prevent a dynamic SYSnnnn being created, you can define the DD cards as shown in the
following example:

//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*

SYSOUT DD
The SYSOUT DD is a good place to look for any errors from the initialization of the JVM
server. These messages are sent to the Language Environment stderr stream.

By introducing a JVM profile error in one of our CICS regions (SC8CICS3), a
mis-configuration of the Java directory JAVA_HOME=/usr/lpp/java/J8.0_64_SR44 produces a
dynamically created SYSOUT file that is named SYS00007, as shown in Figure 8-2 on
page 223.

Note: The SYSOUT DD is distinct from the SYSOUT parameter. The SYSOUT =* parameter is a
redirection parameter and in this case, it sends output for the DD to the default output class
on your JCL.
222 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 8-2 SYSOUT generated by a profile error

When the JVM is initialized, the error is detected and the SYS0007 shows the error message.
As when the Java library is wrong, the JVM fails to initialize. Figure 8-3 shows the contents of
the SYS00007 file.

Figure 8-3 Error showing the wrong Java library

8.1.2 Java logs

The JVM server provides the following specific log destinations:

� STDOUT

When the JVM server initializes, output from the System.out stream is written to the
STDOUT destination that is set by the STDOUT option within the JVM server profile. If the
file exists, the output is appended to the end of the file.

If the console log option is enabled, more information is recorded in this file. For more
information, see 8.1.3, “Liberty server logs” on page 224. By default, this file is in the
WORK_DIR/<applid>/<jvmserver> directory in zFS. In our scenario, the file was redirected
to JES setting STDOUT=//DD:JVMOUT in the JVM profile.

� STDERR

The STDERR destination is the primary location to which Java exceptions and stack
traces are written. These exceptions are typically a result of errors in Java applications or
components. The location is set by using the STDERR option in the JVM server profile.

If the file exists, output is appended to the end of the file. By default, this file is in the
WORK_DIR/<applid>/<jvmserver> directory in zFS. In our scenario, the file was redirected
to JES setting STDOUT=//DD:JVMERR in the JVM profile.
Chapter 8. Logging and monitoring 223

Figure 8-4 shows the first part of a Java stack trace that was written to the stderr, which was
caused by a NullPointerException in our restapp application.

Figure 8-4 Abend AJ05 with NullPointerException written to stderr

8.1.3 Liberty server logs

The following log files are written to by the Liberty server:

� Liberty message log

The message.log file contains all messages that are written or captured by the Liberty
logging component. All messages that are written to this file contain more information,
such as the message time stamp and the ID of the thread that wrote the message.

Each message features a unique message identifier, and includes an explanation of the
problem and details of any action that you can take to resolve the problem. Liberty
messages are logged from various sources, including application server components and
applications.

The messages.log file is in the logs directory. You can control the size and number of log
files by using the following system properties, which can be set in the JVM profile:

com.ibm.ws.logging.max.files
com.ibm.ws.logging.log.directory
com.ibm.ws.logging.max.file.name
com.ibm.ws.logging.max.file.size

This messages.log file can also be copied to JES by using an MSGLOG DD destination,
as shown in the following example:

//MSGLOG DD SYSOUT=*
224 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 8-5 shows the Liberty messages that are related to UMASK value, included files,
applications started, feature manager messages, and HTTP and HTTPS port allocation
output to the MSGLOG DD file in the CICS job log.

Figure 8-5 MSGLOG output

� Liberty trace

The trace.log file contains all trace entries that are written or captured by Liberty. This file
is created only if you enable Liberty tracing (usually at the request of IBM level 2 support).
Within the JVM profile, selectively enable this trace and specify the file name by using the
following parameters:

com.ibm.ws.logging.trace.file.name=trace.log
com.ibm.ws.logging.trace.specification=SSLChannel=all:SSL=all

The format of the log detail level specification is <component> = <level> where
<component> is the component for which to set a log detail level, and <level> is one of the
valid logger levels (off, fatal, severe, warning, audit, info, config, detail, fine, finer, finest, or
all). Separate multiple log detail level specifications by using colons (:).

By default, this file is in the Liberty logs directory along with the messages.log file.

� HTTP access log

The HTTP access log file contains a record of all inbound client requests that are handled
by HTTP endpoints in Liberty. You can enable it in the Liberty server for each defined
httpEndpoint by using the <httpAccessLogging> element. Example 8-1 on page 226
shows how it can be enabled in server.xml.
Chapter 8. Logging and monitoring 225

Example 8-1 Access logging configuration

<httpEndpoint id="defaultHttpEndpoint"
 host="wtsc80"
 httpPort="57080"
 httpsPort="57443"
 accessLoggingRef="accessLogging" />
<httpAccessLogging id="accessLogging"
 filepath="${server.output.dir}/logs/http_access.log"
 logFormat="%t %a %i %r %s %u %D %B" />

The logFormat attribute includes the following directives for a customized request:

– %t: Time and date
– %a: Remote IP address
– %i: Contents of the Header header-name in the request
– %r: First line of the request URL
– %s: HTTP status code
– %u: Remote user
– %D: Response time of the request in ms
– %B: Response size in Bytes, excluding headers

The information that is contained in the access log file after running our sample restapp
application, the Javametrics dashboard, and the CICS defaultapp is shown in Figure 8-6.

Figure 8-6 HTTP access log

One line per HTTP request is available, which provides an easy way of determining the
requests were received by Liberty and the HTTP status code was for each request.

� FFDC file

The First Failure Data Capture (FFDC) feature runs in the background and collects events
and errors that occur during JVM runtime. The information that it collects are written to log
files in the logs/ffdc directory.

Summary files are shown in Figure 8-7 on page 227. One entry for each exception
occurred in the system, as shown in Figure 8-8 on page 227. The FFDC can be useful in
your problem determination efforts. Also, they might be required by the Liberty server
support team if you open a PMR.
226 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 8-7 FFDC exception summary file

Figure 8-8 FFDC Exception log

� Console log

The Liberty console log is not enabled by default in a CICS Liberty JVM server. It can be
enabled by using the following system property:

com.ibm.ws.logging.console.log.level={INFO|AUDIT|WARNING|ERROR|OFF}

The ERROR level is the highest level of logging and causes all INFO, AUDIT WARNING,
and ERROR messages to be written to the JVM server stdout destination. These
messages are the same as the messages that are written to the messags.log file but do
not include the time stamp and thread identity information.
Chapter 8. Logging and monitoring 227

When written to the stdout destination, the messages can be redirected to JES and
prefixed with the identity of the JVM server by using the IDENTITY_PREFIX option in the
JVM server profile, as shown in Figure 8-9.

Figure 8-9 Console log output with INFO level

8.1.4 JVM server trace output

In addition to the logging that is produced by the JVM server, CICS provides some standard
trace points in the SJ (JVM server) and AP domains. These trace points trace the actions that
CICS takes in setting up and managing JVM servers and running Java transactions.

The SJ component traces exceptions and processing in SJ domain to the internal trace table
when set at level 2. SJ level 3 and beyond produces Java logging that is written to a trace file
in zFS. The name and location of the trace file is determined by the JVMTRACE option in the
JVM profile. If you want to capture the maximum amount of trace, setting the SJ component to
ALL ensures that both CICS internal trace and the zFS trace files are produced.

You also can control the format of the trace by using the following JVM server system
property (choose the option for your own purposes):

com.ibm.cics.jvmserver.trace.format={FULL|SHORT|ABBREV}

The default option is SHORT and this option is used when you send diagnostic information to
IBM service.

Activating trace
You can modify and control CICS tracing by using the CETR transaction. Enter CETR at a
CICS workstation and after you see the map that is shown in Figure 8-10 on page 229. Then,
press PF4 for trace components.
228 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 8-10 CETR trace control facility transaction

On the first trace options page, set the trace values for AP domain to 1-2, and for SJ domain
to ALL, as shown in Figure 8-11 and Figure 8-12.

Figure 8-11 Setting AP domain trace level

Figure 8-12 Setting SJ domain trace level
Chapter 8. Logging and monitoring 229

Then, press Enter and PF3 to return, and enter STARTED in the Auxiliary Trace Status field.

To demonstrate this trace, we called our restapp application taskInformation service, and
used the following URL to show how the trace information is output for a CICS Liberty Java
task:

wtsc80:52080/com.ibm.cicsdev.restappext/rest/taskInformation

The taskInformation service returned the following JSON response, which provided more
information about the transaction ID, user ID, and task number:

{"transid":"CJSA","userid":"CICSUSER","tasknum":"339"}

The start of the JVM server trace file, which was in the zFS file
/var/cicsts/SC8CICS2/ITSOJVM1/D20171129.T160838.dfhjvmtrc, is shown in Figure 8-13.

Figure 8-13 JVM server zFS trace

In this trace output, we can see the URL, the HTTP request type of GET, and the client IP
address. This output is followed by the call to buildTransaction(), which sets the transaction
ID to CJSA, and then attaches the thread to the CICS task 339. Finally, the thread name is
switched from the RUN_SERVICE_Thread-28 to DFHSJTHP.TASK339.CJSA.
230 Liberty in IBM CICS: Deploying and Managing Java EE Applications

In Figure 8-14, we can see the CICS AUX trace for the SJ=ALL and AP=1-2 components,
which are formatted in short format by using the DFHTU710 trace utility program, and filtered
by using task number 339. This trace shows how the buildTransaction() method starts the
task in CICS on the T8 TCB T802E and then starts to call the ASSIGN command that is driven
from the JCICS Task.getTask() method call.

Figure 8-14 CICS AUX trace

Stopping trace
To stop CICS writing an internal trace to the auxiliary trace dataset, you can set Auxiliary
Trace Status to OFF in the CETR transaction.

To stop JVM server tracing, the values for the AP and SJ domains must be back to 1 in the
CETR transaction because this value is not affected by the AUX or SYSTEM trace settings.
Chapter 8. Logging and monitoring 231

8.2 Monitoring tools

In this section, we describe several methods that can be used to monitor CICS JVM server
activity, including CICS statistics and CICS performance class data. These methods can be
extracted from system management facilities (SMF) 110 records.

8.2.1 CICS statistics records

CICS collects statistics for the JVM servers and JVM programs. You can use these statistics
to manage and tune the Java workloads that are running in your CICS region. The JVM
server statistics provide information about the JVM and activity within a particular JVM server.
The JVM program statistics provide information about the use of CICS Java programs. In the
context of a Liberty JVM server, these programs are the only Java programs that are started
by using the Link to Liberty function (for more information, see Chapter 8, “Logging and
monitoring” on page 221).

To view the statics online, use the sample STAT transaction that prints the statistics to the
CICS log by using the DFH0STAT program. You also can develop your own reporting
application by using the EXEC CICS EXTRACT STATISTICS command. If you use the CICS
Explorer, the JVM Servers view also displays all the same statistics fields.

For batch reporting, the sample utility program DFHSTUP provides a simple method to report
on any type of CICS statistics. A sample JCL for running this program to report on our JVM
server is shown in Example 8-2.

Example 8-2 DFHSTUP sample JCL

//JOB ...
//STUP1 EXEC PGM=DFHSTUP,REGION=0M
//STEPLIB DD DISP=SHR,DSN=CICSTS54.CICS.SDFHLOAD
// DD DISP=SHR,DSN=CICSTS54.CICS.SDFHAUTH
//DFHSTATS DD DISP=SHR,DSN=CICSUSER.CICS.SMF110(0)
//SYSIN DD *
SELECT APPLID=(SC8CICS7)
COLLECTION TYPE=ALL
SELECT TYPE=(JVMSERVER)
DATE START=10/06/2017,STOP=10/06/2017
TIME START=00.00.00,STOP=23.00.00,ELAPSED
/*
//DFHSTWRK DD UNIT=SYSDA,SPACE=(CYL,(8,4))
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(4))
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(4))
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(4))
//SORTWK04 DD UNIT=SYSDA,SPACE=(CYL,(4))
//DFHPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSABEND DD DUMMY

The output from DFHSTUP regarding our JVMSERVER ITSOJVM1 is shown in Figure 8-15
on page 233. The statistic period is set for one-hour intervals (for 10/19/2017 from 16:00:00 to
17:00:00).
232 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 8-15 JVMSERVER DFHSTUP output

The report shows the following information:

� Our Liberty JVM server was used 1466 times, which equates to all the HTTP and JMS
MDB requests that were received.

� The thread limit of the JVM server was set to a maximum of 50.

� There are 13 active threads, which are the threads available in the pool.

� The peak thread usage was 27 threads.

� No requests are needed to wait for a thread; therefore, the limit of 50 threads appears to
be fine for our JVM server.

� Seven calls were made to the system thread, most of which were caused by the use of
CEMT SET JVMSERVER commands.

� The heap size is 97 MB out of a maximum of 256 MB.

� The heap size after the last garbage collection (GC) was 92 MB. This result is known as
the occupancy and often remains stable in a well-tuned system.

� The GC policy in use is gencon. This policy splits the Java heap into two areas, the new or
nursery area for short lived objects, and the old or tenured area for long-lived objects.

� One major GC event (for the tenured area) and 91 minor GC events for the short-lived
objects were observed in the nursery area.

This report can be generated daily by using a statistics period of one hour to track the
performance of the JVM server over time.

Tip: Another useful metric is total GC heap freed divided by the number of requests. This
formula gives an average garbage per request figure, which is useful to track on across
application changes.
Chapter 8. Logging and monitoring 233

For more information about how to use the DFHSTUP and DFH0STAT reporting programs,
see IBM Knowledge Center.

8.2.2 CICS performance records

CICS provides the following programs for processing any CICS monitoring data that is written
to SMF data sets:

� DFHMNDUP

This utility program generates a performance dictionary record in a sequential data set for
use with monitoring data that is extracted from SMF data sets. The JCL for running this
program is shown in Example 8-3.

Example 8-3 DFHMNDUP sample JCL

//JOB …
//MNDUP EXEC PGM=DFHMNDUP
//STEPLIB DD DSN=CICSTS54.CICS.SDFHLOAD,DISP=SHR
//SYSUT4 DD DSN=CICSUSER.CICS.MNDUPREC,DISP=(NEW,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//SYSPRINT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//SYSIN DD *
MCT=NO
SYSID=SC80
GAPPLID=SC8CICS7
//*

� DFH$MOLS

This print program is for CICS monitoring data. DFH$MOLS is a sample program that you
can modify or adapt to your own purposes. The JCL for running this program is shown in
Example 8-4.

Example 8-4 DFH$MOLS sample JCL

//JOB …
//EXPAMND EXEC PGM=DFH$MOLS
//STEPLIB DD DSN=CICSTS54.CICS.SDFHLOAD,DISP=SHR
//INPUT DD DISP=OLD,DSN=CICSUSER.CICS.MNDUPREC
// DD DISP=SHR,DSN=CICSUSER.CICS.SMF110(0)
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTDIAG DD SYSOUT=A
//SYSIN DD *
 SELECT APPLID=SC8CICS7
 SELECT TRANID=CJSA,CJSU,JDB2,JRES,JJMS

 PRINT PER
 RESOURCE ALL
//*
234 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/workload/workload_lp_stup.html

The output report from DFH$MOLS that is shown in Figure 8-16 on page 236 displays the
following information for a single CICS task from an HTTP request to our Java web
application:

� The transaction name (TRAN), in this case it is CJSA, which is the default JVM server
request processor transaction.

� The start and stop time stamps for the CICS task (START and STOP).

� The number of performance class records that is recorded is 1 (PERRCENT).

� The CICS task number (TRANNUM) and transaction priority (TRANPRI).

� The IP address (9.27.245.24) of the browser (CLIPADDR).

� The dispatch time (USRDISPT) across all CICS TCBs, which is 1081 ms. This dispatch
time equates approximately to the response time.

� The CPU usage timers, including:

– The total CPU time on all types of CPU (USRCPUT), which is 810 ms.

– The amount of CPU that is used by the task on the Java T8 TCB (T8CPUT), which is
also 810 ms.

– The amount of CPU that is used by the task on the QR TCB (QRCPUT), which is
minimal at 5 µs.

– The time that is spent waiting for dispatch on to the QR TCB (QRMODDLY), which is
insignificant at 4 µs.

– The CPU time on a general-purpose CPU (CPUTONCP), which is 3.895 ms.

– CPU time that was eligible for zIIP offload, but ran on a general-purpose CPU
(OFFLCPUT), which is 3.160 ms.

zIIP analysis: From the metrics that are shown in Figure 8-16 on page 236, we can
calculate the CPU time that is used on a zIIP engine for our task is
USRCPUT-CPUTONCP, which is 806 ms.

We can also calculate the total time spent zIIP eligible, which is the amount of time that is
spent on a zIIP engine (806 ms as shown in Figure 8-16 on page 236), plus the extra
3.16 ms, which was zIIP eligible but ran on a general-purpose CP (OFFLCPUT), which
makes 809 ms.

Therefore, the zIIP offload eligible fraction is the amount of zIIP-eligible CPU time (809 ms)
divided by the total CPU time (810 ms), or 99.9% for this task.
Chapter 8. Logging and monitoring 235

Figure 8-16 DFH$MOLS output for CJSA transaction

All of these fields are taken from the SMF 110.1 record (subtype 1). For more information
about programming the structure of CICS SMF type 110, and how the monitoring data is
packaged in the SMF records, see IBM Knowledge Center.

8.2.3 CICS Performance Analyzer

CICS Performance Analyzer (CICS PA) is a reporting tool that provides information about the
performance of your CICS systems and applications. It helps you tune, manage, and plan
your CICS systems effectively. By using the SMF records from our current scenario, CICS PA
can be used to easily generate more detailed performance reports.

A CICS PA report form that includes the fields that are related to JVM usage and CPU time is
shown in Figure 8-17 on page 237. The report definition also allows transaction selection. By
using the edit form facility, you can select the fields of your choice to create your own report.
236 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/monitoring/dfht3_mon_format.html

Figure 8-17 CICS performance analyzer report form

The fields that we selected in our example report show the following information:

� TRAN: Transaction identifier and task number.
� RESPONSE: Transaction response time.
� DISPATCH: Total user task dispatch time.
� CPU: CPU time across all CICS TCBs.
� JVMSUSP: Time in which the user task was suspended.
� JVMTHDWT: Time waiting for a JVM server thread.
� JVMTIME: Elapsed time that is spent in the CICS JVM by the user task.
� CPUONSP: CPU time that was offloaded to zIIP speciality processors.
� CPUONCP: CPU time on general-purpose CPU.
� CPUONCPE: CPU time on general-purpose CPU that can be offloaded but was not.
� CUPONCPN: CPU time on general-purpose CPU that was not eligible for offload.
� CPUISSPE: CPU time that is converted to Service Units.
� ABCODEC: Task abend code, if any.

After the job is submitted, the CICS PA report shows results for selected transactions, as
shown in Figure 8-18 on page 238.

Note: The use of CICS PA for performance reporting can be easier than the use of
DFH$MOLS because several other fields are automatically calculated, such as CPUONSP.
Chapter 8. Logging and monitoring 237

Figure 8-18 CICS PA performance list

For more information about the CICS PA fields and how to correlate these fields with the
CICS SMF 110 performance class data, see IBM Knowledge Center.

8.2.4 CICS Explorer

CICS Explorer is a management tool for developers and systems administrators. It offers a
graphical interface for managing one or more CICS environments. It can be used for most
systems management tasks, including viewing CICS system initialization (SIT) parameters,
managing resource definitions, and building and deploying CICS bundle projects.

CICS Explorer is required if you deploy applications by using CICS bundles, including Java
applications that are deployed into Liberty.

In our scenario, CICS Explorer is used to monitor the JVM servers, bundles and bundleparts,
URI maps, and other related resources. A sample CICS Explorer JVM server operations view,
which includes the JVM server statistics records, is shown in Figure 8-19 on page 239.
238 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://www.ibm.com/support/knowledgecenter/SSPPU4_5.4.0/com.ibm.cics.pa.doc/cpa99xrefch2.html

Figure 8-19 CICS Explorer JVM Server view

8.2.5 IBM Health Center

IBM Health Center is a diagnostic tool for monitoring the status of a Java virtual machine
(JVM) and can be used with any IBM JVM, including CICS JVM servers. It features low
runtime overhead and provides a highly customizable client as part of the IBM Support
Assistant (ISA) workbench. Because the Health Center client is Eclipse based, it can also be
installed into other Eclipse environments, such as the IBM CICS Explorer or z/OS Explorer.

The first step is to install the Health Center plug-in into your Eclipse client. Complete the
following steps to add a software repository to your Eclipse:

1. In the CICS Explorer, click Help → Install New Software.

2. Click Add to add a software repository and provide the following location, as shown in
Figure 8-20:

– Information Name: IBM Health Center site
– Location: http://public.dhe.ibm.com/software/websphere/runtimes/tools/healthcenter/

Figure 8-20 Adding the Health Center repository
Chapter 8. Logging and monitoring 239

3. Click Next in the Installation window (see Figure 8-21) to confirm the items to install.

Figure 8-21 Health Center Installation window

4. Review the license information and click Next.

5. Click OK to confirm the installation of unsigned content, and then, click Yes to restart the
Eclipse when prompted.

Enabling the JVM server for monitoring
To enable a JVM for monitoring, it is necessary to add a few JVM arguments to enable the
Health Center agent to listen on the required TCP/IP port. When a CICS JVM server is used,
the JVM arguments are set in the JVM profile, which is in the UNIX System Services directory
that is specified by the JVMPROFILEDIR SIT parameter.

Add the following –Xhealthcenter JVM argument in your JVM profile. This argument enables
the Health Center agent to collect monitoring data and specifies the listening port. We
specified the port number 57108, as shown in the following example:

-Xhealthcenter:port=57108

The JVM must be disabled or enabled to implement this change. After the JVM server is
started, the Health Center agent initializes and immediately starts buffering monitoring data
ready for collection by the Health Center client. At this stage, you can check that the Health
Center agent is listening on the TCP/IP port by using the following MVS TSO command:

NETSTAT (PORT 57108)

Note: Only one Eclipse client session can be connected to an IBM Health Center agent at
any time.
240 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Using the Health Center
Now that the JVM server is running, you can use the Health Center views to monitor the JVM
server. The Health Center Environment perspective provides a convenient way to access all
the Health Center function. It can be accessed by clicking Windows → Open Perspective →
Other → Health Center Environment.

To connect to the Health Center agent that is running in the JVM, you must run the connection
wizard. This wizard can be accessed from any of the Health Center perspectives by clicking
File → New Connection menu.

The Health Center connection wizard starts and you see the window that is shown in
Figure 8-22. Click Next and enter the information for the listening port (57108) as specified
previously in the CICS JVM profile.

Figure 8-22 Health Center connection wizard

Click Next and the window in which you confirm the port that is being used by a Health Center
agent on the host is shown (see Figure 8-23). Click Finish.

Figure 8-23 Connection confirmation
Chapter 8. Logging and monitoring 241

The main window of Health Center is shown in Figure 8-24.

Figure 8-24 IBM Health Center main window

In the window that is shown in Figure 8-24, the general information regarding runtime
environment, runtime properties, environment variables, security properties is shown. On the
left side of the window, several links to information about the status of the following items are
available:

� Environment information
� Classes
� Garbage collection
� I/O
� Locking
� Threads
� Native memory
� Method Profiling

Figure 8-25 on page 243 shows the Garbage Collection perspective. This perspective
provides a set of views to assist in analyzing the collection (GC) process that is used by the
JVM to manage memory in the JVM heap.

By using the default gencon GC policy the Java heap is split into two areas: the new or nursery
area, and the old or tenured area. CICS JVM server statistics call new or nursery activity
minor GC and call old or tenured activity major GC.
242 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 8-25 IBM Health Center garbage collection window

Much of this information is also displayed in the CICS Explorer JVM Servers view, which can
be added to the Garbage Collection perspective by clicking Window → Show view →
Other → JVM Servers. In addition, individual Health Center graphs for Used heap and Pause
time can be added by using the same Show view menu. A customized perspective is created
with a combination of Health Center and CICS views.

Custom perspectives such as these can be saved for future use by right-clicking the current
perspective and selecting Save As, which adds the perspective to the list of available
perspectives on the top row.

The Threads perspective provides detailed analysis of all the threads that are running within
the JVM. A graphic view shows the thread count utilization against time.

The Current Threads view supplies a useful thread name filter, which allows the display to be
filtered. For each thread that is displayed, the call stack can be displayed, which shows where
each thread is suspended.

In our example that is shown in Figure 8-26 on page 244, we can see that CICS task 53525 is
running under transaction ID CSMI and is suspended in a Thread.sleep() method that is
named from the main method of the JavaLinker() class.
Chapter 8. Logging and monitoring 243

Figure 8-26 IBM Health Center threads window

8.2.6 IBM Application Metrics for Java

Application Metrics for Java (Javametrics) instruments the JVM in a Liberty server for
performance monitoring, which provides data visually in a web-based dashboard.

Javametrics can be downloaded from the GitHub website.

The following data collection sources are included:

� Environment: Machine and runtime environment information
� CPU: Process and system CPU
� GC: Percentage time that is spent in garbage collection
� Memory: Java native and non-native memory usage
� HTTP: HTTP request information

For more information, see the GitHub repository.

To install Javametrics in our environment, we completed the following steps:

1. Downloaded the latest Javametrics release from GitHub, which includes the following
components:

– javametrics-dash-x.x.x.war (Javametrics Web Application)
– javametrics-agent-x.x.x.jar (Javametrics agent)
– ASM directory with related components

2. Copied the web application javametrics-dash-1.0.1.war file into our application
deployment directory /var/cicsts/SC8CICS7/ITSOJVM1/apps.
244 Liberty in IBM CICS: Deploying and Managing Java EE Applications

https://github.com/runtimetools/javametrics/releases
https://github.com/RuntimeTools/javametrics

3. Created a Javametrics directory in /var/cicsts/SC8CICS7/ITSOJVM1/app and copied the
javametrics-agent-1.0.1.jar and asm folder into this directory (see Figure 8-27).

.

Figure 8-27 Javametrics application deployment directories

4. Added an <application> element to our server.xml file, as shown in Example 8-5.

Example 8-5 Javametrics deployed as an application in server.xml

<webApplication id="javametrics-dash-1.0.1"
location="/var/cicsts/SC8CICS7/ITSOJVM1/apps/javametrics-dash-1.0.1.war"
name="javametrics.dashboard">

</webApplication>

5. To start data collection, Javametrics requires a Java option to be set to load the agent
JAR. In our scenario, the following line was added to the JVM profile for SC8CICS7 region:

-javaagent:/var/cicsts/SC8CICS7/ITSOJVM1/apps/Javametrics/
javametrics-agent-1.0.1.jar

After the application is installed, you should see the messages in the Liberty messages.log file
that are shown in Example 8-6.

Example 8-6 Javametrics deployed as an application

CWWKZ0018I: Starting application javametrics-dash-1.0.1.
SRVE0169I: Loading Web Module: javametrics.web.
SRVE0250I: Web Module javametrics.web has been bound to default_host.
CWWKT0016I: Web application available (default_host):
http://wtsc80.cpolab.ibm.com:57080/javametrics-dash/
CWWKZ0001I: Application javametrics-dash-1.0.1 started in 0.307 seconds.
SESN0176I: A new session context will be created for application key
default_host/javametrics-dash
CWWKH0046I: Adding a WebSocket ServerEndpoint with the following URI:
/javametrics-socket

The URL for the dashboard consists of the server’s default HTTP endpoint and
javametrics-dash, as shown in the following example:

http://wtsc80.cpolab.ibm.com:57080/javametrics-dash/

Our Javametrics dashboard is shown in Figure 8-28 on page 246, in which you can see the
following information:

� HTTP Incoming Requests: Response time measured in milliseconds.

� HTTP Throughput: Measured as requests per second (RPS).

� Top five average Response Times.

� Garbage Collection Time: Expressed in percentage over total along time.
Chapter 8. Logging and monitoring 245

� Heap size: Used memory, used native memory, total used memory, and used heap after
GC along time.

� Environment information: Host name, number of processors, OS architecture.

Figure 8-28 Javametrics Dashboard

Most of the data is plotted as the following line graphs:

� HTTP Incoming Requests, HTTP Outgoing Requests, and Other Requests show event
duration against time.

� HTTP Throughput shows requests per second.

� Average Response Times shows the top five HTTP endpoints that on average take the
longest to respond.

� CPU and Memory graphs show system and process usage over time.

� Heap shows the maximum heap size and used heap size over time.

A maximum of 15 minutes of data is shown across all graphs. If substantial data is being
produced by the application that is monitored, the dashboard automatically aggregates the
data.

If a graph includes points, hovering over one of these points provides more information. For
example, HTTP Incoming Requests show the response time and the requested URL, as
shown in Figure 8-29 on page 247.
246 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 8-29 Hovering over a points to get more information

The Javametrics dashboard can help you to identify the following common performance
problems:

� Slow HTTP response times on some or all routes
� Lower than expected throughput in the application
� Spikes in demand causing slowdown
� Higher than expected CPU usage for the level of throughput/load
� High or growing memory usage (potential memory leak)

8.2.7 Runaway tasks

To provide a system level mechanism to stop looping applications, the JVM server in CICS TS
V5.4 now integrates CICS task runaway detection with the JVM server phase-out function.

Unlike traditional CICS tasks, a task that is running Java on a T8 TCB cannot be ended
without consequences to other workload in the same JVM. Language Environment and the
JVM server run in a POSIX-compliant environment, which mandates that if a thread is ended,
the parent process is also ended. In turn, all child processes are ended abruptly, which
causes all tasks in the JVM to fail immediately.

A task that is running in a JVM server that exceeds the RUNAWAY interval that is defined for
the transaction experiences a more controlled stop process. This process differs from the
traditional CICS behavior and you evaluate whether you want runaway intervals to apply to
your Java tasks, or what value to set.

JVM server runaway processing
When a task that is running Java experiences a runaway interval condition, CICS intercepts
the condition and triggers a phase-out of the JVM server. New transactions are prevented
from entering the JVM server and work is left to drain.

Then, if the task completes its processing, the JVM server enables again and becomes
available for new requests. In many cases, if a task that is running in Java exceeds the
runaway interval value, it is likely to be a bad application, such as a tightly looping application
that prevents successful phase-out recycling of the JVM server.

Note: This new runaway function is also included in CICS TS V5.3 with APAR PI77502.
Chapter 8. Logging and monitoring 247

When such a looping application is detected, the runaway timer triggers again after another
interval and the JVM server phase out is escalated to a JVM server purge. Remaining tasks
are subject to task purge processing and in most cases, are ended.

If further runaway intervals are exceeded, the JVM server purge escalates to a forcepurge
and ultimately a kill until all running tasks are forcefully ended. The JVM server recycles back
to the enabled state ready for new requests. If the JVM server must escalate as far as a kill
request, it is prudent to recycle CICS at the earliest opportunity.

Setting the runaway interval value
By default, the CJSA transaction definition that is used for Liberty JVM servers has runaway
detection active and set to the system interval. If you do not want runaway intervals to apply to
these tasks, you can run work under your own transaction definitions set by using URIMAP
definitions with the runaway interval set to 0, or another value of your choice.

8.2.8 CICS policies

In this section, we describe how a CICS policy can be defined and then deployed into a CICS
region such that the policy rules are applied to all tasks in that region.

CICS TS V5.1 introduced the capability to define policies to monitor the resource utilization of
a user task, and to automatically respond when resource usage exceeds the thresholds you
define. In this way, excessive resource usage and certain types of looping and runaway
transactions can be detected and managed.

A CICS policy is defined in a CICS bundle project and each bundle can define one or more
policies. After the bundle is defined, it can then be deployed to a CICS region by using one of
the following methods:

� At the region level.

� For a CICS Cloud application, at the platform level.

� For a CICS Cloud application at the application level.

� For a specific resource entry point, such as a URI map, transaction, or program to restrict
all request that use that entry point.

We use the first method and deploy a policy at the region level to issue a message if a
transaction runs for longer than 5 seconds. When this issue occurs, a message is written to
the CICS log, which can then drive further automation, if required. Messages are sent to the
CMPO destination, which by default is redirected to CSSL but can be directed to a separate
log destination, if required.

Tip: A runaway condition for a task that is running in a JVM server can cause temporary
availability problems for the entire JVM server. For this reason, CICS modifies the runaway
interval value that is specified for the transaction by multiplying it by a factor of 10 (up to a
maximum value of 45 minutes). For example, if the TRANSACTION definition specifies
RUNAWAY=5000, the effective runaway interval for that task when it runs in a JVM server
is 50,000 milliseconds.

Tip: When CICS policies are defined, we recommend the use of a minimum of CICS
Explorer V5.4 because it supplies a new policy editor. This editor makes it able to view and
edit policies after they are created.
248 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Creating the policy
Complete the following steps to create a policy:

1. In CICS Explorer, open the Resource perspective. Click File → New → CICS Bundle
Project and create a project with the name elapsedtime.policy.bundle, as shown in
Figure 8-30.

Figure 8-30 New CICS Bundle Project

2. Right-click the new bundle project and select New → Policy Definition.

3. In the Create Policy Definition window, enter JVM_Elapsed.policy as the file name and
click Finish (see Figure 8-31).

Figure 8-31 Creating a policy definition
Chapter 8. Logging and monitoring 249

4. When the Policy Overview window appears, enter the description JVM elapsed >5, as
shown in Figure 8-32.

Figure 8-32 Policy definition tab

5. Click New to define a new rule. A pop-up window opens (see Figure 8-33) in which you
are prompted to choose the type of rule. In our scenario, we chose Task Rules → Time to
create a rule that is based on the elapsed time in a transaction (time rules can be based
on elapsed time or CPU time).

Figure 8-33 New policy rule

6. Click OK. The Rules editor opens is which you set the following conditions for the rule, as
shown in Figure 8-34 on page 251.

a. Select Elapsed time in the condition drop-down list and enter 5 seconds for the greater
than condition trigger.

b. Under Action, select the system default to Issue a message.

c. Close the editor and select Yes to save the rule.
250 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Figure 8-34 Defining policy rules

7. Export the bundle project to a zFS location. We exported our bundle project
elapsedtime.policy.bundle to the following CICS bundle deployment directory in zFS
(see Figure 8-35):

/var/cicsts/SC8CICS7/ITSOJVM1/bundles

Figure 8-35 Export to zFS window
Chapter 8. Logging and monitoring 251

8. This bundle must be installed into CICS. By using CEDA, create a CICS BUNDLE resource
that is named JVMELA and set the bundledir attribute as the exported zFS directory
elapsedtime.policy.bundle_1.0.0 in our JVM server bundle deployment directory, as
shown in Figure 8-36.

Figure 8-36 CEDA define BUNDLE

9. Install the BUNDLE JVMELA. It should enter the Enabled state.

If you enter the transaction CEMT INQ BUNDLE (see Figure 8-37), you see that the bundle
JVMELA marked as Enabled and includes a Part count, Target count and Enabled count of
00001 indicates that the policy that is defined in the bundle part is active.

Figure 8-37 CEMT INQ BUNDLE

To test our policy, we ran a modified version of our restapp application taskInformation
service. This application is modified to delay for 10 seconds within the Java code before
running any JCICS commands. The JVM elapsed time policy then starts when the first JCICS
command runs after the elapsed time for the transaction exceeds 5 seconds, as shown in
Example 8-7.

Example 8-7 Message issued when policy triggered

DFHMP3001 11/30/2017 04:14:39 SC8CICS2 Task 04417(CJSA) exceeded a policy
threshold. BundleId=elapsedtime.policy.bundle, PolicyName=JVM_Elapsed,
RuleName=Elapsed_5, RuleType=time, Category=elapsedlimit, Threshold=5000000
(Value=5,Unit=S),
CurrentCount=10002168.

In this way, a policy can be used to monitor the activity of CICS transactions and use
message automation to trigger other automated procedures.
252 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Chapter 9. Port sharing and cloning regions

In this chapter, we describe the considerations for sharing TCP/IP ports and other resources
when cloned JVM servers are run in the same system. You learn how to configure TCP/IP
port that are sharing to distribute HTTP connections.

You also learn how to share application configurations, SSL certificates, and Lightweight
Third Party Authentication (LTPA) keys to make region cloning simpler.

This chapter includes the following topics:

� 9.1, “Sharing ports” on page 254
� 9.2, “Cloning regions” on page 258

9

© Copyright IBM Corp. 2018. All rights reserved. 253

9.1 Sharing ports

In an enterprise system environment, it is common for applications to be available on multiple
host servers to distribute load efficiently or to make sure that core applications stay available
during server outages (see Figure 9-1).

Figure 9-1 TCP/IP port sharing scenario

In this section, we describe how to set up TCP/IP port sharing for Liberty JVM servers, which
allows incoming HTTP connections to the same application to be shared across multiple
servers (assuming that the same application is installed on each server).

First, you must decide on the port numbers you use for port sharing. For our examples, we
use the following ports:

� 50080 for HTTP requests
� 50443 for HTTPS requests

We start by reserving the ports in our system’s TCP/IP profile. In our system, we edited the
following TCP/IP configuration profile data set:

SYS1.TCPPARMS(PROF80)

We specified 50080 and 50443 for port sharing. The two lines that are shown in Example 9-1
are the entries that we added to our TCP/IP profile.

Example 9-1 Port reservation statements in TCP/IP profile

50080 TCP SC8CICS* SHAREPORT ; CICS LIBERTY HTTP
50443 TCP SC8CICS* SHAREPORT ; CICS LIBERTY HTTPS

Note: TCP/IP port sharing requires that all listeners use the same TCP/IP stack; therefore,
it is limited to Liberty JVM servers that are hosted in the same LPAR. If you want to share
ports between Liberty JVM servers that are spread across multiple LPARs, you must use
Sysplex Distributor.
254 Liberty in IBM CICS: Deploying and Managing Java EE Applications

In Example 9-1, consider the use of the “ * ” suffix on the end of SC8CICS. In our system, all
of our production CICS regions use the prefix SC8CICS. By using the “ * ”, any job that is
prefixed with SC8CICS uses these ports.

After we save our changes, we must vary them active to ensure that they take effect. We
entered the MVS command that is shown in Example 9-2 into SDSF on our host LPAR.

Example 9-2 TCP/IP vary command

/V TCPIP,,O,SYS1.TCPPARMS(PROF80)

Now that we varied these ports active, we can verify our changes by using the MVS command
that is shown in Example 9-3. The example also shows the output of the command on our
system.

Example 9-3 Output from our system verifying ports

/D TCPIP,,N,PORTL

RESPONSE=SC81
 EZZ2500I NETSTAT CS V2R3 TCPIP 898
 PORT# PROT USER FLAGS RANGE IP ADDRESS SAF NAME
...
 50080 TCP SC8CICS* DAS
 50443 TCP SC8CICS* DAS
...

Now we must update our Liberty JVM servers in CICS to use these ports as HTTP endpoints,
which can be done by using one of the following methods:

� If JVM server autoconfigure is used, we can update the system property
com.ibm.cics.jvmserver.wlp.server.http.port in the JVM. Then, when the JVM server
is restarted, it configures to use the ports as specified. How we set up this update in our
JVM profile is shown in Example 9-4.

Example 9-4 Shared ports and autoconfigure settings in our JVM profile

-Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true
...
-Dcom.ibm.cics.jvmserver.wlp.server.http.port=50080
-Dcom.ibm.cics.jvmserver.wlp.server.https.port=50443

� We can update our Liberty server configuration file to include a new HTTP endpoint. We
do not need to change the endpoints that are used by the server. Instead, we add an
HTTP endpoint for our shared ports. In our system, we used the XML elements in our
servers that are shown in Example 9-5.

Example 9-5 XML configuration used to add in the additional shared ports in server.xml

<httpEndpoint id="sharingEndpoint"
 host="wtsc80"
 httpPort="50080"
 httpsPort="50443" />
Chapter 9. Port sharing and cloning regions 255

When the server configuration is updated by Liberty again, you see a message in
messages.log that indicates that the ports are now in use. The messages that our Liberty
server produced are shown in Example 9-6.

Example 9-6 HTTP endpoint messages in messages.log

I CWWKO0219I: TCP Channel sharingEndpoint has been started and is now listening
for requests on host wtsc80.cpolab.ibm.com (IPv4: 9.76.61.131) port 50080.

Now, when a request to an application comes into 50080 or 50443, it is routed to any Liberty
JVM server with these ports defined.

Any application that you want to access in this manner is installed and available in all Liberty
JVM servers. When a request is received, it is distributed between the active servers based
on the following basic measurements that are provided by the server:

� The server’s current connection count, which is the number of established TCP/IP
connections.

� The server’s backlog, which is the number of connection requests that are waiting to be
accepted.

� SEF metric, which is the server efficiency accept fraction.

If security is active, you must ensure that your servers share the set of LTPA keys. For more
information, see 9.2.4, “Sharing LTPA keys” on page 262. Without shared LTPA keys, you can
encounter security errors that are caused by mismatching single sign-on tokens.

9.1.1 Using WLMHEALTH

Another option that is available to your systems for distributing incoming connections is to use
z/OS workload manager (WLM) server-specific recommendations. Server-specific
recommendations can be set by a CICS TS V5.4 region by using the WLMHEALTH SIT
option, which helps the TCP/IP port sharing mechanism avoid CICS regions that are starting
up or shutting down.

When WLMHEALTH is active in a CICS region, it gives any Liberty JVM servers time to start
and install applications before receiving any work. Server-specific WLM uses the health value
of the CICS regions to determine how to distribute work.

The health value starts at 0 and increments over time. CICS regions with a higher health
value receive more work than those regions with a low health value thereby achieving a
distribution of work that does not overburden any servers that are not yet ready.

After port sharing is set up, we can modify the TCPIP profile for the LPAR to use WLM. Find
the entries you added to SYS1.TCPPARMS(PROF80). These entries resemble the entries that are
shown in Example 9-7.

Example 9-7 Entries in the TCPIP profile

50080 TCP SC8CICS* SHAREPORT ; CICS LIBERTY HTTP
50443 TCP SC8CICS* SHAREPORT ; CICS LIBERTY HTTPS
256 Liberty in IBM CICS: Deploying and Managing Java EE Applications

We modify these entries to use WLM. For each port that is used, edit the entries to change
SHAREPORT to SHAREPORTWLM. The resulting entries are shown in Example 9-8.

Example 9-8 Updated entries in the TCPIP profile for WLM

50080 TCP SC8CICS* SHAREPORTWLM ; CICS LIBERTY HTTP
50443 TCP SC8CICS* SHAREPORTWLM ; CICS LIBERTY HTTPS

As in the previous scenario, you must vary on these entries to activate the changes. This
activation is done by running the MVS command that is shown in Example 9-9.

Example 9-9 Command vary the TCPIP profile

/V TCPIP,,O,SYS1.TCPPARMS(PROF80)

Now that our ports are set up to use WLMHEALTH, we update the CICS job to include a SIT
override parameter that specifies some basic thresholds for WLM.

WLM can use server-specific recommendations to estimate the health of any specific server.
During the startup process, CICS increments the health value of the server at specific
intervals. This health rating then helps TCP/IP determine where to send new connection
requests.

The WLMHEALTH SIT parameter is used to set the increment period and the rate at which
the health measurement is increased. The value we used for WLMHEALTH is shown in
Example 9-10.

Example 9-10 WLMHEALTH SIT parameter in our region's JCL

WLMHEALTH=(30,25)

The first value in this SIT parameter is the time interval after startup at which the WLM health
is changed. In our example, we set the value to 30, which means that CICS increases the
health from zero 30 seconds after start. The second value is the percentage change for each
time interval.

The result in our case is that the health of our CICS regions increases every 30 seconds by a
value of 25. The health value of our CICS region during the start process is listed in Table 9-1.

Table 9-1 Changes in WLM health over time

As HTTP connections arrive at our shared ports, they are distributed to the Liberty servers
based on the health value of each CICS region. CICS regions that are starting do not receive
any TCP/IP connection requests when the health is 0 if other regions are listening on the
shared port with a health greater than 0.

In our configuration, this configuration allows our Liberty JVM servers a period of 30s after
start to fully initialize and install the required applications. It also includes another 90 seconds
until they are operating at maximum capacity.

Seconds after start Health value

0 0

30 25

60 50

120 100
Chapter 9. Port sharing and cloning regions 257

During start, the z/OS WLM health rating is printed to the console log for each region. How a
set of sample messages form our CICS region SC8CICS7 is shown in Example 9-11.

Example 9-11 Example messages for WLM health

DFHMN0115I SC8CICS7 CICS Server z/OS WLM Health percentage is now 25.
DFHMN0115I SC8CICS7 CICS Server z/OS WLM Health percentage is now 50.
DFHMN0115I SC8CICS7 CICS Server z/OS WLM Health percentage is now 75.
DFHMN0115I SC8CICS7 CICS Server z/OS WLM Health percentage is now 100.

9.2 Cloning regions

When cloning CICS regions, the administration overhead of creating and managing the
systems is easier if the configured resources are also shared. When Liberty JVM servers are
used, the following key configuration files can be shared:

� CSD file
� JVM profile
� Liberty server.xml

CSD file
A CICS region CSD file (DFHCSD) can be shared between cloned regions. The same
JVMSERVER resource definition can be used to install a cloned JVM server into multiple
regions.

JVM profile
The JVM profile in zFS can be shared between CICS region. It is located by using the
JVMProfile attribute in the JVMSERVER definition, which is then used to locate the file from
the zFS directory that is named in the JVMPROFILEDIR SIT option.

Liberty server.xml
The CICS region’s Liberty JVM server’s configuration file (server.xml) cannot be shared
because CICS must read and write to this file. However, most of the configuration it contains
can be shared.

The main mechanism for sharing parts of a server’s configuration file is by using the
<include> XML element. You can create separate XML files that contain distinct pieces of
configuration that can then be added or removed from a server’s configuration, as required. In
the following sections, we describe some of the configuration parts that you might share, and
provide you with guidelines for making the process it easier.

9.2.1 Sharing application definitions

You might find that many of your Liberty JVM servers share a set of applications. By using
<application> elements in server.xml with the <include> element, you can create lists of
these applications that can then be easily shared between servers.

Note: JVM profiles can be shared only between servers if no unique values are included in
the profile. Examples of such unique values are TCP/IP ports that cannot be shared, such
as those values used by debuggers or IBM Health Center.
258 Liberty in IBM CICS: Deploying and Managing Java EE Applications

It is recommended that you keep any shared applications in the same directory in HFS. We
used the following location for storing all of our shared applications:

/var/cicsts/SC8CICS/wlp/shared/apps

We also recommend keeping shared configuration files, such as the application list we are
about to create, in a shared directory similar to the directory that was created for our shard
applications. In our system, the following location was used:

/var/cicsts/SC8CICS/wlp/shared/config

Next, we create an XML file that contains a list of applications, which are defined by using the
application element. The application element is a piece of configuration that specifies an
application to be installed in Liberty.

We use the file name sharedApps.xml for our file and we add two application elements (and
thus two applications) to the list. The contents of our sharedApps.xml file can be seen in
Example 9-12.

Example 9-12 Contents of sharedApps.xml

<server>

<application
location="/var/cicsts/SC8CICS/wlp/shared/apps/com.ibm.cicsdev.restapp.war"/>

<application
location="/var/cicsts/SC8CICS/wlp/shared/apps/com.ibm.cicsdev.restappext.war"/>

</server>

The server elements surround the application elements. The server elements are required for
Liberty to incorporate the configuration. To add this piece of configuration to a Liberty JVM
server in CICS, we add an <include> element to its server.xml file, as shown in
Example 9-13.

Example 9-13 The <include> element in server.xml

<server>

<include location=
"/var/cicsts/SC8CICS/wlp/shared/config/sharedApps.xml"/>

</server>

When the Liberty JVM server next updates its configuration, it includes sharedApps.xml in its
processing. You see a message in messages.log that informs you it included this file in its
configuration update. The message that we received from our Liberty JVM server is shown in
Example 9-14.

Example 9-14 Example include message in messages.log

Processing included configuration resource:
/var/cicsts/SC8CICS/wlp/shared/config/sharedApps.xml
Chapter 9. Port sharing and cloning regions 259

9.2.2 Sharing SSL configuration

It is common that Liberty JVM servers spread across multiple CICS regions must use the
same keystore for validating incoming certificates and storing their server certificates.

These keystores can be shared with multiple Liberty JVM servers individually configured for
the same keystore. Alternatively, you can create a sharable configuration file for your SSL
settings. By using this configuration, you can share the keystores by adding an include
element to the server.xml file of your servers.

SSL settings are configured through the following sets of XML elements in server.xml:

� The <ssl> configuration element, which specifies the parameters of the SSL settings for
that server.

� One or more <keystore> elements, which point the server at stores of certificates or user
credentials.

These two sets of elements can easily be separated out into a separate XML file, which can
then be referenced by using an include element in your server.xml file. In Example 9-15, you
can see an example file that is named sslConfig.xml. This file contains SSL settings and a
RACF keystore for our servers to use.

Example 9-15 XML for the sslConfig.xml file

<ssl clientAuthentication="false" id="defaultSSLConfig"
 keyStoreRef="defaultKeyStore" sslProtocol="TLSv1.2"/>

<keyStore fileBased="false" id="defaultKeyStore"
 location="safkeyringhw://CICSREGN/LIBERTY.SC8CICS7"
 password="password" readOnly="true"
 type="JCECCARACFKS"/>

If you plan to share RACF key rings, it is important to note that the CICS region user ID must
be the same for each of the regions that share the key ring. If the IDs are different, you might
encounter RACF access errors.

With a separated SSL configuration file created, we can now include it in our server
configurations. We can do so by using the <include> element in our server.xml files. Set the
location attribute to the absolute path of the configuration file, as shown in Example 9-16.

Example 9-16 <include> element in server.xml that points to the datasources.xml configuration file

<include location=
"/var/cicsts/SC8CICS/wlp/shared/resources/sslConfig.xml"/>

When the server configuration is next refreshed, the changes take effect. You see a message
informing you that the configuration was updated. All of the HTTPS endpoints must be
restarted by Liberty as part of this change, which is done automatically. You see messages
informing you of the restart in the messages.log file. The messages for the configuration
update and the HTTPs endpoint restart from our system are shown in Example 9-17 on
page 261.
260 Liberty in IBM CICS: Deploying and Managing Java EE Applications

Example 9-17 Messages in messages.log indicating the HTTPS endpoints restarted

A CWWKG0017I: The server configuration was successfully updated in 0.076 seconds.
I CWWKO0220I: TCP Channel defaultHttpEndpoint-ssl has stopped listening for
requests on host wtsc80.cpolab.ibm.com (IPv4: 9.76.61.131) port 57443.
I CWWKO0220I: TCP Channel sharingEndpoint-ssl has stopped listening for requests
on host wtsc80.cpolab.ibm.com (IPv4: 9.76.61.131) port 50443.
I CWWKO0219I: TCP Channel defaultHttpEndpoint-ssl has been started and is now
listening for requests on host wtsc80.cpolab.ibm.com (IPv4: 9.76.61.131) port
57443.
I CWWKO0219I: TCP Channel sharingEndpoint-ssl has been started and is now
listening for requests on host wtsc80.cpolab.ibm.com (IPv4: 9.76.61.131) port
50443.

9.2.3 Sharing feature configuration

The features list in a Liberty JVM server often is similar between servers. This similarity
occurs because all of your servers rely on a set of core technologies in the system to run their
applications. As a part of configuration sharing, you can choose to share feature lists or
individual features.

The procedure is straightforward. Start by deciding on the list of features that you want to
share. This list can be a full list of features on its own, or you want to share the related feature
with the resource. For example, you have a shared data source so it might include the
JDBC-4.1 feature in the same file.

We create a features.xml file in our zFS, which contains a set of features that we want to
include in the configuration of every server in our system. The contents of this file is shown in
Example 9-18.

Example 9-18 XML configuration for features.xml

<featureManager>
 <feature>jdbc-4.1</feature>
 <feature>jaxrs-2.0</feature>
 <feature>jsonp-1.0</feature>
</featureManager>

In our system, we keep this file in a shared directory to which all Liberty JVM servers have
read access. This location in our file system is /var/cicsts/SC8CICS/wlp/shared/config.

To use this file as part of a server’s configuration, we add an include element to the server’s
server.xml file. The include element that we used in our environment is shown in
Example 9-19.

Example 9-19 Include statement in server.xml which adds our features.xml to the configuration

<include location=
"/var/cicsts/SC8CICS/wlp/shared/config/features.xml"/>
Chapter 9. Port sharing and cloning regions 261

When the server configuration is refreshed, you see a message in messages.log that
indicates the features that were installed in your JVM server. An example of this message is
shown in Example 9-20.

Example 9-20 Example message for feature enablement in messages.log

A CWWKF0012I: The server installed the following features: [servlet-3.1,
beanValidation-1.1, ssl-1.0, jndi-1.0,appSecurity-2.0, jdbc-4.1, jaxrs-2.0,
cicsts:link-1.0, cicsts:security-1.0, jsonp-1.0, cicsts:core-1.0, json-1.0,
wab-1.0, websocket-1.1].
I CWWKF0008I: Feature update completed in 22.741 seconds

The list of newly installed features includes the features jdbc-4.1, jsonp-1.0, and jaxrs-2.0.

You do not need to be concerned about duplicated features because Liberty recognizes
which features are in use. However, you must ensure that feature lists do not mix Java EE 6
and Java EE 7 features because it can lead to conflicts.

9.2.4 Sharing LTPA keys

LTPA is a type of authentication token that is supported by Liberty servers. When a user
successfully authenticates with a Liberty server that supports LTPA, a token is generated by
the server that confirms that the specific user ID successfully passed the authentication step.
That token is then returned to the caller as a cookie, which can be sent back to the server on
the next call or to another server, as shown in Figure 9-2.

Figure 9-2 Basic security flow with an LTPA token

When a Liberty server receives an authentication token, it verifies the validity of the token by
checking it against some private keys, which are often stored in the server’s file structure. If
the validity is confirmed, the authentication step is skipped and the user ID moves to the
authorization step.
262 Liberty in IBM CICS: Deploying and Managing Java EE Applications

By sharing LTPA keys across servers, you can maintain the identity that is associated with a
session, even if the user’s request is directed to a different server because of workload
balancing or other causes.

If you do not share the LTPA keys and leave each server to generate and manage their own
keys, you can encounter errors in the authentication process. LTPA tokens that are generated
in one server are invalid in another server.

The key component of making this mechanism work is to ensure that all servers that use the
LTPA tokens agree on a shared set of keys. This agreement is ensured by using one of the
following methods:

� Copy the LTPA keys from one file system to another and configure each server to use their
own set of duplicated keys.

� Store the LTPA keys in a shared file location and configure each server to use the same
key file.

In this scenario, we focus on the second option because it better fits the scenarios that are
described in this IBM Redbooks publication. It is also arguably more secure than the first
option because the keys are never transmitted over a network. This configuration minimizes
the chance of unauthorized access.

First, we need a location for storing the LTPA keys that all Liberty JVM servers can access. In
our environment, we use the following shared directory to share resources across all of our
Liberty JVM servers:

/var/cicsts/SC8CICS/wlp/shared

LTPA keys are considered a security resource in Liberty, and so are usually stored in the
corresponding shared directory. In our system the following directory is used:

/var/cicsts/SC8CICS/wlp/shared/resources/security

After this directory is created, your server.xml file’s LTPA configuration must be updated to
point at keys in this directory. You do not need to create the keys. If a set of keys that match
your configuration are not available, Liberty generates them for you. This process occurs at
start or after a configuration refresh if the server is running.

In our server, the LTPA configuration is shown in Example 9-21.

Example 9-21 Simple LTPA configuration with shared keys in server.xml

<ltpa
keysFileName="/var/cicsts/SC8CSICS/wlp/shared/resources/security/ltpa.keys"
keysPassword="{xor}Lz4sLCgwLTs="/>

Every server that you want to use LTPA tokens must be configured to use the same set of
keys in the same directory. Liberty handles the lifecycle of these keys as and when it is
needed. When keys expire, a new set is generated. Because all servers share the keys file, all
servers immediately are updated.
Chapter 9. Port sharing and cloning regions 263

264 Liberty in IBM CICS: Deploying and Managing Java EE Applications

IS
B

N
 073844216X

S
G

24-8418-00

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Liberty in IBM
 CICS: Deploying and M

anaging Java EE

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 073844216X

SG24-8418-00

®

https://www.facebook.com/IBMRedbooks
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Installation and configuration
	1.1 Getting your CICS region ready
	1.2 zFS file system configuration
	1.2.1 zFS configuration files
	1.2.2 Autoconfiguration
	1.2.3 zFS structure
	1.2.4 zFS output files
	1.2.5 zFS file permissions
	1.2.6 zFS file encodings and editing tools

	1.3 Setting up a Liberty JVM Server
	1.3.1 JVM profile
	1.3.2 Tailoring the JVM profile
	1.3.3 Liberty specific options
	1.3.4 IBM Language Environment runtime options
	1.3.5 Creating a JVMSERVER resource

	1.4 Tailoring server.xml
	1.4.1 Adding Liberty features
	1.4.2 Include files
	1.4.3 Configuring the HTTP and HTTPS endpoints
	1.4.4 CICS bundle deployed applications
	1.4.5 Default web application
	1.4.6 Liberty transaction log files
	1.4.7 Sample server.xml file
	1.4.8 Welcome page

	Chapter 2. Deploying a web application
	2.1 Building the restapp sample
	2.1.1 Obtaining the sample code
	2.1.2 Creating the Eclipse projects

	2.2 Deploying a web application to Liberty
	2.2.1 Deployment by using Liberty dropins
	2.2.2 Deployment as an application element in server.xml
	2.2.3 Deployment in a CICS bundle
	2.2.4 Comparison of the deployment options

	2.3 Advanced deployment options
	2.3.1 Shared libraries
	2.3.2 Global libraries
	2.3.3 Deploying a prebuilt Java archive in a CICS bundle
	2.3.4 Pausing and resuming a server

	Chapter 3. Link to Liberty
	3.1 Overview
	3.1.1 Prerequisites
	3.1.2 How it works

	3.2 Link to Liberty sample application
	3.2.1 Building the sample application
	3.2.2 Sample application
	3.2.3 Deploying the sample
	3.2.4 Running the sample
	3.2.5 Manual program definition
	3.2.6 Updating a Link to Liberty program

	3.3 Qualities of service
	3.3.1 Transactions
	3.3.2 Exception and abend processing
	3.3.3 Security
	3.3.4 Summary

	Chapter 4. Connecting to Db2 by using JDBC
	4.1 JDBC overview
	4.1.1 JDBC drivers
	4.1.2 Data sources
	4.1.3 Static and dynamic SQL

	4.2 Installing the JDBC Employee application
	4.2.1 Liberty features
	4.2.2 Data source definition
	4.2.3 CICS resources

	4.3 Using JDBC type 2 connectivity
	4.3.1 Configuring CICS resources
	4.3.2 Configuring server.xml
	4.3.3 Binding the plan
	4.3.4 Running the application

	4.4 Using JDBC type 4 connectivity
	4.4.1 Configuring CICS resources
	4.4.2 Configuring server.xml
	4.4.3 Running the application
	4.4.4 Container managed security

	4.5 Transactional support with JDBC
	4.6 Tracing JDBC

	Chapter 5. Connecting to IBM MQ by using JMS
	5.1 Introduction to JMS
	5.1.1 Java Message Service
	5.1.2 Message Driven Beans
	5.1.3 Java Naming and Directory Interface
	5.1.4 Connection pooling

	5.2 JMS sample application
	5.2.1 Modifying the JMS sample application
	5.2.2 Deploying the JMS sample application
	5.2.3 Configuring Liberty for the JMS sample application
	5.2.4 Describing the JMS updates to the JVM server profile

	5.3 Required CICS resources
	5.3.1 BUNDLE resources
	5.3.2 URIMAP resource
	5.3.3 Transaction resources

	5.4 Required IBM MQ resources
	5.4.1 Configuring IBM MQ Explorer
	5.4.2 Defining the queues

	5.5 Testing the sample applications
	5.5.1 Testing the MQJMSDemo application
	5.5.2 Testing the MySimpleMDB application
	5.5.3 Use of the Execution Diagnostic Facility

	5.6 Security
	5.6.1 RACF resources
	5.6.2 JMS security scenarios
	5.6.3 Summary

	5.7 Transport Layer Security
	5.7.1 RACF resources
	5.7.2 TLS debugging hints and tips

	Chapter 6. Configuring Transport Layer Security support
	6.1 JSSE and JCE
	6.1.1 Updating the JCE policy files

	6.2 TLS server authentication by using a Java keystore
	6.3 TLS server authentication by using a RACF key ring
	6.4 TLS client authentication
	6.5 Hints and tips when using TLS
	6.5.1 Tracing TLS
	6.5.2 Enforcing TLS for web applications
	6.5.3 HTTP persistent connections
	6.5.4 TLS session timeout
	6.5.5 Controlling the TLS version
	6.5.6 Controlling the cipher suite
	6.5.7 Restricting weak algorithms

	6.6 Using cryptographic hardware with JSSE
	6.6.1 Cryptographic hardware
	6.6.2 Cryptographic software
	6.6.3 Configuring TLS to use the cryptographic coprocessors
	6.6.4 Monitoring cryptographic hardware

	Chapter 7. Securing web applications
	7.1 Overview
	7.2 z/OS security configuration for Liberty JVM servers
	7.2.1 Starting the angel process
	7.2.2 Setting up access to the angel process
	7.2.3 Profile prefix and required SAF profiles
	7.2.4 SAF profile summary

	7.3 Configuring a Liberty security registry
	7.3.1 Configuring a basic user registry
	7.3.2 Configuring a SAF registry
	7.3.3 Configuring an LDAP registry

	7.4 Authentication scenarios
	7.4.1 Basic authentication with a SAF registry
	7.4.2 Basic authentication by using LDAP credentials
	7.4.3 Form-based login
	7.4.4 Certificate-based client authentication

	7.5 Authorization scenarios
	7.5.1 URL-specific authorization by using EJBROLEs
	7.5.2 Programmatic role authorization by using EJBROLEs
	7.5.3 CICS transaction security with URIMAPs

	7.6 Configuring SSO by using Lightweight Third-Party Authentication
	7.6.1 Configuring LTPA
	7.6.2 Disabling SSO in Liberty
	7.6.3 Requiring TLS when using SSO

	7.7 JSON client code with cookie printer

	Chapter 8. Logging and monitoring
	8.1 Message and log files
	8.1.1 CICS logs
	8.1.2 Java logs
	8.1.3 Liberty server logs
	8.1.4 JVM server trace output

	8.2 Monitoring tools
	8.2.1 CICS statistics records
	8.2.2 CICS performance records
	8.2.3 CICS Performance Analyzer
	8.2.4 CICS Explorer
	8.2.5 IBM Health Center
	8.2.6 IBM Application Metrics for Java
	8.2.7 Runaway tasks
	8.2.8 CICS policies

	Chapter 9. Port sharing and cloning regions
	9.1 Sharing ports
	9.1.1 Using WLMHEALTH

	9.2 Cloning regions
	9.2.1 Sharing application definitions
	9.2.2 Sharing SSL configuration
	9.2.3 Sharing feature configuration
	9.2.4 Sharing LTPA keys

	Back cover

