
Redbooks

Front cover

IBM CICS Asynchronous API
Concurrent Processing Made Simple

Pradeep Gohil

Julian Horn

Jenny He

Anthony Papageorgiou

Chris Poole

International Technical Support Organization

IBM CICS Asynchronous API: Concurrent Processing
Made Simple

December 2017

SG24-8411-00

© Copyright International Business Machines Corporation 2017. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (December 2017)

This edition applies to CICS Transaction Server for z/OS Version 5, Release 4.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors. ix
Now you can become a published author, too! .x
Comments welcome. xi
Stay connected to IBM Redbooks . xi

Chapter 1. Introduction. 1
1.1 Asynchronous processing, parallelism, and concurrency . 3
1.2 Why is concurrency desirable? . 4
1.3 Models of concurrency . 5

1.3.1 Shared state models . 5
1.3.2 The actor model, and communicating sequential processes 7

1.4 How does asynchronous processing apply to CICS? . 8
1.5 Comparing asynchronous processing techniques in CICS . 9
1.6 Summary. 10

Chapter 2. The CICS asynchronous API . 11
2.1 Basics of the CICS asynchronous API . 12

2.1.1 Execute work asynchronously. 12
2.1.2 Track the completion of the asynchronously executing work 12
2.1.3 Pass data between parent and child tasks . 13

2.2 Four CICS asynchronous API commands . 13
2.2.1 The RUN TRANSID command . 14
2.2.2 The FETCH CHILD command . 14
2.2.3 The FETCH ANY command . 15
2.2.4 The FREE CHILD command. 16

2.3 Key features and characteristics . 17
2.3.1 Transactionality . 17
2.3.2 Orphaned child tasks . 18
2.3.3 Local children . 18
2.3.4 Security model . 19
2.3.5 Passing data with CICS channel and containers . 19
2.3.6 CICS Asynchronous Services domain . 22
2.3.7 Timeouts . 23

2.4 Considerations for using the CICS asynchronous API . 24
2.4.1 Child GETs and parents UPDATE . 24
2.4.2 Allow the same parent program to run and fetch child tasks 24
2.4.3 Long-running parents should use the FREE CHILD command 24
2.4.4 Keep track of fetched channels. 25
2.4.5 Review MAXTASK and set transaction classes . 25
2.4.6 Parameterizing timeouts . 25

Chapter 3. Extending applications while minimizing the impact to response time . . 27
3.1 Overview of the scenario. 28

3.1.1 Description of the sample application . 28
3.1.2 Objective of the scenario . 31
© Copyright IBM Corp. 2017. All rights reserved. iii

3.2 Add a new request using the CICS asynchronous API . 32
3.2.1 Defining the PTNR transaction to run ACCTPTNR. 32
3.2.2 Adding logic to print the partner account details . 33
3.2.3 Adding the RUN TRANSID command to WEBHOME.cbl 33
3.2.4 Adding the FETCH CHILD command to the WEBHOME.cbl program 35

3.3 Run the updated application . 39
3.4 Summary. 39

Chapter 4. Improving the response time of existing applications 41
4.1 Overview of the scenario. 42

4.1.1 Description of the sample application . 42
4.1.2 Objective of the scenario . 44

4.2 Converting program LINKs to asynchronous API calls . 44
4.2.1 Define transactions to run the GETNAME and ACCTCURR programs 45
4.2.2 Add RUN TRANSID commands to WEBHOME.cbl . 45
4.2.3 Add the FETCH ANY command to WEBHOME.cbl . 48

4.3 Running the updated application. 53
4.4 Summary. 54

Chapter 5. Developing robust applications with unreliable service providers 55
5.1 Overview of the scenario. 56

5.1.1 Objective of the scenario . 56
5.2 Requesting services from an unreliable service provider . 57

5.2.1 Why not just use a LINK? . 58
5.2.2 Asynchronously requesting a new service . 59
5.2.3 Testing the response times of calling the new service . 62
5.2.4 Retrieving a timeout value to meet the application’s SLA. 64
5.2.5 Adding the TIMEOUT parameter to the FETCH command of the

unreliable service . 65
5.3 Running the updated application. 69
5.4 Summary. 71

Chapter 6. Creating a Java-based controller in a mixed-language environment 73
6.1 Making promises about the future. 74
6.2 CICS asynchronous API classes and methods. 76

6.2.1 A golden-path scenario . 76
6.2.2 Additional methods: getAny() and freeChild() . 78

6.3 Providing a web front end for the web banking application. 80
6.3.1 Project setup . 80
6.3.2 Program architecture . 81
6.3.3 Writing the main program logic . 82
6.3.4 Displaying the account details and loan rate. 91

6.4 Summary. 93

Chapter 7. Tips and tricks . 95
7.1 Trick: Reduce the management burden by running children

under a single transaction ID . 96
7.1.1 The PARENT program running two different children under the ASCH child

transaction ID . 97
7.1.2 Using the ASYNCWP wrapper program to extract the target child program from a

channel and linking to it . 102
7.1.3 The CHILD1 and CHILD2 child programs running under the

ASCH transaction . 103
7.2 Tip: Run existing COMMAREA-based assets
iv IBM CICS Asynchronous API: Concurrent Processing Made Simple

asynchronously without changing them . 106
7.2.1 The PARENT program running two different children under child transaction ID

ASCH passing COMMAREAs to each one. 107
7.2.2 Using the ASYNCWP wrapper program to extract the PROGRAM target child from

channel and linking to it with REQUEST-COMM COMMAREA 112
7.2.3 The CHILD1 and CHILD2 child programs running under the ASCH transaction 114

7.3 Tip: Release storage wisely in long-running parent transactions 116
7.4 Trick: Prevent sets of children from interfering in

FETCH ANY logic by using FREE CHILD . 117
7.5 Tip: Check the status of a child without blocking the parent by using the NOSUSPEND

option . 118
7.6 Trick: Process as many children as possible in a a fixed time period 119
7.7 Tip: Using response-only channels between parent and child transactions 121

Chapter 8. Debugging and problem determination . 125
8.1 Using the CICS execution diagnostic facility: CEDF and CEDX 126
8.2 Asynchronous API abend code. 133
8.3 Tracing asynchronous API applications . 133
8.4 Sample application trace flow using FETCH ANY commands 134

8.4.1 The environment . 134
8.4.2 Trace of the PARENT program creating two children . 137
8.4.3 Trace of one child . 139
8.4.4 Trace of the PARENT program fetch the response from any child 140

8.5 Sample application trace flow using FETCH CHILD commands and the NOSUSPEND and
TIMEOUT options. 141

8.5.1 The environment . 141
8.5.2 Trace of FETCH CHILD NO SUSPEND . 143
8.5.3 Trace of FETCH CHILD TIMEOUT. 143
8.5.4 Trace of FETCH CHILD . 143

8.6 Sample application trace flow using FREE CHILD commands. 144
8.6.1 The environment . 145
8.6.2 Trace of free child tasks . 145

8.7 Transaction dumps and the asynchronous API . 146
8.7.1 Asynchronous parent task transaction dump extract . 146
8.7.2 Asynchronous child task transaction dump extract . 147

8.8 System dumps and the asynchronous API . 148
8.8.1 Asynchronous parent system dump extract . 148

Chapter 9. Performance and management for asynchronous API applications 151
9.1 Special aspects for asynchronous API applications . 152
9.2 Managing the number of tasks in the system . 152

9.2.1 Using MXT . 152
9.2.2 Using TRANCLASS to manage parent transactions. 153
9.2.3 Using TRANCLASS to manage child transactions . 153

9.3 Duration of parent tasks in the system . 153
9.3.1 Parent tasks waiting upon child tasks . 154
9.3.2 MAXTASK condition causing parent tasks to suspend. 154

9.4 Policing parent tasks with CICS policy . 155
9.5 Threadsafe considerations . 155
9.6 Asynchronous services statistics . 156
9.7 Asynchronous services monitoring . 156

Chapter 10. System tracking of asynchronous applications 159
10.1 Data gathered by transaction tracking . 160
 Contents v

10.1.1 Origin data . 160
10.1.2 Previous transaction data . 161
10.1.3 Previous hop data . 161
10.1.4 Task context data . 161
10.1.5 Application context data . 161
10.1.6 Flow of tracking data. 162

10.2 Using the INQUIRE ASSOCIATION command to track tasks. 162
10.2.1 Building the picture of the application flow using the tracking data. 164

10.3 Using CICS Explorer to track tasks. 164
10.3.1 Tracking interrelated tasks using search. 165
10.3.2 Finding out associated tasks using the Task Associations views 166
10.3.3 Graphical view of associated tasks . 169
10.3.4 Graphical view of orphaned tasks. 170

10.4 Using CICS Performance Analyzer to understand task relationship 171
10.4.1 Brief overview of CICS Performance Analyzer . 171
10.4.2 Extending the business application. 172
10.4.3 Transaction tracking reports by CICS Performance Analyzer. 172
10.4.4 Transaction group reports by CICS Performance Analyzer 174

10.5 Using IBM OMEGAMON for CICS on z/OS V5.5.0 to monitor performance. 175
10.5.1 Alerts showing up in OMEGAMON . 176
10.5.2 Drill down to the problematic task . 177
vi IBM CICS Asynchronous API: Concurrent Processing Made Simple

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2017. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

CICS®
CICS Explorer®
DataPower®
DB2®
IBM®

IBM API Connect™
IMS™
MVS™
OMEGAMON®
RACF®

Redbooks®
Redbooks (logo) ®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
viii IBM CICS Asynchronous API: Concurrent Processing Made Simple

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication covers the background and implementation of the IBM
CICS® asynchronous API, which is a simple, accessible API that is designed to enable CICS
application developers to create efficient asynchronous programs in all CICS-supported
languages. Using the API, application developers can eliminate the overhead that is involved
in coding and managing homegrown asynchronous solutions, instead using a set of
CICS-supported API commands to underpin CICS applications, which are more responsive
and robust than ever.

Initially, the book reviews the history and motivations of asynchronous processing in
computing and the benefits involved when calling external services. It then introduces the
asynchronous API itself and its commands. It also provides a range of scenarios, including
sample code, that cover everything from the basics of making an asynchronous request to
updating existing synchronous program calls, with the goal of illustrating how to harness the
CICS asynchronous API to solve real business problems. Later chapters take a deeper dive
into the capabilities of the asynchronous API for advanced use cases.

Beyond application development, CICS provides a complete solution for system programmers
to manage and monitor asynchronous business logic. Thus, the final chapters of this book
cover enhancements to CICS monitoring, statistics, trace, and dumps. Using supporting CICS
tooling, system programmers have greater insight than ever, with improved transaction
tracking capabilities and CICS policies to provide maximum control and optimization of
asynchronous processing in CICS environments.

Authors

This book was produced by a team of specialists from around the world.

Pradeep Gohil is a Software Engineer working at IBM Hursley UK. He holds a Master of
Engineering (MEng) degree in Computing (Artificial Intelligence) from Imperial College
London. He has 15 years of experience working in the IBM CICS organization. His area of
expertise is application modernization in CICS Transaction Server for IBM z/OS®, including
the CICS asynchronous API, web services, CICS cloud, and CICS bundles. Pradeep was the
technical leader for the research, design, and delivery of the CICS asynchronous API.

Julian Horn is a CICS software developer working at IBM Hursley UK. He has over 28 years
of experience, working on CICS in both the service role and, most recently, as a developer in
the CICS asynchronous API team. His expertise spans many of the core areas of CICS
including dispatcher, transaction manager, program manager, and security.

Jenny He is a CICS Software Engineer working at IBM Hursley Lab in UK. She started
developing the CICS product in 2011. Her areas of expertise includes event processing, CICS
policy, CICS asynchronous APIs, IPIC, web service, statistics, and monitoring. She holds a
PhD degree in optical communications from University of Essex in UK. She has authored
three Redbooks publications prior to this and published a number of papers during her PhD
research.

Anthony Papageorgiou is a Software Engineer working at IBM Hursley UK. Before he joined
IBM in 2007, he worked for Mintel International Group Ltd as a Web Developer. Anthony holds
a degree in Computer Science from the University of Warwick. His areas of expertise include
© Copyright IBM Corp. 2017. All rights reserved. ix

APIs, mobile, cloud, and event processing technologies. During his time at IBM, he has
performed a number of roles across development, architecture, strategy, and management in
the CICS organization. Anthony played a key role in the initial research that lead to the
development of the CICS asynchronous API and is currently working as the delivery manager
for z/OS Connect Enterprise Edition.

Chris Poole is an IBM Master Inventor, working on IBM Blockchain, and contributing to the
open source Hyperledger project. Prior to this, he worked in the CICS development team,
working in the CICS asynchronous API, DevOps, and cloud teams. He continues to develop
and evangelize CICS microservices and DevOps technologies. Prior to joining the CICS
team, he worked in the IBM API Connect™ development team and developed software to
administer IBM DataPower® appliances. He holds a PhD in Theoretical Physics.

This book was managed and edited by:

� Martin Keen
� Debbie Willmschen

Thanks to the following people for their contributions to this project:

� Steve Bolton
� Amy Reeve
� Sophie Green
� Satish Tanna
� Christopher Walker
� Geoff Bunworth
� Ian Burnett
� Mark Cocker
� Ivan Hargreaves
� Paul Cooper

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
x IBM CICS Asynchronous API: Concurrent Processing Made Simple

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xii IBM CICS Asynchronous API: Concurrent Processing Made Simple

Chapter 1. Introduction

The CICS asynchronous application programming interface (API) provides a powerful means
for IBM customers to optimize CICS applications for Web Services and APIs that are external
to CICS. The asynchronous APIs allow for multiple requests to service providers to occur
concurrently, rather than one after the other, all using a supported API in CICS.

Previously, CICS applications were single-purpose, self-contained units. These applications
typically executed in solitude, and with the throughput and reliability of the platform, the CICS
application did its job well—and still does—but technology moves forward. Thus, expectations
of the CICS application have grown. Customers want more insight, more capacity, and
smarter processing to maintain a competitive edge. Applications that started by taking input
from a terminal must now interface with data stores and programs across multiple systems. In
addition, they must invoke requests to external services.

Perhaps you started with one simple database of customer details, but over many application
enhancements, system consolidations, and business acquisitions spanning several
geographies, your application now fetches data across all parts of the organization to build a
complete view of the customer. Or maybe a new business objective means that you need to
pull together several dispersed services that are provided across the organization’s systems.

Organizations today are asking more from CICS applications and want the results sooner.
New applications have aggressive response time goals to meet service level agreements
(SLAs) and to improve client satisfaction, while existing apps still need to be enhanced
without affecting overall response times.

1

© Copyright IBM Corp. 2017. All rights reserved. 1

By no means is asynchronous processing a new concept in computing; however, it is still
challenging to produce enterprise-grade applications with asynchronous calling patterns. The
premise is simple. Instead of calling multiple services sequentially, as illustrated in Figure 1-1,
you can reduce the overall response time of the application by requesting services
concurrently, as illustrated in Figure 1-2. This process is achieved by running child work tasks
(that manage a single service request) asynchronously to the parent task.

Figure 1-1 Sequential calling pattern of external services

Figure 1-2 Concurrent calling pattern of external services

We’ve heard numerous experiences of customers who have attempted asynchronous calling
patterns in CICS applications, with varying levels of success. We’ve heard the difficulties
involved in coordinating many asynchronous tasks, along with challenges of passing data,
problems arising from work becoming out of sync, and the on-going maintenance of
home-grown architectures, which is common in high workload, high throughput environments
such as CICS.

The CICS asynchronous API enables application developers to deliver asynchronous calling
patterns to produce responsive applications that minimize response times. CICS Transaction
Server V5.4 introduces the CICS asynchronous API, along with support to control, manage,
and monitor asynchronous processing in CICS.
2 IBM CICS Asynchronous API: Concurrent Processing Made Simple

1.1 Asynchronous processing, parallelism, and concurrency

Although this book discusses asynchronous processing, it also provides information about
the following related terms:

� Concurrency
� Parallelism

It is worth discussing the differences between these terms.

First, compare the following existing CICS commands:

� EXEC CICS LINK
� EXEC CICS START

The EXEC CICS LINK command is a synchronous command because it runs a named program
and gives immediate and predictable control to that program. The calling program has its
control returned only at the end of the named program. This processing all runs within the
framework of a CICS task.

The term synchronous works for this process because if you imagine the calling program and
the program being called as each having a clock, it is entirely possible to synchronize these
clocks. At the point where the “clock” owned by the calling program is paused (when it gives
up control and the EXEC CICS LINK command is issued), the “clock” owned by the program
being called is then started. The same process is true for when the called program stops; its
clock stops, and the first clock starts again. They are synchronized.

You can contrast this process to the EXEC CICS START command, which names a CICS
transaction to start. This process causes an entirely new CICS task to be created (ultimately
running a program), without the calling program passing control to it. Thus, if a program within
each of these two tasks were to own a clock, you can no longer synchronize the clocks,
because you don’t know for certain when the second task will start (while the calling
program’s clock keeps ticking). In addition, you certainly can’t predict the time recorded by the
first clock of when the second program stops. Because the EXEC CICS START command
doesn’t pass control from the first program to a second, the command is also said to be
non-blocking. A program making use of the EXEC CICS START command (invoking a local
transaction) issues that command and immediately moves to the next line, continuing its
operation. (For now, ignore the minor detail that part of the EXEC CICS START command is
actually being synchronous.)

Now, how does this information relate to concurrency and parallelism? Let’s start with
parallelism, which is doing lots of things at the same time. There are several caveats that can
be applied to this type of processing, because it depends on the architecture and hardware
but fundamentally you need several CPUs running at the same time to be able to achieve
parallel processing. Of course, this type of processing is the important work of the mainframe,
with the z/OS dispatcher and the CICS dispatcher working hard to get this type of work
correct. If a program’s logic necessitates that several parts of it must run at the same time, it’s
a parallel program. If you can in theory run this same program on only one CPU, having a
preemptive multitasking system to pause tasks and ensure that all logic is run, the program is
actually written to be concurrent.1

Concurrency is about dealing with lots of things at the same time. With a truly parallel
program and system, things must run at the same time. With a concurrent system, they can
run at the same time, but parts of the computation can advance without waiting for the others
to complete. CICS allows for concurrent programs, with support for running code on different

1 Hardware-level parallelism, such as single-instruction, multiple-data (SIMD), is beyond the scope of this book.
Chapter 1. Introduction 3

task control blocks (TCBs), such that all processing isn’t pipelined onto the quasi-reentrant
(QR) TCB. The desired goal of the CICS Asynchronous API is to enable concurrency, where
parts of an overall program can run at the same time and reduce overall run time, but to do so
with a programming model that’s easy to understand.

1.2 Why is concurrency desirable?

There are several reasons why you might want to improve the concurrency of your programs.
Imagine that you have an existing program that consists of two logically separate blocks of
code. There’s no reason why these two separate blocks of code couldn’t, in theory, be run at
the same time, because the second block is not dependant on the first. If you can run these
two blocks of code at the same time, you can reduce the overall response time of the
program, as illustrated in Figure 1-3. On the left of the figure is a CICS task with a single
program, represented by a dashed line. It is started by something else, perhaps passing data
to it, and ultimately returns new data. In the middle of the figure is the same CICS task, where
two distinct parts of the program have been identified. Finally, the right side of the figure
shows that the two distinct parts of the program, if run concurrently, can result in a reduced
response time.

Figure 1-3 A CICS task, with time running from top to bottom

As a second example, consider the fact that CICS is no longer the “end of the chain.”
Although CICS functions as the end step of a series of systems that are called, it is also used
to call to other services as part of business logic. These other services might be external to
the mainframe that CICS is running on and might not 100% reliable. Let’s say that you need to
make a call to a credit checking agency, but instead of depending on just one agency, you
have an agreement to use three agencies. If one call fails, you can still try the others to better
tolerate the failure. It would be nice to run these three calls concurrently and get the result of
the service that’s fastest to respond. This way, you’ve minimized the response time but also
added fault tolerance into the process, as illustrated in Figure 1-4 on page 5. After the same
data is sent to each external service, the process requests for the data from the first response
back, regardless of which service it happens to come from.

t

4 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Figure 1-4 A CICS program calling to multiple external services

Finally, consider the business advantages of being able to do things concurrently. Let’s take
the example of a bank’s recent transactions web page. While you’re fetching the recent
transactions for a customer, perhaps you’d like to see whether they’re eligible for a new credit
card. This kind of upsell might result in increased business revenue. You can’t wait forever of
course—you still have to return the customer’s recent transactions in a timely manner—so it’s
desirable to run that processing on the side. But if you can gather this additional information
at the same time, why not?

Now that you understand better why concurrency is desirable, the next section discusses the
programming models that allow you to achieve it.

1.3 Models of concurrency

To achieve concurrent processing, you need to be able to write programs using a model or
framework that allows for concurrency. Several established methods allow for concurrent
processing, including some ways that work initially but that can get complicated quickly. The
following sections provide a quick look at two models that allow for concurrent work to be
done and an understanding of why there are better methods.

1.3.1 Shared state models

With a shared state model, you can make use of one large area of storage that different
processes can write to (in a loose, not pointing to any particular implementation sense). For
example, if you have a system with two operating system threads, thread 1 can write to this
shared state, before starting thread 2. Thread 2 can then read this state information and
complete whatever processing it requires, before writing back to the same shared state. This
type of processing can be simple to program and efficient. However, if you want to extend this
processing beyond two threads, it quickly gets complicated. Furthermore, it introduces a
whole class of problems, called shared state problems. For example, what happens if two
threads try to update the same data in the shared state at the same time? One of the threads
Chapter 1. Introduction 5

will have its data overwritten. To counter this issue, you can introduce locking, but now as an
application programmer, you have to manage locks, which introduces further complexity.
What happens if these locks get forgotten about? You can reach a deadlock situation if thread
1 locks the state temporarily but dies during its update process. The lock is still in place, but
now thread 2 can’t update the state itself, introducing even further complications, which is
illustrated in Figure 1-5.

Figure 1-5 A shared state (the cloud shape), to be written to and read by two different processes

Another idea is one of a shared queue. Similar to the first example, however, a shared queue
can expose you to a subset of the shared state problems. You have a program A create a
queue, and then start an asynchronous process of some kind. This asynchronous process,
running program B, is about to read information from the queue and push data back onto it.
Program A can continue with its processing, while program B is running (concurrently).
However, you still have a problem. How does program A know when the data that it needs has
been written to the queue by program B? You now need to write polling code that sits and
waits for a while before checking the queue and then looping back around, as illustrated in
Figure 1-6 on page 7. This method also gives rise to another issue. You write the program to
sleep for one second, to check for items on the queue, and then to loop and sleep again. This
allows for the possibility that an item will be pushed onto the queue just as the program goes
to sleep, leading to poor performance. The program will sleep for a fixed amount of time
before it wakes up and is able to read the item from the queue. Ideally, you'd want to have the
program read the item from the queue as soon as it is pushed onto it.
6 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Figure 1-6 A concurrent program, one program writes to and updates a shared queue

Both of these popular solutions to the concurrency problem are susceptible to fundamental
issues, which can be caused by the following states:

� Shared state
� Mutable state

These problems, among others, have been the subject of much academic research, leading
to Communicating Sequential Processes (CSP) and the Actor model. For the CICS
asynchronous API, we learned from both, and took preferred practices from both. Let’s take a
look at the models themselves, then understand why they’re a good fit for CICS, and how
we’ve achieved the implementation.

1.3.2 The actor model, and communicating sequential processes

To simplify these models, let’s think of a practical example. Dave is an employee at a
company and was asked a question in an email from his manager that required an urgent
response. Dave received the message in his inbox and now forwards the email with a
message to Tony, who he hopes might know the answer to the question. But because he’s not
sure whether Tony is available or will respond to the email, he also sends the same question
to Chris. Dave then continues with his own work, until he has a response in his inbox from
either Tony or Chris. (Dave doesn’t care who responds to the question; he just wants the
fastest response.) When Dave has a response with the answer to his question, he can then
send that answer on to his manager. This process makes a lot of sense, which allows us to
better understand these models.

An actor has the following characteristics:

� Is something that can do some kind of processing
� Doesn’t share state
� Communicates explicitly, via message passing semantics

Shared
queue

Poll Update
Chapter 1. Introduction 7

In this example Dave, Tony, and Chris are three actors. Each maintains his own private state,
and when they do communicate, they do so by passing messages (emails) to one another, as
illustrated in Figure 1-7.

Figure 1-7 Dave sends the same request to Tony and Chris, and then waits for the fastest response

CICS, like the actor model, adopts a buffered mailbox approach. Much like this email
example, each CICS task that’s started a child task has its own inbox. Beyond CICS, CSP
and the actor model have influenced languages and runtimes, such as Google’s Golang,
Clojure’s core.async, and Scala’s Akka.

1.4 How does asynchronous processing apply to CICS?

This section discusses how to apply the two models of computation discussed previously to
CICS. To implement a model with the desired behaviors that are influenced by these models
you will need:

� A run time to handle discrete entities in the system, each able to hold their own private
state information (the actors, as such)

� An ability to pass messages between these entities

CICS tasks solve the first requirement for you. These tasks are discrete entities in the system,
and the CICS dispatcher already does a good job of managing them. The dispatcher takes
care of running these tasks on different TCBs as it usually does, given the correct transaction
definitions for thread safety. The aim isn’t to rewrite everything; if something works well and is
time-tested, use it. This reasoning also explains why a buffered mailbox approach, similar to
the actor model, is a good approach. If you have a task (task A) ready to return a message to
another task (task B), you don’t want task A to sit around until task B is ready to receive this
message. These are regular CICS tasks, using up task slots, a system-limited resource. So,
allow the message to be delivered, and task A to be cleaned up as usual.

The second requirement is also solved for you already. CICS TS V3.1 introduces channels
and containers. You can make use of this same channel technology to pass messages from
8 IBM CICS Asynchronous API: Concurrent Processing Made Simple

one task to another. You can also reach a solution that helps with desired fault tolerance
goals, where one actor, if it dies, does not kill any other actor that it is connected to. CICS
tasks are equally robust.

To help you achieve this kind of processing in your own programs, we've implemented this
processing model using the following API commands:

� EXEC CICS RUN TRANSID
� EXEC CICS FETCH CHILD
� EXEC CICS FETCH ANY
� EXEC CICS FREE CHILD

1.5 Comparing asynchronous processing techniques in CICS

The CICS asynchronous API isn’t the only way of carrying out asynchronous tasks. In fact,
you’ve been able to run asynchronous workloads in CICS for many years. This section briefly
analyzes some of the other processing techniques in CICS to ultimately understand why the
CICS asynchronous API was created.

One pattern that some CICS users employ is that of EXEC CICS START command invocations,
and listener tasks. Listener tasks can sit and wait for a request to come in to it and then start
a child task that is related to that request asynchronously. This process works well, but it is
tricky to get information back from these child tasks. Additionally, the EXEC CICS START
command isn’t threadsafe and, for equivalent usage, is less performant than the EXEC CICS
RUN TRANSID command. (It does offer parameters for starting the task under a different USERID,
and at a later time, though.)

To collect results back from child tasks, queues are often the solution that are turned to. A
parent task can start a task asynchronously with the EXEC CICS START command and have
that child task write its output to a shared queue (for example, a temporary storage (TS)
queue). The parent task can then listen, or poll, for updates to that queue. To some extent
this process allows for recoverability, because the queues can be persisted. However, it is not
a trivial process. This method adds complexity because there are now new CICS resources
that must be managed and maintained by CICS system programmers, in addition to the code
to manage those queues. There’s also the question of what happens if a child task abends
before it pushes to the queue. How can the parent determine this occurrence? You can also
use messaging middleware, such as IBM MQ, but using this method suffers from similar
issues. In addition, you will have another product to maintain and another skill to learn, if this
is its only use in the organization.

If a greenfield project is developed, you can consider native Java APIs (such as with the
java.util.concurrent.Future interface). If the logic needs to be written only in Java and
doesn’t interact with programs that are written in other languages within a CICS region, this
method can work well (allowing for the management of JVMSERVER resources and so on).
However, it becomes less practical to use this process if you also want to make use of
existing, reliable business logic, written in COBOL or PL/I perhaps.

Finally, CICS Business Transaction Services (BTS) offers an asynchronous model that can be
used here with success. The framework is designed more for long-running,
pseudo-conversational programs, however, and programs must be adjusted to be written in
this style. Adjusting programs is not as trivial as adding an invocation of the EXEC CICS RUN
TRANSID command. For an expert user, Event Control Block (ECB) POSTs and WAITs can be
employed, but this method requires an understanding of assembler. Although not difficult for a
skilled person to write for one child task, this task becomes more challenging for many child
tasks.
Chapter 1. Introduction 9

1.6 Summary

In summary, you can use many methods to construct your own asynchronous framework.
This framework typically involves the technologies discussed in this chapter, often outside of
their core intended use cases. Furthermore, you need to maintain the infrastructure. For
these reasons, the CICS asynchronous API was developed. Starting a child task is as easy
as using the EXEC CICS RUN TRANSID command. Fetching those results are equally as easy,
together with the completion status of a child task, even if the child task abended. And
although queues and events are used within the CICS run time to manage this process, this
process is not something that has to be maintained by a CICS system programmer or
understood by a CICS application programmer.

This book provides information about how the CICS asynchronous API fits together and how
to get the most out of it. The next chapter introduces the API, and the next several chapters
that follow build an example, ultimately leading to the development of a web app that displays
bank account information. The book also includes the considerations for system
programmers and the use of supporting tools.
10 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Chapter 2. The CICS asynchronous API

Chapter 1, “Introduction” on page 1 described the background of asynchronous
programming. By harnessing these asynchronous techniques, you can improve the
responsiveness and robustness of CICS applications, especially those applications that
suspend execution due to waiting upon service calls, while they could be getting on with other
useful work.

Although asynchronous processing is not a new concept, there remain many challenges to
writing quality and scalable asynchronous algorithms. CICS Transaction Server V5.4
introduces a set of CICS asynchronous API commands that greatly simplify coding
asynchronous applications. These commands provide the ability to:

� Initiate and reconcile asynchronous work
� Manage the passing of data
� Mitigate problems related to timing windows, especially in high-throughput workloads

This chapter delves deeper into the set of asynchronous API commands in CICS. It begins by
introducing the CICS asynchronous API and then explores key concepts and features,
followed by considerations for its usage. Later chapters show working examples of how to use
the API and how to work with asynchronous patterns in CICS.

2

© Copyright IBM Corp. 2017. All rights reserved. 11

2.1 Basics of the CICS asynchronous API

The CICS asynchronous API is a set of the following EXEC CICS API, and supporting JCICS,
commands:

� RUN TRANSID
� FETCH CHILD
� FETCH ANY
� FREE CHILD

This set of commands enables developers to rapidly create asynchronous processing logic in
their CICS applications, across all supported languages.

Along with these commands, a comprehensive set of CICS features to manage asynchronous
workloads in CICS includes the following features:

� Automated CICS control on asynchronous workloads
� Security context flowing
� Enhancements to trace and dumps
� Monitoring fields
� Statistic fields
� Control with CICS policy
� Tracking, visualizations, and reporting via tooling

At the heart of the CICS asynchronous feature is the parent-child model. Parent tasks run
child tasks to execute logic asynchronously to the parent. The parent can, at a later point in
the algorithm, fetch back the results from a completed child task.

Parent transactions have one or more child transactions. Child transactions have a single
parent transaction.

Asynchronous processing in CICS include the following abilities:

� Execute work asynchronously
� Track the completion of the asynchronously executing work
� Maintain data integrity across tasks

2.1.1 Execute work asynchronously

A parent task issues the RUN TRANSID command to initiate a child task. In this regard, it is
similar in nature to a basic START command. The difference between a RUN TRANSID command
and the START command, is that the RUN TRANSID command provides the parent task with a
“handle” to obtain the status of the child task.

It is important to note that following the execution of the RUN TRANSID command, the parent
task is not blocked awaiting a reply and might continue to execute. For example, the parent
might choose to execute other business logic, request results from the child task, or even
initiate further child tasks.

2.1.2 Track the completion of the asynchronously executing work

When a parent task requires the completion status or results from a child task, it can issue a
FETCH CHILD command. As an alternative to requesting a specific child, a parent can issue a
FETCH ANY command to return the results from any of the child tasks that it has initiated.
12 IBM CICS Asynchronous API: Concurrent Processing Made Simple

A parent can signify a lack of future interest in a child task by issuing a FREE CHILD command.
The parent task is then not notified regarding freed child tasks on subsequent FETCH CHILD or
FETCH ANY commands. A freed child does not abend nor stop execution because of the FREE
CHILD command and continue execution independently.

2.1.3 Pass data between parent and child tasks

Data can be passed from a parent to a child (and returned) using a CICS channel and
containers. The CICS system manages the channel data between parent and child tasks.

Figure 2-1 shows a parent transaction that initiates three child transactions. The three child
transactions run independently to the parent transaction. After issuing three EXEC CICS RUN
TRANSID commands, the parent still executes business logic until responses are required from
the child tasks. At that point, the parent issues an EXEC CICS FETCH ANY command and
suspends until a child completes. This process is repeated two further times to consume the
results of all child tasks. The parent then executes more business logic and finally completes.

Figure 2-1 A parent task runs three child tasks asynchronously

2.2 Four CICS asynchronous API commands

CICS TS V5.4 introduced the following API commands, known as the CICS asynchronous
API commands, to greatly ease the development of asynchronous processing patterns in
CICS applications:

� RUN TRANSID
� FETCH CHILD
� FETCH ANY
� FREE CHILD
Chapter 2. The CICS asynchronous API 13

This section provides a closer look at each of the commands in turn and their syntax. For
further details about these commands, refer to IBM Knowledge Center.

Along with the four CICS asynchronous API commands, a JCICS equivalent implementation
for asynchronous processing in Java has also been provided in CICS TS V5.4. You can find
further details about the JCICS implementation in Chapter 6, “Creating a Java-based
controller in a mixed-language environment” on page 73.

2.2.1 The RUN TRANSID command

The RUN TRANSID command initiates a local child transaction that runs asynchronously with
the parent transaction. Example 2-1 shows the syntax.

Example 2-1 Syntax for the RUN TRANSID command

>>-RUN--TRANSID(name)--+---------------+--CHILD(data-area)-----><
 '-CHANNEL(name)-'

The TRANSID(name) parameter is an input field and must specify the 1 to 4 character
transaction identifier for the child task you intend to run asynchronously. This transaction must
be a local transaction.

The CHILD(data-area) parameter is an output field and is populated by CICS after issuing the
API command. This child token is used by future asynchronous API commands to identify the
child instance.

The optional CHANNEL(name) parameter is an input field where you specify which channel is to
be made available to the child task. The presence of the CHANNEL parameter indicates that
data is passed to or from the child task.

2.2.2 The FETCH CHILD command

The FETCH CHILD command is used by a parent task to inquire on the status of a specific child
task, and returns the status of the specified child task. Example 2-2 shows the syntax.

Example 2-2 Syntax for the FETCH CHILD command

>>-FETCH--CHILD(data-value)--+--------------------+------------->
 '-CHANNEL(data-area)-'
>--COMPSTATUS(cvda)--+-------------------+---------------------->
 '-ABCODE(data-area)-'
>--+---------------------+-------------------------------------><
 +-NOSUSPEND-----------+
 '-TIMEOUT(data-value)-'

The CHILD(data-value) parameter identifies which child the FETCH CHILD command is
expected to act upon. This input value is the returned child token from the RUN TRANSID
command.
14 IBM CICS Asynchronous API: Concurrent Processing Made Simple

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/asynchronous/async-commands.html

The required COMPSTATUS(cvda) parameter returns the completion status of the completed
child task. Do not confuse this parameter with the standard RESP and RESP2 return codes for
API commands, which signify the success of the command itself. The child task returns one
of the following completion statuses:

� NORMAL
� ABEND
� SECERROR (a security error)

If the child task has abended (signified by the ABEND value for the COMPSTATUS attribute), the
optional ABCODE(data-area) output parameter contains the abend code thrown by the child
task.

To retrieve data in a channel back from a completed child task, you must specify the optional
CHANNEL(data-area) parameter. This parameter is an output field and is updated by CICS
with the name of the channel that contains the results of the child task. By using the
CHANNEL(data-area) parameter, the channel is bound to the issuing parent program. You can
bind a child’s channel back to a parent only once (although, a parent task many have multiple
channels bound to it from multiple child tasks). You can then use the returned channel name
in subsequent GET CONTAINER command and other API commands.

By default, the FETCH CHILD command is a blocking command. If the targeted child task is still
executing, the parent issuing the FETCH CHILD command suspends until the child task
completes. A time limit can be placed on the duration the parent task is willing to wait upon a
child’s completion. Specifying the optional TIMEOUT(data-value) input-field, the parent
program regains control as soon as the child completes or when the timeout duration has
been exceeded. Alternatively, you can specify the NOSUSPEND option, which prevents the
command from blocking and which can be useful to inquire on child tasks.

2.2.3 The FETCH ANY command

The FETCH ANY command is used by a parent task to inquire on the status of any child task,
and returns the status of any completed child task that has not yet been fetched. The FETCH
ANY command allows for the greatest response time savings by enabling parent tasks to
consume the results of child tasks as soon as they are available, rather than naming which
child to process next. Example 2-3 on page 16 shows the syntax.

Tracking returned channel names: Specifying the CHANNEL parameter binds the child’s
channel to the parent. Because you can bind a child’s channel to a parent task only once,
you need to ensure that your application’s logic tracks any returned channel names. This
tracking is particularly pertinent in inquiry scenarios with the use of NOSUSPEND command, if
the intention is simply to check whether a child has completed.

An alternative approach is to issue multiple FETCH commands to inquire and to retrieve the
data when required. For example, you first issue the following command:

EXEC CICS FETCH CHILD(child1)
 COMPSTATUS(child1-comp-status)
 NOSUSPEND

Then, follow later with this command:

EXEC CICS FETCH CHILD(child1)
 COMPSTATUS(child1-comp-status)
 CHANNEL(child1-channel)
Chapter 2. The CICS asynchronous API 15

Example 2-3 Syntax for the FETCH ANY command

>>-FETCH--ANY(data-area)--+--------------------+---------------->
 '-CHANNEL(data-area)-'
>--COMPSTATUS(cvda)--+-------------------+---------------------->
 '-ABCODE(data-area)-'
>--+---------------------+-------------------------------------><
 +-NOSUSPEND-----------+
 '-TIMEOUT(data-value)-'

Unlike the CHILD(data-value) parameter on the FETCH CHILD command, the ANY(data-area)
parameter on the FETCH ANY command is an output field. The ANY(data-area) parameter is
updated by CICS to identify which child instance has been provided to the parent. This
instance matches one of the CHILD(data-area) instances from the RUN TRANSID commands.

The required COMPSTATUS(cvda) parameter returns the completion status of the completed
child task. Do not confuse this parameter with the standard RESP and RESP2 command return
codes for API commands, which signify the success of the command itself. The child task
returns one of the following completion statuses:

� NORMAL
� ABEND
� SECERROR (a security error)

If the child task has abended (signified by the COMPSTATUS parameter of the ABEND command),
the optional ABCODE(data-area) output parameter contains the ABEND command code that is
thrown by the child task.

To retrieve data in a channel back from a completed child task, you must specify the optional
CHANNEL(data-area) parameter. This parameter is an output field and is updated by CICS
with the name of the channel that contains the results of the child task. By using the
CHANNEL(data-area) parameter, the channel is bound to the issuing parent program. You can
bind a child’s channel back to a parent task only once. However, a parent task might have
multiple channels bound to it from multiple child tasks. You can then use the returned channel
name in subsequent GET CONTAINER commands and other API commands.

By default, the FETCH ANY command is a blocking command. If all un-fetched child tasks are
still executing, the parent issuing the FETCH ANY command suspends until a child task
completes. A time limit can be placed on the duration that the parent task is willing to wait
upon the child task’s completion. Specifying the optional TIMEOUT(data-value) input-field, the
parent program regains control as soon as a child completes or when the timeout duration
has been exceeded. Alternatively, you can specify the NOSUSPEND option, which prevents the
command from blocking and which can be useful to inquire on child tasks.

2.2.4 The FREE CHILD command

The FREE CHILD command frees a specified child token that was previously allocated by a RUN
TRANSID command. If a parent task no longer requires the response of an executing child
task, using the FREE CHILD command frees the resources that are associated with that child

Tracking returned channel names: A FETCH ANY command with the NOSUSPEND and
CHANNEL options specified binds a completed child’s channel to the parent. Because you
can bind a child’s channel to a parent task only once, ensure that your application logic
tracks any returned channel names.
16 IBM CICS Asynchronous API: Concurrent Processing Made Simple

task when it completes, rather than waiting for them to be fetched. The command does not
affect the execution of the child task.

If the parent has previously bound the child’s channel to the parent (by use of the FETCH
command with the CHANNEL parameter), it is the responsibility of the parent task to discard the
channel if it is no longer required. Otherwise, the channel is discarded by CICS when the
parent task terminates.

Example 2-4 shows the syntax.

Example 2-4 Syntax for the FREE CHILD command

>-FREE--CHILD(data-value)-------------------------------------><

The single, required CHILD(data-value) input parameter specifies the child to be freed. This
child field will have been returned on the prior RUN TRANSID command.

2.3 Key features and characteristics

This section takes a deeper look at various characteristics of the CICS asynchronous API
commands.

2.3.1 Transactionality

At a high level, all parents and children are themselves CICS transactions, between which
CICS maintains a relationship. Being their own transactions means that parent tasks and
child tasks have their own lifecycles, or in CICS’ terms, their own unit of work (UOW). A
transaction is a well-known concept in CICS programming and, thus, provides a solid and
predictable basis to parent and child tasks for asynchronous processing in CICS. It is
important to appreciate this characteristic because it can shape how the application is
constructed.

A parent task issues a RUN TRANSID command or commands to run one or many child tasks.
These child tasks execute independently to the parent. The child transactions are subject to
their own processing and dispatching cycles. Thus, at any point, a parent is not aware if the
child is executing, suspended, still to be dispatched, or completed. Similarly, a child task is
unaware if the parent is still executing or completed.

A parent can obtain the results of a child using one of the FETCH commands. A primary
attribute on the FETCH command is the COMPSTATUS parameter, which indicates the completion
status of the child. Furthermore, data can be returned to the parent in a channel only if the
child has completed. If a parent task issues a FETCH command that results in a COMPSTATUS of
NORMAL, ABEND, or SECERROR, then the parent can safely ascertain that the child UOW has
completed.

A child is free to terminate at any time. It is this feature that allows asynchronous replies to be
consumed in a timely manner. For information about how CICS maintains the completed
child’s channel for the parent’s later consumption, refer to 2.3.5, “Passing data with CICS
channel and containers” on page 19.
Chapter 2. The CICS asynchronous API 17

2.3.2 Orphaned child tasks

As previously discussed, child tasks have their own UOW. In addition, child tasks will not
prematurely end if the parent task terminates. Child tasks that continue beyond their parent’s
task termination are termed orphaned child tasks. Orphaned child tasks might be the result of
error scenarios. For example, the child did not respond in a timely manner and was timed out
by the parent, or perhaps the parent abended and orphaned all in-flight child tasks. Orphaned
child tasks might also be a result of expected high-availability architectures, such as
requesting a response from three service providers and only requiring the first to respond.

In most cases, orphaned child tasks do not pose an issue. Their natural task termination is
managed by CICS to clear storage and dispose of channel data. Ordinarily, tasks are short
lived, and allowing them to end naturally is better for the system than attempting to force them
out. However, if a task is stuck and other timeout features cannot intervene, an operator can
issue standard termination commands, as par any regular CICS transaction. In these error
scenarios, the transaction tracking feature can be of use to identify any related transactions
currently in the system.

2.3.3 Local children

Parent transactions run child transactions by issuing the RUN TRANSID command. All child
transactions are local to the parent. Thus, child transactions are always run in the same CICS
region as the parent.

When the child task is executing, it is a full-feature transaction and can go remote by using the
regular CICS features, if needed. For example, if you had a parent task in a terminal-owning
region (TOR) and intend to run work asynchronously in the Application Owning Region
(AOR), issue the RUN TRANSID command in the TOR parent to run an asynchronous child task
locally in the TOR. The TOR child then executes a distributed program link (DPL) to the AOR

Note: A common misunderstanding is an expectation that when a parent terminates that
the remaining child tasks abend, cancel, or somehow roll back. Although this expectation
sounds practical in theory, in practice is might have the following unfortunate
consequences:

� To “join” all the UOWs, all child and parent tasks must remain active or suspended in
the system (thus retaining locks and resources) until all child and parent tasks are
completed. This process would have had the net effect of hogging resources, of not
releasing task slots, and of creating unresponsive services that might cause major
blockages.

� Child tasks execute at different rates. Some might not have even started, some might
be executing, and others might have already completed and terminated. To cancel only
those that are in-flight results in an indeterministic set of child tasks, causing confusion.

� Take an example of a child that simply issues a web service request. Apart from a small
window before and after the service call, for much of the time, this request is suspended
and unable to abend. Alternatively, the “rug would be pulled out from under” the web
service call if the requester has abended. The resulting bad response, or abend
percolation, across the system is likely to be more expensive than simply allowing the
child to continue and to ignore the result.

Adopting the current architecture, where each parent and child is its own UOW and the
termination of the parent does not affect a child, allows a more flexible, deterministic, and
responsive parent-child model.
18 IBM CICS Asynchronous API: Concurrent Processing Made Simple

to run the bulk of the workload asynchronously. This process results in two tasks in the TOR
and one in the AOR.

2.3.4 Security model

Parent transactions run child transactions by issuing the RUN TRANSID command. With
resource level security active, a parent transaction can be configured to call an external
security monitor (such as IBM RACF®) to check the parent is authorized to run the child
transaction. The child transaction runs under the same user ID as the parent transaction.

You can find more information about security and the RUN TRANSID command in IBM
Knowledge Center.

2.3.5 Passing data with CICS channel and containers

In most cases, a child task runs to execute business logic or call a service on behalf of a
parent task and data needs to be passed to the child task and returned to the parent task.
CICS has an established method for data passing using CICS channel and containers. The
asynchronous API commands use channels, while maintaining flexibility, with optional
CHANNEL parameters on the RUN TRANSID and FETCH commands.

Passing a channel from a parent to a child task
A parent can name a channel to pass to a child task by specifying the CHANNEL parameter on
the RUN TRANSID command. To maintain data integrity, the containers are copied and made
available to the child task in a channel of the same name, which will be the current channel for
the child task.

Note: We often get asked about the RUN TRANSID command behaving as a remote START
command. For example, the ability for a parent in the TOR to run a child in an AOR (without
the need for a local child in the TOR). Simply put, this is not workable in practice.

To maintain the relationship between parent and child tasks (for tracking, future retrieval,
management, and so on) a certain amount of state data needs to remain in the local
region. Couple this need with information for users to work with asynchronous patterns and
by the time this is done, we would have reinvented something akin to transactions. Remote
STARTs also pose a challenge with robustness with poorly performing remote systems,
and work load management scenarios.

A driving force during the design of the asynchronous API was to keep it simple. Simple to
understand and to use. This need resulted in the easy to comprehend “all child tasks are
local and are able to DPL remote if needed.”

Recap of CICS channel and containers: Structured data (akin to COMMAREA data
without the 32 K limit) resides in named containers. The container names (and data
formats) are known to both the sender and receiver of containers. One or many containers
are grouped together in to channels. The name of the channel might be important to the
sender and receiver. A program that is begun with a channel will also reply with that
channel.
Chapter 2. The CICS asynchronous API 19

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/cics/async_security.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/cics/async_security.html

Figure 2-2 shows a parent task issuing two EXEC CICS RUN TRANSID commands with the
CHANNEL parameter, to run two child tasks. The parent task has a channel called A. On each of
the RUN TRANSID commands, channel A is copied into new instances of channels (also named
A) for the current channel of each child task.

Figure 2-2 A parent task running two child tasks with a channel

Working with containers in a child task
No special processing is required from the child task to work with the containers in a channel
that is run using the asynchronous API command.

A child task uses standard CICS API commands to work with containers on the channel, just
as a regular CICS program would. The child task’s current channel is named and contains the
same containers as the channel specified on the parent’s RUN TRANSID command.

Returning data in containers from a child to parent
A child task’s current channel contents becomes available to the parent after the child task
terminates. Thus, a child updates the contents of the channel with data it intends to make
available back to the parent.

Note on data integrity: When data is being passed from parent to child, it is important that
no two tasks can operate on the data at the same time. In synchronous LINK situations, the
caller is suspended until the task being called completes, so there is no risk of two parties
trying to modify the data simultaneously. In asynchronous environments, it is important to
pass data by copy rather than by reference to ensure data integrity.

In practice, this means that by copying the channel from the parent to the child, there is no
possibility of the parent updating the input whilst in the possession of the child. Also, a
parent can pass the “same channel’ to multiple child tasks, and each will have their own
instance of the channel. Child tasks cannot affect other child tasks channels.
20 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Due to the asynchronous nature of parent and child tasks, it is likely that a child will complete
ahead of the parent requesting the resulting channel from the child. CICS manages the
channel from completed child tasks until the parent is ready to consume the results. CICS
cleans up (discards) the child channel and associated container data, in situations where the
parent task has already terminated, when the child task terminates.

Parent fetching results from a completed child
When a parent task is ready to consume the results from a child task, the parent issues a
FETCH CHILD or FETCH ANY command, specifying the optional CHANNEL parameter. The parent
specifies a variable or data area in the CHANNEL parameter, because on a successful FETCH
command, the API returns a new name for the returned channel. It will not be the same name
as initially specified on the RUN TRANSID command.

The reason for a channel being returned with a different name is again for data integrity. We
do not want data in an existing channel being overwritten by fetching a child’s channel with
the same name. Also, if two child tasks were run with the same initial channel name, we
would not want them to overwrite each other when being fetched back. By providing new
unique names, both child task’s channels can be independently referenced.

Figure 2-3 shows a parent task issuing two EXEC CICS FETCH CHILD commands with the
CHANNEL parameter, to retrieve the results from two child tasks. On each of the FETCH CHILD
commands, the parent specifies a variable to contain the unique name of the channel from
the child task. After the two FETCH CHILD commands, three channels are bound to the parent
task:

� The original channel A
� Channel from CHILD1
� Channel from CHILD2

Each channel has a unique name and can be specified on container API commands, such as
EXEC CICS GET CONTAINER(x) CHANNEL(chl2Chan).

Figure 2-3 A parent task fetching two child tasks with a channel
Chapter 2. The CICS asynchronous API 21

It is perfectly valid for a parent to not fetch a completed child’s channel data. CICS maintains
the channel, in case the parent fetches the results in future. The channel is automatically
discarded if the parent completes without fetching the channel or if the parent issues a FREE
CHILD command.

If a parent has fetched a child task’s channel, the fetched channel is bound to that parent
program’s link level. After it is fetched, if the parent issues a FREE CHILD command, the
channel will not be deleted, because it is bound to the parent. The parent can discard the
channel by issuing the DELETE CHANNEL command. Alternatively, the fetched channel is
discarded by the task termination processing by CICS automatically when the parent task
completes.

DFHTRANSACTION channel
Channels are normally limited to the scope of a link level. One exception is DFHTRANSACTION,
which is still visible at different link levels within a transaction’s scope. You can specify the
DFHTRANSACTION channel on the RUN TRANSID command, which copies the contents to the child
task. However, the FETCH command receives a regular link-level scoped channel on return.

COMMAREA communication
A great feature of the asynchronous API is to run existing business logic as an asynchronous
child task. CICS users often have a lot of investment in applications that use COMMAREAs
for data passing. Although the asynchronous API does not support COMMAREAs on the API
calls, it is possible to create a wrapper program that accepts a channel and converses with
exiting assets via a COMMAREA. This topic is explored further in Chapter 7, “Tips and tricks”
on page 95.

2.3.6 CICS Asynchronous Services domain

CICS TS V5.4 introduced a new domain called the Asynchronous Services (AS) domain. In
the CICS domain architecture, AS domain is responsible for the management of
asynchronous patterns created by using the asynchronous API. Other domains also play a
part in the overall management, such as for channels and transactions.

AS domain manages the relationship between parent and child tasks. The domain also
handles the generation and deletion of control blocks when tasks are initiated and terminated.

There are rules for when state is deleted, so asynchronous patterns might seem as though
they maintain storage for a longer amount of time than you expect. Typically, this storage is
maintaining channel data and relationship control blocks for longer than the lifetime of child
tasks, in case a parent requests the results later.

Typically, the philosophy of “the last one out closes the lights” holds true with state clean-up,
which is often the parent task’s termination. However, in scenarios with a long-running parent
you might see an accumulation of control blocks and channels. In these scenarios, use the
FREE CHILD command to reduce resource usage. It is not commonly required for scenarios in
which the parent task completes in a timely manner.

Tip: If you expect a child task to return data to a parent via a channel, always specify the
CHANNEL parameter on the RUN TRANSID command, even if you have no data to pass to the
child. This process ensures that the child task is created with a channel input/output setup.

You can simply specify any channel name (a channel name that does not exist) on the RUN
TRANSID command, and the API creates the channel and makes it available to the child.
22 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Another area of management in CICS and AS domain is the protection against running too
many child tasks. If the system reaches MAXTASK conditions, the AS domain suspends the
initiation of new child tasks. When the system begins to recover, the queued child tasks begin
to be dispatched. This action is intended as a system fail safe and not as a standard control
mechanism.

The AS domain is also mentioned in later chapters with debugging, management, and
tracking tasks.

2.3.7 Timeouts

By default, a parent task issuing a FETCH CHILD or FETCH ANY command suspends until the
named child, or at least one child, completes. This process is sensible behavior if a response
from the child is required for the parent to continue execution and if the child is reliable.

If you are calling unreliable services, or perhaps attempting to keep within an SLA, and do not
want to suspend indefinitely, use the TIMEOUT parameter on the FETCH CHILD or FETCH ANY
commands. If the timeout duration is met before the child completes, the command returns a
non-zero response code (a NOTFINISHED RESP code and a 53 RESP2 code), and the parent
task resumes execution.

It is possible, for example, a parent to reissue the FETCH command. Example 2-5 illustrates
pseudocode of how you can retry to FETCH the results of an unpredictable service.

Example 2-5 Pseudocode illustrating how to retry to FETCH results of an unpredictable service

//An attempt is made to fetch the results of a child in a timely manner
EXEC CICS FETCH CHILD(mychild) CHANNEL(mychan) TIMEOUT(2000)
RESP(resp) RESP2(resp2);

//If timed out then send a courtesy message and do something else
If (resp=NOTFINISHED and resp2=53) then do
 DISPLAY “In Progress, please wait…”;

 ... Do some other work ...

 //Finally retrieve childs results
 EXEC CICS FETCH CHILD(mychild) CHANNEL(mychan)

RESP(resp) RESP2(resp2);

It is possible to specify zero (0) on the TIMEOUT parameter. This special value indicates that a
timeout is not being specified. It is analogous to not specifying the parameter at all and results
in the default behavior that the parent suspends until the child task completes.

If you want to issue the FETCH command without blocking the parent (even if the child has not
completed), specify the NOSUSPEND option.

Note: The TIMEOUT parameter on the FETCH command indicates the length of time the
parent is willing to wait for a response. It does not affect the execution of the child task.
Following a timed-out response on a FETCH command, the child continues to execute (for
example, the timeout will not cancel nor abend a child task).
Chapter 2. The CICS asynchronous API 23

The TIMEOUT parameter on the FETCH CHILD and FETCH ANY commands is complimentary to
any other timeout settings you might have. If the workload is subject to other timeouts and
settings, such as DTIMEOUT, they continue to behave as expected.

2.4 Considerations for using the CICS asynchronous API

This section highlights some general considerations in using the CICS asynchronous API. It
offers guidance about suggested approaches on using the CICS asynchronous API to
provide a solid foundation for your CICS applications. However, it is only guidance. Your
environments and applications might vary and might benefit from different approaches.

2.4.1 Child GETs and parents UPDATE

Child tasks should perform GETs of data and leave the UPDATE actions to the parent task.

As previously mentioned, parent and child tasks are separate units of work (UOW). If, for
example, a parent abends, it can back-out its own work but will be unconnected from the
execution of the child tasks. The child tasks might be waiting to be dispatched, actively
executing, or even completed. If the child tasks are limited to GET actions, they can be safely
discarded without compromising the state of the data.

As full transaction environments, it is possible for child tasks to perform UPDATE actions on
data. However, you might be required to code compensation logic to revert changes, if the
need arises.

2.4.2 Allow the same parent program to run and fetch child tasks

It is possible for a parent program to use the RUN TRANSID command and for another program
in the same transactional scope to fetch the child tasks result. Indeed, a strength of CICS is
its multi-language support. However, just because you can start child tasks in a COBOL
program and then fetch them in a Java program does not mean that you should!

It is advised for manageability that the parent program that begins a child task remain the
program that fetches the results from the child task. This process is particularly useful if you
are using the FETCH ANY command, because it can become difficult to match the RUN TRANSID
to FETCH ANY commands if they reside in different programs. Also note that fetched channels
are scoped to a link level. So passing results can be problematic if it is not the parent that
fetches the child’s results.

2.4.3 Long-running parents should use the FREE CHILD command

In a typical short-lived application, the channel and control blocks are deleted by CICS as the
tasks terminate. In a long-running parent application, for example a daemon process that
exists to begin many child tasks, there can be a build-up to control blocks as child tasks
complete. In addition, there can be a build-up of sizeable channel data. Without task
termination, the CICS system cannot safely discard this data.

It is advisable that a long-running parent task deletes any fetched channels and issues FREE
CHILD commands against child tasks that are no longer required.
24 IBM CICS Asynchronous API: Concurrent Processing Made Simple

2.4.4 Keep track of fetched channels

Data is passed between parent and child tasks using CICS channel and containers. To return
data from a child, the child task updates containers on its current channel. During the child
tasks termination, the channel is managed or owned by CICS (AS domain). The parent task
can retrieve the child’s channel by specifying the CHANNEL parameter on the FETCH CHILD or
FETCH ANY commands.

Specifying the CHANNEL parameter on a FETCH command is more active than a simple inquiry.
The channel will bind to the issuing parent. Thus, the ownership changes from the AS domain
to the parent task. Any subsequent FETCH command for the same child’s channel fails
because it is now in the control of the parent task, not the AS domain.

Save returned channel names to unique variables in your application logic for future
reference. This process is particularly important when using looping algorithms or writing
generic functions, such as issuing the EXEC CICS FETCH ANY CHANNEL command.

An alternative mechanism, if searching through many completed child tasks, is to issue EXEC
CICS FETCH ANY commands (without the CHANNEL parameter). Then, when you identify which
child you intend to process, issue the EXEC CICS FETCH CHILD CHANNEL command, to bind only
channels to the parent when needed.

2.4.5 Review MAXTASK and set transaction classes

Application developers have had the ability to begin additional transactions with the use of the
START API commands. However, having to architect the framework for asynchronous
processing patterns means that this capability has not always been used. Thus, the simplicity
of the asynchronous API might generate more transactions in a CICS system.

It is advised that the settings for the MAXTASK parameter be reviewed.

There are many ways to limit the amount of work entering a CICS region. At the crudest level,
you can limit an applications interface to requesters who are known to you and only call the
services “n” times a day. Other mechanisms are software and hardware appliances that
control the workflow into a CICS region.

Whatever your mechanism, it is advised to have controls in place to limit the amount of work
that a region accepts that cause tasks to be run asynchronously.

One such mechanism is to put asynchronous application parents into a transaction class by
using the TRANCLASS parameter, thereby controlling the number of parent tasks (and thus the
maximum number of children they can run).

For further details, see 9.4, “Policing parent tasks with CICS policy” on page 155.

2.4.6 Parameterizing timeouts

In many cases, the results of a child are needed for the parent to continue their business
logic. In other situations, and when the responsiveness of the application is important, it is
possible for a parent to specify a TIMEOUT parameter on the FETCH command.

Note: Do not specify parent transactions and child transactions in the same transaction
class. An unfortunate scenario is that the entire class is full of parent tasks trying to run a
child task each but not being able to, thus deadlocking the transaction class.
Chapter 2. The CICS asynchronous API 25

If you require a timeout, or if there is a possibility that you might need to in future, code the
TIMEOUT parameter on the FETCH command. The value of the timeout should be
parameterized, such as being read from a file or database table, earlier in the application.

By inserting the TIMEOUT parameter and parameterizing the timeout value, you prevent the
need for a future code update or recompilation. If it transpires that a timeout is not required,
the special value of zero can be specified to indicate a timeout should not be enforced.

See Chapter 6, “Creating a Java-based controller in a mixed-language environment” on
page 73 for a worked example of adding a parameterized timeout to a FETCH CHILD
command.
26 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Chapter 3. Extending applications while
minimizing the impact to
response time

This chapter walks through one of the most common scenarios for using the CICS
asynchronous API by extending an application while minimizing the impact to its response
time.

Applications evolve over time. As they evolve, you typically need to add functionality as users
demand more intelligent behaviors. This need means that applications must now request data
from more sources and use this data to perform functions in a more informed and “intelligent”
way. In the case of CICS applications, this process usually involves adding new requests for
additional data and services.

When increasing the number of requests in an application, the immediate concern is one of
response time. By adding more work to the application or by making the application wait on
external requests, its execution time is increased, which causes the following issues:

� The increased execution time is undesirable to demanding users who want more
intelligent applications but also want these applications to respond faster.

� With each invocation of the application now taking longer, there is a much higher demand
on system recourses as the number of concurrent requests in progress in the system
grows. This issue is exacerbated further as use of the application increases due to its now
enhanced functionality.

The scenario in this chapter demonstrates how you can use the CICS asynchronous API to
minimize the impact on response time when adding new functionality to applications.

3

© Copyright IBM Corp. 2017. All rights reserved. 27

3.1 Overview of the scenario

This scenario, and those over the next few chapters, use a sample application to illustrate the
necessary concepts. You can find the source code for the complete application, along with the
setup instructions, in the GitHub repository.

3.1.1 Description of the sample application

The application is written in Common Business Oriented Language (COBOL) and provides
summary data for a fictional web (mobile) banking home page (the WEBHOME program). The
main logic is shown in Example 3-1.

Example 3-1 The WEBHOME program

* First step is to retrieve the account number
 PERFORM GET-INPUT-ACCOUNT-NUMBER

 * ----
 * Create the input container for children to access
 * ----
 EXEC CICS PUT CONTAINER (INPUT-CONTAINER)
 FROM (ACCOUNT-NUMBER-IN)
 CHANNEL (MYCHANNEL)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND

 * ----
 * Get the customers name
 * ----
 EXEC CICS LINK PROGRAM (GET-NAME)
 CHANNEL (MYCHANNEL)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND

 EXEC CICS GET CONTAINER (GETNAME-CONTAINER)
 CHANNEL (MYCHANNEL)

Important process and content information: This chapter includes a series of actions to
successfully complete the described scenario. Be aware that the steps that you need to
complete for this scenario are included in numbered paragraphs. Although the numbered
steps might occur in different sections throughout the chapter, you still need to complete
the steps in the order in which they occur.

Tip: The repository contains the final version of the code after all of the scenarios in this
book are applied. If you want to follow along with this chapter, start with an earlier version
of the code at this commit: Chapter 3 Start Tag.
28 CICS Asynchronous API

https://github.com/cicsdev/cics-async-api-redbooks
https://github.com/cicsdev/cics-async-api-redbooks/releases/tag/start-of-3

 INTO (CUSTOMER-NAME)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND

 INITIALIZE STATUS-MSG
 STRING 'Welcome '
 DELIMITED BY SIZE
 CUSTOMER-NAME
 DELIMITED BY SPACE
 INTO MSG-TEXT
 PERFORM PRINT-STATUS-MESSAGE

 * ----
 * Get the customers current account details
 * ----
 EXEC CICS LINK PROGRAM (ACCTCURR)
 CHANNEL (MYCHANNEL)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND

 EXEC CICS GET CONTAINER (ACCTCURR-CONTAINER)
 CHANNEL (MYCHANNEL)
 INTO (CURRENT-ACCOUNTS)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND

 PERFORM PRINT-CURRENT-ACCOUNTS-DETAILS

 * Send a message to the screen to
 * notify terminal user of completion
 MOVE 'COMPLETE' TO CURRENT-STATUS
 PERFORM PRINT-TEXT-TO-SCREEN

 * Display a conclusion message that also includes a timestamp
 INITIALIZE STATUS-MSG
 MOVE 'Ended Web banking log-on data retrieval' TO MSG-TEXT
 PERFORM PRINT-STATUS-MESSAGE

 * Return at end of program
 EXEC CICS RETURN
 END-EXEC
 .
Chapter 3. Extending applications while minimizing the impact to response time 29

The main program, WEBHOME.cbl, takes a customer number as input and returns data about
that customer’s accounts along with the customer’s name. The requests for the customer
name and account details are performed synchronously by linking to the following programs:

� GETNAME
� ACCTCURR

To keep the sample simple, the data returned is hard coded into each program. However, in
the real world, this data would have been requested from a database or remote service. To
simulate this type of processing, each program delays for a few seconds before returning.
This delay represents the time that it would take for the data to be collected or calculated in a
real-world environment. The delays are exaggerated from real-world timings, which likely
would be subsecond.

The specific timing of the delays becomes more important in later chapters. However, for the
scenario in this chapter, they provide the application with a perceivable overall execution time
with which to illustrate asynchronous techniques.

Figure 3-1 shows how the GETNAME and ACCTCURR programs contribute to the overall execution
time of the WEBHOME program.

Figure 3-1 Application execution time

You can try the WEBHOME program by running the WEBH transaction from the terminal and by
passing the customer number 0001.

1. Issue the following transaction and customer number in the CICS terminal window:

WEBH 0001
30 CICS Asynchronous API

The WEBHOME program executes and displays status messages in the CICS language
environment messages log, such as CEEMSG, as shown in Example 3-2. Here you can see the
name and account details for the given customer number.

Example 3-2 WEBH transaction results

TC56WEBH 20171011152321 15:23.21 Started Web banking log-on data retrieval
TC56WEBH 20171011152325 15:23.25 Welcome Pradeep Gohil
TC56WEBH 20171011152328 15:23.28 Acc: 20140720 Bal: £0.01 Overdraft: £0.00
TC56WEBH 20171011152328 15:23.28 Acc: 25875343 Bal: £45742.00 Overdraft: £1000.00
TC56WEBH 20171011152328 15:23.28 Acc: 20170125 Bal: £34533.23 Overdraft: £0.00
TC56WEBH 20171011152328 15:23.28 Ended Web banking log-on data retrieval

3.1.2 Objective of the scenario

Let’s imagine that this application needs to be updated to also provide account data for
accounts that this customer has with a partner bank. To achieve this a new program, ACCTPTNR
must be called to retrieve the data. Similar to the GETNAME and ACCTCURR programs, the
ACCTPTNR program returns hard-coded data but delays for a few seconds to simulate a real
request to a partner bank’s system.

If you were to link to this new program synchronously, as with the other two programs, you
would inevitably end up increasing the overall response time of the application by adding the
execution time for the ACCTPTNR program to the end of the application. The resulting slower
response time is undesirable to users and might even take the application outside of the
maximum allowed response time for its Service Level Agreement (SLA), as shown in
Figure 3-2.

Figure 3-2 Adding the ACCTPTNR program execution time to the WEBHOME program synchronously

The objective is to add a request to retrieve the account details from the partner bank without
impacting the response time of the overall application.
Chapter 3. Extending applications while minimizing the impact to response time 31

3.2 Add a new request using the CICS asynchronous API

The CICS asynchronous API provides a way for CICS programs to run CICS transactions and
to fetch the results at a later time. You can use this API to update the WEBHOME program with a
call to ACCTPTNR without impacting its overall response time.

To add a new request:

� Define a transaction, PTNR, to run the ACCTPTNR program.

� Add logic to print the partner account details.

� Add a call to the RUN TRANSID command at the start of the WEBHOME program to run the PTNR
transaction.

� Add a call to the FETCH CHILD command at the end of the WEBHOME program to collect the
results from PTNR.

By starting the PTNR transaction at the beginning of the WEBHOME program and fetching its
results at the end (as shown in Figure 3-3), the time that the ACCTPTNR program takes to run is
effectively negated, because it happens simultaneously to the work that the WEBHOME program
was already doing.

Figure 3-3 Calling the ACCTPTNR program asynchronously

3.2.1 Defining the PTNR transaction to run ACCTPTNR

Because the CICS asynchronous API operates on transactions not programs, you must first
define a transaction that you will use to run the ACCTPTNR program. This transaction can have
any name, but for the purposes of this scenario, we use PTNR as the transaction name.

2. Ensure that a TRANSACTION definition is defined in CICS with the attributes shown in
Example 3-3.

Tip: If you are following this scenario using the sample on GitHub, you can find the
changes from this chapter online on GitHub also.
32 CICS Asynchronous API

https://github.com/cicsdev/cics-async-api-redbooks/compare/start-of-3...end-of-3

Example 3-3 PTNR TRANSACTION definition attributes

TRANSACTION(PTNR)
GROUP(ASYNCAPI)
PROGRAM(ACCTPTNR)
DESCRIPTION(Transaction to request partner bank account details as part of the
CICS asynchronous API Redbook sample)

3.2.2 Adding logic to print the partner account details

To print the results from the ACCTPTNR program, add the PRINT-PARTNER-ACCOUNTS-DETAILS
paragraph to process the results.

3. Add the code in bold font shown in Example 3-4 to the PRINT-STATUS-MESSAGE paragraph
towards the end of WEBHOME.cbl.

Example 3-4 PRINT-PARTNER-ACCOUNTS-DETAILS paragraph

 * Print partner account details
 PRINT-PARTNER-ACCOUNTS-DETAILS.
 IF NUMBER-OF-ACCOUNTS OF PARTNER-ACCOUNTS > 0 THEN
 MOVE 1 TO COUNTER
 PERFORM UNTIL COUNTER >
 NUMBER-OF-ACCOUNTS OF PARTNER-ACCOUNTS
 INITIALIZE STATUS-MSG
 STRING 'Acc: '
 DELIMITED BY SIZE
 ACCT-NUMBER OF PARTNER-ACCOUNTS (COUNTER)
 DELIMITED BY SPACE
 ' Bal: $'
 DELIMITED BY SIZE
 BALANCE OF PARTNER-ACCOUNTS (COUNTER)
 DELIMITED BY SIZE
 ' Overdraft: $'
 DELIMITED BY SIZE
 OVERDRAFT OF PARTNER-ACCOUNTS (COUNTER)
 DELIMITED BY SIZE
 INTO MSG-TEXT
 PERFORM PRINT-STATUS-MESSAGE
 ADD 1 TO COUNTER
 END-PERFORM
 END-IF
 .

 * Print status message
 PRINT-STATUS-MESSAGE.

Later examples in 3.2.4, “Adding the FETCH CHILD command to the WEBHOME.cbl
program” on page 35 use PRINT-PARTNER-ACCOUNTS-DETAILS to process the returned data
from the ACCTPTNR program.

3.2.3 Adding the RUN TRANSID command to WEBHOME.cbl

To call the newly defined PTNR transaction from the WEBHOME program, use the EXEC CICS RUN
TRANSID command. This command runs the PTNR transaction as a child task of the WEBH
Chapter 3. Extending applications while minimizing the impact to response time 33

transaction and allows the WEBHOME program to continue processing instead of waiting for the
ACCTPTNR transaction to complete. (The next section looks at fetching the results from this
child task.)

You must first add data field definitions for ACCTPNTR-TRAN and ACCTPTNR-TKN to WEBHOME.cbl.

4. Add the code in bold font in Example 3-5 to the data definitions of WEBHOME.cbl.

Example 3-5 Data definitions for ACCTPTNR-TRAN and ACCTPTNR-TKN

1 PROGRAM-NAMES.
 2 GET-NAME PIC X(8) VALUE 'GETNAME '.
 2 ACCTCURR PIC X(8) VALUE 'ACCTCURR'.
 2 ACCTPTNR PIC X(8) VALUE 'ACCTPTNR'.
 2 GETLOAN PIC X(8) VALUE 'GETLOAN '.

 1 TRANSIDS.
 2 ACCTPTNR-TRAN PIC X(4) VALUE 'PTNR'.

 1 CHILD-TOKENS.
 2 ACCTPTNR-TKN PIC X(16).

 1 CHILD-RETURN-STATUS PIC S9(8) USAGE BINARY.
 1 CHILD-RETURN-ABCODE PIC X(4).

ACCTPTNR-TRAN is set to a value of ‘PNTR’ and is used as the transaction ID.

ACCTPTNR-TKN is used to store the child token that we will use later to fetch the results. See
3.2.4, “Adding the FETCH CHILD command to the WEBHOME.cbl program” on page 35.

5. Next, add the code in bold in Example 3-6 to WEBHOME.cbl before the LINK to GETNAME.

Example 3-6 Running PTNR asynchronously

 * --
 * Asynchronously run PNTR to get account details
 * from the partner bank
 * --
 EXEC CICS RUN TRANSID (ACCTPTNR-TRAN)
 CHANNEL (MYCHANNEL)
 CHILD (ACCTPTNR-TKN)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND

 * ----
 * Get the customers name
 * ----
 EXEC CICS LINK PROGRAM (GET-NAME)

Note: For convenience, the CHECK-COMMAND paragraph is already provided to check the
response codes of any EXEC CICS commands (using the COMMAND-RESP and COMMAND-RESP2
fields).
34 CICS Asynchronous API

There are a few important concepts to understand at this stage:

� Placing the call for the RUN TRANSID command
� Passing data to the child task

Placing the call for the RUN TRANSID command
First, the position of the RUN TRANSID command the WEBHOME program in the WEBHOME program
logic is most important. Because the child task is run asynchronously, the RUN TRANSID
command returns immediately. This process allows the parent program, WEBHOME, to continue
its remaining processing without having to wait for the child task to complete. By calling the
RUN TRANSID command as early as possible, before the parent program performs any of its
existing logic, you maximize the benefit of running the PTNR transaction asynchronously. This
method effectively ensures that the most amount of concurrent processing occurs, resulting in
the biggest response time savings, as illustrated in Figure 3-4.

Figure 3-4 Comparing response time savings for early versus late asynchronous calls

Passing data to the child task
The second point to understand is how data is passed to the PTNR transaction. The RUN
TRANSID call uses the optional CHANNEL parameter to pass data to the child task. The ACCTPTNR
program uses the same interface as the GETNAME and ACCTCURR programs. Thus, you can
reuse the channel, MYCHANNEL, and container, INPUTCONTAINER, that are already set up to pass
the customer number. There are no concurrency issues to worry about because the RUN
TRANSID command always takes a copy of the channel and its containers to give to the child
task. The copy is made when the RUN TRANSID command is issued.

3.2.4 Adding the FETCH CHILD command to the WEBHOME.cbl program

Now that the WEBHOME program runs the PTNR transaction asynchronously as a child task, the
final step is to add code to fetch and render the results. You get the results from the PTNR
transaction using the FETCH CHILD command by passing the ACCTPTNR-TKN child token that
was returned from the RUN TRANSID call. Use the PRINT-PARTNER-ACCOUNTS-DETAILS
paragraph created in 3.2.2, “Adding logic to print the partner account details” on page 33 to
print the partner account details.
Chapter 3. Extending applications while minimizing the impact to response time 35

You must first add data field definitions for ACCTPTNR-CHAN and ACCTPTNR-CONTAINER to the
WEBHOME.cbl program.

6. Add the code shown in bold font in Example 3-7 to the data definitions of the WEBHOME.cbl
program.

Example 3-7 Data definitions for ACCTPTNR-CONTAINER and ACCTPTNR-CHAN

1 CONTAINER-NAMES.
 2 INPUT-CONTAINER PIC X(16) VALUE 'INPUTCONTAINER '.
 2 GETNAME-CONTAINER PIC X(16) VALUE 'GETNAMECONTAINER'.
 2 ACCTCURR-CONTAINER PIC X(16) VALUE 'ACCTCURRCONT '.
 2 ACCTPTNR-CONTAINER PIC X(16) VALUE 'ACCTPTNRCONT '.

 ...

 1 CHILD-TOKENS.
 2 ACCTPTNR-TKN PIC X(16).

 1 RETURN-CHANNELS.
 2 ACCTPTNR-CHAN PIC X(16).

ACCTPTNR-CHAN is defined as a PIC X(16) field and is used to store the name of the reply
channel of the child task. The name is generated by CICS and is unique within the scope of
the current link level.

ACCTPTNR-CONTAINER is set to ‘ACCTPTNRCONT’ and is the name of the return container for the
ACCTPTNR program.

7. Next, add the code shown in bold font in Example 3-8 to the WEBHOME.cbl program before
it notifies the terminal user of completion.

Example 3-8 Fetching the results from the PTNR child task

 * --
 * Get the customers current account details from the
 * partner bank
 * --
 EXEC CICS FETCH CHILD (ACCTPTNR-TKN)
 CHANNEL (ACCTPTNR-CHAN)
 COMPSTATUS (CHILD-RETURN-STATUS)
 ABCODE (CHILD-RETURN-ABCODE)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND
 PERFORM CHECK-CHILD

 EXEC CICS GET CONTAINER (ACCTPTNR-CONTAINER)
 CHANNEL (ACCTPTNR-CHAN)
 INTO (PARTNER-ACCOUNTS)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND
36 CICS Asynchronous API

 PERFORM PRINT-PARTNER-ACCOUNTS-DETAILS

 * Send a message to the screen to
 * notify terminal user of completion
 MOVE 'COMPLETE' TO CURRENT-STATUS
 PERFORM PRINT-TEXT-TO-SCREEN

There are a few important concepts to understand at this stage:

� Placement of the call for the FETCH CHILD command
� Use of the child token
� Checking completion status of the child task
� Retrieving data from the child task

Placing the call for the FETCH CHILD command
First, the position of the FETCH CHILD command in the WEBHOME program logic is most
important. Because the child task is run asynchronously and might still be running, the FETCH
CHILD command waits and returns after the child task is complete. By calling the FETCH CHILD
command as late as possible, after the WEBHOME program has completed its existing logic, you
minimize the idle time spent waiting for the PTNR transaction to complete. This method
effectively ensures that the most amount concurrent processing occurs, resulting in the
biggest response time savings, as illustrated in Figure 3-5.

Note: For convenience, the CHECK-CHILD paragraph is provided to check the completion
status and to abend code for any fetched child tasks by using the CHILD-RETURN-STATUS
and CHILD-RETURN-ABCODE fields. These fields are provided as follows:

� CHILD-RETURN-STATUS is defined as PIC S9(8) USAGE BINARY. It is used to store a CVDA
value indicating the completion status of the child task.

� CHILD-RETURN-ABCODE is defined as PIC X(4). It is used to store the abend code of the
child task if it terminated abnormally.
Chapter 3. Extending applications while minimizing the impact to response time 37

Figure 3-5 Comparing the response time savings of late versus early FETCH CHILD calls

Using the child token
Because the WEBHOME program has only one child task, you might wonder why you can’t use
the FETCH ANY command and avoid having to keep track of the ACCTPTNR-TKN child token that
is returned from the RUN TRANSID call. Although this method can technically work in this case,
it is a preferred practice to be specific about which child you want to fetch. If another RUN
TRANSID call is added in the future, it will be ambiguous as to which child’s results will be
fetched if you use the FETCH ANY command and might break the PRINT-ACCOUNT-DETAILS code
as a result of unexpected input. Specific reasons why you might use the FETCH ANY command
are discussed further in Chapter 4, “Improving the response time of existing applications” on
page 41.

Checking the completion status of the child task
Following a FETCH command, check the completion status of the child task before proceeding.
The COMPSTATUS parameter describes how the child task completed. Abends in child tasks do
not flow up to parents as with the LINK PROGRAM command. By first checking the COMPSTATUS
parameter, you can proceed to process the return data with confidence, knowing that the child
task has competed successfully.

Retrieving data from the child task
Finally, it is important to realize that although you used the MYCHANNEL channel on the RUN
TRANSID call that started the child task, you do not use that same channel to retrieve the
results. Instead, use the channel that is returned in the CHANNEL parameter of the FETCH CHILD
command. This channel represents the copy of MYCHANNEL that was made and passed to the
child task when you called the RUN TRANSID command. The name of the fetched channel is
generated by CICS and is unique within the scope of the current link level. The fact that

Note: It is possible to use the TIMEOUT or NOSUSPEND options on the FETCH CHILD command
to avoid having to wait for the child task to complete.
38 CICS Asynchronous API

channels are copied when starting child tasks avoids any issues that might arise from
concurrent access.

3.3 Run the updated application

Now make the updated code available to CICS by using the following steps:

8. Compile the updated WEBHOME program to the data set library that is available to CICS.

9. Make the new version of the WEBHOME program available to your CICS region by issuing the
following command in CICS:

CEMT SET PROGRAM(WEBHOME) NEW

10.Issue the following transaction and customer number in your CICS terminal window:

WEBH 0001

If you now run the WEBH transaction from the terminal passing the customer number 0001
you’ll see the results in Example 3-9 after a few seconds.

Example 3-9 WEBH transaction results

TC56WEBH 20171011171430 17:14.30 Started Web banking log-on data retrieval
TC56WEBH 20171011171433 17:14.33 Welcome Pradeep Gohil
TC56WEBH 20171011171436 17:14.36 Acc: 20140720 Bal: £0.01 Overdraft: £0.00
TC56WEBH 20171011171436 17:14.36 Acc: 25875343 Bal: £45742.00 Overdraft: £1000.00
TC56WEBH 20171011171436 17:14.36 Acc: 20170125 Bal: £34533.23 Overdraft: £0.00
TC56WEBH 20171011171436 17:14.36 Acc: 62837456 Bal: £234.56 Overdraft: £0.00
TC56WEBH 20171011171436 17:14.36 Acc: 64620987 Bal: £3092.60 Overdraft: £1000.00
TC56WEBH 20171011171436 17:14.36 Acc: 64563923 Bal: £10123.98 Overdraft: £0.00
TC56WEBH 20171011171436 17:14.36 Ended Web banking log-on data retrieval

Notice that the accounts from the partner bank are added to the printout, but the transaction
didn’t take any longer to complete.

3.4 Summary

It is often necessary to extend applications with calls to new services or requests for data.
The example in this chapter shows that you can extend CICS applications without impacting
their response time by using the CICS asynchronous API.

You should now feel comfortable using the RUN TRANSID and FETCH CHILD commands as an
alternative to the EXEC CICS LINK command to start a child task to retrieve its results. You
should also understand why it is important to start a child task as early as possible and fetch
the results as late as possible to maximize your response time savings.

By applying what you have learned in this chapter, you are now ready to extend your
applications to make them more powerful than ever, while ensuring that they remain as
responsive as they always have been.

If you’ve read this chapter and would like to experiment further, the completed code for the
scenario can be found in Chapter 3 End Tag.
Chapter 3. Extending applications while minimizing the impact to response time 39

https://github.com/cicsdev/cics-async-api-redbooks/releases/tag/end-of-3

40 CICS Asynchronous API

Chapter 4. Improving the response time of
existing applications

This chapter walks through a scenario that shows how to use the CICS asynchronous API to
improve the response time of existing applications.

In the computing world, response time is important. Markets have evolved in the digital age
around value networks with responsiveness at their center. The faster you can load an app,
make a stock trade, or get an answer to a search query, you are more likely to be successful
at attracting users to your services over slower competition. It is increasingly common to see
people abandon services, not because of a lack of capability but simply because they are “too
slow.”

These market dynamics coupled with the ever-improving hardware predicted by Moore’s law1,
means that engineers are challenged to hit a constantly moving target. Technology that was
fast yesterday, is slow by today’s standards and will be obsolete by tomorrow. Further to the
business benefit, speed is essential to meet the engineering challenges posed by a
constantly growing workload that is generated from an increasingly connected world. The
faster a request can be processed, the more requests can be processed in a period of time
while minimizing the demand on system resources, which ultimately can reduce costs.

It is essential then, both for business and technical reasons, to constantly improve the
responsiveness of critical applications to ensure they remain relevant in today’s competitive
landscape. The scenario in this chapter demonstrates how to improve the response time of
an existing application by using the CICS asynchronous API to optimize its existing business
logic.

4

1 Moore’s law, by definition, is an axiom of microprocessor development theorizing that processing power doubles
about every 18 months, especially relative to cost or size.
© Copyright IBM Corp. 2017. All rights reserved. 41

4.1 Overview of the scenario

This scenario uses the same sample application from Chapter 3, “Extending applications
while minimizing the impact to response time” on page 27 to illustrate the necessary
concepts. You can find the source code for the complete web banking application along with
setup instructions in the cics-async-api-redbooks repository, under the cicsdev organization
on GitHub.

4.1.1 Description of the sample application

The application is written in Common Business Oriented Language (COBOL) and provides
summary data for a web (mobile) banking home page (the WEBHOME program).

The main program, WEBHOME.cbl, takes a customer number as input and returns data about
that customer’s accounts along with the customer’s name. The requests for the customer
name and account details are performed synchronously by linking to the following programs:

� GETNAME
� ACCTCURR

The scenario described in Chapter 3, “Extending applications while minimizing the impact to
response time” on page 27 added a call to the ACCTPTNR program to retrieve account data for
accounts that the customer holds with a partner bank. This call was performed
asynchronously to not impact the overall response time and to keep the application within its
9 second maximum response time, which was set by the service level agreement (SLA).

Figure 4-1 on page 43 shows the flow of the application after this addition.

Important process and content information: This chapter includes a series of actions to
successfully complete the described scenario. Be aware that the steps that you need to
complete for this scenario are included in numbered paragraphs. Although the numbered
steps might occur in different sections throughout the chapter, you still need to complete
the steps in the order in which they occur.

Tip: The repository contains the final version of the code after all the scenarios in this book
are applied. If you want to follow along with this chapter, start with an earlier version of the
code at this commit: Chapter 4 Start Tag.
42 IBM CICS Asynchronous API: Concurrent Processing Made Simple

https://github.com/cicsdev/cics-async-api-redbooks
https://github.com/cicsdev/cics-async-api-redbooks/releases/tag/start-of-4

Figure 4-1 Application execution flow for WEBHOME.cbl with the addition of the ACCTPTNR program

Each of the programs that the WEBHOME program calls delays for a few seconds before
returning. This delay represents the time that would have been taken for the data to be
collected or calculated. The delays are greatly exaggerated from real-world timings, which
likely would be subsecond. This method provides the application with a perceivable overall
execution time with which to illustrate asynchronous techniques.

The specific timing of these delays is as follows:

� GETNAME: 3 seconds
� ACCTCURR: 3 seconds
� ACCTPTNR: 4 seconds

The main contributing factor to the overall response time of the application is the synchronous
calls to the GETNAME and ACCTCURR programs, taking at total of 6 seconds. As the ACCTPTNR
program runs asynchronously, it has no effect on the overall response time, because it takes
only 4 seconds and can be performed entirely concurrently.

If you run the WEBH transaction from the terminal passing the 0001 customer number, you’ll see
the results in Example 4-1 after 6 seconds.

Issue the following transaction and customer number in your CICS terminal window, as shown
in Example 4-1:

WEBH 0001

Example 4-1 WEBH transaction results

TC56WEBH 20171011171430 17:14.30 Started Web banking log-on data retrieval
TC56WEBH 20171011171433 17:14.33 Welcome Pradeep Gohil
TC56WEBH 20171011171436 17:14.36 Acc: 20140720 Bal: £0.01 Overdraft: £0.00
TC56WEBH 20171011171436 17:14.36 Acc: 25875343 Bal: £45742.00 Overdraft: £1000.00

Note: When processing tasks simultaneously, it is the single, longest synchronous block
that contributes to the overall execution time.
Chapter 4. Improving the response time of existing applications 43

TC56WEBH 20171011171436 17:14.36 Acc: 20170125 Bal: £34533.23 Overdraft: £0.00
TC56WEBH 20171011171436 17:14.36 Acc: 62837456 Bal: £234.56 Overdraft: £0.00
TC56WEBH 20171011171436 17:14.36 Acc: 64620987 Bal: £3092.60 Overdraft: £1000.00
TC56WEBH 20171011171436 17:14.36 Acc: 64563923 Bal: £10123.98 Overdraft: £0.00
TC56WEBH 20171011171436 17:14.36 Ended Web banking log-on data retrieval

This example shows the name and account details for the given customer number. Notice that
the program takes 6 seconds to run.

4.1.2 Objective of the scenario

In this scenario, you are asked to investigate ways of improving the response time of the
WEBHOME program in order to provide an even more responsive experience to the web and
mobile banking customers.

Typically, this task would involve looking at the business logic and data access protocols of
the GETNAME, ACCTCURR, and ACCTPTNR programs to see whether you can make any
optimizations to those programs. However, rewriting large chunks of the core logic in such
critical programs can be risky, time consuming, and costly. Also, programs such as these
likely have already been optimized many times to gain the best possible performance. Thus,
any further work is likely to yield diminishing returns and provide only minor improvements to
response time.

The objective of this scenario, then, is to find a way to reduce the overall response time of the
application without having to modify the core business logic of the GETNAME, ACCTCURR, and
ACCTPTNR programs.

4.2 Converting program LINKs to asynchronous API calls

The CICS asynchronous API provides a way for CICS programs to run CICS transactions and
fetch the results at a later time. You can use this API to replace the LINKs to the GETNAME and
ACCTCURR programs in the WEBHOME program with asynchronous RUN TRANSID calls. You can
then use a loop combined with the FETCH ANY command to retrieve the results from each child
in the fastest reply order.

To convert the program LINKs to asynchronous API calls:

� Define the transactions, GETN and ACUR, to run the GETNAME and ACCTCURR programs
respectively.

� Add calls to the RUN TRANSID command at the start of the WEBHOME program to run the GETN
and ACUR transactions.

� Add a FETCH ANY loop at the end of the WEBHOME program to collect the child task results.

By running all of the programs called by the WEBHOME program concurrently (as shown in
Figure 4-2 on page 45) the response time is now dictated by the single, longest running task.
In this case, that task is the ACCTPTNR program, with an execution time of 4 seconds. Thus,
you can significantly reduce the overall response time by 33%, from 6 to just 4 seconds.
44 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Figure 4-2 Calling all programs concurrently to reduce response time

4.2.1 Define transactions to run the GETNAME and ACCTCURR programs

Because the CICS asynchronous API operates on transactions not programs, you must first
define transactions that you can use to run the GETNAME and ACCTCURR programs. These
transactions can have any name, but for the purposes of this scenario, use GETN and ACUR.

1. Ensure that TRANSACTION definitions are defined in CICS with the attributes as shown in
Example 4-2.

Example 4-2 GETN and ACUR TRANSACTION definition attributes

TRANSACTION(GETN)
GROUP(ASYNCAPI)
PROGRAM(GETNAME)
DESCRIPTION(Customer name for the CICS Asynchronous API example
)
TRANSACTION(ACUR)
GROUP(ASYNCAPI)
PROGRAM(ACCTCURR)
DESCRIPTION(Bank account details for the CICS Asynchronous API example)

4.2.2 Add RUN TRANSID commands to WEBHOME.cbl

To call the newly defined transactions from the WEBHOME program, use the EXEC CICS RUN
TRANSID command to replace the existing LINK commands. This method allow you to run the
GETN and ACUR transactions as child tasks of the WEBH program, meaning that they can run
concurrently instead of waiting for each program to complete in turn. The next section
describes the results from these child tasks.

Adding data definitions for the GETNAME and ACCTCURR programs
You must add data field definitions for GET-NAME-TRAN, ACCTCURR-TRAN, GET-NAME-TKN and
ACCTCURR-TKN to WEBHOME.cbl.

GET-NAME-TRAN and ACCTCURR-TRAN are set to the values of ‘GETN’ and ‘ACUR’ respectively. They
are used to provide the transaction ID to the RUN TRANSID command.

Tip: If you are following this scenario using the sample on GitHub, you can find the
changes from this chapter online on GitHub also.
Chapter 4. Improving the response time of existing applications 45

https://github.com/cicsdev/cics-async-api-redbooks/compare/start-of-4...end-of-4

GET-NAME-TKN and ACCTCURR-TKN are used to store the child tokens that you will use later to
fetch the results. See 4.2.3, “Add the FETCH ANY command to WEBHOME.cbl” on page 48.

2. Add the code shown in bold font in Example 4-3 to the data definitions of WEBHOME.cbl.

Example 4-3 Data definitions for GETNAME and ACCTCURR child tasks

 1 TRANSIDS.
 2 GET-NAME-TRAN PIC X(4) VALUE 'GETN'.
 2 ACCTCURR-TRAN PIC X(4) VALUE 'ACUR'.
 2 ACCTPTNR-TRAN PIC X(4) VALUE 'PTNR'.
 1 CHILD-TOKENS.
 2 GET-NAME-TKN PIC X(16).
 2 ACCTCURR-TKN PIC X(16).
 2 ACCTPTNR-TKN PIC X(16).

Replacing the LINK to the GETNAME program
3. To replace the LINK to the GETNAME program in WEBHOME.cbl, add the code shown in bold

font and remove the code that is shown in strikethrough font in Example 4-4.

Example 4-4 Replacing the LINK to the GETNAME program with the RUN TRANSID command

 * ----
 * Get the customers name
 * ----
 EXEC CICS LINK PROGRAM (GET-NAME)
 CHANNEL (MYCHANNEL)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC
 * --
 * Asynchronously run GETN to get the customers name
 * --
 EXEC CICS RUN TRANSID (GET-NAME-TRAN)
 CHANNEL (MYCHANNEL)
 CHILD (GET-NAME-TKN)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND

 EXEC CICS GET CONTAINER (GETNAME-CONTAINER)
 CHANNEL (MYCHANNEL)
 INTO (CUSTOMER-NAME)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-COMMAND
 INITIALIZE STATUS-MSG
 STRING 'Welcome '
 DELIMITED BY SIZE
 CUSTOMER-NAME
 DELIMITED BY SIZE
 INTO MSG-TEXT
 PERFORM PRINT-STATUS-MESSAGE
46 IBM CICS Asynchronous API: Concurrent Processing Made Simple

 * ----
 * Get the customers current account details
 * ----

Replacing the LINK to the ACCTCURR program
4. Add the code shown in bold font and remove the code that is shown in strikethrough font

in Example 4-5 to replace the LINK to the ACCTCURR program in WEBHOME.cbl.

Example 4-5 Replacing the LINK to the ACCTCURR program with the RUN TRANSID command

 * ----
 * Get the customers current account details
 * ----
 EXEC CICS LINK PROGRAM (ACCTCURR)
 CHANNEL (MYCHANNEL)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC
 * --
 * Asynchronously run ACUR to get customers
 * current account details
 * --
 EXEC CICS RUN TRANSID (ACCTCURR-TRAN)
 CHANNEL (MYCHANNEL)
 CHILD (ACCTCURR-TKN)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND

 EXEC CICS GET CONTAINER (ACCTCURR-CONTAINER)
 CHANNEL (MYCHANNEL)
 INTO (CURRENT-ACCOUNTS)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-COMMAND
 PERFORM PRINT-CURRENT-ACCOUNTS-DETAILS

 * --
 * Get the customers current account details from the
 * partner bank
 * --

Keep in mind the following important concepts at this stage:

� Passing data to programs that were previously LINKed to

Note: Both Example 4-4 and Example 4-5 do not just removed the LINK commands but
also remove the logic that was used to process the results from the GETNAME and ACCTCURR
programs. You will add back this logic later in 4.2.3, “Add the FETCH ANY command to
WEBHOME.cbl” on page 48 when you fetch the results from the child tasks.
Chapter 4. Improving the response time of existing applications 47

� Removing the results processing logic

Passing data to programs that were previously LINKed to
Because the GETNAME and ACCTCURR programs have a channel and container-based interface,
the transition to call them asynchronously is relatively smooth. You can simply pass the same
channel that you previously used on the LINK command to the RUN TRANSID command. If
these programs had COMMAREA interfaces, you would need a different process, because
the CICS asynchronous API is based on passing channels to child tasks and uses these
channels to manage the results.

Calling COMMAREA-based applications using the CICS asynchronous API requires a stub
program. There are more details about how to do this in 7.2, “Tip: Run existing
COMMAREA-based assets asynchronously without changing them” on page 106.

Removing the results processing logic
When replacing LINK commands with asynchronous calls. it is important to also remove any
logic following the link that acted on the results. Because control is now being returned to the
parent immediately, rather than waiting for the program to complete, the results are not yet
available to be acted upon. Move results processing logic to the point where the child task’s
results are fetched, as described in 4.2.3, “Add the FETCH ANY command to
WEBHOME.cbl” on page 48.

4.2.3 Add the FETCH ANY command to WEBHOME.cbl

Now that you are running multiple child tasks, the next step is to retrieve their results. You
could call FETCH CHILD multiple times, passing each child token in turn. However this method
will not maximize the response time savings. Ideally, you want to fetch the results in any order
in which the child tasks complete. Taking this approach allows the parent task to process
results as soon as they become available and minimizes the time spent waiting.

If you were to fetch each child specifically, there is no way to know that you are fetching the
results in the optimal order. You can make a best guess, but the dynamic nature of a running
system means that it’s likely you will be wrong at least some of the time when requests
execute slower or faster than expected. Figure 4-3 illustrates the missed response time
savings from not fetching the first responder first.

Figure 4-3 Missed response time savings from not fetching the first responder
48 IBM CICS Asynchronous API: Concurrent Processing Made Simple

The CICS asynchronous API provides a solution to this problem in the form of the FETCH ANY
command. You can use this command in combination with a loop to fetch the results from
child tasks in the most efficient manner. By using FETCH ANY you can ensure that you are
always processing results in the most optimal order and maximizing response time savings.

Adding data definitions
You need to add the following data definitions for some fields that aid in the fetching and
processing of the child tasks’ results:

� ANY-CHILD-TKN is used to store the child token returned on the FETCH ANY command.

� ANY-CHILD-CHAN is used to store the reply channel name returned on the FETCH ANY
command.

� GET-NAME-CHAN is used to store the reply channel name for the GETN child task.

� ACCTCURR-CHAN is used to store the reply channel name for the ACUR child task.

5. Add the code shown in bold font in Example 4-6 to the data definitions of WEBHOME.cbl.

Example 4-6 Data definitions for the FETCH ANY loop

 1 CHILD-TOKENS.
 2 ANY-CHILD-TKN PIC X(16).
 2 GET-NAME-TKN PIC X(16).
 2 ACCTCURR-TKN PIC X(16).
 2 ACCTPTNR-TKN PIC X(16).
 1 RETURN-CHANNELS.
 2 ANY-CHILD-CHAN PIC X(16).
 2 GET-NAME-CHAN PIC X(16).
 2 ACCTCURR-CHAN PIC X(16).
 2 ACCTPTNR-CHAN PIC X(16).

Replacing FETCH CHILD with FETCH ANY
Next, you need to replace the existing singular FETCH CHILD command with a FETCH ANY loop.

6. In WEBHOME.cbl, add the code shown in bold font and remove the code that is shown in
strikethrough font in Example 4-7.

Example 4-7 Replacing FETCH CHILD with FETCH ANY

 * --
 * Get the customers current account details from the
 * partner bank
 * --
 EXEC CICS FETCH CHILD (ACCTPTNR-TKN)
 CHANNEL (ACCTPTNR-CHAN)
 COMPSTATUS (CHILD-RETURN-STATUS)
 ABCODE (CHILD-RETURN-ABCODE)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-COMMAND
 PERFORM CHECK-CHILD
 EXEC CICS GET CONTAINER (ACCTPTNR-CONTAINER)
 CHANNEL (ACCTPTNR-CHAN)
 INTO (PARTNER-ACCOUNTS)
 RESP (COMMAND-RESP)
Chapter 4. Improving the response time of existing applications 49

 RESP2 (COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-COMMAND
 PERFORM PRINT-PARTNER-ACCOUNTS-DETAILS

 * --
 * Three child tasks have been run to execute asynchronously.
 * Loop through the children to get the customer's details
 * --
 PERFORM 3 TIMES
 EXEC CICS FETCH ANY (ANY-CHILD-TKN)
 CHANNEL (ANY-CHILD-CHAN)
 COMPSTATUS (CHILD-RETURN-STATUS)
 ABCODE (CHILD-RETURN-ABCODE)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND
 PERFORM CHECK-CHILD

 * -----
 * Identify which child completed and process results
 * -----
 EVALUATE ANY-CHILD-TKN

 * -----
 * For GETNAME, print the welcome message

 * -----
 WHEN GET-NAME-TKN

 * -----
 * For ACCTCURR, print the account details
 * -----
 WHEN ACCTCURR-TKN

 * -----
 * For ACCTPTNR, print the partner account details
 * -----
 WHEN ACCTPTNR-TKN

 * -----
 * Error: Unknown child is returned
 * -----
 WHEN OTHER
 INITIALIZE STATUS-MSG
 STRING '*** Unknown child token: '
 DELIMITED BY SIZE
 ANY-CHILD-TKN
 DELIMITED BY SIZE
 INTO MSG-TEXT
 PERFORM PRINT-STATUS-MESSAGE

 PERFORM WEBHOME-ERROR
50 IBM CICS Asynchronous API: Concurrent Processing Made Simple

 END-EVALUATE

 * End of FETCH ANY loop
 END-PERFORM

 * Send a message to the screen to
 * notify terminal user of completion
 MOVE 'COMPLETE' TO CURRENT-STATUS
 PERFORM PRINT-TEXT-TO-SCREEN

This is a large chunk of code, so let’s break it down from the top.

First, there is a simple loop, controlled by the PERFORM 3 TIMES statement. In this scenario
there are always three child tasks, so this statement is the easiest way to control the number
of times that you execute the loop.

Next, the FETCH ANY command fetches the next completed child task that has not yet been
fetched. If all the unfetched child tasks are still running, it waits until one completes. The code
then stores the token for this child in ANY-CHILD-TKN and the channel name in
ANY-CHILD-CHAN.

Finally, the code uses an EVALUATE statement to inspect the ANY-CHILD-TKN to see which of
the child tasks have been fetched. The three tokens returned by the earlier RUN TRANSID calls
are used in the WHEN clauses to match against. If a child task is fetched with a token other than
these three then it is treated as an error, because it probably means that someone added a
new child task without updating this loop.

The results processing logic for each child task is left out intentionally at this stage to help
keep the structure of this loop clear.

Adding results processing logic to the EVALUATE statement
With the skeleton EVALUATE statement in place, the final task is to add logic to each of the WHEN
clauses to process the results for each child.

7. Add the code shown in bold font in Example 4-8 to the EVALUATE statement.

Example 4-8 Adding results processing logic to our EVALUATE statement

 * -----
 * Identify which child completed and process results
 * -----
 EVALUATE ANY-CHILD-TKN
 * -----
 * For GETNAME, print the welcome message
 * -----
 WHEN GET-NAME-TKN

 * Save the channel name for future use
 MOVE ANY-CHILD-CHAN TO GET-NAME-CHAN
 EXEC CICS GET CONTAINER (GETNAME-CONTAINER)
 CHANNEL (GET-NAME-CHAN)
 INTO (CUSTOMER-NAME)

Tip: If the number of child tasks is variable or unknown, inspect the RESP code on the
FETCH ANY command, and use the NOTFND return code to control when to exit the loop.
Chapter 4. Improving the response time of existing applications 51

 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-COMMAND
 INITIALIZE STATUS-MSG
 STRING 'Welcome '
 DELIMITED BY SIZE
 CUSTOMER-NAME
 DELIMITED BY SIZE
 INTO MSG-TEXT
 PERFORM PRINT-STATUS-MESSAGE

 * -----
 * For ACCTCURR, print the account details
 * -----
 WHEN ACCTCURR-TKN

 * Save the channel name for future use
 MOVE ANY-CHILD-CHAN TO ACCTCURR-CHAN
 EXEC CICS GET CONTAINER (ACCTCURR-CONTAINER)
 CHANNEL (ACCTCURR-CHAN)
 INTO (CURRENT-ACCOUNTS)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND
 PERFORM PRINT-CURRENT-ACCOUNTS-DETAILS

 * -----
 * For ACCTPTNR, print the partner account details
 * -----
 WHEN ACCTPTNR-TKN

 * Save the channel name for future use
 MOVE ANY-CHILD-CHAN TO ACCTPTNR-CHAN

 EXEC CICS GET CONTAINER (ACCTPTNR-CONTAINER)
 CHANNEL (ACCTPTNR-CHAN)
 INTO (PARTNER-ACCOUNTS)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND
 PERFORM PRINT-PARTNER-ACCOUNTS-DETAILS

 * -----
 * Error: Unknown child is returned
 * -----

You’ll notice that the results processing logic is nearly identical to the logic that you removed
earlier in this chapter. This logic highlights how easy it is to transition to running programs
asynchronously rather than using LINKs, because you are moving, rather than rewriting,
existing logic.
52 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Saving the return channel
The main change to the logic is that you must use the channel name that is returned on the
FETCH ANY command to get containers. You can use ANY-CHILD-CHAN in each of the GET
CONTAINER calls; however, this field is overwritten on each iteration.

It is preferred practice to copy this channel name to a field that is specific to each child for any
future uses. For example:

MOVE ANY-CHILD-CHAN TO GET-NAME-CHAN

Using the CHANNEL parameter on a FETCH command transfers the child’s channel to the parent
and generates a new unique channel name. This action can be issued only once per child;
therefore, save it in case you need it at any point later in your business logic.

4.3 Running the updated application

Compile the sample and NEWCOPY your programs in CICS. If you now run the WEBH transaction
from the terminal passing the customer number 0001, you’ll see the results in Example 4-9
after a few seconds.

Example 4-9 WEBH transaction results

T142WEBH 20171012174409 17:44.09 Started Web banking log-on data retrieval
T142WEBH 20171012174412 17:44.12 Welcome Pradeep Gohil
T142WEBH 20171012174412 17:44.12 Acc: 20140720 Bal: £0.01 Overdraft: £0.00
T142WEBH 20171012174412 17:44.12 Acc: 25875343 Bal: £45742.00 Overdraft: £1000.00
T142WEBH 20171012174412 17:44.12 Acc: 20170125 Bal: £34533.23 Overdraft: £0.00
T142WEBH 20171012174413 17:44.13 Acc: 62837456 Bal: £234.56 Overdraft: £0.00
T142WEBH 20171012174413 17:44.13 Acc: 64620987 Bal: £3092.60 Overdraft: £1000.00
T142WEBH 20171012174413 17:44.13 Acc: 64563923 Bal: £10123.98 Overdraft: £0.00
T142WEBH 20171012174413 17:44.13 Ended Web banking log-on data retrieval

Notice that the program performs the same work as before, but now takes only 4 seconds to
run (when it previously took 6 seconds). With the GETNAME and ACCTCURR programs now
running asynchronously, the overall response time is dictated by the ACCTPTNR program.

Note: In this scenario, the programs LINKed to are not dependant on each other, meaning
that the output of one is not used as the input to another. This method makes the programs
excellent candidates for asynchronous processing, and it is relatively easy to do.

In a situation where you have programs that depend on each other’s output, you can still
take advantage of asynchronous processing. Run your child tasks in blocks where the
results from tasks in one block are used as input to the tasks in the next. For more
information about running collections of child tasks, see 7.4, “Trick: Prevent sets of children
from interfering in FETCH ANY logic by using FREE CHILD” on page 117.
Chapter 4. Improving the response time of existing applications 53

4.4 Summary

Often, you need to improve the response time of applications either to make room for more
functions or simply to keep pace with the demands of users. The example in this chapter
shows how to improve the response time of CICS applications by using the CICS
asynchronous API to call programs asynchronously.

After following the example in this chapter, you should feel comfortable using the RUN TRANSID
and FETCH ANY command, as an alternative to EXEC CICS LINK commands, to start multiple
child tasks and retrieve their results. You should also understand how the FETCH ANY
command allows you to fetch child tasks as soon as they complete and appreciate that doing
so allows you to maximize response time savings.

By applying the methods in this chapter you can optimize applications to make them more
responsive than ever while keeping most of their existing logic intact.

If you’ve read this chapter and would like to experiment further, the completed code for the
scenario can be found in Chapter 4 End Tag.
54 IBM CICS Asynchronous API: Concurrent Processing Made Simple

https://github.com/cicsdev/cics-async-api-redbooks/releases/tag/end-of-4

Chapter 5. Developing robust applications
with unreliable service providers

This chapter demonstrates how to use the CICS asynchronous API to create robust CICS
applications that protect against unreliable service calls while also maintaining an expected
response time goal.

As discussed in previous chapters, CICS applications are evolving and harnessing services
that are offered by other providers. Using third-party services can introduce an element of risk
because service providers are subject to their own system behaviors. A spike in requests,
hardware issues, and poor design can all affect a provider’s ability to respond reliably. When
things do go wrong or response times degrade, the false impression is that the CICS
application is at fault, when often the culprit is a service provider.

Rather than losing new business opportunities, the scenario in this chapter provides an
example where the TIMEOUT feature on FETCH commands ensures that CICS applications
maintain their robust and responsive qualities of service.

5

© Copyright IBM Corp. 2017. All rights reserved. 55

5.1 Overview of the scenario

This scenario builds upon the fictional web banking home page example, developed over the
previous chapters. You can find the source code for the complete web banking application
along with setup instructions in the cics-async-api-redbooks repository, under the cicsdev
organization on GitHub.

The example banking application is enhanced to use a new business opportunity. To
encourage the upsell of personal loans, a personalized loan quote is offered as part of the
banking home page. However, with the existing business logic and service calls in the
banking home page application, the addition of the loan quote threatens the response time
goals of the CICS application.

The scenario in this chapter looks at how a new service can be added while maintaining the
application’s current service level agreement (SLA). The new service provider for loan quotes
has an unpredictable response time. This scenario enhances the example to provide a robust
application, by using timeouts, that can protect against unreliable services.

5.1.1 Objective of the scenario

The business intention for this scenario is to upsell the companies range of personal loans by
providing a personalized quote, as part of the WEBHOME program. The web banking home page
program, WEBHOME, currently retrieves customer details, from the GETNAME program, along with
current accounts that are held with the bank and banking partner, in the ACCTCURR and
ACCTPTNR program, to populate the initial screen when a customer logs on to the Internet
banking page.

This core customer-facing banking application has a response time goal of 9 seconds. This
goal might seem to be an excessive response goal; however, the times are exaggerated in
this example for illustrative purposes. Due to the use of the CICS asynchronous API in prior
chapters, the current response time of the WEBHOME program is good and affords
enhancements for new business opportunities.

The service to provide a loan quote, GETLOAN, is expected to take the application to its
response time goal limit. The WEBHOME program can use the loan quote if it replies in time
(achieved by setting a timeout on the GETLOAN call). Otherwise, it needs to abandon the quote
to maintain its SLA, thereby providing a robust CICS application that is protected against the
unreliable service.

Important process and content information: This chapter includes a series of actions to
successfully complete the described scenario. Be aware that the steps that you need to
complete for this scenario are included in numbered paragraphs. Although the numbered
steps might occur in different sections throughout the chapter, you still need to complete
the steps in the order in which they occur.

Tip: The repository contains the final version of the code after all of the scenarios in this
book are applied. If you want to follow the scenario described in this chapter, start with an
earlier version of the code at this commit: Chapter 5 Start Tag.
56 IBM CICS Asynchronous API: Concurrent Processing Made Simple

https://github.com/cicsdev/cics-async-api-redbooks
https://github.com/cicsdev/cics-async-api-redbooks/releases/tag/start-of-5

5.2 Requesting services from an unreliable service provider

The WEBHOME program includes a new feature that provides a loan quote to the customer as
part of the initial web banking home page. Unlike competitors that bombard customers with
products that are not suited to them, this feature provides a personalized quote based on the
customer’s current banking products.

The existing business logic in the WEBHOME program retrieves bank account details held with
the bank and partner banking provider. These results are provided to the GETLOAN loan quote
service to provide a personalized rate.

Due to the personalization of the new quoting feature, it cannot be run immediately at the
start of the WEBHOME program (as with the other service requests in the program). The GETLOAN
service must be requested after the return of the ACCTCURR and ACCTPTNR programs. The
results of the ACCTCURR and ACCTPTNR programs are first written to a new container for input to
the GETLOAN service, and then the GETLOAN service can be requested.

Figure 5-1 shows the order of all service requests made in the WEBHOME program. The GETNAME
service and the ACCTCURR and ACCTPTNR programs all run concurrently, and the results are
processed as the child tasks complete. The GETLOAN service runs and is fetched after the
other service requests.

Figure 5-1 Order of child service requests made in the WEBHOME program

Note: You can further optimize the business logic in the WEBHOME program for the GETLOAN
service to run concurrently with the GETNAME program. Thus, running the GETLOAN child task
can occur during the current FETCH ANY looping algorithm. However, for simplicity, this
scenario runs and fetches the GETLOAN service after the existing service requests.

In addition, the GETNAME service normally returns first, so complicating the FETCH ANY loop is
not beneficial.
Chapter 5. Developing robust applications with unreliable service providers 57

5.2.1 Why not just use a LINK?

As shown in Figure 5-1 on page 57, the request and consumption to the GETLOAN service
occurs at the end of the WEBHOME program. It is not intended to run concurrently with any other
requests. A reasonable solution to the problem (at this stage in the design) is to link to the
GETLOAN service. By issuing an EXEC CICS LINK PROGRAM(GETLOAN) command, control can be
passed to the GETLOAN services, as shown in Figure 5-2.

Figure 5-2 Using a LINK to initiate the GETLOAN service

As expected, on the LINK command, you can specify a channel to pass data to the GETLOAN
service. As soon as the GETLOAN service completes and returns, control is passed back to the
WEBHOME program, and the channel is updated with the result set from the GETLOAN service.
Using a LINK rather than asynchronously running a child provides the following benefits:

� There are fewer commands to issue (one LINK versus a RUN TRANSID and FETCH CHILD
command).

� It does not require an additional transaction to run the GETLOAN service.

� There is less cognitive load on the application developer, because the business logic
transfers over to the GETLOAN service.

However, using the CICS asynchronous API to request the GETLOAN service provides the
following benefits:

� Maintaining control in the parent WEBHOME program. (With a LINK, execution control is
handed to the next program, and the caller does not regain control until the call is
completed.)

� There is no timeout on a LINK command.

� Future proofing the application, as explained in the paragraph that follows.

The design architect for the WEBHOME program understands that if this venture becomes
successful, other products in the company’s portfolio are likely to follow a similar pattern, such
as upselling of savings accounts, mortgages, insurance policies, and so on. If future services
are called sequentially, the response time of the WEBHOME program will degrade. To encourage
asynchronous behaviour, it is decided to continue with the existing calling pattern in the
WEBHOME program and call the GETLOAN service asynchronously.
58 IBM CICS Asynchronous API: Concurrent Processing Made Simple

This example demonstrates that the CICS asynchronous API can provide additional benefits
to application logic when a single service is requested. The asynchronous API is not limited to
scenarios with multiple child tasks.

5.2.2 Asynchronously requesting a new service

To add the request for the personalized loan quote:

� Define a GETL transaction, which invokes the GETLOAN loan quote service.

� Make available a container called ALLCUSTACCOUNTS, which provides the input to a
personalized loan quote service.

� Asynchronously run the GETLOAN service by initiating the GETL transaction, fetch the
personalized loan quote, and display the loan quote result in a status message.

The loan rate service also requires the customer account number. However, this number is
already stored in a container, so no additional work is required to provide this information.

Define the GETL transaction to run the GETLOAN program
Because the CICS asynchronous API operates on transactions not programs, you need to
first define a transaction that you can use to run the GETLOAN service. This transaction can
have any name, but for the purposes of this scenario, use GETL.

1. Ensure that a TRANSACTION definition is defined in CICS with the attributes shown in
Example 5-1.

Example 5-1 GETL TRANSACTION definition attributes

TRANSACTION(GETL)
GROUP(ASYNCAPI)
PROGRAM(GETLOAN)
DESCRIPTION(Transaction to request a personalized loan rate for the CICS
Asynchronous API Redbooks sample)

Declare the container constants, transaction identifiers, and token
record structures
2. Add the lines shown in bold font in Example 5-2 to the WEBHOME program to declare the

container names.

Example 5-2 Adding variables for calling the personalized loan quote service

 1 CONTAINER-NAMES.
 2 INPUT-CONTAINER PIC X(16) VALUE 'INPUTCONTAINER '.
 2 GETNAME-CONTAINER PIC X(16) VALUE 'GETNAMECONTAINER'.
 2 ACCTCURR-CONTAINER PIC X(16) VALUE 'ACCTCURRCONT '.
 2 ACCTPTNR-CONTAINER PIC X(16) VALUE 'ACCTPTNRCONT '.
 2 GETLOAN-CONTAINER PIC X(16) VALUE 'GETLOANCONTAINER'.
 2 ACCOUNTS-CONTAINER PIC X(16) VALUE 'ALLCUSTACCOUNTS '.
Chapter 5. Developing robust applications with unreliable service providers 59

The ACCOUNT-CONTAINER contains all the customer accounts that are retrieved by the ACCTCURR
and ACCTPTNR programs. This information is passed as input to the GETLOAN service. The
GETLOAN-CONTAINER contains the results of the personalized quote following the return of the
GETLOAN service.

3. Add the lines shown in bold in Example 5-3 to the WEBHOME program to declare the
transaction identifier and token variables.

Example 5-3 Adding the transaction ID and variables for the GETLOAN child

 1 TRANSIDS.
 2 GET-NAME-TRAN PIC X(4) VALUE 'GETN'.
 2 ACCTCURR-TRAN PIC X(4) VALUE 'ACUR'.
 2 ACCTPTNR-TRAN PIC X(4) VALUE 'PTNR'.
 2 GETLOAN-TRAN PIC X(4) VALUE 'GETL'.
 1 CHILD-TOKENS.
 2 ANY-CHILD-TKN PIC X(16).
 2 GET-NAME-TKN PIC X(16).
 2 ACCTCURR-TKN PIC X(16).
 2 ACCTPTNR-TKN PIC X(16).
 2 GET-LOAN-TKN PIC X(16).
 1 RETURN-CHANNELS.
 2 ANY-CHILD-CHAN PIC X(16).
 2 GET-NAME-CHAN PIC X(16).
 2 ACCTCURR-CHAN PIC X(16).
 2 ACCTPTNR-CHAN PIC X(16).
 2 GET-LOAN-CHAN PIC X(16).

The GETLOAN-TRAN defines the GETL transaction, which initiates the GETLOAN service. The
GET-LOAN-TKN is used to track the child token that is returned on the RUN TRANSID command
and is used later on the FETCH CHILD command. The GET-LOAN-CHAN is used to store the
returned channel name on the fetch of the results.

Prepare, run, fetch, and display the personalized loan quote service
After the existing FETCH ANY logic in the WEBHOME program, put a new container on the channel
and run a child task to request the GETLOAN service. At this stage, then immediately fetch the
results from the child. This process has the effect of blocking the parent execution during the
FETCH CHILD command until the GETLOAN child completes.

The final step is to print the results to the log messages to determine the loan rate.

4. Add to the code (shown in bold font in Example 5-4), to put the customer’s account details
into a new container, and to run the GETLOAN child task. The logic then fetches the results
and prints them as a status message.

Example 5-4 Prepare the input data, and call the GETLOAN service asynchronously

 * End of FETCH ANY loop
 END-PERFORM

 * -----
 * Provide new business directive of Loan up-sell.
 * Asynchronously call personalized loan rate generator.
 * -----

 * -----
 * Pass the details of all of the customer's accounts
60 IBM CICS Asynchronous API: Concurrent Processing Made Simple

 * to provide a personalized loan quote
 * -----
 EXEC CICS PUT CONTAINER (ACCOUNTS-CONTAINER)
 FROM (CUSTOMER-ACCOUNTS)
 CHANNEL (MYCHANNEL)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND

 * --
 * Asynchronously run GETL to get customers
 * personalized loan rate
 * --
 EXEC CICS RUN TRANSID (GETLOAN-TRAN)
 CHANNEL (MYCHANNEL)
 CHILD (GET-LOAN-TKN)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND

 * --
 * Perform the FETCH of loan rate
 * --
 EXEC CICS FETCH CHILD (GET-LOAN-TKN)
 CHANNEL (GET-LOAN-CHAN)
 COMPSTATUS (CHILD-RETURN-STATUS)
 ABCODE (CHILD-RETURN-ABCODE)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND
 PERFORM CHECK-CHILD

 * -----
 * Successful response from the child.
 * Get the personalized loan quote
 * -----
 EXEC CICS GET CONTAINER (GETLOAN-CONTAINER)
 CHANNEL (GET-LOAN-CHAN)
 INTO (CUSTOMER-LOAN-RATE)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND

 * -----
 * Finally, display the loan quote
 * -----
Chapter 5. Developing robust applications with unreliable service providers 61

 INITIALIZE STATUS-MSG
 STRING 'Personalized Loan Rate: '
 DELIMITED BY SIZE
 CUSTOMER-LOAN-RATE
 DELIMITED BY SPACE
 ' %'
 DELIMITED BY SIZE
 INTO MSG-TEXT
 PERFORM PRINT-STATUS-MESSAGE

 * Send a message to the screen to
 * notify terminal user of completion
 MOVE 'COMPLETE' TO CURRENT-STATUS
 PERFORM PRINT-TEXT-TO-SCREEN

The first stage of requesting the GETLOAN child from the WEBHOME program is now complete. As
part of the initial example set up, you already have the GETLOAN service available in the CICS
region.

5. Compile the updated WEBHOME program to the data set library that is available to CICS.

6. Make the new version of the WEBHOME program available to your CICS region by issuing the
following command in CICS:

CEMT SET PROGRAM(WEBHOME) NEW

5.2.3 Testing the response times of calling the new service

After deploying the modified WEBHOME program with the updates (as described in 5.2.2,
“Asynchronously requesting a new service” on page 59), you can test the program by issuing
the WEBH transaction, along with a customer number, such as 0001.

7. Issue the following transaction and customer number in your CICS terminal window:

WEBH 0001

The updated WEBHOME program executes and runs a child task to obtain a personalized loan
quote, which is then fetched and displays as a status message in the CICS language
environment messages log, such as CEEMSG. Example 5-5 shows the results of such an
execution of the WEBHOME program. Important parts of the status messages are highlighted in
bold font.

Example 5-5 Status messages written from the web banking example to CEEMSG

T127WEBH 20171008020827 02:08.27 Started Web banking log-on data retrieval
T127WEBH 20171008020830 02:08.30 Welcome Pradeep Gohil
T127WEBH 20171008020830 02:08.30 Acc: 20140720 Bal: £0.01 Overdraft: £0.00
T127WEBH 20171008020830 02:08.30 Acc: 25875343 Bal: £45742.00 Overdraft: £1000.00
T127WEBH 20171008020830 02:08.30 Acc: 20170125 Bal: £34533.23 Overdraft: £0.00
T127WEBH 20171008020831 02:08.31 Acc: 62837456 Bal: £234.56 Overdraft: £0.00
T127WEBH 20171008020831 02:08.31 Acc: 64620987 Bal: £3092.60 Overdraft: £1000.00
T127WEBH 20171008020831 02:08.31 Acc: 64563923 Bal: £10123.98 Overdraft: £0.00
 GETL 20171008020831 Loan quote service under normal load. ETA 4 secs.
T127WEBH 20171008020835 02:08.35 Personalized Loan Rate: 1.25 %
T127WEBH 20171008020835 02:08.35 Ended Web banking log-on data retrieval
62 IBM CICS Asynchronous API: Concurrent Processing Made Simple

The status messages written by the banking example show that there is an 8-second interval
between the start and end messages. This delay is within the 9-second SLA response goal
for the web banking home application.

You can also see from the messages that the GETLOAN service (the GETL transaction) is
running under a normal load. It can respond to the caller in 4 seconds. The WEBHOME program
can obtain and display the customer personalized loan rate, and in this example it is 1.25%.

If you re-test the web banking example multiple times, by reissuing WEBH 0001, notice that on
some occasions the response time of the GETLOAN service can vary. Example 5-6 shows the
messages when the loan quote service is under a heavy load.

Example 5-6 Web banking example status messages when loan service under heavy load

T127WEBH 20171008020907 02:09.07 Started Web banking log-on data retrieval
T127WEBH 20171008020910 02:09.10 Welcome Pradeep Gohil
T127WEBH 20171008020910 02:09.10 Acc: 20140720 Bal: £0.01 Overdraft: £0.00
T127WEBH 20171008020910 02:09.10 Acc: 25875343 Bal: £45742.00 Overdraft: £1000.00
T127WEBH 20171008020910 02:09.10 Acc: 20170125 Bal: £34533.23 Overdraft: £0.00
T127WEBH 20171008020911 02:09.11 Acc: 62837456 Bal: £234.56 Overdraft: £0.00
T127WEBH 20171008020911 02:09.11 Acc: 64620987 Bal: £3092.60 Overdraft: £1000.00
T127WEBH 20171008020911 02:09.11 Acc: 64563923 Bal: £10123.98 Overdraft: £0.00
 GETL 20171008020911 Loan quote service under heavy load. ETA 7 secs.
T127WEBH 20171008020918 02:09.18 Personalized Loan Rate: 1.25 %
T127WEBH 20171008020918 02:09.18 Ended Web banking log-on data retrieval

Example 5-6 shows that under heavy load the response time of the loan service changes
from 4 to 7 seconds, which has the undesired effect of reducing the response time of the
application to 11 seconds and exceeds the 9-second goal.

Figure 5-3 on page 64 depicts the effect of the unreliable GETLOAN service against the
response time goals of the WEBHOME program. The left diagram in the figure shows that when
the GETLOAN service replies in a timely manner, the WEBHOME program can achieve its SLA.
However, because the FETCH CHILD command suspends the parent task until the GETLOAN
service replies, the right diagram in the figure shows that the WEBHOME program misses its
response time SLA.
Chapter 5. Developing robust applications with unreliable service providers 63

Figure 5-3 The effect the GETLOAN service has on the response time goals of the WEBHOME program

The agreed future approach is for the personalized quote to be used only when within the
agreed SLA. In situations where the response of the GETLOAN service takes too long, the
process should be abandoned in favour of achieving the SLA.

Use a timeout value on the FETCH CHILD command to control how long the WEBHOME program is
willing to wait for a response. The GETNAME, ACCTCURR, and ACCTPTNR child tasks usually take
approximately 4 seconds to complete. This wait time affords 5 seconds to the GETLOAN service
to keep within the SLA.

5.2.4 Retrieving a timeout value to meet the application’s SLA

This example adds a 5-second timeout on the FETCH CHILD command for the GETLOAN service
request. You can use the follow methods to achieve this timeout value:

� Set the timeout value explicitly in the application code.
� Parameterize the timeout value.

If the timeout value is obvious and will not change, it is trivial to hardcode the value in
application code. However, it is often the case that a predetermined timeout value might not
be ideal in all situations. For example, the requirements for the application might change,
such as shortening the response goal or allowing more time for priority instances. It is
recommended that the timeout field is parameterized in the application code and populated
via another means. This method prevents the need for the application to be recompiled if the
timeout value is required to change.

Note: In practice, it is likely that a similar scenario would use a current time function,
along with the starting time of the application, to calculate the time left for completing child
tasks. However, for simplicity of showcasing the timeout feature of the CICS asynchronous
API, this scenario uses a 5-second timeout.
64 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Common mechanisms for this process are to parameterize each timeout value in the
application code and to read in the values during execution time, from controlled record
stores, such as properties and VSAM files, and from database records.

For ease of demonstration of the timeout feature, this scenario uses a CICS temporary
storage (TS) queue to provide the WEBHOME program with the timeout value. The name the of
the loan timeout TS queue is LTIMEOUT. The timeout value is specified in milliseconds.

To provide the timeout value for the loan service, a new TS queue is populated with the
required 5-second value.

8. Issue the following command on the CICS terminal screen:

CECI WRITEQ TS QUEUE('LTIMEOUT') FROM('5000')

Now, you have a TS queue named LTIMEOUT that contains the value 5000, which will be used
by the WEBHOME program to populate the TIMEOUT parameter on a FETCH CHILD command.

5.2.5 Adding the TIMEOUT parameter to the FETCH command of the
unreliable service

Next, update the WEBHOME program to parameterize a TIMEOUT parameter on the FETCH CHILD
command of the GETLOAN service. Complete the following tasks:

� Add new record structures to reference the method of obtaining the timeout value. In this
example, read the value from a LTIMEOUT TS queue.

� Add application logic to read the timeout value from the TS queue.

� Set the TIMEOUT parameter on the FETCH CHILD command.

� Update the behavior of the FETCH CHILD logic to react appropriately to a timeout response.

� Display status messages to log the behaviour of the WEBHOME program.

Add the record structures to hold the timeout value
9. Add the code shown in bold font in Example 5-7 to the working storage section of the

WEBHOME program.

Example 5-7 Records to manage the Loan quote service timeout

 1 COMMAND-RESP PIC S9(8) COMP.
 1 COMMAND-RESP2 PIC S9(8) COMP.

 * Record for TSQ containing timeout details for loan quote
 1 TIMEOUT-TSQ.
 2 TSQ-NAME PIC X(8) VALUE 'LTIMEOUT'.
 2 TSQ-TIMEOUT PIC X(8) VALUE ' '.
 2 TIMEOUT-LEN PIC S9(4) USAGE BINARY.
 1 LOAN-RATE-TIMEOUT PIC S9(8) USAGE BINARY VALUE 0.

These new records are used to store and issue the timeout value for the loan quote service.
Chapter 5. Developing robust applications with unreliable service providers 65

Read timeout value from external source
After running a child task to initiate the GETLOAN service, next read the required timeout value
from an external data source. For this example, use the TS queue LTIMEOUT.

10.Add the code shown in bold font in Example 5-8 to the WEBHOME program to obtain a
timeout value from an external source.

Example 5-8 Reading a value from a TS queue at execution time

 EXEC CICS RUN TRANSID (GETLOAN-TRAN)
 CHANNEL (MYCHANNEL)
 CHILD (GET-LOAN-TKN)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND

 * -----
 * Before fetching (and blocking) on the loan quote results
 * Check to see if we should apply a TIMEOUT.
 * Typically from a FILE or DB2 look up -
 * for simplicity we will use a TSQ.
 * -----
 MOVE 8 TO TIMEOUT-LEN
 EXEC CICS READQ TS QUEUE (TSQ-NAME)
 ITEM (1)
 INTO (TSQ-TIMEOUT)
 LENGTH (TIMEOUT-LEN)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 IF COMMAND-RESP = DFHRESP(NORMAL)
 THEN

 * -----
 * Found a timeout value to use on the FETCH of the quote
 * -----
 MOVE TSQ-TIMEOUT(1:TIMEOUT-LEN) TO LOAN-RATE-TIMEOUT

 INITIALIZE STATUS-MSG
 STRING 'Timeout of '
 DELIMITED BY SIZE
 TSQ-TIMEOUT
 DELIMITED BY SPACE
 ' milliseconds to get loan rate quote.'
 DELIMITED BY SIZE
 INTO MSG-TEXT
 PERFORM PRINT-STATUS-MESSAGE

 ELSE

 * -----
 * Did not find a timeout value. Continue with NO timeout
 * A TIMEOUT(0) parameter on the FETCH indicates no timeout
66 IBM CICS Asynchronous API: Concurrent Processing Made Simple

 * -----

 MOVE 0 TO LOAN-RATE-TIMEOUT

 INITIALIZE STATUS-MSG
 MOVE 'Timeout not set for loan rate quote.' TO MSG-TEXT
 PERFORM PRINT-STATUS-MESSAGE
 END-IF

 * --
 * Perform the FETCH of loan rate
 * --

The code extract in Example 5-8 on page 66 sets the LOAN-RATE-TIMEOUT field to the number
that is specified in TS queue LTIMEOUT. If there is a failure to read the TS queue, the value of
‘0’ is used for the timeout.

Add the timeout parameter to the FETCH command
In the WEBHOME program, you obtained the required timeout value from an external source.
Now use this value to parameterize the TIMEOUT parameter for the FETCH command of the loan
quote child task. Also add handling code for the FETCH CHILD command to check for a timeout
response.

11.As shown in Example 5-9 add the code shown in bold font to the WEBHOME program to add
a timeout parameter to the retrieval of the personalized loan quote service.

Example 5-9 Add a timeout parameter and check response codes for the FETCH CHILD command

 * --
 * Perform the FETCH of loan rate
 * --
 EXEC CICS FETCH CHILD (GET-LOAN-TKN)
 TIMEOUT (LOAN-RATE-TIMEOUT)
 CHANNEL (GET-LOAN-CHAN)
 COMPSTATUS (CHILD-RETURN-STATUS)
 ABCODE (CHILD-RETURN-ABCODE)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 * -----
 * Check if the FETCH of the child's results timed out
 * -----
 IF COMMAND-RESP = DFHRESP(NOTFINISHED) AND COMMAND-RESP2 = 53
 THEN
 INITIALIZE STATUS-MSG

Note: A TIMEOUT of ‘0’ (zero) on the FETCH commands indicates that the TIMEOUT parameter
is not set, rather than waiting for a length of 0 milliseconds. If the intention is to code a
non-blocking FETCH command, use the NOSUSPEND parameter. See “Tip: Check the status of
a child without blocking the parent by using the NOSUSPEND option” on page 118 for an
example of using the NOSUSPEND option.

Note: Do not forget the END-IF statement near the end of Example 5-9.
Chapter 5. Developing robust applications with unreliable service providers 67

 MOVE
 'Abandoned loan quote because it took too long!'
 TO MSG-TEXT
 PERFORM PRINT-STATUS-MESSAGE

 ELSE

 PERFORM CHECK-COMMAND
 PERFORM CHECK-CHILD

 * -----
 * Successful response from the child.
 * Get the personalized loan quote
 * -----
 EXEC CICS GET CONTAINER (GETLOAN-CONTAINER)
 CHANNEL (GET-LOAN-CHAN)
 INTO (CUSTOMER-LOAN-RATE)
 RESP (COMMAND-RESP)
 RESP2 (COMMAND-RESP2)
 END-EXEC

 PERFORM CHECK-COMMAND

 * -----
 * Finally, display the loan quote
 * -----

 INITIALIZE STATUS-MSG
 STRING 'Personalized Loan Rate: '
 DELIMITED BY SIZE
 CUSTOMER-LOAN-RATE
 DELIMITED BY SPACE
 ' %'
 DELIMITED BY SIZE
 INTO MSG-TEXT
 PERFORM PRINT-STATUS-MESSAGE

 END-IF

 * Send a message to the screen to
 * notify terminal user of completion
 MOVE 'COMPLETE' TO CURRENT-STATUS
 PERFORM PRINT-TEXT-TO-SCREEN

Now, make the updated code available to CICS:

12.Compile the updated WEBHOME program to the data set library that is available to CICS.

13.Make the new version of the WEBHOME program available to your CICS region by issuing the
following command in CICS:

CEMT SET PROGRAM(WEBHOME) NEW

You now have completed the source code updates to the WEBHOME program and have
parameterize the TIMEOUT value on a FETCH CHILD command. You populated the timeout value
with a value set from an external source, a TS queue. This process allows you to update the
timeout value in the future without the need to edit and recompile the WEBHOME source code.
68 IBM CICS Asynchronous API: Concurrent Processing Made Simple

You have also added basic status messages to the WEBHOME program to report on the path that
it is taking.

5.3 Running the updated application

After deploying the modified WEBHOME program with the updates in 5.2.5, “Adding the
TIMEOUT parameter to the FETCH command of the unreliable service” on page 65, you can
test the program by issuing the WEBH transaction, along with a customer number, such as
0001.

14.Issue the following transaction and customer number in the CICS terminal window:

WEBH 0001

The updated WEBHOME program executes and runs a child task to obtain a personalized loan
quote, which is then fetched and displays as a status message in the CICS language
environment messages log, such as CEEMSG. A timeout value is set on the retrieval of the
quote to prevent exceeding the SLA.

Example 5-10 shows the results of this type of execution of the WEBHOME program. Important
parts of the status messages are highlighted in bold font.

Example 5-10 Messages from a timely response of the loan quote service

TC96WEBH 20171009120418 12:04.18 Started Web banking log-on data retrieval
TC96WEBH 20171009120421 12:04.21 Welcome Pradeep Gohil
TC96WEBH 20171009120421 12:04.21 Acc: 20140720 Bal: £0.01 Overdraft: £0.00
TC96WEBH 20171009120421 12:04.21 Acc: 25875343 Bal: £45742.00 Overdraft: £1000.00
TC96WEBH 20171009120421 12:04.21 Acc: 20170125 Bal: £34533.23 Overdraft: £0.00
TC96WEBH 20171009120422 12:04.22 Acc: 62837456 Bal: £234.56 Overdraft: £0.00
TC96WEBH 20171009120422 12:04.22 Acc: 64620987 Bal: £3092.60 Overdraft: £1000.00
TC96WEBH 20171009120422 12:04.22 Acc: 64563923 Bal: £10123.98 Overdraft: £0.00
TC96WEBH 20171009120422 12:04.22 Timeout of 5000 milliseconds to get loan rate
 GETL 20171009120422 Loan quote service under normal load. ETA 4 secs.
TC96WEBH 20171009120426 12:04.26 Personalized Loan Rate: 1.25 %
TC96WEBH 20171009120426 12:04.26 Ended Web banking log-on data retrieval

The status messages written by the banking example show that the 5-second (5000
milliseconds) timeout is sufficient to receive a reply from the loan quote service. The response
time of the web banking application is within the SLA for the application.

Example 5-11 shows the status messages from an invocation of the WEBHOME program to a
slow-responding quote service.

Example 5-11 Messages from a non-timely response of the loan quote service

T124WEBH 20171009143535 14:35.35 Started Web banking log-on data retrieval
T124WEBH 20171009143538 14:35.38 Welcome Pradeep Gohil
T124WEBH 20171009143538 14:35.38 Acc: 20140720 Bal: £0.01 Overdraft: £0.00
T124WEBH 20171009143538 14:35.38 Acc: 25875343 Bal: £45742.00 Overdraft: £1000.00
T124WEBH 20171009143538 14:35.38 Acc: 20170125 Bal: £34533.23 Overdraft: £0.00
T124WEBH 20171009143539 14:35.39 Acc: 62837456 Bal: £234.56 Overdraft: £0.00
T124WEBH 20171009143539 14:35.39 Acc: 64620987 Bal: £3092.60 Overdraft: £1000.00
T124WEBH 20171009143539 14:35.39 Acc: 64563923 Bal: £10123.98 Overdraft: £0.00
T124WEBH 20171009143539 14:35.39 Timeout of 5000 milliseconds to get loan rate
 GETL 20171009143539 Loan quote service under heavy load. ETA 7 secs.
Chapter 5. Developing robust applications with unreliable service providers 69

T124WEBH 20171009143544 14:35.44 Abandoned loan quote because it took too long!
T124WEBH 20171009143544 14:35.44 Ended Web banking log-on data retrieval

Example 5-11 shows that, under heavy load, the response time of the loan service changes
from 4 to 7 seconds, which previously had the undesirable effect of reducing the response
time of the application to beyond the 9-second SLA. Now that a timeout is implemented on
the time that the WEBHOME program is willing to wait for a response time from the GETLOAN
service, the application maintains its SLA.

Figure 5-4 depicts the effect of the unreliable GETLOAN service against the response time goals
of the WEBHOME program, with the addition of a timeout specified on the FETCH CHILD
command.

Figure 5-4 Specify a timeout value on the FETCH CHILD command to meet response time goals

Figure 5-4 shows the effect of adding the timeout in comparison to Figure 5-3 on page 64.
The left diagram in Figure 5-4 shows that when the GETLOAN service replies in a timely
manner, the WEBHOME program continues execution before the timeout value is met. The right
diagram in Figure 5-4 shows that the timeout value is reached during the suspend of the
FETCH CHILD command. This process enables the WEBHOME program to regain control and
ultimately to complete (albeit without the GETLOAN service reply) within its response time SLA.
Note also in the right diagram in Figure 5-4 that the GETLOAN service execution is unaffected
by the timeout specified on the FETCH CHILD command, so there is no need to add extra logic
to it to handle this case.
70 IBM CICS Asynchronous API: Concurrent Processing Made Simple

5.4 Summary

The response time savings of the prior chapters made it possible for the web banking
example to be enhanced with new features. A new business opportunity, in the form of
upselling the company’s line of personal loans, required an update to the web banking
example. However, maintaining customer satisfaction is still a key goal.

Due to the personalization requirements, the application update involved running a new child
task that did not run concurrently with any other child tasks from the parent. Rather than
relinquishing control by using a LINK, the example harnessed a RUN TRANSID command to
maintain control and to act as a good-practice model for similar business opportunities in
future.

The response time of the new service provider proved to be unreliable. On some occasions
the provider responded in a timely manner, but in other instances it exceeded the SLA goal for
the application.

The decision was made to consume the result if it responds in time or to abandon the venture
if it takes too long. This method was achieved by using the TIMEOUT parameter on the FETCH
CHILD command and FETCH ANY commands. The TIMEOUT parameter allows a parent to signify
the length of time it is willing to wait for a response from a child task.

Using the CICS asynchronous API resulted in producing a robust application that met its
response time SLA, despite calling an unreliable service.

If you’ve read this chapter and would like to experiment further, the completed code for the
scenario can be found in Chapter 5 End Tag.

Tip: The GETLOAN service is coded to randomly return in 4 or 7 seconds. To force a timeout
(or non-timeout) condition in the WEBHOME program or just to experiment with the FETCH
command timeout behaviour, you can alter the timeout value to read in from the TS queue.
Specify the timeout, in milliseconds, by issuing the following command in CICS (for
example, setting a 9-second timeout in the WEBHOME program, and the GETLOAN child will not
time out):

CECI WRITEQ TS QUEUE('LTIMEOUT') FROM('9000') ITEM(1) REWRITE

Alternatively, the following example sets a 1-second timeout in the WEBHOME program, and
the GETLOAN child will always time out:

CECI WRITEQ TS QUEUE('LTIMEOUT') FROM('1000') ITEM(1) REWRITE
Chapter 5. Developing robust applications with unreliable service providers 71

https://github.com/cicsdev/cics-async-api-redbooks/releases/tag/end-of-5

72 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Chapter 6. Creating a Java-based controller
in a mixed-language environment

Thus far, this book has discussed the CICS asynchronous API in languages that make use of
the EXEC CICS API, such as Common Business Oriented Language (COBOL). However,
because CICS is a multi-language application server and one of those languages is Java, it is
fitting that the scenarios in this book include a Java class library for CICS (JCICS) variant of
the application programming interface (API). This variant allows a Java program in CICS to
start another CICS task asynchronously and later collect the results of that child task. The
child task can run programs written in any language CICS supports, such as COBOL,
assembler, PL/I, C, and so on. Using channels and containers, these programs can receive
data from, and pass data back to, the Java parents.

During development of the API, a standard Java approach was decided upon, making use of
Java’s Future interface, which is part of the java.util.concurrent package. Thus, any Java
programmer who is familiar with the interface will understand the process. In addition, this
approach allows any code written against this standard interface to work here. The CICS
asynchronous API is particularly useful where existing business logic is used, which was
written in languages supported in CICS other than Java. The API is supported within the IBM
WebSphere® Liberty and Open Service Gateway Initiative (OSGi) runtimes when running in
CICS.

This chapter explains Java-specific technology that is required for an understanding of the
CICS asynchronous API, the mechanics of the Future interface, and generics. It then
describes the new classes that are used to enable the full CICS asynchronous API in Java.
Finally, a scenario converts the WEBHOME program written in COBOL in Chapter 5, “Developing
robust applications with unreliable service providers” on page 55 to present a Liberty-based
web front end, while utilizing existing business logic written in COBOL.

The code in the example continues in 6.3, “Providing a web front end for the web banking
application” on page 80 and is provided on GitHub.

6

© Copyright IBM Corp. 2017. All rights reserved. 73

https://github.com/cicsdev/cics-async-api-redbooks

6.1 Making promises about the future

The key to this Java implementation lies in the adoption of a standard Java interface, which
comes with the Java virtual machine (JVM) itself, java.util.concurrent.Future (referred to
as Future throughout this chapter). Future objects in Java are used to perform asynchronous
activities. The CICS implementation allows those activities to be implemented in any
programming language that is supported by CICS. The basic idea is that a task is
performed—say, a method is invoked—to start an asynchronous workload. (This method by
definition does not block the thread that invoked it.) The return type of this method is the
Future interface, indicating to the programmer in the future I promise to return a value. You
get to hold on to the Future and can exchange it later for the real value that you want. In Java,
generics are employed here too, so that you know at compile time what the promised value’s
type will be, as illustrated in Figure 6-1.

Figure 6-1 Java Futures and generics

Java’s way of delivering this mechanism is to provide an interface, such that anyone wanting
to make use of the interface has to provide an implementation that is fixed to that contract.
The CICS asynchronous API provides an implementation of Future called CICSFuture. This
implementation starts the asynchronous workload as a child task in the system, as usual,
such that it’s managed entirely by the CICS dispatcher.

To start a child task, you normally use the RUN TRANSID command. The Java equivalent of this
command is as follows:

Future<ChildResponse> runTransactionId(String transactionId, Channel channel)

Note: The concept of a child token, as returned by the EXEC CICS RUN TRANSID command,
is encapsulated in the CICSFuture, so a Java programmer doesn’t need to manage it.
74 IBM CICS Asynchronous API: Concurrent Processing Made Simple

In this command, the second parameter, channel, is optional. If passed, this parameter is a
standard JCICS Channel object in the com.ibm.cics.server package. You can store the
return value of this method in a variable. Now that you have the promise of a result in the
future, you can carry on with your work, knowing that you’ve started the child task. When
you’re interested in the results from the child task, you have the following choices:

� Check whether the child is back with results (mapping to the FETCH CHILD NOSUSPEND
command):

boolean Future.isDone()

This method does not block but instead gives you a boolean value in return to tell you
whether or not the child has completed. (Though, not only if the child has completed
successfully. The child might have abended, and this method still returns true.) If the child
task has yet to end, the method returns false.

� Block and wait for the child to return, if it hasn’t already done so (mapping to the FETCH
CHILD command):

ChildResponse Future.get()

This blocks until a result is returned from the child. When such a result is returned, it is in
the form of a ChildResponse object. This result encapsulates the possible returned
objects:

– The completion status of the child
– A Channel object, if the child returned a channel
– An abend code, if the child abended

Notice that this returned type matches with the generic type stated in the method
signature of runTransactionId().

The get() method also supports timeout, as the FETCH CHILD command does. To make
use of this function, pass the method a long value and its time unit. For example, invoke
get(1, TimeUnit.SECONDS) on a Future object to block until the result comes back, for a
maximum of 1 second. The TimeUnit parameter is a built-in Java class in the
java.util.concurrent package and has several enum values that are related to time
duration, such as MILLISECONDS, SECONDS, MINUTES, and so on.

Table 6-1 describes the meaning of the exceptions that can be thrown by Future.get().
InterruptedException is never thrown by the CICSFuture implementation, because there is
no mechanism to interrupt a CICS task that’s externalized beyond the CICS run time.
However, it is required to be a possible Exception due to the Future contract.

Table 6-1 Objects that can be returned or thrown by Future.get()

Note: The CICSFuture implementation that is provided also must support the
isCancelled() and cancel() methods, given that the Future interface requires them. The
method names suggest that the CICS task can be cancelled but the CICS asynchronous
API does not allow the cancelling of a CICS task. Because neither of these operations are
supported by the CICS asynchronous API, both methods throw
UnsupportedOperationException.

Class Description

ChildResponse The returned object encompassing all the
information that can be returned by a child
task.

java.lang.InterruptedException Never thrown by CICSFuture.
Chapter 6. Creating a Java-based controller in a mixed-language environment 75

This Future interface is the core mechanism behind the CICS asynchronous API in Java. The
next section looks at the classes and methods that make up the Java implementation of the
CICS asynchronous API in full, before continuing sections convert the WEBHOME program from
Chapter 5, “Developing robust applications with unreliable service providers” on page 55 to
Java.

6.2 CICS asynchronous API classes and methods

The first part of this section steps through a specific “golden-path” example. It shows in detail
how to start a child task and collect any results it returns. The remainder of the section covers
other methods that can be used.

6.2.1 A golden-path scenario

This scenario starts a child task and then collects its results. It uses the AsyncService and
Future interfaces. Table 6-2 shows the concrete classes and their interfaces that are used in
this section and throughout this chapter. All classes except Future are in the
com.ibm.cics.server package. The API defines interfaces for each concrete class for the
following reasons:

� To make changes to the implementation while fixing the defined contract provided to Java
developers.

� To make mocking of objects easier and to ease testing.

Table 6-2 Classes that make up the Java implementation of the CICS asynchronous API

To start a new child task from a Java parent program, create a new instance of
AsyncServiceImpl, and invoke the runTransactionId() method. This method is overloaded,
such that a Channel can be optionally passed as an argument, but for now start a named
transaction by passing that transaction name as the method’s argument, as shown in
Example 6-1.

Example 6-1 Invoking the runTransactionId() method

AsyncService async = new AsyncServiceImpl();
Future<ChildResponse> child = null;
try
{
 child = async.runTransactionId("ABCD");
}
catch (InvalidRequestException e)
{

java.util.concurrent.ExecutionException The child task has already been freed or the
timeout value is invalid.

java.util.concurrent.TimeoutException Only thrown by get(long timeout, TimeUnit
unit). The child has not yet finished.

Concrete class Interface

AsyncServiceImpl AsyncService

ChildResponseImpl ChildResponse

CICSFuture java.util.concurrent.Future
76 IBM CICS Asynchronous API: Concurrent Processing Made Simple

 System.out.println("Invalid request");
}
catch (InvalidTransactionIdException e)
{
 System.out.println("Invalid transaction");
}
catch (NotAuthorisedException e)
{
 System.out.println("Not authorised");
}
catch (ResourceDisabledException e)
{
 System.out.println("disabled transaction error");
}

On the first line, a new instance of AsyncServiceImpl is created, called async. This instance is
required to call its methods. It is a stateless object, so it can be used multiple times within
your CICS programs. The fewer stateless objects the better though, if for nothing more than
tidiness of code. Next, create a variable to hold the Future information from the child. Then,
start the child task by invoking runTransactionId() and passing the method the transaction
name as a String. The method can throw a number of exceptions, as detailed in Table 6-3.

Table 6-3 Objects that can be returned or thrown by AsyncService.runTransactionId()

To keep things simple here, write messages to the system log. The runTransactionId()
method returns as soon as the new CICS task starts, almost immediately in a healthy system,
so this Java program can now run any further logic that can be run concurrently with the child
task. This basic example immediately fetches the child’s response. To do this, use the
Future.get() method against the child variable. Given that runTransactionId() returns the
Future<ChildResponse> type, the return type of child.get() is of type ChildResponse.
Because in this basic example the variable is used only inside the try block, declare response
within the block, as shown in Example 6-2.

Example 6-2 Fetching the child’s response

try
{
 ChildResponse response = child.get();
 if (response. getCompletionStatus().equals(CompletionStatus.NORMAL))
 {
 System.out.println("Child completed normally”);

Class Description

Future The return type: a Future object with a promise
to deliver a ChildResponse object.

InvalidRequestException The started transaction is not shutdown-enabled.
The CICS region is in the process of shutting
down, or this method was run during transaction
termination.

InvalidTransactionIdException The transaction identifier specified is not defined
to CICS or is defined as remote.

NotAuthorisedException The user who is associated with the issuing task
is not authorized to run the child task.

ResourceDisabledException The specified transaction is disabled.
Chapter 6. Creating a Java-based controller in a mixed-language environment 77

 }
}
catch (InterruptedException e)
{}
catch (ExecutionException e)
{
 System.out.println("Child execution problem");
}

The two possible Exceptions are caught, and as before, a message is printed to the log only
if one is thrown.

Taking a deeper look into the ChildResponse interface, it holds the following methods:

� CompletionStatus getCompletionStatus()
� String getAbendCode()
� Channel getChannel()

CompletionStatus is itself an enum, with the following possible values:

� NORMAL
� ABEND
� SECERROR

When a child task returns to its parent, you are guaranteed to have one of those possible
states returned, and so getCompletionStatus() always returns a non-null value. If the child
returns in a normal manner, getCompletionStatus() returns CompletionStatus.NORMAL. If the
child abends, the method returns CompletionStatus.ABEND. The third possible state is
unusual, but possible. The user security context is flowed from the parent task to the child
task. Security checks occur in two places: as a child task is requested to be run, and just as
the task is starting. If the CICS region is configured to not cache responses from the security
manager, there is a small timing window where the first security check could pass, but the
second could fail, causing the child task to not start. In this case, it’s not truly an abend
because the user program didn’t actually start, so CompletionStatus.SECERROR is returned.

If the child abended, getAbendCode() returns the abend code as a String. If there was no
abend, null is returned. Finally, if the child returns a channel, getChannel() returns a JCICS
Channel object. Note that due to the mechanisms within the asynchronous API, to receive a
channel from a child, you must have passed one in the first place.

In the example, if the completion status is normal, a message is printed to the log to say as
much.

6.2.2 Additional methods: getAny() and freeChild()

Now that you’ve seen in detail how to start a child task and fetch its results, this section
provides details about the following methods:

� AsyncService.getAny()
� AsyncService.freeChild()

The first method is straightforward. It maps to the FETCH ANY command. It’s overloaded such
that it can be invoked in the following ways:

� ChildResponse getAny()
� ChildResponse getAny(BlockingAction blockingAction)
� ChildResponse getAny(long timeout, TimeUnit unit)
78 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Each way returns a ChildResponse object, as with CICSFuture.get(). The equals() method
is implemented here too, so you can compare a ChildResponse object to a Future object
(backed by a CICSFuture implementation) to determine which child it was that returned.

The first getAny() method in this list blocks indefinitely, until any child previously started by
that task returns.

If you want to effectively use the FETCH ANY NOSUSPEND command from within a Java program,
getAny(BlockingAction) is the method to use. The parameter, BlockingAction, is an enum
with possible values SUSPEND, NOSUSPEND. Specifying SUSPEND recreates the behavior of
getAny() but is more explicit. Specifying NOSUSPEND simply checks whether a child task has
returned and, if so, returns a ChildResponse object. If no child has returned, an Exception is
thrown. You can statically import BlockingAction.NOSUSPEND to be able to use it naturally as
shown in the following command:

import static com.ibm.cics.server.AsyncService.BlockingAction.NOSUSPEND;
…
async.getAny(NOSUSPEND);

Finally, a third overloaded method is available: getAny(long timeout, TimeUnit unit). This
method mirrors Future.get(long timeout, TimeUnit unit) and allows the invoking Java
thread to be blocked until a child returns or until the timeout is hit, whichever is first. Table 6-4
documents the Exceptions that can be returned by the getAny() methods.

Table 6-4 Objects that can be returned or thrown by AsyncService.getAny()

Finally, the AsyncService.freeChild() method is the overloaded method, which maps to the
FREE CHILD command and can be passed a representation of a child task in the form of a
ChildResponse or a Future (backed by a CICSFuture implementation). This process allows
the invocation to take place before a child task returns and frees the CICS memory object that
represents the specified child. Furthermore, when freed, getAny() no longer returns that
child, and Future.get() against that specific child fails.

Note: Child tokens are persisted across link levels, so it’s possible for a COBOL program to
start a child task, link to a Java program, and then issue getAny() and have the child return
despite it not being started by the Java program.

Class Description

ChildResponse Object representing the results of the first
returned child task.

InvalidRequestException The parent has no children.

NotFinishedException Only thrown by getAny(long timeout, TimeUnit
unit) and getAny(BlockingAction
blockingAction). No children have completed.

NotFoundException No unfetched children were found.
Chapter 6. Creating a Java-based controller in a mixed-language environment 79

Table 6-5 lists the objects that can be returned by this method. The method frees only the
CICS memory object that represents the specified child and does not garbage collect any
ChildResponse object in the Java heap.

Table 6-5 Objects that can be returned of thrown by AsyncService.freeChild()

Thus far, this chapter has covered most of the Java implementation of the CICS
asynchronous API. The next section turns to a real-world example and continues the scenario
built throughout this book.

6.3 Providing a web front end for the web banking application

This section continues the example built over the last few chapters. In this scenario, the
parent program, WEBHOME.cbl, works well, but the company decides it requires a web-based
front end for the system. There’s a high cost in rewriting all the logic, so the company wants to
reuse any code possible. Thus, this scenario uses the existing parent program, WEBHOME.cbl,
and writes it in Java. In this manner, by taking advantage of Liberty in CICS and its support of
JavaServer Pages (JSP), it is possible to quickly reach a working solution, while continuing to
use the child programs written in COBOL.

6.3.1 Project setup

To make use of the Java classes described, you need to use IBM CICS Explorer® v5.4 or
later. Using Explorer, follow these steps to set up the project:

1. Select File → New to create a new Dynamic web project. Call this project
AccountServices.

By default this project will be the context root that Liberty uses in the URL for the resulting
web content. You want to be able to deploy this project to a CICS Liberty server, and to do
that you create two CICS bundles—one for the Liberty server and one for this project. (It’s
useful to be able deploy the server independently to the content it serves.) To read more
about how to use and deploy Liberty application server in CICS, see IBM CICS and
Liberty: What You Need to Know, SG24-8335. After you define the Liberty server, a
JVMSERVER resource is named.

2. Create a new CICS Bundle project and add a Dynamic web project includes resource.

Choose the dynamic web project that you created earlier, and name the JVMSERVER to
deploy it to.

3. Deploy this CICS Bundle project holding the Dynamic web project with the front-end logic
you’re about to write to z/OS file system (zFS).

After deployment, you can install the bundle into the CICS region in the usual manner.

Class Description

void No response is returned.

InvalidRequestException The Future or ChildResponse object does not
represent a valid child.
80 IBM CICS Asynchronous API: Concurrent Processing Made Simple

6.3.2 Program architecture

Complete the following steps:

1. Under the WebContent folder in your Dynamic web project, create a index.jsp file.

This file presents a log in box for the customer to enter the customer account number and,
in a fully-developed application, holds the authentication logic (see Figure 6-2 on
page 81). For this example, keep it simple, and forward the entered customer number to
the program to fetch the account details and other information.

2. Enter the HTML in the index.jsp file as shown in Example 6-3.

Example 6-3 The index.jsp file

<h2>log on</h2>
<p>Please enter your customer number.</p>
<form action="CustomerAccounts.jsp" method="GET">
<input type="text" name="customer">

<input type="submit" value="Submit">

Clicking submit on this page makes a request to
CustomerAccounts.jsp?customer={number} as shown in Figure 6-2.

Figure 6-2 Log in page presented by Liberty

Cascading Style Sheets (CSS) are added to the file to make the page look more
presentable. (See the GitHub repository for more information).

3. Adjacent to index.jsp, create a new file called CustomerAccounts.jsp.

This file generates the HTML to present the customer account details and loan quote,
which is the information that the WEBHOME program returns currently. You can write the
HTML later, but for now write the logic to create the actual Java objects making the calls to
the child programs.

4. Enter the code shown in Example 6-4 to CustomerAccounts.jsp.

Example 6-4 CustomerAccounts.jsp

<%@page import="banking.CustomerAccounts"%>
<%@page import="java.util.Map"%>
<%
 String customer = request.getParameter("customer");
 if (customer == null)
Chapter 6. Creating a Java-based controller in a mixed-language environment 81

https://github.com/cicsdev/cics-async-api-redbooks/tree/end-of-6/web-banking/etc/AccountServices

 {
 customer = "9999";
 }
 CustomerAccounts accountsPage = new CustomerAccounts(customer);
 Map<String, String> content = accountsPage.getContent();
%>

This code alludes to the fact that you are about to create a Java class, CustomerAccounts,
in a package called banking, which is the parent program that calls the child programs.
CustomerAccounts.jsp is just the visual front to this program. The code shown in
Example 6-4 gets the customer parameter from the URL, checks whether it’s actually
present (and if not sets a default), and then creates a new instance of the
CustomerAccounts class to pass the customer number to its constructor. The next section
explains how this class works.

6.3.3 Writing the main program logic

The heart of the solution is the CustomerAccounts class in a package called banking in the
src directory. Create the Java file with the constructor shown in Example 6-5.

Example 6-5 CustomerAccounts class and constructor

public class CustomerAccounts
{
 private byte[] accountNumber;
 public static String CODEPAGE = "CP037";
 public CustomerAccounts(String accountNumber)
 {
 try
 {
 // Ensure that the account number is 4 digits in length
 this.accountNumber =
 String.format("%04d", Integer.parseInt(accountNumber)).getBytes(
 CODEPAGE);
 }
 catch (UnsupportedEncodingException e)
 {
 e.printStackTrace();
 }
 }
}

The constructor takes the account number as a String and converts it to a byte array that
represent the string in an EBCDIC code page. The number is converted because the account
number is passed to the program GETNAME.cbl, which expects the account number to be in
that binary format. Because GETNAME.cbl also expects the account number to be 4 digits in
length, left-padded with zeros, use String.format() to ensure this. (This process requires
you to quickly convert the account number String to an Integer, before getting the string’s
bytes.)

Setup: Getting content from the child tasks
Now that you have a new instance of CustomerAccounts, you need to write the logic to invoke
the child programs. The first thing that WEBHOME.cbl does is put the account number in a
container on a channel that is passed to all the child programs. Create a new method to this
82 IBM CICS Asynchronous API: Concurrent Processing Made Simple

class, getContent(), that can be invoked to return a Map that consists of the different details
that the child programs return. The contents of this map can then be used when rendering the
accounts page.

Add the method shown in Example 6-6 to CustomerAccounts.java.

Example 6-6 The getContent() method

public Map<String, String> getContent()
{
 final String accountPartnerTran = "PTNR";
 final String getCustomerNameTran = "GETN";
 final String getCurrentAccountTran = "ACUR";
 final String getLoanTran = "GETL";
 final String inputContainer = "INPUTCONTAINER";
 Channel myChannel = null;
 Set<Future<ChildResponse>> childTasks = HashSet<Future<ChildResponse>>();
 AsyncService async = new AsyncServiceImpl();
 Map<String, String> returnContent = new HashMap<String, String>();
 Task t = Task.getTask();
 try
 {
 myChannel = t.createChannel("MYCHANNEL");
 myChannel.createContainer(inputContainer).put(accountNumber);
 }
 catch (ChannelErrorException | ContainerErrorException
 | InvalidRequestException | CCSIDErrorException
 | CodePageErrorException e)
 {
 e.printStackTrace();
 }
}

This method starts by defining some String variables to hold the transaction and container
names that make the later code more readable. It also creates a Channel type variable and a
Set to hold child tasks (to be fully explained later) and creates a new instance of
AsyncServiceImpl in variable async. This variable holds the methods, such as
runTransactionId(), to start child tasks. Finally, getContent() returns a Map<String,
String> object, so that you can create a variable returnContent of the same type, to which
you can add the returned details from each child program.

Note how this method creates a channel (by creating it against the current task) before
creating the input container with the byte array account number inside it. These methods can
return a number of channel and container-related exceptions. More generally it’s a good idea
to deal with these exceptions properly, but here, to reduce printed code, just have a stack
trace printed if one is thrown.

Starting the child tasks asynchronously
Next, three child tasks are started from WEBHOME.cbl to get the following information:

� Partner account details
� The customer’s name
� Current account details
Chapter 6. Creating a Java-based controller in a mixed-language environment 83

To start the child tasks:

1. Add the code shown in Example 6-7 for the partner account details.

Example 6-7 Partner account details

Future<ChildResponse> accountPartner = null;
try
{
 accountPartner = async.runTransactionId(accountPartnerTran, myChannel);
}
catch (InvalidRequestException | InvalidTransactionIdException
 | ChannelErrorException | NotAuthorisedException
 | ResourceDisabledException e)
{
 e.printStackTrace();
}
childTasks.add(accountPartner);

To explain Example 6-7, we first create a variable, accountPartner, to store the Future
object that you are about to have returned. Within the try block, invoke
runTransactionId() and pass the partner account transaction PTNR and the Channel that
you just created. This channel, which contains the input container, is copied to the child
program. Additionally, because you passed a channel, you can also receive a channel on
a future get() or getAny() invocation. Also add this Future object to the childTasks set.
Then, you can perform operations easily over all child tasks (as explained in the next
section).

2. Repeat this code twice for the next two child tasks, with the customerName and
currentAccount variables.

Collecting results from the three child tasks
The next thing that WEBHOME.cbl does is issue the FETCH ANY command within a loop, looping
three times, to get the results from all three child tasks. Because the order in which these
child tasks return is indeterminate (because there is no guarantee how long each one will
take to run), you have to check which child’s results was returned each time, and then run
particular logic for each child.

Enter the code shown in Example 6-8 to perform this logic.

Example 6-8 Collect results from the three child tasks

ChildResponse anyResponse = null;
Iterator<Future<ChildResponse>> childIterator = childTasks.iterator();
while (childIterator.hasNext())
{
 try
 {
 anyResponse = async.getAny();

 if (anyResponse.equals(customerName))
 {
 returnContent.put("name",
 decodeContainerBytes(anyResponse, "GETNAMECONTAINER"));
 }
 else if (anyResponse.equals(currentAccount))
 {
 BankAccounts currentAccounts =
84 IBM CICS Asynchronous API: Concurrent Processing Made Simple

 new BankAccounts(anyResponse.getChannel()
 .getContainer("ACCTCURRCONT").getNoConvert());

 returnContent.put("current-accounts", currentAccounts.htmlRows());
 }
 else if (anyResponse.equals(accountPartner))
 {
 BankAccounts partnerAccounts =
 new BankAccounts(anyResponse.getChannel()
 .getContainer("ACCTPTNRCONT").getNoConvert());

 returnContent.put("partner-accounts", partnerAccounts.htmlRows());

 }
 else
 {
 System.out.println("*** Unknown child fetched ***");
 }
 }
 catch (InvalidRequestException | NotFoundException
 | ContainerErrorException | ChannelErrorException
 | CCSIDErrorException | CodePageErrorException e)
 {
 e.printStackTrace();
 }

 childIterator.next();
}

The code shown in Example 6-8 on page 84 first creates a variable to hold the ChildResponse
object that is returned from each child task. Then, you can understand why you added the
child task Future objects to a set. You can create an Iterator object from it and use it to loop
through all the child tasks. Then, unlike where the number of children (three) is hard-coded in
the COBOL program, you have no need to and can observe the general preferred practice of
not hard-coding values.

Inside a try block (to catch potential exceptions thrown), the logic invokes async.getAny() to
fetch the first child task’s results. You can then check this response with a set of if statements
to perform logic based on which child returned. ChildResponse has the equals() method
implemented and can be used to compare a ChildResponse to a Future. For example:

anyResponse.equals(customerName))

For each child that is returned, perform particular logic. If the returned child isn’t recognized,
write a message to the log. Finally, to reduce printed code, catch all the exceptions in bulk,
and print a stack trace if any is thrown.

Returning the customer’s name
If the returned child program is GETNAME, perform the following logic:

returnContent.put("name",
decodeContainerBytes(anyResponse, "GETNAMECONTAINER"));

In these commands, the code is simplified by moving some repeated code into the
decodeContainerBytes() method.
Chapter 6. Creating a Java-based controller in a mixed-language environment 85

Define the method shown in Example 6-9 in your class.

Example 6-9 decodeContainerBytes() method

private String decodeContainerBytes(ChildResponse response, String containerName)
{
 byte[] returnValue = null;

 try
 {
 returnValue = response.getChannel().getContainer(containerName).get();
 }
 catch (ContainerErrorException | ChannelErrorException
 | CCSIDErrorException | CodePageErrorException e)
 {
 System.out.println("Container error: " + containerName);
 }

 try
 {
 return new String(returnValue, CODEPAGE).trim();
 }
 catch (UnsupportedEncodingException e)
 {
 e.printStackTrace();
 return null;
 }
}

GETNAME.cbl returns the name of the account holder as an EBCDIC-encoded string of bytes.
decodeContainerBytes() takes the ChildResponse object, finds the container called
GETNAMECONTAINER (in this case), which holds the account holder’s name, and converts its
contents to a Java String. The Container object’s get() method returns a byte array, so you
can create a new String from it (telling it the code page the bytes are in) and also use
String.trim() to remove any whitespace on either side of the account holder’s name.

Finally, within this if block we are inspecting in Example 6-8, add the account holder’s name
to the returnContent Map, against the key name.

Returning the current and partner account details
The other two child tasks return account information with the same data structure. Both
ACCTCURR.cbl and ACCTPTNR.cbl return a binary structure that contains the number of
accounts returned and, for each account, the account number, balance, and overdraft. In
particular, the structure in ACCTCURR.cbl that is returned in a container is shown in
Example 6-10.

Example 6-10 Structure in ACCTCURR.cbl

2 NUMBER-OF-ACCOUNTS PIC S9(4) COMP-5 SYNC VALUE 9.
2 ACCOUNT-DETAILS OCCURS 5 TIMES.
 3 ACCT-NUMBER PIC X(8) VALUE ' '.
 3 BALANCE PIC X(8) VALUE ' '.
 3 OVERDRAFT PIC X(8) VALUE ' '.

Thus, the first two bytes of the structure is the number of accounts. You want to take this
information and convert it to a Java short (which takes up two bytes). The remainder—120
86 IBM CICS Asynchronous API: Concurrent Processing Made Simple

bytes—is the account details for all the accounts for the given customer. These details are in
EBCDIC format. So, like earlier, convert this information to a Java String, noting the correct
code page.

Because all this logic applies for the partner accounts to be returned also, you can create a
BankAccounts class and have two instances of this class—one for the current accounts and
the other for the partner accounts. Follow these steps:

1. Create a new Java class called BankAcounts.java that is adjacent to
CustomerAccounts.java with the fields shown in Example 6-11.

Example 6-11 BankAccounts class

public class BankAccounts
{
public short numberOfAccounts;
private List<List<String>> accounts = new ArrayList<List<String>>();
}

The variable accounts stores the accounts that are returned by each child program as an
ArrayList. Each account in turn is a List of strings, which includes the account number,
balance, and overdraft.

2. Create a constructor that takes the raw bytes from a child’s returned container and
populates these two fields, as shown in Example 6-12.

Example 6-12 BankAccounts constructor

public BankAccounts(byte[] input)
{
 ByteBuffer bb = ByteBuffer.allocate(2);
 bb.put(input, 0, 2);
 numberOfAccounts = bb.getShort(0);

 String details = null;
 try
 {
 details =
 new String(input, 2, 3 * 8 * numberOfAccounts,
 CustomerAccounts.CODEPAGE);
 }
 catch (UnsupportedEncodingException e)
 {
 e.printStackTrace();
 }

 for (short i = 0; i < numberOfAccounts; i++)
 {
 List<String> account = new ArrayList<String>();
 for (int j = 0; j < 3; j++)
 {
 account.add(details.substring((i * 24) + (j * 8),

Note: For brevity in these examples and due to the fairly simple structure, we’ve written our
own class to parse this structure. More generally, you can use IBM Record Generator for
Java to convert generated ADATA files from COBOL copybooks or Assembler DSECTs to
Java classes.
Chapter 6. Creating a Java-based controller in a mixed-language environment 87

https://developer.ibm.com/mainframe/products/record-generator-for-java/
https://developer.ibm.com/mainframe/products/record-generator-for-java/

 (i * 24) + ((j + 1) * 8)).trim());
 }
 accounts.add(account);
 }
}

This constructor performs the following logic:

– Reads the number of accounts returned, creates a ByteBuffer object, and uses it to
create a short.

– Converts the remaining bytes in the input to a String, using the appropriate code page.

– Populates the accounts list by looping over the account details for each account.

– Trims the strings also, because some of them aren’t a full eight bytes of
non-whitespace characters.

Back in CustomerAccounts.getContent()’s loop of reading the responses back from the
children, use the BankAccounts class to parse the returned data.

3. For example, for current accounts, enter the logic shown in Example 6-13.

Example 6-13 Current accounts logic

else if (anyResponse.equals(currentAccount))
{
BankAccounts currentAccounts =
 new BankAccounts(anyResponse.getChannel()
 .getContainer("ACCTCURRCONT").getNoConvert());
returnContent.put("current-accounts",currentAccounts.htmlRows());
}

4. Repeat this logic for partner accounts too.

Within this logic, after you have an instance of BankAccounts, the accounts field is
populated. The logic in Example 6-14 calls a method of this class, htmlRows(), which
takes the accounts and produces an HTML string to format them as table rows, with the
typical <tr><td> structure. For brevity, this method isn’t printed here but is included in the
BankAccounts.java on GitHub.

5. To display this information, update CustomerAccount.jsp to print the information you’ve
gathered so far, as shown in Example 6-14.

Example 6-14 Display customer account information

<p>Hello, <%=content.get("name")%>.</p>
<h2>my accounts</h2>
 <h3>current accounts</h3>
 <table>
 <tr>
 <td>Account number</td>
 <td>Balance</td>
 <td>Overdraft</td>
 </tr>
 <%=content.get("current-accounts")%>
 </table>
 <h3>other accounts</h3>
 <table>
 <tr>
 <td>Account number</td>
88 IBM CICS Asynchronous API: Concurrent Processing Made Simple

https://github.com/cicsdev/cics-async-api-redbooks/blob/end-of-6/web-banking/etc/AccountServices/src/banking/BankAccounts.java#L81-L102

 <td>Balance</td>
 <td>Overdraft</td>
 </tr>
 <%=content.get("partner-accounts")%>
 </table>

The output of this information when run in Liberty is shown in Figure 6-3, styled with some
CSS.

Figure 6-3 Name, current account, and partner account output on the accounts page

Fetching a loan quote if time allows
The logic so far comprises all the information that must be returned for the customer to find
use in the accounts page of the website. However, as with WEBHOME.cbl, you’ll try and fetch a
personalized loan quote if you have time. To do that, use runTransactionId() again to call the
GETLOAN program, and then immediately wait for its results. However, you don’t want to wait
forever, so use a timeout parameter. WEBHOME.cbl reads this timeout value from a Temporary
Storage (TS) queue, but a more Java-like process is to read this value from a properties file.

Follow these steps:

1. Add the following code to the getContent() method, as shown in Example 6-15.

Example 6-15 Additional code to getContent() method

long timeout = 0;
Properties prop = new Properties();
prop.setProperty("timeout", "0");
try
{
 FileInputStream input = new FileInputStream("async.properties");
 prop.load(input);
 if (prop.getProperty("timeout") != null)
 {
 timeout = Long.parseLong(prop.getProperty("timeout"));
 }
Chapter 6. Creating a Java-based controller in a mixed-language environment 89

}
catch (IOException e)
{
 System.out.println("Failed to find or read file async.properties");
}

The timeout property is set to 0 as a default, before loading the properties file and reading
that property from the file. (This scenario sets a default just in case the file cannot be
read.) In this case, the file is read from WORK_DIR, which for Liberty deployed into CICS
using a CICS Bundle is defined in the jvmprofile file within the CICS Bundle.

2. Create the properties file, async.properties, in your Liberty WORK_DIR. Ensure its file
attributes make it readable to the user Liberty is running under.

3. Populate the properties file with the following timeout value:

milliseconds
timeout=50

4. In CustomerAccounts.java, start the child task to get the loan rate, as shown in
Example 6-16.

Example 6-16 Start the child task to get the loan rate

Future<ChildResponse> loanRate = null;
try
{
 loanRate = async.runTransactionId(getLoanTran, myChannel);
}
catch (InvalidRequestException | InvalidTransactionIdException
 | ChannelErrorException | NotAuthorisedException
 | ResourceDisabledException e)
{
 e.printStackTrace();
}

5. Fetch the results from this child, using the timeout parameter shown in Example 6-17.

Example 6-17 Fetch the loan rate

ChildResponse returnedLoanRate = null;
try
{
 returnedLoanRate = loanRate.get(timeout, TimeUnit.MILLISECONDS);
}
catch (InterruptedException | ExecutionException e)
{
 e.printStackTrace();
}
catch (TimeoutException e)
{
 returnContent.put("loan-rate",
 "You could be eligible for great loan rates.");
 return returnContent;
}

If the child task doesn’t end soon enough, a TimeoutException is thrown. In which case,
you didn’t manage to fetch a personalized loan rate, but you can at least return some
generic text so that the web page doesn’t have an empty spot. If there was no Exception
90 IBM CICS Asynchronous API: Concurrent Processing Made Simple

thrown, however, you know that the child task did complete in time. In which case, you
need to confirm that the child task ended normally and did not abend.

6. Read the loan rate returned in a container, as shown in Example 6-18.

Example 6-18 Read the loan rate

if (returnedLoanRate.getCompletionStatus().equals(CompletionStatus.NORMAL))
{
 returnContent.put("loan-rate",
 "Great news! We've managed to obtain a great interest rate of "
 + decodeContainerBytes(returnedLoanRate, "GETLOANCONTAINER")
 + "% for you.");
}
return returnContent;

You make use of the enum CompletionStatus to confirm the loan rate child task’s normal
return state. In this case, you can store the personalized text for the web page in
returnContent for the given customer. Because the data returned in the container by
GETLOAN is also an EBCDIC string, use the method defined earlier,
decodeContainerBytes(). Finally, return the Map you’ve been building up with content,
returnContent.

You now have everything you need to construct the web page that details the account
information and loan rate in CustomerAccounts.jsp.

6.3.4 Displaying the account details and loan rate

Add the code to CustomerAccount.jsp to print the loan rate (customized or generic) as shown
in Example 6-19.

Example 6-19 Print the loan rate

<h2>need a loan?</h2>
<p><%=content.get("loan-rate")%></p>
<p id="smallprint">
Loan fetched using a timeout value of
 <%=content.get("timeout")%>ms.
</p>

Because async.properties that holds the timeout property value is read when generating
this page, the value read (and used on the get() invocation for the loan rate) is printed in
small print too (just for fun in this example). The right side of Figure 6-4 on page 92 shows
that a short timeout period results in the child task not returning in time, and the generic loan
rate text being printed. If the child task returns before the TimeoutException is thrown, the
personalized loan rate is printed.
Chapter 6. Creating a Java-based controller in a mixed-language environment 91

Figure 6-4 Different loan rate text being displayed, depending on if the child task completed in time.

Finally, Figure 6-5 shows the entire accounts page that is generated, with all the content
fetched from the child tasks.

Figure 6-5 The complete generated accounts page.
92 IBM CICS Asynchronous API: Concurrent Processing Made Simple

6.4 Summary

This chapter described how to make use of the Java variant of the CICS asynchronous API.
The API provides a full implementation of the API, while making it easy to consume for a Java
programmer. As a set of JCICS classes, it runs in the OSGi and Liberty runtimes in CICS.
When used with Liberty, you can now create CICS programs that serve web applications,
while using existing business logic to minimize overall costs. This business logic can be run
asynchronously to reduce load times.

You can find the full source code for the web banking application on GitHub.
Chapter 6. Creating a Java-based controller in a mixed-language environment 93

https://github.com/cicsdev/cics-async-api-redbooks/tree/master/web-banking

94 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Chapter 7. Tips and tricks

This chapter provides techniques that you can use when using the asynchronous API with
CICS applications. It includes the following tips and tricks:

� Trick: Reduce the management burden by running children under a single transaction ID

� Tip: Run existing COMMAREA-based assets asynchronously without changing them

� Tip: Release storage wisely in long-running parent transactions

� Trick: Prevent sets of children from interfering in FETCH ANY logic by using FREE CHILD

� Tip: Check the status of a child without blocking the parent by using the NOSUSPEND
option

� Trick: Process as many children as possible in a a fixed time period

� Tip: Using response-only channels between parent and child transactions

7

© Copyright IBM Corp. 2017. All rights reserved. 95

7.1 Trick: Reduce the management burden by running children
under a single transaction ID

Previous examples have shown parent transaction where each of its children had its own
transaction ID. An asynchronous API application has a single parent transaction and multiple
children. Some of these children can perform similar activities (for example, obtaining
summaries of different bank accounts held by an individual).

If these child applications are deployed conventionally, each child needs its own transaction
ID, which then runs a designated child program. However, the child applications can all run
under the same transaction ID, providing the transaction runs an initial wrapper program that
dynamically picks which child program to link to. Such an application design requires an
architected means for the parent application to convey the child program name to the child
wrapper program.

This design follows this example:

� The parent transaction ID is PRNT, which runs the PARENT program.

� The child transaction ID is ASCH, which runs the ASYNCWP wrapper program.

� The parent program places a container, named CHILD-PROGRAM, on the channel that gets
passed to a child transaction.

� This CHILD-PROGRAM container is extracted from the channel by the child wrapper program
when the child transaction starts.

� The child wrapper program then links to the CHILD-PROGRAM by passing the channel that is
provided by the parent.

� This example then runs two ASCH children that target the CHILD1 and CHILD2 programs.

� Then, the PARENT program runs. To see the code and an explanation of the PARENT
program, go to 7.1.1, “The PARENT program running two different children under the
ASCH child transaction ID” on page 97.

� Then, the ASYNCWP program runs. To see the code and explanation of ASYNCWP program, go
to 7.1.2, “Using the ASYNCWP wrapper program to extract the target child program from a
channel and linking to it” on page 102.

� The CHILD1 and CHILD2 programs run under the ASCH transaction. To see the code and
explanation of this action, go to 7.1.3, “The CHILD1 and CHILD2 child programs running
under the ASCH transaction” on page 103.
96 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Figure 7-1 shows a pictorial representation of this scenario.

Figure 7-1 The PRNT transaction running two different ASCH children

7.1.1 The PARENT program running two different children under the ASCH
child transaction ID

Example 7-1 shows the following information about the DATA DIVISION of the PARENT program:

� Declarations of the CHILD1 and CHILD2 child program names

� The text string that is passed to each child ('REQUEST FROM PARENT')

� The expected responses from the two child tasks

� Declarations to hold two child tokens used on the RUN and FETCH commands

� Declarations to hold two fetched channel names used on the FETCH commands and the
GET CONTAINER commands

After a child is fetched, the response container is extracted using the GET CONTAINER
command. In Example 7-1, the response is expected to be 30-bytes long.

Example 7-1 PARENT program DATA DIVISION

IDENTIFICATION DIVISION.
 PROGRAM-ID. PARENT.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 EXEC-RESP PIC S9(8) COMP.
 01 CONTAINER-FLENGTH PIC S9(8) COMP.
 01 CHILD-TOKENS.
 03 CHILD1-TOKEN PIC X(16).
 03 CHILD2-TOKEN PIC X(16).
 01 CHILD-RESPONSE-CHANNELS.
 03 CHILD1-RESPONSE-CHANNEL PIC X(16).
 03 CHILD2-RESPONSE-CHANNEL PIC X(16).
 01 CHILD-FETCH-STATE.
 03 CHILD-COMPSTATUS PIC S9(8) COMP.
Chapter 7. Tips and tricks 97

 03 CHILD-ABCODE PIC X(4).
 01 CHILD-PROGRAM-NAMES.
 03 CHILD1-PROGRAM-NAME PIC X(8) VALUE 'CHILD1'.
 03 CHILD2-PROGRAM-NAME PIC X(8) VALUE 'CHILD2'.
 01 CHILD-EXPECTED-RESPONSES.
 03 CHILD1-EXPECTED-RESPONSE PIC X(30)
 VALUE 'RESPONSE FROM CHILD1'.
 03 CHILD2-EXPECTED-RESPONSE PIC X(30)
 VALUE 'RESPONSE FROM CHILD2'.
 01 PARENT-REQUEST-TEXT PIC X(30)
 VALUE 'REQUEST FROM PARENT'.
 01 OPERATOR-MESSAGE PIC X(30)
 VALUE 'CHILD1 AND CHILD2 SUCCESSFUL'.
 01 CHILD1-RESPONSE-POINTER POINTER.
 01 CHILD1-RESPONSE-LENGTH PIC S9(8) COMP.
 01 CHILD2-RESPONSE-POINTER POINTER.
 01 CHILD2-RESPONSE-LENGTH PIC S9(8) COMP.
 LINKAGE SECTION.
 01 CHILD1-RESPONSE PIC X(30).
 01 CHILD2-RESPONSE PIC X(30).

Example 7-2 shows the following information about the PARENT program’s main routine section
and its two RUN CHILD sections:

� The main routine calls the two RUN CHILD sections.

� The main routine then fetches the responses from the two children.

� The PARENT then terminates after sending a text message to the terminal operator.

� The channel created for each child contains a CHILD-PROGRAM container (used by the child
wrapper program) and a child specific container used by the child business logic program
(CHILD1-REQ and CHILD2-REQ).

� Each child runs as a ASCH transaction.

Example 7-2 The PARENT program main routine section plus RUN CHILD sections

PROCEDURE DIVISION.

** Main routine *

 Main-Routine section.
 *
 PERFORM RUN-CHILD1-WITH-CHANNEL
 PERFORM RUN-CHILD2-WITH-CHANNEL
 PERFORM FETCH-CHILD1
 PERFORM FETCH-CHILD2
 EXEC CICS SEND TEXT FROM(OPERATOR-MESSAGE) ERASE

 FREEKB RESP(EXEC-RESP) END-EXEC
 EXEC CICS RETURN END-EXEC.
 Main-Routine-End. EXIT.

*** **
RUN-CHILD1-WITH-CHANNEL *

 RUN-CHILD1-WITH-CHANNEL section.
98 IBM CICS Asynchronous API: Concurrent Processing Made Simple

 *
 EXEC CICS PUT CONTAINER('CHILD-PROGRAM')
 CHANNEL('CHILD1')
 FROM(CHILD1-PROGRAM-NAME)
 FLENGTH(LENGTH OF CHILD1-PROGRAM-NAME)
 RESP(EXEC-RESP) END-EXEC
 EXEC CICS PUT CONTAINER('CHILD1-REQ')
 CHANNEL('CHILD1')
 FROM(PARENT-REQUEST-TEXT)
 FLENGTH(LENGTH OF PARENT-REQUEST-TEXT)
 RESP(EXEC-RESP) END-EXEC

 EXEC CICS RUN TRANSID('ASCH') CHANNEL('CHILD1')
 CHILD(CHILD1-TOKEN) RESP(EXEC-RESP)
 END-EXEC.

 RUN-CHILD1-WITH-COMMAREA-END. EXIT.

** RUN-CHILD2-WITH-CHANNEL *

 RUN-CHILD2-WITH-CHANNEL section.
 *
 EXEC CICS PUT CONTAINER('CHILD-PROGRAM')
CHANNEL('CHILD2')
 FROM(CHILD2-PROGRAM-NAME)
 FLENGTH(LENGTH OF CHILD2-PROGRAM-NAME)
 RESP(EXEC-RESP) END-EXEC

 EXEC CICS PUT CONTAINER('CHILD2-REQ')
 CHANNEL('CHILD2')
 FROM(PARENT-REQUEST-TEXT)
 FLENGTH(LENGTH OF PARENT-REQUEST-TEXT)
 RESP(EXEC-RESP) END-EXEC

 EXEC CICS RUN TRANSID('ASCH') CHANNEL('CHILD2')
 CHILD(CHILD2-TOKEN) RESP(EXEC-RESP)
 END-EXEC.

 RUN-CHILD2-WITH-COMMAREA-END. EXIT.

Example 7-3 on page 100 shows the following information about the FETCH-CHILD1 section of
the PARENT program:

� This example fetches the response channel and completion status of CHILD1. If the FETCH
command fails or if CHILD1 completes abnormally, the parent abends with abend code
CH1E.

� After a successful FETCH command, the response container (CHILD1-RESP) is extracted
from CHILD1's response channel. If the CHILD1-RESP container does not exist or if it is the
wrong length, the parent abends with abend code CH1E.

� Finally, the content of the extracted response container is examined. If the content is not
correct, the parent abends with abend code CH1E.
Chapter 7. Tips and tricks 99

Example 7-3 PARENT FETCH-CHILD1 section

** FETCH-CHILD1 *
** *
** FETCH CHILD1'S response channel then extract the *
** response container 'CHILD1-RESP'. Confirm that this *
** container holds the expected text *
** 'RESPONSE FROM CHILD1'. *

 FETCH-CHILD1 section.
 *
 EXEC CICS FETCH CHILD(CHILD1-TOKEN)
 CHANNEL(CHILD1-RESPONSE-CHANNEL)
 COMPSTATUS(CHILD-COMPSTATUS)
 ABCODE(CHILD-ABCODE)
 RESP(EXEC-RESP) END-EXEC

 IF EXEC-RESP NOT EQUAL DFHRESP(NORMAL)
 PERFORM ABEND-CH1E
 END-IF
 IF CHILD-COMPSTATUS NOT EQUAL DFHVALUE(NORMAL)
 PERFORM ABEND-CH1E
 END-IF

 EXEC CICS GET CONTAINER('CHILD1-RESP')
 CHANNEL(CHILD1-RESPONSE-CHANNEL)
 SET(CHILD1-RESPONSE-POINTER)
 FLENGTH(CHILD1-RESPONSE-LENGTH)
 RESP(EXEC-RESP)
 END-EXEC

 IF (EXEC-RESP NOT EQUAL DFHRESP(NORMAL)) OR
 (CHILD1-RESPONSE-LENGTH NOT EQUAL
 LENGTH OF CHILD1-EXPECTED-RESPONSE)
 PERFORM ABEND-CH1E
 END-IF

 SET ADDRESS OF CHILD1-RESPONSE TO
 CHILD1-RESPONSE-POINTER

 IF (CHILD1-RESPONSE NOT EQUAL
 CHILD1-EXPECTED-RESPONSE)
 PERFORM ABEND-CH1E
 END-IF.

 FETCH-CHILD1-END. EXIT.

Example 7-4 mirrors what appears in the FETCH-CHILD1 section shown in Example 7-3.

Example 7-4 PARENT FETCH-CHILD2 section

** FETCH-CHILD2 *
** *
** FETCH CHILD2'S response channel then extract the *
100 IBM CICS Asynchronous API: Concurrent Processing Made Simple

** response container 'CHILD2-RESP'. Confirm that this *
** container holds the expected text *
** 'RESPONSE FROM CHILD2'. *

 FETCH-CHILD2 section.
 *
 EXEC CICS FETCH CHILD(CHILD2-TOKEN)
 CHANNEL(CHILD2-RESPONSE-CHANNEL)
 COMPSTATUS(CHILD-COMPSTATUS)
 ABCODE(CHILD-ABCODE)
 RESP(EXEC-RESP) END-EXEC

 IF EXEC-RESP NOT EQUAL DFHRESP(NORMAL)
 PERFORM ABEND-CH2E
 END-IF
 IF CHILD-COMPSTATUS NOT EQUAL DFHVALUE(NORMAL)
 PERFORM ABEND-CH2E
 END-IF

 EXEC CICS GET CONTAINER('CHILD2-RESP')
 CHANNEL(CHILD2-RESPONSE-CHANNEL)
 SET(CHILD2-RESPONSE-POINTER)
 FLENGTH(CHILD2-RESPONSE-LENGTH)
 RESP(EXEC-RESP)
 END-EXEC

 IF (EXEC-RESP NOT EQUAL DFHRESP(NORMAL)) OR
 (CHILD2-RESPONSE-LENGTH NOT EQUAL
 LENGTH OF CHILD2-EXPECTED-RESPONSE)
 PERFORM ABEND-CH2E
 END-IF

 SET ADDRESS OF CHILD2-RESPONSE TO
 CHILD2-RESPONSE-POINTER

 IF (CHILD2-RESPONSE NOT EQUAL
 CHILD2-EXPECTED-RESPONSE)
 PERFORM ABEND-CH2E
 END-IF.

 FETCH-CHILD2-END. EXIT.

Example 7-5 shows the abend sections used by the PARENT program.

Example 7-5 PARENT ABEND sections

** ABEND-CH1E section - this section never returns *

 ABEND-CH1E section.
 EXEC CICS ABEND ABCODE('CH1E') END-EXEC.
 ABEND-CH1E-END. EXIT.

** ABEND-CH2E section - this section never returns *

Chapter 7. Tips and tricks 101

 ABEND-CH2E section.
 EXEC CICS ABEND ABCODE('CH2E') END-EXEC.
 ABEND-CH2E-END. EXIT.

7.1.2 Using the ASYNCWP wrapper program to extract the target child
program from a channel and linking to it

Example 7-6 shows the following information about the ASYNCWP program, which is the
asynchronous child wrapper program:

� This example extracts the CHILD-PROGRAM container from the channel passed by the parent
transaction. If the container cannot be extracted, abend NOCH is issued.

� The LINK-CHILD-WITH-CHANNEL section obtains the name of the current channel (passed
by the parent), which is saved in CHANNEL-NAME.

� The ASYNCWP program then links to the designated child program by passing the channel
that the parent provided. If the link command fails due to an unknown program for
example, the abend BADC is issued.

� When the designated child program returns, the ASYNCWP program terminates and the child
task completes.

� There is no abend handling logic in the ASYNCWP program. If the designated child program
abends with code XXXX, the child task terminates with that abend code. The XXXX abend
code is then returned as the ABCODE when the parent fetches the child.

Example 7-6 The ASYNCWP wrapper program

IDENTIFICATION DIVISION.
 PROGRAM-ID. ASYNCWP.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 EXEC-RESP PIC S9(8) COMP.
 01 CHILD-PROGRAM PIC X(8).
 01 CHANNEL-NAME PIC X(16).
 LINKAGE SECTION.
 PROCEDURE DIVISION.

** Main routine *

 Main-Routine section.
 *
 EXEC CICS GET CONTAINER('CHILD-PROGRAM')
 INTO(CHILD-PROGRAM)
 FLENGTH(LENGTH OF CHILD-PROGRAM)
 RESP(EXEC-RESP)
 END-EXEC
 IF EXEC-RESP NOT EQUAL DFHRESP(NORMAL)
 PERFORM ABEND-NOCH
 ELSE
 PERFORM LINK-CHILD-WITH-CHANNEL
 END-IF
 *
 EXEC CICS RETURN END-EXEC.
 Main-Routine-End. EXIT.
102 IBM CICS Asynchronous API: Concurrent Processing Made Simple

 ** LINK-CHILD-WITH-CHANNEL section *

** *
** LINK to CHILD-PROGRAM passing the current channel. *
** *
** We expect the child program to be CHANNEL AWARE. *
** It is the responsibility of the child program to place *
** any response container onto the channel which we pass *
** to it. *

 LINK-CHILD-WITH-CHANNEL section.
 EXEC CICS ASSIGN CHANNEL(CHANNEL-NAME)
 RESP(EXEC-RESP)
 END-EXEC
 EXEC CICS LINK PROGRAM(CHILD-PROGRAM)
 CHANNEL(CHANNEL-NAME)
 RESP(EXEC-RESP) END-EXEC
 IF EXEC-RESP NOT EQUAL DFHRESP(NORMAL)
 PERFORM ABEND-BADC
 END-IF.
 LINK-CHILD-WITH-CHANNEL-END. EXIT.

** ABEND-NOCH section - this section never returns *

 ABEND-NOCH section.
 EXEC CICS ABEND ABCODE('NOCH') END-EXEC.
 ABEND-NOCH-END. EXIT.

** ABEND-BADC section - this section never returns *

 ABEND-BADC section.
 EXEC CICS ABEND ABCODE('BADC') END-EXEC.
 ABEND-BADC-END. EXIT.

7.1.3 The CHILD1 and CHILD2 child programs running under the
ASCH transaction

Example 7-7 shows the following information about the CHILD1 program:

� This example extracts the request container (name that is passed by the parent).

� If the request passed by the parent is correct, CHILD1 PUTs its response container onto the
channel in container CHILD1-RESP, and then returns. If the request is not correct, the child
issues the abend BADC.

� The EXEC CICS RETURN command returns to the ASYNCWP program, which also RETURNs.

Example 7-7 Program CHILD1 with container response

IDENTIFICATION DIVISION.
 PROGRAM-ID. CHILD1.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
Chapter 7. Tips and tricks 103

 01 EXEC-RESP PIC S9(8) COMP.
 01 REQUEST-TEXT PIC X(30)
 VALUE 'REQUEST FROM PARENT'.
 01 RESPONSE-TEXT PIC X(30)
 VALUE 'RESPONSE FROM CHILD1'.
 01 REQUEST-AREA PIC X(30).
 LINKAGE SECTION.
 PROCEDURE DIVISION.

** Main routine *

 Main-Routine section.
 *
 EXEC CICS GET CONTAINER('CHILD1-REQ')
 INTO(REQUEST-AREA)
 FLENGTH(LENGTH OF REQUEST-AREA)
 RESP(EXEC-RESP)
 END-EXEC

 IF EXEC-RESP NOT EQUAL DFHRESP(NORMAL)
 PERFORM ABEND-BADC
 END-IF

 IF REQUEST-AREA NOT EQUAL REQUEST-TEXT
 PERFORM ABEND-BADC
 END-IF

 EXEC CICS PUT CONTAINER('CHILD1-RESP')
 FROM(RESPONSE-TEXT)
 RESP(EXEC-RESP) END-EXEC

 EXEC CICS RETURN END-EXEC.

 Main-Routine-End. EXIT.

** ABEND-BADC section - this section never returns *

 ABEND-BADC section.
 EXEC CICS ABEND ABCODE('BADC') END-EXEC.
 ABEND-BADC-END. EXIT.

Example 7-8 shows information about the CHILD2 program:

� This example extracts the request container (name that is passed by the parent).

� If the request passed by the parent is correct, CHILD2 PUTs its response container onto the
channel in container CHILD2-RESP, and then returns. If the request is not correct the child
issues an abend BADC.

� The EXEC CICS RETURN command returns to the ASYNCWP program, which also RETURNs.

Example 7-8 Program CHILD2 with container response

IDENTIFICATION DIVISION.
 PROGRAM-ID. CHILD2.
 ENVIRONMENT DIVISION.
104 IBM CICS Asynchronous API: Concurrent Processing Made Simple

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 EXEC-RESP PIC S9(8) COMP.
 01 REQUEST-TEXT PIC X(30)
 VALUE 'REQUEST FROM PARENT'.
 01 RESPONSE-TEXT PIC X(30)
 VALUE 'RESPONSE FROM CHILD2'.
 01 REQUEST-AREA PIC X(30).
 LINKAGE SECTION.
 PROCEDURE DIVISION.

** Main routine *

 Main-Routine section.
 *
 EXEC CICS GET CONTAINER('CHILD2-REQ')
 INTO(REQUEST-AREA)
 FLENGTH(LENGTH OF REQUEST-AREA)
 RESP(EXEC-RESP)
 END-EXEC

 IF EXEC-RESP NOT EQUAL DFHRESP(NORMAL)
 PERFORM ABEND-BADC
 END-IF

 IF REQUEST-AREA NOT EQUAL REQUEST-TEXT
 PERFORM ABEND-BADC
 END-IF

 EXEC CICS PUT CONTAINER('CHILD2-RESP')
 FROM(RESPONSE-TEXT)
 RESP(EXEC-RESP) END-EXEC

 EXEC CICS RETURN END-EXEC.

 Main-Routine-End. EXIT.

** ABEND-BADC section - this section never returns *

 ABEND-BADC section.
 EXEC CICS ABEND ABCODE('BADC') END-EXEC.
 ABEND-BADC-END. EXIT.
Chapter 7. Tips and tricks 105

7.2 Tip: Run existing COMMAREA-based assets
asynchronously without changing them

The asynchronous API uses a channel to pass state data between a parent and child
program. Channels are more versatile than COMMAREAs (the other main method of passing
state data between programs with CICS). There are circumstances where COMMAREAs
have their uses.

For example, you might be re-deploying an existing COMMAREA-based synchronous
application as an asynchronous API application. Such a re-deployment requires new logic to
run at the parent level as new RUN TRANSID and FETCH commands will be needed. The parent
needs to use a CHANNEL, because this is the only means of passing state data to a child. In
addition, most of the logic that runs under the child need not be changed; however, it will need
to handle a CHANNEL that is passed by the parent.

To avoid a significant re-coding of a COMMAREA-based child application to use channels
and containers, you can use a wrapper program, which runs ahead of the child application.
This wrapper program extracts a COMMAREA from the channel and links to the child
program that is passing the extracted area as a COMMAREA.

This section shows this type of design, which is modelled on the wrapper program design
shown in 7.1, “Trick: Reduce the management burden by running children under a single
transaction ID” on page 96.

This design follows this example:

� The parent transaction ID is PRNT, which runs the PARENT program.

� The child transaction ID is ASCH, which runs ASYNCWP wrapper program.

� The parent places a container named CHILD-PROGRAM on the channel that gets passed to a
child transaction.

� The parent places a container named REQUEST-COMM on the channel that gets passed to a
child transaction, which is the COMMAREA.

� The CHILD-PROGRAM and REQUEST-COMM containers are extracted from the channel by the
child wrapper program when the child transaction starts.

� The child wrapper program then links to the CHILD-PROGRAM, passing the REQUEST-COMM
container contents as a COMMAREA.

� When CHILD-PROGRAM returns to the wrapper program, the response COMMAREA is
placed on the channel as RESPONSE-COMM.

� This example runs two ASCH children, which target the CHILD1 and CHILD2 programs.

� Then, the PARENT program runs. To see the code and an explanation of the PARENT
program, go to 7.2.1, “The PARENT program running two different children under child
transaction ID ASCH passing COMMAREAs to each one” on page 107.

� Then, the ASYNCWP program runs. To see the code and explanation of ASYNCWP program, go
to 7.2.2, “Using the ASYNCWP wrapper program to extract the PROGRAM target child
from channel and linking to it with REQUEST-COMM COMMAREA” on page 112.

� The CHILD1 and CHILD2 programs run under the ASCH transaction. To see the code and
explanation of this action, go to 7.2.3, “The CHILD1 and CHILD2 child programs running
under the ASCH transaction” on page 114.
106 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Figure 7-2 shows a pictorial representation of this scenario.

Figure 7-2 Transaction PRNT running two different ASCH children passing COMMAREAs

7.2.1 The PARENT program running two different children under child
transaction ID ASCH passing COMMAREAs to each one

Example 7-9 shows the following information about the DATA DIVISION of the PARENT program:

� This example includes declarations of the child program names CHILD1 and CHILD2.

� It also contains the text string passed to each child ('REQUEST FROM PARENT')

� It includes the expected responses from the two child tasks.

� There are declarations to hold two child tokens used on the RUN and FETCH commands.

� There are declarations to hold two fetched channel names used on the FETCH commands
and the GET CONTAINER commands.

� After a child is fetched, the response container is extracted using the GET CONTAINER
command. In this example, the request and response for each child is a 60-bytes
COMMAREA.

Example 7-9 PARENT program DATA DIVISION with COMMAREAs

IDENTIFICATION DIVISION.
 PROGRAM-ID. PARENT.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 EXEC-RESP PIC S9(8) COMP.
 01 CONTAINER-FLENGTH PIC S9(8) COMP.
 01 CHILD-TOKENS.
 03 CHILD1-TOKEN PIC X(16).
 03 CHILD2-TOKEN PIC X(16).
 01 CHILD-RESPONSE-CHANNELS.
 03 CHILD1-RESPONSE-CHANNEL PIC X(16).
 03 CHILD2-RESPONSE-CHANNEL PIC X(16).
 01 CHILD-FETCH-STATE.
 03 CHILD-COMPSTATUS PIC S9(8) COMP.
Chapter 7. Tips and tricks 107

 03 CHILD-ABCODE PIC X(4).
 01 CHILD1-COMMAREA.
 03 CHILD1-REQUEST PIC X(30).
 03 CHILD1-RESPONSE PIC X(30).
 01 CHILD2-COMMAREA.
 03 CHILD2-REQUEST PIC X(30).
 03 CHILD2-RESPONSE PIC X(30).
 01 CHILD-PROGRAM-NAMES.
 03 CHILD1-PROGRAM-NAME PIC X(8) VALUE 'CHILD1'.
 03 CHILD2-PROGRAM-NAME PIC X(8) VALUE 'CHILD2'.
 01 CHILD-EXPECTED-RESPONSES.
 03 CHILD1-EXPECTED-RESPONSE PIC X(30)
 VALUE 'RESPONSE FROM CHILD1'.
 03 CHILD2-EXPECTED-RESPONSE PIC X(30)
 VALUE 'RESPONSE FROM CHILD2'.
 01 PARENT-REQUEST-TEXT PIC X(30)
 VALUE 'REQUEST FROM PARENT'.
 01 OPERATOR-MESSAGE PIC X(30)
 VALUE 'CHILD1 AND CHILD2 SUCCESSFUL'.
 LINKAGE SECTION.

Example 7-10 shows the following information about the PARENT program’s main routine
section and its two RUN CHILD sections:

� The main routine calls the two RUN CHILD sections.

� The main routine then fetches the responses from the two children.

� The PARENT program then terminates after sending a text message to the terminal
operator.

� Each child channel is populated with a CHILD-PROGRAM container (used by the child
wrapper program).

� Each child channel also contains a REQUEST-COMM container holding the child
COMMAREA.

� Each child runs as an ASCH transaction.

Example 7-10 PARENT program main routine section plus RUN CHILD COMMAREA sections

PROCEDURE DIVISION.

** Main routine *

 Main-Routine section.
 *
 PERFORM RUN-CHILD1-WITH-COMMAREA
 PERFORM RUN-CHILD2-WITH-COMMAREA
 PERFORM FETCH-CHILD1
 PERFORM FETCH-CHILD2
 EXEC CICS SEND TEXT FROM(OPERATOR-MESSAGE)
 ERASE FREEKB
 RESP(EXEC-RESP) END-EXEC
 EXEC CICS RETURN END-EXEC.
 Main-Routine-End. Exit.

** RUN-CHILD1-WITH-COMMAREA *
108 IBM CICS Asynchronous API: Concurrent Processing Made Simple

 RUN-CHILD1-WITH-COMMAREA section.
 *
 MOVE LOW-VALUES TO CHILD1-COMMAREA
 MOVE PARENT-REQUEST-TEXT TO CHILD1-REQUEST

 EXEC CICS PUT CONTAINER('CHILD-PROGRAM')
 CHANNEL('CHILD1')
 FROM(CHILD1-PROGRAM-NAME)
 FLENGTH(LENGTH OF CHILD1-PROGRAM-NAME)
 RESP(EXEC-RESP) END-EXEC

 EXEC CICS PUT CONTAINER('REQUEST-COMM')
 CHANNEL('CHILD1')
 FROM(CHILD1-COMMAREA)
 FLENGTH(LENGTH OF CHILD1-COMMAREA)
 RESP(EXEC-RESP) END-EXEC

 EXEC CICS RUN TRANSID('ASCH') CHANNEL('CHILD1')
 CHILD(CHILD1-TOKEN) RESP(EXEC-RESP)
 END-EXEC.

 RUN-CHILD1-WITH-COMMAREA-END. EXIT.

** RUN-CHILD2-WITH-COMMAREA *

 RUN-CHILD2-WITH-COMMAREA section.
 *
 MOVE LOW-VALUES TO CHILD2-COMMAREA
 MOVE PARENT-REQUEST-TEXT TO CHILD2-REQUEST

 EXEC CICS PUT CONTAINER('CHILD-PROGRAM')
 CHANNEL('CHILD2')
 FROM(CHILD2-PROGRAM-NAME)
 FLENGTH(LENGTH OF CHILD2-PROGRAM-NAME)
 RESP(EXEC-RESP) END-EXEC

 EXEC CICS PUT CONTAINER('REQUEST-COMM')
 CHANNEL('CHILD2')
 FROM(CHILD2-COMMAREA)
 FLENGTH(LENGTH OF CHILD2-COMMAREA)
 RESP(EXEC-RESP) END-EXEC

 EXEC CICS RUN TRANSID('ASCH') CHANNEL('CHILD2')
 CHILD(CHILD2-TOKEN) RESP(EXEC-RESP)
 END-EXEC.

 RUN-CHILD2-WITH-COMMAREA-END. EXIT.
Chapter 7. Tips and tricks 109

Example 7-11 shows the following information about the FETCH-CHILD1 section of the PARENT
program:

� This example fetches the response channel and completion status of CHILD1. If the FETCH
command fails or if CHILD1 completed abnormally, the parent abends with abend code
CH1E.

� After a successful FETCH command, the COMMAREA response container (RESPONSE-COMM)
is extracted from CHILD1's response channel. If the RESPONSE-COMM container does not exist
or if it is the wrong length, the parent abends with abend code CH1E.

� Finally, the content of the extracted response COMMAREA is examined. If the content is
not correct, the parent abends with abend code CH1E.

Example 7-11 PARENT FETCH-CHILD1 section fetches COMMAREA response

** FETCH-CHILD1 *
** *
** FETCH CHILD1'S response channel then extract the *
** response commarea which is held in container *
** RESPONSE-COMM'. Confirm that the response commarea *
** holds the expected text 'RESPONSE FROM CHILD1'. *

 FETCH-CHILD1 section.
 *
 EXEC CICS FETCH CHILD(CHILD1-TOKEN)
 CHANNEL(CHILD1-RESPONSE-CHANNEL)
 COMPSTATUS(CHILD-COMPSTATUS)
 ABCODE(CHILD-ABCODE)
 RESP(EXEC-RESP) END-EXEC

 IF EXEC-RESP NOT EQUAL DFHRESP(NORMAL)
 PERFORM ABEND-CH1E
 END-IF
 IF CHILD-COMPSTATUS NOT EQUAL DFHVALUE(NORMAL)
 PERFORM ABEND-CH1E
 END-IF

 MOVE LENGTH OF CHILD1-COMMAREA TO CONTAINER-FLENGTH

 EXEC CICS GET CONTAINER('RESPONSE-COMM')
 CHANNEL(CHILD1-RESPONSE-CHANNEL)
 INTO(CHILD1-COMMAREA)
 FLENGTH(CONTAINER-FLENGTH) RESP(EXEC-RESP)
 END-EXEC

 IF (EXEC-RESP NOT EQUAL DFHRESP(NORMAL)) OR
 (CONTAINER-FLENGTH NOT EQUAL
 LENGTH OF CHILD1-COMMAREA)
 PERFORM ABEND-CH1E
 END-IF

 IF CHILD1-RESPONSE NOT EQUAL CHILD1-EXPECTED-RESPONSE
 PERFORM ABEND-CH1E
 END-IF.
FETCH-CHILD1-END. EXIT.
110 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Example 7-12 shows the FETCH-CHILD2 section of the PARENT program. This example mirrors
what displays in the FETCH-CHILD1 section shown in Example 7-11 on page 110.

Example 7-12 PARENT FETCH-CHILD2 section fetches COMMAREA response

** FETCH-CHILD2 *
** *
** FETCH CHILD2'S response channel then extract the *
** response commarea which is held in container *
** RESPONSE-COMM'. Confirm that the response commarea *
** holds the expected text 'RESPONSE FROM CHILD2'. *

 FETCH-CHILD2 section.
 *
 EXEC CICS FETCH CHILD(CHILD2-TOKEN)
 CHANNEL(CHILD2-RESPONSE-CHANNEL)
 COMPSTATUS(CHILD-COMPSTATUS)
 ABCODE(CHILD-ABCODE)
 RESP(EXEC-RESP) END-EXEC

 IF EXEC-RESP NOT EQUAL DFHRESP(NORMAL)
 PERFORM ABEND-CH2E
 END-IF
 IF CHILD-COMPSTATUS NOT EQUAL DFHVALUE(NORMAL)
 PERFORM ABEND-CH2E
 END-IF

 MOVE LENGTH OF CHILD2-COMMAREA TO CONTAINER-FLENGTH

 EXEC CICS GET CONTAINER('RESPONSE-COMM')
 CHANNEL(CHILD2-RESPONSE-CHANNEL)
 INTO(CHILD2-COMMAREA)
 FLENGTH(CONTAINER-FLENGTH) RESP(EXEC-RESP)
 END-EXEC

 IF (EXEC-RESP NOT EQUAL DFHRESP(NORMAL)) OR
 (CONTAINER-FLENGTH NOT EQUAL
 LENGTH OF CHILD2-COMMAREA)
 PERFORM ABEND-CH2E
 END-IF

 IF CHILD2-RESPONSE NOT EQUAL CHILD2-EXPECTED-RESPONSE
 PERFORM ABEND-CH2E
 END-IF.

 FETCH-CHILD2-END. EXIT.

Example 7-13 shows the abend sections used by program PARENT.

Example 7-13 PARENT ABEND sections

** ABEND-CH1E section - this section never returns *

Chapter 7. Tips and tricks 111

 ABEND-CH1E section.
 EXEC CICS ABEND ABCODE('CH1E') END-EXEC.
 ABEND-CH1E-END. EXIT.

** ABEND-CH2E section - this section never returns *

 ABEND-CH2E section.
 EXEC CICS ABEND ABCODE('CH2E') END-EXEC.
 ABEND-CH2E-END. EXIT.

7.2.2 Using the ASYNCWP wrapper program to extract the PROGRAM target
child from channel and linking to it with REQUEST-COMM COMMAREA

Example 7-14 shows the following information about the ASYNCWP program, which is the
asynchronous child wrapper program:

� This extracts the CHILD-PROGRAM container from the channel that is passed by the parent
transaction. If the container cannot be extracted, abend NOCH is issued.

� It then extracts the REQUEST-COMM COMMAREA container from the channel that is passed
by the parent transaction. If the container cannot be extracted, abend NOCO is issued.

� If both containers are present, the LINK-CHILD-WITH-COMMAREA section is called.

Example 7-14 ASYNCWP wrapper program extracting child program name and COMMAREA

IDENTIFICATION DIVISION.
 PROGRAM-ID. ASYNCWP.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 EXEC-RESP PIC S9(8) COMP.
 01 COMMAREA-PTR POINTER.
 01 COMMAREA-LEN.
 03 FILLER PIC S9(4) COMP.
 03 COMMAREA-LINK-LEN PIC S9(4) COMP.
 01 CHILD-PROGRAM PIC X(8).
 01 CHANNEL-NAME PIC X(16).
 LINKAGE SECTION.
 01 CHILD-COMMAREA PIC X(1).
 PROCEDURE DIVISION.

** Main routine *

 Main-Routine section.
 *
 EXEC CICS GET CONTAINER('CHILD-PROGRAM')
 INTO(CHILD-PROGRAM)
 FLENGTH(LENGTH OF CHILD-PROGRAM)
 RESP(EXEC-RESP)
 END-EXEC
 IF EXEC-RESP NOT EQUAL DFHRESP(NORMAL)
 PERFORM ABEND-NOCH
 END-IF

112 IBM CICS Asynchronous API: Concurrent Processing Made Simple

** Get the request commarea out of the passed channel. *
** If there is no commarea issue an abend. *

 EXEC CICS GET CONTAINER('REQUEST-COMM')
 SET(COMMAREA-PTR)
 FLENGTH(COMMAREA-LEN) RESP(EXEC-RESP)
 END-EXEC
 IF EXEC-RESP EQUAL DFHRESP(NORMAL)
 PERFORM LINK-CHILD-WITH-COMMAREA
 ELSE
 PERFORM ABEND-NOCO
 END-IF
 *
 EXEC CICS RETURN END-EXEC.
 Main-Routine-End. EXIT.

Example 7-15 shows the following information about the ASYNCWP program linking to the child
program passing the COMMAREA that is extracted from the channel passed by the parent. It
also shows the abend routines at the end:

� If the link command fails, for example due to an unknown program, an abend BADC is
issued.

� When the child program returns, the ASYNCWP program puts the response COMMAREA
into a RESPONSE-COMM container and the child task completes.

� There is no abend handling logic in the ASYNCWP program. If the designated child program
abends with code XXXX, the child task terminates with that abend code. The XXXX abend
code then returned as the ABCODE when the parent fetches the child.

Example 7-15 ASYNCWP links to child program with request COMMAREA then PUTs response
COMMAREA onto channel

** LINK-CHILD-WITH-COMMAREA section *
** *
** LINK to CHILD-PROGRAM passing the commarea addressed by *
** COMMAREA-PTR, length COMMAREA-LINK-LEN. *
** COMMAREA-LINK-LEN IS THE LOW ORDER 2-BYTES OF *
** COMMAREA-LEN. *
** This code could check that COMMAREA-LEN is within *
** acceptable limits but it currently assumes that the *
** parent task has passed a correct commarea. *

 LINK-CHILD-WITH-COMMAREA section.
 SET ADDRESS OF CHILD-COMMAREA TO COMMAREA-PTR
 EXEC CICS LINK PROGRAM(CHILD-PROGRAM)
 COMMAREA(CHILD-COMMAREA)
 LENGTH(COMMAREA-LINK-LEN)
 RESP(EXEC-RESP) END-EXEC
 IF EXEC-RESP NOT EQUAL DFHRESP(NORMAL)
 PERFORM ABEND-BADC
 END-IF

** Now place the updated commarea onto our channel as *
** container RESPONSE-COMM. *
Chapter 7. Tips and tricks 113

** This can be retrieved by the parent task when it fetches*
** the channel later on. *

 EXEC CICS PUT CONTAINER('RESPONSE-COMM')
 FROM(CHILD-COMMAREA)
 FLENGTH(COMMAREA-LEN)
 RESP(EXEC-RESP) END-EXEC.

 LINK-CHILD-WITH-COMMAREA-END. EXIT.

** ABEND-NOCH section - this section never returns *

 ABEND-NOCH section.
 EXEC CICS ABEND ABCODE('NOCH') END-EXEC.
 ABEND-NOCH-END. EXIT.

** ABEND-NOCO section - this section never returns *

 ABEND-NOCO section.
 EXEC CICS ABEND ABCODE('NOCO') END-EXEC.
 ABEND-NOCO-END. EXIT.

** ABEND-BADC section - this section never returns *

 ABEND-BADC section.
 EXEC CICS ABEND ABCODE('BADC') END-EXEC.
 ABEND-BADC-END. EXIT.

7.2.3 The CHILD1 and CHILD2 child programs running under the ASCH
transaction

Example 7-16 shows the following information about the CHILD1 program:

� If the request COMMAREA passed by the parent is correct, CHILD1 places its response
into the COMMAREA then returns. If the request is not correct, the child issues an abend
BADC.

� The EXEC CICS RETURN command returns to the ASYNCWP program.

Example 7-16 Program CHILD1 with COMMAREA response

IDENTIFICATION DIVISION.
 PROGRAM-ID. CHILD1.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 EXEC-RESP PIC S9(8) COMP.
 01 REQUEST-TEXT PIC X(30)
 VALUE 'REQUEST FROM PARENT'.
 01 RESPONSE-TEXT PIC X(30)
 VALUE 'RESPONSE FROM CHILD1'.
 LINKAGE SECTION.
 01 DFHCOMMAREA.
 03 REQUEST-AREA PIC X(30).
 03 RESPONSE-AREA PIC X(30).

 PROCEDURE DIVISION.
114 IBM CICS Asynchronous API: Concurrent Processing Made Simple

** Main routine *

 Main-Routine section.
 *
 IF EIBCALEN NOT EQUAL LENGTH OF DFHCOMMAREA
 PERFORM ABEND-BADC
 END-IF

 IF REQUEST-AREA NOT EQUAL REQUEST-TEXT
 PERFORM ABEND-BADC
 END-IF

 MOVE RESPONSE-TEXT to RESPONSE-AREA

 EXEC CICS RETURN END-EXEC.

 Main-Routine-End. EXIT.

** ABEND-BADC section - this section never returns *

 ABEND-BADC section.
 EXEC CICS ABEND ABCODE('BADC') END-EXEC.
 ABEND-BADC-END. EXIT.

Example 7-17 shows the following information about the CHILD2 program:

� If the request COMMAREA passed by the parent is correct, CHILD2 places its response
into the COMMAREA and then returns. If the request is not correct the child issues an
abend BADC.

� The EXEC CICS RETURN command returns to the ASYNCWP program.

Example 7-17 Program CHILD2 with COMMAREA response

IDENTIFICATION DIVISION.
 PROGRAM-ID. CHILD2.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 EXEC-RESP PIC S9(8) COMP.
 01 REQUEST-TEXT PIC X(30)
 VALUE 'REQUEST FROM PARENT'.
 01 RESPONSE-TEXT PIC X(30)
 VALUE 'RESPONSE FROM CHILD2'.
 LINKAGE SECTION.
 01 DFHCOMMAREA.
 03 REQUEST-AREA PIC X(30).
 03 RESPONSE-AREA PIC X(30).
 PROCEDURE DIVISION.

** Main routine *

 Main-Routine section.
 *
 IF EIBCALEN NOT EQUAL LENGTH OF DFHCOMMAREA
Chapter 7. Tips and tricks 115

 PERFORM ABEND-BADC
 END-IF

 IF REQUEST-AREA NOT EQUAL REQUEST-TEXT
 PERFORM ABEND-BADC
 END-IF

 MOVE RESPONSE-TEXT to RESPONSE-AREA

 EXEC CICS RETURN END-EXEC.

 Main-Routine-End. EXIT.

** ABEND-BADC section - this section never returns *

 ABEND-BADC section.
 EXEC CICS ABEND ABCODE('BADC') END-EXEC.
 ABEND-BADC-END. EXIT.

7.3 Tip: Release storage wisely in long-running parent
transactions

Asynchronous API applications are usually short lived. CICS automatically cleans up all the
asynchronous API state after both participating transactions (parent and child) terminate.
CICS persists asynchronous API state to allow a parent transaction to fetch response
information from a completed child transaction. This persistence can cause a problem for a
long-running parent that creates large numbers of children. CICS persists asynchronous API
state for each child of the parent. The parent creates a growing memory footprint where each
new child adds to that footprint. A parent transaction can keep this memory footprint under
control by using the FREE CHILD command to free asynchronous API state for children that it is
no longer interested in.

An additional consideration for a long-running parent is cleanup of fetched channels. The
FREE CHILD command ensures that an unfetched child channel gets deleted. However, if a
child channel is fetched, it is owned by the fetching parent program. It is, therefore, the
responsibility of that parent program to delete the channel.

Example 7-18 on page 117 shows pseudocode that demonstrates how a long-running parent
should use the FREE CHILD command to free redundant child state referenced by a child
token. This example uses the following information:

� The logic to generate the REQUEST data and consume the RESPONSE data is omitted in this
example.

� A long-running parent that created collections of children might well use FETCH ANY
command to fetch the next available child response rather than the FETCH CHILD
command.

� In addition to using the FREE CHILD command, the parent uses DELETE CHANNEL command
to delete the fetched channel.
116 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Example 7-18 Long running parent pseudocode

DO FOREVER;
 …….
 EXEC CICS PUT CONTAINER(‘CHLD-REQUEST’)
 FROM(REQUEST)
 EXEC CICS RUN TRANSID(‘CHLD’)
 CHANNEL(‘CHLD-CHANNEL’)
 CHILD(CHLD-TOKEN)
 EXEC CICS FETCH CHILD(CHLD-TOKEN)
 COMPSTATUS(COMPSTAT)
 CHANNEL(FETCHED-CHANNEL)
 EXEC CICS GET CONTAINER(‘CHLD-RESPONSE’)
 CHANNEL(FETCHED-CHANNEL)
 INTO(RESPONSE)
 …….
 EXEC CICS FREE CHILD(CHLD-TOKEN)
 EXEC CICS DELETE CHANNEL(FETCHED-CHANNEL)
END-DO;

7.4 Trick: Prevent sets of children from interfering in
FETCH ANY logic by using FREE CHILD

This section shows a technique where a parent task creates two collections of children. It
then uses the FREE CHILD command to free the first collection of children before it creates the
second set of children. This process is particularly useful when used in conjunction with the
FETCH ANY command, where not all child tasks from the first collection are consumed. This
method prevents unconsumed child tasks from the first collection from polluting the FETCH ANY
logic of the second collection.

The following example shows pseudocode of a parent transaction, which has two stages of
execution:

� Example 7-19 shows Stage 1 running three children and fetching the first completed one
by using the FETCH ANY command.

� The FREE CHILD command then frees the three children from Stage 1.

– Two of these children have not been fetched, but the parent is no longer interested in
their outcome.

– One child has completed and its response has been fetched. It is safe to free this child,
but this is not strictly necessary for Stage 2 to be successful.

Example 7-19 Stage 1 of PARENT

EXEC CICS RUN TRANSID('CHL1')
 CHILD(CHL1-TOK)
 CHANNEL(CHL1-CHAN)
EXEC CICS RUN TRANSID('CHL2')
 CHILD(CHL2-TOK)
 CHANNEL(CHL2-CHAN)
EXEC CICS RUN TRANSID('CHL3')
 CHILD(CHL3-TOK)
 CHANNEL(CHL3-CHAN)
EXEC CICS FETCH ANY(ANY-TOK)
Chapter 7. Tips and tricks 117

 COMPSTATUS(CS)
 CHANNEL(ANY-CHAN)
EXEC CICS GET CONTAINER('RESPONSE')
 CHANNEL(ANY-CHAN)
 INTO(RESPONSE)
* IF THE 'RESPONSE' CONTAINER INDICATES 'OK', ENTER STAGE-2 BUT FREE ALL OF THE
STAGE-1 CHILDREN FIRST
EXEC CICS FREE CHILD(CHL1TOK)
EXEC CICS FREE CHILD(CHL2TOK)
EXEC CICS FREE CHILD(CHL3TOK)

Example 7-20 shows Stage 2 running two children and fetching the first one to complete by
using the FETCH ANY command. This example fetches a response from one of the Stage 2
children because all the Stage 1 children are free.

Example 7-20 Stage 2 of PARENT

EXEC CICS RUN TRANSID('CHL4')
 CHILD(CHL4-TOK)
 CHANNEL(CHL4-CHAN)
EXEC CICS RUN TRANSID('CHL5')
 CHILD(CHL5-TOK)
 CHANNEL(CHL5-CHAN)
EXEC CICS FETCH ANY(ANY-TOK)
 COMPSTATUS(CS)
 CHANNEL(ANY-CHAN)
EXEC CICS GET CONTAINER('RESPONSE')
 CHANNEL(ANY-CHAN)
 INTO(RESPONSE)
* END OF STAGE-2. EXEC CICS FREE CHILD IS NOT NECESSARY AS PARENT WILL NOW
TERMINATE.

7.5 Tip: Check the status of a child without blocking the parent
by using the NOSUSPEND option

By default, the FETCH CHILD and FETCH ANY commands block until a designated child (FETCH
CHILD) or an eligible child (FETCH ANY) completes. To prevent FETCH commands from blocking,
you need to use the NOSUSPEND option of the FETCH commands. You can use this option to just
check whether child task has completed because the command returns immediately.

Example 7-21 shows partial code of a parent task using the NOSUSPEND option to check if any
of its children have completed. It includes the following information:

� If a child has completed, a routine is called to handle the child response.
� If no children have completed, the parent executes some of its own business logic.

Example 7-21 Parent using EXEC CICS FETCH ANY NOSUSPEND

EXEC CICS RUN TRANSID('CHL1')
 CHILD(CHL1-TOK)
 CHANNEL(CHL1-CHAN)
EXEC CICS RUN TRANSID('CHL2')
 CHILD(CHL2-TOK)
 CHANNEL(CHL2-CHAN)
118 IBM CICS Asynchronous API: Concurrent Processing Made Simple

EXEC CICS RUN TRANSID('CHL3')
 CHILD(CHL3-TOK)
 CHANNEL(CHL3-CHAN)
EXEC CICS FETCH ANY(ANY-TOK)
 COMPSTATUS(COMP-STATUS)
 CHANNEL(ANY-CHAN)
 NOSUSPEND RESP(EXEC-RESP)
IF EXEC-RESP = DFHRESP(NORMAL)
 CALL PROCESS-CHILD-RESPONSE
ELSE
 IF EXEC-RESP = DFHRESP(NOTFINISHED)
 CALL PROCESS-PARENT-BUSINNESS-LOGIC
 ELSE
 CALL UNEXPECTED-FETCH-ERROR
 END-IF
END-IF

7.6 Trick: Process as many children as possible in a a fixed
time period

By default, the FETCH ANY command blocks until an eligible child completes. It is reasonable
for a parent task to wait some time for its children to complete. However, it might not want to
wait indefinitely. To prevent an indefinite wait, use the TIMEOUT option should be used.

If a parent is fetching a series of children by using the FETCH ANY command, the parent
application might want to reduce the TIMEOUT value on each successive FETCH command.

Example 7-22 on page 120 shows partial code of a parent task using the TIMEOUT option with
a loop of FETCH ANY commands. It includes the following information:

� The parent sets a time limit for fetching all its children. In the example, this time limit is
called EXPIRY-TIME.

� Before issuing each FETCH ANY command, the parent calculates how much time is left to
fetch the remaining children. If no time is left, the FETCH ANY operation is abandoned and
the TIMED-OUT flag is set. If there is time left a FETCH ANY command is issued using the
TIME-LEFT value as a TIMEOUT time.

� If a FETCH ANY command fails with NOTFINISHED it means the operation has timed out and
the TIMED-OUT flag is set.

� If the FETCH ANY command fails with a NOTFND condition, it indicates that all the children
have been fetched.

� If the FETCH ANY command completes normally a section called MATCH-CHILD is called to
identify which child has been fetched and process the response.

� MATCH-CHILD code is not shown here because this example focuses on the use of TIMEOUT.

� In this example, ABSTIME values such as START-TIME, EXPIRY-TIME and CURRENT-TIME are
8-byte packed decimal fields. The TIME-LEFT field is a 4-byte binary field.
Chapter 7. Tips and tricks 119

Figure 7-3 shows a pictorial representation of this scenario. In this figure, the PARENT program
fetches the responses of child CHL1 and child CHL3. Child CHL2 is not fetched because it takes
too long to complete.

Figure 7-3 Parent using FETCH ANY loop with TIMEOUT

Example 7-22 Parent using EXEC CICS FETCH ANY TIMEOUT()

Main-Routine section.
*
EXEC CICS ASKTIME ABSTIME(START-TIME) END-EXEC
COMPUTE EXPIRY-TIME = (START-TIME + TIME-LIMIT)
EXEC CICS RUN TRANSID('CHL1')
 CHILD(CHL1-TOK)
 CHANNEL(CHL1-CHAN)
EXEC CICS RUN TRANSID('CHL2')
 CHILD(CHL2-TOK)
 CHANNEL(CHL2-CHAN)
EXEC CICS RUN TRANSID('CHL3')
 CHILD(CHL3-TOK)
 CHANNEL(CHL3-CHAN)
MOVE 'N' to TIMED-OUT
PERFORM FETCH-ANY UNTIL
 (EXEC-RESP EQUAL DFHRESP(NOTFND) OR
 TIMED-OUT EQUAL 'Y')

* TERMINATE PARENT program
FETCH-ANY section.
*
 EXEC CICS ASKTIME ABSTIME(CURRENT-TIME) END-EXEC

 IF CURRENT-TIME < EXPIRY-TIME
 COMPUTE TIME-LEFT = (EXPIRY-TIME - CURRENT-TIME)
 ELSE
120 IBM CICS Asynchronous API: Concurrent Processing Made Simple

 MOVE 'Y' TO TIMED-OUT
 GO TO FETCH-ANY-END
 END-IF

 EXEC CICS FETCH ANY(FETCH-ANY-TOKEN)
 CHANNEL(FETCH-ANY-CHANNEL)
 COMPSTATUS(FETCH-ANY-COMPSTATUS)
 ABCODE(FETCH-ANY-ABCODE)
 TIMEOUT(TIME-LEFT)
 RESP(EXEC-RESP) END-EXEC

 IF EXEC-RESP EQUAL DFHRESP(NORMAL)
 PERFORM MATCH-CHILD
 ELSE
 IF EXEC-RESP EQUAL DFHRESP(NOTFINISHED)
 MOVE 'Y' TO TIMED-OUT
 ELSE
 IF EXEC-RESP NOT EQUAL DFHRESP(NOTFND)
 PERFORM ABEND-BADC
 END-IF
 END-IF
 END-IF.

FETCH-ANY-END.
 EXIT.

7.7 Tip: Using response-only channels between parent and
child transactions

This next example shows how to use a response-only channel with the asynchronous API. In
this example, a child transaction performs a function which is pre-designated to open a list of
files. The parent doesn’t need to provide any request information, but it is interested in the
results of running the child. In this case, the parent passes an empty channel when starting
the child transaction with the RUN TRANSID command so that the child can return a response.

Example 7-23 on page 122 shows a parent program running a child transaction called FILO.
An empty channel called 'FILE-CHANNEL' is passed to the child. The response channel is
fetched from the completed child as FETCHED-CHAN. The parent GETs a FAILED-FILES container
from this channel and reports any files, which could not be opened.

Figure 7-4 on page 122 shows a pictorial representation of this scenario. In this figure, the
FILE0032 and FILE0088 files fail to open.
Chapter 7. Tips and tricks 121

Figure 7-4 Parent PRNT passing an empty channel to child FILO

Example 7-23 Parent program using response only channel

EXEC CICS RUN TRANSID('FILO')
 CHILD(CHILD-TOKEN)
 CHANNEL('FILE-CHANNEL')
 RESP(EXEC-RESP)
IF EXEC-RESP = DFHRESP(NORMAL)
 EXEC CICS FETCH CHILD(CHILD-TOKEN)
 CHANNEL(FETCHED-CHAN)
 COMPSTATUS(COMP-STATUS)
 RESP(EXEC-RESP)
 IF (EXEC-RESP = DFHRESP(NORMAL)) AND
 (COMP-STATUS = DFHVALUE(NORMAL))
 EXEC CICS GET CONTAINER('FAILED-FILES')
 CHANNEL(FETCHED-CHAN)
 SET() FLENGTH()
 RESP(EXEC-RESP)
 IF EXEC-RESP = DFHRESP(NORMAL)
 CALL REPORT-FAILED-FILES
 END-IF
 END-IF
END-IF

Example 7-24 shows the child program opening a list of files. If any file fails to open, the name
of the file is appended to the list in the 'FAILED-FILES' container.

Example 7-24 Child program opening a list of files

FILE-OPEN-LOOP.
 EXEC CICS OPEN FILE(NEXT-FILE) RESP(EXEC-RESP)
 IF EXEC-RESP NOT EQUAL DFHRESP(NORMAL)
 EXEC CICS PUT CONTAINER('FAILED-FILES') APPEND
FROM(NEXT-FILE)
 END-IF
FILELIST
FILE0001
122 IBM CICS Asynchronous API: Concurrent Processing Made Simple

FILE0002
FILE0003
…
FILE0099
ENDLIST
Chapter 7. Tips and tricks 123

124 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Chapter 8. Debugging and problem
determination

This chapter provides guidance about debugging asynchronous API applications and
provides information about system management techniques. It includes the following
sections:

� Using the CICS execution diagnostic facility: CEDF and CEDX

� Asynchronous API abend code

� Tracing asynchronous API applications

� Sample application trace flow using FETCH ANY commands

� Sample application trace flow using FETCH CHILD commands and the NOSUSPEND and
TIMEOUT options

� Sample application trace flow using FREE CHILD commands

� Transaction dumps and the asynchronous API

� System dumps and the asynchronous API

8

© Copyright IBM Corp. 2017. All rights reserved. 125

8.1 Using the CICS execution diagnostic facility: CEDF and
CEDX

If an asynchronous parent transaction can be run from a terminal, you can use the
CICS-supplied transaction, CEDF, to step through the program execution. CEDF displays
each CICS command and the program initiation and termination.

Asynchronous child transactions always run as non-terminal transactions. Thus, you must
use another CICS-supplied transaction, CEDX, to debug asynchronous child tasks. You must
also use CEDX to debug an asynchronous parent if it runs as nonterminal.

You can find more information about using CEDF and CEDX in IBM Knowledge Center.

You can use CEDX to simulate delays in child transactions and to force child transactions to
abend. This process can help you to test how asynchronous parent tasks deal with
incomplete or failed child tasks. You can also use CEDX to force children to complete in
certain orders.

The following example uses CEDF to debug an asynchronous parent and uses CEDX to
debug the two asynchronous children that were created by the parent. In this example, PRNT is
the parent transaction that runs the PARENT program at a terminal. The CHL1 and CHL2
transactions are the child transactions that run the CHILD1 and CHILD2 programs respectively.

The assembler source code for the PARENT (Figure 8-1), CHILD1 (Figure 8-2 on page 127), and
CHILD2 (Figure 8-3 on page 127) programs is shown in the figures that follow.

Figure 8-1 The PARENT program
126 IBM CICS Asynchronous API: Concurrent Processing Made Simple

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/debugging/dfhp399.html

Figure 8-2 The CHILD1 program

Figure 8-3 The CHILD2 program

To complete this example, follow these steps:

1. On terminal 1, enter CEDF, and then type PRNT to run the parent transaction.

2. On terminal 2, enter CEDX CHL1, and on terminal 3, enter CEDX CHL2.

Terminal 1 displays the information shown in Figure 8-4.

Figure 8-4 The PARENT program starting
Chapter 8. Debugging and problem determination 127

3. Continue to press Enter on terminal 1 until the first EXEC CICS RUN TRANSID command
completes (Figure 8-5).

Figure 8-5 The first RUN TRANSID command issued by the PARENT program

4. Now, switch to terminal 2. The information shown in Figure 8-6 indicates that the CHL1 task
has started.

Figure 8-6 The CHL1 task starts
128 IBM CICS Asynchronous API: Concurrent Processing Made Simple

5. Back on terminal 1, continue to press Enter until the second EXEC CICS RUN TRANSID
command completes (Figure 8-7).

Figure 8-7 The second RUN TRANSID command issued by the PARENT program

6. Now switch to terminal 3. The information shown in Figure 8-8 indicates that the CHL2 task
has started.

Figure 8-8 The CHL2 task starts
Chapter 8. Debugging and problem determination 129

7. Continue to press Enter on terminal 3 until the task termination screen for the CHL2 task
displays, as shown in Figure 8-9.

Figure 8-9 The CHL2 task terminates

8. Press PF3 to allow the CHL2 task to complete normally. At this point the CHL2 task has
finished, but the CHL1 task is still active.

9. Switch back to terminal 1, and press Enter until the first EXEC CICS FETCH ANY command is
completed by the parent task (Figure 8-10).

Figure 8-10 The first FETCH ANY command issued by the PARENT program
130 IBM CICS Asynchronous API: Concurrent Processing Made Simple

The following information displays as the response from the CHL2 task (the second child
created by the parent):

– The name prefix of the fetched CHANNEL is 'DFHAS00002'. CICS creates this channel
name as part of the FETCH command. You might see that the child sequence number is
included after the DFHAS prefix. The last 5-digits of the channel name matches the child
task number.

– The COMPSTATUS of 1016 is the CVDA value for NORMAL.

– The parent application compares the fetched child token (returned in the ANY option)
against the two tokens that were created by the earlier EXEC CICS RUN TRANSID
commands.

The parent task issues an appropriate message to the terminal user as shown in
Figure 8-11.

Figure 8-11 Message to the terminal user issued by the PARENT program
Chapter 8. Debugging and problem determination 131

10.Now return to terminal 2. Step to the EXEC CICS PUT CONTAINER command issued by the
CHL1 task. Press PF12, and enter an abend code of XXXX in the REPLY field (Figure 8-12).

Figure 8-12 Trigger abend code XXXX against the CHL1 task

11.Press PF12 again to trigger an abend against the CHL1 task (Figure 8-13).

Figure 8-13 Abend code XXXX triggered

12.Press PF3 on terminal 2 to allow the CHL1 task to terminate abnormally with the abend
code of XXXX.
132 IBM CICS Asynchronous API: Concurrent Processing Made Simple

13.Back on terminal 1, step to the last EXEC CICS FETCH ANY command (Figure 8-14).

Figure 8-14 The last FETCH ANY command issued by the PARENT program

The COMPSTATUS of 900 is the CVDA value for the ABEND command. You can also see the XXXX
abend code in the ABCODE field.

8.2 Asynchronous API abend code

You can encounter abend code AASA when an asynchronous child starts running and then
an unexpected error occurs when performing non-terminal sign on for the child's USERID. The
child inherits the USERID from the parent task. This abend can occur if the parent USERID is
revoked before the child task executed.

8.3 Tracing asynchronous API applications

Many application problems that arise from using the asynchronous API can be solved by
obtaining a CICS trace. A CICS trace can be directed to the CICS auxiliary trace data sets or
to a GTF trace data set.

CICS trace also appears in a transaction dump and a system dump, providing that CICS
internal tracing is active and that the master system trace flag is on.
Chapter 8. Debugging and problem determination 133

Trace points relating to asynchronous API are controlled by the component trace points. See
Table 8-1.

Table 8-1 Key trace components for asynchronous API tracing

8.4 Sample application trace flow using FETCH ANY
commands

This section shows selected trace output of a sample asynchronous API application that we
ran where the parent used the EXEC CICS FETCH ANY command. The trace was directed to a
CICS auxiliary trace data set and was formatted using a CICS supplied, auxiliary trace
formatter. All the trace entries shown were formatted with the ABBREV keyword unless
otherwise stated.

8.4.1 The environment

For this example, we defined a parent transaction (PRNT) that used an assembler program
called PARENT, as shown in Figure 8-15 on page 135 and Figure 8-16 on page 136. The parent
used the EXEC CICS RUN TRANSID command to create the following child tasks:

� CHL1
� CHL2

We defined the PRNT transaction with RESSec:Yes. The CICS region had security active and
had an XPCT resource class active. Thus, the RUN TRANSID commands that were issued by the
PARENT program were subject to security checking.

The PARENT program was defined with Concurrency:Threadsafe and Api:Openapi. These
setting meant that the PARENT program ran on an open task control block (TCB).

We also had two child transactions, called CHL1 and CHL2. CHL1 ran the assembler program
CHILD1, and CHL2 ran the assembler program CHILD2. These transactions were all defined with
default transaction and program attributes. The code for the CHILD1 and CHILD2 programs is
shown in Figure 8-17 on page 137 and Figure 8-18 on page 137.

Trace component Effect

Asynchronous services domain (AS)
level-1

Basic tracing of asynchronous services domain activity

AS level-2 Extended tracing of asynchronous services domain activity

Exec interface (EI) level-1 Basic tracing of EXEC layer (EIP and EIBAM tracing)

Selecting trace components: You can select trace components by enabling the
Components option of the CICS supplied transaction CETR.

Important: The PARENT program includes a deliberate bug that causes the CHL1 child
transaction to abend.
134 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Figure 8-15 Working storage for the PARENT program

The PARENT program’s code includes the following details (as shown in Figure 8-16 on
page 136):

� The PARENT program issues two EXEC CICS RUN TRANSID commands to create two children
and passes a populated channel to each child.

� It then repeats the EXEC CICS FETCH ANY commands to fetch all the responses from its
children. This command also fetches the response channel or channels from the children.

A NOTFND condition on the EXEC CICS FETCH ANY command indicates that all children have
been fetched.

� If the CHL1 task completes normally, the PARENT program extracts the RESPONSE container
from the CHL1 task's channel. It then sends the following message to the terminal:

CHL1 CHILD SUCCESSFUL

� If the CHL1 task fails in some way (for example, if it abends or fails to return a RESPONSE
container), the PARENT program sends the following message to the terminal:

CHL1 CHILD FAILED
Chapter 8. Debugging and problem determination 135

Figure 8-16 Application code for the PARENT program

Figure 8-17 on page 137 and Figure 8-18 on page 137 show the code for the CHILD1 and
CHILD2 assembler programs. These programs are almost identical. Both expect to receive a
container called REQUEST. If this container isn't present, an abend is issued (abend code
BADC). Otherwise, a RESPONSE container is placed onto the channel. This container is
fetched later by the parent.
136 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Figure 8-17 Code for the CHILD1 program

Figure 8-18 Code for CHILD2 program

8.4.2 Trace of the PARENT program creating two children

When tracing a PARENT program, keep in mind the following considerations:

� The first thing the PARENT application does is to populate a request channel with a request
container. It then runs the first child task, passing the request channel.

� The PARENT program then repeats this process, running a second child task and passing a
second request channel.

� The PARENT program runs on an open TCB - L9000 in the trace. This process allows the
PRNT task to run in parallel with its child tasks. In this example, both children both run on
the QR TCB.

� The PRNT program runs as task 00059.
Chapter 8. Debugging and problem determination 137

Figure 8-19 shows the PARENT program creating channel CHL1-CHANNEL and populating it with
a container called REQUESTER.

Figure 8-19 Parent creating channel for CHL1 child task

Figure 8-20 shows the first child task being created. The process is as follows:

� There is a security check to authorize that the current USERID (CICSUSER) has authority to
start the CHL1 task.

� The (CHL1-CHANNEL) passed channel is then copied, and DFHASAS is called to start CHL1
(trace =000270=).

� DFHASAS saves the security context of the parent with a FLATTEN_TRANSACTION_USER call
(=000272=). It then attaches the CHL1 task.

Figure 8-20 Parent issuing RUN TRANSID command to start CHL1 child task
138 IBM CICS Asynchronous API: Concurrent Processing Made Simple

8.4.3 Trace of one child

Figure 8-21 shows the CHL1 child task starting up. The CHL1 task runs as task number 00060
and runs in parallel with its parent, but it filters out the trace entries that are created by the
PRNT task.

� DFHASXM INIT_XM_CLIENT (trace =000350=) shows the child task establishing its security
context. You can see it using the parent’s USERID (CICSUSER) (trace =000355=).

� DFHASXM BIND_XM_CLIENT (trace =000410=) binds the channel that is passed by the parent.
This channel becomes the current channel when the CHILD1 program runs.

Figure 8-21 Child CHL1 starts running

Figure 8-22 on page 140 shows the CHILD1 program running. It follows this process:

� It attempts to GET the 'REQUEST' container passed by the PARENT (see trace =000426=).

� However, the parent has passed a container named 'REQUESTER'. The GET CONTAINER
command fails.

� The CHILD1 program abends with abend code BADC (see trace =000432=).
Chapter 8. Debugging and problem determination 139

Figure 8-22 Program CHILD1 runs and abends due to a container name mismatch

Figure 8-23 shows the CHL1 task terminating and backing out due to the abend. It follows this
process:

� At this point the child task is marked as complete and becomes “fetchable” by the parent.

� The parent task is already waiting because it issued the EXEC CICS FETCH ANY command,
which blocks waiting for a child task to complete.

Figure 8-23 Transaction the CHL1 task terminates with an abend

8.4.4 Trace of the PARENT program fetch the response from any child

Figure 8-24 on page 141 shows the first EXEC CICS FETCH ANY command issued by the PARENT
program. It follows this process:

� Trace =000408= shows the task waiting because the CHL1 and CHL2 tasks are still active.
The wait type for the EXEC CICS FETCH ANY commands is AS_ANY.

� Trace =001749= shows the wait completing, because the CHL1 task has completed (see
trace =001700=).

� You can see the CHL1 task’s channel being fetched in this trace. CICS gives the channel a
unique name of 'DFHAS00001-00060'.

� Trace =001756= lists the following details of the fetched child as follows:

– Child token: 00000050_418000D8, 0000060C_00000001
– CHL1 abend code: BADC
– Fetched channel name: DFHAS00001-00060
– CHL1 COMPSTATUS: ABENDED
140 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Figure 8-24 First FETCH ANY command issued by the PARENT program

Figure 8-25 shows trace =000381= formatted using the trace formatting keyword FULL. It
follows this process:

� This trace is issued only when Asynchronous Services (AS) trace component 2 is on.

� The value of 00000002 in the DATA-1 section indicates that the PARENT program is waiting
for the first of two children complete.

� The DATA-2 section lists the child tokens of the children that the PARENT program is about
to wait for.

Figure 8-25 FETCH ANY WAIT event trace

8.5 Sample application trace flow using FETCH CHILD
commands and the NOSUSPEND and TIMEOUT options

This section shows selected trace output of a sample asynchronous API application that we
ran where the parent used the EXEC CICS FETCH CHILD command. The trace was directed to a
CICS auxiliary trace data set and formatted using a CICS supplied auxiliary trace formatter.
All the trace entries shown were formatted with the ABBREV keyword unless otherwise stated.

8.5.1 The environment

We defined a parent transaction (PRNT) that used an assembler program called PARENT, as
shown in Figure 8-26 on page 142. The parent used the EXEC CICS RUN TRANSID command to
create a single child transaction named CHLD.

The PARENT program then issued the following commands:

� EXEC CICS FETCH CHILD NOSUSPEND, completes with NOTFINISHED
� EXEC CICS FETCH CHILD TIMEOUT(1-second), completes with NOTFINISHED
� EXEC CICS FETCH CHILD, blocks until the CHLD task completes
Chapter 8. Debugging and problem determination 141

Figure 8-26 The PARENT program using EXEC CICS FETCH CHILD commands

The CHLD task ran the CHILD assembler program. The default transaction and program
attributes were used. The code for the CHILD program is shown in Figure 8-27. The CHILD
program issues a 2-second delay before completing.

Figure 8-27 The CHILD program with the 2-second delay
142 IBM CICS Asynchronous API: Concurrent Processing Made Simple

8.5.2 Trace of FETCH CHILD NO SUSPEND

Figure 8-28 shows a trace of the EXEC CICS FETCH CHILD NOSUSPEND command issued by the
PARENT program. This trace fails with a NOTFINISHED response because the CHLD task has not
completed.

Figure 8-28 EXEC CICS FETCH CHILD NOSUSPEND fails with a NOTFINISHED response

8.5.3 Trace of FETCH CHILD TIMEOUT

Figure 8-29 shows a trace of the EXEC CICS FETCH CHILD TIMEOUT command issued by the
PARENT program. It follows this process:

� The trace eventually fails with a NOTFINISHED response because the CHLD task does not
complete within the 1-second timeout period.

� Trace =000369= shows the parent waiting for the child.

� The wait type is AS_CHILD. This wait type contrasts with the wait type of AS_ANY, which is
used on EXEC CICS FETCH ANY commands.

Figure 8-29 EXEC CICS FETCH CHILD TIMEOUT() fails with NOTFINISHED response

8.5.4 Trace of FETCH CHILD

Figure 8-30 shows a trace of the last EXEC CICS FETCH CHILD command issued by the
PARENT program. This trace waits until the CHLD task completes (see trace =000513=).

Figure 8-30 EXEC CICS FETCH CHILD blocks until CHLD completes
Chapter 8. Debugging and problem determination 143

Figure 8-31 shows a partial trace of the CHLD task, which completes the following tasks:

� The CHILD program issues a 2-second delay.
� The CHLD task then terminates (see trace =000571=).

Figure 8-31 The CHILD program delays for 2-seconds before completing

8.6 Sample application trace flow using FREE CHILD
commands

This section shows selected trace output of a sample asynchronous API application that we
ran where the parent used EXEC CICS FREE CHILD commands to free its two children. The
trace was directed to a CICS auxiliary trace data set and formatted using a CICS supplied
auxiliary trace formatter. All the trace entries shown were formatted with the ABBREV keyword
unless otherwise stated.
144 IBM CICS Asynchronous API: Concurrent Processing Made Simple

8.6.1 The environment

We defined a parent transaction (PRNT) that used an assembler program called PARENT as
shown in Figure 8-32. It followed this process:

� The PRNT transaction used EXEC CICS RUN TRANSID commands to create two child tasks,
CHL1 and CHL2, and passed an empty channel to each one.

� The PRNT transaction then delayed for 1-second.

� After this delay, the CHL1 task had completed, but the CHL2 task was still active, as shown in
Figure 8-33.

� The PRNT transaction then freed the CHL1 and CHL2 tasks, as shown in Figure 8-34.

Figure 8-32 The PARENT program frees the CHL1 and CHL2 tasks

Figure 8-33 The CHILD1 program completes immediately

Figure 8-34 The CHILD2 program delays for two seconds

8.6.2 Trace of free child tasks

Figure 8-35 on page 146 shows the PRNT transaction freeing the CHL1 task (trace =000854=)
and the CHL2 task (trace =000872=). Neither of these children had been fetched. The CHL1 task
had already completed, so the FREE CHILD command cleaned up the child state, including the
child channel. The CHL2 task had not completed, and child cleanup was deferred until the CHL2
task completed. Trace =000875= shows that the CHL2 task had not completed.
Chapter 8. Debugging and problem determination 145

Figure 8-35 Trace of the PRNT transaction freeing the CHL1 and CHL2 tasks

8.7 Transaction dumps and the asynchronous API

This section shows two examples of transaction dumps taken by an asynchronous parent
task and an asynchronous child task. All the dumps were taken because of transaction
abends.

8.7.1 Asynchronous parent task transaction dump extract

The following example extracts from a transaction dump taken by an asynchronous parent
task PRNT that abended with abend code PRNT. The same information appears if the parent
task took a dump taken using the EXEC CICS DUMP TRANSACTION DUMPCODE() COMPLETE
command.

In this example, the parent transaction ID was PRNT, and it was task number 00061. The parent
created five children, transaction IDs CHL1, CHL2, CHL3, CHL4, and CHL5.

At the time of the transaction dump, the five child tasks were in the following states:

� CHL1: Task number 00062 was abended.

� CHL2: Task number 00063 was still active.

� CHL3: Task number 00064 completed normally.

� CHL4: Task number 00065 was not started because it was in a TRANCLASS that had reached
its MAXACTIVE threshold.

� CHL5: Task number 00066 was freed by an EXEC CICS FREE CHILD command issued by the
parent.

The dump was formatted using the CICS supplied transaction dump utility program.

Tip: Set the SIT parameter to TRTRANTY=ALL to assist with debugging by using transaction
dumps and the asynchronous API. This option ensures that all tasks show in the trace
table, which is included in a transaction dump, rather than just the dumping task.
146 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Figure 8-36 shows PAGE-1 of the formatted transaction dump taken by the parent. It shows
basic information about the PRNT task such as task number, abend code and terminal ID.

Figure 8-36 PAGE-1 of formatted transaction dump taken by the PRNT task

Figure 8-37 shows the formatted asynchronous API state from the same transaction dump.

Figure 8-37 Asynchronous API state from formatted transaction dump taken by the PRNT task

The formatted transaction dump includes the following information:

� The summary states how many child tasks the parent created and how many are freed.

� There are no details for the CHL5 task in the ASYNCHRONOUS CHILD LIST because it was
freed by the parent before the dump was taken. All other children are listed.

� All the possible transaction states appear. These are ACTIVE, ABENDED, COMPLETED (without
ABEND), and NOTSTARTED.

8.7.2 Asynchronous child task transaction dump extract

The following example shows extracts from a transaction dump taken by an asynchronous
child task CHL1 that abended with abend code BADC. The same information appears if the
parent task took a dump taken using the EXEC CICS DUMP TRANSACTION DUMPCODE() COMPLETE
command.

In this example, the child transaction ID was CHL1, and it was task number 00062. Its parent
(transaction ID PRNT) was task number 00061.

The dump was formatted using the CICS supplied transaction dump utility program.
Chapter 8. Debugging and problem determination 147

Figure 8-38 shows PAGE-1 of the formatted transaction dump taken by the child. It shows the
task number and the abend code of the child. The information about the parent task displays
in the last 3-lines of Figure 8-38. Possible parent states are ACTIVE, ABENDED, and COMPLETED.

Figure 8-38 PAGE-1 of formatted transaction dump taken by the CHL1 child task

8.8 System dumps and the asynchronous API

This section shows an example of a formatted system dump. It contains a single
asynchronous parent task and five asynchronous children.

8.8.1 Asynchronous parent system dump extract

This example uses the same scenario described in 8.7.1, “Asynchronous parent task
transaction dump extract” on page 146. There is a single parent transaction (PRNT) that
created five children. The PRNT parent transaction took a system dump at the same point it
took a transaction dump.

In this example, the parent transaction ID was PRNT, and it was task number 00061. The parent
had created five children transactions IDs, CHL1, CHL2, CHL3, CHL4, and CHL5.

At the time of the system dump, the five child tasks were in the following states:

� CHL1: Task number 00062 was abended.

� CHL2: Task number 00063 was still active.

� CHL3: Task number 00064 completed normally.

� CHL4: Task number 00065 was not started because it was in a TRANCLASS, which had
reached its MAXACTIVE threshold.

� CHL5: Task number 00066 was freed by an EXEC CICS FREE CHILD command issued by the
parent. This command causes CHL5 to become an orphaned child.

The dump was formatted using the CICS supplied system dump verbexit program, which is
invoked from the interactive problem control system (IPCS).
148 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Figure 8-39 shows the PARENT TASKS SUMMARY section of the system dump formatted
with the AS=1 keyword of the system dump formatter. This summary shows the single parent
task (PRNT) and all of its children, apart from the CHL5 task, which was freed and, therefore, is
an orphan.

Figure 8-39 PARENT TASKS SUMMARY of system dump formatted with the AS=1 keyword

Figure 8-40 shows the ORPHANED CHILD TASKS SUMMARY section of the system dump,
which is also formatted with the AS=1 keyword.

Figure 8-40 ORPHANED CHILD TASKS SUMMARY of system dump formatted with the AS=1 keyword
Chapter 8. Debugging and problem determination 149

150 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Chapter 9. Performance and management
for asynchronous API
applications

The asynchronous API brings the benefit of reduced response time to applications. The CICS
asynchronous API solution also gives you an easier environment to manage compared to
other asynchronous solutions.

This chapter looks at the performance aspects of an asynchronous API application, apart
from the general CICS performance, and what impact to consider to support this kind of
application. It also addresses how to manage this kind of application. This chapter includes
the following topics:

� Special aspects for asynchronous API applications
� Using MXT
� Duration of parent tasks in the system
� Policing parent tasks with CICS policy
� Policing parent tasks with CICS policy
� Threadsafe considerations
� Asynchronous services statistics
� Asynchronous services monitoring

9

© Copyright IBM Corp. 2017. All rights reserved. 151

9.1 Special aspects for asynchronous API applications

An asynchronous API application starts one or more child tasks. When fetching a child
response, the parent task remains in the system while the child task is running. This process
is different from the application that issues an EXEC CICS START command, which starts a task
but doesn’t fetch the response from the started task. The task issuing the EXEC CICS START
command can complete while the started task is still running.

An asynchronous API application differs also from an application that uses the EXEC CICS
LINK command. A task that issues the EXEC CICS LINK command doesn’t start another task.
Instead, it remains in the system until the linked program is finished.

Therefore, an asynchronous API application provides the following additional aspects to
consider when thinking about the performance impact to the system:

� How many child tasks can be spawned by a parent task?
� How long can a parent task likely remain in the system?

9.2 Managing the number of tasks in the system

This chapter addresses the following:

� Using MXT
� Using TRANCLASS to manage parent transactions
� Using TRANCLASS to manage child transactions

9.2.1 Using MXT

Tasks in a CICS system occupy resources, such as task slots and storage. If the system has
too many tasks, they will compete for these resources. The maximum task specification
(MXT) in a system controls the number of user tasks that are eligible for dispatch.

If setting the MXT value too high, tasks might not be able to timely obtain the system
resources that they needed, such as CPU and virtual storage. Contention can occur for
resources, such as files, buffer, IBM DB2® threads, and so on. Short-on-storage (SOS)
condition can arise when too many tasks are competing for virtual storage. Tasks can be
queued or abend when in this situation. Then, the user experiences unresponsiveness of the
system.

If setting the MXT value too low, tasks might be delayed due to excessive queuing and waiting
to be dispatched. As a result, the system resource is under utilized, and the user experiences
a slower response from the system.

Therefore, setting the MXT appropriately is important for the system and the user. As a
starting point, for a system that already has a number of active tasks (say, m), to cater the
number of new tasks brought in by asynchronous application, you need to determine the
number of parent tasks (say, p) and how many child tasks that can run in parallel to a parent
task (say, c). After knowing these values, the MXT of the system can be set accordingly using
a formula, such as:

p * (1+c) + m
152 IBM CICS Asynchronous API: Concurrent Processing Made Simple

This value of MXT can be a good starting point for the system. Depending on what child tasks
do, for example, if these child tasks also become parent tasks, you might need to factor that in
and change this value.

You also need to configure virtual storage, and CPU accordingly. You can monitor how these
resources are used and whether any SOS condition occurs. Then, increase storage when
necessary so that the SOS condition doesn’t occur when the MXT number of tasks is
reached.

9.2.2 Using TRANCLASS to manage parent transactions

It is advisable to limit the number of parent tasks so that the number of tasks, including the
potential child tasks, in the system doesn’t exceed the limit that MXT defines. Limiting the
number of parent tasks effectively limits the number of child tasks in the system too.

The transaction class resource (TRANCLASS) has an attribute of MAXACTIVE, which is used to
constrain the number of active tasks for transactions that belong to the TRANCLASS. You can
use this attribute to limit the number of parent tasks.

For example, CICS has a MXT value of 400 and already runs 200 tasks at peak time. When
you deploy a new asynchronous application to this system, which can start to four children to
run concurrently in the system, the MAXACTIVE attribute for the TRANCLASS of the parent
transaction is calculated as:

(400 - 200) / (1 parent task + 4 child tasks) = 40

By defining the MAXACTIVE to a value that allows the system to cater for the maximum number
of concurrent children and parents, the system should be able to serve workload smoothly.

You can use ASRUNCT monitoring field in the DFHTASK group of the CICS monitoring
performance class to get an idea of how many child tasks that parent transaction started. For
more information, refer to IBM Knowledge Center.

9.2.3 Using TRANCLASS to manage child transactions

You might wonder what the control for the child transaction should be. The number of child
transactions is decided by the application logic of its parent transaction. For the parent
transaction to finish as soon as possible, do not assign the child transaction to a TRANCLASS
transaction class that might limit the number of child transactions that run and, in turn, delay
the parent transaction.

The transaction priority of the child transaction needs to be high enough so that it is not
delayed for being dispatched.

9.3 Duration of parent tasks in the system

The parent application needs a well-designed logic flow so that the parent task doesn’t need
to wait indefinitely for the child task to finish when it comes to the time of fetching the child

Tip: Do not assign the child transaction to the same TRANCLASS transaction class as its
parent transaction. If you do that, the child transaction might not be able to start because
the MAXACTIVE limit is reached. Delay of a child transaction can cause its parent to wait for a
response and to occupy a slot in the MXT and MAXACTIVE limit.
Chapter 9. Performance and management for asynchronous API applications 153

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/monitoring/dfht3_mon_perfclass_dfhtask.html

response. When the application is well-designed and runs in a well-tuned system, tasks in the
system finish without undue delay so that the response time and the transaction rate are not
compromised. When the system is not well-tuned or the application is not well-designed, a
parent task can be delayed.

This section discusses possible delays and how to discover the cause of the delays by looking
at CICS monitoring and statistics.

9.3.1 Parent tasks waiting upon child tasks

Asynchronous parent tasks might need to get responses from their child tasks. To avoid
delays in the parent tasks because of the slow responses from child tasks, the child tasks
should ideally start as soon as possible.

If a parent task is suspended because it is fetching a child response, the CEMT INQ TASK
command shows the parent task’s status as Runstatus(Suspended) and Htype with the
AS_CHILD or AS_ANY resource type depending on whether the parent task issued a FETCH
CHILD or FETCH ANY command.

You can also look at ASFTCHWT field in the DFHTASK group of the CICS monitoring
performance class of the parent tasks to determine whether a parent task was delayed
because of waiting for child task to finish. (For more information, refer to IBM Knowledge
Center and 9.7, “Asynchronous services monitoring” on page 156.)

It might be normal if the ASFTCHWT field is non-zero. However the field becomes large,
which can indicate that an unduly large delay occurred, check why child tasks were delayed
for so long and investigate how the delay can be reduced. For ways to determine the child
tasks and their response time from CICS monitoring performance class SMF 110 records,
refer to 10.4, “Using CICS Performance Analyzer to understand task relationship” on
page 171. You might need to examine the application code to see if the logic flow can be
improved to reduce the delay.

9.3.2 MAXTASK condition causing parent tasks to suspend

Another possible delay of the parent task can be caused by the system reaching the MXT limit
while the parent task tries to start a child task by issuing RUN TRANSID command. In this
case, CICS automatically regulates the load by suspending the parent task until the system
overload situation is relieved. If a parent task becomes suspended because of system
overload, the CEMT INQ TASK command shows the parent task’s status as
Runstatus(Suspended) and Htype(ASPARENT).

You can also observe the delay of parent task caused by the system reaching the MXT limit
by looking at the ASRNATWT field in DFHTASK group of the CICS monitoring performance class
of the parent tasks.

From a region level, you can observe whether the system becomes overloaded, causing
parent tasks to be delayed in the asynchronous services global statistics report that is
produced by the DFHSTUP or DFH0STAT programs. The following fields in the report provide the
detailed figures:

� The number of times the RUN TRANSID command is delayed (ASG_RUN_DELAY_COUNT). One
instance of RUN TRANSID can be delayed for multiple times when the system load fluctuates
at the border of MXT.

� Current parents delayed (ASG_PARENTS_DELAYED_CUR)

� Peak parents delayed (ASG_PARENTS_DELAYED_PEAK)
154 IBM CICS Asynchronous API: Concurrent Processing Made Simple

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/monitoring/dfht3_mon_perfclass_dfhtask.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/monitoring/dfht3_mon_perfclass_dfhtask.html

If this kind of delay happened, investigate what has caused the MXT condition and take
actions such as try to increase the MXT value of the system or reduce the number of parent
tasks so the overload is removed.

9.4 Policing parent tasks with CICS policy

Even in a well-tuned system, situations can arise where you can encounter unexpected
behavior from parent tasks that start more child tasks than expected. The system can
become overloaded because of excessive number of child tasks.

You can use the CICS policy to monitor and detect this kind of situation. CICS supports a task
policy with a Async requests rule type, where you can define a trigger threshold of the number
of EXEC CICS RUN TRANSID commands for a user task and either emit a message, trigger an
event, or abend the task.

Figure 9-1 shows the CICS Explorer interface for defining such a rule, which detects parent
tasks issuing over 10 EXEC CICS RUN TRANSID commands and abends them with an AMPB
abend code.

Figure 9-1 Async request policy rule

After defined the policy in a CICS bundle, you can install the bundle to a CICS system which
will then police the parent tasks. For details about CICS policy, refer to IBM Knowledge
Center.

9.5 Threadsafe considerations

The asynchronous API commands are threadsafe. With threadsafe commands, you can use it
with other threadsafe commands and CICS does not need to switch between TCBs, therefore
saving CPU time and response time. When the command is not threadsafe, the task is forced
Chapter 9. Performance and management for asynchronous API applications 155

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/policies/policies.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/policies/policies.html

to run on the quasi-reentrant (QR) task control block (TCB), therefore competing with other
tasks running on the QR TCB.

You can find more information about threadsafe in IBM Knowledge Center.

IBM CICS Performance Series: CICS TS for z/OS V5 Performance Report, SG24-8298 made
a comparison between the EXEC CICS START command and the EXEC CICS RUN TRANSID
command. The EXEC CICS RUN TRANSID performs better than the non-threadsafe EXEC CICS
START command.

9.6 Asynchronous services statistics

To monitor a CICS region that has an asynchronous API application, you can turn on
statistics. You can view asynchronous services domain global statistics online with the
CICS-supplied sample program DFH0STAT or offline by using the statistics utility program
DFHSTUP.

Example 9-1 shows an example of asynchronous services domain global statistics. With 744
times of RUN TRANSISD commands being delayed, it is evident that some parent tasks in this
region were delayed due to the system being at the MXT. The delay can result in longer
response time for the user that started these parent tasks. You might need to consider
increasing the system’s MXT value or reducing the rate of parent transactions being started
by directing some of the requests to another CICS system.

Example 9-1 Asynchronous services domain global statistics

Asynchronous services

 RUN commands. : 4,026
 FETCH commands. : 11
 FREE commands : 0
 Current active children : 0
 Peak active children. : 7
 Times RUN commands being delayed. . : 744
 Current parents being delayed . . . : 0
 Peak parents being delayed. : 1

9.7 Asynchronous services monitoring

To monitor tasks that issue asynchronous API commands, monitoring fields are added to
DFHTASK group. Table 9-1 lists these fields.

Table 9-1 Performance data in DFHTASK group

Field name Field ID Description

ASTOTCT 470 The total number of EXEC CICS asynchronous API commands that
have been issued by the user task. Includes the RUN TRANSID, FETCH
CHILD, FETCH ANY, and FREE CHILD commands.

ASRUNCT 471 The number of EXEC CICS RUN TRANSID commands that have been
issued by the user task.
156 IBM CICS Asynchronous API: Concurrent Processing Made Simple

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/threadsafe/overview.html
http://www.redbooks.ibm.com/abstracts/sg248298.html

Apart from the newly added monitoring fields TRANFLAG (field ID 164) in the DFHTASK group
byte 4 has a hex value of X'16', which indicates the task is started by the EXEC CICS RUN
TRANSID command. For more information about DFHTASK see IBM Knowledge Center.

ASFTCHCT 472 The number of EXEC CICS FETCH CHILD and EXEC CICS FETCH ANY
commands that have been issued by the user task.

ASFREECT 473 The number of EXEC CICS FREE CHILD commands that have been
issued by the user task.

ASFTCHWT 475 The elapsed time that the user task waited for a child task as a result
of issuing an EXEC CICS FETCH CHILD or EXEC CICS FETCH ANY
command that was not completed.

ASRNATWT 476 The elapsed time that the user task was delayed as a result of
asynchronous child task limits managed by the asynchronous
services domain.

Field name Field ID Description
Chapter 9. Performance and management for asynchronous API applications 157

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/monitoring/dfht3_mon_perfclass_dfhtask.html

158 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Chapter 10. System tracking of
asynchronous applications

You might want to track a business application for the purpose of billing, meeting service
agreement, auditing, problem determination, or other services. CICS TS provides transaction
tracking for you to determine the relationships between tasks in a region and across regions
in a CICSplex. Transaction tracking can help you to see the tasks that are running in an
application, and thus can help you to summarize the performance data for this group of
related tasks, for auditing, problem determination, and other information gathering purposes.

If problems are seen in synchronous work then purging the transaction will remove the
problematic transaction. However in asynchronous applications where parent and children
tasks have different transactional scopes it can be important to work out if purging one task
would affect other tasks. Using transaction tracking you can track down things such as a
hanging parent task, working out whether cancelling a child task will affect any parent task,
and the overall performance of the asynchronous applications etc.

This chapter discusses how tracking data can help you gather more information about your
application. It also provides information about specific CICS commands that you can use to
track tasks, to understand task relationships, and to monitor performance. This chapter
includes the following topics:

� Data gathered by transaction tracking
� Using the INQUIRE ASSOCIATION command to track tasks
� Using CICS Explorer to track tasks
� Using CICS Performance Analyzer to understand task relationship
� Using IBM OMEGAMON for CICS on z/OS V5.5.0 to monitor performance

10
© Copyright IBM Corp. 2017. All rights reserved. 159

10.1 Data gathered by transaction tracking

Transaction tracking provides the capability to identify the relationships between tasks in an
application as they flow across regions in a CICSplex. Transaction tracking records data and
then passes the association data from the origin task to interrelated tasks. The association
data carries the information for tracking these origin tasks and includes the following
components:

� Origin data
� Previous transaction data
� Previous hop data
� Task context data
� Application context data

10.1.1 Origin data

Origin data tells you where the task was started and is created for those user tasks that are
started by the following types of events:

� The EXEC CICS START ATTACH command

� The EXEC CICS START command with the TERMID parameter specified

� A DTP or CPIC request

� A request over an APPC connection

� An HTTP request into CICS using CICS web support

� A request that is routed over an MRO connection to start a web service pipeline handler
transaction

� A transaction start EP adapter

� A Java web application that runs in a Liberty JVM server

� The CICS ExecutorService.runAsCICS() method from a parent thread that is not running
under a CICS task in Liberty JVM server

� The CICS ExecutorService.runAsCICS() method running OSGi JVM server

The complete list of origin data characteristics is in IBM Knowledge Center.

If you start your application using software other than CICS, using adapter data can help
identify the transactions coming from that software. Adapter data is a part of origin data. You
can use task-related user exit (TRUE) to add tracking information to the origin data.
DFH$APDT is a sample TRUE program showing how to add tracking information to the
adapter data fields.

You can also add user correlation data with the XAPADMGR exit to add user information at
the point of origin.

Origin data is passed to the next started tasks automatically in a region or between regions
that use MRO or Internet Protocol interconnectivity (IPIC) connections.

You can find examples of origin data creation in IBM Knowledge Center.

Note that origin data is unrecoverable information, which means that the data is not available
to any tasks that are attached because of a transaction restart or with any tasks that are
rebuilt from the system log when a region is restarted.
160 IBM CICS Asynchronous API: Concurrent Processing Made Simple

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/connections/dfht1_origindata.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/connections/dfht1_origindataexamples.html

10.1.2 Previous transaction data

Previous transaction data is available from CICS TS V5.4 or above. The data is created for
tasks that are started locally by the EXEC CICS RUN TRANSID or EXEC CICS START TRANSID
commands. The started task is not a new point of origin in order to qualify for adding the
previous transaction data.

Previous transaction data tracks relationships within a single CICS region and provides the
following information:

� The task in the same local region that requested the current task to be attached.

� The current task depth from one task to another in the same CICS region with which this
task is associated. A value of zero indicates the task is the point of origin in the CICS
system or is the first transaction that was the result of a request from one CICS system to
another to initiate a task.

10.1.3 Previous hop data

If a request to attach a task is transmitted by using an IPIC or MRO connection between CICS
TS 4.2 or later regions, the task that is attached as a result of this request has the previous
hop data created by CICS. Previous hop data tracks tasks across interconnected regions,
counting the hops between tasks as they flowed across regions.

Previous hop data describes the remote sender of the request so that the request can be
tracked back into the previous CICS region. For example, it tells you the information of the
previous CICS region, such as the network identifier (the APPLID), and the information of the
previous task, such as the start time, its task number, transaction ID, and hop count.

You can find information about previous hop data characteristics in IBM Knowledge Center.

Previous transaction data, when combined with previous hop data, identifies both the local
and remote sender of a request to attach a task and creates a trail that can be followed to the
previous task or previous system, which enables data gathering to continue in the region that
sent the request.

10.1.4 Task context data

Task context data is about information of the current task. Task context includes the APPLID
of the CICS region, facility name and type associated with the task, IBM MVS™ image name,
network name of the terminal started this task, user ID, start time of the task, unique
transaction group ID, transaction ID of the task, first program of the task, and other relevant
information. If the task is started from a TCP/IP client, you can get the TCPI/P client’s IP
address, port, and IP family as well.

For tasks started by TCPIPSERVICE socket, APPLDATA has the information of, for example
inbound or outbound, the APPLID of the region this task runs in, the transaction ID that is
defined for the TCPIPSERVICE, the network protocol, the TCPIPSERVICE name and
IPCONN, and the partner region APPLID.

10.1.5 Application context data

Application context data is available from CICS TS 5.1 or later. You can use this data to
determine the CICS application and platform information, if any, that is associated with the
task. Application context data tells you the name of the application, the name of the platform
Chapter 10. System tracking of asynchronous applications 161

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/connections/dfht1_hopdata.html

the application is deployed on, the version of the application, and the name of the operation. If
the task is not associated with a CICS application, these fields are blank.

10.1.6 Flow of tracking data

Origin data, previous transaction data, and previous hop data are flowed from one task to the
next when applicable. Figure 10-1 illustrates this flow. The scenario has both dynamic
program link (DPL) and function shipping (FS) over MRO or IPIC connections.

As shown in Figure 10-1, both previous hop counts and previous transaction counts are
represented with digits, with previous hop counts increasing horizontally between CICS
regions and previous transaction counts increasing vertically down within a CICS region.

Figure 10-1 Example of tracking data flow from task to task

10.2 Using the INQUIRE ASSOCIATION command to track tasks

The INQUIRE ASSOCIATION command is a CICS system programming interface (SPI)
command that you can use to retrieve association data for a running task, provided that you
have the task number. CECI is a CICS supplied transaction. It can be used to quickly
162 IBM CICS Asynchronous API: Concurrent Processing Made Simple

determine the data that is associated with a certain task in the system by using the INQUIRE
ASSOCIATION command.

For example, the following command returns association data for task 00073:

CECI INQUIRE ASSOCIATION(+0000073)

Example 10-1 shows the command output (with some extracted non-blank fields).

Example 10-1 Output of CECI INQUIRE ASSOCIATION(+0000073)

APPLId('IYCWZCAB') > current task's CICS region applid.
FACILType(+0000001209) > CVDA value for ASRUNTRAN which means this task is
started by RUN TRANSID.
ODAPplid('IYCWZCAB') > origin task's CICS region applid.
ODCLNTIpaddr('9.174.17.237 ')
ODCLNTPort(+0000053940)
ODFACILName('T130 ')
ODFACILType(+0000000213)
ODIpfamily(+0000000300)
ODLuname('IYCWT130')
ODNETId('GBIBMIYA')
ODNETWorkid('GBIBMIYA')
ODSErverport(+0000000000)
ODSTarttime('20170914090057.696545')
ODTAskid(+0000068) > task 000068 is the origin of the current task 0000073.
ODTRansid('PAS1 ')
ODUserid('HEJEN ')
PHCount(+0000000000) > the current task is not in a chain of remote task as the
hop count is 0.
PRogram('JHEASCH1') > the program name of the current task.
PTCount(+0000000001) > the current task is started by a local task and has one
level of depth.
PTStarttime('20170914090057.696545') > Previous local task's start time. This is
the same as the origin task 0000068.
PTTAskid(+0000068) > the current task is started by local task 0000068.
PTTRansid('PAS1 ') > transaction ID of the local task 0000068
STarttime('20170914090218.224648') > current task's start time.
TRAnsaction('HA41') > current task's transaction ID.
TRNgrpid('..GBIBMIYA.IYCWT130L..GF....') > the unique transaction group ID
which is the same as task 0000068.
USERId('HEJEN ') > current task's user ID.

From these fields, you can determine that task 0000073 is a child task of 0000068 and was
started by the EXEC CICS RUN TRANSID command. To determine information about the parent
task 0000068, issue the following command:

CECI INQUIRE ASSOCIATION(+0000068)

Example 10-2 shows the output of the command (with some extracted non-blank fields). The
output shows that origin data is created for this task and is passed to task 0000073.

Example 10-2 Output of CECI INQUIRE ASSOCIATION(+0000068)

FACILName('T130 ') > this task is started from terminal T130.
FACILType(+0000000213) > CVDA value for TERMINAL
ODAPplid('IYCWZCAB')
ODCLNTIpaddr('9.174.17.237 ')
Chapter 10. System tracking of asynchronous applications 163

ODCLNTPort(+0000053940)
ODFACILName('T130 ')
ODFACILType(+0000000213)
ODIpfamily(+0000000300)
ODLuname('IYCWT130')
ODNETId('GBIBMIYA')
ODNETWorkid('GBIBMIYA')
ODSErverport(+0000000000)
ODSTarttime('20170914090057.696545')
ODTAskid(+0000068)
ODTCpips(' ')
ODTRansid('PAS1 ')
ODUserid('HEJEN ')
PHCount(+0000000000) > Previous hop count 0 means this task is not started from
a remote region.
PRogram('JHEASPG1')
PTCount(+0000000000) > Previous transaction count 0 means this task is not
started by a local task or is started by a local task with START ATTACH or START
TERMINAL.
TRAnsaction('PAS1 ') > current task's transaction ID
TRNgrpid('..GBIBMIYA.IYCWT130L..GF....') > the unique transaction group ID which
is the same as task 0000073.
USERId('HEJEN ') > current task's user ID.

10.2.1 Building the picture of the application flow using the tracking data

Using the association information from the previous example, you can reverse engineer and
build a picture that 0000068 is a parent task with the PAS1 transaction ID that started from a
3270 terminal, which in turn started a child task 0000073 with the HA41 transaction ID. This
application flow is shown in Figure 10-2.

Figure 10-2 Application flow built from association data

10.3 Using CICS Explorer to track tasks

You can use the INQUIRE ASSOCIATION command to show a simple view of task flow. However,
if the chain of the tasks is complicated or if you want a more intuitive way to determine the
suspended task and its associated tasks, CICS Explorer can be helpful. CICS Explorer is a
164 IBM CICS Asynchronous API: Concurrent Processing Made Simple

system management tool based on Eclipse. It can connect to stand-alone CICS region or
regions in CPSM.

You can find more information about setting up access for CICS Explorer in IBM Knowledge
Center.

The following sections provide a high-level overview of CICS Explorer for the features related
to tracking tasks.

10.3.1 Tracking interrelated tasks using search

You can see the running status of a task using the Tasks view in CICS Explorer. For example,
Figure 10-3 shows the current tasks in a CICS region. A few of these are suspended. You can
view the suspend reason by double-click a task, for example task 0000240, which opens the
attributes view for this task as shown in Figure 10-4 on page 165.

Figure 10-3 Tasks view in CICS Explorer

The suspend reason for this task is AS_CHILD which means this task is trying to fetch the
result from its asynchronous child task 0000243 but the child task hasn't finished
(Figure 10-4).

Figure 10-4 Task attributes view showing suspend reason

You might want to purge a suspended task. However before doing that, you can determine
other tasks that are related to this task. To see the tasks that are related to a suspended task,
or in fact any task, right-click a task row (in this example, task 0000075), and select Search →
Associated Tasks, as shown in Figure 10-5 on page 166.
Chapter 10. System tracking of asynchronous applications 165

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/cmci/clientapi_setup.html

Figure 10-5 Search associated tasks menu in the Tasks view

The result of the search is shown in Figure 10-6, which shows that task 0000075 started task
0000078.

Figure 10-6 Search result of the associated tasks

10.3.2 Finding out associated tasks using the Task Associations views

To determine a list view of the association data information for all the tasks in the CICS
region, open the Task Associations view as shown in Figure 10-7. You can see that task
0000138 has an Origin Transaction ID of PAS1, which is different from its own Trans ID of HA41
and which means that task 0000138 was started by another task. Task 0000135 displays in
the Prev Transaction Task ID column.

Figure 10-7 Task Associations view in CICS Explorer
166 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Double-click task 0000138 to show the details of the association data. Figure 10-8 shows that
task 0000138 has a previous hop count of 0, a previous transaction count of 1, and the origin
task is 0000135. This information indicates that task 0000138 as started by 0000135 in the
same region.

Figure 10-8 Task Association details for task 0000138 in CICS Explorer
Chapter 10. System tracking of asynchronous applications 167

As an example, double-click task 0000135 to show the details of the association data for this
task. As shown in Figure 10-9 and Figure 10-10 on page 169, dozens of fields are available
for this task, which is in-line with the information from the INQUIRE ASSOCIATION command.

Figure 10-9 Part 1 of Task Association details for task 0000135 in CICS Explorer
168 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Figure 10-10 shows that task 0000135 has a previous hop count of 0 and a previous
transaction count of 0, which indicate that this task is the origin.

Figure 10-10 Part 2 of Task Association details for task 0000135 in CICS Explorer

10.3.3 Graphical view of associated tasks

Without going through the fields, you can easily determine the relationship between tasks if
you use the search function, as shown as in Figure 10-11. Right-click a task, and then select
Search → Associated Tasks. (This menu is also accessible in the Tasks view.)

Figure 10-11 Menu for searching Associated Task in CICS Explorer
Chapter 10. System tracking of asynchronous applications 169

The result of the search displays in a Search view, as shown in Figure 10-12. Task 0000135 is
at the top level, with task 0000138 being a child of it. This tree view is the same as the
application flow shown in Figure 10-2 on page 164, which was reversed engineered using the
INQUIRE ASSOCIATION command.

Figure 10-12 Search result for associated tasks in CICS Explorer

10.3.4 Graphical view of orphaned tasks

Figure 10-13 shows an example where there are three tasks with the same origin transaction
in the same CICS region. In this example, the origin transaction CECI started PAS1, which
completes the RUN TRANSID command to start HA41.

Figure 10-13 View of three tasks with the same origin transaction in CICS Explorer

A search for any of these three tasks shows the tree view shown in Figure 10-14. It is clear
that task 0000146 at the top row started task 0000233, which in turn started child task
0000238.

Figure 10-14 Tree view of three associated tasks in CICS Explorer

If the middle task 0000233 has finished, refreshing the Search view reflects those tasks that
are live in the CICS region. Figure 10-15 shows the refreshed view.

Figure 10-15 Tree view of orphaned task in CICS Explorer
170 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Because task 0000233 is finished, its child task 0000238 became an orphaned task and is
gathered under the Orphaned Tasks section. From task 0000238’s previous transaction data,
the search view shows 0000233 is the previous transaction task number. However, the
system can’t get the association data for task 0000233 because it has already completed.
Therefore the search view doesn’t have the information regarding task 0000233 and cannot
reliably trace back to task 0000146. The search view knows that task 0000146 is related to
task 0000238 as the origin, so task 0000146 is shown with limited association information.

10.4 Using CICS Performance Analyzer to understand task
relationship

Using the INQUIRE ASSOCIATION command and the Task Associations view in CICS Explorer
are good for real-time viewing and diagnosing tasks. For purposes such as planning, auditing,
tuning of CICS workload, CICS monitoring data which is available offline has a rich set of
information for these purposes.

The DFHCICS group in the performance class of CICS monitoring contains origin data
information, previous hop data, and previous transaction data for completed tasks. This
section uses CICS Performance Analyzer (CICS PA) to track task relationships.

10.4.1 Brief overview of CICS Performance Analyzer

CICS Performance Analyzer is a reporting tool that provides reports and analysis about the
performance of your CICS systems and applications. With these reports, it helps you tune,
manage, and plan your CICS systems in an efficient way. CICS Performance Analyzer is
designed to complement the CICS-supplied utilities and sample programs for monitoring and
statistics, such as DFH$MOLS and DFHSTUP.

The CICS Performance Analyzer reports are based on input data that is collected in system
management facility (SMF) data. CICS Performance Analyzer provides reporting and analysis
for the following SMF data:

� CICS Monitoring Facility (CMF) performance, exception, and transaction resource class
records (type 110 subtype 1)

� CICS statistics and server statistics data (type 110 subtype 2)

� CICS Transaction Gateway statistics (type 111)

� DB2 accounting records (type 101)

� WebSphere MQ accounting data (type 116)

� System Logger data (type 88)

� IBM OMEGAMON® for CICS data (type 112)

To generate CICS monitoring data to SMF, you need to switch on CICS monitoring for the
region and select which class of monitoring data to be collected.

You can find a rich set of scenarios to get you started with CICS PA in CICS Performance
Analyzer, SG24-6063. For the latest CICS Performance Analyzer documentation, visit IBM
Knowledge Center.
Chapter 10. System tracking of asynchronous applications 171

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/monitoring/dfht3_mon_control.html
http://www.redbooks.ibm.com/abstracts/sg246063.html
https://www.ibm.com/support/knowledgecenter/SSPPU4
https://www.ibm.com/marketplace/cics-performance-analysis-tool

10.4.2 Extending the business application

This section describes an extension to the scenario shown in Figure 10-2 on page 164 to a
simple business application. This business application is across two systems, completes a
dynamic program link (DPL) from one system to another, and starts a few child transactions
using the RUN TRANSID command. Figure 10-16 illustrates the application flow.

Transaction PG1 starts two local transactions, HA41 and HA11. Transaction HA11 does a DPL call
over an IPIC connection to start the remote program JHEASPG4. This remote program starts
a local transaction HA31, and transaction HA31 starts another local transaction HA41.

Figure 10-16 A simple application cross systems and starting local transactions

Although the application is not complicated, there are six tasks involved in this application.
Some of the tasks might not display when you view the associated tasks in real-time in the
CICS Explorer. As shown in Figure 10-17, the task for transaction HA41 in system CAC has
completed and does not displayed, so the view isn’t a complete view.

Figure 10-17 Task tree view for cross-system application using the CICS Explorer

You can thus use CICS Performance Analyzer to look at the CICS-collected monitoring data
for this application.

10.4.3 Transaction tracking reports by CICS Performance Analyzer

CICS Performance Analyzer provides a sample Transaction Tracking List report and
Transaction Tracking Summary report in the performance reports category. These reports use
172 IBM CICS Asynchronous API: Concurrent Processing Made Simple

https://www.ibm.com/support/knowledgecenter/SSPPU4_5.4.0/com.ibm.cics.pa.doc/ptrtrack-list.html
https://www.ibm.com/support/knowledgecenter/SSPPU4_5.4.0/com.ibm.cics.pa.doc/ptrtrack-summ.html

the transaction group ID to identify related transactions, whether they are on the same CICS
system or on different CICS systems, and to produce the relationship between them.

We dumped the SMF data for both regions and used the Transaction Tracking List report to
show the tasks in time sequence. Figure 10-18 shows one section from the output of the
report by the sequence of the time when task is started.

At the top of the section, it shows the origin information. The originating transaction is PG1,
from the CICS region IYCWZCAC, the task number of 74, which was started from a terminal
called TC45.

Next is a list of subordinate transactions from the origin transaction, which can be previous
hop transactions in a remote region or previous transactions in the same region. This list
shows the HA41 transaction with task number 77, which was missing from the previous live
view shown in Figure 10-17 on page 172. This list matches the application shown in
Figure 10-16 on page 172.

The first column in Figure 10-18 is the transaction ID (Tran), followed by PTTran (previous
transaction ID in the same region), and then PHTran (previous hop transaction ID in the
remote region). One transaction cannot have both PTTran and PHTran as their immediate
previous transaction. Either one of these two columns has a value or none, thereby indicating
an origin task.

The PRTaskNo column shows the task number of either previous transaction, previous hop
transaction, or 0.

The PRCount column shows the previous transaction count or the previous hop count if the
previous transaction count is 0.

Figure 10-18 Transaction Tracking List report according to time sequence
Chapter 10. System tracking of asynchronous applications 173

You can also generate a call sequence report. Using the call sequence report, you can easily
work out the flow of the tasks and where the flow ends. For the sample shown in
Figure 10-19, there are two subsequences from transaction PG1. The first subsequence is PG1
to HA41, and the second is PG1 to HA11 to CSMI to HA31 then to HA41.

Figure 10-19 Transaction Tracking List report according to call sequence

The Performance Transaction Tracking Summary report displays a summary of all
transactions that are associated with an originating transaction. Eight instances of transaction
PG1 ran, as shown in Figure 10-20.

Figure 10-20 Performance Transaction Tracking Summary report

If any of the tasks are missing from unloaded SMF data, for reasons such as the record was
not collected or unloaded, a Transaction Tracking List—Recap Report is created to show the
number of originating tasks that have children transactions missing and the number of
children transactions that don’t have parent transactions.

10.4.4 Transaction group reports by CICS Performance Analyzer

CICS Performance Analyzer has a dedicated transaction group report. Transactions are
grouped by the transaction group ID, which was assigned when the originating transaction
was started.
174 IBM CICS Asynchronous API: Concurrent Processing Made Simple

https://www.ibm.com/support/knowledgecenter/en/SSPPU4_5.4.0/com.ibm.cics.pa.doc/ptrtrack-list-cont.html

Figure 10-21 shows the equivalent Transaction Group report for the flow of tasks shown in the
Transaction Tracking List reports in Figure 10-18 on page 173 and Figure 10-19 on page 174.

Figure 10-21 Transaction Group report

The Transaction Group Summary report shown in Figure 10-22 provides the number of
transactions for a particular type of origin and their average performance figures, such as
response time, dispatch time, CPU time, and so on. This type of report produces similar
measurement fields as the Performance Transaction Tracking Summary report but from a
different angle.

Figure 10-22 Transaction Group - Summary report

10.5 Using IBM OMEGAMON for CICS on z/OS V5.5.0 to monitor
performance

IBM OMEGAMON for CICS on z/OS V5.5.0 is part of the OMEGAMON family of products that
provides systems monitoring and management of IBM Z systems. It centrally monitors and
manages CICS resources, transactions, and interactions with other subsystems, such as IBM
DB2 and IBM Information Management System (IMS™). It can monitor and trace real-time
task information and keep historical data for trend analysis over a period of time.

This section shows a scenario where alerts show up in OMEGAMON and then can be
diagnosed in OMEGAMON.
Chapter 10. System tracking of asynchronous applications 175

https://www.ibm.com/support/knowledgecenter/SSLSDR_5.5.0/com.ibm.omegamon_cics.doc_5.5.0/welcome.htm

10.5.1 Alerts showing up in OMEGAMON

Figure 10-23 shows the Service Level Summary workspace within the OMEGAMON
Enhanced 3270 user interface. The data shown in this workspace provides performance
information about each defined service class grouping relevant to their defined goal for a
CICSplex that is monitored by the OMEGAMON for CICS agent. In this example, the top two
service classes show a warning on the average response time. To determine the problem,
you can drill down on the service class by type S (for example, GTRANS).

Figure 10-23 Service Level Summary provided by OMEGAMON for CICS on z/OS

Figure 10-24 shows the details of the selected service class, that is the transaction IDs in this
class. You can select the GBPA transaction ID to see this transaction’s details, which are
shown in Figure 10-25 on page 177. Figure 10-24 shows that GBPA has a response time goal
of an average of 1 second.

Figure 10-24 Service Class Detail provided by OMEGAMON for CICS on z/OS
176 IBM CICS Asynchronous API: Concurrent Processing Made Simple

Figure 10-25 shows that GBPA has a response time goal of an average of 1 second, but the
actual average response time is over 50 seconds. Thus, the alert is raised.

Figure 10-25 Transaction details within a service class provided by OMEGAMON for CICS on z/OS

10.5.2 Drill down to the problematic task

To look at the task details for the highest response time task, position your cursor on the
Highest Response Time, and press Enter. Figure 10-26 shows the task details from the
historical data that was gathered, for example the task number, the program name, CPU time,
user ID, response time, and so forth.

Figure 10-26 Task History Detail monitored by OMEGAMON for CICS on z/OS

There are four other tabs that shown information related to this task. To see the related tasks,
go to the last tab called Related.
Chapter 10. System tracking of asynchronous applications 177

Figure 10-27 shows the found related tasks and how they are related together. As shown in
Figure 10-27, GBPA is related to GCD1, GCD2, GCD3, and GCD4 with asynchronous child
and parent relationships.

Figure 10-27 Related tasks for a certain task monitored by OMEGAMON for CICS on z/OS

Because the trace was active when this task ran, you can look at the combined trace for these
tasks by typing T next to any of the transactions shown in Figure 10-27. The combined trace is
shown in Figure 10-28, Figure 10-29 on page 179, and Figure 10-30 on page 179. The
combined trace is useful to see the application logic, what program it ran, what function was
invoked, what was the response, what was the offset in the program, the start time and end
time for each function, and other relevant information.

The combined trace shows that GBPA (task 11992) started four asynchronous child tasks,
which are highlighted in Figure 10-28. Three of these child tasks (11993, 11994, and 11995)
got some storage, got content from container, and then delayed before completing. Child task
11996 got some storage, and then did some MQ calls and delays before completing.

Figure 10-28 Combined trace for a group of tasks monitored by OMEGAMON for CICS on z/OS (part 1 of 3)
178 IBM CICS Asynchronous API: Concurrent Processing Made Simple

OMEGAMON highlighted long intervals to raise an alert, as shown in Figure 10-29.

Figure 10-29 Combined trace for a group of tasks monitored by OMEGAMON for CICS on z/OS (part 2 of 3)

Figure 10-30 Combined trace for a group of tasks monitored by OMEGAMON for CICS on z/OS (part 3 of 3)

Based on this combined information, you can diagnose the issue and take any necessary
actions, for example kill a running task from OMEGAMON.
Chapter 10. System tracking of asynchronous applications 179

180 IBM CICS Asynchronous API: Concurrent Processing Made Simple

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

IBM
 CICS Asynchronous API: Concurrent Processing M

ade Sim
ple

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738442925

SG24-8411-00

®

https://www.facebook.com/IBMRedbooks
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 Asynchronous processing, parallelism, and concurrency
	1.2 Why is concurrency desirable?
	1.3 Models of concurrency
	1.3.1 Shared state models
	1.3.2 The actor model, and communicating sequential processes

	1.4 How does asynchronous processing apply to CICS?
	1.5 Comparing asynchronous processing techniques in CICS
	1.6 Summary

	Chapter 2. The CICS asynchronous API
	2.1 Basics of the CICS asynchronous API
	2.1.1 Execute work asynchronously
	2.1.2 Track the completion of the asynchronously executing work
	2.1.3 Pass data between parent and child tasks

	2.2 Four CICS asynchronous API commands
	2.2.1 The RUN TRANSID command
	2.2.2 The FETCH CHILD command
	2.2.3 The FETCH ANY command
	2.2.4 The FREE CHILD command

	2.3 Key features and characteristics
	2.3.1 Transactionality
	2.3.2 Orphaned child tasks
	2.3.3 Local children
	2.3.4 Security model
	2.3.5 Passing data with CICS channel and containers
	2.3.6 CICS Asynchronous Services domain
	2.3.7 Timeouts

	2.4 Considerations for using the CICS asynchronous API
	2.4.1 Child GETs and parents UPDATE
	2.4.2 Allow the same parent program to run and fetch child tasks
	2.4.3 Long-running parents should use the FREE CHILD command
	2.4.4 Keep track of fetched channels
	2.4.5 Review MAXTASK and set transaction classes
	2.4.6 Parameterizing timeouts

	Chapter 3. Extending applications while minimizing the impact to response time
	3.1 Overview of the scenario
	3.1.1 Description of the sample application
	3.1.2 Objective of the scenario

	3.2 Add a new request using the CICS asynchronous API
	3.2.1 Defining the PTNR transaction to run ACCTPTNR
	3.2.2 Adding logic to print the partner account details
	3.2.3 Adding the RUN TRANSID command to WEBHOME.cbl
	3.2.4 Adding the FETCH CHILD command to the WEBHOME.cbl program

	3.3 Run the updated application
	3.4 Summary

	Chapter 4. Improving the response time of existing applications
	4.1 Overview of the scenario
	4.1.1 Description of the sample application
	4.1.2 Objective of the scenario

	4.2 Converting program LINKs to asynchronous API calls
	4.2.1 Define transactions to run the GETNAME and ACCTCURR programs
	4.2.2 Add RUN TRANSID commands to WEBHOME.cbl
	4.2.3 Add the FETCH ANY command to WEBHOME.cbl

	4.3 Running the updated application
	4.4 Summary

	Chapter 5. Developing robust applications with unreliable service providers
	5.1 Overview of the scenario
	5.1.1 Objective of the scenario

	5.2 Requesting services from an unreliable service provider
	5.2.1 Why not just use a LINK?
	5.2.2 Asynchronously requesting a new service
	5.2.3 Testing the response times of calling the new service
	5.2.4 Retrieving a timeout value to meet the application’s SLA
	5.2.5 Adding the TIMEOUT parameter to the FETCH command of the unreliable service

	5.3 Running the updated application
	5.4 Summary

	Chapter 6. Creating a Java-based controller in a mixed-language environment
	6.1 Making promises about the future
	6.2 CICS asynchronous API classes and methods
	6.2.1 A golden-path scenario
	6.2.2 Additional methods: getAny() and freeChild()

	6.3 Providing a web front end for the web banking application
	6.3.1 Project setup
	6.3.2 Program architecture
	6.3.3 Writing the main program logic
	6.3.4 Displaying the account details and loan rate

	6.4 Summary

	Chapter 7. Tips and tricks
	7.1 Trick: Reduce the management burden by running children under a single transaction ID
	7.1.1 The PARENT program running two different children under the ASCH child transaction ID
	7.1.2 Using the ASYNCWP wrapper program to extract the target child program from a channel and linking to it
	7.1.3 The CHILD1 and CHILD2 child programs running under the ASCH transaction

	7.2 Tip: Run existing COMMAREA-based assets asynchronously without changing them
	7.2.1 The PARENT program running two different children under child transaction ID ASCH passing COMMAREAs to each one
	7.2.2 Using the ASYNCWP wrapper program to extract the PROGRAM target child from channel and linking to it with REQUEST-COMM COMMAREA
	7.2.3 The CHILD1 and CHILD2 child programs running under the ASCH transaction

	7.3 Tip: Release storage wisely in long-running parent transactions
	7.4 Trick: Prevent sets of children from interfering in FETCH ANY logic by using FREE CHILD
	7.5 Tip: Check the status of a child without blocking the parent by using the NOSUSPEND option
	7.6 Trick: Process as many children as possible in a a fixed time period
	7.7 Tip: Using response-only channels between parent and child transactions

	Chapter 8. Debugging and problem determination
	8.1 Using the CICS execution diagnostic facility: CEDF and CEDX
	8.2 Asynchronous API abend code
	8.3 Tracing asynchronous API applications
	8.4 Sample application trace flow using FETCH ANY commands
	8.4.1 The environment
	8.4.2 Trace of the PARENT program creating two children
	8.4.3 Trace of one child
	8.4.4 Trace of the PARENT program fetch the response from any child

	8.5 Sample application trace flow using FETCH CHILD commands and the NOSUSPEND and TIMEOUT options
	8.5.1 The environment
	8.5.2 Trace of FETCH CHILD NO SUSPEND
	8.5.3 Trace of FETCH CHILD TIMEOUT
	8.5.4 Trace of FETCH CHILD

	8.6 Sample application trace flow using FREE CHILD commands
	8.6.1 The environment
	8.6.2 Trace of free child tasks

	8.7 Transaction dumps and the asynchronous API
	8.7.1 Asynchronous parent task transaction dump extract
	8.7.2 Asynchronous child task transaction dump extract

	8.8 System dumps and the asynchronous API
	8.8.1 Asynchronous parent system dump extract

	Chapter 9. Performance and management for asynchronous API applications
	9.1 Special aspects for asynchronous API applications
	9.2 Managing the number of tasks in the system
	9.2.1 Using MXT
	9.2.2 Using TRANCLASS to manage parent transactions
	9.2.3 Using TRANCLASS to manage child transactions

	9.3 Duration of parent tasks in the system
	9.3.1 Parent tasks waiting upon child tasks
	9.3.2 MAXTASK condition causing parent tasks to suspend

	9.4 Policing parent tasks with CICS policy
	9.5 Threadsafe considerations
	9.6 Asynchronous services statistics
	9.7 Asynchronous services monitoring

	Chapter 10. System tracking of asynchronous applications
	10.1 Data gathered by transaction tracking
	10.1.1 Origin data
	10.1.2 Previous transaction data
	10.1.3 Previous hop data
	10.1.4 Task context data
	10.1.5 Application context data
	10.1.6 Flow of tracking data

	10.2 Using the INQUIRE ASSOCIATION command to track tasks
	10.2.1 Building the picture of the application flow using the tracking data

	10.3 Using CICS Explorer to track tasks
	10.3.1 Tracking interrelated tasks using search
	10.3.2 Finding out associated tasks using the Task Associations views
	10.3.3 Graphical view of associated tasks
	10.3.4 Graphical view of orphaned tasks

	10.4 Using CICS Performance Analyzer to understand task relationship
	10.4.1 Brief overview of CICS Performance Analyzer
	10.4.2 Extending the business application
	10.4.3 Transaction tracking reports by CICS Performance Analyzer
	10.4.4 Transaction group reports by CICS Performance Analyzer

	10.5 Using IBM OMEGAMON for CICS on z/OS V5.5.0 to monitor performance
	10.5.1 Alerts showing up in OMEGAMON
	10.5.2 Drill down to the problematic task

	Back cover

