
Redbooks

Front cover

IBM Db2 12 for z/OS
Performance Topics

Akiko Hoshikawa

Bart Steegmans

Bharat Verma

Brian Baggett

Chang Kim

Chongchen Xu

Chung Wu

Cristian Molaro

Jasmi Thekveli

Kaitlin E. Murray

Liang Zhang

Lingyun Wang

Mai Nguyen

Neena Cherian

Nguyen Dao

Ou Jin

Peng Huang

Ping Liang

Robert Boon

Todd Munk

Xue Lian Zhang

International Technical Support Organization

IBM Db2 12 for z/OS Performance Topics

September 2017

SG24-8404-00

© Copyright International Business Machines Corporation 2017. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (September 2017)

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

Preface . xi
Authors. xi
Now you can become a published author, too! . xiii
Comments welcome. xiii
Stay connected to IBM Redbooks . xiv

Chapter 1. Introduction . 1
1.1 Overview . 2

1.1.1 Performance . 2
1.1.2 High-level expectations . 4

1.2 Db2 12 for z/OS performance features . 6
1.2.1 System-level performance . 6
1.2.2 Query performance improvement . 16
1.2.3 Access path stability for dynamic SQL statements . 17

1.3 Other key features in Db2 12 for z/OS . 18
1.3.1 Mobile application enablement . 18
1.3.2 Resiliency and continuous availability. 19
1.3.3 Simplified migration and continuous delivery support . 20

1.4 How to use this book . 21
1.4.1 Measurement environments . 22

Chapter 2. Scalability enhancements and subsystem performance 23
2.1 Fast index traversal . 24

2.1.1 Introduction . 24
2.1.2 Performance measurements. 26

2.2 Contiguous buffer pools . 39
2.2.1 Introduction . 39
2.2.2 Performance measurements . 41
2.2.3 Managing a contiguous buffer pool . 42
2.2.4 Usage considerations for contiguous buffer pools . 48

2.3 Insert Algorithm 2 . 50
2.3.1 Insert Algorithm 2 overview. 50
2.3.2 How Insert Algorithm 2 works . 52
2.3.3 Performance measurements. 53
2.3.4 Insert Algorithm 2 usage considerations. 56

2.4 Logging enhancements. 57
2.4.1 Greater than 4 GB active log support . 57
2.4.2 Removing log write latch (LC19) . 60
2.4.3 Forced log write removal for identity columns. 61

2.5 Range-partitioned table spaces with relative page numbering 63
2.5.1 Performance measurements . 64

2.6 IMS-Db2 Connection pooling . 65
2.6.1 Performance measurements. 67
2.6.2 Usage considerations . 67

2.7 Db2 prefetch-related enhancements. 68
2.7.1 Increased numbers of Db2 prefetch engines . 68
© Copyright IBM Corp. 2017. All rights reserved. iii

2.7.2 Avoiding unnecessary dynamic prefetch scheduling . 69
2.8 Performance enhancements for short transactions . 71

2.8.1 DGTT enhancements . 71
2.8.2 Claim and declaim performance improvements . 73
2.8.3 SELECT INTO optimization . 75

2.9 Db2 Storage Manager enhancements . 76
2.9.1 Scalability and performance improvement for EDM pools 76
2.9.2 Storage pool management improvement for XML and LOBs 81

2.10 Miscellaneous enhancements. 81
2.10.1 zPLX 3.2.0 Performance enhancement . 81
2.10.2 Latch class 23 reduction . 82

Chapter 3. Synergy with the IBM Z platform . 83
3.1 Large object compression . 84

3.1.1 LOB compression prerequisites . 84
3.1.2 LOB compression considerations . 85
3.1.3 Use of DSN1COMP to estimate LOB compression . 86
3.1.4 Performance characteristics of LOB compression . 89

3.2 ISM that uses SMC-D . 93
3.2.1 HiperSockets, SMC-R, and SMC-D . 93
3.2.2 Request/response workload performance summary comparison of HiperSockets and

OSA with and without SMC-D. 95
3.2.3 SMC-D results for IRWW SQLJ OLTP workload . 98

3.3 Simultaneous multithreading. 100
3.3.1 SMT-2 Performance in a one-way data sharing environment 102
3.3.2 SMT-2 performance in a two-way data sharing environment 105

3.4 Performance effect of the use of 2 GB frames . 107
3.4.1 Performance measurements. 107
3.4.2 Usage guidance and considerations. 108

3.5 Buffer pool simulation . 110
3.5.1 Performing buffer pool simulation . 110
3.5.2 Performance measurement results . 113
3.5.3 Buffer pool simulation usage considerations. 114

3.6 Large group buffer pool usage . 115
3.6.1 Performance measurements. 115
3.6.2 Summary. 120

3.7 Data set open/close performance . 121
3.7.1 DFSMS changes in z/OS V2R2 . 121
3.7.2 Db2 for z/OS changes. 121
3.7.3 Performance evaluation . 122

3.8 zHyperWrite . 122
3.9 Active log data set striping . 123

3.9.1 How Db2 log striping works. 124
3.9.2 Performance measurements. 125
3.9.3 Usage considerations for Db2 active log striping . 127

3.10 Easy Tier directive data placement support by Db2 REORG utility 129

Chapter 4. Data sharing . 131
4.1 Global commit LRSN enhancement . 132

4.1.1 Performance effect of not committing frequently before Db2 12. 133
4.1.2 Performance effect of not committing frequently in Db2 12 134
4.1.3 Conclusion . 135

4.2 Global read LSN enhancement . 135
iv IBM Db2 12 for z/OS Performance Topics

4.2.1 Performance evaluation . 136
4.2.2 Conclusion . 137

4.3 Asynchronous lock structure duplexing . 137
4.3.1 System-managed duplexing protocol . 138
4.3.2 Asynchronous duplexing protocol . 139
4.3.3 Performance measurements. 141
4.3.4 Conclusion . 142

4.4 Automatic retry of GRECP and LPL recovery . 143
4.4.1 GRECP recovery . 143
4.4.2 LPL recovery. 144

4.5 Retrying GRECP and LPL recover in Db2 12 . 146
4.6 Db2 shutdown and restart performance improvement when many read/write objects are

used . 147
4.6.1 Performance measurements. 147
4.6.2 Usage considerations . 149

4.7 Db2 peer recovery. 149
4.7.1 Performance measurements. 150
4.7.2 Usage considerations . 154

Chapter 5. Workload level measurements . 155
5.1 High volume INSERT benchmark . 156

5.1.1 Workload description . 156
5.1.2 Hardware configuration . 157
5.1.3 Performance results . 158

5.2 Classic IRWW workload measurements . 159
5.2.1 Db2 11 to Db2 12 migration scenarios (one-way data sharing) 160
5.2.2 Db2 11 to Db2 12 migration scenarios (two-way data sharing) 161

5.3 Distributed IRWW workload performance measurements . 162
5.3.1 Distributed IRWW workload CPU usage. 163
5.3.2 Distributed IRWW workload throughput . 164
5.3.3 Real storage usage. 165
5.3.4 Conclusion . 166

5.4 IBM Brokerage transaction workload . 166
5.4.1 One-way data sharing performance measurements . 166
5.4.2 Two-way data sharing performance measurements . 167

5.5 RTW workload . 173
5.5.1 Performance measurements for non-data sharing RTW workload 173
5.5.2 Performance measurements: Two-way data sharing RTW workload 176

5.6 High insert batch workload measurements . 180
5.6.1 Archive sequential insert . 180
5.6.2 Journal table insert . 182
5.6.3 Message queue insert and delete . 183
5.6.4 Random insert and delete workload . 184

Chapter 6. Distributed system . 187
6.1 DRDA Fast Load . 188

6.1.1 Db2 Fast Load measurements . 189
6.2 Integrated Db2 support of REST APIs . 193
6.3 z/OS Connect Feature Pack support . 193

6.3.1 Db2 Adapter for z/OS Connect workload measurements 194

Chapter 7. SQL and application enablement . 197
7.1 SQL support . 198

7.1.1 Advanced trigger support . 198
 Contents v

7.1.2 Pagination . 201
7.1.3 MERGE statement . 203
7.1.4 Supporting KEEPDYNAMIC (YES) for ROLLBACK . 207
7.1.5 Improved storage usage for the Dependency Manager Hash (DMH) table 209
7.1.6 Unicode column in EBCDIC table performance . 210
7.1.7 Piece-wise data modification. 213

7.2 Resource Limit Facility . 215
7.2.1 Performance objectives and evaluation . 216

7.3 JSON support . 217
7.3.1 Built-in function JSON_VAL . 217
7.3.2 UDFs for JSON support . 219
7.3.3 JSON performance . 219

7.4 Built-in LISTAGG aggregate function . 221
7.4.1 Sample scenario and use cases for LISTAGG . 222
7.4.2 Performance results for LISTAGG function. 223

7.5 XML Optimizations . 224
7.5.1 XML subdocument update . 224
7.5.2 XML access plan optimization. 231
7.5.3 XMLTABLE enhancements. 232

7.6 Temporal improvement . 233
7.6.1 Temporal referential integrity . 233
7.6.2 Non-deterministic expression columns for auditing. 238

Chapter 8. Query performance. 243
8.1 UNION ALL and OUTER JOIN performance enhancements 244

8.1.1 Reorder OUTER JOIN tables to avoid materializations 245
8.1.2 Push predicates inside UNION ALL legs and OUTER JOIN query blocks 246
8.1.3 Trim unnecessary columns and tables . 250
8.1.4 Push down of ORDER BY and FETCH FIRST . 253
8.1.5 Targeted UNION ALL and OUTER JOIN summary . 257

8.2 Predicate optimizations . 257
8.2.1 Sort for stage 2 join expressions. 258
8.2.2 User-defined table function predicate optimizations . 259
8.2.3 VARBINARY indexability improvements . 260
8.2.4 Row permission indexability for correlated subqueries . 261
8.2.5 Predicate bubble up enhancements . 262
8.2.6 IN-list predicate enhancements . 262

8.3 Optimizer cost model enhancements . 264
8.3.1 Extending NPGTHRSH to default statistics . 264
8.3.2 List prefetch and hybrid join cost improvements . 265
8.3.3 Improved filter factor for CURRENT DATE/TIMESTAMP predicates 266
8.3.4 Improved resolution of filter factors at bind and prepare using index probing. . . 266
8.3.5 Improved bind and prepare performance with many indexes 267

8.4 Runtime enhancements . 268
8.4.1 Runtime adaptive index processing . 269
8.4.2 Internal runtime and complex expression enhancements. 272
8.4.3 Db2 12 expression sharing . 272
8.4.4 UDF result caching . 273
8.4.5 Internal block fetching . 274

8.5 Sort space reductions and in-memory use . 274
8.5.1 Increasing the number of sort tree nodes . 275
8.5.2 Reducing the length of the sort rows . 276
8.5.3 Reducing contention on 4 K work file pages. 277
vi IBM Db2 12 for z/OS Performance Topics

8.5.4 Reading sort results directly from the sort tree . 277
8.5.5 Extensions to sort avoidance for OLAP functions. 278
8.5.6 Sparse index enhancements . 278
8.5.7 Partial sort avoidance for FETCH FIRST . 279
8.5.8 Avoiding sort for ordered RIDs . 281

8.6 Migration from Db2 11 to Db2 12 . 282
8.6.1 IBM Query workload performance after Db2 12 migration 282

8.7 Query regression workloads . 284
8.7.1 Characteristics of query workloads and improvement . 284
8.7.2 Access path change and performance improvement . 286

Chapter 9. Utilities. 287
9.1 LOAD and REORG enhancements. 288

9.1.1 LOAD REPLACE improvements for empty PBR partitions 288
9.1.2 zIIP offload during RELOAD phase for LOAD and REORG 288
9.1.3 LOAD SHRLEVEL CHANGE PARALLEL for PBG table spaces 288

9.2 Statistics enhancements . 289
9.2.1 RUNSTATS COLGROUP performance improvement . 289
9.2.2 LOAD PARALLEL STATISTICS on COLGROUP. 289
9.2.3 Frequency statistics on indexes during inline statistics. 290
9.2.4 PROFILE support for inline statistics . 290
9.2.5 Statement cache invalidation in RUNSTATS and inline stats 291
9.2.6 RUNSTATS TABLESPACE LIST INDEX improvement 292
9.2.7 Other RUNSTATS enhancements . 292

9.3 REGISTER NO option in UNLOAD and RUNSTATS . 293
9.3.1 Performance measurements. 293
9.3.2 Usage considerations . 294

9.4 Backup and RECOVER . 295
9.4.1 Performance measurements. 295

9.5 Decompression improvement in utilities . 295
9.5.1 Performance measurements. 296

Chapter 10. IBM Db2 Analytics Accelerator for z/OS . 297
10.1 Performance Enhancements for IBM Db2 Analytics Accelerator for z/OS 298
10.2 IDAA Version 4 PTF-2. 299

10.2.1 Effect of QUERYACCELERATION ENABLE on Rebind Static Packages 299
10.3 IDAA version 4 PTF-3 . 300

10.3.1 Acceleration of local static SELECT INTO . 300
10.3.2 Load enhancement . 300
10.3.3 Reload enhancements . 301

10.4 IDAA version 4 PTF-4 . 302
10.4.1 Dynamic statement cache support for accelerated queries 302

10.5 IDAA version 4 PTF-5 . 302
10.5.1 Load improvement with PI26783 . 302
10.5.2 Load and query performance comparison on Mako versus Striper 303
10.5.3 In-database transformation . 303
10.5.4 Apply incremental updates in parallel . 307
10.5.5 Automatic generation of distribution keys and organizing keys for incremental

update enabled tables . 310
10.6 IDAA version 4 PTF-6 . 314

10.6.1 IDAA load and query performance with z13 versus zEC12 314
10.6.2 Continuous operation of incremental updates. 314

10.7 IDAA version 5 PTF-1 . 317
 Contents vii

10.7.1 Load throughput increase from lifting TCP send buffer size restriction. 317
10.7.2 Encrypting data in motion by using IPSec. 318

10.8 IDAA version 5 PTF-2 . 321
10.8.1 Db2 12 support for IDAA. 321

10.9 IDAA version 5 PTF-3 . 321
10.9.1 Loading many small tables . 321

Chapter 11. Installation and migration . 323
11.1 Migration performance . 324

11.1.1 Migration performance measurement tests. 325
11.2 Dynamic plan stability . 327

11.2.1 Stabilizing dynamic queries. 327
11.2.2 Locating and loading stabilized statements . 329
11.2.3 Overhead of stabilized statement misses . 329
11.2.4 Free stabilized statements . 331

11.3 Temporal real-time statistics tables . 331
11.3.1 Performance measurements . 332

11.4 System parameters’ performance-related changes . 335
11.4.1 New system parameters related to performance . 335
11.4.2 System parameters updated related to performance . 338
11.4.3 Obsolete system parameters related to performance. 338

Chapter 12. Monitoring and instrumentation . 341
12.1 Db2 12 instrumentation changes . 342

12.1.1 IFCID header changes . 342
12.1.2 New IFCIDs. 343
12.1.3 Changed IFCIDs . 346

12.2 OMPE accounting/statistics batch report enhancements . 369
12.2.1 Dynamic SQL plan stability . 369
12.2.2 Insert Algorithm 2 . 371
12.2.3 LOB compression . 372
12.2.4 Contiguous buffer pools: PGSTEAL(NONE). 374

Appendix A. IBM Db2 workloads . 375
A.1 IBM Relational Warehouse Workload. 377
A.2 Relational Transaction Workload . 378
A.3 IRWW distributed workload . 379
A.4 Brokerage . 379
viii IBM Db2 12 for z/OS Performance Topics

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2017. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

CICS®
Cognos®
DB2®
DS8000®
Easy Tier®
FICON®
GDPS®
HiperSockets™
IBM®

IBM z®
IBM z Systems®
IBM z13®
IMS™
MVS™
OMEGAMON®
Redbooks®
Redbooks (logo) ®
RMF™

System z®
Tivoli®
WebSphere®
z Systems®
z/OS®
z/VM®
z13®
z13s™
zEnterprise®

The following terms are trademarks of other companies:

Netezza, NPS, and TwinFin are trademarks or registered trademarks of IBM International Group B.V., an IBM
Company.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
x IBM Db2 12 for z/OS Performance Topics

http://www.ibm.com/legal/copytrade.shtml

Preface

Db2 12 for IBM z/OS® delivers several significant business values, such as cost reductions,
scalability improvement, and improved application enablement for cloud and mobile
environment.

Db2 12 also introduces a foundation of continuous delivery. In continuous delivery, new
capabilities and enhancements, including performance features, are delivered through
function levels without waiting for a new release.

Function levels 100 and 500 activate the initial set of enhancements and capabilities in Db2
12. For migration from Db2 11, most new capabilities become available in Db2 12 only after
the activation of function level 500 or higher. In this IBM® Redbooks® publication, we focus
on the enhancements that are available in function levels 100 and 500.

Db2 12 for z/OS continues the trend by focusing on further CPU savings and performance
improvement through innovations within Db2 and the synergy with IBM System z® hardware
and software. While most of CPU reductions in analytical queries are built directly in Db2,
other CPU and cost reductions are realized by using more real memory. Enhancements often
take effect after the REBIND in the case of static applications, while some enhancements
require user actions, such as activating function level, Data Definition Language (DDL)
updates, or providing more memory for Db2 to use.

In this book, we describe the performance of Db2 12 for z/OS and the possible performance
affects of the most important functions when migrating from Db2 11. We include performance
measurements that were made in the Silicon Valley Laboratory and provide considerations
and high-level estimates. Results are likely to vary because the conditions and work differ.

For the purposes of this publication, we assume that you are somewhat familiar with Db2 12
for z/OS. For more information about the new functions, see IBM DB2 12 for z/OS Technical
Overview, SG24-8383.

Authors

This book was produced by a team of performance specialists working around the world.

Akiko Hoshikawa is a Senior Technical Staff Member with the IBM Silicon Valley Lab, where
she leads the performance engineers for Db2 for z/OS development. She is responsible for
driving performance-initiated development in each Db2 release, working closely with Db2
developers. Her areas of expertise include system level performance tuning, Sysplex, and
XML. She has been involved with or written IBM Redbooks publications about Db2 for z/OS
Performance Topics since 1998.

Bart Steegmans is a Consulting Db2 Product Support Specialist from IBM Belgium, currently
working remotely for the Silicon Valley Laboratory in San Jose and providing technical
support for Db2 for z/OS performance problems. He has over 29 years of experience in Db2.
Before joining IBM in 1997, Bart worked as a Db2 system administrator at a banking and
insurance group. His areas of expertise include Db2 performance, database administration,
and backup and recovery. Bart is co-author of numerous IBM Redbooks publications about
Db2 for z/OS.
© Copyright IBM Corp. 2017. All rights reserved. xi

Cristian Molaro is an IBM Gold Consultant, an independent Db2 specialist, and a Db2
instructor based in Belgium. He has been recognized by IBM as an IBM Champion for
Information Management in 2009 to 2013. His main focus is on Db2 for z/OS administration
and performance. Cristian is the co-author of several IBM Redbooks publications that are
related to Db2. He holds a Chemical Engineering degree and a Master’s degree in
Management Sciences. Cristian was recognized by IBM as TOP EMEA Consultant at the
IDUG EMEA Db2 Tech Conference Prague in 2011.

Kaitlin E. Murray is a Software Developer in the United States, based at the Silicon Valley
Lab. She has a year of experience in Db2 performance in Db2 for z/OS development. She
holds a degree in computer science from University of California, Davis. Her areas of
expertise include query performance and analysis.

This publication also was written by the following authors:

� Bharat Verma
� Brian Baggett
� Chang Kim
� Chongchen Xu
� Chung Wu
� Jasmi Thekveli
� Liang Zhang
� Lingyun Wang
� Mai Nguyen
� Neena Cherian
� Nguyen Dao
� Ou Jin
� Peng Huang
� Ping Liang
� Robert Boon
� Todd Munk
� Xue Lian Zhang

Special thanks to the following people for their contributions to this project, and for their
consultations and performance analysis:

� Terry Purcell
� Fenghui Li
� Jie Ling
� David Dossantos

Thanks to the following people for their contributions to this project:

� Jeremy B Jones
� Debbie Yu
� Steve Turnbaugh
� Emily Prakash
� Mike Schadduck
� Keiko Fukushima
� Ira Sheftman
� Richard Vivenza
� Ka Chun
� Hugh Smith
� Kevin Hite
� Jerry Stevens
� Brenda Beans
� Michael Woo
� Eric Katayama
xii IBM Db2 12 for z/OS Performance Topics

This book was produced by the IBM Redbooks publication team with contributions from
Martin Keen, IBM Redbooks Project Leader.

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xiv IBM Db2 12 for z/OS Performance Topics

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. Introduction

As with prior releases, performance and scalability improvements are major themes in IBM
Db2 12 for z/OS. Performance optimization in Db2 12 for z/OS focuses on real-time analytics
and using in-memory optimizations.

We describe the performance expectations of Db2 12 for different types of workloads in this
chapter. Many performance improvements offer potential CPU and cost reductions by
migrating to Db2 12 and performing rebind, while other new enhancements might require user
actions or extra memory allocation to use them.

In this chapter, we also provide an overview of the performance improvements and
expectations that are based on laboratory measurements and experiences from customers
who participated in the early support program for Db2 12.

This chapter includes the following topics:

� 1.1, “Overview” on page 2
� 1.2, “Db2 12 for z/OS performance features ” on page 6
� 1.3, “Other key features in Db2 12 for z/OS ” on page 18
� 1.4, “How to use this book ” on page 21

1

© Copyright IBM Corp. 2017. All rights reserved. 1

1.1 Overview

Db2 12 for z/OS delivers several significant business values such as cost reductions,
scalability improvement and ease of data management. These values can be achieved
through simple migration and rebind or by taking user actions that are needed to use certain
new features. Upgrading to Db2 12 includes the following benefits:

� CPU reductions and scalability improvements
� Simplified and highly available system management
� Ease of application enablement for cloud and mobile environments
� Continuous delivery for speedy adoption of new features

As with older releases, Db2 12 for z/OS provides strong performance improvements that drive
great value to Db2 users. Reduced CPU use in Db2 12 can deliver significant savings in total
cost of ownership for running applications on Db2 for z/OS.

Most of the Db2 12 CPU reductions and scalability improvements are built directly into the
Db2 engine and require no application changes. Optimizer enhancements often take effect
after a REBIND in the case of static applications or a PREPARE for dynamic SQL. System
level enhancements can require more real memory, which is usually available in the latest
IBM z® Systems processors.

In this IBM Redbooks publication, we provide performance information for Db2 12 for z/OS,
including the possible performance effects and resource requirements when migrating from
Db2 11. This book also includes the latest performance information for IBM Db2 Analytics
Accelerator V4, V5, and V6 and IBM z Systems® synergy information.

We use performance measurements that were made in the Silicon Valley Laboratory to
illustrate the performance characteristics and usage considerations of Db2 12. The high-level
estimates that we provide in this publication are based on these performance measurement
results. As with any performance discussions, readers must keep in mind that performance
results depend on many variables, including measurement environments, conditions, and
workloads that are used. Our measured results provide a point of reference for comparison
and for setting reasonable expectations. As always, your results can vary.

1.1.1 Performance

Db2 12 provides many opportunities for reduced CPU use in simple online transaction
workloads and in more complex real-time analytics queries. To address the need for importing
more data into Db2, major bottlenecks are addressed to improve scalability of applications
that are concurrently inserting records into Db2 tables.

As with Db2 11, Db2 12 focuses on business resiliency improvements. By introducing
enhancements in areas, such as access path stability, lock avoidance in data sharing, and
reducing the cost of using system level CF duplexing to maintain high availability, Db2 12
removes many business resiliency inhibitors to provide consistent performance.

CPU savings
In this publication, CPU savings in Db2 12 are analyzed by comparing measurement results
for the same workloads that are run on Db2 12 and Db2 11 New Function Mode.
2 IBM Db2 12 for z/OS Performance Topics

CPU reduction in online transactions
Most of the system performance improvements are designed to use larger and relatively less
expensive real storage, which is now available in the latest System z processors. Db2 online
transactional workloads can expect CPU savings ranging from a few percent up to 10%,
depending on the workload characteristics and memory allocation. Simple online transactions
with large singleton selects through a unique index can see more CPU reduction because of
index memory optimizations and other new internal optimizations.

Db2 subsystems that are on z/OS LPARs with large amounts of available memory, or Db2
subsystems that are caching frequently accessed indexes or table spaces can use improved
in-memory buffer pool management techniques in Db2 12. With these new features, CPU
savings can result from avoiding I/O costs and reducing the overhead of managing buffer
pools if the entire Db2 user objects can fit within the buffer pools.

CPU reduction in real-time analytics queries
Db2 12 delivers significant CPU reductions for modern real-time reporting and analytics
queries.

Unlike traditional online transactional SQL where only one or a few records are retrieved by
using a direct index lookup, many modern applications are increasingly using more complex
SQL functions. They tend to involve more join processing through views or history tables, and
more sorting is needed to manipulate the data.

Db2 12 specifically targets improving the performance of these types of more complex query
workloads, which often require short response times (less than a few seconds) and
sometimes require higher concurrency than IDAA can provide.

After PREPARE/REBIND in Db2 12, we observed a wide range of CPU and elapsed time
savings. Depending on the workload, we saw a range of savings from a few percent for simple
traditional query workloads, all the way up to 50% or more for modern complex query
workloads compared to Db2 11. The workloads that benefited most include operations, such
as complex outer joins, use of User Defined Functions, and UNION ALL constructs within
views or with history tables. These operations have specific optimizations within Db2 12 to
improve their performance.

Cost reduction by using more zIIPs
Db2 continues to emphasize the use of zIIPs to reduce the total cost of ownership. Db2 12
increases the zIIP eligibility of child tasks under query CPU parallelism from up to 80% to up
to 100%. This ability simplifies capacity management for zIIP processors when estimating
zIIP capacity. In addition, the reload phase of the REORG and LOAD utilities is now marked
as zIIP eligible.

High resiliency and consistent performance
One critical aspect of performance management is consistency. Unstable access path
selection for critical queries can have a significant effect on system level performance. Db2 10
provided static plan stability and reuse capability for access paths (APREUSE) for static
packages. Db2 11 provided further enhancements in APREUSE.

Db2 12 takes another major step in our access path stability functionality by providing
dynamic statement stability. Dynamic statement stability gives users control over when their
dynamic SQL applications are eligible for new access paths and when they are not, similar to
static plan stability for static SQL. Among other benefits, this new feature can be used to
ensure that consistent access paths after the REORG/RUNSTATS utilities are run by storing
the stable access path into Db2 catalog tables.
Chapter 1. Introduction 3

In addition to access path stability, Db2 12 adds resource limit facility support for static SQL.
Users can now use RLF to govern the resource usage of static and dynamic statements with
reduced RLF overhead.

In a data sharing environment, one or a few long running units of recovery can cause Db2
lock avoidance techniques to fail. This failure leads to more locks and lock contention, which
in turn can cause an increase in CPU consumption. An innovative lock avoidance technique is
introduced in Db2 12 to ensure consistent transactional lock avoidance for GBP-dependent
objects.

Moreover, with Db2 12, system-managed lock duplexing can be accomplished with less
system affect by using asynchronous lock duplexing, which is available in system IBM z13®
(CFCC 21). With this feature enabled, the communication between primary and secondary
lock structures is done asynchronously for Db2 lock requests, and the efficiency of duplexed
lock requests is greatly improved. As a result, the overhead of lock duplexing to achieve high
resiliency is reduced in two CEC configurations.

Scalability improvement
To address the demand for high volume ingestions from large numbers of concurrent clients,
Db2 12 introduces a new insert algorithm for table spaces that do not require clustering (do
not require APPEND YES). The new insert algorithm avoids table space search contention
effectively when many concurrent users insert at the end of table spaces or into the same
partitions.

The new insert algorithm and another scalability improvement in log writes made it possible
during an IBM-internal benchmark to reach 11.7 million inserts per second for a sustainable
period in a 12-way data sharing configuration.

1.1.2 High-level expectations

The degree of CPU savings that are realized when you are migrating to Db2 12 depends on a
specific workload’s characteristics.

Most of the query improvements are available under co-existence mode (Function Level 100)
but do require users to perform a REBIND on Db2 12. Regardless of whether you plan to take
advantage of Db2 12’s access path changes, a REBIND should be planned at some point
after the migration to Db2 12. This process reactivates select procedure optimizations and
avoid the internal structure conversion overhead that is incurred when packages that are
bound in Db2 11 on Db2 12 are run.

Simple online transactions with many random primary key index accesses can benefit from
index memory optimizations in Db2 12 starting in co-existence mode (Function Level 100) in
a non-data sharing or single member data sharing environment. Activation of Function Level
500 or greater is required to get the full benefit of these optimizations in a data sharing
environment with more than one Db2 member.

Insert-intensive applications against table spaces that are defined with MEMBER CLUSTER
can see a throughput improvement and a CPU reduction by avoiding contention through a
new insert algorithm. This feature requires Function Level 500 or greater.
4 IBM Db2 12 for z/OS Performance Topics

The range of performance improvements that are expected in Db2 12 Function Level 500
when compared to Db2 11 running in New Function Mode is shown in Figure 1-1. The results,
averaged by workload type, as evaluated by using data from multiple sets of measurements
also are shown in Figure 1-1.

Compared to the same workload running on Db2 11, you might see the following
improvements:

� A CPU reduction of 0% - 6% for online transaction processing (OLTP) workloads that are
not using index in-memory optimizations.

� A CPU reduction of 0% - 10% for online transaction processing (OLTP) workloads that use
index in-memory optimizations.

� A CPU reduction of 0% - 12% in concurrent insert workloads by using MEMBER
CLUSTER.

� A CPU reduction of 0% - 50% in queries after REBIND.

Figure 1-1 CPU savings by workload types
Chapter 1. Introduction 5

1.2 Db2 12 for z/OS performance features

In this section, we describe key performance improvements in Db2 12. We also describe
performance measurement data that was obtained by the Db2 performance team by using
public benchmark workloads and customer workloads.

1.2.1 System-level performance

The maximum amount of memory that can be installed in an IBM z Systems® server
increased significantly with the advent of the z13 in 2015, as shown in Figure 1-2. Today, a
fully configured z13 server can have up to 10 TB of memory installed, with each logical
partition (LPAR) allocating up to 4 TB of memory.

Figure 1-2 System z Maximum Memory per server

At the same time, the cost per GB for mainframe real storage dropped sharply in recent
iterations of IBM’s z Systems servers, particularly with the latest IBM z13.

Because of these changes, today’s typical z Systems server configurations feature
significantly more memory than before. With easier and cheaper access to large amounts of
memory, many new Db2 12 features take advantage of in-memory optimizations by caching
more data or control information in memory.

Index in memory optimization (Fast Traverse Blocks)
The fastest way to access a record in a table is to use direct index lookups. Many Online
Transaction Processing (OLTP) applications make extensive use of direct index lookups,
where the application provides a fully qualified key that uniquely identifies a single row in the
target table. The access pattern for such key-based lookups is often random, as these keys
are usually based on customer-id, sales-record, or card number.

As the volume of data grows, the size and levels of the index grows, as does the cost of
traversing the index tree structure. Index traversal here means accessing the index from top
down, from the root, to non-leaf pages, and then to the leaf page, as shown in Figure 1-3 on
page 7.
6 IBM Db2 12 for z/OS Performance Topics

Figure 1-3 Index traversal access

Db2 10 for z/OS introduced hash access capability to store tables into hash-based table
spaces and eliminated the need for indexes, which works well if the access to the table is
always random. However, the tables are often accessed randomly by using unique keys and
sequentially through batch accesses. The performance affects on sequential access with
hash-based table spaces can negate the performance benefit for random access.

Db2 12 for z/OS takes a new approach by storing index information into a memory structure
to reduce the index traversal cost for random index access. This memory structure, internally
called Fast Traversal Blocks (FTBs), holds the root and non-leaf pages of the indexes. The
Fast Traversal Block structure is designed to be processor cache friendly for traversing index
keys and the index tree traversal operations can be bypassed, as shown in Figure 1-4. When
the index is sequentially accessed, its leaf pages (in the buffer pools or on disk) can be
accessed as before.

Figure 1-4 Index traverse with FTB

Db2 monitors the use of indexes and automatically builds a Fast Traverse Block for an index
with many random traversal accesses. It is also avoiding building FTBs or effectively removing
FTBs if the indexes are primarily used for sequential access, or if the indexes frequently go
through index structure modifications.
Chapter 1. Introduction 7

A new system parameter INDEX_MEMORY_CONTROL is introduced to control FTB usage
at the subsystem level so that the user can disable the feature completely, or enable it but
define the upper limit of memory usage for FTBs. The default value is AUTO, which enables
index in-memory optimization and allows storage of up to 20% of the sum of allocated buffer
pools to be used for FTBs. Similar to the index pseudo-delete clean-up process, a new Db2
catalog table, SYSIBM.SYSINDEXCONTROL, is added for users to influence the behavior at
the individual index level.

A few IFCIDs and a Db2 display command are provided to monitor FTB behavior, as
described in Chapter 12, “Monitoring and instrumentation” on page 341.

Performance improvement with index in-memory optimization depends on the access pattern,
depth of index level (determined by key size and numbers of index entries), and commit
frequency. When we ran a loop of singleton select statements through batch jobs with
infrequent commits, we observed up to a 20% reduction in CPU time. The measured Db2
CPU time savings by using indexes with different numbers of index levels are shown in
Figure 1-5. For example, when FTBs are used on a 5-level index, the number of index
getpages per statement was reduced from 5 getpages to 1.

Figure 1-5 Index in memory optimization in batch select with different index level

The performance improvements with index in-memory optimization in Online Transactional
Processing workloads where commits are issued more frequently demonstrate a more
realistic usage. As shown in Figure 1-6 on page 9, the index in-memory optimization results in
a few other percent in overall Db2 12 CPU improvement.
8 IBM Db2 12 for z/OS Performance Topics

Figure 1-6 Db2 12 improvement over Db2 11 with and without using index in-memory optimization

Contiguous buffer pools
Db2 12 adds another key performance feature that is called contiguous buffer pools, which
use the larger memory in System z servers. This feature is an enhancement to the
PGSTEAL(NONE) feature that was introduced in Db2 10.

Db2 uses least recently used (LRU) as the default page steal option for buffer pools. With
PGSTEAL(LRU), Db2 manages the pages in the buffer pools to keep the frequently used
pages in the buffers and steal the pages that are least recently used when new pages must
be brought into the buffer pools from disk. This buffer pool management process to determine
which pages can stay longer in a buffer pool was important when the buffer pool size was
limited to less than 2 GB because of the 31-bit memory constraint. Even when the buffer
pools were moved above the 2 GB bar in Db2 V8, this buffer pool management process was
still critical because, at that time, the real storage available in the system was still limited.

With large enough memory available with later z processors to fit mission critical indexes and
tables in the buffer pools, Db2 introduced PGSTEAL(NONE) to be used for such buffer pools
to ensure that important objects do not suffer disk I/O waits. With PGSTEAL(NONE), Db2
prefetches the entire page set or partition into the buffer pools at first access to the page set
so that subsequent accesses to the page set do not require I/O waits. However, page
management is still needed with PGSTEAL(NONE) buffer pools in Db2 10 and 11, as the
pages are laid out in random order in the buffer pools.

When the PGSTEAL(NONE) attribute is used in Db2 12, the buffer pool control blocks that
are used to manage buffers are physically laid out in memory in the same order that the page
sets are on disk. Because this configuration is used, buffer pools with this attribute are also
known as contiguous buffer pools. Contiguous buffer pools allow for Db2 to skip pool
management processes while accessing the pages in the buffer pools. The larger the buffer
pools are, the bigger the cost of these page management processes as LRU and hash chain
management suffers more processor cache misses.

In one of our OLTP workloads that simulates online brokerage transactions, the use of
PGSTEAL(NONE) as opposed to PGSTEAL(LRU) demonstrated an 8% CPU improvement.
Chapter 1. Introduction 9

The CPU improvement is not from I/O reductions in this case, as I/Os were avoided with
PGSTEAL(LRU) pools because the pool size is large enough.

The CPU reduction is attributed to fewer processor cache misses while getting and releasing
pages. The degree of improvement depends on the ratio of getpages from the buffer pools
with PGSTEAL(NONE) versus getpages from PGSTEAL(LRU) buffers. In this workload, a
total of 70 GB of buffer pools are allocated with 10 GB of buffer pools specified to use
PGSTEAL(NONE). However, because more than 80% of getpages are from the buffer pools
with the PGSTEAL(NONE) attribute, the CPU savings is high.

Db2 12 PGSTEAL(NONE) is recommended for objects that are accessed frequently with no
growth, or with a stable growth rate. It is recommended for frequently accessed objects
because better improvement can be expected for such objects (as opposed to objects
infrequently accessed), if the objects fit in the buffer pools.

If PGSTEAL(NONE) is used and the page sets do not fit in the contiguous buffer pool, Db2
uses overflow buffers, which are unique to Db2 12 PGSTEAL(NONE) pools, for the pages
that do not fit in the contiguous buffer pool. Up to 6400 buffers are set aside by Db2 for the
overflow area for each buffer pool with PGSTEAL(NONE) attribute to keep reasonable
performance, even in the case of unexpected growth.

Db2 messages and statistics are updated to monitor the usage of the overflow area. To
identify candidate objects for contiguous buffer pools, a new column “GETPAGE” is added in
Db2 real-time statistics (SYSIBM.SYSTABLESPACESTATS, and
SYSIBM.SYSINDEXSPACESTATS). Generally, the higher the number of getpages is, the
greater the benefit from using contiguous buffer pools for the object. For more information
about choosing candidate objects, see 2.2.3, “Managing a contiguous buffer pool” on
page 42.

In addition to contiguous buffer pools, Db2 12 extended the maximum size of buffer pools
from 1 TB to 16 TB. Although system z13 supports up to 10 TB, z/OS supports only up to
4 TB of memory per LPAR as of this writing. With this z/OS memory limitation, the realistic
maximum Db2 buffer pool size today is less than 4 TB.

Buffer pool simulation
Having larger buffer pools could improve the elapsed and CPU time of applications with large
sync I/O waits. However, the actual improvement is difficult to estimate in complex workloads
because the benefit from larger buffer pools depends on the size of the active working set of
data and the access pattern.

For example, if you have a workload with mostly random access to the data that is repeatedly
referenced, increasing the buffer pool likely is beneficial because there is a good chance that
the same pages are being referenced multiple times. However, if your application reads and
processes only the data sequentially once and does not reference the pages again for a long
time, having a large buffer pool might not help much.

The buffer pool simulation feature in Db2 12 helps users to estimate the benefit of having
larger buffer pools without allocating large real storage. This feature introduces the concept of
simulation pools where you can specify the extra pool size you want to run during the
simulation. With simulation pool size (SPSIZE) defined, Db2 allocates the buffer pool control
blocks to cover simulation pools and starts simulation by using the LRU page steal algorithm
as though there are other pools allocated. By using the LRU information in the control blocks
for the simulated pools, Db2 can determine whether the pages that are missed in the actual
virtual buffer pool are in the simulated pools.
10 IBM Db2 12 for z/OS Performance Topics

Because Db2 applies the actual LRU algorithm, the simulation is accurate if the workload is
consistent. The results from the simulation are collected in IFCID 2 buffer pool statistics and
can be displayed by using the -DISPLAY BUFFERPOOL command. The information in the buffer
pool statistics includes avoidable synchronous I/Os, asynchronous I/Os, avoidable GBP
accesses, and elapsed time savings.

The simulation requires more memory to accommodate the control blocks that are allocated
for the simulated buffers. The memory allocation is approximately 2% of the simulated size for
4 K page size buffer pools. Our measurements indicate that there is approximately 1% CPU
overhead when the simulation is run with many buffer pool misses. (The feature is retrofitted
to Db2 11 by using APAR PI22091.)

Other memory optimizations
In addition to the optimizations that we described, Db2 12 introduces various internal
optimizations to reduce CPU usage by using more in-memory processing and optimizing
memory management. These internal optimizations are described next.

EDM pools
EDM pool management is updated to avoid micro managing storage usage. It also reduces
the scalability inhibitors, such as latch contentions when many statements are cached in the
dynamic statement cache or when many packages are held in the skeleton pools.

UDF result sets
User Defined Functions, which are defined as DETERMINISTIC and NO EXTERNAL
ACTION, can use result set caching within the scope of the UDF. This optimization is an
effective use of memory because many UDF calls can be avoided by using result set caching.

DGTT
Db2 11 for z/OS added a significant performance improvement in the use of Declared Global
Temporal Tables (DGTTs) by providing a NOT LOGGED option. It is especially effective when
there are many INSERT, UPDATE, or DELETE operations against the DGTT.

Db2 12 further improves DGTT performance at declaration time. When a DGTT is declared,
Db2 creates a virtual catalog within the DGTT. Db2 12 caches the virtual catalog information
in-memory to speed up the declaration process. The benefits of this enhancement are
noticeable in applications that frequently create DGTTs, but insert only small numbers of
records before dropping the DGTT.

RLF
Db2 12 for z/OS adds Resource Limit Facility support for static SQL in addition to the existing
support for dynamic SQL. When RLF is enabled, Db2 is required to check the resource limit
tables for every SQL access. When the tables are small, this cost is trivial. However, the
overhead becomes noticeable when the resource limit tables contain many rows. Db2 12
caches the contents of resource limit tables in memory to minimize the overhead of RLF
lookups. With this optimization, Db2 12 can support RLF for static statements without
noticeable overhead, and provide improvement in the existing RLF process for dynamic
statements.
Chapter 1. Introduction 11

RDS sort
Db2 12 continues to improve in-memory RDS sort processing. It increases the number of
cases when Db2 can avoid writing intermediate sort results to work files so the results can be
fetched directly from memory instead of from work files. Db2 12 also expands the maximum
number of nodes in a sort tree, from 32,000 to 512,000 for non-parallel sorts or 128,000 for
parallel sorts under child tasks. These enhancements might require more memory to be
allocated to the thread for sort activities, but can result in a significant CPU reduction.

High volume data ingestion
With the prevalence of mobile computing, the demand for high volume data ingestion
continues to grow. Db2 12 addresses this demand through the new enhancements that are
described next.

Insert Algorithm 2
Typical examples that require a high insert rate can be found in application audit or journaling
applications, in which many concurrent transactions must insert one or more rows into a
table.

Traditionally, the MEMBER CLUSTER option is used for such applications to speed up the
table space search processing. The MEMBER CLUSTER option provides good performance
by assigning a space map and its associated data pages for a specific member’s private use,
ignoring the data clustering defined through the clustering index. However, as data sharing
member consolidation continues, the number of concurrent clients from the same member
increases and so does the contention on the space map and data pages at the end of the
table.

Db2 12 introduces a new insert algorithm (Insert Algorithm 2). This algorithm is used by
default for Universal Table Spaces defined with the MEMBER CLUSTER option after the
activation of Function Level 500 or greater. With Insert Algorithm 2, each thread is assigned a
separate page to insert into, which eliminates data page contention. It uses a background
system task to format the new pages before the user thread requests a page. The information
about the candidate pages is stored in a new in-memory structure, which is called the “insert
pipe”. The old method of insert space searching instead consults a space map page, which
was the major bottleneck in the old insert algorithm.

With the new insert algorithm, a significant throughput increase in concurrent insert
applications can be expected when there was a bottleneck because of insert space
searching. In IBM measurements that use 200 or more threads, we saw class 2 elapsed time
savings of up to 80% that used Db2 12 for cases with insert space search bottlenecks in Db2
11. However, if the current insert bottleneck is somewhere else, such as log write I/O
performance or index split processing, little to no improvement from Insert Algorithm 2 is
realized.

Also, Algorithm 2 might push the bottleneck from Db2 to somewhere else. One of our Java
applications showed significant improvement in Db2 processing. However, it pushed the
bottleneck to the network and the benefit of the new insert algorithm did not translate to a
throughput improvement until we eliminated the network bottleneck. Careful examination of
accounting reports is recommended to understand the effect of Insert Algorithm 2.
12 IBM Db2 12 for z/OS Performance Topics

Active log improvement
For high volume insert or update applications, Db2 active log writes tend to become a
bottleneck. One of the contributing factors to log write bottlenecks is the serialization
processing that is required when writing the logical logs, which is known as log latch
contention (latch class 19). Db2 10 introduced some relief to log latch contention and Db2 12
virtually eliminates the bottleneck that is associated with log latch contention when many
concurrent update transactions are run.

With intensive update applications, the frequent switching of Db2 active log data sets can
occur even when 4 GB active log data sets are used. The frequent log switching causes a
performance effect and a possible delay in recovery because the log read can occur from
archive logs. Db2 12 increases the maximum size of active log data sets from 4 GB to
768 GB, which helps to reduce the frequency of log switches and their effect.

11.7 million inserts per second with Db2 12
With these scalability improvements, the Db2 performance team could measure up to 11.7
million inserts per second into a single Db2 table, by using a 12-way data sharing group. The
active log write rate reached 2 GB per second. For more information about the benchmark
configuration that was used, see 5.1, “High volume INSERT benchmark ” on page 156.

DRDA Fast Load
Many Db2 customers expressed the need for faster data load into Db2 for z/OS from
distributed clients. One example is SAP applications, where the source data is on the SAP
application server on UNIX platforms. Db2 12 introduces a new DRDA fast load feature that
enables the customers to start the LOAD utility directly from the client. This feature supports
APIs, including Db2 call level interface (CLI), command line processor (CLP), and Java
applications.

In IBM measurements, DRDA fast load can load the data faster than the combined elapsed
time of file transfer (FTP) and running the LOAD utility. This feature requires IBM data server
driver updates.

Data sharing improvement
Data sharing configuration continues to be a key to high availability but incurs more overhead
to maintain the data integrity across the data sharing group. Db2 12 features a major
improvement to reduce the overhead by improving lock avoidance, even with long-running
URs and page registrations from utilities.

Improved lock avoidance
Before Db2 12, a single long-running unit of recovery (UR) against a GBP-dependent object
caused an increase in locks and contentions for non-related applications in all the data
sharing members. This increase occurred because Db2 maintains a single commit LRSN for
a data sharing group. Db2 uses the commit LRSN to evaluate the possibility of lock avoidance
for all GBP-dependent objects for all data sharing members. If lock avoidance does not work,
more select locks can occur, which can increase CPU time and possibly contentions.

Because of their possible effects, Db2 provides warning messages for those long-running
URs to notify users when they occur. Although the best thing to do with these long-running
URs is to change the applications to commit frequently, it is not always easy for customers to
update the applications in a short time.
Chapter 1. Introduction 13

Db2 12 maintains more granular global commit LRSNs for long-running URs in the SCA
structure. For the objects that are not targets for the long-running URs, Db2 can perform
better lock avoidance and the critical transactional effect from infrequently committing
applications can be reduced.

Page registration by Db2 utilities
UNLOAD and RUNSTATS utilities that sequentially read many pages can result in a large
volume of register page list operations to the coupling facilities if the objects are
GBP-dependent. The Register Page List (RPL) operation is done to register a set of pages in
a GBP structure.

Although the list operation is much more efficient than doing multiple single page
registrations, it is an expensive and long-running CF command. If large numbers of RPLs are
requested at the same time, it can cause high CF CPU utilization and possibly affect other
structures’ response time.

To avoid CF-wide effect by RPL operations, Db2 12 adds a REGISTER option to UNLOAD
and RUNSTATS utilities to avoid page registration if the utilities are running with ISOLATION
UR. The new keyword REGISTER YES/NO is available after the migration of Db2 12
(Function Level 100). The default REGISTER behavior for the UNLOAD utility is NO; the
default for the RUNSTATS utility is YES.

System z Synergy
Db2 continues to work closely with the System z hardware and software teams for Db2 to
take better advantage of new System z technologies. These collaborations resulted in several
new features in Db2 12, which are described next.

Asynchronous CF lock structure duplexing
The asynchronous CF duplexing feature became available with IBM System z13 with CFCC
21 level starting October 2016. This feature reduces the latency of XES lock requests in
system-managed duplexing compared to system duplexing managed synchronously. Db2 12
and IRLM for Db2 12 use the feature to reduce the latency and cost of lock structure
duplexing. The benefit of using this feature varies depending on configuration, such as CF
distance, CF link types, and commit frequency of the applications. Preliminary IBM
measurements demonstrate promising results of up to 2 times cost reduction by using
asynchronous lock duplexing, compared to today’s synchronous duplexing.

LOB compression with zEDC
IBM System zEnterprise® Data Compression Express (zEDC Express) is available in system
zEC12 and later processors and offers a compression acceleration that is designed for
high-performance, low-latency compression with little extra overhead. z/OS supports
compression of SMF records and BSAM/QSAM files through zEDC.

Db2 12 uses zEDC Express to compress the LOB data type. The compression is available for
decompressed LOB data and LOB data in a Db2 directory. When compressed well, this
feature provides disk usage savings and application throughput improvement for processing
large objects.

zHyperWrite
zHyperWrite can speed up Db2 log write time in a configuration where synchronous disk
replication, such as IBM Metro Mirror, is used. This feature requires DS8K storage
subsystems with IBM GDPS® HyperSwap and z/OS DFSMS changes. When enabled, Db2
can request a log write to the secondary location at the same time as the primary location
instead of waiting for the disk subsystem to do the replication.
14 IBM Db2 12 for z/OS Performance Topics

This feature reduces the wait time for log write or update commit time. Evaluations by
customers and the IBM lab show up to 40% reduction in log write wait time. The feature was
developed in Db2 12 and is available as a retrofit by using APARs in Db2 10 and Db2 11.

OLTP workload measurements
IBM measurements from various online transactions mostly show the range of a few percent
to up to 10% of Db2 CPU reduction by using Db2 12 compared to Db2 11 benefiting from the
features shown in Figure 1-7. For more information about the measurements and workload,
see Chapter 5, “Workload level measurements” on page 155.

Figure 1-7 OLTP and Insert workload improvement in Db2 12 compared to Db2 11
Chapter 1. Introduction 15

1.2.2 Query performance improvement

Db2 12 introduces optimizations that specifically target modern applications that use UNION
ALL processing through views or with history tables. Db2 12 also includes enhancements for
applications with large sorts and complex queries that require a short response time of less
than a few seconds, or with higher concurrent execution than IBM Db2 Analytics Accelerator
for z/OS (IDAA) can provide. Significant CPU savings are observed in IBM measurements, as
shown in Figure 1-8.

Figure 1-8 Db2 12 query workload CPU saving after REBIND compared to Db2 11 NFM

This comparison is done after REBIND in Db2 12. Most query optimizations are available at
the point of Db2 12 migration and after REBIND in Db2 12, and do not require users to
activate Function Level 500.

For more information about query workloads and other enhancements, see Chapter 8,
“Query performance” on page 243.

UNION ALL and outer join enhancements
UNION ALL (UA) constructs combined with outer joins and nested views are more commonly
used in modern SQL applications, and in Db2 features that use history tables, such as
Bi-temporal tables and transparent archiving features. One of the challenges of such queries
is the lack of predicate filtering, which often results in excessive work file materialization with
large sorts.

Db2 12 features the following optimizations:

� Reordering OUTER JOIN tables to avoid materializations
� Pushing predicates inside UNION ALL legs or OUTER JOIN query blocks
� Sorting of outer table to ensure sequential access to the inner table of a join
� Bypassing work file usage when materialization is required
� Trimming unnecessary columns and tables
� Push ORDER BY and FETCH FIRST into UNION ALL legs
16 IBM Db2 12 for z/OS Performance Topics

With these improvements combined, IBM tests show up to 80% CPU and elapsed time
reductions for the candidate queries. Selective queries in the WAS portal workload that are
shown in Figure 1-8 on page 16 include queries that use UNION ALL with views. Other query
workloads, such as Customer 3 and SAP CDS FIORI workload, also benefit from these
improvements.

Runtime Adaptive Index Access
Many modern applications provide generic predicates so that the user can enter the specific
values for the predicates at execution time. A good example is a query with multiple LIKE
predicates that use host variables or parameter markers, as shown in the following example:

SELECT first_name, last_name, salary FROM employees
WHERE last_name LIKE ? AND zipcode LIKE ? AND year_of_birth LIKE ?
AND city LIKE ? ;

Some predicates might be indexed well, but others might not be indexed as well. The
challenge is that the predicate filtering is unknown at the point of query optimization. Db2 12
addresses this challenge by using a runtime adaptive index feature, which allows the Db2
query optimizer to defer some of the important index selectivity choices until query execution.
At run time, multiple indexes are probed and the indexes with good filtering can be picked.

Runtime adaptive index support provides a stable access path for queries where the access
path selection is unclear.

RDS Sort Improvements
In addition to in-memory optimizations, Db2 12 also provides the following sort
enhancements:

� Sort minimization with FETCH FIRST
� Reduction in sort key size for GROUP BY and DISTINCT
� Work file process improvement by using 32 KB page work files for intermediate sorts
� Support for sparse index for the VARGRAPHIC data type
� Avoid sorting for pre-ordered chunks of data

The sort-intensive query workloads, such as Customer 2 and SAP SFIN in Figure 1-8 on
page 16, showed significant benefit from the sort improvements.

1.2.3 Access path stability for dynamic SQL statements

For static SQL statements, the access path can be fixed at BIND time and the path can be
stabilized through access path stability and access path reuse features that were introduced
in Db2 10. Although dynamic SQL statements are dominant in Java applications, they pose
challenges in achieving consistent performance because of possible access path changes.

The access path of dynamic SQL statements is determined at execution time and can be
vulnerable to change. For example, the access path can change at the next full prepare. This
change can occur based on various factors, such as updates in catalog statistics through
RUNSTATS execution, Db2 configuration changes (such as buffer pool or sort pool size
changes), or a Db2 maintenance upgrade. The dynamic statement cache can have a
stabilizing effect, but the cache alone is still a volatile solution.

Db2 12 introduces a new dynamic SQL stability feature to improve the performance and
manageability of dynamic SQL. This feature provides the capability to stabilize SQL
statements in the dynamic statement cache by storing the information in a new set of Db2
catalog tables.
Chapter 1. Introduction 17

After the statements are stabilized, the stabilized access path can be retrieved and used from
the catalog tables at full prepare when Db2 does not find the statements in the dynamic
statement cache. Db2 can provide consistent performance with a stabilized dynamic SQL
statement. Performance improvement for the dynamic prepare is also possible when the
statements are found in the catalog instead of having to go through a full prepare.

This feature is expected to be useful during workload transitions, configuration changes, and
when applying future Db2 maintenance upgrades.

Dynamic statement stability requires the activation of Function Level 500 or greater and
provides various monitoring and statistics changes in prepare operations.

1.3 Other key features in Db2 12 for z/OS

The key improvements and features that are delivered by Db2 12 for z/OS in addition to
performance improvements are described in this section. For more information about Db2 12
features, see IBM DB2 12 for z/OS Technical Overview, SG24-8383. Db2 12 for z/OS also
includes the following other key features:

� Mobile application enablement
� Resiliency and continuous availability
� Simplified migration and continuous delivery support

1.3.1 Mobile application enablement

A large set of new SQL capabilities are introduced or enhanced in Db2 12 to encourage the
application development and porting in Db2 for z/OS.

RESTful API
Db2 Adaptor for z/OS Connect enablement, introduced in Db2 11, made it faster and easier to
deploy RESTful services that access Db2 data. However, this solution requires the installation
and setup of z/OS Connect services.

To speed up application deployment, native REST support is now built into Db2. With native
REST API support, Db2 DDF address space provides a set of services to replace the Db2
Adaptor and z/OS Connect features. JSON is used to pass input and return the results back
to the requester. Native REST API support is available in Db2 12 and Db2 11 (with APAR
PI66828).

Application enablement
Db2 12 expands SQL capability to continue to support and attract today’s application
development.

Enhancements in application enablement include advanced triggers, which allow developers
to create the logic within a trigger. An enhanced MERGE statement is now aligned with the
behavior that is defined in the SQL standard and Db2 family, and now allows you to delete
from the target tables. Db2 12 provides SQL propagation features that support both numeric
and data dependent pagination.

Piece-wise data modification support allows the developer to specify a FETCH FIRST clause
for a DELETE statement and issue a COMMIT. This ability addresses many possible
concerns, such as lock contention, long-running UR, and CF effect or recovery.
18 IBM Db2 12 for z/OS Performance Topics

Db2 provides JSON data store in BLOB columns in Db2 11. Db2 12 adds enhancements by
allowing the input value to be derived by other means, such as a CASE expression, view, or
table expression.

The temporal feature was introduced in Db2 10, and Db2 continues to enhance this feature
based on customer requirements. Db2 12 adds the following improvements:

� Referential integrity support
� Auditing
� Logical transaction support
� Temporal inclusive/exclusive model

Cloud ready
As a first step to be cloud ready, Db2 11 and 12 delivered an enhanced installation process to
support z/OS Management Facility (z/OSMF). Db2 provides a series of workflow scripts that
allow customers to deploy Db2 subsystems quickly on demand. REST API calls are used to
start z/OSMF scripts, which allows developers to make the requests easily.

1.3.2 Resiliency and continuous availability

One of the strengths of the System z platform is high resiliency and availability to support
continuous availability. This section describes key enhancements in Db2 12 that provide ease
of database management and high resiliency.

Partitioned table space enhancements
Universal table spaces are enhanced further to adapt the data growth quickly in Db2 12.

PBR Relative Page Numbers
To address ever increasing data volumes and requirement for easy partition management,
Db2 12 introduces a new type of partition by range table spaces (PBRs).

By expanding the internal record identifier (RID) from 5 bytes to 7 bytes, the page number
becomes relative to the partition instead of being an absolute number in the entire table
space. Therefore, this new type of table space is called PBR Relative Page Numbers (RPN).
PBR RPN supports larger partition sizes (DSSIZE) up to 1 TB per partition. More importantly,
it supports different maximum partition sizes for a single table, which allows flexibility in
managing the partitions.

Insert partitions
It was relatively easy to add a partition at the end of a partitioned table space, but inserting a
partition in the middle of the table space when one of the partitions grows is not as easy.
Although PBR RPN allows different sizes of partitions and relieves the need of inserting
partitions in some cases, Db2 12 also can insert partitions through online schema without
affecting applications. This ability still requires a subsequent REORG to allow the data pages
to be redistributed, but the user must run only the REORG on the affected partitions.

Utility enhancements
Numerous utility enhancements were added to Db2 12 to keep the data available to Db2
applications and improve the utility execution efficiency.

The use of the REORG utility against one or a few partitions in Partition By Growth (PBG)
table spaces was challenging because the data might not fit in the same numbers of partitions
after REORG because of REORG honoring free page definitions. Db2 12 solves this
Chapter 1. Introduction 19

challenge by adding the capability for REORG to create a partition to complete the REORG
successfully.

Db2 12 removes the restriction that is related to running parallel LOAD from a single input file
for PBG with the RESUME YES and SHRLEVEL CHANGE options. In our measurements, we
observed up to 76% elapsed time savings by using parallel LOAD with these RESUME YES
and SHRLEVEL CHANGE options.

Security
Db2 12 introduces a new TRANSFER OWNERSHIP SQL statement that can replace the
original owner of a Db2 object with a new owner ID.

The UNLOAD privilege is now separated from the SELECT privilege on the table so that the
customer can run UNLOAD without automatically having the SELECT privilege.

1.3.3 Simplified migration and continuous delivery support

Within a Cloud and DevOps environment, it is essential for Db2 to deliver new features faster
and with high quality so that application developers can take advantage of the new features
without waiting for the next release. Db2 is embarking on the journey of continuous delivery,
taking Db2 12 as a starting point. The first step is to simplify Db2 12 migration, and then to
build the foundation of the continuous delivery model.

Single phase migration
Based on requirements from customers, Db2 12 simplifies the migration process to have one
catalog update instead of a two-step migration. Unlike prior releases, the catalog updates for
Db2 12 are done at the point of CATMAINT, and the activation of new functionality is done by
using a simple Db2 command when there is no longer a need for fallback or co-existing
configurations. This ability simplifies the migration step and improves migration performance.

Foundation of continuous delivery
As a foundation of continuous delivery, Db2 12 introduces Function Levels (FL), which
describe a set of new features that are bundled.

At the point of Db2 12 migration from Db2 11, the FL is V12R1M100. This configuration
resembles conversion mode (CM) in prior Db2 releases, where Db2 allows fallback and
co-existence between Db2 11 and Db2 12 members in a data sharing group.

FL V12R1M500 identifies the starting level of new Db2 12 functionality, where all Db2 12
features from the general availability code level are enabled. Application packages are still
controlled by the APPLCOMPAT option to enable the new functions.

Db2 plans to ship new FLs, such as FL as a part of the maintenance stream instead of
providing new versions or releases. However, there is no requirement to activate the
functionality at the point of installing the maintenance. That is, the maintenance level can
move forward without activating the new FL. When comfortable with the new maintenance
level, the customer can choose to activate a certain FL by using the ACTIVATE FUNCTION
LEVEL command.
20 IBM Db2 12 for z/OS Performance Topics

1.4 How to use this book

This IBM Redbooks publication is a technical report of detailed performance measurements
for most of performance-related topics for Db2 12 for z/OS. The book also includes the latest
performance information about IBM Db2 Analytics Accelerator, and System z hardware
information that was used by Db2 for z/OS.

The book describes the use considerations that were observed through these measurements.
The measurements are meant to show how the different enhancements perform, and the
topics are not limited to performance enhancements only. They can be about new
functionalities, and in this case, they are compared to similar functions in previous Db2
versions or to the behavior without the function. We also provide an understanding of the new
functions, and to explain what the reasonable expectations are for these new functions.

All measurements were conducted in a laboratory environment, and as such, they might be
atypical because they were run in a dedicated and controlled environment with no other
workloads causing resource contentions, and in some cases focusing on specific functions.
Extrapolation and generalization require judgment.

This book does not cover all the features of Db2 12. For general Db2 12 information, see DB2
12 Technical Overview, SG24-8383.

This book includes the following chapters:

� Chapter 1, “Introduction ” on page 1

This chapter presents the executive summary, including general performance
expectations in Db2 for z/OS 12.

� Chapter 2, “Scalability enhancements and subsystem performance” on page 23

This chapter presents descriptions of most of the many new Db2 engine functions. Most of
the enhancements do not require any manual intervention.

� Chapter 3, “Synergy with the IBM Z platform” on page 83

This chapter describes the features that take advantage of System z hardware or
software, and can be considered together with the Subsystem chapter.

� Chapter 4, “Data sharing” on page 131

This chapter describes data sharing related enhancements.

� Chapter 5, “Workload level measurements” on page 155

This chapter describes the functions and performance enhancements that are specific to
remote access.

� Chapter 6, “Distributed system ” on page 187

This chapter describes the new application functions that substantially improve the
productivity of application developers.

� Chapter 7, “SQL and application enablement” on page 197

This chapter describes various enhancements in access path selection that are not
apparent to the application developer. The chapter also includes the access path stability
items.

� Chapter 8, “Query performance” on page 243

This chapter describes the performance measurements that were obtained from IBM
internal workloads.
Chapter 1. Introduction 21

� Chapter 9, “Utilities” on page 287

This chapter describes continued performance improvements in utilities, especially
REORG, RUNSTATS, and LOAD and RECOVER.

� Chapter 10, “IBM Db2 Analytics Accelerator for z/OS ” on page 297

This chapter describes the improvements in IBM Db2 Analytics Accelerator functions and
performance.

� Chapter 11, “Installation and migration” on page 323

This chapter provides measurements of migration and considerations at migration. The
chapter also covers the performance-related system parameter changes.

� Chapter 12, “Monitoring and instrumentation” on page 341

This chapter includes IFCID updates related to performance features and monitoring
guidelines.

� Appendix A, “IBM Db2 workloads” on page 375

This appendix is an attempt at keeping up with what the maintenance stream is adding in
terms of functions and performance after the general availability of Db2 12.

1.4.1 Measurement environments

Unless described otherwise, the following measurement environments are used to obtain the
results that are described in this book. BIND, REBIND, or REBIND with APREUSE are done
for the static plans and packages that are run under Db2 12 for z/OS. For most of the cases,
Db2 11 NFM with packages bound in Db2 11 is used:

� z/OS 2.2

� System z13 dedicated z/OS and ICF LPARs

� Dedicated network connections

� Dedicated IBM DS8000® family with zHPF enabled, mostly DS8870 (unless described
otherwise)
22 IBM Db2 12 for z/OS Performance Topics

Chapter 2. Scalability enhancements and
subsystem performance

As with previous Db2 releases, Db2 12 removes structural constraints to support its
increasing use by high-volume concurrent workloads to enhance its availability and scalability.
Several improvements in the Db2 engine allow applications to access data faster while
offering easier database administration.

This chapter includes the following topics:

� 2.1, “Fast index traversal” on page 24
� 2.2, “Contiguous buffer pools” on page 39
� 2.3, “Insert Algorithm 2” on page 50
� 2.4, “Logging enhancements” on page 57
� 2.5, “Range-partitioned table spaces with relative page numbering ” on page 63
� 2.6, “IMS-Db2 Connection pooling” on page 65
� 2.7, “Db2 prefetch-related enhancements” on page 68
� 2.8, “Performance enhancements for short transactions” on page 71
� 2.9, “Db2 Storage Manager enhancements” on page 76
� 2.10, “Miscellaneous enhancements” on page 81

2

© Copyright IBM Corp. 2017. All rights reserved. 23

2.1 Fast index traversal

Access through a unique index is commonly used in Db2 online applications. However, as the
index grows larger, the cost of index tree access becomes more expensive, such that index
tree traversal performance became one of the most important factors in Online Transaction
Processing (OLTP) performance. Searching through the index B-tree is often a large CPU
contributor because of the large number of getpages and data cache misses.

The index look-aside feature that is supported in previous Db2 versions significantly improved
the performance of sequential index access but does not improve random index access.

Db2 12 introduces a new feature to improve the performance of random index access. This
new feature uses an in-memory index optimization called fast index traversal. The term Fast
Traversal Blocks (FTB) is also used for this enhancement.

2.1.1 Introduction

In older Db2 versions, Db2 must start with the root page and traverse down all index levels
until it gets to the correct corresponding index leaf page whenever a random access to an
index occurs. Therefore, the number of getpages that are required for a random index access
is equal to the number of index levels.

Because the minimum number of index levels is two (even if only one record in the table
exists), the minimum number of getpages per random index access is two. Accordingly, when
the number of rows in a table increases, the number of index levels increases, and more index
levels results in more getpages for random index access.

To avoid multiple getpages for random index access, a new in-memory structure called FTB
was introduced in Db2 12. This in-memory structure essentially caches the root page and all
the non-leaf pages of an index in memory. Whenever a random access occurs to an index
that is managed by fast index traversal, Db2 can find the wanted index leaf page number from
the in-memory FTB structure instead of using getpages to traverse the index tree. As a result,
random index access to an index that is managed by using fast index traversal requires only a
single getpage instead of multiple getpages.

Index qualifications
Db2 uses a system task to monitor and maintains a list of candidate indexes for the fast index
traversal function at the Db2 subsystem level. Db2 regularly evaluates the list of candidate
indexes and adds or removes them from the FTB structure, depending on their usage pattern.
To be selected as a candidate for fast index traversal, the index must be a unique index with a
key size of no more than 64 bytes.

As a candidate index, the index must also meet following requirements to qualify for fast index
traversal:

� The index is frequently used. To determine this condition, Db2 keeps a traversal counter
for each candidate index. For each random traversal, Db2 adds to the counter. The
counter is adjusted downward when a sequential index access or an index split occurs.
The moving average traversal count must exceed a set threshold for the Db2 subsystem
for the index to be eligible for fast index traversal.

� The number of leaf pages in the index is less than 2 million.

� Db2 can allocate the FTB structure for the index without causing paging and within the
defined maximum size of the FTB structure. For more information about this limit, see
“Fast index traversal memory usage” on page 25.
24 IBM Db2 12 for z/OS Performance Topics

In addition, Db2 provides a new catalog table, SYSIBM.SYSINDEXCONTROL, to override the
default candidate index processing. Fast index traversal is intended to be automatically
controlled by Db2. Use the SYSIBM.SYSINDEXCONTROL catalog table only to define
exceptions when the automatic processing is unacceptable. Index performance optimization
might be impeded if the number of rows in this catalog table becomes too large.

Fast index traversal memory usage
More memory is required to store the fast index traversal memory structures (FTBs). The user
can control the size of this storage area by using the new INDEX_MEMORY_CONTOL
DSNZPARM parameter. The following options are available:

� If INDEX_MEMORY_CONTOL= 'AUTO', Db2 uses a minimum of 10 MB or 20% of the
currently allocated buffer pool storage, whichever is larger.

� If INDEX_MEMORY_CONTOL= 'DISABLE', Db2 disables the fast index traversal feature
and no FTBs are created.

� If INDEX_MEMORY_CONTOL equals an integer 10 - 200000 (10 MB - 200 GB), Db2
allocates up to the size of the specified value for fast index traversal usage.

Performance traces and diagnostic messages
Two new IFCID trace records were introduced to track fast index traversal usage. IFCID 389 is
part of statistics trace class 8. It records all indexes that use fast index traversal in the system.
IFCID 477 is part of performance trace class 4 and records the allocation and deallocation
activities of FTBs for fast index traversal.

A new DSNI070I console message was also introduced. This message contains information
about fast index traversal memory usage, the number of indexes that use fast index traversal
and the number of candidate indexes. As of this writing, this message is issued only if the fast
index traversal usage changes. DSNI070I features the following format:

DSNI070I subsystem-id FAST INDEX TRAVERSAL STATUS: storage-size MB, USED BY:
objects-count OBJECTS, CANDIDATE OBJECTS: candidates-count

For example:

DSNI070I -DB2A FAST INDEX TRAVERSAL STATUS: 2 MB,
 - USED BY: 1 OBJECTS, CANDIDATE OBJECTS: 1

Db2 12 also introduces a new -DISPLAY STATS command to take an instantaneous snapshot
of all the index objects that use the fast index traversal feature. This use of this command
displays the number of index levels and the amount of storage that is used by the index page
set or partition in the fast index traversal storage pool. A typical command uses the format
that is shown in the following example:

 -DIS STATS(IMU) LIMIT(*)

If the user wants to limit the maximum number of FTBs to be displayed, an integer 1 - 9999
can be specified by using the LIMIT keyword. No option is available to limit the output to a
specific database or index.

Performance overhead
When an insert, update or delete operation results in a change to an index non-leaf page in a
Db2 data sharing environment and that index is using fast index traversal, Db2 issues a notify
request to all data sharing members to notify them of the FTB structure change.
Chapter 2. Scalability enhancements and subsystem performance 25

When other data sharing members receive the notification, their FTB storage is updated
immediately. This notification process can cause more overhead in a data sharing
environment for GBP-dependent indexes when index structure modifications occur frequently.

2.1.2 Performance measurements

Several performance measurements were conducted to evaluate the fast index traversal
feature.

Performance results for user created test scenarios
A set of specially developed workloads were used to test the performance benefits and effect
of the new fast index traversal feature in different scenarios. This section describes these
tests and the performance-related observations that were reached based on the test results.

In-memory index feature is not triggered
The first test compared the case in which fast index traversal is disabled
(INDEX_MEMORY_CONTOL= 'DISABLE') against the case where fast index traversal is
enabled (INDEX_MEMORY_CONTOL= 'AUTO') while no indexes were using the fast index
traversal feature (FTB pool is 'empty'). The purpose of this test was to evaluate the overhead
of monitoring possible fast index traversal candidates when the feature is enabled but no
index qualifies for fast index traversal. As listed in Table 2-1, no performance degradation was
found when the results of both scenarios were compared.

Table 2-1 Comparison of FTB disabled and FTB enabled (auto) but no FTB created

Random index access by using single thread random select/insert/delete
This set of tests used a PBG table and one unique index with a key size less than 64 bytes
and five index levels. To eliminate the effect of data page access to the performance, all of the
random select/insert/delete operations that were performed by the workload use index-only
access. All tests were run by using a non-data sharing configuration.

The results for these random select/insert/delete test runs by using fast index traversal
(comparing to the corresponding base runs with no fast index traversal) are listed in
Table 2-2.

Table 2-2 Random select/insert/delete with FTB enabled versus FTB disabled

Db2 DBM1 CPU time in seconds/commit

SQL workload type FTB disabled FTB enabled but not used Delta %

Sequential insert 0.000126 0.000125 -0.79

SQL operation Commit frequency % delta (class 2 CPU time)

Random select 1 row per commit -8.5

Random select 10 rows per commit -18.2

Random select 10k per commit -22.4

Random delete 1000 rows per commit -11.8

Random insert to empty table 1000 rows per commit -7.8

Random insert to populated
table

1000 rows per commit -9.2
26 IBM Db2 12 for z/OS Performance Topics

For random select with index-only access, up to 22.4% Db2 class 2 CPU time improvement
was observed, depending on the commit frequency. The select statements perform only one
index getpage per row as expected. For random inserts, approximately 9% CPU time
improvement was observed. For random delete, the CPU time improvement was
approximately 12%.

Random index access by using multiple threads performing random
insert/delete

This workload used a PBG table space with one unique clustering index with a key size less
than 64 bytes. The number of concurrent threads was 10. The tests were performed by using
a non-data sharing configuration. The purpose of this set of tests was to see how fast index
traversal affects performance when concurrent threads are accessing the index.

By using the concurrent random insert and delete workload with fast index traversal enabled,
the performance improvements were in line with the single thread tests. For concurrent
random insert, approximately 11% CPU time improvement and a 57% getpage reduction
were observed. For concurrent random delete, the workload showed approximately 10% of
CPU time improvement and a 42% reduction in getpage activity.

Sequential index access
This test used a PBG table space that had one unique clustering index with a 56-byte key. All
selects used index-only access. The singleton selects retrieved rows by using matching index
access with a key value that increases sequentially. The purpose of this set of tests was to
determine how quickly index traversal affects performance when an index is accessed
sequentially.

The results for the sequential index access workload are listed in Table 2-3. The results
indicate that no obvious performance differences existed between tests in which fast index
traversal was used and tests where fast index traversal was disabled for these sequential
inserts, select, and fetch workloads. This result occurred because sequential index access
uses the index look-aside feature to locate index leaf pages, despite fast index traversal being
enabled and used for the index.

Table 2-3 Sequential index access with FTB created versus FTB disabled

Effect when indexes are GBP-dependent
When the fast index traversal feature is triggered for GBP-dependent indexes in a data
sharing environment, an approximate 2% CPU time overhead was observed for the
sequential insert test that was performed by using a two-way data sharing configuration. In
this scenario, the overhead occurred because the sending and receiving of notify messages
by fast index traversal during index page splits. If other members have an FTB structure
defined for an index, an index split operation for that index generates one fast index
traversal-related notify message.

Db2 Class 2 CPU time in seconds

SQL statement type FTB disabled FTB used Delta %

Sequential insert 128.95 128.28 -0.52

Sequential select 50.38 50.09 -0.59

Skip sequential select 5.11 5.17 1.02

Sequential fetch 15.81 15.61 -1.28
Chapter 2. Scalability enhancements and subsystem performance 27

Simulated OLTP
The fast index traversal feature was also evaluated by using a simulated local non-data
sharing OLTP workload. This simulated OLTP workload consists of four tables and each table
has one unique clustering index with a key size of less than 64 bytes. The SQL statements of
the workload include sequential cursor fetch operations, skip sequential updates, skip
sequential select statements and random inserts. There were 10 concurrent active threads
during this test. FTBs were created and active for all four unique indexes.

Comparing the run in which the indexes actively use fast index traversal with the run in which
fast index traversal is disabled, the results showed a 6% class 2 CPU time improvement, a
59% reduction in index getpage activity, and a 35% reduction in the total number of getpages.

Performance results by using the IBM Brokerage benchmark workload
To further evaluate the performance benefits of the fast index traversal feature for OLTP type
workloads, a series of performance tests were conducted that used the IBM brokerage
transaction workload using a two-way data sharing configuration. The IBM Brokerage
transaction workload is a complex OLTP workload that runs various SQL procedures to
simulate transactions in a brokerage firm.

The sections below offer detailed information about how the tests were performed and the
analysis of the test results. The IBM Brokerage workload has about 10,000 index objects. The
workload was executed with INDEX_MEMORY_CONTROL set to AUTO and DISABLE.

In addition to the INDEX_MEMORY_CONTROL=AUTO/DISABLE tests that used Db2 12 at
function level V12R1M500, the two-way data sharing IBM Brokerage fast index traversal study
included a pair of INDEX_MEMORY_CONTROL=AUTO/DISABLE tests that used function
level V12R1M100. At that function level, Db2 does not create FTBs for indexes that are
GPB-dependent.

V12R1M500 can and does create FTBs for qualified indexes, regardless of whether they are
GBP-dependent objects or not. The reason for this limitation when using function level
V12R1M100 is used because a Db2 member at that function level might have to coexist with
other members that are still running Db2 11 that do not know how to handle fast index
traversal-related notify messages. As a result, Db2 members at function level V12R1M100
can only create FTBs only for indexes that are not GBP-dependent.
28 IBM Db2 12 for z/OS Performance Topics

Performance results at function level V12R1M100
Running the IBM Brokerage workload by using Db2 systems at function level V12R1M100
with INDEX_MEMORY_CONTROL set to AUTO, a reduction of about 12 getpages per
commit was observed when comparing against the case in which fast index traversal was
disabled. The results are shown in Figure 2-1. The DSNI070I message showed that
approximately 300 index objects had FTBs created and approximately 120 MB of real storage
was used to store these FTBs.

Figure 2-1 Getpage reduction between FTB AUTO and DISABLE using V12R1M100
Chapter 2. Scalability enhancements and subsystem performance 29

The total Db2 CPU time per commit for each of the Db2 members for test scenarios in which
fast index traversal was disabled or enabled is shown in Figure 2-2. The observed total
transaction Db2 CPU times (including Db2 class 2 CPU time, MSTR, DBM1, and IRLM CPU
time) are close when comparing the numbers for the two tests (within measurement noise
level). Data sharing group internal throughput rates (ITR) of the two tests are also nearly the
same.

Figure 2-2 Total transaction Db2 CPU time: FTB AUTO versus DISABLE at function level V12R1M100

Performance results at function level V12R1M500
Although getpage reductions were observed with fast index traversal enabled, no significant
CPU savings or throughput improvements were realized for the IBM Brokerage workload that
is running in a two-way data sharing environment with the Db2 members both at function level
V12R1M100.

With Db2 12 at function level V12R1M500, which does not have the non-GBP-dependency
restriction, FTBs can be created for more index objects than when the system was at function
level V12R1M100. Therefore, a higher getpage reduction is expected for function level
V12R1M500.
30 IBM Db2 12 for z/OS Performance Topics

As indicated by message DSNI070I, approximately 1,020 index objects had FTBs created
and 415 MB of real storage was used to store all these FTBs. This result is similar to the
one-way data sharing tests results. A reduction of 25 getpages per transaction was observed,
compared to the case where fast index access was disabled, as shown in Figure 2-3.

Figure 2-3 Getpage reduction between FTB AUTO and DISABLE using V12R1M500

To coordinate changes in the FTBs in a data sharing group, Db2 members use notify
messages (sending and receiving) to communicate. The notify process is not necessary
when the systems are at function level V12R1M100 because only non-group buffer
pool-dependent indexes can use the fast index traversal feature.
Chapter 2. Scalability enhancements and subsystem performance 31

This notify message traffic introduces another overhead for GBP-dependent indexes that use
fast index traversal in a Db2 data sharing environment. In our test scenarios, notify message
traffic was observed to be approximately 10 sends and receives every second, compared to
approximately 1.5 sends and receives per second for the tests in which fast index traversal
was disabled, as shown in Figure 2-4.

Figure 2-4 Notify message traffic: Comparing FTB AUTO and DISABLE

The observed total Db2 CPU time per commit (which includes class 2 CPU time and MSTR,
DBM1, and IRLM address CPU time) shows a 2% reduction when fast index traversal is
enabled (and used), compared to when fast index traversal disabled. The ITR of the data
sharing group improved by 1.3% with fast index traversal enabled.

1.35 1.01

9.99 10.06

0

2

4

6

8

10

12

Mem_1 Mem_2

m
sg

. s
en

t/
se

c.

Notify Message Traffic
V12R1M500

FTB Disable vs. Auto

Disable Auto
32 IBM Db2 12 for z/OS Performance Topics

The total Db2 CPU time per commit for the respective Db2 members for scenarios that used
fast index traversal AUTO versus DISABLE is shown in Figure 2-5.

Figure 2-5 Transaction total Db2 CPU time: Comparing FTB AUTO and DISABLE

In conclusion, equivalent workload performance was observed for the tests that used
INDEX_MEMORY_CONTROL AUTO versus DISABLE with Db2 at function level
V12R1M100, despite a reduction of 12 getpages per commit.

With Db2 at function level V12R1M500 and fast index traversal enabled, the workload uses 25
fewer getpages per commit. Although notify message traffic increased, an overall CPU time
improvement of 2% and a 1.3% increase in ITR throughput at the data sharing group level
when fast index traversal was enabled and used was observed.

Performance results by using the IBM classic IRWW workload
This set of measurements were conducted in a two-way data sharing environment that used
two z13 LPARs with four dedicated CPs for each LPAR, running with z/OS 2.2. The IRWW
workload used the IBM IMS™ 11 transaction manager with Message Processing Program
(MPPs) regions with 66% thread reuse to drive the Db2 work. The measurements were
conducted simulating the migration track a typical customer follows when migrating a Db2
environment from Db2 11 NFM to Db2 12 at function level V12R1M500.
Chapter 2. Scalability enhancements and subsystem performance 33

Significant performance benefits can be achieved for transactions by using random index
access when the Db2 12 fast index traversal feature is enabled for the IBM classic IRWW
workload, as listed in Table 2-4.

Table 2-4 Fast index traversal: Classic IRWW by using Release (Commit)

The IRWW workload runs a heavy mix of transactions by using random index access. As the
fast index traversal feature is designed to help random index access performance, notable
improvements in the total CPU time per commit and reductions in getpage activity were
observed whenever the fast index traversal feature was enabled. (As before, total CPU time
per commit = class 2 CPU time per commit + Db2 address space CPU per commit.)

As the data that is listed in Table 2-4 shows, the classic IRWW workload benefits greatly from
the new Db2 12 fast index traversal feature. The best workload performance was achieved
when the Db2 members were running at function level V12R1M500 with
INDEX_MEMORY_CONTROL=AUTO option. Compared to the baseline Db2 11 test, it
featured 47% less getpages and a 7.0% reduction in total CPU time per commit. The FTB
feature contributes 2.3% to this CPU time improvement.

In comparison, the tests that were run at function level V12R1M100 showed less getpage
reduction and CPU improvement because fewer indexes qualified for fast index traversal. This
result occurred because many indexes in this workload were updated across the Db2 data
sharing group and were GBP-dependent.

In conclusion, although getpage and CPU time savings are achieved with fast index traversal
enabled when function level V12R1M100 is used in a data sharing environment, the benefits
of the index traversal feature cannot be fully realized until your environment is migrated to
Db2 12 at function level V12R1M500.

Performance results by using the RTW workload
Performance tests that focused on the fast index traversal feature’s benefits were also
conducted for the RTW workload by using a non-data sharing and a two-way data sharing
group configuration. For a description of the RTW workload, refer to Appendix A, “IBM Db2
workloads” on page 375.

Classic IRWW Measurement Getpages/
commit

Total CPU/
commit
(microseconds)

Getpage
delta %
(Db2 12 vs.
Db2 11)

CPU
delta %
(Db2 12 vs.
Db2 11)

Baseline: Db2 V11 NFM 81.5 653

Db2 12 (V12R1M100)
(FTB=Auto) No rebind

70.9 629 -13% -3.7%

Db2 12 (V12R1M100)
(FTB=Auto) After rebind

70.8 621 -13% -4.8%

Db2 12 (V12R1M500)
(FTB=Disable) No new rebind

81.5 622 0% -4.7%

Db2 12 (V12R1M500)
(FTB=Auto) No new rebind

43.3 607 -47% -7.0%
34 IBM Db2 12 for z/OS Performance Topics

Non-data sharing RTW fast index traversal test results
In the non-data sharing scenario, two performance measurements were conducted that used
Db2 12 at function level V12R1M500. The first measurement was run by using Db2 12 with
ZPARM INDEX_MEMORY_CONTROL set to DISABLE. The second measurement was run
with INDEX_MEMORY_CONTROL set to AUTO, which enabled the fast index traversal
functionality.

The results of both tests in terms of total CPU time per commit (total CPU time per commit =
class 2 CPU time per commit + Db2 address space CPU per commit) are shown in
Figure 2-6.

Figure 2-6 Class 2 and total CPU Time: Comparing FTB AUTO and DISABLE

As shown in Figure 2-6, when Db2 12 is run in non-data sharing mode, the RTW workload
achieved a 3% reduction in total CPU time per commit with fast index traversal functionality
enabled, compared to when the feature was disabled.
Chapter 2. Scalability enhancements and subsystem performance 35

The internal throughput rate for the two tests is shown in Figure 2-7. The ITR numbers show
an improvement of 2.16% with the fast index traversal feature enabled.

Figure 2-7 ITR: Comparing FTB AUTO and DISABLE

The improved performance of the RTW workload with fast index traversal enabled is the result
of a reduction in the number of getpage requests against the index buffer pools. In total, eight
indexes were managed by using in-memory structures (FTBs) when
INDEX_MEMORY_CONTROL was set to AUTO. The total average getpage requests per
thread dropped from 289.4 K to 236.8 K (a 18.2% reduction) compared to
INDEX_MEMORY_CONTROL set to DISABLE.

Although the fast index traversal feature requires separate (extra) storage to store the
in-memory managed indexes’ root and non-leaf pages, the test results by using the non-data
sharing RTW workload show that setting INDEX_MEMORY_CONTROL to AUTO did not
cause more Db2 real storage usage compared to when the workload was run with
INDEX_MEMORY_CONTROL set to DISABLE. This result occurs because the RTW
workload includes small indexes and all the FTBs only took up less than 1 MB of storage, as
indicated by the -DISPLAY STATS(IMU) command output.
36 IBM Db2 12 for z/OS Performance Topics

The DBM1 address space’s real storage usage information of the two test runs is shown in
Figure 2-8.

Figure 2-8 DBM1 Real storage usage: Comparing FTB AUTO and DISABLE

Data sharing RTW fast index traversal test results
In the two-way data sharing test scenario, two performance measurements were conducted,
one with INDEX_MEMORY_CONTROL set to DISABLE and one with it set to AUTO. The test
environment configuration can be found in 5.5, “RTW workload ” on page 173.

The total CPU time per commit result of the tests (Total CPU time per commit = class 2 CPU
time per commit + Db2 address space CPU per commit) is shown in Figure 2-9.

Figure 2-9 Total CPU time per Commit: FTB DISABLE versus AUTO
Chapter 2. Scalability enhancements and subsystem performance 37

The group average Total CPU time per Commit values in the figure are the combined average
time calculated from the data of the two Db2 members by using the following formula:

Total_avg = (Mem1_value * Mem1_#occur + Mem2_value *
 Mem2_#occur) / (Mem1_#occur + Mem2_#occur)

Figure 2-10 shows the Internal Transaction (throughput) Rate (ITR) results of the tests.

Figure 2-10 ITR: FTB DISABLE versus AUTO

The CPU time comparison that is shown in Figure 2-10 shows that with fast index traversal
enabled, the two-way data sharing group achieved 1.6% improvement in Total CPU time per
Commit compared to the case where fast index traversal is disabled, while the group ITR
value growth achieved with the fast index traversal enabled was 0.82%.

Information about the storage usage during the two tests is shown in Figure 2-11 on page 39.
The DBM1 real storage usage does not differ too much between the two measurements for
either of the two Db2 members. Enabling the fast index traversal feature did not cause more
real storage being allocated for the RTW workload that was measured here. The -DISPLAY
STATS(IMU) command output showed less than 1 MB of storage was used by all the FTBs for
each data sharing member.
38 IBM Db2 12 for z/OS Performance Topics

Figure 2-11 DBM1 Real storage usage: FTB AUTO versus DISABLE

RTW workload fast index traversal performance tests conclusion
Combining the non-data sharing and data sharing RTW workload test results that used Db2
12’s new fast index traversal functionality, the following general conclusions were reached:

� The fast index traversal feature can bring performance benefits for the RTW workload,
especially in a non-data sharing environment.

� The fast index traversal feature does not cause the amount of real storage that is used for
the RTW workload to grow. This lack of growth occurs because the index sizes are small
and less than 1 MB of storage is required to support the FTBs that are created.

2.2 Contiguous buffer pools

In-memory buffer pools were introduced in Db2 10 and they are enhanced in Db2 12. To
emphasize their new structure, the term in-memory buffer pool is replaced by contiguous
buffer pool.

2.2.1 Introduction

Db2 buffer pools are important resources for ensuring good performance because data and
index pages can be cached in memory for fast access. When Db2 issues a GETPAGE
request to access data in a table or index, Db2 looks for the page in the buffer pool first. When
a page cannot be found in the buffer pool, Db2 issues a request to bring the page into the
buffer pool from disk or the group buffer pool.

When defining a buffer pool, one of the key parameters is page steal method (PGSTEAL).
When all pages in the buffer pool are allocated and new pages must be brought in, the buffer
pool’s chosen page stealing algorithm is used to determine which pages are to be “stolen” to
make room for the new pages.
Chapter 2. Scalability enhancements and subsystem performance 39

PGSTEAL features the following options:

� LRU
� FIFO
� NONE

PGSTEAL(LRU)
This option is the default page stealing method in Db2. Db2 steals the least recently used
pages in the buffer pool, which ensures that frequently used pages are kept in the buffer pool.
This method avoids frequently accessed pages from being stolen prematurely.

The underlying cost associated with PGSTEAL(LRU) is that Db2 must maintain an LRU chain
to order the pages based on how recently they were used. This PGSTEAL option is generally
recommended and used for most of the buffer pools.

PGSTEAL(FIFO)
The First In First Out (FIFO) option steals pages in chronological order without regard to how
frequently a page is referenced. An advantage of this algorithm is that Db2 does not have to
track page accesses because it always removes the oldest pages from the buffer pool.

Compared to PGSTEAL (LRU), PGSTEAL (FIFO) can save some CPU usage when there is
no need to steal pages in the buffer pool. Therefore, PGSTEAL(FIFO) is recommended for
buffer pools with no I/Os. It also is a good option for buffer pools with close to 100% hit ratio
with stabilized usage.

However, if a page steal operation occurs, the more frequently used pages can be stolen
prematurely. It can also be used for buffer pools that have a low hit ratio. If every getpage
results in an I/O, there is no benefit in maintaining an LRU chain.

PGSTEAL(NONE)
Db2 10 introduced a third PGSTEAL option, called NONE. When PGSTEAL(NONE) is
specified, Db2 (asynchronously) preinstalls the object into the buffer pool on its first access.
Then, Db2 disables prefetch for the object to avoid unnecessary prefetch scheduling.

This option is useful objects that can fit in the buffer pool. If the buffer pool is not large enough
to contain all the objects, Db2 uses the FIFO algorithm to manage page stealing. Therefore, if
the objects cannot fit in the buffer pool because prefetch is disabled, extra synchronous I/Os
can occur because frequently used pages can be stolen.

In Db2 12, the PGSTEAL(NONE) algorithm is enhanced to take more advantage of the fact
that the objects are in-memory and the possibility of avoiding the buffer chain maintenance
cost. This benefit is achieved by having all buffer pool control blocks laid out in memory in a
sequential order and removing the need to maintain hash chains to locate a page in the buffer
pool.

Contiguous buffer pools
The type of buffer pools that do not require chain maintenance are called contiguous buffer
pools. If the objects cannot fit entirely into a contiguous buffer pool, an OVERFLOW area is
always associated with each contiguous buffer pool where the pages are managed in the
same way as when you specify PGSTEAL (FIFO), including the use of prefetch.
40 IBM Db2 12 for z/OS Performance Topics

In all, 10% of the buffer pool size is set aside as OVERFLOW area, with a minimum of 50
buffers a maximum of 6400 buffers. The size of the OVERFLOW area is included in the
VPSIZE of the buffer pool. Pages that cannot fit in the main portion of the buffer pool are
placed in the OVERFLOW area to avoid severe performance penalty. Prefetch is enabled for
pages in the overflow area.

The objects that are placed in the main portion of a PGSTEAL(NONE) contiguous buffer pool
do not require any buffer chain maintenance. This feature can bring significant performance
improvements over PGSTEAL(LRU) and (FIFO) defined buffer pools, especially with large
buffer pools.

Generally, objects that are frequently accessed and are stable in size are good candidates for
buffer pools with the PGSTEAL (NONE) attribute, provided sufficient buffer pool size is
defined. If any part of an object is placed in the OVERFLOW area, Db2 cannot take full
advantage of the performance benefit that is associated with contiguous buffer pools because
pages in the OVERFLOW area are treated as FIFO and can cause premature page stealing
to occur in a similar way as when PGSTEAL(FIFO) is used. Therefore, it is important to
allocate sufficient buffers for contiguous buffer pools to avoid having any pages placed in the
OVERFLOW area to obtain the best performance.

Performance benefits in elapsed time and CPU time can be expected with PGSTEAL(NONE)
buffer pools when objects completely fit in the buffer pool. In such cases, objects are loaded
into the buffer pools on their first access and subsequent I/Os can be avoided. Reducing (or
eliminating) the number of synchronous I/Os improves elapsed time. Because every
GETPAGE in a contiguous buffer pool is a direct access without any hash or LRU chain
maintenance, CPU savings in accessing and releasing a page reduces Db2 class 2 CPU
time.

2.2.2 Performance measurements

An OLTP brokerage workload was used to demonstrate the performance benefit of the use of
PGSTEAL(NONE) compared to PGSTEAL(LRU) as buffer pool page steal algorithm.

For the first measurement, buffer pools with a high getpage count are configured to use
PGSTEAL(NONE). The VPSIZE is large enough for all objects to fit completely into the buffer
pool.

For the second measurement, the buffer pool setting was changed to PGSTEAL(LRU) that
used the same VPSIZE. In both cases, no synchronous I/Os are needed. Therefore, all
improvement in CPU or elapsed time can be attributed to the removal of the hash or LRU
management.

An 8% class 2 CPU time reduction and a 7% reduction in elapsed time was observed for the
benchmark run that used PGSTEAL(NONE) compared to PGSTEAL(LRU).
Chapter 2. Scalability enhancements and subsystem performance 41

2.2.3 Managing a contiguous buffer pool

In DB12, PGSTEAL(NONE) is the recommended page stealing technique to minimize CPU
consumption for tables and indexes that are frequently accessed and can be contained in a
buffer pool.

Although the use of PGSTEAL(NONE) provides a performance advantage, the challenging
task lies in identifying the tables and indexes that are good candidates to use in-memory
(contiguous) buffer pools. Use the following guidelines to screen for candidates:

� Finding the Db2 objects that are referenced frequently with a high number of getpages
� Ensure that the objects can be fully contained in the buffer pool

To help with managing a contiguous buffer pool, Db2 12 introduced a new GETPAGES
column in the real-time statistics tables, SYSIBM.SYSTABLESPACESTATS and
SYSIBM.SYSINDEXSPACESTATS. This field reports the cumulative getpage count for a Db2
object since the last REORG, LOAD REPLACE operation or since the object was created.

The getpage count alone is not adequate to determine the best candidate objects. Getpage
intensity (getpage count/object size in pages) also must be calculated and reviewed. By
choosing the objects with high getpage intensity, we might avoid picking objects that are
frequently accessed but reference only a small portion of a large table or index as
PGSTEAL(NONE) candidates.

To further screen the objects identified with a high getpage intensity, we also must consider
whether it is feasible to fit the entire object in memory. If the object is too large and cannot
completely fit in the current buffer pool, a decision must be made on whether you want to
increase the size of the buffer pool to use PGSTEAL(NONE), or not put the object into a
contiguous buffer pool.

Also, although some objects might perfectly meet the screening guidelines in their current
state, you also must take their future growth into consideration. It is not advisable to use
PGSTEAL(NONE) for objects that grow quickly over time, such as objects with a high volume
of inserts. Moreover, because objects that are suited and not suited for PGSTEAL(NONE)
can originally be in the same buffer pool, they might need to be separated and moved to
buffer pools with the appropriate PGSTEAL settings.

The next section outlines the steps that we used in our lab environment to identify objects that
might benefit from the use of contiguous buffer pools.

Identifying candidates for a contiguous buffer pool
We completed several steps to identify objects that might benefit from being in a contiguous
buffer pool in our complex OLTP workload. The first step is to identify objects with a high
getpage count and intensity for the period of interest. After deciding on the time frame, the
following the steps were completed to identify candidate objects for a contiguous buffer pool:

1. Create user RTS tables (see Example 2-1) for copying the externalized real-time statistics.

Example 2-1 Creating user RTS tables

//RTS#1 JOB STL,MSGLEVEL=(1,1),MSGCLASS=A,REGION=4M,CLASS=A
/*JOBPARM SYSAFF=*
//***
//* SAMPLE DDL TO CREATE USER RTS TABLES
//***
//JOBLIB DD DISP=SHR,DSN=DB2DRDA.DC1K.SDSNLOAD
//STEP1 EXEC PGM=IKJEFT01,DYNAMNBR=20,TIME=1440
//SYSPRINT DD SYSOUT=*
42 IBM Db2 12 for z/OS Performance Topics

//SYSTSPRT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//OUTFILE DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DSNTRACE DD DUMMY
//SYSTSIN DD *
DSN SYSTEM(DC1K)
RUN PROG(DSNTEP2) PLAN(DSNTEP2) -
 LIB('DSNDC1K.RUNLIB.LOAD')
END
/*
//SYSIN DD *
 SET CURRENT SQLID = 'USRT002';
 DROP TABLE RTSTABLESPACE;
 COMMIT;
 CREATE TABLE RTSTABLESPACE
 LIKE SYSIBM.SYSTABLESPACESTATS;
 COMMIT;
 DROP TABLE RTSINDEXSPACE;
 COMMIT;
 CREATE TABLE RTSINDEXSPACE
 LIKE SYSIBM.SYSINDEXSPACESTATS;
 COMMIT;
 //

2. Externalize the real-time statistics before and after the period of interest and save the
statistics to get the starting value and ending value of the cumulative GETPAGES
columns.

You can issue the following command to externalize the real-time statistics:

-ACCESS DB(dbname) SP(*) MODE(STATS)

3. Issue the following SQL statements to copy the real-time statistics information into the
user RTS tables after externalizing the statistics:

 INSERT INTO RTSTABLESPACE
 SELECT * FROM SYSIBM.SYSTABLESPACESTATS
 WHERE DBNAME = 'dbname';
COMMIT;
 INSERT INTO RTSINDEXSPACE
 SELECT * FROM SYSIBM.SYSINDEXSPACESTATS
 WHERE DBNAME = 'dbname';
 COMMIT;

4. After the RTS data for the wanted period is collected (before and after statistics), we ran
the query in Example 2-2 on page 44 to identify table spaces and indexes with the highest
getpage intensity and the buffer pools these objects are in.

To compute the getpage intensity of each table space and index, we calculated the
number of getpages in the interval and divided it by the number of active pages of the
objects. The buffer pools where the objects are stored are determined by merging the
objects with information in SYSTABLESPACE and SYSINDEXES.

The long query that is shown in Example 2-2 on page 44 performs the following steps. Its
output was directly used to identify the candidate objects to use contiguous buffer pools:

a. SELECT from RTSTABLESPACE and RTSINDEXSPACE to calculate the delta for the
number of getpages and reduce the table to one row per object (DBNAME, NAME, and
PARTITION).
Chapter 2. Scalability enhancements and subsystem performance 43

b. Join the resulting (TS/IS) tables with SYSIBM.SYSTABLESPACE and
SYSIBM.SYSINDEXES to obtain BPOOL and PGSIZE information.

c. Group fields to add getpages at the DBNAME,NAME (TT/II) level.

d. Calculate GPINSTENSITY for all table spaces and index spaces.

e. UNION ALL the table spaces and index spaces to produce final data (FI) and sort by
GETPAGES or GPINTENSITY.

Example 2-2 Determining getpage intensity

SELECT
 SUBSTR(FI.DBNAME,1,8) AS DBNAME,
 SUBSTR(FI.NAME,1,8) AS NAME,
 SUBSTR(CHAR(FI.PARTS),1,5) AS PARTS,
 SUBSTR(FI.BP,1,6) AS BP,
 SUBSTR(CHAR(FI.PGSIZE),1,4) AS PGSZ,
 SUBSTR(CHAR(FI.INSERTS), 1,10) AS INSERTS,
 SUBSTR(CHAR(FI.DELETES), 1,10) AS DELETES,
 SUBSTR(CHAR(FI.UPDATES), 1,10) AS UPDATES,
 SUBSTR(CHAR(FI.NACTIVE),1,10) AS NACTIVE,
 SUBSTR(CHAR(FI.GETPAGES),1,11) AS GETPAGES,
 DECIMAL((FLOAT(GETPAGES) / NACTIVE),12,4) AS GPINTENSITY
 FROM (
 (SELECT TT.DBNAME,
 TT.NAME,
 MAX(TT.PARTS) AS PARTS,
 MAX(TT.PGSIZE) AS PGSIZE,
 TT.BPOOL AS BP,
 SUM(TT.NACTIVE) AS NACTIVE,
 SUM(TT.INSERTS) AS INSERTS,
 SUM(TT.DELETES) AS DELETES,
 SUM(TT.UPDATES) AS UPDATES,
 SUM(TT.GETPAGES)AS GETPAGES
 FROM (
 SELECT TS.TIME AS TIME,
 TS.DBNAME AS DBNAME,
 TS.NAME AS NAME,
 TS.PARTS AS PARTS,
 TS.REORGINSERTS AS INSERTS,
 TS.REORGDELETES AS DELETES,
 TS.REORGUPDATES AS UPDATES,
 TS.GETPAGES AS GETPAGES,
 TS.NACTIVE AS NACTIVE,
 ST.BPOOL AS BPOOL,
 ST.PGSIZE AS PGSIZE
 FROM (
 SELECT T2.UPDATESTATSTIME AS TIME,
 T2.DBNAME AS DBNAME,
 T2.NAME AS NAME,
 T2.PARTITION AS PARTS,
 T2.NACTIVE AS NACTIVE,
 T2.REORGINSERTS - T1.REORGINSERTS AS REORGINSERTS,
 T2.REORGDELETES - T1.REORGDELETES AS REORGDELETES,
 T2.REORGUPDATES - T1.REORGUPDATES AS REORGUPDATES,
 T2.GETPAGES - T1.GETPAGES AS GETPAGES
 FROM RTSTABLESPACE T1, RTSTABLESPACE T2
44 IBM Db2 12 for z/OS Performance Topics

 WHERE
 T1.DBNAME = T2.DBNAME AND
 T1.NAME = T2.NAME AND
 T1.PARTITION = T2.PARTITION AND
 T2.UPDATESTATSTIME > T1.UPDATESTATSTIME AND
 T2.GETPAGES > T1.GETPAGES) TS,
 SYSIBM.SYSTABLESPACE ST
 WHERE TS.DBNAME = ST.DBNAME AND TS.NAME = ST.NAME
 ORDER BY DBNAME, NAME, PARTS, TIME) AS TT
 GROUP BY TT.DBNAME, TT.NAME, TT.BPOOL
)
UNION ALL
(
 SELECT II.DBNAME,
 II.NAME,
 MAX(II.PARTS) AS PARTS,
 MAX(II.PGSIZE) AS PGSIZE,
 II.BPOOL AS BP,
 SUM(II.NACTIVE) AS NACTIVE,
 SUM(II.INSERTS) AS INSERTS,
 SUM(II.DELETES) AS DELETES,
 SUM(II.UPDATES) AS UPDATES,
 SUM(II.GETPAGES) AS GETPAGES
 FROM (
 SELECT IS.TIME AS TIME,
 IS.DBNAME AS DBNAME,

 IS.NAME AS NAME,

 IS.PARTS AS PARTS,
 IS.REORGINSERTS AS INSERTS,
 IS.REORGDELETES AS DELETES,
 IS.REORGUPDATES AS UPDATES,
 IS.GETPAGES AS GETPAGES,

 IS.NACTIVE AS NACTIVE,

 ST.BPOOL AS BPOOL,

 ST.PGSIZE AS PGSIZE
 FROM (
 SELECT I2.UPDATESTATSTIME AS TIME,
 I2.DBNAME AS DBNAME,
 I2.NAME AS NAME,
 I2.PARTITION AS PARTS,
 I2.REORGINSERTS - I1.REORGINSERTS AS REORGINSERTS,
 I2.REORGDELETES - I1.REORGDELETES AS REORGDELETES,
 0 AS REORGUPDATES,
 I2.NACTIVE AS NACTIVE,
 I2.GETPAGES - I1.GETPAGES AS GETPAGES
 FROM RTSINDEXSPACE I1, RTSINDEXSPACE I2
 WHERE
 I1.DBNAME = I2.DBNAME AND
 I1.NAME = I2.NAME AND
 I1.PARTITION = I2.PARTITION AND
Chapter 2. Scalability enhancements and subsystem performance 45

 I2.UPDATESTATSTIME > I1.UPDATESTATSTIME AND
 I2.GETPAGES > I1.GETPAGES) IS,
 SYSIBM.SYSINDEXES ST
 WHERE IS.DBNAME = ST.DBNAME AND IS.NAME = ST.NAME
 ORDER BY DBNAME, NAME, PARTS, TIME) AS II
 GROUP BY II.DBNAME, II.NAME, II.BPOOL
)
) AS FI
ORDER BY (FLOAT(FI.GETPAGES) / FI.NACTIVE) DESC,
 FI.GETPAGES DESC;

The query result for our workload is shown in Figure 2-12.

Figure 2-12 Sample output: Getpage and getpage intensity sorted by GETPAGES

DBNAME NAME PARTS BP PGSZ INSERTS DELETES UPDATES NACTIVE GETPAGES GPINTENSITY
BKOLTP00 TESIX3 0 BP1 4 0 0 0 2224 375851339 168997.90
BKOLTP00 TECOIX4 0 BP1 4 0 0 0 1122 267399932 238324.36
BKOLTP00 TEDMIX2 11 BP19 4 43 43 0 1214820 184859580 152.17
BKOLTP00 TELTIX2 0 BP1 4 357091 357091 0 1980 159989079 80802.57
BKOLTP00 TETTS 972 BP8 4 370597 3598 817388 28159401 45809587 1.63
BKOLTP00 TETHIX2 972 BP27 4 864906 3605 0 37005728 32185876 0.87
BKOLTP00 TEHHIX1 1000 BP7 4 480945 14 0 16549322 30160278 1.82
BKOLTP00 TESEIX2 972 BP23 4 841765 484711 0 21893220 21857187 1.00
BKOLTP00 TECTIX2 972 BP21 4 328480 0 0 39251814 15696141 0.40
BKOLTP00 TETIX3 0 BP26 4 0 0 0 18009752 11301880 0.63
BKOLTP00 TEHSIX2 0 BP17 4 355464 355496 0 98820 8494565 85.96
BKOLTP00 TETIX1 972 BP9 4 370640 3598 0 6901054 8128767 1.18
BKOLTP00 TETRIX4 0 BP12 4 148628 138528 0 1800 6550490 3639.16
BKOLTP00 TETIX2 0 BP17 4 0 0 0 21955052 6086904 0.28
BKOLTP00 TECAIX3 0 BP1 4 0 0 0 12258 4258410 347.40
BKOLTP00 TEHIX2 0 BP13 4 184175 173960 0 1808640 3768023 2.08
BKOLTP00 TETTIX2 0 BP1 4 0 0 0 180 3111750 17287.50
BKOLTP00 TESIX2 0 BP1 4 0 0 0 2379 3097380 1301.97
BKOLTP00 TEBIX2 0 BP1 4 0 0 0 23 2762678 120116.43
BKOLTP00 TEHHIX2 0 BP7 4 0 0 0 11706276 2637134 0.23
46 IBM Db2 12 for z/OS Performance Topics

The query result sorted by GPINTENSITY is shown in Figure 2-13 .

Figure 2-13 Sample output: getpages and getpage intensity sorted by GPINTENSITY

5. After objects are identified for contiguous buffer pools, the new VPSIZE is calculated for
the buffer pool by summing the NACTIVE pages for all the identified objects and adding
6400 buffers for the OVERFLOW area. Then, the buffer pool size is modified by using the
following ALTER BUFFERPOOL command:

-ALTER BUFFERPOOL(BPxx) PGSTEAL(NONE) VPSIZE(nnnnn)

If the buffer pool is not using PGSTEAL(NONE), the change is a pending change and it
takes effect the next time the buffer pool is allocated.

6. If objects must be moved from one buffer pool to another, they must be altered to reflect
the new buffer pool by using an SQL ALTER statement, as shown in the following
example:

ALTER INDEX ... BUFFERPOOL BPxx;
ALTER TABLESPACE ... BUFFERPOOL BPxx;

After the changed buffer pool is active, monitor to check whether the OVERFLOW area of the
contiguous buffer pool is being used. When the OVERFLOW area is used, consider making
the buffer pool (VPSIZE) larger. Message DSNB604I is written to the Db2 xxxxMSTR output
and system log when pages are read into OVERFLOW area, as shown in Figure 2-14.

Figure 2-14 DSNB604I message

DBNAME NAME PARTS BP PGSZ INSERTS DELETES UPDATES NACTIVE GETPAGES GPINTENSITY
BKOLTP00 TECOIX4 0 BP1 4 0 0 0 1122 267399932 238324.36
BKOLTP00 TESIX3 0 BP1 4 0 0 0 2224 375851339 168997.90
BKOLTP00 TECRIX1 0 BP1 4 0 0 0 6 733383 122230.50
BKOLTP00 TEBIX2 0 BP1 4 0 0 0 23 2762678 120116.43
BKOLTP00 TELTIX2 0 BP1 4 357091 357091 0 1980 159989079 80802.57
BKOLTP00 TESCIX2 0 BP1 4 0 0 0 5 358566 71713.20
BKOLTP00 TEINIX2 0 BP1 4 0 0 0 5 179283 35856.60
BKOLTP00 TEBTS 1 BP1 4 0 0 357021 66 1419469 21507.11
BKOLTP00 TETTIX2 0 BP1 4 0 0 0 180 3111750 17287.50
BKOLTP00 TEEXIX2 0 BP1 4 4 4 0 180 2412044 13400.24
BKOLTP00 TECRTS 1 BP1 4 0 0 0 66 725160 10987.27
BKOLTP00 TESTIX2 0 BP1 4 0 0 0 180 1863416 10352.31
BKOLTP00 TEBIX1 0 BP1 4 0 0 0 180 1419468 7885.93
BKOLTP00 TEINIX3 0 BP1 4 0 0 0 180 1387998 7711.10
BKOLTP00 TECIX1 0 BP1 4 0 0 0 449 1894726 4219.88
BKOLTP00 TECHIX2 0 BP1 4 0 0 0 180 738670 4103.72
BKOLTP00 TETRIX4 0 BP12 4 148628 138528 0 1800 6550490 3639.16
BKOLTP00 TETRIX3 0 BP7 4 148628 138528 0 540 1809373 3350.69
BKOLTP00 TENIIX1T 0 BP1 4 0 0 0 540 1535112 2842.80
BKOLTP00 TECOIX1 0 BP1 4 0 0 0 226 511705 2264.18
Chapter 2. Scalability enhancements and subsystem performance 47

If a DSNB604I message is received for a specific object and you want to get the complete
object into the contiguous part of the buffer pool, increase the size of the buffer pool (to allow
for more pages), and stop/start the object (to trigger reloading the object into the contiguous
part of the buffer pool).

When the OVERFLOW area is used, DSNB416I is issued as part of the output of DISPLAY
BUFFERPOOL command, as shown in Figure 2-15.

Figure 2-15 DSNB416I message

Information about whether the OVERFLOW area of a particular buffer pool is used can also
be obtained from the Db2 statistics record, as shown in Example 2-3.

Example 2-3 Db2 Statistics information about the usage of the BP OVERFLOW area

BP1 READ OPERATIONS QUANTITY /SECOND /THREAD /COMMIT
-------------------------- -------- ------- ------- -------
BPOOL HIT RATIO (%) 25.39
BPOOL HIT RATIO (%) SEQU N/C
BPOOL HIT RATIO (%) RANDOM 25.39
GETPAGE REQUEST 5000.0K 7408.37 5000.0K 1.00
 GETPAGE REQS-SEQUENTIAL 0.00 0.00 0.00 0.00
 IN-MEM OVFL SEQ REQS 0.00 0.00 0.00 0.00
 GETPAGE REQS-RANDOM 5000.0K 7408.37 5000.0K 1.00
 IN-MEM OVFL RND REQS 3794.4K 5622.06 3794.4K 0.76

SYNCHRONOUS READS 3730.6K 5527.50 3730.6K 0.75
 SYNC READS-SEQUENTIAL 0.00 0.00 0.00 0.00
 IN-MEM OVFL SEQ READS 0.00 0.00 0.00 0.00
 SYNC READS-RANDOM 3730.6K 5527.50 3730.6K 0.75
 IN-MEM OVFL RND READS 3730.6K 5527.50 3730.6K 0.75

2.2.4 Usage considerations for contiguous buffer pools

The contiguous buffer pool feature is available in Db2 12 at function level V12R1M100 and
beyond. It is essential for performance that objects are entirely contained in the contiguous
buffer pool. If an object does not fit in the VPSIZE area of a buffer pool and a portion of the
pages is placed in the OVERFLOW area, the performance benefit of moving to
PGSTEAL(NONE) from the default PGSTEAL(LRU) most likely is not optimal, as described in
2.2.3, “Managing a contiguous buffer pool” on page 42. For the same reason, we do not
recommend the use of contiguous buffer pool for tables that can grow rapidly unless a larger
VPSIZE can be specified to accommodate the object’s growth to avoid the use of
OVERFLOW area.

Even when the object completely fits in the buffer pool, the CPU benefit that is achievable
depends on how much of the total getpage activity is for pages from contiguous buffer pools.

Note: As of this writing, the only way to determine which objects are using the overflow
area is to look for occurrences of the DSNB604I message, which makes it an interesting
message to capture by using some type of automation.
48 IBM Db2 12 for z/OS Performance Topics

For example, when we observed 8% CPU reduction during our benchmark, 76% of the total
getpages during the measurement were from contiguous buffer pools and 24% of the total
getpages were from buffer pools with a PGSTEAL(LRU) setting.

To demonstrate the negative impact when an object is not fully contained in the contiguous
area of the buffer pool, a controlled experiment was conducted using a batch program where
hundred percent of the data in a table is accessed randomly via a uniform distribution pattern.
To trigger the use of the overflow area during PGSTEAL(NONE) measurements, the VPSIZE
is reduced by 25% in subsequent tests.

Because the getpage pattern has a uniform distribution, this results in an additional 25%
pages being requested from the overflow area in subsequent tests, and when not present in
the overflow area, the getpage request triggers a synchronous I/O request, resulting in more
synchronous reads with a smaller VPSIZE. The VPSIZE for page steal algorithm LRU and
NONE is the same for each test scenario. The following VPSIZEs were used during the
different tests: 508000, 381000, 254000 and 127000 (4K) pages. Note that in each scenario
the VPSIZE is large enough for a maximum overflow area of 6400 pages.

As shown in Figure 2-16, the first bar in the chart is the CL2 CPU time for LRU as page steal
algorithm and the second bar is for NONE as page steal algorithm. The lines in the chart are
the number of synchronous read requests from the buffer pool with page steal algorithm LRU
(solid line) and NONE (dotted line).

Figure 2-16 Class 2 CPU time effect of a varying number of pages in the overflow area

The bars in the chart show an increase in Db2 class 2 CPU time as more getpage requests
are from the overflow area in the buffer pool and resulting in I/O when not found in the
overflow area. The increased synchronous reads are the result of smaller VPSIZE. When no
getpage requests from the overflow area and no synchronous reads are present, a 3%
reduction in CPU was observed when using a contiguous buffer pool.
Chapter 2. Scalability enhancements and subsystem performance 49

The workload that is represented in Figure 2-16 on page 49 is single threaded. We expect
that with multiple threads, the Db2 class 2 CPU reduction is more profound for
PGSTEAL(NONE) if the requests are from a contiguous buffer pool only. However, with
multiple threads when most of the requests are from the overflow area, a considerable
increase was observed in Db2 class 2 CPU time with PGSTEAL(NONE) compared to
PGSTEAL(LRU).

Just looking at Figure 2-16 on page 49 may give the impression that PGSTEAL(NONE) will
always outperform PGSTEAL(LRU) for equal VPSIZEs. While this is true in this scenario,
please keep in mind that this is one measurement point from a very controlled environment.
We are using a uniform random distribution of the getpage activity here. In such a scenario
there is little benefit of maintaining an LRU chain as both scenarios result in a very similar
number of synchronous I/O requests. However, real life workloads rarely have a uniform
random distribution getpage pattern, and typically have either objects are more used than
others, or areas within an object that are more accessed, or a combination of both, in which
case maintaining an LRU chain typically results in considerably fewer I/Os.

2.3 Insert Algorithm 2

Insert transactions are common across the Db2 for z/OS customers and are often critical to
their business needs. High-volume concurrent insert operations on journal tables with high
volumes of data is a typical business scenario. The performance of such insert workloads
always is challenge for customers.

In an application journaling scenario, data rows tend to be populated quickly with key values
that are close (such as time stamps or ever increasing transaction numbers) by many
concurrent threads. In many cases, rows are inserted at the end of the table spaces or
partitions and the inserted data is not organized by a clustering index.

The insert rate of these tables is often throttled by the amount of contention that occurs during
space search, as different threads typically all try to insert at the same place into the table at
the same time.

Before Db2 12 for z/OS, customers can use the MEMBER CLUSTER and APPEND YES
attributes to force new data rows to be inserted at the end of the current partition, instead of
going through the traditional available space search algorithm to alleviate contention.
However, even when these attributes are used, high concurrent insert scenarios can still show
many page latch contentions.

To address this bottleneck during the search for available, Db2 12 introduces a new space
search algorithm called Insert Algorithm 2.

2.3.1 Insert Algorithm 2 overview

Db2 12 takes a significant step forward with the introduction of this new insert algorithm.
Insert Algorithm 2 streamlines the available space search operation to improve insert
throughput for concurrent threads.

Because the use of the MEMBER CLUSTER attribute indicates that rows do not need to be
inserted in clustering order, all UTS table spaces with the MEMBER CLUSTER attribute are
considered as qualified candidates to use the new insert algorithm.
50 IBM Db2 12 for z/OS Performance Topics

APPEND YES is not required to enable the new insert algorithm. The “old” space search
algorithm can still be used and is now called Insert Algorithm 1. The new insert algorithm is
called Insert Algorithm 2.

The use of the new insert algorithm can be controlled by using one of the following methods:

� You can indicate which insert algorithm to use by specifying the DDL INSERT
ALGORITHM x keyword on the CREATE or ALTER TABLESPACE statement, where x can
be set to on of the following values:

– 0

This default value indicates that the insert algorithm for tables in this table space is
determined by the DEFAULT_INSERT_ALGORITHM subsystem parameter. It cannot
be specified on the ALTER TABLESPACE statement.

– 1

The insert algorithm for tables in this table space is the basic insert algorithm. This
algorithm is used for all objects before Db2 12.

– 2

The insert algorithm for tables in this table space is the new insert algorithm when the
MEMBER CLUSTER option is also specified.

� A new system parameter DEFAULT_INSERT_ALGORITHM can also be specified. It
indicates which insert algorithm to use as the default for qualifying table spaces that use
the INSERT ALGORITHM 0 attribute. When the DSNZPARM value is set to 1, Insert
Algorithm 1 is used; when it is set to 2, Insert Algorithm 2 is used. The default value for
DEFAULT_INSERT_ALGORITHM is 2.

Note: Db2 systems must be at function level V12R1M500 or greater before the new insert
algorithm can be used.
Chapter 2. Scalability enhancements and subsystem performance 51

2.3.2 How Insert Algorithm 2 works

In this section, we described what is occurring inside the Db2 engine to make this process
work. A high-level overview is shown in Figure 2-17.

Figure 2-17 Insert Algorithm 2 overview

The system that is shown in Figure 2-17 is a data sharing group with two members. Each
member has two concurrent users, all of which are inserting rows into the same table space
or partition (shown in green in Figure 2-17).

When a page set is physically opened and Insert Algorithm 2 is used, an in-memory structure
(called an insert pipe) is created. An insert-pipe contains a list of pages that are available for
this member to use for insert processing for this page set partition. As each member opens a
page set separately, a pipe is created on each member that uses the page set partition. A
system agent is created to fill up the pipe asynchronously, making sure that pages are always
available (newly formatted pages or existing pages with sufficient free space) for the threads
to use for inserting rows.

Each member “reserves” a number of pages in the table space or partition, and those pages
are put into the pipe. This process is similar to the MEMBER CLUSTER concept. These
reserved pages per member are the rectangles that are marked with “Reserved for Member
x” in Figure 2-17.

When a user wants to insert a row into the table, they “check out” a page from the pipe. Then,
the user is the sole user of that page. The user holds on to the page until the page is full or a
commit point is reached. Then, the space map information is updated and the page is put
back on the pipe and becomes available for other users to check out.

For example, when Agent 1 is inserting data into the page that they checked out and Agent 2
wants to insert a row, Agent 2 checks out another page from the pipe to use.
52 IBM Db2 12 for z/OS Performance Topics

With the pipe being filled up asynchronously all the time, pages should always be available for
the threads to use and they do not have to search for space to put their rows. They check out
a page with enough available space from the pipe and place it back on the pipe when they
commit. Also, no interference occurs between the pages that are used by different members
of the data sharing group. Each member uses its own set of pages (belonging to the same
space map page) to fill up their pipe.

Insert Algorithm 2 is used only to speed up the insert of the data rows. If the table has one or
more indexes defined, inserting the index keys is not affected by this enhancement.

2.3.3 Performance measurements

If space search in a table space is the major bottleneck during insert operations, insert
throughput is significantly improved after the new Insert Algorithm 2 in Db2 12 is adopted. In
addition to a throughput increase, the CPU consumption and the number of log records that is
produced can also be reduced with the use of Insert Algorithm 2. During our tests, no extra
space growth was observed.

In addition to the performance measurements that are described in this section, a large
high-performance insert benchmark was performed, which succeeded in inserting more than
10 million inserts per second into a single table by using Insert Algorithm 2. For more
information about these tests, see 5.1, “High volume INSERT benchmark ” on page 156.

Insert with no index defined
The measurements were performed in a Db2 12 two-way data sharing environment and the
objects being inserted into are group buffer pool-dependent. The table is defined as PBR UTS
with the LOCKSIZE PAGE, APPEND YES, and MEMBER CLUSTER attributes. The workload
consists of 100 parallel insert threads, each inserting 100 rows per commit by using multi-row
insert from JDBC clients. These threads run concurrently on both data sharing members.

Although it is not a typical use case, no index was created for the test table to better
demonstrate the full potential of the Insert Algorithm 2. The first measurement was run by
using Insert Algorithm 1; the second measurement was run with Insert Algorithm 2.

As shown in Figure 2-18 on page 54, the insert rate increased from around 950,000 per
second to over 1,130,000 per second by using Insert Algorithm 2, which indicates an 8%
improvement. The class 2 elapsed time per transaction reduced dramatically to 0.004
seconds per transaction, comparing against the baseline’s 0.009 seconds per transaction or
about 54%. Also, the Db2 class 2 CPU time per transaction decreased by approximately 15%.
Chapter 2. Scalability enhancements and subsystem performance 53

Figure 2-18 PBR MC APPEND YES insert comparison

It is important to note that there is more than 2x Db2 elapsed time improvement while the total
throughput improvement is relatively small. Our analysis showed the application throughput
increase was limited due to the poor Java application and network performance. This issue
exists with both Insert Algorithm 1 and 2 but it is not exposed in the Insert Algorithm 1
scenario, as the main bottleneck is the Db2 elapsed time in that case - mainly long page latch
suspension time. With Insert Algorithm 2, the page latch wait time is reduced significantly, and
the previously hidden bottleneck now surfaces.

On the same note, if there are multiple indexes defined and the bottleneck is mostly index
updates, then the improvements from Insert Algorithm 2 can be reduced. This can also be
the case when the inserts are done by a single, or a few threads and there is no contention
against the table space. In that case the expected improvement from Insert Algorithm 2 is
none or small.

Insert with indexes defined
To evaluate how Insert Algorithm 2 performs when a table features indexes, another set of
measurements was run with group buffer pool-dependent PBR journal tables that were
defined with MEMBER CLUSTER, LOCKSIZE ROW, and COMPRESS YES in a two-way
data sharing environment.

Three tables were used in this test with one index, two indexes, and three indexes. The tables
included a clustering index, so all the rows are inserted in the order of their sequential keys.
The workload consisted of 100 insert threads, each inserting 100 rows per commit by using
multi-row insert. These threads ran concurrently on the two data sharing members. The first
measurement was run with Db2 12 with Insert Algorithm 1 and the second with Db2 12 that
used Insert Algorithm 2.
54 IBM Db2 12 for z/OS Performance Topics

The difference in insert rate and CPU time per transaction (in seconds) between both
measurements is shown in Figure 2-19. The Db2 class 2 CPU time per transaction is similar
in both cases. The insert throughput increased by 26% from 325,000 per second in Db2 12
using Insert Algorithm 1 to over 410,000 per second in Db2 12 using Insert Algorithm 2.

Figure 2-19 PBR/RLL/sequential insert comparison

Random insert and delete
Insert Algorithm 2 tends to benefit sequential insert by eliminating page contention. The
results of a scenario that used random inserts mixed with delete transactions is shown in
Figure 2-20.

Figure 2-20 PBR/PLL random insert and delete comparison
Chapter 2. Scalability enhancements and subsystem performance 55

In this case, the bottleneck is not page contention. Adopting Insert Algorithm 2 in such a
scenario did not cause any performance difference. This measurement was run by using a
PBR table that was defined with PAGE LEVEL LOCKING and COMPRESS YES with one
index in a two-way data sharing environment.

The workload consists of 180 insert threads and 120 delete threads. These threads ran
concurrently on both data sharing members. The first measurement was run with Db2 12 that
used Insert Algorithm 1 and the second measurement used Insert Algorithm 2.

In this scenario, almost no difference was observed in the insert rate and CPU consumption
between both insert algorithms.

2.3.4 Insert Algorithm 2 usage considerations

How much benefit can be realized from the use of Insert Algorithm 2 varies depending on the
workload’s specific characteristics. Generally, workloads that are constrained by lock/latch
contentions on the space map pages and data pages are likely to benefit more from the new
insert algorithm.

Also, by solving the space search bottleneck when Insert Algorithm 2 is used, bottlenecks can
occur in other areas that are exposed by the faster inserts. It is possible for the throughput
bottleneck to shift to the following areas:

� Index leaf page latch contention.

� Log write I/O performance.

� Format write during data set extending.

� BP/GBP size is not large enough. With the increased throughput of the use of Insert
Algorithm 2, you might need to increase the size of the local or group buffer pool to use the
system to its full potential.

Index insert speed is also vital for insert transactions. When index inserts are slow, the benefit
the insert operations get from the new insert algorithm for the data pages can become less
evident.

Insert Algorithm 2 is disabled internally at the partition level if lock escalations or LOCK
TABLE statement being used. A new message DSNI055I is issued if Insert Algorithm 2
cannot be used for the partition. In this case, Db2 switches back to the old insert algorithm.
The DSNI055I message uses the following format:

DSNI055I INSERT ALGORITHM 2 HAS BEEN DISABLED FOR THIS PARTITION. DBID=dbid
PSID =psid PARTITION=partition-number REASON=reason-code LOCAL TIME OF
ERROR=local-timestamp REASON FOR ERROR=error-reason-code
TRACE=internal-trace-information

At the time of this writing, a stop and start of the table space partition is needed to allow Db2
to re-enable Insert Algorithm 2 for that partition after DSNI055I was issued for it.

To support Insert Algorithm 2, more real storage is required to store the pipe information. If
not enough real memory is available to back the extra storage that is needed, Insert Algorithm
2 is not be enabled. Customers who want to use this new feature must plan for the extra real
storage usage and might also need to adjust the local buffer pool and group buffer pool size
for the qualifying table space partitions and the Db2 members.

To monitor the use of Insert Algorithm 2, several enhancements were made to the Db2
instrumentation component. For more information, see “Insert Algorithm 2 IFCID changes” on
page 350 for more details.
56 IBM Db2 12 for z/OS Performance Topics

2.4 Logging enhancements

Although the larger than 4 GB active logs is the most visible enhancement in the Db2 logging
area in Db2 12, other enhancements also were made that can bring significant performance
benefits. These enhancements include latch class 19 removal and reduced forced log writes
in a data sharing environment when identity columns are used.

2.4.1 Greater than 4 GB active log support

Before Db2 12, active log data sets can be up to 4 GB. Customers with heavy insert, update,
and delete workloads observe frequent log switches, even when 4 GB active logs are used.
Because Db2 schedules a system checkpoint when it switches active logs, active log data set
switches can have a noticeable effect on transaction response time and throughput.

Also, many installations try to keep at least six hours of log data on active log data sets to
meet the recovery SLAs they signed with their users. With the current limitation of 93 active
log data set pairs that each have maximum size of 4 GB, the total amount of active log data
set storage can be insufficient to cover a six-hour period’s Db2 log data.

Db2 12 active log size enhancement
Db2 12 for z/OS greatly increases the size limit of active log data sets to 768 GB per active
log data set. The maximum number of active log data set pairs remains 93.

This functionality is available after function level V12R1M500 is activated.

As before, the following methods are available to add active log data sets. They also apply to
adding active log data sets that are greater than 4 GB:

� Use the Db2 change log inventory stand-alone utility, DSNJU003, with the NEWLOG
option to add a log data set to the BSDS when Db2 was stopped.

� Use the Db2 -SET LOG NEWLOG command.

Performance measurements
An OLTP workload with heavy insert, update, and delete activity was used to evaluate the
performance benefits of this enhancement. Two sets of performance measurements were
conducted. The first measurement was done by using 23 GB active log data sets and the
second measurement used 3.96 GB active log data sets, which served as a baseline.

Db2 system checkpoint frequency is set to CHKFREQ=10,000,000 in both measurements.
For the test with 23 GB active log data sets, a system checkpoint is triggered in period #3 and
#6. During those periods, the External Transactional Rate (ETR) drops, as shown in
Figure 2-21 on page 58.

During the 3.96 GB active log data set measurement, an active log full condition (indicated by
DSNJ002I message), occurs in period #3 and #6. However, the system experienced much
steeper ETR drops than during the 23 GB active log measurement. This result occurs
because the active log full conditions triggered system checkpoints. Together with the actual
log switching overhead, the transaction throughput took a greater hit than during the 23 GB
measurement in which only system checkpoints (driven by CHKFRFREQ) occurred.

The effect difference on the ETR between the two measurements shows that active log
switches cause a bigger disruption to transaction throughput than system checkpoints.
Chapter 2. Scalability enhancements and subsystem performance 57

Therefore, bigger active log data sets can improve Db2 performance by avoiding frequent
active log switches.

A minute-by-minute ETR distribution of both measurements is shown in Figure 2-21.

Figure 2-21 ETR throughput rate effect of different active log size

Note: Although CHKFRFREQ was set to 10,000,000 for the 3.96 GB measurement, the
active log full conditions occur before 10,000,000 records were created and no system
checkpoint based on the ZPARM value was triggered. In this case, the ZPARM value no
longer controls the checkpoint frequency and is instead driven by the small size of the
active log sets.
58 IBM Db2 12 for z/OS Performance Topics

Over the six-minute measurement period, the workload Internal Throughput Rate (ITR) and
the total Db2 CPU time difference between the two measurements were within measurement
noise level. However, the overall ETR was higher for the measurement that used 23 GB active
log data sets because the workload execution did not suffer from the “hiccups” that
accompany active log full and switch conditions. The performance data of the two
measurements is listed in Table 2-5.

Table 2-5 The 23 GB versus 3.95 GB measurements

This Db2 12 feature of allowing greater than 4 GB active log data sets allows users to have
more control over the Db2 checkpoint frequency by using the DSNZPARM settings. This
feature avoids frequent active log full and switch conditions dictating how often actual Db2
system checkpoints occur.

Usage considerations
The use of larger than 4 GB active log is allowed only when function level V12R1M500 is
activated. The new maximum size for a Db2 active log data set is 768 GB. The stand-alone
log preformat utility DSNJLOGF was enhanced to allow preformatting up to 768 GB.

When Db2 detects active log data sets that are greater than 4 GB logs before CURRENT
ACTIVATED LEVEL(V12R1M500), the Db2 log manager issues error message DSNJ158I. If
this condition is detected during Db2 restart, Db2 ends with an abend reason code of
00E80084. If this condition is detected when a -SET LOG command is issued, the command
fails.

After CURRENT ACTIVATED LEVEL(V12R1M500), a new message DSNJ159I that is similar
to DSNJ158I is issued when the maximum size of 768 GB is exceeded.

Measurement ID 3.96 GB Active log
measurement

23 GB Active log
measurement

Delta (32 GB versus
3.96 GB)

CPU 2964 (z13) 2964 (z13)

of General CPs 12 12

z/OS level z/OS 2.1 z/OS 2.1

Active log data set size 3.96 GB (5000 cyl) 23.75 GB (30000 cyl)

Workload

ETR (commits/second) 4917.140 5003.889 +1.76%

CPU (%) 60.64 62.03

ITR (commits/second) 8108.741 8066.885 -0.52%

CPU time (msec/commit)

Class 2 CPU 1.164 1.159

MSTR CPU 0.005 0.005

DBM1 CPU 0.013 0.012

IRLM 0.003 0.003

Total Db2 CPU 1.185 1.179 -0.51%
Chapter 2. Scalability enhancements and subsystem performance 59

Consider the following points regarding archive logs when the use of bigger active logs is
planned:

� The size of the archive log data set, which is a sequential data set, should match the size
of the active log data set.

� Adjust the archive DSNZPARMs DSN6ARVP PRIQTY and SECQTY properly. The
allocation unit is always CYLINDER, as the ALCUNIT SDSNZPARM is deprecated in Db2
12. These ZPARMs are online changeable.

� If the SMS data class has the OVERRIDE SPACE field set to Y, ensure that the primary
and secondary quantity that is specified in data class are correct.

� The use of SMS data class extended format (EF) for archive logs is recommended.

� Ensure that archiving can keep up with the logging volume that is produced on the active
log data sets.

2.4.2 Removing log write latch (LC19)

Before Db2 12, the log write latch is acquired when space is allocated in the log buffer to
block the log writer and any back-out readers from using the buffer. Because only one latch is
available for the entire log output buffer, heavy concurrent (logical) log write activity can cause
contention on the log latch to increase significantly. This result often makes LC19 contention
a performance bottleneck for update-intensive workloads, such as high concurrent insert
workloads, which produce large amounts of log records.

Db2 12 introduces an enhancement that removes LC19 contentions by eliminating the use of
the log write latch, which was previously required during the allocation and initialization of log
buffers. Db2 12 reduced the key information that is necessary to perform buffer initialization
and space allocation in the log buffer. It also uses a more efficient serialization mechanism
when changing to log buffer information.

Performance measurements
To evaluate this enhancement, an insert workload that used a partition-by-range (PBR) table
space with 200 partitions was used. The table space is defined with the MEMBER CLUSTER
attribute and uses page level locking. The table has a partitioned clustering index defined.

The test was done by using a two-way data sharing environment with active threads, each
sequentially inserting into different partitions of the table space from the two Db2 members.
This configuration ensures that latch contentions other than for LC19 are kept to a minimum.
By varying the number of concurrent threads from 2 to 180, different levels of insert rates and
LC19 contention intensities were achieved.

Log latch (LC19) contention results
The test results for the LC19 contention relief enhancement are listed in Table 2-6 on
page 61. By using a Db2 12 code library without this enhancement and varying the number of
concurrent threads from 2 to 180, LC19 contention rate grew from a small number (0.15) of
latch contentions per second, to a severe (113 K) contention rate. Running the same scenario
that uses a Db2 12 code library that included this enhancement, the LC19 contention rate
was almost always zero across all cases. This result demonstrates that the enhancement is
effective in eliminating LC19 contention.
60 IBM Db2 12 for z/OS Performance Topics

Table 2-6 Log latch contention LC19 for different levels of concurrent threads

CPU time improvement
Because of the LC19 contention elimination, a reduction in Db2 Class 2 CPU time was also
observed. As listed in Table 2-7, this enhancement significantly improves the Class 2 CPU
time of the test application by up to 41%. The more severe the LC19 contention was during
the run without the enhancement, the more CPU improvement is observed in the matching
post-enhancement test.

Table 2-7 Db2 Class 2 CPU time improvement for different levels of concurrent threads

Throughput
The insert throughput rate results of the tests did not show significant differences between the
pre- and post-enhancement measurements. After the log write latch contention is removed,
the top class 3 suspension time shifted to “service task switch/update commit” time during the
post-enhancement test runs. This result is because of the log write I/O bottleneck becoming
more severe. To relieve the new bottleneck, active log data sets must be relocated to faster
storage (disk) devices.

2.4.3 Forced log write removal for identity columns

When an identity column reaches its CACHE value (or when a new value is generated when
NOCACHE is used) in a data sharing environment, the log buffers are written (forced out) to
the active log data sets. This process causes a performance overhead that is non-existent in
a non-data sharing environment.

Number of
concurrent threads

LC19 contention rate per second

Db2 12 pre-enhancement
code library

Db2 12 post-enhancement
code library

2 0.15 0.00

10 285.61 0.11

100 54487.86 0.01

180 113000 0.01

Number of
concurrent threads

Db2 12
pre-enhancement
code library

Db2 12
post-enhancement
code library

% Delta

2 421.66 423.19 +0.36

10 68.00 59.40 -12.65

100 12.89 9.17 -28.80

180 10.67 6.22 -41.72

Note: The class 2 CPU time increased by 0.36% for the post-enhancement test when only
two concurrent threads were used. However, this small increase is well within the
measurement noise level and should not be deemed as a proof of a performance
degradation.
Chapter 2. Scalability enhancements and subsystem performance 61

The objective of this enhancement is to maintain data integrity for identity columns in a data
sharing environment by using a new Db2 internal interface that avoids the log force writes.
The enhancement also applies to the values that are generated for XML DOCID columns.

Performance measurements
To test the performance benefits of this enhancement, we used 10 batch jobs, five jobs
running on each of the two-way data sharing members, and all jobs inserting rows into a table
with an identity column in parallel. The jobs commit after each insert. The identity column is
defined with CACHE 20 and NO ORDER.

Before this enhancement, a (synchronous) log write I/O event occurs when 20 identity column
values are used and a new set of cached values is obtained. With this enhancement, the log
write I/Os are eliminated when the CACHE value is reached, which results in a decrease in
class 3 log write I/O suspension time. In addition, latch class 11 contention is also significantly
reduced, which results in a notable reduction in Db2 latch suspension time. The
measurement results are listed in Table 2-8.

Table 2-8 Performance results for forced log write elimination for identity columns

Before enhancement With this enhancement Comments

Db2
member

MEM_1 MEM_2 MEM_1 MEM_2

Class 3 suspension (average time, average event)

Db2 latch 16.650 sec.
with 16,252
events

7.930 sec. with
35,695 events

13.482 sec.
with 2,142
events

5.737 sec.
with 26,208
events

Reduced due to
less LC11
contention

Log write I/O 2.126 sec.
with 5,649
events

1.467 sec. with
5,599

0.403 sec.
with 626
events

0.253 sec.
with 618
events

Reduced by this
enhancement

Log activity

Log records
created

3200.0K 3116.3K 3201.8K 3115.6K No change

Log CI
created

79358.00 75769.00 79295.00 75718.00 No change

Log write I/O
requests

520.3K 785.8K 442.0K 739.3K Reduced by this
enhancement

Log CI
written

528.5K 791.3K 450.3K 744.5K Reduced by this
enhancement

Latch contention

Latch
class 11
contention

246.55/sec. 257.59/sec. 0.07/sec. 144.10/sec. Reduced by this
enhancement

CPU usage

Class 2 CPU
time (sec.)

26.130 40.126 25.251 37.263

MSTR (sec.) 13.090 19.709 12.512 20.599

DBM1 (sec.) 3.301 1.060 2.556 1.157
62 IBM Db2 12 for z/OS Performance Topics

Usage considerations
The removal of log force write for identity columns and XML DOCID columns in a Db2 12 data
sharing environment is automatically enabled when Db2 is at function level V12R1M100 and
greater. No special configuration is required to use this enhancement.

2.5 Range-partitioned table spaces with relative page
numbering

Before Db2 12, the maximum partition size is limited to 256 GB. In cases when the partition
size is 256 GB, a maximum of 64 partitions is allowable for table spaces that use a 4 K page
size. Although the maximum number of partitions is 4096, the actual maximum number of
partitions a table can have is determined by its partition size and its page size. This limitation
exists because pages are numbered sequentially at the table space level and the partition
number of a data page is implicitly imbedded in the first n bits (where n depends on the
number of partitions) of its page number.

In Db2 12, a new type of partition-by-range universal table space is introduced. This new type
of range-partitioned table space uses relative page numbering where the page numbers start
from zero at the partition level. Pages are no longer absolute page numbers in the table
space. This new type of table space is called Partition-By-Range - Relative Page Numbering
(PBR RPN).

PBR RPN table spaces can have a maximum partition size of 1 TB. The maximum number of
partitions continues to be up to 4096 partitions, which means the maximum size of a PBR
RPN table space is 4 Petabytes (4 PB) with 4096 partitions. The number of partitions is no
longer dependent on the partition size. PBR RPN table spaces also allow certain attributes,
such as DSSIZE, to be specified at the partition level instead of the table space level.

To enable this partition-independent page numbering, the size of a Record ID (RID) is
expanded to 7 bytes. Internally, Db2 always uses the new 7-byte RIDs. As a result, longer log
records are created in Db2 12, regardless of whether PBR RPN table spaces are used. Log
records that are related to table spaces and indexes increase by 20 bytes.

Range-partitioned table spaces with relative page numbering can be created in Db2 12 at
function level V12R1M500 and beyond only. A new system parameter called
PAGESET_PAGENUM is also introduced by this enhancement. It controls whether page
numbering of newly created PBR table spaces is relative or absolute by default. The default
setting for the parameter is to use absolute page numbering (this setting is to have the same
behavior as in previous Db2 versions).

IRLM (sec.) 6.058 8.547 5.398 8.605

Total CPU
time (sec.)

48.579 69.442 45.717 67.624 About 4%
improvement with
this enhancement

Total CPU
time (sec.)

48.579 69.442 45.717 67.624 About 4%
improvement with
this enhancement

Note: This enhancement does not apply to sequences.
Chapter 2. Scalability enhancements and subsystem performance 63

The PAGESET_PAGENUM parameter can be overridden on the CREATE TABLESPACE
statement by specifying PAGENUM RELATIVE or ABSOLUTE for relative or absolute page
numbering. An ALTER TABLESPACE with PAGENUM RELATIVE can be used to convert
table spaces from absolute to relative page numbering. However, conversion from relative to
absolute page numbering is not supported.

2.5.1 Performance measurements

Several performance measurements were conducted that used workloads with regular
SELECT/INSERT/UPDATE/DELETE operations and a Db2 utilities workload. All
measurements were run on PBR tables with absolute and relative page numbering to
compare the CPU and elapsed time of the different types of PBR table spaces.

Batch performance results: Single and concurrent threads
To evaluate the performance effect of the use of partition-by-range table spaces with relative
page numbering, a single threaded batch program with random SELECT and sequential
INSERT, UPDATE, and DELETE statements against a table with one index was run. One test
used partition-by-range table spaces that featured absolute page numbering. The other test
used partition-by-range table spaces that featured relative page numbering. The two tests did
not show any significant performance differences.

A batch program that used a table space scan was also run against the two types of table
spaces. The measurement results showed a 1% Db2 class 2 CPU time increase for the
range-partitioned table space that used relative page numbering.

Lastly, an INSERT workload was run against the two types of table space to further validate
the performance of PBR RPN objects. The workload was run by using 100 threads in a
two-way data sharing environment, inserting into objects defined with MEMBER CLUSTER
and APPEND YES attributes, and by using row level locking. No significant performance
differences were observed comparing the CPU and elapsed time between the tests done that
used a PBR table space defined with absolute page numbering versus a PBR RPN table
space.

Utility performance measurements
Utility performance that used range-partitioned table spaces with relative page numbering
and range-partitioned table spaces with absolute page numbering is equivalent for most utility
performance tests that were run in a Db2 for z/OS lab environment (for more information, see
Table 2-9 on page 65). The only exception was the online REORG that materializes the DDL
changes when converting from PBR to PBR RPN.

An online REORG is required after changing the PAGENUM option from ABSOLUTE to
RELATIVE to materialize the change to become a range-partitioned table with relative page
numbering. This REORG (which is also known as post-conversion REORG) is expected to
take longer than a regular REORG for the following reasons:

� The materializing REORG invokes inline statistics regardless of whether the STATISTICS
option is specified.

� The materializing REORG disables parallelism during the unload phase.

Note: Online REORG of multiple parts of a PBR RPN table space requires the use of
partition-level inline image copy data sets. Since Db2 11, you can take inline image copies
at the partition level during online REORG of a range of partitions. The use of
partition-level inline image copies is optional for all types of partitioned table spaces, but its
usage is mandatory for PBR RPN.
64 IBM Db2 12 for z/OS Performance Topics

Although it requires you to ensure that your COPYDDN TEMPLATEs use the &PA or &PART
keyword, the use of partition level inline copies can greatly help to speed up partition level
recovery that needs to restore data from an (inline) image copy created by online REORG.
Without the use of partition level inline image copies, the restore phase of RECOVER must
process a single image copy data set of all partitions combined, which was created during
online REORG, to find the pages for the partition being recovered.

The measurement results of running diverse types of Db2 utilities, comparing CPU and
elapsed time, when a UTS PBR table space is used with absolute page numbering versus a
UTS PBR tables space that uses relative page numbers are listed in Table 2-9.

Table 2-9 Utility performance comparing PBR versus PBR RPN

2.6 IMS-Db2 Connection pooling

Db2 for z/OS added connection pooling support for threads that use the IMS-Db2 attachment
facility. This feature is enabled by using the IMS SSM PROCLIB member by setting the
external subsystem module table (ESMT) parameter to DSNMIN20 instead of DSNMIN10.
This support is available in Db2 11 and Db2 12, and requires IMS 14 or above. For more
information about prerequisites, see 2.6.2, “Usage considerations” on page 67.

When this feature is enabled, Db2 maintains a separate connection pool for each
IMS-dependent region. Within each pool, there are multiple entries (maximum 50), each one
keyed from a Db2 plan name plus the active user name.

With this feature, if a user runs the same IMS transaction (plan or program) from the same
IMS region, Db2 can reuse the resources that are associated with a pooled thread entry from
a previous execution of that plan or program-user combination. This configuration avoids
going through the process of deallocating and allocating those resources, which is typically
associated with plan switches.

 Db2 12 z/OS 2.01, no zIIP engines PBR versus PBR-RPN

Table with 20 partitions 100M rows, 6 indexes CPU (CP) Delta % Elapsed Time Delta %

LOAD 100M 0% 2%

REORG 0% -2%

REORG STATSISTICS TABLE INDEX 0% 1%

REBUILD INDEX PI -1% 3%

REBUILD INDEX PI PART 1 1% 3%

REBUILD INDEX NPI -2% 2%

REBUILD INDEX NPI PART 1 0% 3%

REBUILD 6 INDEXES 0% 1%

COPY SHRLEVEL REFERENCE 0% 1%

ONLINE REORG 0% -1%

ONLINE REORG STATISTICS TABLE INDEX 0% 2%

ONLINE LOAD with 1 NPI 1% 1%
Chapter 2. Scalability enhancements and subsystem performance 65

This feature can also result in a significant Db2 CPU time reduction for cases where creating
and ending threads constitutes a large part of the IMS transaction cost.

The reduction in Db2 CPU usage can come at the cost of increased real storage usage. The
storage increase on the Db2 side for connection pools themselves is negligible. However, the
increase in storage usage for Db2 to keep plans and packages that are allocated and
reusable is application-dependent. Any increase in storage usage should be weighed against
the CPU savings that are achieved by using this feature. On the IMS side, a storage increase
of about 10 KB per pooled entry per IMS region is to be expected.

Db2 JCC Statement caching
For IMS applications that are using the IMS External Subsystem Attach Facility (ESAF)
connection pooling and JDBC calls (Db2 JCC using dynamic SQL), another option is
available to cache the Db2 JCC prepared statements, combined with the use of the Db2 local
dynamic statement cache. To enable this feature, the following set-up tasks must be
completed:

� Specify DSNMIN20 (instead of DSNMIN10) as external subsystem module table (ESMT)
parameter to enable ESAF connection pooling.

� Set the maxStatements property in com.ibm.db2.jcc.DB2BaseDataSource to a value
greater than 0. The default value of maxStatements is 0, which means the statement
pooling is disabled.

� Set the keepDynamic property in com.ibm.db2.jcc.DB2BaseDataSource to true.

� Set the Db2 system parameter CACHEDYN=YES to enable the global dynamic statement
cache. Size the DSC pool by using the EDMSTMTC system parameter.

� Bind the Db2 packages that are started with the KEEPDYNAMIC(YES) option.

� Specify DB2JCC_ESAF_THREAD_NOTIFICATION = YES in the IMS DFSJVMEV
(ENVIRON=) member. The ENVIRON parameter specifies the name of the IMS PROCLIB
data set member that contains the JVM environment settings.

The DB2JCC_ESAF_THREAD_NOTIFICATION parameter specifies whether you intend
to invoke JDBC calls from any application that runs in the IMS-dependent region. When
you set the parameter to YES, it also indicates that IMS notifies the Db2 JCC driver when
pooled threads are in use or purged from the pool. If the application is issuing JCC calls,
Db2 IMS attachment connection pooling is enabled, and maxStatements are used, you
must specify YES.

The DB2JCC_ESAF_THREAD_NOTIFICATION property tells IMS to notify Db2 JCC which
pool thread or connection token is in use. This setting allows JCC to set context to the proper
connection and to find any previously cached statements (triggered by setting the
keepDynamic and maxStatements properties).

The DB2JCC_ESAF_THREAD_NOTIFICATION property also allows JCC to clean up
connections or statements that were purged from the ESAF Db2 thread pool and is required
to keep things in sync.
66 IBM Db2 12 for z/OS Performance Topics

2.6.1 Performance measurements

Several measurements were conducted to evaluate the performance benefit of enabling IMS
thread pooling. A one-way data sharing group was set up for this purpose to run the classic
IRWW workload, which uses the IMS-Db2 local attachment and static SQL. The following
sets of measurements were done:

� A workload run without enabling IMS-Db2 connection pooling
� A workload run after enabling IMS-Db2 connection pooling

The key data points from these measurements are listed in Table 2-10.

Table 2-10 IMS thread pooling measurement results

Table 2-10 shows a significant reduction in overall Db2 CPU time per transaction for this
workload when the IMS-Db2 thread pooling feature is used. Most of the CPU reduction
comes from the elimination of the overhead that is associated thread deallocation and
allocation activities that each new IMS transaction must go through without the pooling
feature.

The Db2 Class 1 elapsed time shows a significant increase comparing the thread pooling
enabled measurement to the baseline. This result is an artifact of how accounting records are
cut. Because accounting records are always cut at thread termination or when a thread is
reused, the class 1 timer does not stop incrementing for the thread until it gets reused when a
thread is pooled and waiting to be reused. Depending on the application and overall workload
in the system, there can be longer periods between Db2 thread reuses and longer class 1
elapsed time might be reported as a result.

At the time of this writing, the measurements of ESAF connection pooling combined with Db2
JCC Statement caching are being conducted, but the expectations are that this configuration
brings more performance improvements.

2.6.2 Usage considerations

This feature is available in Db2 12 at function level V12R1M100. The complete functionality is
available only when the PTFs for Db2 12 APARs PI74192 and PI74193 are also installed.

The functionality also is retrofitted to Db2 11 by using APARs PI61982 and PI61983. It is
available with IMS 14 with APAR PI60400 that is installed or a later IMS release.

Note: all times are in
seconds

Baseline
(No IMS Thread
Pooling)
 (A)

IMS Thread Pooling
Enabled
(B)

Delta
(B-A)/A

Class 2 CPU/Commit 0.000292 0.000296 1.4%

MSTR CPU/Commit 0.000062 0.000024 -61.3%

DBM1 CPU/Commit 0.000026 0.000024 -7.7%

IRLM CPU/Commit 0.000000 0.000000 0.0%

Total Db2 CPU/Commit 0.000380 0.000344 -9.5%

Class 1 Elapsed/Commit 0.009355 0.228806 2345.8%
Chapter 2. Scalability enhancements and subsystem performance 67

When you plan to use JCC statement caching, be sure to be at JCC 3.69.66 APAR(PI59538)
or JCC 4.19.66 APAR(PI59547) level or higher. You enable this feature by using the
subsystem member (SSM) in the IMS PROCLIB by specifying DSNMIN20 as the external
subsystem module table (ESMT) parameter instead of DSNMIN10.

This support is valid for IMS applications that are running in IMS Message Processing
Regions (MPP) regions.

As each connection in the pool is a thread into Db2, you might have to adjust the CTHREAD
DSNZPARM parameter.

The connection pool is per IMS dependent region. To reuse a connection (thread) from the
pool, the Db2 plan name and the active user name must match. If the names do not match,
Db2 allocates a new entry in the connection pool (and goes through normal create thread
processing), or remove an (LRU) entry and reinitialize it for the new thread.

By limiting the number of planname-signon_id combinations that can run in a dependent
region, you can maximize the amount of thread reuse, as each time a new transaction comes
in, an entry(thread) can be reused.

For a better statement pooling experience, set maxStatements to the maximum number of
unique SQL statements that are run through the prepared statement from the JDBC
applications under IMS MPP region, if the maximum number of unique SQL statements is a
reasonable number. The internal statement cache requires extra memory. If memory
becomes constrained, you might have to increase the JVM size or reduce the value of
maxStatements.

2.7 Db2 prefetch-related enhancements

OLTP transactions and longer running queries rely heavily on Db2 prefetch engines being
available when needed. It is also important that prefetch activity is triggered only when it is
beneficial to use a prefetch engine to achieve good performance. Db2 12 increases the
number of prefetch engines and enhances the dynamic prefetch algorithm to trigger prefetch
I/O more intelligently.

2.7.1 Increased numbers of Db2 prefetch engines

Db2 uses prefetch engines to reduce I/O wait time by triggering disk I/O ahead of applications
that are requesting these data pages. Prefetch reads are done by system tasks called
prefetch engines. They run in the DBM1 address space and normally read multiple pages in a
single I/O operation.

Starting in Db2 10, Db2 expanded the use of prefetch engines. For example, when the index
I/O parallelism feature in Db2 10 is used, Db2 uses a prefetch engine to bring a single index
page into the buffer pool during an insert operation. Also, a disorganized index might trigger
list prefetch that requires a prefetch engine to perform the list prefetch I/O operation to avoid
multiple synchronous I/Os.

Db2 prefetch engines can also be heavily used during query processing when Db2 CPU
parallelism is used, as each parallel task can be driving prefetch operations.
68 IBM Db2 12 for z/OS Performance Topics

This increased usage of prefetch engines brings elapsed time reduction in I/O operations,
given that the prefetch requests can complete quickly. But, as demand for prefetch engines
increases, so does the possibly of reaching the maximum number of prefetch engines that
can be used at any one time.

When a prefetch request is received while all prefetch engines are busy processing other
tasks, the new request is processed as a synchronous I/O until a prefetch engine becomes
available. This conversion might affect the elapsed time of applications and eliminate the
expected benefit of scheduling the prefetch I/Os.

To reduce such an effect, Db2 12 increases the maximum number of prefetch engines from
600 to 900 per subsystem. With 900 engines and the optimization to avoid scheduling
unnecessarily dynamic prefetch requests as described in 2.7.2, “Avoiding unnecessary
dynamic prefetch scheduling ” on page 69, you can expect a reduction in the number of times
you see a nonzero value for PREF.DISABLED-NO READ ENG (field QBSTREE) in the Db2
statistics record IFCID 2 in Db2 12. Therefore, its effect on application elapsed time can be
avoided.

2.7.2 Avoiding unnecessary dynamic prefetch scheduling

Db2 can use the following types of prefetch requests when it is reading in multiple data pages
in a single I/O operation:

� List prefetch

This type is used to prefetch data pages based on a list of qualifying record identifiers
(RIDs) accumulated from one or more indexes. These RIDs might be sorted before
accessing the data. List prefetch is typically used for non-sequential or sparse data
access. A list prefetch request is scheduled even if all the requested data pages are in the
buffer pool. List prefetch can also be automatically used to prefetch disorganized index
leaf pages if an index scan results in synchronous I/Os.

� Sequential prefetch

This type is used for table scans. The prefetch quantity is determined based on the size of
the buffer pool that is used for the object being prefetched. Sequential prefetch checks for
buffer pool page residency before scheduling the prefetch and avoids the request if all the
pages are in the buffer pool.

� Dynamic prefetch

Unlike list prefetch and sequential prefetch, dynamic prefetch can be triggered
automatically at execution time based on Db2’s sequential detection algorithm. If pages
are being accessed sequentially, Db2 can start dynamic prefetch as appropriate and
continue monitoring the data access pattern, which enables and disables dynamic
prefetch based on the sequential nature of the data access pattern.

Before Db2 12, dynamic prefetch scheduling had no awareness of whether the pages being
prefetched were in the buffer pool. This lack of awareness often resulted in scheduling a
prefetch engine to bring in several pages, only to determine that all pages were in the buffer
pool. To verify how often all the pages were already in the buffer pool and scheduling the
prefetch engine could have been avoided, you can check your Db2 statistics report. If
DYNAMIC PREFETCH REQUESTED (field QBSTDPF) is much larger than DYNAMIC
PREFETCH READS (field QBSTDIO), which indicates that Db2 triggered many prefetch
requests but they resulted in few actual I/O operations, you are likely to benefit from this
enhancement.
Chapter 2. Scalability enhancements and subsystem performance 69

In addition to the use of extra CPU, the unneeded prefetch scheduling often led to
performance issues because of contention that is related to serialization mechanisms when
hot pages were concurrently accessed by several threads at the same time. Another side
effect of this is that because only 600 prefetch engines per subsystem were available in Db2
11, and 900 in Db2 12, scheduling these (unneeded) prefetch engines can cause Db2
systems to frequently run out of prefetch engines.

This performance bottleneck was greatly reduced in Db2 12 with the enhancement to
dynamic prefetch that avoids prefetch scheduling when the pages are determined to be in the
buffer pool. Db2 12 dynamically tracks whether dynamic prefetch requests for an object result
in an actual prefetch I/O. If no pages are read in from disk, Db2 stops scheduling dynamic
prefetch for the object by the thread. When Db2 detects that dynamic prefetch scheduling is
turned off but pages are read in from disk (synchronously), dynamic prefetch scheduling is
reenabled.

Avoiding dynamic prefetch scheduling for resident buffer pool pages results in an increased
maximum transaction throughput because of reduced CPU usage in the DBM1 address
space, reduced contention for dynamic prefetch engines, and reduced contention for buffer
pool exclusive latches (latch class 14 and 24) that are used for serialization inside the buffer
pool.

The PGSTEAL(NONE) buffer pool option was introduced in Db2 10 and further enhanced in
Db2 12. This option allows for “in memory” database objects to be loaded into the buffer pool.
This option avoids all prefetch activity in such buffer pools, and in Db2 12, most getpage
overhead for objects can be 100% pinned in memory. PGSTEAL(NONE) is a great solution
for performance-critical objects if you can determine which objects are good candidates for an
in-memory buffer pool.

Compared to PGSTEAL(NONE), dynamic prefetch scheduling avoidance requires no user
tuning skills or expert knowledge of data access patterns. It also does not require an object to
be contained in memory entirely to take advantage of its performance benefits.

This feature is automatically enabled without special configurations with Db2 12 function level
V12R1M100 and beyond.

Performance results for dynamic prefetch scheduling avoidance
To evaluate this enhancement, several measurements were performed by using internal IBM
workloads. The Crystal Reports workload is a complex OLTP workload. It showed 80%
reduction in the number of dynamic prefetch requests, a 90% reduction in the number of latch
class 24 contentions, and a 60% reduction in LC14 contention (LC14 and LC24 are Buffer
Manager latches). Culmultaively this resulted in a 5% reduction in total CPU time.

The IBM brokerage workload was also used to evaluate the performance benefits of this
enhancement. In Db2 11, the workload issued approximately five dynamic prefetch requests
per commit, which resulted in only 0.07 page reads per commit. The difference between five
and 0.07 indicates that most of the prefetch requests are scheduled for buffer pool resident
pages and are unnecessary.

Note: In some cases, it is possible to see a slight increase in the number of synchronous
reads for certain dynamic prefetch access patterns in Db2 12. This increase is a result of
dynamic prefetch scheduling being automatically enabled and disabled based on buffer
pool page residency.
70 IBM Db2 12 for z/OS Performance Topics

In Db2 12, the number of dynamic prefetch requests per commit was reduced to 0.8, which is
approximately 84% fewer dynamic prefetch requests than Db2 11. Also, in this workload, the
reduced number of dynamic prefetch requests resulted in a large reduction in LC24 buffer
pool latch contentions (94%). The latch contentions of other buffer pool-related latches also
notably decreased. The overall effect is a 2% improvement in Db2 Class 2 CPU time and a
37% reduction in DBM1 CPU consumption compared to Db2 11.

2.8 Performance enhancements for short transactions

The next set of enhancements target environments with high volume and short running
transactions. In such environments, relatively simple operations can make up a considerable
portion of the elapsed and CPU time of such short running transactions. The enhancements
that are described in this section target specific areas and achieve performance
improvements mostly by keeping information around longer or caching information.

2.8.1 DGTT enhancements

A Declared Global Temporary Table (DGTT) is used to store records temporarily. They are
commonly used to sort or query intermediate result tables that contain many rows but only a
small subset of those rows are to be stored permanently.

Db2 11 provided a NOT LOGGED option for DGTTs to improve the performance of populating
or updating DGTTs. Db2 11 also provided a technique to avoid the prepare for repeated SQL
executions to further improve DGTT processing.

However, the cost of creating a DGTT remains a concern for short running transactions in
Db2 11. If an application creates a DGTT and uses it only lightly by inserting a few records
before dropping the DGTT, the relative cost of declaring the temporary table can be notably
expensive compared to the total cost of the transaction. The cost of declaring DGTTs can be
high because of the dynamic nature of the tables.

Unlike regular tables, there is no permanent information stored in the Db2 catalog or directory
for DGTTs. During the DGTT declare process, Db2 must “clone” part of the Db2 catalog
information within the DGTT work file table space, which are sometimes referred to as virtual
catalog tables.

Db2 12 provides an in-memory copy of the catalog information that is required to declare a
global temporary table. Instead of looking up Db2 catalog or directory information whenever a
DGTT is created, this in-memory catalog copy is used. The information is saved in memory
when the first DGTT is created after Db2 startup and is shared among all threads in the Db2
subsystem thereafter. Furthermore, another optimization is implemented to reduce the
number of getpage operations against the work file table space during the declare DGTT
process.

This enhancement is available in Db2 V12R1M100 and beyond.
Chapter 2. Scalability enhancements and subsystem performance 71

Performance measurement
Several performance measurements were run to assess the benefits of Db2 12’s
enhancements for DGTT processing. During the measurement, simple Db2 transactions were
concurrently run. They all ran a DECLARE GLOBAL TEMPORARY TABLE statement,
inserted 10 - 20 rows into the DGTT, selected a few rows, and then, committed by using the
ON COMMIT DROP TABLE option. The data manipulations that was performed against the
DGTT in these transactions are simple to best demonstrate the benefit of the enhancement.

As shown in Figure 2-22, a 32% Db2 CPU time saving and 26% elapsed time reduction is
observed for these short running transactions when comparing Db2 12 against Db2 11.

Figure 2-22 Short running DGTT transactions

The CPU time saving that is shown in Figure 2-22 is the result of the reduction in the number
of getpages against the Db2 catalog and work file table spaces, as shown in Figure 2-23.

Figure 2-23 Number of getpages per buffer pool
72 IBM Db2 12 for z/OS Performance Topics

The transactions in this measurement are lightweight and are designed to demonstrate the
Db2 12 DGTT enhancements that are described in this section. If many inserts, fetches,
updates, or deletes are performed against the DGTT, the process of declaring the DGTT
becomes less significant and the overall benefit of this enhancement is less visible. Therefore,
the degree of the improvement is highly dependent on the complexity of DGTT process.

2.8.2 Claim and declaim performance improvements

Before Db2 12, all claims that were held by an agent are released (declaimed) at COMMIT
time, even for packages bound with the RELEASE (DEALLOCATE) option. This result does
not benefit the performance of applications that are bound with RELEASE (DEALLOCATE),
which typically have short-running SQL statements only that are run within a commit scope.
As a result, the CPU cost that is incurred from the frequent claiming and declaiming can take
up a significant portion of the total CPU time of such applications.

In Db2 12, Db2 skips most declaim activity at COMMIT time for packages that are bound with
RELEASE (DEALLOCATE). In this way, the CPU cost of declaiming at commit time is
avoided. This process also avoids the CPU cost of reacquiring the claims again after the
commit. However, it is not always possible for Db2 to avoid declaim processing.

Db2 releases the claim if another agent is waiting on the claimed object, as we still want to
allow utilities and other processes to “break-in” and perform their job. Declaims for writes are
also not skipped. In addition, claims on Db2 catalog or directory objects, LOBs, objects
touched by scrollable cursors, and claims against XML objects that use versioning are always
released at COMMIT time.

This declaim avoidance is effective in Db2 12 at function level V12R1M100 and beyond. It
does not require any special configuration or setup besides the use of the
RELEASE(DEALLOCATE) BIND option. This feature also works for dynamic SQL with
KEEPDYNAMIC(YES).
Chapter 2. Scalability enhancements and subsystem performance 73

Performance measurements
Performance measurements were conducted that used the Brokerage workload. The
packages are bound with RELEASE (DEALLOCATE) to demonstrate how many claims can
be skipped and how much CPU time reduction these claim skips can bring in Db2 12
compared to Db2 11.

As shown in Figure 2-24, the average Db2 class 2 CPU time reduction is close to 6% in the
Db2 12 measurement compared to the Db2 11 measurement.

Figure 2-24 Class 2 CPU reduction for the Brokerage workload run in Db2 12 versus run in Db2 11
74 IBM Db2 12 for z/OS Performance Topics

The number of claim requests is shown in Figure 2-25. As expected, the number of claim
requests per transaction dropped. During this measurement, a 25% reduction in the number
of claim requests was observed for the Db2 12 measurement compared to the Db2 11
measurement.

Figure 2-25 Claim requests reduction for the Brokerage workload run in Db2 12 versus run in Db2 11

2.8.3 SELECT INTO optimization

Db2 12 introduces a fast path mechanism for SELECT INTO SQL statements that reference
an equal predicate with a unique index in the WHERE clause. This kind of SELECT statement
always has a result set of one or zero rows. Such statements are categorized as singleton
selects with unique index access.

Db2 12 provides a shorter code path to perform matching key index scan for this type of
SELECT statement. By using this specialized code path, Db2 can avoid having to use the
general runtime environment and the overhead that is associated with its ability to handle all
variations of SELECT INTO statements.

All SELECT INTO statements with unique index access benefit from this optimization in Db2
12 at function level V12R1M100 and beyond. However, a REBIND is required to enable this
“fast path” for SELECT INTO statements. The use of APREUSE(ERROR) is sufficient to allow
Db2 to use the enhancement when applicable.
Chapter 2. Scalability enhancements and subsystem performance 75

Performance measurement
To demonstrate the benefit of this new fast path SELECT capability, a batch program was
used. It randomly selected rows by using SELECT INTO statements that have matching keys
in unique indexes for predicates in the WHERE clauses.

The measurement results showed up to 3.6% Db2 class 2 CPU time reduction when the
SELECT INTO optimization was used, compared to when the optimization was not used.

2.9 Db2 Storage Manager enhancements

In Db2 12, more components, such as EDM, LOB, and XML, take advantage of the Db2
Storage Manager facilities to manage the storage they use, instead of self-managing all the
pieces of the storage they need.

2.9.1 Scalability and performance improvement for EDM pools

EDM pools are allocated with the defined size based on several system parameter values
when Db2 is started. Before Db2 12, EDM pool management was performed in a way to use
the pools as efficiently as possible without exceeding the defined size. This process involves
frequent maintenance of storage usage chains for new EDM requests. As these EDM pool
areas grow larger, they present some scalability challenges. As Db2 latch contention (LC24)
becomes more notable, the cost to maintain these chains also grows, which causes EDM
performance to degrade.

In Db2 12, the storage management of the EDM dynamic statement cache area, DBD pool,
and skeleton pool is changed to avoid the frequent chain maintenance and remove the
scalability inhibitors when larger EDM pools are used.

The size of these EDM pool areas is defined by the following system parameters:

� EDMSTMTC: Size limit for the dynamic statement cache pool
� EDMDBDC: Size limit for the DBD cache pool
� EDM_SKELETON_POOL: Size limit for the skeleton cache pool (for SKCTs and SKPTs)

Performance measurements
To evaluate these changes, several performance tests were conducted. For each of the EDM
pool areas, specific measurements were performed.

Dynamic statement cache (DSC) pool
Two types of tests were run to evaluate the enhancement in Db2 12 related to the pool
management of the dynamic statement cache.

Performance results for user created test scenarios
A special workload was created to observe Db2 12 performance when populating the EDM
dynamic statement cache pool. The test scenario first primes the EDM statement cache pool
with a series of different dynamic statements, making sure that the pool is fully used, and
approximately 20% of the oldest dynamic statements were replaced.

Then, during the measurement period, the workload runs through the same dynamic
statement execution cycle, which always triggers free and get activity for EDM dynamic
statement pool storage. By using this scenario, the number of statements that were run were
counted and the performance data was captured.
76 IBM Db2 12 for z/OS Performance Topics

The workload was run with 10 concurrent threads. Multiple tests with EDMSTMTC set to
100 MB, 300 MB, 1000 MB, 2000 MB, and 3000 MB were run by using Db2 11 and Db2 12.

As shown in Figure 2-26, the use of a larger EDM statement cache significantly improves the
dynamic statement external throughput rate (statements run per second) during the Db2 12
tests when compared against Db2 11. The fact that the throughput during the Db2 12 tests
was constant (regardless of the EDMSTMTC value) proves that the enhancement performed
well. In comparison, the throughput kept dropping with bigger EDMSTMTC values after the
dynamic statement cache size was larger than 1000 M during the Db2 11 tests.

Figure 2-26 Effect of EDM dynamic statement cache pool size (limit) on throughput

Figure 2-27 shows that the latch class 24 (LC24) contention rate reduced significantly when
comparing Db2 12 tests against the Db2 11 tests. The larger the dynamic statement cache
pool size is, the bigger the actual reduction. Db2 12 almost eliminates the workload’s LC24
contention, no matter how large the value of EDMSTMTC is. In Db2 11, it becomes more
severe as the size of the statement cache pool increases.

Figure 2-27 Effect of EDM dynamic statement cache pool size (limit) on LC24
Chapter 2. Scalability enhancements and subsystem performance 77

Performance results for distributed IRWW dynamic SQL workload
Performance measurements that used the IBM distributed IRWW dynamic SQL workload
showed no CPU degradation after implementing this change in EDM storage management.
This result is expected as the workload does not use many distinct SQL statements. However,
a 2% increase in real storage usage was observed.

DBD cache pool
A special workload was created to evaluate Db2 12’s capabilities to populate and manage the
EDM DBD cache pool, comparing against Db2 11. The test first primes the EDM DBD pool
with a set of different database objects, making sure that the pool is filled and approximately
20% of the oldest database objects in the DBD cache were replaced. Then, the same
program is run again, referencing all the database objects in the same order, always
triggering freeing up and acquiring storage in the EDM DBD cache.

Performance measurement data was gathered during the second run of the program. The
tests were conducted several times by using EDMDBDC sizes of 10 MB, 50 MB, 100 MB, 500
MB, 1 GB, and 4 GB with Db2 11 and Db2 12 in a non-data sharing configuration.

The results showed that the workload’s Db2 class 2 CPU time and the throughput rate that
used Db2 12 are similar to Db2 11. CPU time and throughput were constant throughout the
tests, no matter how large the DBD cache pool size limit was set. The real storage usage in
Db2 12 increased up to 9% compared to Db2 11 real storage usage. The amount of the
storage increase depended on the DBD pool size limit. It can be attributed to the differences
in the way storage manager is managing the storage compared to EDM.

Skeleton cache pool
Also, for the EDM skeleton cache pool, a special workload was created to evaluate the
performance of Db2 12’s ability to populate and manage this EDM storage area. The
workload first primes the EDM skeleton pool with a series of different packages, making sure
that the EDM skeleton pool is fully used and approximately 20% of the packages were
replaced in the pool. Then, the workload is run again to cycle through all packages, triggering
freeing and obtaining storage in the EDM skeleton pool whenever a package is run.

Performance data was collected during the second run. The workload was run by using
different EDM_SKELETON_POOL size values, varying 10 MB - 4 GB by using Db2 11 and
Db2 12 in a non-data sharing environment in single-thread mode and running 50 concurrent
threads.

For the single thread tests, the Db2 CPU time and throughput in Db2 12 are equivalent to Db2
11.

Note: Approximately 10% more real storage usage was observed for the Db2 12 tests
compared with the corresponding Db2 11 tests. This result is triggered by the changes in
the way the DSC pool is managed, switching from the tightly packed storage size managed
by EDM, to the discrete size of storage blocks managed by Db2 storage manager.
78 IBM Db2 12 for z/OS Performance Topics

For the non-data sharing 50 concurrent threads tests, the following performance results were
observed:

� Regarding the Db2 class 2 CPU time, as the skeleton pool size (limit) increases, CPU time
performance in Db2 11 degrades significantly, while there was only a minor CPU time
increase during the Db2 12 tests (see Figure 2-28). Compared to Db2 11, the Db2 12 tests
showed up to 56% CPU time improvement when comparing against a run that used the
same EDM_SKELETON_POOL value.

Figure 2-28 Effect of varying skeleton pool size on CPU time performance
Chapter 2. Scalability enhancements and subsystem performance 79

� Regarding Db2 latch contention, the Db2 11 runs show severe latch contention (LC24)
when the skeleton pool size was bigger than 500 MB. During the Db2 12 tests, the EDM
latch contention (LC24) was close to non-existent for all different skeleton pool sizes, as
shown in Figure 2-29.

Figure 2-29 Effect of varying skeleton pool size on EDM latch contention

� A throughput improvement of up to 4% was observed in Db2 12.

� Db2 real storage usage in Db2 12 increased up to 6%.

In conclusion, Db2 12 significantly improves the scalability and performance for EDM pool
management. The performance in Db2 12 is independent from the cache pool size limit.
However, some increase in real storage usage is observed.

Because there is no performance change for a pool size up to 50 MB in Db2 12, and many
customers can benefit from a larger skeleton pool, the default size limit for the skeleton pool is
increased from 10 MB to 50 MB in Db2 12.
80 IBM Db2 12 for z/OS Performance Topics

2.9.2 Storage pool management improvement for XML and LOBs

Before Db2 12, the LOBVALA, LOBVALS, XMLVALA, and XMLVALS DSNZPARM settings are
used to specify the maximum amount of storage that can be used by an agent (thread), or by
the entire subsystem for LOB and XML storage. In the past, it was difficult for customers to
determine the proper values for these DSNZPARM parameters.

Db2 12 changes the XML/LOB storage management design to take advantage of the
centralized and improved real and virtual storage management capabilities of the Db2
storage manager component. With the new design, the LOB and XML storage-related
DSNZPARM parameters listed were removed so customers no longer are concerned about
specifying appropriate values for their systems. Instead, the Db2 storage manager
component assumes responsibility for monitoring the use of the LOB/XML related storage
and controls the storage allocation, contraction, release of the required storage in a more
effective way. This enhancement is available at function level V12R1M100.

In Db2 12, the individual LOB/XML storage pools that are used by all threads are
consolidated into a single 4 GB storage pool, which is managed by the Db2 Storage Manager
component.

By consolidating into a single pool, performance is improved in the storage management
code path of the LOB/XML Manager component. In addition, commit processing manages
only storage in a single storage pool rather than having to consider contracting several
individual storage pools, which also improves efficiency.

2.10 Miscellaneous enhancements

The last two enhancements that are described in this section have no externals but can still
bring significant performance improvements.

2.10.1 zPLX 3.2.0 Performance enhancement

Most of the Db2 code is written in a programming language called PL/X.

Before Db2 12, Db2 modules were compiled with PL/X 2.4.2. zPLX 3.2.0 is the first release of
the zPLX compiler to support AMODE 64. The AMODE 64 version of compiler can use more
memory, which allows for successfully compiling larger modules.

It also eases certain limitations on optimizations that were sometimes encountered because
of memory constraints by the previous releases of the compiler. In addition, scalability of the
compiler is improved with its 64-bit back-end and new options are introduced in support of the
latest IBM z13 hardware.

By using several internal Db2 performance workloads, including OLTP, queries, batch, utility,
and some customer workloads, the top 221 performance-sensitive Db2 modules were
recompiled by using the zPLX 3.2.0 compiler to use its ability to produce more optimized code
for these Db2 load modules. The other Db2 modules continue to use PL/X 2.4.2.

When the zPLX 3.2.0 compiler became generally available, several internal benchmarks were
run. The performance improvement for the IBM Brokerage OLTP workload was 4.4% of the
total Db2 CPU time. The total CPU time includes Db2 class 2 CPU time, and MSTR, DBM1,
and IRLM CPU times. The SAP banking workload showed a 2.7% performance improvement.
The TPC-D query workload showed a 4.5% reduction in class 1 CPU time.
Chapter 2. Scalability enhancements and subsystem performance 81

2.10.2 Latch class 23 reduction

Although this enhancement is not related to the Db2 logging environment, it is described here
because it also reduces Db2 latch contention.

Latch Class 23 (LC23) is used by the Db2 Buffer Manager component to serialize a number
of different types of events. One is related to serializing access to information that is related to
(buffer manager) page latch contention. As a result, when high page latch contention is
observed in a certain workload, more high LC23 contention occurs, which aggravates the
situation.

During the Db2 12 development process, this code path was reexamined and the cases
where storing the extra page latch information was not necessary were eliminated. Therefore,
in addition to the efforts to reduce page latch contention (for example, by using the Db2 12
Insert Algorithm 2) even during scenarios that still show high page latch contention, the LC23
contention that often resulted from that effort was greatly reduced or eliminated.
82 IBM Db2 12 for z/OS Performance Topics

Chapter 3. Synergy with the IBM Z platform

As with previous Db2 versions, Db2 12 for z/OS takes advantage of the latest improvements
that are available on the IBM Z platform. Db2 12 increases its synergy with z Systems
hardware and software to provide better performance, stronger resilience, and better
functions for an overall improved value.

Db2 12 also adds more z Systems Integrated Information Processor (zIIP) eligibility, and can
use zEDC cards to enable LOB compression.

This chapter includes the following topics:

� 3.1, “Large object compression ” on page 84
� 3.2, “ISM that uses SMC-D” on page 93
� 3.3, “Simultaneous multithreading” on page 100
� 3.4, “Performance effect of the use of 2 GB frames” on page 107
� 3.5, “Buffer pool simulation ” on page 110
� 3.6, “Large group buffer pool usage ” on page 115
� 3.7, “Data set open/close performance ” on page 121
� 3.8, “zHyperWrite ” on page 122
� 3.9, “Active log data set striping ” on page 123
� 3.10, “Easy Tier directive data placement support by Db2 REORG utility” on page 129

3

© Copyright IBM Corp. 2017. All rights reserved. 83

3.1 Large object compression

In Db2 Version 3, data compression for data in table spaces was introduced and uses the
Lempel-Ziv algorithm with a dictionary. In Db2 Version 9, index compression capability was
added. Data in XML table spaces, introduced in V9, can also be compressed with the same
technique that is used by standard table space compression.

In Db2 12, large objects (LOBs) also can be compressed. Character LOB (CLOB), binary
LOB (BLOB), and double byte CLOB (DBCLOB) data types are supported for compression.

LOB data compression can also be enabled on all LOB table spaces that are associated with
the Db2 directory (SYSSPUXA and SYSSPUXB, which is associated with SPT01, and
SYSDBDXA, which is associated with DBD01). When the new COMPRESS_DIRLOB
DSNZPARM is set to YES (NO is the default), the LOB table spaces in the Db2 directory are
compressed the next time that they are reorganized.

LOB compression in Db2 12 is not dictionary-based, as with table space compression.
Instead, it uses the zEDC hardware card that has a different compression algorithm.

Good candidates for LOB compression are LOB columns that store data in formats, such as
.docx, .txt, XML, and HTML.

In Db2 12, you can use DSN1COMP to provide an estimation of the compression ratio. To run
DSN1COMP against the LOB table spaces that are not yet compressed, you must have a
machine with a zEDC express card installed.

3.1.1 LOB compression prerequisites

Before LOBs can be compressed, the following conditions must be met:

� The Db2 12 system must be operating at active function level V12R1M500 or above.
Otherwise, the COMPRESS YES attribute for a LOB table space in a DDL statement
cannot be specified.

� The base table space that is associated with the LOB table space must be a Universal
Table Space (UTS).

� The compression attribute of LOBs can also be inherited from their base tables. Consider
the following points:

– For an implicitly created LOB table space with a base table space that is a
partition-by-range universal table space, its compression attribute is inherited from the
associated partition of the base table.

– For a partition-by-growth (PBG) base table space, the compression attribute of the
LOB table space is inherited from its associated base partition when the partition is
created initially. For any other LOB table space that is added because of the growth
partition of PBG table space, its compression attribute is inherited from the previous
partition’s LOB table space.

� To enable the LOB compression feature, the system must have the IBM zEnterprise Data
Compression (zEDC) capability and the Peripheral Component Interconnect Express
(PCIe or PCI Express) hardware adapter that is called zEDC Express installed. The use of
zEDC requires that the following prerequisites are met:

– z/OS V2R1 (or higher) operating system.

– IBM zEnterprise EC12 (with GA2 level microcode) or IBM zEnterprise zBC12.
84 IBM Db2 12 for z/OS Performance Topics

– zEDC Express feature. This System z compression accelerator card can improve the
speed of data compression and is sharable across up to 15 partitions and up to eight
cards per CPC.

– zEDC Express software is enabled in an IFAPRDxx parmlib member.

For more information about the zEDC hardware card and its specifications, see Reduce
Storage Occupancy and Increase Operations Efficiency with IBM zEnterprise Data
Compression, SG24-8259.

For a Db2 data sharing environment, it is highly recommended to make the zEDC
hardware available to all LPARs of the data sharing group to prevent any performance
effect to the system. This suggestion also applies to the disaster recovery site. The zEDC
hardware is not validated when DDL CREATE ALTER TABLESPACE statements are run.

During DML operations, Db2 processes the LOB data that is based on the compression
attribute that is specified for the LOB table space. If the zEDC hardware is present in the
system, the data is treated as compressed if the LOB table space has the COMPRESS
YES attribute. If the zEDC card is not present, the data cannot be compressed and is
stored uncompressed, despite the LOB table space’s COMPRESS YES attribute.

In a data sharing environment, it is possible that not all the data sharing members include
a zEDC card installed. In that case, it is still possible for a member without a zEDC card to
retrieve the compressed data. The data is decompressed by using a software algorithm.
However, the use of software decompression severely affects the system performance
and is not a recommended setup.

� The LOB data must be bigger than its defined page size to be compressed. If the total
length of the LOB is less than the defined page size, the LOB data is not compressed
because a single LOB page cannot be used by multiple LOBs and it is not worthwhile to
compress a LOB smaller than a page. Therefore, regardless of the COMPRESS attribute
of the LOB table space, such LOBs are not compressed.

3.1.2 LOB compression considerations

The following considerations must be taken when LOB compression is implemented as
several areas can be affected:

� Possible overhead to compress the LOB during insert
� Decompression overhead when the data is selected
� Effect on the amount of DASD storage that is required

Lab tests show that compression ratios for certain CLOBs can range 50% - 96%, with an
increase in INSERT throughput of ~80% and a SELECT throughput increase of ~250% in
certain cases.

The following LOB compression considerations are described in this section:

� File formats suitable for LOB compression
� Compression ratios

File formats suitable for LOB compression
Certain file formats are not eligible for compression by using the zEDC card. When a file is
compressed in its original format, no benefit is gained from compressing it again before
inserting into a Db2 (LOB) table space.
Chapter 3. Synergy with the IBM Z platform 85

http://www.redbooks.ibm.com/abstracts/redp5144.html

The following file types are typically stored as binary LOBs and created such that they are
compressed:

� JPG
� PDF (parts can be compressed; other parts might not be compressed)
� PNG
� PPT
� XLSX (compressed XLS format)

Attempting to compress these types of file formats causes the zEDC hardware to ignore the
compression. Db2 and zEDC recognize that no benefit is gained in compressing these types
of files.

Compression ratios
During the evaluation of the LOB compression feature, several different file types were used.
The following compression ratios were observed:

� DOCX: Up to 73% pages were saved.

� JPG: 0% pages saved (as JPGs are already compressed).

� XML: Up to 96% pages saved (XML documents that are stored as LOBs, not XML
documents that use the XML data type).

� Db2 directory: Up to 83% pages saved.

Each of these file types were tested by using a configuration that includes 2 zEDC cards and
they all each use a separate LOB table space.

These compression ratios are only an indication of what might be achieved when these file
types are stored in a compressed LOB table space. The compression ratio varies greatly
depending on the contents of files that are stored.

3.1.3 Use of DSN1COMP to estimate LOB compression

DSN1COMP is a stand-alone utility that can be used to estimate space savings that can be
achieved with Db2 data compression for the evaluated table spaces and indexes.

With the introduction of LOB compression in Db2 12 that uses zEnterprise Data Compression
(zEDC) hardware, a new option, PARM=’LOB’, was added to the DSN1COMP utility to
estimate the compression space savings. This option also estimates the compression ratio for
LOB table spaces if they are to be compressed.

If the LOB table space is uncompressed, the utility makes a single pass through the LOB
table space and collects data up to the average LOB size (or 1 MB as the maximum size). If
zEDC hardware is present, the collected data is sent to the hardware card to be compressed
and statistics are returned for DSN1COMP to produce the report.

Note: Pages in a LOB table space cannot be shared between two LOBs (regardless of
whether they are compressed). For example, if two LOBs from the same LOB table space
are 4 KB each (even when the table space has an 8 KB page size), Db2 cannot store both
LOBs into the same page. They take up two separate (8 KB) pages. Considering this point,
when a LOB’s size is smaller than the LOB table space’s page size, Db2 does not
compress it because compressed or not, the LOB uses one page to be stored. For
example, a 7 KB LOB that uses a LOB table space with an 8 KB page size is not
compressed.
86 IBM Db2 12 for z/OS Performance Topics

If the LOB table space is compressed because it is defined with the COMPRESS YES option,
DSN1COMP collects statistics of the individual LOB metadata from the LOB map pages and
produces a report without collecting and compressing data by using the zEDC card again.

Db2 does not compress LOBs that are less than the current page size that is used for the
object. In addition, different types of files have different compression ratios. Therefore, it is
useful to estimate how much your LOBs can be compressed by checking the compression
ratio and data pages that are saved by using the DSN1COMP utility before compression on
those LOBs is implemented.

Db2 does not support compressing individual pieces of a linear data set. Also, because LOB
table spaces are linear page sets, compression applies to the entire (non-partitioned) LOB
table space. Therefore, all of the pieces (A001, A002, and so on) should be evaluated for
compression savings by using DSN1COMP. However, for DSN1COMP, it is sufficient to
specify only the A001 data set on the SYSUT1 DD-statement. Db2 finds the other pieces if
they exist.

A non-partitioned table space must contain all pieces when an image copy of the LOB table
space is used as input to DSN1COMP.

For a partitioned table space, the image copy can contain a single partition, a subset of
partitions, or all partitions.

A sample JCL statement that can be used to estimate space savings for a (currently
uncompressed) LOB table space that uses DSN1COMP is shown in Example 3-1. Excerpts
from the report that is produced also are shown.

Example 3-1 Sample output for uncompressed LOB table space

JCL:
//COMP1 EXEC PGM=DSN1COMP,PARM='LOB'
//SYSUT1 DD DISP=SHR,DSN= DSNC000.DSNDBC.MYLOBDB.MYLOBTS1.I0001.A001
Output:
DSN1999I START OF DSN1COMP FOR JOB DSN1CMP STEP2
DSN1998I INPUT DSNAME = DSNC000.DSNDBC.MYLOBDB.MYLOBTS1.I0001.A001 , VSAM
DSN1944I DSN1COMP INPUT PARAMETERS
 PROCESSING PARMS FOR LOB DATASET:
 NO PARAMETERS.
DSN1940I DSN1COMP COMPRESSION REPORT
 DSN1COMP run on uncompressed LOB table space
 LOB table space statistics

 Number of LOBs 200 LOBs
 Minimum LOB size 3 KB
 Maximum LOB size 28 KB
 Average LOB size 25 KB
 LOB compression ratio

 Total LOB data compressed 2,195 KB
 Total LOB data uncompressed 5,143 KB
 Percentage of KB saved 58 %
 Data pages needed for compressed LOB table space 371 Pages
 Data pages needed for uncompressed LOB table space 1,090 Pages
 Percentage of Data pages saved 66 %
 Current page size 4 KB
 EVALUATION OF COMPRESSION WITH DIFFERENT PAGE SIZES
 Note: System Pages may contain LOB data!
Chapter 3. Synergy with the IBM Z platform 87

4K page size:
 Minimum System pages required 221 Pages
 Additional Data pages needed for compressed LOBs 371 Pages
 Additional Data pages needed for uncompressed LOBs 1,090 Pages
 Data pages saved (not including system pages) 66 %
 8K page size:
 Minimum System pages required 221 Pages
 Additional Data pages needed for compressed LOBs 191 Pages
 Additional Data pages needed for uncompressed LOBs 540 Pages
 Data pages saved (not including system pages) 65 %
 16K page size:
 Minimum System pages required 221 Pages
 Additional Data pages needed for compressed LOBs 11 Pages
 Additional Data pages needed for uncompressed LOBs 180 Pages
 Data pages saved (not including system pages) 94 %
 32K page size:
 Minimum System pages required 221 Pages
 Additional Data pages needed for compressed LOBs 0 Pages
 Additional Data pages needed for uncompressed LOBs 0 Pages
 Data pages saved (not including system pages) 0 %
DSN1994I DSN1COMP COMPLETED SUCCESSFULLY, 2,520 PAGES PROCESSED

The DSN1COMP output that is shown in Example 3-1 on page 87 indicates that the utility
was run against an uncompressed LOB table space.

The “LOB table space statistics section” that is shown in Example 3-1 on page 87 provides a
summary about the number of LOBs and the minimum, maximum, and average LOB size. As
shown in Example 3-1 on page 87, the average LOB size of 25 KB is close to the maximum
LOB size of 28 KB. Therefore, it can be assumed that most of the LOBs are much larger than
the current page size of 4 KB. If so, we can expect some benefit from the use of compression.

The “LOB compression ratio section” that is shown in Example 3-1 on page 87 shows that the
LOB compression ratio is 58%. However, we want to know how many pages we can save. As
LOB pages cannot be shared by multiple LOBs, a good compression ratio of the actual LOBs
does not necessarily mean that we can save an equal number of data pages. In the case of
Example 3-1 on page 87, Db2 estimates that it can reduce the number of pages by 66% by
compressing the LOB table space by using the current page size of 4 KB.

In addition to evaluating the LOB compression by using the current page size, DSN1COMP
calculates how many pages might be saved if another page size were used. This information
is provided in the “EVALUATION OF COMPRESSION WITH DIFFERENT PAGE SIZES”
section of Example 3-1 on page 87. As shown in this example, the use of a 16KB page size
for the LOB table space results in a reduction in the number of LOB data pages by 94%.

Note: The calculation provides the percentage of saved LOB data pages. The LOB map
pages, which can also contain LOB data, are not included in this calculation. LOB map
pages are part of the number of system pages in the output.

Also, as shown in Example 3-1 on page 87, no space savings is expected when a 32 KB
page size is used. As LOBs cannot share their data pages and the maximum LOB size in
this case is 28 KB, no LOBs in the table space is compressed under the 32 KB page size.
88 IBM Db2 12 for z/OS Performance Topics

3.1.4 Performance characteristics of LOB compression

Several measurements were conducted to evaluate the Db2 12 LOB compression feature,
with a focus on select and insert performance, by using throughput rate and CPU
performance as the main performance indicators.

Throughput performance for insert and select with compressed LOBs
When the measurements to evaluate the Db2 12 LOB compression feature were taken,
significant throughput benefits were observed. Because the number of LOB pages can be
reduced when the LOB is compressed, SQL INSERT activity requires fewer writes to the LOB
table space. Also, fewer getpage requests are needed when data is retrieved from the LOB
table space. In certain cases, this process can result in a large increase in throughput
performance for INSERT and SELECT activities.

The tests were conducted by using the following measurements:

� Different numbers of concurrent users (10, 20, 40, 80, and 100 threads)
� Different LOB sizes of 250 KB and 500 KB
� Different types of LOBs (XML and JPG)

During these performance measurements, we only considered the CLOB XML data because
JPG data cannot be compressed. These tests run sequential inserts and randomized selects
by using a generic key. We observed that with compression, the size of the documents can be
greatly reduced (with compression ratio of ~96%).
Chapter 3. Synergy with the IBM Z platform 89

Insert activity
The throughput rates for the insert workload (in GB per second) by using different LOB sizes
and a varying number of concurrent threads is shown in Figure 3-1. The largest boost to
performance occurs when 500 KB LOBs are compressed compared to non-compressed
LOBs. When 20 threads are used, the throughput rate in GB per second is approximately
80% more with compressed 500 KB LOBs compared to non-compressed 500 KB LOBs.

Figure 3-1 250 KB and 500 KB insert throughputs comparison

Counter intuitively, the throughput seems to decrease as the number of threads increases. At
20/40 threads, the throughputs of the 250 KB and 500 KB compressed LOBs start to
degrade. However, the LOB insert throughput rate for non-compressed LOBs does not
degrade until 40/80 threads. This result shows the hardware limitations of the zEDC card.

At ~20 - 40 concurrent users, the queue times on the zEDC card (in the IBM RMF™ reports)
start to become a significant factor. The benefit of the savings from smaller numbers of page
writes is diminished by the longer zEDC queue times as the zEDC hardware hits its
bandwidth limitation.

When SMF record type 74 subtype 9 data is collected, RMF Monitor III gathers the data that
is required for the PCIE Activity Report. You can use the RMF postprocessor to produce a
report about the PCIe activity by using the REPORTS(PCIE) report option. The information
about the Request Queue Time is in the “Hardware Accelerator Activity section of the report”.
A sample output of the report is shown in Figure 3-2 on page 91.
90 IBM Db2 12 for z/OS Performance Topics

Figure 3-2 Sample RMF PCI activity report

Information about zEDC processing for LOB compression and decompression is also
recorded in Db2 accounting records. Accounting class 3 uses two new LOB COMPRESSION
counters: QWAX_LOBCOMP_WAIT and QWAX_LOBCOMP_COUNT. These counters
record the wait time and the number of times the thread waited for LOB compression to be
performed by the zEDC card. An excerpt of the OMPE accounting report class 3 wait
information (including the new LOB compression wait information) is shown in Example 3-2.

Example 3-2 Db2 accounting class 3 LOB compression wait time

CLASS 3 SUSPENSIONS AVERAGE TIME AV.EVENT TIME/EVENT
-------------------- ------------ -------- ----------
LOCK/LATCH(DB2+IRLM) 0.003751 0.84 0.004456
 IRLM LOCK+LATCH 0.000083 0.02 0.003970
 DB2 LATCH 0.003667 0.82 0.004468
SYNCHRON. I/O 0.003553 1.00 0.003542
 DATABASE I/O 0.000009 0.00 0.002945
 LOG WRITE I/O 0.003544 1.00 0.003544
OTHER READ I/O 0.000002 0.00 0.003301
OTHER WRTE I/O 0.000030 0.01 0.004748
SER.TASK SWTCH 0.000139 0.00 0.072344
 UPDATE COMMIT 0.000000 0.00 N/C
 OPEN/CLOSE 0.000010 0.00 0.091700
 SYSLGRNG REC 0.000000 0.00 N/C
 EXT/DEL/DEF 0.000127 0.00 0.074100
 OTHER SERVICE 0.000002 0.00 0.022306
ARC.LOG(QUIES) 0.000000 0.00 N/C
LOG READ 0.000000 0.00 N/C
DRAIN LOCK 0.000000 0.00 N/C
CLAIM RELEASE 0.000000 0.00 N/C
PAGE LATCH 0.000002 0.00 0.003901
NOTIFY MSGS 0.000000 0.00 N/C
GLOBAL CONTENTION 0.000000 0.00 N/C
COMMIT PH1 WRITE I/O 0.004439 1.00 0.004439
ASYNCH CF REQUESTS 0.000000 0.00 N/C
TCP/IP LOB XML 0.003463 16.00 0.000216
ACCELERATOR 0.000000 0.00 N/C
Chapter 3. Synergy with the IBM Z platform 91

AUTONOMOUS PROCEDURE 0.000000 0.00 N/C
PQ SYNCHRONIZATION 0.000000 0.00 N/C
LOB COMPRESSION 0.003906 1.02 0.003829
FAST INSERT PIPE 0.000000 0.00 N/C
TOTAL CLASS 3 0.019285 19.87 0.000970

Select activity
The results from the measurements of the workload that performs SELECT operations
against compressed and non-compressed LOBs with different sizes and a varying number of
concurrent threads show a similar trend of large throughput benefits for SELECT operations,
as shown in Figure 3-3.

Figure 3-3 250 KB and 500 KB select throughputs comparison

It is worth noting that the overall throughput is comparatively lower for the select case when
compared against the measurements that are inserting LOBs. This result is due to (in part)
the random nature of the select workload compared to the sequential nature of the insert
workload.

In this scenario, you can see a similar trend where the throughput rate seems to degrade after
20/40 threads for compressed LOBs.

CPU performance for insert and select with compressed LOBs
The zEDC card promises highly efficient compression of LOBs without an affect on CPU
performance. This compression is reflective of the CPU performance that was measured in
the same environment that was described in 3.1.2, “LOB compression considerations” on
page 85.

Because the zEDC card allows Db2 to rely on the hardware for compression, we did not
observe any significant increase in Db2 class 2 CPU time. This result is true for select and
insert performance. We noted minor CPU time differences 0.00012 - 0.00014 seconds in the
worst-case scenarios (by using 500 KB LOBs with 80 concurrent threads).
92 IBM Db2 12 for z/OS Performance Topics

3.2 ISM that uses SMC-D

The IBM z13 GA2 and IBM z13s™ introduces an Internal Shared Memory (ISM) virtual PCI
function. ISM is a virtual PCI network adapter that enables direct access to shared virtual
memory, which provides a highly-optimized network interconnect for z Systems intra-CPC
communications.

When ISM is used by z/OS Version 2.2 by using Shared Memory Communications - Direct
Memory Access (SMC-D), the combined solution provides improved transaction rates for
interactive (request and response) workloads. This improvement is due to reduced network
latency and lower CPU cost for workloads with larger payloads, such as analytics, streaming,
big data, or web services. The combined solution also preserves the key qualities of services
that are required by z System clusters in enterprise data center networks.

Customers who have multiple z/OS instances on a single CPC with z/OS centric workloads
that use TCP communications, such as Db2, IBM WebSphere® Application Server, IBM
CICS®, IBM MQ, and IMS among them are the primary beneficiaries of this new support.

3.2.1 HiperSockets, SMC-R, and SMC-D

The target audience of this IBM Redbooks publication are mainly users who work in the Db2
for z/OS area. For the benefit of those users that are not deeply involved in the
communication server and hardware aspects, we provide some background in this section to
where SMC-D fits into the larger picture.

IBM z Systems HiperSockets
Co-location of multiple tiers of a workload onto a single z Systems platform allows for the use
of IBM z Systems internal communications. IBM z Systems HiperSockets™ is an internal
LAN technology that provides low-latency connectivity between virtual machines within a
physical z Systems central processing complex (CPC).

HiperSockets is logically represented to the host as a standard network interface controller
(NIC) with access to an IEEE standard LAN. It is implemented fully within z Systems
firmware, so it requires no physical cabling or external network connection to purchase,
maintain, or replace.

The performance benefits of HiperSockets when compared to the use of an external LAN
connection over Open Systems Adapter-Express (OSA-Express) are achieved in large part
because the physical layer (Ethernet) processing is avoided.

However, for the plethora of applications that use TCP/IP for network communications, the
communications and packet-processing aspects of the software stack remain. Data is formed
into, transmitted, and received in fully compliant TCP/IP packets. Traditional IP routing is also
used.

All standards that are relevant to TCP/IP processing, such as checksum, segmentation, flow
control, reordering, and retransmission, are used when communicating over HiperSockets.
This processing occurs at the appropriate operating system communication stack software
layers. A significant amount of overhead is also incurred with the associated interrupt
processing, memory management, context switching, and thread dispatching.
Chapter 3. Synergy with the IBM Z platform 93

Shared Memory Communications over RDMA
The IBM zEnterprise EC12 system, IBM zEnterprise BC12 system, and IBM z/OS V2.1
introduced a new optimized communications protocol, Shared Memory Communication
(SMC) over Remote Direct Memory Access (RDMA) (SMC-R), which works with the IBM
10GbE RoCE Express feature. SMC-R maintains the TCP/IP socket application programming
interface (API) for applications while significantly reducing the central processing unit (CPU)
overhead of the networking software stack.

Application data is transferred by using direct memory-to-memory communication. SMC-R
uses TCP to establish, manage, and end connections along with connection monitoring
functions, such as traditional keep-alive processing. The TCP connection remains active
while dynamically transitioning to exchange data out-of-band by using (RDMA), in a manner
that is not apparent to applications.

It also does not require any IP topology changes or other definitions because the same IP
interface can be used to support standard TCP/IP and SMC-R. This model preserves critical
operational and network management features of TCP/IP, while providing significant latency,
throughput improvements, and CPU savings.

Although SMC-R and RoCE Express can also be used for logical partitioning (LPAR)
communication (LPAR-to-LPAR), this solution was aimed primarily at optimizing
communication between distinct physical servers. SMC-R provides HiperSockets-like
performance between servers.

Although HiperSockets is widely accepted and deployed because of the latency and
throughput benefits that are realized in comparison to communications over OSA, the chief
inhibitor to further deployment and the greatest criticism is the CPU overhead. Data
movement, stack packet processing, and driver processing that is related to fully
implementing the internal queued direct input/output (iQDIO) architecture are all incurred
under the host’s processors.

Technologies, such as RDMA, and protocols, such as SMC-R, closed the gap, which virtually
eliminates the advantages that are gained in transaction and throughput rates that were once
seen when HiperSockets were used on the same CPC as compared to communicating
off-platform between physical servers.

SMC over Direct Memory Access
If SMC-R that uses RDMA can improve the transaction throughput and CPU consumption
rates (which was a major drawback when HiperSockets were used) for unchanged TCP/IP
applications for cross-CPC workloads, it makes logical sense that a similar protocol that is
based on Direct Memory Access (DMA) can provide comparable benefits for inter-processor
(LPAR to LPAR) communications.

The approach of the use of the SMC protocol (bypassing TCP/IP for data movement) without
requiring the cost and complexity of more hardware solidifies the advantages of co-locating
multiple tiers of a workload onto a single z Systems platform. Therefore, the IBM z13 (and
z13s) platform brings new ISM virtual PCIe (vPCIe) devices.

ISM architecture enables optimized cross-LPAR TCP communications utilizing a new
sockets-based DMA protocol named Shared Memory Communication - Direct Memory
Access (SMC-D). ISM functions must be associated with another channel (CHID); that is, a
HiperSockets channel (IQD) or an OSA Express (OSD) channel. SMC-D maintains the
socket-API transparency aspect of SMC-R so that applications that use TCP/IP
communications can benefit immediately without requiring any application software or IP
topology changes.
94 IBM Db2 12 for z/OS Performance Topics

SMC-D tightly couples the client and server sockets, which eliminates the traditional stack
processing. It also provides for zero-copy outbound, moving data directly from user space to
the target virtual server’s memory.

SMC-D completes the overall SMC solution, which provides synergy with SMC-R. Both
protocols use shared memory architecture, which eliminates TCP/IP processing in the data
path, yet preserves TCP/IP quality of service for connection management, load balancing,
and security purposes. SMC-R and SMC-D can be used concurrently or independent of each
other. The SMC connection protocol can dynamically determine the most optimal option.

A sample SMC configuration that uses SMC-R (by using RoCE) between the two CECs, and
SMC-D (by using ISM) between the two LPARs that are on the same CEC is shown in
Figure 3-4.

Figure 3-4 Shared memory communication

Both forms of SMC can be used concurrently to provide a highly-optimized solution. The
following SMCs are available by using System z PCI architecture:

� RDMA (SMC-R for cross platforms by using RoCE)
� DMA (SMC-D for same CPC by using ISM)

3.2.2 Request/response workload performance summary comparison of
HiperSockets and OSA with and without SMC-D

The following measurements are not Db2 specific but are included to demonstrate the value
of the SMC-D feature.

Performance results comparing SMC-D and ISM to HiperSockets
Internal IBM benchmark testing was performed to demonstrate the throughput, latency
(response time), and CPU consumption advantages that use the SMC-D protocol across ISM
devices has, when compared to using the traditional TCP/IP protocol across HiperSockets.

Both interactive (request/response) workloads with small to medium message sizes were
tested with varying numbers of concurrent TCP connections or threads active. In each case, a
significant improvement was seen in the throughput and latency (response time) of the
transaction.
Chapter 3. Synergy with the IBM Z platform 95

Substantial improvements were also seen in the amount of CPU that was used per
transaction bidirectionally (on the client and server sides). When SMC-D is used, the
throughput doubled while latency and CPU usage were cut in half as compared to the use of
traditional TCP/IP over HiperSockets. As the number of bytes transferred grew, even greater
results were achieved.

The configuration of the environment that was used during these tests was a z13 platform
with four CPs (all CPs in the same drawer) running z/OS V2R2.

The IBM internal (micro) benchmarks that were achieved by using standard tools and data
points are shown in Figure 3-5.

Figure 3-5 SMC-D and ISM versus HiperSockets

Each transactional data point is denoted with RRN(size) where RR indicates a
request/response pattern, N indicates the number of concurrent connections, and threads
and the payload size is indicated within the parenthesis. When moving left to right as the
payload size grows, the benefits increase, which demonstrates the scalability of the
technology.

The last two data points that are shown on the right in Figure 3-5 are related to streaming
workloads. This type of benchmark testing was also performed on workloads with streaming
data patterns (bulk data being transferred). In the streaming tests, up to 88% CPU savings
was seen, and up to an almost 9 times increase in network throughput.

For the request/response (transaction) type measurements, the following improvements were
observed:

� Request/response improvement for workloads with 1 k/1 k - 4 k/4 k payloads:

– Latency: Up to 48% reduction in latency
– Throughput: Up to 91% increase in throughput
– CPU cost: Up to 47% reduction in network related CPU cost
96 IBM Db2 12 for z/OS Performance Topics

� Request/Response improvement for workloads with 8 k/8 k - 32 k/32 k payloads:

– Latency: Up to 82% reduction in latency
– Throughput: Up to 475% (~6x) increase in throughput
– CPU cost: Up to 82% reduction in network related CPU cost

SMC-D and ISM to OSA performance summary
The same set of measurements testing was conducted. However, this time by using an OSA
Express 4 10Gbit interface as a basis for comparison against SMC-D. The results are shown
in Figure 3-6.

Figure 3-6 SMC-D and ISM versus OSA Express 4 10 Gb

For the request/response type work, the following observations were made:

� Request/response improvement for workloads with 1 k/1 k - 4 k/4 k payloads:

– Latency: Up to 94% reduction in latency
– Throughput: Up to 1601% (~17x) increase in throughput
– CPU cost: Up to 40% reduction in network related CPU cost

� Request/response improvement for workloads with 8 k/8 k - 32 k/32 k payloads:

– Latency: Up to 93% reduction in latency
– Throughput: Up to 1313% (~14x) increase in throughput
– CPU cost: Up to 67% reduction in network related CPU cost

For streaming type workload, a latency reduction of up to 95% was observed. Up to 21 times
improvement in throughput and up to 85% reduction in network-related CPU cost also was
observed.
Chapter 3. Synergy with the IBM Z platform 97

3.2.3 SMC-D results for IRWW SQLJ OLTP workload

To demonstrate the value of the use of SMC-D in a Db2 environment where the requester and
server are co-located on the same CEC, several measurements were taken by using the
IRWW SQLJ OLTP workload. This workload includes seven different transactions in support
of a warehouse ordering and delivery system. It is the same workload, in terms of the work
that is run, as the standard IRWW workload. The major difference is that it is using static Java
(SQLJ).

On average, each transaction consists of ~15 SQL statements (select/insert/update/delete)
and their associated network messages. The workload is run under USS in one z/OS LPAR,
and connects to a Db2 subsystem on another z/OS LPAR in the same CPC. The
measurements use a Db2 11 for z/OS environment as Db2 12 was still under development at
the time these measurements were taken. Similar results in terms of network latency
improvements are expected with Db2 12 for z/OS.

The following performance measurements compare HiperSockets with SMC-D, to
HiperSockets without SMC-D (that is, “old style” HiperSockets), and OSA 10 Gb without
SMC-D enabled. The results are shown in Figure 3-7.

Figure 3-7 Db2 Class 1 elapsed time

From a Db2 class 1 elapsed time perspective, a 19.17% decrease in elapsed time was
observed when SMC-D was used (compared to HiperSockets), and a 70.36% decrease in
elapsed time when compared to the use of OSA 10 Gb.
98 IBM Db2 12 for z/OS Performance Topics

The throughput rate in transactions per second for these three measurements is shown in
Figure 3-8.

Figure 3-8 Throughput in transactions per second

The throughput rate (in transactions per second) increased by 24.77% when SMC-D was
used compared to HiperSockets. A 239.75% increase in throughput rate was observed when
compared against OSA 10 Gb.
Chapter 3. Synergy with the IBM Z platform 99

The workload measurement results from a normalized throughput perspective are shown in
Figure 3-9. Normalized throughput is the throughput rate (in transactions per second) that are
normalized out to 100% CPU usage, which is also known as the Internal Throughput Rate
(ITR).

Figure 3-9 Normalized throughput

The normalized throughput rate shows a 25.64% increase when SMC-D is used compared to
HiperSockets, and a 10.23% increase compared to OSA 10 Gb. This results provides some
insight into CPU time savings on per-transaction basis.

Customers that use an BM z13 GA2 or z13s and z/OS Version 2.2 that have Db2 workloads
(such as SQLJ IRWW) that require communication between LPARs on the same CEC, can
greatly benefit from the use of SMC-D. The combined hardware and software solution
provides improved transaction rates, significantly reduced network latency, and lower CPU
cost.

3.3 Simultaneous multithreading

With the introduction of the z13 machine, IBM implemented simultaneous multithreading
(SMT-2), which enables two active instructions per processor core. This feature can improve
the processing capacity per processor core when more than one task is running. SMT-2 is
available for workloads that are running on the Integrated Facility for Linux (IFL) and
workloads that use the z Integrated Information Processor (zIIP). SMT-2 also requires
operating system support by z/OS (for zIIP usage) and IBM z/VM® (for IFL usage).

For more information about SMT-2, see the following resources:

� z Systems Simultaneous Multithreading Revolution, REDP-5144
� IBM z13 Technical Guide, SG24-8251
100 IBM Db2 12 for z/OS Performance Topics

http://www.redbooks.ibm.com/abstracts/redp5144.html
http://www.redbooks.ibm.com/Abstracts/sg248251.html

Db2 workloads that are eligible for offloading work to a zIIP processor are suitable candidates
for the use of this new z13 processor feature. By using SMT-2, you can expect that fewer zIIP
processors are needed to process the same amount of Db2 offloaded zIIP eligible work,
which can help to reduce the total cost of computing.

The feature is transparent to Db2 releases and works with both Db2 11 and 12.

Complete the following steps enable SMT-2:

1. Modify the LOADxx system configuration member to indicate the processor view of core
for the duration of the IPL, as shown in the following example:

PROCVIEW CORE

2. Specify the following parameter in IEAOPTxx member to indicate the number of active
threads per zIIP core:

MT_ZIIP_MODE=2

Also use the default IIPHONORPRIORITY=YES setting in IEAOPTxx.

3. IPL the LPAR. After the IPL, verify the configuration by running the D M=CORE system
command.

The output of the command that is shown in Example 3-3 shows SMT-2 (MT=2) is enabled
and that the three online zIIP engines can run two threads per zIIP core (zIIP=2).

Example 3-3 D M=CORE command output

D M=CORE
IEE174I 11.04.09 DISPLAY M 325
CORE STATUS: HD=Y MT=2 MT_MODE: CP=1 zIIP=2
ID ST ID RANGE VP ISCM CPU THREAD STATUS
0000 + 0000-0001 H 0000 +N
0001 + 0002-0003 H 0000 +N
0002 + 0004-0005 H 0000 +N
0003 + 0006-0007 H 0000 +N
0004 + 0008-0009 H FC00 +N
0005 +I 000A-000B H 0200 ++
0006 +I 000C-000D H 0200 ++
0007 +I 000E-000F H 0200 ++

CPC ND = 002964.NE1.IBM.02.00000008E8B7
CPC SI = 2964.7B1.IBM.02.000000000008E8B7
 Model: NE1
CPC ID = 00
CPC NAME = SYSZD1
LP NAME = STLAB11 LP ID = 6
CSS ID = 0
MIF ID = 2

+ ONLINE - OFFLINE N NOT AVAILABLE / MIXED STATE
W WLM-MANAGED

I INTEGRATED INFORMATION PROCESSOR (zIIP)
CPC ND CENTRAL PROCESSING COMPLEX NODE DESCRIPTOR
CPC SI SYSTEM INFORMATION FROM STSI INSTRUCTION
CPC ID CENTRAL PROCESSING COMPLEX IDENTIFIER
CPC NAME CENTRAL PROCESSING COMPLEX NAME
LP NAME LOGICAL PARTITION NAME
Chapter 3. Synergy with the IBM Z platform 101

LP ID LOGICAL PARTITION IDENTIFIER
CSS ID CHANNEL SUBSYSTEM IDENTIFIER

MIF ID MULTIPLE IMAGE FACILITY IMAGE IDENTIFIER

3.3.1 SMT-2 Performance in a one-way data sharing environment

To evaluate this feature, a complex OLTP IBM Brokerage workload was run by using a
machine with eight processor cores. The workload was run on zIIP processors with
multithreading (SMT-2) and without multithreading (SMT-1).

Different experiments were conducted by using different combinations of general CPs and
zIIP cores. The increased processing capacity that used SMT-2 versus SMT-1 was evaluated
by measuring the throughput for different combinations of general CPs and zIIP engines.

The bars that are shown in Figure 3-10 show the internal throughput rate (internal throughput
rate is the throughput rate normalized out to 100% CPU utilization) for different processor
configuration with SMT-1 zIIPs and SMT-2 zIIPs. The internal throughput is always higher
when SMT-2 zIIP processors are used.

Figure 3-10 ITR versus eligible percentage comparison

The perforated line on the chart in Figure 3-10 indicates how much of the general CP
processing is eligible for offload to zIIP (but ran on a CP) with SMT-1. The solid line on the
chart shows how much of the CP processing is eligible for offload to zIIP by using SMT-2 (but
ran on a CP). The data shows that all eligible zIIP processing is satisfied with four zIIPs when
SMT-2 is used, whereas it takes five zIIP processors to offload all eligible zIIP work to run on
zIIP engines for SMT-1.
102 IBM Db2 12 for z/OS Performance Topics

Figure 3-11 shows the measured CPU times, general CP (bar in bold) and zIIP (bar that uses
the pattern) for different combinations of processors for SMT-1 and SMT-2 scenarios that use
the same workload.

Figure 3-11 SMT-1 and SMT-2 CPU times comparison

For configurations that used 1 - 4 zIIPs, the CP CPU time (which is chargeable) is less when
SMT-2 is enabled for the zIIP engines. After all zIIP eligible processing is offloaded for SMT-1,
no difference in CP CPU time between SMT-1 and SMT-2 was observed, as expected.
Chapter 3. Synergy with the IBM Z platform 103

The effect of SMT-1 and SMT-2 on the Db2 elapsed time is shown in Figure 3-12. The solid
bar in the chart shows the average class 2 elapsed time when all eight general purpose
processors are used. The other two types of bars show the average Db2 elapsed time with
different combinations of general CPs and zIIP processors with SMT-1 and SMT-2.

Figure 3-12 Db2 elapsed time and CP LPAR busy percentage comparison

The perforated line indicates LPAR Busy % for general purpose processors (CP) with SMT-1,
and the solid line shows LPAR Busy % for general purpose processors (CP) with SMT-2. We
did not observe any increase in elapsed time when SMT-1 or SMT-2 was used until we
reduced the number of general purpose processors to the point where they were over 80%
used utilized and no other work was eligible for zIIP offload.
104 IBM Db2 12 for z/OS Performance Topics

3.3.2 SMT-2 performance in a two-way data sharing environment

The IBM Brokerage OLTP workload was also run in a two-way data sharing environment to
observe the performance affect of the use of SMT-2. The workload ran in a parallel sysplex
that consisted of two LPARs and one internal CF. Each LPAR has three CPs and three zIIPs.
The internal CF had three dedicated CPs and eight ICP links that were shared between
LPARs and the CF.

The workload was run by using zIIP processors with multithreading (SMT-2) enabled, and
without multithreading (SMT-1). As with the one-way data sharing tests that are described in
3.3.1, “SMT-2 Performance in a one-way data sharing environment ” on page 102, the
increased processing capacity comparing SMT-2 to SMT-1 was measured by the workload
internal throughput rate (ITR). The effect on the total cost of computing for the workload was
measured by the increased amount of zIIP CPU time or reduced CPU time on general CPs. In
addition, the workload overhead when a two-way data sharing overhead was used was
analyzed between SMT-1 and SMT-2.

The increased processing capacity when SMT-2 was used is shown in Figure 3-13. For this
workload, as much as 15% more processing capacity was observed with SMT-2 enabled.

Figure 3-13 Data sharing group internal throughput rate comparison

The distribution of the transaction’s total Db2 CPU time between general CP and zIIP engines
is shown in Figure 3-14 on page 106. Transaction total Db2 CPU time includes Db2 class 2
CPU time, and MSTR, DBM1 and IRLM CPU time.

As shown in Figure 3-14 on page 106, 55.8% of the total Db2 CPU time was on zIIP (free of
charge) when SMT-1 was used. With SMT-2, 56.9% of the total CPU time was on zIIP; a full
percentage point more than the SMT-1 case. Therefore, the total cost of computing was
reduced when SMT-2 is enabled.
Chapter 3. Synergy with the IBM Z platform 105

Figure 3-14 Transaction total Db2 CPU time distribution comparison

An interesting observation from this exercise is that the data sharing overhead in this two-way
configuration dropped a full percentage point with SMT-2 enabled. The two-way data sharing
overhead is calculated as the ratio of the data sharing group ITR and twice the ITR of the
one-way system. This cost is the “start-up” cost when moving to data sharing and actively
sharing objects in read/write or write/write mode between the two Db2 members. Adding
more Db2 data sharing members costs significantly less and a Db2 data-sharing group
scales well. The lower the data sharing overhead is, the better.

The transaction Db2 elapsed time per commit for SMT-1 and SMT-2 in a two-way data sharing
environment is shown in Figure 3-15.

Figure 3-15 Transaction Db2 elapsed time comparison

The measurements show a response time improvement of more than 7% when SMT-2 is
enabled.
106 IBM Db2 12 for z/OS Performance Topics

The IBM Brokerage OLTP workload that is running in a two-way data sharing environment
performs better with SMT-2. We observed increased workload processing capacity, lower cost
of computing, and less data sharing overhead.

3.4 Performance effect of the use of 2 GB frames

With the support of 64-bit addressing, more virtual (and real) storage is available to Db2 for
z/OS. In addition to allowing Db2 to use more storage for internal storage areas, 64-bit
addressing enables customers to use much larger local buffer pools than in the past.

Every access to a memory address must go through a virtual-to-real address mapping by
using information that is in page table entries (PTEs). If the mapped address is cached on the
translation look-aside buffer (TLB), which is a hardware cache on the processor, the mapping
process is efficient. If there is a TLB cache miss, processing must stop and wait for a main
memory search to locate the entry and place it on the TLB.

The system TLB sizes have remained relatively the same because of the requirement of quick
access and limitations on hardware space. When the storage size increases with a similar
TLB cache, the hit ratio of TLB is likely to drop, which means a larger number of TLB misses.
When this issue occurs, Db2 can suffer a significant performance penalty.

The use of large page frames (1 MB or 2 GB) instead of traditional 4 KB frames, allows a
single TLB entry to fulfill many more address translations. Therefore, better coverage is
achieved without expanding TLB size, the TLB hit ratio is improved, and Db2 can benefit from
the improved TLB hit ratio.

The use of 2 GB frames requires a zEC12 or above processor. For a buffer pool to be able to
use a FRAMESIZE of of 2 GB in Db2, it must also be defined with the PGFIX(YES) attribute.
This definition makes it non-pageable.

Performance measurements at the IBM Silicon Valley Laboratory that used a zEC12
processor showed equivalent CPU usage for the internal workload when 2 GB frames were
used compared to 1 MB frames. Therefore, no significant performance benefits were
observed for the workload that was being tested for 2 GB frames. With the availability of the
z13, the same measurements were conducted by using the latest hardware. Improvements
were observed with these measurements with 2 GB frames compared to 1 MB frames.

3.4.1 Performance measurements

By using the z13 hardware, a 4% reduction in Db2 total CPU time (transaction CPU time plus
CPU time used by the Db2 system address spaces) was observed when 2 GB frames were
used compared to 1 MB frames. The workload ITR was enhanced by 1.7%. An analysis of
z13 hardware sampling data revealed an 8.5% reduction in TLB misses when using 2 GB
frames.
Chapter 3. Synergy with the IBM Z platform 107

The measurement results of our tests are listed in Table 3-1. The allocated LFAREA that was
used during both measurements was the same. There were 68,009 1 MB frames allocated in
the run that used 1 MB frames (EXP_1M), while 33 2 GB and 425 1 MB frames were used
during the run that used 2 GB frames (EXP_2G). The results showed 33 * 2048*1 MB +
425*1 MB frames = 68,009 1 MB frames allocated; therefore, an equal number of storage was
used as LFAREA in both cases.

Table 3-1 Z13 1MB versus 2 GB frame measurement results

Although this measurement is not Db2 12 specific and was performed by using a Db2 11
environment, you can expect similar results when Db2 12 on a z13 is used with 2 GB page
frames.

3.4.2 Usage guidance and considerations

The IEASYSxx LFAREA keyword specifies the amount of real storage to be made available
for 1 MB and 2 GB large frames. All 1 MB and 2 GB frames are backed by contiguous 4 KB
real storage frames, and are allocated from real storage as specified by the LFAREA
keyword, as shown in the following example:

LFAREA=(1M=88064,2G=40)

As a result of this command, 88,064 1 MB frames and 40 2 GB frames (166 GB real storage)
are allocated in the LFAREA at IBM MVS™ IPL time.

Measurement ID 1 MB Frame size
(EXP_1M)

2 GB Frame size
(EXP_2G)

Delta
(EXP_2G/EXP_1M)

CPU 2964(z13) 2964(z13)

General CPs 12 12

z/OS z/OS 2.1 z/OS 2.1

LFAREA allocated 2 GB pages = 0
1 MB pages = 68009

2 GB pages = 33
1 MB pages = 425

Db2 V11 PTF (07/22/2015) V11 PTF (07/22/2015)

Workload

ETR (commits/sec.) 5055.523 5052.434

CPU (%) 60.98 59.91

ITR (commits/sec.) 8290.461 8433.374 +1.7%

CPU time (MBps/commit)

Class 2 CPU 1.176 1.130

MSTR 0.005 0.004

DBM1 0.013 0.012

IRLM 0.003 0.003

Total Db2 CPU
(member scope)

1.197 1.149 -4.0%
108 IBM Db2 12 for z/OS Performance Topics

The output of the DISPLAY VIRTSTOR,LFAREA MVS system command is shown in
Example 3-4.

Example 3-4 DISPLAY VIRTSTOR,LFAREA command output

D VIRTSTOR,LFAREA
IAR019I 12.13.32 DISPLAY VIRTSTOR 843
 SOURCE = 20
 TOTAL LFAREA = 88064M , 80G
 LFAREA AVAILABLE = 87639M , 14G
 LFAREA ALLOCATED (1M) = 425M
 LFAREA ALLOCATED (4K) = 0M
 MAX LFAREA ALLOCATED (1M) = 456M
 MAX LFAREA ALLOCATED (4K) = 0M
 LFAREA ALLOCATED (PAGEABLE1M) = 0M
 MAX LFAREA ALLOCATED (PAGEABLE1M) = 0M
 LFAREA ALLOCATED NUMBER OF 2G PAGES = 33
 MAX LFAREA ALLOCATED NUMBER OF 2G PAGES = 33

Specifying the FRAMESIZE(2G) option for the Db2 buffer pool allows 2 GB frame to be
allocated, if available. The IBM Db2 -DISPLAY BPOOL command output shows the preferred
frame size and how many buffers that are using each frame size are allocated, as shown in
Example 3-5.

Example 3-5 DISPLAY BUFFERPOOL output

-DIS BPOOL(BP1) DETAIL(INTERVAL) LSTATS(ACTIVE)
DSNB401I -CEB2 BUFFERPOOL NAME BP1, BUFFERPOOL ID 1, USE COUNT 65
DSNB402I -CEB2 BUFFER POOL SIZE = 524288 BUFFERS AUTOSIZE = NO
 VPSIZE MINIMUM = 0 VPSIZE MAXIMUM = 0
 ALLOCATED = 524288 TO BE DELETED = 0
 IN-USE/UPDATED = 75018
DSNB431I -CEB2 SIMULATED BUFFER POOL SIZE = 0 BUFFERS -
 ALLOCATED = 0
 IN-USE = 0 HIGH IN-USE = 0
 SEQ-IN-USE = 0 HIGH SEQ-IN-USE = 0
DSNB406I -CEB2 PGFIX ATTRIBUTE -
 CURRENT = YES
 PENDING = YES
 PAGE STEALING METHOD = FIFO
DSNB404I -CEB2 THRESHOLDS -
 VP SEQUENTIAL = 0 SP SEQUENTIAL = 0
 DEFERRED WRITE = 30 VERTICAL DEFERRED WRT = 5, 0
 PARALLEL SEQUENTIAL =50 ASSISTING PARALLEL SEQT= 0
DSNB546I -CEB2 PREFERRED FRAME SIZE 2G
 524288 BUFFERS USING 2G FRAME SIZE ALLOCATED

If the VPSIZE of a 4 KB page size buffer pool is 600,000, Db2 allocates one 2 GB frame and
many 1 MB frames. When the buffer pool size is close to multiples of 2 GB, Db2 rounds up the
allocation and allocates another 2 GB frame to avoid wasting storage.
Chapter 3. Synergy with the IBM Z platform 109

3.5 Buffer pool simulation

Large buffer pools that are backed by real storage can help eliminate I/O and reduce CPU
usage of Db2. However, the benefit from larger buffer pools depends on the access frequency
of the same data and the workload’s data access pattern.

If the data in the buffer pool is never re-referenced, there is no benefit in increasing the buffer
pool size. If the data access pattern is skewed, there might not be much benefit from making
the buffer pool larger.

It is often hard to determine the optimum size of a buffer pool. The tools that are available to
predict the optimum size of the buffer pool usually require extensive tracing in production
environments and are not always easy to use. To address the problem and accurately predict
the buffer pool size with limited intervention in a production environment, buffer pool
simulation was introduced in Db2 12. This feature is also available in Db2 11 with APAR
PI22091.

Buffer pool simulation aims to help customers determine the correct size of buffer pools.
Buffer pool simulation can be used to determine how many synchronous I/Os can be avoided
if the simulated buffer size is added to the current buffer pool size. The simulated buffer pool,
unlike the real buffer pool, uses much less storage and CPU compared to an actual buffer
pool of that size, because the data is not stored in the simulated buffer pool. Only
approximately 70 bytes of storage are required for each simulated buffer. For example, a
simulated buffer pool of 4 MB require only approximately 70 KB of extra storage.

During our tests that used IBM internal workloads, only a 1% CPU overhead per simulated
buffer pool was observed. Given the small amount of extra storage that is required and the
small CPU overhead that is incurred with buffer pool simulation, customers can run buffer
pool simulation in a production environment and more accurately estimate the right size for a
buffer pool.

3.5.1 Performing buffer pool simulation

Complete the following steps to simulate a buffer pool:

1. Issue the -ALTER BUFFERPOOL command and specify the SPSIZE (simulated pool size) and
SPSEQT (sequential prefetch threshold to be used for the simulated pool parameters for
the buffer pool to be simulated. (The sum of SPSIZE plus VPSIZE is the buffer pool size
that is going to be simulated.)

Although specifying SPSEQT is optional, it is highly recommended to specify it because
the sequential threshold should be adjusted when you have a larger buffer pool size. If
SPSEQT is not specified, the current VPSEQT value for the simulated buffers is used in
the simulation, as shown in the following command:

-ALTER BUFFERPOOL(BP1) .. SPSIZE (2000) SPSEQT(20)

This command simulates an increase in the size of BP1 by 2000 pages by using a
sequential threshold of 20% for these extra pages in the simulated pool.

2. Start the collection of Db2 statistics data or issue the -DISPLAY BUFFERPOOL(BP1) DETAIL
command to reset the buffer pool statistics at the beginning of the simulation.

3. Run the workload for at least two hours.

4. At the end of the measurement period, collect the Db2 statistics data or issue another
-DISPLAY BUFFERPOOL(BP1) DETAIL command to obtain the buffer pool simulation results.
110 IBM Db2 12 for z/OS Performance Topics

5. Issue the -ALTER BUFFERPOOL (BP1)…. SPSIZE (0) command to disable buffer pool
simulation.

If you issue another -ALTER BUFFERRPOOL ... SPSIZE(yy) command, where yy is smaller than
the size that is being simulated, the counters are reset to zero and restarts.

The part of the output of the -DISPLAY BUFFERPOOL DETAIL command that can help in
determining the right size of the buffer pool is shown in Example 3-6.

Example 3-6 -DIS BP DETAIL command output

DSNB411I -CEA1 RANDOM GETPAGE = 138590374
 SYNC READ I/O (R) = 25466501
 SEQ. GETPAGE = 4056005
 SYNC READ I/O (S) = 81441
 DMTH HIT = 0
 PAGE-INS REQUIRED = 0
 SEQUENTIAL = 491
 VPSEQT HIT = 0
 RECLASSIFY = 3909397
DSNB431I -CEA1 SIMULATED BUFFER POOL SIZE = 494000
 BUFFERS -
 ALLOCATED = 494000
 IN-USE = 371382
 HIGH IN-USE = 371436
 SEQ-IN-USE = 5255
 HIGH SEQ-IN-USE = 6020
DSNB432I -CEA1 SIMULATED BUFFER POOL ACTIVITY -
 AVOIDABLE READ I/O -
 SYNC READ I/O (R) = 25463982
 SYNC READ I/O (S) = 81181
 ASYNC READ I/O = 15470503
 SYNC GBP READS (R) = 11172099
 SYNC GBP READS (S) = 4601
 ASYNC GBP READS = 1181076
PAGES MOVED INTO SIMULATED BUFFER POOL = 53668641
TOTAL AVOIDABLE SYNC I/O DELAY = 35321543 MILLISECONDS

Buffer pool simulation information is also available in the IFCID 2 statistics record in a new
data section that is called DSNDQBSP.

IBM Tivoli® OMEGAMON® XE for Db2 Performance Expert on z/OS provides this buffer pool
simulation information in the Db2 statistics report. An example is shown in Figure 3-16.

Figure 3-16 OMPE Statistics report - BP simulation output
Chapter 3. Synergy with the IBM Z platform 111

The data that is shown in Example 3-6 on page 111 and Figure 3-16 on page 111 was taken
during the same measurement run. However, the statistics information was captured first. The
output from the -DIS BPOOL command was captured later during the run, while SPSIZE was
still greater than zero (simulation still active), which explains why the numbers look different.

You can use the output of the -DISPLAY BUFFERPOOL DETAIL command after the simulation, or
the buffer pool simulation information in IFCID 2 to determine the size of the expanded buffer
pool. To calculate what percentage of I/O is avoided by the simulated buffer pool, review the
number of getpages that result in I/O and how many of these pages can be avoided because
they were found in the (extra) simulated pool.

For example, message DSNB411I that is shown in Example 3-6 on page 111 reports the total
number of random getpages that resulted in an I/O (25466501). Message DSNB432I reports
the number of avoidable I/Os from random getpages (25463982). By using this info, we can
calculate the percentage of random synchronous I/Os that can be avoided by using the
simulated buffer pool. In this example, almost all the I/Os, approximately 99.9% (25463982/
25466501) can be avoided by changing the buffer pool size to total simulated buffer pool size.

Message DSNB432I also reports the GBP reads that can be avoided because the pages are
found in the simulated buffer pool. It is important to note that buffer pool simulation assumes
that the group buffer pool is large enough to accommodate the increased size of the local
simulated buffer pool.

Message DSNB431I indicates how much of the simulated buffer pool is used during the
measurement period to achieve the I/O savings. The HIGH-IN-USE buffers counter is
incremented as buffers are used in simulated buffer pool. Therefore, add the HIGH IN-USE
buffers of the simulated buffer pool to the real (current) buffer pool size to determine the size
of the (new) expanded buffer pool.

If the allocated size of the simulated pool is considerably more than the high in-use value
(assuming that the simulation was active long enough to be representative), we can infer that
the simulated buffer pool is larger than needed to avoid I/O. If the HIGH-IN-USE is the same
as the size of the allocated simulated buffer pool and the avoidable I/O from the current
simulated size is limited, run a buffer pool simulation with a larger SPSIZE.

We can also calculate the expected average elapsed time savings from avoidable I/O by
using the larger buffer pool size.

The AVOIDABLE READ I/O fields in the DSNB432I message are the number of I/Os that can
be avoided because the pages were found in the simulated buffer pool.

The TOTAL AVOIDABLE SYNC I/O DELAY is the delay that is caused by I/O because they
are not found in the real buffer pool, but were found in the simulated pool. The TOTAL
AVOIDABLE SYNC I/O DELAY divided by the total of all AVOIDABLE READ I/O fields gives
you the average delay for an I/O.

For example, by using the information from the DSNB432I message that is shown in
Example 3-6 on page 111, we can calculate that the average delay of an avoidable I/O is 862
microseconds (35321543/410156661) when the pages are found in the simulated buffer pool.
This saving is the average saving in elapsed time from an I/O if the current buffer pool size
(VPSIZE) is increased by the simulated pool size (SPSIZE).

A reduction in the number of synchronous I/Os can translate into reduced elapsed and CPU
time if the current buffer pool size (VPSIZE) is expanded.

1 The 53373442 is the sum of SYNC READ I/O (R) + SYNC READ I/O (S) + ASYNC READ I/) in message
DSNB432I.
112 IBM Db2 12 for z/OS Performance Topics

3.5.2 Performance measurement results

To validate the accuracy of the buffer pool simulation statistics, the IBM Brokerage workload
was used. First with an original total buffer pool size of 14 GB and simulating one of the buffer
pools by specifying 4 GB for SPSIZE. This simulation showed a large reduction in
synchronous I/O. Then, to verify the results, the size of the simulated buffer pool was
expanded by 4 GB and the benchmark workload was run again. This test resulted in a
substantial reduction in synchronous I/O and CPU time, as predicted by the buffer pool
simulation.

The number of synchronous I/Os per second with buffer pool BP1 for the original size of the
buffer pool, the synchronous I/Os avoided as predicted by the simulated buffer pool, and the
actual number of synchronous I/Os measured after increasing the buffer pool by the
simulated buffer pool size is shown in Figure 3-17.

Figure 3-17 Buffer pool simulation - Sync I/O per second

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Original Synchronous I/O
Measured

Simulation - Synchronous
I/O Avoided

Synchronous I/O
Measured after Expansion

Synchronous I/O per second from BP1
Chapter 3. Synergy with the IBM Z platform 113

The actual performance improvement that was achieved by expanding the buffer pool size
based on the results of the buffer pool simulation is shown in Figure 3-18. The bar in the chart
is the number of synchronous I/Os per commit and the line is the total CPU time per commit
measured for the brokerage workload.

Figure 3-18 Performance improvement by increasing buffer pool size

3.5.3 Buffer pool simulation usage considerations

Consider the following points when buffer pool simulation is used:

� Buffer pool simulation works only for buffer pools that use the PGSTEAL (LRU) attribute.

� Simulation is performed for read I/O operations only.

� SPSIZE must be greater than zero to enable simulation, which implies that simulating a
smaller buffer pool than the original buffer pool is not possible.

� Specifying SPSIZE (0) disables simulation and deletes the simulated buffer pool.

� The sum of the VPSIZE and SPSIZE of all buffer pools combined cannot exceed the Db2
maximum total buffer pools size (1 TB in Db2 11 and 16 TB in Db2 12).

� In a data sharing environment, buffer pool simulation assumes that the group buffer pool
can handle the increased local buffer pool size. Therefore, you might want to verify
whether the group buffer pool size also must be adjusted if the local buffer pool is
expanded.

� If SPSEQT is not specified, the simulation assume VPSEQT as the sequential threshold
for the simulated pool. You might want to consider decreasing the SPSEQT threshold if a
large SPSIZE is used based on sequential I/O buffer pool statistics.
114 IBM Db2 12 for z/OS Performance Topics

� PAGES MOVED INTO SIMULATED BUFFER POOL indicates the number of pages that
must be stolen in the real buffer pool (to make room for pages that are staged in from
DASD). These stolen pages from the real buffer pool are tracked in the simulated buffer
pool until they are stolen from the simulated buffer pool.

3.6 Large group buffer pool usage

The closer the data is to the processor the better system performance is going to be,
according to a general consensus. This belief also applies to Db2 for z/OS. For more
information about the benefit of the use of large local buffer pools, section 3.7, Exploitation of
Large Memory for Buffer Pools, in IBM DB2 11 for z/OS Performance Topics, SG24-8222.

In this section, we describe the performance benefits of having large Group Buffer Pools
(GBP).

When a getpage request for a GBP-dependent object occurs in a Db2 data sharing
environment, Db2 first checks whether the request can be satisfied by using the member’s
local buffer pool.

If the page is not found in the local buffer pool or the page is cross invalidated, Db2 attempts
to satisfy the request by looking in the associated group buffer pool. Only when the page is
not present in the GBP is a synchronous read required to bring the page into the local buffer
pool from disk so it can be used by the transaction that requested it.

However, a synchronous read I/O to retrieve a page from disk is a costly operation. Moreover,
the time to access a page in the GBP is in the order of microseconds, whereas accessing
DASD is in the order of milliseconds. The difference in access time is a good reason to
consider the use of large GBPs because reducing the number of times a synchronous I/O to
disk is required.

The objective of this series of experiments is to observe the performance effect of the use of
large GBPs by using a brokerage online transaction workload.

3.6.1 Performance measurements

A brokerage online workload that is running in a Db2 2-way data sharing environment is used
to evaluate the performance affect of the use of large GBPs. The size of the GBPs is varied
while the size of the local buffer pools of each member is fixed at 5 GB. The different runs use
a total GBP size of 5 GB, 10 GB, 62 GB, 105 GB, 151 GB, and 566 GB. The combined size of
all objects accessed during these measurements is approximately 900 GB. The same object
size is used for all measurements that are described hereafter.
Chapter 3. Synergy with the IBM Z platform 115

Figure 3-19 shows the effect of the use of larger GBPs on the number of synchronous reads
for GBP-dependent objects. The larger the GBPs are, the less synchronous read I/Os are
needed.

Figure 3-19 Sync I/Os for GBP-dependent objects

When the GBP size increases from 62 GB to 105 GB and 151 GB, hardly any reduction in the
number of synchronous reads for GBP-dependent objects is observed. This result occurs
because some GBP-dependent objects are large, their access pattern is much more random,
and the increased GBP size did not make a significant difference in the number of I/O
operations that is needed. Therefore, Db2 class 3 suspension time and throughput rate
remain relatively the same, despite the increased size of the GBPs.

The runs with a total GBP size of 5 GB, 10 GB, 62 GB, 105 GB, and 151 GB use the (default)
GBPCACHE CHANGED option, which indicates only changed pages are to be cached in the
group buffer pool.

During the measurement that used a GBP size of 566 GB, the GBPCACHE ALL option was
specified for several GBP-dependent objects, which allows the pages for those objects to be
cached in the GBP as they are read in from DASD the first time. Subsequent access of those
pages is from the GBP, which avoids synchronous reads.
116 IBM Db2 12 for z/OS Performance Topics

When the number of synchronous I/Os decrease as the GBP size increases, a reduction in
the Db2 class 3 suspension time is also expected, as shown in Figure 3-20.

Figure 3-20 Class 3 suspension time with increasing GBP sizes

This workload is built in such a way that the faster the transactions are processed, the more
transactions are triggered; that is, there is no “think time”. Therefore, shorter class 3
suspension times lead to a reduction in transaction elapsed time, which results in higher
throughput, as shown in Figure 3-21.

Figure 3-21 External throughput rate with increasing GBP sizes
Chapter 3. Synergy with the IBM Z platform 117

As the size of the GBP becomes larger, less access to DASD is observed, while access to the
group buffer pool in the Coupling Facility (CF) increases. Because of the zero think time
model, the workload drives a higher transaction rate when the transactions run faster, hereby
increasing the GBP activity.

In addition, because more pages are found in the GBP, the data must be transferred back
from the GBP to the local buffer pool. Such a data request is more expensive than just
checking whether a page is in the GBP. This process puts more pressure on CF CPU usage
and CF links. The growing CF request rate as the GBP size increases is shown in
Figure 3-22.

Figure 3-22 CF request rate with increasing GBP size
118 IBM Db2 12 for z/OS Performance Topics

As a result, the CF service time becomes longer as the CF request rate increases and the
number of times data is transferred back from the GBP to the local buffer pool also increases,
as shown in Figure 3-23.

Figure 3-23 CF request service time with increasing GBP size

Longer CF service time has a direct effect on the transaction CPU time. As most CF requests
are synchronous requests, the CPU is “spinning” (waiting for the request to complete).
Therefore, the longer CF service time is, the more CPU time transactions use.
Chapter 3. Synergy with the IBM Z platform 119

This process is an exercise of trading synchronous I/Os for GBP access to obtain better
performance. The number of synchronous I/Os per transaction hovers from the high-20s to
the mid-30s for GBP sizes ranging 5 GB - 151 GB. During those measurements, there is no
clear relationship between CPU time and increased GBP size, as shown in Figure 3-24.
However, when a 566 GB group buffer pool is used, synchronous I/Os are down to less than 5
per transaction, and there is clear performance advantage in terms of class 2 CPU time. At
this point, a large group buffer pool clearly benefits this workload.

Figure 3-24 Db2 Class 2 CPU time with increasing GBP size

3.6.2 Summary

Large group buffer pools can help to minimize the number of synchronous reads for
GBP-dependent objects. The access time to a group buffer pool is about three orders of
magnitude faster than access to disk. This difference shortens the transaction’s class 3
suspension time, which results in faster transaction response time and improves overall
workload throughput.

The reduction in the number of synchronous reads for GBP-dependent objects should also
benefit transaction CPU time. However, in our observation, access shifting from DASD I/O to
CF requests results in longer CF service times in our environment and negatively affects
transaction CPU time. It is not until synchronous I/Os are drastically reduced (566 GB
measurement) that we begin to observe improved transaction class 2 CPU time.
120 IBM Db2 12 for z/OS Performance Topics

3.7 Data set open/close performance

Currently, a maximum of 200,000 open data sets is allowed per Db2 subsystem. Opening a
large number of data sets can be time consuming. z/OS release Version 2 Release 2 made
some improvements to data set open (and close) processing to enhance data set
allocation/deallocation time.

3.7.1 DFSMS changes in z/OS V2R2

DFSMS was enhanced to allow more and faster data set open (and close) processing.

Faster search for Access Method Block List
The Access Method Block List (AMBL) is a VSAM internal control block that is associated
with opened clusters. Within VSAM, the AMBLs are organized in sequential chains. These
chains can be long when many clusters are opened. Then, going through the chain to locate
an AMBL (mainly during close processing) takes a long time and performance can be
affected.

z/OS V2R2 addresses this issue with large AMBL chains and improved performance for Db2
linear clusters. VSAM now builds a binary tree to track the opens and closes for each cluster.
In a sense, it looks similar to the volume table of contents (VTOC) Index, which is a binary
tree that is pointing to VTOC. With this binary tree, a faster search can be done to determine
the last open processing. With many open data sets, a significant improvement can be
expected, though performance is not expected to improve when there are only a few open
clusters.

Moving VSAM control blocks above the bar
Although the limit of open data sets in Db2 is 200,000, the practical number can be much
less, depending on the virtual storage that is available below the bar. Having many open
VSAM data sets (in the DBM1 address space) uses a large amount of virtual storage that
must be in 31-bit addressable private storage in z/OS V2R1.

In DFSMS V2R2, some of the control blocks for linear clusters (VSAM LDS) are moved above
the bar, if requested so by the Media Manager caller. This new feature can free up virtual
storage that is allocated below the bar and allows media manager interface users to open
more clusters than they did previously because the required storage is now allocated in 64-bit
addressable memory.

The Media Manager interface for this improvement is not an externally documented interface.
Only authorized callers (such as Db2) can request to use this feature.

3.7.2 Db2 for z/OS changes

Db2 12 uses this enhancement to allow more control blocks to be allocated above the bar.

With the PTF for APAR PI73101, changes were also made in Db2 12 to reduce the storage
cushion to 10% of the region size and to reduce the amount of storage that is reserved for
MVS usage to allow for more usable storage below the bar. This enhancement is also
available in Db2 11 with APAR PI71764.

Use z/OS Version 2 Release 2 or higher with Db2 12 to take advantage of these performance
enhancements.
Chapter 3. Synergy with the IBM Z platform 121

3.7.3 Performance evaluation

Several measurements were conducted to observe the storage, CPU, and open/close data
set performance effect with Db2 V12 by using z/OS 2.2 on a z13 processor with eight CPs.
The measurements also had MEMDSENQMGT enabled, GRS STAR was used, and
enhanced catalog sharing was enabled.

With 20 concurrent SQL jobs that were running to open 200,000 data sets, it took 465
seconds to open all the data sets. The measured total CPU time to open 200,000 data sets
with z/OS 2.2 on z13 processor was 384 seconds. Storage usage peaked at 942.12 MB of
31-bit storage and 1151 MB of 64-bit storage for a total of 2093.12 MB of real storage used.

A DSMAX DSNZPARM value of 200,000 is the maximum value allowed in Db2 11 and 12.

Using the same workload, DSMAX was changed to 100,000 (by using the -SET SYSPARM
command) to force the closing of 100,000 data sets. It took 6 minutes to close and reopen
those data sets.

3.8 zHyperWrite

In update-intensive applications, the wait time for Db2 log write I/O (typically at commit time)
often makes up a significant portion of the transaction latency, especially when disk
synchronous mirroring is enabled.

zHyperWrite is designed to speed up the latency of log writes in a synchronous peer-to-peer
remote copy (PPRC) environment. With zHyperWrite enabled, Db2 triggers a log write I/O to
the secondary disk subsystem in parallel to the log write I/O to the primary disk subsystem.
By overlapping the two I/Os (which are run serially without zHyperWrite enabled), a
significant reduction in Db2 log write I/O time is possible.

zHyperWrite technology was introduced in the IBM DS8870 7.4 firmware release and
requires corresponding software usage os PTFs for z/OS V2.1 (APARs OA45662, OA45125
and OA44973) and z/OS 2.2 base code. Db2 use of this feature was developed in Db2 12 and
retrofitted back to Db2 10 and Db2 11 and is available through Db2 APAR PI25747. A new
Db2 system parameter REMOTE_COPY_SW_ACCEL is introduced to enable or disable the
zHyperWrite feature.

Although improved active log write performance can result in improved response time for Db2
operations, increased SRB time in the Db2 MSTR address space might be observed because
the extra (Media Manager) I/O requests are handled under MSTR SRB process when
zHyperWrite is enabled.

The benefit of zHyperWrite reduces as the distance of replication increases.

Performance measurements with zHyperWrite
A number of performance measurements were conducted to evaluate zHyperWrite by using a
workload with concurrent batch inserts triggered by two members of a Db2 data sharing
group. In this environment, PPRC is configured without any distance between the storage
boxes.

Note: Functions that are provided in older releases can also be used to improve allocation
performance, including S99DASUP and MEMDSENQMGMT.
122 IBM Db2 12 for z/OS Performance Topics

As shown in Figure 3-25, a 40% elapsed time reduction was observed by using zHyperWrite,
which resulted in a 22% overall transaction response time improvement.

Figure 3-25 zHyperWrite performance

A minor CPU increase was observed in the Db2 MSTR address space to trigger the extra
I/Os using zHyperWrite. The SRB time in MSTR address space is zIIP eligible starting with
Db2 11.

In some cases, another indirect benefit of zHyperWrite can be observed. The reduced log
write wait time (from zHyperWrite) can lead to reductions in other types of contentions, which
in turn can result in more CPU time savings because Db2 has fewer contentions
(suspend/resume activities) to manage.

3.9 Active log data set striping

VSAM data set striping for Db2 active log data sets were commonly used to improve the
throughput processing that triggers heavy update activity. With significant improvement in
disk subsystem technology, some of the bottlenecks that were seen in log write I/Os shifted
and in those cases, the use of active log striping does not add any benefit.

Should you strip the active log data sets? Because many factors influence whether it is
beneficial to stripe the active log, a simple answer to this question is no longer available.

In this section, we describe the basic process that is used in log striping and the results from
measurements that were taken in a controlled environment at the Silicon Valley Lab.

Note: This section is not meant to be a comprehensive study of active log striping. For
example, the environment that we used did not include synchronous disk mirroring
(Peer-to-Peer Remote Copy). Our intention is to demonstrate some of the factors and
considerations that influence the performance of active log striping.
Chapter 3. Synergy with the IBM Z platform 123

3.9.1 How Db2 log striping works

A striped Db2 active log data set uses VSAM striping to spread log data across multiple
volumes. To create a striped log data set, more than one volume must be specified for the
VSAM cluster, the SMS data class definition for the data set must use the extended type
(EXT), and the sustained data rate must be greater than zero for the SMS storage class.

The number of volumes that is specified for allocation of the active log data set becomes the
number of stripes. Allocating across two volumes results in two stripes, four volumes are four
stripes, and so on. When the stripe count is greater than one, a single log I/O request from
Db2 is transformed to a number of parallel I/O requests. This process is done by DFSMS and
the z/OS storage management software, and is transparent to Db2.

Db2 active log striping
After log striping is enabled, Db2 log data is divided into control interval (CI) size chunks and
spread across multiple volumes during the I/O operation. Because the smallest unit of I/O to a
volume is a CI, striping across multiple volumes occurs only when the log I/O size is greater
than one CI size. The CI size of the Db2 active log data sets is normally 4 KB (we assume
that the CI size is 4 KB for the rest of the section).

The degree of I/O parallelism depends on the log I/O request size and the number of stripes.
For example, if Db2 triggers a log write request of 32 KB and the number of stripes is four, the
request is converted to four concurrent I/Os of two CIs each to the four volumes. In the case
of using two stripes, the same log write request of eight CIs is converted to two concurrent
I/Os of four CIs each to two volumes.

In both cases, a log write request should complete faster with striping when compared to
non-striping, as the I/O to multiple volumes are done in parallel. However, the performance
benefit varies depending on the log request size. If the average log request size is less than a
CI size of 4 KB, no advantage is gained in striping the log.

The Db2 log I/O size is determined by the amount of logging that must be done, the frequency
of commit, and the number of concurrent update transactions. The log I/O size of online
transactions tends to be small, as this type of workload tends to have a smaller log size and
uses frequent commits. The log I/O size of update-intensive batch jobs tends to be larger with
less frequent commits.

A larger log I/O request size benefits the most from striping, as more parallel I/O can be
achieved. If the log I/O request size is 128 CIs, four stripes result in four concurrent I/Os and
two stripes result in two parallel I/Os. In this example, four stripes will yield less log wait time
and better log throughput. However, if the log I/O request size is two CIs, four stripes result in
only two parallel I/Os and two stripes also result in two parallel I/Os. In this case, four and two
stripes yield similar log wait time and log throughput; therefore, no advantage is gained by
using four stripes. The performance benefit of striping size depends on the average size of
the log I/O and the number of stripes.
124 IBM Db2 12 for z/OS Performance Topics

3.9.2 Performance measurements

To better understand the factors that influence log striping performance, several tests were
conducted with and without striping, and the effect on the workload’s performance was
measured.

The active log data sets were allocated on volumes on IBM storage DS8870 with 15 KB RPM
drives and 16 GB high-performance IBM FICON® channels. Each extent pool in the DS8870
had three 6+P RAID 5 arrays with rotate extents. The Db2 active log data set size was
approximately 4 GB. For striped logs, each volume was from a different extent pool, which
ensured that each volume was on a different set of physical disks.

OLTP and batch INSERT workloads were run with different number of stripes for the Db2
active log data sets. These tests were conducted in a controlled environment with no other
work on the z13 system and the DS8870 storage control unit.

For the OLTP workload, the logs share the extent pools with user data. The OLTP workload
generates 75% reads and 25% writes (10% of the write requests are from log writes) to the
DS8870 control unit. The average size of a log write I/O was 2.6 CIs, or about 10.6 KB.

The results of the test are listed in Table 3-2.

Table 3-2 OLTP workload using active logs with a variable number of stripes

As the number of stripes for the active logs were increased, the average log write I/O time
went down up to four stripes. Because the average number of CIs per log write was 2.6, the
most parallelism we observed was three I/Os. Therefore, we saw a reduction in the average
log write I/O time from no stripes to four stripes, but no other advantage was observed by
going to eight stripes.

An increase in the MSTR CPU time that is associated with striping was observed. This result
occurred because of the associated CPU cost in the media manager from issuing more I/Os
per log write request. Depending on where the log data sets are stored, the database I/O
performance varied a little among the tests.

As listed in Table 3-2, although there was a reduction in the log write wait times, there was no
significant affect on the overall transaction response time. Most of the transaction elapsed
time was spent reading the database (synchronous I/O wait), rather than waiting for the log
write to occur at commit time.

OLTP Workload
(400 concurrent users)

Non-striped
log

Log stripe =
2

Log stripe =
4

Log stripe =
8

Average transactions per
second

4779 4804 4834 4820

Average database I/O time
(MBps)

6.405 6.510 6.382 6.439

Average log write I/O time
(MBps)

1.936 1.010 0.894 0.963

MSTR CPU time per commit
(MBps)

0.0005 0.0008 0.0009 0.0100
Chapter 3. Synergy with the IBM Z platform 125

The average database I/O time in the tests is rather high. The workload uses large buffer
pools (70 GB in total) and when an occasional I/O occurs, the data is often not found in the
DASD controller cache and the data must be accessed from the spinning disks. The use of
solid-state drives (SSDs) might help to reduce the database I/O times, but they were not used
during these tests.

In addition to an OLTP workload, several batch INSERT workloads were measured with and
without striping the active log data sets. The first set of batch INSERT workloads runs 200
concurrent threads with 200 inserts per commit. This run generates the maximum possible
log write size of 128 CIs per log write I/O request. During these tests, each volume that was
used by the striped active logs was on a different extent pool. However, the logs shared the
extent pools with the user data.

The results of these measurements are listed in Table 3-3.

Table 3-3 Batch insert workload using 128 CI log write I/Os with a variable number of stripes

With 128 CIs per log write request, the average log write time was reduced substantially when
more stripes were used. Therefore, the insert rate and log write rate throughput increased
with more stripes. The Db2 MSTR CPU time increased slightly as more stripes were used.
However, this increase in MSTR CPU time is zIIP eligible. Therefore, this set of test results
prove large log writes can benefit greatly from striping.

The second set of batch INSERT measurements used right concurrent threads with 50
inserts per commit. This configuration generated an average of 12 CIs per log write request,
which is one track of data per I/O. The results of these tests are listed in Table 3-4.

Table 3-4 Batch insert workload using 12 CI log write I/Os

With 12 CIs per log write request, we saw a similar performance benefit in terms of insert rate
as with 128 CIs per log write request for a four-stripe active log, compared to a non-striped
active log. However, less increase in log write throughput (27% versus 69%) was observed.

Batch Insert
(200 isrt/cmt from 200 thds)

Non-striped
log

Log stripe =
2

Log stripe =
4

Log stripe =
8

#INSERTs per second 542,000 744,000 918,000 1,091,600

Average. log write I/O time
(MBps)

69.658 49.917 39.310 32.874

MSTR CPU time per commit
(MBps)

0.030 0.035 0.037 0.041

LOG rate for 1 log (MBps) 219.58 301.30 372.00 442.58

Batch Insert
(50 isrt/commit from 8 thds)

Non-striped
log

Log stripe = 4

#INSERTs per second 288,700 365,400

Avg. log write I/O time (MBps) 0.814 0.545

MSTR CPU time per commit (MBps) 0.222 0.226

LOG rate for 1 log (MBps) 116.44 147.66
126 IBM Db2 12 for z/OS Performance Topics

A third set of batch INSERT measurements were run, with and without striping. They both ran
10 concurrent threads with 1 insert per commit. This configuration generated an average of
1.1 CI per log write request. The results are listed in Table 3-5.

Table 3-5 Batch insert workload using 1.1 CI log write I/Os

Even with only 1.1 CI written per log write I/O request, we still observed a benefit by using
active log striping. However, when compared against the 12 CI per log write requests with four
stripes scenario, the improvement lessened in log write I/O throughput (20% versus 27%).

3.9.3 Usage considerations for Db2 active log striping

The expected benefit from log striping depends on many factors, such as hardware
configurations, commit frequency, the log size being written, a=nd disk and channel
utilization.

Log write I/O size
Log striping tends to benefit batch workloads the most because the log write size for batch
workloads is generally considerably larger compared to OLTP workloads. As demonstrated in
our batch measurement tess, the larger the log write size, the more the workload benefits
from log striping as the log requests are split into multiple parallel I/Os.

Number of stripes and log write I/O size
With a large log write I/O size, such as when writing 128 CIs per log write I/O, eight stripes
resulted in a good benefit. With smaller log write I/O sizes, the use of eight stripes did not
provide as much benefit.

Disk configuration and location of the active logs
OLTP workloads can gain benefits from the use of log striping if non-striped active logs are
becoming hot spots on disks. By striping to volumes on different extent pools, we can spread
the log I/O to reduce disk contention.

Batch Insert
(1 isrt/commit from 10 thds)

Non-striped
log

Log stripe = 4

#INSERTs per second 14,900 17,800

Avg. log write I/O time (MBps) 0.465 0.357

MSTR CPU time per commit (MBps) 0.053 0.053

LOG rate for 1 log (MBps) 19.83 23.79
Chapter 3. Synergy with the IBM Z platform 127

The performance gain from striping active log data sets can be larger when there is hardware
contention. However, the benefit can be minimal when there is no disk contention, such as
when dedicated control units are used for the Db2 logs. By means of demonstration, an OLTP
brokerage workload was run with the Db2 logs and data that was allocated on separate
storage control units, and with the Db2 log and data allocated on the same storage control
unit for non-striped and striped active log data sets. The results are shown in Figure 3-26.

Figure 3-26 Effect of location of active logs on non-striped versus striped log data sets

When the Db2 log and the data are on separate control units, the log I/O wait time is small for
the non-striped case because no contention with the data exists. Therefore, the benefit of
striping when the Db2 log and the data are on separate control units is miniscule.

However, when the Db2 log and the data are sharing the same control unit, we observed a
48% reduction in log I/O wait time with striping. This issue occurs because when the log and
the data are on the same control unit, hardware contention resulted without striping. With
striping, hardware contention was considerably reduced by spreading the log data sets
across multiple stripes.

Disk mirroring
Whether log striping is enabled, log I/O is susceptible to problems that are caused by remote
DASD replication. Each I/O introduces a risk of a potential delay because log write I/O is
synchronous to the Db2 transaction. Also, because striping creates more I/Os, striping might
increase the risk of a delay.

Hardware configuration considerations
If possible, each log data stripe should be on a different RAID rank to avoid potential
contention. If logs and data are on the same RAID rank, avoid sharing RAID ranks with
update intensive tables and indexes that cause (many) asynchronous writes, such as Db2
deferred writes and castout writes. To reduce the disk constraint, allocate Db2 active logs on
the fastest disk available, such as 15 KB RPM drives or even better, allocate them on SSDs.

0

0.5

1

1.5

2

2.5

Log and Data separate CU Log and Data same CU

Lo
g

w
rit

e
I/

O
 w

ai
t t

im
e

Log and Data allocation impact on Log Write
Response Time for Log Write I/O Size ~10K

Non Stripe 2 Stripes

-

-

128 IBM Db2 12 for z/OS Performance Topics

3.10 Easy Tier directive data placement support by Db2
REORG utility

Multi-tier storage devices, such as the DS8870 and DS8880, with software, such as IBM Easy
Tier®, provide management of data sets across SSDs, fast hard disk drives (HDDs), and slow
disk drives that are based on usage. Data set extents that are accessed frequently are
considered “hot” and Easy Tier directs the extents to be migrated to SSDs (if installed).

Conversely, data set extents that are rarely or never accessed are migrated to the fast (but
expensive) HDDs or even to the slow (less expensive) HDDs (if installed).

A highly used Db2 table space or index likely is migrated, at least in part to the SSDs over
time. When the table space is then reorganized, the newly created data sets likely are not
allocated on SSDs but on slower or slowest HDDs. Customers then experience increased I/O
time after a reorganization until Easy Tier recognizes the data sets are hot and migrates them
to an SSD.

Conversely, the original data set extents are still considered hot for some time until Easy Tier
determines they are no longer in use. Data sets are managed by DFSMS and the DS8870
has no knowledge that the data sets were deleted, and valuable SSD space cannot be reused
immediately.

New functionality called directive data placement was added to the DS8K (introduced by
DS8870 microcode level R7.4), and DFSMS Media Manager added new interfaces to allow
Db2 for z/OS REORG SHRLEVEL CHANGE and SHRLEVEL REFERENCE utilities to copy
the “temperature signature” from the old data sets to the new data sets and then, at
completion of the reorganization, to set the temperature of the old data sets to “cold”.

The DFSMS Media Manager support is available in z/OS 1.13 and above. If z/OS 1/13 or
z/OS 2.1 is used, PTF for APAR OA46482 must be installed.

APAR PI82904, which is still open at the time of this writing, provides the support for this
enhancement in Db2 12. This functionality is available in Db2 10 and 11 for z/OS by using
APAR PI35321.
Chapter 3. Synergy with the IBM Z platform 129

130 IBM Db2 12 for z/OS Performance Topics

Chapter 4. Data sharing

In this chapter, we describe the improvements to data sharing that were introduced with Db2
12 for z/OS. The main focus of these functions is performance and availability, and most of
them do not require user action to take effect.

This chapter includes the following topics:

� 4.1, “Global commit LRSN enhancement ” on page 132

� 4.2, “Global read LSN enhancement ” on page 135

� 4.3, “Asynchronous lock structure duplexing ” on page 137

� 4.4, “Automatic retry of GRECP and LPL recovery” on page 143

� 4.5, “Retrying GRECP and LPL recover in Db2 12” on page 146

� 4.6, “Db2 shutdown and restart performance improvement when many read/write objects
are used” on page 147

� 4.7, “Db2 peer recovery” on page 149

4

© Copyright IBM Corp. 2017. All rights reserved. 131

4.1 Global commit LRSN enhancement

An IRLM lock request is a fairly expensive operation. New lock requests can conflict with
existing locks and create lock contentions. Also, lock contentions typically result in longer
transaction elapsed times. For a long time, Db2 was implementing lock avoidance techniques
to avoid acquiring locks whenever the semantics of the query allow it to do so. Ideally, more
effective lock avoidance means taking fewer locks, which reduces lock contentions to improve
transaction elapsed times.

One of the techniques that is 0used by lock avoidance is called commit LRSN (CLSN)
checking. For every page in any page set, Db2 tracks the last “time” that page was updated.
The instance is an RBA (for non-data sharing) or an LSRN (for data sharing) value. To explain
how commit LRSN (CLSN) checking works, we call this value (A).

Db2 also tracks the instance of the oldest uncommitted activity for every page set or partition.
This value is called the commit LRSN (or CLSN value) and the value is an LRSN or an RBA
value, depending whether it is data sharing. We call this value (B). Consider the following
points:

� For non-GBP-dependent page sets, the CLSN is at the page set level. It is the LRSN of the
oldest uncommitted unit of recovery for all the active transactions for that specific page
set.

� For GBP-dependent page sets, a Global CLSN value is maintained for the entire data
sharing group. It is the LRSN of the oldest uncommitted unit of recovery across all
members of the data sharing group and across all pages or partitions (regardless of
whether the object is GBP-dependent).

The lock avoidance that is based on CLSN checking depends on the fact that if the value (A)
is less than (B), Db2 can be sure that everything on the page can be committed. Therefore,
there is no need to get a lock on the page or row (if lock avoidance is allowed).

Otherwise, if value (A) is greater than (B), Db2 performs another lock avoidance check before
acquiring a lock. However, that check is not relevant to the Db2 12 enhancement that is
described in this section.

For more information about lock avoidance, see DB2 9 for z/OS: Resource Serialization and
Concurrency Control, SG24-4725.

Db2 11 uses a single Global CLSN value for the entire data sharing group for GBP-dependent
page sets. To take better advantage of the Db2 lock avoidance logic, all applications that
access data concurrently should commit frequently to advance the Global CLSN quickly.
When not doing so, a single transaction that does not commit can hold back the Global CLSN,
which keeps the entire data sharing group from implementing lock avoidance effectively.

Db2 12 was enhanced to overcome situations in which a single (or a few) transactions that do
not commit frequently can ruin lock avoidance for all users.

Db2 12 still tracks the CLSN value at the page set or partition level as before. Also, each
member uses a system agent to maintain a list of the (approximately) 500 oldest CLSN
values and their corresponding page set or partition. This information is stored in the SCA
structure in the coupling facility (CF) to share among the members.
132 IBM Db2 12 for z/OS Performance Topics

When the CLSN lock avoidance check for a GBP-dependent object is done in Db2 12, the list
with 500 oldest CLSNs is consulted first. If the page set that is being accessed is in the list,
that CLSN is used. If the page set is not in the list, the highest CLSN value in the list is being
returned as the global CLSN value. This value should be considerably better than the Db2 11
case where the lowest CLSN value is used as the global CLSN value to be checked against
by the lock avoidance logic.

In a data sharing environment, each member also needs a global view if other members also
are using this object. Therefore, the global list of object-level CLSN values is stored in the Db2
SCA structure for all members to check.

This feature is available in Db2 12 at function level V12R1M500 and higher.

A new LRSN keyword was added to the -DISPLAY DATABASE command. It shows the commit
LRSN and read LRSN for a specific page set. For more information about the read LRSN and
sample command output, see “Displaying the commit and read LRSN” on page 135.

4.1.1 Performance effect of not committing frequently before Db2 12

The chart that is shown in Figure 4-1 shows the effect a single, long-running unit of recovery
(UR) can have on the number of lock and unlock requests of other transactions in the system.
In this example, a single, long-running transaction performs database updates but does not
issue frequent COMMITs. The transaction is holding an exclusive lock on a single object.
Although the object is not used by the classic IRWW workload that is being measured here,
its performance is greatly affected by its CLSN not advancing quickly.

Figure 4-1 IRWW workload with a long running UR - locks and unlocks per commit in Db2 11

In a data sharing environment, Db2 uses a global (group-wide) CLSN to determine whether
lock avoidance can be used. In these situations where a single UR is not committing, the
global commit LSN cannot move forward and Db2’s lock avoidance does not work effectively.

As a result of ineffective lock avoidance, the number of lock and unlock requests increases,
which leads to an increase in Db2 CPU usage. For the two-way Classic IRWW workload that
is used in this scenario, the Db2 class 2 CPU time increased by 7.6% when a single
misbehaving transaction caused lock avoidance to be ineffective.
Chapter 4. Data sharing 133

4.1.2 Performance effect of not committing frequently in Db2 12

By providing greater granularity for the commit LSN, data sharing workload performance can
improve significantly by using Db2 12. Instead of keeping a single global CLSN for all
GBP-dependent objects, more commit LSN values for a maximum of (about) 500 object-level
(page set or partition) are tracked.

Figure 4-2 shows that the use of the new Db2 12 design, long-running “misbehaving”
transactions (those transactions that do not commit frequently) no longer cause other
transactions to suffer. Db2’s lock avoidance strategy works effectively, even if there are many
objects with open units of recovery for a long time because Db2 now maintains a list of oldest
CLSNs on a per object basis instead of having everything depend on the single global CLSN
for all GBP-dependent objects.

Figure 4-2 IRWW workload with a long running UR - locks and unlocks per commit in Db2 12

With this enhancement, a single misbehaving transaction that is accessing an object that is
unrelated to the IRWW workload no longer has a negative influence on the amount of lock
avoidance that is used by the transactions of the IRWW workload, as they did in Db2 11. Also,
when more misbehaving transactions against other objects are introduced, there is no
significant effect on the IRWW workload.

The detailed metrics for the test scenario are shown in Figure 4-3.

Figure 4-3 IRWW workload with a varying number of long URs: Lock, unlock, and CPU time effects

LOCK
REQUESTS

UNLOCK
REQUESTS

MSTR
CPU

DBM1
CPU

IRLM
CPU

CLASS 2
CPU Total DB2 CPU

DB2 CPU
Increase
Compared
to baseline

DB2 CPU
Saving
Compared
to No Lock
Avoidance
(E)

A - Baseline (no misbehaving txn 15.28 6.75 0.000034 0.000056 0.000003 0.000598 0.000690 10.3%
B - 1 misbehaving txn 15.49 6.79 0.000034 0.000055 0.000004 0.000599 0.000692 0.2% 10.1%
C - 100 misbehaving txns 15.71 6.90 0.000035 0.000056 0.000007 0.000607 0.000704 2.0% 8.5%
D - 250 misbehaving txns 15.77 6.92 0.000035 0.000057 0.000008 0.000610 0.000709 2.7% 7.9%
E - Lock Avoidance Not Working 22.83 7.97 0.000037 0.000059 0.000010 0.000665 0.000769 11.4%
134 IBM Db2 12 for z/OS Performance Topics

Consider the following points:

� There is no DBM1 or MSTR CPU time affect as the number of misbehaving transactions
or objects increased from 0 to 250.

� A slight increase in CPU time can be observed when the number of misbehaving
transactions or objects increased to 100 and 250, due to the longer list of objects to
manage object-level commit LRSN values for. However, the increase is significantly lower
compared to what the increase would be if lock avoidance was not effective.

4.1.3 Conclusion

The performance measurements that use the classic IRWW workload show that with the Db2
12 global CLSN enhancement, the effect of transactions that do not commit frequently on
other concurrent transactions can be mitigated to a great extent.

Transactions that must access the same objects that are being updated by the misbehaving
transactions still suffer because those objects’ CLSN value are still kept from advancing until
the bad transactions commit. Therefore, it is still important to commit frequently and avoid
long running (updating) transactions.

4.2 Global read LSN enhancement

Similar to tracking the (global) commit LSN for updating transactions, Db2 also keeps track of
the read interest by using the Read LSN or RLSN at the buffer pool level.

Before Db2 12, the read LSN for a BP in a data sharing environment is the minimum value
across all the Db2 members for that BP. The read LSN tracks the oldest read claim against an
object (or objects in a buffer pool) and is used by Db2 space management to determine
whether deleted space can be reused. A good example is to determine whether it is
acceptable to reuse space from deleted LOBs. Db2 must ensure that nobody is still using
those deleted LOBs before the space is reused for new LOBs. In certain cases, deleted LOB
space is not reused effectively because of an infrequently updated read LSN resulted from
transactions that do not commit frequently, which causes the LOB space to grow prematurely.

Db2 12 improves performance and space reuse by providing greater granularity for the read
LSN. These values are kept at object level (page set or partition) in each Db2 member’s
memory. Each member also tracks a maximum of 500 object-level oldest read LSN values to
be exchanged with other data sharing members, as each member also needs a global view of
which other members are using these objects.

Therefore, the 500 oldest object-level read LSN values are also stored in the SCA for all
members to access, which is similar to the Db2 12 commit LSN enhancement.

Displaying the commit and read LRSN
A new LRSN keyword was added to the -DISPLAY DATABASE command. It shows the
current commit LRSN and read LRSN value for a specific page set. For more information
about commit LRSN, see 4.1, “Global commit LRSN enhancement ” on page 132.

Issuing the -DISPLAY DATABASE(TESTTD) SP(TESTTS) LRSN command produces the output that
is shown in Example 4-1 on page 136. It shows the 10-byte read LRSN and commit LRSN for
table space TESTTS in hexadecimal, and the value that is converted into local time format.
Chapter 4. Data sharing 135

Example 4-1 -DIS DB LRSN command output

DSNT360I -DB2B ***********************************
DSNT361I -DB2B * DISPLAY DATABASE SUMMARY
 * GLOBAL LRSN
DSNT360I -DB2B ***********************************
DSNT362I -DB2B DATABASE = TESTTD STATUS = RW
 DBD LENGTH = 4028
DSNT397I -DB2B
NAME TYPE PART LRSN TIMESTAMP
------ ---- ----- --------------------------- -------------------
TESTTS TS 0001 COMMIT 00D0C8E70FAA8BE90000 05/23/2016 01.23.37
 READ 00D0C8E70FAA8BE90000 05/23/2016 01.23.37
******* DISPLAY OF DATABASE TESTTD ENDED *******************
DSN9022I -DB2B DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

If you suspect that something is holding back the commit LRSN or read LRSN, issuing the
command more than once is an easy way to verify whether the values are moving forward or
stalling.

4.2.1 Performance evaluation

A customized workload was used to evaluate the performance effect of the enhanced RLSN
tracking. The workload consists of two separate programs that access two separate tables
that contain LOB columns. The measurements were done by using a two-way data sharing
group setup. The test scenario is as follows:

� Program #1, running on Db2 member 1, performs SELECT operations from a LOB column
from Table #1 every 3 seconds without committing.

� Program #2, running on Db2 member 2, first performs 400,000 DELETEs (committing
every 10 rows) from Table #2 containing a LOB column, followed by 400,000 INSERTs
(again committing every 10 rows) into Table #2.

� Table #1 and Table #2 and their associated LOB table spaces all use the same buffer pool.

The objective was to measure the effect on Db2 CPU time of Program #2, and to evaluate the
space reuse for Program #2.

The key metrics from these tests are summarized in Table 4-1.

Table 4-1 Read LSN enhancement measurement results

Per commit Without Read LSN
enhancement
baseline (A)

With Read LSN
enhancement
(B)

Delta %
(B-A)/A

INSERT functionality

Class 1 Elapsed time (sec) 0.063282 0.013549 -78.6

Class 2 Elapsed time (sec) 0.062400 0.012687 -79.7

Class 1 CPU time (sec) 0.040667 0.001805 -95.6

Class 2 CPU time (sec) 0.040430 0.001576 -96.1

GETPAGES 9,807.01 1,048.17 -89.3

BUFFER UPDATES 9,012.96 214.57 -97.6
136 IBM Db2 12 for z/OS Performance Topics

The following key observations can be made from the workload’s performance data that is
listed in Table 4-1 on page 136:

� Using the enhanced read LSN functionality resulted in complete reuse of the space during
INSERT processing into the table that contains the LOB. This empty space was created by
the DELETEs that preceded the INSERTs.

� The INSERTs also use significantly less CPU and the number of GETPAGES is
significantly reduced because the space search algorithm is much more effective now that
it has a more granular read LSN value to determine whether space can be reused.

� No significant regression for the DELETE operations was observed as read LSN is not
required for delete operations.

4.2.2 Conclusion

Based on the measurements, it is safe to conclude that the new functionality that maintains a
more granular read LSN value can result in performance and space management
improvements for tables that contain LOB columns.

With this enhancement, isolating certain objects that are used by misbehaving transactions in
a separate buffer pool to improve space reuse for other objects that are accessed by
“well-behaved” transactions should no longer be required.

4.3 Asynchronous lock structure duplexing

Running some or all of the SCA, lock, and group buffer pool structures in duplex mode is one
way to achieve high availability for these structures across many types of failures (including
lost connections and damaged structures) in a Db2 data sharing environment.

Db2 lock structures in the CF are managed by XES and can be set up with system-managed
duplexing for high availability in a CF failure. This setup is often used to avoid “double”
failures, which are a failure of a Db2 member (including its IRLM) and a failure of the lock
structure at the same time. An example of a double failures situation is when a machine that
hosts a z/OS LPAR running Db2 and the ICF LPAR where the lock structure of that Db2
resides fails.

EXT/DEL/DEF (sec) 0.011522 0.000009 -99.9

NACTIVE - BEFORE running
workload

8,545,320 8,545,320

NACTIVE - AFTER running workload 15,019,200 8,545,320 -43.1

DELETE functionality

Class 1 Elapsed time (sec) 0.014918 0.014351 -3.8

Class 2 Elapsed time (sec) 0.014280 0.013709 -4.0

Class 1 CPU time (sec) 0.000834 0.000847 1.6

Class 2 CPU time (sec) 0.000645 0.000656 1.7

GETPAGES 122.18 122.18 0.0%
Chapter 4. Data sharing 137

4.3.1 System-managed duplexing protocol

System-managed duplexing for any CF structure requires every structure update request to
occur in both the primary and the secondary structures at the same time. Two identical
commands are sent to both structures to be run in parallel, and both must complete
successfully before the update result is returned to the exploiter, which is IRLM in Db2’s case.

Figure 4-4 shows the sequence of operations that are involved in the current synchronous
duplexing protocol (or system-managed duplexing) for lock structures between two coupling
facilities CF1 (primary) and CF2 (secondary). Each step from the time a lock structure update
request is sent by the exploiter (Db2 IRLM in this case) to XES and receiving the response
back by the exploiter is shown in Figure 4-4.

Figure 4-4 System-managed duplexing protocol

The following steps are shown in Figure 4-4:

1. The request is sent from the exploiter (Db2 IRLM) to XES.

2. The CF request is sent to both instances of the structure (in CF1 and CF2).

3. Each CF sends a Ready-To-Execute (RTE) signal to its peer CF, which indicates that it is
ready to start processing the request. When the CF sends its RTE signal and received the
corresponding signal from its peer CF, it can start running the request.

4. The necessary latches are acquired and the request is processed by each CF.

5. When each CF finishes processing the request, it sends a Ready-To-Complete (RTC)
signal to its peer, which informs it that it completed processing and is ready to release the
resources that are associated with that request. (Enabling the DUPLEXCF16 option in the
COUPLExx FUNCTIONS statement or by using the SETXCF FUNCTIONS command allows
the RTC exchange to occur asynchronous to the completion of the request and might help
to reduce the affect of Step 5).

6. When the CF sends its RTC signal and received the corresponding RTC from its peer, it
sends its response back to XES.

7. XES returns to the exploiter to indicate that the request completed.

z/OS

CF1 CF2

ExploiterXES
Split/Reconcile

1. Request in

2a. Req out
6a. Response

7. Response out
z/OS

3. Exchange of “Ready to Execute” signals

2b. Req out
6b. Response

5. Exchange of “Ready to Complete” signals

4. Obtain latches, execute synchronized commands in both CFs
138 IBM Db2 12 for z/OS Performance Topics

Although synchronous system-managed duplexing provides a robust recovery mechanism for
the CF lock structures by enabling failover to another CF in case of connectivity or other CF
failures, it should be clear from Figure 4-4 on page 138 that every CF update request requires
CF-to-CF communication and synchronization signals to coordinate execution.

Commands run in lock-step between the two CF structure instances (primary and
secondary). There is a significant performance overhead, even with no distance between the
CFs, which can result in increased utilization rates of the LPAR CPs, CF CPs, and the CF
links or subchannels). This overhead increases as the distance between the primary and the
secondary CF increases.

Because of these overheads, many customers choose not to use lock structure duplexing,
even when that choice results in bearing the risks of exposing themselves to the
single-point-of-failure of having a simplex lock structure.

4.3.2 Asynchronous duplexing protocol

With Db2 12, a new feature, asynchronous duplexing for lock structures, is introduced to
address the performance issues that are associated with synchronous system-managed
duplexing of the lock structures while maintaining the same level of availability capability of
duplexing lock structures.

How a lock request is run by using the new asynchronous duplexing protocol is shown in
Figure 4-5.

Figure 4-5 Asynchronous duplexing protocol for Db2 lock structures

In this model, the secondary structure updates are performed asynchronously regarding
primary structure updates. The following processing steps are performed:

1. The request is sent from the exploiter (Db2-IRLM) to XES.

2. The CF request is sent only to the primary structure (in CF1).

3. After the request is processed by the primary CF (CF1), a reply is returned to XES (and
the exploiter). In addition to the usual return code (and other information), a new lock
request sequence number is returned.
Chapter 4. Data sharing 139

4. This information is returned to IRLM and Db2 and stored there and is used later during the
process. The application now can continue processing; therefore, this processing is similar
to the use of a lock structure in simplex mode.

5. The primary CF (CF1) sends the lock requests to the secondary CF (CF2) asynchronously
and information is exchanged so that the primary is aware of the arrival and storing of the
requests at the secondary structure.

6. The secondary CF received the requests and can start processing them. As the requests
all have a sequence number, the secondary CF can process the lock requests in the same
order as the primary.

7. To ensure integrity, at log force write time (typically at commit) Db2 must ensure that all of
the lock requests from the unit of work were processed by the secondary CF as well so
both contain the same information regarding this unit of recovery(UR).

8. To ensure that this process occurred, Db2 (IRLM) checks with XES to see whether the
highest sequence number from the UR that is committing was processed by the
secondary CF by using a new IXLADUPX request (as indicated by a blue arrow in
Figure 4-5).

If the highest lock sequence number that is requested by our UR is less than or equal to
the highest lock request number that is processed by the secondary CF then, the request
is completed and Db2 can continue with the commit processing. If not, the request is
suspended in XES and is resumed after the highest lock request that is processed by the
secondary CF catches up with the highest lock sequence number that is used by our
committing UR.

9. As transactions typically do other work besides locking, it is expected that many times
these IXLADUPX requests (as indicated by a blue arrow in Figure 4-5 on page 139) can
complete immediately without being suspended.

This enhancement is intended to make multi-site sysplex operations and duplexing of CF lock
structures at longer GDPS distances more practical by reducing the need for speed-of-light
communication delays during the processing of every duplexed update operation. In case of
Db2/IRLM, only at log sync times (such as at COMMIT) is the secondary structure queried to
ensure that all of the CF updates were written to both primary and secondary lock structure.
The expectation is that, in general, the ratio of lock structure updates to transactional
sync-ups can be much higher than 1:1, and this ratio gives us a performance advantage over
synchronous system-managed duplexing.

The use of this feature employs the z/OS asynchronous duplexing support for lock structures
in the CF and includes the following prerequisites:

� CF Level 21 with service level 02.16 or above
� z/OS V2.2 SPE with the PTF for APAR OA47796
� Db2 12 with the PTF for APAR PI66689
� IRLM 2.3 with the PTF for APAR PI68378

With all the prerequisites in place, asynchronous duplexing is supported starting at function
level V12R1M100. However, all members must be Db2 12. That is, coexistence mode is not
supported. If a Db2 11 member joins the group, asynchronous duplexing is ended and the
structure is rebuilt in simplex mode.

Note: Asynchronous duplexing is a duplexing protocol enhancement and it does not affect
the cost of access to a remote primary (or simplex) lock structure. That cost, along with the
costs of handling any sync/async conversion that occurs because of distance to the lock
structure, is not reduced by this duplexing protocol enhancement.
140 IBM Db2 12 for z/OS Performance Topics

4.3.3 Performance measurements

A series of measurements were conducted to evaluate the performance effect of the use of
asynchronous lock structure duplexing. The Classic IRWW workload was used in a two-way
data-sharing setup. The setup for the tests used CFs that were created in the same physical
z13 box that also housed the LPARs for the Db2 subsystems. That is, the tests did not involve
physical or simulated distance between the CFs and the LPARs. For the tests, the Db2 group
buffer pools were duplexed, and SCA was not duplexed.

The following sets of measurements were performed:

� A workload was run by using a simplex setup for the lock structure.

� A workload was run by using synchronous system-managed duplexing for the lock
structure.

� A workload was run by using the new asynchronous duplexing for the lock structure.

The key data points that were generated from these measurements are listed in Table 4-2.

Table 4-2 Asynchronous lock structure duplexing using IRWW workload

Note: Asynchronous lock structure duplexing is only available for the Db2 lock structure,
not the SCA.

RAW DATA COMPARISONS

(times in
microseconds)

Simplex
(A)

Sync duplex
(B)

Async
duplex
(C)

Sync duplex
vs. simplex
(B-A)/A

Async duplex
vs. simplex
(C-A)/A

Async
duplex vs.
sync duplex
(C-B)/B

Db2 Member 1

LPAR CPU
utilization

40.37% 56.78% 44.21% 16.41% 3.84% -12.57%

ETR (txns/sec) 1,451 1,453 1,470 0.11% 1.30% 1.19%

ITR (txns/sec) 3,594 2,558 3,324 -28.82% -7.50% 29.96%

Class 2
CPU/commit

533 958 600 79.74% 12.57% -37.37%

MSTR
CPU/commit

55 54 73 -1.82% 32.73% 35.19%

DBM1
CPU/commit

52 58 48 11.54% -7.69% -17.24%

IRLM
CPU/commit

1 5 2 400.00% 100.00% -60.00%

TOTAL Db2
CPU/commit

641 1075 723 67.71% 12.79% -32.74%

Db2 Member 2
Chapter 4. Data sharing 141

The data that is shown in Table 4-2 on page 141 shows that for the classic IRWW workload,
the following observations were made:

� Over a 30% reduction in Db2 CPU time per transaction can be observed when
asynchronous duplexing was used, compared to the CPU usage when using the
synchronous system-managed duplexing mode for the Db2 lock structure.

� Approximately a 13% increase in Db2 CPU time per transaction was measured when
asynchronous duplexing was used, compared to the CPU usage when simplex mode is
used for the Db2 lock structure.

� The evaluations that are described in this section were done at the IBM Silicon Valley Lab.
For those measurements, no distance between the two coupling facilities existed. At the
time of this writing, the IBM Systems team is planning to document several performance
evaluations they conducted in which a distance between the coupling facilities does exist.

4.3.4 Conclusion

Based on the measurements in Table 4-2 on page 141, customers who use synchronous
duplexing for Db2 lock structures see a significant reduction in Db2 CPU usage after
switching to use asynchronous duplexing.

LPAR CPU
Utilization

40.37% 55.16% 43.62% 14.79% 3.25% -11.54%

ETR (txns/sec) 1,455 1,446 1,473 -0.63% 1.24% 1.88%

ITR (txns/sec) 3,603 2,621 3,376 -27.27% -6.30% 28.84%

Class 2
CPU/commit

527 941 590 78.56% 11.95% -37.30%

MSTR
CPU/commit

55 55 72 0.00% 30.91% 30.91%

DBM1
CPU/commit

42 44 49 4.76% 16.67% 11.36%

IRLM
CPU/commit

1 5 2 400.00% 100.00% -60.00%

TOTAL Db2
CPU/commit

625 1045 713 67.20% 14.08% -31.77%

Coupling Facility A: Primary lock structure

CF Utilization -
ICF3A

11.30% 25.10% 24.10% 13.80% 12.80% -1.00%

Coupling Facility B: Secondary lock structure

CF Utilization -
ICF3B

9.70% 31.50% 23.40% 21.80% 13.70% -8.10%
142 IBM Db2 12 for z/OS Performance Topics

Customers who do not use Db2 lock structure duplexing see an increase in CPU usage if they
start using asynchronous duplexing. They also should consider whether the increased cost of
the extra CPU overhead outweighs the benefits of achieving increased availability by using
asynchronous lock structure.

4.4 Automatic retry of GRECP and LPL recovery

Before we describe the changes in Db2 12 that are related to retrying GRECP and LPL
recovery, we review the changes in this area over the last couple of Db2 versions.

4.4.1 GRECP recovery

The group buffer pool RECOVER-pending (GRECP) status is set for GBP-dependent objects
when Db2 detects there is something wrong with one or more group buffer pool structures in
the CF with pages that were not externalized.

When a structure failure or 100% loss of connectivity is detected, Db2 performs damage
assessment (DA) to mark the GBP-dependent page sets in the affected group buffer pool or
pools as GRECP. When a Db2 member is also involved in such a failure, all GBP-dependent
objects are put into GRECP during group restart.

To recover from a GRECP condition, you must issue a -STA DB(xx) SP(yy) command.
GRECP marked objects are then recovered from information in the logs. Before Db2 V5, you
manually issued the -START DB command for the page sets in GRECP status.

Db2 V5 automatic GBP recovery
In Db2 V5, automatic recovery of GRECP objects was introduced. This feature was for a
failure of the GBP and for total loss of connectivity by all members, but the Db2 systems are
still available.

If AUTOREC YES is set for a group buffer pool, Db2 performs an automatic recovery. If
AUTOREC NO is set or Db2 failed, the -START DATABASE commands still must be issued.

Db2 V9 automatic GBP recovery during restart
Although automatic GRECP is a useful feature, the Db2 V5 enhancement did not help when
some or all of the Db2 members failed alongside the GBPs. This issue effectively always is
the case in many disaster recovery scenarios. The Db2s then must be restarted (not taken
down cleanly) and also missing their group buffer pools.

To help with this issue, Db2 V9 introduced auto GRECP recovery on Db2 restart (at the end of
restart) when a GBP failure occurs. This functionality applies to a group restart and a normal
restart.

Each Db2 starts only GRECP recovery for group buffer pool-dependent objects that it had an
update interest in at the time this Db2 came down (R/W state). AUTOREC is used to control
this functionality and must be set to YES to realize automatic GRECP recovery on restart.
When Db2 starts automatic GRECP recovery after restart, it attempts to acquire a conditional
drain for each GRECP object. If Db2 is successful in acquiring the drain, it performs the
recovery from the log.
Chapter 4. Data sharing 143

All the drained objects are recovered by using one -START DB command. The reason for this
command is twofold. First, this command results in only one scan of the log. Second, and
more importantly, the objects do not need to be sequenced (that is, the catalog and directory
objects do not need to be done first). Fast log apply is always used, as fast log is part of
restart.

If the drain of an object is not successful or GRECP recovery fails, a DSNI005I message is
issued and the object remains in GRECP. For those objects where the drain fails, you must
issue a manual -START DB command to resolve the GRECP condition.

The following exceptions apply when automatic GRECP recovery is not used:

� Db2 is restarted with the DEFER ALL option.
� Db2 is restarted in system level PITR mode.
� Db2 is started in tracker mode.
� Db2 is restarted in restart LIGHT mode.

4.4.2 LPL recovery

A page that is in error can be logically or physically in error. A page is considered logically in
error if Db2 expects its problem can be fixed without redefining new disk tracks or volumes for
the object. For example, if Db2 cannot write pages to disk because of a (temporary)
connectivity problem, the pages are logically in error. To track this issue, Db2 inserts entries
for those pages that are logically in error into a logical page list (LPL). The object’s pages are
put into LPL for data integrity protection.

Entries that are added to the LPL results in the following common situations:

� Transient DASD read/write errors that can be fixed without redefining the DASD

� Must complete operation could not access the GBP/DASD for read and write:

– Apply UNDO/REDO log records during the BLR and FLR restart phase
– Apply UNDO log records during rollback
– Force-at-commit write failure to GBP

� During must complete activities when Db2 cannot obtain the required page P-lock or page
latch for a page or set of pages

� Pages that the Db2 castout process cannot successfully cast out

� Pages from the restart DEFER objects list during the restart

Pages in LPL are unavailable for any access until the LPL condition is removed. To resolve
the LPL condition for an object, you issue the -STA DB(xx) SP(yy) command for every object
with an LPL exception condition. Db2 then reads the Db2 log and applies any changes to the
page set.

The RECOVER, REBUILD, and LOAD utilities can also be used to recover LPL pages. If the
-START DATABASE command fails to successfully recover the LPL pages, you are forced to
recover the whole page set by using the RECOVER/REBUILD utility, or reloading the data.
144 IBM Db2 12 for z/OS Performance Topics

Db2 V8 automatic LPL recovery
The manual process of resolving LPL conditions can be time-consuming if there are many
objects with pages in the LPL. This process also can extend the time that some applications
are unavailable. This manual process can also be error prone because some of the objects
can be missed when the -START DB commands are issued, especially when there is a long list
of objects to be recovered.

Starting in Version 8, Db2 automatically attempts to recover pages that are added to the LPL
when they are added to LPL. When pages are added into LPL, Db2 issues message
DSNB250E to indicate the LPL page range and the names of the database, the page set or
partition, and the reason for adding the page to the LPL.

If the automatic LPL recovery runs successfully, LPL pages are deleted from the LPL and
Db2 issues the message DSNI021I to indicate the successful completion of the recovery. If
the automatic LPL recovery does not run successfully, pages are kept in the LPL and Db2
issues the DSNI005I to indicate the failure of the automatic LPL recovery. In this case,
manually recovering the pages in LPL is required by using a -START DB(xx) SP(yy) command
or by running the RECOVER/REBUILD utility or LOAD utility with REPLACE option.

Automatic LPL recovery is not started by Db2 in the following situations:

� DASD I/O error
� During Db2 restart or end restart time
� GBP structure failure
� GBP 100% loss of connectivity.

Db2 11 automatic LPL recovery at end of restart
Db2 11 improved the LPL recovery process by starting automatic LPL recovery of objects at
the end of normal restart and restart light.

If the restart involves any indoubt or postponed abort (PA) units of recovery (URs), the LPL
recovery that is associated with those URs is not automatically triggered at the end of restart.
These objects cannot be automatically recovered because Db2 does not know the entire LPL
log range for indoubt and PA URs until they are resolved.

The auto-LPL recovery process is not triggered for any of the following circumstances:

� If the Db2 member is started in access maintenance mode
� If the Db2 member is started in point-in-time (PIT) Recovery mode
� If the Db2 member is started at a tracker site
� If the Db2 member is involved in any type of conditional restart
� If DEFER ALL was specified on installation panel DSNTIPS
� For objects that are explicitly listed in a DEFER object list on installation panel DSNTIPS
� For table spaces that are defined as NOT LOGGED

The processing for automatic LPL recovery is similar to the auto-GRECP recovery processing
that is done at the end of restart in that the auto-LPL recovery uses the messages to report
LPL recovery progress, errors, and successful completion.

Db2 makes only one attempt to automatically recover LPL objects. If the auto-LPL recovery
fails at restart time, the DBA can manually recover the LPL objects by issuing -START DB
commands or regular auto-LPL recovery can perform the recovery at the appropriate time.
Chapter 4. Data sharing 145

4.5 Retrying GRECP and LPL recover in Db2 12

Although Db2 came a long way to automate GRECP and LPL recovery, Db2 typically tries to
perform auto recovery only once. Often, automatic recovery fails because of some transient
condition; for example, not all objects in GRECP are auto recovered because of contention
with other members during the group restart.

What typically happens is that after seeing the DSNI049I (GRECP/LPL recovery completed)
message, a -DISPLAY DB command is issued to list all the objects that are still in GRECP/LPL,
and then manual -START DB commands are issued for those objects. In most cases, the
transient condition, such as contention, is resolved by this time and the command now
succeeds in removing the GRECP/LPL condition.

Would it be useful if Db2 performs this retry if it typically has a good chance of being
successful? Db2 12 can perform that retry process because it automatically retries
GRECP/LPL recovery for you.

Although Db2 12 provides the capability to retry the GRECP/LPL recovery after it failed
before, it does not retry indefinitely. In some cases, things can be broken, and there is no
point to retry as the -STA DB2 command continues to fail and the problem must be analyzed
and addressed.

Db2 retries to automatically resolve GRECP/LPL conditions three times (from each member)
before giving up. In Db2 12, Db2 checks (the DBET) and generates an (internal) report of all
the page set or partitions in GRECP/LPL status every minute.

If one object’s failed recovery was retried or it was retried more than 3 minutes ago, Db2
starts the GRECP/LPL recovery process for the object. The retry counts are monitored and
each object has up to three retry opportunities. If the third retry still fails to recover a
GRECP/LPL contention, Db2 gives up and the GRECP/LPL condition must be resolved
manually by issuing the -START DB command or some other means.

The retry LPL/GRECP recovery tasks are scheduled as system agents in the DBM1 address
space and are zIIP eligible. Retry tasks are scheduled for up to 100 objects at each one
minute interval. If Db2 detects that there are already 500 LPL/GRECP recovery tasks
running, it stops scheduling new tasks. The automatic GRECP/LPL recovery retry tasks use a
correlation ID of DRSTRT02.

The same messages (DSNB320I, DSNB321I, DSNB322I, and DSNB323I) are used to report
GRECP status, and message DSNB250E is used to report LPL status. The same DSNI049I
message is used to indicate that the retry task completed.

Also, the same data manager messages are used to report the start and completion of the
automatic GRECP and LPL recovery retries for individual objects (DSNI006I for the start of
GRECP/LPL recovery and DSNI021I for the successful recovery). As before, check for
message DSNI005I to find the reason why the GRECP/LPL recovery retry failed.

When automatic GRECP/LPL recovery is triggered at the end of restart, it recovers all
GRECP/LPL object by using a single command. The Db2 12 automatic retry feature
schedules recovery in the following order:

� Schedule SYSLGRNX and its indexes (DSNLLX01, DSNLLX02)
� Schedule all other DIRECTORY GRECP objects
� Schedule all CATALOG GRECP objects
� Schedule all users GRECP objects
146 IBM Db2 12 for z/OS Performance Topics

Db2 does not schedule retry tasks when Db2 is one in the following conditions:

� Is started for Point In Time Recovery (PITR)
� Is started as Tracker Site
� Is using the DEFER ALL option
� Is started in ACCESS(MAINT) mode

For INDOUBT or POSTPHONED ABORT (PA) URs, LPL recovery can be retried after the
INDOUBT or PA condition is resolved.

As this enhancement is mainly a usability and availability enhancement, no specific
performance measurement were conducted to evaluate this enhancement. However,
performance is expected to be similar to automatic GRECP/LPL recovery.

This functionality is available in Db2 12 at function level V12R1M100.

4.6 Db2 shutdown and restart performance improvement when
many read/write objects are used

Before Db2 12, the Db2 shutdown process first takes a system checkpoint following a -STO
DB2 MODE(QUIESCE) or MODE(FORCE) command, where the Db2 Buffer Manager (BM)
component writes a checkpoint Page Set Control Record (PSCR) for every page set that is
open-for-update to the log. Next, the BM shutdown code closes all page sets, and writes a
close PSCR log records for most (if not all) the page sets that were checkpointed.

During the subsequent restart, Db2 reaches the last system checkpoint’s log records first. It
sees all the checkpoint PSCR log records, and allocates control blocks for each of the page
sets. Then, it discards them when Db2 proceeds with restart and sees the close PSCR log
records.

Starting in Db2 12, shutdown drives the data set close process first, and performs the system
checkpoint after. This way, during the subsequent restart, Db2 does not see any checkpoint
PSCRs for successfully closed page sets and the restart process must allocate only control
blocks for objects with indoubt or postponed Units of Recovery (URs) when the Db2 was last
stopped. This change results in faster Db2 shutdown and restart time and less storage is
required during restart.

In Db2 12, the shutdown process performs the same tasks as in previous Db2 releases, only
in a different order. But, the seemingly simple change can make subsequent Db2 restart
complete in less time and use less storage.

This enhancement applies to data sharing and non-data sharing environments.

4.6.1 Performance measurements

A set of OLTP workload measurements were performed to analyze the performance effect of
this enhancement on Db2 shutdown and restart elapsed time. There were 7800+ read/write
objects closed during Db2 shutdown.

Db2 restart performance
With this enhancement, Db2 restart time is 5.58 seconds, compared to 6.77 seconds without
the enhancement, which is 1.19 seconds faster.
Chapter 4. Data sharing 147

A closer examination reveals that nearly all of the time savings are achieved during the status
rebuild (CSR) phase. More specifically, the CSR phase took 3.25 seconds without the
enhancement, while only 2.23 seconds were needed with the enhancement. This saving of
1.02 seconds out of 3.25, or more than 30% is impressive. The detailed breakdown of the
Db2 restart measurement is listed in Table 4-3.

Table 4-3 Db2 restart time measurement

Db2 shut down performance
In addition to the restart time savings, a shortened Db2 shutdown time was observed during
the workload test with this enhancement enabled. Most savings result from faster DBM1
shutdown, as is to be expected because DBM1 handles the Db2 page sets.

A reduction in the Db2 shutdown time of nearly 5 seconds out of 37 seconds was measured.
Without the enhancement, Db2 shutdown had to write 7800+ checkpoint PSCR log records,
followed by 7800+ page set close PSCR log records. With the enhancement, Db2 shutdown
only had to write 7800+ close PSCR log records and no checkpoint PSCR log records. The
reduced amount of logging makes a difference here. A breakdown of the Db2 shutdown time
is listed in Table 4-4.

Table 4-4 Db2 shut down measurement

Event
(Times in seconds)

Without the enhancement With the
enhancement

Delta
(with/without)

Time
between
phases

Cumulative
time

Time
between
phases

Cumulative
time

Time
between
phases

Cumulative
time

-CEB2 STA Db2
(begin restart)

0.00 0.00 0.00 0.00

DSNJ099I: End of Log
Initialization phase

3.18 3.18 3.02 3.02 -0.16 -0.16

DSNR004I: End of Current
Status Rebuild phase

3.25 6.43 2.23 5.25 -1.02 -1.18

DSNR005I: End of Forward
Log Recovery phase

0.01 6.44 0.00 5.25 -0.01 -1.19

DSNR006I: End of Backward
Log Recovery phase

0.00 6.44 0.00 5.25 -1.19

DSNR002I: Restart
Completed

0.33 6.77 0.33 5.58 -1.19

Event
(Times in seconds)

Without the
enhancement

With the
enhancement

Delta
(with/without)

Time
between
phases

Cumulative
time

Time
between
phases

Cumulative
time

Time
between
phases

Cumulative
time

-CEB2 STO Db2
-CEB2 Subsystem Stopping

0.00 0.00 0.00 0.00

DSNL005I: DDF is stopping 0.00 0.00 0.00 0.00

DSNL006I: DDF stop complete 1.02 1.02 1.02 1.02
148 IBM Db2 12 for z/OS Performance Topics

4.6.2 Usage considerations

There are no external parameters that are associated with this enhancement. The
enhancement is available in Db2 12 at function level V12R1M100.

4.7 Db2 peer recovery

Db2 12 peer recovery is a new feature that responds to customer requirements. It was
developed for GDPS automation to perform Db2 peer restart to automate retained lock
recovery of failed Db2 members after LPAR failures without requiring Automatic Recovery
Management (ARM) or other external automations.

Peer recovery refers to a Db2 data sharing member’s ability to automatically recover retained
locks on behalf of a failed member. The recovery process is implemented by initiating the
restart light of the failed member. That is, if a member fails, a surviving member with the
proper DSNZPARM setting initiates a restart light of the failed member.

Db2 already performs peer status rebuild (to rebuild the SCA and ensure that all page set and
partition P-locks are reacquired) and peer forward recovery (to ensure that all of the locks are
reacquired and the lock structure is rebuilt) today during group restart if not all members are
being restarted. However, those restart phases do not perform any processing to resolve
retained locks of the member (or members) not being restarted. It is this stage that the new
peer recovery comes in.

DSNX922I: Begin Disconnect of
SP Address Spaces from Db2

0.00 1.02 0.00 1.02

DSNX923I: All SP Address
Spaces are now disconnected

5.00 6.02 5.00 6.02

DSNY025I: DBM1 shutdown is
complete

31.70 37.72 26.87 32.89 -4.83 -4.83

DSNY025I: DIST shutdown is
complete

0.01 37.73 0.01 32.90 -4.83

DSNY025I: MSTR shutdown is
complete

0.87 38.60 1.46 34.36 +0.59 -4.24

DSN9022I: DSNYASCP 'STOP
Db2' normal completion

0.00 38.60 0.01 34.37 +0.01 -4.23

DXR110I: IRB2002 stop
command accepted (IRLM)

0.49 39.09 0.99 35.36 +0.50 -3.73

DXR121I: IRB2002 End-of-Task
Cleanup Successful (IRLM)

0.36 39.45 0.45 35.81 +0.09 -3.64

DSN3100I: Subsystem CEB2
Ready for start command

1.69 41.14 1.57 37.38 -0.12 -3.76
Chapter 4. Data sharing 149

A new DSNZPARM, called PEER_RECOVERY, allows you to specify whether this data
sharing member is to participate in data sharing peer recovery and what role the member has
in the peer recovery process. The following acceptable values for PEER_RECOVERY are
available:

� NONE

This member does not participate in peer recovery. Use this option if z/OS ARM is
configured to restart failed Db2 member. This value is the default value.

� RECOVER

This member should be recovered by a peer member if it fails.

� ASSIST

This member should attempt to start peer recovery for other failed members. When this
member detects a failure, it attempts to start a LIGHT(YES) restart for the failed member
(if it is not started) to recover the retained locks.

� BOTH

Both RECOVER and ASSIST options are activated for this member.

Peer recovery is accomplished by one of the assisting members starting a restart light for the
failed member. The LIGHT(YES) option is used, along with the ZPARM that was used by the
failed member. The first peer assist member to obtain the lock for the failed member then
attempts the restart light.

4.7.1 Performance measurements

A TPC-E two-way data sharing workload was used to evaluate the Db2 peer restart feature,
focusing on the following metrics:

� The elapsed time for (peer) restart light to resolve retained locks.
� The CPU and storage usage during restart light.

The two-way data sharing members, CEB1 and CEB2, had their DSNZPARM
PEER_RECOVERY set to BOTH in this test.

The test scenario is such that initially the Db2 12 data sharing members CEB1 and CEB2 are
steadily running an OLTP workload on systems STLAB10 and STLAB11. Suddenly, STLAB10
fails (and it is confirmed at 11:20:27.28 by operator) and 0.82 seconds later, Db2 member
CEB1 was brought up using LIGHT(YES) by CEB2. The messages concerning CEB1’s
restart light are listed in Table 4-5.

Table 4-5 Db2 peer recovery: Timeline and messages issued

Timestamp Message
number

Command or message text Comments

11:20:28.10 -CEB1 START DB2,PARM(ZPCEB1),
LIGHT(YES)

Restart begins

11:20:37.24 DSNJ099I Log recording to commence with
StartRBA=000000000004D2131000

End of 'log
initialization' phase

11:20:39.74 DSNR004I Restart…UR Status Counts
In Commit=0, Indoubt=0, Inflight=65,
In Abort=0, Postponed Abort=0

11:20:39.74 DSNR007I Restart…Status Table End of 'current status
rebuild' phase
150 IBM Db2 12 for z/OS Performance Topics

Using Db2 12 peer recovery, it took only 0.82 seconds for the surviving Db2 member CEB2 to
attempt restarting the failed Db2 member CEB1 with LIGHT(YES) on the remaining LPAR
STLAB11 from the point of the operator confirmation of STLAB10’s failure.

After approximately another 75 seconds, all of the 65 inflight transactions on CEB1 were
resolved and all the retained locks were handled and freed. After the successful recovery,
CEB1 then shuts down automatically, as is always the case when restart light is used.

Before STLAB10’s unplanned outage at 11:19, both LPARs were running at a CPU utilization
rate of about 70%. CPU utilization for STLAB11 reached nearly 100% while restarting the
CEB1 member was recovering its retained locks.

After CEB1 ended, CPU utilization remained high for STLAB11 because workload balancing
(WLB) moved all of CEB1’s user threads to CEB2, and STLAB11 had to handle all the
workload that is normally intended for two LPARs.

After LPAR STLAB10 comes up again and CEB1 is restarted normally on STLAB10, WLB
rebalances the user threads among CEB1 and CEB2, and STLAB11’s intense workload is
relieved in turn.

11:21:26.87 DSNR005I Restart…Counts After Forward Recovery
In Commit=0, Indoubt=0

End of 'forward log
recovery' phase

11:21:27.20 DSNR006I Restart…Counts After Backward Recovery
Inflight=0, In Abort=0, Postponed Abort=0

End of 'backward log
recovery' phase

11:21:42.81 DSNR002I Restart completed

11:21:42.83 DSN9022I DSNYASCP 'STA DB2' Normal Completion Restart completed

11:22:00.88 DSN3100I Subsystem CEB1 Ready for Start Command
Chapter 4. Data sharing 151

This CPU utilization rate pattern throughout this scenario is shown in Figure 4-6.

Figure 4-6 Histogram of sysplex PLX10's CPU Utilization

Before STLAB10’s unplanned failure, CEB1 and CEB2 together were processing
approximately 5,300 transactions per second. Transaction processing came almost to a halt,
with only a few transactions running on CEB2 until CEB1 successfully resolved the retained
locks.

After workload balancing shifted all user threads to CEB2, the ETR of CEB2 rose to
mid-3000s. At this point, transactions that were running were experiencing unusually high
contention and were taking longer to complete.
152 IBM Db2 12 for z/OS Performance Topics

The evolution of the transaction rate that was observed during the test is shown in Figure 4-7.

Figure 4-7 Histogram of the data sharing group's ETR

Figure 4-8 on page 154 shows STLAB11’s storage usage. Approximately 85,000 MB was
used by the LPAR when the normal workload was running. During the 2-minute interval in
which CEB1’s restart LIGHT(YES) is executing, STLAB11’s storage footprint went up to
86,500 MB. The additional 1,500 MB was used by CEB1 to resolve incomplete Units of
Recovery (URs) and recover retained locks.

After restart light completed and CEB1 ended, storage usage remained higher than normal
because CEB2 had more thread storage usage after WLB moved all CEB1’s user threads to
CEB2. It is expected that STLAB11’s real storage usage returns to a normal level after CEB1
reopens on STLAB10.
Chapter 4. Data sharing 153

Figure 4-8 Histogram of STLAB11’s storage usage

4.7.2 Usage considerations

Db2 12 peer recovery does not change the way restart LIGHT(YES) works. The same
recovery process occurs. The advantage of using the new peer recovery feature is that the
activity of recovering retained locks and in-flight URs can be controlled by Db2 without
involving any manual operator interventions or the need to set up external tools (such as
ARM) to trigger the process.

However, if you are using automated system restart or ARM, there is no other benefit of using
the Db2 peer recovery feature.

When using other types of automation, you have more control over where Db2 is restarted
and which restart LIGHT option to use. Db2 peer restart always uses LIGHT(YES).

Peer recovery applies only to Db2 for z/OS. When a system fails, other components, such as
IMS, CICS, and WebSphere, also most likely must be restarted, if only to resolve indoubt
units of work. Db2 peer recovery does not help with restarting those components.

Customers must evaluate their own environments to decide whether to use Db2 peer
recovery.
154 IBM Db2 12 for z/OS Performance Topics

Chapter 5. Workload level measurements

In this chapter, we describe the results of some key performance measurements by using
different IBM internal workloads. They are used to measure overall performance
enhancements by using a combination of features from the latest Db2 for z/OS release. For
more information about the type of work that was performed by each of the workloads, see
Appendix A, “IBM Db2 workloads” on page 375.

In addition to the usual benchmarks, a special set of tests were conducted to evaluate how
hard we might drive the new fast unclustered insert algorithm. These measurements are also
described in this chapter.

The following workloads were used to evaluate the overall and some specific Db2 12
performance enhancements:

� High volume INSERT benchmark
� Classic IRWW workload measurements
� Distributed IRWW workload performance measurements
� IBM Brokerage transaction workload
� RTW workload
� High insert batch workload measurements

This chapter includes the following topics:

� 5.1, “High volume INSERT benchmark ” on page 156
� 5.2, “Classic IRWW workload measurements ” on page 159
� 5.3, “Distributed IRWW workload performance measurements” on page 162
� 5.4, “IBM Brokerage transaction workload ” on page 166
� 5.5, “RTW workload ” on page 173
� 5.6, “High insert batch workload measurements” on page 180

5

© Copyright IBM Corp. 2017. All rights reserved. 155

5.1 High volume INSERT benchmark

Db2 12 introduces many performance-related enhancements, such as Insert Algorithm 2, the
support for active log data sets that are larger than 4 GB, and a reduction in latch class 19
and 23 and page latch contention. With these enhancements, Db2’s ability to process many
inserts in a short time is better than ever. To verify this ability, we assembled a team to
determine whether inserting 10 million rows per second can be accomplished in a Db2 for
z/OS environment.

At the end of the project, a maximum insert rate of 11.7 million inserts per second was
achieved for a table with no index defined. A rate of 5.3 million inserts per second was
achieved for a table with a single index defined. These results are described in more detail in
the following sections.

5.1.1 Workload description

The high volume of insert operations that are performed during this benchmark was driven
from an SQLJ (static Java) application that is running on Linux for System z. HiperSockets
communication was used between the Linux for System z and z/OS images to reduce
network latency. Sysplex workload balancing was enabled so that the inserts were distributed
evenly across all members of the Db2 data sharing group based on resource availability.

Table and index description
The table that was used for this benchmark consists of 10 columns, including BIGINT,
INTEGER, CHAR, VARCHAR, TIMESTAMP, and DECIMAL columns. A table space with a
total of 300 partitions (range-partitioned with absolute page numbering) was created by using
one of the BIGINT columns as the partitioning column. The inserted data rows were
approximately 200 bytes. COMPRESS YES was used on the table space to reduce the size
of the data.

For the workload run where the table had a (non-unique) index that is defined, the specified
columns for the index were BIGINT and INTEGER columns. A 32 K buffer pool was used for
the index to reduce the amount of index page split activity.

SQLJ driver application program description
A Java application (SQLJ) that uses static SQL to access the target table was developed to
generate the insert statements. To reduce the TCP/IP send and receive network
communication overhead, the inserts were batched into groups of 200 inserts (which resulted
in one multi-row insert with a rowset size of 200) per commit.

Sysplex workload balancing was enabled for the application to evenly distribute the inserts
across all Db2 members in the data sharing group. A value of RTPIFACTOR=10 was
specified in the z/OS IEAOPTxx parmlib member to reduce the influence the Performance
Index (PI) value has on the weights that are assigned by WLM to each LPAR. With the default
setting of 100, we observed abnormal situations where some Db2 members are dropped off
the sysplex list and no longer receive any work.

The package that was used by the SQLJ application was bound with
RELEASE(DEALLOCATE) to reduce CPU consumption.
156 IBM Db2 12 for z/OS Performance Topics

5.1.2 Hardware configuration

A single z13 box was used to conduct this high-volume insert benchmark. Two internal
coupling facilities (ICF) were used to house the Db2 lock structure, SCA structure, and group
buffer pools (GBPs) that were needed for the 12-wa Db2 data sharing group, and the other
structures necessary for the base 4-way sysplex configuration.

Db2 12 and z/OS 2.2 were used on each LPAR, while the CFs were using a CFCC level 21
code base. The CF links between the ICFs and z/OS LPARs consisted of four Internal
Coupling Facility Peer links (ICPs) and four Coupling over InfiniBand links (CIBs).

Two Linux for System z LPARs in the same z13 box were used to drive the benchmark
workload. Insert transactions that were generated by 1200 clients were distributed to the 12
members of the Db2 data sharing group by using sysplex workload balancing. HiperSockets
(Internal Queued Direct or IQD) were used to connect the Linux for System z LPARs and
z/OS LPARs.

During the benchmark, seven IBM DS8870 control units were used to store the Db2 logs and
data (and index). Each of these control units supports four 16 GB channels or eight 8 GB
channels. Approximately 70% of the drives are 15 K RPM drives and the rest are 10 K RPM
drives.

Each Db2 active log data set was approximately 50 GB in size to minimize full active log data
set switching. The active logs were dual copies on six IBM DS8870 control units and each log
was striped across four volumes.

All Db2 members’ LOGCOPY1 log data sets were defined on CEC0 I/O enclosures and
adapters of the control units, and all LOGCOPY2 logs on CEC1. To evenly distribute the logs,
each control unit supported logs from two data sharing members. The Db2 data (and index)
and Db2 catalog were on a separate DS8870 controller. The hardware configuration that was
used by this high volume insert benchmark is shown in Figure 5-1.

Figure 5-1 Configuration for 10 million insert benchmark
Chapter 5. Workload level measurements 157

5.1.3 Performance results

The workload was run by using 1200 threads for two different table configurations. During the
first measurement, the insert target table had no index and in the second measurement, the
target insert table had a defined partitioning index. Distributing the logs on six different IBM
DS8870 control units and separating data from logs improves the log write rate and reduces
log wait time in Db2.

An insert rate of 11.7 million per second was achieved during this measurement by using a
table without an index. An insert rate of 5.3 million per second was reached when the table
had a partitioning index. The benchmark results are listed in Table 5-1.

Table 5-1 Measurement results summary

The breakdown of the number rows that were inserted per second by each Db2 member for
the measurement that is run by using a table without an index that is defined is shown in
Figure 5-2.

Figure 5-2 Insert rate per member that uses a table without an index

Table without index Table with partitioning index

Inserts / second 11,797,700 5,364,300

Average log write wait time (ms) 3.953 5.13

Total logging rate (MBps) 2,017 1,663

Average log write I/O size
(bytes/request)

106,964 147,617
158 IBM Db2 12 for z/OS Performance Topics

The breakdown of the number of rows that are inserted per second by each Db2 member for
the measurement that is run by using a table with a partitioning index defined is shown in
Figure 5-3.

Figure 5-3 Insert rate per member that uses a table with one index

The Db2 members that are running on the STLAB12 system perform more inserts per second
than the other members. This result is largely because their Db2 active logs were all on faster
DASD, which reduced the elapsed time of the transaction. By removing the insert bottleneck
and using insert algorithm 2, the insert rate continues to increase until you encounter the next
bottleneck, such as logging I/Os, or CPU capacity. To use the full power of insert algorithm 2,
it is important to ensure that other limiting factors, such as log write I/O, I/O in general, or CPU
capacity are considered.

5.2 Classic IRWW workload measurements

In this section, performance evaluation results that use the Db2 Classic IRWW workload are
documented for several measurements that use Db2 11 and Db2 12 in one-way and two-way
data sharing environments.

The workload’s transactions are generated from IMS subsystems, which are locally
connected to the Db2 subsystems by using the IMS attachment facility. The measurement
scenarios were conducted in a sequence that customers are most likely to follow when they
migrate their Db2 subsystems.

For more information about the IRWW workload, see A.3, “IRWW distributed workload” on
page 379.
Chapter 5. Workload level measurements 159

5.2.1 Db2 11 to Db2 12 migration scenarios (one-way data sharing)

These Db2 measurements were conducted on a z/13 LPAR that used four dedicated general
CPs that was running z/OS V2.2. IMS 11 was used as the transaction manager by using
Message Processing Programs (MPPs) to drive the workload. All measurements used a
workload with 66% thread reuse. Packages are bound by using the RELEASE(COMMIT)
BIND option. The results of these measurements, which includes the internal throughput rate
(ITR), are listed in Table 5-2.

Table 5-2 ITR and CPU time for one-way classic IRWW that uses RELEASE(COMMIT)

Consider the following points regarding the information in Table 5-2:

� FTB refers to the Fast Traversal Blocks feature, which is also known as fast index traversal.

� The rebind was done by using the default APREUSE(NONE) option.

� As elsewhere in this document, the Total CPU time/commit is calculated by adding the
Db2 class 2 CPU time per commit and the total address space CPU time per commit.

A new performance feature that uses in-memory index optimization techniques (called fast
index traversal) is introduced in Db2 12 (for more information about this feature, see
Chapter 2, “Scalability enhancements and subsystem performance” on page 23). Significant
performance benefits can be achieved by using this new feature for transactions that use
random index access.

As the data in Table 5-2 shows, the Classic IRWW workload benefits greatly from this new
Db2 12 feature. A significant reduction in Total CPU/commit time and a notable increase in
transaction throughput, which is indicated by the ITR numbers, can be achieved by specifying
INDEX_MEMORY_CONTROL=AUTO in DSNZPARM (to enable fast index traversal). ITR is
the number of COMMITs/sec normalized to 100% CPU busy.

The significant reduction in getpage requests in Db2 12 with fast index traversal enabled is
the main contributing factor for the ITR and Total CPU/Commit time improvement. The
getpage activity details are listed in Table 5-3 on page 161. By using
INDEX_MEMORY_CONTROL=AUTO, the Db2 12 measurements that use function level
V12R1M500 yielded a 46.6% reduction in the number of getpages/commit compared to the
Db2 11 NFM measurement.

Classic IRWW measurement ITR
(commits/sec)

Total CPU/commit
(microseconds)

Db2 12 vs. Db2 11
CPU/commit
(delta %)

Baseline: Db2 11 NFM 4977 376 N/A

Db2 V12R1M100 (FTB Auto)
No rebind

5047 361 -4.0

Db2 V12R1M100 (FTB Auto)
After rebind

5048 354 -5.9

Db2 V12R1M500 (FTB Disabled)
No additional rebind

4975 369 -1.9

Db2 V12R1M500 (FTB Auto)
No additional rebind

5059 356 -5.3
160 IBM Db2 12 for z/OS Performance Topics

Table 5-3 One-way classic IRWW that uses RELEASE(COMMIT) getpages

One other finding from the measurement runs is that rebinding application packages
appeared to provide a small benefit in Db2 12, even for applications that use simple SQL,
such as the classic IRWW workload.

Real storage usage
The use of the new fast index traversal feature in Db2 V12 requires extra real memory to store
the FTBs. A new index manager storage pool is created for each Db2 subsystem or member
to store the FTBs.

In the one-way data sharing scenario that is described in this section
INDEX_MEMORY_CONTROL=AUTO or DISABLED were used. With the AUTO setting, Db2
uses a minimum of 10 MB, or up to 20% of the allocated buffer pool storage (whichever is
larger). The increase in Db2 V12 real storage is shown by the increase in non-buffer pool
storage, as listed in Table 5-4.

Table 5-4 One-way classic IRWW that uses RELEASE(COMMIT) DBM1 non-buffer pool storage

When INDEX_MEMORY_CONTROL=AUTO is used, an increase in non-buffer pool storage
usage is clearly seen, as listed in Table 5-4.

5.2.2 Db2 11 to Db2 12 migration scenarios (two-way data sharing)

The two-way data sharing environment is configured similarly to the one-way environment.
Both Db2 members are running on one z13 LPAR, each with four dedicated general CPs
available. The transactions are generated from two IMS subsystems, one on each of the
LPARs with connections to the Db2 member local to them.

The measurements that were taken during typical Db2 11 to Db2 12 migration stages by
using a two-way data sharing configuration are listed in Table 5-5 on page 162.

Classic IRWW
measurements

Getpages /commit Db2 12 vs. Db2 11
Getpages/commit
(delta %)

Baseline: Db2 11 NFM 81.91 N/A

Db2 V12R1M500 (FTB
Disabled)

81.90 0.0

Db2 V12R1M500 (FTB Auto) 43.64 -46.7

Classic IRWW measurement DBM1 Non-Buffer Pool
Storage (MB)

Db2 12 vs. Db2 11
Non-Buffer Pool Storage
(delta %)

Baseline: Db2 11 NFM 1391 N/A

Db2 V12R1M100 (FTB Auto)
No rebind

1745 25.4

Db2 V12R1M100 (FTB Auto)
After rebind

1741 25.2

Db2 V12R1M500 (FTB Disabled)
No additional rebind

1641 18

Db2 V12R1M500 (FTB Auto)
No additional rebind

1746 25.6
Chapter 5. Workload level measurements 161

Table 5-5 Two-way classic IRWW that uses RELEASE(COMMIT) ITR and CPU time

When running the classic IRWW workload in a two-way data sharing environment, the effects
of the data sharing overhead that is triggered by introducing inter-Db2 read/write interest can
be observed. When comparing the measurement results of the same migration step between
the one-way (see Table 5-2 on page 160) and two-way (see Table 5-5) data sharing tests, the
data sharing overhead is evident and reflected in an increase in Total CPU/Commit time and
reduction of the ITR per Db2 member.

However, the benefits of the fast index traversal feature are not diminished when comparing
the two-way to the one-way data sharing group measurements.

5.3 Distributed IRWW workload performance measurements

The distributed IRWW workload is the main workload that is used to evaluate Db2 12’s
performance capabilities in distributed environments. The workload includes the following
transactions:

� SQCL: CLI (dynamic) that uses Db2 Connect
� JDBC: JDBC (dynamic) that uses JCC T4 driver
� SQLJ: Static Java that uses JCC T4 driver
� SPCB: Stored procedures in COBOL (static) that uses Db2 Connect
� SPSJ: Stored procedures in SQLJ (static) that uses JCC T4 driver
� SPNS: Stored procedures in native SQL (static) that uses JCC T4 driver
� SP500: Total of 500 stored procedures in native SQL (static) that uses JCC T4 driver

Each of these transactions issues SQL statements to simulate the same set of business
functions, as described in A.3, “IRWW distributed workload” on page 379.

The test environment that was used to run these workloads used the following configuration:

� A z13 z/OS LPAR with 3 dedicated general CPs and 32 GB of memory that used z/OS 2.2.

� A Linux on System z on a z13 LPAR with three general CPs with Db2 Connect and Db2 for
Linux, UNIX, and Windows 10.5 (s130428).

� JCC driver 3.66.33, JDK 1.7.0, IBM J9 VM (build 2.6, JRE 1.7.0 Linux s390x-64
20121024_126071).

Classic IRWW measurement Average ITR
(commits/sec)
per member

Total CPU/commit
(microseconds) per
member

Db2 12 vs. Db2 11
CPU/commit
(delta %)

Baseline: Db2 11 NFM 3584 653 N/A

Db2 V12R1M100 (FTB Auto)
No rebind

3635 629 -3.7

Db2 V12R1M100 (FTB Auto)
After rebind

3548 621 -4.8

Db2 V12R1M500 (FTB Disabled)
No additional rebind

3672 622 -4.7

Db2 V12R1M500 (FTB Auto)
No additional rebind

3725 607 -7.0
162 IBM Db2 12 for z/OS Performance Topics

� IBM HiperSockets communication is used between the z/OS and Linux for System z
LPARs.

� All packages are bound by using the RELEASE(DEALLOCATE) BIND option. The MODIFY
DDF PKGREL command is used to control the use of the high-performance DBAT feature.

Multiple measurement runs that use this workload were analyzed to determine how well Db2
12 can process distributed work. The evaluation process focuses on identifying performance
differences between Db2 11 and Db2 12. The Db2 12 system was running at function level
V12R1M500. All packages were rebound at that function level before the measurements were
conducted. The total transaction CPU time per commit and Internal Throughput Rate (ITR)
are the two main key indicators that were used during the evaluation.

5.3.1 Distributed IRWW workload CPU usage

The measurement data was collected on the Db2 server side. From the collected data, Db2
accounting, statistics, and RMF reports were generated for analysis. The measurements
were done on an LPAR with no zIIP processors available, so the data does not account for
zIIP usage.

The Total CPU time per commit serves as the main metric in determining the CPU cost during
these performance tests. It is calculated by adding up the total address space CPU time per
commit from all the Db2 system address space (MSTR, DBM1, DIST, and IRLM) in the Db2
statistics report. The resulting time accounts for the CPU cost of the network communication,
and the Db2 agent CPU cost.

Non-stored procedure workloads
Table 5-6 lists the delta as the percentage difference between the measurement runs that use
Db2 11 and Db2 12, by using the DDF address space total CPU time per commit and Total
CPU time per commit metrics for the three non-stored procedure transactions of the
distributed IRWW workload. For example, -3.61 means Db2 12’s total CPU time per commit
improved by 3.61% over Db2 11. All of the workloads showed a CPU cost reduction of up to
3.75%, which demonstrates that Db2 12 performed slightly better compared with Db2 11
when processing non-stored procedure type distributed workloads.

Table 5-6 Distributed IRWW non-stored procedure workloads CPU time delta percentage

Delta % PKGREL(COMMIT) PKGREL(BNDOPT)

Workload DDF/commit Total CPU time
/commit

DDF/commit Total CPU time
/commit

SQCL -3.32 -3.61 -2.08 -2.60

JDBC -0.73 -0.28 -2.68 -2.87

SQLJ -3.25 -3.75 -1.31 -2.12
Chapter 5. Workload level measurements 163

Stored procedure workloads
Table 5-7 lists the delta (in percentage) between Db2 12 and Db2 11 measurement runs for
different types of stored procedure workloads. Db2 accounting class 1 CPU time and Total
CPU time per commit from statistics are used to compare the performance difference
between the two Db2 versions.

Table 5-7 Distributed IRWW stored procedure workloads CPU time delta percentage

The data shows that Db2 12 can offer a CPU cost reduction of up to 4.3% compared to Db2
11. The CPU time reduction can be attributed to several factors, such as Db2 storage
management improvements, DDF improvements, and the use of the fast index traversal
feature in Db2 12.

5.3.2 Distributed IRWW workload throughput

From the data that is gathered during the different measurement runs, the normalized
throughput (ITR) is calculated to use a basis for comparison between the work processing
capabilities of Db2 11 and Db2 12. ITR is used because it accounts for the LPAR CPU usage
rate.

The data that is listed in Table 5-8 lists ITR improvements ranging from a few percent up to
9% for Db2 12 compared to Db2 11 for the different types of workload. The improvements are
the result of the collective improvements from the new fast index traversal feature, the
claim/declaim skipping technique when RELEASE(DEALLOCATE) is used, EDM pool
management optimization, and other areas of improvements in Db2 12.

Table 5-8 Distributed IRWW workloads ITR delta percentage

Delta % PKGREL(COMMIT) PKGREL(BNDOPT)

Workload CL1 CPU time Total CPU time
/commit

CL1 CPU time Total CPU time
/commit

SPCB -2.05 -3.07 -3.00 -4.31

SPSJ -2.98 -3.50 -3.39 -3.95

SPNS -1.85 -2.61 -2.41 -3.49

SP500 -4.12 -4.06 -0.96 -1.20

Delta (%) Normalized throughput (ITR)

Workload PGKREL(COMMIT) PKGREL(BNDOPT)

SQCL 4.06 3.68

SPCB 2.49 3.89

JDBC 1.82 2.25

SQLJ 2.67 2.29

SPNS 2.56 4.02

SPSJ 3.34 4.05

SP500 4.85 8.94
164 IBM Db2 12 for z/OS Performance Topics

5.3.3 Real storage usage

Db2 12 for z/OS implemented several changes in the area of virtual and real storage
management to improve performance. Before Db2 12, several Db2 components used their
own storage management processes, which can result in unintended performance effects. In
Db2 12, these Db2 components were changed to use the services that are provided by the
Db2 Storage Manager component to manage storage for them in a centralized manner.

This change enables Db2 Storage Manager to gain more insight into how the Db2 storage is
used within the entire Db2 address space so it can communicate better with other Db2
resource managers. This communication helps to determine the amount of real storage
available for conditional use and thus improves the stability and availability of the Db2
subsystem.

A small percentage of real storage increase is expected as a result of these changes;
however, this increase also was observed in previous Db2 versions.

A series of performance measurements were conducted by using the distributed IRWW
workload to evaluate the changes in Db2’s storage usage in Db2 12. Db2 storage
consumption is closely related to the number of concurrent active threads in the Db2
subsystem. Therefore, different numbers of concurrent active distributed threads were used
as the main variable during these tests. Respectively, 500, 1000 and 1500 active threads
were used for the Db2 12 and Db2 11 tests by using a non-data sharing environment.

All measurements were done by using the same z/OS 2.2 system that was running on a z13
processor.

Table 5-9 lists the Db2 storage usage below and above 2 GB for all performance tests for Db2
11 and 12 by using a varying number of concurrent threads.

Table 5-9 IRWW Distributed workload Db2 storage usage with varying number of threads

In MB Db2 11 (NFM) Db2 12 (V12R1M500)

Number of concurrent threads 500 1000 1500 500 1000 1500

DBM1 PRIVATE STORAGE BELOW 2 GB

FIXED POOL BELOW 3.37 4.97 6.51 3.83 5.79 7.81

VARIABLE POOL BELOW 0.94 1.09 1.26 0.95 1.12 1.29

GETMAINED BELOW 0.1 0.1 0.1 0.1 0.1 0.1

DBM1 PRIVATE STORAGE ABOVE 2 GB

FIXED POOL ABOVE 11.22 16.03 23.29 9.12 15.83 21.30

VARIABLE POOL ABOVE 1.00 1.98 2.96 1.23 2.22 3.14

GETMAINED ABOVE 0.22 0.22 0.22 0.2 0.2 0.2

STORAGE MGR CONTROL
BLOCKS ABOVE 2 GB

1.34 1.34 1.34 1.34 1.34 1.34

REAL STORAGE IN USE

REAL FOR DBM1 20201.53 20317.62 20416.81 20437.98 20522.03 20585.32

SUBSYSTEM SHARED
STORAGE ABOVE 2 GB

1652.6 3100.18 3248.73 1788.55 3257.56 3443.85

TOTAL REAL STORAGE IN
USE-SUMMARY

21959.38 23591.04 23891.29 22312.7 23926.17 24225.65
Chapter 5. Workload level measurements 165

The measurements results indicate that the following changes occurred in Db2 storage usage
in Db2 12 compared to Db2 11:

� Variable storage below 2 GB was reduced approximately 2.3%.

� Fixed pool above 2 GB was reduced about 8%.

� Real storage for DBM1 (including buffer pool storage) that is in use increased by
approximately 6%.

� Total Real Storage that is in use increased by approximately 1.6%.

5.3.4 Conclusion

By using many of the Db2 12 improvements in storage management, EDM pool
management, and the introduction of the fast index traversal feature, Db2 12 can offer over
4% reduction in CPU cost, with a 4% ITR increase for the distributed IRWW workloads when
compared to Db2 11. However, a (modest) real storage usage increase of 1.6% was
observed for the workload when it was run with Db2 12.

5.4 IBM Brokerage transaction workload

The IBM Brokerage transaction workload is a complex OLTP workload that runs various SQL
stored procedures to simulate transactions in a brokerage firm. For more information about
the workload, see Appendix A, “IBM Db2 workloads” on page 375.

5.4.1 One-way data sharing performance measurements

This complex OLTP workload that uses a one-way data sharing configuration was migrated
from Db2 V11 NFM to Db2 12 at function level V12R1M100. Then, function level V12R1M500
was activated. Performance measurements were conducted at each step to track how the
workload performs at each stage of the migration process.

The baseline test was run by using Db2 11 NFM. Then, a second test was performed after
migrating to Db2 12 at function level V12R1M100 without rebinding any packages. The third
test was done with Db2 12 still at the V12R1M100 function level, but after rebinding all
application packages. The fourth and final test was done after Db2 12 function level
V12R1M500 was activated, and all packages being rebound a second time. All scenarios that
were used during these measurements featured plans and packages that are bound with the
RELEASE(COMMIT) bind option.

The measurements were performed by using the following environment:

� A z13 LPAR with 12 general CPs
� z/OS 2.2

Also, the Db2 11 NFM one-way data sharing measurement was used as the baseline
measurement.

The Db2 class 2 CPU time improvement percentages of the different Db2 12 performance
measurements of the IBM Brokerage online transaction workload (by using the Db2 11
measurement as the basis for comparison) is shown in Figure 5-4 on page 167.
166 IBM Db2 12 for z/OS Performance Topics

Figure 5-4 Class 2 CPU time improvements comparing against the Db2 11 baseline

The workload runs 30 stored procedures and achieves a transaction rate of 5000 - 6000
transactions per second. The following CPU time reduction percentages were achieved in the
three Db2 12 migration stages:

� After migration to Db2 12 at function level V12R1M100, without running a REBIND of the
stored procedure packages, we see a 3.6% CPU time reduction compared to the Db2 11
baseline test.

� A REBIND is run for all packages specifying APREUSE(ERROR) to ensure that the same
access paths are used for all the packages. In this scenario, Db2 class 2 CPU time is
reduced further to 6.4%.

� The final measurement that is performed after activating Db2 12 function level
V12R1M500, and a REBIND using APREUSE(ERROR) for all the packages, resulted in a
similar Db2 class 2 CPU time saving of approximately 6% compared to Db2 11 baseline.

5.4.2 Two-way data sharing performance measurements

For this set of measurements, migration of the same complex OLTP workload was performed
the same way as described in 5.4.1, “One-way data sharing performance measurements” on
page 166 for the one-way data sharing IBM Brokerage workload benchmark tests. However,
the measurements in this test were conducted by using a two-way data sharing environment.

As before, the system is migrated from Db2 11 NFM to Db2 V12R1M100, and then to function
level V12R1M500. Performance measurements were captured as the migration moved
forward through the different stages to demonstrate how the workload performs at each of
these migration phases by using a two-way data sharing configuration.
Chapter 5. Workload level measurements 167

The baseline test was run by using Db2 11 NFM. Then, the second test was done after
migrating to Db2 12 at function level V12R1M100, and after REBINDing all application
packages that use APREUSE(ERROR) to preserve the access paths from the Db2 11 NFM
baseline test.

The third test was done after activating Db2 function level V12R1M500, and a REBIND of all
packages with APREUSE(ERROR), which allowed the workload to run at a higher function
level and keep the access path of the Db2 11 NFM baseline test.

The fourth and final test was done with Db2 at function level V12R1M500 and a REBIND of all
packages, this time with APREUSE(NONE), which allows new access paths to be selected
for applications when applicable. As before, all scenarios use plans and packages that are
bound with RELEASE(COMMIT).

The measurements were performed by using the following environment:

� Two z13 LPARs with six general CPs each.
� Two internal coupling facilities (ICF) with three dedicated CPs each.
� Four ICPs and four CIBs are shared between two LPARs and two ICFs.
� z/OS 2.2 and CFCC Level 21.

Many internal optimizations and enhancements apply to Db2 12 that are not applicable to
older Db2 releases, which contributes to the performance improvement of Db2 12 at function
level V12R1M100 (and above). The following internal optimizations and new features are
included:

� The use of a new PL/X compiler for Db2 12 performance sensitive modules.

� Log latch relief (LC19).

� The use of the fast index traversal feature is available at function level V12R1M100, but
only for non-group buffer pool-dependent index objects.

At function level V12R1M500, Db2 12’s fast index traversal feature can also be used for index
objects that are group buffer pool dependent when they meet the fast index traversal criteria.
This feature can increase the performance benefits the fast index traversal functionality
provides. REBIND with APREUSE(NONE) allows new access paths to be selected (when
applicable), which introduces the possibility that better access paths are picked to achieve
better application performance.

Figure 5-5 on page 169 shows the getpage reduction per transaction for the different
migration scenarios. The getpage reduction (when going from Db2 11 NFM to Db2 12 at
function level V12R1M100) is the result of the fast index traversal feature, although the usage
is limited to non-GBP dependent index objects.

The reduction in the number of getpages when going from function level V12R1M100 to
V12R1M500 is because at that function level, GBP-dependent indexes can also use the fast
index traversal feature.
168 IBM Db2 12 for z/OS Performance Topics

Figure 5-5 Getpage reduction for different migration stages

At function level V12R1M100, 300 indexes were using the fast index traversal feature, with all
allocated FTBs using 120 MB of storage. At function level V12R1M500, 1020 indexes were
using this feature, with 415 MB of storage used for FTBs.

The access path changes that were introduced by REBINDing with APREUSE(NONE) were
minor. The getpage count is nearly the same for the measurement that was taken at function
level V12R1M500 after rebinding the packages with APREUSE(ERROR) and the
measurement that was taken at function level V12R1M500 after rebinding with
APREUSE(NONE).
Chapter 5. Workload level measurements 169

The total Db2 CPU time per transaction, which consists of the Db2 class 2 CPU time plus
MSTR, DBM1, and IRLM CPU time per transaction for each migration scenario is shown in
Figure 5-6.

Figure 5-6 Total Db2 CPU time per transaction

Db2 12 at function level V12R1M100 benefits from many Db2 12 internal optimizations that
are not available in older Db2 releases. At function level V12R1M500, Db2 shows more
performance benefits because GBP-dependent index objects also become eligible for fast
index traversal.

After rebinding with APREUSE(NONE), we observed minor access path changes in several
packages of the workload. However, Db2 accounting reports indicated similar getpage counts
per occurrence for the packages with changed access paths. Also, class 7 CPU time was
nearly identical for these packages.
170 IBM Db2 12 for z/OS Performance Topics

The data sharing group’s ITR for the different migration scenarios is shown in Figure 5-7. The
ITR increases during the migration from V11 to V12. It is evident that Db2 12 at function level
V12R1M500 performs better than Db2 11 NFM for this IBM brokerage workload in a two-way
data sharing environment.

Figure 5-7 Group ITR
Chapter 5. Workload level measurements 171

As for the memory consumption, the Db2 DBM1 address space’s real storage usage is higher
for Db2 12, as shown in Figure 5-8.

Figure 5-8 DBM1 real storage usage excluding virtual buffer pools

At function level V12R1M100, the Db2 DBM1 address space uses approximately 1 GB more
real storage than Db2 11 NFM. Out of that storage, approximately 120 MB is allocated by the
fast index traversal feature for FTBs.

At function level V12R1M500, another 250 MB of real storage is used by the Db2 DBM1
address space, and FTB storage grew from 120 MB to approximately 415 MB. This growth
indicates that most of the extra DBM1 storage usage at the V12R1M500 function level
compared to V12R1M100 is for more FTB storage.

In summary, migration of the IBM Brokerage Transaction Workload in a two-way data sharing
environment, from Db2 11 NFM to Db2 12 at function level V12R1M500, experiences
performance improvement during the migration process, as indicated by the decreasing Db2
CPU time per transaction and increasing ITR when Db2 is migrated from V11 to V12. DBM1
real storage usage with Db2 12 increased compared to Db2 11 NFM, as a result of internal
storage management changes and the new fast index traversal feature.
172 IBM Db2 12 for z/OS Performance Topics

5.5 RTW workload

The Relational Transaction Workload (RTW) is a standard workload that is used by the CICS
performance team in Hursley to assess changes in performance characteristics for new CICS
releases for applications accessing Db2. The Db2 team employed the RTW workload as one
of its performance test benchmark workloads to achieve better performance analysis
coverage for CICS-Db2 type of workloads. The workload was modified slightly compared to
the version the CICS team uses to better reflect the Db2 behavior of the workload.

The RTW workload includes the following characteristics:

� All programs that make up the workload are written in COBOL.

� The workload uses 20 (data) tables in segmented table spaces, 11 non-unique indexes,
and 16 unique indexes.

� It issues on average 200 Db2 calls per transaction.

� The transaction mix includes 26% select, 3% insert, 7% update, 3% delete, 6% open
cursor, 36% fetch cursor, 6% close cursor operations.

The following environment configuration is used for the non-data sharing RTW workload:

� One z13 LPAR with eight general CPs
� Four CICS regions that are running CICS TS V5.1
� A non-data sharing Db2 subsystem
� z/OS 2.1
� DS8870 DASD controller
� TPNS on another z13 LPAR with four general CPs to drive the workload

The following environment was used by the two-way data sharing RTW workload:

� Two z13 LPARs with eight general CPs each

� Eight CICS regions running CICS TS 5.1 with four regions that are running on each of the
LPARs

� Two z13 ICF LPARs running CFLEVEL 21 CFCC

� Two Db2 subsystems, each running on one of the two LPARs

� DS8870 DASD controller

� TPNS on another z13 LPAR with four general CPs to drive the workload

5.5.1 Performance measurements for non-data sharing RTW workload

Five performance measurements that use the RTW workload were conducted during different
migration stages, from Db2 11 NFM to Db2 12 at function level V12R1M500. A typical
customer might run their Db2 system in any of the following migration phases:

� Baseline measurement with Db2 11 NFM

� Db2 12 at function level V12R1M100 measurement without rebinding application
packages

� Db2 12 at function level V12R1M100 measurement after rebinding application packages
with APREUSE(ERROR)

� Db2 12 at function level V12R1M500 measurement with application packages previously
rebound at V12R1M100 with APREUSE(ERROR)

� Db2 12 at function level V12R1M500 measurement after rebinding application packages
with APREUSE(NONE)
Chapter 5. Workload level measurements 173

The analysis of the results mainly focuses on the following key performance indicators:

� Db2 total CPU time per commit (calculated by adding up the Db2 class 2 CPU time per
commit and total Db2 address space CPU time per commit)

� Internal throughput rate (ITR), which is calculated by dividing the workload’s commit rate
by the LPAR CPU utilization percentage

The total CPU time per commit results for the five measurement scenarios are shown in
Figure 5-9.

Figure 5-9 Total CPU time per commit
174 IBM Db2 12 for z/OS Performance Topics

The ITR results for the same five measurement scenarios are shown in Figure 5-10.

Figure 5-10 ITR

Based on the test results, the following observations can be made:

� All the tests that were run with Db2 12 performed better than the Db2 11 NFM baseline
test.

� After migrating to Db2 12 function level V12R1M100 without rebinding the application
packages, some package puffing1 overhead occurred when the workload was run. As
most of the Db2 12 internal optimizations are in effect at function level V12R1M100, a
5.76% saving in total CPU time per commit, and a 3.7% ITR increase was observed
compared to the baseline test.

� After rebinding all the application packages with APREUSE(ERROR), all the original
access paths were honored. With the package puffing overhead removed, comparing to
the baseline Db2 11 NFM measurement, the total CPU time per commit improved further
to 6.86% while the ITR increase grew to 7.82%.

� The Db2 12 measurement at function level V12R1M500 without rebinding the application
packages again (thus running with packages rebound at function level V12R1M100)
showed similar total CPU time per commit and ITR results than the previous test. The
result produced an 7.26% CPU improvement and 7.93% of ITR boost compared to the
Db2 11 baseline.

� Rebinding all application packages with APREUSE(NONE) after activating Db2 12
function level V12R1M500 resulted in zero access path changes; therefore, this final test
performed similar as the previous measurement, showing a 7.15% reduction in total CPU
time per commit value and an 8.13% increase in ITR compared to the baseline Db2 11
NFM test.

1 Db2 typically expects control structures to be in the current release format. If that is not the case, for example
because a package was not rebound on the current release, Db2 adjusts the control structure to be in line with
what the current release is expecting. This internal process is sometimes called puffing.
Chapter 5. Workload level measurements 175

The DBM1 address space’s real storage usage during all five measurements is shown in
Figure 5-11.

Figure 5-11 DBM1 real storage usage

After Db2 is migrated from Db2 11 to Db2 12 (as shown in Figure 5-11), approximately
450 MB more real storage is needed for the DBM1 address space because of the storage
management-related changes that were introduced in Db2 12. In this case, the main
contributor to the storage growth is an increase in the size of buffer manager-related control
blocks. As the RTW workload uses large buffer pools (more than 42 GB in total), the storage
increase is more visible than in other workloads. The fast index traversal feature caused eight
of the RTW workload’s indexes non-leaf pages to be in-memory, although in total, all the FTBs
took less than 1 MB of storage because the indexes are small.

Migrating the RTW workload that is running in a Db2 non-data sharing environment from Db2
11 to Db2 12 resulted in obvious performance improvements. Because no access path
changes were made for any of the RTW application packages after migrating to Db2 12, the
workload had similar performance characteristics during the last three measurements after
the application packages were rebound at the V12R1M100 level. Real storage consumption
after migrating to Db2 12 grew by 450 MB and less than 1 MB out of the 450 MB was used by
the fast index traversal feature.

5.5.2 Performance measurements: Two-way data sharing RTW workload

The same procedure that was used to conduct the RTW workload measurements in a
non-data sharing environment was used to take performance measurements by using the
RTW workload in a two-way data sharing environment. The same key performance indicators,
total CPU time per commit and ITR were used to analyze the performance results.
176 IBM Db2 12 for z/OS Performance Topics

The performance results of the tests that are shown in Figure 5-12 and Figure 5-13 on
page 178. The results of each Db2 data sharing member and the group-level average CPU
time and total ITR also are shown in the charts.

Figure 5-12 Total CPU time per commit
Chapter 5. Workload level measurements 177

Figure 5-13 shows the ITR for the different RTW workload runs that use two-way data sharing
environment.

Figure 5-13 Data sharing ITR

Based on the test results, the following observations were made:

� All Db2 12 tests performed better than the Db2 11 NFM baseline test.

� As with the non-data sharing measurements, the package puffing overhead is still present
without rebinding the Db2 application packages after migrating to Db2 12 at function level
V12R1M100. As most of the Db2 12 internal optimizations are enabled even without
rebinding, Db2 still showed a 3.17% group level improvement in total CPU time per commit
and a 2.26% group level ITR increase compared to the Db2 11 baseline test.

� Six indexes included FTBs that were created with a total size of 270 KB for each Db2
member.

� Rebinding all application packages with APREUSE(ERROR) ensures that all of the
original access paths are reused. Without the package puffing overhead, comparing to the
baseline Db2 11 measurement, the Db2 12 V12R1M100 measurement's total CPU time
per commit improvement compared to the Db2 11 baseline test reached 3.96% and ITR
increased by 3%.

� The Db2 12 function level V12R1M500 measurements without rebinding the application
packages (thus running with packages rebound at function level V12R1M100) performed
a bit better than the previous test. The total CPU time per commit value improved by
4.22% and the Group ITR grew by 3.09% comparing to the Db2 11 baseline test.

� Eight indexes included FTBs that were created by using 851 KB of storage on each Db2
member.
178 IBM Db2 12 for z/OS Performance Topics

� Rebinding the application packages with APREUSE(NONE) after activating function level
V12R1M500 resulted in zero access path changes. Therefore, the final measurement
performed about the same as the previous V12R1M500 measurement. Comparing to the
baseline test, the total CPU time per commit value showed a 4.16% improvement, and the
data sharing group’s ITR increased by 3.69%.

The DBM1 real storage usage for each of the Db2 members during each of the five
measurements is shown in Figure 5-14.

Figure 5-14 DBM1 real storage

After Db2 migrates from V11 to V12 (as shown in Figure 5-14), approximately 450 MB more
real storage is needed for the DBM1 address space of each of the Db2 data sharing members
because of the storage management-related changes that were introduced in Db2 12.

The fast index traversal feature caused six indexes to include FTBs that were allocated when
at function level V12R1M100 taking up 270 KB of storage per Db2 member. Two more
indexes included FTBs that were allocated after activating function level V12R1M500 and all
eight FTBs combined took up 851 KB of storage per Db2 member.

When in a two-way data sharing environment is run, the RTW workload showed notable
performance improvements after migrating to Db2 12 from Db2 11. Db2 12 at function level
V12R1M500 causes two other indexes to use the fast index traversal feature compared to the
workload that is running at function level V12R1M100. This situation occurs because at
function level V12R1M500, GBP-dependent indexes are also eligible to use the fast index
traversal feature. This use resulted in slightly higher CPU savings and better ITR results. Real
storage usage after migrating to Db2 12 grew by about 450 MB for each of the Db2 members
when the RTW workload is run.
Chapter 5. Workload level measurements 179

5.6 High insert batch workload measurements

In this section, we describe the results of several performance measurements that are related
to workloads with high insert rates for the following batch workload scenarios:

� Archive sequential insert
� Journal table insert
� Message queue insert and delete
� Random insert and delete workload

The measurements were conducted with Db2 11 and Db2 12 by using a two-way data sharing
environment, with operating System z/OS 2.2 and z13 hardware. The analysis focuses on
workload performance differences between Db2 11 and Db2 12.

5.6.1 Archive sequential insert

In this scenario, sequential insert performance was evaluated running a workload that used
the following configuration:

� Three types of tables spaces: Classic partitioned table spaces (PTS), partition-by-growth
(PBG) table spaces, and partition-by-range (PBR) table spaces

� Member cluster (MC) and row level locking (RLL)

� Three tables and six non-unique indexes

� A total of 10 partitions for PTS and PBR table spaces

� Multi-row (100) insert and committing after each rowset insert

� A two-way data sharing group with 100 concurrent threads

The programs first insert data to the empty tables. Then, it delete two-thirds of the rows to
create “holes” in the pages. Finally, more rows are inserted into the populated tables.

The Db2 class 2 CPU time results (as shown in Figure 5-15 on page 181), demonstrate that
the use of Db2 12 can improve class 2 CPU time by up to 22%. Consider the following points:

� For PBG table spaces, the CPU time is improved by 11% when inserting into empty tables,
and by 8% when inserting into the populated tables.

� For PBR table spaces, the CPU time improved by 22% when inserting to the empty tables,
and by 18% when inserting into populated tables.

� For PTS tables spaces, the CPU time improved by 14% when inserting to the empty
tables, and by 15% when inserting into the populated tables.
180 IBM Db2 12 for z/OS Performance Topics

Figure 5-15 Archive sequential insert Class 2 CPU time per commit

The major factors that contribute to the CPU time improvement include the up to 94%
getpage reduction for data pages (only for UTS PBR and PBG) because of the use of insert
algorithm 2, the log write latch contention (LC19) reduction, and the buffer manager timer
latch (LC23) removal.

The throughput results that are shown in Figure 5-16 show a significant external throughput
rate (ETR) increase for PBG table spaces in Db2 12. However, for PBR table spaces, the
insert throughput increase is observed only when inserting into populated tables.

Figure 5-16 Archive sequential insert External throughput rate

For PTS table spaces, no obvious change in the throughput was observed when inserting into
empty tables or populated tables because the throughput gain from the reduction in LC19 and
LC23 contention is offset by a significant increase in the average suspension time for other
Db2 latches.
Chapter 5. Workload level measurements 181

5.6.2 Journal table insert

In this scenario, a sequential insert workload with the following configuration was used:

� Two types of table space: Classic PTS and PBR.

� Using the MEMBER CLUSTER with APPEND NO attribute, and MEMBER CLUSTER with
APPEND YES.

� Row level locking (RLL).

� Three tables, five unique indexes, and one non-unique index. Each table has 20 partitions
(note the difference in the indexes between the journal inserts and archive sequential
inserts, as described in 5.6.1, “Archive sequential insert” on page 180).

� Multi-row (100) insert and commit after each rowset insert.

� A two-way data sharing environment with 100 concurrent threads.

The Db2 class 2 CPU time results (as shown in Figure 5-17) show CPU time improvements of
up to 24% for the journal table insert scenario in Db2 12, compared to Db2 11. The
contributing factors to this improvement are similar to factors as described in the previous
insert scenario.

Figure 5-17 Journal table insert Db2 class 2 CPU time

In addition, the fast index traversal feature reduced the total number of index getpages by
38%. Insert performance was not affected by the APPEND option, as shown in Figure 5-17.
Almost no class 2 CPU time difference was observed between tests that used MEMBER
CLUSTER with and without APPEND.

The throughput results that are shown in Figure 5-18 on page 183 show that no significant
change was observed in insert external throughput rate between Db2 12 and Db2 11. The
wait time reduction from page latch removal and log write latch removal has no positive effect
on the throughput rate. This result is due to the other bottlenecks in the application, network,
and contention that is caused by index split wait.
182 IBM Db2 12 for z/OS Performance Topics

Figure 5-18 Journal table insert external throughput rate

5.6.3 Message queue insert and delete

This test scenario simulates a message queue management application. The Db2 table is
treated as a queue. A task inserts some rows sequentially into this queue table, while it also
starts to process and delete rows at the front of the queue table. This scenario features the
following configuration:

� A PBG table space
� Row level locking
� Multi-row insert with 10 rows per commit
� A one-way and two-way Db2 data sharing group

The CPU time results that are shown in Figure 5-19 show a Db2 class 2 CPU time
improvement of 6% for the one-way and two-way benchmarks in Db2 12 compared to Db2 11.
Log write latch contention (LC19) removal and buffer manager timer latch (LC23) removal are
the biggest contributors to the class 2 CPU time reduction.

Figure 5-19 Message queue insert and delete SAP 1-way and 2-way Class 2 CPU time
Chapter 5. Workload level measurements 183

The external throughput results that are shown in Figure 5-20 show that no significant
difference was observed in insert throughput between Db2 11 and Db2 12. As the CPU time
is not the biggest component of the transaction elapsed time, the 6% CPU time improvement
did not result in a significant increase in throughput rate.

Figure 5-20 Message queue insert and delete SAP 1-way and 2-way insert throughput

5.6.4 Random insert and delete workload

This workload scenario uses an application with a random insert and delete pattern. The
benchmark setup uses the following configuration:

� Three types of tables spaces:

– Classic PTS
– PBG
– PBR

� Page level locking (PLL)

� One table and one unique clustering index

� 100 partitions for the PTS and PBR case

� A two-way data sharing group that is concurrently running 180 threads, which are
performing inserts and 120 threads executing deletes

During the test runs, the table is first seeded with 40 million rows. Then, 4 million rows are
randomly inserted. At the same time, 2.7 million rows are randomly deleted. The inserts are
done concurrently by 180 threads and the deletes are done concurrently by 120 threads that
re spread across the two Db2 data sharing members.
184 IBM Db2 12 for z/OS Performance Topics

The Db2 class 2 CPU time results, as shown in Figure 5-21, show the following results:

� For random insert, a 4% improvement was achieved for PBG and PBR table spaces in
Db2 12 compared to Db2 11. For PTS table spaces, no notable difference was observed
between the Db2 12 and Db2 11 test runs.

� For random delete, significant (up to 18%) CPU improvements were observed during the
Db2 12 tests for all three types of table spaces compared to their corresponding Db2 11
tests. The significant CPU improvement comes from the use of the fast index traversal
feature, which allows a total getpage reduction of up to 40%.

Figure 5-21 Random insert/delete Class 2 CPU time
Chapter 5. Workload level measurements 185

The throughput results that are shown in Figure 5-22 show that the Db2 11 and Db2 12 runs
resulted in similar insert and delete throughput rates without any significant differences
between the two Db2 versions for any type of table space. As in the example that is described
in 5.6.3, “Message queue insert and delete” on page 183, these transactions are not CPU
bound; therefore, no significant increase in throughput rate is expected.

Figure 5-22 Random insert/delete throughput rate
186 IBM Db2 12 for z/OS Performance Topics

Chapter 6. Distributed system

Db2 12 provides various enhancements that improve its interactions with distributed systems.
These enhancements include functionality, such as DRDA Fast Load and support for the
z/OS Connect Feature Pack.

The chapter includes the following topics:

� 6.1, “DRDA Fast Load ” on page 188
� 6.2, “Integrated Db2 support of REST APIs ” on page 193
� 6.3, “z/OS Connect Feature Pack support” on page 193

6

Tip: For more information about the topics that are described in this chapter, see the
“Connectivity and administration routines” chapter of IBM DB2 12 for z/OS Technical
Overview, SG24-8383, which also features the following topics:

� Maintaining session data on the target server
� Preserving prepared dynamic statements after a ROLLBACK
� Profile monitoring for remote threads and connections
� Stored procedures that are supplied by Db2
© Copyright IBM Corp. 2017. All rights reserved. 187

6.1 DRDA Fast Load

Often, users must load data that is in distributed clients into Db2 for z/OS. This process often
requires transporting the data to the z/OS server before the data is loaded. The Db2 provided
stored procedure DSNUTILU enables users to run Db2 utilities from a Db2 application
program, including remote clients.

The typical process involves transferring the input file to a z/OS LPAR, which calls DSNUTILU
from a client to start the LOAD utility and directs it to the transferred file. Finally, the data is
loaded into Db2 for z/OS tables. This process complex and time-consuming.

Db2 12 for z/OS introduces DRDA Fast Load, which enables quick and easy loading of data
from files that are on distributed clients. This new feature eliminates the need to transfer the
data to z/OS before loading.

The Db2 Call Level Interface (CLI) APIs and command line processor (CLP) were enhanced
to support remote loading of data to Db2 for z/OS. This new feature is available in all Db2
v11.1 FP1 and later client packages and Java applications.

DRDA Fast Load supports the following file formats:

� DELIMITED (DEL)

A sequential file that features row and column delimiters. EBCDIC, ASCII, and UNICODE
are supported.

� INTERNAL (INT)

A file that is created by running Db2 for z/OS UNLOAD by using the INTERNAL FORMAT
option. LOAD does not validate the data to ensure Db2 internal format. It can be created
by a client application (such as SAP), but the internal format must be respected and
validated.

� SPANNED (SPN)

A sequential file for allowing the loading of tables with LOB/XML columns. The user must
build their spanned format data stream or file, where each record is preceded with an
8-byte integer that includes the length of stream for a row.

The Db2 for z/OS stored procedure DSNUTILU now supports a new INDDN keyword,
SYSCLIEN, for the LOAD utility control statement.

The Db2 CLP now supports the zload keyword, as shown in Example 6-1.

Example 6-1 CLP zload syntax example

ZLOAD FROM <filename> OF {INT | SPANNED | DEL [ALF | ENL | CRLF]}[WITH
<utilityid>] [MESSAGES <msg.filename>] USING <loadstmt>

Performance tests show that DRDA Fast Load performs better than LOAD alone, with a
significant reduction in elapsed time.

The task that extracts data blocks and passes them to the LOAD utility is zIIP eligible and
100% of the CPU can be offloaded to zIIP specialty engines. This task is run by using the
WLM goal of the Db2 distributed address space service class.

Note: Db2 Fast Load requires Db2 for Linux, UNIX, and Windows clients Version 11.1 Fix
Pack 1 or above. Db2 clients are available at the Download Fix Packs by version for IBM
Data Server Client Packages website.
188 IBM Db2 12 for z/OS Performance Topics

http://www.ibm.com/support/docview.wss?uid=swg27016878
http://www.ibm.com/support/docview.wss?uid=swg27016878
http://www.ibm.com/support/docview.wss?uid=swg27016878

6.1.1 Db2 Fast Load measurements

This section describes the results of the performance observations when comparing DRDA
Fast Load with the local Db2 LOAD utility.

The test environment for the workload used the following configuration:

� z13 z/OS LPAR with 17 dedicated general CPs, 32 GB of memory, and z/OS 2.02.

� Linux for System z on z13 LPAR with 10 general CPs with Db2 Connect and Db2 for Linux,
UNIX, and Windows 11.1 FP1.

� IBM HiperSockets communication between the z/OS and Linux for System z LPARs.

The scenarios compare the performance of the traditional FTP plus local LOAD process
versus loading the data directly from the client by using DRDA Fast Load.

The test cases consist of loading data from 160 data files into a Db2 table that was created in
a table space that is defined with 160 partitions. On the client side, 160 parallel scripts load
the data into each partition.

Example 6-2 show the bash scripts that were used for driving the parallel zload commands.
In this script, the zload12a file is started to run the zload command.

Example 6-2 Bash script to drive 160 parallel DRDA Fast Load script

#!/bin/bash
let j=1
while [[$j -lt 160]]
do
 (zload12a $j $j.time) >& $j.log &
 let j=j+1
done

The contents of the zload12a file is shown in Example 6-3.

Example 6-3 zload command to load a single partition out of 160 partitions

db2 zload from DB2DRDA.ZLOADB.ITRADE.P000$1 with "zload$1" messages
zloadINT.p$1.txt using "TEMPLATE SORTIN DSN DISTRGR.ZLOADI$1.T&TIME. UNIT 3390
SPACE(100,40) CYL VOLUMES(H210BE) DISP(NEW,DELETE,DELETE) BUFNO(20) TEMPLATE
SORTOUT DSN DISTRGR.DC1X.ZLOADO$1.T&TIME. UNIT 3390 SPACE(100,40) CYL
VOLUMES(H210BD) DISP(NEW,DELETE,DELETE) LOAD DATA INDDN SYSCLIEN
WORKDDN(SORTIN,SORTOUT) LOG(NO) NOCOPYPEND FORMAT INTERNAL INDEXDEFER NPI INTO
TABLE USRT001.TRADE PART $1 REPLACE PREFORMAT REUSE NUMRECS 11138614
"

Each file consists of data in internal format to be loaded into each partition.

Scalability scenario
In the scalability scenario, 15, 30, and 60 concurrent LOADs were run to measure the
scalability of the DRDA Fast Load. The loads were run from a client machine against different
partitions of the same table in Db2 for z/OS. The scenario consisted of loading 15 internal
format files into 15 partitions, 30 files into 30 partitions, and 60 files into 60 partitions. The
table was empty before the load.
Chapter 6. Distributed system 189

Figure 6-1 shows the LOAD rate in MBps versus the number of concurrent zload tasks. The
results indicate that LOAD performance increases with the number of parallel zload runs. If
enough hardware resources are available, running parallel zload tasks increases LOAD
throughput.

Figure 6-1 zload scalability increased LOAD throughput with number of parallel zload tasks

Load methods comparison scenario
This set of measurements are taken to demonstrate the performance comparison of the
following techniques when loading data in internal format into a single table partition in Db2
for z/OS:

� DRDA Fast Load
� File transfer to z/OS (by using FTP) followed by local LOAD
� Db2 for Linux, UNIX, and Windows Client import utility

The Db2 for Linux, UNIX, and Windows command import utility inserts data from an external
file with a supported file format into a table, hierarchy, view, or nickname. The import
command also is available as part of the Db2 for Linux, UNIX, and Windows clients.

Example 6-4 shows the import syntax that is used during the test scenario.

Example 6-4 Import command that is used in test scenarios

“import from part1.ixf of IXF "modified by compound=100 commitcount 10" insert
into USER001.TRADE"

The following options in the “modified by” section are necessary for performance:

� compound=x: x is a number 1 - 100, inclusive. It uses non-atomic compound SQL to insert
the data, and x statements are attempted each time.

� commitcount n: Performs a COMMIT after every n records that are imported.
190 IBM Db2 12 for z/OS Performance Topics

Figure 6-2 shows the results of the measurements for this scenario.

Figure 6-2 Load method comparing zload, FTP+load, and client import

Db2 Fast Load takes approximately 18 seconds to complete loading the data, while the
import utility takes 86 seconds. In the FTP combined with local load scenario, the local load
takes 10 seconds to load after the data is on the host. FTP takes 27.27 seconds, which
results in a total elapsed time of 37.6 seconds.

The measurements show that Db2 Fast load is approximately two times faster than FTP and
load, and roughly 4.7 times faster than the import utility.

The number of rows and the size of the data loaded per table that were used for the
comparison of zload, FTP+Local load, and import is listed in Table 6-1.

Table 6-1 Data size and number of rows

Table CUSTOMER ORDERLINE

Number of rows 12000000 120004652

Size (Bytes) 6803777316 8520330292
Chapter 6. Distributed system 191

The Db2 accounting data, which is extracted from Omegamon PE reports, shows the
performance benefits of DRDA Fast Load compared to Db2 LOAD. The data indicates that
Db2 Fast Load reduces total elapsed time by 25% to 33%, while Class 1 CPU time is reduced
by approximately 2%. The results are listed in Table 6-2.

Table 6-2 Local LOAD versus DRDA Fast Load, in seconds

The Db2 Fast Load utility uses DDF and runs in an enclave SRB. Also, this CPU processing is
eligible for zIIP offload.

The LPAR that is used to run the tests did not have zIIP processors available. Even so, the
Db2 accounting traces can be used to report the accumulated CPU time that is used on a
standard CP for work that is eligible on an IBM specialty engine.

A portion of an Omegamon PE report for running the DRDA Fast Load scenario is shown in
Example 6-5.

Example 6-5 Import command used in test scenarios

MEASURED/ELIG TIMES APPL (CL1)
 ------------------- ----------------
 ELAPSED TIME 0.980277
 ELIGIBLE FOR ACCEL N/A

 CP CPU TIME 0.128805
 ELIGIBLE FOR SECP 0.113854

For this scenario, the CPU time that is eligible for specialty engine is 0.113854 seconds. The
total CPU time is 0.128805 seconds, which results in an 88% CPU offload eligible ratio.

Local LOAD DRDA Fast Load Delta (%)

CUSTOMER ORDERLINE CUSTOMER ORDERLINE CUSTOMER ORDERLINE

DDF

CL1 ET 81.482367 119.525887

CL2 ET 0.304971 0.126698

CL1 CP 0.005357 0.005341

CL2 CP 0.003641 0.00362

UTILITY

CL1 ET 56.359761 85.828302 80.951364 119.153029 43.63 38.83

CL2 ET 33.219679 77.26465 33.2303 60.840731

CL1 CP 29.479038 50.894291 28.818106 49.689923 -2.24 -2.37

CL2 CP 27.410148 46.861883 27.514255 46.733212 0.38 -0.27

FTP TIME 65.394 73.195

Total elapsed
time

121.75 159.02 81.48 119.53 -33.08 -24.84

Rate (MBps) 55.88 53.58 83.50 71.28 49.42 33.05
192 IBM Db2 12 for z/OS Performance Topics

6.2 Integrated Db2 support of REST APIs

Db2 for z/OS V12 provides a set of Db2 Representational State Transfer (REST) services
with which you can create, manage, discover, and run user-defined REST services in Db2
without requiring the Db2 Adapter for z/OS Connect.

You can start Db2 REST services with any RESTful API client, including the IBM z/OS
Connect Enterprise Edition (EE) V2.0 or IBM’s Cloud-based API Management solution.
These new services extend the value of applications that access Db2 data by allowing a more
efficient and scalable API for mobile and cloud applications without the burden of installing
more products or configuring a new network interface.

The new services use the existing distributed data facility (DDF) capability. It provides the
same class of the following fully integrated Db2 facilities services you expect when DDF is
used to access Db2 data:

� Authentication
� Authorization
� Client information
� Enclave classification
� System profiling
� Sysplex awareness
� Accounting
� Statistics
� Displays
� Monitoring

Db2 Adapter for z/OS Connect, which was delivered in 2015, is a service provider that
connects REST web, mobile, and cloud applications to Db2 z/OS. For more information about
Db2 Adapter for z/OS Connect, see 6.3, “z/OS Connect Feature Pack support”.

6.3 z/OS Connect Feature Pack support

WebSphere Liberty for z/OS Connect is software that enables a z/OS system, such as CICS,
IMS, or Db2 for z/OS, to participate in today’s mobile computing environment. It runs inside
WebSphere Liberty Profile for z/OS and provides an interface between mobile and cloud
devices and backend systems. It provides RESTful APIs, accepts JSON data payloads, and
communicates with backend systems for data and transactions.

To support WebSphere Liberty z/OS connect, Db2 for z/OS provides a Db2 Adapter for z/OS
Connect through the z/OS Connect Feature Pack.

This comprehensive solution allows users to discover, model, enable, and publish RESTful
services on trusted Db2 z/OS systems. These web services can be used by mobile, web, or
cloud applications that can access Db2 z/OS systems in secure, managed, and optimized
ways.

Db2 Adapter is an integrated solution into the IBM Liberty Profile for z/OS Connect feature.
Db2 Adapter for z/OS is an abstract resource that is represented by a simple SQL statement.
The statement can be a query statement, such as a select or update statement, or a call
statement to a stored procedure.
Chapter 6. Distributed system 193

The Db2 Adapter for z/OS Connect is being deprecated and the functionality integrated into
Db2 DDF and managed as a native service. Db2 as a service provider will continue to allow
the invocation of a service by using the Db2 Adapter invocation API format after the service is
created in Db2 to minimize application disruptions and to ease migration.

An overview of the WebSphere Liberty z/OS Connect architecture is shown in Figure 6-3.

Figure 6-3 WebSphere Liberty z/OS Connect architecture

6.3.1 Db2 Adapter for z/OS Connect workload measurements

This section describes the performance measurements of Db2 Adapter for z/OS Connect
workloads. The purpose of these measurements is to document the performance
expectations for a Db2 z/OS with a Db2 Adapter for z/OS Connect workload.

Workload description
The RESTful service contains a single select statement on a table that is in Db2 z/OS, and
the select statement always returns one row. The workload consisted of 8 groups of clients
with 30 concurrent users (each for a total of 240 users maximum), each sending an HTTPS
request to the Db2 Adapter for z/OS Connect server. For each measurement scenario, the
number of clients in the group is increased to understand the scalability of the Db2 Adapter
for z/OS Connect services.

Measurement environment
All measurements were done by using a one-tier environment, where WebSphere Liberty
profile server and Db2 z/OS are running on the same physical LPAR. Four LPARs on the
same physical machine were used with two WebSphere Liberty Servers on each LPAR. The
following hardware and software configuration was used in the measurements:

� Each z13 (CPU model NE1) LPAR with 20 CPUs and 32 GB of real memory
� z/OS level 2.01.00

Note: For more information about IBM WebSphere Liberty z/OS Connect, see the IBM
WebSphere Liberty z/OS Connect web page.
194 IBM Db2 12 for z/OS Performance Topics

http://www-01.ibm.com/support/docview.wss?uid=tss1wp102439
http://www-01.ibm.com/support/docview.wss?uid=tss1wp102439

� WebSphere Liberty version 8.5.5.5/wlp-1.0.8.cl50520150305-2202
� Java 7 64 bit -pmz6470sr8-20141026_01 (SR8)
� db2zAdaptor GA build- bundle version 1.0.0.201511181332
� db2zAdaptor data source that uses type 2 JDBC driver
� Eight-way data sharing group with two Db2 members on each LPAR

Measurement results
The workload was run first with 60, 120, and 240 concurrent clients. No changes were made
to the server configuration between measurements.

External Throughput Rate (ETR) is the throughput rate of the workload in transactions per
second. The ETR results for each run with the number of clients doubling for each
measurement are shown in Figure 6-4.

Figure 6-4 Observed ETR versus number of clients

The data shows that the total throughput increased linearly with the number of concurrent
users. Also, the Db2 Adapter for z/OS achieves a rate of 106,800 transactions per second
when running with 240 concurrent users, each sending REST requests.

CPU time eligible for Special Engine CP results
The CPU time that is eligible for specialty engine of our scenarios is listed in Table 6-3. Data
shows that the percentage that is eligible for SECP is approximately 50%.

Table 6-3 Percent of eligible SECP of the scenarios

Number of clients 60 160 240

CP CPU time 0.000256 0.000268 0.000270

Eligible for SECP 0.000147 0.000127 0.000124

Percentage eligible for SECP 57.42 47.39 45.93
Chapter 6. Distributed system 195

196 IBM Db2 12 for z/OS Performance Topics

Chapter 7. SQL and application enablement

Db2 12 offers various enhancements for SQL and application enablement. These
enhancements include SQL support enhancements, such as advanced triggers and prepare
avoidance after a rollback. Enhancements also are featured in other areas, such as JSON
support, referential integrity, and XML.

This chapter includes the following topics:

� 7.1, “SQL support” on page 198
� 7.2, “Resource Limit Facility” on page 215
� 7.3, “JSON support” on page 217
� 7.4, “Built-in LISTAGG aggregate function” on page 221
� 7.5, “XML Optimizations” on page 224
� 7.6, “Temporal improvement” on page 233

7

© Copyright IBM Corp. 2017. All rights reserved. 197

7.1 SQL support

Db2 12 offers the following enhancements that pertain to SQL support:

� Advanced trigger support
� Pagination
� MERGE statement
� Non-deterministic expression columns for auditing
� KEEPDYNAMIC (YES) after ROLLBACK
� Dependency Manager Hash (DMH) table
� Unicode column in an EBCDIC table
� Piece-wise data modification

7.1.1 Advanced trigger support

Db2 12 for z/OS enhances the support for triggers. Application logic in the form of SQL PL
can be specified in the trigger body starting in Db2 12 Function Level 500.

These new triggers are called advanced triggers, as opposed to the basic triggers that are
supported by older releases. The SQL PL support in triggers makes it easier to port triggers
from the Db2 family or competitive database products. The extensions also allow a user to
debug and maintain multiple versions of a trigger.

Triggers that use the same pre Db2 12 syntax that is defined in Db2 12 for z/OS results in the
creation of a basic trigger with unchanged performance characteristics if SQL PL is not
specified in the trigger body. However, if you want SQL PL support in the trigger body, you
must create advanced triggers by omitting the MODE DB2SQL option.

When you create an advanced trigger in Db2 12 for z/OS, its procedural statements are
converted to a representation that is stored in the database directory, as is done with other
SQL statements. The options are stored in the database catalog tables as in older releases.
When one of these advanced triggers is activated, the internal representation is loaded from
the directory and the Db2 engine runs the trigger body.

Execution performance of basic triggers versus advanced triggers
To support more flexible and robust features in advanced triggers in Db2 12, such as
debugging and versioning, you see certain execution overhead when running advanced
trigger compared to existing basic triggers with the same logic. To understand the
performance affect, the measurements are executed by running the same simple triggers
without contain SQL PL logic in basic and advanced triggers.

Tip: For more information about the SQL Support enhancements and new features in Db2
12 for z/OS, see IBM DB2 12 for z/OS Technical Overview, SG24-8383.

Note: Advanced triggers are created only when SQL PL support is needed because, with
the new debugging and versioning features that are associated with the advanced triggers,
performance degradation in CPU can result, even if a basic trigger is accidentally defined
as an advanced trigger by removing the MODE DB2SQL option.
198 IBM Db2 12 for z/OS Performance Topics

The CPU increase that you might experience (depending on the type of trigger even if it does
not contain SQL PL logic) is listed in Table 7-1.

Table 7-1 Basic and advanced trigger performance comparison

To avoid the performance penalty for the simple trigger statements, MODE DB2SQL should
be kept from the existing trigger as Db2 uses the MODE DB2SQL option to determine the
types of trigger it generates. Db2 creates basis triggers by using the MODE DB2SQL option.
Without MODE DB2SQL, Db2 creates advanced triggers.

If you migrate from Db2 11 for z/OS to 12 without dropping and re-creating the triggers, they
remain as basic triggers and maintain the same performance characteristics. The
APPLCOMPAT column in SYSIBM.SYSTRIGGERS remains V11R1 for those migrated
triggers. If the trigger body contains SQL PL logic, an advanced trigger is created, even if you
specify MODE DB2SQL in Db2 12 for z/OS.

If the default option MODE DB2SQL is specified, the basic trigger uses the old code path.
Otherwise, the trigger is created as an advanced trigger that uses the new code path. Basic
triggers that are defined in Db2 12 include a value of V12R1 in the APPLCOMPAT column in
the SYSIBM.SYSTRIGGERS catalog table and a value of “T”, which represents an old-style
trigger in the TYPE column of table SYSIBM.SYSPACKAGE (a value of “1” identifies a trigger
as an advanced trigger).

Another way to identify a basic trigger is by using the SQLPL column in the
SYSIBM.SYSTRIGGERS catalog table. A value of “N” means that a basic trigger was
created. A value of “Y” means that an advanced trigger was created (even if there might not
be any SQL PL logic in the trigger body).

Trigger body Db2 12 for
z/OS Class 2
Trigger CPU
(basic
trigger)

Db2 12 for
z/OS Class 2
Trigger CPU
(advanced
trigger)

Change

SIGNAL SQLSTATE '75001' ('Test SQLPL trigger'); 0.034678 0.038890 12.14%

INSERT INTO TB002 (C1) VALUES (NEW.PID+1); 0.059801 0.073879 23.54%

UPDATE TB002 SET C1 = NEW.PID + C1 WHERE C1 > 0; 0.111511 0.128181 14.95%

DELETE FROM TB002 WHERE C1 = NEW.PID; 0.075580 0.092044 21.78%

SET new.COL1 = (CURRENT TIMESTAMP - CURRENT
TIMEZONE), new.PID = 1 * 4;
set two transitional variables with WHEN clause

0.066693 0.069040 3.52%

CALL SQLPL001();
call a stored procedure

0.039684 0.059965 51.11%

VALUES (COUNTER_PLUS(new.PID));
values (inline function)

0.048273 0.064197 32.99%

SET new.COL1 = (SELECT IBMREQD FROM
SYSIBM.SYSDUMMY1);
set one transitional variable

0.085933 0.101520 18.14%

SELECT IBMREQD FROM SYSIBM.SYSDUMMY1;
full select

0.080004 0.154533 93.16%
Chapter 7. SQL and application enablement 199

Performance of using an advanced trigger versus a basic trigger calling
a stored procedure

Before the advanced trigger support that is provided in Db2 12, when complex logic of some
kind was needed to accomplish a certain task that couldn't be done with simple triggers, often
times using stored procedures was the solution to achieve the goal.

With the new advanced trigger support, the logic that was within the stored procedure can
now be embedded inside the trigger.

Consolidating a basic trigger that is calling a stored procedure into a new
advanced trigger

Sample code for a trigger that is calling a stored procedure (on the left), and a “consolidated”
advanced trigger that contains the logic that was in the stored procedure inside the trigger
body (on the right) is shown in Figure 7-1.

Figure 7-1 Consolidating a stored procedure calling trigger into an advanced trigger

Performance measurement results
Both triggers that are shown in Figure 7-1 were started by repeatedly updating rows of a
table. Db2 accounting and statistics reports were collected to analyze the Db2 CPU, elapsed
time, and CPU costs in both of the above-mentioned scenarios.

Tip: If your trigger does not need SQL PL logic, define them by using the MODE DB2SQL
option in Db2 for z/OS 12 to avoid any performance degradation.
200 IBM Db2 12 for z/OS Performance Topics

The following measurement results were obtained:

� No noticeable Db2 CPU reduction from the use of a consolidated trigger (<1%).
� Approximately 1 - 2% improvement in throughput.

Advanced triggers use more CPU than the (pre-V12) basic triggers, which might be
responsible for not seeing a resultant CPU benefit from this scenario.

7.1.2 Pagination

With the increasing demands for mobile and web applications, application developers often
want to display a subset of rows back to the user. Displaying a subset of rows at a time allows
the user to “page” through the data. Db2 12 for z/OS introduces the following types of
pagination support:

� Data-dependent
� Numeric-based

Data-dependent pagination
Data-dependent pagination is a method whereby an application developer can display pages
of data at a time. The data that is returned in the last row of the page is the data that is used
to fetch the next page of data. Application developers code this style of pagination in their
applications and return pages of data until no other rows qualify.

The following key features ensure data-dependent pagination returns the correct data:

� All of the columns that are specified in the ORDER BY clause must be in ascending or
descending order.

� All of the columns that are combined (specified in the ORDER BY clause) must generate a
unique value.

Before Db2 12, the disjunctive form was required when we wanted to obtain a result set that
was based on a logical key value, as shown in Example 7-1.

Example 7-1 Disjunctive form example

SELECT L_SHIPDATE,L_COMMITDATE, L_RECEIPTDATE
FROM LINEITEM
WHERE (L_SHIPDATE='1998-09-01' AND L_COMMITDATE='1998-09-01' AND L_RECEIPTDATE

='1998-09-01')
OR (L_SHIPDATE='1998-09-01' AND L_COMMITDATE='1998-09-01' AND
L_RECEIPTDATE >'1998-09-01')
OR (L_SHIPDATE='1998-09-01' AND L_COMMITDATE > '1998-09-01')
OR (L_SHIPDATE > '1998-09-01');

Note: The main benefit of the use of an advanced trigger for this purpose is the reduced
complexity and maintenance of the Db2 environment. This use results in only a single
trigger that must be maintained instead of maintaining a trigger and a stored procedure.
Chapter 7. SQL and application enablement 201

With data-dependent pagination, we can use a simpler syntax, as shown in Example 7-2.

Example 7-2 Data-dependent pagination example

SELECT L_SHIPDATE, L_COMMITDATE, L_RECEIPTDATE
FROM LINEITEM
WHERE (L_SHIPDATE,L_COMMITDATE,L_RECEIPTDATE)>=('1998-09-01', '1998-09-01',

'1998-09-01');

The performance of data-dependent pagination is similar to the performance of the same
query that is written in disjunctive form. The advantage of data-dependent pagination is in the
simplicity of its syntax.

Numeric-based pagination
Another form of pagination developers might employ in their applications is numeric-based
pagination, in which data is returned to the user from a particular starting row and for a
particular number of rows. The new OFFSET clause is used to return data in this manner
(such as returning data from a particular starting row for a particular number of rows).

The offset of the beginning row is 0 (not 1) and the value of the offset must be 0 or positive.
Before Db2 12, application developers might use other methods, such as a scrollable cursor,
a rowset cursor, an OLAP function, a stored procedure, or application logic that skips the
necessary number of rows before displaying the rows to the user. An example of the
numeric-based pagination that uses the new OFFSET clause is shown in Example 7-3.

Example 7-3 Numeric-based pagination example

SELECT *
FROM PART

WHERE P_PARTKEY > 50000
ORDER BY P_PARTKEY
OFFSET 101 ROW FETCH FIRST 100 ROWS ONLY;

If a user used a query to return the first 100 rows, the user can use the query that is shown in
Example 7-3 to skip forward to row 101 by using the OFFSET clause to return the next 100
rows.

We compared the following scenarios:

� A developer issues a FETCH FIRST m+n ROWS query. The developer must then skip the
first m-1 rows by using application logic.

� A developer issues an OFFSET m ROW FETCH FIRST n ROWS query. The developer
does not need to do any further processing to skip the first m-1 rows because these rows
are skipped already.

When comparing the above two scenarios we see that for the second case where the
customer uses a query with OFFSET clause:

� The customer can see up to 85% CPU time reduction in cases where there is an index,
and the OFFSET clause can be pushed down to Data Manager.

� The customer can see up to 98.5% reduction in Class 1 CPU and up to 94% reduction in
Class 2 CPU time due to fewer rows being returned to the application.

Note: The OFFSET clause can only be pushed down if it is on a single base table (no
join), without residual predicate or OLAP.
202 IBM Db2 12 for z/OS Performance Topics

Usage considerations
When trying to determine which pagination feature to use and how to use it, the following
guidelines are suggested:

� When customer knows the data value of the row to start from, they should use
data-dependent pagination because it generally performs better than offset pagination.
However, if they do not have a particular value to page to, they can use offset pagination.

� If available, the customer should use a WHERE clause to get to the starting point of the
data they are paging through and avoid large OFFSET values.

� Large OFFSET values are expensive and should be avoided because all skipped rows
must still be scanned.

� Indexes help performance, which is especially true for pagination.

7.1.3 MERGE statement

Db2 9 for z/OS provided the initial support for the MERGE statement. The MERGE statement
before Db2 12 allowed application developers to update rows in a table or insert new rows
into a table, depending on the source values that were specified. If the source values match
the target values, the rows are updated; otherwise, the new values are inserted into the target
table. The source values can be an expression, a host-variable-array, or NULL.

Starting in Db2 12 Function Level 500, the MERGE statement is enhanced to allow the
following functionality:

� Extra source value support. The source values can also be data from tables, data from
views, or results from a full select.

� Extra data modification support, which introduced the delete operation if rows match the
matching condition.

� More matching condition options.

� Support for more predicates on the matching conditions.

� Atomicity.

Performance improvement
In addition to enhancements, Db2 12 improves the performance of the MERGE statement
through the optimization changes that are described in this section.

Sort avoidance
Because a record in the MERGE target might be matched with only one row with the MERGE
source, the sort operation is needed to detect whether a row in the MERGE target was
modified only once.

However, the sort operation might be avoided in some cases, such as when a unique index is
defined on MERGE source and all index keys are referenced in a MERGE ON search
condition clause.

Enable list prefetch
In Db2 12, MERGE uses the RID list access method to UPDATE or DELETE a row in the
MERGE target. Therefore, if the RID of the next record that is being modified is in the buffer
pool, the synchronous I/O time is reduced.
Chapter 7. SQL and application enablement 203

Performance evaluation and results
Starting in Db2 12 Function Level 500, the MERGE statement can use table reference as the
MERGE source, but MERGE in Db2 11 or older releases cannot. These performance
improvements are implemented in new Db2 12 MERGE usage.

The performance comparison is between an application and a single Db2 12 MERGE
statement, which both implement the same function. However, the difference is that the
application must define a cursor and corresponding host variables, fetch every row from the
source table, and implement the programming logic.

In the scenarios that are described in this section, the MERGE statement uses table
references as the source table. The source table and target table include the same column
definition and the same unique index on the MERGE ON search condition column. The
source table contains 450 million rows and the target table is empty at the beginning of the
process.

Insert scenario
Because the target table is empty at first, the MERGE statement that is shown in Example 7-4
inserts all rows from the source table CUSTSOUR into the target table CUSTTARG. The
UPDATE SET part is not operated.

Example 7-4 MERGE statement

EXEC SQL
MERGE INTO CUSTTARG AS T1
 USING CUSTSOUR AS T2
 ON T1.C_CUSTKEY = T2.C_CUSTKEY
 WHEN MATCHED
 THEN
 UPDATE SET T1.C_NAME = T2.C_NAME
 WHEN NOT MATCHED
 THEN
INSERT(C_CUSTKEY,C_NAME,C_ADDRESS,C_NATIONKEY,C_PHONE)

VALUES(C_CUSTKEY,C_NAME,C_ADDRESS,C_NATIONKEY,C_PHONE);
EXEC SQL COMMIT;

Part of the application that implements the same function as the MERGE statement is shown
in Example 7-5.

Example 7-5 Application for insert scenario

EXEC SQL DECLARE C1 CURSOR WITH HOLD FOR
 SELECT C_CUSTKEY, C_NAME, C_ADDRESS, C_NATIONKEY, C_PHONE
 FROM
 CUSTSOUR;
EXEC SQL OPEN C1;
while(1)
 {
 EXEC SQL FETCH C1
 INTO :custkey,:name,:address,:nationkey,:phone;
 EXEC SQL
 SELECT 1 AS DUMMY INTO :dummy
 FROM CUSTTARG WHERE C_CUSTKEY = :custkey;
 if(sqlca.sqlcode == 100) /* if not exist, then insert*/
 {
204 IBM Db2 12 for z/OS Performance Topics

 EXEC SQL
 INSERT INTO CUSTTARG
 (C_CUSTKEY,C_NAME,C_ADDRESS, C_NATIONKEY, C_PHONE)
 VALUES(
 :custkey,:name,:address,:nationkey,:phone);
 }
 }
 EXEC SQL COMMIT;

Compared to the application solution, the Db2 12 MERGE statement uses sort avoidance and
enables list prefetch, which shows a 43% CPU reduction and a 36% elapsed time reduction
for the insert scenario.

Update scenario
In this scenario, the target table features the same rows as the source table. In this situation,
the same MERGE statement as shown in Example 7-5 updates the C_NAME column of the
target table CUSTTARG to the C_NAME value of the source table CUSTSOUR.

Part of the application that implements the same function as the MERGE statement is shown
in Example 7-6.

Example 7-6 Application for update scenario

EXEC SQL DECLARE C1 CURSOR WITH HOLD FOR
 SELECT C_CUSTKEY, C_NAME, C_ADDRESS, C_NATIONKEY, C_PHONE
 FROM
 CUSTSOUR;
EXEC SQL OPEN C1;
while(1)
 {
 EXEC SQL FETCH C1
 INTO :custkey,:name,:address,:nationkey,:phone;
 EXEC SQL
 SELECT 1 AS DUMMY INTO :dummy
 FROM CUSTTARG WHERE C_CUSTKEY = :custkey;
 if(sqlca.sqlcode == 0) /* if exist, then update*/
 {
 EXEC SQL
 UPDATE CUSTTARG SET C_NAME = :name
 WHERE C_CUSTKEY = :custkey;
 }
 }
 EXEC SQL COMMIT;

Compared to the application, the use of the MERGE statement shows a 53% reduction in
CPU time and a 47% elapsed time reduction for the update scenario.

Update and insert scenario
In preparation for this scenario, all of the even rows in the target table are deleted. The same
MERGE statement that is shown in Example 7-6 inserts all even rows into the target table,
and updates the C_NAME column of odd rows.
Chapter 7. SQL and application enablement 205

A sample of the application that implements the same function as the MERGE statement (but
without the use of MERGE) is shown in Example 7-7.

Example 7-7 Application for update and insert scenario

EXEC SQL DECLARE C1 CURSOR WITH HOLD FOR
 SELECT C_CUSTKEY, C_NAME, C_ADDRESS, C_NATIONKEY, C_PHONE
 FROM
 CUSTSOUR;
EXEC SQL OPEN C1;
while(1)
 {
 EXEC SQL FETCH C1
 INTO :custkey,:name,:address,:nationkey,:phone;
 EXEC SQL
 SELECT 1 AS DUMMY INTO :dummy
 FROM CUSTTARG WHERE C_CUSTKEY = :custkey;
 if(sqlca.sqlcode == 0) /* if exist, then update*/
 {
 EXEC SQL
 UPDATE CUSTTARG SET C_NAME = :name
 WHERE C_CUSTKEY = :custkey;
 }
 if(sqlca.sqlcode == 100) /* does not exist, then insert*/
 {
 EXEC SQL
 INSERT INTO CUSTTARG
 (C_CUSTKEY,C_NAME,C_ADDRESS, C_NATIONKEY, C_PHONE)
 VALUES(
 :custkey,:name,:address,:nationkey,:phone);
 }
 }
 EXEC SQL COMMIT;

Compared to the application, the MERGE statement shows a 46% CPU reduction and a 44%
elapsed time reduction for the combined update and insert scenario.

Delete scenario
In this scenario, the target table is the same as the source table. The MERGE statement that
is shown in Example 7-8 deletes all rows that are in the target table.

Example 7-8 MERGE statement

EXEC SQL
MERGE INTO CUSTTARG AS T1
 USING CUSTSOUR AS T2
 ON T1.C_CUSTKEY = T2.C_CUSTKEY
 WHEN MATCHED
 THEN
 DELETE
 WHEN NOT MATCHED
 THEN
INSERT(C_CUSTKEY,C_NAME,C_ADDRESS,C_NATIONKEY,C_PHONE)

VALUES(C_CUSTKEY,C_NAME,C_ADDRESS,C_NATIONKEY,C_PHONE);
EXEC SQL COMMIT;
206 IBM Db2 12 for z/OS Performance Topics

Part of the application that implements the same function as the MERGE statement is shown
in Example 7-9.

Example 7-9 Application for delete scenario

EXEC SQL DECLARE C1 CURSOR WITH HOLD FOR
 SELECT C_CUSTKEY, C_NAME, C_ADDRESS, C_NATIONKEY, C_PHONE
 FROM
 CUSTSOUR;
EXEC SQL OPEN C1;
while(1)
 {
 EXEC SQL FETCH C1
 INTO :custkey,:name,:address,:nationkey,:phone;
 EXEC SQL
 SELECT 1 AS DUMMY INTO :dummy
 FROM CUSTTARG WHERE C_CUSTKEY = :custkey;
 if(sqlca.sqlcode == 0) /* if exist, then delete*/
 {
 EXEC SQL
 DELETE CUSTTARG WHERE C_CUSTKEY=:custkey;
 }
 }
 EXEC SQL COMMIT;

Compared to the application, the MERGE statement shows a 52% CPU reduction and a 70%
elapsed time reduction for the delete scenario.

7.1.4 Supporting KEEPDYNAMIC (YES) for ROLLBACK

The KEEPDYNAMIC BIND/REBIND option determines whether Db2 keeps dynamic SQL
statements after the point of commit or rollback.

Before Db2 12 for z/OS, dynamic SQL statements are kept only in the local dynamic
statement cache after COMMIT points if the KEEPDYNAMIC(YES) parameter was used.

However, if a transaction failed and resulted in a ROLLBACK rather than a COMMIT, the local
copy of the dynamic statement is discarded, regardless of the KEEPDYNAMIC setting.
Subsequent rerunnings of the same statement must be reprepared, or a SQLCODE of -518 is
thrown.

This behavior forces application developers to program more complex logic. A programmer
must code the logic that follows a ROLLBACK differently than the logic that follows a
COMMIT.

Db2 12 for z/OS adds prepare avoidance support for ROLLBACK when
KEEPDYNAMIC(YES) is specified. With the support, all the dynamic SQL statements can be
prepared once and run many times, regardless whether the transaction succeeds.

Note: SQL code -518 indicates that THE EXECUTE STATEMENT DOES NOT IDENTIFY A VALID
PREPARED STATEMENT.
Chapter 7. SQL and application enablement 207

When the global dynamic statement cache is enabled and the local dynamic statement cache
is also turned on with KEEPDYNAMIC(YES), complete full and short prepare avoidance can
be achieved even after a ROLLBACK With Db2 12 for z/OS.

This benefit can result in CPU savings for distributed applications that complete frequent
ROLLBACKs.

Performance comparison before and after supporting
KEEPDYNAMIC(YES) for ROLLBACK

CPU savings can be seen by comparing the Db2 accounting reports from before and after the
inclusion of prepare avoidance support.

The necessary logic before prepare avoidance support is shown in Example 7-10.

Example 7-10 Program logic before Db2 12 for z/OS prepares avoidance support

PREPARE stmt1;
for(i=0; i<1000; i++)
{
EXECUTE stmt1;
if (sqlcode < 0)
{
record_error();
ROLLBACK;
PREPARE stmt1; /* re-PREPARE after rollback is required */
}
else
{
COMMIT;
}
}

The necessary logic with prepare avoidance support is shown in Example 7-11.

Example 7-11 Program logic with prepare avoidance support

PREPARE stmt1;
for(i=0; i<1000; i++)
{
EXECUTE stmt1;
if (sqlcode < 0)
{
record_error();
ROLLBACK;
/* no need to re-PREPARE here */
}
else
{
COMMIT;
}
}

208 IBM Db2 12 for z/OS Performance Topics

A performance comparison between before and after KEEPDYNAMIC(YES) Rollback
Support scenarios is listed in Table 7-2.

Table 7-2 Performance Comparison Before and After KEEPDYNAMIC(YES) rollback support

These performance observations result from the best-case scenario, assuming all
transactions fail with a ROLLBACK. Although such a case is unrealistic, the experiment was
done to demonstrate the best benefit from this enhancement.

Transactions that end with a COMMIT reaped the CPU savings of prepare avoidance before
this new feature. Performance savings can vary, depending on the percentage of transactions
that result in ROLLBACKs and the short prepare cost in relation to the total cost for the
transaction.

7.1.5 Improved storage usage for the Dependency Manager Hash (DMH) table

When a dynamic SQL statement is prepared, a copy of the statement is inserted into the
global dynamic statement cache (DSC) if zparm CACHEDYN is set to YES. At the same time,
Db2 object and authorization dependencies that are associated with that SQL are stored as
entries in the so-called Dependency Manager Hash (DMH) table.

The DSC and DMH grow or contract as new dynamic SQL statements are prepared and
added to the pool, or old statements are removed because of invalidation. If the EDM pool
size reaches the threshold that is set by EDMSTMTC, Db2 starts the least recently used
(LRU) algorithm to remove statements from the cache.

However, because of the inefficient storage usage of the DMH in the past, the DMH at times
was full before the DSC. Then, the application received a resource unavailable SQLCODE of
-904 RC00E7910D. Therefore, restarting Db2 to clear the DSC and the associated entries in the
DMH was often the only solution.

Db2 12 introduces the following functional and performance enhancements for the DMH to
significantly reduce the occurrences of DMH pool full conditions:

� The DMH table is now merged into the Statement Cache Blocks (SCB), which is another
storage area within the DBM1 address space. A more efficient algorithm was adopted to
reduce the overall storage consumption of the DMH, which makes it more in sync with the
fluctuation of statements in the EDM dynamic statement cache.

Before After Difference

CACHEDYN zparm YES YES

KEEPDYNAMIC bind option YES YES

Accounting Report Fields

#ROLLBACKS 1000 1000

NOT FOUND IN CACHE 0 0

FOUND IN CACHE 1000 1 -999

IMPLICIT PREPARES 0 0

PREPARES AVOIDED 0 999 999

Db2 CL.2 CP CPU TIME 1.778309 1.434686 -19.43%
Chapter 7. SQL and application enablement 209

� The zparm CACHE_DEP_TRACK_STOR_LIM that controls the upper limit of the DMH
pool was deprecated. The zparm EDMSTMTC was expanded to not only set the soft limit
for the EDM cache pool, but also for SCB pool because EDM and SCB are tied together
through prepared dynamic statements and both include a size limit of 4 GB. The user can
think of these two storage areas as one pool because now they are managed through one
common knob.

That section in IFCID 225, QW0225DMH ALLOCATED STOR FOR STMT
DEPENDENCIES field, indicates the storage usage by DMH. Figure 7-2 shows a sample
of an OMPE TRACE report, which shows the storage usage as reported by IFCID 225.

Figure 7-2 Storage usage by DMH in IFCID 225

Performance observations
We ran our IBM Relational Warehouse Workload (IRWW) and periodically injected ALTER
TABLESPACE for the table spaces the workload touches to trigger invalidation of cached
dynamic SQL statements.

Through monitoring of the DBM1 storage consumption by using IFCID 225 records, we
observed that the DMH storage did expand and contract as the number of cached statements
in the DSC fluctuated, while it was relatively fixed and far less responsive with older versions
of Db2 for z/OS.

7.1.6 Unicode column in EBCDIC table performance

Db2 11 for z/OS introduced the initial support for defining a Unicode column in an EBCDIC
table.

However, the implementation was limited because the Unicode column was recorded as
binary in the Db2 catalog, even though CHAR was specified as the column type in the
CREATE TABLE statement. Along with the limitation came restrictions on the usability of such
columns, such as indexability and string comparison.

Tip: By setting the zparm EDMSTMTC at a level below 80% of the 4 GB limit, Db2
intervenes much sooner and evicts statements from the DSC, which effectively minimizes
the chances of the DMH becoming full.
210 IBM Db2 12 for z/OS Performance Topics

Beginning with Db2 12 for z/OS with new function (Function Level 500) activated, a
byte-based Unicode column can be defined in an EBCDIC table as any of the character or
graphic data types, including CHARACTER, VARCHAR, CLOB, GRAPHIC, VARGRAPHIC,
or DBCLOB to remove the restrictions of the binary string Unicode columns. These columns
are recorded as characters and graphics in the Db2 catalog.

This section quantifies the performance results when populating and retrieving data out of
Unicode columns in an EBCDIC table. It also compares it to performing the same operations
against Unicode columns in Unicode tables, and EBCDIC columns in EBCDIC tables.

Environment setup
How the test environment was configured is shown in Figure 7-3.

Figure 7-3 Hardware and software configuration

All Unicode columns in our test scenarios are defined as CHAR(20) and CCSID 1208, and
only 10 bytes of data are inserted into the columns to trigger padding.

No indexes are defined on the table (indexes mixing EBCDIC and Unicode columns are not
yet allowed by Db2). The table space that contains the test table is assigned to a buffer pool
with 2.5 GB of storage, which is large enough to store the entire 10-column table.

The buffer pool is defined as PGFIX(YES) to use long-term page fixing.

Performance comparison
This section shows the measurements for inserting, selecting, and updating EBCDIC data in
Unicode or EBCDIC columns in respective Unicode and EBCDIC tables.
Chapter 7. SQL and application enablement 211

The INSERT EBCDIC performance results are shown in Figure 7-4.

Figure 7-4 INSERT EBCDIC performance results

The SELECT EBCDIC data performance results are shown in Figure 7-5.

Figure 7-5 SELECT EBCDIC performance results

The UPDATE EBCDIC data performance results are shown in Figure 7-6.

Figure 7-6 UPDATE EBCDIC performance results
212 IBM Db2 12 for z/OS Performance Topics

Inserting and selecting code page EBCDIC data from Unicode columns in EBCDIC tables
perform similarly to performing the same insert and select against Unicode columns in
Unicode tables and EBCDIC columns in EBCDIC tables. The only exception is that selecting
from EBCDIC columns in EBCDIC tables outperforms the other two. This result occurs
because when EBCDIC data is inserted into or selected from a Unicode table or column, the
data is converted.

However, inserting EBCDIC data into a Unicode column is unrealistic (although it is a good
baseline check) because no one intentionally adds a Unicode column to store EBCDIC data.
Therefore, we completed another set of tests (as described next) to determine the cost of
inserting and selecting Unicode data in a Unicode column of an EBCDIC table and a Unicode
table.

In this scenario, all Unicode columns are defined as VARGRAPHIC (30), CCSID 1200
UTF-16 to be compatible with the PL/I program whose package and plan are bound with
ENCODING(Unicode). This configuration ensures host variable and column data CCSID
compatibility.

We insert only the 10-byte Unicode constant of CJK characters
X’4E004E014E024E034E044E054E064E074E084E09’.

The INSERT, SELECT EBCDIC, UNICODE performance results are shown in Figure 7-7.

Figure 7-7 INSERT SELECT EBCDIC performance results

Performance results
The conclusion that we can draw from the data that is shown in Figure 7-7 is that inserting
and selecting from Unicode columns in EBCDIC tables has similar performance
characteristics as that of selecting Unicode columns in Unicode tables, which meets our
performance expectation.

7.1.7 Piece-wise data modification

When the predicate in a delete statement qualifies for too many rows, the statement and
recovery can be long-running because of the large unit of work. Beginning in Db2 12 for z/OS
with new function (Function Level 500) activated, a FETCH FIRST n ROWS ONLY clause can
be appended to the delete statement and break large delete operations into smaller and more
manageable pieces. A COMMIT can then be issued in between these pieces to release locks
and increase concurrency. In addition, smaller data modification allows for faster Db2 restart
or faster data sharing failover and recovery.
Chapter 7. SQL and application enablement 213

Performance observation
A performance measurement was conducted comparing deleting 1 million rows versus
deleting 200 rows while looping 5000 times (for a total of 1 million rows). For these runs, a test
table was created by using the DDL that is shown in Example 7-12.

Example 7-12 DDL example for performance measurements

CREATE DATABASE DB18904;
CREATE TABLESPACE TS18904 IN DB18904
 USING STOGROUP SYSDEFLT
 PRIQTY 28800 SECQTY 57600
 FREEPAGE 0
 PCTFREE 0
 BUFFERPOOL BP8
 LOCKSIZE PAGE
 LOCKMAX 0
 CLOSE NO;

CREATE TABLE TB18904
 (
 PID INT,
 COL01 CHAR(100))
IN DB18904.TS18904;
CREATE UNIQUE INDEX IX18904
 ON TB18904(PID)
 USING STOGROUP SYSDEFLT
 PRIQTY 14400 SECQTY 28800
 CLUSTER
 FREEPAGE 0
 PCTFREE 0
 BUFFERPOOL BP9
 CLOSE NO;

Then, the table was populated with 10 million rows with PID ranging 1 - 10000000 in
ascending order. We then ran the two delete tests, as shown in Example 7-13. A LOAD was
done between the tests to repopulate the table after the first delete.

Example 7-13 DELETE test statements

DELETE FROM USRT001.TB18904 WHERE PID < 1000001;
COMMIT;
for(i=1; i<5001; i++) {
DELETE FROM USRT001.TB18904 WHERE PID < 1000001 FETCH FIRST 200 ROWS ONLY;
COMMIT;
}

With 5000 commits for test scenario 2, the in Db2 class 2 CPU and elapsed time for test 2 is
approximately 2.5 times as high as test 1 with a comparable number of getpages, LOCK, and
CHANGE requests. The significant increase in CPU time is expected and acceptable in
exchange for better concurrency and recoverability that results from breaking up the mass
delete into smaller chunks. It is a good application coding practice to control the number of
rows that are processed by DELETE statements by specifying FETCH FIRST n ROWS ONLY.
It also is good application coding practice to mitigate the effects of locking and logging when
millions of rows are potentially or unintentionally affected by a simple DELETE statement.
214 IBM Db2 12 for z/OS Performance Topics

7.2 Resource Limit Facility

Db2 12 for z/OS extends the Resource Limit Facility (RLF) reactive governing to support
static SQL statements, such as SELECT (cursor or singleton), INSERT, UPDATE, MERGE,
TRUNCATE, or DELETE. This new support is available from function level V12R1M100 and
must be enabled by setting the following new system parameter:

RLFENABLE=ALL or STATIC

Where ALL means both dynamic and static, as shown in the following example:

STATIC means static SQL only

The DDL for the creation of the DSNRLMTxx table is shown in Example 7-14.

Example 7-14 DDL for creating the DSNRLMT01 table

CREATE TABLE DSNRLMT01
 (RLFFUNC CHAR(1) NOT NULL WITH DEFAULT,
 RLFEUAN VARCHAR(255) NOT NULL WITH DEFAULT,
 RLFEUID VARCHAR(128) NOT NULL WITH DEFAULT,
 RLFEUWN VARCHAR(255) NOT NULL WITH DEFAULT,
 RLFIP CHAR(254) NOT NULL WITH DEFAULT,
 ASUTIME INTEGER,
 RLFASUERR INTEGER,
 RLFASUWARN INTEGER,
 RLF_CATEGORY_B CHAR(1) NOT NULL WITH DEFAULT)

For reactive governing using the DSNRLMT01 table (Example 7-14), RLFFUNC=B means
that the row reactively governs static SQL statements by using client information (RLFEUID,
RLFEUAN, RLFEUWN, and RLFIP).

The DDL for the creation of the DSNRLSTxx table is shown in Example 7-15.

Example 7-15 DDL for creating the DSNRLST01 table

CREATE TABLE DSNRLST01
 (AUTHID VARCHAR(128) NOT NULL WITH DEFAULT,
 PLANNAME CHAR(8) NOT NULL WITH DEFAULT,
 ASUTIME INTEGER,
 LUNAME CHAR(8) NOT NULL WITH DEFAULT,
 RLFFUNC CHAR(1) NOT NULL WITH DEFAULT,
 RLFBIND CHAR(1) NOT NULL WITH DEFAULT,
 RLFCOLLN VARCHAR(128) NOT NULL WITH DEFAULT,
 RLFPKG VARCHAR(128) NOT NULL WITH DEFAULT,
 RLFASUERR INTEGER,
 RLFASUWARN INTEGER,
 RLF_CATEGORY_B CHAR(1) NOT NULL WITH DEFAULT)

Consider the following points regarding Example 7-15:

� For reactive governing using the DSNRLST01 table (Example 7-14), RLFFUNC = A
means that the row reactively governs static SQL statements by package or collection
name.

� ASUTIME is used to limit the statement’s execution time. Db2 issues SQLCODE -905 if
the execution time exceeds the ASUTIME limit.
Chapter 7. SQL and application enablement 215

7.2.1 Performance objectives and evaluation

RLF for static SQL includes the following the performance objectives:

� No regression when RLF is not active.

� Minimal performance affect for static SQL statements that are governed when RLF is
active.

Several test scenarios were conducted to evaluate dynamic SQL statements, static SQL
statements, and mixed SQL statements with RLF tables (including an RLF table with about 20
thousand records, with options of matching and governing). For more information about
governing rules, see IBM DB2 12 for z/OS Technical Overview, SG24-8383.

The performance objectives were met. Up to 2% overhead was observed for static SQL
statements that are not governed or governed with no limit (zparm’s default).

With the RLF table data cached in memory, no getpages are available from the RLF table
space. Therefore, we also observed significant CPU time improvements for the dynamic SQL
statements in the case of local dynamic SQL with a large RLF table and matching UserID.

The following section describes the performance results when the IRWW SQLJ and JDBC
workload was measured.

Distributed IRWW static workload
We observed an approximate 2% overhead when RLF was used.

The performance observations for the distributed IRWW static workload and governed with
limit are listed in Table 7-3.

Table 7-3 Performance observations IRWW static workload

Distributed IRWW dynamic workload
With the RLF enhancement to cache RLF table data in memory to avoid getpages from the
RLF table space, we also observed the following significant performance improvements for
the distributed IRWW dynamic workload and governed with limit:

� Improved performance of approximately 7% of CL2 CP time
� Improved performance of approximately 3% Total CPU time

Tip: SQL code -905 means UNSUCCESSFUL EXECUTION DUE TO RESOURCE LIMIT BEING
EXCEEDED, RESOURCE NAME = resource-name LIMIT = limit-amount1 CPU SECONDS
(limit-amount2 SERVICE UNITS) DERIVED FROM limit-source.

Delta (%) Total
CPU/Commit

No matching Matching

SQLJ (static) 1.03 1.11

Delta (%) CL2 CPU No matching Matching

SQLJ (static) 2.06 1.51
216 IBM Db2 12 for z/OS Performance Topics

The measurements for this workload are listed in Table 7-4.

Table 7-4 Performance observations IRWW static workload

7.3 JSON support

Db2 11 for z/OS added JSON support for requests from web, mobile, and cloud applications.
Db2 12 for z/OS adds the ability to port JSON directly to Db2. Users can work with JSON data
with the Type 4 Java Client driver or through SQL extensions. The JSON built-in functions and
UDFs rely on JSON documents being stored in an internal binary format that is named BSON
in Db2.

However, the JSON functionality is not included in the base Db2 product. You must install the
Accessories Suite (a no-charge feature) to enable it.

The JSON_VAL built-in function is the main function that provides an SQL interface to extract
and retrieve JSON data from BSON objects. In Db2 12, this function is enhanced so that the
first argument is no longer required to be a BLOB column. In Db2 12, the first parameter can
be the JSON objects from a view column, CASE expression, or table expression with UNION
ALL.

In addition to the built-in function JSON_VAL, Db2 12 includes a set of UDFs for storing and
retrieving BSON documents in the Db2 BLOBs.

The following UDFs are provided by Db2:

� SYSTOOLS.BSON2JSON
� SYSTOOLS.JSON2BSON
� SYSTOOLS.JSON_BINARY
� SYSTOOLS.JSON_BINARY2
� SYSTOOLS.JSON_GET_POS_ARR_INDEX
� SYSTOOLS.JSON_LEN
� SYSTOOLS.JSON_TABLE
� SYSTOOLS.JSON_TABLE_BINARY
� SYSTOOLS.JSON_TYPE
� SYSTOOLS.JSON_UPDATE
� SYSTOOLS.REGSP
� SYSTOOLS.REG_MATCHES
� SYSTOOLS.REG_MATCHES_NOFLAGS

7.3.1 Built-in function JSON_VAL

The Db2 for z/OS built-in function JSON_VAL provides an SQL interface to extract and
retrieve JSON data from the database. This function accepts only the BSON type of JSON
document, so its argument must be a column from the table that contains the JSON
document in BSON format, or a SYSTOOLS.JSON2BON function that returns the BSON
format of JSON document.

% Change No matching Matching

Total CPU/commit 2.65 3.89

CL1 CP 2.79 4.14

CL2 CP 6.89 7.21
Chapter 7. SQL and application enablement 217

The JSON_VAL built-in function returns an element of a JSON document that is identified by
the JSON field name that is specified in the search string. The value of the JSON element is
returned in the data type and length that is specified in result-type.

For example, if the CUSTOMERS table is designed to store JSON data and we want to
determine how many customers have a postal code of 95123, the query that is shown in
Example 7-16 can be used.

Example 7-16 SELECT JSON example

SELECT count(*) from CUSTOMERS
WHERE JSON_VAL(DATA, '.zipcode', 's:5') = '95123';

As shown in Example 7-17, we can list customers’ names whose account balance is less than
10000.

Example 7-17 SELECT JSON complex example

SELECT JSON_VAL(T1.DATA, ‘CustLastName’, ‘s:30’) || ‘, ‘ ||
JSON_VAL(T1.DATA,’CustFirstName’, s:30’) as “Customer Name”
FROM CUSTOMERS T1, ACCOUNTS T2
WHERE JSON_VAL(T1.DATA, ‘CUSTID’, ‘I' =JSON_VAL(T2.DATA, ‘CUSTID’, ‘I’)
AND JSON_VAL(T2.DATA,’Balance’, ‘f’) > 10000;

Another example is updating a JSON document in the table, as shown in Example 7-18.

Example 7-18 Update JSON document

UPDATE CUSTOMERS
SET DATA=SYSTOOLS.JSON2BSON(
 ‘{“CUSTOMERS”: {“CUSTID”:888,
 “Lastname”:”John”,
 “FirstName”:”Smith”,
 …………
 }
 }’)
WHERE JSON_VAL(DATA,’CUSTID’, ‘i:na’) = 888;

Similar to the UPDATE operation on JSON documents, we can delete a JSON document from
the table. Example 7-19 shows an SQL statement that deletes a JSON document. By starting
JSON_VAL in the search condition of the DELETE statement, you can locate the record to be
deleted and the DELETE statement deletes the JSON data if it is found.

Example 7-19 DELETE JSON example

DELETE FROM CUSTOMERS
WHERE JSON_VAL(DATA, ‘CUSTID’, ‘i:na’) = 888;

Consider the following points:

� The :na is needed to ensure that the array type is not returned because Db2 does not
support an array type.

� To achieve better performance for operations on JSON data, it is necessary to have a
proper index on the elements in a JSON document.
218 IBM Db2 12 for z/OS Performance Topics

7.3.2 UDFs for JSON support

Db2 for z/OS provides several user-defined functions to support operations on JSON data. To
create them, the DDL that is provided in the Db2 Accessory Suite must be run. These UDFs
are typically called by the JSON API to update or retrieve JSON data.

The following JSON UDFs are important:

� SYSTOOLS.JSON2BSON(INJSON CLOB(16M)) RETURNS BLOB(16M)

This user-defined function accepts a JSON document as the argument, transforms it, and
returns the BSON (Binary JSON) of that JSON document.

� SYSTOOLS.JSON_BINARY (INJSON BLOB (16M), INELEM VARCHAR (2048),
MAXLENGTH INTEGER) RETURNS VARCHAR (2050) FOR BIT DATA

This user-defined function returns a binary portion of JSON data and is typically used in
select projections or where clause binary comparisons.

� SYSTOOLS.JSON_TABLE (INJSON BLOB (16M), INELEM VARCHAR (2048), RETTYPE
VARCHAR (100)) RETURNS TABLE (TYPE INTEGER, VALUE VARCHAR (2048))

This function returns a table with two columns. The first column is the BSON type; second
column is the string value.

� SYSTOOLS.JSON_UPDATE (INJSON BLOB (16M), INELEM VARCHAR (32672))
RETURNS BLOB (16M)

This function is used to update JSON data and is usually called from the JSON API.

� SYSTOOLS.JSON_LEN (INJSON BLOB (16M), INELEM VARCHAR (2048)) RETURNS
INTEGER.

This function returns the size of array of elements in JSON data and returns NULL if an
element is not an array.

7.3.3 JSON performance

We evaluated the performance of INSERT, SELECT, UPDATE, and DELETE statements on
JSON documents that are stored in Db2 z/OS tables. All measurements were performed by
using Db2 for z/OS 11.

INSERT performance
To store a JSON document into a Db2 table, users can use the Java API that is included with
the Db2 Accessory Suite or directly insert the BLOB data into the DATA column by using the
JSON2BSON UDF, as shown in Example 7-20.

Example 7-20 INSERT JSON example

INSERT INTO CUSTOMERS VALUES (102,
 SYSTOOLS.JSON2BSON(‘{“CUSTOMERS”: {“CUSTID”:888,
 “Lastname”:”John”,
 “FirstName”:”Smith”,
 …………
 }
 }’));
Chapter 7. SQL and application enablement 219

The measurements’ results of inserting a JSON document into a Db2 table by using SQL and
JSON API are listed in Table 7-5. The data shows that inserting a JSON document by using
JSON Java API takes a bit longer than the use of SQL directly. This difference occurs
because the client must construct a well-formed JSON document before inserting it into the
table.

Table 7-5 Time Comparison (in microseconds) between SQL and JSON API

SELECT performance
Users can retrieve the value of a specific field in a JSON document from the BLOB column
DATA directly with the built-in function JSON_VAL.

The statement that was performed to assess the SELECT by using the built-in function
JSON_VAL performance as an example of JSON_VAL usage is shown in Example 7-21.

Example 7-21 JSON Select with built-in functions

String str = " SELECT JSON_VAL(DATA, \'properties.BLOCK_NUM\', \'s:10\'), " +
"JSON_VAL(DATA, \'properties.LOT_NUM\', \'s:10\') " + " FROM TEST.CITYLOTS WHERE
JSON_VAL(DATA, \'properties.BLKLOT\', \'s:10:na\') ‘= ? " ;

The elapsed time and CPU time (in microseconds) of the SELECT statement and the JSON
Java API are listed in Table 7-6. The API costs more than selecting directly from the table.

Table 7-6 Time Comparison (in microseconds) between SQL and JSON API

Therefore, the use of API, which in turn starts the built-in function JSON_VAL, has some
overhead. However, the MongoDB-like API provides a rich set of operations to search and
retrieve JSON documents.

UPDATE performance
To update data in a JSON document, you can use an SQL UPDATE statement or the built-in
function JSON_VAL. However, with this method, the entire value of column DATA is updated
and the input to the JSON data must be a well-formed JSON document. Alternatively, Db2
JSON API DBCollection.FindAndModify() can be used to find a document, modify some
specific fields, return that document.

CL1 elapsed time CL2 elapsed time CP1 CP time CL2 CP time

SQL 607 557 134 101

API 636 557 146 101

CL1 elapsed time CL2 elapsed time CP1 CP time CL2 CP time

SELECT 138 83 115 82

Find() 201 87 141 86
220 IBM Db2 12 for z/OS Performance Topics

The elapsed time and CPU time (in microseconds) of the UPDATE statement versus the
JSON Java API FindAndModify() are listed in Table 7-7. The use of the API costs more than
updating a BLOB column in the table directly by using SQL. This difference occurs because
the function FindAndModify() must start several UDFs to find the position of the column to be
updated, then used the function update() to update data, and return the updated data.

Table 7-7 Time Comparison (in microseconds) between SQL and JSON API

DELETE performance
To delete data in a JSON document, you can use the SQL DELETE statement. In addition,
several Db2 JSON API methods are available to delete one or more JSON documents.
DBCollection.remove() can be used to delete all documents or delete only specific
documents in a collection. Another method, such as FindAndRemove(), can be used to delete
a document in a collection (this method also returns the removed document).

The elapsed time and CPU time (in microseconds) of deleting a JSON document by using the
SQL DELETE statement and the JSON Java API are listed in Table 7-8. The data shows that
the use of the API costs more than directly deleting a BLOB column in the table. However, the
use of the JSON API is easier to program by using JavaScript.

Table 7-8 Time Comparison (in microseconds) between SQL and JSON API

7.4 Built-in LISTAGG aggregate function

Db2 12 for z/OS introduces a new built-in aggregate function called LISTAGG. It provides a
simple and efficient manner to collapse rows of a column into a string.

The LISTAGG function is used to aggregate a set of string values within a group into one
string. An optional separator argument, which is inserted between adjacent input strings, can
be used to delimit the items in the result list. Specifying a comma as the separator produces a
comma-separated list.

An optional ordering can also be specified for the items in the WITHIN GROUP clause.

CL1 elapsed time CL2 elapsed time CP1 CP time CL2 CP time

UPDATE 324 170 197 158

FindAndModify() 674 432 257 197

CL1 elapsed time CL2 elapsed time CP1 CP time CL2 CP time

DELETE 382 333 125 92

remove() 532 471 159 116

FindAndRemove() 496 379 205 145

Tip: This feature is available after the activation of Function Level 501 or higher. For more
information about activating Function Level 501 (or higher) in Db2 12 for z/OS, see the IBM
Knowledge Center.
Chapter 7. SQL and application enablement 221

https://www.ibm.com/support/knowledgecenter/
https://www.ibm.com/support/knowledgecenter/

7.4.1 Sample scenario and use cases for LISTAGG

This section describes an application example of the LISTAGG function.

Consider the table EMP and its data that is listed in Table 7-9.

Table 7-9 Table EMP

Assume the requirement to output all employees’ names under the same department into one
row, in ascending order according to their birth date and employees’ ID. This section shows
three approaches to perform the task.

Method #1: Application + SQL
This method involves the following procedure:

1. Define a cursor for SQL to query the employee’s name and department from the EMP
table.

2. Fetch data from the cursor and use application logic to judge whether the employee’s
name is under same department and then perform concatenation.

This method requires users to implement the judgment logic and concatenation, which is
error prone and uses time and resources.

Method #2: Use complex SQL/PL
The method of the use of complex SQL/PL to get the results that LISTAGG can provide easily
is shown in Example 7-22.

Example 7-22 Complex SQL/PL to aggregate EMP data

CREATE TABLE AGGRESU(
 DEPT_ID INTEGER NOT NULL,
E_NAME VARCHAR(1000) NOT NULL);
CREATE PROCEDURE AggEmpName (…)
 BEGIN
 SET STMT= '';
 SET PRE_Dept_ID= '';

Dept_ID E_Name Emp_ID Birth

10 Jack 0012 1983

10 Lily 0015 1990

20 Tom 0019 1983

20 Bob 0022 1976

20 Frank 0004 1983

20 Tom 0014 1985

30 Jerry 0028 1991

30 Chris 0021 1981

30 Jill 0002 1984

30 Jerry 0031 1984

30 Allan 0006 1995
222 IBM Db2 12 for z/OS Performance Topics

 FOR MYC CURSOR FOR
 SELECT Dept_ID, E_Name
 FROM EMP
 ORDER BY Dept_ID, Birth, Emp_ID
 DO
 IF PRE_Dept_ID = '' THEN
 SET PRE_Dept_ID = Dept_ID;
 SET STMT = STMT ||E_Name||';';
 ELSE
 IF PRE_Dept_ID = Dept_ID THEN
 SET STMT = STMT ||E_Name||';';
 ELSE
 INSERT INTO AGGRESU VALUES (PRE_Dept_ID,STMT);
 SET PRE_Dept_ID = Dept_ID;
 SET STMT= '';
 SET STMT = STMT ||E_Name||';';
 END IF;
 END IF;
 END FOR;
 END;
CALL AggEmpName (…) ;

Method #3: Use LISTAGG function
How the problem might be solved by using the LISTAGG function is shown in Example 7-23.

Example 7-23 Use of the LISTAGG function

SELECT Dept_ID, LISTAGG(ALL E_Name, ’; ’)
WITHIN GROUP (ORDER BY Birth, Emp_ID) AS Name_List
FROM EMP
GROUP BY Dept_ID;

The result set that is generated by this query is listed in Table 7-10.

Table 7-10 LISTAGG results

It is clear that the LISTAGG function is simpler and easier to use than the first and second
methods.

7.4.2 Performance results for LISTAGG function

In the sample scenario that is described in 7.4.1, “Sample scenario and use cases for
LISTAGG” on page 222, controlled test measurements compare the use of Db2 SQL/PL
(Method #2) with the use of the LISTAGG function (Method #3).

The table that is used for performance testing features one unique index on the column group
of the grouping column, ordering column, and the aggregated column. In total, 1400 rows in
this table are included and the max aggregated string set has 320 strings.

Dept_ID Name_List

10 Jack; Lily

20 Bob; Frank; Tom; Tom

30 Chris; Jill; Jerry; Jerry; Allan
Chapter 7. SQL and application enablement 223

Performance results show a 97% CPU reduction and a 94% elapsed time reduction when the
LISTAGG function is used.

7.5 XML Optimizations

Db2 12 for z/OS enhances XML performance in several ways, with changes to XMLMODIFY,
XMLTABLE, and access path optimizations.

This section describes XML performance enhancements and their performance
measurements.

7.5.1 XML subdocument update

The XMLMODIFY built-in scalar function was introduced in Db2 10 for z/OS to allow XQuery
updating expressions to be used in an SQL statement when an XML document is updated in
an XML column.

The following basic updating expressions are supported:

� INSERT
� DELETE
� REPLACE

Before Db2 12, only a single basic updating expression is allowed in XMLMODIFY. In Db2 12
Functional Level 500, multiple updating expressions are allowed with which multiple updates
in a single XMLMODIFY can be done by using one of the following methods:

� An FLWOR expression that contains an updating expression in its return clause.

� A conditional expression that contains an updating expression in its then or else clause.

� Two or more updating expressions that are separated by commas where all operands are
either updating expressions or an empty sequence.

Note: For more information about LISTAGG, see the IBM Knowledge Center.

Note: For more information about XML-related enhancements in Db2 12 for z/OS, see IBM
DB2 12 for z/OS Technical Overview, SG24-8383.

Note: Performing multiple updates in one update statement can greatly improve
performance by avoiding calling XMLMODIFY multiple times.
224 IBM Db2 12 for z/OS Performance Topics

https://www.ibm.com/support/knowledgecenter/

XMLModify examples
In this section, examples of how you can use the XMLModify statement to perform multiple
updates are presented. Consider a table that is called purchaseOrders that contains a column
that is named PO that contains the XML document, as shown in Example 7-24.

Example 7-24 Sample XML document for XMLModify examples

<ipo:purchaseOrder
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:ipo="http://www.example.com/IPO"
 xmlns:pyd=http://www.examplepayment.com orderDate="1999-12-01"
pyd:paidDate="2000-01-07">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>47 Eden Street</street>
 <city>Cambridge</city>
 <postcode>CB1 1JR</postcode>
 </shipTo>
<items>
 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>1</quantity>
 <USPrice>149.99</USPrice>
 <shipDate>2011-05-20</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <comment>Not shipped</comment>
 </item>
 </items>
</ipo:purchaseOrder>

Multiple updates by using a sequence expression
Multiple updates by using a sequence expression are shown in Example 7-25. This statement
can be used to replace the quantity of the item with partNum=”872-AA’ with 2, and delete the
item with partNum=”945-ZG” at the same time.

In Db2 11, we must use two XMLMODIFY statements to achieve this result.

Example 7-25 XML multiple updates by using a sequence expression

UPDATE purchaseOrders
SET PO = XMLMODIFY(
 'declare namespace ipo="http://www.example.com/IPO";
 replace value of node
 /ipo:purchaseOrder/items/item[@partNum="872-AA"]/quantity
 with xs:integer(2),
 delete node
 /ipo:purchaseOrder/items/item[@partNum="945-ZG"]’);
Chapter 7. SQL and application enablement 225

Multiple updates by using an FLWOR expression
How to perform updates by using an FLWOR expression is shown in Example 7-26. This
statement increases the USPrice of each item by 10%.

Example 7-26 XML multiple updates by using an FLWOR expression

UPDATE purchaseOrders
SET PO = XMLMODIFY(
 'declare namespace ipo="http://www.example.com/IPO";
 for $i in /ipo:purchaseOrder/items/item
 let $p := $i/USPrice
 where xs:decimal($p)>0
 return
 replace value of node $p with $p *1.1’);

Multiple updates by using conditional expressions
How multiple updates are run by using a conditional expression is shown in Example 7-27.
Here, all items with a quantity greater than one are updated with a discount of 10%. Also, if
the quantity is one or less, the price is increased by 5%.

Example 7-27 XML multiple updates by using a conditional expression

UPDATE purchaseOrders
SET PO = XMLMODIFY(
 'declare namespace ipo="http://www.example.com/IPO";
 for $i in /ipo:purchaseOrder/items/item
 let $p := $i/USPrice
 let $q := $i/quantity
 where xs:decimal($p)>0 and xs:integer($q)>0
 return
 (
 if (xs:integer($q) > 1) then
 replace value of node $p with $p *0.9
 else
 replace value of node $p with $p *1.05
)’
);

Performance results
The purpose of these tests is to ensure that the new method of grouping XML Update
statements into a single XMLMODIFY statement uses equal or less CPU time than running
multiple separate XMLMODIFY statements.

Single update versus multiple updates performance
The following XML Docs were used for testing this enhancement:

� IBM Healthcare 10MB doc: 50 docs inserted and 10 deletes were issued against each
document

� IBM Catalog 1MB doc: 3000 docs inserted, 2 different scenarios tested:

– 1 replace/delete issued against each document
– 5 replace/deletes issued against each document
226 IBM Db2 12 for z/OS Performance Topics

� IBM Catalog 10MB doc: 50 docs inserted, 2 scenarios tested:

– 10 replaces issued against each document
– 5 inserts issued into each document.

XML Update was run on these documents by using a single XMLMODIFY in Db2 12. It was
compared to multiple XMLMODIFY statements with Db2 11. The results are described next.

The performance results of the IBM Catalog 1MB scenario are shown in Figure 7-8.

Figure 7-8 Catalog 1 MB with five replaces and five deletes times

The performance results of the Medline document scenario when comparing Db2 11 to Db2
12 for z/OS are shown in Figure 7-9.

Figure 7-9 Medline 10MB with 10 replaces times
Chapter 7. SQL and application enablement 227

The performance results for the IBM Catalog 10MB document 10 replaces scenario are
shown in Figure 7-10.

Figure 7-10 Catalog 10MB with 10 replaces times

The performance results for the Catalog 10MB 5 inserts document scenario are shown in
Figure 7-11.

Figure 7-11 Catalog 10 MB with five inserts times

These results show a significant improvement in CPU and Elapsed time on every scenario
when comparing Db2 12 to Db2 11.

FLWOR expression performance
The purpose of this test is to evaluate the performance effect of the new FLWOR functions.

The performance expectation is to have equal or better CPU time than running multiple
separate XMLMODIFY statements.
228 IBM Db2 12 for z/OS Performance Topics

The test scenario involves 3000 1MB Catalog Docs. Eight instances of quantity_in_stock
are found in each document.

The update XMLMODIFY statement is shown in Example 7-28.

Example 7-28 XML update XMLMODIFY statement

UPDATE XML2TB SET XML2 = XMLMODIFY(
 'for $i in /catalog/item
 let $c := $i/cost
 let $q := $i/quantity_in_stock
 where xs:integer($q)=10
 return
 replace value of node $c with $c *0.9'

The performance measurements are shown in Figure 7-12.

Figure 7-12 FLWOR Catalog 1MB replace times

The results show a significant improvement in CPU and Elapsed time on every scenario when
comparing Db2 12 to Db2 11.

Validation performance
The purpose of this test is to measure the performance effects of the new method of grouping
XML Update statements in a single XMLMODIFY.

It is expected to be using equal or less CPU time compared to running multiple separate
XMLMODIFY statements when Schema Validation is also performed.

The following XML Docs were used for testing:

� Medline 10MB doc: 400 docs inserted and 10 deletes were issued against each document

� Catalog 10MB doc: 50 docs inserted, 2 scenarios tested:

– 10 replaces issued against each document
– 5 inserts issued into each document
Chapter 7. SQL and application enablement 229

The performance measurements for the Medline 10 MB test scenario are shown in
Figure 7-13.

Figure 7-13 Medline 10MB times

The results for the Catalog 10MB document validation 10 replaces scenario are shown in
Figure 7-14.

Figure 7-14 Catalog 10MB times

The results show a significant improvement in CPU and Elapsed time on every scenario when
comparing Db2 12 to Db2 11. In the scenario IBM Catalog 10MB with 10 replaces, a
comparable CPU time was observed, but the elapsed time reduction shows the advantages
that were introduced in Db2 12 for z/OS.
230 IBM Db2 12 for z/OS Performance Topics

7.5.2 XML access plan optimization

Db2 12 Functional Level 100 improves the performance of XML queries by optimizing the
access path selection process.

To use this enhancement, new histogram and frequency statistics are collected on the leading
column of the XML value indexes. The filter factor formula for the XMLEXISTS predicates is
enhanced to better use these new statistics.

Performance results
In this section, we describe several tests that were performed to measure the CPU savings
when these statistics are used.

First, the appropriate histogram and frequency statistics are collected by using the RUNSTATS
command, as shown in Example 7-29.

Example 7-29 RUNSTATS command to collect histogram statistics

RUNSTATS TABLESPACE DBSEC3.XSEC0000 INDEX(ALL)
 FREQVAL NUMCOLS 1 COUNT 10 MOST
 HISTOGRAM NUMCOLS 1 NUMQUANTILES 5 REPORT YES

The performance results when queries are run after the RUNSTATS command is used are
shown in Figure 7-15.

Figure 7-15 CPU time when statistics are used

The measurements show that the selected queries that matched the heuristics criteria
showed a 76% reduction in the Class 1 time and a 77% reduction Class 2 time.

Tip: For more information about the Db2 12 for z/OS Function Levels, see the chapter
“Continuous delivery” in IBM DB2 12 for z/OS Technical Overview, SG24-8383.
Chapter 7. SQL and application enablement 231

7.5.3 XMLTABLE enhancements

Before Db2 12, performance can be poor when XMLTABLE has many columns that are
sharing the name-value pattern in their XPATHs.

In Db2 12 Functional Level 500, enhancements to the XMLTABLE function improve the
performance of XMLTABLE queries, which conduct pivot-like operations to XML data with
name-value pair patterns.

These enhancements are retrofitted to Db2 10 and Db2 11 with APARs PM97952 and
PM98160.

Performance results
In this section, we describe several tests that were run with a different number of columns that
shared the name-value pattern in their XPATHs to highlight the improvement.

The performance results are shown in Figure 7-16.

Figure 7-16 Class2 CPU time for XMLTABLE

With the new XMLTABLE enhancements, we see up to 99% savings in CPU time for queries
that use this feature.

Tip: For more information about the Db2 12 for z/OS Function Levels, see the chapter
“Continuous delivery” in IBM DB2 12 for z/OS Technical Overview, SG24-8383.
232 IBM Db2 12 for z/OS Performance Topics

7.6 Temporal improvement

Db2 12 includes improvements in temporal referential integrity and non-deterministic
expression columns for auditing.

7.6.1 Temporal referential integrity

Before the activation of Db2 12 for z/OS Function Level 500, enforcing referential integrity (RI)
on temporal tables with business time (application-period temporal tables) was done by using
complex user-defined triggers or stored procedures. These customized routines are difficult to
build and error-prone.

Db2 12 for z/OS introduces a built-in capability to define referential integrity on temporal
tables with business time. Therefore, RI checking on temporal tables is not limited only to
answering the question of whether a child table foreign key value is in the corresponding
parent table. It also must address whether a child table foreign key value is for the specific
period in the corresponding parent table.

This RI checking incurs certain overhead, but we expect that Db2 enforced RI on temporal
tables will be less costly than user application enforced RI.

Performance objective
This section quantifies the overhead of RI checking (compared to no RI) in the following four
main scenarios. It also compares the CPU cost of Db2 enforced RI checking by using the new
Db2 12 feature with user-enforced RI checking that uses triggers:

� Update temporal parent tables
� Update temporal child tables
� Insert into temporal child tables
� Delete from temporal parent tables

Performance measurement
The DDL that was used to create a parent and a child temporal table that was used in the test
scenarios is shown in Example 7-30.

Example 7-30 DDL for test scenario objects

CREATE TABLE parent
(pid INTEGER NOT NULL,
p1 VARCHAR(8),
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
PERIOD BUSINESS_TIME (bus_start, bus_end),
PRIMARY KEY (pid, BUSINESS_TIME WITHOUT OVERLAPS))@

CREATE TABLE child
(cid INTEGER NOT NULL,
pid INTEGER NOT NULL,
c1 VARCHAR(8),
bus_start DATE NOT NULL,

Tip: For more information about the Db2 12 for z/OS temporal improvements, see the
Temporal table enhancements section in the “Application enablement” chapter of IBM DB2
12 for z/OS Technical Overview, SG24-8383.
Chapter 7. SQL and application enablement 233

bus_end DATE NOT NULL,
PERIOD BUSINESS_TIME (bus_start, bus_end),
PRIMARY KEY (cid, BUSINESS_TIME WITHOUT OVERLAPS))@

CREATE INDEX idx_child_foreign_key
ON child (pid, bus_end ASC, bus_start ASC)@

Insert into parent values(1,'parent1','1/1/2010','7/31/2010')@
 Insert into parent values(1,'parent2','7/31/2010','12/31/2010')@
 Insert into child values(11,1,'chiFeb','2/1/2010','2/28/2010')@
 Insert into child values(11,1,'chiJun','6/1/2010','6/30/2010')@

-- The following ALTER statement is run only when using DB2 enforced RI

ALTER TABLE child add
FOREIGN KEY (pid, PERIOD BUSINESS_TIME)
 REFERENCES parent (pid, PERIOD BUSINESS_TIME) ON DELETE RESTRICT)@

Update temporal parent table
One result of updating a temporal parent table is shifting the boundary of business time
periods. How the update is done is shown in Figure 7-17. The result is shown in Figure 7-18
on page 235.

Figure 7-17 Before parent table update (shifting boundaries)
234 IBM Db2 12 for z/OS Performance Topics

Figure 7-18 After parent table update (shifting boundaries)

Another type of parent table update results in time gaps, which triggers more Db2 processing
in enforcing the parent-child relationship (see Figure 7-19 and Figure 7-20 on page 236).

Figure 7-19 Before parent table update (creating time gaps)
Chapter 7. SQL and application enablement 235

Figure 7-20 After parent table update (creating time gaps)

Our measurement of the RI overhead for the first type of boundary shifting update of the
parent table is approximately 15.91% more class 2 CPU time. The second type of parent
table update uses 64.72% more CPU than without RI checking to ensure that the child rows
can still fit in the periods of the newly updated parent table, as shown in Figure 7-21.

Figure 7-21 RI checking overhead when updating temporal parent table
236 IBM Db2 12 for z/OS Performance Topics

Update and insert into temporal child table, delete from parent table
These three scenarios differ in complexity for RI checking, and as a result, the measured
overhead also ranges 15.17% - 60.03%, as shown in Figure 7-22.

Figure 7-22 RI checking overhead when updating and inserting into temporal child table, and deleting from parent table

Db2 enforced RI checking versus trigger enforced RI checking
To determine how efficient Db2 engine code is to enforce the RI relationship between parent
and child tables, we performed an experiment in which a row was inserted into a temporal
child table with Db2 enforced RI checking versus inserting that row into a child temporal table
where the RI is enforced by using triggers. The trigger that was used in this scenario is shown
in Example 7-31.

Example 7-31 Trigger to enforce RI

CREATE TRIGGER parent_child_RI_insert
 NO CASCADE BEFORE INSERT ON child
 REFERENCING NEW AS new_C
 FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

 -- check if child row violate temporal RI
 IF NOT EXISTS (
 -- there was a row valid in PARENT when CHILD started
 SELECT *
 FROM PARENT AS P
 WHERE new_C.PID = P.PID
 AND P.BUS_START <= new_C.BUS_START
 AND new_C.BUS_START < P.BUS_END
)
 -- there was a row valid in PARENT when CHILD ended
 OR NOT EXISTS (
 SELECT *
 FROM PARENT AS P
 WHERE new_C.PID = P.PID
 AND P.BUS_START < new_C.BUS_END
 AND new_C.BUS_END <= P.BUS_END
)
 -- there are no holes in PARENT.PID during Child's period of
 -- validity
 -- the outer select find all parents convers child's range
 -- for each this parent row
 -- the subselect in the predicate find if there is no gap
Chapter 7. SQL and application enablement 237

 OR EXISTS (
 SELECT *
 FROM PARENT AS P
 WHERE new_C.PID = P.PID
 AND new_C.BUS_START < P.BUS_END
 AND P.BUS_END < new_C.BUS_END
 AND NOT EXISTS (
 SELECT *
 FROM PARENT AS P2
 WHERE P2.PID = P.PID
 AND P2.BUS_START <= P.BUS_END
 AND P.BUS_END < P2.BUS_END
)
)
 THEN
 SIGNAL SQLSTATE '2FI00'
 ('Child period is not covered by parent with temporal RI!');
 END IF;
END @

With the complexity of this trigger logic (in particular, when it must take all the different
potential violations of the parent-child relationships into consideration), it is not surprising to
find that Db2 enforced RI checking uses 86% less class 2 CPU compared to the user-defined
trigger solution.

Temporal RI support in Db2 12 for z/OS significantly shortens the application development
cycle and delivers better performance than home-grown solutions that many Db2 users
depended on in the past.

7.6.2 Non-deterministic expression columns for auditing

Db2 10 for z/OS introduced a system-time versioning feature, along with temporal tables, that
provides a solution to manage different versions of application data. Db2 automatically tracks
when rows are created, updated, and deleted from the system-period temporal table.
Columns ROW BEGIN and ROW END of the system-period temporal table are used and
populated by Db2 based on the system clock.

However, this feature merely answers the question of when a change is made to the base
table.

To meet the auditing requirements for regulatory compliance, starting with Db2 11 with
APARs PM99683 and PI15298 applied, more columns are added to temporal tables to track
who, how, and what when changes are made to the base table. These columns are
automatically maintained by Db2, which avoids the need to write complex and often
error-prone logic in user applications to accomplish the same goal.

Performance objective
We want to quantify the performance of populating these extra auditing columns by using this
new Db2 feature, in comparison with doing so through populating non-generated columns by
using triggers, which is what most users implement for their custom solution.
238 IBM Db2 12 for z/OS Performance Topics

Populating auditing columns by using triggers
The DDLs that are shown in Example 7-32 are used to define a base table, history table,
update trigger, and to populate the base table.

Example 7-32 DDL to define example objects

CREATE table bank_account_stt
(account_no INT NOT NULL,
balance INT,
beg_user_id VARCHAR(128) DEFAULT NULL,
end_user_id VARCHAR(128) DEFAULT NULL,
op_code CHAR(1) DEFAULT NULL,
sys_start TIMESTAMP(12) DEFAULT NULL,
sys_end TIMESTAMP(12) DEFAULT NULL,
trans_id TIMESTAMP(12) DEFAULT NULL)@
CREATE table bank_account_hist
(account_no INT NOT NULL,
balance INT,
beg_user_id VARCHAR(128) DEFAULT NULL,
end_user_id VARCHAR(128) DEFAULT NULL,
op_code CHAR(1) DEFAULT NULL,
sys_start TIMESTAMP(12) DEFAULT NULL,
sys_end TIMESTAMP(12) DEFAULT NULL,
trans_id TIMESTAMP(12) DEFAULT NULL)@
CREATE TRIGGER update_trig
AFTER UPDATE ON bank_account_stt
REFERENCING OLD AS OLDROW NEW AS NEWROW
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
INSERT INTO bank_account_hist
 (account_no,
 balance,
 beg_user_id,
 op_code,
 sys_start,
 sys_end)
VALUES (OLDROW.account_no,
 OLDROW.balance,
 OLDROW.beg_user_id,
 OLDROW.op_code,
 OLDROW.sys_start,
 CURRENT TIMESTAMP);
END@
INSERT INTO bank_account_stt (account_no, balance, beg_user_id,
end_user_id, op_code, sys_start, sys_end, trans_id)
VALUES (123, 99, 'AMDF001', NULL, 'I', CURRENT TIMESTAMP,
'9999-12-31 00:00:00.0', NULL)@
Chapter 7. SQL and application enablement 239

The base and history table that is shown in Figure 7-23 are created. Then, we run an update
statement against the base table.

Figure 7-23 Before issuing update statement against the base table to start the trigger

After the UPDATE statement, the history table is populated by the trigger, as shown in
Figure 7-24.

Figure 7-24 After update trigger gets started
240 IBM Db2 12 for z/OS Performance Topics

Populating auditing columns by using Db2 built-in logic
As a comparison, we use the DDLs that are shown in Example 7-33 to define a base table
and history table, and to enable versioning and populate the base table.

Example 7-33 Example INSERT statements

CREATE TABLE BANK_ACCOUNT_STT
(ACCOUNT_NO INT NOT NULL,
BALANCE INT,
BEG_USER_ID VARCHAR(128) GENERATED ALWAYS AS (SESSION_USER),
END_USER_ID VARCHAR(128) DEFAULT NULL,
OP_CODE CHAR(1) GENERATED ALWAYS AS (DATA CHANGE OPERATION),
SYS_START TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
SYS_END TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
TRANS_ID TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,
PERIOD SYSTEM_TIME(SYS_START, SYS_END))@
CREATE table bank_account_hist
(account_no INT NOT NULL,
balance INT,
beg_user_id VARCHAR(128),
end_user_id VARCHAR(128),
op_code CHAR(1),
sys_start TIMESTAMP(12) NOT NULL,
sys_end TIMESTAMP(12) NOT NULL,
trans_id TIMESTAMP(12))@
ALTER TABLE bank_account_stt ADD VERSIONING USE HISTORY TABLE bank_account_hist@
INSERT INTO bank_account_stt (account_no, balance) VALUES (123, 99)@

The base and history tables that are shown in Figure 7-25 are created. Then, we run an
update against the base table.

Figure 7-25 Before issuing update statement against the base table
Chapter 7. SQL and application enablement 241

Db2 populates the history table after the update statement, as shown in Figure 7-26.

Figure 7-26 After updating the base table

Performance comparison
Per the Db2 accounting report, the use of the built-in Db2 support for maintaining the extra
auditing columns uses 14% less class 2 CPU than doing so by using user-defined triggers.

The performance result agrees with our initial expectation, which indicates that users can
save on CPU processing time by using this new auditing column feature to reduce the
complexity in user application development.
242 IBM Db2 12 for z/OS Performance Topics

Chapter 8. Query performance

Db2 12 introduces many enhancements in query performance, including enhancements in
optimal access path selection, query transformation, and internal runtime processing.

This chapter includes the following topics:

� 8.1, “UNION ALL and OUTER JOIN performance enhancements” on page 244
� 8.2, “Predicate optimizations” on page 257
� 8.3, “Optimizer cost model enhancements” on page 264
� 8.4, “Runtime enhancements” on page 268
� 8.5, “Sort space reductions and in-memory use ” on page 274
� 8.6, “Migration from Db2 11 to Db2 12” on page 282
� 8.7, “Query regression workloads ” on page 284

8

© Copyright IBM Corp. 2017. All rights reserved. 243

8.1 UNION ALL and OUTER JOIN performance enhancements

Performance challenges are often observed when UNION ALL or OUTER JOIN is used in a
part of a query. Although the UNION ALL construct and outer joins might not always be
combined in the same queries, significant overlap occurs with the performance challenges of
both such that it makes sense to discuss them together.

However, a conclusion should not be drawn that all queries that involve UNION ALL or outer
joins include performance challenges. The performance opportunities exist where these
constructs involve materializations in which filtering is not applied early in the query
execution. Older releases of Db2 delivered enhancements for both constructs such that
performance might be acceptable for simple use cases.

An OUTER JOIN is generally used when the join relationship between tables is optional,
whereas an inner join is used to maintain a mandatory join relationship. The expectation is
typically that performance is similar between inner joins and outer joins. Although it might be
possible to have similar performance, comparable performance can also be challenging, most
notably because of the difference in the result that is retrieved from the optional join
relationship, and that outer joins dictate the sequence that tables must be joined.

UNION ALL is used to combine different tables and allow them to be represented as a
consistent result. This construct is appearing in many new applications, including SAP Core
Data Services and WebSphere Application Server Portal, and is also used internally by Db2
for system-period temporal tables (available since Db2 10) and the archive transparency
feature (since Db2 11).

The Db2 usage drives more customers to be exposed to UNION ALL within their queries.
Customers are also integrating active and archive tables in their own applications by using
UNION ALL to supplement or alleviate the management challenges of large table spaces.

Customers expect outer joins to perform like inner joins. Similarly, when customers use
UNION ALL to consolidate multiple objects, they expect performance similar to if they
accessed a single object. This performance expectation can be far more challenging to
achieve because of the increase in the number of objects that are involved when UNION ALL
is introduced.

In Db2 12 for z/OS, improving UNION ALL and OUTER JOIN performance to address
materialization challenges include the following the targeted enhancements:

� Reordering OUTER JOIN tables to avoid materializations
� Push predicates inside UNION ALL legs or OUTER JOIN query blocks
� Sort of outer table to ensure sequential access to the inner table of a join
� Bypass work file usage when materialization is required
� Trim unnecessary columns and tables
� Push ORDER BY and FETCH FIRST into UNION ALL legs

These targeted enhancements are described in the following sections. The reader can skip
these sections to the UNION ALL and OUTER JOIN summary (8.1.5, “Targeted UNION ALL
and OUTER JOIN summary” on page 257), or read through the next sections to understand
each enhancement and why they were targeted in Db2 12.
244 IBM Db2 12 for z/OS Performance Topics

8.1.1 Reorder OUTER JOIN tables to avoid materializations

Allowing Db2 to internally reorder the OUTER JOIN tables within the query overcomes a
limitation that can be exposed when combining outer and inner joins in the same query. In
certain instances, Db2 11 and older versions materialize some tables that can result in local
or join filtering not being applied before the materialization.

Some customers who were observed this performance challenge rewrote their queries to
ensure that all inner joins appear before OUTER JOINs in the query, if possible. Rewriting a
query is often difficult because of the proliferation of generated queries and applications being
deployed without thorough performance evaluation. Therefore, minimizing exposure to this
limitation in Db2 12 provides a valuable performance boost for affected queries.

To demonstrate this enhancement, the query that is shown in Example 8-1 materializes the
view in Db2 11, but Db2 12 can avoid materialization of the view, which greatly improves the
performance of the query.

Example 8-1 View materialization avoidance

CREATE VIEW TPCHVLIL AS
 SELECT *
 FROM CUSTOMER
 LEFT OUTER JOIN NATION
 ON C_NATIONKEY=N_NATIONKEY
 INNER JOIN SUPPLIER
 ON S_SUPPKEY=C_CUSTKEY
 LEFT OUTER JOIN PART
 ON C_CUSTKEY=P_PARTKEY
 WHERE S_SUPPKEY BETWEEN 0 AND 900000;

SELECT *
 FROM TPCHVLIL
 INNER JOIN LINEITEM
 ON C_CUSTKEY=L_ORDERKEY WHERE C_CUSTKEY < 900000;

Performance results
Performance results for reordering OUTER JOIN tables showed up to 90% reduction in CPU
for queries that now avoids costly materializations.
Chapter 8. Query performance 245

8.1.2 Push predicates inside UNION ALL legs and OUTER JOIN query blocks

The example that is shown in Figure 8-1 demonstrates performance challenges when UNION
ALL is combined with an OUTER JOIN. The original query appears at the top of Figure 8-1
and is a simple two table (left outer) join of T1 to T2.

Figure 8-1 Db2 11 left OUTER JOIN query with archive transparency tables

In this example, T1 and T2 are “archive enabled” (which refers to the Db2 11 archive
transparency feature). Therefore, Db2 rewrites the query to include the active and archive
tables (with T1 circled and the arrow pointing to the first UNION ALL on the left side of the
join, and T2 circled with arrow pointing to the second UNION ALL on the right side of the join).

This representation is true of any UNION ALL within a view, where the view definition is
replaced within the query where it is referenced. Although older releases provided similar
merge (and therefore materialization avoidance) capabilities for table functions that were
syntactically equivalent to views, Db2 12 improved the merge of deterministic table functions
with input parameters and indexability of input parameters as predicates within the table
function, as described in 8.2, “Predicate optimizations” on page 257.

The performance challenge for this query example is that Db2 runs each leg of the UNION
ALL separately and combines the results from each side of the first UNION ALL. Then, it
combines each side of the second UNION ALL before joining the two results as requested in
the outer query block.

In the V11 rewrite of the query, no join predicates or any filtering within the UNION ALL legs
are used. The term combining means that Db2 returns all columns and all rows from T1 in the
first UNION ALL and all columns and all rows from H1 and materialize those rows to a work
file. The work file then is sorted in preparation for the join. This process is repeated for the
second UNION ALL; that is, all columns and all rows from T2 and H2 are materialized into a
work file and sorted in preparation for the join on column C1 from both work files.

The performance of this query depends heavily on the size of the tables that are involved,
with large tables that use significant CPU and work file resources to complete the process.
246 IBM Db2 12 for z/OS Performance Topics

By using the same example from Figure 8-1 on page 246, we can use Figure 8-2 to describe
how several of the UNION ALL-focused enhancements in Db2 12 can improve the
performance of this query.

Figure 8-2 Db2 12 left OUTER JOIN query with archive transparency tables (or any UNION ALL views)

Although the internal rewrite of the tables to the UNION ALL representation remains the
same, Db2 12 adds the ability for the optimizer to make a cost-based decision whether to
push the join predicates into the UNION ALL legs. As shown in Figure 8-2, the optimizer
chose to push the join predicates inside each UNION ALL leg. The join predicates occur only
on the right side of the join because a join is “FROM” the left “TO” the right. The TABLE
keyword is required externally for this example to be syntactically valid because pushing the
predicates down results in the query appearing as a correlated table expression.

Having the join predicates in each UNION ALL leg allows the join to “look up” each leg of the
UNION ALL for every row coming from the outer, rather than sort the full results for the join.

Another optimization to reduce work file usage and materialization, is that Db2 12 can
“pipeline” the rows from the first UNION ALL (on the left side of the join). (The term pipelining
describes a technique where Db2 transfers rows directly from one query block to another
without materializing one or both query blocks.) Transferring rows from one query block to
another can require the results to be written (materialized) to an intermediate work file as in
the Db2 11 example. However, Db2 12 can pipeline the result from the first UNION ALL to the
join without requiring this materialization.
Chapter 8. Query performance 247

The result for this query in Db2 12 given the (cost-based) join predicate pushdown is that the
work file and materializations are avoided, and available indexes can be used for each leg, as
shown in Figure 8-3.

Figure 8-3 Db2 12 left OUTER JOIN UNION ALL query with sort of outer

We extend the example that is shown in Figure 8-3 further to demonstrate more Db2 12
enhancements that can improve performance closer to queries that do not use the UNION
ALL infrastructure.

One option that the optimizer can use to improve join performance between two tables
sequentially is for the optimizer to introduce a sort of the outer (composite, which is denoted
as SORTC_JOIN='Y' in the explain output). If data from the outer table is accessed in a
different sequence than the index that is used for the join to the inner, Db2 can choose to sort
the outer into the sequence of the inner, which allows the access to the inner to occur in
order. This approach is extended in Db2 12 when joining to views and table expressions that
contain UNION ALL and is a cost-based choice for the optimizer.

Figure 8-4 on page 249 shows another variation of the same query in which no supporting
indexes for the join to T2.C1 or H2.C1 are used. Db2 12 allows a sparse index to be built on
an individual leg of a UNION ALL. This index applies to one or both legs, and is also
cost-based and therefore can be combined with the other UNION ALL-focused
enhancements.
248 IBM Db2 12 for z/OS Performance Topics

Figure 8-4 Db2 12 left OUTER JOIN UNION ALL query without supporting join indexes

If sparse index is chosen, the outer does not need to be sorted into join order as shown in
Figure 8-3 on page 248 because a sparse index can use hashing if the result can be
contained within memory. Therefore, random I/O is not a significant concern.

Performance results for join predicate pushdown
The following performance results were observed:

� Up to 95% reduction in CPU time for qualifying queries.
� WebSphere Application Server Portal subset: An 80% CPU time reduction for qualifying

queries.

Performance results for avoiding inner table materializations (pipelined
inner)

The following performance results were observed:

� Crystal Reports: A 5% reduction in CPU and 65% reduction in work file getpages.

� Up to 80% reduction in CPU and elapsed time for qualifying queries.

� When materialization of the inner table is avoided because of pipelining, the PLAN_TABLE
indicates this result by using a new ACCESSTYPE='O' option.
Chapter 8. Query performance 249

Performance results for pipelined outer
The following performance results were observed:

� A 10 - 30% CPU reduction for various workload queries.

� Up to 80% reduction in elapsed time because of improved parallelism by avoiding
materialization to work file for outer table.

� When materialization of the outer table is avoided because of pipelining, the
PLAN_TABLE indicates this result by using a new ACCESSTYPE='O' option.

8.1.3 Trim unnecessary columns and tables

In the first UNION ALL example that is shown in Figure 8-1 on page 246, it was highlighted
that all columns and all rows were materialized. The next examples focus on the optimizations
to improve the available access path choices to avoid materializing all rows of the view or
table expression.

However, an explanation of the all columns was intentionally avoided until the enhancement
was described. But first, the problem: For materialized views or table expressions where the
select list can contain more columns than are needed by the query that is referencing that
view or table expression, all columns that are coded within that view or table expression are
included as part of the materialization in Db2 11 and older versions when materialization
occurs. Db2 removes unreferenced columns from the select list if a view or table expression is
merged with the referencing query.

Column pruning
Db2 12 provides an enhancement to remove (prune) columns from the select list of the view
or table expression before materialization for any columns that are not required by the
referencing query. This removal reduces the size of the materialized result and the amount of
work file space and sort key size, which can allow index-only access for access before
materialization. Such an enhancement can also apply to join predicate pushdown in which
materialization can be avoided, as shown in Figure 8-5 and Figure 8-6 on page 251.

Figure 8-5 Db2 11 processing all columns in materialized view/table expression

The query that is shown in Figure 8-5 involves a LEFT OUTER JOIN to a UNION ALL table
expression. In the select list for each leg of the UNION ALL is a SELECT *, which means
return all columns from that table.
250 IBM Db2 12 for z/OS Performance Topics

However, the referencing SELECT requires P2.P_PARTKEY only (for the SELECT list and
ON clause). Because of the materialization of the UNION ALL table expression in Db2 11, all
columns from the PART table (for example, if the table has 10 columns) are accessed and
materialized to the work file. As the outer query is retrieving from that work file, only
P_PARTKEY is retrieved.

Figure 8-6 Db2 12 pruning unreferenced columns with optional join pushdown

The example that is shown in Figure 8-5 on page 250 is repeated in Figure 8-6. Db2 12
prunes the unnecessary columns and requires only P_PARTKEY to be returned from each
UNION ALL leg, whereas Db2 11 returned all columns. If the UNION ALL table expression is
materialized, only P_PARTKEY is retrieved and written or materialized to work file compared
with all (10) columns in Db2 11.

If P_PARTKEY is indexed, the optimizer can choose a non-matching index scan in Db2 12
rather than a table space scan in Db2 11. Similarly, if the join predicates were pushed down in
Db2 12 and matching index access was chosen on P_PARTKEY, index-only is possible
because only P_PARTKEY is required.

Table pruning
Another benefit of column pruning is that it can open other table pruning opportunities. In Db2
10, an enhancement was delivered to prune OUTER JOIN tables if no columns were required
from that table and it was guaranteed that the table did not introduce duplicates. In Db2 12,
this pruning enhancement is extended from OUTER JOINs to views or table expressions that
are guaranteed not to return duplicates and no columns are required from the view or table
expression.

The example that is shown in Figure 8-7 on page 252 might appear convoluted, but it is a
simplified example from an actual ERP workload on Db2 for z/OS. Before explaining the
example, it is an interesting question to ask why you might build a query that references
tables from which columns are not actually required.

This type of construct is becoming more common as views are built to hide the complexity
and present a simplified representation to the user, such that they can select from a view,
rather than writing a complex query themselves. Similarly, for query generators it is required
that the select from the views and the underlying table relationships can be set up or altered
without affecting the query generation.
Chapter 8. Query performance 251

Such views can be built on top of each other as building blocks for simplicity in constructing
these respresentations and to simplify future changes at any level. This ability means that the
views typically contain more than what you might require, and you can select only the
columns that you need and ultimately, you might need only a subset of the tables.

Figure 8-7 Db2 11 LEFT OUTER JOIN to unnecessary table expression

Figure 8-7 shows an example of how Db2 11 handles this type of nested view which conceals
the underlying complexity. As with past UNION ALL examples, the UNION ALL retrieves all
columns and all rows from T1 and T2 and materializes these columns and rows to a work file,
which is sorted for the join. T3 is then joined to this materialized result, and the result of this
final join is sorted to remove duplicate C1 values (given the DISTINCT). This join is
unnecessary because no columns were required from the UNION ALL of T1 and T2 and the
DISTINCT removes any duplicates introduced.
252 IBM Db2 12 for z/OS Performance Topics

The Db2 12 rewrite for the example that is shown in Figure 8-7 on page 252 is demonstrated
in Figure 8-8. The view definitions and the query against the views are the same in both
figures. What differs is how Db2 12 can prune out the table expression that contains the
UNION ALL. The result is a SELECT DISTINCT that requires access to T3 only.

Figure 8-8 Db2 12 LEFT OUTER JOIN to unnecessary table expression

Performance results for trimming unnecessary columns and tables
The following performance results were observed:

� Up to 5% reduction in CPU and 35% reduction in elapsed time with column pruning alone.
� Up to 30% reduction in CPU when trimmed columns result in table pruning.

8.1.4 Push down of ORDER BY and FETCH FIRST

The final Db2 12 enhancement targeted at improving UNION ALL and OUTER JOINs with
views and table expressions relates to the usage of ORDER BY and FETCH FIRST clauses.

In the example that is shown in Figure 8-9 on page 254, view V1 contains three tables
combined with UNION ALL, and then a query against that view includes an ORDER BY 1
(meaning the first column in the select list) and FETCH FIRST 10 ROWS ONLY. Figure 8-9 on
page 254 shows the view definition, the query, and the merged query in Db2 11. From a
performance perspective, all rows (and columns) from all three UNION ALL legs will be
retrieved and materialized to a work file, and then sorted for the ORDER BY and from that
sort, the top 10 rows will be retrieved. If each of the tables contains 1 million rows, then the
materialization and sort will involve 3 million rows to retrieve just the top 10 rows.
Chapter 8. Query performance 253

Figure 8-9 Db2 11 ORDER BY and FETCH FIRST with materialized view

In Db2 12, the ORDER BY and FETCH FIRST clauses are pushed inside each leg of the
UNION ALL, as shown in Figure 8-10 on page 255. Also of note as to another difference
between Figure 8-9 and Figure 8-10 on page 255, the SELECT list of each UNION ALL leg
contains SELECT * in Figure 8-9 (Db2 11), which results in all columns from each table being
retrieved and materialized.
254 IBM Db2 12 for z/OS Performance Topics

As shown in Figure 8-10 (Db2 12), you see that the SELECT * from the view definition had the
unnecessary columns pruned, which results in only column C1 appearing in the merged
query in Db2 12.

Figure 8-10 Db2 12 ORDER BY and FETCH FIRST with materialized view

With ORDER BY and FETCH FIRST pushed down to each UNION ALL leg, the Db2
optimizer can now optimize each leg independently, which includes the use of an available
index to avoid the ORDER BY sort and fetch the top 10 rows without having to retrieve and
sort 1 million rows from each leg. If no index exists, sort has in-memory optimizations since
Db2 9 for z/OS when the number of rows is guaranteed, as is the case with FETCH FIRST.

Therefore, each leg now can optimize sort or avoid a sort (given an available index) with the
ORDER BY and FETCH FIRST on each leg, and the final sort merges the three results
because it is known that each leg is in order. The best-case performance comparison is Db2
11 sorting 3 million rows, and Db2 12 using indexes in each leg to retrieve only 30 rows total
to retrieve the top 10 rows.

This ORDER BY (and FETCH FIRST) pushdown enhancement is also interesting to
demonstrate the use of a simpler type of query that involves UNION ALL that might appear as
a cursor in an OLTP or batch application.

Figure 8-11 on page 256 and Example 8-2 on page 256 shows a simple cursor with UNION
ALL and a final ORDER BY, followed by a FETCH that is performed 10 times. No FETCH
FIRST is available; therefore, the optimizer is not aware of the number of fetches that occur
within the application.
Chapter 8. Query performance 255

Figure 8-11 Db2 12 UNION ALL in an OLTP-style query

Example 8-2 Db2 12 UNION ALL in an OLTP-style query

V11:
| QQP | M | MJ | TBNAME | ACC | A_NM | IXO | JM_UJOGM |
+--
00032-001-001	3	?		:		N	NN NNYNN
00032-002-001		?	ORDERS	R :		N	NN NNNNN
00032-003-001		?	LINEITEM	I :	L_OK	Y	NN NNNNN

V12:
| QQP | M | MJ | TBNAME | ACC | A_NM | IXO | JM_UJOGM |
+--
00032-001-001		?		:			NN NNNNN
00032-002-001		?	ORDERS	I :	O_OK	N	NN NNNNN
00032-003-001		?	LINEITEM	I :	L_OK	Y	NN NNNNN

The summarized trace information that is shown in Figure 8-11 shows 1.5 milliseconds of
class 2 CPU time, 10 fetches, and a total of 16 getpages across BP1 (index) and BP2 (data).
Although the Db2 11 results are not shown for this example, the query qualifies over 200
million rows. Because Db2 11 does not push the ORDER BY to each UNION ALL leg, all 200
million rows are sorted and written to work file for the application to fetch only 10 rows.

What also is not shown in Figure 8-11 is the access path chosen in Db2 12, although it can be
deduced from the low number of getpages that both legs of the UNION ALL can use an index
to avoid the ORDER BY sort. In addition to the ORDER BY pushdown (and FETCH FIRST
pushdown when applicable), sort can merge the legs across the UNION ALL.

What cannot be deduced from this example is how many getpages were required across
each leg. Determining this information requires a more detailed getpage trace or separating
the objects into more buffer pools. All 10 rows fetched can come from the first leg, the second
leg, or a combination of both.
256 IBM Db2 12 for z/OS Performance Topics

Performance results
Performance results for ORDER BY and FETCH FIRST pushdown showed up to 99%
reduction in CPU time and elapsed time was for qualifying SQL.

8.1.5 Targeted UNION ALL and OUTER JOIN summary

It was highlighted in the introduction to the UNION ALL enhancements that this construct is
appearing more frequently in ERP and customer workloads, and is the foundation for recent
Db2 features; that is System-Period Temporal and archive transparency. The commitment in
Db2 12 to improving UNION ALL performance and how this is achieved by avoiding
materialization or improving the performance of materialization by piping or merging the
materialization result into the next query processing step was described.

As implied in the examples that were used in this section where the Db2 11 materialization
processes all table rows, avoiding this materialization in Db2 12 can result in only the required
rows being processed, which in turn results in orders of magnitude in performance
improvement.

Although most of the examples demonstrated the challenge and benefit for UNION ALL
queries, the Db2 12 optimizations are equally applicable to other materialized views or table
expressions with outer join. Many of the same materialization performance challenges exist
for optimal performance of OUTER JOIN and UNION ALL-based queries. It is expected that
Db2 12 will provide significant performance improvement for these query patterns.

8.2 Predicate optimizations

The stage at which Db2 can evaluate predicates can have a significant effect on SQL
performance. It is well-understood that indexable and stage 1 predicates allow filtering to
occur at an earlier stage and can use indexes to restrict the search range.

Although limiting the search range can provide orders of magnitude of performance
improvements over scanning the entire object, if the only filtering comes from a stage 2
predicate, the performance of that query or application is not acceptable and deployment of
that query or application usually fails.

Improving the performance of stage 2 predicates or allowing predicates to become
indexable/stage 1 can enable successful application deployments. Applications or queries in
which filtering from other indexable or stage 1 predicates occurs are less affected by stage 2
predicates.
Chapter 8. Query performance 257

8.2.1 Sort for stage 2 join expressions

The first use case of stage 2 predicates that is targeted in Db2 12 involves stage 2 join
predicates. Numerous enhancements were available in recent releases that improve the
performance of stage 2 predicates. However, stage 2 join predicates, particularly on the inner
table of a join, remain a performance challenge.

Figure 8-12 shows a simple example of a stage 2 join predicate.

Figure 8-12 Stage 2 join predicate

Db2 12 can improve the performance of stage 2 join predicates by allowing the sort to
evaluate the function, and allowing a sparse index to be built on the result for the join. This
candidate then becomes an optimal candidate on the inner table when the result can be
contained in-memory or when there is no other viable index to support the filtering of the join.
Alternatively, if the table with the join expression is the outer table of the join, a sort on the join
order can allow access to the inner table to be performed sequentially.

The use of this enhancement does not show up explicitly in the PLAN_TABLE, but it can be
inferred from the use of SORTN_JOIN='Y' and PRIMARY_ACCESSTYPE='T' (sparse index
usage) when the stage 2 predicated is on the inner table, or the use of SORTC_JOIN='Y'
when the stage 2 predicate is on the table that was selected as the outer table of the join
operation.

Stage 2 join predicates are often observed if tables are not designed with consistent data
types for joined columns (which can occur if more applications are integrated later), if
business information is embedded within columns, or if time stamp columns are used within
each table and the join is by the consistent date portion of those columns.

For example, the inserted time stamps do not match between two tables as the rows were
inserted at a slightly different time, but you are looking only for rows that match the date
portion of the time stamp column WHERE DATE(T1.TIMESTAMPCOL) =
DATE(T2.TIMESTAMP). Therefore, Db2 12 can improve performance significantly for these
situations without requiring a targeted index on expression to be built.

Performance results for sort on stage 2 join predicates
Although we observed these constructs in multiple customer workloads, our standard IBM
Retail Data Warehouse workload is well-designed and does not use this type of stage 2 join
predicates. To evaluate the performance effect of this enhancement, the IBM Retail Data
Warehouse workload was modified to include several stage 2 join predicates. A 20 - 90%
reduction in CPU time was observed for qualifying queries.
258 IBM Db2 12 for z/OS Performance Topics

8.2.2 User-defined table function predicate optimizations

User-defined table functions (also known as table UDFs, table functions, or TUDFs) were
initially targeted to allow an application program to be called from within an SQL statement.
This ability provided the flexibility to access non Db2 objects and represent them as a table
within SQL to be joined with Db2 tables. Inline table UDFs were a further extension to Db2’s
UDF support, which allows the definitions to contain native SQL.

There was an increase in the use of table functions as an alternative to views because of the
capability to create a table function with input parameters, whereas parameterized views are
not supported in Db2 for z/OS.

Although older releases provided similar merge (and thus materialization avoidance)
capabilities for table functions that were syntactically equivalent to views, Db2 12 improved
the merge of deterministic table functions (defined as DETERMINISTIC and NO EXTERNAL
ACTION) with input parameters and the indexability of input parameters as predicates within
the table function, as shown in Example 8-3.

Example 8-3 Table function with input variables

Simplified table function definition:
CREATE FUNCTION TPCHUDF(in_date1 CHAR(10), in_date2 CHAR(10))…
SELECT O_ORDERPRIORITY, COUNT(*)
FROM ORDERS
WHERE O_ORDERDATE >= DATE(in_date1) <<< Was STAGE 2. Now indexable
 AND O_ORDERDATE < DATE(in_date2) <<< Was STAGE 2. Now indexable

Query referencing table function:
SELECT * FROM table(TPCHUDF('1993-07-01', '1993-10-01')) as TAB1;

As with other cases where a merge occurs, such as views and table expressions, the table
UDF’s name no longer appears in the PLAN_TABLE. As shown in Example 8-3, the table
function is merged and the PLAN_TABLE shows only the ORDERS table (that uses index
access) and no longer the TPCHUDF table function.

Performance results for table UDF predicate optimizations
The following performance results were observed:

� Modified table UDF version of our IBM Retail Data Warehouse: 44% reduction in CPU for
the workload.

� SAP CDS Fiori workload containing table UDFs: 10% reduction in CPU.

� Up to 99% reduction in CPU, elapsed time, and getpages for sweet spot queries. (Sweet
spot queries used a table space scan before and now can use matching index access.)
Chapter 8. Query performance 259

8.2.3 VARBINARY indexability improvements

Variable-length binary (VARBINARY) is a more recent data type that was added to Db2 for
z/OS. It increased the adoption of any new feature and typically clarifies customer usage
patterns; therefore, it identifies opportunities for improvement.

Db2 12 adds indexability support for mismatch length comparisons of BINARY and
VARBINARY data types, which were previously stage 2. Comparisons of the same length
were indexable prior to Db2 12. Example 8-4 compares the pre Db2 12 predicate as stage 2
to the same predicate with a CAST expression added in Db2 12 to support indexability of
mismatched length between both VARBINARY columns. (Mismatched length BINARY is not
shown.)

Example 8-4 Indexability for mismatched length VARBINARY

SELECT A.C_CUSTKEY, HEX(A.C_NAME)
FROM CUSTOMER A, CUSTNULL B
WHERE A.C_NAME > B.C_NAME;
CUSTOMER.C_NAME: VARBINARY(25) NOT NULL
CUSTNULL.C_NAME: VARBINARY(30)
Pre DB2 12: A.C_NAME > B.C_NAME (stage 2)
DB2 12: CAST(A.C_NAME AS VARYING BINARY(30)) > B.C_NAME (Indexable)

Although many customers might identify that VARBINARY or BINARY data types are not
used within their environments, improving indexability is important because Db2 scalar
functions are available that return the result of the function as BINARY or VARBINARY. The
improvements to the underlying support of BINARY and VARBINARY indexability were
necessary to allow index on expressions to be built on those scalar functions and to be used
for matching index access. Example 8-5 shows a scalar function as an index on expression
that is now indexable in Db2 12.

Example 8-5 Index on expression example for VARBINARY-based expression

CREATE INDEX EMPLOYEE_NAME_SORT_KEY ON EMPLOYEE
(COLLATION_KEY(LASTNAME, 'UCA410_LDE', 600));
SELECT *
FROM EMPLOYEE
WHERE COLLATION_KEY(LASTNAME, 'UCA410_LDE', 600) = < ?

The example that is shown in Example 8-5 uses the COLLATION_KEY scalar function with a
parameter that is tailored to German. The COLLATION_KEY scalar function returns the result
as VARBINARY.

You can create an index on expression by using COLLATION_KEY in Db2 11, but it is not
used by predicates as the index used in the sample query that is shown in Example 8-5
because the predicate is not indexable in Db2 11. However, in Db2 12 it is indexable, so the
query that is shown in Example 8-5 can use the EMPLOYEE_NAME_SORT_KEY index on
expression index.

Performance results
Performance results for improved VARBINARY indexability showed up to a 99% reduction in
CPU and elapsed time for sweet spot queries that switched from table space scans to
matching index access.
260 IBM Db2 12 for z/OS Performance Topics

8.2.4 Row permission indexability for correlated subqueries

Row permissions improve data security at a lower level of granularity and become an
attractive solution for integrating that security into the database system rather than requiring
application control or implemented by using views. Efficiency of security validation is
paramount; therefore, this enhancement in Db2 12 to resolve indexability of correlated
subquery predicates within a row permission.

Before Db2 12, correlated subquery predicates within a row permission are stage 2
predicates during insert and update operations. A correlated subquery example of a row
permission is highlighted in Figure 8-13.

Figure 8-13 Correlated subquery predicates in a row permission

Db2 can now use an index for the EXISTS part of the row permission during insert and
update.

Performance results
Performance results for improved row permission indexability included the IBM Retail Data
Warehouse workload, which featured a modified TPCH queries that used row permissions.
Up to a 99% reduction in CPU and elapsed time was observed.
Chapter 8. Query performance 261

8.2.5 Predicate bubble up enhancements

Db2 V12 opens more opportunities for predicate indexability by bubbling up predicates, which
was restricted in past releases. For the example that is shown in Figure 8-14, predicate
T1.COL3 = ?, which was “misplaced” in the subquery block, is bubbled up to the parent query
block by Db2 so that any indexes that are qualified for the predicates can be used. The
bubbled up predicate is visible in the rewritten query (by Db2) after query transformation. This
information is stored in XML format in the DSN_QUERY_TABLE explain table.

Figure 8-14 An example of a predicate bubbling up

Performance results for predicate bubble up enhancements
Sweet spot queries can have up to 99% CPU time and elapsed time improvement because of
access path changes from table space scan to index access for table T1. Sweet spot queries
are queries in which the predicate that is bubbled up provides a good index matching
predicate where none were available before.

8.2.6 IN-list predicate enhancements

Db2 12 provides improved performance for long IN-lists and IN-list direct table access.

Improved performance for long IN-lists
Db2 V10 introduced streamlined processing for non-matching IN-list predicates that were
applied against an index or against data. These changes resulted in a dramatic improvement
in the performance of non-matching IN-lists.
262 IBM Db2 12 for z/OS Performance Topics

This enhancement included a limitation in that it applied to only IN-lists of 128 elements or
fewer in Db2 V10 and Db2 11 when the IN-list was applied as an index screening predicate.
Db2 12 removes this limitation so that large IN-lists with more than 128 elements can also
benefit from the V10 performance enhancements and scale linearly beyond 128 elements,
regardless of whether they are applied against an index or data page.

The limit is now typically greater than 3000 IN-list elements and is the same for index and
data access. This enhancement was retrofit to Db2 V10 and Db2 11 by using APAR PI41598.
A query that can benefit from this enhancement is shown in Example 8-6.

Example 8-6 Long IN-list predicate performance enhancement

Example of the new feature in use:
SELECT * FROM TAB1
WHERE COL1 = ?
AND COL3 IN (?,?,?,…?); - non matching IN list with 100, 200, etc. elements
INDEX on (COL1, COL2, COL3)

Performance results for large IN-lists
Sweet spot queries showed up to a 99% reduction in CPU time and equivalent reduction in
elapsed time (as a result of the CPU time reduction) for index screening IN-list predicates with
more than 128 elements. Although the CPU time reduction is expected to be greater when the
IN-list is larger, any IN-list of more than 128 elements is expected to see a significant CPU
time reduction for the non matching IN list processing part of the query.

Improved performance for IN-list direct table access
IN-list direct table access occurs when Db2 uses in-memory tables to process one or more
IN-list predicates as matching predicates. This access type is indicated in the PLAN_TABLE
by ACCESSTYPE='IN'. Db2 supports matching on multiple IN-list predicates if indexes exist
on the necessary columns.

Before Db2 12, IN-list direct table access was limited to the use of a nested loop join with list
prefetch. This limitation can result in poor performance when the number of qualifying RIDs
per list prefetch request is small. For example, the performance suffers if few rows qualify per
inner table join probe or even if more rows qualify per probe but these rows span many
partitions that results in few RIDs per list prefetch request because a single prefetch request
cannot span partitions.

Db2 12 removes this limitation and chooses between nested loop join and hybrid join based
on estimated cost. Hybrid join can be more efficient because of the way the qualifying RIDs
are first accumulated before making the list prefetch requests. When Db2 12 chooses to use
hybrid join with IN-list direct table access, the qualifying RIDs are not sorted
(SORTN_JOIN=N) to avoid possible CPU regressions. Nested loop join with list prefetch is
still selected by optimizer for IN-list direct table access if the inner table access is estimated to
contain enough qualifying RIDs per probe that the use of nested loop join is more cost
effective than the use of hybrid join.

Performance results for ACCESSTYPE='IN' with hybrid join
The following performance results were observed:

� Internal insurance type workload: Up to a 7% reduction in CPU for qualifying queries.

� Sweet spot queries: Up to a 30% reduction in CPU and elapsed time. Sweet spot queries
are cases where probing the inner table takes up a large portion of the query’s runtime,
and the number of table RIDs qualifying per probe of the inner table (when nested loop
join is used) is small.
Chapter 8. Query performance 263

8.3 Optimizer cost model enhancements

As we move through the internal Db2 components where the performance enhancements in
Db2 12 are the focus, next we consider the optimizer cost model. Within Db2, this component
is the access path selection (APS) component. The optimizer cost model (access path
selection) is responsible for choosing the lowest-cost access path based on the query after
query transformation performed view or table expression merge and predicate
transformations (for example, pushdown and rewrites).

Referring to “Query regression workloads ” on page 284, in which the internal Db2
performance workload results are described, most queries and workloads that achieved the
largest performance gains were those queries and workloads that chose a new access path
in Db2 12 compared with Db2 11. This result might occur because of the following reasons:

� A new access path became available because of a query transformation (such as a
predicate rewrite, predicate pushdown, or view or table expression merge).

� A new execution path became available.

� An existing access path was optimized to be more efficient (such as Db2 12 Runtime
Adaptive Index).

� The optimizer cost model has access to more accurate inputs or improves upon its cost
formulas.

It is incorrect to infer from the groupings of topics in this overview that each of the Db2
components operates independently. In fact, each component plays a role in providing an
efficient execution for a specific SQL statement. With the descriptions of query
transformations and runtime optimizations in this chapter (“UNION ALL and OUTER JOIN
performance enhancements” on page 244 and “Runtime enhancements” on page 268), we
can assume that the optimizer cost model played its role in ensuring an efficient access path
that is based on those enhancements. Therefore, we can now turn our attention to the
improvements that are specific to the cost model that use access path choices.

8.3.1 Extending NPGTHRSH to default statistics

A discussion of the NPGTHRSH DSNZPARM is unlikely to garner the same immediate
understanding compared with a discussion of the VOLATILE table attribute. Both attributes
are trying to effectively solve the same problem in that there are instances where RUNSTATS
collected on an object might be unreliable because that object is early in an application rollout
(meaning it is small but likely to grow quickly), or the object size grows and shrinks regularly,
which makes it difficult to collect representative statistics at the right time.

The NPGTHRSH DSNZPARM was delivered in Db2 V7 to preference matching index access
over other access paths at the subsystem level. Db2 12 extends the effectiveness of this
zparm.

When NPGTHRSH is set, this zparm value is compared to the number of pages for a table;
NPAGESF catalog statistic, or at the partition level, it is the number of pages in the partition
that is compared to NPGTHRSH. If NPAGESF is less than NPGTHRSH, the optimizer
preferences matching index access for access to that table, if possible.

NPGTHRSH is disabled by default, although there is at least one major ERP vendor that
recommends Db2 for z/OS customers set their default to 10, which was effective for many
years. A complaint was not ever received by a customer that wanted a table space scan and
Db2 chose matching index access for a table with nine (or less) pages.
264 IBM Db2 12 for z/OS Performance Topics

In Db2 11 and earlier, if no statistics were collected on a table and NPAGESF=-1, Db2 did not
use -1 for the NPGTHRSH comparison. Instead -1 becomes 501 for all optimizer costing,
including the comparison to NPGTHRSH.

Db2 12 instead allows default stats (-1) to apply the NPGTHRSH rules, if enabled. Enabling
NPGTHRSH in Db2 12 also applies the rule for preferencing matching index access if the
index being considered includes default statistics. This scenario is possible if an index was
recently created but statistics are not yet collected.

Performance results
Performance results for NPGTHRSH with default statistics showed that, table space scans
were reduced and index access was selected for qualifying objects as expected.

8.3.2 List prefetch and hybrid join cost improvements

List prefetch and hybrid join are not new to Db2. However, what is new are improvements to
the optimizer to encourage list prefetch and also hybrid join for poorly clustered objects when
sort avoidance is not a viable candidate as one of the lower-cost access paths.

The largest complaint with list prefetch is that, if chosen for an online application’s SQL
statement, list prefetch degrades performance significantly because it accumulates all
qualified RIDs before fetching the rows to return to the application. To be more specific, when
the query contains an ORDER BY and an index exists to avoid the sort, list prefetch can be a
“dangerous access path” to choose for an online screen-type application.

The other complaint is if the optimizer underestimates the filtering of a predicate and most of
the table qualifies, list prefetch is less efficient compared with a table space scan. The
introduction of the runtime adaptive index enhancements for multi-index access and list
prefetch, allows the optimizer to improve the costs that are associated with list prefetch,
multi-index access, and hybrid join. The optimizer now more appropriately reflects the
improved I/O performance that is available for such choices when a sort avoidance plan is not
one of the viable lower-cost plans.

In addition to the cost model improvements that is associated with list prefetch, hybrid join
support (which uses list prefetch) was extended as a viable optimizer choice in more
situations when parallelism is enabled. Hybrid join has the benefit of more efficiently
accumulating list prefetch requests to access the inner table of a join as compared with
nested loop join with list prefetch.

Performance results for list prefetch and hybrid join cost improvements
Several internal workloads and a customer-based workload were used to evaluate this
enhancement. The following results were observed:

� A 5% reduction in CPU time for our IBM Retail Data Warehouse workload.
� A 12% reduction in CPU time for our Crystal Reports workload.
� A 50% reduction in CPU time for a poorly clustered version of a customer workload.

Note: Compared to the NPGTHRSH DSNZPARM, the VOLATILE table attribute favors only
index usage for single table queries or for the leading table of join queries. Therefore,
VOLATILE might not address the index choice for multi-table joins, or might not adequately
influence the table join sequence.
Chapter 8. Query performance 265

8.3.3 Improved filter factor for CURRENT DATE/TIMESTAMP predicates

Range predicates with parameter markers or host variables are among the most difficult
predicates for a query optimizer to estimate accurately. At execution time, a range can be
specified that qualifies anywhere in the range 0 - 100% for a simple range predicate.

Although the available catalog statistics for a column identify the ranges that exist within the
table, how much of that range qualifies cannot be known until the literal value is supplied at
runtime. A predicate ORDER_DATE < ? is more difficult to accurately estimate compared with
predicates with literal values, such as ORDER_DATE < '2016-01-01' or ORDER_DATE <
'9999-12-31'.

Db2 12 supports the resolution of predicates that involve CURRENT DATE and CURRENT
TIMESTAMP to use the actual current value at the bind and prepare time. This support
includes date/time stamp arithmetic incorporating those special registers.

In Db2 11 and older, ORDER_DATE < CURRENT DATE use the same filter factor estimate as
that of a parameter marker or host variable (ORDER_DATE < ?). Example 8-7 shows
predicate examples that resolve the predicate values at bind and prepare time to provide a
more accurate filter factor estimation in Db2 12.

Example 8-7 Predicates involving date special registers

SELECT * FROM T1
WHERE ORDER_DATE > CURRENT_DATE - 7 DAYS
 AND ORDER_DATE < CURRENT_DATE;

The obvious question from this enhancement is whether the filter factor estimate becomes
stale because the values are resolved at bind and prepare, and it is possible a static bind was
performed six months ago. Although it is true that the current date six months ago is not the
same as the current date today, it is likely that the data in the table also continued to change
over time such that a six-month move in current date also corresponds to six months of more
rows that were added or updated to the table.

8.3.4 Improved resolution of filter factors at bind and prepare using index
probing

Index probing was added in Db2 10 for dynamic prepares with literals, including
REOPT(ONCE) and static binds that use REOPT(ALWAYS). For index probing, Db2 uses the
predicate value to probe the index non-leaf pages if a table is volatile, qualifies based on the
NPGTHRSH z-parm value, or if the original predicate estimate is assumed to qualify zero
rows. Index probing allows the optimizer to validate the estimated filter factor based on the
data in the index. This index probing process also accesses the RTS information for clarity on
the current object sizes.

In Db2 12, index probing is moved to an earlier stage of the access path selection process.
This way, index probing is performed only once for any index where probing applies and
adjusts the filter factors for all applicable predicates. For example, this process allows the
multi-column index probing results to be used for local and join predicates. This enhancement
improves the performance of index probing and allows the resultant filter factor to be used
more consistently for the benefit of improved cost estimation across all affected indexes.
266 IBM Db2 12 for z/OS Performance Topics

8.3.5 Improved bind and prepare performance with many indexes

Recent deployments of ERP applications included many indexes per table. This type of
schema is typically based on a design where each function of the application maps to a set of
columns of the table; therefore, it depends on the features that are used as to which indexes
are beneficial to the user.

A query optimizer reads in all available catalog information, including object definitions and
statistics for a specific SQL statement, as input to the bind and prepare process to allow cost
comparison of available choices to determine the lowest-cost access path.

In Db2 11 and older, the optimizer evaluates every available index for each object. This
approach presented performance challenges with multi-table joins involving hundreds of
indexes per table. Such performance issues were not a concern because most of the tables
feature 10 indexes or less.

In Db2 12, the optimizer first evaluates all available indexes for each table and ranks indexes
based on the existence of matching predicates, screening predicates, and clustering
attributes. Indexes are pruned from consideration for the access path if there is no filtering
value.

Indexes are also pruned when there are better filtering indexes available. This feature can
considerably improve bind and prepare performance when many indexes are on a table. It
also can improve the chances that the index with the most filtering is chosen by the optimizer.

An example of an SQL statement with 12 indexes on the table is shown in Figure 8-15 on
page 268. In Db2 11, all 12 indexes are evaluated by the optimizer throughout the access
path selection process. In Db2 12, eight of those indexes are discarded before beginning the
access path selection process.
Chapter 8. Query performance 267

Figure 8-15 Db2 12: Discarding unnecessary indexes from consideration by the optimizer

Performance results for bind and prepare with many indexes
The following performance results were observed:

� A 70 - 80% reduction in bind and prepare CPU time was observed for targeted customer
queries that contained 50 - 200 indexes per table. In a typical scenario, the number of
indexes that must be evaluated by the optimizer was reduced from over 200 to less than
20 as a result of this enhancement.

� No access path or CPU regressions for other queries measured.

8.4 Runtime enhancements

The Db2 12 target area that is described in this section are those enhancements that take
advantage of intelligent runtime adaptations or a more efficient runtime code path. The
predominant Db2 component that delivers the enhancements that is described in this section
is the Db2 runtime component within RDS (the grouping under this heading).

As with most of the query performance and optimization enhancements in Db2 12, these
enhancements are complementary to other features, such that the same query can benefit,
for example, from a UNION ALL enhancement, a runtime optimization, and several other
enhancements.
268 IBM Db2 12 for z/OS Performance Topics

8.4.1 Runtime adaptive index processing

The first runtime optimization enhancement is called runtime adaptive index processing,
which extends upon RID-based access paths (list prefetch and multi-index access) and adds
runtime enhancements to adapt at execution time based on index filtering.

The simple SQL statement that is shown in Example 8-8 can be used to highlight the
challenge that generic (search) queries place on a query optimizer. Numerous coding is used
for this type of SQL. It is commonly used for search screens, where the user can complete
various fields and choose any or all combinations.

Example 8-8 Generic search SQL challenge

SELECT *
 FROM CUSTOMER
 WHERE LASTNAME LIKE ?
 AND FIRSTNAME LIKE ?
 AND ADDRESS LIKE ?
 AND CITY LIKE ?
 AND ZIPCODE BETWEEN ? AND ?

Regardless of the technique that is used for the SQL, the premise is the same in that the
programmer wants to code a single SQL statement that can be generally used. Database
administrators fight this battle to have programmers construct dynamic SQL at execution time
that is specific to the input request, or to limit the combinations that are possible and code a
subset of targeted SQL. Typically, this battle is lost, and it becomes the responsibility of the
database to address the performance challenges.

Despite the option to bind the package with the REOPT(ALWAYS) bind option, this binding
might not be possible if the requests are coming into Db2 through DRDA because too many
SQLs use the same package, and similarly for static SQL, all SQL in the package are
affected.

The SQL that is shown in Example 8-8 is used as a generic search query by enabling or
disabling each predicate that is based on the user input.

For example, if LASTNAME and CITY are entered, these predicates are populated with their
search values, as shown in the following example:

LASTNAME LIKE 'SMITH' AND CITY LIKE 'SAN JOSE'

All other predicates are populated with the following values:

LIKE '%%%%%'

If the query was coded with BETWEENs for character columns, the following predicates are
used for numeric columns:

BETWEEN 'AAAAAAAA' AND 'ZZZZZZZZ')

or

BETWEEN 0 AND 99999

The Db2 optimizer (or any optimizer) cannot choose one access plan that best matches the
filtering predicates because those predicates can change every execution.
Chapter 8. Query performance 269

Runtime adaptive index processing is a Db2 12 optimizer (runtime) enhancement that targets
this type of SQL performance challenge. To describe this feature further, assume that one
separate index is available for each column in the WHERE clause. For this example, the
optimizer chose a multi-index access plan that uses each of those five indexes for each of the
predicates in the query that is shown in Example 8-8 on page 269.

At execution time, the Db2 runtime component first looks at the values that are provided for
each predicate to determine whether the predicate is likely or unlikely to be filtering. LIKE
predicates that contain wildcards, such as %, are considered unlikely to be filtering.
BETWEEN or other range predicates that appear to cover the entire range of values are also
considered unlikely filtering candidates.

At this stage, runtime moves unlikely filtering indexes to the end of the multi-index execution
sequence and begins processing the first likely filtering index based on the original index
operation sequence, which is identified by the value of the Multi-Index OPeration SEQuence
(MIXOPSEQ) column in the PLAN_TABLE, after unlikely filtering indexes are moved to the
end.

After a certain threshold is reached when processing the first filtering index, processing of
that index is paused, and the other remaining indexes are also searched (up to a similar
threshold), which allows Db2 to determine the approximate filtering of each index. The
threshold that is associated with the first index is implemented to ensure that short-running
queries are not affected by any cost that is associated with validating the filtering of other
indexes.

After the filtering of each remaining index is determined, runtime can reorder the index
execution sequence, discard any non-filtering indexes, or revert to table space scan if no
indexes provide sufficient filtering. If an index plan is to continue, the processing of each index
continues where it was left off, and in the order of best filtering.

Because this enhancement is built upon the existing multi-index access path, each leg is
index-only as it is accumulating qualified RIDs that are then intersected with the RID list from
each leg, and finally the data rows are accessed.

Runtime adaptive index processing can adjust am adapt at execution time to changes in
actual filtering without requiring REOPT(ALWAYS) because REOPT results in a
reoptimization of the access path for each execution.

At execution time, a first quick peek at the literal values and adjustment of the index execution
order or reversion to table space scan based on determination that certain index legs are not
filtering occurs. Also, a more accurate filtering estimate is determined at execution after a
threshold is reached. This adaptability is applicable to all list prefetch and multi-index access
plans.

For multi-index ANDing, adaptive index processing can reorder the indexes from most to least
filtering, early-out of non-filtering indexes, and revert to table space scan earlier than past
releases with insufficient filtering.

For multi-index ORing or list prefetch-based plans, this early determination of filtering at two
stages (first from peeking at the literals, and second after the internal threshold is reached)
allows an earlier determination of the decision to fall back to table space scan compared to
past releases if there is no adequate filtering from the chosen indexes.

The use of runtime adaptive index processing is not limited to the generic search SQL
challenge. The optimizer cannot identify the intent of an SQL statement. The adaptive
capabilities that are described here are applicable whenever the optimizer chooses a
RID-based access path, such as list prefetch or multi-index access.
270 IBM Db2 12 for z/OS Performance Topics

As this enhancement can bring significant runtime improvements, the obvious question is
whether this means that Db2 12 sees a significant increase in multi-index access plans. This
result is not expected because the optimizer increases only its consideration of multi-index
access when the candidate predicates have high uncertainty in their filter factor estimates.

Predicate uncertainty was added in Db2 10 to supplement the optimizer’s filter factor
estimate, and by design, the predicates that have the highest uncertainty in their filtering are
range predicates, which can filter anywhere 0 - 100% of the range. Other predicates that can
be difficult to estimate include JSON, spatial, and index on expression predicates.

Example 8-9 shows a simple example of three range predicates, each with an available index,
and filtering with a high degree of uncertainty until execution time when the literal values are
known. This type of query becomes a good candidate for multi-index access and its adaptive
capabilities in Db2 12.

Example 8-9 SQL with high predicate uncertainty

SELECT *
 FROM TAB1
 WHERE COL1 < ?
 AND COL2 < ?
 AND COL3 < ?;
INDEXES: IX1(col1), IX2(col2), X3(col3)

Adaptive index processing is available in Db2 12 at function level V12R1M100 after rebinding
the application package. The use of REBIND with APREUSE(ERROR) enables adaptive
index processing, provided Db2 can successfully reuse the access path.

Performance results using runtime adaptive index processing
The following performance improvements were observed:

� A 20% CPU time saving for list prefetch or multi-index ORing when failover to table space
scan is the most appropriate choice.

� Orders of magnitude performance improvement for multi-index ANDing when a mix of
filtering and non-filtering indexes is used.

� For an internal workload that uses many multiple index accesses, a 95% reduction in CPU
time was observed, and elapsed time was reduced by 50% when compared to Db2 11 for
same multi-index workload. The workload uses a 10 million row table with six single
column indexes. It consists of 200 SQL statements with range predicates on those
indexed columns that use varying value ranges to provide the Db2 optimizer and runtime
with a large set of different selectivity challenges.

Note: IFCID 125 (RID list processing usage) was enhanced with several new fields for
tracking these new features.
Chapter 8. Query performance 271

8.4.2 Internal runtime and complex expression enhancements

In addition to the use of adaptive index processing, Db2 12 features several other
enhancements that help to improve Db2 runtime performance in certain areas.

More use of machine code generation (gencode)
In each recent Db2 release, efforts were made to improve the execution performance of
expensive operations by using machine code generation.

SPROCs (and other xPROCs) are the most notable examples of machine code generation in
Db2. These SPROCs and xPROCs are relied upon by customers for noticeable CPU time
reductions after static SQL undergoes a REBIND (regardless of the APREUSE option) in
each new release.

Db2 is also using gencode in the following examples:

� (non-matching) IN-list and OR predicate evaluation in Db2 10
� DECFLOAT data type processing
� SUBSTR scalar function evaluation in Db2 11

Db2 12 applies the technique of machine code generation to the following constructs:

� CASE expressions without any other embedded scalar functions or other expressions, for
example:

CASE WHEN PC.CODE = '1' THEN 'Open'
 WHEN PC.CODE = '2' THEN 'Closed'
 ELSE 'Unknown'

� More SUBSTR enhancements (in addition to the Db2 11 changes), which allows for a
variable length string of any size (not limited to 256), and enables this machine code
generation for SUBSTR that uses binary, varbinary, and vargraphic string expressions.

� External data type conversions for DATE-based data types (DATE, TIME, and
TIMESTAMP).

Performance results of using more machine code generation
The following performance results were observed:

� Sweet spot query showed up to 20% reduction in CPU for SUBSTR(). Sweet spot queries
are cases where the SUBSTR processing is the predominant cost of running the query, as
shown in the following example:

SELECT MAX(SUBSTR(COMMENTS,15,10))
 FROM INVOICES
 WHERE SUBSTR(COMMENTS, 1,5) = 'EXTRA'

� Up to 30% reduction in CPU for DATE-based data types was observed for sweet spot
queries. For example, a query retrieving many rows from a table and the columns in the
SELECT list are mostly date-time data types.

8.4.3 Db2 12 expression sharing

The next runtime optimization is referred to as expression sharing and is best described by
using an example.

When an expression is coded within a view or table expression and a referencing select is
merged with that view/table expression, that outer reference is replaced with the expression.
272 IBM Db2 12 for z/OS Performance Topics

Example 8-10 shows a SELECT from a table expression (TX) that references an arithmetic
expression four times. When the referencing SELECT is merged with the table expression,
the result is that the expression is repeated four times (once for each outer reference).

Example 8-10 Db2 12 expression merge

SELECT SUM(C1), AVG(C1), MAX(C1), MIN(C1)
 FROM (SELECT DECIMAL(C1,9,2) * 0.75/DECIMAL(C2,9,2) AS C1
 FROM T) AS TX
Is merged to:
SELECT SUM(DECIMAL(C1,9,2) * 0.75/DECIMAL(C2,9,2))
 ,AVG(DECIMAL(C1,9,2) * 0.75/DECIMAL(C2,9,2))
 ,MAX(DECIMAL(C1,9,2) * 0.75/DECIMAL(C2,9,2))
 ,MIN(DECIMAL(C1,9,2) * 0.75/DECIMAL(C2,9,2))
 FROM T

From a performance perspective, the expression is run four times in Db2 11.

In Db2 12, when the merge occurs, Db2 also recognizes that the expression is repeated. At
execution time, the expression is run once only and the result is shared across the four
references.

This enhancement applies only to expressions where Db2 merges the query. If the query is
written with multiple occurrences of the same expression, Db2 does not detect and share the
expression.

Performance results when expression sharing is used
The following performance results were observed:

� Sweet spot query: Up to 10% reduction in CPU for simple expressions. The more often the
expression is repeated as part of the merge operation, the more benefit can be expected.

� Sweet spot query: Up to 35% reduction in CPU for reducing UDF calls. Although, the
amount of savings depends on how often the shared UDF is repeated, larger benefits can
be expected compared to sharing simple expressions as UDF calls tend to be more
expensive.

8.4.4 UDF result caching

The term expression is often used to reference any type of arithmetic, scalar function, or
user-defined functions (UDFs). Of these expressions, UDFs are often the most expensive
because of the flexibility in what can be contained within, including native SQL that references
other tables or external UDFs that contain an external application program.

Db2 12 enhances the performance of deterministic UDFs by supporting caching of the UDF
result given the same inputs. This process is achieved by using an internal hash table that is
entirely managed by Db2; that is, there is no user control.

For a UDF that is defined as DETERMINISTIC and NO EXTERNAL ACTION, Db2 builds a
hash key from the input variables and stores the output result. Each UDF invocation first
performs a look-up in the cache to see whether those values were processed. Db2 monitors
the cache at regular intervals, and if no situations exist where a cached value was found, the
cache is disabled to ensure that no performance regression occurred. The cache persists
only within a single query run and is not shared by other queries that are running the same
UDF, or for the next run of the same SQL.
Chapter 8. Query performance 273

Performance results when using UDF result caching
To evaluate the benefits for this enhancement, several internal measurements were
conducted. The following results were observed:

� A 40% reduction in CPU time for complex SQL with table UDF calls by using the SAP CDS
Fiori workload.

� Up to 95% reduction in CPU time for repeating expensive UDF calls for sweet spot
queries. Those are cases where the SQL is simple, the UDF invocation is expensive and
the UDF is started many times with recurring input values, so the query can greatly benefit
from the results being stored in, and retrieved from, the UDF cache.

8.4.5 Internal block fetching

Db2 12 provides an internal optimization to perform a “block fetch” operation when moving
qualified rows from the Data Manager (stage 1) component to RDS (stage 2). When the
optimizer enabled this internal block fetch feature, it is recorded in the newly added
BLOCK_FETCH column of the DSN_DETCOST_TABLE table. This feature takes effect only
when you are in V12R1M500 and packages are rebound.

Performance results
To evaluate this enhancement, several tests were conducted that used queries that return
large variations in the number of rows (100 - 500,000). In general, when more rows were
returned, the amount of improvement increased. The various types of queries were tested
showed the following CPU time improvements when this feature is used:

� Index and data access: Up to 22% improvement
� Index only access: Up to 14% improvement
� List prefetch: Up to 20% improvement
� Table space scan: Up to 18% improvement
� Index access on a CHAR (255) column: Up to 4% improvement

8.5 Sort space reductions and in-memory use

There is a continual focus on improving performance and reducing resource consumption for
sort and work file usage. The work file buffer pool and data sets can be a point of contention
for workload scalability because OLTP, batch, and other queries might all converge on the
same resources. For this reason, Db2 continually seeks to improve sort avoidance, optimize
sort processing, and have more (smaller) sorts processed in-memory.

Materializations also converge on the work file buffer pool and data sets; therefore, the
reduction in materializations for UNION ALL and OUTER JOIN queries can help to
significantly reduce this contention for candidate workloads.

The (ORDER BY and) FETCH FIRST pushdown also is one of the optimizations that are
related to UNION ALL, and pushing these down into the UNION ALL leg can result in Db2
taking advantage of other new or existing optimizations. The use of the FETCH FIRST clause
(when combined with DISTINCT, GROUP BY, or ORDER BY) included numerous sort
performance improvements since Db2 9, which are made possible because Db2 is providing
precise knowledge about how many rows must be sorted and returned. Sort was
implemented an in-memory replacement technique for sort when the FETCH FIRST clause is
used if the result is guaranteed to be in-memory.
274 IBM Db2 12 for z/OS Performance Topics

When a sort cannot be avoided, the use of memory to process the sort or reducing the length
of the sort record can result in that the sort can be contained in-memory, or at a minimum
reducing the amount of work file resources that are needed to complete the sort.

8.5.1 Increasing the number of sort tree nodes

In Db2 11, the sort tree size is limited to 32,000 nodes. Although the amount of memory for
sort can be controlled by using the SRTPOOL DSNZPARM, the limit of 32,000 nodes
remained.

However, in Db2 12, sort allows up to 512,000 nodes for non-parallelism sorts, or 128,000
nodes for a sort within a parallel child task, which is still capped by the value of the SRTPOOL
DSNZPARM. With the ability to contain sorts within the sort tree rather than writing the result
to a work file, an obvious benefit exists to increasing the value of the SRTPOOL DSNZPARM.
This allocation is a per-query allocation, and it depends on the size of each sort and the
number of concurrent queries that dictates how much memory is required across an entire
system for sorting.

Increasing the number of nodes in the sort tree in Db2 12 not only has the benefit of
containing a sort in-memory, but GROUP BY and DISTINCT sorts can take further advantage
of many nodes. Db2 9 added hashing support as input to sort for duplicate removal (GROUP
BY/DISTINCT), such that duplicates can be collapsed before going through sort.

In Db2, the number of hash entries is tied to the number of nodes of the sort tree. Therefore,
increasing the number of nodes can result in higher cardinality GROUP BY/DISTINCT results
in consolidating the groups as rows that are input to sort. Consolidating the groups as rows
can increase the chance that the sort can be contained in memory, or at least reduce the
amount of work file space required to consolidate duplicates during the final sort merge pass.

Increasing the value of the SRTPOOL DSNZPARM in Db2 12 can have a greater benefit to
improving sort performance than in past releases. Also, increasing the SRTPOOL value in
Db2 11 might not result in that memory being used if the 32,000 limit is reached before the full
memory (SRTPOOL) request is allocated. Therefore, Db2 12 might use the memory up to the
SRTPOOL value that might not be used previously. That is, even with the same SRTPOOL
allocation in Db2 11 and 12, Db2 12 can use more memory because it is not constrained by
the 32,000 nodes limit of the sort tree.

Performance results for increasing the number of sort nodes
As with all performance enhancements, several measurements were conducted to evaluate
the potential benefits that can be obtained from increasing the number of sort nodes. The
following observations were made:

� SAP CDS Fiori: A 5% CPU time reduction was observed for several queries. A 1% CPU
time reduction across the entire workload was measured.

� SAP CDS FIN: A 1.8% reduction in CPU time for the entire workload and a 12% reduction
in the total number of work file getpages were measured.

� IBM Retail Data Warehouse workload: Two queries showed a 14% and a 6% CPU time
reduction. The CPU time reduction largely results from a 40% reduction in the number of
work file getpages for these two queries.

� Up to 75% reduction in CPU time for sweet spot queries that became in-memory sorts in
Db2 12 where they previously required work files and sort merge processing.
Chapter 8. Query performance 275

� Up to 50% reduction in CPU and elapsed time for queries that benefitted from increasing
the SRTPOOL size ZPARM in Db2 12. The largest improvements were for queries that can
now complete their group by or distinct processing in one sort pass because of the larger
sort tree size.

8.5.2 Reducing the length of the sort rows

The next sort enhancement is related to reducing the length of sort rows for internal sorts.
Reducing the sort row length includes the benefit that it also reduces the total amount of
memory and work file space needed for sort.

It is common that predicates that are coded in the WHERE clause are also (often
redundantly) included in the SELECT list. Any redundancy in the sort key columns or data
row columns (SELECT list) has a negative effect on sort performance and resource
consumption.

ORDER BY sort already removes columns from the sort key if they are covered by equal
predicates in the WHERE clause. DISTINCT or GROUP BY already remove redundant
columns to allow for sort avoidance.

However, if a sort cannot be avoided for DISTINCT or GROUP BY, such redundant columns
remain as part of the row to be sorted in Db2 versions before Db2 12. Starting with Db2 12,
these redundant columns are removed from the sort key, as shown in Figure 8-16.

Figure 8-16 Removal of redundant columns from the sort key

Because C1 has an equal predicate in the WHERE clause, all sorted rows are ensured to
contain that same value; therefore, only column C2 is needed for the (DISTINCT) sort.

Similarly, sort avoids duplicating the sort key from the data portion in Db2 12 if they match
each other.

Sort operates on a fixed-length concatenated key of the columns that are required to support
the ORDER BY, GROUP BY, DISTINCT sort, or sort for a join operation. The requested order
of the sort key might not match the order of the columns in the SQL statement’s SELECT list.

When the sequence of columns in the sort match the leading columns in the SELECT list and
contains only fixed-length columns in Db2, sort does not replicate the key. Instead, it uses the
data portion for the sort, which can result in a dramatic reduction in the length of the sort row.

Note: The domain of queries that benefit from this Db2 12 enhancement can be increased
by increasing the size of the sort pool (SRTPOOL ZPARM).
276 IBM Db2 12 for z/OS Performance Topics

8.5.3 Reducing contention on 4 K work file pages

Another goal in Db2 12 is to continue to focus on minimizing the effect that larger sorts have
on OLTP applications. The use of more memory for sorting greatly assists in reducing
contention on sort buffer pools and sort work files as a shared resource. Although Db2 9
added the option for sort to use 32 K work file pages for longer sort rows (greater than 100
bytes), large sorts of smaller-length rows are possible to dominate the 4 K work file buffer
pool and work file data sets.

In Db2 12, many larger sorts of small rows (less than 100 bytes) now use 32 K work file pages
instead of 4 K. “Larger sorts” refers to sorts where the number of records input to sort
exceeds the number of sort nodes. For these large sorts of small rows, Db2 compacts the
rows and stores them as one physical row per 32 K work file page. This configuration allows
the Db2 sort component that understands this compacted format to process the data more
efficiently.

This process might result in an increased requirement for 32 K work file allocations compared
to 4 K. However, as this enhancement targets larger sorts (of small rows), it does help to
improve separation of longer-running (larger) sorts in 32 K work files from OLTP (smaller)
sorts in 4 K work files.

It also can improve performance as it reduces getpage activity by using an eight times larger
page size.

Performance results from improved use of 32 K work files
To evaluate the potential benefits of this enhancement, several performance tests were
conducted that used different types of workloads. The following results were observed:

� By using the IBM Retail Data Warehouse workload, a 6% reduction in Db2 CPU time and
a 6% reduction in the total number of getpages was achieved.

� A 10% reduction in Db2 CPU time and total number of getpages was measured for several
other real-world workloads, such as WebSphere Portal, SAP BW, and workloads provided
by customers.

8.5.4 Reading sort results directly from the sort tree

Db2 11 can avoid the final write to a work file for the last sort in the query if that result can be
contained in the sort tree. In Db2 12, this feature is extended to many types of intermediate
sorts, such as sorts for joins. This enhancement results in reduced CPU time, work file
getpage activity, and contention for shared sort resources (sort work file page sets and sort
buffer pools).

Note: Customers might need to increase their 32 K work file allocations; both work file data
sets and work file buffer pools because of DB12 using 32 K work files where 4 K work files
were used previously.

Note: The reduction in getpage activity is for the entire workload. The reduction in work file
buffer pool getpage activity was much greater than 10%. A maximum eight times reduction
(because we go from 4 K to 32 K pages) is not expected as typically not all queries qualify
for this enhancement.
Chapter 8. Query performance 277

Performance results for reading results from the sort tree
To evaluate the potential benefits of this enhancement, several performance tests were
conducted by using different types of workloads. The following results were observed:

� By using the IBM Retail Data Warehouse workload, a 1% reduction in Db2 CPU time and
a 5% reduction in the total amount of work file getpage activity was achieved.

� A 10% reduction in work file getpage activity was measured when the WebSphere
Application Server Portal and SAP BW workloads were used.

8.5.5 Extensions to sort avoidance for OLAP functions

Online Analytical Processing (OLAP) functions return ranking (RANK and DENSE_RANK),
row numbering (ROW_NUMBER), and aggregation information as a scalar value in the result
of a query. Db2 11 supports sort avoidance if an index matches the ORDER BY clause with
an OLAP function, but not if a PARTITION BY is involved. Starting in Db2 12, sort avoidance
is extended to OLAP functions that combine PARTITION BY and ORDER BY.

Support for sort avoidance for OLAP functions that use a PARTITION BY clause includes the
following restrictions:

� For ROW_NUMBER, RANK, and DENSE_RANK, Db2 applies only sort avoidance to one
function in the SELECT list.

� With GROUP BY the query must have the same order for the GROUP BY and the OLAP
function.

� The optimizer can reorder PARTITION BY columns to match an index order.

Example
The example that is shown in Figure 8-17 shows a query that combines PARTITION BY and
ORDER BY in an OLAP function. Db2 12 can avoid the sort by using an appropriate index
(SK_SD_1). Its definition is shown below the query.

Figure 8-17 Sort avoidance for OLAP functions with PARTITION BY clause

Performance results
Performance tests conducted to evaluate this enhancement showed queries that used
RANK(), DENSE_RANK(), and ROW_NUMBER() can have up to 50% improvement in
elapsed and CPU time in Db2 12 (compared to Db2 11) when sort avoidance is used.

8.5.6 Sparse index enhancements

Sparse index usage continually enhances in recent Db2 releases to provide similar support to
the hash join functionality that is available in most competitive DBMSs.

Db2 12 adds some incremental improvements to extend sparse index support to the
VARGRAPHIC data type, and allows for better memory use by sparse indexes.
278 IBM Db2 12 for z/OS Performance Topics

The first memory-related sparse index enhancement includes improved allocation of memory
across multiple usages of a sparse index within the same query. In past releases, the
optimizer estimate was highly depended on to determine the allocation of memory for each
sparse index. In Db2 12, the sort component improved its algorithms to adjust the type of
sparse index that is built to optimize memory usage, and to reduce getpage activity when a
sparse index must overflow to a work file.

Another memory-related space index enhancement in Db2 12 is that when building a sparse
index, sort attempts to trim the information that must be stored. Similar to the sort key length
reduction enhancement, a sparse index can avoid repeating the key from the data if values
are equal and of fixed length.

Also, when the key prefix is the same for all rows in the sparse index, the key is truncated to
avoid key duplication. In addition, for variable length rows, trailing blanks can be truncated to
reduce the amount of memory that is required to contain the sparse index key.

Sort work files can be an area of contention that can become a bottleneck for performance.
By improving sparse indexes in Db2 12 where they use fewer work file resources, Db2 can
help to reduce the demands on sort work files, and therefore allow for greater scalability in
cases where contention for sort work files was previously a bottleneck.

8.5.7 Partial sort avoidance for FETCH FIRST

Although Db2 can avoid many sorts with an index that provides the required order, Db2 12
introduces the concept of partial sort avoidance with FETCH FIRST n ROWS when the order
is provided by an index for the leading columns only. This performance enhancement allows
the sort to stop if a partial order is provided by the index into the sort. This feature is
particularly useful because more columns often that match the ORDER BY than are in the
index, or trailing index columns that do not match the ORDER BY. This feature is available in
V12R1M100 and requires a rebind.

In previous Db2 releases, a sort is avoided completely if the ORDER BY matches an index.
However, consider the sample query that is shown in Figure 8-18 that includes an index on
C1, a query with ORDER BY C1, C2 FETCH FIRST 10 ROWS ONLY. A sort cannot be
avoided as the index does not contain all ORDER BY columns. In Db2 12, this feature allows
the sort to stop requesting rows from runtime after Db2 has fetched past the FETCH FIRST n
value (10 in this example), and hits the next change in the value of C1.

Figure 8-18 Partial sort with ORDER BY an FFNR
Chapter 8. Query performance 279

In previous releases, all rows were fetched and sorted into a C1 and C2 sequence, which
resulted in potentially millions of rows before fetching the top 10 rows. In Db2 12, after the
10th row is reached (the FFNR limit), Db2 continues to fetch until the value of C1 changes.

Because only 10 rows are returned in the result, the process can stop at that point. The
change in C1 value ensures all possible values that can sort into the top 10 of the result set
were retrieved from the table. In this case, only 12 rows are fetched and sorted instead of the
entire table.

Performance results
Consider the following queries (as shown in Example 8-11) on the LINEITEM table:

� L_ORDERKEY has an index
� L_TAX has no index
� L_DISCOUNT has no index
� Approximately 45% of the rows have a value of L_DISCOUNT > 0.05

Example 8-11 FFNR partial sort enhancement

Q1: SELECT *
FROM LINEITEM
ORDER BY L_ORDERKEY, L_TAX
FETCH FIRST 10 ROWS ONLY
Q2: SELECT *
FROM LINEITEM
WHERE L_DISCOUNT > 0.05
ORDER BY L_ORDERKEY, L_TAX
FETCH FIRST 10 ROWS ONLY
Q3: SELECT *
FROM LINEITEM, ORDERS
WHERE L_DISCOUNT > 0.05 AND L_ORDERKEY=O_ORDERKEY
ORDER BY L_ORDERKEY, L_TAX
FETCH FIRST 10 ROWS ONLY

When running these queries with different values for the FFNR clause, orders of magnitude of
improvement in CPU and elapsed time were observed. The improvements increase as the
number of rows returned by FFNR clause decrease, as listed in Table 8-1.

Table 8-1 CPU and elapsed time for queries

#rows in
FRNR
clause

Elapsed time Times
improvemen
t

CPU time Times
improvemen
tDb2 11 Db2 12 Db2 11 Db2 12

Q
1

10,000 74.7480 0.0393 1903 61.4434 0.0386 1590

1,000 75.0092 0.0211 3547 61.6551 0.0210 2935

100 74.5297 0.0003 230030 40.4655 0.0003 134437

10 74.5230 0.0002 325428 40.4831 0.0002 203433

Q
2

10,000 74.8117 0.0512 1461 40.2551 0.0506 796

1,000 74.7322 0.0314 2379 40.4485 0.0312 1298

100 74.6439 0.0003 220840 30.3317 0.0003 95684

10 74.7781 0.0002 415434 30.4168 0.0002 186606
280 IBM Db2 12 for z/OS Performance Topics

Table 8-1 on page 280 also lists the following results for Query 2 (Q2):

� Fetching 10,000 rows results in over 796 times improvement
� Fetching 1,000 rows results in over 1,298 times improvement
� Fetching 100 rows results in over 95,684 times improvement
� Fetching 10 rows results in over 186,606 times improvement

8.5.8 Avoiding sort for ordered RIDs

Before Db2 12, no checking in the RID sort code was available to identify cases where the
input to RID sort is in the proper order. (It is common for RIDs that are collected from a
clustering index to be in the correct order.)

Similarly, RIDs that are collected from matching access to any index with a low full key
cardinality relative to the table cardinality result in a long list of qualified RIDs that are
ordered. The same can be said for matching access to a skewed key value on a high full key
cardinality index. RID chains for a single key value are guaranteed to be in order with Db2
(type 2) indexes, as was not the case with type 1 indexes. However, the support for type 1
indexes was removed in Db2 Version 6 and type 2 indexes are the only supported index type
since.

Db2 12 was enhanced to identify and avoid sorting pre-sorted RIDs on input to RID sort.

Example 8-12 shows a use case for this enhancement. The index on COL2 has a low cluster
ratio of only 5% and list prefetch access is selected. Before Db2 11, running this query
required a RID sort of all 50,000 qualifying RIDs.

Example 8-12 RID list sort avoidance for ordered RID lists

SELECT MAX(COL5)
FROM TABLE
WHERE COL2 = ?; <<<<< Predicate qualifies 50,000 rows

In Db2 12, Db2 can avoid most of the overhead that is involved with the RID sort by
recognizing whether a “chunk” of RIDs that is passed to the sort component are ordered on
input to RID sort.

Performance results for ordered RID list sort avoidance
The following performance results were observed:

� Sweet spot queries showed up to 20% reduction in CPU time. A good example of such a
sweet spot query is shown in Example 8-12, which features an equal predicate selecting a
single value by using an index where the RIDs for that value are in the correct order when
they are retrieved from the index.

Q
3

10,000 111.643
9

0.0838 1333 109.4705 0.0831 1318

1,000 110.542
6

0.0555 1992 108.4232 0.0553 1962

100 101.448
5

0.0004 226448 97.6504 0.0004 226043

10 101.229
5

0.0002 565528 97.3445 0.0002 586412
Chapter 8. Query performance 281

� Custom multi-index workload: Up to 20% reduction in CPU time for single index RID list
access by using the clustering index. Queries in this workload that benefitted most had
pre-ordered RID-list ranging 10,000 - 1 million entries.

� Custom multi-index workload: Up to 10% reduction in CPU for multi-index RID list access
when one leg uses the clustering index.

8.6 Migration from Db2 11 to Db2 12

After migrating your Db2 11 systems to Db2 12, you can start to explore new features and
take advantage of the Db2 performance enhancements that were introduced in Db2 12.

8.6.1 IBM Query workload performance after Db2 12 migration

To evaluate Db2 12 query performance, a Db2 system was migrated from Db2 11 to Db2 12
by using a typical migration scenario. The workload used was a 30 GB IBM Retail Data
Warehouse benchmark, with queries started from SQLPL stored procedures. The 22 IBM
Retail Data Warehouse queries are written to use literals and parameter markers, which
resulted in a total of 44 queries in 44 stored procedures. The queries were run in the following
migration stages:

� Db2 11 in NFM

� After migrating to Db2 12 at function level V12R1M100 without rebind

� After migrating to Db2 12 at function level V12R1M100 after a rebind with
APREUSE(ERROR)

� After migrating to Db2 12 at function level V12R1M100 after a rebind with default options
i.e. APREUSE(NONE)

� After migrating to Db2 12 at function level V12R1M500 after a rebind with default options
i.e. APREUSE(NONE)

As expected, all queries use the same access path when running the workload in Db2 11,
Db2 12 without rebind, and Db2 12 after rebind with APREUSE(ERROR). After allowing Db2
to select new access paths by rebinding by using the APREUSE(NONE) option,
approximately 50% of the queries used a different access path compared to Db2 11.
282 IBM Db2 12 for z/OS Performance Topics

These new access paths resulted in more performance improvements, as shown in
Figure 8-19.

Figure 8-19 Comparison of Class 2 CPU time for each of the five scenarios

Comparing the Db2 class 2 CPU time to the run in Db2 11, the following results were
observed:

� An approximately 3.8% CPU time improvement after migrating to Db2 12.

� Migrating to Db2 12 and rebinding with APREUSE(ERROR) resulted in a 4.3%
improvement.

� An approximate 11% CPU time improvement at function level V12R1M100 and
V12R1M500 after rebinding with default options; for example, APREUSE(NONE). This
result allowed Db2 to go through complete access selection, which opened up to new or
enhanced access paths.
Chapter 8. Query performance 283

8.7 Query regression workloads

A total of 14 Db2 internal query regression workloads comparing Db2 12 to Db2 11 were
measured. Some new workloads were added during Db2 12 development cycle to highlight
some of the new workload growth opportunities in complex transactional processing and
real-time analytics in Db2.

As shown in Figure 8-20, the performance results vary significantly for each of the measured
workloads. Most of the performance enhancements are the result of the use of new access
paths in Db2 12. In addition, 2 - 10% CPU time improvement was realized for queries without
any access path changes in various workloads because of Db2 engine performance
enhancements.

Figure 8-20 Internal Db2 query regression workload results for Db2 12 for z/OS

8.7.1 Characteristics of query workloads and improvement

This section describes the characteristics of the query workloads and how the workloads
benefit from the various query enhancements that were described in this chapter.

Figure 8-21 on page 285 shows the query workloads or set of queries that demonstrate 30 -
86% CPU and elapsed time reduction compared to Db2 11. These query workloads take
advantage of many Db2 12 enhancements and include the following general characteristics:

� Complex OJs, UNION ALL, UDFs, and Table UDFs
� Combinations of Table Expressions, Views, and OJs
� VARGRAPHIC data type
� Disorganized data, poor CR indexes
� Nearly 100% NEW Access Paths versus Db2 11
284 IBM Db2 12 for z/OS Performance Topics

Figure 8-21 Workload characteristics

Figure 8-22 shows the query workloads or set of queries that demonstrate 10 - 25% CPU
time reduction compared to Db2 11. These workloads are traditional data warehouse
workloads with sort intensive queries or queries with lots of aggregations.

Figure 8-22 Workload characteristics for IBM BIDAY
Chapter 8. Query performance 285

Query workloads in Figure 8-23 show 0 - 10% range of CPU time reduction with Db2 12
compared to Db2 11. These workloads fall into two categories: Simple queries and queries
where most of the processing is because of data scanning. The data scanning queries are
good candidates for IBM Db2 Analytics Accelerator for z/OS and were generally not targeted
for Db2 12 performance improvements. Fewer queries in this set of workloads see access
path changes with Db2 12.

Figure 8-23 Workload characteristics for IBM Retail Data Warehouse

8.7.2 Access path change and performance improvement

In the IBM query workloads that were described in this section, the queries with new access
paths tended to see larger improvements compared to the queries without access path
changes.

Typical CPU and elapsed time reduction from the queries with new access paths is 10 - 99%,
while the queries without access path changes resulted in the improvements of 0 - 20%.

Many Db2 users tend to use APREUSE for their static SQL statements to keep their known
stable access paths during the migration of Db2. This approach is still recommended to
reduce the risk from the migration.

However, after the successful migration of Db2 12, we strongly recommend rebinding without
APREUSE in a controlled manner to use the full potential of Db2 12.
286 IBM Db2 12 for z/OS Performance Topics

Chapter 9. Utilities

Db2 12 includes multiple utilities enhancements and features, such as new behavior in LOAD
and REORG, and new options in UNLOAD and RUNSTATS.

This chapter includes the following topics:

� 9.1, “LOAD and REORG enhancements” on page 288
� 9.2, “Statistics enhancements” on page 289
� 9.3, “REGISTER NO option in UNLOAD and RUNSTATS” on page 293
� 9.4, “Backup and RECOVER ” on page 295
� 9.5, “Decompression improvement in utilities” on page 295

9

© Copyright IBM Corp. 2017. All rights reserved. 287

9.1 LOAD and REORG enhancements

Several enhancements were made in Db2 12 LOAD and REORG to improve their
performance and usability. Performance evaluations of these enhancements are described in
this section.

9.1.1 LOAD REPLACE improvements for empty PBR partitions

In older Db2 versions, LOAD REPLACE of an empty partition scans all indexes of that table.
In Db2 12, partition LOAD into an empty partition skips the index scan of non-partition
indexes, which reduces CPU and elapsed time.

Performance measurements
Measurements were performed on a UTS table of 100 million rows and 20 partitions with one,
two, and five non-partitioning indexes on a four-way zEC12. They showed almost 100% CPU
time and 97% elapsed time reduction, with no more getpages for indexes when loading into
an empty partition with DUMMY.

Another measurement was performed on the same UTS table, where 100 million rows were
loaded into an empty partition. Loading into an empty partition with data showed up to 10%
CPU time and 6% elapsed time reduction. It also showed an 11% reduction in the number of
getpages for indexes. The improvement is from the sort and index build phases.

9.1.2 zIIP offload during RELOAD phase for LOAD and REORG

In older Db2 versions, part of the unload, sort, and index build CPU time of the LOAD and
REORG utilities was eligible for offload to zIIP. In Db2 12, the CPU time of the RELOAD
phase of the LOAD and REORG utilities becomes almost 100% eligible for zIIP offload. This
feature is available starting with V12R1M100.

Performance measurements
Measurements that use a UTS table space with 100 million rows and 20 partitions with no
index on a four-way zEC12 showed that up to 99% of LOAD CPU is offloaded to zIIP, and up
to 59% of REORG CPU is offloaded to zIIP in Db2 12. The zIIP eligible CPU in LOAD is from
the RELOAD phase. The zIIP eligible CPU in REORG is from the UNLOAD and RELOAD
phases.

9.1.3 LOAD SHRLEVEL CHANGE PARALLEL for PBG table spaces

Db2 11 implemented parallelism support for LOAD RESUME SHRLEVEL CHANGE with PBR
and classic partitioned table spaces from a single input file, but not for PBG table spaces. This
enhancement in Db2 11 showed a significant reduction in elapsed time with increases in
class 2 CPU time because of contention between parallel tasks. This contention depends on
free space, row versus page level locking, and many other factors. In Db2 12, parallelism
support for LOAD RESUME SHRLEVEL CHANGE is added for PBG table spaces. This
enhancement is available starting with V12R1M100.

Performance measurements
Measurements were conducted by using a UTS PBG table space with 100 million rows and
20 partitions with six indexes, random input (regarding cluster key), page level locking, default
free space parameters, and an initially empty table.
288 IBM Db2 12 for z/OS Performance Topics

The results showed a 76% reduction in elapsed time and 48% increase in CPU time with 24
degrees of parallelism used (default). The CPU time increased from 25.2 seconds with no
parallelism to 37.6 seconds with parallelism.

9.2 Statistics enhancements

Many enhancements were made in Db2 12 RUNSTATS and inline statistics to improve its
performance and usability. The performance evaluations that are related to some of these
enhancements are described in this section.

9.2.1 RUNSTATS COLGROUP performance improvement

Before Db2 12, when statistics are collected on a COLGROUP with matching indexes,
redundant statistics collection from the table side and the index side was used. In Db2 12, an
algorithm was added to detect that COLGROUP columns match with the index columns and
Db2 collects only the statistics from the index side.

Performance measurements
Measurements that use a UTS table space with 100 million rows and 20 partitions with six
indexes on a four-way zEC12 showed up to 25% improvement in CPU time and up to 14%
improvement in elapsed time for Db2 12 RUNSTATS COLGROUP INDEX compared to Db2
11.

9.2.2 LOAD PARALLEL STATISTICS on COLGROUP

Although the new PARALLEL option for LOAD was introduced in Db2 11, LOAD PARALLEL
STATISTICS did not support inline statistics for the COLGROUP option. Db2 12 improves
LOAD PARALLEL STATISTICS by supporting the COLGROUP option. This improvement
allows LOAD PARALLEL STATISTICS to provide more information to Db2 by collecting more
distribution statistics on columns that customers expect to use in predicates.

This enhancement to LOAD PARALLEL STATISTICS greatly improves the usability and
accuracy of the filter factors that are determined by Db2, which leads to better optimization
choices. Therefore, query performance is improved with better filter factor information in the
Db2 catalog. COLGROUP statistics summarize the data distribution in the table.

The following COLGROUP statistics are collected:

� Frequency distribution for the group of columns
� Cardinality values for the columns that are specified in the COLGROUP
� Histogram statistics on the COLGROUP

The COLGROUP keyword has the following options: FREQVAL COUNT MOST | LEAST |
BOTH.

This feature is available starting with V12R1M100.

Performance measurements
Measurements that use a UTS table with 100 million rows and 20 partitions with no index on
a four-way z196 processor showed no regression for LOAD PARALLEL STATISTICS TABLE
COLRGROUP.
Chapter 9. Utilities 289

Compared to running LOAD and subsequent RUNSTATS TABLE COLGROUP to collect
distribution statistics, this new enhancement in LOAD PARALLEL STATISTICS TABLE
COLGROUP showed up to 46% reduction in elapsed time with up to 18% CPU increase
because of more parallelism.

9.2.3 Frequency statistics on indexes during inline statistics

In Db2 11, RUNSTATS must be run to collect MOST, LEAST, and BOTH frequency statistics
on indexes. This function is supported in running Db2 12 inline statistics after V12R1M500 or
above is activated.

Performance measurements
Measurements the use a UTS table space with 100 million rows and 20 partitions with two or
five non-partitioning indexes on a four-way zEC12 showed no regression in inline statistics
with LEAST, MOST, or BOTH options.

Comparing the execution of the LOAD/REORD/REBUILD utility followed by RUNSTATS with
the LEAST/MOST/BOTH option against running these utilities with Db2 12 with inline
statistics with the LEAST/MOST/BOTH option, the following performances improved
significantly:

� REBUILD: Up to 29% CPU and 59% elapsed time reduction
� REORG: Up to 26% CPU and 39% elapsed time reduction
� LOAD: Up to 24% CPU and 37% elapsed time reduction

9.2.4 PROFILE support for inline statistics

Db2 12 also provides further integration of the Db2 optimizer’s recommendations with
RUNSTATS. In Db2 11, the optimizer externalizes information to a catalog table and optionally
to an explain table about RUNSTATS recommendations based on the identification of missing
or conflicting statistics that might benefit the SQL being bound, prepared, or explained. An
extra manual step was also required to convert those recommendations into RUNSTATS
statements to be run.

In Db2 12, the RUNSTATS PROFILE automatically is updated when the optimizer makes new
statistics recommendations. If a profile does not exist, a new profile is created by merging the
existing statistics in the catalog with the new recommendations.

Updates to a profile trigger a recommendation from the DSNACCOX stored procedure that
RUNSTATS should be run for that table. Automatically creating or updating the statistics
profiles is performed only when the value of the new STATFDBK_PROFILE DSNZPARM is
set to YES.

These enhancements are a significant step forward in RUNSTATS simplification and
integration with maintenance processes.
290 IBM Db2 12 for z/OS Performance Topics

An overview of the RUNSTATS integration steps with the optimizer in Db2 11 and Db2 12 is
shown in Figure 9-1.

Figure 9-1 Optimizer externalization of missing statistics

To enable the usage of the optimizer’s recommendations, the customer specifies USE
PROFILE, which is now also supported for inline stats in Db2 12. With this enhancement, all
methods of Db2 RUNSTATS collection now support the use of profiles. For more information,
see IBM DB2 12 for z/OS Technical Overview, SG24-8383.

The USE PROFILE support allows inline statistics to use a previously stored statistics profile
to gather statistics for a table. The statistics profile is created by using the RUNSTATS option
SET PROFILE and is updated by using the UPDATE PROFILE option.

USE PROFILE support is added to the inline statistics functionality for the following utilities:

� REORG TABLESPACE STATISTICS
� LOAD STATISTICS

This feature is available in V12R1M500 or above.

Performance measurements
Measurements that use a UTS table space with 100 million rows and 20 partitions with two or
five non-partitioning indexes on a four-way zEC12 showed no regression in inline statistics by
using the USE PROFILE option.

Compared to running LOAD/REORG and subsequent RUNSTATS TABLE USE PROFILE,
running LOAD or REORG STATISTICS USE PROFILE showed up to 26% reduction in
elapsed time with 2% CPU increase because of more parallelism.

9.2.5 Statement cache invalidation in RUNSTATS and inline stats

The dynamic statement cache invalidation behavior changes for RUNSTATS in Db2 12.
Before Db2 12, RUNSTATS and inline STATISTICS always invalidated the dynamic statement
cache. In Db2 12, the default behavior for RUNSTATS and STATISTICS is to not invalidate the
dynamic statement cache, except in the following cases:

� When RUNSTATS is run with the REPORT NO and UPDATE NONE options
� When RUNSTATS is run with RESET ACCESSPATH option
Chapter 9. Utilities 291

This new behavior is intended to reduce the cost of new prepares after RUNSTATS is run.
Similarly, utilities, such as LOAD, REORG, or REBUILD INDEX, invalidate only statements in
the cache if the object was in a pending state before the utility was run. The theory behind
these behavior changes is that it is expected that a REORG or RUNSTATS is not necessarily
run because of a bad access path; therefore, utilities that are run for other purposes should
not disrupt the access path.

To invalidate the cache, the user must use the new keyword option INVALIDATECACHE YES
in RUNSTATS or inline STATISTICS. The keyword INVALIDATECACHE can be used in V12
after the activation of V12R1M500 or higher.

Performance measurements
Measurements were performed by using a UTS table space with 100 million rows and 20
partitions with six indexes on a four-way zEC12. The statement cache was populated when
running RUNSTATS. These measurements showed no significant difference in Db2 12
RUNSTATS, or LOAD and REORG, with INVALIDATECACHE YES compared to Db2 11.

9.2.6 RUNSTATS TABLESPACE LIST INDEX improvement

Before Db2 12, when a LIST is defined with the PARTLEVEL keyword and the following
RUNSTATS TABLESPACE LIST INDEX statement is used, statistics are collected on all the
specified indexes for each partition for every table space part processed. This configuration
results in excessive elapsed time and contention during the update of the catalog tables.

In Db2 12, statistics for the indexes are collected only on the first part that is scanned for a
specific table space in the defined list. No index statistics are collected on any other parts for
the same table space scanned. This enhancement is available in V12R1M100.

Performance measurements
Measurements that used a UTS table space with 100 million rows and 20 partitions with six
indexes on a four-way zEC12 showed up to 83% improvement in CPU and elapsed time
comparing Db2 12 against Db2 11 when the RUNSTATS TABLESPACE LIST TABLE ALL
INDEX ALL statement was used.

9.2.7 Other RUNSTATS enhancements

In addition to the enhancements that were described in this chapter, RUNSTATS features the
following enhancements:

� Cluster ratio formula change

Db2 12 includes a minor improvement to the cluster ratio formula that is used by the
RUNSTATS utility. It reduces the effect that unclustered inserts have on the cluster ratio of
the clustering index. This enhancement improves the alignment that the cluster ratio
formula has with the running behavior of dynamic prefetch. It can also extend the time
between table space REORGs recommended by stored procedure DSNACCOX based on
the cluster ratio. No requirement is needed to collect statistics by using the new formula
before static rebinds or dynamic SQL in Db2 12 is run.

� Automatic determination of the number of frequencies to collect

Db2 12 offers automatic determination of the number of frequencies to collect when
RUNSTATS is used. The first concern to address when RUNSTATS is used is to determine
which statistics to collect. After it is determined which statistics are to be collected, the
question of how many frequencies to collect remains. The default is to collect the top 10,
but the truth is that only the top one can be skewed, or the top 20 or 50.
292 IBM Db2 12 for z/OS Performance Topics

No single default is applicable to all columns and all tables; it is entirely data-dependent.
Db2 12 provides the capability to allow RUNSTATS to continue collecting frequency
statistics until the data is no longer skewed, with an upper limit of the top 100 values to
avoid over-collection. This capability avoids the situations where too few values are
collected for the optimizer to estimate filtering correctly. It also removes the burden on the
DBA to specify an appropriate value. To trigger this enhancement, specify the FREQVAL
option without the COUNT keyword.

9.3 REGISTER NO option in UNLOAD and RUNSTATS

Db2 12 adds a REGISTER NO/YES option to the UNLOAD and RUNSTATS utilities. The new
option applies only to a Db2 data sharing system and specifies whether pages that are read
by the UNLOAD and RUNSTATS utilities are registered in the coupling facility. This option is in
effect only when ISOLATION UR and SHRLEVEL CHANGE behavior are used.

The UNLOAD and RUNSTATS utilities read table spaces or partitions sequentially. If the
target objects are GBP-dependent, UNLOAD or RUNSTATS can drive a large volume of
register page list operations to the coupling facility.

The Register Page List (RPL) operation is a list command that is used to register a set of
pages in a GBP structure to keep the data consistent between data sharing members.
Although RPL is a more efficient operation than a single page registration, many concurrent
RPL requests can cause high Coupling Facility (CF) CPU utilization. In the worst case, this
issue can also affect the performance of other structures in the same CF.

When the new keyword REGISTER NO is used with ISOLATION UR and SHRLEVEL
CHANGE, GBP accesses are avoided. The pages that are read by the UNLOAD and
RUNSTATS utilities are not registered in the CF.

Pages that are in the coupling facility are not processed by the UNLOAD and RUNSTATS
utilities. This option aims to reduce the overall CF activity when retrieving the latest and
consistent data through UNLOAD or RUNSTATS is not required.

When REGISTER YES is used, the behavior is the same as in Db2 11. That is, the UNLOAD
and RUNSTATS utilities register pages to the CF and read the pages from the CF as needed.
The default behavior is NO for UNLOAD with ISOLATION UR, except for the base table space
with XML and LOB columns. The default is YES for the RUNSTATS utility. The new keyword
REGISTER YES/NO is available after the migration to Db2 12 (Function Level 100).

9.3.1 Performance measurements

Performance measurements were done by using 20 concurrent utility jobs against 20 tables
(each table is approximately 5 GB) with REGISTER YES and NO in a two-way data sharing
environment. The objects that were used are GBP-dependent.

When running with the REGISTER NO option, the CF utilization in RMF Activity Reports
dropped to close to 0%. This result occurred because GBP-dependent getpage requests and
RPL requests are greatly reduced, as shown in Table 9-1 on page 294 and Table 9-2 on
page 294. DBM1 SRB time in the statistics trace is reduced because the registration is done
under SRB that is running in DBM1 address space.
Chapter 9. Utilities 293

Table 9-1 UNLOAD utility with REGISTER YES and NO

Table 9-2 RUNSTATS utility with REGISTER YES versus NO

9.3.2 Usage considerations

The main purpose of REGISTER NO option is to reduce the effect on the CF, although you
can also expect that some CPU time is also reduced.

Although this option can greatly reduce the requests to GBP structures, pages are always
read from the disk and the latest updates might not be reflected, depending on the timing of
castout operations.

As expected when the ISOLATION UR process is used, pages that were read might not be
committed. When you are running the RUNSTATS utility immediately after many DELETE or
INSERT operations, it is recommended to use REGISTER YES (default for RUNSTATS) to
reflect the latest information.

UNLOAD Register YES Register NO

Accounting Report

Average Class 1 Elapsed Time 2:20.23722 2:20.38254

Average Class 1 CPU Time 46.162989 46.146585

Address Space TCB Time 0.3676 0.385115

Address Space PREEMPT SRB 28.434019 16.481655

Address Space NONPREEMPT SRB 0.1603 0.172527

#getpage BP3 266155 K 266155 K

#GBP dep getpage BP3 12095 K 0

Page registration per sec 762.76 0

RUNSTATS REGISTER YES REGISTER NO

Accounting Report

Average Class 1 Elapsed Time 1:30.30762 1:40.14576

Average Class 1 CPU Time 1:30.30762 1:07.66963

Address Space TCB Time 0.169684 0.158226

Address Space PREEMPT SRB 11:35.291251 11:07.972913

Address Space NONPREEMPT SRB 0.045811 0.0321

#getpage BP3 26587 K 26587 K

#GBP dep getpage BP3 4189.9 K 0

Page registration per sec 1176.97 0
294 IBM Db2 12 for z/OS Performance Topics

9.4 Backup and RECOVER

In Db2 12, RECOVER always uses one parallel task to overlap read and write during the
RESTORE phase, even if the PARALLEL keyword is not specified. This configuration results
in more efficient processing because reading the pages from the image copies and restoring
pages to the buffer pool processes can occur asynchronously.

The use of hardcoded DD statements to pre-allocate the image copy data sets on tape in the
RECOVER job step is no longer supported and causes allocation errors.

This feature is available in V12R1M100.

9.4.1 Performance measurements

RECOVER performance of a single table space and a list of partitions of a partitioned table
space showed up to 27% CPU improvement in the RESTORE phase compared to Db2 11.

Because of this improvement in the RESTORE phase, RECOVER showed no regression
overall.

9.5 Decompression improvement in utilities

In Db2 11, decompression improvement was introduced to access rows in a compressed
table space. This feature substantially reduced CPU usage in Db2 11 when many
compressed rows are processed by SQL queries because Db2 partially decompresses only
the necessary data and applies software algorithm. In Db2 11, this feature was limited to SQL
access and not used by utilities.

In Db2 12, the software algorithm improvement during decompression is also enabled for
utilities. This enablement demonstrated noticeable improvement in utilities under zEC12. This
feature is available in V12R1M100. Around the same time, the system z13 processor also
provides better compression performance by using hardware improvement. Because z13
improvement applies for Db2 11 and 12, we observed less improvement in DB12 that used
z13 compared to the case that used zEC12.
Chapter 9. Utilities 295

9.5.1 Performance measurements

Measurements were run against a PBR table space. This table space was defined with
COMPRESS YES, 20 partitions, and contained 100 million rows and six indexes. REORG,
REBUILD INDEX, RUNSTATS, and UNLOAD utilities were included in these measurements.
The results are listed in Table 9-3 and Table 9-4.

Utility measurements on zEC12 show more consistent 3 - 8% CPU time improvement in Db2
12 compared to Db2 11 while the measurements on z13 show less improvement than the
cases of zEC12.

Table 9-3 Percentage CPU improvement in v12 versus v11 on zEC12

Table 9-4 Percentage CPU improvement in v12 versus v11 on z13

Utility Delta % CPU

REORG -3%

REORG KEEPDICTIONARY -3%

REBUILD PI -5%

REBUILD PI PART 1 -5%

REBUILD NPI -1%

REBUILD NPI PART 1 0%

REBUILD 2 INDEXES -1%

UNLOAD -5%

UNLOAD FORMAT INTERNAL -8%

Utility Delta % CPU

REORG 1%

REORG KEEPDICTIONARY 0%

REBUILD PI 0%

REBUILD PI PART 1 -2%

REBUILD NPI 0%

REBUILD NPI PART 1 -2%

REBUILD 6 INDEXES 2%

RUNSTATS TABLESPACE 1%

RUNSTATS TABLESPACE TABLE -7%

UNLOAD 1%

UNLOAD FORMAT INTERNAL -2%
296 IBM Db2 12 for z/OS Performance Topics

Chapter 10. IBM Db2 Analytics Accelerator
for z/OS

IBM Db2 Analytics Accelerator for z/OS (IDAA) continues to deliver enhancements in
functionality and performance.

This section describes IDAA performance features that are introduced in IDAA V4 to IDAA V6.
Most of the measurements that are provided in this chapter are done by using Db2 11.

This chapter includes the following topics:

� 10.1, “Performance Enhancements for IBM Db2 Analytics Accelerator for z/OS ” on
page 298

� 10.2, “IDAA Version 4 PTF-2” on page 299

� 10.3, “IDAA version 4 PTF-3” on page 300

� 10.4, “IDAA version 4 PTF-4” on page 302

� 10.5, “IDAA version 4 PTF-5” on page 302

� 10.6, “IDAA version 4 PTF-6” on page 314

� 10.7, “IDAA version 5 PTF-1” on page 317

� 10.8, “IDAA version 5 PTF-2” on page 321

� 10.9, “IDAA version 5 PTF-3” on page 321

10
© Copyright IBM Corp. 2017. All rights reserved. 297

10.1 Performance Enhancements for IBM Db2 Analytics
Accelerator for z/OS

During recent years, the IBM Db2 Analytics Accelerator for z/OS (IDAA) was improved with
new functionalities through several PTFs in version 4 and version 5. With version 6, IBM
introduced cloud IDAA capabilities.

In DB2 11 for z/OS Performance Topics, SG24-8222, topics related to IDAA V4.1 and Db2 11
were covered. This chapter covers the enhancements starting with IDAA V4 PTF2 to V6. The
performance results in this chapter are based on Db2 11, unless otherwise noted.

IDAA delivered the following features and fixes that greatly improve the load and load-related
performance:

� The native loader allows Netezza® Performance Server (NPS®) on the accelerator to
parse Db2 internal data directly, so data conversion is eliminated and load throughput is
significantly improved.

� The time-optimized reload feature reduces most of the delete phase cost for a full table
reload.

� Empty partitions and tables are skipped from UNLOAD to save elapsed and CPU time.

� The mutual exclusive lock enhancement allows more concurrency against Netezza
catalogs and improves the end-to-end time of concurrent load and reload operations.

� The Db2 UNLOAD utility can now bypass an expensive BSAM process to reduce z/OS
CPU cost.

� A limitation to TCP send buffer size is removed to allow higher load throughput when
running UNLOAD in parallel.

Real-time analytics is one of the goals of IDAA. Thus, it is important to reduce the replication
speed of the operational data from the host to IDAA to make the data available for the
analytical queries.

IDAA added SQL functions, such as accelerating local static SELECT INTO statements,
which support system temporal and bi-temporal tables and inline scalar UDFs, among others.
IDAA also implemented the accelerator-only table concept to enable acceleration for analytics
tools that use temporary data, and enabled in-database transformation for ETL processes.

IDAA also encrypts data in motion by using IPSec to protect network traffic between the z/OS
system and the accelerator.
298 IBM Db2 12 for z/OS Performance Topics

10.2 IDAA Version 4 PTF-2

This section describes the effect of enabling query acceleration on rebind packages.

10.2.1 Effect of QUERYACCELERATION ENABLE on Rebind Static Packages

After the support for accelerating static SQLs becomes available in IDAA V4, users might
have the following question:

I have too many static packages to identify which are suitable to enable query
acceleration. What is the performance affect on rebind packages, especially the ones for
OLTP queries, if we blindly enable query acceleration?

To measure the effect on OLTP workloads, experiments were conducted that used an IBM
Brokerage transaction workload that performed a rebind of 230 static packages (each
package containing one query) with the queries being too short to be accelerated. Without
enabling query acceleration, the average elapsed time of the rebinds was 23.74 ms per
package. The average Db2 CPU time of the rebind was 21.77 ms per package.

Having query acceleration enabled, only a minor performance effect was observed. The CPU
and elapsed time increase from the rebind was less than 2%. Queries that were run in this
workload were mixtures of simple to medium complexity. Yet, none of the queries are qualified
for acceleration.

However, by using more complex query workloads, such as an IBM Retail Data Warehouse
workload, a rebind of 140 accelerated static packages shows nearly 6% saving in Db2
elapsed time and 7% saving in Db2 CPU time. This saving is because after Db2 decides to
accelerate the query, some Db2 bind time processes are skipped, such as access path
selection, and generating runtime structures.

But when we used simple, short packages that contain one query with FETCH FIRST 1
ROWS ONLY phrase, we observed an 11% Db2 elapsed time increase and a 16% Db2 CPU
time increase. These simple packages or queries had shorter average Db2 elapsed time (9.4
ms) and CPU time (7.6 ms) than the packages or queries in the IBM Brokerage transaction
workload. Therefore, the effect of rebinding with enabling query acceleration is more obvious.
Again, none of the simple queries are qualified for acceleration.

The effect of enabling query acceleration for simple statements can be seen at the bind or
rebind. The effect is likely negligible at typical OLTP environment, nand the packages that
contain simple queries might see visible cost. For the complex queries that qualify the
acceleration, rebind time can be reduced.
Chapter 10. IBM Db2 Analytics Accelerator for z/OS 299

10.3 IDAA version 4 PTF-3

This section describes the performance enhancements that are introduced in V4 PTF-3:
Acceleration of local static SELECT INTO queries, and LOAD and RELOAD enhancements.

10.3.1 Acceleration of local static SELECT INTO

Local static SELECT INTO queries were not included in the initial support for static query
acceleration that was delivered in IDAA V4. This feature was added in version 4 PTF-3 so that
local static SELECT INTO statements are eligible for acceleration. Tests of 26 accelerated
singleton select statements show overall 7.8 times speedup in Db2 elapsed time and a
negligible CPU cost when compared with running in Db2.

10.3.2 Load enhancement

IDAA v4 PTF-3 provides enhancement during initial load and in handling empty partitions
during load.

Initial load
Before IDAA v4 PTF-3, one of the bottlenecks during load was the conversion of data from the
Db2 for z/OS internal format into Netezza’s text-delimited format.

With IDAA v4 PTF-3, a new parser for Db2 for z/OS internal format (Db2 for z/OS parser) was
implemented and integrated into the Netezza Performance Server (NPS). The Db2 for z/OS
parser enables NPS to load data that is based on the Db2 for z/OS internal format and was
unloaded from Db2 for z/OS using UNLOAD utility.

The new Db2 for z/OS parser also allows IDAA to load data into NPS without having to
convert it into Netezza’s text-delimited format, which saves CPU time on the Netezza host.
Although the Db2 for z/OS parser is in NPS 7.1, IDAA support begins with IDAA V4.1 PTF-3.

Performance of initial load
Comparing initial load on IDAA v4 PTF-2 to IDAA v4 PTF-3 shows the following results:

� For a partitioned table space:

– A 20 - 24% decrease in overall elapsed time for a partitioned table, depending on the
numbers of columns and types of columns.

– No major change in Db2 CPU time.

� For a non-partitioned table space:

– Over 70% decrease in overall elapsed time for a non-partitioned table.
– No major change in Db2 CPU time.

Note: A higher reduction was observed in non-partitioned table space. This result occurred
because LOAD test against a partitioned table space was done by using 12 concurrent
streams while LOAD test with a non-partitioned table space was done with single stream.
When there are fewer streams, NPS requires to wait more frequently for converting input
data before processing the records.
300 IBM Db2 12 for z/OS Performance Topics

Load with empty partitions
Load performance might be negatively affected when loading tables that include many empty
partitions or many empty non-partitioned tables. This affect was because of many
unnecessary DSNUTILU calls to unload empty partitions or tables.

When environment variable AQT_SKIP_UNLOAD_EMPTY_PARTS=SET is specified, IDAA
uses real-time statistics (RTS) to detect and skip DSNUTILU calls for empty partitions or
tables. In our controlled test of loading a partitioned table with 4096 partitions that were all
empty, the elapsed time was reduced from 95 seconds to 21 seconds and CPU cost was
reduced from 39 seconds to close to 0 seconds, compared to the measurement with and
without this enhancement.

10.3.3 Reload enhancements

IDAA v4 PTF-3 also provides performance improvements during reload.

The current implementation of reloading table data consists of the following major steps:

1. Delete old table data.
2. Insert new table data.

Therefore, the overall time for reloading table data is the sum of the data deletion and data
load time.

For non-partitioned tables, the following steps are taken in one transaction:

1. Load data into a new table by using one connection, which is called the shadow table.
2. Drop the old table.
3. Rename the new shadow table to old table’s name.

Because this process avoids the delete phase entirely, a significant improvement in reload
performance is gained.

For the reload of a partitioned table, the process is the same as for a non-partitioned table;
however, we use multiple connections for the load phase.

Reload performance
Performance tests were conducted by using a Striper machine with full rack (N2001). The
partitioned table that was used is the 1 GB of Lineitem table from IBM Retail Data Warehouse
database. Loads and reloads were done by using 12 streams.

The Lineitem table is also used as a non-partitioned table. The table was loaded until the
maximum size of ~64 GB (compressed) was reached. During load, this process results in
~120 GB of uncompressed data being transferred to IDAA.

Results
Comparing full table reload on IDAA v4 PTF-2 to IDAA v4 PTF-3 shows the following results:

� For the partitioned table:

– A total elapsed time improvement of 32% where a 17% improvement comes from the
use of the shadow table.

– No major change in CPU time.
Chapter 10. IBM Db2 Analytics Accelerator for z/OS 301

� For the non-partitioned table:

– A total elapsed time improvement of 72% where only a 4% improvement comes from
the use of a shadow table because the delete phase is not a major component of the
load.

– No major change in CPU time.

Improvements can also be expected for partial table reload on IDAA v4 PTF-3 compared to
IDAA v4 PTF-2, in accordance to how much of the table is reloaded.

10.4 IDAA version 4 PTF-4

This section describes dynamic statement cache support for accelerated queries that was
added in IDAA V4 PTF-4.

10.4.1 Dynamic statement cache support for accelerated queries

Before this feature was available, Db2 did not support dynamic statement caching for
accelerated dynamic queries. When an accelerated dynamic query was run, it went through a
full PREPARE in Db2 for z/OS.

This feature improves PREPARE performance for repeated accelerated dynamic queries;
long PREPAREs become short PREPAREs by caching the prepared statements in the
statement pools. No user action is required to trigger this feature.

Controlled tests on PREPAREs of seven accelerated dynamic queries showed over 70% Db2
elapsed time improvement and 80% Db2 CPU improvement.

Tests on PREPAREs of four un-accelerated dynamic queries show no performance difference
with and without this feature, as expected.

10.5 IDAA version 4 PTF-5

This section describes load improvement and a load and query performance comparison of
N3001 (Mako full rack) and N2001 (Striper full rack), in-database transformation, parallel
incremental updates, and auto keys for incremental update enabled tables.

10.5.1 Load improvement with PI26783

APAR PI26783 (HIGH CPU CONSUMPTION FOR IDAA LOAD TABLE PROCESS.
IMPROVE IDAA LOAD TO SUPPORT UNKNOWN RECORD LENGTH IN DB2 UNLOAD
PHASE) reduces CPU-consuming BSAM process during the DB2 UNLOAD step when IDAA
loads data from Db2 to an accelerator. This APAR is addressed for Db2 10 and 11 for z/OS.
The improvement is included in Db2 12 base code.

CPU savings are relative to the number of rows in the table. During controlled testing, loading
a 29.5 billion row table with an average record length of 131 bytes showed 25% CPU time
savings when loading data from a zEC12 LPAR to a full rack Striper with 12 streams, and
30% CPU time savings to a full rack Mako.
302 IBM Db2 12 for z/OS Performance Topics

10.5.2 Load and query performance comparison on Mako versus Striper

The Mako and Striper machines share a basic architecture: I/O capacity, memory, and the
Field Programmable Gate Array (FPGA) The differences are that Mako has twice the CPU
capacity and build-in hardware support for encryption of data at rest. Mako also has
enhancements on the host and snippet processing units (SPU) network.

On our IBM Retail Data Warehouse benchmark workloads, little performance difference was
observed in IDAA load between Mako and Striper. However, accelerated queries run 30%
faster in average with Mako compared to Striper.

10.5.3 In-database transformation

Many users choose not to run Extract, Load, and Transformation (ELT) processes and
analytic applications on Db2 for z/OS because of the cost or need for the speed. They would
need to move the transaction data from Db2 to somewhere else. Moving the large volumes of
data can be expensive and time consuming. Because of the cost or operational overhead, the
data moving can be done periodically, such as at the end of the day or at the end of the week.
The infrequent update of transactional data prevents the analytic applications run on real-time
data that is available in Db2 for z/OS. With the IDAA solution, Db2 data can be loaded or
incrementally updated to the accelerator conveniently without much delay.

In addition, eligible long-running SQLs are offloaded automatically to the accelerator with
great query performance on the data that can be near real time. Therefore, it is
understandable that people want to keep their ELT processes and analytic SQLs inside Db2
and the accelerator combined solution.

An SQL statement such as INSERT from SUBSELECT is most commonly used as a part of
ELT processes. Unfortunately, so far only the select part can be considered for acceleration,
and the accelerator returns all the rows back to Db2 to insert into a Db2 table. This process
might not be performance-efficient or cost-effective with a typically large volume of the data.

Moreover, some ETL processes or tools create intermediate tables (for example, DGTTs or
PBGs) to store the intermediate data and query against them within the same unit of work.
Db2 and IDAA cannot accelerate these queries.

To improve performance and cost, a special mechanism is needed so that the accelerator can
directly insert data into or select data from within the accelerator without moving data to or
from Db2.

To address this need, Db2 introduces a new type of table: Accelerator-only table (AOT). When
the user creates an AOT, instead of specifying the database and table space, they indicate in
which accelerator to create it. Although Db2 keeps the table and its column information in the
catalog and directory, the data is only in the accelerator, not in Db2. ELT processes can use
AOT tables as intermediate tables. After the source tables are loaded on the accelerator, all of
the following ELT processes can run on the accelerator, which is known as accelerated
in-database transformation.

Before this feature was available, Db2 offloaded only select statements to an accelerator.
Now, Db2 can offload DDL statements and insert, update, and delete statements if they are
for or against an AOT table.

Insert with select by using AOT
During our performance testing, we prepared different categories of insert with subselect
statements, and used different numbers of rows and columns and different data types.
Chapter 10. IBM Db2 Analytics Accelerator for z/OS 303

Performance numbers were collected and compared between AOT, DGTT, and PBG being
the insert targeting tables.

A dedicated z13 LPAR with six CPs and a full rack Mako machine were used to evaluate the
performance of AOT. All of the tables that the queries reference were accelerated. For the
DGTT and PBG cases, the accelerator returned data to Db2 to insert. For the AOT case, the
accelerator inserted returning data directly into the AOT on the accelerator side.

The results are shown in Figure 10-1.

Figure 10-1 Insert with subselect with AOT, DGTT, PBG as insert target table

Queries RI101 ~ RI104 are complex selects with a few returned rows for insert. Queries
RI101 ~ RI104 contain different subselect statement. Little performance difference was
observed among AOT, DGTT, and PBG as most time was spent at query in IDAA.

Queries RI201 ~ RI210 are simple selects with many rows returned for insert. The advantage
of using AOT to insert directly is significant (up to 163X between AOT and DGTT, and 267X
between AOT and PBG). We exhausted the work file space in Db2 subsystem in RI208 for
DGTT scenario and did not continue the query.

Queries RI301 ~ RI303 are simple selects with 1 million returned rows of 16, 32, and 48
columns respectively. Again, AOT shows the benefit.

Queries RI401 ~ RI403 are simple selects with 1 million returned rows of the same number of
columns of integer, char or varchar, and date columns, respectively.

When AOTs are used as the target of insert from select, the select and insert parts were run
on the accelerator. Almost no CPU cost was left on Db2 side.

These experiments demonstrate the benefit of the use of AOT when more than 300,000 rows
are processed.

AOT AOT DGTT PBG
CL2EL CL2EL DGTT/AOT CL2EL PBG/AOT CL2CPU CL2CPU CL2CPU

5 RI101 102.00 103.83 1.02 103.07 1.01 0.01 0.08 0.02
2 RI102 90.31 90.13 1.00 90.33 1.00 0.01 0.01 0.01

175 RI103 286.21 286.33 1.00 284.89 1.00 0.01 0.01 0.01
4,200 RI104 3.63 4.38 1.21 3.21 0.88 0.01 0.03 0.03

340,000 RI201 1.83 2.29 1.26 3.57 1.95 0.00 1.18 1.93
3,400,000 RI202 11.57 21.65 1.87 29.85 2.58 0.00 11.71 16.64
1,200,000 RI203 3.58 7.96 2.22 9.04 2.52 0.00 4.52 6.23

12,000,000 RI204 13.21 71.89 5.44 76.12 5.76 0.00 47.58 53.96
1,000,000 RI205 1.58 5.04 3.19 9.55 6.05 0.00 4.38 5.87

10,000,000 RI206 3.48 46.90 13.46 63.16 18.13 0.00 44.00 48.26
100,000,000 RI207 27.16 462.35 17.02 673.99 24.82 0.00 437.70 567.32

1,000,000,000 RI208 290.58 canceled 14863.80 51.15 0.00 canceled 13879.28
180,000,000 RI209 8.94 851.74 95.29 1291.38 144.47 0.00 801.85 1191.08
180,000,000 RI210 5.15 843.07 163.80 1377.73 267.68 0.00 794.80 1186.29

1,000,000 RI301 1.56 5.04 3.23 9.57 6.13 0.00 4.43 5.93
1,000,000 RI302 2.34 7.65 3.27 12.90 5.52 0.00 5.65 7.18
1,000,000 RI303 2.76 10.72 3.88 15.38 5.57 0.00 6.89 8.67

1,000,000 RI401 0.88 4.12 4.68 7.98 9.07 0.00 3.47 5.29
1,000,000 RI402 1.22 4.54 3.72 9.24 7.57 0.00 3.91 5.41
1,000,000 RI403 0.90 4.63 5.13 8.41 9.32 0.00 4.16 5.96

Sum 858.90 18943.18 22.06 0.07 16995.36

#Rows CORRRemarks

small # rows
for insert

large # rows
for insert,
RI210 source
is AOT

different #
columns - 16,
32, 48

different data
types - INT,
CHAR, DATE

DGTT PBG
Elapsed time comparison (unit is second) CPU time comparison (unit is second)
304 IBM Db2 12 for z/OS Performance Topics

AOT versus DGTT as intermediate tables
To simulate actual ELT process, we simplified a customer’s case and evaluated the overall
elapsed time and CPU time saving by using AOT versus DGTT as the intermediate tables.
We completed the following steps to simulate report generation by JDBC type 4 application:

1. Create 10 intermediate tables.

2. Populate the intermediate tables by using 10 insert with select statements (all the tables in
the select part are accelerated and loaded).

3. Run six queries that reference the 10 intermediate tables.

4. Drop the 10 intermediate tables.

The performance comparisons of the use AOT versus DGTT as the intermediate tables is
shown in Figure 10-2.

Figure 10-2 Performance comparison for report simulation using DGTT and AOT as intermediate table

Creating AOTs takes longer than declaring DGTTs, and dropping AOTs also takes more time.
However, the insert and select statements run much faster with AOTs than DGTTs and the
overall report process finishes 80% faster with significantly less CPU time by using AOTs than
DGTTs.

DGTT AOT DGTT AOT DGTT AOT
Elapsed (s) Elapsed (s) Elapsed/stmt (s) Elapsed/stmt (s) CPU (s) CPU (s)

Declare/Create stmts (10) 4.34 8.44 0.43 0.84
Insert w/ select stmts (10) 306.05 58.28 -81% 30.61 5.83
Select stmts (6) 136.72 16.54 -88% 22.79 2.76
Drop stmts (10) 0.00 4.38 0.00 0.44
Overall 447.11 87.64 -80% 479.00 0.11 -100

Report_simulation
Chapter 10. IBM Db2 Analytics Accelerator for z/OS 305

Concurrent insert from select
We also experimented with inserting 10 million rows into an AOT table from a select (per
thread) with concurrent threads by using a JDBC type 4 application. The elapsed time per
occurrence for insert with select under different concurrency for case A and B is shown in
Figure 10-3.

Figure 10-3 Insert with subselect under different concurrency

In the measurement, each thread has its own AOT target table but the same select statement
(same source tables with joins). The result shows the elapsed time per insert lines up with the
number of concurrent threads, which means our concurrent inserts do not scale up with the
number of concurrent threads (marked as Case A in Figure 10-3).

To verify whether the contention is from the source table, we ran other test (marked as Case
B Figure 10-3). In Case B separate source and target (AOT) tables are used per thread.

The liner increase in the elapsed time occurred as we increase the number of threads
because of the fundamental design strategy of Netezza. The NPS design goal is to apply all
the system resources to a single process to accelerate the performance. Therefore, each
thread can run fast, yet the elapsed time with the concurrent process tends to suffer as a
tradeoff.
306 IBM Db2 12 for z/OS Performance Topics

10.5.4 Apply incremental updates in parallel

Incremental updates capability can quickly replicate the changes in the Db2 to the
accelerated tables at IDAA. However, when many tables are in the subscription, replication
latency can suffer. In such a case, customers can use the parallel apply feature so that
incremental update changes can be applied in parallel. This feature is not enabled as a
default as some usage consideration are important, such as referential integrity usage. When
enabled, the default number of parallel threads is four, but this limit can be changed with
guidance from IBM.

Enabling parallel apply
Complete the following steps to enable parallel apply:

1. Log on to the IBM Db2 Analytics Accelerator Console.

2. Press Enter to display the Configuration Console window that is shown in Figure 10-4.

Figure 10-4 Configuration Console window
Chapter 10. IBM Db2 Analytics Accelerator for z/OS 307

3. Enter 5 and press Enter to display the submenu that is shown in Figure 10-5.

Figure 10-5 Configuration Console submenu
308 IBM Db2 12 for z/OS Performance Topics

4. Enter 6 and press Enter. A window similar to the window that is shown in Figure 10-6
opens. Db2 subsystems that cannot be selected because they are not enabled for
incremental updates are listed. Under “Select a database system”, you see the Db2
subsystems that you can select.

Figure 10-6 Available Db2 subsystems

5. Enter the number of the Db2 subsystem that you want to enable and press Enter. The
message that is shown in Figure 10-7 is displayed.

Figure 10-7 Enabling the feature prompt

Performance measurement
The performance measurement used as many as 500 IBM Retail Data Warehouse
LINEITEM-like tables to simulate the customer’s use case. Each table includes approximately
24 million rows and is in a partition by range table space. Concurrent insert and update
transactions were run against these 500 tables. The measurement is to compare the
replication throughput of a single apply to multiple apply with a default of four parallel apply
threads.

Performance results
The measurements showed up to 98% replication throughput improvement comparing
parallel apply by using four threads to apply by using a single thread.
Chapter 10. IBM Db2 Analytics Accelerator for z/OS 309

Parallel Apply feature consideration
Our measurements demonstrate that the Parallel Apply feature is effective to reduce the
replication latency when many tables must be replicated.

10.5.5 Automatic generation of distribution keys and organizing keys for
incremental update enabled tables

The use of the appropriate distribution keys and organizing keys can improve the
performance of incremental update processes considerably. IDAA V4 provides the automatic
selections of distribution and organizing keys.

Distribution keys and organizing keys
Distribution and organizing keys are optional to improve the performance of accelerator.

Distribution keys
A user can choose between two methods to distribute table rows to the worker nodes of their
accelerator: Random distribution (default) and distribution by using a distribution key. When a
distribution key is specified, the accelerator uses a hash function on the key columns to
determine the data slice or worker node that receives a table row. Rows with equal hash
values are distributed to the same worker node.

By default, random distribution is used to distribute table rows to worker nodes for query
processing. That is, all tables are evenly distributed among the worker nodes.

Organizing keys
Organizing key also affect the query response time. When choosing an organizing key,
columns are selected by grouping the rows of an accelerator-shadow table within the data
slices on the worker nodes. This grouping creates grouped segments or blocks of rows with
equal or nearby values in the columns that are selected as organizing keys.

If an incoming SQL query references one of the organizing key columns in a range or equality
predicate, the query can run much faster because entire blocks can be skipped. It is not
necessary to scan the entire accelerator-shadow table. Therefore, the time that is needed for
disk output operations that are related to the query is drastically reduced.

Organizing keys work with zone maps, which allow the query engine to identify the disk
extents (addressable storage blocks on the disk) that contain the clusters of rows that are
relevant to a query.

Defining distribution keys and organizing keys for incremental update
enabled tables
Customers can configure the product so that a distribution key, organizing key, or both are
defined automatically for tables that are enabled for replication if there is a unique index that is
defined on the tables that are on Db2 for z/OS. Keys are automatically defined only when the
table is being enabled for replication. A replication enabled table with keys is not affected by
the setting. The IDAA server needs the most up-to-date Db2 catalog statistics to determine
which columns to define as the keys, so users must run Db2 RUNSTATS on Db2 tables that
are to be added into the accelerator and enabled for incremental updates.
310 IBM Db2 12 for z/OS Performance Topics

Enabling defining auto keys
Complete the following steps to enable defining auto keys:

1. Log on to IBM Db2 Analytics.

2. Press Enter to display the Configuration Console window, as shown in Figure 10-8.

Figure 10-8 Configuration Console window

3. Enter 5 and press Enter to display the submenu that is shown in Figure 10-9 on page 312.
Chapter 10. IBM Db2 Analytics Accelerator for z/OS 311

Figure 10-9 Configuration Console submenu

4. Enter 5 to display the menu that is shown in Figure 10-10.

Figure 10-10 Selecting a database system
312 IBM Db2 12 for z/OS Performance Topics

5. Enter the number of the Db2 subsystem that you want to enable and press Enter. The
menu that is shown in Figure 10-11 is displayed.

Figure 10-11 Automatic settings submenu

6. Choose Option 2 to enable the distribution and organizing keys; then, enter y to confirm,
as shown in Figure 10-12.

Figure 10-12 Enabling distribution and organizing keys

Performance measurement
By using insert and update transactions on 500 23 GB and 10 1 TB partitioned tables, we
compared the replication throughput and replication latency of enabling the auto key for a
distribution or organizing key, or both types of keys, versus no keys. All of the measurements
were done with parallel apply enabled.

Performance results
The measurements showed that defining distribution and organizing keys automatically
improved replication latency and throughput.
Chapter 10. IBM Db2 Analytics Accelerator for z/OS 313

The positive performance effect on delete operations during incremental updates when
defining both types of keys is listed in Table 10-1. This improvement is achieved because of
scanning fewer data pages.

Table 10-1 Netezza delete performance result for 10 1-TB tables

An approximate 12% replication throughput improvement was observed when the distribution
and organizing key were defined compared to having no keys defined, as listed in Table 10-2.

Table 10-2 Replication throughput and latency result

Considerations for optimal key definitions
RUNSTATS information must be up-to-date for IDAA to detect the correct candidate for
distribution keys and organizing keys.

10.6 IDAA version 4 PTF-6

In this section, we describe IDAA load and query performance with z13 and continuous
operation of incremental updates.

10.6.1 IDAA load and query performance with z13 versus zEC12

By upgrading zEC12 to z13, we observed an approximately 38% CPU time reduction loading
the data into IDAA because of the general processor improvement with z13 against
compressed tables. In addition, 26% Db2 CPU time reduction in overall accelerated queries
was observed when our IBM Retail Data Warehouse benchmark workloads were used.

10.6.2 Continuous operation of incremental updates

Before IDAA version 4 PTF-6, replication for all tables in the subscription is stopped for a
short period before loading any of the tables in the subscription starts, and after the table load
stops. Although this period is short, the effect on replication throughput and latency becomes
significant when many tables are defined in the subscription and frequent concurrent load or
reload activities occur.

Testing features Execution time (sec) Average pages per
data slice

Number of slices
processed

Number of pages
scanned/slice

No keys 9.023 25,5 240 947

Distribution keys 8.443 28,6 947

Both keys 0.090 2 2

Testing features Maximum
latency
(min:sec)

Average throughput
(1K rows/second)

Throughput
improvement
(%)

Average apply time
(min:sec)

No Keys 06:10 25,5 04:28

Auto Keys (both) 01:57 28,6 12% 01:41
314 IBM Db2 12 for z/OS Performance Topics

Continuous operation
With the continuous operation feature, incremental updates can continue even when there is
concurrent load or reload activity without stopping. To make the most of this feature, IDAA
load table applications must make the following changes when calling the
SYSPROC.ACCEL_LOAD_TABLES stored procedure:

� Use Lock-mode "ROW" for reload/load.
� Use forceFullReload = true to avoid incorrect result for reload.

This performance enhancement feature is not enabled by default. The procedure that is used
to enable it is described next.

Enabling continuous options
Complete the following steps to enable continuous options:

1. Log on to the IBM Db2 Analytics Accelerator Console.

2. Press Enter to display the Configuration Console window that is shown in Figure 10-13.

Figure 10-13 Configuration Console window

3. Enter 5 and press Enter to display the submenu that is shown in Figure 10-14 on
page 316.
Chapter 10. IBM Db2 Analytics Accelerator for z/OS 315

Figure 10-14 Options window

4. Enter 7 and press Enter. A window that is similar to the window that is shown in
Figure 10-15 is displayed. Db2 subsystems that cannot be selected because they were
not enabled for incremental updates are listed. The Db2 subsystems that you can select
are listed in the Select a database system section.

Figure 10-15 Selecting a database system
316 IBM Db2 12 for z/OS Performance Topics

5. Enter the number of the Db2 subsystem that you want to enable and press Enter. Then,
follow the steps that are listed in the menu that is shown in Figure 10-16 to enable the
feature.

Figure 10-16 Enabling the feature

Performance measurement
For the performance evaluation of this feature, we used 200 of tables from IBM Retail Data
Warehouse workload each containing 24 million rows. Concurrent insert and update
transactions going against the 200 tables were available while half of those 200 tables were
being reloaded. The following measurements were conducted:

� Continuous operation disabled, reload with LOCK-MODE tableset as the default behavior
� Continuous operation enabled, reload with LOCK-MODE row

Performance results
The measurements showed up to 37% replication throughput improvement compared to
without continuous operation enabled. The Continuous Operation feature is effective when
many tables must be loaded or reloaded constantly while replication is ongoing.

10.7 IDAA version 5 PTF-1

In this section, we describe the IDAA enhancements in IDAA version 5 PTF-1 to increase load
throughput and the support for encryption of data in motion.

10.7.1 Load throughput increase from lifting TCP send buffer size restriction

When loading a partitioned table from Db2 to the accelerator, the load might take longer to
complete if AQT_MAX_UNLOAD_IN_PARALLEL environment variable is set to a higher
number (for example, more than 30). This issue occurs because of a restriction in an
algorithm to calculate the TCP send buffer size. After lifting this restriction, the throughput of
an initial load of a table (250 partitions and 3.88 TB data size) increased from 2.63 TB/hour to
3.94 TB/hour (almost 50%) from Db2 running on a z13 LPAR to IDAA by using a Mako with
AQT_MAX_UNLOAD_IN_PARALLEL=12.
Chapter 10. IBM Db2 Analytics Accelerator for z/OS 317

The effect of lifting this restriction is that the user can receive TCP error number 1122 when
AQT_MAX_UNLOAD_IN_PARALLEL is set to a number that is too high (50 in our case).
Reduce the number of AQT_MAX_UNLOAD_IN_PARALLEL or reduce the number of
concurrent threads for load when TCP error number 1122 is encountered.

10.7.2 Encrypting data in motion by using IPSec

Earlier versions of IBM Db2 Analytics Accelerator for z/OS were delivered without a network
encryption function. Although this issue did not pose a security risk when the setup
recommendations were followed (dedicated private network between the mainframe
computer or LPAR and the accelerator), it soon became obvious that in many situations, this
type of setup did not align well with network infrastructures. Therefore, a secure way of data
traffic had to be provided for customers who want to route sensitive data, such as patient
data, credit-card transactions, or social security numbers through their corporate intranet.

Furthermore, the security standards of many organizations demand that any sensitive data
that is sent across a network must be encrypted. Finally, encryption capabilities were added
to the product.

To protect data security, IDAA provides functionality to encrypt data in motion by using IPSec
in the network layer. However, performance is affected when encryption of data in motion is
enabled.

Setting up encryption of data in motion
To set up IPSec, we consulted IBM z/OS V2R1 Communications Server TCP/IP
Implementation Volume 2, SG24-8097. Because it uses the IKEV2 protocol in the
authentication phase, the z/OS communication server must be configured with Network
Security Services (NSS). Users must set up and configure the TCP/IP stack in
Communication Server with Internet Key Exchange Daemon (IKED), Network Security
Services Daemon (NSSD), policy agent, and Traffic Regulation Management Daemon
(TRMD).

The accelerator side uses the IPSec “netkey” implementation that is provided by the Redhat
Enterprise Linux 6 kernel with the IKE daemon “pluto” that is provided by libreswan 3.13. The
standard PDA distribution does not include the libreswan IPSec implementation. Therefore,
users require IBM service to deploy RHEL 6.6 and Host management version 5.1.4.0 or
higher beforehand.

In our testing environment, as shown in Figure 10-17 on page 319, the following set-up was
done on the z/OS side (a z13 LPAR):

1. Enable PAGENT policies for TTLS and IPSec for all the IP addresses between z/OS and
accelerator.

2. Install the SYSLOGD daemon and set the logging level to the minimum (logging for errors
only) to reduce CPU usage.

3. Install the TRMD daemon.

4. Install the NSSD and IKED daemons.

5. Create a TLS certificate for the communication between NSSD and IKED.

6. Create an NSS certificate for the communication between z/OS NSSD and accelerator.

7. Create a certificate for the accelerator and transfer it to the accelerator.
318 IBM Db2 12 for z/OS Performance Topics

Figure 10-17 IPSec setup in our test environment

For z/OS Cryptographic Services Integrated Cryptographic Service Facility System
(ICSF), our LPAR has no crypto CPI cards. Instead, we use CP Assist for Cryptographic
Functions (CPACF). Although CPACF instructions provide improved performance, it has a
CPU cost. However, most of the CPU is zIIP eligible (our LPAR does not have a zIIP
engine installed).

8. For our convenience when using the RMF reports, we created the following report classes:

– (RCLASS) - IDAALOAD for the load process
– IDAAQRY for queries
– TCP/IP for TCP/IP (including cryptographic service)
– PAGENT, CSF, TRMD, NSSD, and IKED
– SYSLOGD for the SYSLOGD daemon

Load performance with and without encryption
The load performance comparison with no encryption of data in motion, compared to the use
of encryption is shown in Figure 10-18 and Figure 10-19 on page 320. The load data size is
3.88 TB for 29.5 billion rows.

Figure 10-18 Service time of load with no encryption of data in motion
Chapter 10. IBM Db2 Analytics Accelerator for z/OS 319

Figure 10-19 Service time of load with encryption of data in motion

Regarding elapsed time and the use of encryption of data in motion, the load process runs
three times as long than without (3313 seconds versus 10068 seconds).

Regarding CPU time with encryption of data in motion, the load process uses 3.25 times
more CPU than without, with 15501 seconds extra CPU from SYSLOGD, cryptographic
service, and other daemons. Approximately 80% of these 15501 extra CPU seconds is
zIIP-eligible.

Queries performance with and without encryption
Figure 10-20 and Figure 10-21 show the query performance comparison between no
encryption and encryption of data in motion. A total of 28 queries (21 IBM Retail Data
Warehouse benchmark queries and 7 extra queries) fetched 170 million returned rows in this
evaluation.

Figure 10-20 Service time of queries with no encryption of data in motion

Figure 10-21 Service time of queries with encryption of data in motion

The performance effect of encryption of data in motion on queries is not as dramatic as on
load. This result occurs because the data amount transferred in between z/OS and the
accelerator is much smaller with the query workload run than the load run.

Incremental updates tests with parallel apply enabled were also conducted, comparing with
and without encryption of data in motion. The result showed up to 16% replication throughput
regression after enabling the encryption of data in motion, compared to no encryption of data
in motion.
320 IBM Db2 12 for z/OS Performance Topics

10.8 IDAA version 5 PTF-2

IDAA version 5 PTF2 is the minimum requirement to support the IDAA features with Db2 12.

10.8.1 Db2 12 support for IDAA

Db2 12 support for IDAA is available with Db2 12 GA code at Function Level 100. The
performance of load, reload, query, AOT, and encryption of data in motion enhancements
were evaluated and results show equivalent performance with Db2 11.

10.9 IDAA version 5 PTF-3

In this section, we describe performance enhancements for loading many small tables that
are made available in V5 PTF-3.

10.9.1 Loading many small tables

In IDAA v5 PTF-3, new features improve the performance of loading small tables. The
enhancements include better concurrency during loads and internal code optimizations in
Netezza.

Performance of loading many small tables
Performance tests were conducted by using a Striper with full rack (N2001). One stored
procedure call was made per table that was loaded.

Concurrent load with 40 threads
We ran a concurrent load scenario that used 40 threads in which each thread loaded 100
tables that contained only one to a few rows. These parameters were used to demonstrate
the best benefit from the enhancement. In total, 4,000 tables (40 threads * 100 tables) were
processed.

When comparing with and without this enhancement (IDAA v5 PTF-3 to IDAA v5 PTF-2), we
made the following observations:

� Approximately 30% elapsed time saving from the load was realized.

� CPU time can increase slightly (a few percent) on the Db2 side if there is increased
contention because of increased concurrency. Otherwise, the CPU time remained the
same.

Single stream load
We also ran single stream load in which one thread loads 100 1-row tables.

When comparing with and without the enhancement (IDAA v5 PTF-3 to IDAA v5 PTF-2), we
made the following observations:

� Approximately 70% elapsed time saving because of internal optimization was realized.
� The CPU time remained same.
Chapter 10. IBM Db2 Analytics Accelerator for z/OS 321

322 IBM Db2 12 for z/OS Performance Topics

Chapter 11. Installation and migration

In this chapter, we describe IBM Db2 12 installation and migration changes, focusing on
performance. In contrast to IBM Db2 11’s multiple migration modes, Db2 12 provides a single
migration job, and a new ACTIVATE command is introduced to activate new function levels.

Db2 12 also modified how access paths and cache information for dynamic queries are
stored in the catalog tables in support of implementing dynamic plan stability. Furthermore,
some performance-related system parameters are modified that correspond to the various
performance-related enhancements that were introduced in Db2 12.

This chapter includes the following topics:

� 11.1, “Migration performance” on page 324
� 11.2, “Dynamic plan stability” on page 327
� 11.3, “Temporal real-time statistics tables ” on page 331
� 11.4, “System parameters’ performance-related changes” on page 335

11
© Copyright IBM Corp. 2017. All rights reserved. 323

11.1 Migration performance

Db2 12 eliminates the various migration modes that existed in Db2 11, such as CM, CM*,
ENFM, ENFM*, and New Function Mode (NFM). Db2 12 function level V12R1M100 is
equivalent to CM, or conversion mode in Db2 11, while function level V12R1M500 is
equivalent to Db2 11’s NFM. CM* mode is now called a “star” function level. For more
information about function levels, see DB2 12 for z/OS Technical Overview, SG24-8383.

When migrating to Db2 12, the single migration job DSNTIJTC (CATMAINT) performs all
changes necessary to tailor the Db2 11 catalog and directory objects. After running
DSNTIJTC, the Db2 catalog reaches catalog level of V12R1M500.

Catalog and directory objects at V12R1M500 level can be used by Db2 12 (regardless of the
function level) and by Db2 11 with the fallback SPE applied. As a result, if the fall back SPE is
in place, fallback to Db2 11 or coexisting with Db2 11 members (in data sharing configuration)
is possible after the catalog is changed to the Db2 12 format.

In Db2 12, no job is available to enable NFM. Instead, the new Db2 ACTIVATE command is
used to activate new functions. Because only one step is needed to update the catalog during
migration, catalog availability is greatly improved. As a result, applications that access the
catalog expect less interruption during the migration.

The important migration steps for Db2 12 are shown in Figure 11-1. The crossed-out squares
represent the jobs from Db2 11’s migration process that are no longer required.

Figure 11-1 Db2 12 migration process
324 IBM Db2 12 for z/OS Performance Topics

11.1.1 Migration performance measurement tests

To assess Db2 12’s migration performance, two series of migration tests were run in
laboratory-controlled environments. In this section, the performance results of these migration
tests are described to provide a general reference for users to estimate the expected CPU
and elapsed time consumptions when migrating to Db2 12.

The two series of migration tests used two different-sized Db2 catalogs. The following test
subjects were used:

� A 28.3 GB catalog in Db2 10
� A 5.92 GB catalog in Db2 10

Both tests scenarios consisted of the following tasks:

� Migrate the catalog from Db2 10 NFM to Db2 11 NFM.
� Migrate the catalog from Db2 11 NFM to Db2 12 Function Level 500.

The system configuration details of the measuring environment are listed in Table 11-1.

Table 11-1 Measurement environment system configuration

The Db2 subsystem configuration details of the measuring environment are listed in
Table 11-2.

Table 11-2 Measurement environment system configuration

Note: For more information about the migration process, see DB2 12 for z/OS Technical
Overview, SG24-8383.

System configuration

Hardware z13 (model 2964)

Processors 4 general CPs

Operating system z/OS 2.1

Db2 system configuration

Configuration Non-Data Sharing configuration

Db2 version Db2 10, Db2 11, and Db2 12

Buffer pool assignments (VPSIZE)

BP0 50 K

BP4 (work file) 10K

BP8K0 50 K

BP16K0 50 K

BP32K 50 K
Chapter 11. Installation and migration 325

The performance results were captured at the following migration steps:

� Migration from V10 to V11 CM: Measuring CATMAINT UPDATE

� Migration from V11 CM to V11 ENFM: Measuring DSNTIJEN performance, which
performs online REORG of the following table spaces:

– SYSLGRNX (SHRLEVEL CHANGE)
– SYSCOPY
– SYSRTSTS
– SYSTSIXS (SHRLEVEL CHANGE)
– SYSSTR
– SYSTSTAB (SHRLEVEL CHANGE)

� Migration from V11 to V12:

– Measuring CATMAINT UPDATE

– Measuring the elapsed time and Db2 address space CPU time for the completion of
the new ACTIVATE command

The migration performance results for the 28.3 GB Db2 10 catalog are listed in Table 11-3 on
page 326. The CPU and elapsed time indicates that migration to Db2 12 requires 57% less
CPU to complete compared with migration to Db2 11 and the migration to Db2 12 can
complete 23% quicker than the migration from Db2 10 to Db2 11.

Table 11-3 Catalog 1 (28.3 GB) migration performance observations

The migration performance results for the 5.92 GB Db2 10 catalog are listed in Table 11-4.

Table 11-4 Catalog 2 (5.92 GB) migration performance observations

These results show that the migration from Db2 11 to Db2 12 requires 78% less CPU time to
complete compared to migrating from Db2 10 to Db2 11. The migration to Db2 12 also shows
a 60% improvement in elapsed time compared to the migration to Db2 11.

As can be observed from these test results, the major cost saving of Db2 12 migration comes
from the Migration to NFM or FL activation phase. The migration from Db2 11 CM to Db2 11
NFM is done through online REORG in Db2 11, which took over 1 minute to complete in the
tests. The migration from Db2 12 V12R1M100 to V12R1M500 is done by using the ACTIVATE
command, which took sub seconds to complete in the tests.

Db2 10 to Db2 11 Db2 11 to Db2 12 DELTA (%)

CPU ELAPSED CPU ELAPSED CPU ELAPSED

CATMAINT UPDATE (sec.) 0.060 4.69 10.53 52.78

Migration to NFM or FL activation (sec.) 24.5 64.5 0.01 0.28

Total (sec.) 24.5 69.2 10.54 53.1 -57% -23%

Db2 10 to Db2 11 Db2 11 to Db2 12 DELTA (%)

CPU ELAPSED CPU ELAPSED CPU ELAPSED

CATMAINT UPDATE (sec.) 0.059 5.42 8.75 33.05

Migration to NFM or FL activation (sec.) 39.0 76.9 0.00 0.20

Total (sec.) 39.1 82.3 8.75 33.3 -78% -60%
326 IBM Db2 12 for z/OS Performance Topics

Migration from Db2 11 CM to Db2 11 NFM for Catalog 2, which is smaller than Catalog 1,
took longer to complete and used more CPU. The reason for this difference is Catalog 1’s
bigger size is a result of a much bigger SPT01 table space. In fact, Catalog 1 has a smaller
combined size for table spaces SYSLGRNX, SYSCOPY, SYSRTSTS, SYSTSIXS, SYSSTR,
and SYSTSTAB compared to Catalog 2. Because migration from Db2 11 CM to NFM starts
online REORG of these six table spaces, Catalog 2’s bigger combined size of them caused
job DSNTIJEN to run longer and cost more CPU.

11.2 Dynamic plan stability

Unlike static SQL, whose access path and runtime structures are secured at BIND/REBIND
time, repeating dynamic SQL query performance can suffer from instability because of
factors, such as cache misses and access path changes. For example, if Db2 is recycled, or a
cached dynamic statement is flushed out of the dynamic statement cache, a cache miss
occurs and a full prepare for the statement is required when a dynamic statement that was
cached earlier must be run again.

The access path and runtime structures of full prepares might change if the inputs to the
optimizer change because of situations, such as a RUNSTATS after data changes, system
parameter changes, system maintenance, and release migration. If the changed access path
is less optimal, this change results in a query regression.

Starting with Db2 12, Db2 provides a new mechanism to stabilize selected dynamic SQL
statements by allowing their access paths and cached runtime structures to be saved into a
new catalog table. These saved access paths and cache structures are located and loaded
when cache misses for the corresponding dynamic SQL statements occur. With this new
mechanism, applications with repeated dynamic SQL can get stable and reliable performance
similar to static SQL. Also, by replacing expensive full prepares with cache loads from Db2
catalog tables, these applications can experience significant performance improvement.

11.2.1 Stabilizing dynamic queries

After the dynamic SQL statements are cached in the dynamic statement cache, users can
issue the Db2 START DYNQUERYCAPTURE command to capture a single dynamic statement or a
group of statements that meet the criteria that is specified in the command, such as
THRESHOLD and CURSQLID. For the queries with an execution count that is less than the
THRESHOLD criteria at the time of the capture, Db2 continues to monitor the queries and
capture the statements automatically after their execution counts meet the THRESHOLD
criteria if MONITOR YES was also specified in the capture command.

Cost of capturing dynamic queries
Several performance measurements were conducted by using a z13 LPAR that is running
z/OS 2.1 with six general CPs to evaluate the capture cost of the dynamic plan stability
feature of Db2 12.

System ZPARMs that are related to the tests featured the following configuration:

� STATSINT=1 minute
� CACHEDYN_STABILIZATION=BOTH
� CACHEDYN=YES

Also, IFCID 316, 317, and 318 are turned on.
Chapter 11. Installation and migration 327

When EDMSTMTC is 1 GB, the dynamic statement cache holds up to 950 complex
statements or 80,000 simple statements in the measurements. When EDMSTMTC is 4 GB,
the dynamic statement cache holds up to 3,600 complex statements or 320,000 simple
statements in the measurements.

No stabilized statements existed before the performance data was captured.

Elapsed time is measured as the duration between the DSNX221I and DSNX222I messages,
which marks the start of the dynamic query capture command and the completion of the
capture process.

CPU time is taken from CP CPU TIME for DATABASE SERVICES ADDRESS SPACE (DBM1)
in the statistics report, which consists of the CPU cost of the capture process and that of the
capture command. The CPU cost is zIIP eligible.

Capture performance results
As expected, the dynamic query capture overhead varies depending on the sizes of the
statements and their cache structures, and the number of statements that are captured. The
test results that are shown in Figure 11-2 show that larger, more complex SQL statements
require more CPU per statement to capture.

Figure 11-2 Capture performance results

MONITOR YES overhead
MONITOR YES relieves users from the hassle of periodically performing manual snapshot
captures. By using this option, Db2 periodically monitors the cache candidate statements’
execution count and captures the candidate statements automatically whenever the execution
count reaches the THRESHOLD.

The system parameter STATSINT controls interval of materialization of real-time statistics.
Starting in Db2 12, the same parameter also controls how often Db2 checks statement
execution counts.

In our test environment, STATSINT is set to 1 minute, which means that Db2 checks the
statement execution count every minute. In our test with 320,000 simple statements in the
dynamic statement cache with no other user activities, the statistics trace shows
approximately 2 seconds of CP CPU TIME in DATABASE SERVICES ADDRESS SPACE for a
30-minute period. Therefore, the overhead that was incurred by MONITOR YES is small.
328 IBM Db2 12 for z/OS Performance Topics

11.2.2 Locating and loading stabilized statements

Without dynamic plan stability, a dynamic SQL statement that is not found in the dynamic
statement cache goes through a full prepare. With dynamic plan stability, Db2 checks for a
match in stabilized statements that are stored in the Db2 catalog after a cache miss. If a
match is located, this stabilized statement and its cache structures are loaded from the
catalog back into the dynamic statement cache and the full prepare is avoided. In this way, the
query can be run with the stabilized access path and reliable query performance can be
achieved. If a match is not located among the stabilized queries in the catalog, the query goes
through a full prepare.

Locating and loading performance results
The performance measurements in this section compare the cost of locating and loading the
stabilized statements and their cache structures from the catalog against the cost of full
prepares. As shown in Figure 11-3, for our 950 and 3,600 complex queries cases, we see
over 90% elapsed time and CPU time savings with locating and loading the stabilized
statements from the catalog compared with doing full prepares. For our 80,000 and 320,000
simple queries, we see over 20% elapsed time and 70% CPU time savings with matching
stabilized statements over full prepares.

Figure 11-3 Locate and load performance results

11.2.3 Overhead of stabilized statement misses

With dynamic plan stability, the query is forced to go through a full prepare if locating the
matching stabilized statements results in a miss. For these situations, the process of finding
the matching stabilized statements is pure overhead compared to not using dynamic plan
stability.

To determine the amount of overhead of stabilized statement misses, we performed a series
of tests. Before the tests start, no stabilized dynamic statements are available. Db2 is
recycled and the dynamic statement cache is empty. The test is done by using the following
process:

1. Full prepare the 3,600 RLP101 complex queries when no stabilized queries are present.
This result is the baseline to compare to for Step 6, in which the same 3,600 RLP101
complex queries go through a full prepare when 900,000 unmatched stabilized queries are
in the catalogs.
Chapter 11. Installation and migration 329

2. Recycle Db2 to clear out the dynamic statement cache. Full prepare the 320,000 RLP103
simple queries when no stabilized queries are present. This result is the baseline to
compare to for Step 7, where the same 320,000 RLP103 simple queries go through a full
prepare when 900,000 unmatched stabilized queries are in the catalogs.

3. Recycle Db2 to clear out the dynamic statement cache. Full prepare the 300,000 RLP104
simple queries when no stabilized queries are present. This result is the baseline to
compare to for steps 4 and 5, where the similar 300,000 RLP104 simple queries go
through a full prepare when unmatched stabilized queries are in the catalogs.

4. Capture all of the Step 3 queries into catalog to have 300,000 stabilized queries in
catalogs. Recycle Db2 to clear out the dynamic statement cache. Modify the 300,000
queries in Step 3 to use different set of values in the local predicates so that they are not
matched from the catalogs. Full prepare these 300,000 RLP104 simple queries with
300,000 unmatched stabilized queries in the catalogs. Compare the full prepare
performance with Step 3.

5. Capture all of the Step 4 queries into catalog to have 600,000 stabilized queries in
catalogs. Recycle Db2 to clear out the dynamic statement cache. Modify the 300,000
queries in Step 3 to use a different set of values in the local predicates so that they do not
get matched from the catalogs. Full prepare these 300,000 RLP104 simple queries with
600,000 unmatched stabilized queries in the catalogs. Compare the full prepare
performance with Step 3.

6. Capture all of the Step 5 queries into catalog to have 900,000 stabilized queries in
catalogs. Recycle Db2 to clear out the dynamic statement cache. Full prepare 3,600
RLP101 complex queries with 900,000 unmatched stabilized queries in the catalogs.
Compare the full prepare performance with Step 1.

7. Recycle Db2 to clear out the dynamic statement cache. Full prepare 320,000 RLP103
simple queries with 900,000 unmatched stabilized queries in the catalogs. Compare the
full prepare performance with Step 2.

The test results are shown in Figure 11-4.

Figure 11-4 Test results

The results show that no significant overhead results from locating the stabilized statements
in cache miss situations when up to 900,000 stabilized statements are in Db2 catalog.
Periodic cleanup of stabilized statements ensures that the overhead stays low. Consider the
following points:

� Comparing to Step 3, Step 4 has less than 3% CPU overhead.
� Comparing to Step 3, Step 5 has less than 3% CPU overhead.
� Comparing to Step 1, Step 6 has no overhead.
� Comparing to Step 2, Step 7 has no overhead.
330 IBM Db2 12 for z/OS Performance Topics

11.2.4 Free stabilized statements

When the user wants to explore new access paths or when the stabilized queries are no
longer needed, the user can issue the FREE STABILIZED DYNAMIC QUERY command to free the
stabilized queries from the catalog. The user can experience many synchronous I/Os against
the catalog table when stabilized statements are freed. The synchronous I/O numbers that
are shown in Figure 11-5 are from a test that freed 320,000 simple stabilized queries.

Figure 11-5 Synchronous I/O data

Freeing stabilized statements can also cause DATABASE SERVICES ADDRESS SPACE
(DBM1) CPU time to increase. The more statements to free and the bigger their size, the
more CPU cost is to be expected. Figure 11-6 on page 331 shows the elapsed and CPU time
(including the cost of the FREE command and FREE process) for freeing stabilized statements.

Figure 11-6 Elapsed and CPU time for freeing stabilized statements

11.3 Temporal real-time statistics tables

Temporal capabilities were introduced in Db2 10 and enhanced in Db2 11. One of the
functionalities temporal tables can provide is to track information for data change auditing in a
transparent manner. Before Db2 12, this feature was limited to application tables and was not
available for Db2 catalog tables. In Db2 12, system-period data versioning can be enabled for
real-time statistics (RTS) catalog tables.

RTS tables are valuable for tracking the size, activity, and organization changes of table
spaces and index spaces. By using Db2 12, customers can enable system-period data
versioning for real-time statistics catalog tables, SYSIBM.SYSINDEXSPACESTATS, and
SYSIBM.SYSTABLESPACESTATS.
Chapter 11. Installation and migration 331

By using a temporal relationship, the previous version of the row’s data (before an update) is
inserted into the history table when a base table row is updated. The temporal relationship for
real-time statistics table is “soft”, meaning that a failure of the insert into the history table does
not undo the changes that are made to the base table.

The ALTER TABLE ADD VERSIONING statement is used to enable system-period versioning
for the real-time statistics tables, as shown in the following example:

ALTER TABLE SYSIBM.SYSTABLESPACESTATS ADD VERSIONING USE HISTORY TABLE
SYSIBM.SYSTABSPACESTATS_H;
ALTER TABLE SYSIBM.SYSINDEXSPACESTATS ADD VERSIONING USE HISTORY TABLE
SYSIBM.SYSIXSPACESTATS_H;

The ALTER TABLE DROP VERSIONING statement is used to disable system-period
versioning of real-time statistics tables, as shown in the following example:

ALTER TABLE SYSIBM.SYSTABLESPACESTATS DROP VERSIONING;
ALTER TABLE SYSIBM.SYSINDEXSPACESTATS DROP VERSIONING.

INSERT, UPDATE, and DELETE statements are allowed for the history tables with proper
authorization.

The history tables SYSTABSPACESTATS_H and SYSIXSPACESTATS_H are created as part
of the CATMAINT process during installation and migration of Db2 12.

Temporal functionality for real-time statistics tables is optional and is available only after Db2
12 is operating at function level V12R1M500.

11.3.1 Performance measurements

To verify the performance effect of enabling system-period data versioning for the RTS tables,
the IBM Brokerage workload was used and run twice with Db2 12 at function level
V12R1M500 (once with RTS system-period data versioning enabled and once with the
functionality disabled).

To analyze the performance effect on the workload from versioning the RTS tables, the RTS
statistics were externalized every minute by setting STATINT to 1, instead of the default
interval of 30 minutes. The workload was run for approximately 6 hours before measuring
CPU and elapsed time for the measurement period of 1 hour.

During the 1 hour measurement with RTS system-period data versioning enabled, the size of
the RTS history tables grew as is to be expected. In all, 298,192 rows were added to
SYSIBM.SYSTABSPACESTATS_H and 491,996 rows were inserted into
SYSIBM.SYSIXSPACESTATS_H. More inserts are expected to introduce more workload
cost. However, as the data that is shown in Figure 11-7 on page 333 and Figure 11-8 on
page 334 indicates, no significant CPU or elapsed time affected the measured workload
when RTS versioning was enabled.
332 IBM Db2 12 for z/OS Performance Topics

Figure 11-7 shows the Db2 class 2 elapsed time per commit for the Brokerage workload
during the 1 hour measurement period with and without RTS system-period versioning
enabled.

Figure 11-7 Class 2 elapsed time with RTS temporal not enabled versus enabled
Chapter 11. Installation and migration 333

Figure 11-8 shows the Db2 class 2 CPU time per commit for the Brokerage workload during
the 1 hour measurement period with and without RTS system-period versioning. The daemon
process that externalizes the RTS statistics runs in the DBM1 address space. No significant
increase in DBM1 CPU time was observed when comparing the measurements with and
without RTS system-period versioning enabled.

Figure 11-8 Class 2 CPU time with RTS temporal not enabled versus enabled
334 IBM Db2 12 for z/OS Performance Topics

11.4 System parameters’ performance-related changes

Db2 12 introduces many new features and enhancements. To support these changes, some
new Db2 system parameters were added, some old parameters’ default values were
changed, and several parameters were made obsolete. The ZPARM changes that are related
to Db2 performance are described in this section.

11.4.1 New system parameters related to performance

Several new system parameters can affect Db2 performance.

CACHEDYN_STABILIZATION
The CACHEDYN_STABILIZATION subsystem parameter specifies whether dynamic SQL
statements can be captured for stabilization, and whether Db2 uses the captured runtime
structures to process stabilized dynamic SQL statements that are not present in the dynamic
statement cache.

Db2 avoids processing full prepares when it uses the captured runtime structures. When a
statement is stabilized, the current SQLID, statement text, and runtime structures are written
to the SYSIBM.SYSDYNQUERY catalog table.

The following values for CACHEDYN_STABILIZATION are acceptable:

� CAPTURE: Dynamic SQL statements can be stabilized through the -START DYNQUERY
command by using MONITOR(NO) and MONITOR(YES). However, Db2 does not load stabilized
statements from SYSDYNQUERY.

� LOAD: Dynamic SQL statements cannot be stabilized by any means. The -START
DYNQUERY command fails, and any MONITOR(YES) commands in progress do not stabilize
statements (even if stabilization criteria are matched). During a full prepare, Db2 attempts
to load stabilized statements from SYSDYNQUERY with which to run.

� BOTH: Dynamic SQL statements can be stabilized through the -START DYNQUERY
command by using MONITOR(NO) and MONITOR(YES). During a full prepare, Db2 attempts to
load stabilized statements from SYSDYNQUERY.

� NONE: Statements cannot be stabilized by using any means. The -START DYNQUERY
command fails, and any MONITOR(YES) commands in progress do not stabilize statements,
even if stabilization criteria are matched. Db2 does not load stabilized statements from
SYSDYNQUERY.

BOTH is the default value of CACHEDYN_STABILIZATION. This parameter is online
changeable.

For more information about the dynamic SQL statement stabilization feature, see 11.2,
“Dynamic plan stability” on page 327.

COMPRESS_DIRLOB
COMPRESS_DIRLIB specifies whether LOB table spaces in the Db2 directory are to be
compressed. In Db2 data sharing, all members should use the same setting.

The following values for COMPRESS_DIRLOB are acceptable:

� NO: LOB table spaces in the Db2 directory are not compressed.

� YES: LOB table spaces in the Db2 directory are compressed the next time that they are
reorganized.
Chapter 11. Installation and migration 335

NO is the default value of COMPRESS_DIRLOB. This parameter is online changeable.

DEFAULT_INSERT_ALGORITHM
DEFAULT_INSERT_ALGORITHM is introduced for the new Insert Algorithm 2 feature of Db2
12. It specifies the default algorithm for inserting data into table spaces, which affects the
insert algorithm for MEMBER CLUSTER universal table spaces for which INSERT
ALGORITHM 0 was specified. This system parameter takes effect only when the activated
function level is function level 500 or higher.

The following values for DEFAULT_INSERT_ALGORITHM are acceptable:

� 1: Indicates that the basic insert algorithm is used.
� 2: Indicates that the new insert algorithm is used.

The 2 value is the default value for DEFAULT_INSERT_ALGORITHM. This parameter is
online changeable.

For more information about the new insert algorithm, see 2.3, “Insert Algorithm 2” on
page 50.

INDEX_MEMORY_CONTROL
INDEX_MEMORY_CONTROL specifies the amount of memory that Db2 can be allocated for
fast traversal of Db2 indexes. It is introduced in Db2 12 in support of new fast index traversal
feature.

The following values for INDEX_MEMORY_CONTROL are acceptable:

� AUTO: Db2 sets the upper limit of the storage that is used for the FTBs to 20% of the
currently allocated buffer pools or 10 MB, whichever value is larger.

� DISABLE: Db2 returns any storage that is allocated for fast index traversal and allocates
no other storage for this purpose. This process results in the fast index traversal effectively
being disabled.

� 10 - 200000: Indicates the storage limit in MBs for fast index traversal.

The default value for INDEX_MEMORY_CONTROL is AUTO. This parameter is online
changeable.

For more information about the fast index traversal feature, see 2.1, “Fast index traversal” on
page 24.

RLFENABLE
The RLFENABLE subsystem parameter specifies whether the resource limit facility limits
resources that are used by dynamic SQL statements only, static SQL statement only, or all
SQL statements.

The following values for INDEX_MEMORY_CONTROL are acceptable:

� DYNAMIC: Resource limits apply to dynamic SQL statements only.
� STATIC: Resource limits apply to static SQL statements only.
� ALL: Indicates that resource limits apply to dynamic and static SQL statements.

The default value for RLFENABLE is DYNAMIC.
336 IBM Db2 12 for z/OS Performance Topics

PAGESET_PAGENUM
PAGESET_PAGENUM specifies whether range-partitioned table spaces and the associated
partitioned indexes that are created are to use absolute page numbers across partitions, or
relative page numbers by default.

The following values for PAGESET_PAGENUM are acceptable:

� ABSOLUTE: Range-partitioned table spaces and associated indexes are created with
absolute page numbers, as is the case in Db2 11.

� RELATIVE: Range-partitioned table spaces are created so that PGNUM in the page
header has no partition number, and the partition number is contained only in the header
page for the partition.

The default value of PAGESET_PAGENUM is ABSOLUTE.

For more information about how relative page numbering works and related performance test
results, see 2.5, “Range-partitioned table spaces with relative page numbering ” on page 63.

PEER_RECOVERY
PEER_RECOVERY specifies whether a data sharing member is to participate in data sharing
peer recovery.

The following values for PEER_RECOVERY are acceptable:

� NONE: This member is not to participate in peer recovery. Use this option if you
configured the z/OS Automatic Recovery Manager (ARM) to restart failed Db2 members.

� RECOVER: This member should be recovered by a peer member if it fails.

� ASSIST: This member should attempt to start peer recovery for other failed members.
When this member detects a failure, it attempts to start a LIGHT(YES) restart for the failed
member if it does not start to recover the retained locks.

� BOTH: RECOVER and ASSIST options are to be activated for this member.

The default value for PEER_RECOVERY is NONE.

For more information about the performance-related test results on peer recovery, see 4.7,
“Db2 peer recovery” on page 149.

REMOTE_COPY_SW_ACCEL
REMOTE_COPY_SW_ACCEL specifies whether Db2 uses software to control the remote
copy process for active log writes in Peer-to-Peer Remote Copy (PPRC) environments.

The following values for REMOTE_COPY_SW_ACCEL are acceptable:

� DISABLE: The hardware PPRC function is used if available. This setting is appropriate for
non-PPRC environments.

� ENABLE: The host software is used. This option can improve overall Db2 performance in
PPRC environments at the expense of some additional SRB CPU time in the xxxxMSTR
address space. z/OS Version 2 Release 1 or later is required to support this function.

Note: It is recommended that the same value is used on all data sharing members to
maintain consistency. The use of this value avoid situations, such as there being different
page numbering schemes for a table space. This kind of situation can occur by running the
same CREATE TABBLESPACE DML without specifying the PAGENUM option on different
Db2 members.
Chapter 11. Installation and migration 337

The default value for REMOTE_COPY_SW_ACCEL is DISABLE. This parameter is online
changeable.

For more information about zHyperWrite technology and the performance-related test results
when the REMOTE_COPY_SW_ACCEL option is used, see 3.8, “zHyperWrite ” on
page 122.

11.4.2 System parameters updated related to performance

Some system parameters were updated that affect performance.

EDM_SKELETON_POOL
The default value of EDM_SKELETON_POOL is now 51,200 KB instead of 10,240 KB. This
change was introduced for Db2 EDM pool management to use Db2 12 storage management
changes to improve performance.

The suggestion is to keep the value of EDM_SKELETON_POOL as you did before migration,
but to continue to monitor EDM statistics report, paying particular attention to the PAGES IN
SKEL POOL section, and consider increasing EDM_SKELETON_POOL setting if the sum of
HELD BY SKCT (field name QISESKCT) and HELD BY SKPT (field name QISESKPT)
values are close to the current EDM_SKELETON_POOL value during peak periods. You can
change this value by using the SET SYSPARM command.

For more information, see 2.9, “Db2 Storage Manager enhancements” on page 76.

SMFACCT
SMFACCT is used to specify which Db2 accounting trace classes are to be started
automatically and sent to SMF.

In Db2 12, its default value changed to “1,2,3,7,8” from its original default of “1”.

This change is introduced because most customers enable accounting traces for classes 1, 2,
3, 7, and 8. With the SMFACCT default now set to “1,2,3,7,8”, accounting traces for classes 2,
3, 7, and 8 are activated after a Db2 recycle. This setting avoids the need to run a -START
TRACE command for these classes after recycling Db2.

11.4.3 Obsolete system parameters related to performance

Some system parameters that are related to performance were made obsolete in Db2 12.

ALCUNIT
Before Db2 12, ALCUNIT was used to specify the primary and secondary space allocation
units for archive log data sets in previous Db2 releases. Because modern Db2 log archiving
demands are not well-suited for allocation in tracks or blocks, Db2 12 always allocates archive
log data sets in cylinders.

CONTSTOR
Before Db2 12, CONTSTOR was used to specify whether Db2 is to periodically contract each
thread’s working storage area. The Db2 11 default value for CONTSTOR is ENABLE. Db2 12
operates as though CONTSTOR is set to NO to improve performance.
338 IBM Db2 12 for z/OS Performance Topics

DB2SORT
Before Db2 12, DB2SORT was used to specify whether Db2 utilities are to use Db2 Sort
instead of DFSORT for utility sort processing when Db2 Sort is installed. Db2 11 features a
default of ENABLE for DB2SORT, which is how Db2 12 always operates.

INDEX_IO_PARALLELISM
Before Db2 12, INDEX_IO_PARALLELISM is used to specify whether I/O parallelism is
enabled for index insertion. However, if enough prefetch engines are available, no reason
exists not to enable I/O parallelism for index insertion. Db2 12 always operates as though
INDEX_IO_PARALLELISM=YES, which is the default in Db2 11.

LOBVALA, LOBVALS, XMLVALA, and XMLVALS
Before Db2 12, these values were used to determine how much storage Db2 can be used to
store LOB/XML values in memory. In Db2 12, the Db2 database manager automatically
determines the amount of storage that is needed for LOB/XML values in memory.

For more information, see 2.9.2, “Storage pool management improvement for XML and
LOBs” on page 81.

MINSTOR
Before Db2 12, the MINSTOR value was used to specify whether Db2 is to use storage
management algorithms that minimize the amount of working storage that is used by
individual threads. In Db2 12, the Db2 database manager automatically determines the
amount of storage that is needed and MINSTOR is removed.
Chapter 11. Installation and migration 339

340 IBM Db2 12 for z/OS Performance Topics

Chapter 12. Monitoring and instrumentation

Db2 12 introduces many changes to monitoring and instrumentation. These changes include
adding Instrumentation Facility Component Identifiers (IFCIDs) and modifying some existing
IFCIDs, updates to Db2 accounting and statistics information, and the support by IBM Tivoli
OMEGAMON XE for Db2 Performance Expert on z/OS.

This chapter includes the following topics:

� 12.1, “Db2 12 instrumentation changes” on page 342
� 12.2, “OMPE accounting/statistics batch report enhancements ” on page 369

12
© Copyright IBM Corp. 2017. All rights reserved. 341

12.1 Db2 12 instrumentation changes

This section describes the changes and additions to the IFCID fields to support the new
enhancements and functionality of Db2 12. It contains the known changes and
enhancements at the time of this writing. Because Db2 is moving to a continuous delivery
model, further changes in the instrumentation facility are likely to occur to support the extra
features and functionality that will be available.

For more information about IFCIDs, see DB2 12 for z/OS What's New?, GC27-8861.

For more information about IFCIDs mappings, see *.SDSNMACS and
*.SDSNIVPD(DSNWMSGS) data sets that are a part of the Db2 product delivery.

12.1.1 IFCID header changes

The standard header (QWHS) that is used by all trace records is modified to include the
following new fields:

� QWHS_MOD_LVL: Function level of Db2 in the form VvvRrrMmmm, where vv is the
version, rr is the release, and mmm is the modification level.

� QWHS_REC_INCOMPAT: Incompatible change counter.

� QWHS_REC_COMPAT: Compatible change counter.

The updated QWHS header is shown in Example 12-1.

Example 12-1 Updated QWHS

QWHSFLAG DS X Flags (new possible value added)
QWHS_REC_Validity EQU X'40' QWHS_REC_INCOMPAT and
* QWHS_REC_COMMAT check needed

QWHS_MOD_LVL DS CL10 MODIFICATION LEVEL FOR
* CONTINUOUS DELIVERY
QWHS_REC_INCOMPAT DS XL2 Incompatible change value
* incremented each time an
* incompatible change occurs,
* such as changing the size of
* existing fields in a record
* or removing fields no longer
* being set which causes the
* offset to other fields to
* change is made
QWHS_REC_COMPAT DS XL2 Compatible change value.
* Incremented each time a
* compatible change occurs,
* such as adding a new field in a
* reserved area no longer setting
* an existing field or increasing
* the size of a record to add a
* new field is made
342 IBM Db2 12 for z/OS Performance Topics

12.1.2 New IFCIDs

Db2 12 introduces the following new IFCIDs:

� IFCID 389: Records information about indexes that are allocated for fast index traversal.

� IFCID 404: Serviceability trace record for new subsystem parameter
AUTH_COMPATIBILITY to identify the use of the SELECT privilege for UNLOAD utility
access.

� IFCID 413: The beginning of pipe wait for Insert Algorithm 2.

� IFCID 414: The end of pipe wait for Insert Algorithm 2.

� IFCID 477: Records allocation and deallocation for fast index traversal.

IFCID 389: Information about indexes that use fast index traversal
The new IFCID 389 record records information about indexes that have Fast Traversal Block
(FTB) structures that are allocated in support of the fast index traversal functionality in Db2
12.

The new IFCID 389 that indicates which indexes have FTBs that are associated with them is
shown in Example 12-2.

Example 12-2 New IFCID 389 for indexes with FTBs

*** IFCID 0389 to
record all indexes with FTBs. Each trace * record is limited to 5000 bytes. If
this maximum is * reached then multiple IFCID records are generated for *
one snapshot. *
**
QW0389 DSECT IFCID(QWHS0389)
QW0389H DS 0CL8 HEADER RECORD
QW0389NU DS H NUMBER OF INDEXES WITH FTBs
QW0389FL DS X IFCID389 RECORD FLAGS
QW0389CO EQU X'80' ANOTHER IFCID389 RECORD FOLLOWS
 DS CL5 RESERVED
QW0389AR DS 0CL16 (S)
*
QW0389DB DS CL2 DATA BASE ID
QW0389OB DS CL2 INDEX PAGE SET ID
QW0389PT DS CL2 PARTITION NUMBER
QW0389LV DS CL2 NUMBER OF INDEX LEVELS IN FTB
QW0389SZ DS XL4 SIZE OF FTB IN BYTES
 DS CL4 RESERVED
*
Chapter 12. Monitoring and instrumentation 343

IFCID 404: Serviceability trace record for new subsystem parameter
AUTH_COMPATIBILITY

A new UNLOAD authorization was added to the UNLOAD utility in Db2 12. This enhancement
includes a new subsystem parameter, AUTH_COMPATIBILITY. The IFCID 404 provides
information about when the SELECT authority is used to allow the UNLOAD utility to unload
the rows from the table.

The new IFCID 404 trace record is shown in Example 12-3.

Example 12-3 New IFCID 404

**
* IFCID 0404 to service authorization compatibility *
* settings *
**
QW0404 DSECT
QW0404TO DS CL1 (S)
 DS CL3 (S)
QW0404NM DS CL16 (S)
QW0404PR DS H Privilege checked
QW0404OT DS CL1 Object type
QW0404AT DS CL1 Authid type
* ' ' - Authorization ID
* 'L' - Role
QW0404F1_Off DS H Offset from QW0404 to authid or a role
QW0404F2_Off DS H Offset from QW0404 to schema name
QW0404F3_Off DS H Offset from QW0404 to object name
 DS CL2 (S)
*
QW0404F1_D DSECT
QW0404F1_Len DS H Length of the following field
QW0404F1_Var DS 0CL128 %U Authid or role
*
QW0404F2_D DSECT
QW0404F2_Len DS H Length of the following field
QW0404F2_Var DS 0CL128 %U Schema name
*
QW0404F3_D DSECT
QW0404F3_Len DS H Length of the following field
QW0404F3_Var DS 0CL128 %U Object name
*
QW0404CM DC CL1'C'
QW0404SQ DC CL1'S'
QW0404UL DS CL1'U'
* (S) = FOR SERVICEABILITY
344 IBM Db2 12 for z/OS Performance Topics

IFCID 413: Beginning of pipe wait for Insert Algorithm 2
IFCID 413 records the beginning of a wait for a pipe for Insert Algorithm 2. The new IFCID
413 that indicates the resource that is related to the pipe wait for Insert Algorithm 2 is shown
in Example 12-4.

Example 12-4 New IFCID 413

**
* IFCID 0413 THE BEGINNING OF A WAIT FOR A PIPE * SUSPEND
**
QW0413 DSECT IFCID(QWHS0413)
QW0413PN DS CL8 PROC NAME
QW0413RN DS 0CL6 RESOURCE NAME
QW0413DB DS XL2 DATA BASE ID
QW0413PS DS XL2 PAGE SET ID
QW0413PT DS XL2 PARTITION NUMBER
 DS CL2 RESERVED
QW0413DMS DS XL4 (S)
QW0413CNT DS XL2 (S)
QW0413LMT DS XL2 (S)
QW0413FL DS XL2 (S)
 DS XL2 (S)
* (S) = FOR SERVICEABILITY

IFCID 414: End of pipe wait for Insert Algorithm 2
IFCID 414 records the end of a wait for a pipe for Insert Algorithm 2. The new IFCID 414 that
indicates the reason for the pipe wait resume is shown in Example 12-5.

Example 12-5 New IFCID 414

* IFCID 0414 RECORDS THE END OF THE WAIT FOR PIPE SUSPEND *

QW0414 DSECT IFCID(QWHS0414)
QW0414R DS CL1 REASON FOR PIPE WAIT RESUME
QW0414FL DS XL2 (S)
 DS XL2 (S)
 DS CL1 (S)
* (S) = FOR SERVICEABILITY
Chapter 12. Monitoring and instrumentation 345

IFCID 477: Allocation and deallocation for fast index traversal
IFCID 477 records the allocation and deallocation of structures for fast index traversal, as
shown in Example 12-6.

Example 12-6 New IFCID 477 to indicate FTBs allocation or deallocation

* IFCID 0477 trace record for each allocated or deallocated *
* Index Fast Traverse Block (FTB). If action is "create FTB" *
* then QW0477CO bit is ON. If action is "FREE FTB" then *
* QW0477CO bit is OFF. *

QW0477 DSECT IFCID(QWHS0477)
QW0477DB DS CL2 DATA BASE ID
QW0477OB DS CL2 INDEX PAGE SET ID
QW0477PT DS CL2 PARTITION NUMBER
QW0477LV DS CL2 NUMBER OF INDEX LEVELS IN FTB
QW0477SZ DS XL4 SIZE OF FTB IN BYTES
QW0477FL DS X IFCID477 FLAGS
QW0477CO EQU X'80' THIS BIT IS ON IF ACTION -CREATE FTB
 DS CL3 AVAILABLE
*

12.1.3 Changed IFCIDs

Db2 12 introduced the following changes to existing IFCIDs:

� Application compatibility IFCID changes
� Dynamic SQL plan stability IFCID changes
� Insert Algorithm 2 IFCID changes
� Lift partition limits IFCID changes
� Large object compression IFCID changes
� Transfer ownership IFCID changes
� UNLOAD utility IFCID changes
� Other changed IFCIDs

Application compatibility IFCID changes
At times, Db2 might need to deliver changes that can influence how your applications run.
This change is called an incompatible change.

If Db2 changes its behavior, you can collect trace information to identify which applications
might be affected. Before Db2 12, IFCID 366 and IFCID 376 record such changes in your
applications. Starting in Db2 12, IFCID 376 records this information and IFCID 366 is
deprecated.

IFCID 366: Deprecated application compatibility trace
IFCID 366 is deprecated in Db2 12. Db2 does not accept trace commands for IFCID 366 and
it does not write out this trace record. IFCID 376 should be used to identify incompatibilities.

IFCID 376: Application compatibility trace
Constants that were used in IFCID 366 were moved to IFCID 376. The constants indicate to
which incompatible changes your application is made available.
346 IBM Db2 12 for z/OS Performance Topics

The updated IFCID 376 that includes constants that indicate incompatibility types is shown in
Example 12-7.

Example 12-7 Updated IFCID 376

QW0376 DSECT
QW0376FN DS F Incompatible change indicator
*............................QW0376FN CONSTANTS..................
C_QW0376_CHAR EQU 0001 V9 SYSIBM.CHAR(decimal-expr)
* function
C_QW0376_VCHAR EQU 0002 V9 SYSIBM.VARCHAR(decimal-expr)
* function
* CAST (decimal as VARCHAR or CHAR)
C_QW0376_TMS EQU 0003 Unsupported character string
* representation of a timestamp
C_QW0376_IMPCAST EQU 0007 Use the pre-v10 server compatibility
* behavior which is not to implicitly
* cast input host variables during
* server host bind-in processing
C_QW0376_SPPARMS EQU 0008 data types of the returned output
* data match the data types of the
* corresponding CALL statement
* arguments
C_QW0376_IGNORETZ EQU 0009 Use the pre-V10 server compatibility
* behavior which is to ignore time
* zone information when bind in TMSTZ
* hostvar to TMS target
C_QW0376_TRIM EQU 0010 V9 RTRIM, LTRIM and STRIP functions
C_QW0376_SETOPINT EQU 0011 Set operator with SELECT INTO
C_QW0376_XMLINS EQU 1101 Insert into an XML column without
* XMLDOCUMENT function
C_QW0376_XPATHERR EQU 1102 XPath evaluation error
C_QW0376_RLF EQU 1103 RLF governing
C_QW0376_CLIENTAC EQU 1104 Long CLIENT_ACCTNG Special Reg value
C_QW0376_CLIENTAP EQU 1105 Long CLIENT_APPLNAME Special Reg
* value
C_QW0376_CLIENTUS EQU 1106 Long CLIENT_USERID Special Reg value
C_QW0376_CLIENTWK EQU 1107 Long CLIENT_WRKSTNNAME Special Reg
* value
C_QW0376_CLIENTSR EQU 1108 Long client Special Reg value for
* RLF
C_QW0376_TMSCAST EQU 1109 CAST(string AS TIMESTAMP)
C_QW0376_SPACEINT EQU 1110 SPACE integer argument greater than
* 32764
C_QW0376_VCHARINT EQU 1111 VARCHAR int argument greater than
* 32764
C_QW0376_XMLEMPT EQU 1112 XML_RESTRICT_EMPTY_TAG ZPARM is used
* and empty XML element is serialized
* to <X></X>
*..
Chapter 12. Monitoring and instrumentation 347

Dynamic SQL plan stability IFCID changes
The following IFCIDs were changed in support of the dynamic SQL plan stability
enhancement:

� IFCID 002: RDS statistics block
� IFCID 002: EDM pool statistics block
� IFCID 021: Lock types
� IFCID 029: EDM request begin identifier and new block
� IFCID 030: EDM request end identifier and new block
� IFCID 106: New subsystem parameter
� IFCID 316: Stabilization and hash ID information

IFCID 002: RDS statistics block
The QXSTSFND field was added to the RDS statistics block (QXST) to record the number of
times a PREPARE request was satisfied by using a stabilized copy that is stored in the
catalog. A snippet of IFCID 002 that shows the new field is shown in Example 12-8.

Example 12-8 Changed IFCID 002 QXST block new QXSTSFND field

QXSTSFND DS D # of times a PREPARE request was satisfied+
* by making a copy from the stabilized +
* statement in SYSIBM.SYSDYNQRY catalog +
* table. The stabilized statement search is +
* done only when no matching statement was +
* found in the prepared statement cache. +

IFCID 002: EDM pool statistics block
Several fields were added to the EDM pool statistics block (QISE) to record the number of
requests, lookups, and matches for stabilized dynamic SQL statements, as shown in
Example 12-9.

Example 12-9 Changed IFCID 002 QISE block new fields

QISEDPSL DS D /* # of requests to look for DPS */
QISEDPSC DS D /* # of times possible row found */
QISEDPSM DS D /* # of times match thrgh text/bind opt*/
QISEDPSF DS D /* # of times match found */

IFCID 021: Lock types
Four lock types were added to IFCID 21 to record concurrent access control for a stabilized
query in the SYSDYNQRY table. One new lock type is associated with IM’s fast traverse
block.

The new locks types that were added to IFCID 021 for dynamic SQL plan stability and IM’s
fast traverse block are shown in Example 12-10.

Example 12-10 Changed IFCID 021

QW0021HI EQU X'42' * SYSDYNQRY HASH_ID lock *
QW0021SG EQU X'43' * SYSDYNQRY STBLGRP lock *
QW0021OD EQU X'47' * SYSDYNQRY object dep lock *
QW0021AD EQU X'48' * SYSDYNQRY auth ID dep lock *
QW0021IF EQU X'49' * IM's fast traverse block lock *
348 IBM Db2 12 for z/OS Performance Topics

IFCID 029: EDM request begin identifier and new block
A new identifier (ID) value, DY, was added to IFCID 029 to indicate that the object is a table for
dynamic SQL plan stability. Also, a section was added to the trace record specifically for
dynamic SQL plan stability, as shown in Example 12-11.

Example 12-11 Changed IFCID 029

QW0029ID DS CL2 DB=DBDID, CT=CURSOR TABLE, PT=PACKAGE TABLE
* DY=DPS TABLE
. . .
 ORG QW0029DB DY DPS TABLE MAPPING FOLLOWS
QW0029SC DS CL18 %U SCHEMA SHORT NAME
* Truncated if QW0029SC_Off¬=0
QW0029QH DS CL16 HASHID
QW0029CP DS H COPY ID
QW0029QD DS XL8 SDQE_STMTID
QW0029QC DS XL4 RESERVED
QW0029SC_Off DS H (FIXED 15)
QW0029RB DS CL1 release bound
QW0029FL DS XL1 RESERVED
. . .
*
QW0029SC_D Dsect Use if QW0029SC_Off¬=0
QW0029SC_Len DS H Length of the following field
QW0029SC_Var DS 0CL128 %U SCHEMA

IFCID 030: EDM request end identifier and new block
As with IFCID 029, a new identifier (ID) value, DY, was added to the IFCID 030 to indicate that
the object is a table for dynamic SQL plan stability. Also, a section was added specifically for
dynamic SQL plan stability, as shown in Example 12-12.

Example 12-12 Changed IFCID 030

QW0030ID DS CL2 DB=DBDID, CT=CURSOR TABLE, PT=PACKAGE TABLE
* DY=DPS TABLE
. . .
 ORG QW0030DB DY DPS TABLE MAPPING FOLLOWS
QW0030SC DS CL18 %U SCHEMA SHORT NAME
* Truncated if QW0030SC_Off¬=0
QW0030QH DS CL16 HASHID
QW0030CP DS H COPY ID
QW0030QD DS XL8 SDQE_STMTID
QW0030QC DS XL4 Number of records read
QW0030SC_Off DS H (FIXED 15)
QW0030RB DS CL1 release bound
QW0030FL DS XL1 FLAG
. . .
QW0030SC_D Dsect Use if QW0030C_Off¬=0
QW0030SC_Len DS H Length of the following field
QW0030SC_Var DS 0CL128 %U SCHEMA
Chapter 12. Monitoring and instrumentation 349

IFCID 106: New subsystem parameter
The QWP4CDST field was added to trace the internal setting of the new subsystem
parameter CACHEDYN_STABILIZATION, as shown in Example 12-13.

Example 12-13 Changed IFCID 106

QWP4CDST DS CL1 CACHEDYN_STABILIZATION s17830
* B = BOTH s17830
* C = CAPTURE s17830
* L = LOAD s17830
* N = NONE s17830

IFCID 316: Stabilization and hash ID information
Several fields were added to the IFCID 316 to include hash ID and version information for the
stabilized statement and the stabilization group name, as shown in Example 12-14.

Example 12-14 Changed IFCID 316

QW0316_SDQ_STMTID DS XL8 Stabilized statement ID
QW0316_QUERY_HASH_ID DS CL16 Query's hash ID
QW0316_QUERY_HASH_VER DS F Version of query's hash ID
QW0316_STBLGRP_Off DS H Offset from QW0316 to
* stabilization group
. . .
QW0316_STBLGRP_D Dsect Use if QW0316STBLGRP_Off¬=0
QW0316_STBLGRP_Len DS H Length of the next field
QW0316_STBLGRP_Var DS 0CL128 %U Stabilization group name

Insert Algorithm 2 IFCID changes
Instrumentation was added to track the time that is spent in waiting for formatting pages in
Db2. Tracking is done at package, statement, and plan level accounting. The following IFCIDs
were changed in support of the Insert Algorithm 2 enhancement:

� IFCID 002: Data Manager statistics block
� IFCID 003: Accounting control block
� IFCID 018: End of inserts and scans
� IFCID 058: Accumulated pipe wait time
� IFCID 106: New subsystem parameter
� IFCID 239: Package level pipe wait information
� IFCID 316: Statement level pipe wait information
� IFCID 401: Accumulated pipe wait time

Note: APAR PI81731, which was still open at the time of this writing, introduces more fields
in IFCID 1, 2, 3, and 148 that are related to the use of Insert Algorithm 2.
350 IBM Db2 12 for z/OS Performance Topics

IFCID 002: Data Manager statistics block
Two new counts, QISTINPA and QISTINPD, were added to the Data Manager Statistics Block
(DSNDQIST) of IFCID 002 to record Insert Algorithm 2 pipe allocation and disable counts
since Db2 restart, as shown in Example 12-15.

Example 12-15 New fields QISTINPA and QISTINPD of IFCID 002

QISTINPA DS D /* Number of DM Fast Insert @fi1*/
* /* (Insert Algorithm Level 2) @fi1*/
* /* pipes allocated since DB2 @fi1*/
* /* restart. @fi1*/
QISTINPD DS D /* Number of DM Fast Insert @fi1*/
* /* (Insert Algorithm Level 2) @fi1*/
* /* pipes disabled since DB2 @fi1*/
* /* restart. @fi1*/

IFCID 003: Accounting control block
Two new fields, QWAX_PIPE_WAIT and QWAX_PIPEWAIT_COUNT, were added to the
accounting control block (QWAX) to indicate pipe wait information, as shown in
Example 12-16.

Example 12-16 Changed IFCID 003

QWAX_PIPE_WAIT DS CL8 /* Accumulated wait time for pipe
* wait */
*
QWAX_PIPEWAIT_COUNT DS F /* Number of wait trace events
* processed for pipe wait */

IFCID 018: End of inserts and scans
Four new counts were added to the IFCID 018 to record with various Insert Algorithm 2
processing information, as shown in Example 12-17.

Example 12-17 Changed IFCID 018

QW0018FI DS XL8 ROWS INSERTED VIA FAST INSERT
*
QW0018FS DS XL8 ROWS COULD NOT USE FAST INSERT
*
QW0018FA DS XL8 NBR TIMES FAST INSERT PIPE REFILLED
*
QW0018FW DS XL8 NBR TIMES DB2 WAITED FOR FAST INSERT

IFCID 058: Accumulated pipe wait time
A new timer, QW0058PW, was added to IFCID 058 to record the accumulated Insert
Algorithm 2 pipe wait time, as shown in Example 12-18.

Example 12-18 New QW0058PW field of IFCID 058

QW0058PW DS CL8 Accumulated wait time for pipe
Chapter 12. Monitoring and instrumentation 351

IFCID 106: New subsystem parameter
The QWP4DINA field was added to trace the internal setting of the new subsystem parameter
DEFAULT_INSERT_ALGORITHM, as shown in Example 12-19.

Example 12-19 New QWP4DINA field of IFCID 106

QWP4DINA DS H DEFAULT_INSERT_ALGORITHM

IFCID 239: Package level pipe wait information
Two new fields, QPAC_PIPE_WAIT and QPAC_PIPEWAIT_COUNT, were added to the
accounting control block (QPAC) to indicate pipe wait information for the package, as shown
in Example 12-20.

Example 12-20 New fields QPAC_PIPE_WAIT and QPAC_PIPEWAIT_COUNT of IFCID 239

QPAC_PIPE_WAIT DS XL8 /* accumulated wait time for a pipe */
* /* while executing this package */
QPAC_PIPEWAIT_COUNT DS F /* number of wait trace events */
* /* processed for waits for a pipe */
* /* while executing this package */

IFCID 316: Statement level pipe wait information
A new field, QW0316_PIPE_WAIT, was added to IFCID 316 to record the Insert Algorithm 2
pipe wait for a statement, as shown in Example 12-21.

Example 12-21 New field QW0316_PIPE_WAIT of IFCID 316

QW0316_PIPE_WAIT DS wait time for pipe wait

IFCID 401: Accumulated pipe wait time
A new field, QW0401WH, was added to IFCID 401 to record the accumulated pipe wait time,
as shown in Example 12-22.

Example 12-22 New QW0401WH field of IFCID 401

QW0401WH DS CL8 Accumulated wait for pipe wait

IFCID changes that are related to PBR RPN table spaces
Before Db2 12, absolute page numbers were used in certain IFCID trace records. With the
enhancements to lift partition limits, new fields are added to store the 6-byte page numbers
and new subsystem parameter values. The following IFCIDs were changed in support of the
enhancement to lift partition limits:

� IFCID 006: Pre-read page number flag and partition number
� IFCID 007: Post-read page number flag and partition number
� IFCID 021: Resource name
� IFCID 106: New subsystem parameter
� IFCID 124: Page number within page set
� IFCID 127: Agent suspend
� IFCID 128: Agent resume
� IFCID 150: Resource name
� IFCID 172: Resource name
� IFCID 196: Resource name
� IFCID 198: Page numbering flag
352 IBM Db2 12 for z/OS Performance Topics

� IFCID 223: Identifier, new constant, and partition number
� IFCID 226: Page numbering flag
� IFCID 227: Page numbering flag
� IFCID 255: Partition number and relative page number
� IFCID 259: Partition number and relative page number
� IFCID 305: Table space partition number and type

IFCID 006: Pre-read page number flag and partition number
IFCID 006 was modified to include a flag that indicates whether the page number was relative
or absolute and to record the partition number, when applicable. The new flag and partition
number field in IFCID 006 is shown in Example 12-23.

Example 12-23 Changed IFCID 006

QW0006P DS X FLAGS
QW0006P1 EQU X'80' 1 = Relative page number in QW0006PG
* 0 = Absolute page number in QW0006PG
 DS CL2 unused
QW0006PT DS F Partition number or 0 if non-
* partitioned

IFCID 007: Post-read page number flag and partition number
As with IFCID 006, IFCID 007 was modified to include a flag that indicates whether the page
number was relative or absolute and to record the partition number, when applicable. The
new flag and partition number field in IFCID 007 is shown in Example 12-24.

Example 12-24 Changed IFCID 007

QW0006P DS X FLAGS
QW0006P1 EQU X'80' 1 = Relative page number in QW0006PG
* 0 = Absolute page number in QW0006PG
 DS CL2 unused
QW0006PT DS F Partition number or 0 if non-
* partitioned

IFCID 021: Resource name
The resource name in IFCID 021 was changed to indicate resources that uses relative page
numbers, as shown in Example 12-25.

Example 12-25 Changed IFCID 021

 ORG QW0021KR
QW0021KE DS 0CL7 * ID of small resource when QW0021KL=16 *
QW0021KF DS XL2 * partition number *
QW0021KG DS CL4 * page number *
QW0021KH DS XL1 * record id within page *
 DS CL17 * insure that offset of QW0021FC is *
* * 24 bytes from QW0021KR *
Chapter 12. Monitoring and instrumentation 353

IFCID 106: New subsystem parameter
The QWP4PSPN field was added to trace the internal setting of the new subsystem
parameter PAGESET_PAGENUM, as shown in Example 12-26.

Example 12-26 New QWP4PSPN field of IFCID 106

QWP4PSPN DS CL1 PAGESET_PAGENUM:
* A=ABSOLUTE, R=RELATIVE

IFCID 124: Page number within the page set
IFCID 124 was modified to include the page number within the page set, QW01244N, as
shown in Example 12-27.

Example 12-27 New QW0124N field of IFCID 124

QW01244N DS XL6 ! PAGE NUMBER WITHIN PAGESET
* ! For RPN obj=2 bytes of part#
* ! 4 bytes of page#
* ! For Non-RPN obj= ignore first
* ! 2 bytes, next 4 bytes are
* ! absolute page number
 DS CL2 ! unused

IFCID 127: Agent suspend because I/O is in progress by another agent
As with IFCID 006 and 007, IFCID 127 was modified to include a flag that indicates whether
the page number is relative or absolute and to include the partition number, when applicable.
The new flag and partition number field in IFCID 127 is shown in Example 12-28.

Example 12-28 Changed IFCID 127

QW0127P DS X Flags
QW0127P1 EQU X'80' 1 = Relative page number in QW0127PG
* 0 = Absolute page number in QW0127PG
 DS CL2 unused
QW0127PT DS F Part number or 0 if non-partitioned
 DS CL4 unused
354 IBM Db2 12 for z/OS Performance Topics

IFCID 128: Agent resume after other agent I/O ends
As with IFCID 127, IFCID 128 was modified to include a flag that indicates whether the page
number was relative or absolute and to include the partition number, when applicable. IFCID
128 also records the page number.

The new flag and partition number field in IFCID 128 is shown in Example 12-29.

Example 12-29 Changed IFCID 128

QW0128P DS X Flags
QW0128P1 EQU X'80' 1 = Relative page number in QW0128PG
* 0 = Absolute page number in QW0128PG
 DS CL1 unused
. . .
QW0128PG DS F PAGE NUMBER
* Based on QW0128P1,either absolute or
* relative page number is stored here,
* partition# can be found in QW0128PT
QW0128PT DS F Part number or 0 if non-partitioned
* (S) = FOR SERVICEABILITY

IFCID 150: Resource name
As with IFCID 021, IFCID 150 was updated to indicate the resource name that uses relative
page numbers, as shown in Example 12-30.

Example 12-30 Changed IFCID 150

 ORG QW0150KR *
QW0150KE DS 0CL7 * ID of small resource when QW0150KL=16
QW0150KF DS XL2 * partition number
QW0150KG DS CL4 * page number
QW0150KH DS XL1 * record id within page

IFCID 172: Resource name
As with IFCID 021 and 150, IFCID 172 was updated to indicate the resource name that uses
relative page numbers, as shown in Example 12-31.

Example 12-31 Changed IFCID 172

 ORG QW0172KR *
QW0172KE DS 0CL7 * ID of small resource when QW0172RL=16
QW0172KF DS XL2 * partition number
QW0172KG DS CL4 * page number
QW0172KH DS XL1 * record id within page
 DS CL17 REST OF SPACE FOR 28 BYTE RESOURCE NAME
Chapter 12. Monitoring and instrumentation 355

IFCID 196: Resource name
IFCID 196 was updated to indicate the resource name that uses relative page numbers, as
shown in Example 12-32.

Example 12-32 Changed IFCID 196

 ORG QW0196KR *
QW0196KE DS 0CL7 * ID of small resource when QW0196RL=16
QW0196KF DS XL2 * partition number
QW0196KG DS CL4 * page number
QW0196KH DS XL1 * record id within page
 DS CL17 REST OF SPACE FOR 28 BYTE RESOURCE NAME

IFCID 198: Page numbering flag
IFCID 198 was modified to include a flag that indicates whether the page number is relative or
absolute, and to include the partition number, when applicable. The new fields in IFCID 198
are shown in Example 12-33.

Example 12-33 Changed IFCID 198

QW0198PN DS F PAGE NUMBER
* Based on QW0198P1, either absolute or
* relative page number is stored here,
* the partition# can be found in QW0198PT
. . .
QW0198P DS X Flags
QW0198P1 EQU X'80' 1 = Relative page number in QW0198PN
* 0 = Absolute page number in QW0198PN
 DS XL2 unused
QW0198PT DS F Partition number or 0 if non-
* partitioned

IFCID 223: Identifier, new constant, and partition number
IFCID 223 was modified to include a resource identifier, a new constant that indicates a
partitioned table space that uses relative page numbers, and a new field to record the
partition number. The new fields in IFCID 223 are shown in Example 12-34.

Example 12-34 Changed IFCID 223

QW0223KY DS 0CL5 ID of small resource when QW0223TY='L' or
* 'R'
. . .
QW0223TR EQU C'R' PBR UTS that uses relative page numbers
QW0223PT DS XL2 1-based partition number if partitioned
* (S) = FOR SERVICEABILITY
356 IBM Db2 12 for z/OS Performance Topics

IFCID 226: Page numbering flag
IFCID 226 was modified to include a flag that indicates whether the page number was relative
or absolute, partition number, and page number. The new fields in IFCID 226 are shown in
Example 12-35.

Example 12-35 Changed IFCID 226

QW0226PG DS F PAGE NUMBER TO READ/WRITE
* Based on QW0226P1,either absolute or
* relative page number is stored here,
* partition# can be found in QW0226PT
. . .
QW0226P DS X Flags
QW0226P1 EQU X'80' 1 = Relative page number in QW0226PG
* 0 = Absolute page number in QW0226PG
 DS XL2 unused
QW0226PT DS F Partition number or 0 if non-partitioned
* (S) = FOR SERVICEABILITY

IFCID 227: Page numbering flag
As with IFCID 226, IFCID 227 was modified to include a flag that indicates whether the page
number was relative or absolute, partition number, and page number. IFCID 226 and 227 are
used to trace buffer manager page latch contention.

The new fields in IFCID 227 are shown in Example 12-36.

Example 12-36 Changed IFCID 227

QW0227PG DS F PAGE NUMBER TO READ/WRITE
* Based on QW0227P1,either absolute or
* relative page number is stored here,
* partition# can be found in QW0227PT
. . .
QW0227P DS X Flags
QW0227P1 EQU X'80' 1 = Relative page number in QW0227PG
* 0 = Absolute page number in QW0227PG
 DS XL2 unused
QW0227PT DS F Partition number or 0 if non-partitioned
* (S) = FOR SERVICEABILITY

IFCID 255: Partition number and relative page number
IFCID 255 now features two new fields for the partition number and relative page number, as
shown in Example 12-37.

Example 12-37 Changed IFCID 255

QW0255P1 DS CL2 2-byte Pageset piece/partition number
QW0255P2 DS CL4 4-byte Relative page# (within the piece)
Chapter 12. Monitoring and instrumentation 357

IFCID 259: Partition number and relative page number
As with IFCID 255, IFCID 259 features two new fields for the partition number and relative
page number, as shown in Example 12-38.

Example 12-38 Changed IFCID 259

QW0259K4 DS CL4 4-byte Relative page number for RPN object
* For QW0259G1, relative pg# is stored here
 DS CL16 16 BYTES OF ZEROS
. . .
 ORG QW0259K4
QW0259KQ DS CL3 Relative page number for non-RPN object
 DS CL1 reserved
 DS CL16 16 bytes of zeros

IFCID 305: Table space partition number and type
IFCID 305 was modified to record the partition number for a table space that uses relative
page numbers in addition to introducing a new table space type value. The new fields in
IFCID 305 are shown in Example 12-39.

Example 12-39 Changed IFCID 305

QW0305PT DS XL2 Partition number.
* Valid when QW0305TY='R'
. . .
QW0305TY DS CL1 TABLE SPACE TYPE
* POSSIBLE VALUES ARE :
* 'N' - NON LARGE TABLE SPACE
* 'L' - NON-EA 5-BYTE RID TABLE SPACE
* 'V' - EA 5-BYTE RID TABLE SPACE
* 'R' - PBR UTS that uses relative
* page numbers

Large object compression IFCID changes
Db2 12 introduces LOB compression capabilities with the new zEnterprise Data Compression
(zEDC) hardware. IFCID 003 and IFCID 106 were modified to trace LOB compression wait
times and the number of waits. A new subsystem parameter also was introduced.

IFCID 003: Accounting control block
Two new fields, QWAX_LOBCOMP_WAIT and QWAX_LOBCOMP_COUNT, were added to
the accounting control block (QWAX) to indicate the accumulated wait time and the number of
wait trace events processed for LOB compression. No equivalent information at the package
level (IFCID 0239) is available.

The new fields in IFCID 003 is shown in Example 12-40.

Example 12-40 New fields for LOB compression in IFCID 003

QWAX_LOBCOMP_WAIT DS CL8 /* Accumulated wait time for LOB
* compression */
QWAX_LOBCOMP_COUNT DS F /* Number of wait trace events
* processed for LOB compression */
358 IBM Db2 12 for z/OS Performance Topics

IFCID 106: New subsystem parameter
The QWP4CDRL field was added to trace the setting of the new subsystem parameter
COMPRESS_DIRLOB, as shown in Example 12-41.

Example 12-41 Changed IFCID 106

QWP4MISD DS X
* EQU X'80' Not available
QWP4CDRL EQU X'40' COMPRESS_DIRLOB

Transfer ownership IFCID changes
Db2 12 provided support with which you can change the ownership of certain database
objects by using a new TRANSFER OWNERSHIP SQL statement. The following IFCIDs were
modified to support this functionality:

� IFCID 002: RDS statistics block
� IFCID 062: Statement type
� IFCID 140: Source object owner and name
� IFCID 361: Source object owner and name

IFCID 002/003/148: RDS statistics block
The QXTRNOWN field was added to the RDS statistics block (QXST) to indicate the number
of times ownership was transferred.

A snippet of the QXST section in IFCID 002/003/148 that shows the new field is shown in
Example 12-42.

Example 12-42 Changed IFCID 002/003/148

QXTRNOWN DS D # of TRANSFER OWNERSHIP

IFCID 062: Statement type
A new statement type of X'AB' was added to indicate the statement was a TRANSFER
OWNERSHIP statement in IFCID 062, as shown in Example 12-43.

Example 12-43 Changed IFCID 062

QW0062TO EQU X'AB' TRANSFER OWNERSHIP
Chapter 12. Monitoring and instrumentation 359

IFCID 140: Source object owner and name
The QW0140SC and QW0140SN fields were added in IFCID 140 to record the source object
owner and name that were updated, as shown in Example 12-44.

Example 12-44 Changed IFCID 140

QW0140SC DS CL8 %U SOURCE OBJECT OWNER: Three cases
* 1) If object type not equal User Auth -
* Qualifier of the object against
* which authorization was checked.
* Valid for qualifiable objects.
* 2) If object type equals User Auth -
* Qualifier of ALIAS being created.
* Valid for CREATE ALIAS privilege.
* 3) If object type equals User Auth -
* Qualifier of the object being
* transferred. Valid for TRANSFER
* OWNERSHIP statement.
* Truncated if QW0140SC_Off¬=0
*
QW0140SN DS CL18 %U SOURCE OBJECT NAME: Three cases
* 1) If object type not equal User Auth -
* Name of the object against which
* authorization was checked.
* 2) If object type equals User Auth -
* Name of the object being created. Valid
* when privilege is CREATE ALIAS,
* CREATEDBA, CREATEDBC, or CREATE
* STOGROUP.
* 3) If object type equals User Auth -
* Name of the object being transferred.
* Valid for TRANSFER OWNERSHIP statement.
* Truncated if QW0140SN_Off¬=0
*

IFCID 361: Source object owner and name
The descriptions for the QW0361SC_Var and QW0361SN_Var fields for the source object
owner and name were updated in IFCID 361, as shown in Example 12-45 . IFCID 361 is used
to audit the use of administrative authorities.

Example 12-45 Changed IFCID 361

QW0361SC_Var DS 0CL128 %U SOURCE OBJECT QUALIFIER/OWNER
* If object type equals User Auth -
* Qualifier of the object being
* transferred. Valid for TRANSFER
* OWNERSHIP statement.
*
. . .
QW0361SN_Var DS 0CL128 %U Source object Name
* If object type equals User Auth -
* Name of the object being transferred.
* Valid for TRANSFER OWNERSHIP statement.
*
360 IBM Db2 12 for z/OS Performance Topics

UNLOAD privilege for UNLOAD utility IFCID changes
Depending on the value of the new subsystem parameter, AUTH_COMPATIBILITY, a new
UNLOAD privilege might be required when the UNLOAD utility is used. IFCID 404 was
introduced as a serviceability trace to identify the use of the SELECT privilege for UNLOAD
utility access, as described in 12.1.2, “New IFCIDs” on page 343.

In addition to the new IFCID 404 record, IFCID 106 was modified to trace the value of the new
AUTH_COMPATIBILITY subsystem parameter.

IFCID 106: New subsystem parameter
The QWP4AUTC field was added to trace the internal setting of the new subsystem
parameter AUTH_COMPATIBILITY. The QWP4AUTCSU indicates whether the
SELECT_FOR_UNLOAD option of AUTH_COMPATIBILITY was specified, as shown in
Example 12-46.

Example 12-46 Changed IFCID 106

QWP4AUTC DS XL1 AUTH_COMPATIBILITY s20166
QWP4AUTCSU EQU X'80' - SELECT_FOR_UNLOAD s20166

Other IFCID changes
In addition to the IFCID changes that were made, Db2 12 introduces changes to the following
IFCIDs:

� IFCID 001: New fields in the statistics record command data section that are related to
new Db2 commands in Db2 12.

� IFCID 002: New fields that are related to contiguous buffer pools within the statistics
record buffer manager data section.

� IFCID 002: New fields were added to indicate the status of index FTB.

� APAR PI82539, still open at the time of this writing, removes QISEDFRE, QISEKFRE, and
QISECFRE fields from the EDM pool statistics sections (QISE) in IFCID 002. With the Db2
12 changes to EDM storage management, these fields are no longer used.

� IFCID 106: New subsystem parameters.

� IFCID 125: Ddaptive index processing.

� IFCID 003: Work file usage fields at thread level in QWAC.

� IFCID 199: New fields in the Dataset I/O Statistics record for synchronous and
asynchronous I/O delay times in microseconds.

� IFCID 053/058: New field and section number added.

� IFCID 316/401/058: New fields added for more granular wait times.

� Correlation Header (QWHSHC): Added batch job step field.

IFCID 001: Command Data Section Statistics
The following fields were added to command data section (Q9ST) in IFCID 001:

� Q9STCTEN
� Q9STCTDQ
� Q9STCTSQ
� Q9STCTXQ
Chapter 12. Monitoring and instrumentation 361

These new fields accumulate the statistics that are related to number of times the newly
introduced commands in Db2 12 are executed. The new fields that were added to IFCID 001
and their descriptions are shown in Example 12-47.

Example 12-47 IFCID 001 additions

Q9STCTEN DS F NUMBER OF "-ACTIVATE FUNCTION LEVEL" COMMANDS.
Q9STCTDQ DS F NUMBER OF "-DISPLAY DYNQUERYCAPTURE" COMMANDS.
Q9STCTSQ DS F NUMBER OF "-START DYNQUERYCAPTURE" COMMANDS.
Q9STCTXQ DS F NUMBER OF "-STOP DYNQUERYCAPTURE" COMMANDS.

IFCID 002: Buffer manager data statistics: Contiguous buffer pools
The following fields were added to IFCID 002:

� QBSTAGET
� QBSTASGE
� QBSTASYN
� QBSTASSE

These fields accumulate the statistics that are related to contiguous buffer pool overflow
getpage requests. The fields that were added to IFCID 002 and their descriptions are shown
in Example 12-48.

Example 12-48 IFCID 002 additions

QBSTAGET FIXED(64), /*OVERFLOW total random getpages*/
QBSTASGE FIXED(64), /*OVERFLOW total sequential */
 /* getpages */
QBSTASYN FIXED(64), /*OVERFLOW total sync read I/Os */
 /* for random getpages */
QBSTASSE FIXED(64); /*OVERFLOW total sync read I/Os */
 /* for sequential getpages */

IFCID 002: Data Manager Statistics - FTB
The following fields were added to the data manager section in IFCID 002:

� QISTTRAVMIN
� QISTFTBCANT
� QISTFTBCAN
� QISTFTBSIZE
� QISTFTBNUMP
� QISTFTBNUMC
362 IBM Db2 12 for z/OS Performance Topics

These fields, as shown in Example 12-49, indicate the status of Index FTBs for the member.

Example 12-49 IFCID 002 additions

QISTTRAVMIN DS F /* FTB threshold: minimum @io1*/
* /* number of index traversals @io1*/
QISTFTBCANT DS F /* Total number of indexes @io1*/
* /* which meet FTB criteria @io1*/
QISTFTBCAN DS F /* Total number of indexes @io1*/
* /* which meet FTB criteria @io1*/
* /* and the traverse count is @io1*/
* /* above the threshold @io1*/
QISTFTBSIZE DS F /* total memory allocation @io1*/
* /* for all FTBs for this @io1*/
* /* member @io1*/
QISTFTBNUMP DS F /* Number of indexes for @io1*/
* /* which FTB existed in the @io1*/
* /* previous run of in-memory @io1*/
* /* optimization @io1*/
QISTFTBNUMC DS F /* Number of indexes for @io1*/
* /* which FTB exists in the @io1*/
* /* current run of in-memory @io1*/
* /* optimization @io1*/
/--@io1*/

IFCID 106: New subsystem parameters
IFCID 106 was modified to remove the following fields that are no longer used in Db2 12:

� The QWP4RIFS field, which was used to trace the internal setting of the
REORG_IGNORE_FREESPACE subsystem parameter. However, that parameter was
deprecated in Db2 10 and Db2 11 and is removed in Db2 12.

� Starting in Db2 12, the storage management of LOB and XML data is managed
autonomically by Db2. Therefore, the following subsystem parameters are no longer
recorded:

– LOBVALA
– LOBVALS
– XMLVALA
– XMLVALS

The following enhancements were added to the IFCID 106:

� Eight new field constants to trace internal settings of the following new subsystem
parameters introduced for Resource Limit Facility (RLF) for static SQL enhancements:

– Subsystem parameter RLFERRSTC: QWP1RLFFS, QWP1RLFUS, and QWP1RLFNS

– Subsystem parameter RLFENABL: QWP1RLFDNEN and QWP1RLFSTEN

– Subsystem parameter RLFERRDSTC: QWP9RLFRS, QWP9RLFNS, and
QWP9RLFLS

� The field QWP1PFASY was added to trace the internal setting of the new subsystem
parameter PROFILE_AUTOSTART.

� The field QWP4RSO was added to trace the internal settings of the new subsystem
parameter RETRY_STOPPED_OBJECTS.

� The field QWP4MNSU was added to trace the internal setting of the
MATERIALIZE_NODET_SQLTUDF subsystem parameter.
Chapter 12. Monitoring and instrumentation 363

� The field QWP4ERTS was added to trace the internal settings of the new subsystem
parameter RENAMETABLE.

� For online backup and recovery enhancements, the QWP4CYFR field is added for the
COPY support that was added to FASTREP(REQ). Also, the following new subsystem
parameters were introduced and their internal settings are being recorded:

– QWP4BSACP for the ALTERNATE_CP parameter
– QWP4UDBSG for the UTIL_DBBSG parameter
– QWP4ULBSG for the UTIL_LGBSG parameter
– QWP4UHMDH for the UTILS_HSM_MSGDS_HLQ parameter

� The QWP4DDLM field was added to trace the internal setting of the new subsystem
parameter DDL_MATERIALIZATION.

� The QWPAPEERREC was added to trace the internal setting of the new subsystem
parameter PEER_RECOVERY.

� The QWP4SFPR field was added to trace the internal setting of the new subsystem
parameter STATFDBK_PROFILE.

Another field, QWP4TPTM, was introduced in Db2 12 and retrofitted to Db2 11 and Db2 10.
The QWP4TPTM was added to trace the internal setting of the new subsystem parameter
TEMPLATE_TIME.

The modified IFCID 106 for these items are shown in Example 12-50.

Example 12-50 Changed IFCID 106

QWP1RLFFS EQU X'10' IF 1 INDICATE NOLIMIT (STATIC) S20000
QWP1RLFUS EQU X'08' IF 1 INDICATE NORUN (STATIC) S20000
QWP1RLFDNEN EQU X'04' 1 when RLFENABLE=DYNAMIC or ALL S20000
QWP1RLFSTEN EQU X'02' 1 when RLFENALBE=STATIC or ALL S20000
. . .
QWP1PFASY EQU X'10' PROFILE_AUTOSTART=YES dp1897
. . .
 DS CL4 Do not reuse s22058
QWP1LVS DS F (s) s22058
. . .
 DS CL4 Do not reuse s22058
QWP1XVS DS F (s) s22058
. . .
QWP1RLFNS DS F RLF static limit in SU's S20000
. . .
QWP4MS4D DS X
* X'80' Not available s2593
. . .
QWP4RSO EQU X'01' RETRY_STOPPED_OBJECTS DM1851
. . .
QWP4MNSU EQU X'80' MATERIALIZE_NODET_SQLTUDF DM1912
. . .
QWP4ERTS EQU X'40' RENAMETABLE DN1840
* '0' = DISALLOW_DEP_VIEW_SQLTUDF DN1840
* '1' = ALLOW_DEP_VIEW_SQLTUDF DN1840
. . .
QWP4BSACP DS CL16 ALTERNATE_CP s12997
QWP4UDBSG DS CL8 UTIL_DBBSG s12997
364 IBM Db2 12 for z/OS Performance Topics

QWP4ULBSG DS CL8 UTIL_LGBSG s12997
QWP4CYFR DS CL1 COPY_FASTREPLICATION s23187
QWP4DDLM DS CL1 DDL_MATERIALIZATION n22751
* I=ALWAYS_IMMEDIATE n22751
* P=ALWAYS_PENDING n22751
. . .
QWP4UHMDH DS CL8 UTILS_HSM_MSGDS_HLQ s17863
. . .
QWP4SFPR EQU X'20' STATFDBK_PROFILE s24345
. . .
QWP9RLFLS EQU X'20' If 1, indicate NOLIMIT (static) S20000
QWP9RLFRS EQU X'10' If 1, indicate NORUN (static) S20000
. . .
QWP9RLFNS DS F RLF static limit in SU's s20000
. . .
QWPAPEERREC DS CL1 PEER_RECOVERY DP1857
* 'N' = NONE DP1857
* 'R' = RECOVER DP1857
* 'A' = ASSIST DP1857
* 'B' = BOTH DP1857

IFCID 125: Adaptive index processing
The following new fields were added to the IFCID 125:

� QW0125TI
� QW0125QI
� QW0125_TRSN
� QW0125_PRSN
� QW0125_ORSN
� QW0125_TRSN

These fields record the RID list processing statistics for adaptive index processing, and
information about the adaptive index processing that was performed. The new fields are
shown in Example 12-51.

Example 12-51 IFCID 125 new fields

QW0125TI DS XL8 index probing estimate: total number of
* RIDs in the index (set to MAX BIGINT for
* full leg)
QW0125QI DS XL8 index probing estimate: number of RIDs
* within the keyrange, adjusted for filter
* factor
QW0125_TRSN DS CL1 reason leg was terminated
* F: leg was marked 'full'
* T: leg with < 32 RIDs
QW0125_PRSN DS CL1 reason leg not probed
* A: all legs fetched all RIDs
* B: this leg fetched all RIDs (<1 RIDblock)
* E: probing failed
* F: leg was marked 'full'
* K: cannot probe - missing high/low key
* M: mix of 'R'/'I'/'U' entries does not get
* reordered
* O: APS indicated to not probe
* S: earlier leg of index AND-ing was
Chapter 12. Monitoring and instrumentation 365

* 'likely' very filtering
* V: leg 'likely' very filtering
QW0125_ORSN DS CL1 reason leg was reodered
* V: leg 'likely' very filtering
* P: probing
QW0125_FRSN DS CL1 reason leg was marked 'full'
* L: non-filtering LIKE
* R: range predicate (non-LIKE)
* P: if OR-ing and est. # of RIDs > 30%
* or if AND-ing and est. # of RIDs > 50%
* of the table
* M: if not reason 'P', but est. # of RIDs
* > 'ridlist logical limit'
* G: aggressive termination
* T: most selective leg of AND-ing
* with FF >= 35%

IFCID 002: New workfile usage fields in accounting macro QWAC
Two new fields, QWAC_WORKFILE_MAX and QWAC_WORKFILE_CURR, were added to
the QWAC control block to provide thread level information about the work file use in the Db2
accounting record, IFCID 003.

The changes to the QWAC are shown in Example 12-52.

Example 12-52 Changed QWAC

QWAC_WORKFILE_MAX DS XL8 /* Maximum number of workfile blocks */
* /* being used by this agent at any */
* /* given point in time (traditional */
* /* workfile use, DGTT and DGTT */
* /* indexes) */
QWAC_WORKFILE_CURR DS XL8 /* Current number of workfile blocks */
* /* being used by this agent */
* /* (traditional workfile use, DGTT */
* /* and DGTT indexes) */

IFCID 199: New fields in the data set I/O statistics record
New fields QW0199S1, QW0199S2, QW0199A1, and QW0199A2 were added to IFCID 199.
With the state-of-the-art DASD, I/O can complete in less than a millisecond; therefore, these
fields are added to report the data set I/O response time in microsecond units for better
precision and accuracy.
366 IBM Db2 12 for z/OS Performance Topics

The four new fields that were added to IFCID 199 to report I/O delay in microseconds are
shown in Example 12-53. The I/O fields from older releases, which report I/O delays in
milliseconds, still exist. However, users are encouraged to use the new Db2 12 fields.

Example 12-53 IFCID 199 new data set I/O fields

* **....FOLLOWING 2 FIELDS MATCH DSNB455I MSG CONTENTS **
* **....SYNCHRONOUS I/O FOR WRITE AND READ IN MICROSECONDS ...**
QW0199S1 DS CL8 AVERAGE I/O DELAY (IN MICROSECONDS)
QW0199S2 DS CL8 MAXIMUM I/O DELAY (IN MICROSECONDS)
* **....FOLLOWING 2 FIELDS MATCH DSNB456I MSG CONTENTS **
* **..ASYNCH. I/O FOR WRITE, READ AND CASTOUT IN MICROSEC.... **
QW0199A1 DS CL8 AVERAGE I/O DELAY (IN MICROSECONDS)
QW0199A2 DS CL8 MAXIMUM I/O DELAY (IN MICROSECONDS)

IFCID 053/058: New field section number added
New field QW0053SECTN was added to IFCID 053 and QW0058SECTN was added to IFCID
058. The section number was added to these IFCID records to facilitate identifying an
execution statement back to its associated PREPARE statement.

The new field that was added to IFCID 053 to report the statement section number is shown
in Example 12-54 on page 367.

Example 12-54 IFCID 053 new section number field

QW0053SECTN DS CL2 RDI SECTION NUMBER

The new field that was added to IFCID 058 to report the statement section number is shown
in Example 12-55.

Example 12-55 IFCID 058 new section number field

QW0058SECTN DS CL2 RDI SECTION NUMBER

IFCID 316/401/058: New fields adding more granular wait times
New fields were added to IFCID 316, 401, and 058 to provide more granular wait times at the
statement level. IFCID 316 represents dynamic statements and IFCID 401 represents static
statements. Previously, these fields were included in the accounting record only; however,
with this change, these fields are now captured and represented at the statement level.
Chapter 12. Monitoring and instrumentation 367

The new fields that were added to IFCID 316 to report more granular dynamic statement level
wait times are shown in Example 12-56.

Example 12-56 IFCID 316 new fields

qw0316WC CHAR(8), /* Accumulated wait time due to */
* /* due to global child l-locks */
qw0316WD CHAR(8), /* Accumulated wait time due to */
* /* due to global other l-locks */
qw0316WE CHAR(8), /* Accumulated wait time due to */
* /* due to global pageset p-locks */
qw0316WF CHAR(8), /* Accumulated wait time due to */
* /* due to global page p-locks */
qw0316WG CHAR(8), /* Accumulated wait time due to */
* /* due to global other p-locks */
QW0316_PQS_WAIT DS CL8 Accumulated time waiting for
* parallel queries to synchronize
* between parent and child tasks

The new fields that were added to IFCID 401 to report more granular statement level wait
times for static SQL are shown in Example 12-57.

Example 12-57 IFCID 401 new fields

qw0401WC CHAR(8), /* Accumulated wait time due to */
* /* due to global child l-locks */
qw0401WD CHAR(8), /* Accumulated wait time due to */
* /* due to global other l-locks */
qw0401WE CHAR(8), /* Accumulated wait time due to */
* /* due to global pageset p-locks */
qw0401WF CHAR(8), /* Accumulated wait time due to */
* /* due to global page p-locks */
qw0401WG CHAR(8), /* Accumulated wait time due to */
* /* due to global other p-locks */
QW0401WPQS DS CL8 Accumulated wait for parallel query sync

The new fields that were added to IFCID 058 to report more granular statement level wait
times are shown in Example 12-58.

Example 12-58 IFCID 58 new fields

QW0058AWTK DS CL8 Accum wait time for global child l-locks
QW0058AWTM DS CL8 Accum wait time for global other l-locks
QW0058AWTN DS CL8 Accum wait time for global
* Pageset/Partition l-locks
QW0058AWTO DS CL8 Accum wait time for global page p-locks
QW0058AWTQ DS CL8 Accum wait time for global other p-locks
*
QW0058PQ DS CL8 Accumulated time waiting for parallel
* queries to synchronize between
* parent and child tasks
368 IBM Db2 12 for z/OS Performance Topics

Correlation Header (DSNDQWHC): New field to identify batch job step
The QWHCJOBSTEP field (as shown in Example 12-59) was added to the trace correlation
header that is mapped by macro DSNDQWHC. This information makes it easier to identify
which part of a batch job produced the particular trace record or records.

Example 12-59 Correlation Header new field to represent the batch job step

QWHCJOBSTEP DS CL8 /* JOBSTEP NAME */

12.2 OMPE accounting/statistics batch report enhancements

This section describes the enhancements of IBM Tivoli OMEGAMON XE for Db2
Performance Expert on z/OS V540 (OMPE) that are related to instrumentation changes that
were introduced by Db2 12.

OMPE supports all of the changes to the individual trace records (IFCIDs) and they can be
formatted by using the RECTRACE command. In this section, we focus on the enhancements to
the Db2 accounting and statistics reports.

OMPE accounting and statistics reports were enhanced to monitor the performance that is
related to the following new Db2 12 features:

� Dynamic SQL plan stability
� Insert Algorithm 2
� LOB compression
� Contiguous buffer pools: PGSTEAL(NONE)

12.2.1 Dynamic SQL plan stability

Db2 12 introduces the capability to achieve access path stability that is comparable to static
SQL statements for cached dynamic SQL statements. When you enable dynamic SQL plan
stability, Db2 stores statement cache structures for specified dynamic SQL statements in the
Db2 catalog.

Whenever a stabilized dynamic SQL statement is not present in the dynamic statement cache
when issued, Db2 can load the statement cache structures from the Db2 catalog and avoid
the full prepare operation. This change saves the CPU time to prepare the SQL statement,
and ensures the same access path is used after the statement is loaded from the catalog.

Note: For more information about the topics that are described in this section, see IBM
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS V540 Report Reference,
SH12-7065.
Chapter 12. Monitoring and instrumentation 369

The layout for the OMPE accounting report dynamic SQL statement section is shown in
Example 12-60 (the new OMPE field is in bold).

Example 12-60 Accounting: Dynamic SQL statement section

DYNAMIC SQL STMT AVERAGE TOTAL
--
REOPTIMIZATION 0.00 0
NOT FOUND IN CACHE 0.00 0
FOUND IN CACHE 0.00 0
IMPLICIT PREPARES 7.00 7
PREPARES AVOIDED 0.00 0
CACHE_LIMIT_EXCEEDED 0.00 0
PREP_STMT_PURGED 0.00 0
STABILIZED PREPARE 0.00 0 (QXSTSFND)
CSWL - STMTS PARSED 0.00 0
CSWL - LITS REPLACED 0.00 0
CSWL - MATCHES FOUND 0.00 0
CSWL - DUPLS CREATED 0.00 0

The layout for the OMPE statistics report dynamic SQL statement section with the new and
changed OMPE fields highlighted in bold is shown in Example 12-61.

Example 12-61 Statistics: Dynamic SQL statement section

DYNAMIC SQL STMT QUANTITY /SECOND /THREAD /COMMIT

PREPARE REQUESTS 210225 3503.74 N/C 328.99
 FULL PREPARES 42681 711.35 N/C 66.79
 SHORT PREPARES 154592 2576.53 N/C 241.93
SHORT PREPARES 154592 2576.53 N/C 241.93 (SPREPSHT)
 BASED ON CACHE 141640 2360.66 N/C 221.66 (SCACHSHT)
 BASED ON CATALOG 12952 215.87 N/C 20.27 (QISEDPSF)
LOOK-UP IN CATALOG 42685 711.41 N/C 66.80 (QISEDPSL)
CACHE HIT RATIO (%) 73.54 N/A N/A N/A (SCACHHRA)
CACHE+CATALOG HIT RATIO (%) 79.70 N/A N/A N/A (STOTCHRA)
TOTAL PREPARES 210232 3503.86 N/C 329.00 (SPREPSUM)
 EXPLICIT PREPARES 210232 3503.86 N/C 329.00 (QXPREP)
 IMPLICIT PREPARES 0 0.00 N/C 0.00
STABILIZED PREPARES 12948 215.80 N/C 20.26 (QXSTSFND)
PREPARES AVOIDED 0 0.00 N/C 0.00
CACHE LIMIT EXCEEDED 0 0.00 N/C 0.00
PREP STMT PURGED 0 0.00 N/C 0.00
LOCAL CACHE HIT RATIO (%) N/C N/A N/A N/A
CSWL - STMTS PARSED 0 0.00 N/C 0.00
CSWL - LITS REPLACED 0 0.00 N/C 0.00
CSWL - MATCHES FOUND 0 0.00 N/C 0.00
CSWL - DUPLS CREATED 0 0.00 N/C 0.00
370 IBM Db2 12 for z/OS Performance Topics

The OMPE Statistics Db2 commands section was enhanced to report the number of dynamic
plan stability-related administration commands that were run during reporting period. The
new and changed fields are highlighted in bold in Example 12-62.

Example 12-62 Statistics: Db2 commands section

DB2 COMMANDS QUANTITY
-------------------------- ---------------
DISPLAY DATABASE 0.00
DISPLAY THREAD 0.00
DISPLAY UTILITY 0.00
 ….. ….. ….. ……
….. ….. ….. ……
DISPLAY DYNQUERYCAPTURE 0.00 (Q9STCTDQ)
….. ….. ….. ……
….. ….. ….. ……
START PROFILE 0.00
START ACCEL 0.00
START DYNQUERYCAPTURE 0.00 (Q9STCTSQ)
….. ….. ….. ……
….. ….. ….. ……
STOP PROFILE 0.00
STOP ACCEL 0.00
STOP DYNQUERYCAPTURE 0.00 (Q9STCTXQ)

12.2.2 Insert Algorithm 2

Db2 12 introduces Insert Algorithm 2, which can improve the performance of INSERT
operations for unclustered data. The use of this new insert algorithm can result in an increase
in insert throughput, especially with data that is not indexed. Insert Algorithm 2 can also lower
logging activities and reduce class 2 elapsed time and class 2 CPU time.

Insert Algorithm 2 applies only to universal table spaces the use MEMBER CLUSTER, and is
the default algorithm for this table space type. It is not applicable to other table space types.

For more information about the new insert algorithm in Db2 12, see 2.3, “Insert Algorithm 2”
on page 50.The OMPE statistics work file database section was enhanced to track the
number of times fast insert pipes were allocated and disabled. The highlighted fields that are
shown in Example 12-63 on page 372 show the changes to this section of the OMPE
statistics report.

Note: For more information about dynamic SQL plan stability, see IBM DB2 12 for z/OS
Technical Overview, SG24-8383.
Chapter 12. Monitoring and instrumentation 371

Example 12-63 Statistics: Work file database section

WORKFILE DATABASE QUANTITY
-------------------------- ---------------
TOTAL STORAGE CONFIG (KB) 256.00
TOT DGTT STOR CONFIG (KB) 128.00
TOT WF STOR CONFIG (KB) 128.00
TOTAL STORAGE THRESHOLD (%) 90.00
 ….. ….. ….. ….. ……
….. ….. ….. ….. ……
AGENT STORAGE CONFIG (KB) 0.00
NUMBER OF LIMIT EXCEEDED 0.00
AGENT STORAGE THRESHOLD (%) 90.00
MAX AGENT STORAGE USED (KB) 0.00
DM FAST INSERT PIPES 0.00 (QISTINPA)
DM FAST INSERT PIPES DISAB 0.00 (QISTINPD)

The accounting class 3 and class 8 suspension times sections of the OMPE accounting
report were enhanced to show the accumulated pipe wait time associated with the use of
Insert Algorithm 2 and the accumulated number of pipe wait events.

The layout for the class 3 suspension sections of the OMPE accounting report is shown in
Example 12-64 on page 373. The layout for the class 8 suspension sections of the report is
shown in Example 12-65 on page 373. (The highlighted Fast Insert Pipe fields were added to
the suspension time sections of the accounting report.)

12.2.3 LOB compression

Db2 12 supports compressing LOB data when the zEnterprise data compression (zEDC)
hardware is available on the z/OS environment.

Compressing LOB data by using the zEDC hardware can reduce the size of the data in a LOB
table space. LOB data compression can also be enabled on all LOB table spaces that are
associated with the Db2 directory.

LOB compression is enabled for individual table spaces by specifying the COMPRESS YES
attribute on the CREATE TABLESPACE or ALTER TABLESPACE statement. To enable LOB
compression for the Db2 directory, the COMPRESS_DB2_DIR_LOBS subsystem parameter
must be set to YES.

The accounting times class 3 suspension section of the OMPE accounting report was
enhanced to show the accumulated wait time that is associated with compressing LOB data.
372 IBM Db2 12 for z/OS Performance Topics

The layout for the class 3 suspension section of the OMPE accounting report is shown in
Example 12-64 . The highlighted LOB Compression field was added to this report to report
the accumulated (average) wait time and the number of events.

Example 12-64 Accounting: Class 3 suspensions section

CLASS 3 SUSPENSIONS AVERAGE TIME AV.EVENT
------------------- ------------ --------
LOCK/LATCH(DB2+IRLM) 0.000000 0.00
IRLM LOCK+LATCH 0.000000 0.00
DB2 LATCH 0.000000 0.00
SYNCHRON. I/O 0.000254 0.83
DATABASE I/O 0.000254 0.83
LOG WRITE I/O 0.000000 0.00
OTHER READ I/O 0.000446 0.33
OTHER WRTE I/O 0.000000 0.00
SER.TASK SWTCH 0.000000 0.00
UPDATE COMMIT 0.000000 0.00
OPEN/CLOSE 0.000000 0.00
SYSLGRNG REC 0.000000 0.00
EXT/DEL/DEF 0.000000 0.00
OTHER SERVICE 0.000000 0.00
ARC.LOG(QUIES) 0.000000 0.00
LOG READ 0.000000 0.00
DRAIN LOCK 0.000000 0.00
CLAIM RELEASE 0.000000 0.00
PAGE LATCH 0.000000 0.00
NOTIFY MSGS 0.000000 0.00
GLOBAL CONTENTION 0.000000 0.00
COMMIT PH1 WRITE I/O 0.000000 0.00
ASYNCH CF REQUESTS 0.000000 0.00
TCP/IP LOB XML 0.000000 0.00
ACCELERATOR 0.000000 0.00
AUTONOMOUS PROCEDURE N/A N/A
PQ SYNCHRONIZATION N/A N/A
LOB COMPRESSION (AWLCSUST) 0.000000 0.00 (AWLCSUSC)
FAST INSERT PIPE (AWPISUST) 0.000000 0.00 (AWPISUSC)
TOTAL CLASS 3 0.000700 1.17

The pipe wait time and number of events that were added to the package class 8 suspension
time section of the OMPE accounting report is shown in Example 12-65.

Example 12-65 Accounting package times: Class 8 suspensions section

PACKAGE AVERAGE TIME AVG.EV
------- ------------ ------
LOCK/LATCH 0.000000 0.00
 IRLM LOCK+LATCH 0.000000 0.00
 DB2 LATCH 0.000000 0.00
SYNCHRONOUS I/O 0.000000 0.00
….. ….. ….. …..
….. ….. ….. …..
FAST INSERT PIPE 0.000000 (APPISUST) 0.00 (APPISUSC)
TOTAL CL8 SUSPENS. 0.000000 0.00
Chapter 12. Monitoring and instrumentation 373

No LOB compression suspension counters are available at the package level. At the package
level, the time and number of times a transaction is waiting for LOB compression to complete
is included in the SERV.TASK SWITCH counters.

12.2.4 Contiguous buffer pools: PGSTEAL(NONE)

In Db2 12, buffer pool management has changed when using the PGSTEAL(NONE) option of
the ALTER BUFFERPOOL command. The improved PGSTEAL(NONE) buffer pool
management in Db2 12 can retrieve pages that are in the buffer pool faster, which provides
CPU reduction for transactions that use these buffer pools. For more information about how
contiguous buffer pools are managed and the performance test results, see 2.2, “Contiguous
buffer pools” on page 39.

The buffer pool Read Operation section of the OMPE statistics report was enhanced to
enable monitoring the health of these contiguous buffer pools, as shown in Example 12-66.
The highlighted fields are added to the report to record the number of getpage requests or
reads that are performed against the overflow area of the buffer pool. If these values are
nonzero, it is recommended to increase the size of the affected buffer pool.

Example 12-66 Statistics report: Buffer pool read operations section

BP0 READ OPERATIONS QUANTITY
------------------- --------
BPOOL HIT RATIO (%) 100.00
BPOOL HIT RATIO (%) SEQU 100.00
BPOOL HIT RATIO (%) RANDOM 100.00
GETPAGE REQUEST 30390.00
 GETPAGE REQS-SEQUENTIAL 8541.00
 IN-MEM OVFL SEQ REQS 0.00 (QBSTASGE)
 GETPAGE REQS-RANDOM 21849.00
 IN-MEM OVFL RND REQS 0.00 (QBSTAGET)
SYNCHRONOUS READS 5013.00
 SYNC READS-SEQUENTIAL 0.00
 IN-MEM OVFL SEQ READS 0.00 (QBSTASSE)
 SYNC READS-RANDOM 0.00
 IN-MEM OVFL RND READS 0.00 (QBSTASYN)
……..…….……..……. ……..
……..…….……..……. ……..
374 IBM Db2 12 for z/OS Performance Topics

Appendix A. IBM Db2 workloads

This appendix provides an overview of the workloads that are used to measure Db2
performance.

Traditionally, performance workloads started as heavy-duty batch jobs, which stressed CPU
and I/O of the system.

With the advent of teleprocessing and multi-address spaces, online TP became necessary
and often terminal simulators were used. At Db2 Version 4 time, the online TP IBM Relational
Warehouse Workload (IRWW) was created, which is based on a retail type of environment
that uses IMS and later CICS as transaction monitor.

In later years, more workloads related to complex OLTP, distributed environments query
processing and data warehousing were added.

Special high-insert batch workloads were designed to compare physical design options and
different structures to minimize contention.

As noted in Chapter 1, “Introduction ” on page 1:

� A set of IRWW workloads represents the simple, legacy type, OLTP workload that is
typically run through IMS or CICS as transaction server.

� Distributed IRWWs are the same Db2 workloads that are run through remote clients, such
as JDBC or remote stored procedure calls.

� Brokerage OLTP represents a complex OLTP with a mixture of lookup, update, and insert
and reporting queries.

� SAP Banking Day Posting workloads are relatively simple SQL executions against an SAP
banking schema.

� High insert workloads are concurrent inserts that are run through more than 100 JCC T4
connections in data sharing.

� TSO batches represent a batch workload that is running various batch operations,
including SELECT, FETCH, UPDATE, INSERT, and DELETE in a loop.

A

© Copyright IBM Corp. 2017. All rights reserved. 375

� A set of query workloads are run serially mostly by using CPU parallelism. Each query
workload consists of a set of 20 - 100 queries per workload. Individual queries can see
wide range of differences between Db2 10 and Db2 11. The average CPU reduction rate is
shown here.

� IBM Cognos® BI-day short workload is a set of short running reporting queries that are
concurrently executed.

� Utilities scenarios are a set of various utility job executions.

� XML scenarios are also a set of various XML workloads, including OLTP, queries, batch,
and utilities against XML data types.

� WebSphere Application Server Portal workload is used to illustrate this process, and the
performance effects that this process can produce.

This appendix includes the following topics:

� IBM Relational Warehouse Workload
� Relational Transaction Workload
� IRWW distributed workload
� Brokerage
376 IBM Db2 12 for z/OS Performance Topics

A.1 IBM Relational Warehouse Workload

IRWW is an OLTP workload that consists of seven transactions. Each transaction consists of
one to many SQL statements, each performing a distinct business function in a predefined
mix.

The transactions that are used in the Classic IRWW workload are listed in Table A-1.

Table A-1 Classic IRWW transactions

The following transaction types are listed in Table A-1:

� Delivery

Performs various SELECT, UPDATE, and DELETE transactions in support of the delivery
of a group of orders and runs as 2% of the total transaction mix.

� New Order

Performs various SELECT, FETCH, UPDATE, and INSERT transactions in support of the
receipt of new customer orders and runs as 22% of the total transaction mix.

� Order Status

Performs various SELECT and FETCHE transactions in support of providing the status of
an order and runs as 25% of the total transaction mix.

� Payment

Performs SELECT, FETCHE, UPDATE, and INSERT transactions in support of received
customer payments and runs at 21% of the total transaction mix.

� Price Change

Performs an UPDATE in support of changing the price of an item and runs as 1% of the
total transaction mix.

� Price Quote

Performs various SELECT transactions in support of providing the price of a set of items
and runs as 25% of the total transaction mix.

� Stock Level

Performs a JOIN and various SELECT transactions in support of providing the current
stock level of an item and runs at 4% of the mix.

The IRWW database contains several inventory stock warehouses and sales districts.

The front end transaction manager often is IMS, but CICS is used at times.

Transaction Relative % mix DML executed

Delivery OPEN/FETCH/SELECT/UPDATE/DELETE

New Order 22 OPEN/FETCH/SELECT/UPDATE/INSERT

Order Status 25 OPEN/FETCH/SELECT

Payment 21 OPEN/FETCH/SELECT/UPDATE/INSERT

Price Change UPDATE

Price Quote 25 SELECT

Stock Inquiry SELECT
Appendix A. IBM Db2 workloads 377

Historically the Classic IRWW workload used IMS Fast Path (IFP) regions for transaction
execution. IFPs bypass IMS queuing allows for more efficient processing, including thread
reuse.

However, the new IMS connection pooling support, is not applicable for IMS IFP regions.
Therefore, the Classic IRWW workload setup was changed to use IMS Message Processing
Regions (MPPs) to schedule and run the programs corresponding to different transactions.

The Processing Limit Count (PLCT) parameter is used to control the maximum number of
messages that is sent to the application program by the IMS control program for processing
without reloading the application program in the MPP region. This value is set to 65535 for
two-thirds of the transactions, and 0 for the remaining transactions.

PLCT(0) means the maximum number of messages that is sent to the application is one and
the application program is reloaded into the MPP region before receiving a subsequent
message. PLCT(65535) means that no limit is placed upon the number of messages that is
processed at a single program load.

A.2 Relational Transaction Workload

The Relational Transaction Workload (RTW) is a standard workload that is used by the CICS
performance team in Hursley to assess changes in performance characteristics for new CICS
releases for applications accessing Db2. The Db2 team decided to use the RTW as one of its
performance test benchmark workloads to get better performance analysis coverage for
CICS-Db2 type of workloads. The workload was modified slightly compared to the version the
CICS team uses to better reflect the Db2 behavior of the workload.

The RTW features the following characteristics:

� All programs that make up the workload are written in COBOL.

� The workload uses 20 (data) tables in segmented table spaces, 11 non-unique indexes,
and 16 unique indexes.

� It issues on average 200 Db2 calls per transaction.

� The transaction mix consists of 26% select, 3% insert, 7% update, 3% delete, 6% open
cursor, 36% fetch cursor, 6% close cursor operations.

The following environment configuration is used for the non-data sharing RTW workload:

� One z13 LPAR with 8 general CPs
� Four CICS regions that are running CICS TS V5.1
� A non-data sharing Db2 subsystem
� z/OS 2.1
� DS8870 DASD controller
� TPNS on another z13 LPAR with four general CPs to drive the workload

Note: Because of this change, previously published IRWW results (for example, from Db2
10 for z/OS benchmarks) must not be compared to IRWW runs that use Db2 12 for z/OS.
378 IBM Db2 12 for z/OS Performance Topics

The following environment is used by the two-way data sharing RTW:

� Two z13 LPARs with 8 general CPs each

� Eight CICS regions that are running CICS TS 5.1 with four regions that are running on
each of the LPARs

� Two z13 ICF LPARs that are running CFLEVEL 21 CFCC

� Two Db2 subsystems, each running on one of the two LPARs

� DS8870 DASD controller

� TPNS on another z13 LPAR with four general CPs to drive the workload

A.3 IRWW distributed workload

The IRWW OLTP workload, consisting of seven transactions in support of a product
warehouse, customer order, and order delivery system, was converted to run in distributed
environments. Each transaction consists of approximately 25 DML on average with seven of
those DMLs being Insert/Update/Delete. The workloads consist of stored procedure and
non-stored procedure workloads.

For more information about the seven transaction types, a brief description of each, and the
percentage of the transaction mix, see “IBM Relational Warehouse Workload”.

A.4 Brokerage

Brokerage OLTP represents a complex OLTP with a mixture of lookup, update, insert, and
reporting queries.

The IBM Brokerage transaction workload is a complex OLTP workload that runs various SQL
procedures to simulate transactions in a brokerage farm.

An OLTP workload was run that accesses 33 tables with approximately 15,000 objects. The
Brokerage workload represents transactions of customers dealing in the financial market and
updating account information. The transactions are complex OLTP transactions that are
implemented in stored procedure by using SQL/PL. The workload uses:

� 1.3 TB of data
� 13 buffer pools
� 33 table spaces
� 68 indexes
Appendix A. IBM Db2 workloads 379

380 IBM Db2 12 for z/OS Performance Topics

IS
B

N
 0738442712

S
G

24-8404-00

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

IBM
 Db2 12 for z/OS Perform

ance Topics

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738442712

SG24-8404-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 Overview
	1.1.1 Performance
	1.1.2 High-level expectations

	1.2 Db2 12 for z/OS performance features
	1.2.1 System-level performance
	1.2.2 Query performance improvement
	1.2.3 Access path stability for dynamic SQL statements

	1.3 Other key features in Db2 12 for z/OS
	1.3.1 Mobile application enablement
	1.3.2 Resiliency and continuous availability
	1.3.3 Simplified migration and continuous delivery support

	1.4 How to use this book
	1.4.1 Measurement environments

	Chapter 2. Scalability enhancements and subsystem performance
	2.1 Fast index traversal
	2.1.1 Introduction
	2.1.2 Performance measurements

	2.2 Contiguous buffer pools
	2.2.1 Introduction
	2.2.2 Performance measurements
	2.2.3 Managing a contiguous buffer pool
	2.2.4 Usage considerations for contiguous buffer pools

	2.3 Insert Algorithm 2
	2.3.1 Insert Algorithm 2 overview
	2.3.2 How Insert Algorithm 2 works
	2.3.3 Performance measurements
	2.3.4 Insert Algorithm 2 usage considerations

	2.4 Logging enhancements
	2.4.1 Greater than 4 GB active log support
	2.4.2 Removing log write latch (LC19)
	2.4.3 Forced log write removal for identity columns

	2.5 Range-partitioned table spaces with relative page numbering
	2.5.1 Performance measurements

	2.6 IMS-Db2 Connection pooling
	2.6.1 Performance measurements
	2.6.2 Usage considerations

	2.7 Db2 prefetch-related enhancements
	2.7.1 Increased numbers of Db2 prefetch engines
	2.7.2 Avoiding unnecessary dynamic prefetch scheduling

	2.8 Performance enhancements for short transactions
	2.8.1 DGTT enhancements
	2.8.2 Claim and declaim performance improvements
	2.8.3 SELECT INTO optimization

	2.9 Db2 Storage Manager enhancements
	2.9.1 Scalability and performance improvement for EDM pools
	2.9.2 Storage pool management improvement for XML and LOBs

	2.10 Miscellaneous enhancements
	2.10.1 zPLX 3.2.0 Performance enhancement
	2.10.2 Latch class 23 reduction

	Chapter 3. Synergy with the IBM Z platform
	3.1 Large object compression
	3.1.1 LOB compression prerequisites
	3.1.2 LOB compression considerations
	3.1.3 Use of DSN1COMP to estimate LOB compression
	3.1.4 Performance characteristics of LOB compression

	3.2 ISM that uses SMC-D
	3.2.1 HiperSockets, SMC-R, and SMC-D
	3.2.2 Request/response workload performance summary comparison of HiperSockets and OSA with and without SMC-D
	3.2.3 SMC-D results for IRWW SQLJ OLTP workload

	3.3 Simultaneous multithreading
	3.3.1 SMT-2 Performance in a one-way data sharing environment
	3.3.2 SMT-2 performance in a two-way data sharing environment

	3.4 Performance effect of the use of 2 GB frames
	3.4.1 Performance measurements
	3.4.2 Usage guidance and considerations

	3.5 Buffer pool simulation
	3.5.1 Performing buffer pool simulation
	3.5.2 Performance measurement results
	3.5.3 Buffer pool simulation usage considerations

	3.6 Large group buffer pool usage
	3.6.1 Performance measurements
	3.6.2 Summary

	3.7 Data set open/close performance
	3.7.1 DFSMS changes in z/OS V2R2
	3.7.2 Db2 for z/OS changes
	3.7.3 Performance evaluation

	3.8 zHyperWrite
	3.9 Active log data set striping
	3.9.1 How Db2 log striping works
	3.9.2 Performance measurements
	3.9.3 Usage considerations for Db2 active log striping

	3.10 Easy Tier directive data placement support by Db2 REORG utility

	Chapter 4. Data sharing
	4.1 Global commit LRSN enhancement
	4.1.1 Performance effect of not committing frequently before Db2 12
	4.1.2 Performance effect of not committing frequently in Db2 12
	4.1.3 Conclusion

	4.2 Global read LSN enhancement
	4.2.1 Performance evaluation
	4.2.2 Conclusion

	4.3 Asynchronous lock structure duplexing
	4.3.1 System-managed duplexing protocol
	4.3.2 Asynchronous duplexing protocol
	4.3.3 Performance measurements
	4.3.4 Conclusion

	4.4 Automatic retry of GRECP and LPL recovery
	4.4.1 GRECP recovery
	4.4.2 LPL recovery

	4.5 Retrying GRECP and LPL recover in Db2 12
	4.6 Db2 shutdown and restart performance improvement when many read/write objects are used
	4.6.1 Performance measurements
	4.6.2 Usage considerations

	4.7 Db2 peer recovery
	4.7.1 Performance measurements
	4.7.2 Usage considerations

	Chapter 5. Workload level measurements
	5.1 High volume INSERT benchmark
	5.1.1 Workload description
	5.1.2 Hardware configuration
	5.1.3 Performance results

	5.2 Classic IRWW workload measurements
	5.2.1 Db2 11 to Db2 12 migration scenarios (one-way data sharing)
	5.2.2 Db2 11 to Db2 12 migration scenarios (two-way data sharing)

	5.3 Distributed IRWW workload performance measurements
	5.3.1 Distributed IRWW workload CPU usage
	5.3.2 Distributed IRWW workload throughput
	5.3.3 Real storage usage
	5.3.4 Conclusion

	5.4 IBM Brokerage transaction workload
	5.4.1 One-way data sharing performance measurements
	5.4.2 Two-way data sharing performance measurements

	5.5 RTW workload
	5.5.1 Performance measurements for non-data sharing RTW workload
	5.5.2 Performance measurements: Two-way data sharing RTW workload

	5.6 High insert batch workload measurements
	5.6.1 Archive sequential insert
	5.6.2 Journal table insert
	5.6.3 Message queue insert and delete
	5.6.4 Random insert and delete workload

	Chapter 6. Distributed system
	6.1 DRDA Fast Load
	6.1.1 Db2 Fast Load measurements

	6.2 Integrated Db2 support of REST APIs
	6.3 z/OS Connect Feature Pack support
	6.3.1 Db2 Adapter for z/OS Connect workload measurements

	Chapter 7. SQL and application enablement
	7.1 SQL support
	7.1.1 Advanced trigger support
	7.1.2 Pagination
	7.1.3 MERGE statement
	7.1.4 Supporting KEEPDYNAMIC (YES) for ROLLBACK
	7.1.5 Improved storage usage for the Dependency Manager Hash (DMH) table
	7.1.6 Unicode column in EBCDIC table performance
	7.1.7 Piece-wise data modification

	7.2 Resource Limit Facility
	7.2.1 Performance objectives and evaluation

	7.3 JSON support
	7.3.1 Built-in function JSON_VAL
	7.3.2 UDFs for JSON support
	7.3.3 JSON performance

	7.4 Built-in LISTAGG aggregate function
	7.4.1 Sample scenario and use cases for LISTAGG
	7.4.2 Performance results for LISTAGG function

	7.5 XML Optimizations
	7.5.1 XML subdocument update
	7.5.2 XML access plan optimization
	7.5.3 XMLTABLE enhancements

	7.6 Temporal improvement
	7.6.1 Temporal referential integrity
	7.6.2 Non-deterministic expression columns for auditing

	Chapter 8. Query performance
	8.1 UNION ALL and OUTER JOIN performance enhancements
	8.1.1 Reorder OUTER JOIN tables to avoid materializations
	8.1.2 Push predicates inside UNION ALL legs and OUTER JOIN query blocks
	8.1.3 Trim unnecessary columns and tables
	8.1.4 Push down of ORDER BY and FETCH FIRST
	8.1.5 Targeted UNION ALL and OUTER JOIN summary

	8.2 Predicate optimizations
	8.2.1 Sort for stage 2 join expressions
	8.2.2 User-defined table function predicate optimizations
	8.2.3 VARBINARY indexability improvements
	8.2.4 Row permission indexability for correlated subqueries
	8.2.5 Predicate bubble up enhancements
	8.2.6 IN-list predicate enhancements

	8.3 Optimizer cost model enhancements
	8.3.1 Extending NPGTHRSH to default statistics
	8.3.2 List prefetch and hybrid join cost improvements
	8.3.3 Improved filter factor for CURRENT DATE/TIMESTAMP predicates
	8.3.4 Improved resolution of filter factors at bind and prepare using index probing
	8.3.5 Improved bind and prepare performance with many indexes

	8.4 Runtime enhancements
	8.4.1 Runtime adaptive index processing
	8.4.2 Internal runtime and complex expression enhancements
	8.4.3 Db2 12 expression sharing
	8.4.4 UDF result caching
	8.4.5 Internal block fetching

	8.5 Sort space reductions and in-memory use
	8.5.1 Increasing the number of sort tree nodes
	8.5.2 Reducing the length of the sort rows
	8.5.3 Reducing contention on 4 K work file pages
	8.5.4 Reading sort results directly from the sort tree
	8.5.5 Extensions to sort avoidance for OLAP functions
	8.5.6 Sparse index enhancements
	8.5.7 Partial sort avoidance for FETCH FIRST
	8.5.8 Avoiding sort for ordered RIDs

	8.6 Migration from Db2 11 to Db2 12
	8.6.1 IBM Query workload performance after Db2 12 migration

	8.7 Query regression workloads
	8.7.1 Characteristics of query workloads and improvement
	8.7.2 Access path change and performance improvement

	Chapter 9. Utilities
	9.1 LOAD and REORG enhancements
	9.1.1 LOAD REPLACE improvements for empty PBR partitions
	9.1.2 zIIP offload during RELOAD phase for LOAD and REORG
	9.1.3 LOAD SHRLEVEL CHANGE PARALLEL for PBG table spaces

	9.2 Statistics enhancements
	9.2.1 RUNSTATS COLGROUP performance improvement
	9.2.2 LOAD PARALLEL STATISTICS on COLGROUP
	9.2.3 Frequency statistics on indexes during inline statistics
	9.2.4 PROFILE support for inline statistics
	9.2.5 Statement cache invalidation in RUNSTATS and inline stats
	9.2.6 RUNSTATS TABLESPACE LIST INDEX improvement
	9.2.7 Other RUNSTATS enhancements

	9.3 REGISTER NO option in UNLOAD and RUNSTATS
	9.3.1 Performance measurements
	9.3.2 Usage considerations

	9.4 Backup and RECOVER
	9.4.1 Performance measurements

	9.5 Decompression improvement in utilities
	9.5.1 Performance measurements

	Chapter 10. IBM Db2 Analytics Accelerator for z/OS
	10.1 Performance Enhancements for IBM Db2 Analytics Accelerator for z/OS
	10.2 IDAA Version 4 PTF-2
	10.2.1 Effect of QUERYACCELERATION ENABLE on Rebind Static Packages

	10.3 IDAA version 4 PTF-3
	10.3.1 Acceleration of local static SELECT INTO
	10.3.2 Load enhancement
	10.3.3 Reload enhancements

	10.4 IDAA version 4 PTF-4
	10.4.1 Dynamic statement cache support for accelerated queries

	10.5 IDAA version 4 PTF-5
	10.5.1 Load improvement with PI26783
	10.5.2 Load and query performance comparison on Mako versus Striper
	10.5.3 In-database transformation
	10.5.4 Apply incremental updates in parallel
	10.5.5 Automatic generation of distribution keys and organizing keys for incremental update enabled tables

	10.6 IDAA version 4 PTF-6
	10.6.1 IDAA load and query performance with z13 versus zEC12
	10.6.2 Continuous operation of incremental updates

	10.7 IDAA version 5 PTF-1
	10.7.1 Load throughput increase from lifting TCP send buffer size restriction
	10.7.2 Encrypting data in motion by using IPSec

	10.8 IDAA version 5 PTF-2
	10.8.1 Db2 12 support for IDAA

	10.9 IDAA version 5 PTF-3
	10.9.1 Loading many small tables

	Chapter 11. Installation and migration
	11.1 Migration performance
	11.1.1 Migration performance measurement tests

	11.2 Dynamic plan stability
	11.2.1 Stabilizing dynamic queries
	11.2.2 Locating and loading stabilized statements
	11.2.3 Overhead of stabilized statement misses
	11.2.4 Free stabilized statements

	11.3 Temporal real-time statistics tables
	11.3.1 Performance measurements

	11.4 System parameters’ performance-related changes
	11.4.1 New system parameters related to performance
	11.4.2 System parameters updated related to performance
	11.4.3 Obsolete system parameters related to performance

	Chapter 12. Monitoring and instrumentation
	12.1 Db2 12 instrumentation changes
	12.1.1 IFCID header changes
	12.1.2 New IFCIDs
	12.1.3 Changed IFCIDs

	12.2 OMPE accounting/statistics batch report enhancements
	12.2.1 Dynamic SQL plan stability
	12.2.2 Insert Algorithm 2
	12.2.3 LOB compression
	12.2.4 Contiguous buffer pools: PGSTEAL(NONE)

	Appendix A. IBM Db2 workloads
	A.1 IBM Relational Warehouse Workload
	A.2 Relational Transaction Workload
	A.3 IRWW distributed workload
	A.4 Brokerage

	Back cover

