
Redbooks

Front cover

An Architectural and
Practical Guide to IBM
Hybrid Integration Platform

Carsten Börnert

Kim Clark

Shahir Daya

Matthieu Debeaux

Gerd Diederichs

Vasfi Gucer

Shamim Hossain

Gary Kean

Carlo Marcoli

Shohei Matsumoto

Amar Shah

Johan Thole

International Technical Support Organization

A Practical Guide for IBM Hybrid Integration Platform

December 2016

SG24-8351-00

© Copyright International Business Machines Corporation 2016. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (December 2016)

This edition applies to the following products:

� IBM API Connect Version 5.0
� IBM MQ Version 9.0
� IBM Integration Bus Version 10.0.0.6

Note: Before using this information and the product it supports, read the information in “Notices” on
page xvii.

Contents

Figures . vii

Tables . xiii

Examples .xv

Notices . xvii
Trademarks . xviii

Preface . xix
Authors. xix
Now you can become a published author, too! . xxii
Comments welcome. xxiii
Stay connected to IBM Redbooks . xxiii

Part 1. Concepts and architecture. 1

Chapter 1. Introduction to hybrid integration . 3
1.1 What is hybrid integration . 4

1.1.1 Hybrid user communities. 4
1.1.2 Hybrid connectivity . 5
1.1.3 Hybrid integration styles . 6
1.1.4 Hybrid deployment . 6

1.2 Hybrid integration reference architecture . 7
1.2.1 Hybrid communities. 8
1.2.2 Hybrid connectivity . 9
1.2.3 Hybrid styles . 9
1.2.4 Hybrid deployment . 9

1.3 How is IBM addressing hybrid requirements in its integration portfolio?. 9

Chapter 2. Hybrid integration use cases . 11
2.1 Introduction to hybrid Integration use cases . 12
2.2 Use case A: Joining the API economy . 12

2.2.1 Unlocking systems of record . 13
2.2.2 Securely surfacing APIs . 14
2.2.3 Extending the use case: Creating more valuable “interaction APIs” 15
2.2.4 A hybrid landscape for API components. 15

2.3 Use case B: Improving productivity . 17
2.3.1 Extending the use case: Cloud-to-ground (and ground-to-cloud) 20

2.4 Use case C: Refactoring for innovation. 21
2.4.1 Modernizing applications for composability. 21
2.4.2 Synchronizing systems of record . 22
2.4.3 Embracing external sources . 24
2.4.4 Innovating new solutions. 24

Chapter 3. IBM Hybrid Cloud and Integration Portfolio . 25
3.1 Introduction . 26
3.2 IBM Application Integration Suite . 26

3.2.1 IBM Integration Bus . 28
3.2.2 IBM API Connect . 32
© Copyright IBM Corp. 2016. All rights reserved. iii

3.2.3 IBM App Connect . 34
3.3 IBM Messaging Portfolio . 40

3.3.1 IBM MQ. 40
3.3.2 IBM Message Hub . 43
3.3.3 IBM Watson Internet of Things Platform . 46

3.4 IBM DataPower . 49

Part 2. Hybrid integration scenarios . 53

Chapter 4. Introduction to the scenarios . 55
4.1 Introducing CompanyA . 56

4.1.1 The business. 56
4.1.2 Hybrid integration scenarios . 57

4.2 Architecture overview . 60
4.2.1 Components . 61

4.3 Re-creating the scenarios . 62
4.3.1 Prerequisites . 62
4.3.2 The GitHub repositories . 63
4.3.3 Environment configuration for the scenarios. 64

Chapter 5. Exposing APIs externally. 69
5.1 Solution outline . 70

5.1.1 Overview of the CompanyA hybrid integration landscape 70
5.1.2 Expose a System API for product information from a catalog. 71
5.1.3 Create an Interaction API for order information . 71

5.2 Implementation . 71
5.2.1 Create an API Connect instance on Bluemix . 72
5.2.2 Expose a SOAP Web Service as an API . 77
5.2.3 Create an Interaction API for order information . 90
5.2.4 Create a Production catalog with an IBM Developer Portal Site. 110

5.3 Resources . 117
5.3.1 Sign up for an IBM Bluemix account . 117
5.3.2 Setting up a Salesforce developer edition account . 117
5.3.3 Importing the Accounts data into the Salesforce developer organization 117

Chapter 6. Automation for business users . 119
6.1 Solution outline . 120

6.1.1 Functional overview . 120
6.1.2 Technical overview . 122

6.2 Implementation . 123
6.2.1 Preparation . 123
6.2.2 Creating the AppConnect flow to keep the campaign overview spreadsheet up to

date. 124
6.2.3 Exposing the order update events as triggers into AppConnect 128
6.2.4 Creating an AppConnect flow to process campaign-related orders 142
6.2.5 Creating an AppConnect flow to process canceled orders 147

6.3 Resources . 150
6.3.1 AppConnect pattern for IBM Integration Bus . 150
6.3.2 Installing the trigger pattern in IBM Integration Bus Toolkit. 151

Chapter 7. Kick-start digital teams . 153
7.1 Solution overview . 154

7.1.1 Variant A . 155
7.1.2 Variant B . 155
iv A Practical Guide for IBM Hybrid Integration Platform

7.1.3 Variant C . 156
7.1.4 Implementation considerations . 156

7.2 Technical implementation of variant B . 157
7.2.1 IBM Integration Bus: Exposing enterprise order events 157
7.2.2 Message Hub . 170
7.2.3 MongoDB . 172
7.2.4 API Connect . 177
7.2.5 Dashboard app . 185

7.3 Technical implementation of variant C . 190
7.3.1 Secure Gateway . 191
7.3.2 Docker Compose (IBM Integration Bus, IBM MQ, Secure Gateway) 197
7.3.3 Message Hub . 199
7.3.4 Message Connect . 200
7.3.5 MongoDB . 204
7.3.6 API Connect . 204
7.3.7 Microservice . 204
7.3.8 Dashboard app . 204

7.4 Technical implementation of variant A . 205
7.4.1 IBM Integration Bus: Exposing enterprise order events 205
7.4.2 MongoDB . 207
7.4.3 API Connect . 207
7.4.4 Microservice . 207
7.4.5 Dashboard app . 207

Related publications . 209
IBM Redbooks . 209
Online resources . 209
Help from IBM . 210
 Contents v

vi A Practical Guide for IBM Hybrid Integration Platform

Figures

1-1 Different people in more diverse roles are now involved in performing integration. 4
1-2 Surface area over which integration applications have expanded dramatically 5
1-3 Different design styles of application integration, API exposure, and data integration . . 6
1-4 Options for how and where to deploy . 7
1-5 Hybrid integration reference architecture . 8
2-1 Most common use cases found in enterprises that use hybrid integration 12
2-2 Use case A: Joining the API economy . 13
2-3 Two layered models . 15
2-4 Bi-modal IT . 16
2-5 Use case B. Improving productivity. 17
2-6 Enabling the business users to perform some of their own integration automation . . . 18
2-7 Cloud-to-cloud integration. 19
2-8 Ground-to-cloud integration . 20
2-9 Microservices applications . 21
2-10 New era of application architectures. 23
2-11 Integrating external sources . 24
3-1 Application Integration Suite offerings . 26
3-2 Hybrid integration personas . 27
3-3 API Connect capabilities overview . 32
3-4 IBM API Connect logical components. 33
3-5 Select applications to integrate . 35
3-6 Connect application accounts . 36
3-7 Select/specify any data . 37
3-8 Run the flow . 38
3-9 Add a custom application . 39
3-10 Connect to your network by using the Secure Gateway . 40
3-11 Connectivity options with Message Hub . 43
3-12 Message Hub use cases. 45
3-13 Kafka architecture . 46
3-14 Watson Internet of Things service from Bluemix. 47
3-15 IBM Watson IoT architecture . 48
3-16 Internet of Things Quickstart mode. 49
4-1 Functional capabilities. 56
4-2 Long tail of integration candidates . 58
4-3 High-level architecture overview . 60
4-4 GitHub repositories for scenarios . 63
4-5 Sample content of scenario repository . 63
4-6 Sample docker-compose.yml file . 64
4-7 Required environment variables . 65
4-8 Starting the containers for scenario 1 . 65
4-9 Checking the state of containers with docker-compose . 66
5-1 Logical view of the CompanyA hybrid environment . 70
5-2 Bluemix categories . 72
5-3 Create an API Connect service instance . 72
5-4 Define an API Connect service . 73
5-5 API Connect service pricing plans . 73
5-6 Draft space in the API Manager interface . 74
5-7 Pinning the Navigation pane to the user interface . 74
© Copyright IBM Corp. 2016. All rights reserved. vii

5-8 Catalog settings page . 75
5-9 API Endpoint Base URL . 75
5-10 Developer portal settings . 76
5-11 Developer portal notification email . 76
5-12 Developer Portal main site . 77
5-13 Implementation components for exposing a SOAP Web service 77
5-14 IBM Bluemix service categories . 78
5-15 Secure Gateway service creation . 79
5-16 Secure Gateway definition . 79
5-17 Secure Gateway ID and secret . 80
5-18 Add a Secure Gateway destination. 81
5-19 Setting the Secure Gateway Client variables . 82
5-20 Secure Gateway connection status . 82
5-21 Running docker container services. 82
5-22 Secure Gateway destination settings . 83
5-23 Secure Gateway connection details . 83
5-24 Retrieve the WSDL from the Cloud endpoint . 84
5-25 CompanyA API Connect instance. 84
5-26 API Manager Design view. 85
5-27 JSON Schema definition for the Products API . 85
5-28 Definitions for GET /product operation . 86
5-29 Import CatalogServiceV1 SOAP web service . 87
5-30 SOAP service invocation through an Invoke policy . 87
5-31 Edit inputs of the getProducts: input map policy . 87
5-32 Configure the input mapping policy. 88
5-33 Configure the output mapping policy . 89
5-34 Start the API Manager test tool . 89
5-35 Implementation components for exposing an API from IBM Integration Bus 90
5-36 Imported projects . 93
5-37 REST operations. 94
5-38 Add parameters to operations. 94
5-39 Main message flow for Orders API . 94
5-40 Implemented operations details . 95
5-41 Implementing a subflow . 95
5-42 Aggregation flow . 96
5-43 Aggregation Fanout flow . 97
5-44 flow1_salesforce.msgflow . 97
5-45 Salesforce Request node property . 97
5-46 flow2_catalogservice.msgflow . 98
5-47 SOAP Request Node Properties. 98
5-48 Aggregate two response messages . 98
5-49 Monitoring event configuration . 99
5-50 Integration Node details in WebUI . 101
5-51 Deploy to integration Server . 101
5-52 Deploy BAR File . 102
5-53 Deployed resources . 102
5-54 Cloud host and port. 104
5-55 Push REST APIs to API Connect . 104
5-56 Configure connection to an API Connect cloud . 105
5-57 Successful connection . 105
5-58 Specify target details for pushing REST API . 106
5-59 Select the API to be pushed . 106
5-60 Override host and port for the APIs on IBM Integration Bus. 106
viii A Practical Guide for IBM Hybrid Integration Platform

5-61 Success message after Pushing API . 107
5-62 Go to the API Connect Dashboard . 107
5-63 Publish a staged product in a catalog . 108
5-64 Add a catalog to an API Connect instance . 110
5-65 Add a Production catalog to API Connect. 110
5-66 Portal Configuration window . 111
5-67 Add a Developer organization to the catalog . 111
5-68 Enter your Bluemix details . 111
5-69 Bluemix Developer organization confirmation email . 112
5-70 Confirm your Bluemix organization . 112
5-71 Stage a product to a catalog . 112
5-72 API Connect IBM Developer Portal site . 113
5-73 Creating the application . 113
5-74 API Products published in the Production catalog . 114
5-75 Subscribe an application to a Plan . 114
5-76 Select the Products API that was created earlier . 115
5-77 Products API details in the Developer Portal . 115
5-78 Show the GET /product operation. 116
5-79 Use the Developer Portal test tool . 116
6-1 Functional overview diagram . 120
6-2 Technical overview . 122
6-3 Simplified configuration. 123
6-4 Salesforce trigger options . 125
6-5 Select application accounts . 125
6-6 Select Google spreadsheet and worksheet . 126
6-7 Use of functions for the date fields . 126
6-8 Finalize and name the AppConnect flow . 127
6-9 Create a Campaign in Salesforce . 127
6-10 Added row for Winter Sale Campaign to Google sheet . 128
6-11 Publishing an order update event . 128
6-12 Flow overview . 129
6-13 IBM Integration Bus menu . 130
6-14 Select endpoint type . 130
6-15 IBM MQ Endpoint configuration . 130
6-16 Synchronize IBM MQ Endpoint . 131
6-17 Download agent configuration . 131
6-18 Setting up an agent for Callable Flows . 131
6-19 Download configuration . 132
6-20 Scenario2 directory and content . 132
6-21 Status of docker-compose environment . 133
6-22 Agent connected . 134
6-23 EVENTQM endpoint connected . 134
6-24 Importing the Project Interchange file . 135
6-25 Finalize Project Interchange import . 135
6-26 Flow skeleton . 136
6-27 WebhookOutput subflow. 136
6-28 Wiring the Route node terminals. 137
6-29 Subflow node properties for cancelOrder . 137
6-30 New BAR file . 138
6-31 Build and Save the BAR file . 138
6-32 Add an integration. 139
6-33 Upload BAR file. 139
6-34 Switching off Basic Authentication . 139
 Figures ix

6-35 Details of the integration . 140
6-36 Start integration. 140
6-37 Host name for the application on IBM Integration Bus on Cloud 141
6-38 Directory contents . 141
6-39 Cancel and Campaign messages received . 142
6-40 Output from the iib-listTriggers command. 142
6-41 Replacing the host name in the application definition yaml file. 143
6-42 Add an application to IBM App Connect . 143
6-43 Add Application window . 144
6-44 Orders application. 144
6-45 Select the campaignOrder event trigger . 145
6-46 Select accounts for the applications used in the flow . 145
6-47 Select the worksheet, and auto match fields . 146
6-48 Completed flow . 146
6-49 One event has been routed to the orderCampaign trigger . 147
6-50 Save + Continue button . 147
6-51 Cancel order trigger . 147
6-52 Create Case trigger. 148
6-53 Cancelled order follow-up flow . 149
6-54 Registered AppConnect flow . 149
6-55 Command line output . 149
6-56 New Case in Salesforce . 150
6-57 Integration topology that uses callable flows . 151
6-58 Import trigger pattern . 152
6-59 Application and Libraries for Trigger pattern. 152
7-1 Scenario 3 - Logical diagram - All variants . 154
7-2 Scenario 3: Technical diagram for all variants . 156
7-3 Scenario 3: Technical diagram for variant B . 157
7-4 Flow overview . 158
7-5 Docker compose environment . 159
7-6 New application. 160
7-7 Import from File System . 160
7-8 Selecting resources to be imported . 161
7-9 Creating a new Message Flow . 162
7-10 Select inputs and outputs for the mapping . 163
7-11 Adding a user-defined field . 164
7-12 JSON output object . 165
7-13 Creating a Move mapping action . 166
7-14 Custom ESQL mapping action . 166
7-15 Configuring the Custom ESQL properties. 167
7-16 Current date function . 167
7-17 Complete mapping . 168
7-18 Port number . 169
7-19 Deployed IBM Integration Bus application . 169
7-20 Output from test script. 170
7-21 Searching Message Hub in Bluemix catalog . 170
7-22 Configure the Message Hub service. 171
7-23 Create the Message Hub service . 171
7-24 Add a topic . 171
7-25 Configure the Message Hub topic. 172
7-26 Message Hub topic created . 172
7-27 Compose website . 173
7-28 Compose account creation form . 173
x A Practical Guide for IBM Hybrid Integration Platform

7-29 Compose account creation form completed . 174
7-30 Compose address form. 175
7-31 Compose payment form . 175
7-32 Compose MongoDB creation form . 176
7-33 Compose MongoDB deployment . 177
7-34 Microservice architecture . 177
7-35 IBM API Connect order model creation . 179
7-36 IBM API Connect order event model creation. 179
7-37 IBM API Connect Message Hub creation . 180
7-38 IBM API Connect MongoDB data source creation . 180
7-39 Microservice directory structure . 181
7-40 Microservice message-hub-proxy.js . 182
7-41 Microservice message-hub-proxy function . 182
7-42 Microservice message-consumer.js . 183
7-43 Microservice message-consumer method . 183
7-44 IBM API Connect Designer . 184
7-45 IBM API Connect catalog . 185
7-46 Microservice management in Bluemix . 185
7-47 Application overview diagram . 186
7-48 Ionic application file structure . 187
7-49 Order tracker application settings . 188
7-50 Order tracker application settings filled. 189
7-51 List of orders . 189
7-52 Order details . 190
7-53 Scenario 3 technical diagram, variant C . 191
7-54 Search the Secure Gateway service in Bluemix catalog. 191
7-55 Secure Gateway service details page. 192
7-56 Secure Gateway notification if the service exists . 192
7-57 Secure Gateway service creation . 192
7-58 Secure Gateway configuration . 193
7-59 Create a gateway . 193
7-60 Secure Gateway Dashboard. 194
7-61 Security Token and Gateway ID . 194
7-62 Add a destination to Secure Gateway. 195
7-63 Add destination configuration . 195
7-64 Destination host and port setting . 196
7-65 Protocol setting . 196
7-66 Authentication setting . 196
7-67 IP table rules setting . 196
7-68 Name the destination . 196
7-69 Created destination. 197
7-70 Flow overview for this variant . 197
7-71 Docker port mapping. 198
7-72 Test subscription. 199
7-73 Test event . 199
7-74 Bluemix Experimental Services . 200
7-75 Message Connect service. 200
7-76 Message Connect service instance creation . 201
7-77 Message Connect dashboard . 201
7-78 Stream name . 201
7-79 Select MQ Light connector . 202
7-80 Secure Gateway configuration import . 202
7-81 Additional information . 202
 Figures xi

7-82 Created stream . 203
7-83 Streams list . 203
7-84 Topic on Message Hub . 203
7-85 Scenario 3 - Technical diagram - Variant A . 205
7-86 Flow overview . 205
7-87 Installing the mongodb connector . 206
7-88 Output of testme.sh script . 207
xii A Practical Guide for IBM Hybrid Integration Platform

Tables

5-1 Advanced setup values. 81
5-2 Properties table. 85
5-3 Properties table. 88
5-4 Properties table. 88
5-5 ORDER table . 96
5-6 PRODUCTLIST table . 96
5-7 Parameters table. 100
5-8 Configuration table . 103
5-9 API Connect server host . 105
6-1 Google spreadsheet layout . 124
6-2 Campaign values . 127
6-3 Properties of the new node . 136
6-4 Application name and Description . 144
6-5 Mapping and values on the set up Salesforce action window 148
7-1 Attributes. 164
7-2 Target attributes. 165
7-3 Node properties . 168
7-4 Property values . 169
7-5 Properties table. 198
7-6 Properties table. 207
© Copyright IBM Corp. 2016. All rights reserved. xiii

xiv A Practical Guide for IBM Hybrid Integration Platform

Examples

5-1 Temporary text file . 80
5-2 Accessing parameter values in various languages. 92
5-3 The docker-compose ps command. 100
5-4 Operation successful message. 103
5-5 Output of the getOrder operation . 103
5-6 Test date (orderdata01.txt) . 108
5-7 Create order . 108
5-8 Get order . 109
5-9 Cancel order . 109
5-10 Get order again . 109
7-1 Result of display channel status command. 204
© Copyright IBM Corp. 2016. All rights reserved. xv

xvi A Practical Guide for IBM Hybrid Integration Platform

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2016. All rights reserved. xvii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Bluemix®
Cast Iron®
DataPower®
DB2®
IBM®
IBM API Connect™

IBM UrbanCode™
IBM Watson™
IBM Watson IoT™
InfoSphere®
MQSeries®
Redbooks®

Redbooks (logo) ®
UrbanCode™
Watson IoT™
WebSphere®
z/OS®

The following terms are trademarks of other companies:

SoftLayer, and SoftLayer device are trademarks or registered trademarks of SoftLayer, Inc., an IBM Company.

LoopBack, and the StrongLoop logo are trademarks of StrongLoop, Inc., an IBM Company.

ITIL is a Registered Trade Mark of AXELOS Limited.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
xviii A Practical Guide for IBM Hybrid Integration Platform

http://www.ibm.com/legal/copytrade.shtml

Preface

In order to remain competitive in today’s world, companies need to be able to integrate
internally and externally by connecting sensors, customers and partners with the information
in their systems of record. In short, they need to integrate with everything.

This IBM® Redbooks® publication describes how IBM Application Integration Suite and IBM
Messaging portfolio can be used to satisfy the needs of core hybrid integration use cases,
accelerating companies in their digital transformation journey.

All concepts are explained within the context of these use cases:

� Joining the API economy
� Improving productivity
� Refactoring for innovation

The target audience for this book is cloud and integration architects and specialists who are
implementing hybrid integration solutions.

Authors

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Austin Center.

Carsten Börnert is an experienced IT Specialist working in
Cloud Adoption and Deployment Services, which is part of IBM
Cloud. He has over 12 years of experience in Application
Integration, specifically using IBM Integration and Messaging
products like IBM Integration Bus, IBM MQ, and more recently
IBM API Connect™. His area of expertise in IBM Cloud is
Hybrid Integration. Carsten has been living and working for IBM
in a number of countries around the world. He has worked with
customers from a wide range of industries in roles ranging from
support over development to solution architecture.
© Copyright IBM Corp. 2016. All rights reserved. xix

Kim Clark has spent the last couple of decades working in the
field helping customers implement the integration aspects of
solutions, tackling concepts such as SOA, BPM, and APIs and
microservices. He has a broad and deep knowledge of the
architecture and design issues that are involved and of the
related IBM products. As a result, he writes and presents
regularly on design and architecture best practices in this
space. In his current role, Kim works as a strategist on the IBM
integration portfolio shaping the future direction of the products,
but still spends much of his time assisting customers improving
their integration architecture. Recent articles include “The
evolving hybrid integration reference architecture”
https://ibm.biz/HybridIntRefArch and “Microservices, SOA,
and APIs: Friends or enemies?”
https://ibm.biz/MicroservicesVsSoa. You can find him on
LinkedIn: https://www.linkedin.com/in/kimjulianclark.

Shahir Daya is an IBM Executive Architect in the GBS Global
Cloud Center of Competence. He is an IBM Senior Certified
Architect and an Open Group Distinguished Chief/Lead IT
Architect. Shahir has over 20 years at IBM with the last 15
focused on application architecture assignments. He has
experience with complex high volume transactional web
applications and systems integration. Shahir has led teams of
practitioners to help IBM and its customers with application
architecture for several years. His industry experience includes
retail, banking, financial services, public sector, and
telecommunications. Shahir is currently focused on Cloud
application development services and in particular platform as
a service (PaaS) such as IBM Bluemix®, containerization
technology such as Docker, design, and development of
Systems of Engagement (SOE), and Cloud-based DevOps
including IBM Bluemix DevOps Services.

Matthieu Debeaux is an IBM Certified IT Specialist with IBM
Cloud in France. He has 5 years of experience working in cloud
computing, virtualization, and IT process management both on
sales and delivery projects. Matthieu is currently focused on
Cloud technologies such as OpenStack and Docker, and
DevOps solutions, in particular IBM UrbanCode™ Deploy and
Release. He holds a Master’s degree in Computer Science
from Grenoble Institute of Technology.

Gerd Diederichs is Technical Consultant in South Africa. He
has been in IT for 47 years, about 28 of which he spent
developing a wide variety of application systems and some
early middleware. He has been with IBM in South Africa for 17
years and currently works as a Technical Consultant for the
worldwide team for Business Partner Enablement, presenting,
teaching, and proposing solution architectures to partners and
their customers.
xx A Practical Guide for IBM Hybrid Integration Platform

https://ibm.biz/HybridIntRefArch
https://ibm.biz/MicroservicesVsSoa
https://www.linkedin.com/in/kimjulianclark

Vasfi Gucer is an IBM Redbooks Project Leader with the IBM
International Technical Support Organization. He has more
than 18 years of experience in the areas of systems
management, networking hardware, and software. He writes
extensively and teaches IBM classes worldwide about IBM
products. His focus has been on cloud computing for the last
three years. Vasfi is also an IBM Certified Senior IT Specialist,
Project Management Professional (PMP), IT Infrastructure
Library (ITIL) V2 Manager, and ITIL V3 Expert.

Shamim Hossain is an IBM Certified Cloud Solution Advisor
and Cloud Solution Architect. He leads a cloud consultancy
laboratory in IBM Australia to develop born-on-the-cloud
applications using agile methodologies and design thinking. He
is a Redbooks publication thought leader and official IBM
Cloud Computing and Smarter Computing Ambassador. He
holds a Master of Telecommunications Engineering from the
University of Melbourne and a Bachelor of Computer System
Engineering (first-class honors) from Monash University. His
expertise and interests include different areas of cloud
computing, mobile computing, optical fiber communications,
broadband, internet engineering, and the Internet of Things. He
co-authored a book entitled Cloud Computing Service and
Deployment Models: Layers and Management by IGI Global.

Gary Kean is an API Connect Solutions architect working in
the worldwide IBM professional services team. He is
experienced in delivering SOA and Microservices architectures
for customers, particularly in the banking sector. Gary has a
keen interest in Node.js and other JavaScript-based
frameworks such as AngularJS and Ionic.

Carlo Marcoli is an Enterprise Architect specialized in API and
Digital Channels. He has a long experience helping customers
adopt leading-edge technology solutions to transform their
business. He currently works in the worldwide API Connect
pre-sales team. His main area of interests include the API
economy, Node.js, and micro services.

Shohei Matsumoto is an IT Specialist with IBM MQ and IBM
Integration Bus in Japan. He has 15 years of experience
designing and implementing in enterprise systems integration
on both distributed and mainframe platforms, and has been in
technical support for messaging products. Shohei is currently
focused on digital messaging technologies such as MQTT,
AMQP, and Apache Kafka.
 Preface xxi

Thanks to the following people for their contributions to this project:

Aarti D Borkar
Tony Curcio
Jack Carnes Jr
IBM US

Rob Nicholson
Andrew Schofield
Mickael Maison
Andrew Coleman
Lee Gavin
IBM UK

Francois van der Merwe
IBM South Africa

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Amar Shah is a Serviceability Architect working with the
IBM Integration Bus Level3 support team. He is responsible for
worldwide support for clients of IBM Integration Bus and the
serviceability enhancement of products. He is also a
designated Lab Advocate for key clients and provides advice
and consultancy on product solution and usage best practices.
Amar Shah has been associated with IBM for the past 17
years, and holds a Master’s degree in Software Systems from
Birla Institute of Technology, Pilani, India.

Johan Thole is a certified IT Specialist working in the
European Tech Practice for Cloud Adoption and Deployment
Services, which is part of IBM Cloud. He has over 15 years of
experience in Security, and Application Integration. His area of
expertise in IBM Cloud is Hybrid Integration. Johan’s technical
experience includes products like IBM DataPower® Gateways,
IBM API Connect, and IBM Cast Iron®. Johan holds a Bachelor
in Software Engineering from the Saxion University of Applied
Sciences (formerly HIO Enschede).
xxii A Practical Guide for IBM Hybrid Integration Platform

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xxiii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xxiv A Practical Guide for IBM Hybrid Integration Platform

Part 1 Concepts and architecture

This part introduces hybrid integration concepts and describes the most commonly used use
cases for hybrid integration. It also introduces several IBM hybrid integration products that are
used later in Part 2, “Hybrid integration scenarios” on page 53.

This part includes the following chapters:

� Introduction to hybrid integration
� Hybrid integration use cases
� IBM Hybrid Cloud and Integration Portfolio

Part 1
© Copyright IBM Corp. 2016. All rights reserved. 1

2 A Practical Guide for IBM Hybrid Integration Platform

Chapter 1. Introduction to hybrid integration

The computing world is now fundamentally hybrid in nature. Devices, systems, and people
are spread across the globe. Achieving integration across this ever changing surface area at
the pace of modern digital initiatives while still being able to manage the increasingly complex
landscape is a significant challenge.

This book explores how IBM Application Integration Suite and the IBM Messaging portfolio
can be used to satisfy the needs of core hybrid integration use cases, accelerating companies
in their digital transformation journey.

This chapter explores what is meant by the term hybrid integration and how IBM is aligning
its portfolio to meet these needs. It has the following sections:

� What is hybrid integration
� Hybrid integration reference architecture
� How is IBM addressing hybrid requirements in its integration portfolio?

1

© Copyright IBM Corp. 2016. All rights reserved. 3

1.1 What is hybrid integration

The face of integration is changing, and that change is being driven by the needs of the
business. One such example is the shift to cloud, which is driven by cost optimization to
improve the bottom line or recognizing the opportunity to build more agile business solutions.
Although cloud solutions have many of the same integration needs as their predecessors
on-premises, including connectivity, transformation, and cleansing, they also introduce a new
set of requirements.

If businesses are to be successful in the face of these shifts, the enterprise must be equipped
to adapt to these changing conditions. IBM has defined this agenda as “hybrid integration.”
We strongly believe that hybrid is the future of integration.

In this context, hybrid has four primary dimensions:

� Hybrid user communities: Integration is needed by both IT and line of business (LOB)
users who are adopting integration tools to automate application interactions.

� Hybrid connectivity: Integration reaches across secure connections to access data in the
cloud or access data from the cloud.

� Hybrid integration styles: Combining application, API, and data integration to apply the
optimal technology at the best time for any cloud solution.

� Hybrid deployment: Cloud based solutions rely on components being available
on-premises and in cloud data centers.

This section looks at each of these dimensions in more detail.

1.1.1 Hybrid user communities

Integration is no longer the preserve of a central dedicated team of integration specialists.
Different people in more diverse roles are now involved in performing integration, and there is
a significant shift towards the lines of business solving their own integration challenges
(Figure 1-1).

Figure 1-1 Different people in more diverse roles are now involved in performing integration

To describe all these roles in detail is beyond the scope of this book, but in brief Figure 1-1
shows three primary roles:

� Integration specialist: The traditional role that usually involves a dedicated team whose
full-time job is integration. The members of this team use deep specialist tools, and attain
a high degree of knowledge of how to interact with the unique systems that are owned by
the enterprise.

� Developers: These members have deep technical skills in user interface and application
runtime technologies. Their job is to create and enhance new business applications. They
understand the areas of the business that are related to projects they work on, and the
4 A Practical Guide for IBM Hybrid Integration Platform

applications they create might require access to a number of systems of record. They
might understand how to connect to local systems such as application databases, but
would prefer not to spend time writing code to integrate with complex systems because
this process takes time away from implementing business requirements in their
applications.

� Automators: Business users who want to focus on directly building the business. They are
typically users of a number of systems of record. They might not be from a technical
background. The fact that systems need to be integrated directly affects to the amount of
manual work they need to do across any two or more systems. At the extreme end, these
users are often referred to as Citizen Integrators.

This book covers how the use cases often involve more than one role and discuss how the
tools should enable seamless collaboration between these different user roles.

1.1.2 Hybrid connectivity

As shown in Figure 1-2, the surface area over which applications are integrated has
expanded dramatically. In addition to the vast array of traditional on-premises systems, there
is an ever-growing ecosystem of cloud-based systems available over modern APIs, and a
host of other diverse partner connectivity patterns.

Figure 1-2 Surface area over which integration applications have expanded dramatically

It is also important to recognize how an enterprise must now recognize a broader “ownership
boundary” that extends far beyond the physical walls of the company and its data centers.
This boundary includes infrastructure, platform, and software “as a service” that contains the
core data and functions critical to the day to day running of the business.
Chapter 1. Introduction to hybrid integration 5

1.1.3 Hybrid integration styles

No single integration style is sufficient to resolve the needs of a complex hybrid solution. As
shown in Figure 1-3, a hybrid integration platform needs to be able to combine the different
design styles of application integration, API exposure, and data integration as required.

Figure 1-3 Different design styles of application integration, API exposure, and data integration

A hybrid integration platform must be able to combine the different design styles of application
integration, API exposure, and data integration as required. It should be possible to apply the
optimal patterns and runtimes for any given hybrid solution.

1.1.4 Hybrid deployment

The extension of the enterprise ownership boundary not only affects the breadth of things you
need to connect to, it also has an effect on where you need to deploy your integration
software components.
6 A Practical Guide for IBM Hybrid Integration Platform

As shown in Figure 1-4, you need options when it comes to how and where you deploy.

Figure 1-4 Options for how and where to deploy

You need to have the flexibility to deploy on bare metal, in virtual machines, and in containers,
and deploy to a good breadth of different vendor infrastructure as a service. You also need to
offer different levels of managed services from self-installed to fully managed platform as a
service, or even software as a service.

1.2 Hybrid integration reference architecture

IBM has proposed a hybrid integration reference architecture, catering to common patterns
seen in enterprises to tackle these issues. It is described in full in a detailed article here:

http://ibm.biz/HybridIntRefArch

The core concepts are summarized in the following online presentation video:

http://ibm.biz/HybridIntRefArchYouTube

Note: Although SoftLayer® is shown as a separate brand in Figure 1-4, IBM made an
announcement that says that SoftLayer’s products and tools will be merged under the
Bluemix brand. For more information, see:

https://www.ibm.com/blogs/bluemix/2016/10/bluemix-softlayer-unified-cloud-platf
orm/

With this integration, you will be able to manage all your Bluemix and SoftLayer assets
from a single console, and be billed in a single invoice.
Chapter 1. Introduction to hybrid integration 7

https://www.ibm.com/blogs/bluemix/2016/10/bluemix-softlayer-unified-cloud-platform/
http://ibm.biz/HybridIntRefArch
http://ibm.biz/HybridIntRefArchYouTube

This section covers some of the most relevant core concepts as shown in Figure 1-5.

Figure 1-5 Hybrid integration reference architecture

The goal is to enable teams to become self-sufficient in their integration needs to the highest
degree possible, while the IT department still maintains control and the ability to manage and
refine the more business critical integrations.

The reference architecture addresses the previously mentioned four dimensions of hybrid with
the architecture: Communities, connectivity, styles, and deployment.

1.2.1 Hybrid communities

Modern IT is often described as bi-modal, and sometimes multi-modal when describing the
fact that there are different independent teams working at different velocities. Integration
requirements come from people across the business. The change in hybrid integration is that
it is no longer only the integration specialists who can resolve those requirements.

The reference architecture recognizes this aspect. In Figure 1-5 two gateways are shown,
with a repeated structure of implementation capabilities beneath each. This configuration
represents the fact that integration software must be modular and repeatable so that teams
can take on their own integration, using just the components of the integration architecture
that they need.

Fully managed tools should be available that enable straightforward integrations to be
performed directly by business users and shadow IT departments aligned with the line of
business. Complex integrations are often collaborative, and the tools should enable
specialists to surface events or APIs into the business users integration environment.

Therefore, integration tools need to be available to everyone, at a level that is appropriate to
their job role, and in such a way that it makes it easy to collaborate on integrations with other
teams.
8 A Practical Guide for IBM Hybrid Integration Platform

1.2.2 Hybrid connectivity

Integration is fundamentally about connecting systems and devices with other systems and
devices. The target for hybrid integration is that it can connect to anything, anywhere. The
connectivity components within the architecture must connect to anything from low-level
connectivity to systems of record, yet equally easily take advantage of the simplicity of
modern interfaces on cloud native systems software as a service (SaaS). In short, it must
enable any system to become fully integrated into the integration landscape.

To achieve this goal, connectivity needs to be built in a modular fashion such that common
connectors can be reused across the architecture. However, these connectors need to be
provided in different types depending on the type of user. As an experienced integration
specialist, you should be able to connect to a SaaS-based CRM system from the lowest level
integration and use the full richness of the API. Yet it should also be possible to simply wire
connections to that same CRM systems as a business user. The connectivity layer is common
in each repeated instance of the implementation, but it is presented differently to different
users based on their experience and job role requirements.

1.2.3 Hybrid styles

Previously discrete patterns of integration often need to be blended together to resolve
complex solutions. Enterprise application integration might be used to create a data
synchronization between systems, yet those systems might also be accessed in real time by
APIs. Events being passed between systems might need to be addressed individually for
latency during online periods, yet in bulk to manage high volume scenarios. The tools and
runtimes need to be able to span across real-time APIs, events, and bulk data patterns to
ensure that all scenarios can be covered.

1.2.4 Hybrid deployment

Modern applications are deployed across a broad landscape, so the accompanying
integration components must have equally flexible installation options on metal, in virtual
machines, or in containers. The components should be as easy to run on-premises, as in
common cloud infrastructures. Patternized deployment should enable automation such that
ad hoc environment creation becomes simple and mechanical. The components should have
simple ways to integrate within, and across network and security boundaries. Finally, there
should be different levels of managed services from self-managed infrastructure right through
to fully managed software-as-a-service.

1.3 How is IBM addressing hybrid requirements in its
integration portfolio?

IBM has dramatically simplified the way customers acquire the range of modular integration
components they need.

IBM Application Integration Suite offers application integration, cloud connectivity, and API
management features under one part number. This offering is well-aligned to customers who
are pursuing API economy and cloud applications and need integration tools at the heart of
their solution. This offering is among the simplest yet most complete and cost effective
offerings in the market to help customers achieve their digital transformation goals.
Chapter 1. Introduction to hybrid integration 9

The suite integrates well with the IBM Messaging portfolio, which provides industry-leading
enterprise and platform messaging capabilities with the broadest array of deployment options
on the market.

These offerings provide the following advantages:

� Enable integration by the full range of different roles within the organization

� Enable connectivity to the broadest range of systems

� Cater to every type of integration styles

� Can be deployed flexibly across all major platforms or purchased as fully managed
services

The products are described in detail in Chapter 3, “IBM Hybrid Cloud and Integration
Portfolio” on page 25. The later chapters (Part 2, “Hybrid integration scenarios” on page 53)
describe how to build specific scenarios by using the components of the suite across common
hybrid integration use cases.
10 A Practical Guide for IBM Hybrid Integration Platform

Chapter 2. Hybrid integration use cases

This chapter provides an introduction to hybrid integration and present the three most
common use cases. This chapter has the following sections:

� Introduction to hybrid Integration use cases
� Use case A: Joining the API economy
� Use case B: Improving productivity
� Use case C: Refactoring for innovation

2

© Copyright IBM Corp. 2016. All rights reserved. 11

2.1 Introduction to hybrid Integration use cases

Figure 2-1 shows the three most common use cases found in enterprises that use hybrid
integration to further their digital transformation programs.

Figure 2-1 Most common use cases found in enterprises that use hybrid integration

This section covers each of these use cases. In the scenarios later, we choose an example of
each use case to build using products from the IBM hybrid integration portfolio.

2.2 Use case A: Joining the API economy

This is a core use case to hybrid integration because the business initiative falls almost
entirely into the integration domain. For this reason, the hybrid integration platform is
important across the entire initiative.

As a first example, a company wants to introduce a new revenue opportunity by bringing their
current data and functions into the API economy. Commonplace examples would include
APIs making product catalogs available, APIs to enable ordering goods, and APIs to enable
payments and more. What unique data or function does your company perform? Today it
might be something you only use internally, but if it could be made available for anyone to
include in their applications by using an API, would it provide sufficiently significant value so
they would pay for it? Would it increase your market share? Would simply making it available
to external developers further your reach? By enabling developers beyond the walls of the
enterprise to explore your APIs, might new business models evolve that you would never have
imagined on your own?
12 A Practical Guide for IBM Hybrid Integration Platform

Entering the API economy requires, as a minimum, the ability to expose data and functions
beyond the walls of the enterprise by using APIs, but what is really happening beneath the
surface? The company must either hold unique data, or they must be able to perform a
unique function that they can expose as an API. The simplest scenario is that this data or
function already exists in one or more of their existing systems of record and all they need to
do is unlock it as shown in Figure 2-2.

Figure 2-2 Use case A: Joining the API economy

In this scenario, IBM Integration Bus would typically be used as the integration engine to
unlock the data in the systems of record. Then API Connect would surface the APIs by using
its gateway, and provide policy management and developer portal capabilities to safely and
simply bring the APIs into the public domain. This section explores those steps in more detail.

2.2.1 Unlocking systems of record

IBM Integration Bus has been evolving to fulfill this role for decades. It comes with a vast array
of pre-built configurable connectivity to common systems that enable you to integrate to
almost any system within an enterprise whether modern or legacy, with support for a huge
range of ready for use protocols and transports.

Surprisingly, its large number of capabilities does not prevent it from being quick to install and
simple to use. Patterns and tutorials are available for common needs, and a vibrant
community exists for exchanging common practices through blogs, forums, and repositories
such as GitHub. In fact, there is no license cost for developer use, which further encourages
an active community.

Most integration needs can be satisfied by using powerful intuitive graphical tools for
mapping, data formatting and parsing, aggregation, routing, and so on. At the other end of the
scale, there is a suite of different programming languages available for more complex tasks.

A vast array of synchronous protocols is provided from modern REST or SOAP-based HTTP
communication down to low-level support for databases, TCP/IP, CORBA, and many more
besides. It has deep native asynchronous messaging support based on open standards such
as JMS, MQTT, and Kafka. IBM MQ is used as a de-facto messaging capability by most
enterprises for robust asynchronous communication.
Chapter 2. Hybrid integration use cases 13

IBM Integration Bus also provides pre-built connectors for enterprise applications such as
SAP, Siebel, and also cloud based applications such as Salesforce. It also uses a common
connector framework enabling new connectors to be quickly created, or sourced from the
partner community.

IBM Integration Bus can make integrations available through an equally broad variety of
protocols, although in this use case, we would most likely use RESTful APIs, or SOAP web
services. These can be defined bottom-up, taking existing integrations and creating REST
APIs from them; or by importing existing definitions (for example in Swagger format), and
implementing the underlying integrations to that specification. These integrations are then
available to use directly within the enterprise (a common pattern for IBM Integration Bus) or
expose these APIs to developers beyond the enterprise (as in this use case), which requires
a further API exposure layer as described in the next section.

This book focuses on the use of IBM Integration Bus to connect to deep back end systems.
However, if a significant portion of your integration is to business assets and data on the IBM
z/OS® platform, you should also consider z/OS Connect Enterprise Edition (z/OS Connect
EE). IBM Integration Bus and z/OS Connect EE play complementary roles. z/OS Connect EE
enables granular exposure and control over the low level services and APIs from the z/OS
platform. Due to the Open API specification that both honor, these can then be seamlessly
brought into IBM Integration Bus and composed together and combined with other sources to
create the rich, high value APIs and services required by the enterprise and beyond. For
information about on z/OS Connect EE’s capabilities, and guidance on when an where to use
it based on the same hybrid integration reference architecture, see IBM z Systems Integration
Guide for the Mobile and API Economy, REDP-5319.

2.2.2 Securely surfacing APIs

IBM API Connect provides a simple way for developers to discover, sign up for, and use APIs.
Developers are provided with an intuitive portal within which they can explore the catalog of
APIs, their usage, and what plans are available to subscribe to.

The definitions of APIs created by IBM Integration Bus can be easily pushed into IBM API
Connect, and then configured for exposure to a broad audience of external developers.

Although IBM API Connect comes with its own lightweight gateway, it is often preferred to use
IBM DataPower for external API exposure because it provides a robust, secure, and
performant gateway. IBM DataPower is typically placed at the edge of enterprise (in the
DMZ), and is often already in place performing other gateway functions.

IBM API Connect is also available in a completely cloud-based form factor, as a software as a
service (SaaS) offering. This offering can reach into the enterprise through a secure gateway
to expose APIs from within the enterprise. This structure removes any need for an
infrastructure initiative to get the software in place, and enables an immediate start.

When speaking of the API economy, we tend to think exclusively of monetized public APIs.
However, recognize that IBM API Connect is used just as often to control access to APIs
within an enterprise to ensure that dependencies between business units are clear.
Enterprises that in the past might have looked to a service registry for SOA services, often
choose internal API exposure as a simpler way of retaining control of relationships between
applications. Equally, external exposure of APIs is often used to provide simpler sign-up
processes for partners, without necessarily making the APIs available to the general public.
14 A Practical Guide for IBM Hybrid Integration Platform

2.2.3 Extending the use case: Creating more valuable “interaction APIs”

The section has covered how the use case would be implemented in its simplest form,
unlocking data from the systems of record using IBM Integration Bus to making them
available as internal APIs, and then exposing them in their current state externally with IBM
API Connect. What if an enterprise has more complex requirements?

What is often created is a two-layered model as shown in Figure 2-3:

1. System APIs: At the lowest level, “system APIs” need to be exposed robustly from the
Systems of Record by using deeper integration specialist skills and overcoming complex
protocol and data format challenges. As discussed earlier, IBM Integration Bus remains
the core engine for performing this complex connectivity to systems of record, and
surfacing them as rich System APIs.

2. Interaction APIs: These APIs are then composed together to form “interaction APIs” that
are more useful to the typical applications and channels they serve. So now you start to
see the developer role involved not just in using the System APIs for their applications, but
also in building new applications that surface more business and channel-centric valuable
“interaction APIs.” IBM API Connect is more than just the gateway and portal for APIs. It
includes API creation capabilities as well. Interaction APIs can be composed by using a
powerful graphical flow editor, or by using community grown patterns such as the Node.js
LoopBack® framework, to provide maximum developer freedom and productivity. This
feature plays well into the microservice architectures commonly chosen by the “digital
teams” mentioned in the introduction.

Figure 2-3 Two layered models

2.2.4 A hybrid landscape for API components

It is important to recognize just how flexible this architecture can be in relation to where the
components are located, and how many different levels of sophistication can be achieved.

The simplest configuration back is shown in Figure 2-2 on page 13. However, you commonly
see a split in roles. Often, integration specialists from the enterprise IT team create the
lower-level integrations that result in System APIs. This process is typically done by using IBM
Integration Bus, which although traditionally is often placed on premises, can also now be
leveraged as a managed cloud offering.
Chapter 2. Hybrid integration use cases 15

The more business-focused interaction APIs are then often created by separate IT teams that
are owned by the line of business. These teams have in the past been described as “shadow
IT,” but are now often more commonly recognized as “digital IT.” This split between enterprise
IT and digital IT is typically described as “bi-modal IT,” which inevitably works its way into the
architecture as well, as shown in Figure 2-4.

Figure 2-4 Bi-modal IT

To enable this flexibility in the architecture, all the products within IBM Application Integration
Suite have both on-premises license and managed cloud offerings. For example, IBM
Integration Bus can be installed traditionally on premises, or in virtual images, or in Docker
containers created on a cloud-based infrastructure as a service offering such as IBM
SoftLayer, or any of many other supported providers. There is also a managed service, IBM
Integration Bus on Cloud, that IBM uses to look after the deployment and maintenance of the
containers. The customer simply requests capacity when they need it.

For the most sophisticated APIs, you might need more than simple composition, and might
need to write new applications. Shown as c) and d) in Figure 2-4, microservices represent a
common architecture for complex APIs, enabling the rapid creation of more composable,
scalable solutions. Microservices are described further in use case C.

Lightweight runtimes suitable for creation of microservice components in Java and Node.js
are provided within IBM API Connect, for more sophisticated API implementations. In addition
to the on-premises licensed product, there is also a fully managed cloud native version of IBM
API Connect to enable flexible deployment options. IBM API Connect is also the API
capability within IBM Bluemix. IBM Bluemix provides a ready made, managed platform as a
service for building modern applications. It is suited to hosting microservice architectures. It
also intelligently incorporates a catalog of capabilities for enhancing your applications that
include data, analytics, cognitive, Internet of Things, and many more. Now the only limit to the
capability of your APIs is your imagination.
16 A Practical Guide for IBM Hybrid Integration Platform

2.3 Use case B: Improving productivity

This use case focuses on how to enable line of business to automate their work across SaaS
applications and even to existing systems of record. It uses IBM App Connect to enable
business users to automate work between common SaaS applications. More complex
enterprise applications can also then be made available to IBM App Connect by exposing
their triggers and actions through IBM Integration Bus.

Although there is inevitably a lot of focus around the API economy, a significant amount of
integration is behind the scenes. Lines of business need to focus on innovation rather than on
day-to-day processes. In today's culture of demanding immediate results, the ability of a
business to streamline its processes is a key differentiator.

Background integration is everywhere. Few business processes occur only with a single
system, so something somewhere needs to move data from one system to another for the
next step in the process to occur. This type of integration is happening all the time. How do
the new sales that you log in the call center become orders in the order management system?
How do those orders become shipments in the logistics systems?

Traditional enterprise integrations were costly and challenging because they joined complex
and old systems together that had not originally been designed around this type of
interaction. They would typically require dedicated IT projects to unpick the differences
between complex data formats, interaction patterns, and security models. These are the
costly enterprise integration requirements towards the left of Figure 2-5. Clearly only the
integration projects with high business value are worth embarking on.

Figure 2-5 Use case B. Improving productivity

But if a company is to compete in a digital economy, its day-to-day tasks and processes need
to be as slick and automated as possible. You need to ensure that you are only involving
people to do added value tasks and ensure they can do those tasks efficiently. Users should
not spend significant time moving data from one system to another.
Chapter 2. Hybrid integration use cases 17

However, with the increasing number of systems that businesses must work with, both on
premises and in the cloud, more individualized unique integrations are required. It would be
far too expensive to perform full scale integration projects for each of these integrations. In the
past, these opportunities for improved efficiency would continue to be addressed only by
more expensive human processes/efforts.

With modern tools and techniques, this “long tail” of unique and simpler integration
requirements can finally be addressed. At the far right of the graph in Figure 2-5 on page 17
are many simple day-to-day tasks that could be simplified or automated by the business users
themselves, with no need to get IT involved. This process is often described as citizen
integration, and the tools that are used to do it are sometimes referred to as integration
software-as-a-service (iSaaS). This is the primary subject of this use case (B). The middle
ground of shadow IT integration and iPaaS is addressed in the final use case (C).

This use case focuses on how to enable the business users to perform some of their own
integration automation as shown in Figure 2-6. Interestingly, the simplest route into this
feature is for them to integrate cloud based SaaS applications, helping the enterprise to
embrace external sources of data and function. This process works because SaaS
applications have been built in an era where providing a standardized API is considered
mandatory, which leads to a generalized and simplified integration approach. After this
“cloud-to-cloud” integration has been introduced, you can then perform the more complex job
of unlocking systems of record within the enterprise. You should be able to enable controlled
access to a select set of enterprise applications such that the business can perform some of
their own “cloud-to-ground” integrations as well.

Figure 2-6 Enabling the business users to perform some of their own integration automation
18 A Practical Guide for IBM Hybrid Integration Platform

As an example of cloud-to-cloud integration, take a marketing use case where you want a
new SaaS application to organize corporate events for customers. This application will allow
customers to register online in the corporate events management system. In addition, you
want to make a note of those customers in your SaaS based marketing system so that you
can keep in touch with them after the event as shown in Figure 2-7.

Figure 2-7 Cloud-to-cloud integration

It is probably not worth the cost of an IT project to set up that integration. However, it would be
a terrible waste of resources to have one of your staff members do it manually, not to mention
the potential for errors. It would be great if people in the line of business, or tech-savvy power
users in your department could set up that integration themselves.

What kind of person are we talking about here? This is the automator from Figure 1-1 on
page 4, who is a business person who needs to integrate the systems they use, but probably
would not even talk of it as “integration.” They are probably not programmers. They are almost
certainly not familiar with complex integration tools. This person wants to perform integration
using tools no more difficult than those they use in their daily work such as email,
spreadsheets, social media, and the SaaS applications they use regularly. This role is
sometimes known as a “citizen integrator.”

Citizen integrators need a tool to create these connections between the applications they use.
Those tools needs to be instantly available online, with no installation required. They should
be engaging and simple to explore and to use, but still enable powerful integration
capabilities.

This type of capability is sometimes referred to as iSaaS. At a minimum it should have these
capabilities:

� Pre-built connectivity to common cloud-based systems of record.

� A native understanding of the events (triggers) that those systems create, and the actions
that can be performed on them.

� Rapid ways to join those systems together, including choosing triggers/actions, setting up
login credentials, mapping the data, and so on.

� Runtime management of integrations.

� Monitoring of what events have been processed.

� Ability to switch the flow of events on and off.
Chapter 2. Hybrid integration use cases 19

IBM App Connect is designed for exactly this purpose, providing a simple but powerful
experience for business users to automate simple tasks. It enables users to join triggers from
one system to actions in another. For example, the creation of new customers in Salesforce
results in the customer data being automatically appended to a new row in a Google
Spreadsheet. New connectors to common systems are being created regularly by IBM based
on market demands. Over time, users are able to perform more sophisticated actions such as
copying and synchronizing chosen data across systems.

2.3.1 Extending the use case: Cloud-to-ground (and ground-to-cloud)

Connecting between common cloud-based systems is already a huge productivity
improvement for business users, but what if they could also connect to the unique systems of
record within the enterprise? What about if you could listen for new products added to the
enterprise product catalog, or perform updates to the inventory in the stock control system as
shown in Figure 2-8? We need to find a way to bring the core data and the capabilities of
those critical enterprise systems of record up to the business user.

Figure 2-8 Ground-to-cloud integration

Because the complex enterprise systems might not have existing interfaces, they might need
the assistance of the integration specialist to make the systems of record available in a form
that the iSaaS can consume. The challenge is to make this process as easy as possible for
both the business user and the integration specialist.

One of the simplest ways to make a system of record available to IBM App Connect is to
surface it using IBM Integration Bus. In just a few simple steps, IBM Integration Bus flows can
be made available to IBM App Connect users, either as triggers or as actions. The IBM
Integration Bus flow might be performing complex integration, but after they are configured,
they appear just like any other system, with the same simplicity of integration to the IBM App
Connect user. Once they are configured, the business user (in the role of automator) can
create all the integrations that they want without requiring the help of an integration specialist.

Marketing

Stock
Control

Product
Catalogue

Trigger:
New Product Line

Action:
Update Inventory

Action:
Propose campaign

Sales

Trigger:
Product sold

IBM App Connect can integrate with
enterprise applications to automate work
across the hybrid enterprise.

IBM Integration Bus is used to make
enterprise systems of record available
as triggers and actions for IBM App
Connect.
20 A Practical Guide for IBM Hybrid Integration Platform

2.4 Use case C: Refactoring for innovation

This use case focuses on the new application architectures such as microservices that
companies are using to enable faster innovation by building composable applications.
Microservice applications are not built in isolation. They need access to data, and they need
to be made available to other applications through APIs. This use case covers the
components of the IBM hybrid integration portfolio that can be used to provide foundational
capabilities around a microservices architecture.

Many businesses have successfully moved all or part of their operations to a completely
online, self-service model, including banks, shopping, insurance, and travel booking. These
businesses now have self-service capabilities that enable the consumer to transfer money,
purchase items, get quotes, and book trips.

Moving a business online is just the first step in modern e-commerce. What makes a business
stand out is the pace and creativity of their innovation in online products. For example,
consider the now well-known disruption to the taxi industry. To be able to order a taxi online is
not interesting in itself. Enabling a new demographic of drivers by providing a simple
application that combines location awareness, satellite navigation, and cashless payment is a
true disruption to an industry. Being able to rapidly add features like driver and passenger
rating systems, surge pricing, ride sharing, and multiple taxi types provide advantages as
competitors move into the new market.

So what does the underlying IT look like to enable innovation at this pace? A business must
be able to rapidly compose new applications from what they already have. Equally important,
they must be able to embrace partner capabilities and add them into their solutions easily.
You need to look to modern application architectures, and at ways to embrace external
sources of data and capabilities into your solutions. With all of these competing sources of
potentially duplicate data, you also must consider how to synchronize your systems of record.

This use case is noticeably different in scale to use cases A and B. An initiative with as broad
a scope as this involves many of the activities that are mentioned in the descriptions of the
other use cases. Innovations might include an API channel and might require automation, so
this use case is a superset of the other use cases combined with additional capabilities, such
as event streaming.

2.4.1 Modernizing applications for composability

New application architectures such as microservices have emerged to enable the creation of
more composable applications. Complex applications are broken down into self-contained
microservice components, which are each focused on doing just one thing well. This
technique enables new ideas to be implemented in isolation, providing greater agility,
scalability, and resilience (Figure 2-9).

Figure 2-9 Microservices applications
Chapter 2. Hybrid integration use cases 21

These components can then be joined into solutions with more elastic scalability, and more
flexible resilience models. This process allows you to innovate faster, scale the ideas that take
off, and ensure that they meet the levels of service that your reputation depends on.

Microservices architecture's relationship with integration is complex. The distinction between
it and initiatives such as service-oriented architecture can be hard to understand as described
in “Microservices, SOA, and APIs: Friends or enemies?,” but at least two clear integration
requirements emerge:

� The functions that are provided by a microservice is typically exposed as an API. This
configuration implies the use of an API management capability such as IBM API Connect
to surface the APIs in a rich and self-administrable way. This decentralization of the
administration of APIs is critical for agility both from the perspective of the microservices
implementers, and the business partners wanting to use those APIs. This aspect was
already covered when discussing Interaction APIs in use case A.

� In order for microservices to be truly independent, they might need copies of data from
other sources. This issue is discussed in the following two sections.

To read “Microservices, SOA, and APIs: Friends or enemies?”, use this link:

https://ibm.biz/MicroservicesVsSoa

2.4.2 Synchronizing systems of record

Applications are unlikely to provide much value if they do not have access to data, and the
same is true for microservice components. It might be tempting to say that because most
sources are exposed with APIs, microservices can easily access all the data that they want.
However, this assumption ignores one of the most important design aspects of microservices:
They must be independent. If they call APIs at run time, they depend on them. If the API is not
available, then so is the microservice. So in fact, although APIs are sometimes used by
microservices, other more decoupled integration patterns are often more appropriate.
22 A Practical Guide for IBM Hybrid Integration Platform

https://ibm.biz/MicroservicesVsSoa

For more sophisticated microservice components to be truly independent, they need a
separate, yet up-to-date copy of the data to work with. A method is needed to capture and
distribute events happening in the systems of record to ensure that the microservices can
build and maintain their local data stores. These are traditionally well known integration
patterns, such as “data sync” and “event streams,” but they are returning in subtle new forms
for this new era of application architectures as shown in Figure 2-10.

Figure 2-10 New era of application architectures

Although IBM Integration Bus enables real-time integration as described in use case A, do not
forget that event driven integration has been at the core of IBM Integration Bus usage since its
inception. It has the low-level connectivity required to listen to events occurring in a huge
range of enterprise systems, transforming and routing them to their intended destination
systems. This role is now reinvigorated as a mechanism to deliver the event streams required
by microservice style applications. IBM Integration Bus is compatible with a host of different
messaging platforms, and has close compatibility with IBM MQ. Messages can also be
pushed up onto the cloud native application platforms used to host microservice components
such as IBM Bluemix, and their native messaging capabilities such as IBM Message Hub,
which is a product ionized version of the popular open source messaging standard Kafka.

Note: See the following links for the recently available KafkaProducer and KafkaConsumer
nodes that have been provided in IBM Integration Bus 10.0.0.7:

https://developer.ibm.com/integration/blog/2016/11/25/using-the-new-kafka-nodes
-in-ibm-integration-bus-10-0-0-7/
http://www.ibm.com/support/knowledgecenter/SSMKHH_10.0.0/com.ibm.etools.mft.doc
/bz91040_.htm
Chapter 2. Hybrid integration use cases 23

https://developer.ibm.com/integration/blog/2016/11/25/using-the-new-kafka-nodes-in-ibm-integration-bus-10-0-0-7/
http://www.ibm.com/support/knowledgecenter/SSMKHH_10.0.0/com.ibm.etools.mft.doc/bz91040_.htm

2.4.3 Embracing external sources

Ensuring that you can write your applications in a composable fashion and use data from your
current systems of record is only half the process. To truly innovate, you need to embrace
external sources of data and function. The example taxi company would not be successful if it
is not able to incorporate location services, traffic routing, maps, and payment systems into its
application. Attempting to build any of those for itself would have taken time away from the
core value proposition. It is by combining forces with creativity from outside of the
organization that you are able to turn your existing assets into truly innovative solutions
(Figure 2-11).

Figure 2-11 Integrating external sources

Composable applications need simple ways to integrate with data and functions from partner
systems. Most modern internet-accessible partners provide APIs as a core part of their
offering. However, the existence of an API to connect to is only the beginning of the journey.
You still need to handle security credentials, map data, manage reliable updates, aggregate
API calls to make them more usable, and so on. In addition, APIs are all implemented in
subtly different ways, despite conforming to the same high-level standards. This concern is
especially relevant when listening to events happening in external systems because the ways
to represent events are many and varied. You could write code for this integration, but it would
make more sense to use pre-built connectors. Using common integration tools provides the
same experience regardless of the system connected to, and provides the necessary
operational monitoring immediately.

IBM Application Integration Suite contains purpose-built cloud connectors to a vast range of
common cloud-based services, and a clean, simple visual environment. External cloud-based
systems can be easily connected together, or bound into enterprise systems by using
configuration rather than code.

2.4.4 Innovating new solutions

A microservice architecture without the surrounding integration infrastructure would be limited
in scope. The integration capabilities within IBM Application Integration Suite have enabled
applications to accomplish these goals:

� Expose capabilities as secure yet easily configurable APIs
� Synchronize data with systems of record
� Gain access to external sources of data to enrich their functions

We now have everything in place to enable composition of more far reaching innovative
solutions.
24 A Practical Guide for IBM Hybrid Integration Platform

Chapter 3. IBM Hybrid Cloud and Integration
Portfolio

IBM offers a spectrum of enterprise grade Hybrid Cloud capabilities. This chapter describes
the IBM Hybrid Cloud and Integration Portfolio and has the following sections:

� Introduction
� IBM Application Integration Suite
� IBM Messaging Portfolio
� IBM DataPower

3

© Copyright IBM Corp. 2016. All rights reserved. 25

3.1 Introduction

For most enterprises, the cloud deployment model is not the only form of IT that they have.
They might have an established on premises IT operation that has been running for many
years that encapsulates the business knowledge and processes that make their business
unique in their market. It might be that regulatory pressure forces them to maintain certain
parts of their business relevant information on their own premises and in-country. Many other
motivations can exist for not moving to a full rollout in a single public cloud footprint, or not
doing it now.

Another potentially interesting aspect of introducing cloud-style deployment strategies, even
where they are not yet needed is the ability to clone system instances from standardized
patterns that are more robust and easier to maintain. In addition, such systems can be
machine generated in hours rather than weeks, requiring fewer skilled staff.

Therefore, most enterprises realize a need for a hybrid model that combines on-premises,
off-premises, and traditional models as well as secure connectivity between systems of
engagement and systems of record. IBM offers a variety of enterprise grade Hybrid Cloud
capabilities. This chapter introduces the products that make up the IBM Hybrid Cloud and
Integration Portfolio.

3.2 IBM Application Integration Suite

As shown in Figure 3-1, IBM Application Integration Suite provides the tools that enterprises
need to connect cloud and on-premises applications, and to build, expose, and manage APIs.
These are the all essential ingredients in digital transformation.

Figure 3-1 Application Integration Suite offerings

Three established products are included in this offering:

� IBM Integration Bus: For deep enterprise connectivity
� IBM API Connect: For API exposure and management
� IBM App Connect: Bringing cloud connectivity to the non-integration specialist

These products cover the multiple dimensions of hybrid integration:

� Provide targeted experiences for the diversity of roles involved
� Enable multiple integration patterns and styles
� Provide rich enterprise and cloud connectivity
� Provide a breadth of deployment options

����������	
�����
�  ����������	�
�����
���	
�����
�  ������	
�����
���������
�  ��	��	��	���	�����	��

���	����	����	�������
�  �		�������	�
���	
�����
�  �
�� �!��������	���������
�  "����
	���	������
���#��	��

"���$����	�	���
�  ���
��#��	�����%
������	�	���
�  ���	����	���	�	���	���������
�  &'	
�
�	������	�	���
26 A Practical Guide for IBM Hybrid Integration Platform

Figure 3-2 shows the various roles in Application Integration Suite.

Figure 3-2 Hybrid integration personas

The suite provides the following capabilities and benefits:

� Securely integrate on-premises and cloud applications, enabling you to optimize
resources and productivity in on-premises, software as a service (SaaS), and cloud
models.

� Use the enterprise service bus (ESB) architectural pattern to eliminate costly
point-to-point connections, which are expensive to maintain and resistant to change.

� Rapidly design and build APIs with essential security policies and share APIs across
organizational boundaries and environments, while providing deep insight into API usage.

� Create microservice components and expose them as APIs by using Node.js Loopback
and Express frameworks.

� Accelerate your integration by using pre-built patterns, rich connectors, and easy-to-use
tools.

� Cohesion across the included components through adherence to common standards such
as Swagger definitions for APIs and the introduction of a common connector framework.

� Various deployment options to meet hybrid needs from bare metal installations to virtual
machines and containers.

� Available both as self-administered and as fully managed services.

� Freedom to move between on-premises and cloud offerings.

� Elastically scalable to enable costs to match your business model.

IBM Application Integration Suite provides the most flexible and cost effective way to
encompass the broad set of integration requirements on all levels of a digital transformation
program.

Automator Developer Integrator

LoB
Prof

Data
Scientist

SaaS Power
User

Sys/Biz
Analyst

Shadow
Integrator

Integration
Specialist

API
Developer

Full Stack
Developer

Front End
Developer

API Connect Integration Bus App Connect

Application Integration Suite
Chapter 3. IBM Hybrid Cloud and Integration Portfolio 27

3.2.1 IBM Integration Bus

When the product we now know as IBM Integration Bus was first released in 2000 (under the
name of IBM MQSeries® Integrator Version 2.0) it was positioned to become the
all-encompassing integration tool for a then entirely on-premises corporate IT landscape. It
was eventually able to connect anything you can think of to anything else you can think of.
Today, this includes anything in the cloud and in the Internet of Things.

However, in the beginning it was limited to MQSeries (now IBM MQ) as supported transport
technology. It made it easy and quick to build integration logic between applications that used
IBM MQ but needed adjustments to their message formats or routing. Typical usage patterns
would intercept request and response messages, perform transformations and possible
enrichment with database contents, and pass the resulting messages on to their destinations.

Messages could also be routed to different destinations based on their contents or even
distributed to multiple destinations simultaneously, even with a different format for each.
Messages could also be saved in database tables, which allowed the creation of “utility” type
services, such as database inquiries, updates, inserts, and deletions. By using IBM MQ’s
support for global transactions, complex transactions of this nature could be protected by the
eXtended Architecture (XA) protocol for two phase commits.

In general, IBM Integration Bus inherited all the strong features that IBM MQ was already
renowned for, such as its speed, ease of use, and legendary reliability.

Integration developers use the Eclipse-based toolkit to create integration logic in the form of
graphically built message flows. Depending on their specific function, these flows might need
extra constructs to run:

� Programming code in Java, Extended Structured Query Language (ESQL), PHP
Hypertext Preprocessor (PHP) or any .NET language

� XML Schema Definitions (XSDs) and Web Services Description Language (WSDL) files to
describe message formats or services

All development constructs are collected in applications or libraries and eventually bundled
into broker archives (bar files) that are then deployed to a runtime environment to be run,
either to test or to run in production. Management of IBM Integration Bus runtime
environments is shared between the toolkit and a browser-based management console. In
addition, an API and command-line implementations are provided that support all
administrative functions, so users can create their own administration tools and scripts.

Message flows are built by wiring together functional modules that are graphically
represented by processing nodes through connection terminals with specific uses. Most
nodes have an input terminal where they receive the message under processing and a
number of output terminals that pass the message on to the next step in the flow. Terminals
are also provided to connect to catch logic for exceptions or failure handling.

It is typical for IBM Integration Bus that for the key functions, such as transformation and
routing, it provides a number of alternative ways to do them. Transformations, for instance,
can be accomplished by using graphical mapping, stylesheets (XSLT), or a number of
programming languages, such as Java, ESQL, PHP, or any of the .NET languages (under
Windows.) A plug-in for IBM WebSphere® Transformation Extender is also available as an
add-on.
28 A Practical Guide for IBM Hybrid Integration Platform

A message flow always starts with an input node for a message source:

� A queue in IBM MQ or Java Message Service (JMS)
� An HTTP/S port
� A SOAP message source
� A file
� A TCP/IP socket
� A database trigger
� Many others

The input node parses the incoming message based on the configured format specifications.
It then makes the result available as a message tree, which is an internal representation of
the message contents without the specifics of the physical representation as Extensible
Markup Language (XML), JavaScript Object Notation (JSON), tagged/delimited, fixed file, or
any other data structure. During the flow’s processing, this “logical” representation of a
message is in force. Only at the end points where messages are put on an external transport
again (such as IBM MQ, JMS, or file) will a physical representation be rendered again.

This output might not be the same format as used for the input message. Conversions
between formats or, for instance, a change in XSD are common forms of message
transformation. It is also normal that message fields are dropped or added, that logical
encodings are altered (for example, date and time formats, state or country codes). Because
it is possible to include external code libraries (for example, JAR files), more complex
transformations such as compressing information into a compressed file format are likely.

All the assets that are created for an application or library are then collected in broker archive
files (bar files in analogy to JAR files, war files, ear files, and so on). These files can be
archived in version control systems and are sent to the runtime system for execution in test or
production mode. The typical developer workstation runs the IBM Integration Bus toolkit and a
runtime instance for local testing. However, deployments and all other functions can be
performed against any runtime anywhere in the network, if the permissions allow. Thus,
suitably authorized users can deploy bar files onto production servers. Bar files can be
manipulated in certain ways by administrators without having to revert to the contained
source objects to accommodate environment specifics, such as diverging naming
conventions for names of queues, data sources, and so on.

You can use several methods to scale IBM Integration Bus throughput to impressive levels.
The most easily implemented one is the additional instances parameter that can be
configured to allow up to 256 extra threads running a flow simultaneously, processing
additional messages if any are queued. Another option is to run extra operating system
processes. If the applicable IBM Integration Bus license is of the “advanced” or “scale” type,
then additional integration servers can be run under the integration node. Flows can then be
deployed to one or more of them, increasing the number of parallel threads even further.
Lastly, multiple brokers can be installed on separate hardware and can be coordinated
through IBM MQ clusters or network load distributors.

The functions of IBM Integration Bus can fairly easily be extended by adding custom-made,
possibly user-developed, parsers or processing nodes. For instance, WebSphere
Transformation Extender is available to run as a plug-in node and a parser for IBM Integration
Bus.

The graphical development environment leads to an easy and fast development cycle. The
graphically represented message flows are to a large extent self-documenting, which leads to
better team development dynamics and easier support. Comprehensive built-in testing
facilities, such as tracing, step-by-step execution, and message recording, further improve
developer productivity.
Chapter 3. IBM Hybrid Cloud and Integration Portfolio 29

These productivity tools are available:

� An ever-growing library of executable samples

� Numerous wizards that fast track the start of a project

� A pattern capability that allows developers to generate message flows from IBM-provided
or customer-authored patterns that represent common flow designs or architectures

� A comprehensive monitoring feature that can collect and emit information at any point in a
message flow

� Message flow statistics, which are optionally extremely fine-grained

� Message record and replay

By the time that service-oriented architectures (SOAs) became popular and the need for a
mediation tool called ESB was postulated (around 2005), it was discovered that IBM
Integration Bus had been just that, and more, all along.

IBM Integration Bus now supports these transport protocols:

� IBM MQ
� JMS 1.1 and 2.0
� HTTP and HTTPS
� Web services (SOAP and REST)
� File
� Enterprise Information Systems (including SAP and Siebel)
� TCP/IP

Supported message formats include binary formats (C and COBOL), XML, and industry
standards (including SWIFT, EDI, and HIPAA). Custom formats can also be defined.

IBM Integration Bus was an early adopter of the standard message description language
DFDL. A public repository of DFDL definitions of data formats can be found on GitHub.

IBM Integration Bus’s event handling features include the techniques that are used by the
various input nodes to detect changes in the environment. From messaging protocols, which
by their nature automatically alerts the broker of arriving messages to the polling of FTP
servers or file directories or database triggers employed by the Database Input node, the
most appropriate method is implemented for each transport medium. Another key feature is
the ability to publish information in a number of publish/subscribe environments (such as IBM
MQ and MQTT). Complex events can be configured by using the Collector node, where a set
of rules can describe sets of incoming events that will then be combined to create one
outgoing “complex” event.

High availability configurations of IBM Integration Bus can be created in a number of ways,
most easily by using the high availability capability of an underlying multi-instance IBM MQ
queue manager.

A built-in global cache facility is available to keep frequently used data readily available or to
share information between components of a broker network. Alternatively, a separately
available WebSphere eXtreme Scale data grid can be accessed and shared with non-IBM
Integration Bus components. The use of a global cache can help overcome certain
restrictions and affinity issues that result from the essentially stateless conceptual
architecture of IBM Integration Bus. This restriction is routinely overcome in many popular use
cases today.

Over the years, IBM Integration Bus has been enhanced by many added capabilities and
usability improvements, while also becoming much more compact, agile, and performant.
30 A Practical Guide for IBM Hybrid Integration Platform

Because it is the central integration hub in many large enterprise systems, IBM Integration
Bus is typically found in on-premises deployments, where such enterprise systems are
located. But in a hybrid integration context, IBM Integration Bus is also often found in private
cloud implementations, such as on PureApp servers.

Lately, though, IBM has also been offering IBM Integration Bus on Cloud in a public cloud
format on SoftLayer, running inside Docker containers and positioned for easy access from
the Bluemix environment. This implementation is still evolving, and at this time does not fully
support all of the capabilities of IBM Integration Bus on-premises. The main reason for this is
that many of those capabilities are directed at accessing resources of the on-premises
systems on which IBM Integration Bus is usually found.

Instead, IBM Integration Bus has been (and will continue to be) enhanced by a number of new
capabilities that facilitate linking between IBM Integration Bus and various other systems that
are typically found in the cloud, including many popular cloud native applications.

The list of these enhancements is already long and still growing. Here are some worth noting:

� Processing nodes are provided for a “callable flow” interface that makes it easy to switch
processing between IBM Integration Bus nodes, whether they be on-premises or on cloud,
using secure connectivity where required. For example, a flow running in the cloud might
need access to an on-premises database or enterprise information system server. The
best place to host these interfaces might be an on-premises integration node right next to
the required resources in a callable flow. Another useful scenario might be an on-premises
flow that needs to “farm out” some CPU-heavy workload to maintain its own
responsiveness. It could do so by starting a callable flow in a cloud-based IBM Integration
Bus instance.

� JSON message formats, REST APIs, and a quick and simple way to push APIs to API
Connect.

� A Loopback Request node to access data through a Loopback connector. Available
connectors include MongoDB, PostGre SQL, and MySQL.

� A Salesforce Request node to access data on your Salesforce.com account (only
available in Application Integration Suite operation mode.)
Chapter 3. IBM Hybrid Cloud and Integration Portfolio 31

3.2.2 IBM API Connect

IBM API Connect is an integrated offering that provides an API management solution and a
microservices run time that address all the critical aspects of the API lifecycle for both
on-premises and cloud environments. As shown in Figure 3-3, IBM API Connect offers
capabilities to create, run, manage, and secure APIs and microservices. It also enables you
to rapidly deploy APIs and simplify and centralize their administration across your
organization.

Figure 3-3 API Connect capabilities overview

The development tools of IBM API Connect go beyond API Management and provide
capabilities to define and test not only the secure access point, but also microservices that
are implementing new business logic.

In particular, an API developer can use:

� A Swagger Editor and a Policy Assembler to define the interface of the API, specify
security constraints, invocation rate limits, routing, data, and protocol transformations.

� LoopBack Models to implement the business logic of the APIs. LoopBack is a Node.js
open source framework that is effective for the development of APIs because it embraces
from the ground up the core concepts of REST.

The definition of all of these artifacts is supported by both a graphical user interface and
command line to suit both novice and advanced users and be easily integrated in your exiting
DevOps tool chain.
32 A Practical Guide for IBM Hybrid Integration Platform

The run time of IBM API Connect includes the four high-level logical components as shown in
Figure 3-4 and described in this section.

Figure 3-4 IBM API Connect logical components

Developer Portal
The Developer Portal enables developers, who can be internal or external to the organization
exposing the API, to discover and consume APIs in a self-service fashion. This process
includes finding an interface, reviewing its documentation, subscribing to it, and obtaining the
required access credentials. After the developer starts using the API, he can continue to refer
to the Developer Portal to have statistics on his own API usage rate, receive updates on any
API version change, communicate with his peers through forums, and open support tickets.

API Manager
The API Manager is the component enabling an API Product Owner to be in control of the
relationship with the API consumers. This process includes configuring who should be able to
see and start an API, managing its subscription process, determining whether any money
flows and under what circumstances, handling the migration between versions, running
analytics on the actual usage metrics, and so on.

API Gateway
Any API call goes through the API Gateway, the point of enforcement of access control
policies. These policies include authentication and authorization of the caller, but also rate
limiting to prevent a client to go beyond the entitlements that person has subscribed to. The
Gateway is also responsible for collecting runtime metrics that are fed into the API Manager.
After handling an API request, the gateway redirects the request to the components that
implement its logic. Typically, this is a back end system or a microservice.

IBM API Connect includes two types of gateways:

� DataPower: An enterprise scale secure gateway that provides a public access point to
your APIs

� The Micro Gateway: A lightweight Node.js gateway that is useful to support testing or the
enforcement of policies for a single application

Microservices run time
API Connect supports two types of Microservices run times:

� Node.js: Runs LoopBack applications
� Java Liberty: Deploys Java components

API Connect includes a Node.js run time and a “collective controller,” which a management
component responsible for deploying and scaling LoopBack applications.
Chapter 3. IBM Hybrid Cloud and Integration Portfolio 33

Although Node.js is successful for the implementation of mobile back ends (a use case for
interaction APIs), many organizations will want to continue to use the wealth of Java assets
they own or can access, both in terms of technical libraries and development skills. A choice
of run times also gives you the ability to place workloads with different characteristics on the
most appropriate technology. It is beyond the scope of this section to provide an in-depth
analysis of the characteristics of Node.js versus Java. However, it is worth noting that the
asynchronous nature of Node.js makes it best suited for applications that coordinate access
to many external resources, while the threading model of Java makes it efficient for
CPU-intensive workloads.

All of these components can be installed on premises, on a third-party cloud, or consumed as
a managed service on IBM Bluemix (Public or Dedicated), providing the most flexible
deployment and scalability model.

3.2.3 IBM App Connect

IBM App Connect is a web-based tool that enables non-technical business users to integrate
applications to automate tedious and repetitive tasks that are typically done manually in many
cases by swivel chairing, such as looking at data in one system and manually entering the
data into another system. App Connect can be used to integrate cloud-based applications
and custom application on-premises using a Secure Gateway to connect App Connect to the
on-premises system. Here are a couple of examples of using App Connect:

� Send an email notifying people when a new sheet has been created in Google Sheets.
� Add a row in a Google Sheet when a new lead has been added to Salesforce.

You integrate applications by creating flows.

Trigger and action flows
A trigger is an event that occurs in one application that causes an action in another
application. In the example mentioned earlier, a sheet being created in Google Sheets is an
event that is a trigger for an action to occur in another application. In that example, the action
is sending an email notification about the new sheet.

The flow is what links a trigger to an action and automates the execution of the action when
the trigger occurs.

Integration in four steps
You can integrate your applications in four steps with App Connect:

1. Select applications to integrate
2. Connect to your accounts
3. Select the data that you want
4. Run it
34 A Practical Guide for IBM Hybrid Integration Platform

Select applications to integrate
Creating a flow starts by selecting the applications that you want to integrate. The first
application is where the trigger will occur and the second is where you want the action to
occur. Figure 3-5 shows the window in App Connect where you select applications to
integrate.

Figure 3-5 Select applications to integrate

Connect to your accounts
For App Connect to automate tasks for you, it must be able to connect to the applications that
you are trying to integrate with your account/credentials. You must connect an account for
each application by authorizing App Connect to use the account by using OAuth Version 2.0.
Chapter 3. IBM Hybrid Cloud and Integration Portfolio 35

Figure 3-6 shows the window in App Connect that enables you to connect an account with the
applications in your flow.

Figure 3-6 Connect application accounts
36 A Practical Guide for IBM Hybrid Integration Platform

Select the data that you want
Based on the application and trigger selected for that application, you might need to select
and map data from your first application to your second application. In the Google Sheets
example, the trigger is when a spreadsheet is created, and the action in GMail is to send an
email notification. As you can see in Figure 3-7, you need to specify the fields that are
required to send the email, which are the To, Subject, and Body fields. You can insert fields
from the new spreadsheet by entering a # and selecting the field from the list.

Figure 3-7 Select/specify any data
Chapter 3. IBM Hybrid Cloud and Integration Portfolio 37

Run it
Flows run in the cloud in App Connect. You do not have to run anything. You simply turn on
the flow. Figure 3-8 shows the App Connect Dashboard that displays all of your flows. You
can toggle a flow on or off from this dashboard.

Figure 3-8 Run the flow

Extending App Connect to include your custom applications
In most organizations, existing enterprise applications representing systems of record contain
data that business teams need access to. Securely exposing these enterprise applications
inside App Connect and empowering business users to create flows to automate their
workflow is a significant benefit.

At the time of writing, the custom applications that you add must be based on an IBM
Integration Bus message flow. You can find a sample application here:

https://github.com/ot4i/iib-app-connect-trigger-pattern/blob/master/doc/runwarehou
se.md
38 A Practical Guide for IBM Hybrid Integration Platform

https://github.com/ot4i/iib-app-connect-trigger-pattern/blob/master/doc/runwarehouse.md
https://github.com/ot4i/iib-app-connect-trigger-pattern/blob/master/doc/runwarehouse.md

Figure 3-9 shows the window in App Connect to add a custom application. You can select a
network from the drop-down list if you have previously created one. If you have not created
one, you can do so by clicking the Connect a new Network link.

Figure 3-9 Add a custom application
Chapter 3. IBM Hybrid Cloud and Integration Portfolio 39

App Connect uses the IBM Secure Gateway. You must download and install a Secure
Gateway client on a computer on the private network. Figure 3-10 shows the window in App
Connect from where you can download the Secure Gateway client and create a connection to
your on-premises private network.

Figure 3-10 Connect to your network by using the Secure Gateway

You can also configure an access control list (ACL) to restrict what resources on your private
network are accessible over this secure gateway.

3.3 IBM Messaging Portfolio

This section described the IBM Messaging Portfolio.

3.3.1 IBM MQ

IBM MQ (formerly WebSphere MQ and IBM MQSeries, where “MQ” stands for “message
queuing”) is arguably, of all the products mentioned in this chapter, the one with the longest
history. At its inception, it solved a great need of the IT community of the day, which was to
facilitate the exchange of data between independently running applications across vastly
diverse platforms, programming models, and network protocols, often across rather unreliable
wide area networks.

Its universal support for platforms, networks, and programming models and its ease of use
made IBM MQ an instant success at the time. Its reliability and security features were critical
for it to become the de facto standard for application-to-application messaging in corporate
40 A Practical Guide for IBM Hybrid Integration Platform

environments. In fact, the “once and once only” delivery of messages by IBM MQ has become
legendary. Its ability to cooperate with many other transaction managers in distributed
transactions based on the XA protocol for two phase commits (for example, database
management systems) ensures that atomicity, consistency, isolation, durability (ACID)
properties of complex transactions are maintained.

The architectural concept of IBM MQ is based on queues in which applications leave
information for other applications in the form of messages that the recipient can retrieve and
process at its own time and speed. This form of messaging is said to be “asynchronous” and
has advantages over the more restrictive synchronous mode. IBM MQ can implement
synchronous communication patterns simply by application logic. Any replies are sent as
messages as well. The API functions of IBM MQ are non-blocking, so the sender of a request
message is not forced by the API to wait for a response. Rather, the sender can perform any
other functions before receiving a reply message. If appropriate, the sender of a request and
the recipient of the reply could even be separate programs, and even on separate systems.

Queues are maintained inside IBM MQ server instances that are called queue managers,
which can be connected across network links called channels. Typically, IBM MQ is
configured so that it is not apparent to an application whether the queue that it is sending a
message to is hosted on the local queue manager or on a remote one connected through a
channel.

Conceptually, IBM MQ does not try to understand or interpret the message contents
(conversion capabilities for character codes or numeric representation between platforms
notwithstanding.) That fact means that applications that are exchanging messages must have
an agreement between them on the meaning of the bitstreams exchanged. Where messages
need to be interpreted, reformatted, enriched with additional information, or routed based on
information in them, another type of software is required. The industry refers to this type of
software as ESB. The IBM ESB tool of choice is IBM Integration Bus. For more information,
see 3.2.1, “IBM Integration Bus” on page 28.

Several features were added to IBM MQ over the years, growing it into IBM Universal
Messaging Backbone.

A publish/subscribe messaging model allows applications to “publish” information without
knowing the recipients. This goal is achieved by using a brokering function that maintains a
list of “topics” to which interested parties can subscribe. When a message is published to a
topic, the broker forwards a copy of it to the designated queue of each subscriber.

The IBM MQ Clustering capability allows an IBM MQ infrastructure to easily scale beyond the
capacity of individual servers. It can combine groups of queue managers into clusters, in
which a logical queue can have multiple physical representations on separate systems, each
being processed by a separate instance of the application. A built-in load balancing feature
distributes incoming message traffic evenly across the available application instances. If one
system fails, traffic is routed to the remaining instances.

These other features are included:

� Support for Java Messaging Service (JMS)

� Support for Windows Communication Foundation (WCF)

� An integrated automatic failover feature that implements high availability for queue
managers

� Support for IBM MQ Telemetry Transport (MQTT)
Chapter 3. IBM Hybrid Cloud and Integration Portfolio 41

Extra features are provided as separately licensed selectable options:

� Advanced Message Security: Allows messages to be signed and encrypted end-to-end
between sending and receiving applications

� Managed File Transfer: Uses a distributed IBM MQ infrastructure to administer, perform
control, and audit trail file transfers across a corporate environment

Traditionally, IBM MQ has been available on practically all relevant operating systems. In
addition to that, IBM MQ is now also available as an appliance, providing the software on a
dedicated and locked-up hardware platform. This new implementation allows much easier
administration, for instance on remotely deployed systems, and new, powerful
implementations of high availability and disaster recovery scenarios. IBM MQ Appliances can
be freely integrated in existing server-based IBM MQ networks or can be used as stand-alone
units.

To facilitate the use of IBM MQ in cloud environments, a number of supporting components
have been introduced. Some of them are discussed in more detail in other sections of this
chapter, while others are discussed here.

IBM has two main paradigms for messaging in the cloud:

� Messaging in enterprise IT, based on IBM MQ

� Messaging in the cloud native digital IT, which is implemented in IBM Message Hub, based
on Apache Kafka and discussed in detail in 3.3.2, “IBM Message Hub” on page 43

As a common factor, both products support the IBM MQ Light API, which was created to
facilitate the use of IBM MQ based messaging in cloud native applications. Thus, the data
resources held in enterprise IT can be accessed as easily as the information exchanged with
other cloud native apps through the Message Hub. Other components that facilitate the
exchange of information across the realms of a hybrid cloud architecture are IBM Message
Connect and Secure Gateway. The latter provides an easy way to gain secure access to
enterprise IT resources for knowledge workers and mobile developers by using a self-service
process. Message Connect facilitates the exchange of information between the two
messaging environments, for example to allow event information flow from the enterprise
realm to the Message Hub.

The core of IBM MQ has not been changed to accommodate cloud deployments. Many users
are running IBM MQ in cloud hosted virtual machines, which is essentially no different from
running IBM MQ anywhere else. However, because the cloud can bring many advantages
over a conventional deployment, several options can be used to deploy IBM MQ in a more
cloud-centric way. Use the hypervisor edition, where IBM MQ is preinstalled in a Red Hat
Enterprise Linux virtual machine, which provides a standardized runtime environment for IBM
MQ that can easily be replicated. Another option is the use of patterns that include IBM MQ in
a PureApp environment. This configuration allows the rapid deployment of systems that, even
though they are still standardized by the pattern logic, can be customized in certain useful
ways. For example, you can automatically scale the number of application server instances

Important: Message Connect was an experimental service at the time of writing this book
and has now been withdrawn. The intention is to roll this functionality into Message Hub
itself in the near future. This is described in more detail along with an interim option in the
following Bluemix blog post:
https://www.ibm.com/blogs/bluemix/2016/12/bridging-mq-message-hub/

Keep an eye on https://developer.ibm.com/messaging/message-hub for updates on the
changes.
42 A Practical Guide for IBM Hybrid Integration Platform

https://www.ibm.com/blogs/bluemix/2016/12/bridging-mq-message-hub/
https://developer.ibm.com/messaging/message-hub

based on real-time demand. High Availability or Disaster Recovery configurations are easily
built using PureApp pattern technology.

Another way to manage deployments is provided by container solutions. Notably, IBM MQ is
being deployed in Docker containers to great effect. One of the most important advantages of
Docker containers is that, compared to virtual machines, they require much less overhead for
the platform part of the service. However, they still effectively isolate the hosted system from
its surroundings. In a Docker deployment, you can run many software components in their
own containers, but under a single operating system instance. This configuration requires a
lot less computer power than having to run a separate OS footprint for each component.

Thus, IBM MQ continues to be an essential component of most IT architectures.

3.3.2 IBM Message Hub

IBM Message Hub on Bluemix is a cloud-based scalable and high throughput message bus
that provides the capability of uniting on-premises and off-premises cloud technologies.
Diverse services can be wired together through the Message Hub service by using open
wired protocols, which allows you to use a wide range of languages and technologies.

Message Hub is built on top of the Apache Kafka messaging engine. Therefore, it inherits the
community-proven scalability and performance as well as the durable real-time messaging
capability from the engine.

This section describes some feature highlights provided by the IBM Message Hub service.

Integration capability
Integration is one of the core capabilities of Message Hub. It provides multiple interfaces
through which messages can be produced and consumed. Message Hub service supports
these APIs:

� REST API
� Kafka native API
� IBM MQ Light API

Figure 3-11 illustrates the connectivity options with Message Hub service.

Figure 3-11 Connectivity options with Message Hub
Chapter 3. IBM Hybrid Cloud and Integration Portfolio 43

IBM MQ Light provides a simple yet powerful Advanced Message Queuing Protocol
(AMQP)-based messaging API for Java, Node.js, Python, and Ruby. You can use IBM MQ
Light to quickly create scalable and responsive applications. It can integrate well with various
other services on Bluemix.

The IBM MQ Light API provides a higher level of abstraction than the Kafka API. IBM MQ
Light enables apps to be written quickly and with great portability in a unified messaging
model that supports both point-to-point and publish/subscribe messaging patterns. Apps
exchange messages using dynamically created destinations, which you can hierarchically
structure (for example /sports/football), group by using wildcards (for example /sports/#),
and have simple controls for delivery assurance and message expiry. This feature enables
you to implement scenarios such as worker offload, event notification, and batch processing
straightforwardly.

As well as sending messages between other apps using the IBM MQ Light API, you can also
exchange messages with apps that use the Kafka REST or Kafka APIs. Alternatively, you can
also use the IBM MQ Light API directly with an on-premises IBM MQ queue manager and
thus communicate with applications by using the IBM MQ API.

Message Hub also uses Apache Spark and IBM InfoSphere® streams alongside Kafka,
which is suitable for building a high performance scalable streaming analytics solution.

Message Hub use cases
The following are some of the common use cases for using the Message Hub service:

1. Hub for asynchronously connecting services inside Bluemix or beyond:

– Applications connected to events happening in other Bluemix services, or from beyond
the cloud

– Connects with enterprise IBM MQ on-premises, providing all the benefits of working in
a hybrid environment

2. Microservices allow applications to evolve rapidly:

– Open protocols support several runtimes

– Remove the interdependency between microservices

– Work in a range of languages that suit you

– Deploy and scale microservices independently

3. Insights from the data you already have:

– Data needs to be streamed from anywhere to one or many analytics engines

– React to changing trends as they happen

– Acts as a buffer between your data and the analytics engine

– Run real time and batch analytics on the same data
44 A Practical Guide for IBM Hybrid Integration Platform

These use cases are illustrated in Figure 3-12.

Figure 3-12 Message Hub use cases

Sinatra is an open source software web application library and domain-specific language
written in Ruby that is available for no fee and helps in writing applications in Microservices
style. It is available at:

http://www.sinatrarb.com/about.html

Availability
IBM Message Hub architecturally inherits Kafka, which is deployed as a clustered set of
message brokers. The cluster can be configured so that its brokers are not in the same failure
domain when a failure occurs, which means that a failure only affects one broker in the set.
For that reason, the cluster can tolerate failure of a particular broker and continue to process
messages without having to wait for the failed broker to be recovered. The clustered model
reduces the downtime to a minimum and helps Message Hub to provide high availability of its
service.
Chapter 3. IBM Hybrid Cloud and Integration Portfolio 45

http://www.sinatrarb.com/about.html

Figure 3-13 illustrates the architectural overview of Apache Kafka.

Figure 3-13 Kafka architecture

In Kafka, a topic is a category or feed name to which messages are published. Kafka is run as
a cluster of one or more nodes, each of which is called a broker. Producers are processes
that publish messages to a Kafka topic. Processes that subscribe to topics and process the
feed of published messages are called consumer. Consumers contain in their name a
consumer group name, and a consumer abstraction that generalizes both queuing and
publish/subscribe messaging models of consumers.

Each message published to a topic is delivered to one consumer instance within each
subscribing consumer group. Also, messages are being replicated between the brokers, and
effectively stored on persistent storage for at least 24 hours, using an enhanced operating
system cache mechanism. Therefore, from a message-level perspective, Message Hub
reduces the possibility of a message being lost.

3.3.3 IBM Watson Internet of Things Platform

It is undeniable that the Internet of Things (IoT) is becoming mainstream as devices are
becoming intelligent, instrumented, and interconnected. Billions of internet-connected
devices are adding a tremendous amount of data to global data traffic and are being used
across various industries. Businesses can unlock opportunities and gain insights from this
data. It becomes clear that managing millions of devices and analyzing the data generated
from these devices is not an easy task. It demands a highly scalable, fault tolerant, and robust

Consumer group

Consumer Consumer

Kafka cluster

Broker 1

Topic 1
Partition 0

Broker 2

Topic 1
Partition 1

Broker 3

Topic 1
Partition 2

Consumer group

Consumer Consumer Consumer

Producer Producer Producer
46 A Practical Guide for IBM Hybrid Integration Platform

platform to manage these IoT devices. IBM Watson™ Internet of Things Foundation (IoTF)
platform is such a platform.

The IBM Watson IoT™ platform (Figure 3-14) is a cloud-based service for managing and
connecting IoT devices, and composing and extending applications that use data and
analytics from connected devices, sensors, and gateways. It is available as a catalog item or
service from the IBM Bluemix Platform or through the IBM Watson Internet of Things portal.
The IoT portal is available at:

https://internetofthings.ibmcloud.com

Figure 3-14 Watson Internet of Things service from Bluemix

Four key areas of the IBM Watson IoT Platform can be distinguished:

� Connect: It is concerned with connecting and managing devices and integrations with
third-party services fall under this category. It provides a powerful web dashboard to add
and manage devices, control access to the IoT service, and monitor usage and other key
parameters at a glance. Functions also include device management actions like rebooting
or updating firmware, receive device diagnostics and metadata, and perform bulk device
addition and removal.

� Information Management: It is used for data storage and transformation. IoT service
provides access to real-time data from sensors, and devices as well as options to store
data to different types of Bluemix hosted databases. This way, users can have access to
real-time and historical data.

� Analytics: This function is useful for visualizing real-time device data by using Dashboard
cards.

� Risk Management: This area is concerned with security, authentication, and prevention of
fraud by providing a powerful authentication mechanism, and connectivity over Transport
Layer Security (TLS).
Chapter 3. IBM Hybrid Cloud and Integration Portfolio 47

https://internetofthings.ibmcloud.com

Figure 3-15 illustrates the architecture of the IoTF platform and how applications, devices,
and gateways connect to the platform.

Figure 3-15 IBM Watson IoT architecture

The IoT service is based on the industry-standard MQTT protocol (OASIS ratified) to connect
devices and applications. Support for MQTT with TLS is available to receive data from and
send commands to devices securely. It is important to be familiar with the following key
terminologies for the IoT service:

� Organization: An organization groups a number of devices and applications for security
reasons. Each organization has a 6-character unique ID. Devices and applications that are
registered within an organization get unique device and API keys that makes sure data
from devices and applications are only sourced from registered entities. No device and
application is allowed to connect to IoTF without the appropriate keys.

� Devices: Anything that has a connection to the internet and has data to publish to the
cloud is defined as a device. Devices are not allowed to communicate with each other
directly. Devices can accept commands from applications. They identify themselves to
Watson IoT by unique authentication keys.

� Applications: Anything that has a connection to the internet and can interact with data from
devices and control the behavior of those devices in some manner. An application
identifies itself to Watson IoT by a unique API key and application ID.

� Gateway devices: These are a special type of device that possesses the combined
capabilities of a device and an application. Devices that cannot connect directly to IoTF
can use gateway devices as access points to connect to the service. These devices must
be registered in IoTF first before they make any connection. Gateway devices can register
new devices, and can send and receive data on behalf of devices that are connected to
them.

� Events: An event is a mechanism by which a device publishes data to IoTF.

� Commands: A command is a mechanism by which an application communicates with a
device.

Devices can be managed or unmanaged. Managed devices are those that contain a
management agent. A management agent allows the device to interact with the IoT Device
Management service by using the Device Management protocol. Managed devices can
48 A Practical Guide for IBM Hybrid Integration Platform

perform device management operations including location updates, firmware download and
updates, and reboot and factory reset.

Unmanaged devices do not contain a management agent. They can connect to IoT and send
and receive data. They cannot perform device management operations.

Quickstart mode allows a physical device or IoT simulator to connect to IBM IoT without
having to sign up for the service, register, and add the device, as opposed to managed mode.
It is available in the open sandbox to quickly and easily connect any device that can run an
MQTT client to Watson IoT. Quickstart is available at:

https://quickstart.internetofthings.ibmcloud.com

A unique device ID must be entered in the Text box as shown in Figure 3-16. The device data
is then displayed in the window.

Figure 3-16 Internet of Things Quickstart mode

In summary, Watson Internet of Things is a platform for device connection, management, and
integration with third party services, applications, analytics, and security.

3.4 IBM DataPower

At its inception, the first DataPower product was designed to help accelerate XML processing,
which had turned out to be excessively CPU intensive. Optimized algorithms on specially
tuned hardware were the strategic direction. However, it soon became apparent that the
high-speed XML processing and the appliance approach to providing the function suggested
a different usage pattern: The XML Security Appliance.

Not only was XML an expensive format to process, it also soon became the universal
language for data exchange on the internet, meaning that data was being exchanged
between organizations much more frequently than ever before. This situation immediately
brought on numerous security concerns that needed to be addressed, and needed to be
addressed in a consistent and comprehensive fashion by a central instance. It had become
clear by then that firewall technology could address many but not all challenges. The most
Chapter 3. IBM Hybrid Cloud and Integration Portfolio 49

https://quickstart.internetofthings.ibmcloud.com

notable “loophole” was the fact that to communicate through the internet at all, at least the
HTTP(S) ports needed to be open. But there was no scrutiny of the new traffic. Typically, the
servers that were running the enterprise applications were expected to provide their own
security, custom configured to their needs. But too often neither server capacity nor
administrator or developer skills were up to the task. And if server-based security was
configured, it turned out to require a lot of resources and was maintenance intensive.

However, a DataPower appliance was ideally suited to the task due to these characteristics:

� XML-oriented processing power

� Ample network capacity

� Minimal and purpose-built operating platform that did not allow installation of third-party
software of any kind

� Hardened physical implementation

A single appliance would easily support the traffic for many servers, thus relieving much more
costly hardware from the security-related processing and often from expensive parsing of
complex XML messages.

Even today, several generations of hardware and software later, most DataPower appliances
are found in a DMZ, with one set of network ports outbound to the internet, another to the
trusted zone inside the corporate firewall, and a third one isolated just for use by
administrators. All exposed services or other communication endpoints are implemented on
the outbound ports. Incoming requests are scrutinized by the defined and configured security
policies, messages are decrypted, signatures and credentials are verified, and messages are
transformed into other formats where required and routed to the internal endpoints of the
serving applications. Responses are passed through matching processing sequences and
handed back to the external requesters.

In addition to generic XML messages, SOAP messages addressing WSDL-based web
services can be handled. In addition to HTTP(S), a range of FTP-style interfaces are
supported by some models and IBM MQ and JMS traffic. There is also a feature that
specializes in business-to-business traffic, supporting AS1/AS2/AS3 protocols.

Current versions of the appliance also support REST and JSON, and offer a scripting facility
now called GatewayScript that is derived from JavaScript.

DataPower appliances are typically partitioned into multiple domains. These domains are
usually isolated from each other in terms of the configured assets, such as policies, but need
to coordinate the use of unique resources, such as port numbers.

A number of interfaces are available that allow developers and administrators to interact with
a DataPower appliance, such as a command-line interface (through the built-in serial port or
an SSH connection) and an XML interface that can be used to send configuration messages
from external sources, such as software tools. But probably the most popular interface is a
built-in interactive web GUI.

Some use cases for the XML interface are the ability of IBM Integration Bus and API Connect
to remotely configure a DataPower appliance. There is also an Eclipse-based external
administration and development toolkit that allows the joint management and configuration of
multiple appliances from one location. The recently released DataPower Operations
Dashboard also uses this interface.

In addition, API Connect offers two API Gateway implementations:

� A micro gateway implemented in Node.js
� An enterprise grade gateway implemented by DataPower appliances
50 A Practical Guide for IBM Hybrid Integration Platform

These implementations are configured transparently to the user by the API Management
console.

Originally, DataPower was only available as a physical appliance. With the growing popularity
of cloud deployments, a virtual edition is now offered. However, a physical appliance still
provides the best throughput. For some production and most test and development use,
including training, the virtual DataPower is quite adequate. It can be deployed on most
virtualization platforms, including Docker containers.

IBM DataPower remains the strategic integration gateway for IBM in the age of the cloud.
Chapter 3. IBM Hybrid Cloud and Integration Portfolio 51

52 A Practical Guide for IBM Hybrid Integration Platform

Part 2 Hybrid integration
scenarios

This part shows how to implement several hybrid integration scenarios to show you the
powerful integration capabilities of the IBM hybrid integration portfolio discussed in Part 1,
“Concepts and architecture” on page 1.

This part includes the following chapters:

� Introduction to the scenarios
� Exposing APIs externally
� Automation for business users
� Kick-start digital teams

Part 2
© Copyright IBM Corp. 2016. All rights reserved. 53

54 A Practical Guide for IBM Hybrid Integration Platform

Chapter 4. Introduction to the scenarios

This chapter bridges the gap between the generic concepts discussed in chapters 1-3 and a
practical application example. The text introduces a fictional company and three hybrid
integration scenarios.

This chapter has the following sections:

� Introducing CompanyA
� Architecture overview
� Re-creating the scenarios

4

© Copyright IBM Corp. 2016. All rights reserved. 55

4.1 Introducing CompanyA

This section introduces CompanyA.

4.1.1 The business

CompanyA is a company from the retail sector that sells and distributes electronic goods. The
company’s sales are predominantly made through a network of partners that have both online
and physical stores.

Digital transformation is a global process that affects all kinds of industries and enterprises of
all sizes. Apart from being left behind while other companies (including competitors) embrace
digital transformation, CompanyA realized that this change also represents an opportunity
namely around the following aspects:

� Increase revenue and outreach by using the API Economy.
� Increase efficiency and productivity by using automation.
� Disrupt and innovate using agile approaches and modern application architectures.

CompanyA identified a number of functional capabilities and business scenarios with which to
capitalize on those opportunities. Figure 4-1 provides an overview of the functional
capabilities that are required to enable the digital transformation.

Figure 4-1 Functional capabilities

Figure 4-1 involves these concepts:

APIs Making enterprise assets accessible either externally or for internal
reuse.

Automation Increased productivity through automation at the level of non-technical
users.

Applications Applications are a way for CompanyA to accomplish digital
transformation and realize its benefits. Better applications constructed
in a more focused way enable CompanyA to keep up with industry and
customer changes.

Data Store A facility that provides applications with data independently from
access to the systems of record. This facility supports functional
changes and non-functional aspects, such as performance.

Messaging

AutomationAPIs

Integration

Applications

Data Store

Order
Management

Product
Catalogue CRM

Key

Digital
Transformation

System of Record
56 A Practical Guide for IBM Hybrid Integration Platform

Integration The glue between the systems of engagement and the systems of
record, which keeps the company running. In the context of digital
transformation, this concept represents the access point to functions
that can be exposed from the systems of record.

Messaging Messaging is an enabling capability for APIs, automation, and
applications.

4.1.2 Hybrid integration scenarios

The scenarios that the company identified relate 1:1 to the use cases described in Chapter 2,
“Hybrid integration use cases” on page 11. Putting them in the context of CompanyA, a
number of different departments feature in the hybrid integration scenarios, and are
introduced here briefly:

Integration Team This is the team of skilled IT Specialists with subject matter experience
in system integration who support the on-premises infrastructure of
CompanyA.

Sales Team The business partner sales team is organized in regions, and each
member looks after a set of partners and their orders. The members of
this team do not have a technical background, but use technology and
various systems every day as part of their job.

Digital Team Originally, this team started with only two graduates who were given a
short-term project to create a web page for the BP Sales team. Now it
has become a group of permanent employees who are funded by the
BP Sales Team. The team uses the agile methodology and modern,
mobile-friendly programming languages, frameworks, and tools to do
their work.

Marketing Team The marketing team co-ordinates with the sales team and manages
marketing campaigns with the product manufacturers. Like the Sales
Team, the people in this team do not have a technical background, but
are avid technology users who work with cloud-based systems and
occasionally working remotely.

In line with the use case described in 2.2, “Use case A: Joining the API economy” on page 12,
the first scenario is about joining the API Economy.

Exposing APIs externally
CompanyA has decided to make some of the information and functions in the systems of
record available to external parties. Specifically, the company decided to start with product
and order information. These items are exposed as APIs that allow external developers to
accomplish these tasks:

� Retrieve information about the products sold by CompanyA. This data includes product
names, descriptions, photos, and other details.

� Manage purchase orders all the way from creation over change to cancellation. Purchase
orders contain information about the company that placed the order (i.e. the partner), the
products sold, and the total order amount.

Exposing these functions through APIs, CompanyA aims to provide more up-to-date
information that is easier to consume and integrate for its partners, ultimately leading to more
revenue. The scenario is split into two main parts:

� Exposing an existing SOAP API externally as REST
� Creating an exposing API by integrating information from multiple systems
Chapter 4. Introduction to the scenarios 57

The main actor in all parts of the scenario is the Integration Team.

Monetization is another important aspect of the use case, as is the distinction of system and
interaction APIs. Although both are important considerations, this book goes into the most
detail about the API exposure.

Automation for business users
The second scenario that CompanyA has chosen in its digital transformation initiative is about
empowering its business users with automation, in the first instance specifically the marketing
team.

One of the team’s activities is looking after campaigns. Originally, campaigns were managed
manually with a spreadsheet. Nowadays, the team works with SalesForce CRM, which is also
used by the Sales team for customer relationship management.

The scenario explores how the Marketing team can use automation to become more
productive and spend less time on routine tasks. Automation is used for three parts of the
scenario:

� Keep the campaign details in the spreadsheet up to date by synchronizing it with
campaign information from SalesForce CRM.

� Triggering a follow-up action in SalesForce CRM for any orders that were canceled.

� Tracking the success of campaigns by correlating the campaign information with order
volume data.

Although the first part of the scenario can be done by the Marketing team themselves, the
other parts are supported by the Integration team.

This scenario relates directly to the hybrid integration use case described in 2.3, “Use case B:
Improving productivity” on page 17. It specifically addresses the business user integration
scope of the use case, which is shown in Figure 4-2.

Figure 4-2 Long tail of integration candidates

The starting point of the scenario is therefore a cloud-to-cloud integration flow from
SalesForce CRM to Google Sheets. The integration flows in this area are in general low in
complexity. They are created by users who, although they are comfortable with using
technology, do not have an integration background. While keeping the flows simple, the
58 A Practical Guide for IBM Hybrid Integration Platform

scenario is improved by triggers from on-premises systems (events from the order
management system) showing the ground-to-cloud integration aspect of the use case.

Kick-starting digital teams
Last but not least, the third scenario addresses the scope described in 2.4, “Use case C:
Refactoring for innovation” on page 21. The main driver behind this innovation is
microservices, and therefore these are also at the heart of the scenario.

CompanyA has decided to use microservices to create an application to be used by its sales
team. The aim is to make it easier for the team to stay up-to-date with changes to the orders
placed by its partners. They need to get an overview quickly about order status, changes, and
other updates so that they can react quickly to problems or even proactively avoid them.
Initially the updates will only come from the order management system. However, it is easy to
imagine how shipment events or even external information like weather data can be added for
an even richer solution.

As such, the scenario has two main aspects:

� Creating the stream of order events

In this part, the raw events from the order management system are enriched to make sure
that they are meaningful by themselves. They are then republished as business events.

There are several technical implementation options for sending those events and making
them available to the microservices, all of which are discussed as part of this scenario.

� Implementing the microservices and exposing them for the business application

In this part, the actual microservices are constructed that will drive the business
application. The sales team user might want to use filters and views on the data that are
addressed in this chapter.

The first aspect, which is related to the events and communication, is usually handled by the
Integration Team. However, after the event stream is established and it comes to
microservices and their local data, the digital team can continue to work independently.

This scenario also shows the use of a data store, which enables the microservices to be
independent from the actual system of record in the backend. In this context, it is important to
understand that these data stores are not replicas or a replacement of the system of record.
Rather, they contribute towards the three goals for composable applications:

Agility The developers can make changes to the data store without affecting
anybody else. It contains only the data necessary for that particular
microservice or set of microservices, and only for a limited lifespan.

Scalability The data store and microservices instances can be (cloud-)scaled to
support the non-functional requirements of the application.

Resilience A dedicated data store helps make the microservices independent,
and therefore resilient to failures or outages of other components.

Finally, the scenario also includes an actual business application that uses the exposed
microservices. Although it is included in the scenario, the design and development of the
front-end application are outside the scope of this book.
Chapter 4. Introduction to the scenarios 59

4.2 Architecture overview

Figure 4-3 shows a high-level solution architecture for CompanyA. Apart from the
components related to hybrid integration (highlighted in blue), there are a number of systems
of record, business applications, and external parties. Each of the systems is explained in
more detail below.

Another important aspect of the diagram is the notion of hybrid integration with components
that are distributed in different environments. Although the diagram shows APIC in the
Bluemix layer, this does not mean that it can only run on Bluemix. In fact, a number of
deployment options ranging from on-premises to cloud-dedicated or cloud-shared are
available for many of the components. This section briefly describes the deployment options
in general, and explains the concrete deployment decisions taken for the implementation of
the scenarios in their respective chapters.

Figure 4-3 High-level architecture overview

PaaS

Bluemix

On-premise

Partner
Applications

Sales
Dashboard

SalesForce

Google Sheets

Product
Information

System

Order
Management

System

IBM
Integration

Bus

IBM MQ

IBM
Message

Hub

MongoAPI
Connect

IBM
AppConnect
60 A Practical Guide for IBM Hybrid Integration Platform

4.2.1 Components

Figure 4-3 on page 60 provides a high-level overview of the solution components in scope for
the digital transformation initiative for Company A. The components can be internal or
external to Company A, and are a mix of on-premises and cloud-based systems. The
following list provides a brief introduction for each component:

Partner Applications These are the consumers of the APIs exposed externally
as part of scenario 1.

Sales dashboard The dashboard is an internal business application used by
CompanyA to display and manage order updates.
Scenario 3 explains how the dashboard is built on top of a
microservices architecture. The dashboard application has
multiple deployment options, but these are outside the
scope of this book.

Google Sheets Google Sheets is a business application that is used by
CompanyA’s employees internally. As a software as a
service (SaaS) application, it is outside of the company’s
sphere of influence.

SalesForce CRM SalesForce CRM is an SaaS application that is considered
a system of record for CompanyA. It is used by the sales
team to manage the details of the company’s partners. It is
also used by the marketing team to manage marketing
campaigns. In contrast to the other systems of record, it is
not located and run on-premises, showcasing a typical
example for the need of hybrid integration.

Product Information System A typical on-premises system of record that in this scenario
has existed in CompanyA since the beginning. It manages
the information about the products that CompanyA sells
and distributes, and exposes this information through
SOAP web services.

Order Management System In technical terms, this is an on-premises database. It is
used to store all information about purchase orders in
CompanyA. The Order Management System is another
typical example of an on-premises system of record.

IBM App Connect IBM App Connect is one of the components from the hybrid
integration portfolio to provide integration capabilities for
business users. In this scenario, it is used by the marketing
team.

IBM API Connect IBM API Connect is all about APIs. In these scenarios, the
component is used to expose APIs to external partners in
scenario 1 and to internal applications in scenario 3. It also
includes a runtime environment for microservices.

MongoDB MongoDB is the noSQL data store supporting the
microservices.

IBM Message Hub IBM Message Hub is a cloud-based messaging service. It
is a supporting component for the microservices for which
it provides the event stream (in this scenario of order
events).
Chapter 4. Introduction to the scenarios 61

IBM Integration Bus This is the integration backbone for CompanyA. It provides
deep integration and connectivity capabilities that are used
to implement various integration techniques and patterns
ranging from covering point-to-point use cases like
request/response or fire and forget, and publish/subscribe
APIs.

IBM MQ The main messaging backbone for Company A. It
facilitates messaging support point-to-point integrations
and providing a publish/subscribe platform for events.

4.3 Re-creating the scenarios

The content of the following chapters was designed so that you can easily reproduce it.
Towards that goal, the scenarios have these characteristics:

1. Make a number of simplifications in the solution for each chapter.

A realistic (or at least more real-world-like) solution outline is still shown at the beginning
of each scenario to help you transfer the example to your own environment. In addition,
the simplifications themselves are documented.

2. Provide a set of resources to help you with routine tasks.

These resources are stored in a GitHub repository, and range from stubs to code snippets.
They are there to help you to focus on the interesting aspects of the solution rather than
having to worry about, for example, product installations.

4.3.1 Prerequisites

To re-create the scenarios and work with the provided resources and images, you need to
install the following software packages on your system:

� Docker

Installation instructions can be found here:

https://docs.docker.com/engine/installation/

� Docker Compose

Installation instructions can be found here:

https://docs.docker.com/compose/install/

� Git

Installation instructions can be found here:

https://git-scm.com/

� IBM Integration Bus Toolkit v10

Download and installation instructions can be found here:

https://developer.ibm.com/integration/docs/ibm-integration-bus/get-started/get-
started-with-ibm-integration-bus-for-developers/

� IBM MQ Explorer v9

Download and installation instructions can be found here:

http://www.ibm.com/support/docview.wss?uid=swg24021041
62 A Practical Guide for IBM Hybrid Integration Platform

https://docs.docker.com/engine/installation/
https://docs.docker.com/compose/install/
https://git-scm.com/
https://developer.ibm.com/integration/docs/ibm-integration-bus/get-started/get-started-with-ibm-integration-bus-for-developers/
http://www.ibm.com/support/docview.wss?uid=swg24021041

4.3.2 The GitHub repositories

The accompanying GitHub repositories can be found under http://github.com/sg248351 as
shown in Figure 4-4.

Figure 4-4 GitHub repositories for scenarios

There is a GitHub repository for each scenario. All of them have the same basic structure as
shown in the example in Figure 4-5.

Figure 4-5 Sample content of scenario repository

The following elements are shown in Figure 4-5:

LICENSE File containing licensing information for the files in this repository.

README.md Documentation for the repository. This file also provides information
about the licensing of IBM products that are used as part of the
scenario, such as a link to the licensing information about IBM
Integration Bus for Developers.
Chapter 4. Introduction to the scenarios 63

http://github.com/sg248351

docker-compose.yml Definition file that is used with the docker-compose command to set
up all the containers necessary for the environment in this scenario.
4.3.3, “Environment configuration for the scenarios” provides more
information about how to work with this file.

1_coding This directory contains resources to help you with the coding or
configuration aspects as part of the steps described in the scenario.

2_testing This directory contains resources to help you perform any testing
aspects of the scenario, for example test files.

99_docker This directory contains resources that are used with the
docker-compose.yml file.

4.3.3 Environment configuration for the scenarios

Because each scenario addresses a different use case, only a subset of all the components
from the overall solution are required. In terms of re-creating the scenarios, this means that
for each scenario, different systems and stubs are required. Use docker-compose to provide
environment-specific configurations (docker-compose.yml files) that are kept in the respective
scenario’s GitHub repository.

Figure 4-6 provides an example of such a configuration, showing that for this scenario, two
docker containers (or services as docker-compose calls them) are created:

� One container with IBM MQ (eventqm)
� Another container that represents a stub

Figure 4-6 Sample docker-compose.yml file

To start the environment for a specific scenario, complete the following steps. Note that all of
the commands need to be run on the machine where you set up Docker. The following steps
describe the process for scenario 1:

1. Create a directory to hold all the configuration data, for example sg248351, and open a
shell or command prompt there.

2. Clone the GitHub repository for the respective scenario by using the following command:

git clone https://github.com/sg248351/scenario1
64 A Practical Guide for IBM Hybrid Integration Platform

3. Navigate to the scenario1 directory by running this command:

cd scenario1

4. An environment can consist of multiple containers running multiple IBM products. To
accept all license agreements, run the following command:

export LICENSE=accept

5. Depending on the scenario, you might need to configure other environment variables. You
can see which ones by running any of the docker-compose commands as shown in
Figure 4-7.

Figure 4-7 Required environment variables

The scenario chapter itself includes a description of the properties and which values
should be used.

6. Create and start all containers that are required for this scenario by running this
command:

docker-compose up -d

The first time that you run this command, it will take long time to download all docker
images from the internet. Subsequent scenarios reuse many of the images, so the
command runs much faster. The output should look similar to what is shown in Figure 4-8.

Figure 4-8 Starting the containers for scenario 1

Tip for Windows users: If you are using Windows, you need to install and start Git
bash on Windows because Windows does not have its own bash shell available. See
the link:

https://git-for-windows.github.io/

All Linux operation systems have bash available, so Git bash is not needed.

Note: Depending on your environment, you might need to run the following commands
before starting the docker-compose environment:

� $ docker-machine start to start the virtual machine for docker
� $ eval "$(docker-machine env default)" to set environment variables
Chapter 4. Introduction to the scenarios 65

https://git-for-windows.github.io/

7. Verify that the containers have started successfully by running docker-compose ps as
shown in Figure 4-9.

Figure 4-9 Checking the state of containers with docker-compose

There are a couple of things to note from the output of the command, namely hosts,
names, state and ports:

– The first column shows the name of each of the containers in the scenario
environment. When using docker commands to interact with a specific container, you
use this name.

– The third column shows the state of the container.

– In the last column, you can see entries for ports like this 0.0.0.0:32860->1414/tcp.
This means that port 1414 from inside the container has been mapped to port 32860 on
the docker host.

8. Here is a list of additional docker commands and options that are useful when re-creating
the scenarios:

– docker-compose down: Stops and removes the containers that are defined in a
docker-compose.yml file.

– docker-compose start: Starts all previously created docker containers in this compose
environment.

– docker exec -it <container_name> /bin/bash: Starts a bash shell inside the
container. The shell is started in interactive mode, which means that it stays open,
allowing you to issue more commands from inside the container until you terminate the
shell with the exit command.

– docker stop <container name>: Stops a single running container.

– docker rm <container name>: Deletes a stopped container.

– docker images: Shows the docker images known locally on that docker host.

– docker pull <image name>: Pulls (or updates) a docker image from docker hub and
stores it locally.

Note: The ports are unique for each deployment, so use the ones that are displayed for
your machine.

Note: The docker host is normally localhost. For Windows users who have
installed the Docker Toolbox, however, it is the IP of the embedded Virtualbox Linux
VM that acts as the docker host. Docker Toolbox users can determine the IP of the
docker host by running the following command:

docker-machine default ip

For example, you would point IBM MQ Explorer to localhost:32860 in order to
interact with the queue manager listening on port 1414 in the container. The
allocation of the ports on the docker host is dynamic and can change every time that
you start the container.
66 A Practical Guide for IBM Hybrid Integration Platform

For complete details of these and other related commands, see the documentation for
Docker and Docker Compose at:

https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/v1.5/compose/cli/
Chapter 4. Introduction to the scenarios 67

https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/v1.5/compose/cli/

68 A Practical Guide for IBM Hybrid Integration Platform

Chapter 5. Exposing APIs externally

This chapter describes the implementation for the first scenario described in Chapter 4,
“Introduction to the scenarios” on page 55. It focuses on these tasks:

� Exposing APIs by using IBM API Connect on Bluemix
� Creating a secure connection between Bluemix and on-premises systems
� Using IBM App Connect to integrate on-premises and cloud based systems

This chapter has the following sections:

� Solution outline
� Implementation
� Resources

5

© Copyright IBM Corp. 2016. All rights reserved. 69

5.1 Solution outline

The business case for this scenario is described in “Exposing APIs externally” on page 57.
The following section summarizes the solution outline for this scenario.

5.1.1 Overview of the CompanyA hybrid integration landscape

CompanyA is going to use a hybrid integration scenario to create and expose their ordering
service to external partners. Figure 5-1 gives an overview of what such a landscape might
look like in a production scenario.

Figure 5-1 Logical view of the CompanyA hybrid environment

CompanyA wants to expose their ordering and product catalog services to external partners.
To enable them to do that, they decided to use IBM API Connect on Bluemix. This way, they
can easily integrate APIs with other Bluemix services, and can give developers and
consumers access to their APIs without having to maintain the infrastructure themselves.

API Connect is running in Bluemix Public. Because APIs in API Connect must be able to
connect to CompanyA’s on-premises applications, a secure connection to their data center is
needed. For this purpose, they will use a Bluemix Secure Gateway. The Secure Gateway
provides secure connectivity from Bluemix to other applications and data sources running
on-premises or in other clouds. Secure Gateway clients are provided for Linux, Windows, and
Mac OS X. You can also run a Secure Gateway client in IBM DataPower 7.2 or later, or in a
Docker container. In a production scenario, the Secure Gateway client could run on a
DataPower Gateway appliance in the DMZ.

For their product catalog data, CompanyA use an existing SOAP service. Because they want
to give external partners access to their product data, they want to expose this SOAP service
as a REST API through the Bluemix API Connect instance.

Additional enterprise systems and data sources in their landscape, all placed in the protected
zone, are IBM DB2® and IBM MQ. CompanyA will use a message flow on IBM Integration
Bus to implement customer order logic, which will also interface with the cloud-based

CompanyA data center

Integration Node

Integration
Server

IBM
DataPower
Gateway

S
ec

ur
e

G
at

ew
ay

C

lie
nt

Secure
Connection

IBM Cloud

Secure GatewayExternal
partner

DB2

Application
Server

SOAP Web
Service

SalesForce

API Connect

MQ
70 A Practical Guide for IBM Hybrid Integration Platform

Salesforce CRM platform. In their production landscape, the DataPower gateway is likely to
be used as a secure proxy for outgoing connections from the on-premises data center.

5.1.2 Expose a System API for product information from a catalog

As a first step, CompanyA wants to expose their existing product catalog to external partners.
API Connect is used to create a REST API that exposes the catalog SOAP service. API
Connect takes care of the conversion from JSON to XML by using the built-in mapping policy.
Also, create a Secure Gateway definition to allow API Connect to interface with the SOAP
service in a secure way.

The API that CompanyA wants to create to expose their product catalog can be classified as
a system API. A system API passes data from a system of record unchanged to the
consumer. An API that starts one or more System APIs or data sources, and manipulates the
returned data with new logic is called an interaction API.

5.1.3 Create an Interaction API for order information

This step involves exposing an API that runs on IBM Integration Bus. In API Connect, create a
new API and Product to expose an orders API, which is implemented in IBM Integration Bus.

This scenario showcases caching in API Connect (for the GET operations), and
transactionality in IBM Integration Bus (for the POST, PUT, and DELETE operations).

This section introduces API Security, which determines that order information is confidential,
and which needs authentication and authorization for the app user. Creating an actual
security definition that uses Basic Auth or OAuth is beyond the scope of the scenario.

Testing the API in this scenario is done by using the test tool in the developer portal.

The IBM Integration Bus flow gets catalog data from the SOAP service, gets and updates
order information from a DB2 database, and pushes order events to IBM MQ. We need to
explain why transactionality is a differentiator that positions IBM Integration Bus above the
other integration options.

The customer Account data is stored in Salesforce. The IBM Integration Bus message flow
queries Salesforce for the Account data, by using the Account number as key.

5.2 Implementation

This section covers the step-by-step implementation for the “Exposing APIs externally”
scenario.

Note: To create a connection from the Bluemix Secure Gateway, the machine that you use
as the on-premises server must be visible on the internet.
Chapter 5. Exposing APIs externally 71

5.2.1 Create an API Connect instance on Bluemix

For the implementation of the scenarios, use API Connect on Bluemix. This section describes
how to create and configure an API Connect instance in a Bluemix space. It assumes that you
already have a Bluemix organization and space defined. If not, follow the instructions in 5.3,
“Resources” on page 117.

1. Log in into your Bluemix organization and space with your IBM ID. An overview of the
available service categories is displayed as shown in Figure 5-2.

Figure 5-2 Bluemix categories

2. Navigate to the APIs category, and click API Connect Manager as shown in Figure 5-3.
Here you can create and configure a Bluemix API Connect service instance.

Figure 5-3 Create an API Connect service instance

3. Click the plus sign (+) to add an API Connect service.

Tip: You can only create one API Connect instance within the same Bluemix space.
72 A Practical Guide for IBM Hybrid Integration Platform

4. Click API Connect, and define a service name. Enter CompanyA as shown in Figure 5-4.

Figure 5-4 Define an API Connect service

5. For the scenarios you build and run in this book, use the Essentials pricing plan. This is a
pricing plan that allows you 50K API calls per month for no fee. The Essentials plan is
selected by default, as shown in Figure 5-5.

Figure 5-5 API Connect service pricing plans
Chapter 5. Exposing APIs externally 73

6. Click Create to confirm your choices, and create the API Connect service. The API
Connect Manager interface is launched, as soon as the service is created, and you will
automatically be logged in with your IBM ID. In the API Manager interface, you can create
and manage your Catalogs, and manage your APIs and Products. By default, the API
Manager interface shows the Draft space, where you can edit API and Product definitions
as shown in Figure 5-6.

Figure 5-6 Draft space in the API Manager interface

7. The push pin symbol in the navigation pane allows you to pin the pane to the interface so
that it is always accessible as shown in Figure 5-7.

Figure 5-7 Pinning the Navigation pane to the user interface

8. Navigate to the Dashboard, where you can manage API Connect catalogs. In the
scenarios within this book, the Sandbox development catalog is used. In the dashboard,
click the Sandbox catalog to manage this catalog.

An API Connect catalog is a staging target, and behaves as a logical partition of the
gateway and the Developer Portal. The URLs for API calls and for the Developer Portal are
specific to a particular catalog.

9. To allow app developers to explore and use the APIs published to the Sandbox catalog, a
developer portal site must be published. To make calls to the API operations, app
developers need to know the Base Endpoint URL for the catalog.

Note: To pin the UI navigation pane, click the Navigate to icon shown in a red rectangle
in Figure 5-7. To pin the UI navigation pane, click the Pin menu icon.
74 A Practical Guide for IBM Hybrid Integration Platform

Navigate to Settings to modify the catalog configuration as shown in Figure 5-8. Here you
are able to configure the IBM Developer Portal settings. Record the API Endpoint Base
URL of the catalog for later use.

Figure 5-8 Catalog settings page

10.Within the Settings tab, click Endpoints to find the API Endpoint Base URL. This is the
API Connect gateway URL for this catalog. You need it to call API operations externally.
Figure 5-9 shows the API Endpoint Base URL for a catalog.

Figure 5-9 API Endpoint Base URL
Chapter 5. Exposing APIs externally 75

11.On the Settings tab, click Portal to change the developer portal settings. Click IBM
Developer Portal and accept the default portal URL. Leave all other portal settings
unchanged. See Figure 5-10.

Figure 5-10 Developer portal settings

12.Click Save to apply and save the portal settings. A windows appears indicating that you
will receive an email (see Figure 5-11) after the developer portal site has been created.
Note that you might need a while for the DNS records to be updated.

Figure 5-11 Developer portal notification email
76 A Practical Guide for IBM Hybrid Integration Platform

13.When the portal site has been created, and DNS records across the internet have been
updated, the portal site is reachable on the Portal URL shown for the catalog. Use the
one-time login link in the notification email to log in into the portal site and change the
admin password. Clicking the Home link takes you to the Main site (Figure 5-12).

Figure 5-12 Developer Portal main site

5.2.2 Expose a SOAP Web Service as an API

This section covers the steps for exposing a SOAP Web Service as an API.

Simplified landscape for exposing a SOAP Web Service as an API
For the implementation of the CompanyA scenario in this section, we use a simplified
landscape, compared to the hybrid integration landscape introduced earlier in this chapter.
Figure 5-13 gives an overview of the implementation components for this section.

Figure 5-13 Implementation components for exposing a SOAP Web service

CompanyA data center

On-premise server

S
ec

ur
e

G
at

ew
ay

C

lie
nt

Secure
Connection

IBM Cloud

Secure GatewayExternal
partner

SOAP Web
Service

API Connect

Docker
container

Docker container
Chapter 5. Exposing APIs externally 77

In this scenario implementation, some simplifications are made to the on-premises
infrastructure:

� No firewall services are defined. The machine on which the docker images run can be
behind one or more firewalls.

� The Catalog SOAP Service and Secure Gateway Client run in separate docker images,
but on the same host machine.

The instructions for downloading and configuring the docker containers that are used in this
scenario are found in Chapter 4, “Introduction to the scenarios” on page 55.

Configure the Bluemix Secure Gateway service
The catalog SOAP web service that CompanyA wants to expose is running in their data
center, and, for the scope of this scenario, in a Docker container that runs on your machine.
To enable services running on Bluemix to securely connect to this web service, a secure
gateway must be defined. This configuration creates a secure connection between a Secure
Gateway client running on-premises, and a Secure Gateway service running in Bluemix. To
define the gateway, complete these steps:

1. Return to the Bluemix console by clicking the IBM Bluemix icon in the API Connect
management interface. Alternatively, you can browse to this URL:

https://new-console.ng.bluemix.net/#overview

The Bluemix console displays the various service categories, as shown Figure 5-14.

Figure 5-14 IBM Bluemix service categories

2. Click Integrate and then the Plus icon to create a new service.

3. Select the Secure Gateway service.

4. Select the Standard pricing plan, which is the only available pricing plan at the time of
writing.

5. Click Create to create the Secure Gateway service so that Gateways can be added to the
configuration.
78 A Practical Guide for IBM Hybrid Integration Platform

6. Click the ADD GATEWAY to configure the first gateway as shown in Figure 5-15.

Figure 5-15 Secure Gateway service creation

7. Enter a name for the gateway, such as CompanyA_Gateway. Leave the Require security
token to connect clients option enabled, but disable the Token Expiration option.

8. Click Add Gateway to create the gateway definition. The window should look like
Figure 5-16.

Figure 5-16 Secure Gateway definition

To enable the secure gateway connection, a destination must be added and the secure
gateway client must be configured. To configure the secure gateway client, you will need
the following parameters:

– The secure gateway ID

– The secure gateway secret
Chapter 5. Exposing APIs externally 79

9. Click the Cogwheel icon (see the box in Figure 5-16 on page 79) in the secure gateway
definition to display the settings for this gateway, as shown in Figure 5-17.

Figure 5-17 Secure Gateway ID and secret

10.Click the Copy button next to the key to export the secret value and save it in a temporary
text file. Also, copy the Gateway ID value to the same text file.

The temporary text file should look like Example 5-1.

Example 5-1 Temporary text file

SC1_GWID=blsFJ3WZqHm_prod_ng
SC1_SECTOKEN=
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJjb25maWd1cmF0aW9uX2lkIjoiYmxzRkozV1pxSG
1fcHJvZF9uZyIsInJlZ2lvbiI6InVzLXNvdXRoIiwiaWF0IjoxNDczODQ0ODM2fQ.tOzYREXUX9UmzB
C2jYhdonDGtC51dZOG8vARw7mc2Ks

These values will be needed for configuring the secure gateway client environment
variables, so save the file for future use.
80 A Practical Guide for IBM Hybrid Integration Platform

11.In the Secure Gateway, a destination must be configured for the on-premises services.
Close the Settings window to return to the gateway definition. Click the gateway name
(CompanyA_Secure_Gateway) and click Add Destination. Select that the resource is located
on-premises, as shown in Figure 5-18, and click Next.

Figure 5-18 Add a Secure Gateway destination

12.Click Advanced Setup, and enter the values that are shown in Table 5-1.

Table 5-1 Advanced setup values

13.Click Add Destination to add the destination to the gateway configuration.

14.After the destination is added, the Secure Gateway Client must be configured. The Secure
Gateway Client runs in a docker container. Complete the docker setup in Chapter 4,
“Introduction to the scenarios” on page 55 to download and prepare the containers that
you need for these scenarios. Because the Gateway ID and Secret Token are unique for
each gateway, they must be passed in environment variables to the Secure Gateway
Client when starting the Docker container.

Field Value

Name Catalog Service

Resource Hostname Hostname or IP address of your computer

Resource Port 7800

Protocol TCP
Chapter 5. Exposing APIs externally 81

Ensure that the Secure Gateway Client was configured and started correctly by looking at
the Bluemix Secure Gateway definition as shown in Figure 5-19.

Figure 5-19 Setting the Secure Gateway Client variables

The status of the Gateway should be Connected as shown in Figure 5-20.

Figure 5-20 Secure Gateway connection status

Start the Catalog service on the on-premises server
Complete the following steps to start the Catalog service on the on-premises server:

1. On the system where the docker images are installed, check whether the Catalog service
is running by issuing the docker-compose ps command. The output of this command
should look like Figure 5-21 showing the running services. Note that the local ports of the
docker containers (32775 and 32776) might be different from those shown in this figure.

Figure 5-21 Running docker container services

2. In a web browser, open the WSDL of the local service by using the following URL:

http://localhost:32775/CatalogServices?wsdl

The WSDL for the Catalog service is returned. This result confirms that the application is
running.

Note: This command assumes that you are working on Linux. For Windows, you need
to issue a docker-machine default ip command to get the IP of the Docker VM.
Rather than using the localhost, you need to use this IP address.
82 A Practical Guide for IBM Hybrid Integration Platform

3. To determine the external endpoint, go to the Secure Gateway definition for the
CompanyA_Secure_Gateway in the Bluemix console, select the destination that was
configured, and click the Cogwheel icon as shown in Figure 5-22.

Figure 5-22 Secure Gateway destination settings

This action opens the settings window, from which the Cloud host endpoint address and
port can be copied. See Figure 5-23.

Figure 5-23 Secure Gateway connection details

Note: Because the Secure Gateway client was configured and connected, it is also
possible to retrieve the WSDL from an external destination. In a production scenario,
address filtering would be set up to ensure that only authorized Bluemix services can
connect through the gateway.
Chapter 5. Exposing APIs externally 83

4. In a web browser, enter the Cloud endpoint URL to retrieve the Catalog service WSDL as
shown in Figure 5-24.

Figure 5-24 Retrieve the WSDL from the Cloud endpoint

Create the Products API in the API Designer
Next, create the Products API in the API Designer using these steps:

1. Return to the Bluemix API Management instance you created earlier, by clicking the
Instance icon (Figure 5-25).

Figure 5-25 CompanyA API Connect instance

2. This action opens the API Manager interface for the API Connect instance in your Bluemix
organization. In the navigation pane, click Drafts. Within the Drafts window, click the APIs
tab, and click + Add → API. This action creates a REST API definition.

3. In the dialog box, provide the following values:

– Title: Products

– Name: products

– Version: 1.0.0

4. Click Add to a new product and enter the product name. For this scenario, use CompanyA
Products.
84 A Practical Guide for IBM Hybrid Integration Platform

5. Click Add to create the Product and API definitions in the Draft space.

The API Design view opens as shown in Figure 5-26.

Figure 5-26 API Manager Design view

6. In the Base Path field, enter /Products.

7. As a next step, a JSON schema definition for the output of the API is created. Select the
Definitions section and create the definitions as shown in Figure 5-27.

Figure 5-27 JSON Schema definition for the Products API

8. Define the JSON Schema object name as Product Result. For the properties, use the
values in Table 5-2.

Table 5-2 Properties table

Property name Property type

Name String

ListPrice Integer

SKU String
Chapter 5. Exposing APIs externally 85

9. In the Paths section, click the Add Path icon. Add the /product path, and click the GET
/product operation to expand it.

10.In the input fields for the GET /products operation, click Add parameter, and on Add new
parameter. Add an input parameter with name product_id and type Integer. Specify that
it is a Query parameter, and that it is required. Marking a parameter as required is
indicated to users in the OpenAPI (Swagger 2.0) definition of the API, is enforced by
validate policies, and will result in the test tool always generating the parameter as part of
a sample API call.

11.Select the Product Result definition as the response schema for the 200 OK response.
An example of the configured operation is shown in Figure 5-28.

Figure 5-28 Definitions for GET /product operation

12.Click Save to save the API definition.

Now that you have defined the input and output parameters for the products API, the
invocation for the Catalog SOAP service can be configured.

13.In the Services section of the API Design view, click the Add service icon. The Import
web service from WSDL window opens, and presents you with three choices:

– Upload file

– Load from URL

– Find in registry

14.Click Load from URL and enter the WSDL URL of the Cloud host endpoint. In the
example, the URL is:

http://cap-sg-prd-2.integration.ibmcloud.com:16922/CatalogServices?wsdl

Description String

Id Integer

Property name Property type

Tip: This is the Cloud host endpoint that you copied from the destination settings (see
Figure 5-23 on page 83).
86 A Practical Guide for IBM Hybrid Integration Platform

15.Click Next and wait until the WSDL loads. Select the CatalogServiceV1 web service and
click Done as shown in Figure 5-29.

Figure 5-29 Import CatalogServiceV1 SOAP web service

16.Click the Assemble tab in the API Management interface, and select DataPower
Gateway policies. From the predefined assembly, delete the existing invoke policy on the
canvas by hovering your cursor over the policy and then clicking the Delete policy trash
can icon.

17.From the palette, drag the getProduct web service operation onto the dashed box that is
displayed on the canvas.

An invoke policy and two map policies are placed in the assembly. The first map policy
assigns variables to the input of your web service invocation, and the second policy
assigns outputs of your web service invocation to variables. The outputs of the first map
and the inputs of the second map are generated from the WSDL provided when you
imported the web service. The resulting assembly is shown in Figure 5-30.

Figure 5-30 SOAP service invocation through an Invoke policy

18.Click the getProduct: input map policy and then click the Edit inputs pencil icon in the
inputs column of the property sheet. An example is shown in Figure 5-31.

Figure 5-31 Edit inputs of the getProducts: input map policy
Chapter 5. Exposing APIs externally 87

19.Configure the input for the mapping as shown in Table 5-3.

Table 5-3 Properties table

20.Click Done, and map the input of the mapping policy to the output, as shown in
Figure 5-32.

Figure 5-32 Configure the input mapping policy

21.Click the (X) icon on the property sheet to close the input mapping policy.

The getProduct:input policy maps the input from the API call (the product_id query
parameter) to the input message for the service invocation. The getProduct:output policy
maps the response from the invocation to the response for the API call.

22.Click the getProduct: output map policy and click the Edit outputs icon. Define the web
service output as shown in Table 5-4.

Table 5-4 Properties table

Property Value

Context variable request.parameters.product_id

Name input

Content type none

Definition Integer

Property Value

Context variable message.body

Name output

Content type none

Definition #/definitions/Product Result
88 A Practical Guide for IBM Hybrid Integration Platform

23.Map the inputs to the outputs as shown in Figure 5-33.

Figure 5-33 Configure the output mapping policy

You have included the web service invocation in your assembly, mapped an input
parameter to the appropriate part of the SOAP request, and mapped the appropriate part
of the SOAP response to a JSON output.

24.Save the API definition before continuing.

Test the API definition in the API Manager interface
Next, test the API definition in the API Manager interface by using these steps:

1. The API Manager interface has a built-in test tool. To start the test tool, click the indicated
icon in the Assembly tab, as shown in Figure 5-34.

Figure 5-34 Start the API Manager test tool

2. Perform the following steps in the test tool:

a. If you have used the test tool before, click Change setup.

b. In the Catalog field, select the Sandbox catalog.

c. In the Product field, select the CompanyA Products Product and then click Republish
product to publish your Product so that it can be tested. The catalog that you created
earlier has the “development mode” and “automatic subscription” settings enabled by
default. Whenever you publish or republish a product to this catalog, you can test the
included APIs immediately.

d. Click Next.
Chapter 5. Exposing APIs externally 89

e. In the Operation field, select get /product.

f. In the product_id field, enter 12345.

3. Click Invoke. The response is displayed.

This completes the first part of this scenario. In this section, you performed the following
activities:

� Configured an IBM Bluemix API Connect instance
� Configured an IBM Bluemix Secure Gateway Service instance
� Created a REST API definition
� Started an on-premises SOAP service from API Connect on Bluemix
� Tested the API definition

5.2.3 Create an Interaction API for order information

In this scenario, a predefined message flow is imported in IBM Integration Bus. Salesforce
connectivity is configured, and you push an API to API Connect. In API Connect, you make
the API available to application developers.

Simplified landscape for the order information API
For the implementation of this scenario, a simplified landscape is presented again, as shown
in Figure 5-35.

Figure 5-35 Implementation components for exposing an API from IBM Integration Bus

The following simplifications were made:

� There are no firewall services defined.
� The Docker images all run on the same computer, albeit in separate docker containers.

Introduction to REST API project in IBM Integration Bus
In IBM Integration Bus, a REST API is a specialized application that can be used to expose
integrations as a RESTful web service that can be called by HTTP clients.

IBM Integration Bus also provides a set of REST nodes that you can use to interact either
synchronously or asynchronously with external REST APIs.

CompanyA data center

On-premise server

Secure
Connection

IBM Cloud

Secure GatewayExternal
partner

DB2

SalesForce

API Connect S
ec

ur
e

G
at

ew
ay

C

lie
nt

Docker
container

Integration
Node

Integration
Server

Docker container

SOAP Web
Service

Docker container

Docker container
90 A Practical Guide for IBM Hybrid Integration Platform

Integration Bus V10 introduces a new type of project, or container, called a REST API. A
REST API in Integration Bus is a specialized application that allows you to expose a set of
integrations as a RESTful web service. It has these characteristics:

� Operations that are defined in the REST API are implemented as normal subflows.

� The REST API container automatically takes care of the routing of inbound HTTP
requests to the correct subflow for the operation being called.

� You simply need to connect the dots between the Input and Output nodes in each subflow.

� REST APIs support all of the Integration Bus features that you can use with applications
(such as shared libraries, monitoring, activity log). All message flow nodes can be used
within a REST API.

� A REST API describes a set of resources, and a set of operations that can be performed
against those resources.

Resources
A REST API has a base path, which is the root from which all of the resources and operations
are available. An example base path might be:

http://mycompany.com:7843/customerdb/v1

Each resource in a REST API has a path, relative to the base path that identifies that
resource. Example resources might be:

/customers - all of the customers in the database
/customers/12345 - customer #12345
/customers/12345/orders - all orders for customer #12345
/customers/12345/orders/67890 - order #67890 for customer #12345

Operations
Each resource in a REST API has a set of operations. An operation in a REST API has a
name, and an HTTP method, such as GET, POST, PUT, or DELETE.

The combination of the path of the HTTP request and the HTTP method identifies which
resource and operation are being called.

Example operations on the resource /customers/12345 might be:

� GET getCustomer: Retrieve the customer details from the database
� PUT updateCustomer: Update the customer details in the database
� DELETE deleteCustomer: Delete the customer from the database

To call the updateCustomer operation, the HTTP client must make an HTTP PUT request to:

http://mycompany.com:7843/customerdb/v1/customers/12345

Parameters
Each operation that is defined in a REST API can also specify a set of parameters.
Parameters can be used to pass information in to the operation. These parameters are in
addition to the body passed in the HTTP request.

Integration Bus supports three different types of parameters:

� Path parameters: One or more parts of the path for a resource can be defined as a
variable. For example, the customer ID in the previous examples is a path parameter:

/customers/{customerId}/orders/{orderId}
/customers/12345/orders/56789
Chapter 5. Exposing APIs externally 91

� Query parameters: One or more parameters can be specified in the URL following the
path:

/customers?maxResults=5&name=2

� Header parameters: One or more parameters can be specified in the headers of the HTTP
request:

Api-Client-Id: ff6e2c5d-42d5-4026-8f7f-d1e56da7f777

Swagger
Swagger is an open standard for defining a REST API. For more information, see this
website:

http://swagger.io/

Along with the specification, Swagger has a set of open source tools that can be used to
interact with Swagger documents and the REST APIs that they describe.

A Swagger document includes definitions of the resources, operations, and parameters in a
REST API. It can also include JSON schema that describes the structure of the request and
response bodies to an operation. A Swagger document can be thought of as the REST API
equivalent of a WSDL document for a SOAP web service.

Integration Bus supports Swagger 2.0. The specification for Swagger 2.0 can be found at:

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md

REST APIs in Integration Bus are described by a Swagger 2.0 document. You can build a
REST API by importing a Swagger document. Alternatively, you can now build a REST API
from scratch by using the toolkit.

Cross-Origin Resource Sharing (CORS)
If you are making an HTTP request from a web page to a REST API or other HTTP service
that is deployed to Integration Bus, it is likely that a cross-origin request will need to be made.

Integration Bus V10 now includes built in support for Cross-Origin Resource Sharing (CORS).
At V10 GA, this support was limited to the HTTP listener for the integration server, but as of
V10 FP1 it is available for the HTTP listener for the integration node as well.

The support is disabled by default, but can be easily enabled with the following commands:

mqsichangeproperties IB10NODE -e default -o HTTPConnector -n corsEnabled -v true
mqsichangeproperties IB10NODE -b httplistener -o HTTPConnector -n corsEnabled -v
true

The default settings for CORS should be sufficient for most needs, but more configuration
options are available for fine level control. When CORS settings are modified, the changes
are effective immediately, so you do not have to restart the integration server or node.

Accessing parameter values
Example 5-2 shows some examples of how to access parameter values in the various
transformation languages supported by Integration Bus.

Example 5-2 Accessing parameter values in various languages

ESQL:
DECLARE max INTEGER -1;
IF FIELDTYPE(InputLocalEnvironment.REST.Input.Parameters.max) IS NOT NULL THEN
 SET max = InputLocalEnvironment.REST.Input.Parameters.max;
92 A Practical Guide for IBM Hybrid Integration Platform

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md
http://swagger.io/

END IF;

Java:
MbElement maxElement =
inLocalEnvironment.getRootElement().getFirstElementByPath("/REST/Input/Parameters/
max");
int max = -1;
if (maxElement != null) {
 max = Integer.valueOf(maxElement.getValueAsString());
}

.NET:
NBElement maxElement =
inLocalEnvironment.RootElement["REST"]["Input"]["Parameters"]["max"];
int max = -1;
if (max != null) {
 max = (int) maxElement;
}

IBM Integration Bus artifacts for the scenario
The IBM Integration Bus artifacts discussed in this scenario are available for download from
GitHub repository:

https://github.com/sg248351/scenario1/tree/master/1_coding

To download and install the artifacts, complete these steps:

1. Download the iib_scenario1.zip and SCENARIO1.bar files on your computer in which IBM
Integration Bus toolkit is installed from the GitHub repository.

2. Start the Integration Bus toolkit. You can import the artifacts in your workspace by using
File → Import → Project Interchange.

3. On the Import Projects window, specify the iib_scenario1.zip file that you just
downloaded. Select all projects, then click Finish. Now you can see the projects as shown
in Figure 5-36.

Figure 5-36 Imported projects
Chapter 5. Exposing APIs externally 93

https://github.com/sg248351/scenario1/tree/master/1_coding

4. By opening Orders → REST API Description, you can see that three operations are
implemented (postOrder, deleteOrder, and getOrder) as shown in Figure 5-37. You can
see the path of operations, http methods of each operation, and request parameters.

Figure 5-37 REST operations

5. If your operations accept query or header parameters, then add them in using the (+) icon
on the operation. See Figure 5-38.

Figure 5-38 Add parameters to operations

6. Each of these operations is implemented as a subflow, and reference gets added into the
main message flow as shown in Figure 5-39.

Figure 5-39 Main message flow for Orders API

7. You can see this flow by opening it with the Message Flow Editor. This view can be found
at Orders → Resources → Flows → gen → Orders.msgflow, then right-click the flow,
and clicking Open with → Message Flow Editor.
94 A Practical Guide for IBM Hybrid Integration Platform

8. Now look at the getOrder operation. This operation is requested with http GET method,
which has one query parameter, orderId as shown in Figure 5-40.

Figure 5-40 Implemented operations details

9. Scroll to the right side and click the button marked by red square in Figure 5-41.

Figure 5-41 Implementing a subflow

Implementation of getOrder subflow
The getOrder operation is implemented by using an aggregation technique.

IBM Integration Bus provides three message flow nodes that support aggregation:

� The AggregateControl node
� The AggregateRequest node
� The AggregateReply node

You can also use these aggregation nodes to issue requests to applications outside the
integration node environment. Messages can be sent asynchronously to external applications
or services. The responses are then retrieved from those applications, and the responses are
combined to provide a single response to the original request message.

These nodes can help to improve response time because slow requests can be performed in
parallel, and they do not need to follow each other sequentially. If the subtasks can be
processed independently, and they do not need to be handled as part of a single unit of work,
they can be processed by separate message flows.
Chapter 5. Exposing APIs externally 95

The design of the subflow for getOrder operation is as shown in Figure 5-42.

Figure 5-42 Aggregation flow

The sequence of steps involved in processing of the getOrder operation is as follows:

1. Receive an order information request from clients.

2. Get the order ID from the query parameter, orderId, in the Compute node.

3. Retrieve the order information from the tables ORDER and PRODUCTLIST by using the
orderId as the key. The ORDER table stores order information. The structure of the
ORDER table is shown in Table 5-5.

Table 5-5 ORDER table

The PRODUCTLIST table stores the line items list that is related to each order. The
structure of the PRODUCTLIST table is shown in Table 5-6.

Table 5-6 PRODUCTLIST table

Parameter Meaning

ORDERID Order ID (Primary key)

ACCOUNTNAME Account name

TOTAL The amount of order

STATUS The status of order

CREATIONDATE The creation date of order

CAMPAIGNID Campaign ID (option)

Parameter Meaning

PRODUCTLISTID Product list ID (Primary key)

ORDERID Order ID (Foreign key)

PRODUCTID Product ID

QUANTITY The quantity of the product

PRICE The price of the product
96 A Practical Guide for IBM Hybrid Integration Platform

4. Now fan out the two requests to retrieve the account details and the product details as
shown in Figure 5-43.

Figure 5-43 Aggregation Fanout flow

5. Account details are obtained from the Salesforce CRM system. Hence, one of the fan-out
messages has the account name that will be used to query the account details from the
Salesforce CRM. This part is implemented at the flow1_salesforce.msgflow in the
AggregationFlows application as shown in Figure 5-44. You can see the Salesforce
Request node that is used to access the Salesforce system. See 5.3, “Resources” on
page 117 for the prerequisites for Salesforce and IBM Integration Bus for the integration.

Figure 5-44 flow1_salesforce.msgflow

6. The Salesforce Request node window provides the settings for the Salesforce system as
shown in Figure 5-45. You can see the value of the Security Identity property is sf1. This
identity is related to the credentials for the Salesforce system. You are going to configure it
in the next step. Select the Account object from the dropdown list and select the operation
type as Retrieve.

Figure 5-45 Salesforce Request node property
Chapter 5. Exposing APIs externally 97

7. The second message in the fan-out flow has the productID of line items and is used to
query the product details in the Product Information System. This part is implemented at
the flow2_catalogservice.msgflow in the AggregationFlows application (Figure 5-46).

Figure 5-46 flow2_catalogservice.msgflow

8. For the example scenario, the Product Information System is implemented as SOAP
service within IBM Integration Bus (Figure 5-47), but it could be any external system that
provides a SOAP-based service.

Figure 5-47 SOAP Request Node Properties

9. Aggregate two response messages and combine them into one response message, then
return it to the client. See Figure 5-48.

Figure 5-48 Aggregate two response messages

Similarly, you can review the postOrder and deleteOrder operations in the provided
artifacts.
98 A Practical Guide for IBM Hybrid Integration Platform

Generating monitoring events for transactions
You can configure IBM Integration Bus to emit a monitoring event (an XML document) when
something interesting happens. Events are typically emitted to support transaction
monitoring, transaction auditing, and business process monitoring.

A monitoring event can also contain the following items:

� Application data that is extracted from the message.

� Part or all of the message bit stream. All nodes can produce bit streams, which can be
included in monitoring events.

Events are published to a topic, where they can be read by multiple subscribers. The topic
name has the following structure for events published by the IBM MQ publish/subscribe
broker:

$SYS/Broker/integrationNodeName/Monitoring/integrationServerName/flow_name

In this scenario, configure the flow to emit the events when a request is made for new order,
cancel order, or retrieve the details of existing order. These are three operations for this
service. Therefore, configure the compute node in each of the subflow operations as shown in
Figure 5-49.

Figure 5-49 Monitoring event configuration

The custom information that you would like to include in your event is defined under the Event
Payload section. This scenario includes information regarding OrderId, OrderType, and
campaignId as part of the event payload.
Chapter 5. Exposing APIs externally 99

Deploy the IBM Integration Bus BAR file to the Integration Server
You can deploy the IBM Integration Bus BAR file, SCENARIO1.bar, to the Integration Server by
using the IBM Integration Bus web user interface (web admin GUI) on your web browser. The
web user interface allows you to view and administer your integration node resources and
perform monitoring tasks. To deploy it, complete these steps:

1. Before deploying the BAR file, set the credentials for Salesforce on the Integration node.
Issue the following commands at your scenario1 directory on your Docker host computer.
Run the following command in the Docker command window:

docker exec -it scenario1_iib-op_1 /bin/bash

2. Now issue the following IBM Integration Bus command:

mqsisetdbparms NODE1 -n salesforce::sf1 -u <UserId> -p <Password> -c
<ClientIdentity> -s <ClientSecret>

The parameters are defined in Table 5-7.

Table 5-7 Parameters table

3. Restart the Integration node by running these commands:

mqsistop NODE1
mqsistart NODE1

4. Run the exit command.

5. To deploy the BAR file to the IBM Integration Bus integration server, access the web user
interface from your web browser:

http://<Docker host>:<Port>/

where:

– Docker host is the host name or IP address of your Docker host computer.

– Port is the Docker proxy port, which is configured as tcp/4414. You can check it by
running the Docker command docker-compose ps. In Example 5-3, you can see that
32864 is the port that was used.

Example 5-3 The docker-compose ps command

[root@rb-docker-host-01 scenario1]# docker-compose ps
 Name Command State Ports

scenario1_iib- iib_mq_manage.sh Up 0.0.0.0:32865->1
op_1 414/tcp, 0.0.0.0
 :32864->4414/tcp

Note: You can refer to 5.3.3, “Importing the Accounts data into the Salesforce
developer organization” on page 117 for instructions. Note that when you create a
connected app on Salesforce.com, you can see the ClientIdentity and ClientSecret as
the Consumer Key and Consumer Secret.

Parameter Meaning

UserId Your Salesforce user ID

Password Your Salesforce password, suffixed with the security token that
was sent to you by Salesforce

ClientIdentity The name of the consumer key of your Connected App

ClientSecret The consumer secret of your Connected App
100 A Practical Guide for IBM Hybrid Integration Platform

 , 0.0.0.0:32863-
 >7800/tcp
scenario1_orderd /entrypoint.sh Up 22/tcp, 0.0.0.0:
b_1 db2start 32860->50000/tcp
scenario1_sgc_1 node lib/secgwcl Up
 ient.js 1X ...
scenario1_stub_1 iib_manage.sh Up 0.0.0.0:32862->4
 414/tcp, 0.0.0.0
 :32861->7800/tcp

You can see the integration node and integration server as shown in Figure 5-50.

Figure 5-50 Integration Node details in WebUI

6. Click the drop down menu icon next to the IS01 integration server and then click Deploy to
deploy the BAR file to the server as shown in Figure 5-51.

Figure 5-51 Deploy to integration Server
Chapter 5. Exposing APIs externally 101

7. The Deploy BAR File window is displayed. To select a BAR file, click Browse, navigate to
your BAR file, and click Open. The BAR file properties and the associated values are
displayed in the window as shown in Figure 5-52. Click Deploy.

Figure 5-52 Deploy BAR File

In the web user interface navigator, the deployed resources are listed under the integration
server as shown in Figure 5-53.

Figure 5-53 Deployed resources

8. You can confirm the deployment by using a curl command. The following test data is
provided in the GitHub repository:

https://github.com/sg248351/scenario1/tree/master/2_testing

– orderdata01.txt

– orderdata02.txt

– orderdata03.txt

9. Download these files into your current directory.
102 A Practical Guide for IBM Hybrid Integration Platform

https://github.com/sg248351/scenario1/tree/master/2_testing

10.To confirm the postOrder operation, issue the following command:

curl -X POST http://<Docker host>:<Port>/orders/v1/order -H
"Content-Type:application/json" --data-binary @orderdata01.txt

where:

– <Docker host> is the host name or IP address of your docker host computer.

– <Port> is the docker proxy port, which is configured as tcp/7800. Example 5-3 on
page 100 shows that 32863 is the port that was used.

If it succeeds, the result should look like Example 5-4.

Example 5-4 Operation successful message

{"result":"OK","orderId":1}

11.Confirm the getOrder operation by issuing the following command:

curl -X GET http://<Docker host>:<Port>/orders/v1/order?orderId=1

If it succeeds, the result should look like Example 5-5.

Example 5-5 Output of the getOrder operation

{"ORDERID":1,"ACCOUNTNAME":"AccountA","TOTAL":5.7E+2,"STATUS":"NEW","CREATIONDATE":"2016-10-01",
"CAMPAIGNID":"Winter Sale","accountDetails":{"accountName":"AccountA","salesforceId":"0012800000
qqyIcAAI","billingCountry":"Japan","billingPostalCode":"999999"},"lineItems":[{"PRODUCTID":12345
,"QUANTITY":10,"PRICE":1.2E+1,"productName":"Drugstore Special","description":"Fever
Pills","SKU":"1234-567-8","listPrice":"12"},{"PRODUCTID":12346,"QUANTITY":10,"PRICE":4.5E+1,"pro
ductName":"Pharmacists'Delight","description":"Anti-Inflammatory","SKU":"1236-889-7","listPrice"
:"45"}]}

Now the CompanyA’s order system is created by integrating information from multiple
systems, and exposed as REST APIs in the IBM Integration Bus.

Push the API definitions to API Connect
The integration between IBM Integration Bus and API Connect means that you can push APIs
from IBM Integration Bus to API Connect. This configuration allows application developers to
easily consume them, while making it easy for the API provider to secure and monitor them.

Complete the following steps to push the REST APIs from IBM Integration Bus to IBM API
Connect on Bluemix:

1. Create a destination on the Secure Gateway to enable IBM API Connect on Bluemix to
access IBM Integration Bus on-premises. You can use the gateway
CompanyA_Secure_Gateway that you created in “Configure the Bluemix Secure Gateway
service” on page 78, and create a destination in the same way. At the Advanced Setup
stage, enter the values as shown in Table 5-8.

Table 5-8 Configuration table

Tip: In Example 5-5, the salesforceId, billingCountry, and billingPostalCode fields
come from Salesforce. If your result does not have these data, check your Salesforce
credentials settings.

Field Value

Name Order API

Resource Hostname iib-op
Chapter 5. Exposing APIs externally 103

2. Find the cloud host and port by clicking the Cogwheel icon of the destination. See
Figure 5-54.

Figure 5-54 Cloud host and port

3. In the web user interface, click the arrow next to the IS01 integration server, and then click
Push REST APIs to IBM API Connect (Figure 5-55).

Figure 5-55 Push REST APIs to API Connect

Resource Port 7800

Protocol TCP

Field Value
104 A Practical Guide for IBM Hybrid Integration Platform

4. The Push REST APIs to IBM API Connect window is displayed, in which you define your
connection to the API Connect instance in your Bluemix organization. Enter the
connection details for your IBM API Connect server in the Host and Port fields. The Host
depends on which region of Bluemix you are using (Table 5-9). The port is 443.

Table 5-9 API Connect server host

5. Enter your Bluemix credentials in the User ID and Password fields, and click Connect to
IBM API Connect. See Figure 5-56.

Figure 5-56 Configure connection to an API Connect cloud

6. When the connection is established, you can see the message shown in Figure 5-57. Click
Next.

Figure 5-57 Successful connection

Bluemix Region Host

US South us.apiconnect.ibmcloud.com

Sydney au.apiconnect.ibmcloud.com

United Kingdom eu.apiconnect.ibmcloud.com
Chapter 5. Exposing APIs externally 105

7. Select the target organization, and specify the name and version of the Product that you
want to create. Select the Sandbox catalog. See Figure 5-58.

Figure 5-58 Specify target details for pushing REST API

8. Click Next. A window is displayed (see Figure 5-59) in which all available APIs are listed.
Select the Orders REST API and then click Next.

Figure 5-59 Select the API to be pushed

9. You need to override the host name and port that are used by IBM API Connect to start
the APIs (Figure 5-60). The host name and port are provided by the Secure Gateway
service.

Figure 5-60 Override host and port for the APIs on IBM Integration Bus
106 A Practical Guide for IBM Hybrid Integration Platform

10.Click Push to IBM API Connect. If it is successful, you can see the window shown in
Figure 5-61. Click Close.

Figure 5-61 Success message after Pushing API

Pushing the API Product and the API stages the product in the Sandbox catalog. Staging
means that the product is deployed to a catalog. However, it is not yet visible in the
developer portal and cannot be subscribed yet. To make it visible, the product must be
published.

11.Log in to the API Manager interface for your Bluemix API Connect instance again, and go
to the dashboard (see Figure 5-62).

Figure 5-62 Go to the API Connect Dashboard

12.Click the Sandbox catalog, and click the Products tab. You will see that the Orders
product, which was pushed from IBM Integration Bus, is in the Staged state.
Chapter 5. Exposing APIs externally 107

13.Click the Manage icon (...) next to the product and select Publish, as shown in
Figure 5-63.

Figure 5-63 Publish a staged product in a catalog

14.Accept the default visibility settings, and click Publish. The product is now published in the
Sandbox catalog. Developers are able to see the product, and can subscribe to it, to call
the included API from their applications.

15.Test the solution by using the open source tool cURL. Example 5-6 through Example 5-10
on page 109 show testing the Create order, Get order, Cancel order functions.

Example 5-6 Test date (orderdata01.txt)

{
 "accountName":"AccountA",
 "lineItems":[
 {"productId":12345,"quantity":10,"price":12},
 {"productId":12346,"quantity":10,"price":45}
],
 "total":570,
 "status":"NEW",
 "creationDate":"2016-10-01",
 "campaignId":"Winter Sale"
}

Example 5-7 shows testing Create order.

Example 5-7 Create order

curl -X POST <API Endpoint Base URL>/orders/v1/order -H
"Content-Type:application/json" --data-binary @orderdata01.txt

result:
{"result":"OK","orderId":1}

Note: You can find <API Endpoint Base URL> in Figure 5-9 on page 75.
108 A Practical Guide for IBM Hybrid Integration Platform

Example 5-8 shows testing Get order.

Example 5-8 Get order

curl -X GET <API Endpoint Base URL>/orders/v1/order?orderId=1

result:
{"ORDERID":1,"ACCOUNTNAME":"AccountA","TOTAL":5.7E+2,"STATUS":"NEW","CREATIONDA
TE":"2016-10-01","CAMPAIGNID":"Winter
Sale","accountDetails":{"accountName":"AccountA","salesforceId":"0012800000qqyI
cAAI","billingCountry":"Japan","billingPostalCode":"999999"},"lineItems":[{"PRO
DUCTID":12345,"QUANTITY":10,"PRICE":1.2E+1,"productName":"Drugstore
Special","description":"Fever
Pills","SKU":"1234-567-8","listPrice":"12"},{"PRODUCTID":12346,"QUANTITY":10,"P
RICE":4.5E+1,"productName":"Pharmacists'
Delight","description":"Anti-Inflammatory","SKU":"1236-889-7","listPrice":"45"}
]}

Example 5-9 shows testing Cancel order.

Example 5-9 Cancel order

curl -X DELETE <API Endpoint Base URL>/orders/v1/order?orderId=1

result:
{"result":"OK"}

The cancel order operation changes the status of the order. You can see that the status has
changed by getting the order again as shown in Example 5-10.

Example 5-10 Get order again

curl -X GET <API Endpoint Base URL>/orders/v1/order?orderId=1

result:
{"ORDERID":1,"ACCOUNTNAME":"AccountA","TOTAL":5.7E+2,"STATUS":"CANCELED","CREATION
DATE":"2016-10-01","CAMPAIGNID":"Winter
Sale","accountDetails":{"accountName":"AccountA","salesforceId":"0012800000qqyIcAA
I","billingCountry":"Japan","billingPostalCode":"999999"},"lineItems":[{"PRODUCTID
":12345,"QUANTITY":10,"PRICE":1.2E+1,"productName":"Drugstore
Special","description":"Fever
Pills","SKU":"1234-567-8","listPrice":"12"},{"PRODUCTID":12346,"QUANTITY":10,"PRIC
E":4.5E+1,"productName":"Pharmacists'
Delight","description":"Anti-Inflammatory","SKU":"1236-889-7","listPrice":"45"}]}

In this section, you performed the following activities:

� IBM Integration Bus Step 1
� IBM Integration Bus Step 2
� Published the API pushed from IBM Integration Bus to an API Connect catalog
Chapter 5. Exposing APIs externally 109

5.2.4 Create a Production catalog with an IBM Developer Portal Site

In this section, you create a catalog and configure a Developer Portal Site, from which
application developers can browse the API products that are published to this catalog. To do
so, complete these steps:

1. Go to the dashboard again in the API Manager interface, and click Add to for a new
catalog as shown in Figure 5-64.

Figure 5-64 Add a catalog to an API Connect instance

2. Name the catalog Production, and click Add. See Figure 5-65.

Figure 5-65 Add a Production catalog to API Connect
110 A Practical Guide for IBM Hybrid Integration Platform

3. In the new Production catalog, click the Settings tab, and click the Portal settings. Select
the IBM Developer Portal and select IBM ID as the User Registry. An example is shown
in Figure 5-66.

Figure 5-66 Portal Configuration window

4. Click Save, and wait for a confirmation email. It will take some time to set up the Developer
Portal site, and to propagate the DNS change across the internet.

5. In the API Manager interface, click the Developers tab, and click Add Bluemix
Organization. See Figure 5-67.

Figure 5-67 Add a Developer organization to the catalog

6. Enter your Bluemix email address and click Add, as shown in Figure 5-68.

Figure 5-68 Enter your Bluemix details
Chapter 5. Exposing APIs externally 111

7. Wait for a confirmation email, which looks like Figure 5-69, and click the link in the email. If
you were not logged in to Bluemix yet, you must provide your Bluemix credentials to
continue.

Figure 5-69 Bluemix Developer organization confirmation email

8. Select your Bluemix organization, and click CONFRIM as shown in Figure 5-70.

Figure 5-70 Confirm your Bluemix organization

Now that the Developer Portal site is configured, and a Developer organization created,
you can subscribe to products, which are published in the catalog. From within the API
Manager interface, you can stage and publish products from the Drafts space.

9. Go to the Drafts space in the API Manager interface. Select the CompanyA Products
product and click the Stage icon, as shown in Figure 5-71. Select the Production
catalog.

Figure 5-71 Stage a product to a catalog

10.In the navigation pane of the API Management interface, go to the Dashboard and click
the Production catalog. Make sure that you are in the Products tab, and click the (...)
icon behind the Staged CompanyA Products product. Click Publish and leave the
visibility settings at the default. Click Publish to publish the product to the Production
catalog.
112 A Practical Guide for IBM Hybrid Integration Platform

11.In your web browser, go to the Developer Portal site. You can find the link in the Portal
settings of the Production catalog. The Developer Portal site home page looks like
Figure 5-72.

Figure 5-72 API Connect IBM Developer Portal site

12.Log in to the Developer Portal with your Bluemix credentials.

13.Click the Apps tab to create an application, and select Register new application.

14.In the example shown in Figure 5-73, OrderViewer was entered as the title for the app.
Click Submit to create the application.

Figure 5-73 Creating the application
Chapter 5. Exposing APIs externally 113

15.In the Developer Portal site, click the API Products tab to show which products were
published to the catalog. You can use the APIs included in these products within your apps
after you subscribe to them. The list of products should look similar to Figure 5-74.

Figure 5-74 API Products published in the Production catalog

16.Select the CompanyA Products API product from the list of products. A window opens
with the details about the product, including the contained APIs and Plans. Use the default
plan in this scenario. Click Subscribe in the Default plan. Select the OrderViewer
application as shown in Figure 5-75.

Figure 5-75 Subscribe an application to a Plan
114 A Practical Guide for IBM Hybrid Integration Platform

17.In the same page, click the products API within the CompanyA Orders product, as
shown in Figure 5-76.

Figure 5-76 Select the Products API that was created earlier

Information about the API, including code examples, is displayed as shown in Figure 5-77.

Figure 5-77 Products API details in the Developer Portal
Chapter 5. Exposing APIs externally 115

18.Select the GET /product REST operation, as shown in Figure 5-78.

Figure 5-78 Show the GET /product operation

19.Scroll down to the Developer Portal test tool, labeled Try this operation, as shown in
Figure 5-79.

Figure 5-79 Use the Developer Portal test tool
116 A Practical Guide for IBM Hybrid Integration Platform

20.Provide a value for the product_id operation, and click Call operation. The response,
including the protocol headers, is displayed in the window.

In this section, you performed the following activities:

� Configured a new catalog in API Connect.
� Configured the Developer Portal settings in the catalog.
� Published an API Product to the catalog.
� Used the Developer Portal to subscribe an app to a published API.
� Tested the API definition from the Developer Portal.

5.3 Resources

This section lists several resources that can help when implementing this scenario.

5.3.1 Sign up for an IBM Bluemix account

If you do not have an IBM Bluemix account, you can sign up for a 30 days trial by using the
following link:

https://console.ng.bluemix.net/registration/

Your 30-day trial is available at no charge, with no credit card required. You get access to
2 GB of runtime and container memory to run apps, unlimited IBM services and APIs, and
complimentary support.

To start the IBM Bluemix console and log in, use the following link:

https://new-console.ng.bluemix.net/#overview

5.3.2 Setting up a Salesforce developer edition account

Because this scenario explores using the Salesforce request node in IBM Integration Bus to
interface with Salesforce, you need a Salesforce Developer edition account to complete the
scenario. You can sign up for the Salesforce Developer edition by using the following link:

https://developer.salesforce.com/signup

Before you can connect to Salesforce from an IBM Integration Bus node, you must set up the
environment. The required steps are documented in the IBM Knowledge Center for IBM
Integration Bus 10:

https://www.ibm.com/support/knowledgecenter/SSMKHH_10.0.0/com.ibm.etools.mft.doc/b
z90640_.htm

5.3.3 Importing the Accounts data into the Salesforce developer organization

For the Salesforce integration, you must create the Salesforce Account records from a CSV
file. You can retrieve the customers.csv file from the GitHub repository for this book:

http://github.com/sg248351
Chapter 5. Exposing APIs externally 117

https://www.ibm.com/support/knowledgecenter/SSMKHH_10.0.0/com.ibm.etools.mft.doc/bz90640_.htm
https://developer.salesforce.com/signup
http://github.com/sg248351
https://new-console.ng.bluemix.net/#overview
https://console.ng.bluemix.net/registration/

If you prefer to create the CSV file yourself, you can use the following values:

accountName,billingCountry,billingPostalCode
AccountB,India,887777
AccountA,Japan,999999
AccountC,USA,888888
AccountD,Germany,22335

To import the data into Salesforce from the customers.csv file, follow the instructions that are
provided by Salesforce.com:

https://help.salesforce.com/apex/HTViewHelpDoc?id=import_with_data_import_wizard.h
tm&language=en_US

Feel free to create additional Account records in Salesforce as well.
118 A Practical Guide for IBM Hybrid Integration Platform

https://help.salesforce.com/apex/HTViewHelpDoc?id=import_with_data_import_wizard.htm&language=en_US

Chapter 6. Automation for business users

This chapter describes the implementation for the scenario outlined in “Automation for
business users” on page 58.

The chapter has the following main sections:

� Solution outline
� Implementation
� Resources

6

© Copyright IBM Corp. 2016. All rights reserved. 119

6.1 Solution outline

The main focus of the scenario is on the automation component and how it can be used to
allow business users, in this example CompanyA’s Marketing team, to realize tangible
benefits from integration use cases that they can implement themselves or with limited
support from CompanyA’s integration team.

6.1.1 Functional overview

Figure 6-1 provides an overview of the logical components and the functions that are
implemented in this scenario.

Figure 6-1 Functional overview diagram

From a high level, there are two main parts to this scenario:

� Synchronize campaign information between Salesforce and Google Sheets (as illustrated
by the blue arrows).

� Enable additional business value by using custom triggers based on events from in-house
(backend) systems (as illustrated by the yellow and green arrows).

The business context for each of these parts is described in more detail below.

Keeping the campaign overview spreadsheet up to date
As described earlier, one of the activities that the marketing team are responsible for are
campaigns. In the past, all campaigns were managed manually with a spreadsheet. Although
the team now uses Salesforce CRM to create campaigns, they still use the spreadsheet to
keep an overview and history of all marketing campaigns. At the moment, this spreadsheet is
maintained manually which, while not much work at any one time, is a tedious task and prone
to error. In short, it is a perfect candidate for automation.
120 A Practical Guide for IBM Hybrid Integration Platform

This part of the scenario describes the steps that a non-technical professional would perform
to create an integration between Salesforce CRM and Google Sheets so that for each new
campaign that is created in Salesforce, a line with the basic campaign data gets added to the
Google Sheets spreadsheet. As a result, the spreadsheet is always up to date with the correct
information straight out of Salesforce CRM.

Tracking the success of a campaign
Following on from the integration between Salesforce CRM and Google Sheets described
above, the Marketing team also needs an easy way of tracking the success of marketing
campaigns and specifically the order value that got generated in response to each campaign.
Each campaign has a unique ID that the partners need to use to receive any special
campaign-related conditions such as discounts. This ID can be used to correlate individual
purchase orders to the different marketing campaigns.

To make the necessary purchase order details available for the Marketing team, an
integration needs to be set up with the order backend system. The respective tasks for this
part of the scenario fall to the Integration team. They use IBM Integration Bus to expose
campaign-related order updates as a trigger for use by the Marketing team. The Marketing
team can then use this trigger in the same way as they have already used a trigger for a new
campaign in Salesforce CRM. Any technical details like protocol conversion, enrichment, or
connectivity settings necessary to source the information from the backend are hidden from
the Marketing team.

The Marketing team then integrates the campaign-order updates into the same Google
Sheets spreadsheet that already contains the campaign data. For every campaign-related
order, a row is inserted in a separate tab in the spreadsheet. A formula automatically sums up
all orders that are related to a specific campaign, providing the team with a quick and
up-to-date overview without having to query the information in the order management system
or run reports.

Automated follow-up for canceled orders
Because the scenario already deals with purchase order updates, CompanyA decided to
capitalize on those events and improve the follow-up on cancellations. Whenever a purchase
order is canceled, a follow-up action in form of a case is created in Salesforce CRM. The
intention is that the Sales team will then use these cases to determine what the reason for the
cancellation is and whether there is a problem that could potentially be fixed.

This integration is another good example of a low-complexity integration candidate that would
not have received enough attention for a formal development project because its business
benefits would be seen as either too small or too uncertain to warrant the effort.
Chapter 6. Automation for business users 121

6.1.2 Technical overview

Figure 6-2 illustrates a possible technical implementation of this scenario in a production
environment.

Figure 6-2 Technical overview

Technical components
This section describes the technical components shown in Figure 6-2.

The Automation capability is realized with IBM App Connect, which is used in all parts of the
scenario.

IBM Integration Bus on Cloud realizes the Integration capability and is used to perform the
following activities as part of this scenario:

1. Enriching and formatting the raw order update events

The data portion of the event message varies. For example, a cancel event merely has the
order number and the order status as canceled. IBM Integration Bus uses the Orders API
discussed in scenario 1 to retrieve any missing order details before passing the data on to
IBM App Connect.

2. Exposing the order update events as triggers into IBM App Connect

IBM App Connect realizes integrations by using triggers that are linked with actions. The
arrival of an order update message is exposed by IBM Integration Bus as a trigger. As part
of the scenario, two triggers are created. The first trigger is for campaign-related orders
and is linked to an action to update Google Sheets (as illustrated by the yellow arrow in
Figure 6-3 on page 123). The second trigger is for canceled orders, which then cause a
new case to be created in Salesforce CRM (as illustrated by the green arrow).

3. Filtering and routing the order update events

Not all of the raw order events are usable for all triggers. Therefore, IBM Integration Bus is
used to make sure that only the campaign-related order updates are passed to that
trigger. Some events need to be routed to both triggers (the cancellation of a campaign
order), and other unrelated event messages can be ignored (for example, order retrieval
(read) events).

IBM API Connect exposes the Orders API described in scenario 1.
122 A Practical Guide for IBM Hybrid Integration Platform

IBM MQ provides the Messaging capability and is the source of the raw order update events.

The IBM Integration Bus Switch Agent is a component of the on-premises installation of IBM
Integration Bus. Its responsibility allows secure communication from IBM Integration Bus on
Cloud to the IBM MQ Endpoint behind the firewall of the corporate data center.

Simplifications
For this book, the setup for this scenario has been simplified as shown in Figure 6-3.

Figure 6-3 Simplified configuration

The first major simplification is that all the components from the corporate data center are
simulated with a single docker compose configuration. This change allows you to concentrate
on the automation aspects that are the focus of this scenario.

The other simplification is that instead of calling the Orders API exposed by using API
Connect, that is included in the Docker compose setup. If you have already built the Orders
API in scenario 1, feel free to reuse that. Otherwise, the instructions below use a stub that is
part of the Docker compose configuration. The stub is exposed as a Callable Flow, which is
an easy way to bridge the gap between IBM Integration Bus on-premises and in the cloud.
This mechanism also uses a Switch agent configuration, just as the IBM MQ Endpoint
configuration.

6.2 Implementation

This section covers the step-by-step implementation of this scenario.

6.2.1 Preparation

To re-create the implementation of the scenario, complete the following steps:

1. Download the resources that are used to run the Docker compose components.

2. Set up the accounts for the cloud-based components of the solution:

a. IBM App Connect

b. IBM Integration Bus on Cloud

c. Salesforce

d. Google

See 6.3, “Resources” on page 150 for the creation of a Salesforce.com Developer account.
Chapter 6. Automation for business users 123

To create a Google account, follow the instructions at this website:

https://accounts.google.com/SignUp

6.2.2 Creating the AppConnect flow to keep the campaign overview spreadsheet
up to date

The instructions in this section allow you to create an IBM App Connect flow that creates a
row in a Google sheet every time a new Campaign object is created in Salesforce.

Build
To build an IBM App Connect flow, complete these steps:

1. Create a Google Sheet for the campaign data. You can create any spreadsheet layout that
you want, but to enable auto matching field names from IBM App Connect, the structure in
Table 6-1 is suggested.

Table 6-1 Google spreadsheet layout

2. Create the IBM App Connect flow. For registration to IBM App Connect, see 6.3,
“Resources” on page 150. Log in to IBM App Connect on
https://www.appconnect.ibmcloud.com, and sign up for the service. After signing up, you
will be able to start the IBM App Connect Free product.

To create a flow in IBM App Connect for updating a Google Sheet from Salesforce.com,
you will need the following prerequisites:

– Your Salesforce.com developer account details

– Your Google account details

– An existing spreadsheet in Google Sheets

3. Click Create a flow to start creating a AppConnect flow.

4. Select Salesforce as the first application, and click Save + Continue.

5. Select Google Sheets as the second application, and click Save + Continue again.

6. Select Trigger & Action as the flow type. This flow causes an event in the first application
to trigger a specific response in the second application.

Worksheets Columns

Campaigns Name
Type
Status
Start Date
End Date
Expected Revenue
Budgeted Costs
Order Volume

Orders Order Id
Campaign
Order Value
124 A Practical Guide for IBM Hybrid Integration Platform

https://www.appconnect.ibmcloud.com
https://accounts.google.com/SignUp

7. After you click Save + Continue, your window should look like Figure 6-4. The Salesforce
trigger that must be defined is for the New Campaign trigger.

Figure 6-4 Salesforce trigger options

8. Click Save + Continue again, and select Create Row as the Google Sheets action. Click
Save + Continue, and provide your Salesforce developer and Google accounts on the
next window. If you have not configured your accounts in AppConnect yet, you can do so
on the window that is shown in Figure 6-5.

Figure 6-5 Select application accounts

9. When you click Connect a New Account, you have the opportunity to authorize
AppConnect to use your existing Salesforce and Google accounts.
Chapter 6. Automation for business users 125

10.Click Save + Continue to set up a Google Sheets action. Select the spreadsheet and
worksheet that you want to use as shown in Figure 6-6.

Figure 6-6 Select Google spreadsheet and worksheet

11.Click Auto Match Fields to automatically populate the Google spreadsheet column
names with the matching Salesforce fields. However, truncate the date and time strings
that are sent from Salesforce to only contain the dates. Therefore, modify the Start and
End date columns as shown in Figure 6-7.

Figure 6-7 Use of functions for the date fields

12.For each row that is added to the spreadsheet, insert a formula in the Order Value
column. To enable this process, insert the following text in the OrderVolume mapping
field:

=SUMIF(Orders!B:B,INDIRECT(ADDRESS(ROW(),COLUMN()-7)),Orders!C:C)
126 A Practical Guide for IBM Hybrid Integration Platform

13.Click Save + Continue to finalize the flow, and to give it a name. For this scenario, use
Salesforce Campaigns to Google, as shown in Figure 6-8.

Figure 6-8 Finalize and name the AppConnect flow

14.Click Switch on Flow to save and activate the flow. The AppConnect dashboard is
displayed, with the Salesforce Campaigns to Google flow switched to ON.

Test
Testing the IBM App Connect flow that you just created consists of the following steps:

1. Open the Google spreadsheet that you created, and leave it on the Campaigns worksheet.
Because the spreadsheet is dynamically updated, any new rows are automatically added.

2. Log in to Salesforce, and go to the Campaigns object. Click New to create a campaign.
See Figure 6-9.

Figure 6-9 Create a Campaign in Salesforce

3. Enter the values shown in Table 6-2.

Table 6-2 Campaign values

Field name Value

Campaign name Winter Sale

Type Direct Mail

Status Planned
Chapter 6. Automation for business users 127

4. Click Save to add a new row to the Campaigns tab of the Google spreadsheet. See
Figure 6-10.

Figure 6-10 Added row for Winter Sale Campaign to Google sheet

6.2.3 Exposing the order update events as triggers into AppConnect

The diagram in Figure 6-11 provides an overview of the sequence of interactions that
happens when an order update event is published from the Order Management system.

Figure 6-11 Publishing an order update event

The process involves these steps:

1. An order update event arrives as a message in the IBM MQ container of the Docker
compose environment.

2. A message flow running on IBM Integration Bus on Cloud pulls the message from the
queue.

The communication from the IBM Cloud to the container running on your notebook
computer (or on-premises) is facilitated by an IBM Integration Bus Switch Agent.

3. The message flow enriches the information from the event message by calling the Orders
API stub running in another container in the docker-compose environment.

As before, the communication from the IBM Cloud to the local environment/containers is
facilitated by an IBM Integration Bus Switch Agent.

Start Date November 1, current year

End Date January 1, next year

Expected Revenue 10000

Budgeted Cost 100

Field name Value
128 A Practical Guide for IBM Hybrid Integration Platform

4. Depending on the contents of the event, it is then published to one or both of the following
triggers:

a. cancelOrder

b. campaignOrder

Apart from the on-premises connectivity, which is set up as part of the preparation steps in
the next section, the bulk of the work is in the IBM Integration Bus message flow deployed on
IBM Integration Bus on Cloud. The final flow looks like Figure 6-12.

Figure 6-12 Flow overview

The process shown involves the following steps:

1. The raw order update event is read by using the EVENT.ORDER MQ Input node.

2. The prep to call Order API Compute node extracts all attributes necessary to call the
Order API. Because this example simplifies the API call and uses a stub instead, those
attributes are simply saved in the Environment for later use.

3. The CallOrderAPI is a Callable Flow Request node that is used to call the stub.

4. The finalise order object Mapping node processes the response from the API call and
creates the JSON object to be published to the IBM App Connect triggers.

5. The Route and Filter Routing node makes sure that the correct events go to the correct
triggers and unused events are filtered out.

6. The cancelOrder and campaignOrder nodes are subflows that implement the logic to
publish to the IBM App Connect triggers.

7. The three SC2.TEST.* nodes are only there so that during testing you can see which
messages have been processed and where they were sent. They would not be part of the
production flow implementation.

Prepare
Perform the following steps to prepare your environment:

1. If you have not already done so, create a directory to hold all the configuration data, for
example sg248351, and open a shell or command prompt there.

2. Clone the GitHub repository for the scenario 2 by using the following command:

git clone https://github.com/sg248351/scenario2

As shown in Figure 6-11 on page 128, the communication to the IBM Cloud is facilitated
through the IBM Integration Bus Switch Agents. This is the case for both the IBM MQ
Endpoint and the stubbed API. Both sets of configurations settings are stored within the
agentp.json and agentx.json configuration files. Examples are stored within the
99_docker\iib-sc2\agents subdirectory.
Chapter 6. Automation for business users 129

Setting up the IBM Integration Bus switch agents
These steps provide guidance on how to replace the examples with your own configuration:

1. Log in to IBM Integration Bus on Cloud.

2. Click Endpoint Connectivity from the left menu as shown in Figure 6-13.

Figure 6-13 IBM Integration Bus menu

3. Select the type of endpoint that you want to connect to. For this scenario, select
MQEndpoint as shown in Figure 6-14.

Figure 6-14 Select endpoint type

4. Configure the queue manager details as shown in Figure 6-15. To simplify the steps, IBM
MQ Security as been disabled in the Docker container. Therefore, no user name or
password are necessary.

Figure 6-15 IBM MQ Endpoint configuration
130 A Practical Guide for IBM Hybrid Integration Platform

5. The queue manager entry is displayed as shown in Figure 6-16. To enable connectivity
between your endpoint configurations and the on-premises agent, click Enable or
Synchronize.

Figure 6-16 Synchronize IBM MQ Endpoint

6. Click Download Configuration to save the agent configuration and close the window by
clicking Do this later as shown in Figure 6-17.

Figure 6-17 Download agent configuration

7. Use the downloaded agentp.json file to replace the example configuration in the
99_docker\iib-sc2\agents subdirectory.

This concludes the steps for the IBM MQ Endpoint. The following steps focus on the
stubbed API that is implemented as a Callable flow in IBM Integration Bus.

8. Click Callable Flows and then on Set up an agent as shown in Figure 6-18.

Figure 6-18 Setting up an agent for Callable Flows
Chapter 6. Automation for business users 131

9. Similar to the previous agent, download the configuration file as shown in Figure 6-19.

Figure 6-19 Download configuration

Later on, you will use the same window to test the agent connectivity.

10.Use the downloaded agentx.json file to replace the example configuration in the
99_docker\iib-sc2\agents subdirectory.

Starting the docker compose environment
Perform the following steps to star the docker compose environment:

1. Open a command line window and go to the directory where you cloned the GitHub
repository. The contents of the directory should look similar to Figure 6-20.

Figure 6-20 Scenario2 directory and content

2. Run the following command to indicate that you accept the license agreements for the
products that are used in this scenario:

export LICENSE=accept

Note: The details about the respective licenses can be found in the readme file in the
scenario2 GitHub repository.
132 A Practical Guide for IBM Hybrid Integration Platform

3. Start the docker-compose environment by running this command:

docker-compose up -d

4. After the command has completed, run docker-compose ps to check the status of the
environment. The output should look similar to Figure 6-21.

Figure 6-21 Status of docker-compose environment

Two containers run in this environment: One for IBM MQ and one for the stub.

Testing agent connectivity
As part of the procedure that was run when the docker-compose environment was created
and started, the agentx and agentp configuration files were used, and inside the container the
agents were automatically started for you. These steps verify that the agents are successfully
connecting to IBM Integration Bus on Cloud:

1. Return to the browser window where you are logged in to IBM Integration Bus on Cloud.

2. If not already open, click the Callable Flows menu on the left side. As before, click Set up
an agent, but this time, when the window opens, click Test Agent.

Tip: The first time you that run the command takes some time as Docker is
downloading the container images from the internet.

Note: You do not need to run any of the other steps that the window specifies. You have
already downloaded the configuration file previously, and the commands shown were
included in the container setup and have been run during the startup of the containers.
Chapter 6. Automation for business users 133

The window should now show you a green confirmation message Agent in sync as
shown in Figure 6-22.

Figure 6-22 Agent connected

3. Next, click the Endpoint Connectivity menu and click the Synchronize button shown
above the entry for EVENTQM. You should see another green confirmation message.
Afterward, the IBM MQ Endpoint should be listed as shown in Figure 6-23.

Figure 6-23 EVENTQM endpoint connected

This concludes the preparation for this scenario. The steps in the next section focus on the
message flow that will be deployed to IBM Integration Bus on Cloud and that will make the
different order update events available to IBM App Connect.

Build
Complete the following build steps:

1. Start IBM Integration Bus Toolkit and select or create a workspace.

2. Some IBM Integration Bus resources have been provided as a starting point for this
scenario. Import the project interchange file by choosing File → Import and select
Project Interchange.
134 A Practical Guide for IBM Hybrid Integration Platform

3. Click Next as shown in Figure 6-24.

Figure 6-24 Importing the Project Interchange file

4. Click Browse and go to the iib_scenario2.zip file located in the 1_coding subdirectory.
Then, select all resources from the project interchange file and click Finish as shown in
Figure 6-25.

Figure 6-25 Finalize Project Interchange import
Chapter 6. Automation for business users 135

This action provides you with a starting point from which to complete the build activities.

5. In the iib_scenario2 application, double-click the PublishTriggerFromEvent flow to
open it. It should look similar to Figure 6-26.

Figure 6-26 Flow skeleton

The gaps in the flow that are highlighted in red are completed with these items:

– The CallableFlowInvoke node to mimic the Order API stub call

– The nodes that emit the campaignOrder and cancelOrder events towards IBM App
Connect.

This configuration is described in the steps below.

6. From the Callable Flow drawer in the palette, add a CallableFlowInvoke node and wire it
between the Out terminal of the Compute node and the Mapping node.

7. Configure the properties of the new node as shown in Table 6-3.

Table 6-3 Properties of the new node

8. The iib_scenario2_lib, which you imported earlier, contains two subflows: InnerWebhook
and WebhookOutput as shown in Figure 6-27.

Figure 6-27 WebhookOutput subflow

Drawer name Property name Property value Comment

Description Node name CallOrderAPI

Basic Target Application iib_scenario2_orderapi_stub The spelling needs
to be exact.

Basic Target endpoint name getOrder The spelling needs
to be exact.

Basic Request timeout (sec) 15
136 A Practical Guide for IBM Hybrid Integration Platform

9. Drag the WebhookOutput subflow onto the canvas twice so that you have two copies of the
same subflow. Wire them between the Routing node and the IBM MQ Output nodes. The
terminals on the Routing node that need to be connected are named cancelOrder and
campaignOrder. Use the same names to label the subflow nodes themselves as shown in
Figure 6-28.

Figure 6-28 Wiring the Route node terminals

10.Configure the properties on the subflow nodes as follows:

a. The WebhookBaseUrl and WebhookStarUrl properties on the Basic drawer are
configured identically for both nodes. Use the following values:

WebhookBaseUrl: /triggers/orders-updates
WebhookStarUrl: /triggers/orders-updates/*

b. The EventType on the same drawer has different values for each node. They are the
same ones that were used earlier for the names of the subflow nodes: cancelOrder
and campaignOrder. Figure 6-29 shows the properties that are configured for the
cancelOrder subflow as an example.

Figure 6-29 Subflow node properties for cancelOrder

11.This concludes the build steps for this section. To deploy the application to IBM Integration
Bus on Cloud, create a BAR file.
Chapter 6. Automation for business users 137

In the Toolkit menu, click File → New → BAR file as shown in Figure 6-30.

Figure 6-30 New BAR file

12.Change the name of the BAR file to iib_scenario2. Leave the other properties at the
default values and click Finish.

13.A new tab opens to allow you to configure the content of the BAR file. Choose the
iib_scenario2 application on the left, then click the Build and Save button and OK after
the build process is complete. Figure 6-31 illustrates this process.

Figure 6-31 Build and Save the BAR file
138 A Practical Guide for IBM Hybrid Integration Platform

14.Now switch to a web browser and log in to IBM Integration Bus on Cloud at
https://ibm-cloud-ui.ibmintegrationbus.ibmcloud.com to deploy your application.

15.You can upload your integration flows to IBM Integration Bus on Cloud by using the Add
Integration option as shown in Figure 6-32.

Figure 6-32 Add an integration

16.Upload the BAR file that contains your integration flow as shown in Figure 6-33.

Figure 6-33 Upload BAR file

17.When the BAR file is successfully imported into the IBM Integration Bus on Cloud, the
contents of the BAR file are displayed. Switch off Basic Authentication as shown in
Figure 6-34.

Figure 6-34 Switching off Basic Authentication
Chapter 6. Automation for business users 139

https://ibm-cloud-ui.ibmintegrationbus.ibmcloud.com

18.Click Save to save the integration. The integration flow then gets deployed and has the
default state of stopped. The deployed integration becomes visible on the Integrations
menu. Click the item itself, as shown in Figure 6-35, to see the details of the integration.

Figure 6-35 Details of the integration

19.Start this integration by clicking Actions → Start as shown in Figure 6-36.

Figure 6-36 Start integration

20.An information window might be displayed after you click Start. Confirm the information by
clicking OK.
140 A Practical Guide for IBM Hybrid Integration Platform

21.After the application is running, click Public Endpoints to expand that section. Highlight
and copy or note down the Host as shown in Figure 6-37. You will need that information in
the testing steps in the next section.

Figure 6-37 Host name for the application on IBM Integration Bus on Cloud

This concludes the build steps for the IBM Integration Bus application and message flow.

Test
This part of the testing verifies that the application is correctly deployed to IBM Integration
Bus on Cloud. In particular, the testing covers the connectivity to on-premises, the processing
and mapping of messages, and the ability of the flow to receive webhook subscriptions.
Complete these steps:

1. Return to the command line where you started your docker-compose environment.

2. Open a shell inside the IBM MQ container by running the following command:

docker exec -it scenario2_mq_1 /bin/bash

You are now inside the IBM MQ container and are logged in as the user root.

3. Change to the home directory by running cd and list the files in the directory with the ls
command. The output should look like Figure 6-38.

Figure 6-38 Directory contents

4. There a number of small scripts that have been provided to reduce the amount of typing
that you need to do during the testing steps.
Chapter 6. Automation for business users 141

The first script is the testme.sh script. Its purpose is to put one of the files from the
testfiles directory on the EVENT.ORDERS queue. In this test, the IBM Integration Bus
application picks up the message, processes it, and routes it to both the campaignOrder
and cancelOrder targets. Therefore, you should see two messages on the queues after
the test is complete.

5. Run the following command:

./testme.sh 02

The output from the script should look like in Figure 6-39.

Figure 6-39 Cancel and Campaign messages received

Because you have not configured any of the IBM App Connect functions yet, those events
were not published to IBM App Connect. After it is configured, IBM App Connect will
register triggers for these events. The script called iib-listTriggers.sh allows you to list
those registered triggers.

6. Use the iib-listTriggers.sh script with the host name of your deployed application on
IBM Integration Bus on Cloud. For example:

./iib-listTriggers.sh https://ch4gine4.ibmintegrationbus.ibmcloud.com

The output should be an empty JSON array [] as shown in Figure 6-40.

Figure 6-40 Output from the iib-listTriggers command

This concludes the testing steps for this section.

6.2.4 Creating an AppConnect flow to process campaign-related orders

CompanyA wants to track the success of their campaigns, and decided to relate this to the
order value generated for each campaign. Build an IBM App Connect flow that processes
Campaign Order creation and cancellation events, and updates the Orders worksheet in the
Google spreadsheet you used before.

Note: You can use the ./qs-show.sh command to display the contents of the queues
again in case the messages did not arrive in time as expected.
142 A Practical Guide for IBM Hybrid Integration Platform

Prepare
In the previous section, you deployed the IBM Integration Bus application that is now available
under a specific host name on IBM Integration Bus on Cloud. Use the same host name again
to update the configuration file used in this section. Complete these steps:

1. Locate the 01_coding subfolder for this scenario. The folder is part of the GitHub
repository that you downloaded earlier.

2. Open the Orders-app-definition.yaml file in a text editor and replace the example host
name in the file with the actual host name from your IBM Integration Bus on Cloud
application as shown in Figure 6-41.

Figure 6-41 Replacing the host name in the application definition yaml file

This concludes the preparation activities for this section.

Build
1. Log in to IBM App Connect, and from the dashboard, click Applications. To add the

application that processes the Campaign Order events from IBM Integration Bus, click
Add your application now as shown in Figure 6-42.

Figure 6-42 Add an application to IBM App Connect
Chapter 6. Automation for business users 143

2. Provide the Application name and Description, as shown in Table 6-4.

Table 6-4 Application name and Description

3. Click the area that specifies the drop application definition file here, or browse and select
the Orders-app-definition.yaml file that you prepared earlier.

4. Click Apply to add the application to App Connect as shown in Figure 6-43.

Figure 6-43 Add Application window

5. The new application is added to the application library as shown in Figure 6-44.

Figure 6-44 Orders application

6. Click Save + Continue to save the current selection.

Field Value

Application name Orders

Description Triggers related to order update events from the Order
Management system
144 A Practical Guide for IBM Hybrid Integration Platform

7. Click Create a flow and select CampaignOrderEvents as the first application.

8. Go to the next window, and select Google Sheets as the second application.

9. In the next window, select the default Trigger & Action flow type.

10.Go to the next window and select the campaignOrder trigger. The draft flow now looks
like Figure 6-45.

Figure 6-45 Select the campaignOrder event trigger

11.Click Save + Continue to switch to the next window, where you can select the Google
Sheets action. The only available action is Create Row. Save the flow configuration, and
continue to the next window. Here you select the Google account that is used for updating
the spreadsheet. See Figure 6-46.

Figure 6-46 Select accounts for the applications used in the flow
Chapter 6. Automation for business users 145

12.Click Save + Continue and select the Google spreadsheet and worksheet from the list.
Use the values shown in Figure 6-47. Click Auto Match Fields to map the fields from the
CampaignOrderEvents application on the spreadsheet columns. Type #campaignId in the
mapping field for the Campaign column.

Figure 6-47 Select the worksheet, and auto match fields

13.Finalize your flow, and save it as CampaignOrderEvents. Click Switch on Flow to start the
flow. As you can see in Figure 6-48, two flows are now running in your AppConnect space.

Figure 6-48 Completed flow

14.Test your flow by generating a Campaign order creation or cancellation event in Integration
Bus and inspecting the Orders and Campaign worksheets in your Google spreadsheet.

Test
Perform the following steps to test this part of the scenario:

1. Return to the command line where you started your docker-compose environment.

2. Open a shell inside the mq container by running the following command:

docker exec -it scenario2_mq_1 /bin/bash

You are now inside the mq container and are logged in as user root.
146 A Practical Guide for IBM Hybrid Integration Platform

3. Change to the home directory with the cd command and use the test.me script to send an
event about a new campaign-related order event. Run the following command:

./testme.sh 01

4. The response on the command line should look like Figure 6-49. You should also see an
additional line in the Google Sheets spreadsheet.

Figure 6-49 One event has been routed to the orderCampaign trigger

This concludes the testing steps for this section.

6.2.5 Creating an AppConnect flow to process canceled orders

This section covers creating an AppConnect flow to process canceled orders.

Build
Complete the following build steps:

1. Log in to IBM App Connect.

2. On the dashboard view, start by clicking Create a flow.

Confirm each of the following steps by clicking Save + Continue as shown in Figure 6-50.

Figure 6-50 Save + Continue button

3. Select Orders as the first and Salesforce as the second application.

4. Select Trigger & Action as the type of flow.

5. Select the cancelOrder trigger as shown in Figure 6-51.

Figure 6-51 Cancel order trigger
Chapter 6. Automation for business users 147

6. For the Salesforce action, select Create Case as shown in Figure 6-52.

Figure 6-52 Create Case trigger

7. Select the already configured Salesforce account details (or configure new ones).

8. In the Set up Salesforce action window, configure mapping and values for the fields as
shown in Table 6-5.

Table 6-5 Mapping and values on the set up Salesforce action window

Target field name Target field value Comment

Account ID #salesforceId

Status New

Case Origin Web

Subject #accountName: Cancelled order

Priority Low

Description Order number #orderId was canceled.
This follow-up was created
automatically.
148 A Practical Guide for IBM Hybrid Integration Platform

9. Name the flow Cancelled order follow-up and click Switch on Flow to finish the
process as shown in Figure 6-53.

Figure 6-53 Cancelled order follow-up flow

The flow is now active. This concludes the build steps in this section.

Test
Complete the following steps to test this part of the scenario:

1. Return to the command line where you started your docker-compose environment.

2. Open a shell inside the mq container by running the following command:

docker exec -it scenario2_mq_1 /bin/bash

You are now inside the mq container and are logged in as user root.

3. Change to the home directory with the cd command and use the iib-listTriggers.sh
script to see whether the newly created IBM App Connect flow has registered a webhook
trigger with the IBM Integration Bus application. You must replace the host name shown in
Figure 6-54 with the one from your actual IBM Integration Bus application.

Figure 6-54 Registered AppConnect flow

4. Use the test.me script to send an event about a new campaign-related order event. Run
the following command:

./testme.sh 04

The output of the script is shown in Figure 6-55.

Figure 6-55 Command line output
Chapter 6. Automation for business users 149

You should find a new case in Salesforce as shown in Figure 6-56.

Figure 6-56 New Case in Salesforce

This concludes the testing steps for this section.

6.3 Resources

A number of additional resources are relevant to this scenario.

6.3.1 AppConnect pattern for IBM Integration Bus

The integration developer community provides a tutorial on custom application development
using the AppConnect pattern for IBM Integration Bus. The tutorial can be obtained from this
website:

https://developer.ibm.com/integration/docs/app-connect/tutorials-for-ibm-app-conne
ct/#panel2

This tutorial provides a basic background on how to use a custom application (built by using
IBM Integration Bus) with IBM App Connect. You can download the trigger pattern from this
website:

https://github.com/ot4i/iib-app-connect-trigger-pattern

Although the sample included in this tutorial is based on the message flow that listens on http
endpoints, it is possible to modify the sample to use your own endpoint, for example, IBM MQ.
The instructions on how to modify the existing sample to use MQ Endpoints is available from
another article available on GitHub community at:

https://github.com/ot4i/iib-app-connect-trigger-pattern/blob/master/doc/modwarehou
se.md
150 A Practical Guide for IBM Hybrid Integration Platform

https://developer.ibm.com/integration/docs/app-connect/tutorials-for-ibm-app-connect/#panel2
https://developer.ibm.com/integration/docs/app-connect/tutorials-for-ibm-app-connect/#panel2
https://github.com/ot4i/iib-app-connect-trigger-pattern
https://github.com/ot4i/iib-app-connect-trigger-pattern/blob/master/doc/modwarehouse.md
https://github.com/ot4i/iib-app-connect-trigger-pattern/blob/master/doc/modwarehouse.md

As the example scenario uses IBM MQ as an endpoint to listen to the events, the design of
the integration flow follows a similar construct as described in the GitHub article mentioned
above. In addition to that, the integration flow uses the callable flow feature to start another
integration flow running on-premises. The topology as shown in Figure 6-57 is used in the
scenario described in this chapter to split the message flow processing between IBM
Integration Bus and IBM Integration Bus on Cloud.

Figure 6-57 Integration topology that uses callable flows

See the IBM Integration Bus Knowledge Center topic on Preparing the environment for
callable flows at:

https://www.ibm.com/support/knowledgecenter/SSMKHH_10.0.0/com.ibm.etools.mft.doc/c
l23148_.htm

Preparing the environment to split processing between IBM Integration Bus and IBM
Integration Bus on Cloud describes the steps to set up the connectivity agent.

The integrations that you create in IBM Integration Bus on Cloud might need to interact with
private endpoints on premises, such as a database or IBM MQ. You provide connection
details in IBM Integration Bus on Cloud for each of your private endpoints. The concept on
Secure connectivity to private endpoints is explained in the IBM Integration Bus Knowledge
Center at:

https://www.ibm.com/support/knowledgecenter/SSMKHH_10.0.0/com.ibm.iib.cloud.doc/cl
00017_.htm

6.3.2 Installing the trigger pattern in IBM Integration Bus Toolkit

A pattern for publishing events from IBM Integration Bus to be consumed as triggers for IBM
App Connect is available at the following GitHub repository:

https://github.com/ot4i/iib-app-connect-trigger-pattern
Chapter 6. Automation for business users 151

https://www.ibm.com/support/knowledgecenter/SSMKHH_10.0.0/com.ibm.iib.cloud.doc/cl00017_.htm
https://www.ibm.com/support/knowledgecenter/SSMKHH_10.0.0/com.ibm.etools.mft.doc/cl23148_.htm
https://github.com/ot4i/iib-app-connect-trigger-pattern

For the scenario, provide the respective resources as a library. However, there is also a
pattern available to help with the creation of those subflows. If you want to use the pattern,
follow these instructions:

1. Download the compressed file by using the Clone or Download option. Extract the file
into a separate directory and import the projects in IBM Integration Bus toolkit by clicking
File → Import → General → Existing Projects into Workspace. Figure 6-58 shows the
list of projects that have been imported into the Integration Bus Toolkit.

Figure 6-58 Import trigger pattern

2. After successful import, the Toolkit workspace displays the projects as shown in
Figure 6-59.

Figure 6-59 Application and Libraries for Trigger pattern
152 A Practical Guide for IBM Hybrid Integration Platform

Chapter 7. Kick-start digital teams

This chapter describes how easily you can enable digital teams with design applications
displaying events coming from the enterprise world. It covers how to set up the enterprise
backend to stream events and create a digital application to consume those events.

This chapter includes the following sections:

� Solution overview
� Technical implementation of variant B
� Technical implementation of variant C
� Technical implementation of variant A

7

© Copyright IBM Corp. 2016. All rights reserved. 153

7.1 Solution overview

The solution for this chapter can be divided in two parts:

� The event stream creation: In this part, you use the work you have done in the previous
chapters to generate a stream of events based on the status changes of the orders.

� The event stream consumption: In this part, you build an application composed of these
elements:

– A backend microservice that consumes the event stream

– An API gateway that exposes the backend microservice

– A front end user interface to display the stream of events

This chapter details three different methods of implementation. Each method is called a
variant. Each variant includes the pros and cons to help you easily select the alternative that
best matches your use case.

The logical diagram Figure 7-1 describes the three variants to implement the event stream
creation and consumption.

Figure 7-1 Scenario 3 - Logical diagram - All variants

Note: Even though this chapter relies on the status events that were created in
Scenario 1, this chapter is fully independent.
154 A Practical Guide for IBM Hybrid Integration Platform

7.1.1 Variant A

The variant A is the simplest method of implementation. In this case, the implementation
process is straightforward:

1. IBM Integration Bus retrieves the status events from the orders.

2. IBM Integration Bus enriches and formats the events before storing them in MongoDB.

3. The IBM API Connect microservice exposes the events that it finds stored in MongoDB.

4. The dashboard application displays the stream of events.

Although this variant is the easiest to implement, it has some drawbacks. The most important
one is that there is a direct dependency between the event stream creation and its
consumption.

In most companies, the creation and the consumption of the event stream would be done by
two different teams. In this variant, a change to the MongoDB database has a direct effect on
both teams. In fact, a change to MongoDB requires an update to both the flow in the IBM
Integration Bus and to the microservice in the IBM API Connect microservice.

To avoid this problem, the next variant implements loose coupling between the event stream
creation and its consumption.

7.1.2 Variant B

The next option, variant B, is an evolution of variant A, which implements a form of loose
coupling. In this case, the process involves these steps:

1. IBM Integration Bus retrieves the status events from the orders.

2. IBM Integration Bus enriches the events and publishes them to Message Hub.

3. The IBM API Connect microservice subscribes to the events from Message Hub.

4. The IBM API Connect microservice formats the events and stores them in MongoDB.

5. The dashboard application displays the stream of events.

Steps 1 and 5 have not changed from variant A.

In this variant, loose coupling has been implemented between the event stream creation and
its consumption by using Message Hub.

Message Hub is built on Apache Kafka and uses a publication/subscription mechanism. This
mechanism allows IBM Integration Bus to push events data in Message Hub, and the
application backend microservice to read events data in Message Hub with no dependency
between the two actions.

When IBM Integration Bus pushes events, it uses a standard format and allows the
microservice to handle the formatting and the storage in MongoDB. Moreover, after IBM
Integration Bus has pushed the data to Message Hub, any microservices can read the data
from Message Hub.

Loose coupling has been achieved in this variant. However, there is still a drawback to this
variant that can be an issue in some cases. IBM Integration Bus is the direct producer of the
event stream and it needs to be able to scale with the number of updates.

To fix this scaling issue in variant C, we will use IBM MQ features in IBM Integration Bus.
Chapter 7. Kick-start digital teams 155

7.1.3 Variant C

The variant C is an evolution of variant B, where message queuing is implemented.

In this case, the process involves these steps:

1. IBM Integration Bus retrieves the status events from the orders.

2. IBM Integration Bus enriches the events and sends them to a message queue in MQ,
where they will wait until they are retrieved by Message Connect.

3. Message Connect pulls the events from IBM MQ and publishes them to Message Hub.

4. The IBM API Connect microservice subscribes to the events from Message Hub.

5. The IBM API Connect microservice formats the events and stores them in MongoDB.

6. The dashboard application displays the stream of events.

Only steps 2 and 3 have changed from variant B.

In this variant, message queuing has been implemented between IBM Integration Bus and
Message Hub thanks to the use of Message Connect.

7.1.4 Implementation considerations

Now that the three variants have been detailed, consider the technical implementation of
each variant. The technical diagram in Figure 7-2 is the technical equivalent of the logical
diagram in Figure 7-1 on page 154.

The technical diagram describes on a technical level the components that are required to
implement each variant. To better understand the changes between each variant, the
alternative flows are represented as dotted lines and are color-coded by variant.

Figure 7-2 Scenario 3: Technical diagram for all variants
156 A Practical Guide for IBM Hybrid Integration Platform

To facilitate the technical implementation of each variant, we decided to fully describe variant
B as the preferred variant to implement in most cases.

For variants C and A, only the steps that differ from variant B are described.

Each variant starts with a diagram that displays only the components that are needed for this
option, with a numbered sequence to follow for the implementation.

7.2 Technical implementation of variant B

In this section, variant B is implement ed by going through six steps in the order that is
displayed in Figure 7-3.

Figure 7-3 Scenario 3: Technical diagram for variant B

7.2.1 IBM Integration Bus: Exposing enterprise order events

The basis for the event stream that the digital team uses for the dashboard app are the order
update events that come from the Order Management system. All processing with regards to
these events is implemented in IBM Integration Bus and so far included the following
requirements:

� The raw events are published as part of scenario 1.

� Some of the raw events also need enrichment, which is demonstrated in scenario 2.
Chapter 7. Kick-start digital teams 157

The last aspect of feeding this data into the event stream is explained here as part of scenario
3. The first option of doing this is to publish the events directly from IBM Integration Bus into
Message Hub. The message flow shown in Figure 7-4 is used for this purpose.

Figure 7-4 Flow overview

The flow performs the following actions:

1. A subflow is used to receive the order update event message.

2. The event is enriched (for example, in a cancel order event) and filtered if necessary.

3. A Mapping node is used to transform the message so that it matches the expected format
of the microservice.

4. A Kafka Publisher node is used to send the event message to IBM Message Hub.

5. If you received the event from an HTTP input node, then the HTTP reply node is required
by the protocol and is expected by the sender of the HTTP message so that it will not time
out. HTTP reply node is expected to send a reply message, which in this case might be an
acknowledgement of having received the message, which can also be taken as
confirmation that the event has been published.

As already mentioned, the implementation has been simplified for this book in the following
ways:

� As explained in the architecture overview, IBM MQ is used for messaging including event
publication. To make it easier to test the flow at the end of the chapter, HTTP is used here
as input to the flow instead of an IBM MQ queue.

� Instead of enriching the raw event messages in the flow, testing is with already prepared
messages. Enrichment is demonstrated in scenario 2.

� User and password for the Message Hub connection are configured for you.

The following sections take you through the building and testing of this flow.

Prepare
To re-create the solution described in this scenario, read the introduction in Chapter 4,
“Introduction to the scenarios” on page 55 and more specifically complete the prerequisites
described in 4.3, “Re-creating the scenarios” on page 62.

In addition, the following preparation steps are specific to this scenario:

1. If you have not already done so, create a directory to hold all the configuration data for this
IBM Redbooks, for example: sg248351, and open a shell or command prompt there.

2. Clone the GitHub repository for the scenario 3 by using the following command:

git clone https://github.com/sg248351/scenario3

Note: If you did not receive the message through HTTP, you cannot send an HTTP
reply.
158 A Practical Guide for IBM Hybrid Integration Platform

3. Change to the scenario3 directory by running this command:

cd scenario3

4. The pre-configured environment for this scenario consists of three containers. To use
them, accept the license agreements for the products involved. To accept the license
agreements, run the following command:

export LICENSE=accept

5. Run docker-compose up -d to start the containers in this environment.

6. Downloading the images and starting the containers might take some time. After it
completes, check the status of the environment by running the following command:

docker-compose ps

The output should look similar to Figure 7-5.

Figure 7-5 Docker compose environment

The focus of the next steps is the container scenario3_iib-op_1, which represents the
on-premises instance of IBM Integration Bus.

Build
To build the scenario, complete the following steps:

1. Start IBM Integration Bus Toolkit and select or create a new workspace.

2. Create an application called iib_scenario3 by select File → New → Application from the
toolkit menu as shown in Figure 7-6 on page 160.

Note: A number of files have been provided to help you in the Build steps described
later in this chapter. These files are located in the subdirectory called 1_coding. The
steps direct you back to this location when appropriate.
Chapter 7. Kick-start digital teams 159

Figure 7-6 New application

3. Begin importing files into the newly created application by right-clicking iib_scenario3 and
selecting Import as shown in Figure 7-7, then click Next.

Figure 7-7 Import from File System
160 A Practical Guide for IBM Hybrid Integration Platform

4. To configure the import from file system, click Browse and go to the location to where you
cloned the GitHub repository, specifically to the subdirectory called 1_coding as shown in
Figure 7-8.

Figure 7-8 Selecting resources to be imported

5. Select the subflow, esql, and swagger files as shown, and ensure iib_scenario folder is
selected as the destination folder.

6. Click Finish.
Chapter 7. Kick-start digital teams 161

7. Create new message flow by right-clicking the iib_scenario3 application and selecting
New → Message Flow as shown in Figure 7-9.

Figure 7-9 Creating a new Message Flow

8. Use Publish_OrderUpdate_Events as the name of the flow and click Finish.

9. Locate the ReceiveTestEvent subflow in the application on the left and drag it onto the flow
canvas.

10.Add the Passthrough node from the Construction category in the palette and set the node
name as Enrich.

This is where the enrichment of certain events would normally happen through the Orders
API. As a simplification, the implementation of this step is skipped, and already enriched
test messages are used instead.

11.Connect the Out terminal of the HTTP Input node with the Passthrough node.

12.Add a Mapping node from the Transformation palette, name it Reformat, and connect the
Passthrough node to it.
162 A Practical Guide for IBM Hybrid Integration Platform

13.Double-click the Mapping node to configure the actual reformatting/mapping. In the
window that opens, click Next and then configure the map inputs and outputs as shown in
Figure 7-10.

Figure 7-10 Select inputs and outputs for the mapping

14.Click Finish.

The JSON object on the right side of the mapping is what will be published to Message
Hub for use by the microservices. Because we do not have a JSON schema that defines
the JSON object, create the attributes from scratch in the mapping editor.

15.Expand the JSONMsgType object on the right to the lowest level and select the any
element.
Chapter 7. Kick-start digital teams 163

16.Right-click on the any element to create a new User-defined attribute called eventId as
shown in Figure 7-11.

Figure 7-11 Adding a user-defined field

Instead of using the menu, you can also use the key combination Ctrl+Shift+C to create a
new attribute or the small Add User-Defined icon, which appears on the any element after
you have it selected/highlighted.

17.Use the technique described in the previous step to create the five more attributes with the
names and types shown in Table 7-1.

Table 7-1 Attributes

Attribute name Attribute type

time string

type string

orderId string

customerId string

description string
164 A Practical Guide for IBM Hybrid Integration Platform

Afterward, the structure in the mapping editor should look like Figure 7-12.

Figure 7-12 JSON output object

18.Now you are ready to configure the mapping for the target attributes. Table 7-2
summarizes the mappings for all fields followed by more detailed steps to implement each
one of them.

Table 7-2 Target attributes

Target element Source element Mapping description

eventId n/a The mapping creates a new unique eventId every
time.

time n/a The current time when the event is published,
generated in the mapping.

type STATUS The content of the source element is transformed to
lowercase, but is otherwise taken unchanged.

orderId ORDERID Straight move from the ORDERID field.

customerId ACCOUNTNAME Straight move from the ACCOUNTNAME field.

description lineItems This field contain a textual description that details
how many line items are in this order.
Chapter 7. Kick-start digital teams 165

19.Start by configuring a Move action for the orderId and customerId elements by dragging
the source element (from the left) to the target element (on the right) as shown in
Figure 7-13.

Figure 7-13 Creating a Move mapping action

20.The eventId and time attributes are both generated in the flow/mapping. Configure the
eventId by using these steps:

a. Highlight the eventId field, right-click it, and select Add Assign.

b. Click the twisty (triangle) on the Assign action to show the list of possible mapping
actions and change it to Custom ESQL as shown in Figure 7-14.

Figure 7-14 Custom ESQL mapping action

c. After the Custom ESQL action is chosen, specify the specific esql routine that you
want to use. This change is done in the properties below the mapping editor.
166 A Practical Guide for IBM Hybrid Integration Platform

First, specify which file the routine is in by clicking Browse and selecting the
helper_functions.esql file. Then select the esqlUUIDASCHAR routine from the menu.

The final configuration of the properties is shown in Figure 7-15.

Figure 7-15 Configuring the Custom ESQL properties

21.The time field also starts off as an Assign action, but instead of using a Custom ESQL
function, the field value is assigned by using a XPath function:

a. Change the Assign action to the fn:current-date function from the Date and Time
Functions category as shown in Figure 7-16.

Figure 7-16 Current date function

22.To configure the mapping for the type field, drag the STATUS field onto the type field and
change the transformation action to be the fn:lower-case function.

23.Drag the lineItems field onto the description field and enter the following custom XPath
expression in the General field in the properties section below the mapping editor:

fn:concat("Order contains ", fn:count($lineItems/Item), " line items.")
Chapter 7. Kick-start digital teams 167

The final mapping configuration should look like Figure 7-17.

Figure 7-17 Complete mapping

24.Create credentials in Message Hub.

25.Add Kafka Producer node to the flow. Connect and configure the node as follows:

a. Wire the Out terminal of the Mapping node to in terminal of the Kafka Producer node.

b. Configure the following properties of the node listed in Table 7-3.

Table 7-3 Node properties

26.From the HTTP category of the palette, add a HTTP Reply node to the flow. As mentioned
previously, this is only necessary because we use HTTP to test the flow and need a way to
return a response after invoking the flow.

a. Wire the Out terminal of the Kafka Producer node to the in terminal of the HTTP Reply
node.

b. Configure the name of the HTTP Reply node as Response for testing.

Tab name Property name Property value Comment

Description Node name Publish to Message Hub

Basic Topic name order-events

Basic Bootstrap servers kafka01-prod01.messagehub.servi
ces.us-south.bluemix.net:9093

This is a sample value.
Use the actual server
from the credentials
section of your Message
Hub service
configuration.

Basic Client Id iibsc3

Basic Acks 1
168 A Practical Guide for IBM Hybrid Integration Platform

This concludes the build steps for the message flow.

Deploy and test
The application with the flow built in the previous section can now be deployed to the IBM
Integration Bus instance running in the Docker container:

1. Connect the Toolkit where you developed the flow to the running IBM Integration Bus
instance in Docker:

a. Determine which port the IBM Integration Bus admin port 4414 has been mapped to on
the docker host by reviewing the output of the docker-compose ps command. In the
example shown in Figure 7-18, this is port 32771.

Figure 7-18 Port number

b. Use the values in Table 7-4 to connect to the IBM Integration Bus instance from the
IBM Integration Bus Toolkit.

Table 7-4 Property values

c. Click Finish. The toolkit then connects and you should see that an integration server
called IS01 has already been created for you.

2. Deploy the iib_scenario3 application by dragging it down to IS01. After the deployment
operation is complete, the integration server should look similar to Figure 7-19.

Figure 7-19 Deployed IBM Integration Bus application

Property name Property value Comment

Host name 192.168.225.140 This is a sample value. Replace it with the host name of your
own docker host.

Port 32771 This is a sample value. Replace it with the port number
determined in the previous step.

Integration node
name

NODE1 The integration node has already been set up for you with
this name.

User name anything Administrative security has been disabled. Use any string
as user name or password.

Password anything Administrative security has been disabled. Use any string
as user name or password.
Chapter 7. Kick-start digital teams 169

3. To start and test the flow, complete the following steps:

a. Open a command prompt inside the docker container by running this command:

docker exec -it scenario3_iib-op_1 /bin/bash

b. To change to the iibusers home directory, run the cd command.

c. To save you the typing, the curl command to test the flow has been placed in a small
script for you. Start it by typing ./testme and pressing Enter. The result is shown in
Figure 7-20.

Figure 7-20 Output from test script

This concludes the testing portion of this section.

7.2.2 Message Hub

To create the Message Hub service on IBM Bluemix, complete the following steps:

1. Go to the IBM Bluemix console at https://new-console.ng.bluemix.net, click Catalog at
the top of the window and enter Message Hub in the Search field as shown in Figure 7-21.

Figure 7-21 Searching Message Hub in Bluemix catalog
170 A Practical Guide for IBM Hybrid Integration Platform

2. Click the Message Hub tile and enter Message Hub as the name of the service as shown in
Figure 7-22.

Figure 7-22 Configure the Message Hub service

3. Click Create to start the creation of the service as shown in Figure 7-23.

Figure 7-23 Create the Message Hub service

4. Wait for the service to be created and click the plus sign (+) to add a topic as shown in
Figure 7-24.

Figure 7-24 Add a topic
Chapter 7. Kick-start digital teams 171

5. To configure the topic, enter the following values:

– mhtopic in the Topic Name field

– 1 in the Partition field

– 24 in the Retention field

Then click Save as shown in Figure 7-25.

Figure 7-25 Configure the Message Hub topic

6. Check that the topic is properly created as shown in Figure 7-26.

Figure 7-26 Message Hub topic created

7.2.3 MongoDB

This section covers the installation and configuration of MongoDB.

Installation of MongoDB
To install MongoDB, use the MongoDB by Compose service in Bluemix and complete the
following steps:

1. Go to the Compose website to create a trial account:

https://www.compose.com/

Note: If you already have a Compose account, jump to step 7 on page 176 to deploy a
new MongoDB database.
172 A Practical Guide for IBM Hybrid Integration Platform

https://www.compose.com/

2. Click Register for a Free 30-Day Trial as shown in Figure 7-27.

Figure 7-27 Compose website

3. Enter your personal information for the trial account creation as shown in Figure 7-28.

Figure 7-28 Compose account creation form
Chapter 7. Kick-start digital teams 173

4. Select MongoDB in the Choose a Database column as shown in Figure 7-29.

Figure 7-29 Compose account creation form completed
174 A Practical Guide for IBM Hybrid Integration Platform

5. Click Enter Payment Information and enter your address in the window as shown in
Figure 7-30.

Figure 7-30 Compose address form

6. Click Payment Info, enter your credit card credentials, and click Save payment method
as shown in Figure 7-31.

Figure 7-31 Compose payment form
Chapter 7. Kick-start digital teams 175

7. In the New MongoDB Deployment window, enter the following information as shown in
Figure 7-32:

a. Enter OrderTrackerDB as Deployment Name.

b. Select US Dallas 9 as Location.

c. Ensure that the Enable SSL access check box is selected.

d. Ensure that the WiredTiger Storage Engine check box is cleared.

e. Ensure that the Allocate initial deployment resources slider is showing 1 GB.

Figure 7-32 Compose MongoDB creation form
176 A Practical Guide for IBM Hybrid Integration Platform

8. Click Create Deployment and wait for the deployment to complete as shown in
Figure 7-33.

Figure 7-33 Compose MongoDB deployment

7.2.4 API Connect

This section shows you how to create the Order Tracker application in API Connect.

Application overview
The Order Tracker application is built with API Connect using the LoopBack Framework.
Loopback is an open source Node.js framework built around the concept of models. Models
are descriptions of the core business entities that you want to expose through REST
interfaces as shown in Figure 7-34.

Figure 7-34 Microservice architecture

Tip: The deployment might take a while. However, this window can be closed without
affecting the deployment.
Chapter 7. Kick-start digital teams 177

Models have properties, which are the data associated to the entity. In this case, for example,
“Order” has an “orderId,” “customerId,” and “description.” LoopBack connectors make
persisting these data in a database, like Mongo DB, transparent to the application developer.
A connector is configured to point to a specific database instance by defining a DataSource.

A key benefit of using LoopBack is the automatic generation of the APIs exposing the data of
the models. These APIs are documented in Swagger files and can be deployed and secured
on the API Connect Gateway.

Business entities are often related to each other. For example an “Order” can have many
“Order Events.” For this reason, LoopBack supports the concept of “relationship” and creates
APIs to navigate from one entity to the other.

Not all the models are persisted, however. For this application, the “Message Consumer”
model only exposes APIs to start the consumption of messages from Message Hub and does
not need to maintain a persisted state. However, even in this case, LoopBack provides easy
constructs to create APIs and their Node.js implementation.

Working with Node.js gives you access to an extensive library of pre-tested packages that you
can download from the public registry () and reuse in your application. The registry is
available at this URL:

https://www.npmjs.com/

For example, this scenario uses a preexisting package (message-hub-rest) to access the
message hub with a few JavaScript line of code. This package is calling, behind the scenes,
Kafka REST APIs to interact with Message Hub. For this book we chose to speed the
implementation of the scenario. However, for production implementations, use Node.js
packages that use the native Kafka protocol to optimize performance and reliability.
JavaScript clients for Kafka are maturing at the time of writing, but examples are available at
these websites:

https://github.com/Blizzard/node-rdkafka
https://github.com/oleksiyk/kafka

Creating the Order Tracker application
This section walks you through the key steps you need to complete to build the Order-Tracker
application. Note that this is application development, not just configuration, so for brevity
some of the steps are described only at the high level. If you need more details, you can refer
to the application source code published here.

This chapter also assumes that you have installed the API Connect toolkit on your developer
workstation. See 4.3.1, “Prerequisites” on page 62for instructions on how to set it up.

 For clarity, the development steps are organized in four phases:

� Application scaffolding and dependencies installation
� Models and data sources configuration
� Business logic development
� Application deployment and test

Each phase contains the coverage of all the application elements so that you can have an
overview of what needs to be done. However, during actual development, you must follow a
much more iterative approach in which you deploy and test a new component or piece of logic
as soon as you have created it. Also, because the focus of this section is the micro-service
implementation, more than securing the APIs on the gateway, leave the API exposure
configuration settings of the application at their defaults. In an enterprise-level
implementation, you will probably want to group the APIs that create and modify Orders and
178 A Practical Guide for IBM Hybrid Integration Platform

https://www.npmjs.com/
https://github.com/Blizzard/node-rdkafka
https://github.com/oleksiyk/kafka

OrderEvents in a dedicated API product accessible only to users with admin privileges, while
mobile developers who work on the Order Tracker mobile app can subscribe only to endpoints
that read, but cannot modify, data.

Application scaffolding and dependencies installation
Use the API Connect command line to create the structure of the application and install the
required npm packages. In particular, complete these steps:

1. Run $apic loopback to create the basic structure of the application. On the command line,
specify application name: order-tracker and application type: empty server.

2. Within the application directory, run the following commands to install the required
dependencies:

$npm install --save loopback-connector-mongodb
$npm install --save message-hub-rest

To get more information about how AP Connect command line works, you can run the
$apic –h command and access its documentation.

Models and data sources configuration
You can continue and create models and data sources with the command line, but this section
show how you can do that with API Designer to have a visual representation of your entities:

1. Start API Designer by running $apic edit.

2. Create an Order model with the properties that are shown in Figure 7-35.

Figure 7-35 IBM API Connect order model creation

3. Create an OrderEvent model with the properties that are shown in Figure 7-36.

Figure 7-36 IBM API Connect order event model creation
Chapter 7. Kick-start digital teams 179

4. Create the MessageConsumer and MessageHub Proxy models. For both of them, set the
Base Model property to Model (you do not need to persist them) as shown in Figure 7-37.

Figure 7-37 IBM API Connect Message Hub creation

5. Create a data source for your Mongo database. In the properties, specify the following as
shown in Figure 7-38.

– Name: mogo
– Connector: MongoDB
– URL:

mongodb://<user>:<password>@<server>:<portnumber>/<databasename>?ssl=true

Replace the values in brackets with the ones relevant for your environment.

Figure 7-38 IBM API Connect MongoDB data source creation

6. Go back to the Order and OrderEvent models, and associate them to the data source that
you have just created.

7. Use the API Connect command line to create a relationship between Order and
OrderEvents by issuing this command:

$apic loopback:relation

Then, select the following options:

– Model to create a relationship from: Order

– Relationship type: has many

– Model to create a relationship with: OrderEvent

– Press Enter on all the other options and leave them to their defaults

Business logic development
Now you need to write the custom logic to read events from Message Hub, map them to the
Order and OrderEvent models (the structures exposed by the REST API of the microservice)
and persist the data in Mongo. You also must create an additional API endpoint to start the
consumption of the messages.

While you were working with the API Connect command line and user interface in “Models
and data sources configuration” on page 179, the tool created a Node.js app behind the
scenes. You are now going to extend its behavior.
180 A Practical Guide for IBM Hybrid Integration Platform

Look at the folder structure of the directory in which you have been working. You should find
the artifacts that are shown in Figure 7-39.

Figure 7-39 Microservice directory structure

Your API and models are contained in the definitions and models folders. The first one
includes the Swagger documentation of the APIs, and the second has the definition of the
models in .json files and the code customizing their behavior in the .js files.
187

Tip: If you are not familiar with Node.js development, you can import the version of these
two files from GitHub and then run $apic loopback:refresh to align the interfaces with the
customized models.
Chapter 7. Kick-start digital teams 181

Extend message-hub-proxy.js and message-consumer.js as explained below:

1. In message-hub-proxy.js, reference the message-hub-rest package (line 2 in Figure 7-40
on page 182) and then initialize a Message Hub client, passing the connection details of
the Message Hub instance you want to reach in Figure 7-40.

Figure 7-40 Microservice message-hub-proxy.js

2. Then, create a function that polls the messaging system and reads new messages as
shown in Figure 7-41.

Figure 7-41 Microservice message-hub-proxy function
182 A Practical Guide for IBM Hybrid Integration Platform

3. In message-consumer, add the logic that starts the polling, receive the data read from
Message Hub, and save it to the database as shown in Figure 7-42. Note the following
characteristics:

– The communication between this component and the previous one happens
asynchronously, through the Node.js event framework.

– To create records in the database, you just need to call the create() function of a
PersistedModel, LoopBack does the rest for you behind the scenes, by using the data
source you have associated with the model.

Figure 7-42 Microservice message-consumer.js

4. In this component, you also define a “remote method” exposing the startPolling function
as an API as shown in Figure 7-43.

Figure 7-43 Microservice message-consumer method

Note: To surface this new operation in the Swagger files that are published on the API
gateway, you must run the command $apic loopback:refresh. This command makes sure
that the interfaces are updated with what is defined in the models.
Chapter 7. Kick-start digital teams 183

Application deployment and test
Use API Designer to test and then deploy the order-tracker microservice:

1. Start API designer with $apic edit.

2. Start the server by clicking the arrow button at the lower left of the screen. This action
starts two Node.js processes on your computer:

– One for the micro-gateway

– One for your LoopBack application

3. Click the Explore tab at the top of the screen to test the interface of the microservice as
shown in Figure 7-44.

Figure 7-44 IBM API Connect Designer

4. You can now deploy the solution to Bluemix:

a. Click Publish at the top of the screen and select Add and manage targets to specify
where you want to deploy your code.

b. Select Add IBM Bluemix Target and then specify the Bluemix region, organization,
and catalog where you want to deploy the APIs of the order-tracker app.

c. Click Next.

d. Enter a new application name (order-tracker), click the (+) button to add it to the list,
and then click Save.

e. Back on the main API Designer UI, click Publish again and select the deployment
target that you just defined. On the window that opens select Publish Application and
then click Publish. API Designer then publishes the LoopBack application to a Cloud
Foundry run time on Bluemix and updates the properties of the Swagger files to point
to that instance.

f. Repeat the steps of the previous bullet point, but now select Stage and Publish and
then click Publish to deploy the API definition on the API Gateway on Bluemix.
184 A Practical Guide for IBM Hybrid Integration Platform

If you browse to your API Manager UI in Bluemix, notice that an order-tracker app has
been added to your dashboard as shown in Figure 7-45.

Figure 7-45 IBM API Connect catalog

5. Click the tile of the app and then the Manage this app link to go to the Node.js
management interface of the Node.js run time where the Loopback application is running
as shown in Figure 7-46.

Figure 7-46 Microservice management in Bluemix

6. Back on the API Manager UI, you can select the Explore tab and test the APIs on Bluemix,
or go to the Developer Portal of the catalog and subscribe to them.

7.2.5 Dashboard app

This section describes the implementation of the dashboard application.
Chapter 7. Kick-start digital teams 185

Application overview
The order-tracker mobile application is built with the Ionic framework, an open source SDK for
hybrid mobile app development built on top of Apache Cordova and AngularJS. The mobile
app accesses the REST endpoints exposed by API Connect to obtain details of orders and
order events as shown in Figure 7-47.

Figure 7-47 Application overview diagram

Installing Ionic
Ionic requires Cordova. Install both by using the Node Package Manager (npm). Therefore, it
is a prerequisite to have Node.js and npm installed on your developer computer. You can
download Node.js from this locations:

https://nodejs.org/en/download/

After Node.js and npm are installed, run the following command to install Cordova:

sudo npm install -g cordova

To install the Ionic framework, run this command:

sudo npm install -g ionic

Note: Remove sudo from the commands if you use Windows.
186 A Practical Guide for IBM Hybrid Integration Platform

https://nodejs.org/en/download/

Creating an Ionic application
This Ionic application that is used in this example has a side-menu type design. To create a
new application from a pre-made “side-menu” template, go to a base directory of your choice
and run this command:

ionic start myApp sidemenu

This process gives you a basic Ionic application that can be run by the following command:

ionic serve

This command runs the application in the default web browser. We also look at running the
application using an iOS or Android emulator and also how to deploy it to a stand-alone
Android device later in this chapter.

The previous step created the Ionic project scaffolding for you, the key folders and files of
which are shown in Figure 7-48.

Figure 7-48 Ionic application file structure
Chapter 7. Kick-start digital teams 187

The key files and folders are listed here:

� index.html (file): Where the view of the application is initialized and the JavaScript and
stylesheets that are used by the application are set.

� www > js (folder): Contains the following files:

– app.js (file): The location where the states of the app are controlled and what
templates are associated with what logic.

– controllers.js (file): Where the main logic for the app is written.

� templates (folder): Where the HTML templates for each of the application screens are
stored.

� css (folder): Where the stylesheets that are referenced by the app are stored.

Running the Order Tracker Ionic application
For this chapter, an Ionic application has been created. The source code is available in the
GitHub repository scenario3.

To run the application, complete the following steps:

1. Go to scenario3 folder that you cloned from GitHub in 7.2.1, “IBM Integration Bus:
Exposing enterprise order events” on page 157.

2. Go to 3_ionic folder to find the Ionic project content.

3. Start the application by running ionic serve.

4. Open a web browser and go to localhost:8100 to find the running application as shown in
Figure 7-49.

Figure 7-49 Order tracker application settings
188 A Practical Guide for IBM Hybrid Integration Platform

5. Fill the required information as displayed in Figure 7-50 as follows:

a. API Endpoint using the IBM API Connect endpoint created in 7.2.4, “API Connect” on
page 177.

b. Client ID with the ID generated by IBM API Connect.

c. Client Secret with the secret generated by IBM API Connect.

Figure 7-50 Order tracker application settings filled

6. Click Set End Point to validate the settings.

7. After it is configured, the Orders screen is displayed by using the REST API exposed by
the Loopback application to retrieve all orders as shown in Figure 7-51.

Figure 7-51 List of orders

8. Select an order to display the Order Details screen.
Chapter 7. Kick-start digital teams 189

9. The Orders screen uses the REST API exposed by the Loopback application to retrieve all
events related to the order selected as shown in Figure 7-52. Specialist CSS styling is
used to display the order events in a timeline with specific icons for each event type.

Figure 7-52 Order details

Testing the Ionic application
The quickest way to test the application is to run the following command and test all functions
from the web browser:

ionic serve

If you are running on a Mac and have Xcode installed, you can install the iOS dependencies
and run the app in the iOS emulator by using the following commands:

ionic platform add ios
ionic build ios
ionic emulate ios

If you are running on another platform such as Windows and have Android Studio and SDKs
installed, then replace ios in these commands with android.

If you have an Android device attached to your computer and the device is in USB debugging
mode, then you can run the app on your device by running this command:

ionic run android

The final option is to install the apk provided on your Android device directly.

7.3 Technical implementation of variant C

This section shows how to implement variant C by going through eight steps in the order that
is displayed in Figure 7-53 on page 191.

Note: Some steps of this variant are identical or similar to steps in variant B. For those
instructions, a reference points you to the correct step in 7.2, “Technical implementation of
variant B” on page 157.
190 A Practical Guide for IBM Hybrid Integration Platform

Figure 7-53 Scenario 3 technical diagram, variant C

7.3.1 Secure Gateway

The Secure Gateway creates a secure tunnel between the Message Hub service on Bluemix
and the on-premises IBM MQ. To use it, complete these steps:

1. To create the service, go to IBM Bluemix console (https://new-console.ng.bluemix.net),
click Catalog, and search for the Secure Gateway service in the Search field as shown in
Figure 7-54.

Figure 7-54 Search the Secure Gateway service in Bluemix catalog
Chapter 7. Kick-start digital teams 191

2. Click the Secure Gateway tile to display the service creation page as shown in
Figure 7-55.

Figure 7-55 Secure Gateway service details page

3. Click Create to start the Secure Gateway service creation as shown in Figure 7-57.

Figure 7-57 Secure Gateway service creation

Note: If you already have a Secure Gateway service installed, Bluemix indicates that you
are limited to one Secure Gateway per space as shown in Figure 7-56.

Figure 7-56 Secure Gateway notification if the service exists

In that case, skip the Secure Gateway creation steps and continue with the Secure
Gateway configuration at Step 4 on page 193.
192 A Practical Guide for IBM Hybrid Integration Platform

4. After the service is created, configure it by creating a gateway. To do so, click ADD
GATEWAY as shown in Figure 7-58.

Figure 7-58 Secure Gateway configuration

5. Enter Scenario3 as the Gateway name and click ADD GATEWAY as shown in
Figure 7-59.

Figure 7-59 Create a gateway
Chapter 7. Kick-start digital teams 193

6. After it is created, the gateway is displayed on the Secure Gateway Dashboard. Click the
Cog button to access the details of the gateway as shown in Figure 7-60.

Figure 7-60 Secure Gateway Dashboard

7. Copy the Security token and Gateway ID displayed on the Gateway details window.
These items are used to connect to this Gateway from the Secure Gateway Client as
shown in Figure 7-61.

Figure 7-61 Security Token and Gateway ID

(your security token)

(your gateway ID)
194 A Practical Guide for IBM Hybrid Integration Platform

8. Close the details window, then click the Scenario3 gateway that you just created, and click
Add Destination as shown in Figure 7-62.

Figure 7-62 Add a destination to Secure Gateway

9. For this variant, enable the Message Connect service in Bluemix to connect to the IBM
MQ on premises. Therefore, on the Add Destination window, select On-Premises, and
click Next as shown in Figure 7-63.

Figure 7-63 Add destination configuration
Chapter 7. Kick-start digital teams 195

10.Specify the host and port of your destination. This information is used by the Secure
Gateway Client to connect to the destination, the IBM MQ queue manager. IBM MQ runs
in a Docker container which has the host name mq and the exposed port 5672. Fill in the
host and port fields with the appropriate values as shown in Figure 7-64 and click Next.

Figure 7-64 Destination host and port setting

11.The flow between Message Connect and IBM MQ uses the AMQP protocol, which is
based on TCP. Therefore, select TCP for the protocol to connect to the destination as
shown on Figure 7-65 and click Next.

Figure 7-65 Protocol setting

12.Leave the default Authentication setting at None as shown in Figure 7-66 and click Next.

Figure 7-66 Authentication setting

13.Leave the IP table rules settings empty and click Next (Figure 7-67).

Figure 7-67 IP table rules setting

14.Enter Scenario3_MQ as the name of the destination as shown in Figure 7-68 and click
Finish.

Figure 7-68 Name the destination
196 A Practical Guide for IBM Hybrid Integration Platform

15.After the new destination is created, it is displayed in the Gateway Dashboard as shown in
Figure 7-69.

Figure 7-69 Created destination

7.3.2 Docker Compose (IBM Integration Bus, IBM MQ, Secure Gateway)

For IBM Integration Bus, IBM MQ and the Secure Gateway Client creation, use Docker
Compose to create every component and the networking between each component.

The basis of the configuration for the variant is the implementation described in 7.2.1, “IBM
Integration Bus: Exposing enterprise order events” on page 157. The instructions assume
that you have already completed those steps.

The main difference in this variant is to publish the order update event through IBM MQ rather
than directly into Message Hub as shown in Figure 7-70.

Figure 7-70 Flow overview for this variant

The required IBM MQ configuration to receive the event from IBM Integration Bus, namely an
alias queue pointing to a topic, has already been prepared as part of the Docker container
image. The necessary changes to the message flow that processes the event are described
in the steps below.

Build
Complete the following steps:

1. Open the Publish_OrderUpdate_Events flow in the IBM Integration Bus Toolkit and remove
the Kafka node.

2. Add the MQ Output node and wire it between the Mapping node and the HTTP Reply
node in the same way as you wired the Kafka Producer node.
Chapter 7. Kick-start digital teams 197

3. Configure the properties as shown in the Table 7-5.

Table 7-5 Properties table

Test
The testing steps are the same as already documented for the preferred solution.

In addition to the command line output of the test script, MQ Explorer can also be used to
create a test subscription for the topic. This technique provides an easy way to debug
potential problems in the Message Connect configuration because it shows whether
messages are actually published and to which IBM MQ topic.

In the container, version 9 of IBM MQ is used. MQ Explorer needs to be at least the same
version to connect.

The following steps describe the configuration for this optional activity:

1. The output of the docker-compose ps command on the Docker host provides the
necessary information for connecting with IBM MQ Explorer. In particular, it shows the port
number to which mq port 1414 has been mapped on the docker host. Figure 7-71 shows
an example.

Figure 7-71 Docker port mapping

Tab name Property name Property value Comment

Description Node name Send to MQ

Basic Queue name ORDER.UPDATES.TOPIC.ALI
AS

Alias queue pointing to the
existing topic called
MQ.ORDER.UPDATES

MQ Connection Connection MQ client connection
properties

Select from the menu.

MQ Connection Destination
queue manager
name

EVENTQM The Docker-based queue
manager, preconfigured
and part of the
environment.

MQ Connection Queue manager
host name

mq

MQ Connection Listener port 1414 MQ security has been
disabled and the listener
configured and started.

MQ Connection Channel name SYSTEM.DEF.SVRCONN
198 A Practical Guide for IBM Hybrid Integration Platform

2. Connect to a remote queue manager in MQ Explorer. Apart from the host name and port,
the following settings should be used:

– Queue manager name: EVENTQM

– Server-connection channel: SYSTEM.DEF.SVRCONN

– No user identification or password are required. The respective settings have been
disabled in the container.

3. After connecting, right-click the MQ.ORDER.UPDATES topic and select Test subscription as
shown in Figure 7-72.

Figure 7-72 Test subscription

4. When using the testme.sh script, you can control when an event is published and what the
contents of the message are exactly. The output should look similar to Figure 7-73.

Figure 7-73 Test event

7.3.3 Message Hub

For Message Hub, follow the same steps as for variant B in 7.2.2, “Message Hub” on
page 170.
Chapter 7. Kick-start digital teams 199

7.3.4 Message Connect

The Message Connect service pulls the events from MQ and publishes them in Message
Hub. To create the service, complete these steps:

1. Go to IBM Bluemix console at https://new-console.ng.bluemix.net, click Catalog, and
scroll to the bottom of the window to click Bluemix Experimental Services as shown in
Figure 7-74.

Figure 7-74 Bluemix Experimental Services

2. Enter Message Connect in the Search field as shown in Figure 7-75 and click the Service
tile.

Figure 7-75 Message Connect service
200 A Practical Guide for IBM Hybrid Integration Platform

3. Enter Message Connect as the name of your service instance and click Create as shown in
Figure 7-76.

Figure 7-76 Message Connect service instance creation

4. After the Message Connect dashboard is displayed, click CREATE YOUR FIRST
STREAM as shown in Figure 7-77.

Figure 7-77 Message Connect dashboard

5. Enter mqstream as the Stream name as shown in Figure 7-78. This will also be the name
of the topic in Message Hub.

Figure 7-78 Stream name
Chapter 7. Kick-start digital teams 201

6. Select MQ Light as a connector, which is the IBM implementation of the AMQP 1.0
(Figure 7-79).

Figure 7-79 Select MQ Light connector

7. Select the Gateway and Destination that you created in 7.3.1, “Secure Gateway” on
page 191, then click IMPORT to import configuration from the Secure Gateway as shown
in Figure 7-80.

Figure 7-80 Secure Gateway configuration import

8. Now you can see that the ID, Hostname, and Port fields have been automatically filled.
Enter mqm as the Username, password as the Password and mqtopic as the Topic pattern
as shown in Figure 7-81. Then, click CREATE STREAM.

Figure 7-81 Additional information
202 A Practical Guide for IBM Hybrid Integration Platform

9. When the stream is displayed, it might be in the Stopped status. Click View streams list
as shown in Figure 7-82.

Figure 7-82 Created stream

10.Wait for the stream to change to the Running status as shown in Figure 7-83.

Figure 7-83 Streams list

11.Go to the Message Hub service dashboard and make sure that the mqstream topic the you
just created as a stream is displayed (Figure 7-84).

Figure 7-84 Topic on Message Hub

12.To check that MQ is properly configured, connect to your IBM MQ Docker container by
issuing the following command:

docker exec -it scenario3_mq_1 /bin/bash
Chapter 7. Kick-start digital teams 203

13.Display the status of IBM MQ by entering display chstatus(*) chltype(AMQP)
clientid(*) all. Your console should display the status shown in Example 7-1.

Example 7-1 Result of display channel status command

display chstatus(*) chltype(AMQP) clientid(*) all
7 : dis chstatus(*) chltype(AMQP) clientid(*) all
AMQ8417: Display Channel Status details.
 CHANNEL(SYSTEM.AMQP.CHL) CHLTYPE(AMQP)
 CLIENTID(Scenario3_MQ) STATUS(RUNNING)
 CONNAME(127.0.0.1) AMQPKA(0)
 MCAUSER(mqm) CLNTUSER(mqm)
 MSGSNT(0) MSGRCVD(0)
 INDOUBTIN(0) INDOUBTOUT(0)
 PENDING(0) LSTMSGDA()
 LSTMSGTI() CHSTADA(2016-09-13)
 CHSTATI(17.02.01) PROTOCOL(AMQP)

7.3.5 MongoDB

For MongoDB, follow the same steps as for variant B in 7.2.3, “MongoDB” on page 172.

7.3.6 API Connect

For API Connect, follow the same steps as for variant B in 7.2.4, “API Connect” on page 177.

7.3.7 Microservice

For the microservice, follow the same steps as for variant B in “Business logic development”
on page 180.

7.3.8 Dashboard app

For the dashboard app, follow the same steps as for variant B in “Application deployment and
test” on page 184.
204 A Practical Guide for IBM Hybrid Integration Platform

7.4 Technical implementation of variant A

This section covers how to implement variant A by going through five steps in the order
displayed in Figure 7-85.

Figure 7-85 Scenario 3 - Technical diagram - Variant A

7.4.1 IBM Integration Bus: Exposing enterprise order events

The basis of the configuration for the variant is the implementation described in 7.2.1, “IBM
Integration Bus: Exposing enterprise order events” on page 157. The instructions assume
that you have completed those steps.

The main difference in this variant is publishing the order update event directly into the
MongoDB service. The updated flow should look like similar to Figure 7-86.

Figure 7-86 Flow overview

Instead of the Kafka node that is used in the original implementation, this variant uses a
LoopBack Request node. Using the LoopBack framework, the node is configured to use a
MongoDB connector.

Note: Some steps of this variant are identical or similar to steps in variant B. For those
instructions, a reference points you to the correct step in 7.2, “Technical implementation of
variant B” on page 157.
Chapter 7. Kick-start digital teams 205

Prepare
The main preparation for the steps in this section is preparing the MongoDB database and
configuring user credentials to access the service. Because the main variant of scenario 3
has the MongoDB setup in it already, the instructions here assume that the credentials are
known. No further preparation steps are necessary.

Build
Complete the following steps:

1. Before changing the message flow itself, install the Mongodb connector that is then used
by the LoopBack Request node. Open a shell inside the container by issuing the following
command on your docker host:

docker exec -it scenario3_iib-op_1 /bin/bash

2. Install the mongodb connector into IBM Integration Bus by completing these steps:

a. In the shell session, change to the connector directory by issuing these commands:

cd /var/mqsi/node_modules

b. Run the command npm install loopback-connector-mongodb --save to install the
mongodb connector. The output should look similar to Figure 7-87.

Figure 7-87 Installing the mongodb connector

3. The next step is to configure the connection parameters for the Mongo database by
completing the following steps:

a. Change to the /var/mqsi/connectors directory by issuing cd /var/mqsi/connectors.

b. Create the loopback subdirectory by issuing mkdir loopback and changing the
directory with cd loopback.

c. The connection parameters and the definition for the mongodb data source are kept in a
file called datasources.json. Copy the sample file into the newly created directory by
issuing this command:

cp /home/iibuser/datasources.json

d. Use your preferred command line editor (for example, vi or emacs) to replace the url
connection string in the datasources.json file with the one that you used in 7.2.4, “API
Connect” on page 177.

4. Return to the IBM Integration Bus Toolkit and open the Publish_OrderUpdate_Events flow.

5. Remove the Kafka node from the flow and replace it with a LoopbackRequest node. Wire
the node as before.
206 A Practical Guide for IBM Hybrid Integration Platform

6. Configure the properties shown in Table 7-6 in the LoopbackRequest node.

Table 7-6 Properties table

7. Deploy the flow.

Test
Test the flow as before using the testme.sh script. The output should look like Figure 7-88.

Figure 7-88 Output of testme.sh script

7.4.2 MongoDB

For MongoDB, follow the same steps as for variant B in 7.2.3, “MongoDB” on page 172.

7.4.3 API Connect

For API Connect, follow the same steps as for variant B in 7.2.4, “API Connect” on page 177.

7.4.4 Microservice

For the microservice, follow the same steps as for variant B in “Business logic development”
on page 180.

7.4.5 Dashboard app

For the dashboard app, follow the same steps as for variant B in “Application deployment and
test” on page 184.

Property tab Property name Property value Comment

Description Node name Write to MongoDB

Basic Data source name mongoDB As configured
previously in the
datasources.json file.

Basic Loopback object OrderEvent

Basic Operation Create Select from the menu.
Chapter 7. Kick-start digital teams 207

208 A Practical Guide for IBM Hybrid Integration Platform

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� Hybrid Cloud Data and API Integration: Integrate Your Enterprise and Cloud with Bluemix
Integration Services, SG24-8277

� Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix
Integration Services, SG24-8281

� Getting Started with IBM API Connect: Concepts and Architecture Guide, REDP-5349

� Getting Started with IBM API Connect: Scenarios Guide, REDP-5350

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� IBM hybrid integration reference architecture white paper

http://ibm.biz/HybridIntRefArch

� IBM hybrid integration reference architecture video

http://ibm.biz/HybridIntRefArchYouTube

� “Microservices, SOA, and APIs: Friends or enemies?” article

https://ibm.biz/MicroservicesVsSoa

� IBM hybrid integration reference architecture video

http://ibm.biz/HybridIntRefArchYouTube

� IBM Watson Internet of Things portal

https://internetofthings.ibmcloud.com
© Copyright IBM Corp. 2016. All rights reserved. 209

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://ibm.biz/HybridIntRefArchYouTube
https://internetofthings.ibmcloud.com
http://ibm.biz/HybridIntRefArch
http://ibm.biz/HybridIntRefArchYouTube
http://ibm.biz/HybridIntRefArchYouTube
https://ibm.biz/MicroservicesVsSoa

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
210 A Practical Guide for IBM Hybrid Integration Platform

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

A Practical Guide for IBM
 Hybrid Integration Platform

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738442267

SG24-8351-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Part 1 Concepts and architecture
	Chapter 1. Introduction to hybrid integration
	1.1 What is hybrid integration
	1.1.1 Hybrid user communities
	1.1.2 Hybrid connectivity
	1.1.3 Hybrid integration styles
	1.1.4 Hybrid deployment

	1.2 Hybrid integration reference architecture
	1.2.1 Hybrid communities
	1.2.2 Hybrid connectivity
	1.2.3 Hybrid styles
	1.2.4 Hybrid deployment

	1.3 How is IBM addressing hybrid requirements in its integration portfolio?

	Chapter 2. Hybrid integration use cases
	2.1 Introduction to hybrid Integration use cases
	2.2 Use case A: Joining the API economy
	2.2.1 Unlocking systems of record
	2.2.2 Securely surfacing APIs
	2.2.3 Extending the use case: Creating more valuable “interaction APIs”
	2.2.4 A hybrid landscape for API components

	2.3 Use case B: Improving productivity
	2.3.1 Extending the use case: Cloud-to-ground (and ground-to-cloud)

	2.4 Use case C: Refactoring for innovation
	2.4.1 Modernizing applications for composability
	2.4.2 Synchronizing systems of record
	2.4.3 Embracing external sources
	2.4.4 Innovating new solutions

	Chapter 3. IBM Hybrid Cloud and Integration Portfolio
	3.1 Introduction
	3.2 IBM Application Integration Suite
	3.2.1 IBM Integration Bus
	3.2.2 IBM API Connect
	3.2.3 IBM App Connect

	3.3 IBM Messaging Portfolio
	3.3.1 IBM MQ
	3.3.2 IBM Message Hub
	3.3.3 IBM Watson Internet of Things Platform

	3.4 IBM DataPower

	Part 2 Hybrid integration scenarios
	Chapter 4. Introduction to the scenarios
	4.1 Introducing CompanyA
	4.1.1 The business
	4.1.2 Hybrid integration scenarios

	4.2 Architecture overview
	4.2.1 Components

	4.3 Re-creating the scenarios
	4.3.1 Prerequisites
	4.3.2 The GitHub repositories
	4.3.3 Environment configuration for the scenarios

	Chapter 5. Exposing APIs externally
	5.1 Solution outline
	5.1.1 Overview of the CompanyA hybrid integration landscape
	5.1.2 Expose a System API for product information from a catalog
	5.1.3 Create an Interaction API for order information

	5.2 Implementation
	5.2.1 Create an API Connect instance on Bluemix
	5.2.2 Expose a SOAP Web Service as an API
	5.2.3 Create an Interaction API for order information
	5.2.4 Create a Production catalog with an IBM Developer Portal Site

	5.3 Resources
	5.3.1 Sign up for an IBM Bluemix account
	5.3.2 Setting up a Salesforce developer edition account
	5.3.3 Importing the Accounts data into the Salesforce developer organization

	Chapter 6. Automation for business users
	6.1 Solution outline
	6.1.1 Functional overview
	6.1.2 Technical overview

	6.2 Implementation
	6.2.1 Preparation
	6.2.2 Creating the AppConnect flow to keep the campaign overview spreadsheet up to date
	6.2.3 Exposing the order update events as triggers into AppConnect
	6.2.4 Creating an AppConnect flow to process campaign-related orders
	6.2.5 Creating an AppConnect flow to process canceled orders

	6.3 Resources
	6.3.1 AppConnect pattern for IBM Integration Bus
	6.3.2 Installing the trigger pattern in IBM Integration Bus Toolkit

	Chapter 7. Kick-start digital teams
	7.1 Solution overview
	7.1.1 Variant A
	7.1.2 Variant B
	7.1.3 Variant C
	7.1.4 Implementation considerations

	7.2 Technical implementation of variant B
	7.2.1 IBM Integration Bus: Exposing enterprise order events
	7.2.2 Message Hub
	7.2.3 MongoDB
	7.2.4 API Connect
	7.2.5 Dashboard app

	7.3 Technical implementation of variant C
	7.3.1 Secure Gateway
	7.3.2 Docker Compose (IBM Integration Bus, IBM MQ, Secure Gateway)
	7.3.3 Message Hub
	7.3.4 Message Connect
	7.3.5 MongoDB
	7.3.6 API Connect
	7.3.7 Microservice
	7.3.8 Dashboard app

	7.4 Technical implementation of variant A
	7.4.1 IBM Integration Bus: Exposing enterprise order events
	7.4.2 MongoDB
	7.4.3 API Connect
	7.4.4 Microservice
	7.4.5 Dashboard app

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

