
Redbooks

Front cover

Hybrid Cloud Event Integration
Integrate Your Enterprise and Cloud with
Bluemix Integration Services

Jesse Aulsebrook

Richard Scott Balson

Maxime Cenatiempo

Vasfi Gucer

Shamim Hossain

Muhammad Atif Mehmood

Raj Mehra

Duy Nguyen

Bancha Setthanan

Amar Shah

International Technical Support Organization

Hybrid Cloud Event Integration: Integrate Your
Enterprise and Cloud with Bluemix Integration
Services

February 2016

SG24-8281-00

© Copyright International Business Machines Corporation 2016. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (February 2016)

This edition applies to IBM Bluemix Version 1.0.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xix.

Contents

Figures . ix

Tables .xv

Examples . xvii

Notices . xix
Trademarks .xx

IBM Redbooks promotions . xxi

Preface . xxiii
Authors. xxiii
Now you can become a published author, too! . xxvi
Comments welcome. xxvi
Stay connected to IBM Redbooks . xxvi

Part 1. Introduction to hybrid cloud concepts and products . 1

Chapter 1. Introduction to hybrid clouds . 3
1.1 Business challenges for seamless integration between cloud and on-premises

applications . 4
1.1.1 Rapid innovation . 4
1.1.2 Using enterprise solutions. 4
1.1.3 Best-in-class solution with cloud and on-premises applications 4

1.2 Hybrid cloud customer scenarios and use cases . 5
1.2.1 CompanyA background . 5
1.2.2 CompanyB background . 5
1.2.3 CompanyC background . 5
1.2.4 CompanyD background . 6
1.2.5 CompanyA challenges, strategy, and solutions . 6
1.2.6 CompanyB challenges, strategy, and solutions . 6
1.2.7 CompanyC challenges, strategy, and solutions . 7
1.2.8 CompanyD challenges, strategy, and solutions . 7

Chapter 2. Introduction to IBM Bluemix services for hybrid cloud 9
2.1 Secure Gateway . 10

2.1.1 Two typical examples of using Secure Gateway. 14
2.1.2 Commonly asked questions about Secure Gateway . 15

2.2 Connect & Compose . 16
2.3 IBM MQ Light . 22
2.4 Message Hub . 23
2.5 Message Connect . 25
2.6 Message Hub and IBM MQ Light integration through Message Connect 26

2.6.1 Configuring Message Hub and Message Connect for IBM MQ Light events 26
2.7 StrongLoop . 32

Chapter 3. Introduction to IBM messaging and integration products 37
3.1 Overview . 38
3.2 Introduction to IBM MQ Light . 38
© Copyright IBM Corp. 2016. All rights reserved. iii

3.2.1 IBM MQ Light messaging styles . 40
3.2.2 Application connectivity patterns using IBM MQ Light . 44

3.3 Introduction to IBM MQ . 45
3.4 IBM MQ support for IBM MQ Light APIs . 46

3.4.1 How to use IBM MQ Light API with IBM MQ. 46
3.5 Introduction to IBM Integration Bus. 47

3.5.1 Technical overview of IBM Integration Bus . 48
3.5.2 Developing IBM Integration Bus message flow as a REST API 50

3.6 Introduction to IBM MessageSight . 60
3.6.1 Architecture overview . 61
3.6.2 Scalability and performance . 61
3.6.3 Reliability. 61
3.6.4 Security . 62
3.6.5 Integration ability . 62
3.6.6 Developer-friendly . 62

Part 2. Introduction to hybrid cloud patterns for event integration . 63

Chapter 4. Introduction to hybrid cloud patterns for event integration 65
4.1 Events in a hybrid cloud environment . 66
4.2 Pattern to provide secure connectivity from cloud to on-premises application using Secure

Gateway . 66
4.2.1 Using IBM Secure Gateway to connect a cloud application with an in-house

application. 67
4.2.2 Conclusion . 72

4.3 Pattern to show how IBM Integration Bus flow exposed as REST API can be managed by
API management . 72

4.3.1 Implementing the pattern . 72
4.3.2 Conclusion . 74

4.4 Pattern for hybrid cloud integration using API facade . 74
4.4.1 Characteristics of the pattern . 74
4.4.2 Pattern implementation with StrongLoop . 77
4.4.3 Conclusion . 79

4.5 Pattern for data analytics integration with real-time events. 79
4.5.1 dashDB service. 79
4.5.2 Streaming analytics service . 81
4.5.3 Conclusion . 83

4.6 Pattern for integrating an Internet of Things device to an on-premises asset management
system . 84

4.7 Pattern for integrating cloud applications using IBM Message Hub for Bluemix 86

Part 3. Hybrid cloud scenarios with IBM Bluemix . 87

Chapter 5. On-premises messaging middleware integration with
IBM Bluemix . 89

5.1 Scenario architecture . 90
5.2 Setting up an on-premises environment using IBM MQ Light . 91

5.2.1 IBM MQ Light download and installation. 91
5.2.2 Node.js download and installation . 91
5.2.3 Writing a simple Node.js IBM MQ Light message sender client 92

5.3 Setting up an on-premises environment using ActiveMQ Apollo 93
5.3.1 ActiveMQ Apollo . 94
5.3.2 Setup and Installation . 94
5.3.3 Writing a simple Node.js ActiveMQ Apollo message sender client. 95
iv Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

5.4 Using IBM Secure Gateway to connect your on-premises sender client to the cloud
application . 97

5.4.1 Configure IBM Secure Gateway service . 97
5.4.2 Configure IBM Secure Gateway client . 99
5.4.3 Connect Secure Gateway with the on-premises environment 100

5.5 Writing a simple Node.js IBM MQ Light Message receiver client 101
5.5.1 Creating the application . 101
5.5.2 Pushing the application to the Bluemix cloud environment. 106

5.6 Testing end to end . 107

Chapter 6. Asynchronous processing through IBM MQ Light service 109
6.1 Solution background . 110
6.2 Transformation of the sample application . 110
6.3 Subscenario 1: Web application saving data on database . 111
6.4 Subscenario 2: Web application saving data on IBM MQ Light 112
6.5 Subscenario 3: Web application saving data on IBM MQ server 114
6.6 Subscenario 4: Web application data consumed by corporate applications 116
6.7 Overview of the sample application . 118

6.7.1 User interface application . 118
6.7.2 API application . 118
6.7.3 Message processing application . 118
6.7.4 Enterprise IBM Integration Bus application . 118
6.7.5 Preparing for the subscenarios . 119

6.8 Implementing subscenario 1 . 120
6.8.1 Create simulated data center database . 121
6.8.2 Provision Bluemix services . 124
6.8.3 Deploy the API server . 125
6.8.4 Configure a secure tunnel between the API server and database 130
6.8.5 Configure the API server to use a secure connection to the database. 135
6.8.6 Installing the web application . 140
6.8.7 Summary of scenario 1 . 143

6.9 Implementing subscenario 2 . 144
6.9.1 Provision IBM MQ Light Bluemix services . 145
6.9.2 Installing the message processor application . 146
6.9.3 Configuring the API server to use IBM MQ Light service in Bluemix 148
6.9.4 Summary of subscenario 2 . 154

6.10 Implementing subscenario 3 . 154
6.10.1 Configuring IBM MQ for IBM MQ Light APIs. 155
6.10.2 Creating a secure connection to enterprise IBM MQ . 156
6.10.3 Configuring the API server to use the enterprise IBM MQ server 157
6.10.4 Installing the message processor on a corporate server 159
6.10.5 Testing the application . 160
6.10.6 Summary of subscenario 3 . 162

6.11 Implementing subscenario 4 . 163
6.11.1 Stopping the message processor application in a corporate gateway 164
6.11.2 Configuring the API server to use the enterprise IBM MQ server and

receive results. 164
6.11.3 Configuring IBM MQ . 166
6.11.4 Developing the IBM Integration Bus message flows. 166
6.11.5 Registering IBM Integration Bus REST API with

Bluemix API Management Service . 172
6.11.6 Update and redeploy the web application. 180
6.11.7 Testing the application . 183
 Contents v

6.11.8 Summary of scenario 4 . 184
6.12 Summary. 186

Chapter 7. Synchronizing data from Salesforce to a remote enterprise system . . . 189
7.1 Scenario overview. 190
7.2 Setting up the database . 191
7.3 Exposing the database through IBM Secure Gateway . 192

7.3.1 Configuring a Secure Gateway . 192
7.3.2 Running the gateway client . 195

7.4 Compose API with StrongLoop . 196
7.4.1 Getting started with StrongLoop . 196
7.4.2 Creating an application . 197
7.4.3 Adding application logic . 201
7.4.4 Testing the application . 204
7.4.5 Deploying the application . 206

7.5 Configuring Salesforce . 209
7.6 End-to-end testing. 213
7.7 Conclusion . 216

Chapter 8. Integrating events from Internet of Things with Enterprise Asset
Management systems . 217

8.1 Scenario . 218
8.2 Introduction to IBM Internet of Things Foundation . 218

8.2.1 Quickstart mode . 218
8.2.2 Registering an IoT device . 226

8.3 Creating the flow in Node-RED . 238
8.4 Binding Twilio service . 238
8.5 IBM Maximo Asset Management solution. 239

8.5.1 What is it? . 239
8.5.2 Maximo setup for this scenario . 240
8.5.3 Steps to start Maximo . 240

8.6 Integrating IoT application with IBM Asset Management system with Bluemix Secure
Gateway service . 248

8.6.1 Setting up Secure Gateway . 248
8.7 The complete solution for the scenario . 252

Chapter 9. Demonstration of analytics and real-time event detection 253
9.1 Configuring a Bluemix dashDB service. 254
9.2 Preparing and importing data into dashDB . 256

9.2.1 Data sources. 256
9.2.2 Data preprocessing. 257
9.2.3 Importing data into dashDB . 261
9.2.4 Viewing tables in dashDB . 264

9.3 Cleaning and preparing data using dashDB Analytics with R 264
9.3.1 Accessing R in dashDB . 264
9.3.2 Importing dashDB data into R. 265
9.3.3 Viewing Data in R . 267
9.3.4 Cleaning and preparing the data in R . 269

9.4 Developing a model using dashDB Analytics with R. 273
9.4.1 Plotting variables to determine validity of data . 273
9.4.2 Determine whether the model predictors appear to be correlated to the variable being

predicted . 274
9.4.3 Determine correlation between predictors . 276
9.4.4 Develop a model of housing prices. 277
vi Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

9.5 Configuring an InfoSphere Streams Service on Bluemix . 280
9.6 Running InfoSphere Streams locally using VMware . 282
9.7 Creating a Streams Application Bundle . 283
9.8 Real-time event detection in InfoSphere Streams. 288
9.9 Conclusion . 292

Related publications . 293
IBM Redbooks . 293
Online resources . 293
Help from IBM . 294
 Contents vii

viii Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figures

2-1 Secure Gateway high-level architecture overview . 10
2-2 Add Gateway window . 11
2-3 Create Destination window . 12
2-4 Destination details contain cloud host and port . 13
2-5 Bluemix SOE web application requiring integration with an on-premises relational

database. 13
2-6 A typical simple use case for Secure Gateway. 14
2-7 A more complex use case for Secure Gateway . 15
2-8 Connect & Compose landing . 16
2-9 Connector options at different locations . 17
2-10 Sample Composition with various types of nodes . 18
2-11 Configuration for salesforce output node . 19
2-12 Sample API created from connecting to IBM DB2® . 21
2-13 Kafka architecture . 24
2-14 Message Hub service . 27
2-15 Message Connect service. 27
2-16 Create First Stream in Message Connect . 28
2-17 Name the stream and select connector . 29
2-18 Add connection details for IBM MQ Light on-premises service. 29
2-19 REST API consuming information for the stream . 30
2-20 Status of the stream . 30
2-21 Available streams in the Message Hub dashboard. 31
2-22 Invoking Kafka API using REST Client . 31
2-23 Base64 encoded streaming data from REST API call . 32
2-24 Hex decoded data in ASCII format . 32
2-25 StrongLoop platform capabilities. 33
2-26 StrongLoop on Bluemix. 34
3-1 Common use cases for IBM MQ Light . 38
3-2 IBM MQ Light worker offload pattern . 39
3-3 Simple receive from the destination . 40
3-4 Publish/subscribe model using IBM MQ Light . 41
3-5 Persisting messages in the destination. 42
3-6 Shared destination by multiple clients. 43
3-7 Client takeover configuration . 43
3-8 IBM MQ Light Communication channel with IBM MQ. 47
3-9 Integration Bus and the endpoints . 47
3-10 IBM Integration Bus components diagram . 48
3-11 IBM Integration Bus v10 features at a glance . 50
3-12 Create a new REST API project . 51
3-13 Name the REST API project . 51
3-14 Importing the Swagger document . 52
3-15 REST API operations . 53
3-16 The generated REST API project in toolkit . 54
3-17 Implement REST operation. 54
3-18 Implementing the subflow . 55
3-19 LocalEnvironment for REST tree . 55
3-20 Main message flow with implemented subflows . 56
3-21 HttpInput node properties and Swagger details . 57
© Copyright IBM Corp. 2016. All rights reserved. ix

3-22 Integration server with deployed REST API project . 57
3-23 Output from the REST API invocation . 58
3-24 Add destination to the on-premises Integration node . 59
3-25 Public URL for on-premises REST API message flow . 59
3-26 Sample web application showing use of cloud Host:Port . 60
3-27 IBM MessageSight architecture overview. 61
4-1 Secure Gateway from IBM Cloud to a corporate data center . 67
4-2 Secure Gateway from IBM and a third-party cloud to corporate data center 69
4-3 Secure Gateway from IBM and a third-party cloud to multiple corporate data centers. 70
4-4 Secure Gateway from IBM and third-party cloud to multiple corporate data centers

example . 71
4-5 Exposing REST service on IBM Integration Bus to cloud applications 73
4-6 API facade pattern for hybrid cloud. 75
4-7 API facade logical layers. 76
4-8 StrongLoop for API facade . 77
4-9 LoopBack concepts. 78
4-10 dashDB configuration window. 79
4-11 Viewing a table in dashDB . 80
4-12 R script in the dashDB service . 81
4-13 Configuring a streaming analytics service . 82
4-14 The streams console in Bluemix . 83
4-15 A pattern to connect an IoT device/sensor to an asset management system. 84
4-16 Architectural pattern showing IBM IoT Foundation and IoT devices. 85
4-17 Pattern for using Message Hub to connect cloud applications with IBM MQ Light . . . 86
5-1 Integration between on-premises and cloud applications using IBM Secure Gateway. 90
5-2 IBM MQ server dashboard . 91
5-3 Message sitting in an IBM MQ Light topic. 93
5-4 ActiveMQ Apollo Web Admin Console . 94
5-5 ActiveMQ Apollo broker configuration. 95
5-6 Apollo admin console message producers . 96
5-7 Using service and APIs. 97
5-8 Adding a Secure Gateway service . 97
5-9 Creating an instance of Secure Gateway . 98
5-10 Adding a gateway . 98
5-11 Naming your gateway . 99
5-12 Docker command . 99
5-13 Secure tunnel connected . 100
5-14 Secure tunnel connected (Bluemix) . 100
5-15 Cloud host url : port information . 101
5-16 Example Cloud Foundry CLI login . 106
5-17 Sample display of messages received by cloud Node.js receiver client 107
6-1 Background scenario . 110
6-2 Subscenario 1 architecture: Web application saving data to database 111
6-3 Motivation for subscenario . 112
6-4 IBM MQ Light deployment options . 113
6-5 Subscenario 2 architecture: Web application saving data to IBM MQ Light 113
6-6 Motivation for subscenario 3 . 114
6-7 Subscenario 3 architecture: Data captured is stored in the IBM MQ server 115
6-8 Motivation for subscenario 4 . 116
6-9 Meeting the needs of the developers and infrastructure stakeholders 116
6-10 Subscenario 4 architecture: Data captured consumed by corporate applications . . 117
6-11 Components used for subscenario 1 . 120
6-12 Provisioning IBM MQ Light Bluemix service . 124
x Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

6-13 Provisioning IBM MQ Light service . 125
6-14 IBM MQ Light service console . 125
6-15 API server application deployed and running on Bluemix. 128
6-16 API server . 128
6-17 API Server Test Console . 129
6-18 Results from API details . 129
6-19 Select Secure Gateway service . 130
6-20 Create Secure Gateway . 131
6-21 Adding Gateway . 131
6-22 Adding Secure Gateway connection. 132
6-23 Generating a Gateway ID . 132
6-24 Creating a destination for the gateway . 133
6-25 Secure Gateway destination details . 134
6-26 IBM Secure Gateway client started on MySQL database. 135
6-27 API server . 136
6-28 Environment Variables window. 136
6-29 Setting the API application user parameters. 137
6-30 API Server Test Console . 139
6-31 Details from the API server . 139
6-32 API server application deployed and running on Bluemix. 141
6-33 Voting application: Cast your vote . 141
6-34 API Server Test Console . 142
6-35 Details from API server . 143
6-36 Subscenario 1: Flow of information from user to database. 144
6-37 Components used for subscenario 2 . 145
6-38 Provisioning IBM MQ Light Bluemix service . 145
6-39 Provisioning IBM MQ Light service . 146
6-40 IBM MQ Light service console . 146
6-41 API server application deployed and running on Bluemix. 148
6-42 API server . 149
6-43 Add IBM MQ Light service . 149
6-44 Environment Variables window. 150
6-45 Voting application: Cast your vote . 151
6-46 IBM MQ Light console. 152
6-47 API Server Test Console . 153
6-48 Details from API server . 153
6-49 Sub scenario 2: Flow of information from user to database 154
6-50 Components used by subscenario 3. 155
6-51 IBM Secure Gateway client started on IBM MQ server. 157
6-52 Voting application: Cast your vote . 161
6-53 API Server Test Console . 161
6-54 Details from the API server . 162
6-55 Subscenario 3: Flow of information from user to database. 163
6-56 Components used by subscenario 4. 164
6-57 Message flow to read IBM MQ messages . 167
6-58 MQ Input Node Properties window . 167
6-59 Message flow to publish to a topic . 168
6-60 Input queue for the Publish message flow . 168
6-61 MQ Input Node Properties to set topic string . 168
6-62 REST API project to implement customer data retrieval operations 170
6-63 Integration Server topology. 171
6-64 Launch API Manager . 172
6-65 Select APIs configuration tab . 172
 Figures xi

6-66 Add an API . 173
6-67 Load the Swagger JSON file. 173
6-68 API Operations that are loaded from the Swagger file . 174
6-69 Edit the operations to implement the Proxy URL . 174
6-70 Add the Proxy URL for the REST method . 174
6-71 Create a plan . 175
6-72 Provide a title to the plan . 175
6-73 Adding operations to the plan . 175
6-74 Save and stage the plan to a sandbox . 176
6-75 Publish the plan . 176
6-76 Visibility and subscribers of the plan. 177
6-77 Status of the plan after publish . 177
6-78 Developer portal URL in Environments section . 177
6-79 Sign in to the developer portal . 178
6-80 Add a new application. 178
6-81 Select the plan to be used with the application. 179
6-82 Activate the plan . 179
6-83 Associate the plan with the application . 180
6-84 URL generated by API Management service . 180
6-85 API server application deployed and running on Bluemix. 182
6-86 Voting application: Cast your vote . 183
6-87 Select option from the menu . 183
6-88 Votes by cuisine . 184
6-89 Voting Leader Board . 184
6-90 Subscenario 4: Flow of information from the user to database and publishing latest

tally . 185
6-91 Subscenario 4: Publishing votes by cuisine . 185
6-92 Development agility and enterprise quality of service. 187
7-1 Solution architecture diagram . 190
7-2 Service catalog . 192
7-3 Service Gateway creation page . 193
7-4 Secure Gateway service page . 193
7-5 Add Gateway page . 193
7-6 Add Destinations page . 194
7-7 New destination created . 194
7-8 Destination configuration . 194
7-9 Connect It page. 195
7-10 Test application locally with Postman . 205
7-11 Test application on Bluemix with Postman . 208
7-12 Setup link . 209
7-13 Quick Find box . 210
7-14 New rule creation . 210
7-15 Object selection . 210
7-16 Workflow rule configuration. 211
7-17 Workflow action selection . 211
7-18 Outbound message details . 212
7-19 Save workflow rule . 212
7-20 Workflow rule activation . 213
7-21 Link to Accounts page. 214
7-22 Accounts page . 214
7-23 Account details . 215
8-1 Internet of Things scenario . 218
8-2 Node-RED Starter boilerplates among others from Bluemix catalog 219
xii Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

8-3 Node-RED Starter . 220
8-4 Node-RED welcome page . 221
8-5 Password protecting the Node-RED editor using environment variables 221
8-6 Node-RED editor prompting for credentials . 222
8-7 Renaming the initial sheet to Quick start mode . 222
8-8 Node-RED Quickstart mode . 223
8-9 A simple flow in quickstart mode. 223
8-10 Importing a flow in JSON format . 224
8-11 Selecting IoT service from IBM Bluemix catalog. 227
8-12 Currently available IoT services from IBM and a third party 227
8-13 Creating an Internet of Things Foundation service . 228
8-14 Node-RED Starter after addition of IoTF service . 228
8-15 Welcome page showing links to dashboard, documentation, and tutorials. 229
8-16 IoTF Dashboard . 230
8-17 Dashboard showing access-related information for IoTF service 230
8-18 Creating a device type . 231
8-19 Entering details for device type. 231
8-20 Defining a template for the device type. 232
8-21 Submit information for the device type . 232
8-22 Optional metadata for the device type . 233
8-23 Choosing a device type for the Add Device window . 233
8-24 Adding device details . 234
8-25 Adding optional metadata for the device. 234
8-26 Generating authentication token for device . 235
8-27 Summary of device to be added . 235
8-28 Device credentials. 236
8-29 Generating API key. 237
8-30 API key information. 237
8-31 Adding a new sheet to Node-RED editor . 238
8-32 Adding a Twilio service . 239
8-33 Microsoft Windows desktop showing shortcut to Maximo 7.6.0.1 scripts 241
8-34 Scripts for Maximo . 241
8-35 Windows command prompt showing the status of Maximo startup 242
8-36 Microsoft Windows Services Explorer showing the status of WebSphere Application

Server . 242
8-37 Maximo Login page. 243
8-38 Maximo main window . 244
8-39 Organization COMPANYA . 244
8-40 Maximo asset DEVICEA . 245
8-41 IP address of Maximo virtual machine . 245
8-42 HTTPRequester to invoke POST API call. 246
8-43 Secure Gateway in Bluemix catalog . 248
8-44 Creating a Secure Gateway service . 249
8-45 Creating a tunnel or gateway . 249
8-46 Secure Gateway connection options . 250
8-47 Adding a destination . 250
8-48 Summary of connection details . 251
8-49 Complete Node-RED flow. 252
9-1 The dashDB configure page . 254
9-2 The dashDB launch window . 255
9-3 The dashDB service start page. 255
9-4 Raw unprocessed data from the Victoria State Government regarding the average

house price per locality for the years 2004 - 2015 . 256
 Figures xiii

9-5 Raw interest rate data from the RBA . 257
9-6 Raw exchange rate data from the RBA . 257
9-7 Processed housing price data for Victoria, Australia . 258
9-8 Processed RBA cash rate data. 259
9-9 Processed exchange rate data for the Australian dollar compared to the US Dollar,

China Yen, the Euro, Great Britain Pound, and the New Zealand Dollar 260
9-10 The Load from Desktop window in the dashDB service . 261
9-11 The dashDB specify file source page. Here you specify whether the first line in the file

is a header file, the column separators, and whether there are any date columns . . 261
9-12 Preview of the data to be imported into the dashDB database. 262
9-13 Defining a new table in dashDB . 262
9-14 Load complete for a new table in dashDB . 263
9-15 Specify source with date column . 263
9-16 Example of viewing a table in dashDB . 264
9-17 R inbuilt projects and initial access . 265
9-18 Pop-up window when creating a new R script. Here a data source can be selected to

associate with the new script . 266
9-19 Initial R script created after associating a data source . 266
9-20 Console output from an R script . 267
9-21 Viewing data in R using the head command. Here the first 10 rows of the exchange

rate data are shown . 269
9-22 The result from using the sapply function with class. The results shown in this figure

are for the types of the housing price data . 269
9-23 Result from data type conversion . 270
9-24 Aggregated exchange rate data . 271
9-25 Aggregated house prices in the Victoria region . 272
9-26 The output from generating a plot in dashDB using R . 273
9-27 Average AUD to EURO yearly exchange rate . 274
9-28 A plot of the average house price in Victoria compared to the average RBA cash rate

at the same time. 276
9-29 Correlation results for housing price predictors. 277
9-30 The output of the summary command on a linear regression model 278
9-31 Model of the average house price in Victoria . 279
9-32 Model of housing prices based on the RBA cash rate and AUD to British Pound

exchange rate. 280
9-33 Bluemix Streaming Analytics service configuration page . 281
9-34 Streams service manage page . 281
9-35 Streams Console application dashboard . 282
9-36 InfoSphere Streams Quick Start Edition virtual machine desktop. 283
9-37 Streams Studio workplace definition window . 283
9-38 Streams Studio New Project Type selection. 284
9-39 SPL project in Streams Studio . 285
9-40 File Source Properties in a Streams Application. 285
9-41 Housing_Price_Event composite . 286
9-42 Logic in the custom operator. 287
9-43 Stream test data . 288
9-44 Submitting a Streams Application job . 289
9-45 Job configuration window . 289
9-46 Streams Application Console after submitting a job . 290
9-47 Streams Console log for the event trigger processing element 291
xiv Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Tables

2-1 Key terms for Secure Gateway . 10
2-2 Category of nodes. 19
6-1 Configuration parameters used by the sample application . 119
6-2 Virtual machine creation settings . 121
6-3 Parameters for the API server . 126
6-4 Parameters table. 127
6-5 Parameters for the API server . 137
6-6 Parameters for the Sample-App . 140
6-7 Parameters table. 140
6-8 Parameters for the message processor on Bluemix . 146
6-9 Parameters table. 147
6-10 Parameters for the API server . 150
6-11 Parameters for the API Server . 158
6-12 Parameters for the receiver server in the corporate data center. 159
6-13 Parameters for the API server . 165
6-14 Parameters for the Sample-App . 181
6-15 Parameters table. 181
7-1 Secure Gateway destination settings . 194
7-2 Data source properties . 198
7-3 Test properties . 204
© Copyright IBM Corp. 2016. All rights reserved. xv

xvi Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Examples

5-1 Sample Node.js message sender client . 92
5-2 Sample Node.js event producer using MQTT. 96
5-3 The package.json file . 102
5-4 The manifest.yml file . 103
5-5 Sample Node.js message receiver client . 103
6-1 Contents of mqlight-schema.sql . 123
6-2 Contents of mqlight-data.sql . 123
6-3 runmqsc command . 166
6-4 ESQL code to read JSON input message and insert to database 167
6-5 ESQL code to construct a JSON Array output message . 169
6-6 Sample message published by the message flow . 169
6-7 Define subscription topic on IBM MQ to receive results from Integration Bus 169
6-8 ESQL for receiving GET request and generating output message. 170
7-1 Start mongo shell command . 191
7-2 Create database command. 191
7-3 Start gateway client command . 195
7-4 Gateway client log. 195
7-5 ACL allow command . 196
7-6 Access control list status. 196
7-7 LoopBack application creation . 197
7-8 Data source creation. 198
7-9 Data source configuration . 199
7-10 Model creation . 199
7-11 Model selection . 199
7-12 Model properties . 199
7-13 /common/models/account.json . 200
7-14 Salesforce XML outbound message . 201
7-15 Modules registration . 202
7-16 Modules installation . 202
7-17 Salesforce.js implementation . 202
7-18 Gateway client logs. 204
7-19 Retrieve all accounts. 205
7-20 Manifest.yml . 206
7-21 Deployment logs . 207
7-22 Retrieve all accounts. 208
7-23 Clean the database . 213
7-24 Retrieve accounts in database . 215
8-1 JSON-based flow for the example app . 224
8-2 Output of the flow . 225
8-3 Output from Maximo REST API call . 246
9-1 Code created when creating an R script and associating it with a data source 265
9-2 Viewing the top 10 rows of data using the head command . 268
9-3 Checking the data types of the imported R data. 269
9-4 Converting character to numeric and date in R . 270
9-5 Aggregating monthly data to yearly data . 271
9-6 Aggregating house prices from per suburb to the Victoria region. 272
9-7 Plotting data in R . 273
9-8 Graphing relationships between predictors and the observation 275
© Copyright IBM Corp. 2016. All rights reserved. xvii

9-9 Code for determining correlations between predictors . 276
9-10 R code to develop a linear model of housing prices with the RBA cash rate target as a

predictor . 277
9-11 Plot model on the same axis as the data used to create the model 278
9-12 Linear model code for housing prices based on the RBA cash rate and the British

Pound to AUD exchange rate. 279
xviii Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2016. All rights reserved. xix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Bluemix®
Cloudant®
dashDB™
DataPower®
DB2®

Global Business Services®
IBM®
IBM Watson™
InfoSphere®
Maximo®

Redbooks®
Redbooks (logo) ®
WebSphere®
Worklight®

The following terms are trademarks of other companies:

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

LoopBack, StrongLoop, and the StrongLoop logo are trademarks of StrongLoop, Inc., an IBM Company.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

ITIL is a Registered Trade Mark of AXELOS Limited.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
xx Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

http://www.ibm.com/legal/copytrade.shtml

IBM REDBOOKS PROMOTIONS
Find and read thousands of
IBM Redbooks publications

Search, bookmark, save and organize favorites

Get personalized notifications of new content

Link to the latest Redbooks blogs and videos

Download
Now

Get the latest version of the Redbooks Mobile App

iO
S

Android

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Promote your business
in an IBM Redbooks
publication

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

http://bit.ly/redbooksapp
http://bit.ly/1bvYuMM
http://bit.ly/1lCxuBG
http://ibm.co/1maZVrw

THIS PAGE INTENTIONALLY LEFT BLANK

Preface

The event-centric hybrid cloud integration revolves around applications running based on
events or messages. The new event-centric approach to hybrid cloud aims to simplify the task
of managing these messages while increasing the overall reliability of the system.
Event-centric applications work well in the cloud due to the varying intensity and frequency of
events. These fluctuations fit well into a cloud infrastructure that can dynamically scale to fit
those needs. An event-centric approach cuts down on communication overhead for an
application, thus helping to speed up the development process.

IBM® Hybrid Integration Services is a set of hybrid cloud capabilities in IBM Bluemix® that
allows businesses to create hybrid clouds by connecting their Bluemix environment to
on-premises systems at the application programming interface (API), data, or event level.

In November 2015, the IBM International Technical Support Organization (ITSO) IBM
Redbooks® team published a Redbooks publication that covers hybrid cloud scenarios with
Bluemix for API and data integrations, Hybrid Cloud Data and API Integration: Integrate Your
Enterprise and Cloud with Bluemix Integration Services, SG24-8277, and can be found at the
following website:

http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248277.html?Open

This book, Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix
Integration Services, SG24-8281, is a companion book to SG24-8277 and focuses on
event-centric hybrid cloud integrations with Bluemix.

Authors

This book was produced by a team of specialists from around the world working in IBM
Melbourne, Australia.

Jesse Aulsebrook is an IT Consultant with IBM Global
Business Services® (GBS). He has over three years of
experience in web application development and Enterprise
Integration. He is currently working in the IBM Watson™ space
with a focus towards analytics. Jesse is very passionate about
cloud application development and spends most of his spare
time working with Bluemix offerings. Jesse also provides
specialist technical support to the Australian Football League
on match days over weekends.

Richard Scott Balson is a Technical Analytics Consultant with
IBM GBS in the Business Analytics and Strategy team. Richard
has a PhD in Biomedical Engineering, where he used
analytical tools and models to improve the understanding of the
mechanisms involved in neurological disorders. He also has
experience developing analytics and statistical models for
business. Richard is currently focused on developing advanced
analytics methodologies using multiple tools for both structured
and unstructured data.
© Copyright IBM Corp. 2016. All rights reserved. xxiii

http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248277.html?Open
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248277.html?Open

Maxime Cenatiempo is a long-term IBMer based in Sydney.
He has been working for nine years as an IBM Certified IT
Specialist dedicated to client success. Throughout his career,
he had the opportunity to work across various industries in
multiple countries. He has been focusing on innovative
technologies in diverse domains including enterprise service
bus, Business Process Management, mobile app development
and cloud computing. He is currently working as an IBM
MobileFirst/Bluemix Technical Specialist and holds a Master’s
degree in Computer Science from the National Institute of
Applied Sciences in France.

Vasfi Gucer is an IBM Redbooks Project Leader with the IBM
International Technical Support Organization. He has more
than 18 years of experience in the areas of systems
management, networking hardware, and software. He writes
extensively and teaches IBM classes worldwide about IBM
products. His focus has been on cloud computing for the last
four years. Vasfi is also an IBM Certified Senior IT Specialist,
Project Management Professional (PMP), IT Infrastructure
Library (ITIL) V2 Manager, and ITIL V3 Expert.

Shamim Hossain is an IBM Certified Cloud Solution Advisor
and Cloud Solution Architect. He leads a cloud consultancy
laboratory in IBM Australia to develop born-on-the-cloud
applications using agile methodologies and design thinking. He
is a Redbooks publication thought leader and official IBM
Cloud Computing and Smarter Computing Ambassador. He
holds a Master of Telecommunications Engineering from the
University of Melbourne and a Bachelor of Computer System
Engineering (first-class honors) from Monash University. His
expertise and interests include different areas of cloud
computing, mobile computing, optical fibre communications,
broadband, Internet engineering and the Internet of Things. He
co-authored a book entitled Cloud Computing Service and
Deployment Models: Layers and Management by IGI Global.

Muhammad Atif Mehmood is a Managing Consultant in the
Cloud Development and Integration Services practice with IBM
Australia. He has over seven years of experience with
Enterprise Integration and Business Process Management
both on sales and delivery projects. Atif is currently focused on
IBM Bluemix hybrid cloud development platform and Solution
as a Service offerings from IBM. Atif holds a Master’s degree in
Computer Science from University of Melbourne, Australia.
xxiv Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

http://thoughtsoncloud.com
http://www.smartercomputingblog.com

Thanks to the following people for their contributions to this project:

Erick Griffin, Matthew Hamann, Valerie Lampkin
IBM US

Simon Gormley, Rob Nicholson, Rob Phippen, Nick Plumb, Andrew Schofield, Naomi Scott
IBM UK

Ashley Fernandez
IBM Australia

Raj Mehra is an IBM Cloud Technical Rock Star and a Watson
Ambassador who is working as a Senior Architect for IBM
Cloud Software Services, ANZ. He is a Master Certified IT
Specialist with the Open Group. He has over 18 years
experience architecting Business Process Management,
service-oriented architecture and system integration solutions
using IBM middleware products. During the last two years, he
has been focussing on emerging technologies to deliver hybrid
cloud and mobile solutions using IBM Watson and other
services on IBM Bluemix. In this role, he has earned
recognition for his thought leadership and work in client
hackathons.

Duy Nguyen is an IBM Certified IT Architect with solid
experience in IBM and open technologies. He is also an IBM
Advisory Software Engineer working in the Cloud Engineering
and Services team in the IBM CIO Office, Transformation and
Operations group in the US. His daily job is helping IBM to
transform using new technologies, specifically cloud, mobile,
and other cutting-edge initiatives. He is focusing on mobile and
cloud, including the creation of mobile solutions for IBM
employees, and providing his expertise in assisting IBM clients
with enterprise mobile and cloud engagements as needed. His
core experiences are in web, security, cloud, and mobile
technologies.

Bancha Setthanan is a Managing Consultant with IBM GBS
Cloud Development and Integration Services in Melbourne,
Australia. He has experience in software analysis, design and
development in Cloud Application Development, Business
Process Management, Service-Oriented Architecture, and
Enterprise Integration. He specializes in API management,
hybrid cloud integration, and modern web application
frameworks, such as ionic and Meteor.

Amar Shah is a Serviceability Architect working with the
IBM Integration Bus Level3 support team. He is responsible for
worldwide support for clients of IBM Integration Bus and the
serviceability enhancement of products. He is also the
designated Lab Advocate for key clients and gets involved in
providing advice and consultancy on product solution and
usage best practices. Amar Shah has been associated with
IBM for the past 17 years and holds a Master’s degree in
Software Systems from Birla Institute of Technology, Pilani,
India.
 Preface xxv

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

https://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xxvi Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
https://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Part 1 Introduction to hybrid
cloud concepts and
products

In this part, we introduce the hybrid cloud concepts within the context of several use cases
and also describe some of the IBM products and services that you can use to implement a
hybrid cloud environment with IBM Bluemix.

The following chapters are covered in Part 1:

� Chapter 1, “Introduction to hybrid clouds” on page 3

� Chapter 2, “Introduction to IBM Bluemix services for hybrid cloud” on page 9

� Chapter 3, “Introduction to IBM messaging and integration products” on page 37

Part 1
© Copyright IBM Corp. 2016. All rights reserved. 1

2 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Chapter 1. Introduction to hybrid clouds

In this chapter, we introduce the business challenges for integrating the enterprise’s
on-premises applications with the cloud solutions. Finally, in this chapter we look at business
real-world use cases to showcase the business value of hybrid cloud solutions. In addition,
we set the stage for how hybrid cloud solutions help drive business value to enterprises.

This chapter has the following sections:

� 1.1, “Business challenges for seamless integration between cloud and on-premises
applications” on page 4

� 1.2, “Hybrid cloud customer scenarios and use cases” on page 5

1

© Copyright IBM Corp. 2016. All rights reserved. 3

1.1 Business challenges for seamless integration between
cloud and on-premises applications

In this section, we cover the business challenges and drivers that motivate companies to
integrate their cloud and on-premises applications. We also look at an approach to
seamlessly integrate cloud and on-premises applications to implement hybrid cloud solutions.

1.1.1 Rapid innovation

In today’s business environment, the established business models are being frequently
challenged. New entrants in the marketplace are rapidly developing innovative solutions. A
number of businesses are using the cloud environment to experiment and validate with new
ideas with minimal costs. These solutions might use new channels to conduct their business.
The remarkable success for Uber is one such example. The taxi industry around the globe is
reevaluating their business models. Such kinds of changes are occurring at a rapid rate and it
is not just limited to one industry. The established businesses are also using the cloud to fast
track innovation.

The IBM Bluemix environment is used by an increasing number of businesses to rapidly
develop and validate ideas using prototype applications. These applications can serve as a
seed for the development of full-blown enterprise applications or can open new, more
effective channels for conducting business.

1.1.2 Using enterprise solutions

The established business usually has a number of enterprise applications. These applications
support the core business needs. In many cases, the enterprise applications are a very
valuable asset that provides an organization with a competitive edge over its peers. Some of
the legacy applications might have been developed using some old technology, which might
not be directly compatible with the emerging programming models.

1.1.3 Best-in-class solution with cloud and on-premises applications

To optimize the business outcomes, the enterprise needs to continue to derive the benefits
from their stable enterprise applications along with harnessing the innovation and exploitation
of new business channels that are facilitated by the born-on-the-cloud applications.

The first challenge for such a solution is secure connectivity. The IBM Bluemix Secure
Gateway service can securely connect the on-premises applications to the cloud applications
running on IBM or third-party cloud.

The other major challenge would be the connectivity between disparate technologies. The
message-oriented middleware like IBM MQ and IBM Integration Broker provide a robust and
mechanism connectivity between heterogeneous applications and programming models.
They can be used to expose capabilities of existing applications to the born-on-the cloud
applications and vice versa.

A combination of these two capabilities would greatly ease the goal of building enterprise
hybrid solutions.
4 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

1.2 Hybrid cloud customer scenarios and use cases

In this section, we cover how hybrid cloud solutions solve the business challenges of several
industries. The goal in this section is to showcase how different industries benefit from hybrid
cloud solutions.

1.2.1 CompanyA background

CompanyA is a traditional market research company. They were facing much competition
from newer opponents. They were looking for new ways to protect and grow their market
share. They used the IBM Bluemix environment as an innovation platform and organized a
hackathon to come up with the most innovative and cost-effective way of gaining a
competitive advantage over their peers.

The competition was won by a voting app that is capable of running on a browser in a desktop
or mobile device. The users provide their details along with their preferred option, with one
click of a button to vote, and this information is recorded in a relational database. As an
incentive for voters, each vote goes in the draw for a periodic prize.

The voting app prototype was tested by friendly parties to validate the concept. It received
very positive feedback.

CompanyA is now ready to implement the solution in production. They want to evolve this
solution to their main enterprise data collection tool and provide additional capabilities, such
as the current leader board and providing a list of all the votes for a certain option.

1.2.2 CompanyB background

CompanyB is a utilities company. They support a large infrastructure of assets spread over a
large area. The company uses IBM Maximo® Asset Management to manage its assets.

In the current environment, CompanyB receives calls from the public about broken
infrastructure. They manually allocate work to maintenance teams using Maximo Asset
Management. Maintenance teams are dispatched and problems are fixed.

The current system is not efficient. Often, there are many problems that are associated with
weather phenomena, such as excessive rain or heat. A number of calls arrive at the same
time and it causes delays in dispatching teams to fix the problems.

CompanyB is looking at smarter ways to capture problems and trigger work allocation.

1.2.3 CompanyC background

CompanyC is a fast growing company. It is growing by consolidating the business from many
smaller companies. CompanyC established a master CRM of all its clients by using a
cloud-based Salesforce application. The acquired companies use their existing applications
for their day-to-day business.

CompanyC wants to maintain client details in one place: The Salesforce application. They
want to synchronize the master data from Salesforce to all other applications. They are
looking for a cost-effective way of synchronizing the client details.
Chapter 1. Introduction to hybrid clouds 5

1.2.4 CompanyD background

CompanyD is a dominant telecommunication provider. They have a strong market share. The
rapid entry of new competitors in the marketplace is putting pressure on their client base.
CompanyD brought out some competitive offerings, but that has not provided the expected
benefits because they are targeted to a generic audience and the message is not effective for
the clients who signed up with a competitor.

CompanyD wants to ensure that the competitive offerings’ messages are reaching the right
clients. They also want to ensure that the message reaches them before they decide to switch
to the competitor.

1.2.5 CompanyA challenges, strategy, and solutions

The first challenge for CompanyA is the regulatory compliance requirement. They need to
store the data captured into a database inside the corporate firewall. They overcome this
challenge by establishing a Secure Gateway between IBM Bluemix and their corporate data
center.

The solution is popular with the clients but then it slows down due to a heavy workload. To
improve the performance, they use IBM Bluemix MQ Light service to quickly record data. The
slow task of persisting data to a database is carried out by a background job.

The enterprise application architects want access to the votes’ data as they are being cast.
They want to build an application that consumes this data. The infrastructure management
team wants to manage the infrastructure where business data is stored on a temporary basis.
The solution is reconfigured to use the enterprise IBM MQ server instead of the IBM MQ Light
service on Bluemix.

Finally, an enterprise application is built by using the enterprise service bus, the IBM
Integration Broker. Additional functionality is provided, real-time results are published, and
users get access to votes that have been cast for each candidate.

See Chapter 6, “Asynchronous processing through IBM MQ Light service” on page 109 for
implementation of this scenario.

1.2.6 CompanyB challenges, strategy, and solutions

CompanyB uses the Internet of Things (IOT) device to instrument the critical infrastructure.
The device monitors critical parameters for the infrastructure. When any of the parameters
move to an unacceptable level, the device sends a message to the IBM Bluemix Internet of
Things service in Bluemix. The device is registered with the IOT server. IOT service accepts
messages only from preregistered devices.

The IOT service is connected to an application in IBM Bluemix. The application is connected
to the corporate database using the Secure Gateway. On receipt of a message, the
application creates a work order on IBM Maximo.

The solution reduces the time and effort required to initiate work requests.

See Chapter 8, “Integrating events from Internet of Things with Enterprise Asset
Management systems” on page 217 for implementation of this scenario.
6 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

1.2.7 CompanyC challenges, strategy, and solutions

CompanyC investigates the options for synchronizing the data from Salesforce on the cloud
to a number of applications in multiple data centers.

The most flexible option is a capability of the Salesforce application to invoke a
Representational State Transfer (REST) application programming interface (API) when the
master client information changes. CompanyC uses the IBM StrongLoop® service on IBM
Bluemix to build a REST Service meeting using the Salesforce API specification. The API
receives the request and stores the data to a local database. Copies of this database can be
distributed to multiple applications who can write their own code to import the updated data
into their own application.

This scenario is implemented in Chapter 7, “Synchronizing data from Salesforce to a remote
enterprise system” on page 189.

1.2.8 CompanyD challenges, strategy, and solutions

CompanyD identifies the client behavior patterns when they are considering switching their
service provider. They use the IBM Analytics Solutions in the IBM Bluemix environment to
automate the process of identifying at-risk customers. They send targeted offers to the clients
at risk in order to maintain client loyalty.

Refer to Chapter 9, “Demonstration of analytics and real-time event detection” on page 253
for implementation of a similar IBM Analytics Solutions scenario in the IBM Bluemix
environment.
Chapter 1. Introduction to hybrid clouds 7

8 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Chapter 2. Introduction to IBM Bluemix
services for hybrid cloud

This chapter provides an introduction to hybrid integration services on IBM Bluemix as well as
information about the key capabilities of each service, focusing on manageability, security,
scalability, and so on.

This chapter contains the following sections:

� 2.1, “Secure Gateway” on page 10
� 2.2, “Connect & Compose” on page 16
� 2.3, “IBM MQ Light” on page 22
� 2.4, “Message Hub” on page 23
� 2.5, “Message Connect” on page 25
� 2.6, “Message Hub and IBM MQ Light integration through Message Connect” on page 26
� 2.7, “StrongLoop” on page 32

2

Important: Because this book focuses on hybrid cloud event integration with IBM Bluemix,
we do not cover some of the Bluemix hybrid integration services, such as API Management
and Dataworks. These services are covered in detail with scenarios and demonstration
videos in the companion IBM Redbooks publication Hybrid Cloud Data and API
Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services,
SG24-8277, which is available at the following link:

http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248277.html?Open
© Copyright IBM Corp. 2016. All rights reserved. 9

http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248277.html?Open
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248277.html?Open
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg248277.html?Open

2.1 Secure Gateway

The IBM Secure Gateway service in Bluemix provides a secure way to access your
on-premises or cloud data from your application running in Bluemix over a secure passage
that is the gateway. The basic scenario for Bluemix to on-premises integration is the
integration between the new born-on-the-cloud Systems of Engagement (SOEs) and the
existing legacy Systems of Record (SORs). Data is typically accessed from a SOR, such as a
database or an application or web service.

The Secure Gateway works by using a client on the on-premises side to connect to your
Bluemix organization. This is shown in Figure 2-1.

Figure 2-1 Secure Gateway high-level architecture overview

Table 2-1 defines some key terms for Secure Gateway.

Table 2-1 Key terms for Secure Gateway

The basic steps to set up and use the Secure Gateway service are as follows:

1. Provision a Secure Gateway service and bind it to your application.
2. Create a gateway (Name It).
3. Connect the gateway to a client (Connect It).
4. Add a destination to the gateway (Add Destinations).
5. Use the destination in your application.

Secure Gateway
IBM

Application-side TLS

Database

Destination

Client-side TLS

Gateway

Bluemix application

Client

Bluemix Organization Cloud Environment

Term Definition

Client The process that establishes the on-premises or cloud side of the
gateway and forwards requests to the destinations.

Gateway The tunnel between your Bluemix app and on-premises or cloud
environment.

Destination The endpoint at which your on-premises data can be accessed.

Application-side TLS Security between your Bluemix app and on-premises or cloud client.

Client-side TLS Security between the client and on-premises or cloud destination or data.

Note: You can provision only one Secure Gateway service per space. You can have
multiple Bluemix applications bind to the same Secure Gateway instance.
10 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

The gateway contains the configuration information for establishing a tunnel between the
Secure Gateway client running in your environment and Bluemix. When adding a gateway,
you can choose to enforce increased security over who is able to start a gateway. An optional
security token can be provided when they connect the Secure Gateway client.

Figure 2-2 shows the Add Gateway window of the Secure Gateway showing the three steps
to set up the gateway and destination.

Figure 2-2 Add Gateway window

When you name your gateway, you can connect your gateway to a client. At the time of this
writing, the following three options were available for the client:

� Client installer: IBM Secure Gateway native client installer for different platforms like
Linux, Microsoft Windows, and Mac OS. A Docker container running the Secure Gateway
client. Docker provides a convenient run anywhere option.

� Docker: The Docker image built with the same capabilities of the client installer option but
with the portability advantages of Docker, which can be run anywhere.

� IBM DataPower®: Appliance optimized solution with the same base features with the
Docker client option, but with additional security enforcement capabilities.

The gateway client is a process that runs in the on-premises or cloud side of the gateway. It
has network visibility to the Bluemix application and to the destinations. Multiple destinations
might need multiple clients. The gateway client initiates a connection with the gateway in
Bluemix and forwards requests from the gateway to the destinations.

When you connect your gateway to a client using one of the above listed clients, you can add
a destination to your gateway. Figure 2-3 shows the window to create a destination. The
destination specifies how to connect to the system resource that is a SOR, database of
record, and so on. You need only one destination per system resource. The destination
consists of a name, host name or IP address, the port, and protocol.

Note: If you are using IBM DataWorks, you do not need to create a destination.
Chapter 2. Introduction to IBM Bluemix services for hybrid cloud 11

Figure 2-3 Create Destination window

Each destination can optionally use Transport Layer Security (TLS) protocol:

� Application-side TLS

Secures access between the Bluemix app and the cloud environment client.

� Client-side TLS

Secures access between the cloud environment client and the destination.

� The two can be set independently

For application-side security, the following protocol options apply:

� TCP

– No TLS: No certificates, no encryption
– No authentication is provided
– Bluemix application communicates directly to the gateway

� TLS Server Side

– TLS is enabled
– Secure gateway generates a certificate to prove its authority
– You need to accept the server certificate into your Bluemix application truststore

� TLS Mutual Auth

– Option 1: Auto-generate certificate and private key
– Option 2: Upload existing keys to the gateway

� HTTP

� HTTPS

For client-side security, you can enable client TLS. Client TLS is required for connecting to an
HTTPS backend. The destination’s certificate is verified against known certificate authorities.
If the certificate (PEM) is self-signed, it must be attached to the cloud environment client.
Attaching the certificate can be done during the creation and edit of the destination or via the
Secure Gateway REST API.
12 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Additionally, the IP Table Options can be used to limit the IP addresses or ports that can
access the destination. The IP or port number entered into the IP table must be the external
IP address that the Secure Gateway server sees, not the local IP address of the machine.

Figure 2-4 shows the details of a destination. The Cloud Host:Port is used by the application
to connect securely to the destination.

Figure 2-4 Destination details contain cloud host and port

Figure 2-5 shows a typical simple use case. An SOE web application developed in Java
Platform, Enterprise Edition runs in a Java Liberty runtime in Bluemix. The web application
needs to access data that is stored in a MySQL database that is hosted in a corporate data
center. In this case also, the Secure Gateway service is used to securely connect from the
Public Bluemix to the corporate data center to enable making Java Database Connectivity
(JDBC) calls over a secure channel.

Figure 2-5 Bluemix SOE web application requiring integration with an on-premises relational database
Chapter 2. Introduction to IBM Bluemix services for hybrid cloud 13

Figure 2-7 on page 15 shows a more complex use case for Secure Gateway. An SOE mobile
application uses Bluemix as the mobile backend as a service (MBaaS). An IBM Cloudant®
NoSQL DB service provides data storage for the mobile application. A NodeJS runtime
provides the necessary orchestration of service calls to fulfill the needs of user-interface
interactions. The mobile application needs to call a SOAP-based web service that resides in
the corporate data center. The Secure Gateway service is used to securely connect from the
Public Bluemix to the corporate data center. SOAP requests go through the Secure Gateway
over the secured channel.

In summary, the Secure Gateway service brings hybrid integration capability to your Bluemix
environment. It provides secure connectivity from Bluemix to other applications and data
sources running on-premises or in other clouds.

2.1.1 Two typical examples of using Secure Gateway

You now see two typical examples of using Secure Gateway. Figure 2-6 on page 14 shows a
simple use case.

Figure 2-6 A typical simple use case for Secure Gateway

A System of Engagement web application developed in Java Enterprise Edition runs in a
Java Liberty runtime in Bluemix. The web application needs to access data that is stored in a
MySQL database that is hosted in a corporate data center. In this case also, the Secure
Gateway service is used to securely connect from the Public Bluemix to the corporate data
center to enable making JDBC calls over a secure channel.

server contents

corporate data center

Secure
Gateway

JDBC

S
ec

ur
e

G
at

ew
ay

C
lie

nt MySQL
14 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 2-7 shows a more complicated scenario.

Figure 2-7 A more complex use case for Secure Gateway

A System of Engagement mobile application uses Bluemix as the MBaaS. A Cloudant
NoSQL DB service provides data storage for the mobile application. A NodeJS runtime
provides the necessary orchestration of service calls to fulfill the needs of user interface
interactions. The mobile application needs to call a SOAP-based web service that resides in
the corporate data center. The Secure Gateway service is used to securely connect from the
Public Bluemix to the corporate data center. SOAP requests go through the Secure Gateway
over the secured channel.

2.1.2 Commonly asked questions about Secure Gateway

Below, we list some commonly asked questions about Secure Gateway:

Q1. What protocol does Secure Gateway support? Is it similar to VPN?

Answer: Secure Gateway tunnel is similar to a secure websocket tunnel that is similar to
Secure Shell (SSH). It is not similar to VPN. IPSec is not currently supported. There is IBM
VPN service on Bluemix. See this website:

https://www.ng.bluemix.net/docs/services/vpn/index.html

Q2. Is Secure Gateway bidirectional?

Answer: The Secure Gateway is unidirectional in the sense that all requests have to be
initiated by the Bluemix app.

Q3. Can the addressing in the destination be done by using the host name?

Answer: The addressing of the destination can be achieved by using either IP or host name.
However, there is no DNS resolution in the Secure Gateway (SG) when using the host name.
The host that the gateway client is running on needs to be able to resolve the host name of
the endpoint. The server side does not need to know anything about the DNS.
Chapter 2. Introduction to IBM Bluemix services for hybrid cloud 15

https://www.ng.bluemix.net/docs/services/vpn/index.html
https://www.ng.bluemix.net/docs/services/vpn/index.html

Q4. Which ports do the Secure Gateway client use?

Answer: Secure Gateway uses Port 443 and 9000 for outbound calls only so that the client
can establish a connection to the server.

Q5. What ports should be opened in your firewall?

Answer: Port 443 and port 9000 should be opened in the firewall.

Secure Gateway uses port 443 and 9000 for outbound calls only so that the client can
establish a connection to the server. It is the Secure Gateway servers that the gateway client
is connecting out to. The first call goes to the DataPower proxy load-balancer so that needs to
be allowed as well on port 443. The second call from the client goes directly to one of our
server nodes on port 9000.

2.2 Connect & Compose

Connect & Compose is a new service offering in Bluemix for API creation. As shown in
Figure 2-8 on page 16, the service offers to create API in two ways:

� Connect to and create a Representational State Transfer API to interact with a single
source of data or service.

� Compose by using a flow editor and API that performs complex functionalities in each API
call, such as relay further requests to backend services, sending email, interacting with
persistence, and various third-party services.

Figure 2-8 Connect & Compose landing
16 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://sgmanager.ng.bluemix.net
https://sgmanager.ng.bluemix.net

Connect option
The Connect option in Connect & Compose provides a RESTful interface to interact with a
growing option of data sources and services in Bluemix, on-premises, and on cloud.
Figure 2-9 shows supported sources as of this publication.

Figure 2-9 Connector options at different locations

To start, the user selects where and the type of source to connect to. For databases on
Bluemix, it is required that the service be provisioned and bound to your app before Connect
& Compose can connect to it. Similarly, Secure Gateway service is required to access
enterprise sources behind a corporate firewall or in a secured network.
Chapter 2. Introduction to IBM Bluemix services for hybrid cloud 17

With successful connection to a data source, the user then selects the model to which the API
acts on. Depending on the type of source that the user is connecting to, Connect & Compose
allows users to exclude optional parameters and REST endpoints during the API creation
process. This is a valuable feature when the user only wants to externalize non-destructive
endpoints. A sample swagger is shown for the user to check the API formation before save.
With the host and port provided by Connect & Compose after creation, the user can now
interact with the API via REST calls.

Compose option
The more robust option to create an API with complex functionality is with the Compose
option. API composition is delegated to a Node-RED composition interface. The interface
allows user to compose an API by dragging and connecting wanted nodes. Figure 2-10 is a
sample flow of how an API can be composed to perform multiple functions within one call
(extra payload handling function nodes are required to wrap services nodes in most cases
shown, but are eliminated to provide a generic concept). All four APIs initiate in an HTTP
request, and ends with an HTTP response:

� First, the API endpoint accepts a POST request with location information, retrieves
Google Places data, checks the weather, and pushes the result to email, twitter, and
pinterest.

� Second, the API endpoint accepts a GET request. The function node can provide
adjustments, such as putting query parameters into payload, or adjusting and reformatting
input values. The adjustment is then relayed to the SAP node to invoke a function that has
been configured. The returned data is then uploaded to Dropbox, and submitted for
debugging at the same time.

� Third, the API endpoint accepts a GET request and passes the information to a bus
schedule service, and adds the information to Google Calendar.

� Fourth, the API endpoint demonstrates a chain of HTTP requests, which ends with
persisting the final result into an SAP Hana database.

Figure 2-10 Sample Composition with various types of nodes
18 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

While there is a node to support it, there is no limitation on what sources to act on in the
composition flow editor, which distinguishes it from the Connect counterpart. Figure 2-11
shows a sample node called salesforce output. This node provides the functionality to interact
with data stored on the Salesforce database. Notice also in the left panel shown in
Figure 2-11, Salesforce-related nodes come in two options. The salesforce output node
performs POST, PATCH, and DELETE operations, and provides no output but does end the
flow. The salesforce function node alternatively, performs GET operations, and provides
output that can be passed on to the next node in the flow diagram.

Figure 2-11 Configuration for salesforce output node

Table 2-2 shows the categories and their respective nodes available as of the time of this
publication.

Table 2-2 Category of nodes

Category Nodes

input inject, catch, http, websocket

output debug, http response, websocket

function function, template, delay, trigger, comment, http request, switch, change, range, csv,
html, json, xml, rbe
Chapter 2. Introduction to IBM Bluemix services for hybrid cloud 19

Using APIs
When an API is created in Connect & Compose, the API becomes immediately available on
the host and port provided. Figure 2-12 on page 21 shows detailed information about the new
API.

The top section of the page displays the general information about the API, including shared
name, state, time stamp, and API running status. The running status is only an indicator of
whether the API is available. The user is responsible to keep all connections from the API to
the data source (such as Secure Gateway, virtual private network, and the data source itself)
running.

The second section of the API details page shows the base Uniform Resource Locator for the
API, and the access key to include in the header when sending requests to the API.

The third section includes an interactive Swagger UI that allows the user to visualize and test
the API.

The fourth section provides SDK package downloads for ease of development in different
languages. If the user uploaded more documentation for this API during the creation process,
they are also displayed for download.

social email, twitter, delicious, foursquare, swarm, google plus, google places, google
calender, instagram, pinboard

storage amazon s3, box, dropbox

advanced feedparse

connectors db2, sap, salesforce, saphana

weather forecastio, openweathermap, wunderground

location google geocoding, google directions

Google google calender

transport tfl underground, tfl bus

Category Nodes
20 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 2-12 Sample API created from connecting to IBM DB2®

For advanced utilization of the API, the user has the option to share to Bluemix, share to API
Management, or both. When an API created in Connect & Compose is shared to Bluemix, the
user obtains the ability to bind the API to an app in the same space. The API detail is also
available for all users in the Bluemix Space to see. Alternatively, sharing the created API to
API Management allows the API to be managed with more policies and all the functionalities
that API Management has to offer.
Chapter 2. Introduction to IBM Bluemix services for hybrid cloud 21

2.3 IBM MQ Light

IBM MQ Light for Bluemix is a messaging service built on the Advanced Message Queuing
Protocol (AMQP), available as a cloud-based service in the Bluemix platform. IBM MQ Light
service provides high flexibility for applications built on the cloud, especially to the
applications leveraging microservice architecture. When building applications using the
microservice approach, it is fundamental to have an effective communication protocol among
services that can help to ensure the core principles of a microservices architecture, which are
decentralizing, independency that in turn needs a reliable, scalable, and flexible way of
communicating where IBM MQ Light for Bluemix service can help.

IBM MQ Light provides support for multiple run times and various APIs that give developers
the freedom to select the technologies that they are the most comfortable with. That said, IBM
MQ Light can be used to enable applications that use diversified run times to communicate
with each other.

When using IBM MQ Light service for building applications, the following considerations
should be taken into account.

Supported runtimes
Applications developed by using the following languages: Java, JavaScript (Node.js), Python,
Ruby, Perl, PHP, and C are so far natively supported by IBM MQ Light. In case you have
applications developed using other languages than the ones in the list, you can still make
them work with IBM MQ Light by creating a client wrapper using an AMQP messaging toolkit
like Qpid Proton in the following link:

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html

Security
Security can be viewed from two aspects: Connection to the service and the messages being
sent and received.

The connection to IBM MQ Light service is enabled by default for all applications that are
bound to the services and is provided by using TLS version 1.2 (with FIPS 140-2 compliant
Cipher Specs). If your applications were built before the availability of the default
security-enabled connection of IBM MQ Light service, the connection will continue to be
decrypted until you unbound and rebound the application to the service. Python and Ruby
applications are not supported with the encrypted connection to IBM MQ Light service yet.

The messages sent to the IBM MQ Light service might be persisted while being processed
and the data is not encrypted so it is highly recommend doing the encryption against the data
before sending it to IBM MQ Light, especially with sensitive data.

Connectivity
IBM MQ Light services provisioned in the public Bluemix environment can be connected from
the applications that run either outside of Bluemix or in a Bluemix dedicated environment.
This unleashes the integration capabilities of IBM MQ Light service in Bluemix to be
presented anywhere in your architecture.
22 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html

Messages
Four GB is the maximum storage space for each IBM MQ Light service in Bluemix to store
messages data. Each message has a 256 KB maximum data allowed to be attached with,
including the overhead header being added by the IBM MQ Light API. It is necessary to make
sure the limitation is taken care of if your application has to process messages that reach that
threshold.

Only a maximum of 10,000 messages can be persisted on a destination and messages older
than 30 days are not kept.

Monitoring
IBM MQ Light services come with a web user interface, which allows the application owner to
monitor the client health and the received and sent messages through IBM MQ Light service
per instance.

2.4 Message Hub

IBM Message Hub on Bluemix is a cloud-based scalable and high throughput message bus
allowing the capability of uniting on-premises and off-premises cloud technologies. Diverse
services can be wired together through Message Hub service by leveraging open wired
protocols, which allows you to pick up a wide range of languages and technologies beyond
the ones that IBM can initially support on day one.

Note: IBM MQ Light is also available as a separate product, as opposed to a Bluemix
service. See 3.2, “Introduction to IBM MQ Light” on page 38 for information about
IBM MQ Light as a product.
Chapter 2. Introduction to IBM Bluemix services for hybrid cloud 23

Message Hub is built on top of Apache Kafka messaging engine, hence it inherits the
community-proven scalability and performance, as well as the durable real-time messaging
capability from the engine. Because Kafka plays a core role of Message Hub, look at its
general architecture and concepts. Figure 2-13 illustrates the architectural overview of
Apache Kafka.

Figure 2-13 Kafka architecture

In Kafka, a topic is a category or feed name to which messages are published. Kafka is run as
a cluster of one or more nodes, each of which is called a broker. Producers are processes
that publish messages to a Kafka topic. Processes that subscribe to topics and process the
feed of published messages are called consumer. Consumers contain in their name a
consumer group name, a consumer abstraction that generalizes both queuing and
publish/subscribe messaging models of consumers.

Each message published to a topic is delivered to one consumer instance within each
subscribing consumer group.

Following are some highlight features initially provided by IBM Message Hub service.

Availability
IBM Message Hub architecturally inherits Kafka, which is deployed as a clustered set of
message brokers. The cluster can be configured so that its brokers are not in a same failure
domain when the failure occurs, which necessarily means that a failure would only affect one
broker in the set. For that reason, the cluster can tolerate failure of a particular broker and
continue to process messages without having to wait for the failed broker to be recovered.

Consumer group

Consumer Consumer

Kafka cluster

Broker 1

Topic 1
Partition 0

Broker 2

Topic 1
Partition 1

Broker 3

Topic 1
Partition 2

Consumer group

Consumer Consumer Consumer

Producer Producer Producer
24 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

The clustered model reduces the downtime to a minimum and helps Message Hub to provide
a high availability to serve.

Also, messages are being replicated between the brokers, as well as effectively persisted on
persistent storage for at least 24 hours, using an enhanced operating system cache
mechanism, so from a message-level perspective, Message Hub reduces the possibility of a
message being lost.

Scalability and performance
The clustered model also improves the throughput of messages. By design, Message Hub
lets the message brokers concentrate on effectively persisting messages on storage, hence
strips out other features that would potentially cause performance issues.

Security
Message Hub advanced the security features provided in Kafka by enforcing a higher level of
security compliance requirement, such as:

� Connections to Kafka native and REST interface must be made by using TLS 1.2.

� Connections are restricted to a set of strong cipher suites:

– ECDHE-RSA-AES128-GCM-SHA256
– ECDHE-RSA-AES256-GCM-SHA384
– DHE-RSA-AES128-GCM-SHA256
– kEDH+AESGCM
– ECDHE-RSA-AES128-SHA256
– ECDHE-RSA-AES256-SHA384
– DHE-RSA-AES128-SHA256
– DHE-RSA-AES256-SHA256

Integration capability
Integration is one of the core capabilities of Message Hub. It provides multiple interfaces
through which messages can be produced and consumed. Both a secure native Kafka
interface using standard Kafka clients and a REST API are supported. It can integrate well
with various other services on Bluemix.

Message Hub also leverages Apache Spark and IBM InfoSphere® streams alongside Kafka,
which is suitable to build a high performance scalable streaming analytics solution.

2.5 Message Connect

IBM Message Connect is a cloud-based service in the Bluemix platform that provides a
centralized, programming language independent, publish and subscribe system for
messaging and other event-based data.

Note: IBM Message Connect service was formally known as the Event Hub service. You
can see the announcement for Message Connect at the following link:

https://developer.ibm.com/bluemix/2016/02/15/new-message-connect-service/

Apart from the renaming, Message Connect also includes some minor enhancements.
Chapter 2. Introduction to IBM Bluemix services for hybrid cloud 25

https://developer.ibm.com/bluemix/2016/02/15/new-message-connect-service/

Events travel along streams, which act as high-performance, high-volume pathways for data.
You can configure Bluemix applications as subscribers to one or more streams to provide
processing for the data or to trigger actions based on incoming messages.

Message Connect provides features that are similar to other publish and subscribe systems.
At one end, one or more publishers write data onto a stream, and at the other end, one or
more consumers receive a push notification of the event, along with the data packets that
were produced by the publisher.

Events can be generated from various connector sources. Connectors are prebuilt to connect
to third-party data sources and to flow specific data points onto a stream. For example, a
connector can provide connectivity to Twitter’s streaming search API. Tweets are channeled
from Twitter to your stream without having to make multiple connections to Twitter itself,
which Twitter limits. As a Message Connect user, all you need to do is enter Twitter
authentication credentials and search criterion. Message Connect takes care of the rest, and
you do not have to write a single line of code.

Message Connect provides a REST API for each stream so that applications can consume
data from a stream easily by subscribing to an event and getting data in real time with minimal
overhead.

The Message Connect service provides various connectors to connect to third-party data
sources. At the time of writing this book, the following connectors are supported:

� Twitter connector
� Force.com connector
� IBM MQ Light connector
� Cloudant connectors

2.6 Message Hub and IBM MQ Light integration through
Message Connect

The Message Hub uses the IBM MQ Light connector that is available with the Message
Connect Bluemix service to connect to the IBM MQ Light service or on-premises IBM MQ
Light product. This function allows applications that are built using the Apache Kafka API
running on an IBM or third-party cloud to exchange messages with IBM MQ Light.

2.6.1 Configuring Message Hub and Message Connect for IBM MQ Light
events

In this section, we describe how to configure Message Connect and Message Hub to
consume events from an IBM MQ Light application running on-premises.

Creating Message Connect and Message Hub services
The Message Connect service requires Message Hub service to be available in your Bluemix
space. You can create one Message Hub and one Message Connect service per Bluemix
space. Therefore, before you begin, ensure that you have added the Message Hub service.

Important: Currently, Message Connect service is experimental in Bluemix and subject to
change.
26 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

To add the Message Hub service, select the Message Hub tile from the Bluemix Catalog as
shown in Figure 2-14.

Figure 2-14 Message Hub service

To add the Message Connect service to your Bluemix org, follow these steps:

1. From the Bluemix Catalog, scroll to the end of the page and click Bluemix Labs Catalog.

2. Refine the search by selecting the Integration category.

3. Click the Message Connect tile. See Figure 2-15.

Figure 2-15 Message Connect service

The Message Connect service details page is displayed and the plan, features, and price
are listed in the “Pick a plan” section.

4. In the Add Service section, select an option for each of the following fields:

– Space: Select the space that you want the Message Connect service to belong to. You
can create different Message Connect services for each one of your Bluemix spaces.

– Service name: This field is prepopulated. However, it can be modified or changed
completely.

– Selected Plan: Currently, this only includes the experimental plan.
Chapter 2. Introduction to IBM Bluemix services for hybrid cloud 27

5. Click CREATE. A new window is displayed.

6. To begin creating your first event stream, click CREATE YOUR FIRST STREAM, as
shown in Figure 2-16.

Figure 2-16 Create First Stream in Message Connect

The following section describes how to create a stream to consume events from the
IBM MQ Light connector.

Consuming events by connecting to a stream from an application
To enable data to flow from your chosen source to an application, you need to create a
stream. Consuming events from a stream follows the same approach regardless of the
connector type. Currently, events are consumed by using a REST API. To create stream and
consume events, complete the following steps.

In the Message Connect dashboard:

1. Click CREATE YOUR FIRST STREAM as shown in Figure 2-16.

2. As shown in Figure 2-17 on page 29, in the Stream name field, provide a name for your
stream. Select a connector. In this example, we select MQ Light connector.
28 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 2-17 Name the stream and select connector

3. As shown in Figure 2-18, provide the requested details in the Additional information
section and click CREATE STREAM. In this example, we are showing how to connect to
IBM MQ Light service running on-premises. So, we first created a Secure Gateway to
create a secure connection from Bluemix to an on-premises system where IBM MQ Light
service is running. This is explained in Chapter 6. The Hostname and Port number in the
IBM MQ Light connector information is the cloud host and port number from the
destination that is created for IBM MQ Light on-premises connectivity in Secure Gateway.
The “Topic pattern” is the topic to which your on-premises IBM MQ Light application
publishes the data to and that you want to consume in your Bluemix applications.

Figure 2-18 Add connection details for IBM MQ Light on-premises service
Chapter 2. Introduction to IBM Bluemix services for hybrid cloud 29

4. The stream is now ready to be used after initialization. As shown in Figure 2-19, the page
is displayed with “Consuming information,” which is Kafka REST API and the required
headers to be used when making the REST call.

Figure 2-19 REST API consuming information for the stream

5. The Streams details page is displayed where you can monitor the status of the stream to
see when it enters the running state, as seen in Figure 2-20. You can choose to stop and
restart a stream at any time.

Figure 2-20 Status of the stream
30 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

6. In the Message Hub dashboard, you can now see the streams that we just created. This
confirms that the Message Hub service is successfully registered with the streams and is
ready to consume the events using REST API. See Figure 2-21.

Figure 2-21 Available streams in the Message Hub dashboard

After completing the above tasks, you can test the Kafka REST API to ensure that you are
able to consume the events from the stream. You can try invoking the REST API that is
obtained from the Consuming information of the stream created in the Message Connect
service.

We illustrate here with an IBM MQ Light application running on-premises, which is publishing
the data on a topic called redbook/results.

Use any REST client. Copy the REST API URL and required headers as obtained in step 4 on
page 10 and enter them in the REST client, as shown in Figure 2-22.

Figure 2-22 Invoking Kafka API using REST Client
Chapter 2. Introduction to IBM Bluemix services for hybrid cloud 31

Assuming that the on-premises IBM MQ Light application is publishing data on topic
‘redbook/results’, by means of the REST call with the GET method, we receive the response
in JSON format, as shown in Figure 2-23. The “value” field contains the actual contents of the
data being published by the on-premises IBM MQ Light application. Because the
Content-Type is set to application/vnd.kafka.binary.v1+json, the Kafka REST API returns the
data in base64 encoded format.

Figure 2-23 Base64 encoded streaming data from REST API call

Decoding this data into ASCII format yields the text shown in Figure 2-24.

Figure 2-24 Hex decoded data in ASCII format

The Kafka REST API is now ready for use in your Bluemix applications.

2.7 StrongLoop

StrongLoop, an IBM Company, is a leading provider of the Enterprise Node.js solution. It
offers powerful API/integration capabilities and DevOps tools for Node.js.

Overview
The StrongLoop platform is an end-to-end platform for the full API lifecycle that allows you to
visually develop APIs in Node and get them connected to new and legacy data. In addition,
the platform provides graphical tools with DevOps features for clustering, profiling, and
monitoring Node apps. See Figure 2-25 on page 33 to see StrongLoop platform capabilities.
32 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 2-25 StrongLoop platform capabilities

API composition
The platform is built on top of the open source LoopBack® framework for Node.js. With
LoopBack, you can easily create and compose scalable REST APIs that comply to the
Swagger 2.0 specification. You can connect and access data from various databases
(relational or NoSQL), SOAP, and REST APIs by leveraging the StrongLoop supported and
community data connectors.

Developers can use this framework and tools provided with the platform (such as a graphical
UI called Arc or the slc command line) to create application data models. Those models are
actual source code, created without having to write the code, and are automatically exposed
via a RESTful API by StrongLoop. In addition, StrongLoop automatically creates Swagger
documentation for the REST APIs that expose your application data.

Build and deploy
After you create your APIs, you can use the build and deploy capabilities to automate the
packaging and deployment of your Node.js application. There is built-in integration to trigger
builds from a GIT repository and you can also trigger it from your local file system. The
deployment automation makes it easy to deploy to one or multiple hosts that support your
application.

Scale
StrongLoop provides a centralized management console for Node.js runtime environments
called Process Manager. From the GUI console, you can easily create clusters, scale out and
scale in clusters, and add additional processes to clusters.
Chapter 2. Introduction to IBM Bluemix services for hybrid cloud 33

Secure
StrongLoop and the LoopBack framework provided integrated security controls for app data
models. This makes it easy to define which users and user groups can take which actions on
your application data. There is also integrated support for Passport, which makes it easy to
integrate your application with third-party login providers like Facebook, Twitter, Google, and
so on. Passport also provides generic support for OAuth 2.0, so any OAuth 2.0-compliant
service can be integrated into your app authentication process.

Monitor
StrongLoop also includes integrated monitoring and profiling that makes it easier for an
administrator to understand the health and performance of their applications. Monitoring
includes garbage collection, CPU and memory usage stats, event loop monitoring, response
times, and slowest endpoints that are either hosted or on-premises.

StrongLoop on Bluemix
This powerful platform with all its capabilities can be hosted in the cloud, on-premises, and
can also run on IBM Bluemix. It has been made available as two boilerplates on Bluemix to
get you started quickly:

� A StrongLoop LoopBack Starter app: This boilerplate gets you started with a sample
Node.js app that uses the StrongLoop Process Manager to start and supervise a
LoopBack app. You can add your own APIs and push the changes back to the Bluemix
environment.

� A StrongLoop Arc Starter app: The StrongLoop Arc boilerplate includes an app that
launches an instance of StrongLoop Arc. You can use StrongLoop Arc to manage your
Node.js apps that run on and are supervised by StrongLoop Process Manager.

Figure 2-26 StrongLoop on Bluemix
34 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Note: For more information about how to use the StrongLoop LoopBack starter app, see
the Bluemix documentation at:

https://www.ng.bluemix.net/docs/starters/LoopBack/index.html

For more information about the StrongLoop Arc starter app, go to:

https://www.ng.bluemix.net/docs/starters/StrongLoopArc/index.html
Chapter 2. Introduction to IBM Bluemix services for hybrid cloud 35

https://www.ng.bluemix.net/docs/starters/LoopBack/index.html
https://www.ng.bluemix.net/docs/starters/StrongLoopArc/index.html
https://www.ng.bluemix.net/docs/starters/LoopBack/index.html
https://www.ng.bluemix.net/docs/starters/StrongLoopArc/index.html

36 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Chapter 3. Introduction to IBM messaging
and integration products

This chapter describes the key concepts of IBM messaging and integration products that
enable them to participate in the hybrid cloud integration.

In this chapter, we introduce you to products like IBM Integration Bus, IBM MQ, IBM MQ Light,
and their features that help them interact with cloud application.

In this chapter, the following topics are covered:

� 3.1, “Overview” on page 38
� 3.2, “Introduction to IBM MQ Light” on page 38
� 3.3, “Introduction to IBM MQ” on page 45
� 3.4, “IBM MQ support for IBM MQ Light APIs” on page 46
� 3.5, “Introduction to IBM Integration Bus” on page 47
� 3.6, “Introduction to IBM MessageSight” on page 60

3

© Copyright IBM Corp. 2016. All rights reserved. 37

3.1 Overview

Businesses are now living in a hybrid world and need to be able to tap into everything they
have to create new systems of engagement.

IBM Integration Bus is an essential component of the next generation integration platform
providing robust and extensive enterprise integration features that bridge between modes of
IT.

IBM MQ provides a universal messaging backbone for enterprises to transport messages and
data inside and outside the organization, and IBM MQ Light makes it easier for developers to
incorporate asynchronous messaging into applications to help make them more responsive
and easier to scale. Using IBM MQ Light, you can quickly integrate with application
frameworks through easy-to-use application programming interfaces (APIs).

The following sections in this chapter describe more about each of these products.

3.2 Introduction to IBM MQ Light

IBM MQ Light is designed to allow applications to exchange discrete pieces of information in
the form of messages. IBM MQ Light removes much of the complexity of TCP/IP networking,
and provides a higher level set of abstractions with which to build your applications. The
IBM MQ Light API is based on the OASIS Standard AMQP Version 1.0 wire protocol. AMQP
is used to receive, queue, route, and deliver messages.

Some common implementations are event notification or worker offload, or generally
connecting to external systems as shown in Figure 3-1.

Figure 3-1 Common use cases for IBM MQ Light

Connecting external
systems

Event driven

Worker offload

• Posting video to multiple social
sites after transcoding

• Respond to external events

• Updating external booking app
• Posting updates to twitter

• Image processing
• Text analytics
38 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

� Worker offload

A key factor in a web application’s responsiveness is the amount of time that the web
server takes to process an HTTP request and send a response. If a web server needs to
perform CPU intensive, or high-latency processing before it can respond to a request, the
number of requests that the server can process is reduced. This can lead to a situation
where the server can no longer keep up with the rate at which new requests arrive, and
the web application becomes unusable.

By using IBM MQ Light, you can now offload the database and other backend work to
another component of the application. Now, one component responds to web requests
(referred as the “front-end” component) and one performs the database updates (which
we call the “back-end” component).

Figure 3-2 shows the interactions between our two application components, and the
various other parts of the system that now make up our complete application.

Figure 3-2 IBM MQ Light worker offload pattern

A detailed scenario implementing this pattern is described in 6.5, “Subscenario 3: Web
application saving data on IBM MQ server” on page 114.

A tutorial for worker offload pattern is also available at the following link:

https://developer.ibm.com/messaging/mq-light/docs/worker-offload-tutorial

� Batch processing

A variant of the worker offload, but where the work is deliberately queued for processing at
a later time, perhaps when off-peak, less expensive computing resources are available.

� Event integration

Where an application publishes data to a group of applications. For example, publishing
stock price updates to a set of trading applications. By acting as a “man in the middle,”
messaging allows the updates to be simply sent to the messaging service, which then
manages the storage and distribution of the messages to each interested application.
Chapter 3. Introduction to IBM messaging and integration products 39

https://developer.ibm.com/messaging/mq-light/docs/worker-offload-tutorial
https://developer.ibm.com/messaging/mq-light/docs/worker-offload-tutorial

3.2.1 IBM MQ Light messaging styles

IBM MQ Light is designed to allow applications to exchange discrete pieces of information in
the form of messages.

The following terminology is used with IBM MQ Light messaging:

� Messages

All data is carried in the form of messages. Messages can include:

– The message payload, or the data to carry between applications.
– Name-value properties.
– Attributes that are interpreted by the IBM MQ Light messaging service.

� Topics

Applications send messages to a topic. A topic is a string that identifies a location in the
topic space that messages are routed to, and indirectly governs which applications receive
a copy of the message.

� Destinations

Applications receive messages from destinations. Destinations are associated with a
topic, or set of topics, using a pattern.

Following are the messaging styles in which IBM MQ Light applications can communicate
with each other.

Simple Receive
Applications receive messages by creating a destination with a pattern, which matches the
topics they are interested in as shown in Figure 3-3.

Figure 3-3 Simple receive from the destination
40 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Destinations are associated with a topic, or set of topics, using a pattern. Destinations store a
copy of each message sent to a topic that matches the destination’s pattern, until it is
consumed by an application. Zero, one, or many destinations can be associated with any
given topic. If a message is sent to a topic without a destination, it is not delivered to any
application.

Publish or Subscribe
Multiple destinations can be created that match the same topic or topic hierarchy as shown in
Figure 3-4. This model is similar to publish/subscribe style messaging.

Figure 3-4 Publish/subscribe model using IBM MQ Light
Chapter 3. Introduction to IBM messaging and integration products 41

Persistent destination
You can specify a “time to live” parameter when you subscribe to the destination. So even if
the consuming client is not active, the message is persisted in the destination for the set
amount of time. Figure 3-5 shows the messages that are published by the sender application
are persisted at the destination.

Figure 3-5 Persisting messages in the destination

Sharing
This model shows the clients attaching to the same topic pattern and share name attach to
the same share destination. Applications can either exclusively use a destination, meaning
that they will receive all its messages, or they can share a destination, meaning that
messages arriving at the destination will be shared among the applications sharing the
destination.
42 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

When more than one application is consuming messages from a destination, the messages
are shared out so that each message is delivered to only one application. Figure 3-6 shows
how the messages are shared between the two clients.

Figure 3-6 Shared destination by multiple clients

Client takeover
As shown in Figure 3-7, you can configure your client application to take over the workload
from another client application that was receiving the messages before. By using the same
client ID to connect to the IBM MQ Light service, you do not need to reconfigure your new
client to connect and receive messages from the destination.

Figure 3-7 Client takeover configuration
Chapter 3. Introduction to IBM messaging and integration products 43

Here are the steps of the client takeover:

1. Originally, the first application connected to IBM MQ Light Service specifying the optional
ID as “Client1” and listening for destination “/test/#”:

a. The sender application sent a message “Hello” to topic test/a

b. The first application received the message “Hello”

2. A second application connected to IBM MQ Light Service specifying the optional ID as
“Client1” and listening for destination “/test/”#:

a. The second application preempted the original connection for the first application

b. The sender application sent a message “World!” to topic test/a

c. Second application received the message “World!”

The above behavior can be summarized as:

� Application connected to IBM MQ Light service specified (optional) client ID
� Another application reused the same client ID preempted the original connection

This capability allows for flexible work management where a new worker can take over the
workload.

In summary, the IBM MQ Light API has the following messaging features:

� At-most-once message delivery
� At-least-once message delivery
� Topic string destination addressing
� Message and destination durability
� Shared destinations to allow multiple subscribers to share workload
� Client takeover for easy resolution of hung clients
� Configurable read ahead of messages
� Configurable acknowledgment of messages

3.2.2 Application connectivity patterns using IBM MQ Light

Following are some of the connectivity patterns for IBM MQ Light applications:

� The IBM MQ Light service enables applications that are hosted within IBM Bluemix to
connect to other applications hosted inside Bluemix.

� IBM MQ Light applications that run either outside of Bluemix or in a Bluemix dedicated
environment (using service syndication) can connect to the service if they connect by
using an encrypted connection (AMQPS), for example, by using the IBM MQ Light Java or
JavaScript API. This is not supported for Java Message Service (JMS).

� Applications that are hosted inside Bluemix can also connect to IBM MQ and IBM MQ
Light servers outside of Bluemix by way of the secure connector.
44 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

3.3 Introduction to IBM MQ

Most businesses have networks of diverse hardware and software. However, related
programs in different parts of a network must be able to communicate in a way unaffected by
variations in hardware, in operating systems, in programming languages, and in
communication protocols. Moreover, businesses need to be able to run related programs
independently of each other. And all this needs to be achieved with an overall reduction in the
number of sessions in the network. Complex though the problem may be, it needs a solution
that works in the same way, and equally well, between programs on a single processor (in
both like and unlike environments) and between programs at different nodes of a varied
network. IBM MQ provides just such a solution.

Following are three key features of the messaging and queuing style of programming:

� Communicating programs can run at different times.
� There are no constraints on application structure.
� Programs are insulated from network complexities.

IBM MQ is messaging and queuing middleware. It allows application programs to use
message queuing to participate in message-driven processing. IBM MQ enables programs to
communicate with one another across a network of unlike components (processors, operating
systems, subsystems, and communication protocols) using a consistent application
programming interface known as the message queue interface (or MQI) wherever the
applications run. This makes it easier for you to port application programs from one platform
to another.

IBM MQ provides a universal messaging backbone with robust connectivity for flexible and
reliable messaging for applications and the integration of existing IT assets using a
service-oriented architecture (SOA).

IBM MQ provides several modes of operation: Point-to-point, publish/subscribe, and file
transfer.

A few common terminologies are associated with IBM MQ messaging and are used in this
book:

� Messaging

Programs communicate by sending each other data in messages rather than by calling
each other directly.

� Queuing

Messages are placed on queues, so that programs can run independently of each other,
at different speeds and times, in different locations, and without having a direct connection
between them.

� Point-to-point

Applications send messages to a queue, or to a list of queues. The sender must know the
name of the destination, but not where it is.

� Publish/subscribe

Applications publish a message on a topic, such as the result of a game played by a team.
IBM MQ sends copies of the message to applications that subscribe to the results topic.
They receive the message with the results of games played by the team. The publisher
does not know the names of subscribers, or where they are.
Chapter 3. Introduction to IBM messaging and integration products 45

3.4 IBM MQ support for IBM MQ Light APIs

Application developers who use IBM MQ Light benefit from the ease with which they can
make their applications responsive and scalable, making it easier to prototype and develop
business applications rapidly. IBM MQ supports the IBM MQ Light messaging API (with IBM
MQ V8.0.0.4 refresh or later) so that you can use IBM MQ to deploy your IBM MQ Light
application to an on-premises IBM MQ environment. You can integrate the IBM MQ Light
application with other applications that are already connected to IBM MQ.

3.4.1 How to use IBM MQ Light API with IBM MQ

The IBM MQ support for IBM MQ Light APIs allows an IBM MQ administrator to define a new
type of channel: An AMQP channel.

When the AMQP channel is started, it defines a port number that accepts connections from
IBM MQ Light applications.

The AMQP channel can be managed in the same way as other IBM MQ channels. You can
use MQSC commands, PCF command messages, or IBM MQ Explorer to define, start, stop,
and manage the channels.

When an AMQP channel is started, you can test it by connecting an IBM MQ Light application
by using any of the following methods:

� Using the IBM MQ Light client for Node.js and Java.
� Using the IBM MQ Light early access program client for Ruby and Python.
� Using another AMQP Version 1.0 client. For example, Apache Qpid Proton.

By defining and starting an AMQP channel, IBM MQ Light or AMQP 1.0 applications can
publish messages that are received by existing IBM MQ applications. Messages published
through an AMQP channel are all sent to IBM MQ topics, not IBM MQ queues. An IBM MQ
application that has created a subscription by using the MQSUB API call receives messages
published by AMQP 1.0 applications, if the topic string or topic object used by the IBM MQ
application matches the topic string published by the AMQP client.

IBM MQ Light or AMQP 1.0 applications can also consume messages that are published by
existing IBM MQ applications. Messages published by IBM MQ applications to an IBM MQ
topic or topic string are received by an AMQP 1.0 application if the application has subscribed
with a topic pattern that matches the published topic string. Figure 3-8 on page 47 shows the
communication model between IBM MQ Light clients with IBM MQ and native IBM MQ
applications.

Important: Install the AMQP Service component by using the IBM MQ V8.0.0.4
manufacturing refresh, not the V8.0.0.4 Fix Pack. You cannot install the AMQP component
on a version of the queue manager earlier than V8.0.0.4.

Note: Ensure that you select the package for AMQP when installing IBM MQ 8004
manufacturing refresh. For example, on Linux x86_64 platform, the package is named as
MQSeriesAMQP-8.0.0-4.x86_64.rpm.
46 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 3-8 IBM MQ Light Communication channel with IBM MQ

This topology is useful when the application might be processing financial or sensitive data
that must be held only on systems inside your firewall. IBM MQ Light applications can share a
topic space with existing IBM MQ applications, which enables them to interact with existing
enterprise systems.

The detailed steps for configuring IBM MQ Light service with IBM MQ are illustrated in the
IBM MQ Knowledge Center at the following link.

http://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.amqp.doc/tamqp_
creating.htm?lang=en

3.5 Introduction to IBM Integration Bus

Enterprise systems consist of many logical endpoints, for example, off-the-shelf applications,
services, cloud apps (SaaS), web apps, devices, appliances, custom-built software. The
endpoints expose a set of inputs and outputs, which comprise protocols like IBM MQ, TCP/IP,
HTTP, file system, FTP, and message formats like, binary (C/COBOL), XML, industry (SWIFT,
EDI), user-defined. Integration is about connecting these endpoints together in meaningful
ways and some of the common uses are Route, Transform, Enrich, Filter, Monitor, Distribute,
Correlate, Fire and Forget, Request/Reply, Publish/Subscribe, and Aggregation.

The IBM Integration Bus, formerly known as WebSphere® Message Broker, is an enterprise
service bus that provides universal connectivity for service-oriented environments and
non-service oriented environments. As shown in Figure 3-9, it connects to a range of different
systems and endpoints. It also does the universal transformation and routing of messages to
integrate various applications, services, and protocols.

Figure 3-9 Integration Bus and the endpoints
Chapter 3. Introduction to IBM messaging and integration products 47

http://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.amqp.doc/tamqp_creating.htm?lang=en

You can use IBM Integration Bus to connect applications together, regardless of the message
formats or protocols that they support. This connectivity means that your diverse applications
can interact and exchange data with other applications in a flexible, dynamic, and extensible
infrastructure. IBM Integration Bus routes, transforms, and enriches messages from one
location to any other location.

An integration solution is easy to develop, deploy, and manage by using the Integration Bus. It
is independent of any programming language, so developers can write business logic in the
programming languages of their choice, including Java, Microsoft .NET, PHP, ESQL, and so
on. It allows non-programmers to do the necessary message transformation by using the
Mapping Editor.

The product supports a wide range of protocols: IBM MQ, JMS 1.1 and 2.0, HTTP and
HTTPS, web services (SOAP and REST), File, Enterprise Information Systems (including
SAP and Siebel), and TCP/IP.

3.5.1 Technical overview of IBM Integration Bus

IBM Integration Bus enables information packaged as messages to flow between different
business applications, ranging from large traditional systems through to unmanned devices
such as sensors.

Figure 3-10 explains the main components of IBM Integration Bus and how they interact.

Figure 3-10 IBM Integration Bus components diagram
48 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

An integration node is a set of execution processes that hosts one or more message flows to
route, transform, and enrich in-flight messages.

An integration server is a named grouping of message flows that have been assigned to an
integration node. An integration server process is also known as a DataFlowEngine (DFE).

An application is a container for all the resources that are required to create a solution. An
application can contain IBM Integration Bus resources, such as flows, message definitions,
libraries, and Java archive (JAR) files.

A library is a logical grouping of related code, data, or both. You can use a library to group
resources of the same type or function, and to aid the management and reuse of such
resources.

A message flow is a sequence of processing steps that run in the integration node when an
input message is received. You define a message flow in the IBM Integration Toolkit by
including a number of message flow nodes, each of which represents a set of actions that
define a processing step. How you join the message flow nodes together determines which
processing steps are carried out, in which order, and under which conditions.

The IBM Integration Toolkit is an integrated development environment and graphical user
interface based on the Eclipse platform. Application developers work in separate instances of
the IBM Integration Toolkit to develop resources associated with message flows. The IBM
Integration Toolkit connects to one or more integration nodes to which the message flows are
deployed.

IBM Integration Bus processes messages in two ways: Message routing and message
transformation:

� Message routing

Messages can be routed from sender to recipient based on the content of the message.
The message flows that you design control message routing. A message flow describes
the operations to be performed on the incoming message, and the sequence in which they
are carried out.

IBM supplies built-in nodes and samples for many common functions. You create
message flows in the IBM Integration Toolkit.

� Message transformation

Messages can be transformed before being delivered. They can be transformed from one
format to another, perhaps to accommodate the different requirements of the sender and
the recipient. They can be transformed by modifying, combining, adding, or removing data
fields, perhaps involving the use of information stored in a database.

In this book, we discuss features and scenarios using IBM Integration Bus v10.

Figure 3-11 on page 50 shows a quick glance at the key features of IBM Integration Bus v10.
Chapter 3. Introduction to IBM messaging and integration products 49

Figure 3-11 IBM Integration Bus v10 features at a glance

IBM Integration Bus v10 introduces first-class support for REST API as a specialized
application. It provides a simple way to receive JSON or HTTP and expose a REST API. A
REST API contains a set of resources, and a set of operations that can be called on those
resources. The operations in a REST API can be called from any HTTP client, including
client-side JavaScript code that is running in a web browser.

Following are features of a REST API project:

� Swagger spec provides a framework implementation for describing, producing,
consuming, and visualizing RESTful APIs.

� It defines a metadata format based on JSON schema to describe the REST APIs, their
parameters, and the messages that are exchanged.

� Import Swagger (v2.0) to create the REST API project.

� Original .json files are included (unchanged) in the project.

� REST APIs can use Path, Header, and Query parameters.

� As a client of an IBM Integration Bus REST API, use existing Swagger tools and projects
to retrieve Swagger definitions from IBM Integration Bus.

3.5.2 Developing IBM Integration Bus message flow as a REST API

When you import a Swagger document to generate the REST API project in IBM Integration
Bus Toolkit:

� REST API descriptor shows operations.

� The generated top-level message flow contains the HTTP Input node (uses Integration
server listener).

� HTTP Input configured with routing table based on HTTP method and URL.

� Clicking each operation nickname generates an associated IBM Integration Bus subflow.
50 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

� Error handler links also created for HTTP Timeout, Failure, and Catch.

� After creation, add references to shared libs (or static libs) to aid subflow implementation.

Steps to develop and deploy a REST API project
To build a REST API in IBM Integration Bus, you must provide a Swagger document. A
Swagger document is the REST API equivalent of a Web Services Description Language
(WSDL) document for a SOAP-based web service. The Swagger document specifies the list
of resources that are available in the REST API and the operations that can be called on
those resources. The Swagger document also specifies the list of parameters to an operation,
including the name and type of the parameters, whether the parameters are required or
optional, and information about acceptable values for those parameters. IBM Integration Bus
supports version 2.0 of the Swagger specification.

The steps to implement IBM Integration Bus message flow as a REST API are illustrated
below:

1. Create a New REST API project in Integration Bus Toolkit as shown in Figure 3-12.

Figure 3-12 Create a new REST API project

2. Provide a name for your REST API project as shown in Figure 3-13.

Figure 3-13 Name the REST API project
Chapter 3. Introduction to IBM messaging and integration products 51

3. Select from a file system the path to the Swagger document that describes the resources
and operations that you want in the REST API and click Next. You can import the Swagger
document from the file system or from an existing project in the workspace as shown in
Figure 3-14.

Figure 3-14 Importing the Swagger document
52 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

4. Upon importing the .json file, the dialog box displays the API description, operations, and
method type as shown in Figure 3-15.

Figure 3-15 REST API operations
Chapter 3. Introduction to IBM messaging and integration products 53

5. Click Finish to complete the import operation of the Swagger API document. The REST
API description for the new REST API opens automatically in the IBM Integration Bus
Toolkit as shown in Figure 3-16.

Figure 3-16 The generated REST API project in toolkit

6. You now implement the operation in a REST API. For every operation and its method type
that has been imported from the Swagger document, there is an Implement the operation
link as shown in Figure 3-17. Upon clicking this link, a new subflow is automatically
created and opened.

Figure 3-17 Implement REST operation
54 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

7. Implement the operation as shown in Figure 3-18 by adding any of the standard message
flow nodes that are available with IBM Integration Bus to the subflow.

Figure 3-18 Implementing the subflow

8. Information about the current operation is automatically placed into the local environment
tree as shown in Figure 3-19. You can use this information in your implementation if you
want to determine which operation in the REST API was called, which HTTP method was
used, the request path, or the request URI.

Figure 3-19 LocalEnvironment for REST tree
Chapter 3. Introduction to IBM messaging and integration products 55

9. When the operations are implemented and saved, they get automatically added to the
main message flow as shown in Figure 3-20.

Figure 3-20 Main message flow with implemented subflows
56 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

10.The node properties on the HttpInput node are automatically populated as shown in
Figure 3-21 with the relative path as defined in the Swagger document.

Figure 3-21 HttpInput node properties and Swagger details

11.Package your REST API into a BAR file and deploy it to an integration server. The
deployed artifacts are seen in Figure 3-22.

Figure 3-22 Integration server with deployed REST API project
Chapter 3. Introduction to IBM messaging and integration products 57

12.You can test your message flow API by invoking it via a web browser. For example:

http://localhost:7800/customerdb/v1/customers

This produces the output depending on the operations implemented in the message flow.
In the example described here, it brings the information about all the customers from the
customer database as shown in Figure 3-23.

Figure 3-23 Output from the REST API invocation

Connecting securely from Bluemix application to message flow
In the preceding section, you learned about creating a message flow as REST API. We now
demonstrate how to make this message flow available to Bluemix via Secure Gateway so that
applications running in Bluemix can invoke the message flow as a REST call when the
application in cloud needs to work on the data that resides in the private enterprise network.

Note: REST APIs can be deployed to integration servers that are configured to use the
integration server HTTP listener only. REST APIs cannot be deployed to integration
servers that are configured to use the integration node HTTP listener.

If your integration node is configured to use the integration node HTTP listener, you must
do the following steps:

� Run the following command:

mqsichangeproperties integrationNodeName -e integrationServerName -o
ExecutionGroup -n httpNodesUseEmbeddedListener -v true

� Restart the integration server.
58 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

As explained in 6.11, “Implementing subscenario 4” on page 163 after you create the Secure
Gateway between your Bluemix environment and on-premises enterprise system, the next
task is to create a destination endpoint that points to your IBM Integration Bus node where the
message flows are deployed.

Follow these steps to set up the destination in Secure Gateway:

1. Provide a name to the destination, add a host name or IP address where the Integration
Bus node is deployed on your enterprise system, and specify the port number on which
the HttpInput node of your REST API message flow is listening on. For example, if the IP
address of the host is 9.122.64.110 and the HttpInput node of REST API message flow is
listening on port 7800, add the details as shown in Figure 3-24.

Figure 3-24 Add destination to the on-premises Integration node

2. The Secure Gateway now generates a public URL as shown in Figure 3-25.

Figure 3-25 Public URL for on-premises REST API message flow
Chapter 3. Introduction to IBM messaging and integration products 59

3. Now you can use this Secure Gateway generated cloud Host:Port pair in the applications
that you develop in the Bluemix cloud environment as shown in Figure 3-26.

Figure 3-26 Sample web application showing use of cloud Host:Port

3.6 Introduction to IBM MessageSight

IBM MessageSight is a 2U appliance-based messaging server that is optimized to address
the massive scale requirements of the machine-to-machine (M2M) and mobile use cases. It is
designed to handle many connected clients and devices with the ability to process a high
volume of messages securely with consistent latency.

This section provides an overview about the following key features of IBM MessageSight and
how the appliance performs on each:

� Architecture overview
� Scalability and performance
� Reliability
� Security
� Integration ability
� Developer-friendly
60 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

3.6.1 Architecture overview

IBM MessageSight is designed to reside at the edge of the enterprise and can extend the
existing messaging infrastructure as well as can be used as a stand-alone messaging server.
It is scalable to deliver a large amount of data to analytic engines and other types of big data
applications. Figure 3-27 depicts the architecture overview of IBM MessageSight, which
depicts the deployment context and how the appliance can help to instrument the
communication among various endpoints.

Figure 3-27 IBM MessageSight architecture overview

3.6.2 Scalability and performance

Built upon the MQ Telemetry Transport (MQTT) messaging protocol, which is faster and
requires less bandwidth and power than traditional HTTPs, IBM MessageSight is well-suited
with tags and sensors for mobile devices and other “things” that typically have low power and
low communication bandwidth capabilities. Also, the high-scale, asynchronous
publish/subscribe with event-oriented paradigm could provide responsive interaction, which
turns into a better user experience and better scalability.

One MessageSight appliance can serve up to a million devices connected concurrently and
handle the throughput of up to 13 million nonpersistent messages per second with predictable
latency in microseconds under load. That is an impressive number.

3.6.3 Reliability

If high availability (HA) and disaster recovery ability are required, two MessageSight
appliances could be easily configured to an HA-enabled mode to act as an HA pair of nodes,
one to be the primary node (the appliance that is processing messages) and the other to be
the standby node (the appliance to which the primary node is replicated). With HA enabled,
the messaging services can withstand an outage of an appliance and continue to provide
messaging services.
Chapter 3. Introduction to IBM messaging and integration products 61

At the message delivery level, because MessageSight fully supports MQTT protocol, it
consequently supports three qualities of service options for delivering messages between
clients and servers. This allows the delivery assurance of a particular message to be flexibly
achieved as needed.

3.6.4 Security

There are three main aspects to security in MessageSight: Transport level security,
authentication, and authorization.

MessageSight controls transport level security and authentication settings using a security
profile associated with an endpoint to define the security operations applied to a message
flow. Besides protecting the message content being transferred, configuring the appropriate
transport level also helps to avoid sending authentication credentials that are not encrypted.

The authentication supports both local user stores and external Lightweight Directory Access
Protocol (LDAP) servers, which give users more flexibility in building up a security plan.

IBM MessageSight implements a policy-based authorization mechanism to allow clients to
connect and use messaging actions (connection and messaging policies). A modern
policy-based security approach is composed of a cohesive set of different policies, which
helps MessageSight to efficiently achieve security compliance.

Supporting Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols that
only run signed, encrypted firmware images provided by IBM, encrypted flash storage media
makes MessageSight secure enough to be used for DMZ environments and placed at the
edge of an enterprise to interface with the external world.

3.6.5 Integration ability

As a full-featured messaging appliance, the ability to integrate with other systems is a key
feature of IBM MessageSight.

By supporting the well-known messaging protocols MQTT (MQTT over Transmission Control
Protocol/Internet Protocol (TCP/IP), MQTT over WebSockets) and Java Message Service
(JMS), the appliance is well-suited with both publish/subscribe (topic-based) and
point-to-point (queue-based) messaging models and can be widely integrated with other
systems like Java-based systems, rich HTML5-based applications, and so on.

MessageSight can extend and connect to WebSphere MQ infrastructures and supports
connectivity to IBM Integration Bus by using MQ connectivity. Options appropriate for this are
to use multiple queue managers to handle the messages or preserve the message order by
using a single queue manager.

3.6.6 Developer-friendly

Built on the open MQTT, MessageSight supports MQTT client applications and libraries for
various platforms:

� MQTT over TCP/IP: MQTT C client; MQTT client for Java, Android, and iOS.

� MQTT over WebSockets: MQTT client for JavaScript.

� JMS: IBM MessageSight JMS client.

� PhoneGap MQTT plug-ins with JavaScript application programming interface (API) for use
with IBM Worklight®, Apache Cordova, and Adobe PhoneGap.
62 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Part 2 Introduction to hybrid
cloud patterns for event
integration

In this part, we describe three of the common hybrid cloud patterns for event integration.

The following chapter is included in Part 2:

Chapter 4, “Introduction to hybrid cloud patterns for event integration” on page 65

Part 2
© Copyright IBM Corp. 2016. All rights reserved. 63

64 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Chapter 4. Introduction to hybrid cloud
patterns for event integration

In this chapter, we introduce the patterns that can be used to integrate the events on the cloud
with events occurring in the enterprise data center.

This chapter covers the following patterns:

� Patterns to provide secure connectivity between cloud and on-premises applications using
Secure Gateway

� Pattern to show how a Representational State Transfer (REST) application programming
interface (API) from an in-house application can be managed via API Management

� Pattern for API composition for hybrid cloud integration

� Pattern for integrating an Internet of Things (IoT) device to an on-premises asset
management system

� Pattern for data analytics integration with real-time events

This chapter includes the following sections:

� 4.1, “Events in a hybrid cloud environment” on page 66

� 4.2, “Pattern to provide secure connectivity from cloud to on-premises application using
Secure Gateway” on page 66

� 4.3, “Pattern to show how IBM Integration Bus flow exposed as REST API can be
managed by API management” on page 72

� 4.4, “Pattern for hybrid cloud integration using API facade” on page 74

� 4.5, “Pattern for data analytics integration with real-time events” on page 79

� 4.6, “Pattern for integrating an Internet of Things device to an on-premises asset
management system” on page 84

� 4.7, “Pattern for integrating cloud applications using IBM Message Hub for Bluemix” on
page 86

4

© Copyright IBM Corp. 2016. All rights reserved. 65

4.1 Events in a hybrid cloud environment

An event occurring on the cloud might need to be sent to the in-house applications in a
secure fashion. An event in the cloud can take many forms, for example:

� A born-on-the cloud application capturing an event and sending data to an in-house
application for processing

� Signals from a connected device sending notifications for an urgent action

� An external cloud application sending business data to an in-house application

– Synchronizing data from a master to subordinate application

– Transferring data, such as a purchase or sales order

Conversely, an event occurring in an in-house application might need to be exposed to the
cloud in a secure fashion. An event in the in-house application can take many forms, for
example:

� A born-on-the-cloud application publishing results from in-house processing

� Control events being sent to smart connected devices

� An external cloud application receiving business data from an in-house application

– Synchronizing data from a master to subordinate application

– Transferring data, such as a purchase or sales order

4.2 Pattern to provide secure connectivity from cloud to
on-premises application using Secure Gateway

The enterprises in the current environment are reaping the benefits of very rapid innovations
that are being driven by born-on-the-cloud applications. The born-on-the-cloud applications
provide the opportunity to quickly develop creative solutions that use modern and evolving
channels to conduct business. This is resulting in emerging organizations that challenge the
market share of established businesses and business models.

An established business usually has a large inventory of core applications to support the
business. Some of these applications might have been highly optimized over a period and
provide the business with an edge over its competitors. These applications are traditionally in
the corporate data center.

An established business needs to embrace the new channels offered by born-on-the-cloud
applications to retain and grow its competitive position. In addition, it also needs to leverage
the capabilities of its established applications. The enterprise has the option of implementing
a hybrid cloud solution that integrates a born-on-the-web application with its in-house
established applications.

A new organization with some creative ideas might want to add more rigor to their
born-on-the-cloud application by supplementing its capabilities using in-house applications.
For example, certain jurisdictions might have strict standards as to how and where client
information can be legally stored. An in-house application could be built using an
enterprise-grade database and middleware technologies. In this case, a born-on-the-cloud
application might evolve into a hybrid cloud solution.
66 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

A popular choice for integrating applications on disparate systems is the use of
message-oriented middleware to decouple the components. This approach can be used for
hybrid cloud solutions. The hybrid cloud solutions, however, create a new challenge: How to
securely connect in-house enterprise applications with a born-on-the-cloud application. The
security challenge can be addressed by using the IBM Secure Gateway.

4.2.1 Using IBM Secure Gateway to connect a cloud application with an
in-house application

The IBM Secure Gateway service on IBM Bluemix allows a secure connection between a
cloud application and an in-house application and servers to be established.

Secure Gateway from IBM Cloud to a corporate data center
A pattern for connection is shown in Figure 4-1.

Figure 4-1 Secure Gateway from IBM Cloud to a corporate data center

The IBM Bluemix Secure Gateway service facilitates the creation of a secure tunnel to the
corporate data center. Details about the IBM Secure Gateway can be found in 2.1, “Secure
Gateway” on page 10.

The administrator defines a Secure Gateway for the Secure Gateway Bluemix service. A
Secure Gateway has a unique “<Gateway Id>”:

� For a Secure Gateway, the administrator defines the following details for each host inside
the corporate data center:

– Host name or TCP/IP address inside the corporate data center, for example Host h1

– Port number of the server inside the corporate data center, for example Port p1
Chapter 4. Introduction to hybrid cloud patterns for event integration 67

� The Secure Gateway assigns the following details for each host:

– Cloud host name, for example Host h1’

– Cloud port number, for example Port p1’

� An application that was designed to use Host h1 and Port p1 inside the corporate data
center would be configured to use Host h1’ and Port p1’ when it is running in the cloud.

The Secure Gateway client runs inside the corporate data center. The Secure Gateway client
uses a local access control list (ACL). The ACL defines the host, port, or host + port
combinations inside the corporate data center that can be accessed by the Secure Gateway
client. The Secure Gateway client uses the unique “<Gateway Id>” to connect to the Secure
Gateway.

Example flow of a request for data using Secure Gateway
The example in Figure 4-1 on page 67 shows a Node.js application that requires access to
the following servers in the corporate data center. It is assumed that the Secure Gateway
client has already been started inside the corporate firewall and the ACL has been correctly
configured for the following hosts and ports:

� Host h2, Port p2

� Host hn, Port pn

The Node.js application is configured to use the following hosts and ports on the cloud:

� Host h2’, Port p2’ for Host h2, Port p2 inside the corporate data center

� Host hn’, Port pn’ for Host hn, Port pn inside the corporate data center

Following is the logical flow of control when accessing Host hn’ Port pn’ (refer to Figure 4-1 on
page 67):

1. Request from Node.js is sent to Host hn’ and Port pn’.

2. The request is forwarded to IBM Secure Gateway.

3. The request travels through the secure tunnel to the Secure Gateway client.

4. The Secure Gateway client validates the request against the ACL.

5. If the access has been granted, the request is forwarded to Host hn, Port pn.
68 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Secure Gateway from IBM and a third-party cloud to corporate data
center

A pattern for connection is shown in Figure 4-2.

Figure 4-2 Secure Gateway from IBM and a third-party cloud to corporate data center

The third-party cloud application uses configuration that is similar to one used by an
application running in the IBM Cloud. The connection between IBM Cloud to a corporate data
center works the same as the previous example. The only addition is that the third-party cloud
application is also able to access the servers inside the corporate data center. The third-party
cloud applications need to be configured the same way as the Bluemix application. In
Figure 4-2, the cloud application uses the following hosts and ports:

� Host h2’, Port p2’ for Host h2, Port p2 inside the corporate data center.

� Host h1’, Port p1’ for Host h1, Port p1 inside the corporate data center.
Chapter 4. Introduction to hybrid cloud patterns for event integration 69

Secure Gateway from IBM and third-party cloud to multiple corporate
data centers

A pattern for connection is shown in Figure 4-3.

Figure 4-3 Secure Gateway from IBM and a third-party cloud to multiple corporate data centers

The Secure Gateway service can support multiple Secure Gateways. Each Secure Gateway
can be configured to support one or more destinations. This allows for flexible deployment
topologies. The cloud applications that run in an IBM or third-party cloud can transparently
get secure access to the servers running inside multiple data centers.

Following are the differences from the previous pattern:

� There will be two “<Gateway Id>”: One for each Secure Gateway:

– Secure Gateway client 1 will use the “<Gateway Id>” for Secure Gateway 1
– Secure Gateway client 2 will use the “<Gateway Id>” for Secure Gateway 2

� Secure Gateway 1:

– Contains the definition for host h2 port p2 and exposes host h2’ port p2’
– Contains the definition for host hn port pn and exposes host hn’ port pn’

� ACL 1 will contain details about allowing access to the following hosts and ports:

– host h2 port p2
– host hn port pn

� Secure tunnel 1 will provide secure connectivity from Secure Gateway 1 to Secure
Gateway client 1.
70 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

� Secure Gateway 2:

Contains the definition for host h1 port p1 and expose host h1’ port p1’

� ACL 2 will contain details about allowing access to the following host and port:

host h1 port p1

� Secure tunnel 2 will provide secure connectivity from Secure Gateway 2 to Secure
Gateway client 2.

Secure Gateway from IBM and a third-party cloud to multiple corporate data
centers example

An example is shown in Figure 4-4.

Figure 4-4 Secure Gateway from IBM and third-party cloud to multiple corporate data centers example

In the example shown in Figure 4-4, a Node.js application connects to a DB2 database and
allows users to submit their application for allocation of land in a highly sought-after location.
Each application is sent as a message to the IBM MQ 8.0.0.4 in data center 1.

Each message received by IBM MQ 8.0.0.4 is processed by the IBM Integration Bus in data
center 1. The results of the allocation are published by the IBM Integration Bus on to IBM MQ.

A cloud application running on a third-party cloud is listening for messages on IBM MQ in
data center 1. When results are published, it records the information in an Oracle database in
data center 2.
Chapter 4. Introduction to hybrid cloud patterns for event integration 71

4.2.2 Conclusion

In the current environment, innovation is being fueled by born-on-the-cloud applications. The
business needs to leverage their applications in the corporate data center to drive the full
benefits from the innovation. The Secure Gateway facilitates this connectivity. In this section,
we described a number of patterns for securely connecting applications in one or more
corporate data centers to the applications in IBM and third-party cloud. This capability
provides an enterprise with an opportunity to flexibly manage and grow their business
solutions as their business needs evolve.

4.3 Pattern to show how IBM Integration Bus flow exposed as
REST API can be managed by API management

The IBM Integration Bus is frequently used as the enterprise service bus. More details about
the IBM Integration Bus can be found in 3.5, “Introduction to IBM Integration Bus” on page 47.
It generally reads messages that have been delivered to IBM MQ and processes the
message using a flow. At the completion of a flow, the response is sent to IBM MQ.

IBM Integration Bus can also expose a flow as a REST service. In this case, a REST request
is sent by a client to the Integration Bus. It processes the request using a flow. The response
is sent as results from a REST call to the client.

The REST service may be consumed by applications inside the corporate data center. The
REST services can be exposed to a cloud application running on IBM cloud or third-party
cloud using the IBM Secure Gateway and API Management Bluemix services. For information
about this service, see the Redbooks publication Hybrid Cloud Data and API Integration:
Integrate Your Enterprise and Cloud with Bluemix Integration Services, SG24-8277.

4.3.1 Implementing the pattern

The previous section discussed the connectivity between cloud and a corporate data center
using the IBM Secure Gateway. This section builds on that information and focuses on the
use of API management to expose the service. A pattern for connection is shown in
Figure 4-5 on page 73.
72 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 4-5 Exposing REST service on IBM Integration Bus to cloud applications

The IBM Integration Bus can expose a number of REST API services. Some of these may be
for consumption by applications running in the corporate data center. A subset might be made
available as REST services that are available to applications running on the cloud. The API
management service on IBM Bluemix facilitates the management of REST service end
points.

In the diagram shown in Figure 4-5:

� The IBM Integration Bus:

– Exposes REST API on host h1 and port p1 and url u1 inside the corporate data center.

– Applications inside the enterprise might invoke the REST API using these details.

� The Secure Gateway:

– Maps host h1 as h1’ and port p1 as p1’.

– The details are as shown in the previous section.

� The API Management Bluemix service:

– Connects to IBM Integration Bus using the Secure Gateway.

– Maps the URL u1 on IBM Integration Bus to URL u1’ on the cloud.

� The actual URL u1 for the service is not exposed to the cloud application.

� An application running inside the corporate data center would invoke the same REST
service using URL u1.

� If the same application was running on IBM or a third-party cloud, it would use the URL
u1’.
Chapter 4. Introduction to hybrid cloud patterns for event integration 73

4.3.2 Conclusion

The IBM Integration Bus is a popular enterprise service bus. It facilitates development of flows
to process messages. A flow can be exposed as a REST API. A REST API can be used
internally inside the corporate data center. If a cloud application needs the REST API, it can
be securely exposed to a cloud application running in the IBM or third-party cloud.

4.4 Pattern for hybrid cloud integration using API facade

A common challenge that organizations are facing is exposing existing backend systems.
These systems are usually critical for organizations as they are running key aspects of their
business and are fairly stable given that they have been hardened over time. However, these
monolithic systems can be complex with many dependencies, which make them difficult to
change and adapt quickly.

In our fast-moving world, to deliver new services and create new business opportunities,
organizations need to be able to expose these systems (or a subset of functionalities) easily
and quickly. There is not only one approach to do so but multiple. Depending on the
requirements and objectives, organizations might choose to go through a specific path or
implement multiple integration strategies.

In this section, we look at a specific approach that consists of adopting an API facade pattern
to expose an existing operational system in the context of hybrid cloud.

4.4.1 Characteristics of the pattern

The primary goal of the API facade pattern is to securely expose applications to internal or
external consumers through clean and simplified interfaces. It acts as a virtual interface
between your backend systems and consumer applications. It can play a role of mediation to
access your backend as well as altering or transforming inbound and outbound messages.

As an example, consumers might look for secured RESTful interfaces delivering content in
JSON where this maps in the background to an SQL operational database within the
enterprise.
74 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 4-6 API facade pattern for hybrid cloud

From an architectural standpoint, the API facade pattern is made of interfaces that clearly
define what happens when you interact with them. These interfaces can have specific
characteristics, such as security, operations, and quality of service. Requests coming through
these interfaces go through a mediation layer for routing, transformation, and protocol
switching in order to integrate with backend systems.
Chapter 4. Introduction to hybrid cloud patterns for event integration 75

From a functional perspective, this pattern can be decomposed into two major logical layers
(see Figure 4-7):

� Mediation

This is where you define and implement your APIs. It includes connecting to your backend
systems leveraging adapters or other middleware. You also specify the business logic to
process messages between consumers and providers. You are able to compose your
APIs across multiple backends and expose simple and well-defined interfaces to
consumer applications.

� Gateway

This is where you enforce API security and control. It provides secure transport of data,
request authentication and authorization, service level agreements enforcement, activity
and performance management, load balancing, and caching.

Figure 4-7 API facade logical layers

By using this pattern, communication is mediated through the API facade, which
encapsulates the backend applications’ structure. The consumer application code is
simplified as all the heavy lifting is done at the middleware level. The client just has to
consume the API interface that has been exposed. It also reduces the number of interactions
between the consumer’s application and backend systems as the service composition is done
in the mediation layer.

From an implementation perspective, there are many ways to implement this pattern.
Typically, the choice of implementation and technology to use depends on multiple factors,
such as:

� Backend systems to expose

Depending on the complexity and type of applications that you are trying to integrate with,
you have to choose a middleware solution that is better suited for the backend integration.
For example, you might have a database as a backend and consequently use a
middleware that provides a database adapter that is ready for immediate use to quickly
connect and expose data.

Note: To complete the overall picture, you can also introduce a third layer for API
management. It can be used for API discovery, subscription management, lifecycle
management and governance, monitoring, and analytics.
76 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

� Existing technology and skills

You might have an existing enterprise service bus (for example, IBM Integration Bus)
already in place to integrate legacy systems. Consequently, you might want to reuse it as
your primary middleware layer to expose the backend. Existing skills are also important to
choose the right technology because you want to leverage your pool of talents to create
your API facade.

� Deployment options

You might want to keep the integration layer close to your legacy systems or decide to
leverage a cloud-based model for more flexibility and easier scalability.

� Business requirements

You do not create APIs just for the sake of it but because it is driven by business
requirements. These requirements might impact your choice of technology and approach.

In addition to that, you also have to consider usability, maintainability, flexibility, and much
more. So in summary, there is no silver bullet to implement this pattern because it depends on
a combination of factors.

In the next section, we look at one way to implement an API facade using the StrongLoop
platform.

4.4.2 Pattern implementation with StrongLoop

In the case where developers need APIs to integrate new and legacy data to quickly deliver
engaging app experiences as well as leveraging the robust Node.js ecosystem to speed up
and simplify app creation, StrongLoop appears to be an ideal candidate.

StrongLoop, an IBM company provides an end-to-end platform for the full API lifecycle that
allows you to visually develop APIs in Node and get them connected to new and legacy data.
It provides the required capabilities to implement the API facade effectively.

Figure 4-8 StrongLoop for API facade

The platform is built on top of the open source LoopBack framework for Node.js. LoopBack
represents the mediation layer in the API facade pattern where you can create and compose
scalable REST APIs.
Chapter 4. Introduction to hybrid cloud patterns for event integration 77

LoopBack generalizes backend services such as databases, REST APIs, SOAP web
services, and storage services as data sources. Data sources are backed by connectors that
communicate directly with the database or other backend systems. On top of that, you can
define models that represent backend data sources. When you define a model, it
automatically comes with a predefined REST API with a full set of create, read, update, and
delete operations.

Figure 4-9 LoopBack concepts

By leveraging these capabilities, you can quickly connect to an operational database and
generate a REST API to expose it. Additionally, you can add application logic in JavaScript to
handle and process messages, create new routes, apply some filtering, as well as validate
data.

To complete the API facade pattern, StrongLoop also provides an API Gateway that can be
used to externalize, secure, and manages APIs. The gateway can act as both provider and
delegator to authentication, authorization, and auditing (AAA) sources within the enterprise
as the first intercept to establish identity. It can also perform infrastructure-level API
consumption functions required by the client, such as pagination, throttling, caching, delivery
guarantee, firewall, and so on. You can also use it to instrument APIs to fulfill service level
agreements through the monitoring of APIs and also injects metadata to report on API usage,
health, and other metrics. Another capability of the gateway is to compose coarse-grain APIs
from fine-grained micro-APIs and can act as a reverse proxy to virtualize API endpoints.

StrongLoop provides the key capabilities to implement the API facade pattern. It can be
deployed on-premises if needed because it might better fit the overall integration strategy of
an organization. It can also run in the cloud for more flexibility and agility, such as on IBM
Bluemix. In that case, you have to consider to use the IBM Secure Gateway to access your
on-premises backend systems from Bluemix as described in 4.2, “Pattern to provide secure
connectivity from cloud to on-premises application using Secure Gateway” on page 66.

Note: For more information about StrongLoop and the LoopBack framework, see the
following URL:

https://docs.strongloop.com/display/public/LB/LoopBack

For more information about the StrongLoop API Gateway, see the following URL:

https://docs.strongloop.com/display/LGW/StrongLoop+API+Gateway

Additionally, you can follow the tutorial in Chapter 7, “Synchronizing data from Salesforce
to a remote enterprise system” on page 189 to build and expose an API using StrongLoop.
78 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://docs.strongloop.com/display/public/LB/LoopBack
https://docs.strongloop.com/display/public/LB/LoopBack
https://docs.strongloop.com/display/LGW/StrongLoop+API+Gateway
https://docs.strongloop.com/display/LGW/StrongLoop+API+Gateway

4.4.3 Conclusion

To drive innovation and provide engaging client experiences, organizations are looking to
leverage and expose existing systems and applications through APIs. In this section, we
provided information about the API facade pattern that can be used in that context. We also
looked at one specific way to implement this pattern using StrongLoop, which is one example
out of many.

4.5 Pattern for data analytics integration with real-time events

In this pattern, the integration between developing a model using data and integrating this
model with a real-time event is considered. To achieve this, two different services in Bluemix
will be used: The first service is IBM dashDB™, which is used for storing data in a database,
and then developing a model using the data through an R script. The second service is the
streaming analytics service, which is used to detect a real-time event, based on criteria set by
the user.

4.5.1 dashDB service

The dashDB service has two different aspects to consider: Importing data into a dashDB
database, and using this data to develop a model.

Configuring a dashDB service
The dashDB service is available through the Bluemix catalog under the data analytics
section. When the service is selected, a window is brought up with some basic configuration
setting regarding the name of the service and the credentials for the service user. An example
of this page is shown in Figure 4-10.

Figure 4-10 dashDB configuration window
Chapter 4. Introduction to hybrid cloud patterns for event integration 79

After the dashDB service is configured, it can be started through the Bluemix dashboard by
first selecting the dashDB service and then launching the service. When the service is
launched, the data stored locally needs to be uploaded to the Bluemix service.

Importing data into dashDB
On the launch page of the dashDB service, there are multiple tabs to select from. To import
data the Load tab should be used, and depending on the location of the data source, an
option should be selected. For example, data stored locally would require using the Load →
Desktop option. This displays some options for loading the data into the database. Note that
dashDB databases have requirements that the data being imported must meet, and this
might require preprocessing the data before importing it into the service.

Viewing imported data in dashDB
To view data imported into dashDB, the Table tab can be selected. This opens a window that
allows the user to access data by selecting the specific schema and table that they would like
to view. An example is shown in Figure 4-11.

Figure 4-11 Viewing a table in dashDB

Developing a model using imported dashDB data
To develop a model in dashDB, the Analytics tab can be used. dashDB supports R as its
analytics platform, and an R script can either be developed by using an editor or the RStudio
IDE environment. Within the R script environment, new data can be imported into the R
environment using the add data frame command at the top of the editor. Results can be
viewed, after submitting the code, in the console and plots tabs. An example of the R script
page is shown in Figure 4-12 on page 81.
80 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 4-12 R script in the dashDB service

To prepare a model, some processing of the imported data might be required, and this can be
achieved using R’s functionality. A model can then be built in R, and the functional description
of the model can be extracted for use in the streaming analytics service.

4.5.2 Streaming analytics service

To create a real-time event detection system, the streaming analytics service in Bluemix can
be used. The streaming analytics service allows the user to import a local streams application
to a cloud service. To achieve this, three different aspects need to be considered: Configuring
the Bluemix service, creating a local streams application, and loading the streams application
to the cloud.
Chapter 4. Introduction to hybrid cloud patterns for event integration 81

Configuring the streaming analytics service
The streaming analytics service can be found in the Bluemix Catalog under the data analytics
section. The page to configure the service is similar to the dashDB service. An example is
shown in Figure 4-13.

Figure 4-13 Configuring a streaming analytics service

Creating a local streams application
The streaming analytics service in Bluemix allows the user to import a local streams
application to a cloud service. To use this service, it is necessary to first create a local
streams application and submit the application to the cloud service. A streams application
bundle can be created by using the streams quick start edition that is publicly available at the
following site:

http://www.ibm.com/analytics/us/en/technology/stream-computing

Using this virtual machine or installing the software locally gives the user access to Streams
Studio, which can be used to create a local streams application. This local streams
application can be configured with the model developed in dashDB with trigger limits for
real-time events, based on the user’s criteria.

Importing the local streams application into Bluemix
After this streams application is created, it can be submitted to the Bluemix service and the
application then runs on the cloud. To submit the application, open the streaming analytics
service, and select Start. This starts the streams instance on which all applications are run.
After starting the service, select Launch, which opens the streams console shown in
Figure 4-14 on page 83. This figure shows a streams console where the service instance has
been stopped (indicated by the red square next to the instance name).
82 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

http://www.ibm.com/analytics/us/en/technology/stream-computing

Figure 4-14 The streams console in Bluemix

To load the local stream application into the cloud service, the Play button on top of the
streams console should be selected, and then a job should be submitted. This opens a
window where the user needs to indicate the location of the stream application (the file name
will end with .sab), and then click Submit, or click Next if the user wants to rename the job
and specify a working directory.

See Chapter 9, “Demonstration of analytics and real-time event detection” on page 253 for
the implementation of this pattern.

4.5.3 Conclusion

This pattern has indicated the process of creating a dashDB and streaming analytics service
and has briefly described some of the key aspects that need to be considered when importing
data, and developing a model using the dashDB service. The next aspect of the pattern
described using the streaming analytics service to submit a locally created streams
application bundle that is configured with the developed model and criteria for real-time event
detection. The streams application then needs to be submitted to the streaming analytics
service on Bluemix, and can be used to detect events in real-time and trigger further actions
when an event is detected.
Chapter 4. Introduction to hybrid cloud patterns for event integration 83

4.6 Pattern for integrating an Internet of Things device to an
on-premises asset management system

The adoption of sensors connected to the Internet or Internet of Things devices is growing at
a staggering rate. These devices produce a massive amount of data and provide intelligence
and insights by a combination of other relevant technologies. There are hundreds of use
cases for using these IoT devices. One important use case is to monitor systems that these
sensors are attached to. This way, performance and health of the systems can be monitored
in an automatic fashion. Sensor data can be sent to a server that supports lightweight MQ
Telemetry Transport (MQTT) protocol and then an appropriate alert can be sent to an asset
management system like IBM Maximo Asset Management. In this section, we present an
architectural pattern similar to the use case above. This use case is illustrated in Figure 4-15.

Figure 4-15 A pattern to connect an IoT device/sensor to an asset management system

In this scenario, the IBM Maximo Asset Management server is behind a corporate firewall. As
such, an application running from an external cloud cannot connect to it directly. Following are
some key considerations for integrating with an enterprise system of record (SOR) like IBM
Maximo Asset Management server:

� Connection between the cloud application and Maximo should be secure. This is shown
as the secure tunnel in the diagram.

� The data transferred through the tunnel should be encrypted by using TLS/mutual
authentication.

� The Secure Gateway client that establishes a tunnel along with the Bluemix Secure
Gateway service should provide high availability. That means you should be able to run a
Secure Gateway client for the same tunnel/gateway in multiple locations to avoid a single
point of failure.

Usually, a Secure Gateway client runs in a demilitarized zone or DMZ of the corporate
network as shown in Figure 4-15. Bluemix Secure Gateway service and Secure Gateway
client establishes the secure tunnel. Now a cloud application running from Bluemix can
access the required data or API provided by Maximo.

IoT device/
sensor

Secure
Gateway

NodeJS as
API Proxy

Corporate data center

Secure Tunnel

S
ec

ur
e

G
at

ew
ay

C

lie
nt

Windows

2012

IBM Maximo
Asset
Management

DMZ

Internet of
Things

Twilio
84 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Sensors or IoT devices use MQTT, a lightweight and publish/subscribe messaging protocol
running on TCP/IP. An MQTT broker is required to connect IoT devices with applications
connected to the broker. The IBM Internet of Things Foundation or IoTF acts as an MQTT
broker. It is a fully managed and cloud-hosted service that provides functionalities, such as:

� Set up, control, and manage a device from an online dashboard.
� Secure APIs for MQTT clients (devices and applications).
� View live and historical data of devices connected.

Figure 4-161 demonstrates how different IBM IoT Foundation and IoT devices talk to each
other. Note that a sensor needs connectivity to the Internet. In Figure 4-16, it is achieved
through a smartphone that is connected to the Internet, which is acting as an Internet
Gateway. The sensor is connected to the smartphone through Bluetooth.

Figure 4-16 Architectural pattern showing IBM IoT Foundation and IoT devices

MQTT broker or IoTF is responsible for distributing messages to any connected clients
(device or application).

Now refer to Figure 4-15 on page 84, which shows that an IoT device is talking to a
Node-RED starter application that is bound to an IoTF service. In this architecture, the IoTF
service is receiving messages from the IoT device using MQTT protocol. This message is
parsed by a Node-RED application to see if the sensor or IoT device detected any fault with
the equipment it is attached to.

1 Source: https://developer.ibm.com/bluemix/2015/05/15/turn-android-watch-iot-device-bluemix
Chapter 4. Introduction to hybrid cloud patterns for event integration 85

https://developer.ibm.com/bluemix/2015/05/15/turn-android-watch-iot-device-bluemix

If the equipment that the sensor is monitoring requires maintenance, the Node-RED
application invokes a RESTful API call to the asset management system through a NodeJS
application acting as a proxy. The NodeJS application uses the IP address and port provided
by Secure Gateway service, and certificates for TLS/mutual authentication.

This architectural pattern also demonstrates a composable cloud application model. A
third-party service, Twilio, is also used here. When the NodeJS application returns the API
response to the Node-RED application, an SMS with a work order number is sent to a support
personnel using this Twillio service.

An implementation of this architectural pattern is presented in Chapter 8, “Integrating events
from Internet of Things with Enterprise Asset Management systems” on page 217.

4.7 Pattern for integrating cloud applications using IBM
Message Hub for Bluemix

IBM Message Hub for Bluemix is a scalable, distributed, high throughput message bus to
unite your on-premises and off-premises cloud technologies. You can wire microservices
together by using open protocols, and you can connect stream data to analytics to realize
powerful insights. You can also feed event data to multiple applications to react in real time.

Message Hub is based on Apache Kafka, which is a fast, scalable, and durable real-time
messaging engine that is developed by the Apache Software Foundation. For more
information about Apache Kafka, see the following link:

http://kafka.apache.org/documentation.html

The Message Hub uses the Message Connect Bluemix service to connect to IBM MQ Light.
This allows applications built using the Apache Kafka API running on IBM or third-party cloud
to exchange messages with the IBM MQ Light server as shown in Figure 4-17.

Figure 4-17 Pattern for using Message Hub to connect cloud applications with IBM MQ Light
86 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

http://kafka.apache.org/documentation.html
http://kafka.apache.org/documentation.html

Part 3 Hybrid cloud scenarios
with IBM Bluemix

In this part, we cover several hybrid cloud scenarios with IBM Bluemix. Each scenario is
described with step-by-step instructions so that you can implement similar scenarios in your
environment as well.

The following chapters are included in Part 3:

� Chapter 5, “On-premises messaging middleware integration with IBM Bluemix” on
page 89

� Chapter 6, “Asynchronous processing through IBM MQ Light service” on page 109

� Chapter 7, “Synchronizing data from Salesforce to a remote enterprise system” on
page 189

� Chapter 8, “Integrating events from Internet of Things with Enterprise Asset Management
systems” on page 217

� Chapter 9, “Demonstration of analytics and real-time event detection” on page 253

Part 3
© Copyright IBM Corp. 2016. All rights reserved. 87

88 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Chapter 5. On-premises messaging
middleware integration with
IBM Bluemix

In this chapter, on-premises messaging middleware products are integrated with IBM Bluemix
to achieve asynchronous non time-dependent communications between on-premises and
cloud applications.

The two scenarios presented here demonstrate the concept of a message producer sending
asynchronous messages from on-premises messaging middleware to an application hosted
in the cloud. IBM MQ Light and ActiveMQ Apollo are used as the two on-premises messaging
middleware products. The following components are needed for this solution:

� On-premises environment

– IBM MQ Light, Message producer application built using Node.js
– ActiveMQ Apollo, Message producer application built using Node.js

� IBM Bluemix Secure Gateway service

� Message Consumer application hosted on Bluemix

– NodeJS application
– MQLight API
– Cloudant NoSQL Database

This chapter contains the following topics:

� 5.1, “Scenario architecture” on page 90

� 5.2, “Setting up an on-premises environment using IBM MQ Light” on page 91

� 5.3, “Setting up an on-premises environment using ActiveMQ Apollo” on page 93

� 5.4, “Using IBM Secure Gateway to connect your on-premises sender client to the cloud
application” on page 97

� 5.5, “Writing a simple Node.js IBM MQ Light Message receiver client” on page 101

� 5.6, “Testing end to end” on page 107

5

© Copyright IBM Corp. 2016. All rights reserved. 89

5.1 Scenario architecture

In this scenario, simulation of an event that would occur in an enterprise environment that we
would like to access from the cloud is achieved. An example is a retail company that offers
different access channels to customers to buy their products. They provide access on the
web, in company stores, and at other stores. The sales and promotions are controlled via the
marketing department residing in the company’s head office. The marketing manager initiates
a promotions program via the company’s corporate system that is hosted on a local data
center and this event then gets distributed across all the stores. Each individual store has its
IT systems hosted on IBM Cloud.

IBM Bluemix Secure Gateway service is used to consume the on-premises event data from a
cloud application. The Secure Gateway service provides you with a secure way to access
your on-premises or cloud data from your Bluemix application through a secure passage.

The scenario architecture is shown in Figure 5-1. The company’s corporate systems are
hosted on the corporate data center and communicate with each other via a messaging
middleware. The messaging middleware is also connected to the Secure Gateway client,
which exposes selected resources on the messaging middleware (via a secure tunnel) to the
outside world. The retail and online stores are hosted on IBM Cloud and these use IBM
Secure Gateway service to connect to the on-premises Secure Gateway client.

The integration of cloud applications via IBM Secure Gateway service with both proprietary
and open source messaging middleware products is presented. For this demonstration, we
use the following middleware products:

� IBM MQ Light
� ActiveMQ Apollo

Figure 5-1 Integration between on-premises and cloud applications using IBM Secure Gateway
90 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

5.2 Setting up an on-premises environment using IBM MQ Light

In this section, the setup that is required for using the IBM MQ Light package as our
on-premises message middleware is described.

Then, the writing of a simple Node.js event producer application that simulates a message
sending client on-premises is shown. This sample application sends messages via the AMQP
protocol.

Therefore, both the latest IBM MQ Light and Node.js packages must be downloaded and
installed.

5.2.1 IBM MQ Light download and installation

First, download the relevant developer server build for your environment from the following
URL. Builds for Linux, MacOS, and Microsoft Windows are available. Follow the relevant
installation instructions:

https://developer.ibm.com/messaging/ibm-mq-light-downloads

Start your IBM MQ Light server. You are shown the following dashboard if you followed the
instructions correctly. See Figure 5-2.

Figure 5-2 IBM MQ server dashboard

5.2.2 Node.js download and installation

Download and install the latest version of Node.js on your environment.

https://nodejs.org/en/download

To confirm successful installation, issue the node --version command in your console. The
version installed on your machine should be shown.
Chapter 5. On-premises messaging middleware integration with IBM Bluemix 91

https://nodejs.org/en/download
https://developer.ibm.com/messaging/ibm-mq-light-downloads/
https://nodejs.org/en/download

5.2.3 Writing a simple Node.js IBM MQ Light message sender client

For the purpose of this scenario, a simple Node.js application is used that sends messages to
our IBM MQ Light server. Both the IBM MQ server and the application are running on a
machine that is on-premises.

To do this, create a new project folder. In this project folder, create a new JavaScript file called
app.js by using a text editor of your choice:

1. Go to the filepath of the project folder and open your console or command line. The
following Node.js modules are required:

– mqlight
– moment
– hashmap

2. Node.js comes with a package manager pre-installation called npm (node package
manager). To install these dependencies, simply type and enter the following commands
while in the project directory:

– npm install mqlight
– npm install moment
– npm install hashmap

This installs the required dependencies in a folder called node_modules in the project
directory.

The mqlight node package API documentation can be found here:

https://www.npmjs.com/package/mqlight

3. Now open the app.js file and add the following code, which is shown in Example 5-1.

Example 5-1 Sample Node.js message sender client

//reqire mqlight package
var mqlight = require(‘mqlight’);

//configuration object (options) of MQ Light client being created
var config = {

service: ‘amqp://localhost’
};

//Create an mqlight client with options in config
var sendClient = mqlight.createClient(config);

//Define name of a topic to send message to
var topic = ‘public’;

//Send a message when client is started
sendClient.on(‘started’, function(){

//Message to send
var message = “Hello Red Book!”;

//Send a message parameters: topic and message
sendClient.send(topic, message, function(error, data){

//Basic error checking
if(!error)
{

console.log(‘Message: ‘, data);
92 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://www.npmjs.com/package/mqlight
https://www.npmjs.com/package/mqlight

sendClient.stop();
}
else
{

console.log(error);
}

});

});

4. Save the file and try to run it. To run it, type node app.js into your command window or
console (ensure that you are in the same directory as the app.js file).

The message data being sent should be logged in the console, and you should be able to
see the message sitting in a topic in the IBM MQ Light dashboard. You should also be able
to see a Sending client on the left side (Figure 5-3).

Figure 5-3 Message sitting in an IBM MQ Light topic

5.3 Setting up an on-premises environment using ActiveMQ
Apollo

The setup that is required for using ActiveMQ Apollo as our on-premises message
middleware is described in this section.

A simple Node.js event producer application that simulates a message sending client
on-premises is also required. This sample application sends messages using the MQ
Telemetry Transport (MQTT) protocol.
Chapter 5. On-premises messaging middleware integration with IBM Bluemix 93

5.3.1 ActiveMQ Apollo

ActiveMQ Apollo is a faster, more reliable, easier to maintain messaging broker built from the
foundations of the original Apache ActiveMQ. It is an open source product and is used in the
scenario to demonstrate that IBM Secure Gateway service integrates well with both IBM
proprietary products like MQ Light as well as open source products like Apollo.

5.3.2 Setup and Installation

Download the ActiveMQ Apollo version that is compatible with your environment from the
following URL:

https://activemq.apache.org/apollo/download.html

Builds for Linux, MacOS, and Microsoft Windows are available. Follow the relevant installation
instructions from the following site:

https://activemq.apache.org/apollo/documentation/getting-started.html

When you start a broker instance, log in to the admin console to verify your installation. The
admin console should look like Figure 5-4.

Figure 5-4 ActiveMQ Apollo Web Admin Console

By default, the new Apollo broker is bound to the loopback address. Now update the broker
configuration to bound your public IP address, which is used by the IBM Secure Gateway
client.
94 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://activemq.apache.org/apollo/download.html
https://activemq.apache.org/apollo/documentation/getting-started.html

From the Web Admin Console, click Configuration and add your public IP address in a new
<host_name> element as shown in Figure 5-5.

Figure 5-5 ActiveMQ Apollo broker configuration

For this demonstration, authentication on the ActiveMQ Apollo broker is disabled. This is done
by setting the “enabled” attribute to “false” for authentication as shown in Figure 5-5.

5.3.3 Writing a simple Node.js ActiveMQ Apollo message sender client

For this scenario, a simple Node.js application that will act as the event producer is required.
You need to first download and setup Node.js as discussed in section 5.2.2, “Node.js
download and installation” on page 91.

Our consumer application sends messages to ActiveMQ Apollo by using the MQTT protocol.
More details about MQTT can be found at the following link:

http://mqtt.org

Create a new project folder. In this project folder, create a new JavaScript file called app.js by
using a text editor of your choice:

1. Go to the filepath of the project folder and open your console or command line. The
following Node.js module is required:

mqtt

2. Node.js comes with a package manager preinstallation called npm (node package
manager). To install these dependencies, simply type and enter the following commands
while in the project directory:

npm install mqtt

This installs the required dependencies in a folder called node_modules in the project
directory.

The mqtt node package API documentation can be found here:

https://www.npmjs.com/package/mqtt
Chapter 5. On-premises messaging middleware integration with IBM Bluemix 95

https://www.npmjs.com/package/mqtt
https://www.npmjs.com/package/mqlight
http://mqtt.org
https://www.npmjs.com/package/mqtt

3. Now open the app.js file and add the following code, as shown in Example 5-2.

Example 5-2 Sample Node.js event producer using MQTT

//require mqtt package
var mqtt = require('mqtt');

//connection url for client
var url = 'mqtt://[YOUR_PUBLIC_IP_ADDRESS]:61613';

//Create mqlight client
var sendClient = mqtt.connect(url);

//Define topic
var topic = 'public';

var msg = "Hello Red Book!";

//Publish Message
sendClient.on('connect', function(){

sendClient.subscribe(topic);
 sendClient.publish(topic, msg);
});

4. Save the file and try to run it. To run it, type node app.js into your command window or
console (ensure that you are in the same directory as the app.js file).

The message data being sent should be logged in the console, and you should be able to
see the message sitting in the topic name “public” in the ActiveMQ Apollo Web Admin
Console, as shown in Figure 5-6.

Figure 5-6 Apollo admin console message producers
96 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

5.4 Using IBM Secure Gateway to connect your on-premises
sender client to the cloud application

In this section, the steps required to configure Secure Gateway are described:

� IBM Secure Gateway service on Bluemix
� IBM Secure Gateway client at an on-premises environment

These steps are identical for both IBM MQ Light and ActiveMQ Apollo.

5.4.1 Configure IBM Secure Gateway service

To configure an IBM Secure Gateway service, follow these steps:

1. Log in to IBM Bluemix:

https://console.ng.bluemix.net

2. Now create an IBM Secure Gateway service by clicking the Dashboard and then Use
Services or APIS. See Figure 5-7.

Figure 5-7 Using service and APIs

3. Click Secure Gateway, which can be found with the other integration services that are
available. See Figure 5-8.

Figure 5-8 Adding a Secure Gateway service
Chapter 5. On-premises messaging middleware integration with IBM Bluemix 97

https://console.ng.bluemix.net/

4. Leave the service settings as default and click CREATE, as shown in Figure 5-9. This
creates an instance of Secure Gateway for you to use.

Figure 5-9 Creating an instance of Secure Gateway

5. Back at the dashboard, click the Secure Gateway icon to be taken to the Secure Gateway
service dashboard.

We need to connect the gateway to our on-premises application, which is sending
messages over ampq so that the application we create and push to the cloud can receive
them.

6. Click the service icon that you created in the dashboard. If this is the first time creating a
gateway with the service, click ADD GATEWAY, as shown in Figure 5-10.

Figure 5-10 Adding a gateway
98 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

7. Name the gateway (leave default security settings), and click CONNECT IT. See
Figure 5-11.

Figure 5-11 Naming your gateway

8. When you click CONNECT IT, you are presented with three options regarding how you
want to connect the gateway: The IBM Installer native client, Docker, or IBM DataPower.
For this example, use Docker. Select the Docker radio button and copy the command that
you are supplied with. This command should be run from the command line of your
on-premises machine whenever you want to connect the Secure Gateway tunnel. See
Figure 5-12.

Figure 5-12 Docker command

5.4.2 Configure IBM Secure Gateway client

To configure Secure Gateway client, run the command copied in step 8.
Chapter 5. On-premises messaging middleware integration with IBM Bluemix 99

If you have not already installed Docker, the first time that you run the command, Docker
will be installed. Docker pulls an image onto your machine connecting the machine and
IBM Bluemix through a secure tunnel using Secure Gateway.

Your machine should display that the Secure Gateway tunnel is connected in the
command-line interface if you have not encountered any errors, as shown in Figure 5-13.

Figure 5-13 Secure tunnel connected

The Bluemix dashboard should also indicate that the secure tunnel is now connected, as
shown by the box on the right in Figure 5-14. Red rings indicate that the tunnel is not
currently connected, and green rings indicate that the tunnel is currently connected
(Figure 5-14).

Figure 5-14 Secure tunnel connected (Bluemix)

5.4.3 Connect Secure Gateway with the on-premises environment

The secure tunnel should now be connected, but we have not defined any destinations yet.
Follow these steps to do define the destinations:

1. Click the gateway that you just created, and enter the relevant environment details of the
server where your on-premises assets are hosted. Required are a destination name, the
host name or IP address, and a port number.

For this example, we are using the ampq port 5672 for IBM MQ Light and mqtt port 61613
for ActiveMQ Apollo.

2. When the details are entered, click the ADD DESTINATION icon.

You have now connected your on-premises message service broker to IBM Bluemix.
100 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

3. A cloud host url : port to use in your receiver application is required. This can be found by
clicking the information icon of the gateway. Write the Cloud Host : Port down because
we require it when connecting our receiver application to the on-premises assets. See
Figure 5-15.

Figure 5-15 Cloud host url : port information

5.5 Writing a simple Node.js IBM MQ Light Message receiver
client

In this section, the steps for writing a simple Node.js IBM MQ Light Message receiver client
are covered. This application receives event messages from the on-premises event publisher.

5.5.1 Creating the application

Now that the secure tunnel is connecting the on-premises applications with the cloud, write a
simple Node.js application receiver client, which receives any messages sent from the sender
client.

The messages received are stored in a cloud database. This requires the creation of a
database service in Bluemix. In this chapter, we opted for a Cloudant NoSQL database
service.
Chapter 5. On-premises messaging middleware integration with IBM Bluemix 101

Creating a Cloudant service in Bluemix is similar to how we created the Secure Gateway
service in 5.2.3, “Writing a simple Node.js IBM MQ Light message sender client” on page 92.
When you create the Cloudant service, begin to develop the receiver application by following
these steps:

1. To begin, create a new project folder. In this folder, the app.js JavaScript file that was
required in the sender client is also required. Two additional files are also required:

– manifest.yml: Tells Bluemix how to deploy the application.

– package.json: For defining any Node.js package dependencies.

And create one additional folder inside the project folder:

– public

2. First, edit the package.json file and add the below code. Here, any dependencies your
cloud applications require are defined in the dependencies JSON object (highlighted in
red below). To use the popular express framework also requires the express module. To
do this, add the line “express”: “4.12.x”. This tells Bluemix when deploying the
application to deploy the Node.js express module as well, with a version number of 4.12.x.

3. The following modules: cfenv module, mqlight module, body-parse module, http module,
and the nano module are also required.

Example 5-3 shows the package.json file.

Example 5-3 The package.json file

{
"name": "CloudIntegrationApp",
"version": "0.0.1",
"description": "A simple nodejs receiver client for Bluemix",
"scripts": {

"start": "node app.js"
},
"dependencies": {

"express": "4.12.x",
"cfenv": "1.0.x",
"mqlight": "*",
"body-parser": "*",
"http": "*",
"nano": "*"

},
"repository": {},
"engines": {

"node": "0.12.x"
}

}

Note: More information about Node.js packages that are available can be found at:

https://www.npmjs.com
102 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://www.npmjs.com
https://www.npmjs.com

4. Also needed is the addition of the following lines to your manifest.yml file, as shown in
Example 5-4.

Example 5-4 The manifest.yml file

applications:
- path: .
 memory: 256M
 instances: 1
 domain: mybluemix.net
 name: RedBookExampleCloudIntegration
 host: redbookexamplecloudintegration
 disk_quota: 1024M
 services:
 - Cloudant NoSQL DB-gl
 env:
 mqService: amqp://cap-sg-prd-2.integration.ibmcloud.com:15443

The important parts to note are the services: and the env: blocks. Under the “services:”
line, we are binding the Cloudant service that we created earlier to our application so that
our application can use it.

The second important part is the line under env:. Here, we are defining an environment
variable called mqService and setting its value to the cloud host url : port that we noted
earlier in section 5.4, “Using IBM Secure Gateway to connect your on-premises sender
client to the cloud application” on page 97. See Figure 5-15 on page 101.

Any environment variable that we define in this block can be used by the application
defined in the same manifest.yml file.

To define a custom environment variable, you need to define the variable name followed by
“:” then the value of the variable.

5. It is now time for the code. Open your app.js file and paste the below code (Example 5-5).

Example 5-5 Sample Node.js message receiver client

//mqService configuration object
var mqService = {
};

//database configuration object
var dbCredentials = {

dbName : 'messages'
};
var cloudantDB;
var db;

Attention: The Cloudant service being bound requires the name of the service you are
wanting to bind as it appears in your Bluemix dashboard. In this instance, the default
name of the service created was Cloudant NoSQL Db-gl. When creating the service,
you can use a custom name if you want.

Attention: This is how to define environment variables in your cloud environment. For
this example, the name of the environment variable is mqService.
Chapter 5. On-premises messaging middleware integration with IBM Bluemix 103

//Module Dependencies
var express = require('express');
var cfenv = require('cfenv');
var app = express();
//Serve files out of the public folder
app.use(express.static(__dirname + '/public'));
// Get the app environment from Cloud Foundry
var appEnv = cfenv.getAppEnv();
var http = require('http');
var bodyParser = require('body-parser');
var mqlight = require('mqlight');

//Set a variable to Environment variable (Cloud Service URL : PORT)
if(process.env.mqService)
{

mqService.url = process.env.mqService;
}

//Process Cloudant Database service credentials
if(process.env.VCAP_SERVICES)
{

var vcapServices = JSON.parse(process.env.VCAP_SERVICES);
if(vcapServices.cloudantNoSQLDB)
{

dbCredentials.host = vcapServices.cloudantNoSQLDB[0].credentials.host;
dbCredentials.port = vcapServices.cloudantNoSQLDB[0].credentials.port;
dbCredentials.user =

vcapServices.cloudantNoSQLDB[0].credentials.username;
dbCredentials.password =

vcapServices.cloudantNoSQLDB[0].credentials.password;
dbCredentials.url = vcapServices.cloudantNoSQLDB[0].credentials.url;

}
}

//Require nano, and set up a db object wrapper
cloudantDB = require('nano')(dbCredentials.url);

//Try create Database if it doesn’t exist.
nano.db.create('dbCredentials.dbName', function(err, body) {

if (!err) {
 console.log('Database alice created!');
 }

else {
 console.log('Database already exists!');
 }
});
db = cloudantDB.use(dbCredentials.dbName);

//Create a reciever mqlight client Note: the mqService.url we are passing is as a
parameter
var recvClient = mqlight.createClient({service: mqService.url}, function() {
104 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

 //Set client and subscribe to a topic. In this case 'public'
 //recvClient.on callback is a function that puts messages in a variable
 recvClient.on('message', processMessage);
 recvClient.subscribe('public', function(error) {
 if (error) console.error("Failed to subscribe: " + error);
 else {
 console.log("Subscribed");
 }
 });
});

//Function to parse messages sent.
var heldMsg;
var heldMsgs = [];
function processMessage(data, delivery) {
 try {
 data = JSON.parse(data);
 console.log("Received response: " + JSON.stringify(data));

console.log(data);
 } catch (e) {
 // Expected if we're receiving a Javascript object
 }

heldMsg = {"data" : data, "delivery" : delivery};
//Insert messages into our Cloudant DB

 db.insert(heldMsg, function(err, body) {
if (!err)

 console.log(body)
})

 heldMsgs.push({"message" : data});
}

app.use(bodyParser.json());

//Define an express route to send messages to browser in json format
app.get('/messages', function(req,res) {
 var msg = heldMsgs;
 if (msg) {
 res.json(msg);

heldMsgs = [];
 }
 else {
 res.writeHead(204);
 res.end();
 }
});

// start server on the specified port and binding host
app.listen(appEnv.port, appEnv.bind, function() {
// print a message when the server starts listening
 console.log("server starting on " + appEnv.url);
});
Chapter 5. On-premises messaging middleware integration with IBM Bluemix 105

5.5.2 Pushing the application to the Bluemix cloud environment

It is time to push the application to Bluemix. This can be done in multiple ways, but we use the
Cloud Foundry command-line interface (CLI) by doing the following steps:

1. If you have not done so yet, install the Cloud Foundry command-line interface. Instructions
can be found here:

https://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html

2. After the Cloud Foundry CLI has been installed, go to your project folder and open a
command-line interface.

3. Log in to Cloud Foundry by typing cf login. Then, enter the API endpoint (if you have not
logged in previously) as https://api.ng.bluemix.net. You are then prompted for your
Bluemix username (email) and password. See Figure 5-16.

Figure 5-16 Example Cloud Foundry CLI login

4. When logged in, type the cf push RedBookExampleCloudIntegration command to push
your application to the cloud.

Cloud Foundry and Bluemix take care of pushing and staging your application based on
the settings and configurations you entered in the package.json and manifest.yml files.
When it has completed uploading and staging your application, we have completed the
scenario and now should have a working event driven messaging system that allows us to
send a message from our on-premises environment and receive the message in our
Bluemix cloud application.

Important: RedBookExampleCloudIntegration is the host name of the application
being pushed and as such in the context of the Bluemix domain, must be unique. You
are required to use your own application name here. The application host and name
are defined in the manifest.yml file and should be unique.
106 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://docs.cloudfoundry.org/devguide/installcf/install-go-cli.htm
https://api.ng.bluemix.net
https://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html

5.6 Testing end to end

If the application is showing as down, or is crashing, most likely the issue is that the secure
tunnel is not connected on the other end. Do this before restaging the application in Bluemix:

1. First, run the app.js file on-premises to send a message to the IBM MQ Light or ActiveMQ
Apollo topic.

2. Ensure that the message has been picked up by:

a. The IBM MQ Light topic in the IBM MQ Light dashboard. This can be accessed at
localhost:9180/#page=home if using default configurations.

b. The ActiveMQ Apollo topic in the Apollo dashboard. This can be accessed at
http://127.0.0.1:61680/ if using default configurations.

3. Go to your Bluemix application URL and route append the api route/messages to view if
any messages have been picked up by your cloud application. They should be displayed in
an array of JSON objects. See Figure 5-17.

Figure 5-17 Sample display of messages received by cloud Node.js receiver client

If everything has been done correctly, the messages (in array of JSON objects) should be
returned to your browsers. The messages are stored in the Cloudant NoSQL Database.

4. The API route that we defined in our express application is /messages. Therefore, go to
http://redbookexamplecloudintegration.mybluemix.net/messages to view any
messages received.

5. We can also now check to see if the message was recorded in our Cloudant Database
Service. Back at the Bluemix dashboard, click your Cloudant Service. Click the Launch
icon to be taken to your Cloudant Service Dashboard. Go to your messages database,
and confirm that you inserted a document with the data field being the message you sent.

Attention: If you are using the Docker client on your on-premises machine, you might be
required to modify the access control list to allow the Bluemix Cloud Application to connect
through the secure tunnel. To do this, run the Docker client, and enter the Docker CLI after
running the previous Docker command. For this example, type acl allow :, which allows
connections to be established from any host:port combination. This is not recommended in
a production environment due to security concerns. And the host IP and port should be
restricted to either known combinations or a range of combinations that will be accessing
the on-premises environment.

Attention: Remember that the Bluemix route defined in this example uses the
host/application name that we defined in the manifest.yml file. The route you access
will be unique and contain the application name of your choice in the place of
redbookexamplecloudintegration.
Chapter 5. On-premises messaging middleware integration with IBM Bluemix 107

http://redbookexamplecloudintegration.mybluemix.net/messages
http://127.0.0.1:61680/

108 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Chapter 6. Asynchronous processing
through IBM MQ Light service

This chapter describes the business scenario for a market research company that collects
data about people’s preferences using a voting application. The original solution becomes a
victim of its own success and starts experiencing performance problems. This chapter walks
through an approach for improving the scalability and performance of the application using
IBM MQ Light. The improved solution is then seamlessly integrated with the company’s
existing IBM MQ messaging infrastructure. This approach allows the capabilities of the IBM
Integration Bus to be leveraged to deliver additional functionality to users. The users can see
the current leader board as well as the list of votes by voter choice.

This chapter has the following sections:

� 6.1, “Solution background” on page 110

� 6.2, “Transformation of the sample application” on page 110

� 6.3, “Subscenario 1: Web application saving data on database” on page 111

� 6.4, “Subscenario 2: Web application saving data on IBM MQ Light” on page 112

� 6.5, “Subscenario 3: Web application saving data on IBM MQ server” on page 114

� 6.6, “Subscenario 4: Web application data consumed by corporate applications” on page 116

� 6.7, “Overview of the sample application” on page 118

� 6.8, “Implementing subscenario 1” on page 120

� 6.9, “Implementing subscenario 2” on page 144

� 6.10, “Implementing subscenario 3” on page 154

� 6.11, “Implementing subscenario 4” on page 163

� 6.12, “Summary” on page 186

6

Recording of scenarios: You can find the recording of the scenarios described in this
chapter at the following link:

https://youtu.be/FrQz1kpoAAk
© Copyright IBM Corp. 2016. All rights reserved. 109

https://youtu.be/FrQz1kpoAAk

6.1 Solution background

This chapter describes the business scenario for a market research company that wants to
grow its market share.

The company wants the best ideas to promote their business. They use the IBM Bluemix
innovation platform and conduct a hackathon to come up with the best idea.

A voting app wins the judges’ approval. The voting app has the following features:

� The app can be run on a browser in a desktop or mobile device.

� Votes can be cast by a click of a button. The participant provides their name, email
address, and phone number, along with their choice from a prepopulated list.

� Each vote is recorded to a relational database.

� To encourage users to vote, all votes go into the draw for periodic prizes.

The company developed a born-on-the-cloud application using the microservices
architecture, as shown in Figure 6-1.

Figure 6-1 Background scenario

The company validates the concept using trusted and known parties to test the sample
application. The company is now ready to transform the concept into an enterprise
application.

6.2 Transformation of the sample application

This chapter walks through the various stages of transformation that enable the solution to
become a hybrid enterprise application. Each subscenario enhances the capabilities
delivered by the previous subscenario.
110 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

The following subscenarios are discussed:

1. The web application invokes a Representational State Transfer (REST) application
programming interface (API). The REST API saves data directly on MySQL database
inside the corporate data center. Secure connectivity is provided from IBM Bluemix to the
corporate data center using the IBM Secure Gateway Bluemix service. This subscenario
ensures that the data captured from an external event (casting of a vote) is stored on a
database located inside the corporate data center.

2. The web application invokes a REST API. The REST API saves the vote to IBM MQ Light
Bluemix service. A separate message processing application subscribes to messages on
IBM MQ Light Bluemix service and asynchronously writes data to MySQL database. This
subscenario improves the scalability and performance of the solution while retaining and
improving the user experience.

3. The web application invokes the REST API to save the user vote to IBM MQ inside the
corporate data center. A message processing application running inside the corporate
data center subscribes to messages on IBM MQ and asynchronously writes data to
MySQL database. This subscenario makes it possible to expose the details of an external
event (casting of a vote) to other applications in the enterprise.

4. The web application invokes the REST API to save the user vote on to IBM MQ inside the
corporate data center. An IBM Integration Bus subscribes to messages on IBM MQ. An
IBM Integration Bus flow asynchronously processes each message. The flow persists the
data to the Enterprise DB2 server and publishes the current leader board message on
IBM MQ. Another Integration Bus flow provides REST service to support the query about
a list of votes by voter choice. The web application consumes the additional services to
provide the leader board as well as the list of votes by voter choice.

6.3 Subscenario 1: Web application saving data on database

The motivation for this subscenario is to securely store data captured from the user to a
database inside the corporate data center.

Figure 6-2 shows the components for this scenario.

Figure 6-2 Subscenario 1 architecture: Web application saving data to database

server contents

corporate data center

Secure
Gateway

SQLHTTPS REST

API
Server

S
ec

ur
e

G
at

ew
ay

C
lie

nt

Secure Tunnel
SQL

MySQL
Chapter 6. Asynchronous processing through IBM MQ Light service 111

In this subscenario, the following steps are executed:

� The web application prompts the user to enter their name, email, phone number, and their
preferred candidate. The user clicks Vote.

� The web application invokes a REST API on the API server.

� The REST service records a time stamp for the vote, generates a unique key for the
database record, and writes the record to the MySQL database.

6.4 Subscenario 2: Web application saving data on IBM MQ
Light

The motivation for this subscenario is to allow the application to scale while preserving the
user experience and enhancing performance. The performance is improved by offline
processing of slower tasks. Figure 6-2 on page 111 shows details.

Figure 6-3 Motivation for subscenario

IBM MQ Light is selected because it is simple to use and offers flexible deployment models,
as shown in Figure 6-4 on page 113. It is provisioned as an IBM Bluemix service using a
subscription model.

Important: It is understood that many organizations have multiple firewalls. The Secure
Gateway client may be in the DMZ. This means that there might be one or more firewalls
between the Secure Gateway client and enterprise server. For the sake of brevity, the
diagrams in this chapter show only one firewall.
112 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 6-4 IBM MQ Light deployment options

The introduction of IBM MQ Light allows the solution to scale without changing the user
interface. Only small modifications to the supporting applications are required.

Figure 6-5 shows the components for this scenario.

Figure 6-5 Subscenario 2 architecture: Web application saving data to IBM MQ Light

server contents

corporate data center

Secure
Gateway

S
ec

ur
e

G
at

ew
ay

C
lie

nt

SQL

HTTPS REST

API
Server

MQ Light Message Processor

AMQP

AMQP

Secure Tunnel
SQL

MySQL
Chapter 6. Asynchronous processing through IBM MQ Light service 113

In this subscenario, the following steps are executed:

� The web application prompts the user to enter their name, email, phone number, and their
preferred candidate. The user clicks Vote.

� The web application invokes a REST API on the API server.

� The REST service records a time stamp for the vote and writes a message to the IBM MQ
Light service on Bluemix.

A message-processing application runs in the background. It reads a message from IBM MQ
Light service and generates a unique key for the database record, and then writes the record
to the MySQL database.

This subscenario offers improved scalability and performance because the database
operation that is the slowest part of the transaction for recording a vote is removed from the
data capture process. The slow process now runs as a background job.

6.5 Subscenario 3: Web application saving data on IBM MQ
server

The motivation for this subscenario is similar to subscenario 2. However, this subscenario
also allows the events from a new application (casting of a vote) to be made available for use
by other enterprise applications.

Figure 6-6 Motivation for subscenario 3
114 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

The application code developed for subscenario 2 is reused, but reconfigured. IBM MQ is
used instead of the IBM MQ Light service on Bluemix. The message processor application
runs in the corporate data center and connects directly to the MySQL server instead of a
secure tunnel.

Figure 6-7 shows the components for this scenario.

Figure 6-7 Subscenario 3 architecture: Data captured is stored in the IBM MQ server

In this subscenario, the following steps are executed:

� The web application prompts the user to enter their Name, email, phone number, and their
preferred candidate. The user clicks Vote.

� The web application invokes a REST API on the API server.

� The REST service records a time stamp for the vote and writes a message to IBM MQ
running in the corporate data center.

� A message processing application runs in the background inside the corporate data
center. It reads a message from IBM MQ and generates a unique key for the database
record and writes the record to the MySQL database.

This subscenario offers improved scalability, as in subscenario 2, along with the traditional
enterprise-grade high availability and scalability offered by IBM MQ. In addition, the message
(containing the vote) is now available to be consumed by any other enterprise application that
is connected to IBM MQ.

server contents

corporate data center

Secure
Gateway

S
ec

ur
e

G
at

ew
ay

C
lie

nt

SQL

HTTPS REST

API
Server

AMQP

Message Processor

Secure Tunnel

AMQPAMQP

SQL

MySQL
Chapter 6. Asynchronous processing through IBM MQ Light service 115

6.6 Subscenario 4: Web application data consumed by
corporate applications

The motivation for this subscenario is to offer all the capabilities of subscenario 3 and, in
addition, allow the processing of external events (casting of votes) by the enterprise
application. Functionality is added to securely push the internal events (new leader board) to
be published back to the application running on cloud in IBM Bluemix, as shown in Figure 6-8.

Figure 6-8 Motivation for subscenario 4

The application fulfills the needs of the developer by facilitating a flexible application design
that allows events to flow smoothly between the cloud and enterprise applications. In addition,
the needs of the infrastructure stake holders are satisfied as the born-on-the-web application
is using the enterprise components, thus simplifying the administration as shown in
Figure 6-9.

Figure 6-9 Meeting the needs of the developers and infrastructure stakeholders

This subscenario depicts a hybrid cloud application.
116 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 6-10 shows the components used by this subscenario.

Figure 6-10 Subscenario 4 architecture: Data captured consumed by corporate applications

In this subscenario, the following steps are executed:

� The web application prompts the user to enter their name, email, phone number, and their
preferred candidate. The user clicks Vote.

� The web application invokes a REST API on the API server.

� The REST service records a time stamp for the vote and writes a message to IBM MQ
running in the corporate data center.

� The corporate application running on the IBM Integration Bus processes the messages
from IBM MQ. The Integration Bus application stores the data on the corporate database.
It also publishes the latest leader board.

� The IBM Integration Bus also provides a REST function that can be used to query details
about all votes that have been cast at a point in time.

� The web application can now display a list of votes by voter choice using the REST
services exposed using the API Management Bluemix service. The API Management
service invokes the REST service on the corporate IBM Integration Bus using the Secure
Gateway Bluemix service.

� The API server listens for results published from IBM MQ and caches the latest result. The
cached results are returned by the Results REST API.

� The web application uses the Results REST API to display the leader board to the user.

This scenario offers improved scalability, as in subscenarios 2 and 3. Because the message
is now being consumed by the enterprise applications, it also provides additional functionality
to the user.
Chapter 6. Asynchronous processing through IBM MQ Light service 117

6.7 Overview of the sample application

The sample application used for this contains the following components:

� A user interface application
� An API server
� A message processing server running on Node.JS
� MySQL database server
� IBM MQ Light Server on Bluemix
� IBM MQ
� IBM Integration Bus
� IBM DB2 server

6.7.1 User interface application

This application was developed using the Ionic framework. It has been deployed as a web
application running on Bluemix. The user interacts with this application to register their vote.

For subscenario 4, the sample application also provides the following additional capabilities:

� Leader board
� List of votes that have been cast for a specific option

6.7.2 API application

This server provides the REST API required by the web application. This application was
developed by using the Swagger framework. The application uses the services of MySQL
database and IBM MQ Light server or IBM MQ. It was implemented as a Node.JS application
running on Bluemix.

In subscenario 2, the application uses the IBM MQ Light service on Bluemix. In subscenarios
3 and 4, it uses IBM MQ in the corporate data center.

The Swagger framework offers a user interface that allows a user to test the API supported by
this server. For more information about the Swagger framework, see the following link:

http://swagger.io

6.7.3 Message processing application

This application was developed to supplement the API application. The application
subscribes to messages deposited by the API application and writes data to the MySQL
database. It is implemented as a Node.JS application. In subscenario 2, it runs on Bluemix
and uses the IBM Bluemix MQ Light service. However, in subscenario 3, it runs in the
corporate data center and uses IBM MQ in the corporate data center.

6.7.4 Enterprise IBM Integration Bus application

This application simulates the capabilities of a typical enterprise service bus in an
organization. This is used only for subscenario 4. In this sample, the following capabilities
have been used:

� Message flow is provided to persist messages to enterprise database
� Latest results are published
� REST service is provided to support user queries
118 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

http://swagger.io
http://swagger.io
http://swagger.io
http://swagger.io/
http://swagger.io/

6.7.5 Preparing for the subscenarios

The sample solution has a number of configuration settings. A configuration setting value can
be derived in one step. This can be used in subsequent steps. Table 6-1 shows the
parameters that are used by all the subscenarios.

These values are used in subsequent steps, so it can be useful to record them.

Table 6-1 Configuration parameters used by the sample application

Purpose Parameter Value

MySQL Database Server Host
Name

<virtual address of the MySQL
Server>

MySQL database port 3306

Host Name for API server
Node.js application running on
IBM Bluemix. Used in all
subscenarios.

<API Server Host Name>

Secure Gateway ID for MYSQL
Database server. Used in
subscenarios 1 and 2

<Secure GATEWAY ID for
Database Server>

MySQL Database Host Name
when connecting using the
Secure Gateway connection.
Used in subscenarios 1and 2

<Cloud Host for MySQL
Server>

MySQL Database Port when
connecting using the Secure
Gateway connection. Used in
subscenarios 1 and 2

<Cloud Port for MySQL Server>

Host name for the web
application. To start the
application on a browser use
URL <Web application Host
Name>/redbookApp. Used in
all subscenarios

<Web application Host Name>

Secure Gateway ID for IBM MQ
server. Used in subscenario 3

<Secure GATEWAY Id for MQ
Server>

Host Name or TCP/IP address
of IBM MQ server. Used in
subscenario 3 and 4

<TCP/IP Address or Host
Name for MQ Server>

Port Number for IBM MQ
Server Used in subscenario 3
and 4

5672

Host Name for IBM MQ server
when connection using a
Secure Gateway tunnel. Used
in subscenario 3 and 4

<Cloud Host for MQ Server>

Port number for IBM MQ server
when connecting using a
Secure Gateway tunnel. Used
in subscenario 3 and 4

<Cloud Port for MQ server>
Chapter 6. Asynchronous processing through IBM MQ Light service 119

6.8 Implementing subscenario 1

This subscenario requires a combination of IBM Bluemix services and components that exist
in the corporate data center. For this overview, IBM Bluemix virtual machines are used to
simulate the corporate data center.

The components that are used for this subscenario are shown in Figure 6-11.

Figure 6-11 Components used for subscenario 1

URL to invoke the REST API on
API Gateway. This API provides
details of votes by cuisine. Used
in subscenario 4

<API Gateway URL for votes by
cuisine service>

Host name of the corporate
server where message server
is running in corporate data
center. Used in subscenario 3

<Host name or IP address of
the corporate message
processor>

Host name of message
processor running on Bluemix.
Used in subscenario 2

<Message Processor Host
Name Bluemix>

Host name of message
processor running on data
center. Used in subscenario 3

<Message Processor Host
Name data center>

Purpose Parameter Value

server contents

corporate data center

Secure
Gateway

SQLHTTPS REST

API
Server

S
ec

ur
e

G
at

ew
ay

C
lie

nt

Secure Tunnel
SQL

MySQL
120 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

6.8.1 Create simulated data center database

To demonstrate Secure Gateway, we need a system of record running in a private data center.
One of those is difficult to download and install. So, for the purposes of these exercises, we
simulate one using a MySQL database running in a virtual machine. We create a virtual
machine, install Docker, install MySQL running in a Docker container, and initialize the
database with some sample data that the Node.js application needs.

Create VM
We create a virtual machine to simulate a private data center. That VM can run anywhere if it
has a public IP address (in any cloud provider or on your local computer). For these
exercises, we use the virtual machine capability in Bluemix:

1. Create a Secure Shell (SSH) keypair, as documented in “Creating web applications:
Creating a virtual machine: Configuring an SSH security key in a VM: Creating an SSH
security key to access a VM” in the Bluemix documentation:

https://www.ng.bluemix.net/docs/virtualmachines/vm_index.html#vm_create_ssh_key

Specifically:

– We call ours mqlightkey

– In UNIX/Linux: Run ssh-keygen -t rsa -f mqlightkey

– In Microsoft Windows: Use PuTTY. You can download it here:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

2. Create a VM on Bluemix, as documented in “Creating web applications: Creating a virtual
machine: Creating a VM in a public cloud” in the Bluemix documentation:

https://www.ng.bluemix.net/docs/virtualmachines/vm_index.html#vm_create_public_
cloud

Specifically:

– To create the VM, use the settings shown in Table 6-2. For the settings that have
default values, use those values.

– To specify the security key, select Add Key to import your mqlightkey key.

Table 6-2 Virtual machine creation settings

Property Value Default

VM cloud IBM Cloud Public default

Initial instances 1 default

Assign public IP addresses Select (yes) default

VM image Ubuntu 14.04 default

VM group name AAA_MQLIGHT

VM size m1.small default

Security Key mqlightkey

Network private default
Chapter 6. Asynchronous processing through IBM MQ Light service 121

https://www.ng.bluemix.net/docs/virtualmachines/vm_index.html#vm_create_ssh_key
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://www.ng.bluemix.net/docs/virtualmachines/vm_index.html#vm_create_public_cloud

When the VM is created, make note of its public IP address, whose form is
129.xxx.xxx.xxx. (The other IP address, 192.168.xxx.xxx, is private.) We refer to this public
IP address as <virtual machine’s IP address>. We refer to it as the <virtual address of
the MySQL Server>.

3. Log in to the virtual machine. The image has a user that is predefined for logging in
remotely; it is ibmcloud. Use the authentication key specified when creating the VM:

$ ssh -i mqlightkey ibmcloud@<virtual machine’s IP address>

You now have a running Ubuntu VM and you can log in to it.

Install Docker
You need to install a MySQL database. To simplify that installation, we use MySQL that is
already installed in a Docker container. So a good reason that we need our VM to run the
Docker runtime is so that it can run the MySQL container.

For information, see the following site:

“Installing Docker on Ubuntu” explains how to install Docker:

https://docs.docker.com/installation/ubuntulinux

Log in to your VM using SSH, as described above, and perform the following commands:

1. Before installing any software, ensure that your Ubuntu installation is running the latest
version of all of its packages. Run this command:

$ sudo apt-get update

2. Install the Docker package:

$ wget -qO- https://get.docker.com/ | sh

3. Verify that Docker is installed correctly:

$ sudo docker run hello-world

4. When hello-world runs correctly, part of the output should say:

Hello from Docker.
This message shows that your installation appears to be working correctly.

When you can run hello-world successfully, your VM has the Docker runtime installed and
running correctly.

Install and configure MySQL
To simulate an enterprise database of record, we use a MySQL database with a small, simple
data set. To initialize that database, we need a schema file and a data file.

Create the database files
Log in to your VM by using SSH, as described above, and perform the following commands:

1. Create the directory for the database initialization files:

$ mkdir ~/mqlight-sql
$ cd ~/mqlight-sql
122 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://docs.docker.com/installation/ubuntulinux
https://docs.docker.com/installation/ubuntulinux

2. By using your favorite Linux text editor (such as nano or vi), create the file
mqlight-schema.sql and insert the contents shown in Example 6-1.

Example 6-1 Contents of mqlight-schema.sql

DROP SCHEMA IF EXISTS mqlight;
CREATE SCHEMA mqlight;
USE mqlight;

CREATE TABLE `VOTES`
(
referenceNumber char(20),
name varchar(255),
email varchar(255),
phone varchar(255),
voterChoice varchar(255),
votetimeStamp varchar(255),
PRIMARY KEY (referenceNumber)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

3. Create the file mqlight-data.sql and insert the contents shown in Example 6-2.

Example 6-2 Contents of mqlight-data.sql

USE mqlight;
INSERT INTO `VOTES` (`referenceNumber`,`name`,`email`,
`phone`,`voterChoice`,`votetimeStamp`) VALUES ("Key-001", "James", "a@a.com",
"99991234", "Indian", "2015-11-15");
INSERT INTO `VOTES` (`referenceNumber`,`name`,`email`,
`phone`,`voterChoice`,`votetimeStamp`) VALUES ("Key-002", "John", "b@b.com",
"99991235", "French", "2015-11-16");
INSERT INTO `VOTES` (`referenceNumber`,`name`,`email`,
`phone`,`voterChoice`,`votetimeStamp`) VALUES ("Key-003", "Jack", "c@c.com",
"99991236", "Turkish", "2015-11-17");

4. Confirm that you have the files in the correct directory. It should look like this:

ibmcloud@aaa-to-do-12345678:~$ ls -l /home/ibmcloud/mqlight-sql/
-rw-r--r-- 1 ibmcloud ibmcloud 227 Jan 1 12:00 mqlight-data.sql
-rw-r--r-- 1 ibmcloud ibmcloud 190 Jan 1 12:00 mqlight-schema.sql

You now have the schema and data file that is needed to initialize the database when creating
its Docker container.

Install the database
While still logged in to your VM using SSH:

1. Create the MySQL container instance and load the sample data from the two initialization
files with the command below:

$ sudo docker run -d --name mysql-tutum -p 3306:3306 -v
/home/ibmcloud:/home/ibmcloud -e MYSQL_PASS=passw0rd -e
STARTUP_SQL="/home/ibmcloud/mqlight-sql/mqlight-schema.sql
/home/ibmcloud/mqlight-sql/mqlight-data.sql" tutum/mysql

Tip: You can also cat each file to ensure that its contents look correct.
Chapter 6. Asynchronous processing through IBM MQ Light service 123

Where:

– –d runs the container in the background, not interactively

– mysql-tutum is the name to give the container that is created from the image

– 3306:3306 forwards the MySQL port to make it accessible from the host OSs IP
address

– /home/ibmcloud:/home/ibmcloud binds the directory to make the directory on the host
OS available within the container

– MYSQL_PASS sets the password of the database’s main user, in this example to passw0rd

– STARTUP_SQL tells the container to run the SQL files in the order specified via the
space-separated list

– tutum/mysql is the name of the Docker image to create the container from

You now have a running Docker container named mysql-tutum. That container has a MySQL
database server running in it, bound to port 3306. The database server contains a database
named mqlight that contains a table named VOTES that contains the sample data for votes.

6.8.2 Provision Bluemix services

Perform the following steps to provision Bluemix services:

1. Open the following URL:

https://console.ng.bluemix.net

2. If you do not have an IBM Bluemix ID, click Signup to create your account. Follow
instructions provided on the page to create your new account.

3. Log in to your Bluemix account by using your IBM user ID and password.

4. Click CATALOG.

5. Scroll down the page and click MQ Light. See Figure 6-12.

Figure 6-12 Provisioning IBM MQ Light Bluemix service
124 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://console.ng.bluemix.net/
https://console.ng.bluemix.net

6. Enter “Service name” as MQLight-redbook. Click CREATE. See Figure 6-13.

Figure 6-13 Provisioning IBM MQ Light service

The IBM MQ Light console appears as in Figure 6-14.

Figure 6-14 IBM MQ Light service console

6.8.3 Deploy the API server

The API server is a Node.js application that is available from GIT repository along with the
rest of code used by this sample. Download the sample code from this link:

https://github.com/RajMehra/hybrid-cloud-mqlight.git

This code can be downloaded as a .zip file. The .zip file can be decompressed to the local
folders. The following subfolders are created:

� voting-services: API Server

� message-processing: Message Processor

� sample-app: The sample application

� IIB-code: The code that runs on IBM Integration Bus used in subscenario 4

Attention: The IBM MQ Light Bluemix service is not used in subscenario 1. We just
provision the service at this stage. It is used in later steps.
Chapter 6. Asynchronous processing through IBM MQ Light service 125

https://github.com/RajMehra/hybrid-cloud-mqlight.git

Code from these folders is used for the subscenarios. The voting-services folder is used for
deploying the API server:

1. Download and install the Cloud Foundry CLI from the following site:

https://www.ng.bluemix.net/docs/cli/downloads.html

2. Follow the instructions to install it on your workstation.

3. Use the voting-services folder.

4. Use a text editor of your choice to edit voting-services/manifest.yml.

5. Replace with the value that matches your configurations. See Table 6-3.

Table 6-3 Parameters for the API server

Attribute Default New value Purpose

DBHOST <> <virtual address of
the MySQL Server>

Host Name or IP
Address of MySQL
server

DBPORT 3306 3306 Port number for
MySQL database

DBNAME mqlight mqlight MySQL
database/schema
name

DBUSER admin admin MySQL user

DBPASSWORD passw0rd passw0rd MySQL password

TOPIC redbook/vote redbook/vote Topic from MQ
Light/IBM MQ server

MQHOST <> <> IBM MQ Server Host
Name or IP server

MQPORT 5672 5672 Port number for IBM
MQ server AMQP
Listener

MQUSER <> <> User ID to connect to
IBM MQ server

MQPASSWORD <> <> Password to connect
to IBM MQ server

MQSERVICE ampq://localhost ampq://localhost Local MQ Light server

MQUSESERVER LOCAL BLUEMIX Valid Values
LOCAL: Local MQ
Light Server
BLUEMIX: Bluemix
service
CLOUD: IBM MQ
server

MQID Send001 Send001 Sender Id

SAVEMETHOD MQ DB Valid Values are:
DB: Direct to database
MQ: To MQ Light/IBM
MQ Server
126 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://www.ng.bluemix.net/docs/cli/downloads.html
https://www.ng.bluemix.net/docs/cli/downloads.html

6. Change the host name to unique name. Replace aaa with three unique characters of your
choice.

Table 6-4 Parameters table

7. Validate the contents of the file and save it.

8. Open a command prompt on your workstation.

9. Follow the instructions provided at the following link and log in to your Bluemix account by
using the cf login command:

https://www.ng.bluemix.net/docs/cli/reference/cfcommands/index.html

10.On the command prompt, change the current directory to the voting-services folder.

11.Enter the cf push command on the command window. This uploads the application to
Bluemix and deploys it.

12.If someone else is using the same host name that you have chosen, the deployment might
fail. In that instance, change the host as in step 6 and try step 11.

13.Open the following URL:

https://console.ng.bluemix.net

14.Log in using your IBM user ID and password.

15.Click DASHBOARD. An application appears on the dashboard.

RESULTTOPIC redbook/results redbook/results This is used only for
subscenario 4 to get
the leader board
results.

ENABLEENTERPRISE false false The valid values are
“true” (only for
subscenario 4) “false”
for all other
subscenarios.

Attribute Default New value Purpose

host aaa-redbook-MQLight-
service-1

xxx-redbook-MQLight-
service-1

Unique host name for
API server

Attribute Default New value Purpose
Chapter 6. Asynchronous processing through IBM MQ Light service 127

https://console.ng.bluemix.net/
https://www.ng.bluemix.net/docs/cli/cfcommands.html
https://www.ng.bluemix.net/docs/cli/cfcommands.html
https://www.ng.bluemix.net/docs/cli/reference/cfcommands/index.html
https://console.ng.bluemix.net
https://www.ng.bluemix.net/docs/cli/reference/cfcommands/index.html

16.Click redbook-MQLight-service-1 as shown in Figure 6-15.

Figure 6-15 API server application deployed and running on Bluemix

17.Click Overview.

18.Write down the URL next to Routes as <API Server Host Name>. It will be something like
http://aaa-redbook-MQLight-service-1.mybluemix.net/. See Figure 6-16.

Figure 6-16 API server
128 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

19.Open a new browser window or tab and type in url <API Server Host Name>/api-docs/#.

API Server Test Console is shown as in Figure 6-17.

20.Click votes. This opens a list of APIs for votes.

Figure 6-17 API Server Test Console

21.Click GET /votes. This opens the API details.

22.Click Try it out!

23.The database records from the MySQL database are shown as a JSON array in
Figure 6-18. Note that the data shown will vary based on data in your database.

Figure 6-18 Results from API details

We have tested the direct connection between the API server and the MySQL database.
Chapter 6. Asynchronous processing through IBM MQ Light service 129

6.8.4 Configure a secure tunnel between the API server and database

This section describes the steps required to configure a secure connection between MySQL
server and the API server running on Bluemix.

Steps to be completed to Bluemix console
The following steps need to be completed on Bluemix console. It involves setting up a Secure
Gateway and adding a destination for the MySQL server.

Setting up Secure Gateway
Perform the following steps to set up the Secure Gateway:

1. Open the following URL:

https://console.ng.bluemix.net

2. Log in using your IBM user ID and password.

3. Click CATALOG.

4. Under Services, click Secure Gateway. See Figure 6-19.

Figure 6-19 Select Secure Gateway service
130 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://console.ng.bluemix.net/
https://console.ng.bluemix.net

5. Click CREATE. See Figure 6-20.

Figure 6-20 Create Secure Gateway

6. Click ADD GATEWAY. See Figure 6-21.

Figure 6-21 Adding Gateway
Chapter 6. Asynchronous processing through IBM MQ Light service 131

7. Enter “MY SQL Server” in name, clear Enforce security token on client and Token
Expiration. See Figure 6-22.

Figure 6-22 Adding Secure Gateway connection

8. Click CONNECT IT.

9. Select IBM Installer.

10.The Gateway ID is generated and presented. Click COPY. This copies the Gateway ID.
Store the Gateway ID as <Secure GATEWAY ID for Database Server>. See Figure 6-23.

Figure 6-23 Generating a Gateway ID
132 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

11.Download the appropriate IBM Secure Gateway installer for your in-house server. Store as
<IBM Secure gateway client installer>. In our example, we use the .deb file.

12.Follow instructions at the following URL to install and configure the secure client gateway
on your MySQL database server, the one running on <virtual address of the MySQL
Server>:

https://www.ng.bluemix.net/docs/services/SecureGateway/sg_021.html#sg_025

Adding destination for MySQL server
Next, we need to add a destination for MySQL server:

1. Scroll to the bottom of the window shown in Figure 6-24 and click ADD DESTINATIONS.

2. Enter the Destination name, <virtual address of the MySQL server> as HostName, and
3306 as Port, as shown in Figure 6-24. Click +.

Figure 6-24 Creating a destination for the gateway

Important: In this example, we are simulating the corporate data center using a public
infrastructure. For this reason, the IP address used on the window is a public IP
address. However, if you are using a server in your network, use the address of the
server inside your network.
Chapter 6. Asynchronous processing through IBM MQ Light service 133

https://www.ng.bluemix.net/docs/services/SecureGateway/sg_021.html#sg_025
https://www.ng.bluemix.net/docs/services/SecureGateway/sg_021.html#sg_025

3. The window shows the new destination at the bottom of panel. Click i.

4. Click COPY as shown in Figure 6-25. Save the details as <Cloud Host for MySQL Server>
and <Cloud Port for MySQL Server>.

Figure 6-25 Secure Gateway destination details

Configurations for MySQL server
In this section, we follow instructions at the link below to install and configure the secure client
gateway on your MySQL database server, the one running on <virtual address of the MYSQL
Server>:

https://www.ng.bluemix.net/docs/services/SecureGateway/sg_021.html#sg_025

1. Connect to the MySQL server and open a command prompt. Type the following command:

mkdir /home/ibmcloud/securegateway
2. From your workstation, copy <IBM Secure gateway client installer> to folder

/home/ibmcloud/securegateway, for example, on a Linux workstation:

scp -i mqlightkey <IBM Secure gateway client installer> ibmcloud@<virtual
address of the MySQL Server>:/home/ibmcloud/securegateway

3. Connect to the MySQL server and open a command prompt. Type the following command:

cd /home/ibmcloud/securegateway
sudo dpkg -i ibm-securegateway-client-1.3.2+client_amd64.deb

a. When prompted for the gateway ID, press Enter.

b. When prompted, enter the configuration’s ID security token (if any). Press Enter.

c. When prompted Do you wish to change the startup logging level, values
are INFO, DEBUG, ERROR or TRACE - [INFO]:, enter the configuration’s ID security
token (if any). Press Enter.

Note: <Cloud Host for MySQL Server> and <Cloud Port for MySQL Server> values
derived in the previous step are used for configuration in later sections. It is suggested
that these values be saved somewhere for later use.
134 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://www.ng.bluemix.net/docs/services/SecureGateway/sg_021.html#sg_025

d. When prompted Supply an ACL File for processing [optional]:, press Enter.
e. The following message is displayed at the end of this process: [postinst] Completed

with SUCCESS.

4. Connect to MySQL server and open the following command prompt:

cd /opt/ibm/securegateway

5. Create an acl.txt file by using your preferred editor.

6. Enter the following line:

acl allow :3306

7. Connect to MySQL server and open a command prompt. Type the following commands:

sudo su secgwadmin
cd /opt/ibm/securegateway
node lib/secgwclient.js <Secure GATEWAY ID for Database Server> --F
/opt/ibm/securegateway/acl.txt

The gateway starts and should show details as shown in Figure 6-26.

Figure 6-26 IBM Secure Gateway client started on MySQL database

The API server application running on Node.js in Bluemix can now connect to the
database using the secure tunnel.

6.8.5 Configure the API server to use a secure connection to the database

This section describes the steps that are required to configure a secure connection between
the API server running on Bluemix and the database using the secure tunnel:

1. Open the following URL:

https://console.ng.bluemix.net

2. Log in using your IBM user ID and password.
Chapter 6. Asynchronous processing through IBM MQ Light service 135

https://console.ng.bluemix.net/
https://console.ng.bluemix.net

3. Click DASHBOARD.

4. Click redbook-MQLight-service-1 under Applications as shown in Figure 6-27.

Figure 6-27 API server

5. Click STOP.

6. Click Environment Variables. See Figure 6-28.

Figure 6-28 Environment Variables window

7. Click USER-DEFINED. See Figure 6-29 on page 137.
136 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 6-29 Setting the API application user parameters

8. Replace with the value that matches your configurations, as shown in Table 6-5.

Table 6-5 Parameters for the API server

Attribute Default/Old New value Purpose

DBHOST <virtual address of the
MYSQL Server>

<Cloud Host for MY
SQL Server>

Host name or IP
address of MySQL
server

DBPORT 3306 <Cloud Port for MY
SQL Server>

Port number for
MySQL database

DBNAME mqlight mqlight MySQL
database/schema
name

DBUSER admin admin MySQL user

DBPASSWORD passw0rd passw0rd MySQL password

TOPIC redbook/vote redbook/vote Topic from IBM MQ
Light/IBM MQ server

MQHOST <> <> IBM MQ Server host
name or IP server

MQPORT 5672 5672 Port number for IBM
MQ Server AMQP
Listener

MQUSER <> <> User ID to connect to
IBM MQ server

MQPASSWORD <> <> Password to connect
to IBM MQ server

MQSERVICE ampq://localhost ampq://localhost Local MQ Light Server
Chapter 6. Asynchronous processing through IBM MQ Light service 137

9. Scroll to the bottom of page and click SAVE.

10.Click Overview.

11.Click START.

12.The API application running on Bluemix is now connecting to the database using Secure
Gateway tunnel.

13.Click redbook-MQLight-service-1, as shown in Figure 6-15 on page 128.

14.Click Overview.

15.Write down the URL next to Routes as <API Server Host Name>. It will be something like
aaa-redbook-mqlight-service-1.mybluemix.net/.

16.Open a new browser window or tab and type in the URL: http://<API Server Host
Name>/api-docs/#

The API Server Test Console is shown as in Figure 6-30 on page 139.

MQUSESERVER LOCAL BLUEMIX Valid values:
LOCAL: Local MQ
Light server
BLUEMIX: Bluemix
service
CLOUD: IBM MQ
server

MQID Send001 Send001 Sender ID

SAVEMETHOD MQ DB Valid values:
DB: Direct to database
MQ: To IBM MQ
Light/IBM MQ Server

RESULTTOPIC redbook/results redbook/results Only used in
subscenario 4 getting
the results

ENABLEENTERPRIS
E

false false The valid values are
“true” (only for
subscenario 4) or
“false” for all other
subscenarios.

Attribute Default/Old New value Purpose
138 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 6-30 API Server Test Console

17.Click votes. This opens a list of APIs for votes.

18.Click GET /votes. This opens the API details.

19.Click Try it out!

The database records from the MySQL database are shown as a JSON array, as shown in
Figure 6-31.

Figure 6-31 Details from the API server

The API server is connected to the MySQL server using the Secure Gateway.
Chapter 6. Asynchronous processing through IBM MQ Light service 139

6.8.6 Installing the web application

The web application allows a user to cast their vote. This application interacts with the API
server to record a user’s vote. Follow these steps to install the web application:

1. Use the code download in 6.8.3, “Deploy the API server” on page 125.

2. Use the code in the sample-app folder.

3. Use a text editor of your choice to edit sample-app/redbookApp/connection.properties.
Table 6-6 contains the parameters as JSON. Replace with the value that matches your
configurations.

Table 6-6 Parameters for the Sample-App

4. Validate the contents of the file and save it.

5. Change the host name to a unique name in sample-app/manifest.yml. Replace aaa with
three unique characters of your choice.

Table 6-7 Parameters table

6. Open a command prompt on your workstation.

7. Follow the instructions provided at the link below and log in to the Bluemix account by
using the cf login command:

https://www.ng.bluemix.net/docs/cli/reference/cfcommands/index.html

8. On the command prompt, change the current directory to the voting-service folder.

9. Enter the cf push command in the command window. This uploads the application to
Bluemix and deploys it.

10.If another application is using the same host name that you have chosen, the deployment
might fail. In that instance, change the host as in step 6 and try step 11.

11.Open the following URL:

https://console.ng.bluemix.net

12.Log in using your IBM user ID and password.

13.Click DASHBOARD.

An application is displayed on the dashboard.

Attribute Default New value Purpose

baseUrl <> https://<API Server
Host Name>/v1

Base URL for the Rest
API

serviceUrl <> <> Used in subscenario 4
to store API Gateway
URL for votes by
cuisine.

Attribute Default New value Purpose

host aaa-redbook-voting-sa
mple-app

xxx-redbook-voting-sa
mple-app

Unique host name for
Web application server
140 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://console.ng.bluemix.net/
https://www.ng.bluemix.net/docs/cli/cfcommands.html
https://www.ng.bluemix.net/docs/cli/reference/cfcommands/index.html
https://console.ng.bluemix.net
https://www.ng.bluemix.net/docs/cli/reference/cfcommands/index.html

14.The web application shows up as shown in Figure 6-32.

Figure 6-32 API server application deployed and running on Bluemix

15.Click redbook-votes.

16.Click Overview.

17.Write down the URL next to Routes as <Web application Host Name>. It will be
something like http://aaa-redbook-voting-sample-app.mybluemix.net/.

18.Open a new browser window or tab and type in the URL: <Web application Host
Name>/redbookApp.

19.Enter your name, phone number, email, and select a choice from the drop-down list, as
shown in Figure 6-33.

Figure 6-33 Voting application: Cast your vote
Chapter 6. Asynchronous processing through IBM MQ Light service 141

20.Click Vote.

21.The application responds with a message of thanks and displays a time stamp for the vote.

22.Open a new browser window or tab and type in the URL: http://<API Server Host
Name>/api-docs/#

The API Server Test Console is displayed as in Figure 6-34.

Figure 6-34 API Server Test Console

23.Click votes. This opens a list of APIs for votes.

24.Click GET /votes. This opens the API details.

25.Click Try it out!

The database records from the MySQL database are shown as a JSON array as shown in
Figure 6-35 on page 143.
142 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 6-35 Details from API server

Notice that the votes you cast should now appear in this list.

6.8.7 Summary of scenario 1

In this scenario, we implemented a web application that is hosted on a Node.js server on
Bluemix. The web application uses REST API to persist the data. The REST API server,
which is a Node.js application, connects to an on-premises database using a secure tunnel.
Data is recorded into the database synchronously. This subscenario offers limited scalability
for the solution.
Chapter 6. Asynchronous processing through IBM MQ Light service 143

Figure 6-36 shows the flow of information.

Figure 6-36 Subscenario 1: Flow of information from user to database

6.9 Implementing subscenario 2

This subscenario implements the worker offload pattern. It reuses the components used in
the previous subscenario and adds a new component. The API server records a vote into an
IBM MQ Light server. So the request can be processed faster, this scenario adds a message
processor application to the solution. The message processor application is designed to read
messages from the IBM MQ Light server and add the data to the MySQL database. This
scenario allows for improved scalability for recording the votes. The slowest part of persisting
data to the database has been offloaded to another application allowing the API server to
process more user requests during a given period.

Cast
Vote

server contents

corporate data center

API
Server

SQL

HTTPS REST

Se

User Initiated Activity Automated Activity

Secure Tunnel

HTTPS REST

MySQL
144 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

The components used for this subscenario are shown in Figure 6-37.

Figure 6-37 Components used for subscenario 2

6.9.1 Provision IBM MQ Light Bluemix services

Perform the following steps to provision Bluemix services:

1. Open the following URL:

https://console.ng.bluemix.net

2. If you do not have an IBM Bluemix ID, click Signup to create your account. Follow
instructions provided on the page to create your new account.

3. Log in to your Bluemix account by using your IBM user ID and password.

4. Click Catalog.

5. Scroll down the page and click MQ Light.

Figure 6-38 Provisioning IBM MQ Light Bluemix service

server contents

corporate data center

Secure
Gateway

S
ec

ur
e

G
at

ew
ay

C
lie

nt

SQL

HTTPS REST

API
Server

MQ Light Message Processor

AMQP

AMQP

Secure Tunnel
SQL

MySQL
Chapter 6. Asynchronous processing through IBM MQ Light service 145

https://console.ng.bluemix.net/
https://console.ng.bluemix.net

6. Enter “Service name” as MQLight-redbook. Click Create. See Figure 6-39.

Figure 6-39 Provisioning IBM MQ Light service

The IBM MQ Light console appears as in Figure 6-40.

Figure 6-40 IBM MQ Light service console

6.9.2 Installing the message processor application

The message processing application listens for IBM MQ Light messages and saves them to
MySQL database. Perform the following steps to install the message processor application:

1. Use the code that was downloaded in 6.8.3, “Deploy the API server” on page 125.

2. Go to the message-processing folder.

3. Use a text editor of your choice to edit message-processing/manifest.yml.

4. Replace with the value that matches your configurations, as shown in Table 6-8.

Table 6-8 Parameters for the message processor on Bluemix

Attribute Default New value Purpose

DBHOST <> <Cloud Host for
MySQL Server>

Host name or IP
address of MySQL
server

DBPORT 3306 <Cloud Port for
MySQL Server>

Port number for
MySQL database

DBNAME mqlight mqlight MySQL
database/schema
name
146 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

5. Change the host name to a unique name. Replace aaa with three unique characters of
your choice.

Table 6-9 Parameters table

6. Validate the contents of the file and save it.

7. Note the host of your message processor as <Message Processor Host Name Bluemix>.

8. Open a command prompt on your workstation.

9. Follow the instructions provided at the following link and log in to your Bluemix account by
using the cf login command:

https://www.ng.bluemix.net/docs/cli/reference/cfcommands/index.html

10.On the command prompt, change the current directory to the message-processing folder.

11.Enter the cf push command in the command window. This uploads the application to
Bluemix and deploys it.

DBUSER admin admin MySQL user

DBPASSWORD passw0rd passw0rd MySQL password

TOPIC redbook/vote redbook/vote Topic from IBM MQ
Light/IBM MQ server

MQHOST <> <> IBM MQ server host
name or IP server

MQPORT 5672 5672 Port number for IBM
MQ server AMQP
Listener

MQUSER <> <> User ID to connect to
IBM MQ server

MQPASSWORD <> <> Password to connect
to IBM MQ server

MQSERVICE ampq://localhost ampq://localhost Local MQ Light server

MQUSESERVER LOCAL BLUEMIX Valid values:
LOCAL: Local IBM MQ
Light server
BLUEMIX: Bluemix
service
CLOUD: IBM MQ
server

MQID Recv001 Recv001 Receiver ID

SAVEMETHOD MQ MQ Valid values:
DB: Direct to database
MQ: To IBM MQ
Light/IBM MQ server

Attribute Default New value Purpose

host aaa-redbook-MQLight-
service-1

xxx-redbook-MQLight-
service-1

Unique host name for
API server

Attribute Default New value Purpose
Chapter 6. Asynchronous processing through IBM MQ Light service 147

https://www.ng.bluemix.net/docs/cli/reference/cfcommands/index.html

12.If another application is using the same host name that you have chosen, the deployment
might fail. In that instance, change the host as in step 6 and try step 11.

13.Open the following URL:

https://console.ng.bluemix.net

14.Log in using your IBM user ID and password.

15.Click DASHBOARD.

An application is displayed on the dashboard. See Figure 6-41.

Figure 6-41 API server application deployed and running on Bluemix

The message receiver application displays as shown in Figure 6-41.

6.9.3 Configuring the API server to use IBM MQ Light service in Bluemix

This step involves changing the API application to use the IBM MQ service on Bluemix
instead of persisting to the database.

This section describes the steps that are required to configure a secure connection between
the API server running on Bluemix and the database using the secure tunnel:

1. Open the following URL:

https://console.ng.bluemix.net

2. Log in using your IBM user ID and password.

3. Click DASHBOARD.

4. Click redbook-MQLight-service-1 under Applications.
148 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://console.ng.bluemix.net/.
https://console.ng.bluemix.net/
https://console.ng.bluemix.net
https://console.ng.bluemix.net

5. Click Overview. See Figure 6-42.

Figure 6-42 API server

6. Click STOP.

7. Click BIND A SERVICE OR API.

8. Select MQLight-redbook as shown in Figure 6-43.

Figure 6-43 Add IBM MQ Light service

9. Click ADD.

10.Click RESTAGE.

11.Click Environment Variables.

12.Click USER-DEFINED.
Chapter 6. Asynchronous processing through IBM MQ Light service 149

13.Click Environment Variables. See Figure 6-44.

Figure 6-44 Environment Variables window

14.Click USER-DEFINED.

15.Replace with the value that matches your configurations, as shown in Table 6-10.

Table 6-10 Parameters for the API server

Attribute Default/Old New Value Purpose

DBHOST <virtual address of the
MySQL Server>

<Cloud Host for
MySQL Server>

Host name or IP
address of MySQL
server

DBPORT 3306 <Cloud Port for
MySQL Server>

Port number for
MySQL database

DBNAME mqlight mqlight MySQL
database/schema
name

DBUSER admin admin MySQL user

DBPASSWORD passw0rd passw0rd MySQL password

TOPIC redbook/vote redbook/vote Topic from IBM MQ
Light/IBM MQ server

MQHOST <> <> IBM MQ server host
name or IP server

MQPORT 5672 5672 Port number for IBM
MQ server AMQP
Listener

MQUSER <> <> User ID to connect to
IBM MQ server

MQPASSWORD <> <> Password to connect
to IBM MQ server

MQSERVICE ampq://localhost ampq://localhost Local MQ Light server
150 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

16.Scroll to bottom of the page and click SAVE.

17.Click Overview.

18.Click START.

19.The API application running on Bluemix is now recording a vote by using the IBM MQ
Light server on Bluemix.

20.Open a new browser window or tab and type in the URL: <Web application Host
Name>/redbookApp. See Figure 6-45.

Figure 6-45 Voting application: Cast your vote

MQUSESERVER LOCAL BLUEMIX Valid values:
LOCAL: Local MQ
Light server
BLUEMIX: Bluemix
service
CLOUD: IBM MQ
server

MQID Send001 Send001 Sender ID

SAVEMETHOD DB MQ Valid values:
DB: Direct to database
MQ: To IBM MQ Light/
IBM MQ server

RESULTTOPIC redbook/results redbook/results Used in subscenario 4
to get leader board
details

ENABLEENTERPRIS
E

false false The valid values are
“true” (only for
subscenario 4) or
“false” for all other
subscenarios

Attribute Default/Old New Value Purpose
Chapter 6. Asynchronous processing through IBM MQ Light service 151

21.Enter your name, phone number, email, and select a choice from the drop-down list.

22.Click Vote.

23.The application responds with a message of thanks and displays a time stamp for the vote.

24.The vote is now saved to the IBM MQ Light server by the web application. The message
processing application processes the message from the IBM MQ Light server and posts it
to the database using the secure tunnel.

25.Open the following URL:

https://console.ng.bluemix.net

26.Log in using your IBM user ID and password.

27.Click DASHBOARD.

28.Under Services, click MQLight-redbook. See Figure 6-46.

Figure 6-46 IBM MQ Light console

29.Figure 6-46 shows that the message was received from Send001 (API server). The
content is the vote cast by the user. It also shows that the message was processed by
Recv001, which is the message processor application.

Note: Sometimes there might be some delay in starting up the console for the IBM MQ
Light service. You might not see the last message. If this occurs, cast another vote (go to
step 15) and the result should show.
152 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://console.ng.bluemix.net/
https://console.ng.bluemix.net

30.Open a new browser window or tab and type in the URL: http://<API Server Host
Name>/api-docs/#

The API Server Test Console is shown as in Figure 6-47.

Figure 6-47 API Server Test Console

31.Click votes. This opens a list of APIs for votes.

32.Click GET /votes. This opens the API details.

33.Click Try it out!

The database records from the MySQL database are shown as a JSON Array. See
Figure 6-48.

Figure 6-48 Details from API server
Chapter 6. Asynchronous processing through IBM MQ Light service 153

34.Notice that the votes you cast should now appear in this list. To view the last message
processed by the message processor, try the following URL on a browser: <Message
Processor Host Name Bluemix>/lastMessage.

35.This URL displays a JSON object as shown below:

{"name":"John","phone":"9999-1010","email":"c@c.com","voterChoice":"French","vo
tetimeStamp":"2015-11-30T02:54:32.088Z","referenceNumber":"Key-1448852186372"}

6.9.4 Summary of subscenario 2

In this scenario, the data captured by the web application is temporarily stored in the IBM MQ
Light server. It significantly reduces the time taken by the API server to process client
requests. It improves performance and scalability of the solution. The important point to note
is that no changes were required to the user interface application to achieve this result. The
end result for the business is still the same. Each vote is recorded in a MySQL database.

Figure 6-49 shows the components for this scenario.

Figure 6-49 Sub scenario 2: Flow of information from user to database

This subscenario offers improved performance and scalability for the voting application.
Notice that there in no adverse impact on the user interface. The performance of the
operation improves and a larger number of requests can be accommodated.

6.10 Implementing subscenario 3

In this subscenario, the enterprise IBM MQ is used in place of the IBM MQ Light service. The
message processing application performs the same functions by using the IBM MQ server. It
reuses the components used in the previous subscenario and moves the message
processing application from Bluemix to the corporate data center.

server contents

corporate data center

API
Server

AMQP

SQL

HTTPS REST
Cast
Vote

Se

User Initiated Activity Automated Activity

Secure Tunnel

MQ Light Message Processor

AMQP

MySQL
154 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

This scenario assumes that the user has an existing enterprise IBM MQ server 8.0.0.4
running on a Linux server.

The components used by subscenario 3 are shown in Figure 6-50.

Figure 6-50 Components used by subscenario 3

6.10.1 Configuring IBM MQ for IBM MQ Light APIs

The IBM MQ Light API is based on the OASIS Standard AMQP Version 1.0 wire protocol.
AMQP specifies how messages are sent between senders and receivers. An application acts
as a sender when the application sends a message to a message broker, such as IBM MQ.
IBM MQ acts as a sender when it sends a message to an AMQP application.

You must install the AMQP service component by using the IBM MQ V8.0.0.4 manufacturing
refresh, not the V8.0.0.4 Fix Pack. You cannot install the AMQP component on a version of
the queue manager earlier than V8.0.0.4.

Creating and using AMQP channels
When you install the IBM MQ support for IBM MQ Light APIs into your IBM MQ installation,
you can run IBM MQSC commands (runmqsc) to define, alter, delete, start, and stop a
channel. You can also view the status of a channel.

By defining and starting an AMQP channel, IBM MQ Light or AMQP 1.0 applications can
publish messages that are received by existing IBM MQ applications. Messages published
through an AMQP channel are all sent to IBM MQ topics, not IBM MQ queues. An IBM MQ
application that has created a subscription using the MQSUB API call receives messages
published by AMQP 1.0 applications. This occurs if the topic string or topic object used by the
IBM MQ application matches the topic string published by the AMQP client.

The IBM MQ Knowledge Center link describes the procedure to configure and start AMQP
services:

http://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.amqp.doc/tamqp_
creating.htm?lang=en

server contents

corporate data center

Secure
Gateway

S
ec

ur
e

G
at

ew
ay

C
lie

nt

SQL

HTTPS REST

API
Server

AMQP

Message Processor

Secure Tunnel

AMQPAMQP

SQL

MySQL
Chapter 6. Asynchronous processing through IBM MQ Light service 155

http://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.amqp.doc/tamqp_creating.htm?lang=en
http://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.amqp.doc/tamqp_creating.htm?lang=en

The IBM Knowledge Center link also contains instructions about how to install the IBM MQ
Light Node.js client and how to use sample sender and receiver programs to test the IBM MQ
Light messages.

6.10.2 Creating a secure connection to enterprise IBM MQ

Use the instructions provided in section 6.8.4, “Configure a secure tunnel between the API
server and database” on page 130 for details about how to configure a secure connection.

The following steps are different than the ones in “Setting up Secure Gateway” on page 130.
For the rest of the steps, use the steps given in “Setting up Secure Gateway” on page 130.

1. In step 3, click DASHBOARD. We reuse the Bluemix Secure Gateway Service.

2. In step 4, click existing Secure Gateway service.

3. In step 9, note the <Secure GATEWAY Id for MQ Server>.

4. In step 13, provide Name as “MQ Server”, Host Name as <TCP/IP Address or Host Name
for MQ Server>, and Port as 5672.

5. In step 15, note the <Cloud Host for MQ Server> and <Cloud Port for MQ server>.

Configurations for IBM MQ
In this section, we follow instructions at the URL below to install and configure the secure
client gateway on your IBM MQ, the one running on <virtual address of the MQ Server>. It is
assumed that the IBM MQ server was created using the same key that was used for the
MySQL server. It is assumed that the user is logged in as ibmcloud and has sudo access on
the server:

https://www.ng.bluemix.net/docs/services/SecureGateway/sg_021.html#sg_025

1. Connect to the IBM MQ Linux server and open a command prompt. Type the following
command:

mkdir /home/ibmcloud/securegateway

2. From your workstation, copy <IBM Secure gateway client installer> to the
/home/ibmcloud/securegateway folder, for example, on a Linux workstation.

scp -i mqlightkey i<IBM Secure gateway client installer> ibmcloud@<TCP/IP
Address or Host Name for MQ Server>/home/ibmcloud/securegateway

3. Connect to the MySQL server and open a command prompt. Type the following command:

cd /home/ibmcloud/securegateway
sudo dpkg -i ibm-securegateway-client-1.3.2+client_amd64.deb

a. When prompted for the gateway ID, press Enter.

b. When prompted, enter the configuration’s ID security token (if any): press Enter.

c. When prompted Do you wish to change the startup logging level, values are
INFO, DEBUG, ERROR or TRACE - [INFO]:, enter the configuration’s ID security token (if
any). Press Enter.

d. When prompted Supply an ACL File for processing [optional]:, press Enter.

e. The following message is displayed at the end of this process. [postinst] Completed
with SUCCESS.

Note: <Cloud Host for MQ Server> and <Cloud Port for MQ Server> values derived in the
previous step will be used for configuration in later sections. It is suggested that these
values be saved somewhere for later use.
156 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://www.ng.bluemix.net/docs/services/SecureGateway/sg_021.html#sg_025
https://www.ng.bluemix.net/docs/services/SecureGateway/sg_021.html#sg_025

4. Connect to MySQL server and open a command prompt:

cd /opt/ibm/securegateway

5. Create an acl.txt file by using your preferred editor.

6. Enter the following line:

acl allow :5672

7. Connect to MySQL server and open a command prompt. Type the following commands:

sudo su secgwadmin
cd /opt/ibm/securegateway
node lib/secgwclient.js <Secure GATEWAY ID for MQ Server> --F
/opt/ibm/securegateway/acl.txt

8. The gateway starts and should show details as shown in Figure 6-51.

Figure 6-51 IBM Secure Gateway client started on IBM MQ server

The API server application running on Node.js in Bluemix can now connect to the
corporate IBM MQ server using the secure tunnel.

6.10.3 Configuring the API server to use the enterprise IBM MQ server

Perform the following steps to configure the API server to use the enterprise IBM MQ server:

1. Open the following URL:

https://console.ng.bluemix.net

2. Log in using your IBM user ID and password.

3. Click DASHBOARD.

4. Click redbook-MQLight-service-1 under Applications.

5. Click STOP.

6. Click Environment Variables.

7. Click USER-DEFINED.

8. Replace with the value that matches your configurations, as shown in Table 6-11.
Chapter 6. Asynchronous processing through IBM MQ Light service 157

https://console.ng.bluemix.net/
https://console.ng.bluemix.net

Table 6-11 Parameters for the API Server

9. Scroll to bottom of the page and click SAVE.

10.Click Overview.

Attribute Default/Old New Value Purpose

DBHOST <virtual address of the
MYSQL Server>

<Cloud Host for
MySQL Server>

Host name or IP
address of MySQL
server

DBPORT 3306 <Cloud Port for
MySQL Server>

Port number for
MySQL database

DBNAME mqlight mqlight MySQL
database/schema
name

DBUSER admin admin MySQL user

DBPASSWORD passw0rd passw0rd MySQL password

TOPIC redbook/vote redbook/vote Topic from IBM MQ
Light/IBM MQ server

MQHOST <> <Cloud Host for MQ
Server>

IBM MQ server host
name or IP server

MQPORT 5672 <Cloud Port for MQ
server>

Port number for IBM
MQ server AMQP
Listener

MQUSER <> <User Id to connect to
MQ Server>

User ID to connect to
IBM MQ server

MQPASSWORD <> <Password to connect
MQ server>

Password to connect
to IBM MQ server

MQSERVICE ampq://localhost ampq://localhost Local MQ Light server

MQUSESERVER BLUEMIX CLOUD Valid values:
LOCAL: Local MQ
Light server
BLUEMIX: Bluemix
service
CLOUD: IBM MQ
server

MQID Send001 Send001 Sender ID

SAVEMETHOD MQ MQ Valid values:
DB: Direct to database
MQ: To IBM MQ Light/
IBM MQ Server

RESULTTOPIC redbook/results redbook/results Used in subscenario 4
to publish the leader
board

ENABLEENTERPRIS
E

false false The valid values are
“true” (only for
subscenario 4) or
“false” for all other
subscenarios
158 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

11.Click START.

The API application running on Bluemix is now recording a vote by using the corporate
IBM MQ server on Bluemix.

6.10.4 Installing the message processor on a corporate server

This message processor is a Node.js application. It requires Node.js installation. The steps
required to install Node.js in your environment are included in 5.2.2, “Node.js download and
installation” on page 91.

The message processing application listens for IBM MQ Light messages and saves them to
MySQL database. It assumes that Node.js is already installed on a Linux server. This is the
same application that was used in subscenario 2 on Bluemix. The only changes required are
the parameters that are used to call the application. We call this server as corporate message
processor and the address for the server to be <Host name or IP address of the corporate
message processor>.

Perform the following steps to install the message processor on a corporate server:

1. Use the code that was downloaded in 6.8.3, “Deploy the API server” on page 125.

2. Change the directory to the message-processing folder.

3. Type the following command:

DBHOST=<virtual address of the MySQL Server> DBPORT=3306 DBNAME="mqlight"
DBUSER="admin" DBPASSWORD="passw0rd" TOPIC="redbook/vote" MQHOST=<TCP/IP
Address or Host Name for MQ Server> MQPORT=5672 MQUSER=<User Id to connect to MQ
Server> MQPASSWORD=<Password to connect MQ server> MQSERVICE="amqp://localhost"
MQUSESERVER="CLOUD" MQID="Recv001" SAVEMETHOD="MQ" node app.js

4. Table 6-12 tabulates the parameters that are used for running the message processor on
the corporate server.

Table 6-12 Parameters for the receiver server in the corporate data center

Attribute Default/Old New Value Purpose

DBHOST <virtual address of the
MYSQL Server>

<virtual address of the
MySQL Server>

Host name or IP
address of MySQL
server

DBPORT 3306 3306 Port number for
MySQL database

DBNAME mqlight mqlight MySQL
database/schema
name

DBUSER admin admin MySQL user

DBPASSWORD passw0rd passw0rd MySQL password

TOPIC redbook/vote redbook/vote Topic from IBM MQ
Light/IBM MQ server

MQHOST <> <TCP/IP Address or
Host Name for MQ
Server>

IBM MQ server host
name or IP server
Chapter 6. Asynchronous processing through IBM MQ Light service 159

5. The message processor is not running in the corporate data center. It is reading
messages by using direct connection to the corporate IBM MQ server and writing the
appropriate data to the MySQL server.

6.10.5 Testing the application

The application can be tested by using the following steps:

1. Open a new browser window or tab and type in the following URL: <Web application Host
Name>/redbookApp.

MQPORT 5672 5672 Port number for IBM
MQ server AMQP
Listener

MQUSER <> <User Id to connect to
MQ Server>

User ID to connect to
IBM MQ server

MQPASSWORD <> <Password to connect
MQ server>

Password to connect
to IBM MQ server

MQSERVICE ampq://localhost ampq://localhost Local IBM MQ Light
server

MQUSESERVER LOCAL CLOUD Valid values:
LOCAL: Local MQ
Light Server
BLUEMIX: Bluemix
service
CLOUD: IBM MQ
server

MQID Send001 Send001 Sender ID

SAVEMETHOD MQ MQ Valid values:
DB: Direct to database
MQ: To MQ Light/IBM
MQ Server

Attribute Default/Old New Value Purpose
160 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

2. Enter name, phone number, email, and select a choice from the drop-down list, as shown
in Figure 6-52.

Figure 6-52 Voting application: Cast your vote

3. Click Vote.

4. The application responds with a message of thanks and displays a time stamp for the vote.

5. The vote is now saved to the corporate IBM MQ server by the web application. The
message processing application now running inside the corporate data center processes
the message from the corporate IBM MQ server and posts it to the local database.

6. Open a new browser window or tab and type in the URL: http://<API Server Host
Name>/api-docs/#

The API Server Test Console is shown as in Figure 6-17 on page 129.

Figure 6-53 API Server Test Console

7. Click votes. This opens a list of APIs for votes.
Chapter 6. Asynchronous processing through IBM MQ Light service 161

8. Click GET /votes. This opens the API details.

9. Click Try it out!

The database records from the MySQL database are shown as a JSON Array, as shown in
Figure 6-54.

Figure 6-54 Details from the API server

10.Notice that the votes you cast should now appear in this list.

11.To view the last message processed by the message processor, try the URL on a browser:
<Message Processor Host Name data center>:3000/lastMessage.

12.This URL displays a JSON object as shown below:

{"name":"John","phone":"9999-1010","email":"c@c.com","voterChoice":"French","vo
tetimeStamp":"2015-11-30T02:54:32.088Z","referenceNumber":"Key-1448852186372"}

13.The message processor picked the vote from the IBM MQ server and saved it to the
MySQL database.

6.10.6 Summary of subscenario 3

In this subscenario, the data captured by the web application is stored directly into the
corporate IBM MQ. It reduces the time taken by the API server to process client requests. It
improves performance and scalability of the solution. The important point to note is that no
code changes were required. The same user interface application, the API server, and the
message processor were reused. The API server and message provider were configured with
sightly different parameters.
162 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Following are the main differences from subscenario 2:

� The corporate IBM MQ inside the corporate data center was used instead of the IBM MQ
Light service on Bluemix.

� The message processor now runs in the corporate data center.

The result for the business is still the same. Each vote is recorded in a MySQL database. The
user does not see any changes to the application.

Figure 6-55 shows the flow of information from the user to the database.

Figure 6-55 Subscenario 3: Flow of information from user to database

This subscenario offers improved performance and scalability for the voting application as
compared to subscenario 1. An external event (casting of a vote) is now available as an event
inside the corporate data center and can be used by the enterprise applications.

6.11 Implementing subscenario 4

In this subscenario, the API server records the user’s vote on the enterprise IBM MQ. The
enterprise applications’ process the information received from the user. The enterprise
application uses the IBM MQ, IBM Integration Bus, and IBM DB2 databases.

This section has been developed assuming that you are familiar with the concepts and
operations of IBM MQ, IBM Integration Bus, and IBM DB2 databases.

The enterprise application records the data to a database and in addition:

� Publishes the latest results to IBM MQ.

� Provides a REST service that can be used to query a list of votes by voter’s choice.

server contents

corporate data center

API
Server

AMQP
SQL

HTTPS REST
Cast
Vote

Se

IB
M

 M
Q

8.

0.
0.

4
er

User Initiated Activity Automated Activity

Secure Tunnel

Message Processor MySQL
Chapter 6. Asynchronous processing through IBM MQ Light service 163

The API server provides the capability to publish a vote to IBM MQ and in addition:

� Listens for the latest results from IBM MQ.

� When a result is updated, it caches the latest results.

� When a user requests the latest results using the REST API, it provides the latest cached
copy.

The web application allows a user to cast their vote and in addition:

� Allows a user to view the latest results

� Allows a user to see the list of votes by voter choice

Figure 6-56 shows the components that are used by this subscenario.

Figure 6-56 Components used by subscenario 4

6.11.1 Stopping the message processor application in a corporate gateway

The message processing server used in subscenario 3 can optionally be switched off. The
message received by IBM MQ will be processed directly by the enterprise application. If the
message processor server is running for this subscenario, the vote details are added to both
the MySQL database and IBM DB2 database.

6.11.2 Configuring the API server to use the enterprise IBM MQ server and
receive results

Perform the following steps to configure the API server to use the enterprise IBM MQ server
and receive results:

1. Open the following URL:

https://console.ng.bluemix.net

2. Log in using your IBM user ID and password.
164 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://console.ng.bluemix.net/
https://console.ng.bluemix.net

3. Click DASHBOARD.

4. Click redbook-MQLight-service-1 under Applications.

5. Click STOP.

6. Click Environment Variables.

7. Click USER-DEFINED.

8. Replace with the value that matches your configurations, as shown in Table 6-13.

Table 6-13 Parameters for the API server

Attribute Default/Old New value Purpose

DBHOST <virtual address of the
MYSQL Server>

<Cloud Host for
MySQL Server>

Host name or IP
address of MySQL
server

DBPORT 3306 <Cloud Port for
MySQL Server>

Port number for
MySQL database

DBNAME mqlight mqlight MySQL
database/schema
name

DBUSER admin admin MySQL user

DBPASSWORD passw0rd passw0rd MySQL password

TOPIC redbook/vote redbook/vote Topic from IBM MQ
Light/IBM MQ server

MQHOST <> <Cloud Host for MQ
Server>

IBM MQ server host
name or IP server

MQPORT 5672 <Cloud Port for MQ
server>

Port number for IBM
MQ server AMQP
Listener

MQUSER <> <User Id to connect to
MQ Server>

User ID to connect to
IBM MQ server

MQPASSWORD <> <Password to connect
MQ server>

Password to connect
to IBM MQ server

MQSERVICE ampq://localhost ampq://localhost Local IBM MQ Light
server

MQUSESERVER LOCAL CLOUD Valid values:
LOCAL: Local IBM MQ
Light server
BLUEMIX: Bluemix
service
CLOUD: IBM MQ
server

MQID Send001 Send001 Sender ID

SAVEMETHOD MQ MQ Valid values:
DB: Direct to database
MQ: To IBM MQ
Light/IBM MQ Server
Chapter 6. Asynchronous processing through IBM MQ Light service 165

9. Scroll to the bottom of the page and click SAVE.

10.Click Overview.

11.Click START.

12.The API application running on Bluemix is now recording a vote using the corporate IBM
MQ server on Bluemix. It also processes the results from the IBM MQ server that are
being sent by IBM Integration Bus.

6.11.3 Configuring IBM MQ

In this subscenario, we create the subscription in IBM MQ to receive messages into a local
queue as published by the IBM MQ Light application on Bluemix.

The example below shows the runmqsc command to create a subscription with the destination
as a local queue.

Example 6-3 runmqsc command

runmqsc <QMGR>
def SUB (Redbook) TOPICSTR ('redbook/vote') DEST('SUBQ')

When an IBM MQ Light application publishes messages on the topic “redbook/vote”, the
messages are put on to the IBM MQ queue “SUBQ”.

6.11.4 Developing the IBM Integration Bus message flows

This scenario requires three distinct operations that the Integration Bus needs to handle:

� Receiving the message from the IBM MQ queue and updating the backend DB2 database.

� On successful update of the record to the database, publishing the tally of votes to an IBM
MQ topic.

� Providing the REST API interface to query all votes or the votes by user-defined choice.

The IBM Integration Bus code used in this subscenario has been provided in the IIB-code
folder that was created in 6.8.3, “Deploy the API server” on page 125.

Developing message flow to process IBM MQ queue-based messages
The application running on Bluemix publishes messages over the AMQP channel to the
on-premises IBM MQ, which is configured to listen for IBM MQ Light messages for a specified
topic. As explained in the previous section, the subscription defined on IBM MQ sends the
IBM MQ Light message to the destination queue “SUBQ”. Therefore, we configure our IBM
MQ Input endpoint to read messages from this queue.

RESULTTOPIC redbook/results redbook/results Used in subscenario 4
to publish the leader
board

ENABLEENTERPRISE false true The valid values are
“true” (only for
subscenario 4) or
“false” for all other
subscenarios

Attribute Default/Old New value Purpose
166 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 6-57 shows the message flow design to process this message.

Figure 6-57 Message flow to read IBM MQ messages

Because the messages arriving from the sender application over the AMQP channel are in
JSON format, we set the “Message domain” property as JSON on the MQ Input node labeled
“SUBQ” as shown in Figure 6-58.

Figure 6-58 MQ Input Node Properties window

In the compute node labeled Update VoteInDB, we extract the fields from the input message
and form the SQL query to update the record in the database. The excerpt of the code
showing the parsing of JSON input data and SQL query to insert the data is shown in
Example 6-4.

Example 6-4 ESQL code to read JSON input message and insert to database

SET RefNum = 'key-1001';
SET name = InputRoot.JSON.Data.name;
SET phone = InputRoot.JSON.Data.phone;
SET email = InputRoot.JSON.Data.email;
SET voterChoice = InputRoot.JSON.Data.voterChoice;
SET votertimeStamp = InputRoot.JSON.Data.votetimeStamp;

INSERT INTO Database.CustomerVotes values (RefNum, name, email, phone,
voterChoice, votertimeStamp);

The message is then put to the output queue labeled as “IN_PUBLISH,” which also serves as
input queue to drive another message flow that will publish the votes tally to the IBM MQ
topic.

Developing message flow to publish a message to IBM MQ topic
The scenario requires that the latest tally of the votes is published when there is a new vote
casted. Therefore, we create a message flow, which gets triggered when a new vote gets
added to the voter’s database described in the above section.
Chapter 6. Asynchronous processing through IBM MQ Light service 167

Figure 6-59 shows the message flow design to publish the message to an IBM MQ topic.

Figure 6-59 Message flow to publish to a topic

We configure the IBM MQ Input node with the properties shown in Figure 6-60.

Figure 6-60 Input queue for the Publish message flow

The output of the previous message flow is specified as input queue to this message flow.

In the Advanced tab of Input node, add the specific name of the topic to which the message
will be published. Figure 6-61 shows the Topic is set to “redbook/results”.

Figure 6-61 MQ Input Node Properties to set topic string
168 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

The compute node labeled as “Vote Tally” retrieves the vote tally from the database and
constructs the output message in JSON format, as shown in Example 6-5.

Example 6-5 ESQL code to construct a JSON Array output message

CALL CopyMessageHeaders();
DECLARE myRow ROW;
SET myRow.vote[] = PASSTHRU ('SELECT count(*) as VoteCount, voterChoice FROM
Votes1 group by voterChoice order by VoteCount DESC');
SET OutputRoot.JSON.Data = myRow;
SET OutputRoot.JSON.Data TYPE = JSON.Array;

No configuration is required on Publication Node.

When this message flow gets triggered, the JSON message of the following format gets
published to the IBM MQ topic “redbook/results” as configured on the MQInput node. A
sample message is shown in Example 6-6.

Example 6-6 Sample message published by the message flow

[{"VOTECOUNT":3,"VOTERCHOICE":"Italian"},{"VOTECOUNT":2,"VOTERCHOICE":"Mexican"}]

On the IBM MQ side, we create a new subscription for the topic “redbook/results” as shown in
Example 6-7.

Example 6-7 Define subscription topic on IBM MQ to receive results from Integration Bus

$runmqsc <Queue Manager Name>
def SUB('votesResults') TOPICSTR ('redbook/results') DESTCLAS(managed)

The AMQP channel configured on IBM MQ allows IBM MQ Light client applications to receive
messages if they are subscribed to this topic.

Developing message flow as REST API for requesting data on demand
As an administrator of the front-end application, you might need to view the data for all the
voters and also by specific choices. For this purpose, we expose the message flows as REST
API, which fetches the information from the backend database and returns the results to the
user.

The steps to import the Swagger 2.0 file into Integration Toolkit and implementing the subflow
for each REST operation is explained in Chapter 3, “Introduction to IBM messaging and
integration products” on page 37.
Chapter 6. Asynchronous processing through IBM MQ Light service 169

After implementing the REST operations (GET method), the message flow design is
displayed as shown in Figure 6-62.

Figure 6-62 REST API project to implement customer data retrieval operations

The HTTP Input node listens for the request coming on the configured URL and routes to the
respective subflow based on the operation contained in the request message.

The subflow implements a compute node to get the data from the backend database and
forms an output message to be replied back to the requesting user.

For example, the getCustomer subflow has ESQL code as shown in Example 6-8 to generate
the output message in JSON format.

Example 6-8 ESQL for receiving GET request and generating output message

DECLARE myRow ROW;
DECLARE voteChoice Char;
IF FIELDTYPE(InputLocalEnvironment.REST.Input.Parameters.customerId) IS NOT NULL
THEN

SET voteChoice = InputLocalEnvironment.REST.Input.Parameters.customerId;
END IF;

IF InputLocalEnvironment.REST.Input.Method = 'GET' THEN
SET myRow.vote[] = (SELECT T.RefNum as referenceNumber, T.name , T.email,

T.phone, T.voterChoice, T.votetimeStamp FROM Database.Votes1 AS T where
T.voterChoice=voteChoice);

SET OutputRoot.JSON.Data = myRow;
SET OutputRoot.JSON.Data TYPE = JSON.Array;

END IF;

Similarly, implement the operations in the other subflows according to the requirements of the
user application.
170 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

The overall topology of the integration server after deploying all the three message flow
applications looks as shown in Figure 6-63.

Figure 6-63 Integration Server topology

Note: IBM Integration Bus V10 includes new capability that allows administrators to enable
Cross-Origin Resource Sharing, or CORS. By enabling CORS support in IBM Integration
Bus, web pages can make requests to services, such as REST APIs or integration
services, which are hosted on IBM Integration Bus.

To enable CORS support, run the following command on your Integration Node:

HTTP listener for the integration server

mqsichangeproperties <IIBNODE> -e <Integration Server> -o HTTPConnector -n
corsEnabled -v true

HTTP listener for the integration node (IIB v10.0.0.1 or later)

mqsichangeproperties <IIBNODE> -b httplistener -o HTTPConnector -n corsEnabled
-v true

For advanced CORS configuration options in Integration Bus, see the following link:

https://developer.ibm.com/integration/blog/2015/06/05/cross-origin-resource-sha
ring-cors-in-ibm-integration-bus-v10
Chapter 6. Asynchronous processing through IBM MQ Light service 171

https://developer.ibm.com/integration/blog/2015/06/05/cross-origin-resource-sharing-cors-in-ibm-integration-bus-v10
https://developer.ibm.com/integration/blog/2015/06/05/cross-origin-resource-sharing-cors-in-ibm-integration-bus-v10

6.11.5 Registering IBM Integration Bus REST API with
Bluemix API Management Service

We now describe the steps to register Integration Bus REST API with API management
service.

1. Create a new API management service in your Bluemix space and click GO TO API
MANAGER as shown in Figure 6-64.

Figure 6-64 Launch API Manager

2. Go to the APIs page by clicking the icon on the left-side menu as shown in Figure 6-65.

Figure 6-65 Select APIs configuration tab
172 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

3. To add the API, click the plus sign (+) as shown in Figure 6-66.

Figure 6-66 Add an API

4. Multiple options are available to add the APIs. We use the Load a Swagger File option to
load the APIs from the Swagger file available on the local file system. We use the same
Swagger definition JSON file that was used for generating the REST API message flow.
Refer to Figure 6-67.

Figure 6-67 Load the Swagger JSON file
Chapter 6. Asynchronous processing through IBM MQ Light service 173

5. After the Swagger document is imported, the REST Operations appear as shown in
Figure 6-68.

Figure 6-68 API Operations that are loaded from the Swagger file

6. In the Operations section, click the edit icon to implement the proxy URL and click Save,
as shown in Figure 6-69.

Figure 6-69 Edit the operations to implement the Proxy URL

7. As shown in Figure 6-70, in the Proxy URL text box, replace the Integration Bus host name
or IP and port with the Secure Gateway cloud host and port that is generated by the
Secure Gateway when the destination was created for IBM Integration Bus REST API
message flow. Similarly, perform the steps for all operations that you want to implement.

Figure 6-70 Add the Proxy URL for the REST method
174 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

8. Create a new plan to publish the above REST operations as shown in Figure 6-71.

Figure 6-71 Create a plan

9. Add a title for the plan as shown in Figure 6-72.

Figure 6-72 Provide a title to the plan

10.Select the operations that you want to add to the plan, as shown in Figure 6-73.

Figure 6-73 Adding operations to the plan
Chapter 6. Asynchronous processing through IBM MQ Light service 175

11.Save the plan and stage the plan to a sandbox environment as shown in Figure 6-74.

Figure 6-74 Save and stage the plan to a sandbox

12.After the plan is staged successfully, go to the Management tab from the left-side menu
for publishing the plan. The Publish menu appears upon clicking the icon under Actions,
as shown in Figure 6-75.

Figure 6-75 Publish the plan
176 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

13.A new dialog box appears as shown in Figure 6-76 when you click the Publish option in
the previous step. The dialog box offers you the option to specify the visibility of the plan
and the subscribers of this plan. For this scenario, we use default options.

Figure 6-76 Visibility and subscribers of the plan

When the plan is published successfully, the status gets updated as shown in Figure 6-77.

Figure 6-77 Status of the plan after publish

14.Now go to the Environments section from the left-side menu and select the Portal tab
and click Portal URL under Basic Developer Portal, as shown in Figure 6-78.

Figure 6-78 Developer portal URL in Environments section
Chapter 6. Asynchronous processing through IBM MQ Light service 177

15.Sign in to the API Manager Developer portal as shown in Figure 6-79.

Figure 6-79 Sign in to the developer portal

16.Go to the Application section from the left-side menu and click the + sign to add a new
application, as shown in Figure 6-80.

Figure 6-80 Add a new application
178 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

17.After adding the application, click the APIs tab on the left-side menu and click the Select a
plan drop-down list as shown in Figure 6-81.

Figure 6-81 Select the plan to be used with the application

18.A list of available plans is displayed. As shown in Figure 6-82, select the plan that you
want to apply and click Use this plan.

Figure 6-82 Activate the plan
Chapter 6. Asynchronous processing through IBM MQ Light service 179

19.Select the application that you want to associate this plan with as shown in Figure 6-83.

Figure 6-83 Associate the plan with the application

20.Expand Operations by clicking the sign under the Details column to get the URL
generated by API Management service, as shown in Figure 6-84. This URL can now be
used in user applications deployed in Bluemix.

Figure 6-84 URL generated by API Management service

21.Save this URL in Figure 6-84 as <API Gateway URL for votes by cuisine service>.

6.11.6 Update and redeploy the web application

The web application allows a user to cast their vote, and view the leader board and votes by
cuisine. This application interacts with the API server to record a user’s vote:

1. Use the code downloaded in 6.8.3, “Deploy the API server” on page 125.

2. Go to the sample-app folder.

3. Use a text editor of your choice to edit sample-app/connection.properties.

Table 6-14 on page 181 contains the parameters as JSON. Replace with the value that
matches your configurations.
180 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Table 6-14 Parameters for the Sample-App

4. Validate the contents of the file and save it.

5. Change the host name to a unique name. Replace aaa with three unique characters of
your choice.

Table 6-15 Parameters table

6. Open a command prompt on your workstation.

7. Follow the instructions provided and log in to your Bluemix account by using the cf login
command:

https://www.ng.bluemix.net/docs/cli/reference/cfcommands/index.html

8. On the command prompt, change the current directory to the voting-service folder.

9. Enter the cf push command in the command window. This uploads the application to
Bluemix and deploys it.

10.If another application is using the same host name that you have chosen, the deployment
might fail. In that instance, change the host as in step 6 and try step 11.

11.Open the following URL:

https://console.ng.bluemix.net

12.Log in using your IBM user ID and password.

Attribute Default New value Purpose

baseUrl <> https://<API Server
Host Name>/v1

Base URL for the Rest
API

serviceUrl <> <API Gateway URL for
votes by cuisine
service>

Used in subscenario 4
to store API Gateway
URL for votes by
cuisine

Attribute Default New Value Purpose

host aaa-redbook-voting-sa
mple-app

xxx-redbook-voting-sa
mple-app

Unique host name for
web application server
Chapter 6. Asynchronous processing through IBM MQ Light service 181

https://www.ng.bluemix.net/docs/cli/reference/cfcommands/index.html
https://console.ng.bluemix.net/.
https://console.ng.bluemix.net

13.Click DASHBOARD.

An application is displayed on the dashboard. See Figure 6-85.

Figure 6-85 API server application deployed and running on Bluemix

14.The web application displays as shown in Figure 6-85.

15.Click redbook-votes.

16.Click Overview.

17.Write down the URL next to Routes as <Web application Host Name>. It will be
something like http://aaa-redbook-voting-sample-app.mybluemix.net.
182 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

6.11.7 Testing the application

The application can be tested by using the following steps:

1. Open a new browser window or tab and type in the following URL: <Web application Host
Name>/redbookApp.

2. Enter name, phone number, email, and select a choice from the drop-down list.

3. Click Vote. See Figure 6-86.

Figure 6-86 Voting application: Cast your vote

The application responds with a message of thanks and displays a time stamp for the vote.

4. Click the upper left corner of the user interface highlighted in red, as shown in Figure 6-86.

5. Click Votes by Cuisine. See Figure 6-87. This displays all votes sorted by latest to oldest.

Figure 6-87 Select option from the menu
Chapter 6. Asynchronous processing through IBM MQ Light service 183

6. Select your cuisine from the drop-down list as shown in Figure 6-88.

Figure 6-88 Votes by cuisine

7. Click the upper-left corner as shown in Figure 6-88.

8. Click Leader Board. The window shown in Figure 6-89 is displayed.

Figure 6-89 Voting Leader Board

9. Try casting a few more votes by clicking Cast your Vote and viewing the details change in
the application.

6.11.8 Summary of scenario 4

In this scenario, the data was captured from the user and it is processed straight through by
the enterprise application. The important point to note is that we made configuration changes
to the web application and the API server.

In this subscenario, the data related to an event in a cloud application (casting of a vote) is
persisted directly to the corporate IBM MQ server. This data is then processed by the
corporate IBM Integration Bus. Additional functionality was provided for the latest results as
well as the query about the list of votes by voter choice. An event in the internal system (a
new leader board) is made available to a listener in the IBM cloud (the API server). The API
server caches the result and publishes it as a REST API.
184 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 6-90 shows the information flow for the processing of a vote.

Figure 6-90 Subscenario 4: Flow of information from the user to database and publishing latest tally

As shown in Figure 6-91, the corporate Integration Bus makes available the details of the
votes as a REST service. This REST API is connected to the API Management server using
the secure tunnel. The User Interface application invokes the REST API running on the API
Management Bluemix service so the details of the corporate Integration Bus are never
exposed to the users.

Figure 6-91 Subscenario 4: Publishing votes by cuisine

server contents

corporate data center

API
Server

REST

JDBC/ODBC

API Management

HTTPS REST
Votes

By
Cuisinee

Se

IB
M

 M
Q

8.

0.
0.

4

IB
M

In

te
gr

at
io

n
B

us

IB
M

 D
B

2

er

User Initiated Activity Automated Activity

Secure Tunnel
Chapter 6. Asynchronous processing through IBM MQ Light service 185

6.12 Summary

In this chapter we covered the following topics:

� We started with a born-on-the-cloud application built by using the microservices
architecture. This application was developed quickly by using the IBM Bluemix innovation
platform. It lived up to its promises during initial testing and was ready to be deployed into
the production environment.

� Subscenario 1: We deployed the web application running on the cloud and securely
connecting to a database in the corporate data center. This simulated the first stage for
transformation.

� Subscenario 2: We improved the performance and scalability of the solution using Worker
Offload Pattern. This was achieved by using an IBM Bluemix MQ Light service along with
a Message Processor application. This simulated the second stage of transformation for
the solution.

� Subscenario 3: The application components from the previous subscenario were reused.
We reconfigured the solution to use an enterprise IBM MQ instead of IBM MQ Light
service on IBM Bluemix. The Message Processor used in subscenario 2 ran as an
in-house Node.js application. This represented the third stage of the transformation of the
solution.

� Subscenario 4: This subscenario extends the solution to use the enterprise service bus to
support existing capabilities as well as provide additional functionality. This subscenario
represents a hybrid enterprise solution.

We transformed a born-on-the cloud application into a hybrid enterprise solution using the
capabilities of IBM messaging and IBM Bluemix offerings. This transformation was done in
stages. The user experience was not compromised at any stage.
186 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

The sample code used for the subscenarios was developed for application messaging and
worked with configuration changes on the enterprise messaging servers offering a flexible
solution and improved developer productivity. It allowed for development agility along with
enterprise quality of service. See Figure 6-92.

Figure 6-92 Development agility and enterprise quality of service
Chapter 6. Asynchronous processing through IBM MQ Light service 187

188 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Chapter 7. Synchronizing data from
Salesforce to a remote enterprise
system

This chapter describes how to synchronize data one way from Salesforce to a remote
enterprise system. It explains in details integration between Salesforce and an on-premises
system of record through IBM Bluemix. It focuses on the following concepts:

� Remote invocation from Salesforce

� Data and services integration and application programming interface (API) composition
with StrongLoop

� Secure connectivity between cloud-based application and on-premises system of record

This chapter has the following sections:

� 7.1, “Scenario overview” on page 190

� 7.2, “Setting up the database” on page 191

� 7.3, “Exposing the database through IBM Secure Gateway” on page 192

� 7.4, “Compose API with StrongLoop” on page 196

� 7.5, “Configuring Salesforce” on page 209

� 7.6, “End-to-end testing” on page 213

� 7.7, “Conclusion” on page 216

7

Recording: You can find the recording of the scenario described in this chapter at the
following link:

https://youtu.be/WwpzHmmdfnA
© Copyright IBM Corp. 2016. All rights reserved. 189

https://youtu.be/WwpzHmmdfnA

7.1 Scenario overview

In some situations, Salesforce requires integration with remote backend systems that are
running in a private data center. In this chapter, we look at a common scenario where
Salesforce and a third-party system (for example, database, ERP) that are both managing
account data need to be synchronized.

Salesforce will be the master system for accounts and will need to trigger events to update
the backend system accordingly.

As a backend system, we use a NoSQL database (MongoDB) that will be running
on-premises. In order to access the database and establish a secured tunnel, we leverage the
IBM Secure Gateway on Bluemix.

Additionally, we use StrongLoop and its LoopBack framework to develop a RESTful interface
and get it connected to the database. The Representational State Transfer (REST) API is
exposed to Salesforce to trigger an action.

Figure 7-1 shows the overall architecture of the solution.

Figure 7-1 Solution architecture diagram

The end-to-end flow of this scenario is described below:

1. A new account is created or updated in Salesforce.

2. An outbound message is fired from Salesforce and does a callout to the REST service.

3. A LoopBack application on Bluemix handles the request from Salesforce and connects to
MongoDB through IBM Secure Gateway.

4. The LoopBack application creates a new account document or updates an existing one in
the database.

5. The LoopBack application returns an acknowledgment message to Salesforce to
complete the transaction.
190 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

7.2 Setting up the database

In this scenario, we are using MongoDB to simulate our system of record. MongoDB is a
cross-platform NoSQL database that is highly performant and scalable. Instead of storing
your data in tables and rows in MongoDB, you store JSON-like documents with dynamic
schemas, which provide greater flexibility compared to a traditional relational database.

Because we want to simulate an on-premises system of record, you install and configure
MongoDB locally rather than using an instance in the cloud.

Install MongoDB
To install MongoDB, ensure that you download the binary files for the correct platform and
follow the corresponding instructions:

1. Download the latest release of MongoDB. The binary files for the current version of
MongoDB are available at the following site:

https://www.mongodb.org/downloads#production

2. Go through the installation process and follow the instructions for the correct platform.
Refer to the following link for further details:

https://docs.mongodb.org/master/installation

Configure MongoDB
The configuration of MongoDB for this scenario is fairly simple because you just need to
create a new database that is used to store the account data. You use the mongo shell to
create the database.

1. Start the mongo shell as shown in Example 7-1.

Example 7-1 Start mongo shell command

$ mongo

For more information about the mongo shell, see the following link:

https://docs.mongodb.org/manual/tutorial/getting-started-with-the-mongo-shell

2. Create a new database as shown in Example 7-2.

Example 7-2 Create database command

> use accountdb

You now have a database up and running that is used as a system of record in this scenario.

Note: Make sure to run MongoDB by starting the mongodb process as specified in the
installation instructions.

Note: This command creates a new database if one does not already exist. Otherwise,
it returns the existing database.
Chapter 7. Synchronizing data from Salesforce to a remote enterprise system 191

https://www.mongodb.org/downloads#production
https://docs.mongodb.org/master/installation
https://docs.mongodb.org/manual/tutorial/getting-started-with-the-mongo-shell
https://www.mongodb.org/downloads#production
https://docs.mongodb.org/manual/tutorial/getting-started-with-the-mongo-shell

7.3 Exposing the database through IBM Secure Gateway

Cloud-based applications often need access to backend enterprise data or services hosted
on-premises. In this scenario, you access your database instance running locally from a
LoopBack application running in the cloud. The Secure Gateway service on Bluemix allows
you to establish a secured tunnel between your Bluemix organization and your local network,
allowing applications on Bluemix to access your database.

In this section, you configure a new Secure Gateway on Bluemix and set up the gateway
client locally to enable communication between Bluemix and your local database.

7.3.1 Configuring a Secure Gateway

In this section, you create an instance of the Secure Gateway service in Bluemix. You
configure a new gateway as well as a new destination in that gateway. The destination is the
MongoDB instance running locally.

Create a Secure Gateway instance
Once logged in to Bluemix, you have access to the service catalog and are able to create a
new Secure Gateway instance:

1. In the service catalog, click Secure Gateway.

Figure 7-2 Service catalog

Note: Ensure that you have a Bluemix account to be able to complete the rest of this
tutorial. To sign up for a Bluemix account, go to the following URL:

https://console.ng.bluemix.net/registration

Note: For more information about how to configure the Secure Gateway service on
Bluemix, see the following URL:

https://www.ng.bluemix.net/docs/services/SecureGateway/sg_022.html#sg_009
192 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://console.ng.bluemix.net/registration
https://www.ng.bluemix.net/docs/services/SecureGateway/sg_022.html#sg_009
https://console.ng.bluemix.net/registration

2. Select a space and click Create, as shown in Figure 7-3.

Figure 7-3 Service Gateway creation page

You have now created a new instance of the Secure Gateway service.

Add a gateway and destination
After creating a new instance of the Secure Gateway service, you add a new gateway and
configure the destination:

1. In the Secure Gateway service page, click Add Gateway.

Figure 7-4 Secure Gateway service page

2. In the Add Gateway page, set the name to MyDataCenter.

Figure 7-5 Add Gateway page

3. Click Add Destinations.
Chapter 7. Synchronizing data from Salesforce to a remote enterprise system 193

4. In the Add Destinations page, add a destination with the settings shown in Table 7-1.

Table 7-1 Secure Gateway destination settings

5. After entering the destination parameters, press the plus sign (+) on the right.

Figure 7-6 Add Destinations page

6. A destination named MongoDB is now listed.

Figure 7-7 New destination created

7. Click the destination information icon to display the configuration.

Figure 7-8 Destination configuration

The Secure Gateway has automatically generated a Cloud Host:Port value. This host
name and port can be used by an application to access the destination remotely. Make a
note of this value because you will use it later in this tutorial.

You have now configured a gateway and destination for accessing the database.

Property Value

Destination name MongoDB

Hostname or IP Address <IP address of database host>

Port 27017

Transport TCP

Note: Keep the Add Gateway page open because there is still one more step to complete.
We go through this step in 7.3.2, “Running the gateway client” on page 195.
194 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

7.3.2 Running the gateway client

In order to establish a secure tunnel between Bluemix and your database, you need to set up
a client where the database is hosted. The gateway client requires network access to both the
gateway running in Bluemix and to the database running on-premises. Typically, this means
that the gateway client should be installed on a host that is connected to the Internet and also
connected to the same network as the database host.

The gateway client provides native client installation and can also run in a Docker container or
in IBM DataPower. In this scenario, we use the Docker container.

Start the gateway client
You have to run a Docker command to start the gateway client. To do so, go through the
following steps:

1. Back on the Add Gateway page, click Connect It.

2. Ensure that Docker is selected and click COPY. This is the Docker command that you
need to run to start the gateway client.

Figure 7-9 Connect It page

3. Paste the command line in a terminal and run it to start the gateway client as shown in
Example 7-3.

Example 7-3 Start gateway client command

$ docker run -it ibmcom/secure-gateway-client VKMeOMzeN7K_prod_ng --sectoken
eyJ0eXAiOiJKV1QiLCJhbGciOiJIU...

4. After the gateway client is started and successfully connected to the gateway on Bluemix,
you see a message as shown in Example 7-4.

Example 7-4 Gateway client log

[INFO] (Client PID 1) The Secure Gateway tunnel is connected

Note: If Docker is not already installed on the database host, follow the installation guide
for your target operating system before proceeding:

http://docs.docker.com/engine/installation

Note: Depending on your operating system, you can use the Docker quick start
terminal to run this command.
Chapter 7. Synchronizing data from Salesforce to a remote enterprise system 195

http://docs.docker.com/engine/installation

Configure the gateway client
By default, access to your backend on-premises resources is denied through the Secure
Gateway client. Consequently, you need to add the database host name/ip and port number
to the access control list of the gateway client.

1. Press Enter to access the interactive command line and run the following command.

Example 7-5 ACL allow command

cli> acl allow 192.168.1.2:27017

2. You can check if the access control list has been updated successfully by running the S
command.

Example 7-6 Access control list status

cli> S

 -- Secure Gateway client Access Control List --

 hostname port value
 192.168.1.2 27017 Allow

The gateway client is now configured and running. The shell used to run the client is now
attached to the container, which displays when connections are open and closed.

7.4 Compose API with StrongLoop

Now that you can access the on-premises database through the Secure Gateway, you need
to create an application that exposes a RESTful interface to Salesforce and connects to the
database. To do so, we use the StrongLoop platform.

StrongLoop is built on top of the open source LoopBack framework and allows you to develop
REST APIs in Node as well as getting them connected to your data. In this scenario, it will be
the “glue” between the MongoDB database and Salesforce.

7.4.1 Getting started with StrongLoop

In this section, you go through some mandatory steps to get the StrongLoop platform up and
running.

Install Node.js
StrongLoop requires Node.js to be installed. Ensure that you download the installer for your
target operating system:

1. Download the latest release of Node.js available at:

https://nodejs.org/en/download

2. Run the installer that you downloaded to install Node.js.

Note: The host name/ip address and port number should be the same as the one used
in Table 7-1 on page 194.
196 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://nodejs.org/en/download

Install StrongLoop
StrongLoop can be installed via the Node Package Manager (npm) by performing the
following steps:

1. Execute the following command to install StrongLoop:

$ npm install -g strongloop

2. If you experienced any issues with the installation, see the following link:

https://docs.strongloop.com/display/SL/Installation+troubleshooting

Now that you installed StrongLoop, you can create an application leveraging the platform.

7.4.2 Creating an application

StrongLoop features the popular open source LoopBack framework, which enables you to
quickly compose scalable APIs. The application that is created in this scenario is a LoopBack
application.

Additionally, StrongLoop provides an slc command line tool that is used for building and
managing your application. This allows you to quickly connect your application to the
database and generate a model to interact with it.

Generate project
You use the slc command line tool to generate your LoopBack application. Go through the
following steps to generate the application:

1. Go to a directory where you want to create the application.

2. Run the following command to generate the application:

$ slc loopback

3. When prompted, name your application and the directory that will contain your project as
shown in Example 7-7.

Example 7-7 LoopBack application creation

 | | .--------------------------.
 |--(o)--| | Let's create a LoopBack |
 `---------´ | application! |
 (_´U`_) '--------------------------'
 /___A___\
 | ~ |
 __'.___.'__
 ´ ` |° ´ Y `

? What's the name of your application? sfToMongo
? Enter name of the directory to contain the project: sfToMongo
Chapter 7. Synchronizing data from Salesforce to a remote enterprise system 197

https://docs.strongloop.com/display/SL/Installation+troubleshooting

Add a database connector
LoopBack provides database connectors that implement the data exchange logic using
database drivers or other client APIs. To connect to your database, you have to install the
MongoDB connector. Perform the following steps:

1. Go to the root directory of your application:

$ cd sfToMongo

2. Run the following command to install the connector using npm:

$ npm install loopback-connector-mongodb --save

Create a data source
A LoopBack data source is a unified interface for applications to integrate with backend
systems. It provides the ability to plug in various connectors as well as the necessary
abstraction to interact with databases and services to decouple the business logic. Perform
the following steps to create a data source:

1. Use the data source generator to add a data source to your application:

$ slc loopback:datasource

2. Enter the data source name and select the MongoDB connector as shown in Example 7-8.

Example 7-8 Data source creation

? Enter the data-source name: mongo_ds
? Select the connector for mongo_ds: MongoDB (supported by StrongLoop)

3. With your favorite text editor, edit /server/datasources.json (in your sfToMongo project) to
add the necessary connection properties to your data source, as shown in Table 7-2.

Table 7-2 Data source properties

We are using the Secure Gateway destination cloud host name and port number because the
application will be running on Bluemix. Consequently, we have to access the database
through Secure Gateway.

Your data source configuration should be as shown in Example 7-9 on page 199.

Property Value Description

host <cloud host name> Use the Cloud host name as
specified in Figure 7-8 on
page 194

port <cloud port number> Use the Cloud port number as
specified in Figure 7-8 on
page 194

database accountdb Use the database name
specified in 7.2, “Setting up the
database” on page 191
198 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Example 7-9 Data source configuration

"mongo_ds": {
 "host": "cap-sg-prd-2.integration.ibmcloud.com",

 "port": 15403,
 "database": "accountdb",
 "name": "mongo_ds",
 "connector": "mongodb"
 }

Create a model
A LoopBack model represents data in backend systems such as databases. A model interacts
with the database via data sources that provide create, retrieve, update, and delete operations.
You create a model for the accountdb database that represents an account document:

1. Use the model generator to add a model to your application:

$ slc loopback:model

2. Enter the model name and select the data source created previously. See Example 7-10.

Example 7-10 Model creation

? Enter the model name: Account
? Select the data-source to attach Account to: mongo_ds (mongodb)

3. Go through the next three questions as shown in Example 7-11.

Example 7-11 Model selection

? Select model's base class PersistedModel
? Expose Account via the REST API? No
? Common model or server only? common

PersistedModel is the base class for models connected to persistent data sources, such
as databases. It provides all the standard create, read, update, and delete operations.
Additionally, StrongLoop allows you to automatically generate the REST endpoints for
these operations. In this scenario, we create our own endpoint for Salesforce so we do not
need to automatically expose our model via the REST API.

4. Add some properties to define your Account object model as shown in Example 7-12.

Example 7-12 Model properties

Let's add some Account properties now.
? Property name: account_id
? Property type: string
? Required? Yes

Let's add another Account property.
? Property name: num
? Property type: string
? Required? No

Let's add another Account property.
? Property name: name
? Property type: string
? Required? No

Let's add another Account property.
? Property name: type
Chapter 7. Synchronizing data from Salesforce to a remote enterprise system 199

? Property type: string
? Required? No

Let's add another Account property.
? Property name: industry
? Property type: string
? Required? No

Let's add another Account property.
? Property name: phone
? Property type: string
? Required? No

Enter an empty property name when done.

A representation of the data model has been generated under /common/models/.

5. By default, an ID is automatically generated by the database but in our scenario, we want to
use account_id. Open and edit /common/models/account.json as shown in Example 7-13.

Example 7-13 /common/models/account.json

{
 "name": "Account",
 "base": "PersistedModel",
 "idInjection": false,
 "options": {
 "validateUpsert": true
 },
 "properties": {
 "account_id": {
 "type": "string",
 "required": true,
 "id": true
 },
 "num": {
 "type": "string"
 },
 "name": {
 "type": "string"
 },
 "type": {
 "type": "string"
 },
 "industry": {
 "type": "string"
 },
 "phone": {
 "type": "string"
 }
 },
 "validations": [],
 "relations": {},
 "acls": [],
 "methods": {}
}

200 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Your application is now created and configured to interact with the MongoDB database
running on-premises.

7.4.3 Adding application logic

In this section, you add some logic to your application to handle events coming from
Salesforce and update the database accordingly.

Salesforce emits outbound messages in an XML format (see Example 7-14) to a REST
endpoint. Consequently, we have to expose our application through a REST interface and
process the XML message sent by Salesforce to create or update an account document in
the database.

Example 7-14 Salesforce XML outbound message

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <notifications xmlns="http://soap.sforce.com/2005/09/outbound">
 <OrganizationId>00D90000000w23QEAQ</OrganizationId>
 <ActionId>04k90000000XZMcAAO</ActionId>
 <SessionId xsi:nil="true"/>

<EnterpriseUrl>https://ap1.Salesforce.com/services/Soap/c/35.0/00D90000000w23Q</En
terpriseUrl>

<PartnerUrl>https://ap1.Salesforce.com/services/Soap/u/35.0/00D90000000w23Q</Partn
erUrl>
 <Notification>
 <Id>04l9000001QWWUdAAP</Id>
 <sObject xsi:type="sf:Account"
xmlns:sf="urn:sobject.enterprise.soap.sforce.com">
 <sf:Id>0019000000y2ypEAAQ</sf:Id>
 <sf:AccountNumber>123243</sf:AccountNumber>
 <sf:Industry>Technology</sf:Industry>
 <sf:Name>IBM</sf:Name>
 <sf:Phone>0202020202</sf:Phone>
 <sf:Type>Prospect</sf:Type>
 </sObject>
 </Notification>
 </notifications>
 </soapenv:Body>
</soapenv:Envelope>

Note: StrongLoop also provides a graphical UI (called Arc) that complements the slc
command-line tool. StrongLoop Arc can be used to create graphically data sources and
models instead of using the slc command line. See the following link for more information
about StrongLoop Arc:

https://strongloop.com/node-js/arc
Chapter 7. Synchronizing data from Salesforce to a remote enterprise system 201

https://strongloop.com/node-js/arc
https://strongloop.com/node-js/arc

Add middleware
You need to include extra middleware modules to your application to be able to handle and
parse the XML message coming from Salesforce:

1. In your project, edit server/middleware.json to register the necessary modules as shown in
Example 7-15.

Example 7-15 Modules registration

"parse": {
 "body-parser#json": {},
 "body-parser#urlencoded": {"params": { "extended": false }},
 "express-xml-bodyparser": {}
 },

2. Go to the root directory of your application and install the corresponding modules using
npm, as shown in Example 7-16.

Example 7-16 Modules installation

$ npm install body-parser --save

$ npm install express-xml-bodyparser --save

Add a custom route
We need to create a REST endpoint that receives messages from Salesforce and implements
the logic to create or update an account object in the database. Perform the following steps to
add a custom route:

1. Create a new boot script file under /server/boot and name it Salesforce.js.

2. Edit the file that you just created and add the code as shown in Example 7-17.

Example 7-17 Salesforce.js implementation

module.exports = function(app) {
var router = app.loopback.Router();
var actModel = app.models.Account;

//REST endpoint exposed to Salesforce
router.post('/processSFMsg', function(req, res) {

var account = parseMessage(req.body);

// by default return a 'false' Ack to Salesforce
var resMsg = '<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:out="http://soap.sforce.com/2005/09/outbound"><soapenv:Header/><soapenv:Body
><out:notificationsResponse><out:Ack>false</out:Ack></out:notificationsResponse></
soapenv:Body></soapenv:Envelope>';

if (account) {
actModel.upsert(account, function(err, acc) {
if(!err){

// return a 'true' Ack if data insert/updated successfully in MongoDB

Note: When a LoopBack application starts, it runs the scripts in the /server/boot
directory. By default, LoopBack loads boot scripts in alphabetical order.
202 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

 resMsg = '<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:out="http://soap.sforce.com/2005/09/outbound"><soapenv:Header/><soapenv:Body
><out:notificationsResponse><out:Ack>true</out:Ack></out:notificationsResponse></s
oapenv:Body></soapenv:Envelope>';

}
res.send(resMsg);
});

}
else
{

res.send(resMsg);
}

});

// parse the xml and return json object
parseMessage = function(obj) {
 try {

 // extract attributes from XML
 var accountId =

obj['soapenv:envelope']['soapenv:body'][0].notifications[0].notification[0].sobjec
t[0]['sf:id'] ?
obj['soapenv:envelope']['soapenv:body'][0].notifications[0].notification[0].sobjec
t[0]['sf:id'][0] : '';

 var accountNumber =
obj['soapenv:envelope']['soapenv:body'][0].notifications[0].notification[0].sobjec
t[0]['sf:accountnumber'] ?
obj['soapenv:envelope']['soapenv:body'][0].notifications[0].notification[0].sobjec
t[0]['sf:accountnumber'][0] : '';

 var accountIndustry =
obj['soapenv:envelope']['soapenv:body'][0].notifications[0].notification[0].sobjec
t[0]['sf:industry'] ?
obj['soapenv:envelope']['soapenv:body'][0].notifications[0].notification[0].sobjec
t[0]['sf:industry'][0] : '';

 var accountName =
obj['soapenv:envelope']['soapenv:body'][0].notifications[0].notification[0].sobjec
t[0]['sf:name'] ?
obj['soapenv:envelope']['soapenv:body'][0].notifications[0].notification[0].sobjec
t[0]['sf:name'][0] : '';

 var accountPhone =
obj['soapenv:envelope']['soapenv:body'][0].notifications[0].notification[0].sobjec
t[0]['sf:phone'] ?
obj['soapenv:envelope']['soapenv:body'][0].notifications[0].notification[0].sobjec
t[0]['sf:phone'][0] : '';

 var accountType =
obj['soapenv:envelope']['soapenv:body'][0].notifications[0].notification[0].sobjec
t[0]['sf:type'] ?
obj['soapenv:envelope']['soapenv:body'][0].notifications[0].notification[0].sobjec
t[0]['sf:type'][0] : '';

 return {
 account_id:accountId,

num:accountNumber,
Chapter 7. Synchronizing data from Salesforce to a remote enterprise system 203

name:accountName,
type:accountType,
industry:accountIndustry,
phone:accountPhone

 };

 } catch (e) {
 console.log('Exception parsing Salesforce XML', e);
 return null;
 }
};

 app.use(router);
}

Your application is now configured to receive outbound messages from Salesforce and
interact with the database accordingly.

7.4.4 Testing the application

Before deploying your application to Bluemix, you can run it locally and confirm that it
correctly connects to MongoDB through the Secure Gateway. To test your application,
perform the following steps:

1. To run the application, go to the root directory of your application and run the following
command:

$ slc run

Ensure that MongoDB is running as specified in “Install MongoDB” on page 191 as well as
the Secure Gateway client as described in “Start the gateway client” on page 195.

2. Check the gateway client logs because it shows new connections.

Example 7-18 Gateway client logs

[2015-11-30 00:03:59.752] [INFO] (Client PID 1) Connection #2 is being established
to 192.168.1.2:27017
[2015-11-30 00:03:59.755] [INFO] (Client PID 1) Connection #3 is being established
to 192.168.1.2:27017
[2015-11-30 00:03:59.758] [INFO] (Client PID 1) Connection #4 is being established
to 192.168.1.2:27017
[2015-11-30 00:03:59.766] [INFO] (Client PID 1) Connection #5 is being established
to 192.168.1.2:27017
[2015-11-30 00:03:59.972] [INFO] (Client PID 1) Connection #6 is being established
to 192.168.1.2:27017

3. To test the application, send messages to the REST endpoint using your preferred tool
(such as cURL or Postman). Post a sample outbound message to the application using
the information specified in Table 7-3.

Table 7-3 Test properties

Property Value

Operation POST

Endpoint http://localhost:3000/processSFMsg
204 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

4. After sending a message, you get an acknowledgment response from the application as
shown in Figure 7-10.

Figure 7-10 Test application locally with Postman

5. Using the mongo shell as described in “Configure MongoDB” on page 191, connect to the
database and run a query to verify that a new account has been successfully created.

Example 7-19 Retrieve all accounts

> db.Account.find()
{ "_id" : "0019000000y2ypEAAQ", "num" : "123243", "name" : "IBM", "type" :
"Prospect", "industry" : "Technology", "phone" : "0202020202" }

Header Content-Type=text/xml

Body Raw XML as specified in Example 7-14 on
page 201

Note: In this scenario, we use Postman to test the application. To download and install
Postman, go to the following URL:

https://www.getpostman.com

Property Value
Chapter 7. Synchronizing data from Salesforce to a remote enterprise system 205

https://www.getpostman.com
https://www.getpostman.com

So far, your application has been successfully tested locally. You can now deploy it to
Bluemix.

7.4.5 Deploying the application

In this section, you move your application to the cloud by deploying your code to Bluemix.

1. Log in to your Bluemix account using the cf tool. Run the following command:

$ cf login -a <API_URL> -u <username>

Where:

a. <API_URL>: The URL of the Cloud Foundry provider, which is Bluemix:

https://api.ng.bluemix.net

b. <username>: Your email address.

2. When prompted, enter your password and select the organization and space that you want
to use.

3. You are now logged in but before deploying the application, you need to add a
manifest.yml file to the root directory of your application, as shown in Example 7-20.

Example 7-20 Manifest.yml

applications:
- path: .
 memory: 256M
 command: node server/server.js
 instances: 1
 domain: mybluemix.net
 name: SF2Mongo
 host: SF2Mongo
 disk_quota: 1024M

4. Go to the root directory of your application and use the cf command-line interface to push
the application to Bluemix:

$ cf push

It typically takes 1 - 2 minutes to upload and start the application. You can track the status
of the deployment through the cf logs, as shown in Example 7-21 on page 207.

Note: There are various ways to deploy and manage your application on Bluemix. In this
scenario, we use the Cloud Foundry (cf) command-line interface. You can download the cf
tool at the following URL:

https://github.com/cloudfoundry/cli/releases

For more details about the cf commands, see the following link:

https://www.ng.bluemix.net/docs/cli/reference/cfcommands/index.html

Note: The manifest.yml file contains information used by Cloud Foundry to deploy the
application to Bluemix. Ensure that you change the host name because it needs to be
unique so that its route is also unique.
206 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://github.com/cloudfoundry/cli/releases
https://www.ng.bluemix.net/docs/cli/reference/cfcommands/index.html
https://api.ng.bluemix.net
https://github.com/cloudfoundry/cli/releases
https://api.ng.bluemix.net

Example 7-21 Deployment logs

...

0 of 1 instances running, 1 starting
1 of 1 instances running
App started
OK

5. As your application is started, check the gateway client logs as it shows new connections.
It means that your application running on Bluemix is now connected to your local database
through Secure Gateway.

6. You can now test your application using Postman as shown in “Testing the application” on
page 204. However, this time the endpoint is pointed to Bluemix as shown below:

http:/SF2Mongo.mybluemix.net/processSFMsg

Note: You can also check the status of your application via the Bluemix dashboard in
the space you selected.

Note: The URL will vary depending on the host name that you specified in the
manifest.yml file.
Chapter 7. Synchronizing data from Salesforce to a remote enterprise system 207

7. Modify the sf:Id field and send a new request. You should receive an acknowledgment
message from the application as shown in Figure 7-11.

Figure 7-11 Test application on Bluemix with Postman

8. By using the mongo shell as described in “Configure MongoDB” on page 191, connect to
the database and run a query to retrieve all documents in accountdb. You will see two
documents (one created when the application was tested locally and a new one created
from the application running on Bluemix).

Example 7-22 Retrieve all accounts

> db.Account.find()
{ "_id" : "0019000000y2ypEAAQ", "num" : "123243", "name" : "IBM", "type" :
"Prospect", "industry" : "Technology", "phone" : "0202020202" }
{ "_id" : "1019000000y2ypEAAQ", "num" : "123243", "name" : "IBM", "type" :
"Prospect", "industry" : "Technology", "phone" : "0202020202" }

You successfully deployed and tested your application on Bluemix. You now need to configure
Salesforce to emit outbound messages to this application for synchronization with your local
MongoDB database.
208 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

7.5 Configuring Salesforce

When you implement Salesforce, a typical requirement is to integrate with third-party
applications. Depending on the scenario, you can follow various integration patterns as
described in the following document:

http://resources.docs.Salesforce.com/latest/latest/en-us/sfdc/pdf/integration_patt
erns_and_practices.pdf

In this scenario, you use a “Remote Process Invocation” pattern, where Salesforce makes a
call to a remote system (your application running on Bluemix) to initiate a transaction on the
backend side. Salesforce will be the master system for accounts and will send new or
updated account data to the remote application.

From an integration standpoint, you will leverage the outbound messaging and workflow
capabilities of Salesforce:

� An outbound message allows you to specify object fields to be sent to a designated
remote system.

� Outbound messages are part of the workflow rule functionality in Salesforce.

� Workflow rules watch for specific kinds of field changes and trigger automatic Salesforce
actions, such as sending an outbound message.

For more details about these concepts, see the following URL:

https://developer.Salesforce.com/docs/atlas.en-us.api.meta/api/sforce_api_om_outbo
undmessaging_understanding.htm

Create a workflow rule
You need to create a new workflow rule that triggers an outbound message when an account
is created or updated in Salesforce. Follow these steps to create a workflow rule:

1. When logged in to Salesforce, ensure that you are on the Setup page. If not, click Setup at
the upper right corner.

Figure 7-12 Setup link

Note: Ensure that you have a Salesforce Developer account to be able to complete the
rest of this tutorial. To sign up for an account, go to the following URL:

https://developer.Salesforce.com/signup
Chapter 7. Synchronizing data from Salesforce to a remote enterprise system 209

http://resources.docs.Salesforce.com/latest/latest/en-us/sfdc/pdf/integration_patterns_and_practices.pdf
https://developer.Salesforce.com/docs/atlas.en-us.api.meta/api/sforce_api_om_outboundmessaging_understanding.htm
https://developer.salesforce.com/signup
https://developer.Salesforce.com/docs/atlas.en-us.api.meta/api/sforce_api_om_outboundmessaging_understanding.htm
https://developer.Salesforce.com/signup

2. Search for workflow in the Quick Find box and click Workflow Rules, as shown in
Figure 7-13.

Figure 7-13 Quick Find box

3. Click New Rule to create a new workflow rule. Figure 7-14.

Figure 7-14 New rule creation

4. Select the Account object from the list and press Next. See Figure 7-15.

Figure 7-15 Object selection
210 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

5. Enter the required information as shown in Figure 7-16 and press Save & Next.

Figure 7-16 Workflow rule configuration

The criteria that you are defining allows you to trigger this workflow rule only if the account
created or updated in Salesforce is active. It means that you will only synchronize active
accounts from Salesforce to your MongoDB database.

Create an outbound message
You need to create an outbound message containing the fields that you want to send to the
database through the application running on Bluemix. This outbound message is triggered by
the workflow rule previously created. Follow these steps to create an outbound message:

1. Click Add Workflow Action and select New Outbound Message (see Figure 7-17).

Figure 7-17 Workflow action selection
Chapter 7. Synchronizing data from Salesforce to a remote enterprise system 211

2. Enter the required information as shown in Figure 7-18 and click Save.

Figure 7-18 Outbound message details

3. Once completed, click Done. See Figure 7-19.

Figure 7-19 Save workflow rule

Note: Ensure that you specify your own endpoint URL. It should be the same URL that
you used when you tested the application on Bluemix as described in 7.4.5, “Deploying
the application” on page 206.
212 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

4. Finally, you need to activate this workflow rule by clicking Activate, as shown in
Figure 7-20.

Figure 7-20 Workflow rule activation

Your Salesforce instance is now configured to trigger an outbound message with some
account information to your application running on Bluemix. This outbound message is
triggered when an account is created or updated in Salesforce and if this account is active.
Your application returns an acknowledgment response (true or false) to Salesforce after
processing the message.

7.6 End-to-end testing

You can now test the end-to-end flow from Salesforce to MongoDB through the application
running on Bluemix.

Clean up the database
Before testing the solution, you can clean the database and remove all existing documents in
the account collection.

Using the mongo shell as described in “Configure MongoDB” on page 191, connect to the
database and run the command as shown in Example 7-23.

Example 7-23 Clean the database

> db.Account.remove({})
WriteResult({ "nRemoved" : 2 })
Chapter 7. Synchronizing data from Salesforce to a remote enterprise system 213

Create a new account
Create a new account in Salesforce to trigger an outbound message and test the flow
between Salesforce and the database. Follow these steps to create an account:

1. In Salesforce, click Accounts to open the Accounts page. See Figure 7-21.

Figure 7-21 Link to Accounts page

2. Click New to create a new account, as shown in Figure 7-22.

Figure 7-22 Accounts page
214 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

3. Enter the required information as shown in Figure 7-23 and click Save.

Figure 7-23 Account details

As soon as the account is created, the workflow rule created earlier is automatically triggered.
An outbound message is sent to the application on Bluemix, which creates a new document
in the database running locally.

Verify result
As an account is created in Salesforce, a new document is created in the database.

Using the mongo shell as described in “Configure MongoDB” on page 191, connect to the
database and run the command as shown in Example 7-24.

Example 7-24 Retrieve accounts in database

> db.Account.find()
{ "_id" : "0019000001buQSWAA2", "num" : "123456", "name" : "IBM", "type" :
"Prospect", "industry" : "Technology", "phone" : "0293547922" }

This demonstrates that the end-to-end flow is working as you are getting a new account
created in your MongoDB database as soon as an account is created in Salesforce.

You can repeat the above steps to test the creation of additional accounts. You can also edit
an existing account in Salesforce (for example, you can modify the account name) and you
will see that the account is updated accordingly in the database.
Chapter 7. Synchronizing data from Salesforce to a remote enterprise system 215

7.7 Conclusion

In this chapter, we looked at various concepts:

� Expose and access a local database through IBM Secure Gateway
� Integrate database and compose API with StrongLoop
� Deploy, manage, and test the application on Bluemix
� Configure Salesforce for remote invocation

With this knowledge, you can apply the same principles to integrate Salesforce with any
enterprise backend system running in your own data center through IBM Bluemix.

Note: If you want to track what’s happening along the way, use one of the following
methods:

� You can track the delivery status of outbound messages in Salesforce as specified at
the following URL:

https://help.Salesforce.com/apex/HTViewHelpDoc?id=workflow_tracking_outbound
_message_delivery_status.htm&language=en

Salesforce queues up the outbound messages if they cannot be processed by the
remote application. If these messages are processed successfully, they are removed
from the delivery queue.

� You can view the runtime logs of your application running on Bluemix through the
Bluemix dashboard or through the command-line interface as described at the following
URL:

https://www.ng.bluemix.net/docs/monitor_log/monitoringandlogging.html

� You can monitor Secure Gateway on Bluemix as shown at the following URL:

https://www.ng.bluemix.net/docs/services/SecureGateway/sg_022.html#sg_004

Additionally, you can see useful information and usage statistics in the gateway client
logs as described at the following URL:

https://www.ng.bluemix.net/docs/services/SecureGateway/sg_022.html#sg_020

� You can check the MongoDB logs by running the getLog command as described at the
following URL:

https://docs.mongodb.org/manual/reference/command/getLog
216 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://help.salesforce.com/apex/HTViewHelpDoc?id=workflow_tracking_outbound_message_delivery_status.htm&language=en
https://help.salesforce.com/apex/HTViewHelpDoc?id=workflow_tracking_outbound_message_delivery_status.htm&language=en
https://www.ng.bluemix.net/docs/monitor_log/monitoringandlogging.html
https://www.ng.bluemix.net/docs/services/SecureGateway/sg_022.html#sg_004
https://www.ng.bluemix.net/docs/services/SecureGateway/sg_022.html#sg_020
https://docs.mongodb.org/manual/reference/command/getLog
https://www.ng.bluemix.net/docs/services/SecureGateway/sg_022.html#sg_020
https://docs.mongodb.org/manual/reference/command/getLog
https://help.Salesforce.com/apex/HTViewHelpDoc?id=workflow_tracking_outbound_message_delivery_status.htm&language=en
https://help.Salesforce.com/apex/HTViewHelpDoc?id=workflow_tracking_outbound_message_delivery_status.htm&language=en

Chapter 8. Integrating events from Internet
of Things with Enterprise Asset
Management systems

In this chapter, we look at how events from an Internet of Things (IoT) device can be used for
alerting the asset management team and integrating the event messages automatically with
an on-premises asset management system. We created a scenario here that creates a work
order in Maximo Asset Management System if the sensor attached to a manufacturing
equipment detects that the equipment is faulty and requires maintenance. The components
for this solution include:

� Maximo Asset Management

� IBM Bluemix Internet of Things Foundation (IoTF)

� IBM Bluemix Secure Gateway service

� Node-RED Flow editor

� NodeJS application

� Twilio for sending SMS alert

This chapter has the following sections:

� 8.1, “Scenario” on page 218

� 8.2, “Introduction to IBM Internet of Things Foundation” on page 218

� 8.3, “Creating the flow in Node-RED” on page 238

� 8.4, “Binding Twilio service” on page 238

� 8.5, “IBM Maximo Asset Management solution” on page 239

� 8.6, “Integrating IoT application with IBM Asset Management system with Bluemix Secure
Gateway service” on page 248

� 8.7, “The complete solution for the scenario” on page 252

8

© Copyright IBM Corp. 2016. All rights reserved. 217

8.1 Scenario

This section describes the IoT scenario that we implement to demonstrate the capabilities of
event integration using Secure Gateway. In later sections, we cover the basics of building a
solution like this using the building blocks or services from Bluemix. IBM Maximo Asset
Management is acting as an enterprise system of record (SOR). We provide an overview of
IBM Maximo Asset Management, its benefit, and purpose in Section 8.5, “IBM Maximo Asset
Management solution” on page 239.

Figure 8-1 Internet of Things scenario

8.2 Introduction to IBM Internet of Things Foundation

In this section, we provide an overview of IBM Internet of Things Foundation (IoTF) and the
capabilities if offers.

8.2.1 Quickstart mode

Here the quickstart mode refers to a flow creation in Node-RED quickly without registering the
device. This mode requires entering the unique device ID of the sensor as illustrated in
Figure 8-8 on page 223. There is also an IBM Internet of Things Foundation Quickstart
service. This is a tool for connecting sensors using MQ Telemetry Transport (MQTT)
protocols (MQTT 3.1 at the minimum) to IoTF quickly.

For more information, see the following URL:

https://quickstart.internetofthings.ibmcloud.com

For MQTT, see 3.6, “Introduction to IBM MessageSight” on page 60.

This section takes you through step-by-step instructions to create an IoT application in
quickstart mode. This section reads the sensor data sent from a Texas Instruments (TI)
SimpleLink SensorTag via the SensorTag app installed on an iPhone. SensorTag app
installation and prerequisite steps to connect to IBM IoT are described in the following website:

https://developer.ibm.com/recipes/tutorials/connect-a-cc2650-sensortag-to-the-iot-
foundations-quickstart

IoT device/
sensor

Secure
Gateway

NodeJS as
API Proxy

Corporate data center

Secure Tunnel

S
ec

ur
e

G
at

ew
ay

C

lie
nt

Windows
2012

IBM Maximo
Asset
Management

DMZ

Internet of
Things

Twilio
218 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://developer.ibm.com/recipes/tutorials/connect-a-cc2650-sensortag-to-the-iot-foundations-quickstart/
https://developer.ibm.com/recipes/tutorials/connect-a-cc2650-sensortag-to-the-iot-foundations-quickstart/
https://quickstart.internetofthings.ibmcloud.com/

Therefore, this section only describes the steps needed to create the flow to read the sensor
data and write to a debug node in Node-RED in JavaScript Object Notation (JSON) format.
Write down the device ID that you get from your iOS SensorTag app. It is required later.

Follow these steps to complete this exercise:

1. Create a space in your Bluemix organization. Use the same space for all the steps in this
chapter. We used our own organization and the space dev throughout this chapter.

2. Choose Node-RED Starter from the Bluemix catalog as shown in Figure 8-2.

Figure 8-2 Node-RED Starter boilerplates among others from Bluemix catalog

Note: Do not worry if you do not have a TI SensorTag. If you have a Raspberry Pi or Intel
Galileo or any other device that talks MQTT, you can connect that too. For a list of tutorials
or recipes, see the following link:

https://developer.ibm.com/recipes

If you do not have a device at all, you can use a simulated sensor that Bluemix provides
from the following URL:

https://quickstart.internetofthings.ibmcloud.com/iotsensor

Note: For more information about how to create a space, see the following link:

https://www.ng.bluemix.net/docs/admin/index.html

Note: The window as shown was captured at the time of writing this book. A number of
items in boilerplate sections vary from one Bluemix region to another. We created this
app in Bluemix US South location.
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 219

https://developer.ibm.com/recipes/
https://www.ng.bluemix.net/docs/admin/index.html
https://quickstart.internetofthings.ibmcloud.com/iotsensor/
https://www.ng.bluemix.net/docs/#acctmgmt/index.html#acctmgmt
https://www.ng.bluemix.net/docs/admin/index.html

3. The next step is to choose a name for the Starter app. We chose iot-redbooks-demo as
the app name, all the default options, and then clicked Create.

4. In a minute or so, the iot-redbooks-demo app will be deployed and running on Bluemix.
Figure 8-3 shows the application dashboard after it started. As you can see from the
diagram, it is running on NodeJS runtime and using 512 MB of memory. This diagram also
shows that only one instance of the app is running. Node-RED Starter app from Bluemix
catalog is always bundled with a Cloudant NoSQL database. This window also shows that
a Cloudant NoSQL database iot-redbooks-demo-cloudantNoSQLDB is bound to this
Node-RED app running on NodeJS runtime. Environment Variables from the left pane
direct to VCAP_SERVICES and USER-DEFINED variables. You need to add two key-value pairs
in the USER-DEFINED variable section soon. Spend some time to familiarize yourself with
the variables.

Figure 8-3 Node-RED Starter

5. Click the URL from the Routes: label as illustrated in Figure 8-3. It opens in another
browser tab. You will see a window similar to Figure 8-4 on page 221. Click Go to your
Node-RED flow editor to go to the Node-RED flow editor.

Note: See the following URL to learn more about Cloud Foundry variables:

https://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html
220 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html

Figure 8-4 Node-RED welcome page

Anyone is able to access the flow editor and modify or create new flow and deploy. This is not
a secure way to manage your Node-RED based application. Bluemix allows you to make your
application secure by adding environment variables. As shown in Figure 8-5, add two
variables named NODE_RED_USERNAME and NODE_RED_PASSWORD. Your application needs to be
restaged for this change to be effective.

Figure 8-5 Password protecting the Node-RED editor using environment variables
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 221

6. Click Go to your Node-RED flow editor as shown in Figure 8-4 on page 221. This time,
there is a prompt to enter credentials before proceeding to the flow editor. See Figure 8-6.

Figure 8-6 Node-RED editor prompting for credentials

Initially, there is an empty sheet named Sheet 1. Double-click this tab to rename it to Quick
start mode in the dialog box as shown in Figure 8-7. We create another tab to compose a
more complex flow in the next section. Multiple tabs allow you to keep separate apps and
logic organized separately for ease of management.

Figure 8-7 Renaming the initial sheet to Quick start mode
222 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

7. Now drag an ibmiot node from the left palette of the window into the Quick start mode
sheet or tab. Double-click the ibmiot node and select Quickstart from the Authentication
drop-down list as shown in Figure 8-8. Remember to enter the TI SensorTag Device ID
that you noted in the prerequisite step and click Ok. You now have a simple IoT app that
can read sensor data from the SensorTag.

Figure 8-8 Node-RED Quickstart mode

You have the option to do anything with the raw data that you get from the sensor. We
extracted the raw data in JSON format and then sent it to a DEBUG node to see the content.
This simple flow looks similar to the flow in Figure 8-9.

Figure 8-9 A simple flow in quickstart mode
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 223

You have the option to import the flow in JSON format by selecting Import → Clipboard as
shown in Figure 8-10. Copy and paste the JSON-based flow from Example 8-1. Click
anywhere in the editor to place the flow. Also, remember to change the deviceId in the JSON
file with the actual device ID.

Figure 8-10 Importing a flow in JSON format

Example 8-1 JSON-based flow for the example app

{
 "id":"2b22eacc.20fcd6",
 "type":"ibmiot in",
 "z":"9be28101.43699",
 "authentication":"quickstart",
 "apiKey":"",
 "inputType":"evt",
 "deviceId":"EnterYourDeviceIDHere",
 "applicationId":"",
 "deviceType":"+",
 "eventType":"+",
 "commandType":"",
 "format":"json",
 "name":"TI Sensortag",
 "service":"quickstart",
 "allDevices":false,
 "allApplications":false,
 "allDeviceTypes":true,
 "allEvents":true,
 "allCommands":false,
 "allFormats":false,
 "x":110,
 "y":320,
 "wires":[
 [
 "68bbd4f1.2a2ba4"
]
]
 },
 {
 "id":"68bbd4f1.2a2ba4",
 "type":"change",
 "z":"9be28101.43699",
224 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

 "name":"Sensor data in JSON format",
 "rules":[
 {
 "t":"set",
 "p":"payload",
 "to":"msg.payload.d"
 }
],
 "action":"",
 "property":"",
 "from":"",
 "to":"",
 "reg":false,
 "x":390,
 "y":189,
 "wires":[
 [
 "dab1dff1.2ab71"
]
]
 },
 {
 "id":"dab1dff1.2ab71",
 "type":"debug",
 "z":"9be28101.43699",
 "name":"",
 "active":true,
 "console":"false",
 "complete":"false",
 "x":677,
 "y":189,
 "wires":[

]
 }
]

8. After all the tasks above have been completed, you will see an output similar to
Example 8-2 from the debug tab from the right side.

Example 8-2 Output of the flow

{
 "key1":"0",
 "key2":"0",
 "AmbTemp":"24.9375",
 "IRTemp":"19.71875",
 "humidity":"74.33875",
 "accX":"0.02191162",
 "accY":"0.01220703",
 "accZ":"0.2265625",
 "gyroX":"-0.7392883",
 "gyroY":"1.750946",
 "gyroZ":"1.330719",
 "magX":"-78.69873",
 "magY":"15.43994",
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 225

 "magZ":"-132.6636",
 "optical":"7.95"
}

This concludes this simple exercise. In this section, you learned:

� The basics of IBM Node-RED Starter app.
� How to connect an IoT device to IoTF in a Quickstart mode.
� How to import a flow into the editor.
� Receive sensor data from a sensor and finally see the contents from the debug tab.

8.2.2 Registering an IoT device

In this section, we securely connect an IoT device to the IBM Internet of Things Foundation
(IoTF). This allows you to manage the sensor or IoT device to be managed from IoTF. As
explained in Section 8.2.1, “Quickstart mode” on page 218, the IBM IoT recipe website
contains a list of tutorials for connecting various devices to IoTF. If you do not have a physical
device to connect to IoTF, you can create an improvised IoT device. This requires some
programming and modifying parameters specific to IoTF organization ID, device ID,
authentication method, token, and device type. Read the following article to learn more about
this and look at sample source code provided:

http://www.ibm.com/developerworks/cloud/library/cl-mqtt-bluemix-iot-node-red-app

The simulated and managed IoT device in this section has been created by using source
code from the above article. It has other components, which will be discussed later.

Perform the following steps to register an IoT device:

1. Create an IOTF service in the Space dev from the iot-redbooks-demo app dashboard. To
do this, click Add a service or API from the dashboard as shown in Figure 8-3 on
page 220. This directs you to the Bluemix catalog. Now select the Internet of Things
check box as shown in Figure 8-11 on page 227.
226 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

http://www.ibm.com/developerworks/cloud/library/cl-mqtt-bluemix-iot-node-red-app/

Figure 8-11 Selecting IoT service from IBM Bluemix catalog

2. After this option is selected, the Bluemix Internet of Things category and services in this
category are displayed in the page that looks similar to Figure 8-12. Select Internet of
Things Foundation.

Figure 8-12 Currently available IoT services from IBM and a third party
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 227

3. Enter iot-redbooks for Service name: and click CREATE with other options as shown in
Figure 8-13. This new service is bound to the iot-redbooks-demo app.

Figure 8-13 Creating an Internet of Things Foundation service

4. iot-redbooks-demo is restaged for this new addition to be effective. Figure 8-14 shows the
dashboard with newly added IoTF service and previous bound Cloudant NoSQL DB
service.

Figure 8-14 Node-RED Starter after addition of IoTF service
228 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

5. Click Internet of Things Foundation service from the dashboard. It directs you to the
Internet of Things Foundation welcome page, as illustrated by Figure 8-15. This page has
links to the IoTF dashboard and tutorials to get started.

Figure 8-15 Welcome page showing links to dashboard, documentation, and tutorials
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 229

6. Click Launch dashboard. The OVERVIEW tab gives a summary of the number of devices
registered, usage, data traffic, and access-related information. Because this is a new
service, the number of devices connected in zero. As you can see from Figure 8-16, the
Organization ID is bu385r.

Figure 8-16 IoTF Dashboard

The Access section of the page shows information related to members in this organization,
number of application programming interface (API) keys created, and number of Bluemix
applications bound to this. This is illustrated in Figure 8-17. Only one Bluemix application
(iot-redbooks-demo) has been bound to this service. Therefore, the number of Bluemix
applications is one.

Figure 8-17 Dashboard showing access-related information for IoTF service
230 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

7. Click +Add a device (as shown in Figure 8-16 on page 230) to add a new device to the
organization. At this stage, no device type is defined. As such, the Choose Device Type
drop-down list is empty. Click Create device type to add a new device type.

Figure 8-18 Creating a device type

8. Enter CompanyA-Sensors for Name and Sensors attached to manufacturing equipments
for Description as shown Figure 8-19. Click Next.

Figure 8-19 Entering details for device type
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 231

9. Parameters in the Define Template window as indicated in Figure 8-20 are optional. Click
Next.

Figure 8-20 Defining a template for the device type

10.Click Next when the Submit Information window appears. See Figure 8-21.

Figure 8-21 Submit information for the device type
232 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

11.The Metadata section is optional. Click Create. This completes all the steps to create the
device type. See Figure 8-22.

Figure 8-22 Optional metadata for the device type

12.Now you are ready to add a device. In the Add Device window, select CompanyA-Sensors
from the Choose Device Type drop-down list. Click Next.

Figure 8-23 Choosing a device type for the Add Device window
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 233

13.Add Device ID, Serial Number, Manufacturer, and Model details as shown in Figure 8-24.

Figure 8-24 Adding device details

14.The Metadata section is optional. Click Next. See Figure 8-25.

Figure 8-25 Adding optional metadata for the device
234 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

15.In the Security section, we chose the Auto-generated authentication token option. If a
token is not provided, this option is chosen automatically. Click Next. See Figure 8-26.

Figure 8-26 Generating authentication token for device

16.The Summary section summarizes the information for the device to be added. Click Add.
See Figure 8-27.

Figure 8-27 Summary of device to be added
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 235

17.Now you see a window that is similar to Figure 8-28 showing device credentials. Write
down these details in a secure place.

Figure 8-28 Device credentials

Note: Authentication tokens are unrecoverable. As such, you need to store these securely.
If these are misplaced, you need to reregister the device to generate a new token.
236 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

18.Next, we generate an API key from the ACCESS tab by clicking the API Keys option, as
seen in Figure 8-29. Click Generate API Key.

Figure 8-29 Generating API key

19.Write down the API key details from “Your API key information” section as shown in
Figure 8-30 and store in a secure place. These details are unrecoverable.

Figure 8-30 API key information

This concludes the setup that is required to register an IoT device.

Note: Authentication tokens are unrecoverable. As such, you need to store these securely.
If these are misplaced, you need to reregister the device to generate a new token.
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 237

8.3 Creating the flow in Node-RED

Perform the following steps to create a flow. We gradually complete the flow to add more
functionalities and integrate Maximo Asset Management:

1. As shown in Figure 8-4 on page 221, open the welcome page of iot-redbooks-demo and
click Go to Node-RED flow editor. After entering the correct credentials, the flow editor is
displayed.

Figure 8-31 Adding a new sheet to Node-RED editor

8.4 Binding Twilio service

Twilio is a third-party service that is provided from Bluemix catalog. By now, we assume that
you know how to create or bind a service to your Bluemix application. Follow these high-level
steps:

1. Create a trial or paid account of Twilio from https://www.twilio.com.

2. Find your AccountSID and AuthToken from the Twilio Account Settings page. Write them
down because you need these in the next step.

3. This step is similar to Step 1 in 8.2.1, “Quickstart mode” on page 218. Click Add a service
or API from the dashboard of iot-redbooks-demo as shown in Figure 8-3 on page 220 and
then from Catalog, choose Twilio.

4. While creating Twilio service, enter the values you copied earlier in the Account SID: and
Auth Token: fields and click CREATE. This is illustrated in Figure 8-32 on page 239.

5. iot-redbooks-demo is restaged for this change to be effective.
238 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

https://www.twilio.com/

Figure 8-32 Adding a Twilio service

8.5 IBM Maximo Asset Management solution

In this section, we provide a brief overview of Maximo Asset Management, its benefits, and
how it is set up as an on-premises asset management solution.

8.5.1 What is it?

IBM Maximo Asset Management is Enterprise Asset Management software, which is a
comprehensive solution for managing physical assets on a common platform in
asset-intensive industries.

Maximo Asset Management allows organizations to share and enforce best practices,
inventory, resources, and personnel. It helps manage all types of assets including plant,
production, infrastructure, facilities, transportation, and communications. It includes six
management modules in an enhanced service-oriented architecture:

� Asset management: Achieve the control that you need to more efficiently track and
manage asset and location data throughout the asset lifecycle.

� Work management: Manage both planned and unplanned work activities, from initial
request through completion and recording of actuals.

� Service management: Define service offerings, establish service level agreements
(SLAs), more proactively monitor service level delivery, and implement escalation
procedures.

� Contract management: Gain complete support for purchase, lease, rental, warranty, labor
rate, software, master, blanket, and user-defined contracts.
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 239

� Inventory management: Know the details of asset-related inventory and its usage
including what, when, where, how many, and how valuable.

� Procurement management: Support all the phases of enterprise-wide procurement, such
as direct purchasing and inventory replenishment.

Maximo exposes Representational State Transfer (REST) APIs to access its services and
data. Many customers are using Maximo to integrate it with on-premises systems of record
and for an end-to-end automated flow.

8.5.2 Maximo setup for this scenario

In this scenario, IBM Maximo Asset Management 7.6.0.1 was installed, preconfigured, and
running on WebSphere Application Server version 8.5 on Microsoft Windows 2012 virtual
machine. Organizations and sites were set up for Maximo. Assets related to this scenario
were added as well.

8.5.3 Steps to start Maximo

The following steps are provided for references only. Steps will vary depending on your
installation. We are using a preconfigured virtual machine with IBM Maximo Asset
Management (will be referred as Maximo through out this document) software. For ease of
operations, scripts have been created to start or stop the Maximo server.

Because Maximo is running on WebSphere Application Server, it needs to start the
application server first. After the application server is started, Maximo is started and is ready
to serve any requests:

1. Start Maximo virtual machine (VM).

2. Locate and double-click the Maximo 7.6.0.1 shortcut from the Microsoft Windows desktop
to open the shortcut to start the Maximo server, as shown in Figure 8-33 on page 241.

For more information: For more information about IBM Maximo Asset Management, see
the product page at the following site:

http://www.ibm.com/software/products/en/maximoassetmanagement

Note: Steps described in this section might vary from what you will need to do to run your
own Maximo Asset Management server. Follow the product documentation and
instructions that shipped with your product.
240 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

http://www.ibm.com/software/products/en/maximoassetmanagement
http://www-03.ibm.com/software/products/en/maximoassetmanagement

Figure 8-33 Microsoft Windows desktop showing shortcut to Maximo 7.6.0.1 scripts

3. This opens a directory containing Maximo related scripts in Microsoft Windows Explorer,
as shown in Figure 8-34.

Figure 8-34 Scripts for Maximo

4. Double-click the 1_Start the MaximoServer shortcut.
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 241

5. A command prompt similar to Figure 8-35 opens automatically. This script starts
WebSphere Application Server V8.5 and then the Maximo server. The command window
is closed automatically when the tasks in the script are completed.

Figure 8-35 Windows command prompt showing the status of Maximo startup

6. Open the services explorer to ensure that the WebSphere Application Server V8.5 service
status is Running. This indicates that the Maximo server is now running. Refer to
Figure 8-36.

Figure 8-36 Microsoft Windows Services Explorer showing the status of WebSphere Application Server

Note: If the service status is not Running, there is a problem with the startup of the
server, which needs to be fixed before proceeding to the next step. These steps are
specific to our Maximo setup and installation. For you, it will be different depending on
your operating system and installation.
242 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

7. Open a browser window and enter http://mx7vm/maximo/webclient/login/login.jsp.
The Microsoft Windows virtual machine that we are using also has this URL bookmarked
in the browser. We now see a web page that is similar to Figure 8-37.

Figure 8-37 Maximo Login page

8. Enter wilson for both User Name: and Password: and click Sign In. Upon successful
login, you see a page similar to Figure 8-38 on page 244.

Note: Explanation of all the menu items and functionalities of Maximo is outside the
scope of this Redbooks publication. For more information, see the product
documentation at the following site:

http://www.ibm.com/support/knowledgecenter/SSLKT6_7.6.0/com.ibm.mam.doc/welc
ome.html
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 243

http://mx7vm/maximo/webclient/login/login.jsp
http://www.ibm.com/support/knowledgecenter/SSLKT6_7.6.0/com.ibm.mam.doc/welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSLKT6_7.6.0/com.ibm.mam.doc/welcome.html

Figure 8-38 Maximo main window

9. For this scenario, we created an organization named COMPANYA. This is a fictitious
organization who specializes in manufacturing of remote controlled (RC) equipment. Go to
the left side menu and click Administration → Organization. Type COMPANYA in the
Organization text field and press Enter. The resultant window is similar to Figure 8-39.

Figure 8-39 Organization COMPANYA
244 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

10.For this scenario, we are interested in the asset DEVICEA, which is manufacturing
equipment. An IoT device or sensor attached to this asset monitors it and sends an alert to
IBM IoTF when things go wrong. Finally, a Maximo work order is created for a support
personnel to fix this asset. Now verify the valid asset number, location, and site before
proceeding to the next section. From the right side menu, click Assets → Assets. Then,
type DEVICEA in the Asset text field and press Enter. Refer to Figure 8-40.

Figure 8-40 Maximo asset DEVICEA

11.Next, record the IP address of the virtual machine by opening a command prompt and
entering ipconfig -all. For our case, the IP address is 172.16.123.134.

Figure 8-41 IP address of Maximo virtual machine

12.Use any REST API client to execute the following REST API (POST) call:

http://172.16.123.134/maxrest/rest/os/mxwo?_lid=wilson&_lpwd=wilson&description=De
viceA requires maintenance&location=OFF301&siteid=BEDFORD&assetnum=DEVICEA
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 245

We used the HTTPRequester plug-in for Firefox as shown Figure 8-42.

Figure 8-42 HTTPRequester to invoke POST API call

The output is similar to Example 8-3.

Example 8-3 Output from Maximo REST API call

<?xml version="1.0" encoding="UTF-8"?>
<CreateMXWOResponse xmlns="http://www.ibm.com/maximo"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
creationDateTime="2015-12-03T23:22:43-05:00" transLanguage="EN" baseLanguage="EN"
messageID="1828231.144920296378110757" maximoVersion="7 6 20150611-1135 V7601-65">
 <MXWOSet>
 <WORKORDER rowstamp="2868552">
 <ACTINTLABCOST>0.0</ACTINTLABCOST>
 <ACTINTLABHRS>0.0</ACTINTLABHRS>
 <ACTLABCOST>0.0</ACTLABCOST>
 <ACTLABHRS>0.0</ACTLABHRS>
 <ACTMATCOST>0.0</ACTMATCOST>
 <ACTOUTLABCOST>0.0</ACTOUTLABCOST>
 <ACTOUTLABHRS>0.0</ACTOUTLABHRS>
 <ACTSERVCOST>0.0</ACTSERVCOST>
 <ACTTOOLCOST>0.0</ACTTOOLCOST>
 <AMS>0</AMS>
 <AOS>0</AOS>
 <APPTREQUIRED>0</APPTREQUIRED>
 <ASSETNUM>DEVICEA</ASSETNUM>
 <CHANGEBY>WILSON</CHANGEBY>
 <CHANGEDATE>2015-12-03T23:22:42-05:00</CHANGEDATE>
 <CHARGESTORE>0</CHARGESTORE>
 <DESCRIPTION>DeviceA requires maintenance</DESCRIPTION>
 <DISABLED>0</DISABLED>
 <DOWNTIME>0</DOWNTIME>
 <ESTATAPPRINTLABCOST>0.0</ESTATAPPRINTLABCOST>
 <ESTATAPPRINTLABHRS>0.0</ESTATAPPRINTLABHRS>
 <ESTATAPPRLABCOST>0.0</ESTATAPPRLABCOST>
246 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

 <ESTATAPPRLABHRS>0.0</ESTATAPPRLABHRS>
 <ESTATAPPRMATCOST>0.0</ESTATAPPRMATCOST>
 <ESTATAPPROUTLABCOST>0.0</ESTATAPPROUTLABCOST>
 <ESTATAPPROUTLABHRS>0.0</ESTATAPPROUTLABHRS>
 <ESTATAPPRSERVCOST>0.0</ESTATAPPRSERVCOST>
 <ESTATAPPRTOOLCOST>0.0</ESTATAPPRTOOLCOST>
 <ESTDUR>0.0</ESTDUR>
 <ESTINTLABCOST>0.0</ESTINTLABCOST>
 <ESTINTLABHRS>0.0</ESTINTLABHRS>
 <ESTLABCOST>0.0</ESTLABCOST>
 <ESTLABHRS>0.0</ESTLABHRS>
 <ESTMATCOST>0.0</ESTMATCOST>
 <ESTOUTLABCOST>0.0</ESTOUTLABCOST>
 <ESTOUTLABHRS>0.0</ESTOUTLABHRS>
 <ESTSERVCOST>0.0</ESTSERVCOST>
 <ESTTOOLCOST>0.0</ESTTOOLCOST>
 <FAILURECODE>BLDGS</FAILURECODE>
 <FLOWACTIONASSIST>0</FLOWACTIONASSIST>
 <FLOWCONTROLLED>0</FLOWCONTROLLED>
 <GLACCOUNT>
 <VALUE>6220-300-???</VALUE>
 </GLACCOUNT>
 <HASCHILDREN>0</HASCHILDREN>
 <HASFOLLOWUPWORK>0</HASFOLLOWUPWORK>
 <HISTORYFLAG>0</HISTORYFLAG>
 <IGNOREDIAVAIL>0</IGNOREDIAVAIL>
 <IGNORESRMAVAIL>1</IGNORESRMAVAIL>
 <INCTASKSINSCHED>1</INCTASKSINSCHED>
 <INTERRUPTIBLE>0</INTERRUPTIBLE>
 <ISTASK>0</ISTASK>
 <LMS>0</LMS>
 <LOCATION>OFF301</LOCATION>
 <LOS>0</LOS>
 <NESTEDJPINPROCESS>0</NESTEDJPINPROCESS>
 <NEWCHILDCLASS>WORKORDER</NEWCHILDCLASS>
 <ORGID>EAGLENA</ORGID>
 <OUTLABCOST>0.0</OUTLABCOST>
 <OUTMATCOST>0.0</OUTMATCOST>
 <OUTTOOLCOST>0.0</OUTTOOLCOST>
 <PARENTCHGSSTATUS>1</PARENTCHGSSTATUS>
 <PHONE>(617) 555-9017</PHONE>
 <PLUSCISMOBILE>0</PLUSCISMOBILE>
 <PLUSCLOOP>0</PLUSCLOOP>
 <REPAIRLOCFLAG>0</REPAIRLOCFLAG>
 <REPORTDATE>2015-12-03T23:22:42-05:00</REPORTDATE>
 <REPORTEDBY>WILSON</REPORTEDBY>
 <REQASSTDWNTIME>0</REQASSTDWNTIME>
 <SITEID>BEDFORD</SITEID>
 <STATUS>WAPPR</STATUS>
 <STATUSDATE>2015-12-03T23:22:42-05:00</STATUSDATE>
 <STATUSIFACE>0</STATUSIFACE>
 <SUSPENDFLOW>0</SUSPENDFLOW>
 <WOACCEPTSCHARGES>1</WOACCEPTSCHARGES>
 <WOCLASS>WORKORDER</WOCLASS>
 <WOGROUP>1335</WOGROUP>
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 247

 <WOISSWAP>0</WOISSWAP>
 <WONUM>1335</WONUM>
 <WORKORDERID>2997</WORKORDERID>
 </WORKORDER>
 </MXWOSet>
</CreateMXWOResponse>

Now IBM Maximo Asset Management setup is complete and verified. In this scenario, it is
acting as an on-premises system of record (SOR). Next, we create a Secure Gateway
connection so that the Node-RED application on Bluemix can access this.

8.6 Integrating IoT application with IBM Asset Management
system with Bluemix Secure Gateway service

This section presents the tasks to set up a secure tunnel between Bluemix and Maximo by
using Secure Gateway service from Bluemix.

8.6.1 Setting up Secure Gateway

To connect a Bluemix application to on-premises Maximo, Secure Gateway service from
Bluemix is required.

Secure Gateway service has two parts, which are service configuration on Bluemix and
Secure Gateway client. In this scenario, the Secure Gateway client is running as a Docker
image. Perform the following steps to create and configure Secure Gateway:

1. Go to Bluemix Catalog → Integration → Secure Gateway.

Figure 8-43 Secure Gateway in Bluemix catalog
248 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

2. Click CREATE to create Secure Gateway service, as shown in Figure 8-44.

Figure 8-44 Creating a Secure Gateway service

3. Enter MaximoGateway as the gateway name and click CONNECT IT. This is shown is
Figure 8-45.

Figure 8-45 Creating a tunnel or gateway
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 249

4. Select docker as the gateway connection option. Click Copy to copy the command that
contains the Secure Gateway ID and security token for pasting into a terminal or command
prompt later. Refer to Figure 8-46.

Figure 8-46 Secure Gateway connection options

5. As noted earlier, the Maximo server IP address is 172.16.123.134 and its RESTful
services are exposed at port 80. Create the destination by completing the destination
name, IP address, port, and TCP as protocol, then click + as shown in Figure 8-47.

Figure 8-47 Adding a destination
250 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

6. Finally, click i to reveal connection details as shown in Figure 8-48.

Figure 8-48 Summary of connection details
Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems 251

8.7 The complete solution for the scenario

Here is the complete Node-RED solution, which corresponds to Figure 8-49.

The workflow consists of the following steps:

1. The Node-RED app receives an MQTT message from a simulated IoT sensor.

2. This message in JSON format is parsed by the Assign node as shown in Figure 8-49.

3. The switch node determines whether maintenance is required or not.

4. If maintenance is required, a Maximo Work Order is created by using the HTTP Request
function from Node-RED. As shown in the figure below, the Request to on-prem Maximo
node will do this.

5. Finally, an SMS is sent to the support personnel using Twilio service.

Figure 8-49 Complete Node-RED flow
252 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Chapter 9. Demonstration of analytics and
real-time event detection

This chapter begins by describing the extraction of csv data into the IBM Bluemix dashDB
service. This data is then prepared for analysis by using the built-in R analytics capability
available in IBM dashDB. From this data, a stylized statistical model is built.

The model developed from the historical data in dash DB is then configured in a Bluemix
InfoSphere Streams service. When the model is configured, a real-time data source is
specified, and by using the model predictions, criteria are developed for event detection.

The particular scenario that is considered is the average house price in Victoria, Australia
predicted by the Reserve Bank of Australia (RBA) cash rate. The model developed using R in
dashDB is then created in InfoSphere Streams, and by using a simulated real-time source of
the RBA cash rate, a real-time event is triggered based on some criteria.

This chapter has the following sections:

� 9.1, “Configuring a Bluemix dashDB service” on page 254

� 9.2, “Preparing and importing data into dashDB” on page 256

� 9.3, “Cleaning and preparing data using dashDB Analytics with R” on page 264

� 9.4, “Developing a model using dashDB Analytics with R” on page 273

� 9.5, “Configuring an InfoSphere Streams Service on Bluemix” on page 280

� 9.6, “Running InfoSphere Streams locally using VMware” on page 282

� 9.7, “Creating a Streams Application Bundle” on page 283

� 9.8, “Real-time event detection in InfoSphere Streams” on page 288

� 9.9, “Conclusion” on page 292

9

© Copyright IBM Corp. 2016. All rights reserved. 253

9.1 Configuring a Bluemix dashDB service

To begin, a dashDB service on Bluemix needs to be configured. The dashDB service can be
found in the Bluemix Catalog under the Data and Analytics section.

After selecting the dashDB service, a more detailed description of the dashDB service comes
up with some options for configuring the service on the right, as shown in Figure 9-1.

Figure 9-1 The dashDB configure page

For this particular scenario, the service is not bound to an application. The service name is
used to describe the purpose of the service. In this case, it is named
Housing_Price_Analysis, and the credentials name is used to specify a username, in this
case bluemix_admin.

The type of plan used is dependent on the size of the data set that needs analysis. In this
example, the data set is small so the entry-level plan is used. After configuring all the setting,
the service is created. After clicking Create, a page is displayed that is similar to Figure 9-2
on page 255.
254 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 9-2 The dashDB launch window

From this window, you can launch your dashDB service, or learn more about dashDB through
the help files. On the left there are three options: Manage, Service Credentials, and Service
Access Authorization. The page shown in Figure 9-3 is the manage page. In the service
credentials page, you can manage who has access to the service, and in the service access
authorization page, authorization can be provided for other Bluemix services to access the
dashDB service configured. For this particular scenario, the application is launched as is
because there is no need to integrate it with other services.

When the dashDB service is launched, a page similar to that shown in Figure 9-3 is
displayed. In the next section, preparing and importing of data into the dashDB service is
discussed.

Figure 9-3 The dashDB service start page
Chapter 9. Demonstration of analytics and real-time event detection 255

9.2 Preparing and importing data into dashDB

This section is split into three sub-sections. First, the data sources used for this application
are described. Second, the preprocessing of the raw data is described. Third, importing the
data into dashDB is explained.

9.2.1 Data sources

The first data set used is publicly available from the Victorian State Government of Australia.
The data set includes the average yearly house price per suburb in Victoria, and can be found
at the following site:

http://www.dtpli.vic.gov.au/property-and-land-titles/property-information/property
-prices

The data is in xls format and is demonstrated in Figure 9-4.

Figure 9-4 Raw unprocessed data from the Victoria State Government regarding the average house
price per locality for the years 2004 - 2015

The next data set used is the RBA historical cash rate. This data is publicly accessible at the
following web page:

http://www.rba.gov.au/statistics/tables/index.html#interest-rates

And lastly, the historical exchange rates for different countries, also publicly available on the
RBA website, can be found at the following page:

http://www.rba.gov.au/statistics/historical-data.html#exchange-rates

For the model, we are considering the period 2004 - 2015, and the exchange rate monthly
data is split into pre 2009 and post 2009 periods. Therefore, both of these files need to be
downloaded.
256 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

http://www.dtpli.vic.gov.au/property-and-land-titles/property-information/property-prices
http://www.rba.gov.au/statistics/tables/index.html#interest-rates
http://www.rba.gov.au/statistics/historical-data.html#exchange-rates

The raw data for historical indicator lending rates and the historical exchange rates are
demonstrated in Figure 9-5 and Figure 9-6, respectively.

Figure 9-5 Raw interest rate data from the RBA

Figure 9-6 Raw exchange rate data from the RBA

9.2.2 Data preprocessing

This is the raw data. Before importing this data into the dashDB service, the spreadsheets
need to be formatted so that they are easily interpreted by the dashDB import service. For the
housing price data, shown in Figure 9-4 on page 256, this is a four-step process:

1. There are a few header lines that cause confusion when importing the data. These lines
need to be removed.
Chapter 9. Demonstration of analytics and real-time event detection 257

2. The model being developed is of the average house price and not the percentage change
in house price. Therefore, all columns relating to percentage change in house prices are
removed.

3. In an SQL database, headers cannot start with a number. Therefore, the year headers
need to be changed.

4. The last aspect that needs to be considered is missing data. In this file, missing data is
indicated by a - or an NA. For this application, all missing values are changed to zero and
are removed from calculations later on while developing the model. After this has been
done, the format of the pricing data is changed to numeric. The missing values are
changed to zero so that when the data is imported, the column formats are recognized as
integers, and not as string.

The resulting data is shown in Figure 9-7.

Figure 9-7 Processed housing price data for Victoria, Australia

For the RBA cash rate raw data, shown in Figure 9-5 on page 257, three steps are required to
prepare the data for import:

1. The data is subset to where an RBA cash rate is first available to the most recent date
where the cash rate is available.

2. To format the provided data, all header rows are removed and new headers are defined.

3. The format of the dates needs to be changed to one recognized by the SQL import option
in Bluemix. In this case, the dd/mm/yyyy format is used.
258 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

The preprocessed data is shown in Figure 9-8.

Figure 9-8 Processed RBA cash rate data

For the exchange rate data, there are two different files. The raw data for the period from
2009 - 2015 is shown in Figure 9-6 on page 257. This is a four-step process for the exchange
rates:

1. The first part of preprocessing is to merge these two files into a single file. Unfortunately,
the columns for these two files are not in the same order. Therefore, before merging the
two files they are subset to the exchange rates of interest to decrease the amount of time
required to merge the two files. For this analysis, the exchange rate with Britain, China,
Europe, New Zealand, and the US is considered. This subset data is then merged.

2. The dates are subset to the start of the Euro currency.

3. Headings are renamed to the countries names.

4. The date format is changed to dd/mm/yyyy.
Chapter 9. Demonstration of analytics and real-time event detection 259

The preprocessed data is shown in Figure 9-9.

Figure 9-9 Processed exchange rate data for the Australian dollar compared to the US Dollar, China
Yen, the Euro, Great Britain Pound, and the New Zealand Dollar
260 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

9.2.3 Importing data into dashDB

To import the raw csv data into dashDB tables, the Load option in the dashDB service shown
in Figure 9-3 on page 255 is selected. Because the data is being imported from a local
source, the desktop option should be selected. Other sources can be selected depending on
the location of the data source. Figure 9-10 demonstrates the insert desktop source data
page in dashDB. Here, a table is created based on the raw data.

Figure 9-10 The Load from Desktop window in the dashDB service

Perform the following steps to import the data:

1. Click Specify source file. This is where you select the source file and the formatting of the
file. For the housing prices, there are no dates and the file is comma-separated. The
resulting page looks similar to Figure 9-11. For this file source, the first row is a header
row. The column separator is a comma and there are no date-based columns.

Figure 9-11 The dashDB specify file source page. Here you specify whether the first line in the file is a
header file, the column separators, and whether there are any date columns
Chapter 9. Demonstration of analytics and real-time event detection 261

After the load is selected, a preview of the data is demonstrated. An example for the data
used is shown in Figure 9-12.

Figure 9-12 Preview of the data to be imported into the dashDB database

2. Select Next if the data is as expected.

3. Define new table allows you to rename column headers and define the table name. For
this example, all headers are left as is. Headers that begin with a numeric value are
accepted. The table name is defined as HOUSES_BY_SUBURB. The page for this
process is shown in Figure 9-13.

Figure 9-13 Defining a new table in dashDB

In Figure 9-13, the column types are also shown. This can be used to determine whether the
data imported is being recognized as the correct type. If the type is incorrect, some more
preprocessing of the raw data file might be necessary:

4. After the table and headers are defined, select Finish.

5. Load complete is displayed when this process is finished. The load is complete and a
page summarizing the load results is displayed.
262 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 9-14 Load complete for a new table in dashDB

This completes the load of the housing prices into the dashDB table.

The process to import the data for the RBA cash rate and the AUD exchange rate is identical.
The preceding steps 1 - 4 can be repeated with one change. Because both the RBA cash rate
and interest rate data have a column with dates, the question asking if there are columns with
only dates needs to be answered Yes. An example is shown in Figure 9-15.

Figure 9-15 Specify source with date column

In the example shown in Figure 9-15, the date format is dd/mm/yyyy.

When creating a second table, the user is asked to specify a target. This can either be a new
table in the case where new data is to be added to a new table, or an existing table when new
data with the same format from a previous table is appended onto an existing table.
Chapter 9. Demonstration of analytics and real-time event detection 263

9.2.4 Viewing tables in dashDB

To view the tables created, select the Table option on the left side of the window. This displays
a page similar to Figure 9-16. The table that should be viewed can be selected by using the
down arrow next to Table Name. In this view, you can see the table definition, which shows
the column types and names. The data in the tables can also be viewed by selecting the
Browse Data option.

Figure 9-16 Example of viewing a table in dashDB

9.3 Cleaning and preparing data using dashDB Analytics with R

In this section, we cover the steps for cleaning and preparing data using dashDB Analytics
with R.

9.3.1 Accessing R in dashDB

The data from the dashDB tables is cleaned and prepared by using the inbuilt R capability in
the dashDB service. To access the R capability, select the analytics option on the left of the
dashDB service page, and select R scripts. This displays a selection of sample projects that
can be used, as demonstrated in Figure 9-17 on page 265.
264 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 9-17 R inbuilt projects and initial access

For this particular case, a new R script is created. To add a new R script, select the plus sign
in the upper left corner, next to the RStudio tab.

The R script used for this example is available at the following site:

https://github.com/RichardBalson/Redbooks/tree/master/Bluemix-IntegratingBatchAnal
yticsWithRealTimeEvents

The file is named R_Code_CH10.R.

9.3.2 Importing dashDB data into R

When a new script is created, a pop-up window is displayed that asks the user to select a
source of data to associate with the R script. An example of this pop-up window is shown in
Figure 9-18 on page 266. For this example, the housing prices are associated with the R
script.

When the table source is selected, click Apply, and the R script is created with code similar to
what is shown in Example 9-1.

Example 9-1 Code created when creating an R script and associating it with a data source

library(ibmdbR)
mycon <- idaConnect("BLUDB", "", "")
idaInit(mycon)
df1448855753098 <-
as.data.frame(ida.data.frame('"DASH100087"."HOUSES_BY_SUBURB"')[,c('LOCALITY',
'P_2004', 'P_2005', 'P_2006', 'P_2007', 'P_2008', 'P_2009', 'P_2010', 'P_2011',
'P_2012', 'P_2013', 'P_2014', 'P_2015')])
Chapter 9. Demonstration of analytics and real-time event detection 265

https://github.com/RichardBalson/Redbooks/tree/master/Bluemix-IntegratingBatchAnalyticsWithRealTimeEvents

In this code snippet, the data is imported as a data frame in R, and is named
df1448855753098. For simplicity, this data frame is renamed housing_prices. The resulting
page from this process is also demonstrated in Figure 9-19. Ensure that the R script is saved
before continuing, by selecting Save above the R script.

Figure 9-18 Pop-up window when creating a new R script. Here a data source can be selected to
associate with the new script

Figure 9-19 Initial R script created after associating a data source
266 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Next, the other two data sources need to be imported. This can be achieved by selecting the
Add a Data Frame option. This opens the same pop-up window as demonstrated in
Figure 9-18 on page 266. Select a new data source and click Apply. Repeat this process for
all data sources that need to be accessible by R.

In this case, there are three different data sources that need to be accessible in R. To
evaluate whether the data has been correctly imported into R, run the script by selecting
Submit. After selecting submit, the page switches the Console Output tab as shown in
Figure 9-20. Here no output has been assigned so there are no outputs in the console, and
no plots either1. To switch back to the R script, select the Script option.

Figure 9-20 Console output from an R script

9.3.3 Viewing Data in R

To view the data, a new variable called view_data is defined. This is a binary variable that lets
the user decide whether or not the first 10 rows of each data set should be shown in the
console output.

1 If the user would like to view the data produced by the commands, the name of the data frame can be rewritten on
the next line. By submitting this new script, the data is now shown in the console output.
Chapter 9. Demonstration of analytics and real-time event detection 267

The full script is now shown in Example 9-2. There is a section called R script variables,
which is used to define all variables to control different aspects of the R script. These
variables are predominately binary, such as TRUE or FALSE. The code in red in Example 9-2
is used to view the first 10 rows of each data set. The console only shows the output from the
last head command, so it is necessary to comment out the data sets that are not required. In
Example 9-2, the exchange rate is displayed because both the housing prices and rba cash
rate head commands are commented out. If all of the head commands were in the code, the
exchange rate would be shown since it is the last head command in the code.

Example 9-2 Viewing the top 10 rows of data using the head command

library(ibmdbR)

##---Connect to database
mycon <- idaConnect("BLUDB", "", "")
idaInit(mycon)

##---R Script variables

view_data = TRUE

##---Import Data into R

housing_prices <- as.data.frame(ida.data.frame('"DASH100087"."HOUSES_BY_SUBURB"')[
,c('LOCALITY', 'P_2004', 'P_2005', 'P_2006', 'P_2007', 'P_2008', 'P_2009',
'P_2010', 'P_2011', 'P_2012', 'P_2013', 'P_2014', 'P_2015')])

rba_cash_rate <- as.data.frame(ida.data.frame('"DASH100087"."RBA_CASH_RATE"')[
,c('CASH_RATE_TARGET', 'DATE')])

exchange_rate <- as.data.frame(ida.data.frame('"DASH100087"."EXCHANGERATE_V0"')[
,c('CNY', 'DATE', 'EUR', 'GBP', 'NZD', 'USD')])

##---View Data

if(view_data) {
##head(housing_prices)
##head(rba_cash_rate)
head(exchange_rate)
}

The result of submitting the code in Example 9-2 is shown in Figure 9-21 on page 269.
268 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 9-21 Viewing data in R using the head command. Here the first 10 rows of the exchange rate
data are shown

9.3.4 Cleaning and preparing the data in R

In this section, we cover the steps for cleaning and preparing the data in R.

Checking data types in R
The first step to get the data ready for modeling is to check that the data types are correct.
The data types can be checked by using the code shown in Example 9-3.

Example 9-3 Checking the data types of the imported R data

sapply(housing_prices,class)

The function sapply applies the function class along all columns in the data set
housing_prices. This process can be repeated for all the data frames that are imported. For
this case, the results are shown in Figure 9-22.

Figure 9-22 The result from using the sapply function with class. The results shown in this figure are for
the types of the housing price data

Repeating this process for the cash rate and exchange rate data shows that the RBA cash
rate data type and date are character types, which will need to be changed to numeric values
and dates, respectively. For the exchange rate data, the class for all the columns is character.
The exchange rate needs to be converted to numeric and the date column to an R date.
Chapter 9. Demonstration of analytics and real-time event detection 269

Converting data types in R
To convert data types in R, the as command is used. See Example 9-4. For the cash rate
data, only two variables need to be converted. However, for the exchange rate six column
types need to be converted. Therefore, a “for” loop is used to loop through all columns and
the type of the column is changed based on the requirements. In this case, the date column,
which is column two, needs to be converted to a date and all other columns need to be
converted to numeric.

Example 9-4 Converting character to numeric and date in R

---------------Convert character data to numeric or date type where necessary
rba_cash_rate[,"CASH_RATE_TARGET"]<-as.numeric(rba_cash_rate[,"CASH_RATE_TARGET"])

rba_cash_rate[,'DATE']<-as.Date(rba_cash_rate[,'DATE'],"%d/%m/%Y")

for(i in 1:6){
 if(i==2){
 exchange_rate[,i] <- as.Date(exchange_rate[,2])
 } else{
 exchange_rate[, i] <- as.numeric(exchange_rate[,i])
 }
}

It is worthwhile ensuring that the code has correctly converted the data types. This can be
achieved by repeating the code in Example 9-3 on page 269. The resulting class types for the
exchange rate are shown in Figure 9-23.

Figure 9-23 Result from data type conversion

Aggregating data
To prepare the data for the modeling phase, it is necessary to ensure that the data is
compatible. For example, in this case housing prices are provided yearly, but the cash rate
and exchange rates are provided monthly. For this analysis, the average of the exchange rate
and interest rate for the year is used to model the average house price in Australia.

Example 9-5 on page 271 shows the process to convert monthly rates to a yearly average
rate. First, the year of each date is extracted and inserted into a new variable in the data
frame called Year. This is done by using the format command. The aggregate function is then
used to convert the monthly rate into a yearly rate by creating a formula based on the year,
and assigning it to the mean function.
270 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Example 9-5 Aggregating monthly data to yearly data

##------------Housing prices are yearly, exchange rates and the cash rate are
##----------monthly. Average the monthly rates to a yearly average rate

rba_cash_rate$Year <- format(rba_cash_rate$DATE,"%Y")

rba_cash_rate_yearly<-aggregate(CASH_RATE_TARGET~Year, rba_cash_rate,mean)

exchange_rate$Year <- format(exchange_rate$DATE,"%Y")

exch_year_avg<-aggregate(cbind(CNY, EUR, GBP, NZD, USD)~Year, exchange_rate,mean)

The resulting data for the exchange rate aggregation is shown in Figure 9-24. The results
show the year and the corresponding average exchange rate for the year for all the
considered currencies.

Figure 9-24 Aggregated exchange rate data

For simplicity, the model developed is for the average housing price in Victoria, and not for the
average housing price per suburb. Here it is assumed that the average housing price in
Victoria is the average of all the locality housing prices. This assumption is not accurate, but
for a stylized model it is adequate.
Chapter 9. Demonstration of analytics and real-time event detection 271

To make the data for the average house price a similar format to the exchange rate and the
RBA cash rate target, a new dummy data frame df_house_sum is created and the locality data
is removed from this new data frame. The new data frame also has all zero values replaced
by NAs so that they will not be used to calculate the mean of each year. A new data frame
avg_house_price is then created with the year and average house price per year. This
process is shown in Example 9-6.

Example 9-6 Aggregating house prices from per suburb to the Victoria region

##------Compare rates to average housing price for all suburbs in a given year

df_house_sum <- sapply(housing_prices[,-1], function(x) ifelse(x==0,NA,x))

avg_house_price <-
data.frame('Year'=2004:2015,'AveragePrice'=apply(df_house_sum,2,function(x)
mean(x, na.rm=TRUE)))

remove(df_house_sum)

The result from Example 9-6 is shown in Figure 9-25.

Figure 9-25 Aggregated house prices in the Victoria region
272 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

9.4 Developing a model using dashDB Analytics with R

In this section, we cover the steps for developing a model using dashDB Analytics with R.

9.4.1 Plotting variables to determine validity of data

Before beginning the model build, the user should determine whether the prepared data
makes sense. A good approach for doing this with housing prices and exchange and cash
rates is to plot the time series data. See Example 9-7.

Example 9-7 Plotting data in R

plot(avg_house_price$Year,avg_house_price$AveragePrice,main="Average House Price
in Victoria per Year",xlab="Year",ylab="Average Price",type="l")

plot(rba_cash_rate_yearly$Year,rba_cash_rate_yearly$CASH_RATE_TARGET,main="Average
Yearly RBA Cash Rate Target",xlab="Year",ylab="Average RBA Cash Rate
Target",type="l")

 plot(exch_year_avg$Year,exch_year_avg$CNY,main="Average Yearly Exchange Rate
($1AUD)",xlab="Year",ylab="Average Chinese Exchange Rate",type="l")
 plot(exch_year_avg$Year,exch_year_avg$EUR,main="Average Yearly Exchange Rate
($1AUD)",xlab="Year",ylab="Average Euro Exchange Rate",type="l")
 plot(exch_year_avg$Year,exch_year_avg$GBP,main="Average Yearly Exchange Rate
($1AUD)",xlab="Year",ylab="Average Britain Exchange Rate",type="l")
 plot(exch_year_avg$Year,exch_year_avg$NZD,main="Average Yearly Exchange Rate
($1AUD)",xlab="Year",ylab="Average New Zealand Exchange Rate",type="l")
 plot(exch_year_avg$Year,exch_year_avg$USD,main="Average Yearly Exchange Rate
($1AUD)",xlab="Year",ylab="Average United States Exchange Rate",type="l")

Example 9-7 demonstrates some code that can be used to plot data in R. The code specifies
the x and y variables, as well as the plot title, x and y label, and the plot type. When running
this code in dashDB, a pdf is generated that is accessible in the Plots section. An example of
the output produced is shown in Figure 9-26. The figures can be accessed by opening the pdf
generated.

Figure 9-26 The output from generating a plot in dashDB using R
Chapter 9. Demonstration of analytics and real-time event detection 273

An example of the plots generated is demonstrated in Figure 9-27.

Figure 9-27 Average AUD to EURO yearly exchange rate

The data for the housing prices, exchange rate, and RBA cash rate makes sense. One aspect
that is not considered, but should be used to adjust prices in a time series, is the inflation rate.
However, in this case the model is stylized and is an example of the process rather than being
indicative. Therefore, the affect of inflation on housing prices is ignored.

9.4.2 Determine whether the model predictors appear to be correlated to the
variable being predicted

To determine which variables are predictive of housing prices, it is a good starting point to
plot the variable that is thought to be predictive to the observation. In this example, the
average housing price is the observation, and the RBA cash rate target and various
exchange rates are thought to be predictive.

Example 9-8 on page 275 demonstrates the code to graph the relationships between the
predictors and the observation. Here both the exchange rate and RBA cash rate target are
subset to the period 2004 - 2015 to match the duration of housing data available.

2000 2005 2010 2015

0.
60

0.
65

0.
70

0.
75

0.
80

Average Yearly Exchange Rate ($1AUD)

Year

Av
er

ag
e

E
ur

o
E

xc
ha

ng
e

R
at

e

274 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Example 9-8 Graphing relationships between predictors and the observation

##--------------------Do basic graphing to see if a relationship exists

exch_year_tmp <- exch_year_avg[exch_year_avg$Year>2003,]

rba_cash_tmp <- rba_cash_rate_yearly[rba_cash_rate_yearly$Year>2003,]

plot(rba_cash_tmp$CASH_RATE_TARGET,avg_house_price$AveragePrice,main="Cash Rate
Target compared to the Average House Price in Victoria",xlab="RBA Cash Rate
Target",ylab="Average Price")

plot(exch_year_tmpCNY,avg_house_priceAveragePrice,main="Average Victorian House
Price to the AUD to CNY Exchange Rate",xlab="AUD to CNY Exchange
Rate",ylab="Average Price")

plot(exch_year_tmpEUR,avg_house_priceAveragePrice,main="Average Victorian House
Price to the AUD to EURO Exchange Rate",xlab="AUD to Euro Exchange
Rate",ylab="Average Price")

plot(exch_year_tmpGBP,avg_house_priceAveragePrice,main="Average Victorian House
Price to the AUD to GBP Exchange Rate",xlab="AUD to GBP Exchange
Rate",ylab="Average Price")

plot(exch_year_tmpNZD,avg_house_priceAveragePrice,main="Average Victorian House
Price to the AUD to NZD Exchange Rate",xlab="AUD to NZD Exchange
Rate",ylab="Average Price")

plot(exch_year_tmpUSD,avg_house_priceAveragePrice,main="Average Victorian House
Price to the AUD to USD Exchange Rate",xlab="AUD to USD Exchange
Rate",ylab="Average Price")
Chapter 9. Demonstration of analytics and real-time event detection 275

Figure 9-28 demonstrates the plot for the average house price in Victoria compared to the
RBA cash rate target. Apparently, there is a negative relationship between these two
variables. That is, as the RBA cash rate increases the average house price in Victoria
decreases. This corresponds, in general, with the logic that as interest rates decrease
housing prices increase due to increased demand.

Figure 9-28 A plot of the average house price in Victoria compared to the average RBA cash rate at the
same time

9.4.3 Determine correlation between predictors

Before using the relationships observed in the data, it is worthwhile determining whether two
of the predictors considered are correlated. Correlated predictors make the model less
accurate due to underestimating the effect of the critical predictor. The code to determine the
correlation between all predictors is shown in Example 9-9.

Example 9-9 Code for determining correlations between predictors

cor(cbind(rba_cash_tmp$CASH_RATE_TARGET,exch_year_tmp[,-1]))

●

●

●

●

●

●

●

●
●

●

●
●

2 3 4 5 6

30
00

00
35

00
00

40
00

00
45

00
00

50
00

00
Cash Rate Target compared to the Average House Price in Victoria

RBA Cash Rate Target

Av
er

ag
e

P
ric

e

276 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

The result for this correlation test is shown in Figure 9-29. These results show that the British
Pound, Euro, and US Dollar exchange rates with Australia are highly correlated. Based on the
correlation results and the plots to determine relationships between variables, the model that
is built will be predicting house prices based on the RBA cash rate target and the British
Pound.

Figure 9-29 Correlation results for housing price predictors

9.4.4 Develop a model of housing prices

To develop a model of housing prices, a single predictor (the RBA cash rate target) is initially
used. Then, the additional predictor, the British Pound, is added to the model to determine
what the improvement in predictive power of the model is by adding the British Pound into the
model as a predictor is.

For this example, the relationship between the RBA cash rate and housing prices appears to
be linear. Therefore, initially linear regression is used, with linear predictors. This is
implemented in R using the code shown in Example 9-10.

Example 9-10 R code to develop a linear model of housing prices with the RBA cash rate target as a
predictor

##----------------------Develop model based on interest rate

housing_model <- lm(avg_house_price$AveragePrice~rba_cash_tmp$CASH_RATE_TARGET)

summary(housing_model)
Chapter 9. Demonstration of analytics and real-time event detection 277

The result of the summary command is shown in Figure 9-30. The results show that both the
gradient and intercept of the predicted model were highly significant. The results also
theoretically state that with an RBA cash rate target of 0%, the average house price in Victoria
would be $581,120, and that with each one point increase in the cash rate target the average
value of houses in Victoria decreases by $39,044.

Figure 9-30 The output of the summary command on a linear regression model

After developing a model, check that the model fits the data. This can be done by using a plot.
The code for generating this plot is in Example 9-11.

Example 9-11 Plot model on the same axis as the data used to create the model

##-----------------------------Check how linear mode fits the data

plot(rba_cash_tmp$CASH_RATE_TARGET,avg_house_price$AveragePrice)
abline(housing_model)

The resulting plot generated from Example 9-11 is demonstrated in Figure 9-31 on page 279.
278 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 9-31 Model of the average house price in Victoria

This process can be repeated by using the British Pound as the only predictor. However, for
brevity the full model with both the RBA cash rate and the British Pound as predictors is
considered next. The code to develop this model is shown in Example 9-12.

Example 9-12 Linear model code for housing prices based on the RBA cash rate and the British Pound
to AUD exchange rate

##--Develop model based on interest rate and British Pound to AUD exchange rate

housing_model_2 <-
lm(avg_house_price$AveragePrice~rba_cash_tmp$CASH_RATE_TARGET+exch_year_tmp$GBP)

summary(housing_model_2)

●

●

●

●

●

●

●

●
●

●

●
●

2 3 4 5 6

30
00

00
35

00
00

40
00

00
45

00
00

50
00

00

Model of housing Prices

RBA Cash Rate

Av
er

ag
e

H
ou

se
 P

ric
e

in
 V

ic
to

ria
Chapter 9. Demonstration of analytics and real-time event detection 279

The results for this model are shown in Figure 9-32. Comparing this result to the result in
Figure 9-31 on page 279, it is clear that the residual error has decreased and the adjusted R
squared value has increased. This indicates that the new model is better at predicting the
average house price in Victoria, compared to the model where the RBA cash rate was the
only predictor. Also, the results show that all predictors are significant.

Therefore, the model of average housing prices in Victoria predicts that for each point
increase in the RBA cash rate, the average value of a house in Australia decreases by
$25,000. And for each 0.01 increase in the British Pound exchange rate with the AUD, the
average house price in Australia increases by $4290. This model is now used to trigger
real-time events based on the current exchange rate for the AUD to the GBP, and the current
RBA cash rate, which is far less dynamic.

Figure 9-32 Model of housing prices based on the RBA cash rate and AUD to British Pound exchange
rate

9.5 Configuring an InfoSphere Streams Service on Bluemix

To create a Bluemix streaming analytics service, browse to the Catalog section from the
Bluemix main page. In the Catalog section, select the Data and Analytics option on the left
of the window. The service that is used for the detection of real-time events is the Streaming
Analytics Service.
280 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

After the streaming analytics service is selected, it needs to be configured. This service is not
bound to an application. In the configuration, the service is named Housing_Price_Event and
the service is assigned to the user streamsadmin. For this application, a standard plan is
used. This plan includes up to 120 hours of usage at no charge. The configuration described
is demonstrated in Figure 9-33. After the configuration is complete, the service is created by
selecting Create.

Figure 9-33 Bluemix Streaming Analytics service configuration page

After selecting CREATE, the page to manage the streamlining analytics service is displayed.
This page shows that the service is started, and will be using part of the 120 no-charge hours
provided by Bluemix. The service only needs to be running when a streams job is running.
Because this is not the case, it is recommended that the service be stopped. Figure 9-34
shows the Manage page for the streams service. Use the Start and Stop button to run or stop
the streaming analytics service. In the Service Credentials page, new users can be added to
the service, and in the Service Access Authorization option, other services can be provided
permission to access the streaming analytics service.

Figure 9-34 Streams service manage page
Chapter 9. Demonstration of analytics and real-time event detection 281

Next, launch the application by clicking Launch. This opens the application dashboard in the
Streams Console as shown in Figure 9-35. The dashboard shows the status of all jobs in the
upper left, all available resources in the middle card, and has a few empty cards that are
populated when a streams job is running.

Figure 9-35 Streams Console application dashboard

9.6 Running InfoSphere Streams locally using VMware

An InfoSphere Streams job comes in the form of a Streams Application Bundle. A streams
application cannot be created on Bluemix. The application needs to be created locally using a
local version of InfoSphere Streams. Fortunately, there is a no-charge version of InfoSphere
Streams that is publicly accessible. The Quick Start edition of Streams can be found at the
following site:

http://www.ibm.com/analytics/us/en/technology/stream-computing

When on this site, select Get Started For Free. For this example, the virtual machine is used.
A virtual machine is a virtual computer that has pre-configured software on it. Select
Download the VMware Image. To access the software, you need to log in using your IBM ID.
A form detailing the purpose of your download opens. Complete the form, read the terms and
agreements and accept them, and select Next. Download the VMware image for IBM
Streams 4.0.1. At the time of writing, Streams 4.1 could not be used because the Bluemix
Streaming Analytics service was running Streams 4.0.1.

To virtualize this virtual machine configuration, VMware Workstation Player is required. This
software is publicly available and is available at the following site:

https://my.vmware.com/web/vmware/free#desktop_end_user_computing/vmware_workstatio
n_player/12_0

After VMWare Workstation Player is downloaded and installed, you can open the Streams
Quick Start Edition virtual machine, and power it on in the VMware Workstation Player. This
opens the window shown in Figure 9-36 on page 283.
282 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

http://www.ibm.com/analytics/us/en/technology/stream-computing
https://my.vmware.com/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/12_0

Figure 9-36 InfoSphere Streams Quick Start Edition virtual machine desktop

9.7 Creating a Streams Application Bundle

For this application, the requirement is to create a Streams job to run on Bluemix. To do this,
a Streams Application Bundle needs to be created locally by using the Streams Quick Start
Edition virtual machine. On the desktop of the virtual machine, there is an icon called
InfoSphere Streams Studio (Eclipse). This software is used to create a Streams Application
Bundle.

The Streams Application Bundle used for the scenario can be found at the following site:

https://github.com/RichardBalson/Redbooks/tree/master/Bluemix-IntegratingBatchAnal
yticsWithRealTimeEvents

The file is named Housing.Housing_Price_Event.sab.

1. When starting this software, a new workplace needs to be defined, as shown in
Figure 9-37. For this application, the default location is used.

Figure 9-37 Streams Studio workplace definition window
Chapter 9. Demonstration of analytics and real-time event detection 283

https://github.com/RichardBalson/Redbooks/tree/master/Bluemix-IntegratingBatchAnalyticsWithRealTimeEvents

2. After defining the workplace, Streams Studio opens. Within Streams Studio, a new project
needs to be defined. Select File → New → Project. This opens the window shown in
Figure 9-38. Here a new SPL Application Project is created. Select this option and click
Next.

Figure 9-38 Streams Studio New Project Type selection

3. The next window asks for a project name. Name the project Housing_Price_Event. The
next page asks what toolkits are necessary for this project. For this particular project, only
the standard SPL toolkit is required. Clear all toolkits and select Finish. This opens the
new project as shown in Figure 9-39 on page 285. The blue box in the middle pane is a
composite, and all elements of the application are configured in this composite.
284 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 9-39 SPL project in Streams Studio

Streams file source
For the application, a simulated source is used. Here a csv file is created and used to
simulate real-time data. This file needs to be imported into the Streams Application. This can
be done by using a file source. The file source can be found in Toolkit spl → spl.adapter →
FileSource. Drag a FileSource onto the Housing_Price_Event composite. Then, double-click
the file source. This opens the properties page for the file source, as shown in Figure 9-40.

Figure 9-40 File Source Properties in a Streams Application

Perform the following steps to create a Streams file source:

1. In File Source Properties, under the General tab select Rename. Rename the file source
to HousingPrcSrc.

2. In the Output Ports tab:

a. Rename the output stream PredictorData.

b. Create four new variables: Date, GBPExch, RBACash, and TriggerLimit. Specify the
type of date as rstring and all other variables as float64 (use CTRL+space to get a list
of all possible formats).
Chapter 9. Demonstration of analytics and real-time event detection 285

3. In the Param tab:

a. Select Add, and select file and format (these options are not available if they are
already in the param section). Then, click OK.

b. Specify the location of the file relative to the Streams Application Bundle in the file
value (this is necessary as the Bluemix Streams Service does not have access to the
local host, only the data available to the Streams Application). In this case,
getApplicationDir()+“/../../etc/TestFile.csv”. The getApplicationDir() function gets the
location of the application toolkit directory (this is the same as the
getThisToolkitDir() function in this case, which is two levels up in the folder structure
from the root directory, which contains the etc folder.

c. The format value should be csv.

4. Lastly in the Config tab:

a. Select Add and select Placement. Then, click OK.

b. Specify the value as: hostColocation("host2"). Here host1 can also be used instead of
host2 depending on the hostnames that are being used in the Bluemix Streams
service. hostcolocation is necessary to ensure that the Bluemix Streams server keeps
the file on the same server as the application operators.

FileSource Properties can now be closed.

Creating a custom operator
To use the model developed, it is necessary to create a custom operator to specify the model.
This tool can be found under Toolkits spl → spl.utility → custom. Drag the tool Custom
with Input and Output into the Housing_Price_Event composite. The input to the Custom
operator is the data extracted from the csv file specified in the file source. To enable this, click
and hold the small box on the right side of the file source, then drag the mouse to the small
box on the left side of the custom operator. The result of doing this should look like
Figure 9-41.

Figure 9-41 Housing_Price_Event composite

Next, double-click the Custom tool. This opens a Properties window that is identical to
Figure 9-40 on page 285, but with the Operator specified as Custom.

To create a custom operator, perform the following steps:

1. In the General tab, change the name of the custom operator to EventTrigger.

2. Check the Input Ports tab to verify that the PredictorData stream is in the “Inout streams
with schema” section.

3. In the Output Ports tab:

a. Specify the output stream name as EventData.

b. Add two variables Predict and Event with types float64 and rstring.
286 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

4. In the Logic tab, copy the code shown in Figure 9-42.

5. Close the custom operator properties.

The code shown in Figure 9-42 predicts the average house price in Victoria based on the
model developed in Figure 9-32 on page 280. The predicted house price is then compared to
the trigger limit. If the predicted price is less than the trigger limit, the Event variable is
changed to Yes. The current date, predicted price, and event status are then printed to the
console. Lastly, the predicted price and event status are submitted to the output stream.

Figure 9-42 Logic in the custom operator

Streams File Sink
Lastly, a Streams File Sink is added to the composite. The File Sink can be found under
Toolkits spl.adapter → FileSink. Drag the FileSink into the Housing_Price_Event
composite, and connect the output of the custom operator to the input of the FileSink.
Double-click FileSink to open its properties.

Perform the following steps to create a Streams File Sink:

1. In the General tab, rename the file sink EventSink.

2. In the Input Ports tab, check that EventData is in the “Input streams with schema section.”

3. In the Param tab:

a. Add the File, flush, and format parameters.

b. Specify the file value as getThisToolkitDir()+“/../../etc/EventOut.csv”, flush as 1u, and
format as csv.

4. Close FileSink and save the project.

The Streams Application File (SAB) can be found in the workspace under
output/Housing_Price_Event/Distributed. This is the file that needs to be submitted as a
job to the streams server.
Chapter 9. Demonstration of analytics and real-time event detection 287

Before doing this, some test data needs to be created. An example of some test data is
shown in Figure 9-43. This csv file needs to be put in the /etc folder within the folder where
the Streams Application Bundle is located.

Figure 9-43 Stream test data

9.8 Real-time event detection in InfoSphere Streams

With the Streams Application Bundle created, the last step required to run the service in real
time on the Bluemix service is to submit the job to the cloud. In the Streams Service Manage
page (shown in Figure 9-34 on page 281), start the Streams service. When the service has
started, launch the Streams service. This opens the Streams console as shown in
Figure 9-35 on page 282.

To submit a Streams Application Bundle, the play button at the top of the Streams Console
near the middle should be selected. Then, click Submit Job. This opens a pop-up window
where the location of the Streams Application Bundle needs to be specified. For this example,
the Streams Application is available locally. Browse to the location of the application bundle
and select it. This looks like Figure 9-44 on page 289.
288 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 9-44 Submitting a Streams Application job

After the Streams Application has been selected, select Next. This opens the configuration
window for the Streams job. Here the name of the job is specified as Housing_Event. All
other parameters are left as their default values. The job configuration window is shown in
Figure 9-45.

Figure 9-45 Job configuration window
Chapter 9. Demonstration of analytics and real-time event detection 289

Next, the job is submitted to the streaming analytics service. This updates the Streams
Console and opens a window showing the application flow, as shown in the upper right card
in Figure 9-46. The green box at the upper left of each operator demonstrates that each one
is functioning correctly.

Figure 9-46 Streams Application Console after submitting a job

To view the output from this job, the Streams Console needs to be used. This can be
accessed by selecting the log viewer on the left of the window (the icon looks like a page).
This opens a log navigation window. Expand the current job and select the processing
element (PE) associated with the EventTrigger operator; in this case, it is the second PE.
Then, select the Console Log tab, and select load console message. This opens the
console logs for the application job as demonstrated in Figure 9-47 on page 291.
290 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Figure 9-47 Streams Console log for the event trigger processing element

The results show that when the predicted price is less than $450,000, an event is triggered.
This event can then be passed onto another operator, which can be used to let a user know
that an event occurred. Ensure that the service is stopped when all jobs have finished.
Chapter 9. Demonstration of analytics and real-time event detection 291

9.9 Conclusion

In this chapter, the process of creating a model based on data, and then using the model to
detect real-time events based on user criteria using Bluemix services was demonstrated. In
particular, the dashDB service was used to import data, and develop a model from this data.
And the streaming analytics service was used to upload a local Streams Application to the
cloud and detect events based on simulated real-time data.

The example described in this chapter is stylized, as real-time event triggers for housing
prices seem a bit contradictory due to the slow change in house prices, based on the
predictors used in the model. This is also clear from the methodology used to model house
prices where yearly data is used. This clearly should not be the basis for a real-time model
because the time scales are disparate.

However, the focus of this chapter is on the process of going from raw data extracted from a
source to developing a model, and then using this model for real-time event triggers. The
process shown here can be used for any data source and with any type of event trigger, with
only minor changes required: First, to the methodology used to create the model (any model
developed should be thoroughly considered and take into consideration the best methodology
to use based on the structure of the data), second, to the local Streams Application (in
particular the data source, which should be a real-time source that is accessible by the
Bluemix service).
292 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publication provides additional information about the topic in this
document. Note that this publication might be available in softcopy only.

Hybrid Cloud Data and API Integration: Integrate Your Enterprise and Cloud with Bluemix
Integration Services, SG24-8277

You can search for, view, download or order this document and other Redbooks, Redpapers,
Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� IBM Maximo Asset Management product page:

http://www.ibm.com/software/products/en/maximoassetmanagement

� IBM Maximo Asset Management V7.6 product documentation:

http://www.ibm.com/support/knowledgecenter/SSLKT6_7.6.0/com.ibm.mam.doc/welcome
.html

� Twilio website:

https://www.twilio.com

� Swagger framework:

http://swagger.io

� Tutorials for TI SensorTag:

https://developer.ibm.com/recipes

� IBM Internet of Things Foundation Quickstart service:

https://quickstart.internetofthings.ibmcloud.com

� Cloud Foundry variables:

https://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html

� Historical exchange rates for different countries (Data provided by Reserve Bank of
Australia):

http://www.rba.gov.au/statistics/historical-data.html#exchange-rates

� Historical cash rate (Data provided by Reserve Bank of Australia):

http://www.rba.gov.au/statistics/tables/index.html#interest-rates
© Copyright IBM Corp. 2016. All rights reserved. 293

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/software/products/en/maximoassetmanagement
http://www.ibm.com/support/knowledgecenter/SSLKT6_7.6.0/com.ibm.mam.doc/welcome.html
https://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html
https://www.twilio.com/
http://www.rba.gov.au/statistics/tables/index.html#interest-rates
http://www.rba.gov.au/statistics/historical-data.html#exchange-rates
http://swagger.io
https://developer.ibm.com/recipes
https://quickstart.internetofthings.ibmcloud.com

� Average yearly house price per suburb in Victoria (Data provided by Victorian State
Government of Australia):

http://www.dtpli.vic.gov.au/property-and-land-titles/property-information/prope
rty-prices

� IBM InfoSphere Streams Quick Start Guide:

http://www.ibm.com/analytics/us/en/technology/stream-computing

� MongoDB download website:

https://www.mongodb.org/downloads#production

� MongoDB installation manual:

https://docs.mongodb.org/master/installation

� Configuring the Secure Gateway service on Bluemix:

https://www.ng.bluemix.net/docs/services/SecureGateway/sg_022.html#sg_009

� Client wrapper using an AMQP messaging toolkit like Qpid Proton:

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
294 Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud with Bluemix Integration Services

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.dtpli.vic.gov.au/property-and-land-titles/property-information/property-prices
http://www.ibm.com/analytics/us/en/technology/stream-computing/
http://www.ibm.com/analytics/us/en/technology/stream-computing/
https://www.mongodb.org/downloads#production
http://www.ibm.com/analytics/us/en/technology/stream-computing/
https://www.mongodb.org/downloads#production
https://docs.mongodb.org/master/installation/
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://www.ng.bluemix.net/docs/services/SecureGateway/sg_022.html#sg_009

IS
B

N
 0738441511

S
G

24-8281-00

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Hybrid Cloud Event Integration: Integrate Your Enterprise and Cloud w
ith Bluem

ix Integration Services

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738441511

SG24-8281-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	IBM Redbooks promotions
	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Part 1 Introduction to hybrid cloud concepts and products
	Chapter 1. Introduction to hybrid clouds
	1.1 Business challenges for seamless integration between cloud and on-premises applications
	1.1.1 Rapid innovation
	1.1.2 Using enterprise solutions
	1.1.3 Best-in-class solution with cloud and on-premises applications

	1.2 Hybrid cloud customer scenarios and use cases
	1.2.1 CompanyA background
	1.2.2 CompanyB background
	1.2.3 CompanyC background
	1.2.4 CompanyD background
	1.2.5 CompanyA challenges, strategy, and solutions
	1.2.6 CompanyB challenges, strategy, and solutions
	1.2.7 CompanyC challenges, strategy, and solutions
	1.2.8 CompanyD challenges, strategy, and solutions

	Chapter 2. Introduction to IBM Bluemix services for hybrid cloud
	2.1 Secure Gateway
	2.1.1 Two typical examples of using Secure Gateway
	2.1.2 Commonly asked questions about Secure Gateway

	2.2 Connect & Compose
	2.3 IBM MQ Light
	2.4 Message Hub
	2.5 Message Connect
	2.6 Message Hub and IBM MQ Light integration through Message Connect
	2.6.1 Configuring Message Hub and Message Connect for IBM MQ Light events

	2.7 StrongLoop

	Chapter 3. Introduction to IBM messaging and integration products
	3.1 Overview
	3.2 Introduction to IBM MQ Light
	3.2.1 IBM MQ Light messaging styles
	3.2.2 Application connectivity patterns using IBM MQ Light

	3.3 Introduction to IBM MQ
	3.4 IBM MQ support for IBM MQ Light APIs
	3.4.1 How to use IBM MQ Light API with IBM MQ

	3.5 Introduction to IBM Integration Bus
	3.5.1 Technical overview of IBM Integration Bus
	3.5.2 Developing IBM Integration Bus message flow as a REST API

	3.6 Introduction to IBM MessageSight
	3.6.1 Architecture overview
	3.6.2 Scalability and performance
	3.6.3 Reliability
	3.6.4 Security
	3.6.5 Integration ability
	3.6.6 Developer-friendly

	Part 2 Introduction to hybrid cloud patterns for event integration
	Chapter 4. Introduction to hybrid cloud patterns for event integration
	4.1 Events in a hybrid cloud environment
	4.2 Pattern to provide secure connectivity from cloud to on-premises application using Secure Gateway
	4.2.1 Using IBM Secure Gateway to connect a cloud application with an in-house application
	4.2.2 Conclusion

	4.3 Pattern to show how IBM Integration Bus flow exposed as REST API can be managed by API management
	4.3.1 Implementing the pattern
	4.3.2 Conclusion

	4.4 Pattern for hybrid cloud integration using API facade
	4.4.1 Characteristics of the pattern
	4.4.2 Pattern implementation with StrongLoop
	4.4.3 Conclusion

	4.5 Pattern for data analytics integration with real-time events
	4.5.1 dashDB service
	4.5.2 Streaming analytics service
	4.5.3 Conclusion

	4.6 Pattern for integrating an Internet of Things device to an on-premises asset management system
	4.7 Pattern for integrating cloud applications using IBM Message Hub for Bluemix

	Part 3 Hybrid cloud scenarios with IBM Bluemix
	Chapter 5. On-premises messaging middleware integration with IBM Bluemix
	5.1 Scenario architecture
	5.2 Setting up an on-premises environment using IBM MQ Light
	5.2.1 IBM MQ Light download and installation
	5.2.2 Node.js download and installation
	5.2.3 Writing a simple Node.js IBM MQ Light message sender client

	5.3 Setting up an on-premises environment using ActiveMQ Apollo
	5.3.1 ActiveMQ Apollo
	5.3.2 Setup and Installation
	5.3.3 Writing a simple Node.js ActiveMQ Apollo message sender client

	5.4 Using IBM Secure Gateway to connect your on-premises sender client to the cloud application
	5.4.1 Configure IBM Secure Gateway service
	5.4.2 Configure IBM Secure Gateway client
	5.4.3 Connect Secure Gateway with the on-premises environment

	5.5 Writing a simple Node.js IBM MQ Light Message receiver client
	5.5.1 Creating the application
	5.5.2 Pushing the application to the Bluemix cloud environment

	5.6 Testing end to end

	Chapter 6. Asynchronous processing through IBM MQ Light service
	6.1 Solution background
	6.2 Transformation of the sample application
	6.3 Subscenario 1: Web application saving data on database
	6.4 Subscenario 2: Web application saving data on IBM MQ Light
	6.5 Subscenario 3: Web application saving data on IBM MQ server
	6.6 Subscenario 4: Web application data consumed by corporate applications
	6.7 Overview of the sample application
	6.7.1 User interface application
	6.7.2 API application
	6.7.3 Message processing application
	6.7.4 Enterprise IBM Integration Bus application
	6.7.5 Preparing for the subscenarios

	6.8 Implementing subscenario 1
	6.8.1 Create simulated data center database
	6.8.2 Provision Bluemix services
	6.8.3 Deploy the API server
	6.8.4 Configure a secure tunnel between the API server and database
	6.8.5 Configure the API server to use a secure connection to the database
	6.8.6 Installing the web application
	6.8.7 Summary of scenario 1

	6.9 Implementing subscenario 2
	6.9.1 Provision IBM MQ Light Bluemix services
	6.9.2 Installing the message processor application
	6.9.3 Configuring the API server to use IBM MQ Light service in Bluemix
	6.9.4 Summary of subscenario 2

	6.10 Implementing subscenario 3
	6.10.1 Configuring IBM MQ for IBM MQ Light APIs
	6.10.2 Creating a secure connection to enterprise IBM MQ
	6.10.3 Configuring the API server to use the enterprise IBM MQ server
	6.10.4 Installing the message processor on a corporate server
	6.10.5 Testing the application
	6.10.6 Summary of subscenario 3

	6.11 Implementing subscenario 4
	6.11.1 Stopping the message processor application in a corporate gateway
	6.11.2 Configuring the API server to use the enterprise IBM MQ server and receive results
	6.11.3 Configuring IBM MQ
	6.11.4 Developing the IBM Integration Bus message flows
	6.11.5 Registering IBM Integration Bus REST API with Bluemix API Management Service
	6.11.6 Update and redeploy the web application
	6.11.7 Testing the application
	6.11.8 Summary of scenario 4

	6.12 Summary

	Chapter 7. Synchronizing data from Salesforce to a remote enterprise system
	7.1 Scenario overview
	7.2 Setting up the database
	7.3 Exposing the database through IBM Secure Gateway
	7.3.1 Configuring a Secure Gateway
	7.3.2 Running the gateway client

	7.4 Compose API with StrongLoop
	7.4.1 Getting started with StrongLoop
	7.4.2 Creating an application
	7.4.3 Adding application logic
	7.4.4 Testing the application
	7.4.5 Deploying the application

	7.5 Configuring Salesforce
	7.6 End-to-end testing
	7.7 Conclusion

	Chapter 8. Integrating events from Internet of Things with Enterprise Asset Management systems
	8.1 Scenario
	8.2 Introduction to IBM Internet of Things Foundation
	8.2.1 Quickstart mode
	8.2.2 Registering an IoT device

	8.3 Creating the flow in Node-RED
	8.4 Binding Twilio service
	8.5 IBM Maximo Asset Management solution
	8.5.1 What is it?
	8.5.2 Maximo setup for this scenario
	8.5.3 Steps to start Maximo

	8.6 Integrating IoT application with IBM Asset Management system with Bluemix Secure Gateway service
	8.6.1 Setting up Secure Gateway

	8.7 The complete solution for the scenario

	Chapter 9. Demonstration of analytics and real-time event detection
	9.1 Configuring a Bluemix dashDB service
	9.2 Preparing and importing data into dashDB
	9.2.1 Data sources
	9.2.2 Data preprocessing
	9.2.3 Importing data into dashDB
	9.2.4 Viewing tables in dashDB

	9.3 Cleaning and preparing data using dashDB Analytics with R
	9.3.1 Accessing R in dashDB
	9.3.2 Importing dashDB data into R
	9.3.3 Viewing Data in R
	9.3.4 Cleaning and preparing the data in R

	9.4 Developing a model using dashDB Analytics with R
	9.4.1 Plotting variables to determine validity of data
	9.4.2 Determine whether the model predictors appear to be correlated to the variable being predicted
	9.4.3 Determine correlation between predictors
	9.4.4 Develop a model of housing prices

	9.5 Configuring an InfoSphere Streams Service on Bluemix
	9.6 Running InfoSphere Streams locally using VMware
	9.7 Creating a Streams Application Bundle
	9.8 Real-time event detection in InfoSphere Streams
	9.9 Conclusion

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

