
Redbooks

Front cover

Configuring and Deploying Open
Source with IBM WebSphere
Application Server Liberty Profile

Rufus Credle

Shao Jan Ding

Miho Hachitani

Jagdish Komakula

Catalin Mierlea

Pete Neergaard

Alexander Poga

Grzegorz Smolko

Sebastian Thomschke

Marek Zajac

International Technical Support Organization

Configuring and Deploying Open Source with IBM
WebSphere Application Server Liberty Profile

July 2015

SG24-8194-01

© Copyright International Business Machines Corporation 2014, 2015. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Second Edition (July 2015)

This edition applies to IBM WebSphere® Application Server V8.5.5.6.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

IBM Redbooks promotions . vii

Preface . ix
Authors. .x
.Now you can become a published author, too! . xiii
Comments welcome. xiv
Stay connected to IBM Redbooks . xiv

Chapter 1. IBM WebSphere Application Server Liberty profile. 1
1.1 Overview of Liberty profile server . 2
1.2 Strengths of Liberty profile server . 2

1.2.1 Simple configuration . 2
1.2.2 Runtime composition with features and services . 3
1.2.3 Developer first focus . 3
1.2.4 Multiple programming model support . 4
1.2.5 Easy extensibility for custom features and third-party components 4
1.2.6 Easy access . 4
1.2.7 Fast and small footprint. 5
1.2.8 Compatibility with WebSphere Application Server full profile 5

Chapter 2. Open source frameworks and toolkits selection . 7
2.1 Apache Maven . 8
2.2 Spring Framework. 9

2.2.1 Spring Framework modules . 9
2.3 Hibernate. 10
2.4 Jenkins . 10
2.5 Opscode Chef . 11
2.6 Arquillian . 11
2.7 MongoDB . 12

Chapter 3. Implementing and testing back-end services on Liberty profile server . . 13
3.1 Setting up the development environment . 14
3.2 Project outline of the Todo list sample application . 17

3.2.1 The simple todo-parent project . 18
3.2.2 The todo-service-api project . 19
3.2.3 The todo-liberty-server project . 20
3.2.4 The todo-service-inmemory-impl project. 21
3.2.5 The todo-service-mongodb-impl project . 22
3.2.6 The todo-service-jpa-impl project . 30

3.3 Docker Hub support . 36

Chapter 4. Continuous integration with Jenkins on Liberty profile server 41
4.1 Installing Jenkins on a Liberty profile server . 42

4.1.1 Setting JENKINS_HOME . 42
4.1.2 Securing Jenkins on a Liberty profile server . 43
4.1.3 Configuring Jenkins . 44
© Copyright IBM Corp. 2014, 2015. All rights reserved. iii

4.2 Setting up a Jenkins job . 46

Chapter 5. Front-end development on the Liberty profile server 53
5.1 RESTful web service with an Ajax front end . 54

5.1.1 Java web services on the Liberty profile server . 54
5.1.2 Java API for RESTful web services . 55
5.1.3 Dojo Toolkit . 58
5.1.4 Integration testing with JWebUnit on the Liberty profile server 61

5.2 Apache Wicket . 64
5.2.1 Simple Todo application in Apache Wicket . 64
5.2.2 Setting up the Apache Wicket with Spring and JPA Hibernate project 64
5.2.3 Developing the Todo application. 65
5.2.4 Issues found during development . 69
5.2.5 Testing the Todo Wicket application . 70

Chapter 6. Deploying the Liberty profile server with Opscode Chef 73
6.1 About Knife, Recipe, and other terms . 74
6.2 Preparing for Chef. 74

6.2.1 Preparing the test machines . 75
6.2.2 Installing Chef . 76

6.3 Installing Liberty profile server with Chef . 80
6.3.1 Loading the wlp cookbook . 80
6.3.2 Deploying the Liberty profile server binary files . 80
6.3.3 Creating Liberty profile server configurations . 85
6.3.4 Starting Liberty profile servers . 88

Chapter 7. Working with third-party tools on the Liberty profile server 91
7.1 Apache ActiveMQ with Liberty profile server . 92

7.1.1 Example: Simple JMS application on a Liberty profile server 92
7.2 Apache James with Liberty profile server . 96

7.2.1 Example . 96

Appendix A. Additional material . 99
Locating the web material . 99
Using the web material. 99

Downloading and extracting the web material . 99

Related publications . 101
IBM Redbooks . 101
Online resources . 101
Help from IBM . 103
iv Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2014, 2015. All rights reserved. v

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS®
ClearCase®
Concert™
IBM®

IBM z™
PureApplication®
Rational®
Rational Team Concert™
Redbooks®

Redpapers™
Redbooks (logo) ®
WebSphere®
z Systems™
z/OS®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
vi Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

http://www.ibm.com/legal/copytrade.shtml

IBM REDBOOKS PROMOTIONS
Find and read thousands of
IBM Redbooks publications

Search, bookmark, save and organize favorites

Get up-to-the-minute Redbooks news and announcements

Link to the latest Redbooks blogs and videos

Download
Now

Get the latest version of the Redbooks Mobile App

iO
S

Android

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Promote your business
in an IBM Redbooks
publication

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

http://bit.ly/redbooksapp
http://bit.ly/1bvYuMM
http://bit.ly/1lCxuBG
http://ibm.co/1maZVrw

THIS PAGE INTENTIONALLY LEFT BLANK

Preface

This IBM® Redbooks® publication explains the capabilities of IBM WebSphere® Application
Server Liberty profile (Liberty profile), which is lightweight, easy to install, and fast to use.
Liberty profile provides a convenient and capable platform for developing and testing your
web and OSGi applications. The Liberty profile server is built by using OSGi technology and
concepts. The fit-for-purpose nature of the run time relies on the dynamic behavior that is
inherent in the OSGi framework and service registry. As bundles are installed or uninstalled
from the framework, their services are automatically added or removed from the service
registry. The result is a dynamic, composable run time that can be provisioned with only what
your application requires and responds dynamically to configuration changes as your
application evolves.

This book can help you install, customize, and configure several popular open source
technologies that can be deployed effectively with the Liberty profile server.

The following popular open source toolkits for the Liberty profile server were selected for this
book based on the significant enhancements they provide to the web application development
process:

� Apache Maven
� Spring Framework
� Hibernate
� Jenkins
� Opscode Chef
� Arquillian
� MongoDB

In this book, the Todo sample demonstrates the use of multiple open source frameworks
or toolkits with the Liberty profile server, including Maven, MongoDB, Spring, JPA, Arquillian,
Wicket, and others. The Todo sample is a simple application that can be used to create,
update, and delete todo items and todo lists, and put the todo items into a related todo list.
© Copyright IBM Corp. 2014, 2015. All rights reserved. ix

Authors

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Raleigh Center.

Rufus Credle is a Certified Consulting IT Specialist at the
ITSO Research Triangle Park NC Center. In his role as Project
Leader, he conducts residencies and develops IBM Redbooks
publications and IBM Redpapers™ publications with a team of
IBM subject matter experts (SMEs), IBM Business Partners,
and clients around the globe on the subjects of network
operating systems, enterprise resource planning (ERP)
solutions, voice technology, high availability, clustering
solutions, web application servers, pervasive computing, IBM
and OEM e-business applications, WebSphere Commerce,
IBM industry technology, the IBM Customer Information
Control System (IBM CICS®) family of application servers and
connectors, System x, and IBM BladeCenter.

Rufus has held various positions during his IBM career,
including assignments in administration and asset
management, systems engineering, sales and marketing, and
IT services. He has a Bachelor of Science degree in Business
Management from Saint Augustine’s College. Rufus has been
employed at IBM for 33 years.

Shao Jan Ding is a Software developer for the IBM
WebSphere Application Server Development organization. She
is based at the Beijing, China Software Development
Laboratory. She has over 10 years of experience in the IT
industry and focuses primarily on Java and Java Platform,
Enterprise Edition technologies.

Miho Hachitani is an advisory specialist with the technical
support team for WebSphere Application Server. She has over
13 years of experience at the WebSphere Application Server
support organization in IBM, including the design of topologies,
scalability, high availability, performance, and administration.

She has delivered customer projects that adopt the Liberty
profile, and tested many cases of Liberty profile, including
Liberty collective.
x Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Jagdish Komakula is a Senior Staff Software Engineer and
has over nine years of IT experience in WebSphere
administration, Java, Java Platform, Enterprise Edition, XML,
service-oriented architecture (SOA), and related technologies.
He holds a master’s degree in Information Systems and is part
of the Worldwide Competitive Migration Team. He was a
Technical Leader for SIBus Test Team and Project Leader for
WebSphere Application Server Functional Verification Test
Team at IBM Software Labs, Bangalore, India. Jagdish is
focused and enjoys delivering measurable business value by
interacting with WebSphere customers. He is an IBM Certified
WebSphere V8.5 Network Deployment Administrator and
coauthored WebSphere Application Server V7 Migration
Guide, REDP-4635. Jagdish has presented many technical
articles at various conferences, such as RTLE, APQSE, and
WTC.

Catalin Mierlea is Middleware Software Specialist at Technical
Support Services of Global Technologies Services, IBM
Romania. Catalin joined IBM in March 2012 and has 10 years
experience with IBM middleware software. His areas of
expertise include WebSphere products, SOA, and software
architecture. He specializes in WebSphere Application Server,
WebSphere Portal Server, and WebSphere Business Process
Manager. Catalin has a Bachelor of Science degree in
Automation Control and Computers, a Master of Science
degree in Integrated Informatics Systems, IBM WebSphere
products certifications, and competencies in different Oracle
and Microsoft technologies. He has extensive industry
knowledge and hands-on project experience in the banking
and public sectors.

Pete Neergaard is a Certified IT Specialist working as a
Course Developer and Instructor in the WebSphere Application
Server area. He has been at IBM for 18 years, working for the
WebSphere Education team with a focus on WebSphere
Application Server, Intelligent Management, Security, and
Mobile. Previously, he worked at Carnegie Mellon University as
a Research Systems Programmer. He holds a bachelor’s
degree in Computer Science and Applied Math from Carnegie
Mellon University. He lives and works in Pittsburgh,
Pennsylvania.

Alexander Poga is a Software Engineer with the IBM
Australian Development Lab, which is based in Perth, Western
Australia. He works on the development team for the Fault
Analyzer for IBM z/OS® product, which is part of the Problem
Determination Tools suite for z/OS mainframes. His areas of
expertise include Java, C, and JavaScript programming for
IBM z Systems™ mainframes, Eclipse plug-ins, web services,
and front-end applications.
 Preface xi

This project was led by:

Margaret Ticknor an IBM Redbooks Project Leader at the Raleigh Center. She primarily leads
projects about WebSphere products and IBM PureApplication® System. Before joining the
ITSO, Margaret worked as an IT specialist in Endicott, NY. Margaret attended the Computer
Science program at State University of New York at Binghamton.

Thanks to the following people for their contributions to this project:

Paul W Bennett
IBM Systems, Middleware, WebSphere Development, IBM US

Kihup Boo
IBM Systems, Middleware, IBM Canada

Robert Haimowitz
DST Poughkeepsie, Enablement for IBM z™ Systems and z/OS

Grzegorz Smolko is a Certified IT Specialist at IBM Poland in
Warsaw, Poland. Grzegorz has been working for IBM for more
than 12 years, mostly in IBM Software Services for
WebSphere. He is a member of the World Wide WebSphere
Competitive Migration Team, helping customer to migrate their
applications from various platforms to WebSphere Application
Server and WebSphere Liberty profile. Before joining IBM, he
worked for software house companies in Poland as a Java
developer and architect. His areas of expertise include Java,
Java Platform, Enterprise Edition, and WebSphere. He holds
certifications from Oracle and IBM in Java and WebSphere
technologies. He has a master’s degree in Computer Science
from the Warsaw University of Technology, Poland.

Sebastian Thomschke is a Senior IT Consultant and CEO at
Vegard IT GmbH, a Berlin-based IT consulting company and
IBM Business Partner. This company’s main focus is on the
IBM WebSphere technology stack. He has over 17 years of
experience in the IT industry, where he successfully fulfilled
roles as Application Developer, IT Architect, Trainer, and IT
Consultant. For the last eight years, he has been primarily
engaged in WebSphere Application Server and Portal Server
development and deployment projects. Sebastian has a degree
in Business Administration from the Berufsakademie of Berlin,
Germany.

Marek Zajac is a Software Architect with the IBM Krakow Lab,
which is based in Krakow, Poland. He works with the WW BP
Technical Professional team and is responsible for delivering
WebSphere technical support and enablement to IBM
Business Partners in Central and Eastern Europe (CEE) and
Middle East Africa (MEA). He has 13 years of experience in the
IT industry and for the last seven years has focused on Java
and Java Platform, Enterprise Edition. His specialities are
WebSphere Application Server, IBM Business Process
Manager (IBM BPM), and WebSphere Message Broker.
xii Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Alex Mulholland
STSM WebSphere Application Server Liberty Runtime Architect, IBM US

Alasdair Nottingham
WebSphere Application Server Liberty profile Development Lead IBM Hursley

Gary R. Picher
Software Engineer, WebSphere for z/OS, IBM US

Preethi R Sulkunte
IBM Systems, Middleware, IBM India Pvt Ltd

Thanks to the following people for their support of this project:

Deana Coble
IBM Redbooks Technical Writer

Lindamay Patterson
IBM Redbooks Technical Writer

Tamikia Lee
IBM Redbooks Residency Administrator

Suresh K Kalathody
IBM Redbooks Graphics Editor

Wade Wallace
IBM Redbooks Editor

.Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xiv Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. IBM WebSphere Application
Server Liberty profile

Along with the development of the IT industry, new challenges have occurred for application
servers:

� Application servers require readily deployable artifacts. They require a test-driven
development methodology and the development must be under a continuous integration
mode. The application server must support rapid application development and
deployment.

� Software should be modularized and should be more easily assembled, which leads to the
requirements for composable, dynamic, and fast application server run time.

� Modern programming models, such as NoSQL database, RESTful web services, and
responsive UI are more popular. Application servers must be fast and open to adopt these
new programming models.

� Open source is becoming more useful. Application servers must work seamlessly with
different open source frameworks.

The WebSphere Application Server Liberty profile is lightweight, easy to install, and fast to
use. It provides a convenient and capable platform for developing and testing your web,
enterprise, and OSGi applications. The Liberty profile server (short name) is built by using
OSGi technology and concepts. The fit-for-purpose nature of the run time relies on the
dynamic behavior that is inherent in the OSGi framework and service registry. As bundles are
installed or uninstalled from the framework, their services are automatically added or
removed from the service registry. The result is a dynamic, composable run time that can be
provisioned with only what your application requires and responds dynamically to
configuration changes as your application evolves.

This book uses multiple samples to demonstrate how WebSphere Application Server Liberty
profile can be used to address these challenges. This chapter has an overview of WebSphere
Application Server Liberty profile and its strength.

1

© Copyright IBM Corp. 2014, 2015. All rights reserved. 1

This chapter covers the following topics:

� Overview of Liberty profile server
� Strengths of Liberty profile server

1.1 Overview of Liberty profile server

The Liberty profile server is a simple, lightweight development and application runtime
environment that offers these benefits:

� Simple to configure: Configuration is read from a single XML file with text-editor syntax.

� Dynamic and flexible: The run time loads only what your application needs and constructs
the run time in response to configuration changes.

� Fast: The server starts in under five seconds with a basic web application.

� Extensible: The server supports user and product extensions, which can use system
programming interfaces (SPIs) to extend the run time.

The Liberty profile server is available in all editions of the WebSphere Application Server
product. It is the only profile in the low-end Liberty Core edition of the product; all other
editions contain both the Liberty profile and the full (traditional) profile of the WebSphere
Application Server.

1.2 Strengths of Liberty profile server

The WebSphere Application Server Liberty profile offers great advantages when used as both
a development and production run time. The Liberty profile server is both lightweight and
capable, particularly when considering the ability of third parties to extend and enhance the
available features. Creating a configurable run time with a custom application that can be
running in seconds becomes easy and time-efficient. The learning curve to understand the
new product can be short because the configuration is kept in a single file and all parameters
are organized in a concise way.

1.2.1 Simple configuration

The server configuration, from the user perspective, is only a single server.xml file that
contains all the needed information. This WebSphere Application Server Liberty Core V8.5.5
configuration file has many optional parameters that are used for specific scenarios. You can
find them in the following IBM Knowledge Center at the following website:

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.c
ore.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-1-1-0

Users can easily configure the server manually by editing the server.xml file or by using the
Eclipse and the WebSphere Application Server Developer Tools. It provides the graphical tool
to manage the server properties and deploy applications. For the production environment,
having a set of resources that allow tuning the run time properly and also doing the
troubleshooting when needed is important. For instructions about how to tune the Liberty
profile server, go to the following website:

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.c
ore.doc/ae/twlp_tun.html
2 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-1-1-0
http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_tun.html
http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_tun.html

1.2.2 Runtime composition with features and services

The composable nature of the Liberty profile server is based on the concept of features. A
feature is a unit of functionality. Features can overlap, and they can include other features.

The Liberty profile server process consists of a single JVM, the Liberty kernel, and any
number of optional features. The feature code and most of the kernel code runs as OSGi
bundles within an OSGi framework. Features provide the programming models and services
that are required by applications. You can choose which optional features should be enabled
according to your application requirements.

For a list of the main Liberty features, go to the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_feat.html?cp=SSAW57_8.5.5%2F3-0-2-2-0

1.2.3 Developer first focus

With Liberty profile server, you can do rapid development and deployment to meet with the
agile development trend. Liberty profile server is an open source software alternative with
WebSphere quality of service (QoS).

Fast and no-cost download for developer’s desktop
Liberty profile server is for fast and no-cost developer desktop use. It can be downloaded and
installed from http://www.eclipse.org or http://www.WASdev.net. To download from
WASdev.net, go to this address:

http://wasdev.net/downloads

The WebSphere Application Server Developer Tools for Eclipse are also available. The
WebSphere Application Server Developer Tools product is available through the Eclipse
Marketplace. You can also use IBM Rational® Application Developer for your development.
For more information about WebSphere Application Server Developer Tools and access to
the tool, see the following website:

https://www.ibmdw.net/wasdev/

Rapid development and deployment
You deploy an application in Liberty profile server by either dropping the application into the
server’s dropins directory, or by adding an application entry to the server configuration
(server.xml) file.

By default, the dropins directory is automatically monitored. If you drop an application
into this directory, the application is automatically deployed on the server. Similarly, if the
application is deleted from the directory, the application is automatically removed from the
server. For applications that are not in the dropins directory, you specify the location by using
an application entry in the server configuration file. The location can be on the file system
or at a URL.

Although there is no distinction between installing and starting an application, installed
applications can be stopped and restarted. By default, the Liberty profile server monitors
deployed applications for changes. Updates to static files (HTML, CSS, or JavaScript) or JSP
files are detected and served immediately. Changes to servlet classes cause an automatic
restart of the application. So, in your development time, updating your application is quick and
you do not need to redeploy the application. The server can monitor and restart the
application, if needed, to retrieve your new changes.
Chapter 1. IBM WebSphere Application Server Liberty profile 3

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_feat.html?cp=SSAW57_8.5.5%2F3-0-2-2-0
http://wasdev.net/downloads
https://www.ibmdw.net/wasdev/
http://www.eclipse.org
http://www.WASdev.net

When you finish development, if you want to distribute the final result to users, you can
package the Liberty profile server from the command line. Then, you can store this package,
distribute it to colleagues, use it to deploy the installation to a different location or to another
machine, or embed the installation in a product distribution. For information about how to
package and distribute your Liberty profile server and application, go to the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_feat.html?cp=SSAW57_8.5.5%2F3-0-2-2-0

1.2.4 Multiple programming model support

The Liberty profile server is certified for the Java Platform, Enterprise Edition (Java EE)
standard. You can create web applications for the Java EE Web Profile by using the Liberty
Core edition, and Java enterprise applications for the full platform standard in all other
product editions.

The Liberty profile server supports a subset of the Java EE 6 stack and the full Java EE 7
stack. It also supports, for example, web services technologies, enterprise application
technologies, and more.

The Liberty profile server supports OSGi applications in all editions. The following
technologies are supported for OSGi applications (with a reference to the specification where
appropriate):

� Web Application Bundles (OSGi R4.2 Enterprise, Chapter 128)
� Blueprint Container (OSGi R4.2 Enterprise, Chapter 121)
� Blueprint Transactions
� Blueprint Managed JPA
� JNDI (OSGi R4.2 Enterprise, Chapter 126)
� OSGi application of Java EE technologies that are supported by the profile

A complete list of the technologies that are supported by the Liberty profile server are at the
following IBM Knowledge Center website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.doc/ae/rwlp_prog_model_support.html?cp=SSAW57_8.5.5%2F1-0-2-0-0

1.2.5 Easy extensibility for custom features and third-party components

The Liberty profile server supports direct extension of the run time by using product
extensions. A product extension allows custom content to be added to a Liberty installation in
a way that avoids conflicts with the base content of the product and with other product
extensions. A product extension is defined by using a simple properties file
(<extensionName>.properties) in the following directory:

${wlp.install.dir}/etc/extensions/

This naming convention helps to ensure that each product extension has a unique name.
The unique name, in turn, is used as a prefix to avoid collisions when specifying
extension-provided features and configuration in the server.xml file.

1.2.6 Easy access

The Liberty profile server is a small download file that you can extract to install. The download
size for web profile support is only 60 MB and the installed size is approximately 67 MB. The
installation time on the developer system is under ten seconds.
4 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_feat.html?cp=SSAW57_8.5.5%2F3-0-2-2-0
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/rwlp_prog_model_support.html?cp=SSAW57_8.5.5%2F1-0-2-0-0

You can also first install WebSphere Application Server Developer Tools for Eclipse and then
use this tool to download the WebSphere Application Server Liberty profile. This installation
option is complete in only three minutes.

Liberty profile server supports a broad list of operating systems: IBM AIX®, HP, IBM i, Linux,
Solaris, Windows, and z/OS. The Liberty profile server is also supported for development on
Mac OSX.

The Liberty profile server runs on Java 6, 7, or 8 regardless of the vendor that provides it. All
Java EE 7 features require the use of Java 7 or Java 8.

1.2.7 Fast and small footprint

The Liberty profile server start is fast. It can be started in approximately three seconds, and
even in debug mode it can be started within five seconds.

The Liberty profile server memory footprint is small at about 60 MB for the TradeLite
benchmark.

1.2.8 Compatibility with WebSphere Application Server full profile

The WebSphere Application Server Liberty profile shares all core technologies, except the
JAX-WS implementation, with the WebSphere Application Server full profile server. Most
Java EE 6 applications move easily from Liberty profile servers to the WebSphere Application
Server full profile server, although the reverse is not necessarily true. The Liberty profile
feature architecture and continuous delivery model allow for faster delivery of new JSR
specifications on Liberty profile, so keep this in mind if you are developing applications on
Liberty profile that are destined for deployment onto WebSphere Application Server full
profile. For support details, go to the IBM Knowledge Center at the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.doc/ae/rwlp_prog_model_support.html?cp=SSAW57_8.5.5%2F1-0-2-0-0

Other differences also exist between profiles in terms of configuration, including parameter
names and their default values. The following list summarizes the primary areas that differ
between the WebSphere Application Server full profile and the Liberty profile server:

� Time values

In the WebSphere Application Server Liberty profile, most properties are represented by
units of time. In the WebSphere Application Server full profile, they are stored as units of
seconds, milliseconds, or minutes depending on the setting.

� Class loading

The main difference is that the WebSphere Application Server full profile uses and
exposes many open source libraries to applications running on the server. For example,
classes under the org.apache.* location are visible in the application. The following open
source packages are available to applications on the WebSphere Application Server:

– commonj
– org.apache.axiom
– org.apache.axis2
– org.apache.bval
– org.apache.http
– org.apache.wink
Chapter 1. IBM WebSphere Application Server Liberty profile 5

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/rwlp_prog_model_support.html?cp=SSAW57_8.5.5%2F1-0-2-0-0

– org.apache.xerces
– org.apache.commons.[beanutils | codec | collections | digester | discovery | el |

fileupload | httpclient | io | jxpath | lang | lang3 | logging | pool]

You might encounter problems when your application uses the same libraries at different
versions that are deployed within your application. To fix this issue, you must change the
class loader from parent first to parent last. WebSphere Application Server Liberty profile
exposes only the specification API and IBM APIs to applications, by default. This means
you do not have to change the class loader policy. But, you must remember the default
action when migrating your application from the Liberty profile server to the full profile.

� Server properties

If you are familiar with the WebSphere Application Server full profile, you already know
that there are many parameters, for example, data sources, web container properties,
thread pools, and others. Usually, you configure the server by using the web-based admin
console or wsadmin command-line tool. The WebSphere Application Server Liberty profile
has only one single configuration XML file that contains all the server settings instead of
many XML files that contain parameters in the WebSphere Application Server full profile.
An important aspect to mention here is that the name of those parameters and their
default values might differ among the various WebSphere Application Server profiles. Be
aware of this difference when you plan to switch from Liberty profile server to WebSphere
Application Server full profile.

To learn about server parameters, their descriptions, and default values for WebSphere
Application Server Liberty profile, see the IBM Knowledge Center at the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F1-0-2-1-0

When you are planning to switch from the WebSphere Application Server full profile to Liberty
profile server, consider the following differences:

� Liberty profile server supports only EJB 3.x beans.

� JNDI lookups that use the ejblocal name space are not supported. Instead, the
ejb-ref bindings must be specified by using the java:global, java:app, or java:module
name. The simple-binding-name and interface binding-name elements are ignored in the
ibm-ejb-jar-bnd.xml file.

� Security differences exist between WebSphere Application Server Liberty profile and
WebSphere Application Server full profile. To learn more, go to the following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.doc/ae/cwlp_sec.html

� Web Services Security in WebSphere Application Server Liberty profile is configured
within the WSDL file in applications. In WebSphere Application Server, the same can be
configured by applying policy sets.

� Bean validation is not supported in the Liberty profile server when deployed in OSGi
applications.

� In the WebSphere Application Server full profile, when you want to expose an EJB3.x
through web services, a web archive (WAR) Router web project is generated. This is not
needed in WebSphere Application Server Liberty profile, where you can directly expose
EJB by using @WebService annotation.
6 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F1-0-2-1-0
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/cwlp_sec.html

Chapter 2. Open source frameworks and
toolkits selection

This chapter introduces several popular open source technologies that can be deployed
effectively with the WebSphere Application Server Liberty profile.

The following list represents a selection of popular open source toolkits for the Liberty profile
server. Each product was selected based on the significant potential enhancements they
provide to the web application development process.

� Apache Maven
� Spring Framework
� Hibernate
� Jenkins
� Opscode Chef
� Arquillian
� MongoDB

2

© Copyright IBM Corp. 2014, 2015. All rights reserved. 7

2.1 Apache Maven

Apache Maven is an open source software project management tool that can streamline the
software development lifecycle. Although it is primarily focused on Java based software
projects, Maven can be configured to work with other languages, such as C#, Ruby, and
Scala.

Through configuration of a Project Object Model (POM) XML configuration file, Maven can
automate several common tasks, including the following tasks:

� Building project source files
� Managing dependencies on external modules and components, such as Java libraries
� Running unit tests and reporting test code coverage
� Generating documentation and project information reports, including change logs
� Managing release distribution and mailing lists

In addition, the capabilities of Maven can be enhanced to meet further requirements through
its extensible plug-in architecture.

Maven build lifecycles consist of a list of ordered phases. Figure 2-1 shows how build
lifecycles and Maven plug-ins are organized.

Figure 2-1 Default Maven lifecycle plug-in bindings

The Liberty profile server provides a Maven plug-in that can be used for automating Liberty
profile server-specific tasks. After adding the Liberty profile server Maven plug-in from the
WebSphere Application Server Developer Community (WASdev) to your POM XML file, the
following “goals” are available:

� liberty:create-server
� liberty:start-server
� liberty:package-server
� liberty:stop-server
� liberty:undeploy
� liberty:install-apps
8 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

2.2 Spring Framework

The Spring Framework is a modular Java development platform that provides several features
to support the enterprise application development process. Spring uses a model of
dependency injection or Inversion of Control (IoC) where Java components can be created
and wired together by declaring relationships that use XML and annotations. This model
enables an application developer to focus on the business logic by using “plain old Java
objects” (POJOs), leaving the infrastructure management to Spring.

As an example, each of the following operations can be performed by using local Java
methods without needing to interact directly with their respective environment APIs:

� Running database transactions
� Performing remote procedures
� Performing management operations by using the Java Management Extensions (JMX)
� Handling messages by using the Java Message Service (JMS)

2.2.1 Spring Framework modules

The Spring Framework modules are organized into the categories: core container, data
access and integration, web, aspect-oriented programming, and testing.

Core container
This category provides the fundamental components of the framework by using IoC and
dependency injection for configuration, context, and lifecycle management of Java objects. In
addition, the Expression Language module provides various utility functions that include
support for querying and manipulating objects at run time.

Data access/integration
This category facilitates integration with numerous popular data access frameworks to
support JDBC, Object Relational Mapping (ORM), Object/XML Mapping (OXM), JMS, and
transaction management. Supported frameworks include JDBC, Hibernate, JPA, JDO, and
iBatis for ORM, and also JAXB, Castor, XMLBeans, JiBX, and XStream for OXM.

Web
This category includes several useful web components and utilities, including request
parameter parsing, multi-part request handling (as used in uploading files) the remote access
framework, and a model view controller (MVC) framework for web applications.

Aspect-oriented programming and instrumentation
Aspect-oriented programming (AOP) is a technique to alleviate issues with cross-cutting
concerns by encapsulating behaviors between multiple classes into reusable modules.
Cross-cutting concerns are parts of a program that rely on or affect many other components
in a software system, which cannot be cleanly implemented in object-oriented or procedural
programming. An example might be an application-wide logging or caching system that
requires code duplication or complicated dependency linkages between components.

Testing
This category includes modules to support the testing of Spring components by providing
component-mocking utilities and also consistent loading and caching of Spring
ApplicationContexts.
Chapter 2. Open source frameworks and toolkits selection 9

2.3 Hibernate

Hibernate is an Object Relational Mapping (ORM) library for Java applications. By using a
lightweight persistence framework, Hibernate handles the mapping of Java objects to tables
in a traditional relational database.

To provide this functionality, the Hibernate data query and retrieval facilities abstract away
from the selected database SQL calls and result set handling. This allows the developer to
focus on the features of an application without having to worry about interacting with a
database when the developer must store or find objects.

Hibernate can use Java annotations or XML mapping documents to describe the following
mappings:

� Java objects to relational database tables

� One-to-many and many-to-many relationships between objects

� Reflexive one-to-many relationships between an object and other instances of its own type

� Java object types to SQL types (when overriding the default mappings)

� Java Enum types to columns

� Single properties to multiple columns

2.4 Jenkins

Jenkins is an open source continuous integration platform that runs under a Java web servlet
container (such as the Liberty profile server).

Continuous integration is the practice of frequently building and testing software projects
during development. The aim of this process is to discover defects and regressions early by
automating the process of running unit and integration tests. These automated build and test
cycles typically happen on a regular schedule (such as every night) or even after each
change is delivered.

Jenkins can integrate with a large variety of frameworks and toolkits by using its extensive
library of available plug-ins, including the following items:

� Source code management and version control platforms, including CVS, Subversion, Git,
Mercurial, Perforce, IBM ClearCase®, and IBM Rational Team Concert™.

� Build automation tools, such as Apache Ant and Maven, and also standard operating
system batch and script files

� Testing frameworks, such as JUnit and TestNG

� RSS, email, and instant messenger clients for reporting results in real time

� Artifact uploaders and deployers for several integration platforms
10 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

2.5 Opscode Chef

Opscode Chef is an application and server configuration framework that is designed to
automate the process of provisioning and deploying resources. Chef provides a way to model
infrastructure and processes in code so that they become testable, versioned, and
repeatable.

The chef-client uses abstract reusable definitions of system configurations that are named
cookbooks and recipes. These configuration files describe how each part of the server
infrastructure should be built and managed, whether it is in a physical, internal, or
cloud-based server environment. When new hardware is added, the chef-client needs to
know only which cookbooks and recipes to apply. For example, a cookbook might define
everything that is required to install, configure, and manage the Liberty profile server on a
node.

Through integration with frameworks such as Jenkins, Chef also enables a model of
continuous delivery, where updates can automatically be deployed into production after
completing the continuous integration testing and approval process.

In a traditional client/server configuration, the Chef framework consists of three main
components:

� A single Chef server

� A chef-client installed on each node (a physical, virtual, or cloud server)

� One or more workstations to be used for administration and development

In addition, Chef can also be run by using a limited chef-solo configuration that runs without a
server. However, this setup does require that a cookbook and any dependencies are available
on the same physical disk as the node.

2.6 Arquillian

Integration-testing a modern Java web application can be difficult and time consuming
because of the necessity of re-creating a realistic web container environment. Managing a
simulated environment is achieved by using mocking or extensive environment initialization
and teardown between tests. Arquillian is a testing framework that aims to simplify this
process by automatically handling container management, deployment, and framework
initialization. With this design, developers can focus on the testing of business logic with what
Arquillian describes as “real tests.”

By handling the environment configuration for the tester, Arquillian allows test cases to be run
against several various platforms. This is helpful when various web containers are used
between development and production (such as using the Liberty profile server for
development of a WebSphere Application Server full profile application).

By using special Java annotations to integrate seamlessly with familiar testing frameworks
(such as JUnit and TestNG), Arquillian tests can be run from a developer’s integrated
development environment (IDE) or build system without any extra plug-ins by using tools such
as Ant and Maven.
Chapter 2. Open source frameworks and toolkits selection 11

2.7 MongoDB

MongoDB is an open source, cross-platform, and document-oriented database system.
Based on the concept of a dynamic NoSQL structure, MongoDB differs from a traditional
relational database because of its ability to store documents in a format similar to JavaScript
Object Notation (JSON). This data format allows for greater flexibility of the types of
information that is stored (including regular files that use GridFS) by eschewing the limitations
of a strict schema. Example 2-1 shows two samples of documents that have different attribute
structures.

Example 2-1 Two example MongoDB documents with differing attribute structures

{
firstName: “John”,
secondName: “Smith”,
age: “20”

}

{
firstName: “Mary”,
secondName: “Smith”,
hobby: “painting”,
favouriteColor: “blue”

}

To support efficient query resolution, MongoDB uses an indexing system for each document.
Any field can be selected for use as the document index. Secondary indexes are also
supported.

MongoDB offers several features to support large workloads and storage requirements. By
using a replica set, groups of MongoDB daemon processes can maintain the same data set in
multiple physical locations. Data can be mirrored by establishing a “master/subordinate”
relationship between environments where the subordinate maintains a copy of the master
database for reading and backup purposes. This configuration has the advantage that a new
master source can be selected if the current master becomes unavailable. In addition,
MongoDB also supports sharding, where one large set of data is split into ranges that are
distributed across multiple servers.
12 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Chapter 3. Implementing and testing
back-end services on Liberty
profile server

In this book, the Todo sample application is used to demonstrate the use of multiple open
source frameworks or toolkits with Liberty profile server, including Maven, MongoDB, Spring,
JPA, Arquillian, Wicket, and others. The Todo sample is a simple application that can be used
to create, update, and delete to-do items and to-do lists. It also provides a query function that
gets the to-do items in one specific to-do list, or gets all to-do lists. Later, in the
todo-service-api project, you can find all the available APIs.

This chapter guides you from setting up the development environment through the integration
testing by using Arquillian. It mainly focuses on the back-end service implementation and on
how to do an integration test with Liberty profile server automatically. For an extended set of
sample applications that incorporate graphical user interfaces (GUIs), see Chapter 5,
“Front-end development on the Liberty profile server” on page 53.

This chapter covers the following topics:

� Setting up the development environment
� Project outline of the Todo list sample application
� Docker Hub support

3

© Copyright IBM Corp. 2014, 2015. All rights reserved. 13

3.1 Setting up the development environment

Preparing the development environment for our sample application requires the following
steps:

1. Install JDK 7 and update your system JAVA_HOME environment variable to reference the
installation directory.

2. Download and install Eclipse and the WebSphere Application Server Developer Tools from
the following website:

https://developer.ibm.com/wasdev/docs/developing-applications-wdt-liberty-profi
le//

3. Download and install Apache Maven for command-line console-based builds from the
following website:

http://maven.apache.org/download.cgi#Installation_Instructions

4. Download and install the m2eclipse plug-in into Eclipse from the following website:

http://www.eclipse.org/m2e/

5. Download and install Subclipse 1.8.x (not the 1.10.x) plug-in from the following website:

http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA

6. Get all Todo sample-related source files for this book (see Appendix A, “Additional
material” on page 99) and save them in to your local directory.

7. Open Eclipse to set the JDK home by clicking Window → Preferences → Java →
Installed JREs and then selecting JDK 7 home.
14 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

https://developer.ibm.com/wasdev/docs/developing-applications-wdt-liberty-profile//
http://maven.apache.org/download.cgi#Installation_Instructions
http://www.eclipse.org/m2e/
http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA

8. In Eclipse, click File → Import → Maven → Existing Maven Projects, as shown in
Figure 3-1. Click Next.

Figure 3-1 Import existing Maven projects
Chapter 3. Implementing and testing back-end services on Liberty profile server 15

9. Open the directory where you saved the Todo sample. Ensure that all projects are
selected and click Finish, as shown in Figure 3-2.

Figure 3-2 Select all projects to import

Wait a few seconds. Your projects are then listed, without errors, in the Project Explorer
(Figure 3-3); m2eclipse has already taken care of cross-references between projects and
configured the projects.

Figure 3-3 Projects that are listed after they are imported into Eclipse
16 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

3.2 Project outline of the Todo list sample application

Table 3-1 explains the structure of the sample application.

Table 3-1 The Todo sample application project structure

Note: We are presenting a sample application that uses only specific versions of the
Liberty profile, WebSphere Application Server Developer Tools, and open source
frameworks. If you also plan to use these technologies, make sure that the versions you
have are compatible with each other.

Project name Basic description

todo-parent Holds the shared Maven configuration for all projects

todo-service-api Contains the model and service API

todo-liberty-server Contains the Liberty profile server binary file

todo-service-inmemory-impl Contains an example in-memory implementation of the
todo-service

todo-service-jpa-impl Contains an example JPA implementation of the todo-service

todo-service-mongodb-impl Contains an example MongoDB implementation of the
todo-service

todo-ui-rest-webapp Contains an example RESTful web service API and Dojo Toolkit
based front end

todo-ui-wicket-webapp Contains an example Wicket front-end UI of the todo-service
Chapter 3. Implementing and testing back-end services on Liberty profile server 17

The relationship between each project is shown in Figure 3-4.

Figure 3-4 The Todo sample projects relationships

3.2.1 The simple todo-parent project

The sample Todo list application configuration begins in the Maven todo-parent parent
component. Maven supports configuration inheritance, which means a Maven project can
define another project as its parent project by using the <parent> XML node and inherits its
configuration. Dependencies that are declared in a parent project are automatically declared
as dependencies in child projects. Using the <dependencyManagement> and
<pluginManagement> sections in a parent project, preconfigurations of artifact versions and
plug-in configurations can be made.

This means that in all child projects, you can use the Liberty assemblyArtifact in the local
Maven repository to create a Liberty profile server, as shown in the todo-parent component
pom.xml sample file (Figure 3-5 on page 19).

todo-parent
provides common
build configuration

todo-service-api
jar

todo-service-Inmemory-impl
jar

todo-service-mongodb-impl
jar

todo-ui-wicket-impl
war

uses

implements

todo-ui-rest-impl
war

uses

todo-service-jpa-impl
jar

implements
implements

todo-Liberty-Server
provides Liberty

Binary zip
18 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Figure 3-5 Liberty Maven plug-in definition in the pom.xml file

This simplifies the configuration process by providing a single location for specifying settings,
such as the Java compiler version and any common dependencies. However, these settings
become effective only when that same dependency or plug-in is directly declared in the
pom.xml file of the child project.

Configurations that are defined directly in a pom.xml file override similar settings that are
defined in parent projects. If child projects are registered as modules in a parent project, then
they are built as part of the parent project’s build process. Running the mvn package on a
parent project also triggers execution of this lifecycle phase in all declared modules. Child
projects that are not registered as modules are independent from the parent project’s build
process and must be built separately.

3.2.2 The todo-service-api project

The todo-service-api project sits in the middle of the back-end implementation and
front-end UI. All available APIs for users are defined in this project. In this way, switching the
back-end implementation and front-end UI, based on our requirements, is easy.

AbstractTodoListServiceTest.java is defined to perform functional tests against the
TodoListService interface. In the MongoDB and JPA back-end implementation,
AbstractTodoListServiceTest.java does not need to write its functional tests, but extend the
abstract test class and ensure that the specific implementation complies with the test case. To
make this happen, the AbstractTodoListServiceTest is packaged into the test.jar file
(test.jar is a dependency) so that it can be available for all the back-end service
implementation projects: in-memory, MongoDB, and JPA because by default test sources are
not packaged.

<pluginManagement>
<!-- plugin configurations listed here apply to all child modules, which

explicitly list these plugins in there <build><plugins>...</plugins></build>
section -->

<plugins>
<plugin>

<groupId>com.ibm.websphere.wlp.maven.plugins</groupId>
<artifactId>liberty-maven-plugin</artifactId>
<version>1.1</version>
<configuration>

<assemblyArtifact>
<!-- instruct the liberty maven plugin to use the liberty server

binary files that are provided by this artifact -->
<groupId>todo</groupId>
<artifactId>todo-liberty-server</artifactId>
<version>8.5.5</version>
<type>zip</type>

</assemblyArtifact>
</configuration>

</plugin>
</plugins>

</pluginManagement>
Chapter 3. Implementing and testing back-end services on Liberty profile server 19

Figure 3-6 shows a snippet of this part in the todo-service-api project pom.xml file.

Figure 3-6 Test resources exposure in pom.xml

3.2.3 The todo-liberty-server project

The Liberty V8.5.5 binary file is included in this project. This project installs the Liberty profile
server assemblyArtifact in to your local Maven repository. In other projects, you can use the
Liberty Maven plug-in to create the server that is based on this assemblyArtifact in a local
Maven repository, as described in the pom.xml file in the todo-parent project.

You can also run the mvn -Pregenerate-server-xsd generate-sources command to generate
the Liberty profile server configurations schema. The generated schema is installed into the
local Maven repository. Therefore, in other projects, you can reference this schema file to
facilitate your editing of server.xml file. The snippet for this part is in the pom.xml file of
todo-liberty-server (see Figure 3-7 on page 21).

<build>
<plugins>

<plugin>
<!-- create a JAR file containing the test cases, so the test cases can

be referenced and reused in other projects -->
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.2</version>
<executions>

<execution>
<phase>package</phase>
<goals>

<goal>test-jar</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
20 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Figure 3-7 Liberty profile server configuration schema generation in the pom.xml file

3.2.4 The todo-service-inmemory-impl project

The todo-service-inmemory-impl project is a simple, in-memory implementation for
TodoListService. Orika is used in this project to copy recursively data from the service object
to in-memory entity objects or from in-memory entity objects to the service object.In this
project, it is added as a dependency in the pom.xml file. Orika is a simple and fast bean
mapping framework and is available in the Maven central repository. Details about Orika are
available at the following website:

https://code.google.com/p/orika/

Because todo-service-inmemory-impl implements the TodoListService in todo-service-api,
the todo-service-api project is added as a dependency for it. Test-jar is another
dependency and is described in 3.2.2, “The todo-service-api project” on page 19.

<profiles>
<profile>

<!-- activate this profile to regenerate the server.xsd for the liberty
server -->

<id>regenerate-server-xsd</id>
<build>

<plugins>
<plugin>

<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>1.2.1</version>
<executions>

<execution>
<phase>generate-sources</phase>
<goals>

<goal>exec</goal>
</goals>

</execution>
</executions>
<configuration>

<!--
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.wlp.core
.doc/ae/rwlp_schema_gen.html -->

<executable>java</executable>
<arguments>

<argument>-jar</argument>

<argument>src/main/resources/wlp/bin/tools/ws-schemagen.jar</argument>
<argument>src/main/resources/server.xsd</argument>
<argument>--locale=en_US</argument>

</arguments>
</configuration>

</plugin>
</plugins>

</build>
</profile>

</profiles>
Chapter 3. Implementing and testing back-end services on Liberty profile server 21

https://code.google.com/p/orika/

Figure 3-8 is the dependency snippet for the todo-service-inmemory-impl project in the
pom.xml file.

Figure 3-8 Dependency definition in pom.xml

One test, InMemoryTodoListServiceTest, is defined. The test extends the class
AbstractTodoListServiceTest, which is part of the todo-service-api project and performs
functional tests against the TodoListService interface. The InMemoryTodoListServiceTest
essentially passes only the in-memory implementation of the service to the abstract class. All
test logic is defined in AbstractTodoListServiceTest.

You can run this test by right-clicking InMemoryTodoListServiceTest and clicking Run
As → JUnit Test. It should finish without errors.

3.2.5 The todo-service-mongodb-impl project

The todo-service-mongodb-impl project demonstrates how to use the Liberty built-in
mongodb-2.0 feature with CDI to implement the todo-service. It also demonstrates how to
use Arquillian and embedded MongoDB to do an integration test against the Liberty profile
server automatically.

Introduction to the todo-service-mongodb-impl project
The todo-service-mongodb-impl project is used by MongoDB to store TodoList and
TodoListItem. The Liberty profile server provides configuration support for MongoDB through
the mongodb-2.0 feature. This feature enables the use of the MongoDB Java Driver and
allows DB instances to be configured in the server configuration, injected into managed
components such as EJBs and CDIs, and accessed through JNDI. Applications interact with
these DB instances through the MongoDB APIs.

<dependencies>
<dependency>

<groupId>${project.groupId}</groupId>
<artifactId>todo-service-api</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>

<!--high performance object mapping framework.
http://code.google.com/p/orika/
used to convert service objects to entity objects and vice versa -->

<groupId>ma.glasnost.orika</groupId>
<artifactId>orika-core</artifactId>
<version>1.4.3</version>

</dependency>
<!-- TEST DEPENDENCIES -->
<dependency>

<groupId>${project.groupId}</groupId>
<artifactId>todo-service-api</artifactId>
<version>${project.version}</version>
<type>test-jar</type>
<scope>test</scope>

</dependency>
</dependencies>
22 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

To use the mongodb-2.0 feature that is provided by the Liberty profile server,
mongodb-java-driver should not be packaged into the application. In this case, set the scope
of the MongoDB dependency to provided in the pom.xml file (Figure 3-9).

Figure 3-9 Scope definition for mongodb-java-driver

The MongoDB implementation (MongoDBTodoListService) is annotated with
@javax.inject.Singleton, which flags it as a CDI singleton bean. CDI is used here to
inject MongoDB instances through JNDI into the Liberty profile server (Figure 3-10).

Figure 3-10 MongoDB injection

An application that uses CDI must have a beans.xml file. The file can be empty (it has content
only in certain limited situations), but it must be present. For a web application, the beans.xml
file must be in the WEB-INF directory. For EJB modules or JAR files, the beans.xml file must be
in the META-INF directory. In this case, an empty beans.xml file is created and put in
src/main/resources/META-INF and is packaged into the final JAR file. The contents are listed
in Figure 3-11.

Figure 3-11 Contents of the beans.xml file

<dependency>
<groupId>org.mongodb</groupId>
<artifactId>mongo-java-driver</artifactId>
<version>2.11.3</version>
<scope>provided</scope>

</dependency>

@javax.inject.Singleton
public class MongoDBTodoListService implements TodoListService
{

public static final String MONGO_DB_JNDI_NAME = "mongo/TODOLIST";

@Resource(name = MONGO_DB_JNDI_NAME)
private DB db;

...

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">

<!-- marker file to enable CDI processing by the JEE runtime container -->
</beans>
Chapter 3. Implementing and testing back-end services on Liberty profile server 23

Using Arquillian to test the MongoDB service implementation against
the Liberty profile server

Integration testing of the MongoDB implementation is configured in a self-contained manner.
This means that the integration test does not rely on the existence of any external resources,
such as a running a preconfigured database or application server. Instead, during the running
of the integration tests, a Liberty profile test server is created. An embedded Mongo database
is also instantiated within the Liberty profile server and exposed through JNDI data sources.

Toolkit usage
To do integration testing against the Liberty profile server for the MongoDB implementation
four our example, we used the following toolkits:

� Arquillian

With this innovative and highly extensible testing platform for the JVM, developers can
easily create automated integration, and functional and acceptance tests for Java
middleware. For more information, see the following website:

http://arquillian.org/

� Arquillian WLP Extension

This Arquillian container adapter (DeployableContainer implementation) can start and
stop a local WebSphere Application Server Liberty profile process and run tests on it over
a remote protocol (effectively in a different JVM). For more information, see the following
website:

https://docs.jboss.org/author/display/ARQ/WLP+V8.5+-+Managed

� Embedded MongoDB

This toolkit provides a platform-neutral way for running MongoDB in unit tests, and can
install and configure MongoDB automatically so that you do not need to install and
configure MongoDB before testing. For more information, see the following website:

https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo

Liberty profile server configuration
Because CDI, JNDI, and MongoDB are used in this back-end sample implementation, these
features are enabled in the Liberty profile server. In addition, because Arquillian is used for
integration testing, it requires JMX support to control the Liberty profile server container and
servlet support to start the test case. These two features must be enabled. So, in the feature
snippet (Figure 3-12), the entries are added.

Figure 3-12 Feature list in the server.xml file

The dropins deployment feature is enabled and mbean is used as an updateTrigger
(Figure 3-13 on page 25). This is required by the Arquillian WLP extension.

<featureManager>
<feature>localConnector-1.0</feature>
<feature>servlet-3.0</feature>
<feature>cdi-1.0</feature>
<feature>mongodb-2.0</feature>
<feature>jndi-1.0</feature>

</featureManager>
24 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

http://arquillian.org/
https://docs.jboss.org/author/display/ARQ/WLP+V8.5+-+Managed
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo

Figure 3-13 dropinsEnabled in the server.xml file

A mongoDB entry is configured for the JNDI name mongo/TODOLIST, which assumes that the
mongoDB instance is available at localhost:9991. The entry references the global shared
library that contains the MongoDB Java driver. See Figure 3-14.

Figure 3-14 The MongoDB configuration in the server.xml file

Arquillian WLP container configuration for integration testing
According to the requirements of Arquillian, put the arquillian.xml file into
src/test/resources. This file defines the Arquillian WLP container configuration
(Figure 3-15), including the target webcontainer port, Liberty binary location, and Liberty
profile server profile name.

Figure 3-15 Arquillian WLP container configuration

<applicationMonitor dropinsEnabled="true" updateTrigger="mbean" />

Note: The dropins deployment feature is enabled by default in the Liberty profile server, so
you can also remove the dropinsEnabled="true" statement part.

Note: We cannot use a separate shared library in our example because Arquillian installs
the test WAR file by using the dropins feature. Installation that uses the dropins feature
does not support the attachment of specific shared libraries to WAR files that are deployed
that way. Therefore, we put the MongoDB Java driver in the global shared library, and its
classes are automatically made available to all WAR files.

<mongoDB jndiName="mongo/TODOLIST" databaseName="todolistTest">
<mongo id="mongoTestDb" libraryRef="global">
<hostNames>localhost</hostNames>
<ports>9991</ports>
</mongo>

</mongoDB>

<engine>
<property name="deploymentExportPath">target/</property>

</engine>
<container qualifier="wlp-managed-85" default="true">

<configuration>
<property name="wlpHome">target/liberty/wlp</property>
<property name="serverName">defaultServer</property>
<property name="httpPort">9080</property>
<property name="appDeployTimeout">20</property>
<property name="appUndeployTimeout">20</property>

</configuration>
</container>
Chapter 3. Implementing and testing back-end services on Liberty profile server 25

Maven build lifecycle for integration testing in mongodb-impl project
To do integration testing, you can run the mvn verify command under the
todo-service-mongodb-impl project. Figure 3-16 shows what occurs when you run the
command.

Figure 3-16 Maven lifecycle for integration testing in todo-service-mongodb-impl

The integration testing uses various plug-ins that are bound to several Maven build phases to
fulfill the MongoDB implementation testing against Liberty and are noted in the following list:

� Test: maven-surefire-plugin

By default, Maven uses maven-surefire-plugin during the test phase to run testing. It
automatically includes all test classes under src/test/java with the following wildcard
patterns:

– Includes all of its subdirectories and all Java file names that start with Test:

"**/Test*.java"

– Includes all of its subdirectories and all Java file names that end with Test:

"**/*Test.java"

– Includes all of its subdirectories and all Java file names that end with TestCase:

"**/*TestCase.java"

In the mongodb project, because the MongoDB and Liberty profile server environment is
not ready, running tests in this phase successfully is not possible. Therefore, testing is
excluded by the snippet in the pom.xml file (Figure 3-17 on page 27).

$ cd my-project
$ mvn verify

validate

compile

test

package

pre-integration-test

verify

install

deploy

$ cd my-project
$ mvn package

post-integration-test

integration-test

test-compile

Default Maven Life Cycle: Maven Plugin Goal Bindings

maven-surefire-plugin:test
Exclude Tests ending with ITest.java

maven-resources-plugin:copy
Copy test server configuration from src/main/test/
resources/wlp-config to target/wlp-config and apply
filtering (i.e. replace ${...} placeholders with Maven
property values)

liberty-maven-plugin:create-server
Use the WLP binaries stored in artifact todo:todo-
liberty-server:8.5.5 and create a server in target/
liberty/wlp using the server configuration provided at /
target/wlp-config

maven-dependency-plugin:copy
Copy the MongoDB Java driver provided by the
org.mongodb:mongo-java-driver:2.11.3 artifact to
WLP’s global shared library folder

maven-failsafe-plugin:integration-test
maven-failsafe-plugin:verify
Execute the JUnit tests ending with ITest.java
26 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Figure 3-17 Exclude testing in test phase in pom.xml

� Pre-integration-test: maven-resources-plugin

The maven-resources-plugin copies the server configuration template from the
src/test/resources/wlp-config/server.xml file to the target/wlp-config/server.xml
file. At the same time, it filters the file, it resolves and replaces property placeholders with
property values that are provided by the Maven run time. For more information about the
server configuration in the server.xml file, see “Liberty profile server configuration” on
page 24.

� Pre-integration-test: liberty-maven-plugin

The liberty-maven-plugin installs the Liberty profile server binary files from the
todo-liberty-server artifact to target/liberty/wlp. Arquillian expects this location
based on how it is defined in arquillian.xml in the src/test/resources. For more
information, see “Arquillian WLP container configuration for integration testing” on
page 25. After achieving its goals, the plug-in then creates the defaultServer by using the
target/wlp-config/server.xml configuration file. The target/wlp-config/server.xml file
is copied in this location through the maven-resources-plugin.

� Pre-integration-test: maven-dependency-plugin

The maven-dependency-plugin is used to copy the mongo-java-driver artifact to
wlp/usr/shared/config/lib/global/, which is the global shared folder.

After the pre-integration test phase, a Liberty profile server (defaultServer) is created in
target/liberty/wlp/usr/servers/defaultServer. The server is preconfigured in the
server.xml file with all the necessary features and settings. A Liberty profile server now is
ready for integration testing.

<plugin>
<!-- exclude integration tests from surefire plugin -->
<artifactId>maven-surefire-plugin</artifactId>
<version>2.16</version>
<configuration>

<excludes>
<exclude>**/*ITest.java</exclude>

</excludes>
</configuration>

</plugin>
Chapter 3. Implementing and testing back-end services on Liberty profile server 27

Figure 3-18 shows the snippet for the three plug-ins in the pre-integration-test phase.

Figure 3-18 The plug-ins in the pre-integration-test phase in the pom.xml file

<plugins>
<plugin>

<artifactId>maven-resources-plugin</artifactId>
<version>2.6</version>
<executions>

<execution>
<phase>pre-integration-test</phase>
<goals>

<goal>copy-resources</goal>
</goals>

...
</execution>

</executions>
</plugin>

...
<plugin>

<!-- before the integration test runs create a pre-configured liberty
server -->

<groupId>com.ibm.websphere.wlp.maven.plugins</groupId>
<artifactId>liberty-maven-plugin</artifactId>
<executions>

<execution>
<phase>pre-integration-test</phase>
<goals>

<goal>create-server</goal>
</goals>

</execution>
</executions>

...
</plugin>

...
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<version>2.8</version>
<executions>

<execution>
<phase>pre-integration-test</phase>
<goals>

<goal>copy</goal>
</goals>

...
</execution>

</executions>
</plugin>
28 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

� integration-test: maven-failsafe-plugin

The maven-failsafe-plugin is used to run a JUnit test on the
MongoDBTodoListServiceITest test case.

MongoDBTodoListServiceITest has several JUnit and Arquillian annotations, as noted in
the following list:

– @RunWith(Arquillian.class): This JUnit annotation is used to tell JUnit to run the test
case through Arquillian.

– @Deployment: This is an Arquillian annotation and is used to give information about how
to build the test WAR file. The test WAR file contains all the compile and test
dependencies of the mongodb-impl maven project that is achieved through the
Maven.resolver() method. It also contains the MongoDBTodoListService.class,
MongoDBTodoListServiceITest.class, an empty beans.xml file to trigger CDI injection,
and a web.xml file with a resource-env-ref definition so that JDNI lookup can work.
Figure 3-19 is the snippet for the web.xml file in the generated test WAR file.

Figure 3-19 The resource-env-ref definition in the web.xml file

The process that is associated with running MongoDBTodoListServiceTest is described in the
following list:

1. Arquillian locates and starts the Liberty profile server based on the information that is
provided in the src/test/resources/arquillian.xml file.

2. Arquillian deploys the test WAR file through the dropins feature and mbean trigger.

3. Arquillian triggers JUnit test execution of the MongoDBTodoListService from within the
running WAR file.

4. Liberty injects the MongoDBTodoListService CDI bean implementation into the
todoListService field of the test class that is annotated with @Inject. During instantiation
of the MongoDBTodoListService instance, Liberty injects a MongoDB JNDI resource
reference in the @Resource annotated DB field. Because Liberty is all about loading and
initialization, it does not note now that no MongoDB instance is running.

5. JUnit runs the setupMongoDB() method, which is annotated with the @Before JUnit
annotation. This method downloads, installs, and starts an ad hoc MongoDB instance on
localhost:9991 in a separate process. After this step, the test environment is ready: The
test WAR file is running on Liberty Server-defaultServer on port 9080, and the MongoDB
instance is running on localhost:9991.

6. JUnit runs the testMongoFBTodoListService() method, which is annotated with the @Test
JUnit annotation. It calls the inherited testImplementation() method and provides a
reference to the CDI injected MongoDBTodoListService instance. Now, Liberty establishes
a connection to the MongoDB instance that is configured in the server.xml file, which is
running now.

7. After the test case is run, JUnit runs the tearDownEmbeddedMongoDB() method, which is
annotated with the @After JUnit annotation to stop the MongoDB instance.

8. Arquillian undeploys the test WAR file, stops the Liberty profile server, and reports back to
the maven-fail-safe plug-in.

<resource-env-ref>
<resource-env-ref-name>mongo/TODOLIST</resource-env-ref-name>
<resource-env-ref-type>com.mongodb.DB</resource-env-ref-type>

</resource-env-ref>
Chapter 3. Implementing and testing back-end services on Liberty profile server 29

3.2.6 The todo-service-jpa-impl project

The todo-service-jpa-impl project demonstrates how to use the Liberty profile server and
JPA2 to implement the todo-service. It also demonstrates how to use Arquillian and the H2
embedded database to do automatically integration testing against the Liberty profile server.

Introduction to the todo-service-jpa-impl project
The following runtime components are used for the JPA implementation:

� Hibernate-entitymanager as a JPA2 implementation.

� Spring application framework for dependency injection, service discovery, and transaction
management.

� Spring Data as a high productivity framework for implementing JPA repositories without
boilerplate. For more information, see the following website:

http://www.infoq.com/articles/spring-data-intro

� Orika as mapping framework between JPA entities and service DTOs.

The JPATodoListService is implemented as a Spring-managed service (annotated with
@org.springframework.stereotype.Service). It uses two Spring Data repository beans that
provide typical create, retrieve, update, and delete operations on the two entity types
(TodoListEntity and TodoListItemEntity). The repository beans are injected by the Spring
framework.

The implementation is packaged as a JAR file. Applications that use this implementation must
perform the typical Spring configuration for JPA-based applications.

JPA Service implementation follows a similar lifecycle, as shown in Figure 3-20 on page 31,
compared to the other projects that are described in this chapter.
30 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

http://www.infoq.com/articles/spring-data-intro

Figure 3-20 Maven lifecycle for integration testing in todo-service-jpa-impl

Using Arquillian to test the JPA Service implementation against Liberty
profile server

Similar to the MongoDB implementation, the integration test of the JPA implementation is
configured in a self-contained manner, which means that the integration test does not rely on
the existence of any external resources, such as a running and preconfigured database or
application server. Instead, during the running of the integration tests, a Liberty test server is
created, and an in-memory relational database is instantiated within the Liberty profile server
and exposed through JNDI data sources.

Integration testing
For our integration testing, we used the following components:

� Arquillian JUnit container

� Arquillian WLP extension, found at the following website:

https://docs.jboss.org/author/display/ARQ/WLP+V8.5+-+Managed

� H2 embedded database, found at the following website:

http://www.h2database.com/
Chapter 3. Implementing and testing back-end services on Liberty profile server 31

https://docs.jboss.org/author/display/ARQ/WLP+V8.5+-+Managed
https://docs.jboss.org/author/display/ARQ/WLP+V8.5+-+Managed
http://www.h2database.com/

The src/test/resources/wlp-config/server.xml test-integration server configuration file is
shown in Figure 3-21.

Figure 3-21 The server.xml file of the todo-service-jpa-impl project

Observe the following information in the server.xml file:

� Enabled features:

– localConnector-1.0: This is JMX support, which is required by Arquillian to control the
Liberty profile server.

– servlet-3.0: This is servlet support, which is required by Arquillian to start the test
case.

<?xml version="1.0" encoding="UTF-8"?>
<server description="Integration Test Server"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../../../../../todo-liberty-server/src/main/reso
urces/server.xsd">

<featureManager>
<!-- JMX and Servlet support - required by Arquillian -->
<!-- https://docs.jboss.org/author/display/ARQ/WLP+V8.5+-+Managed -->
<feature>localConnector-1.0</feature>
<feature>servlet-3.0</feature>

<!-- JDBC support -->
<feature>jdbc-4.0</feature>

<!-- JNDI Support, i.e. @Resource -->
<feature>jndi-1.0</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint" host="localhost" httpPort="9080" />

<library id="H2Lib">
<fileset dir="${shared.config.dir}/lib/h2" includes="*.jar" />

</library>

<jdbcDriver id="H2Driver" libraryRef="H2Lib"
javax.sql.DataSource="org.h2.jdbcx.JdbcDataSource" />

<dataSource jndiName="jdbc/TODOLIST" jdbcDriverRef="H2Driver"
type="javax.sql.DataSource">

<connectionManager maxPoolSize="5" minPoolSize="1"
numConnectionsPerThreadLocal="1" />

<!-- configure in-memory H2 database instance -->
<properties URL="jdbc:h2:mem:testdb;DB_CLOSE_DELAY=-1"></properties>

</dataSource>

<!-- dropins support and mbean trigger required by Arquillian -->
<applicationMonitor dropinsEnabled="true" updateTrigger="mbean" />

</server>
32 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

– jdbc-4.0: This is JDBC support.

– jndi-1.0: This is JNDI support so that injection of JNDI-based resources (@Resource)
can work.

� Webcontainer is bound to localhost:9080.

� The dropins deployment feature is enabled and mbean is used as updateTrigger. This is
required by the Arquillian WLP extension.

� A shared library containing the binary files of the H2 database is configured.

� A JDBC driver providing access to the H2 JDBC driver is configured.

� An H2 data source is configured by using the special JDBC URL prefix jdbc:h2:mem. The
H2 JDBC driver is instructed not to connect to an external H2 instance but to start an
in-memory H2 instance.

The src/test/resources/arquillian.xml file is the Arquillian WLP container configuration.
See Figure 3-22.

Figure 3-22 The src/test/resources/arquillian.xml file of the todo-service-jpa-impl project

For the integration test to work, a valid and complete Spring configuration is required.

The following list notes important considerations, information, and steps that are associated
with the src/test/resources/arquillian-spring-config.xml Spring configuration:

1. Enable annotation-based processing so that Spring creates managed instances of the
implementation and the required JPA repositories. See Figure 3-23.

Figure 3-23 The rc/test/resources/arquillian-spring-config.xml file

<arquillian xmlns="http://jboss.org/schema/arquillian"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://jboss.org/schema/arquillian
http://jboss.org/schema/arquillian/arquillian_1_0.xsd">

<engine>
<property name="deploymentExportPath">target/</property>

</engine>

<container qualifier="wlp-managed-85" default="true">
<configuration>

<property name="wlpHome">target/liberty/wlp</property>
<property name="serverName">defaultServer</property>
<property name="httpPort">9080</property>
<property name="appDeployTimeout">20</property>
<property name="appUndeployTimeout">20</property>

</configuration>
</container>

</arquillian>

<ctx:annotation-config />
<ctx:component-scan base-package="todo.service" />
<tx:annotation-driven transaction-manager="transactionManager" />
<jpa:repositories base-package="todo.service.jpa.repository" />
Chapter 3. Implementing and testing back-end services on Liberty profile server 33

2. Look up the target (H2) data source that is exposed through the server.xml file. See
Figure 3-24.

Figure 3-24 Target (H2) data source in the src/test/resources/arquillian-spring-config.xml file

3. Configure the entityManagerFactory bean that references the data source, scans the
todo.service.jpa.model package for entity classes, and uses Hibernate with the H2
dialect as a JPA implementation. See Figure 3-25.

Figure 3-25 The entityManagerFactory bean in the src/test/resources/arquillian-spring-config.xml
file

4. Configure a Transaction Manager. See Figure 3-26.

Figure 3-26 Transaction Manager

Based on the configuration in the pom.xml file, the following actions are completed when you
run the integration tests with the mvn verify command:

1. The maven-resources-plugin copies the server configuration template from
src/test/resources/wlp-config/server.xml to target/wlp-config/server.xml.

At the time of copying the file, the plug-in also filters the file and resolves or replaces
property placeholders with property values that are provided by the Maven run time.

<jee:jndi-lookup id="todolistDS" jndi-name="jdbc/TODOLIST" />

<bean id="entityManagerFactory"
class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

<property name="dataSource" ref="todolistDS" />
<property name="packagesToScan" value="todo.service.jpa.model" />
<property name="jpaVendorAdapter">

<bean
class="org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter">

<property name="generateDdl" value="true" />
<property name="database" value="H2" />
<property name="showSql" value="true" />

</bean>
</property>

</bean>

Note: JPA is configured without the persistence.xml file. The key is the
packagesToScan attribute. By specifying this attribute, Spring
EntityManagerFactoryBean has all the required metadata to bootstrap the JPA
implementation.

<bean id="transactionManager"
class="org.springframework.orm.jpa.JpaTransactionManager">

<property name="entityManagerFactory" ref="entityManagerFactory" />
</bean>
34 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

2. The liberty-maven-plugin installs the Liberty profile server binary files from the
todo-liberty-server artifact to target/liberty/wlp (the location where Arquillian
expects it) and creates a defaultServer based on the target/wlp-config/server.xml
configuration file.

3. The maven-dependency-plugin copies the H2 database artifact to the shared library
location that is configured in the server.xml file.

4. The maven-failsafe-plugin runs JUnit on the HibernateJPATodoListServiceITest test
case.

a. The test case is annotated with @RunWith(Arquillian.class) and therefore JUnit runs
the test case through Arquillian.

b. Arquillian locates the static method in the test case that is annotated with @Deployment
and uses the information to build a test WAR file. The test WAR file contains these
items:

• All compile and test dependencies of the Maven project that is achieved through the
Maven.resolver() function.

• All JPA implementation classes from the todo.service.jpa package and its
subpackages.

• A web.xml file with a resource-env-ref definition for JDNI lookup.

• If USE_XML_BASED_SPRING_CONFIG is set to TRUE in the test case, then the XML-based
Spring configuration file is also included.

• Implicitly, the test WAR file also contains the MongoDBTodoListServiceITest.class
file.

c. Arquillian locates and starts the Liberty profile server based on the information that is
provided in the src/test/resources/arquillian.xml file.

d. When the Liberty profile server starts, it configures the H2 data source, which implicitly
results in the start of the in-memory H2 database.

e. Arquillian deploys the test WAR file through the dropins feature and mbean trigger.

f. Arquillian triggers JUnit test running of the HibernateJPATodoListServiceITest from
within the running WAR file.

g. JUnit runs the @Before annotated setupSpring() method, which bootstraps the Spring
framework, depending on the value of USE_XML_BASED_SPRING_CONFIG. Spring is
configured by using either the XML-based or Java based configuration.

h. JUnit runs the @Test testJPATodoListService() method, which calls the inherited test
implementation and provides a reference to the Spring-managed JPATodoListService
instance.

i. Arquillian undeploys the test WAR file, stops the Liberty profile server, and reports
back to the maven-fail-safe-plugin.

Integration tests can also be triggered from within Eclipse by clicking Run As → JUnit Test.
However, the Liberty profile server must be created in the target/liberty/wlp directory
before running the JUnit tests.

Note: Running of tests matching *ITest.java is excluded for the surefire-plugin that
would run the test case in the wrong phase (test), which is before the Liberty profile
server is created.
Chapter 3. Implementing and testing back-end services on Liberty profile server 35

Run the mvn pre-integration-test command, which starts all the plug-in goals that are
bound to the pre-integration-test phase, eventually creating the preconfigured Liberty profile
server.

3.3 Docker Hub support

To test rapidly your applications, as an alternative, you can also use a Docker Hub container
with a Liberty profile server image. Docker is an open platform for developers and system
administrators to build, ship, and run distributed applications. It provides an IBM WebSphere
Application Server for Developers V8.5.5 Liberty profile image along with IBM Java Runtime
Environment V7.1 SR1. More information about Docker Hub and Liberty can be found at the
following website:

https://registry.hub.docker.com/_/websphere-liberty/

We demonstrate how to test a simple Snoop sample application by deploying it in a Liberty
profile server inside a local Docker image. To perform this procedure, complete the following
steps:

1. Install Docker by using the instructions that are found at the following website:

https://docs.docker.com/installation/#installation

2. Start Docker with a specific command for your operating system. In our example, we used
the sudo service docker start command.

3. Prepare your application to run inside Docker by placing the WAR file in to a folder that will
be mounted to the dropins location of the Liberty profile server. Also, prepare a
server.xml Liberty profile configuration file that will be used by the Docker Liberty image
on top of its default configuration to expose the server HTTP port. This is important
because you must access the application by using the Docker Liberty profile server IP and
not the default localhost name. The server.xml contents are listed in Example 3-1.

Example 3-1 The server.xml file that is used for the Docker Liberty profile server configuration

[catalin@oc4752812068 ~]$ ls /docker/dropins/
snoop.war
[catalin@oc4752812068 ~]$ ls /docker/
dropins server.xml
[catalin@oc4752812068 ~]$ cat /docker/server.xml
<server description="default servlet engine">
 <!-- Enable features -->
 <featureManager>
 <feature>servlet-3.0</feature>
 </featureManager>
 <httpEndpoint host="*" httpPort="9080" httpsPort="-1"/>

Note: If you must follow the above steps, ensure that the Liberty profile version and all the
features that are used by you are correct. As some of the features that are used by your
Liberty profile version installation might be different from our installation, it is possible that
some of these steps might be superseded. Verify the feature list availability by going to the
following website:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.multiplatform.doc/ae/rwlp_superfeat.html
36 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_superfeat.html
https://registry.hub.docker.com/_/websphere-liberty/
https://docs.docker.com/installation/#installation

</server>
[catalin@oc4752812068 ~]$

4. Run the application against the Docker Liberty profile server by using a command that
mounts the application WAR file to the monitored dropins folder (see Example 3-2).

Example 3-2 Deploy the application to a Docker Liberty profile image

catalin@oc4752812068 ~]$ sudo docker run -e LICENSE=accept -d -p 80:9080 -v
/docker/dropins/snoop.war:/opt/ibm/wlp/usr/servers/defaultServer/dropins/snoop.
war websphere-liberty
228280c58cc4521301c89f2784f1323bb236bd4fec87ebc05ecdfe75b40efcdc
[catalin@oc4752812068 ~]$

5. Find the IP that is used by the Docker Liberty profile server, as shown in Example 3-3.

Example 3-3 Find the Docker Liberty profile server IP

[catalin@oc4752812068 ~]$ sudo docker ps -a
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
228280c58cc4 websphere-liberty:8.5.5 "liberty-run /opt/ib 6 seconds
ago Up 3 seconds 9443/tcp, 0.0.0.0:80->9080/tcp
ecstatic_payne
... insane_hoover
[catalin@oc4752812068 ~]$ sudo docker inspect 228280c58cc4 | grep IPAddress |
cut -d '"' -f 4
172.17.0.20
[catalin@oc4752812068 ~]$
Chapter 3. Implementing and testing back-end services on Liberty profile server 37

6. Using the IP of the Docker Liberty profile server and the port that is configured in the
server.xml file, you can access the Liberty profile, as shown in Figure 3-27.

Figure 3-27 Access the Docker Liberty profile server
38 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

7. Now, you can access and test the application, as shown in Figure 3-28.

Figure 3-28 Accessing the application that is deployed to a Docker Liberty profile server

For more information about the Liberty profile and Docker, go to the following website:

https://developer.ibm.com/wasdev/blog/2015/04/02/websphere-docker-development-prod
uction/
Chapter 3. Implementing and testing back-end services on Liberty profile server 39

https://developer.ibm.com/wasdev/blog/2015/04/02/websphere-docker-development-production/

40 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Chapter 4. Continuous integration with
Jenkins on Liberty profile server

Continuous integration is a software development practice where members of a team
integrate their work frequently, usually at least daily, leading to multiple integrations per day.
Each integration is verified by an automated build (including test) to detect integration errors
as quickly as possible. Many teams find that this approach leads to reduced integration
problems and allows a team to develop cohesive software more rapidly.

Jenkins is one open source tool that performs continuous integration. The basic functions of
Jenkins are to monitor a version control system and start and monitor a build system (for
example, Apache Ant or Maven) if changes occur. Jenkins monitors the whole build process
and provides reports and notifications to alert maintainers about successes or errors.

Jenkins works on all released versions of the Liberty profile server, but it works best with the
latest version of WebSphere Application Server V8.5.5. This chapter helps you build a
continuous integration environment with Jenkins on Liberty profile V8.5.5.

The chapter includes the following topics:

� Installing Jenkins on a Liberty profile server
� Setting up a Jenkins job

4

© Copyright IBM Corp. 2014, 2015. All rights reserved. 41

4.1 Installing Jenkins on a Liberty profile server

Jenkins is available for download as a native package for different OSes and as a Java web
archive (WAR) file. The Java WAR file can be installed on any servlet container that supports
Servlet 2.4/JSP 2.0. Jenkins can be deployed on the Liberty profile server in two ways:

� Dropins directory

To install Jenkins on the Liberty profile server, copy the jenkins.war file to
${server.config.dir}/dropins, and then access http://yourhost:9087/jenkins (see
Figure 4-1). The host and port that are used here are an example. You must use the host
and port of your Liberty profile server configuration.

Figure 4-1 Jenkins home page

� Config directory

To install Jenkins on the Liberty profile server, copy the jenkins.war file to the
${server.config.dir}/apps. Then, edit the server.xml file to add the following text:

<webApplication location="jenkins.war" />

4.1.1 Setting JENKINS_HOME

Before starting the Liberty profile server, create a ${server.config.dir}/jvm.options file
and add the line that is shown in Figure 4-2.

Figure 4-2 Set JENKINS_HOME

-DJENKINS_HOME=/path/to/jenkins_home/
42 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

This file also can be used to increase the heap size by adding the line that is shown in
Figure 4-3.

Figure 4-3 Set the JVM heap size parameter

Now, start the Liberty profile server and access Jenkins by accessing the following URL:

http://yourhost:9087/jenkins/

4.1.2 Securing Jenkins on a Liberty profile server

To configure the user and group to role mappings in the Liberty profile server, deploy them
through the server.xml file. Users and groups can be picked up from LDAP, or can be stored
in the server.xml file. Complete the following steps:

1. Configure security by enabling the appSecurity-2.0 feature, which is done by editing the
server.xml file and adding the feature, as shown in Figure 4-4.

Figure 4-4 Add the security feature to the LIberty profile server

Always make sure that you are using the latest Liberty profile server features because
they can be superseded by other versions, as described at the following website:

https://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.w
lp.nd.multiplatform.doc/ae/rwlp_superfeat.html

2. Configure the role mapping for the Jenkins application, as shown in Figure 4-5.

Figure 4-5 Configure the role mapping in the Liberty profile server

3. Optional: Configure the user in the server.xml file, as shown in Figure 4-6.

Figure 4-6 Configure users in the Liberty profile server

-Xmx512m

<featureManager>
 <feature>appSecurity-2.0</feature>
</featureManager>

<webApplication location="jenkins.war">
 <application-bnd>
 <security-role name="admin">
 <user name="jenkins-admin"/>
 <group name="jenkins-admins"/>
 </security-role>
 </application-bnd>
</webApplication>

<basicRegistry realm="jenkins">
 <user name="jenkins-admin" password="secret"/>
 <group name="jenkins-admins">
 <member name="jenkins-admin">
 </group>
</basicRegistry>
Chapter 4. Continuous integration with Jenkins on Liberty profile server 43

https://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_superfeat.html

4. The securityUtility script in the bin folder can be used to generate a hashed password
for this file. To do so, run the command that is shown in Figure 4-7.

Figure 4-7 securityUtility command

5. Copy the printed hashed password into the password attribute in the server.xml file. If
secret is not passed in on the command line, you are prompted for it.

4.1.3 Configuring Jenkins

Jenkins must be configured with JDK and Maven installation paths to run the build system.
Complete the following steps:

1. Open Jenkins in a browser and click Manage Jenkins, and then click Configure System,
as shown in Figure 4-8.

Figure 4-8 Manage Jenkins

${wlp.install.dir}/bin/securityUtility encode --encoding=hash secret
44 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

2. Enter the correct paths to your JDK and Maven installations and click Save. Jenkins can
also automatically install these paths, as shown in Figure 4-9.

Figure 4-9 Configure JDK and Maven in Jenkins
Chapter 4. Continuous integration with Jenkins on Liberty profile server 45

4.2 Setting up a Jenkins job

Building a project is handled through jobs in Jenkins. Set up a job for the ToDo Project sample
that is built by using Maven by completing the following steps:

1. Click New Item, as shown in Figure 4-10.

2. Select Maven project.

3. Provide a name for the Job, such as Job1 - ToDo Parent.

4. Click OK.

Figure 4-10 Create a Jenkins job

Next, configure Jenkins to poll automatically the Apache Subversion repository for changes,
and to build when changes are detected. Complete the following steps:

1. Select the Job1- ToDo Parent job (created in Figure 4-10) and click Configure.

2. Select Subversion under the Source Code Management section, as shown in Figure 4-11
on page 47.
46 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Figure 4-11 Subversion configuration

3. Enter the URL of the Subversion repository you want Jenkins to poll. Click Apply.

4. Under Build Triggers (Figure 4-12), select Poll SCM. In the Schedule text box, enter how
often Jenkins should poll the Subversion repository.

Figure 4-12 Configure Build Triggers
Chapter 4. Continuous integration with Jenkins on Liberty profile server 47

5. Select Build whenever a SNAPSHOT dependency is built for automatic build chaining.

6. Under the Build section (Figure 4-13), specify the Root POM as pom.xml, and for the
Maven goals and options, enter clean install.

Figure 4-13 Configure Maven Goals

7. Click Save.

Automatic build chaining from module dependencies: Jenkins reads the
dependencies of the project from the POM, and if they are also built on Jenkins, triggers
are set up in such a way that a new build in one of those dependencies automatically
starts a new build of the project. Jenkins understands all kinds of dependencies in
POM:

� The parent POM
� The <dependencies> section
� The <plugins> section
� The <extensions> section
� The <reporting> section

This process accounts for versions; you can have multiple versions or branches of your
project on the same Jenkins and it correctly determines dependencies.
48 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Then, set up and configure jobs for the remaining modules of the ToDo Project by using the
steps above, as shown in Figure 4-14.

Figure 4-14 Set up and configure the remaining modules
Chapter 4. Continuous integration with Jenkins on Liberty profile server 49

The Jenkins job instances now automatically poll the Subversion repository at the specified
intervals, and create and run Maven goals in new builds when changes are detected. Jenkins
also automatically forms a build chain for any module dependencies, as shown in Figure 4-15.

Figure 4-15 Jenkins job build chain
50 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Selecting any of the Todo jobs shows the upstream and downstream projects, as shown in
Figure 4-16.

Figure 4-16 Upstream and downstream projects in a job
Chapter 4. Continuous integration with Jenkins on Liberty profile server 51

52 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Chapter 5. Front-end development on the
Liberty profile server

This chapter continues to extend the sample Todo list application to include two extra
components: a RESTful web service with an Ajax client-side UI and a more traditional
server-generated UI that uses Apache Wicket.

The chapter includes the following topics:

� RESTful web service with an Ajax front end
� Apache Wicket

5

© Copyright IBM Corp. 2014, 2015. All rights reserved. 53

5.1 RESTful web service with an Ajax front end

In recent years, web application design has moved away from traditional server-side page
rendering. Using Asynchronous JavaScript And XML (Ajax) technologies, modern web
applications can send and receive data from servers in the background, updating interface
components dynamically (without reloading the page).

5.1.1 Java web services on the Liberty profile server

The Liberty profile server is an ideal platform for developing and hosting modern web
applications. Supporting several popular Java Platform, Enterprise Edition technologies, the
Liberty profile server makes creating a back-end web service simple and fast.

This chapter explains the implementation of the sample application component
(todo-ui-rest-webapp) that uses a JAX-RS web service back end and Dojo Toolkit front end
to allow browsing of todo lists and their items. This example illustrates the simplicity of using
the Liberty profile server to develop a modern and dynamic web application by using the
WebSphere developer tools.

Representational State Transfer (REST) refers to an architectural style of web service API
design. A RESTful API design matches the HTTP request methods (GET, PUT, POST,
PATCH, and DELETE) to resource URLs to expose the required functions.Table 5-1 illustrates
this concept by using our sample web service component.

Table 5-1 Mapping of HTTP request methods to web service API functions

Resource
(relative URLs)

GET PUT POST DELETE

/items Retrieve all items
(tasks).

Replace all items with
a new set.

Create an item N/A

/items/1 Retrieve the todo item
with an ID value of 1.

Replace the item with
a new one.

N/A Delete the item.

/lists Retrieve all todo lists. Replace all todo lists
with a new set.

Create a todo list. N/A

/lists/1 Retrieve the todo list
with an ID value of 1.

Replace the todo list
with a new one.

N/A Delete the todo list.

/lists/1/items Retrieve all items that
are assigned to the list
with ID 1.

Replace all items that
belong to the list with a
new set.

Create an item for this
todo list.

N/A

/lists/1/items
/1

Retrieve the item with
an ID value of 1 in the
todo list with the ID
value of 1

Replace the todo list
item with a new one.

N/A Delete the todo list
item.
54 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

5.1.2 Java API for RESTful web services

The Java API for RESTful web services, also known as JAX-RS, provides a simple
mechanism for creating web service APIs with little extra code or configuration. JAX-RS
extends the Java syntax to allow mapping of Java classes and methods to web service
requests by using the following Java annotations:

� @Path: The relative URL of the request, for example, /items in Table 5-1 on page 54

� @HEAD, @GET, @PUT, @POST, and @DELETE: The HTTP request type

� @Consumes: The Internet media type of the request (for example, “application/json”)

� @Produces: The Internet media type of the response

In addition, to allow for request parameters to be extracted and mapped to regular Java
method parameters, JAX-RS includes the following variable annotations:

� @PathParam: URL path variables (for example, /items/123).

� @QueryParam: HTTP query parameters (for example, ?searchString=keywords).

� @Matrixparam: HTTP matrix parameters (for example, ;type=chore).

� @HeaderParam: HTTP header value (for example, Content-Length: 123).

� @CookieParam: HTTP cookie value (for example, Cookie: openList=main).

� @FormParam: Submitted form field value (for example, name=go+shopping).

� @DefaultValue: A default value to use when the parameter is not specified.

� @Context: Allows the lookup of request context information, such as the authenticated
user, the full URI of the request, or whether a secure connection is enabled.

RESTful API implementation example
To create a RESTful web service API on the Liberty profile server, you must enable the
JAX-RS feature on the Liberty profile server.

Enabling the Liberty profile server JAX-RS feature
To enable the JAX-RS feature by using the WebSphere Developer Tools plug-ins for Eclipse,
complete the following steps:

1. Right-click the project and select Properties.

2. Click Project Facets.
Chapter 5. Front-end development on the Liberty profile server 55

3. Select the JAX-RS (REST Web Services) check box, as shown in Figure 5-1.

Figure 5-1 Web project facets

Enabling JAX-RS adds the required features to the Liberty profile server configuration, as
shown in Figure 5-2.

Figure 5-2 Additions to the Liberty profile server.xml configuration file

The JAX-RS application class
The application class defines the components and additional metadata configuration for a
JAX-RS application. In the TodoListRestApplication sample, set the @ApplicationPath
annotation to a value of "api". This means that all requests that begin with the URL prefix of
"/api" are handled by this application. We also define several constants to use from our
resource classes.

<featureManager>
...
<feature>jaxrs-2.0</feature>
...

</featureManager>

Note: We omit manually specifying our resource classes (in Figure 5-3) in the application
because they are automatically discovered when defined in the same Java package.
56 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Figure 5-3 Sample JAX-RS application

The JAX-RS resources
Our sample REST application includes two resource classes: one for todo items (tasks) and
one for todo lists. Figure 5-4 contains a snippet from the item class, demonstrating how the
JAX-RS annotations are used in practice.

The code snippet includes @Singleton and @EJB annotations to inject our concrete
implementation of the back-end logic. This relationship allows for any class that implements
the TodoListService interface to be used by simply modifying the build dependencies in the
Maven project. This means that we can easily swap between storing the data in memory,
using a MongoDB database wrapper, or even Hibernate for persisting data to a database like
H2 for storage.

Figure 5-4 Snippet illustrating the structure of a JAX-RS resource class

When developing your own resource classes, WebSphere Developer Tools for Eclipse can be
useful. By opting to run the project on a Liberty profile server, each time a file is changed the
project files are recompiled and deployed into the running server, making changes testable
instantly.

package todo.ui.rest.jaxrs;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("api")
public class TodoListRestApplication extends Application
{

// Static constants to use for parameters in resource request Paths
public static final String ITEM_ID = "itemId";
public static final String LIST_ID = "listId";
public static final String SEARCH_STRING = "searchString";

}

package todo.ui.rest.jaxrs.resources;
...
@Singleton
@Path("items")
@Produces(MediaType.APPLICATION_JSON)
public class Item
{

@EJB
private TodoListService realService;

...
@GET
@Path("{" + ITEM_ID + "}")
public TodoListItem getItemById(@PathParam(ITEM_ID) final String itemId)
{

return realService.getItemById(itemId);
}

...
}

Chapter 5. Front-end development on the Liberty profile server 57

5.1.3 Dojo Toolkit

The Dojo Toolkit is an open source JavaScript framework that began development in 2004. To
support and encourage adoption of Dojo, the non-profit Dojo Foundation organization was
created, receiving support from several organizations, including IBM.

Compared to using straight JavaScript, Dojo offers an extensive array of utility functions, UI
widgets, and tools for packaging, testing, and documentation. These functions are organized
into four main components:

� Dojo: Core functions and utility libraries that ensure consistent behavior in all supported
web browsers (a time-consuming issue when trying to support older platforms)

� Dijit: UI widget and theme library

� Dojox: Collection of newer and experimental modules that are not considered stable
enough for inclusion in the core Dojo component

� Util: Tools for performing optimization, building (minifying and packaging), documentation,
and testing

Dojo is available as part of WebSphere Developer Tools for Eclipse. When installed, Dojo can
be configured from the Eclipse project Properties menu, under the Project Facets section
(see Figure 5-5). From there, the Dojo JavaScript files can be configured to be downloaded in
to your project, referenced from an existing location on disk, or from a public CDN. Our
sample project uses Dojo from the Google CDN to avoid the need to package or build the
source files in our example.

Figure 5-5 Enabling the Dojo Toolkit option for your web project

Dojo front-end user interface sample
The structure of our sample Dojo user interface component begins in the index.html source
file. This file is where we specify the location of our Dojo and custom application script file
resources, stylesheets, and the core HTML anchor nodes for placing our dynamic interface
components.
58 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

For the purposes of this example, we based our interface design on the Dojox mobile theme
that is described in the official Dojo tutorial that is found at this website:

http://dojotoolkit.org/documentation/tutorials/1.9/mobile/tweetview/getting_started/

Figure 5-6 shows the body section of an HTML file, which has the <div> element that
contains all of our Dojo interface components and the declaration of our application script file
that creates them. We reiterate this point again: By using WebSphere Developer Tools and a
running Liberty profile server when developing an application such as the example one,
developers can view changes as they are made by simply refreshing the page. In addition,
WebSphere Developer Tools add support for creating Dojo modules and widgets by using
Eclipse wizards to help you get started quickly with premade templates.

Figure 5-6 The body of our Dojo sample index.html file

Our main.js module begins by listing its dependencies. The last dependency, domReady, is
a special Dojo module that causes our main module to wait until the user’s browser finishes
loading the Document Object Module (DOM) of the web page. It also uses a simple Dojo
topic module to handle global operation requests in the application, which allows for a
simplified dependency relationship between modules and allows operation handling to be
centralized. Topic subscription works by linking a unique topic keyword to a function. This can
be called by using the special topic keyword followed by any arguments to pass to the handler
function, as shown in Figure 5-7.

Figure 5-7 The main.js sample application

...
<body>

<!-- Container to add the todo list and item widgets to programmatically -->
<div id="view-container">
</div>

<!-- Application JavaScript -->
<script type="text/javascript" src="app/main.js"></script>

</body>
</html>

require([
'app/RestUtilities',
'app/ViewUtilities',
'dojo/when',
'dojo/topic',
'dojo/domReady!'

], function (restUtilities, viewUtilities, when, topic) {
var rootListId = 'root';
var rootListName = 'Todo Lists';

// Listen for requests to create list views
topic.subscribe('createListView', viewUtilities.createListView);

// Create the base view containing all todo lists
when(restUtilities.requestResources('lists'), function (items) {

topic.publish('createListView', rootListId, rootListName, items);
});

});
Chapter 5. Front-end development on the Liberty profile server 59

http://dojotoolkit.org/documentation/tutorials/1.9/mobile/tweetview/getting_started/

This main.js module also references our two utility modules: RestUtilities and ViewUtilities.
These utilities are designed to wrap commonly used functions, such as making a request
from the server with a particular set of arguments. Figure 5-8 shows the contents of the
RestUtilities module. It includes a declaration of the request path prefix to the same value
(api) that our RESTful web service is mapped to, and also setting the expected content type
of responses to JSON. This setup saves configuring these constants in each separate
location that a request is made from the server. In a more fully fledged example, this might be
expanded to include functions for posting data back to the server.

Figure 5-8 The RestUtilities.js utility module

Beginning with Figure 5-9, the subsequent two figures show the Dojo todo list UI sample
running on a Liberty profile server, which is populated with sample data.

Figure 5-9 The Dojo UI home page showing all todo lists

Figure 5-10 on page 61 shows a list of items for the House chores todo list. It is using the
JSON that is returned from the JAX-RS API to set the item description, whether it is
completed, and the completion deadline.

define([
'dojo/request',
'exports'

], function (request, exports) {
var apiUri = 'api/';

exports.requestResources = function (requestUri) {
return request.get(apiUri + requestUri, {

handleAs: 'json'
});

};

return exports;
});
60 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Figure 5-10 The Dojo UI todo list view showing all the items in that list

5.1.4 Integration testing with JWebUnit on the Liberty profile server

For integration testing our web application, we use a combination of JWebUnit for UI testing
and REST-assured for REST API testing. These testing tools are based on the standard JUnit
structure and integrate seamlessly with our continuous integration system that uses Jenkins.
Chapter 5. Front-end development on the Liberty profile server 61

JWebUnit
JWebUnit is a simple library for testing web application interfaces by simulating user
interaction. JWebUnit provides an API for tasks such as finding text on a page, clicking links,
changing addresses, and submitting forms. Test results are based on a set of user-specified
assertions, where the page elements, such as page titles, text fields, links, form fields, and
windows, can be validated against expected values. An example of a basic test case that is
taken from our application sample is shown in Figure 5-11. This test sets the web address to
point to the home page, and after waiting to ensure that the page has loaded, checks the title
of the browser against the expected value. For more information about JWebUnit, see the
project website:

http://jwebunit.sourceforge.net/

Figure 5-11 Basic integration test by using JWebUnit

REST-assured
REST-assured is a Java based domain-specific language (DSL) that is designed for testing
and validating REST web services. It uses a fluent method chaining style, facilitating a syntax
similar to languages such as Ruby. We selected this tool to enhance the coverage of the
sample application integration tests. Using REST-assured, we can post data to the server to
create lists and items and then validate that the changes are reflected in the Dojo UI.

private WebTester wt;

@Before
public void setUp()
{

wt = new WebTester();
wt.setTestingEngineKey(TestingEngineRegistry.TESTING_ENGINE_HTMLUNIT);
wt.setBaseUrl("http://localhost:9080");

}

@Test
public void testHomePage()
{

wt.beginAt("index.html");
waitForJavaScriptRendering(DEFAULT_WAIT_TIME);
wt.assertTitleEquals("Todo Web Application");

}

62 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

http://jwebunit.sourceforge.net/

The integration test from our sample application (Figure 5-12) demonstrates how to send a
POST request to the server to add an item to a todo list, then load the page and validate that
it is shown. For more information about REST-assured, see the project home website:

https://code.google.com/p/rest-assured/

Figure 5-12 Integration test that uses JWebUnit and REST-assured

@Before
public void setUp()
{

RestAssured.baseURI = "http://localhost";
RestAssured.port = 9080;
RestAssured.basePath = "/api";

wt = new WebTester();
wt.setTestingEngineKey(TestingEngineRegistry.TESTING_ENGINE_HTMLUNIT);
wt.setBaseUrl("http://localhost:9080");

}

@Test
public void testAddList()
{

// Check that no lists exist already
expect().

statusCode(200).
body("size()", is(0)).

when().
get("/lists");

// Add a test list
given().

contentType(MediaType.APPLICATION_JSON).
body("{\"name\": \"test list name\", \"description\": \"test list

description\"}").
then().expect().

statusCode(200).
body(instanceOf(String.class)).

when().
post("/lists");

// Check that the new list was added
expect().

statusCode(200).
body("size()", is(1)).

when().
get("/lists");

// Check the Dojo UI displays the new list
wt.beginAt("index.html");
waitForJavaScriptRendering(DEFAULT_WAIT_TIME);
wt.assertTextPresent("test list name - test list description");

}

Chapter 5. Front-end development on the Liberty profile server 63

https://code.google.com/p/rest-assured/

5.2 Apache Wicket

Another web framework that we tested with the Liberty profile server is Apache Wicket.
It is a Java based open source web framework offering many unique features. Pages and
components are plain old Java objects (POJOs) with the markup in HTML, which means you
can use any IDE and develop complex applications by using encapsulation, inheritance, and
events. The stateless nature of the framework allows you to create complex web flows that, at
any time, you can revert to the previous state of your page object. The clear separation
between Java objects and corresponding markup in HTML make development and further
maintenance much easier. Page objects can be easily bound to the application data by using
Wicket models. Many open source libraries are available that offer easy-to-use web
components, such as Ajax-based data grids with built-in sorting or paging, calendars, tabs,
and many other components. Changing the component behavior or “look and feel” often is
done by overriding the component methods so you do not need to be a JavaScript or HMTL
master to use it. For more information about the Wicket framework, see the following website:

http://wicket.apache.org

5.2.1 Simple Todo application in Apache Wicket

Apache Wicket is a server-based Java web framework and it can easily use Spring or EJB
beans. Our example uses Spring framework for Dependency Injection. Spring beans use JPA
and Hibernate to permit our application data to be in an H2 database. Our goal is to
demonstrate the simple create, retrieve, update, and delete application with a bit of style by
adding the Bootstrap CSS.

5.2.2 Setting up the Apache Wicket with Spring and JPA Hibernate project

You can start developing in Wicket by creating a simple Java web project in Eclipse and add
the Wicket core library or use Maven and the Wicket archetype to generate a project.

For information about setting up the Wicket project with Maven, see the following website:

http://wicket.apache.org/start/quickstart.html

Our Todo application has other dependencies to todo-service-api and
todo-service-jpa-impl. Both projects provide the data model that we are using and the
database persistence layer. To inject our database service in our Wicket web application, we
use Spring Framework. To add Spring to our project, we add two dependencies:

<dependency>
<!-- Spring Framework -->
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<version>${spring.version}</version>

</dependency>
<dependency>

<!-- Spring Support for Wicket -->
<groupId>org.apache.wicket</groupId>
<artifactId>wicket-spring</artifactId>
<version>${wicket.version}</version>

</dependency>
64 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

http://wicket.apache.org
http://wicket.apache.org/start/quickstart.html

The spring-web artifact provides all the necessary Spring libraries that we need and
wicket-spring is a bridge between Wicket and Spring. Using it, we can use the annotations
in Wicket pages for dependency injection. To make our pages nice-looking by enabling the
Ajax check box and calendar, we add Wicket extension and date-time libraries:

<dependency>
<groupId>org.apache.wicket</groupId>
<artifactId>wicket-extensions</artifactId>
<version>6.10.0</version>

</dependency>
<dependency>

<groupId>org.apache.wicket</groupId>
<artifactId>wicket-datetime</artifactId>
<version>6.11.0</version>

</dependency>

The complete Maven pom.xml file is available in the source code of the Todo application.
Developing in Apache Wicket does not require any specific IDE. You can use Eclipse or,
alternatively in the Eclipse Marketplace, you can learn about the QWickie plug-in that helps
with development.

5.2.3 Developing the Todo application

Having a Java web project and all the necessary libraries, you can start developing the
application. In Wicket, start from the application class that extends the Wicket Application
abstract class. In the Todo application example, it is named WicketApplication.class and it
overrides two methods, as shown in Example 5-1.

Example 5-1 Override

@Component("wicketApplication")
public class WicketApplication extends WebApplication
{

@Override
public Class< ? extends WebPage> getHomePage()
{

return ToDoListsPage.class;
}

@Override
public void init()
{

super.init();
getComponentInstantiationListeners().add(new SpringComponentInjector(this));
mountBookmarkablePages();

}

As the example shows, a getHomePage() method returns a ToDoListPage class; by doing this,
we always get this page as a home page for our application. The second init() method is
important because you might need to initialize several things when the application starts. In
the sample Todo application, you must initialize Spring Framework and then mount other
pages.
Chapter 5. Front-end development on the Liberty profile server 65

For Spring integration, the line of code in Example 5-2 is needed.

Example 5-2 Necessary code

getComponentInstantiationListeners().add(new SpringComponentInjector(this));
and the @Component annotation
@Component("wicketApplication")
public class WicketApplication extends WebApplication

To complete the Spring framework integration with Wicket, create the
applicationcontext.xml file under the WEB-INF folder of the application. In this file, enable the
annotation scanning for one or more code packages. In the Todo list example, two packages
will be scanned.

To enable scanning, add the following two lines in the applicationcontext.xml file:

<ctx:component-scan base-package="todo.service" />
<ctx:component-scan base-package="todo.ui.wicket" />

The last step is to add necessary servlet and filter details in to the web.xml descriptor file, as
shown in Example 5-3.

Example 5-3 Add servlet and filter details

<filter>
<filter-name>wicket.WicketProject</filter-name>
<filter-class>org.apache.wicket.protocol.http.WicketFilter</filter-class>
<init-param>

<param-name>applicationFactoryClassName</param-name>
<param-value>org.apache.wicket.spring.SpringWebApplicationFactory</param-value>

</init-param>
<init-param>

<param-name>applicationClassName</param-name>
<param-value>todo.ui.wicket.WicketApplication</param-value>

</init-param>
</filter>

<filter-mapping>
<filter-name>wicket.WicketProject</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

Now, you can start developing pages. The first page to be implemented is the ToDoListPage
because it is a home page of the application. This class extends an AbstractBasePage class
with some common code shared among all pages. This abstract class has a field of type
TodoListService and reference name backend with the @SpringBean annotation:

@SpringBean
protected TodoListService backend;
66 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

The @SpringBean annotation is from the wicket-spring library that acts as a bridge between
Wicket and Spring. Based on it, Spring injects the implementation of the TodoListService
interface. The implementation is just a POJO class with the Spring @Service annotation in
todo-service-jpa-impl. Wicket is a Java framework where pages and its components are
Java objects. Examine the code snippet in Example 5-4.

Example 5-4 Code snippet

add(new Label("lists-count", new AbstractReadOnlyModel<Object>()
{

@Override
public Object getObject()
{

return backend.getLists().size();
}

}));

As you can see, there is a new Label object that is added to the page by using the keyword
add. It has two parameters in its constructor:

� The first is of type String and is named "lists-count". The name "lists-count" is later
used in the HTML file corresponding to the POJO page class.

� The second is a model object that holds data to be rendered. This model is a wrapper
object that is provided by Wicket.

See the corresponding HTML file that contains the following line:

<div class="panel-heading">You currently have <span
wicket:id="items-count">2 items in this TODO list.</div>

An important step is to ensure that all your page components have unique names and
HTML tags in the corresponding HTML file with the same names. In this example, the
wicket:id="items-count" gives Wicket information where you want your label to be
rendered. If a mistake in component name exists, Wicket throws an exception, so every page
component that is added to the page class must have an HTML tag with a proper wicket:id
name.

In more complex scenarios, you also must handle object hierarchy. In the Todo application,
you can obtain a form for saving new Todo items. The form object has two fields: name and
description. Object hierarchy must be properly defined in the page class and HTML file.

The second parameter of Label object is a new instance of the Wicket’s model object. Wicket
provides an IModel interface and several implementations that you can use while developing
applications. In general, Model in Wicket is an object that wraps and holds data that you want
to display or edit on your page. Example 5-4 shows a new AbstractReadOnlyModel<Object>
object as a second parameter in the label constructor. This new model object has the
getModelObject() method that, in the example, returns several Todo list elements. This
method uses an injected Spring bean that calls the JPA hibernate and database to retrieve
this value. For this simple value, you want to render the AbstractReadOnlyModel model
implementation on your page. When you must display and edit the value of an object, you use
the PropertyModel object or CompoundPropertyModel. In the ToDoListPage.java class, you
can find a more complex example of the CompoundPropertyModel that is used in a form
object. See Example 5-5.

Example 5-5 More complex CompoundProertyModel

add(new Form<TodoList>("new-todo-list-form", new
CompoundPropertyModel<TodoList>(newTodoList))

{

Chapter 5. Front-end development on the Liberty profile server 67

{
add(new TextField<String>("name").setRequired(true));
add(new TextArea<String>("description"));
final Button submitButton = new Button("submitButton")

{
@Override
public void onSubmit()
{

LOG.debug("Creating new TODO list[name={}]...",
newTodoList.getName());

backend.createList(newTodoList);
getSession().info(newTodoList.getName() + " list has been

created.");
setResponsePage(ToDoListsPage.class);

}
};

add(submitButton);
}

});

The CompoundPropertyModel with the <TodoList> type now allows you to define
subcomponents of type TextField andTextArea. You now use the names of the TodoList object
fields as parameters in the text field constructors. This simplifies development when handling
large and complex objects that have many fields. You can use any web component that is
offered by the Wicket framework, and by using names that you can map a component to the
particular field. Each type of Wicket model holds data differently. Learn more about models in
the Wicket documentation that is found at the following website:

https://cwiki.apache.org/confluence/display/WICKET/Models

Finally, when you build and run the Todo application, you are redirected to the
localhost:9080 URL and the Todo list window opens (Figure 5-13).

Figure 5-13 Todo List Application

You can now create Todo lists in each group, as shown in Figure 5-14 on page 69. For each
group with many Todo items, you can manage them on the todoListItem page.
68 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

https://cwiki.apache.org/confluence/display/WICKET/Models

Figure 5-14 Todo List Application

5.2.4 Issues found during development

While we worked on the Todo application code in our example, one issue occurred on the
Liberty profile server. In some cases, when you try to use the setResponsePage(page.class)
Wicket method, you are redirected to the page but the context root of your application is
missing. Assume that your Todo application is deployed under the localhost:9080/mytodo
context root path. The problem that you might encounter is that the setResponsePage
redirects you to the localhost:9080 URL. A bug has been reported on the Wicket forum, but
a workaround exists for this issue. To get the relative pages redirected correctly, add the code
snippet from Example 5-6 to your Wicket Application class.

Example 5-6 Add this code to your Wicket Application class

@Override
protected WebResponse newWebResponse(final WebRequest webRequest, final
HttpServletResponse httpServletResponse)

{
return new ServletWebResponse((ServletWebRequest) webRequest,

httpServletResponse)
{

@Override
public String encodeRedirectURL(final CharSequence relativeURL)
{

return new
UrlRenderer(webRequest).renderFullUrl(Url.parse(relativeURL));

}
};

}

This code ensures that Liberty profile server is working only with the absolute URLs. If you do
not use the setResponsePage() method or any Ajax components in your application, you
might not encounter this issue.
Chapter 5. Front-end development on the Liberty profile server 69

5.2.5 Testing the Todo Wicket application

For integration and testing purposes in our example, we used the jwebunit-htmlunit-plugin,
which can be found at the following website:

http://jwebunit.sourceforge.net/jwebunit-htmlunit-plugin/

The HtmlUnit is a Java based headless browser implementation; JWebUnit is an extension
providing a slick DSL language to describe test cases. Also, we use the
maven-failsafe-plugin to stop the Liberty profile server after a failed build. The Wicket
project pom.xml contains all the needed dependencies and plug-in configuration. The basic
concept is that we start the WebSphere Application Server Liberty profile, deploy the wicket
Todo application, and run the integration tests. The server.xml and jvm.options files under
the wlp-config folder is where you can find the server configuration. The key point is that the
tests that are performed by using the jwebunit-htmlunit-plugin allows you to test the real
HTML output of the server through HTTP. It acts as a normal browser working independently.
You can test the HTML components and JavaScript code, and simulate the user interaction
with your application. Examine the test code snippet in Example 5-7.

Example 5-7 Test code snippet

public void testWicketApplication()
{
final WebTester tester = new WebTester();

tester.setBaseUrl("http://localhost:9080");
tester.setTestingEngineKey(TestingEngineRegistry.TESTING_ENGINE_HTMLUNIT);
tester.beginAt("/");
tester.assertTitleEquals("Todo List Application");
tester.assertTextPresent("You currently have");
tester.assertFormPresent("new_todo_list_form1");
// create two new todo lists
tester.setTextField("name", "List1_Name");
tester.setTextField("description", "List1_Description");
tester.submit("submitButton");
tester.setTextField("name", "List2_Name");
tester.setTextField("description", "List2_Description");
tester.submit("submitButton");

 tester.assertTextPresent("List1_Name");
tester.assertTextPresent("List2_Name");
tester.assertTextPresent("List1_Description");
tester.assertTextPresent("List2_Description");

Developing complex test scenarios independently of any web framework you might have used
can be easy to do. In this simple Todo application example, we test only the title of the Todo
list page, and ensure that there are some HTML components present with certain names.
Finally, we add a test todo list in a form, test the save button, and ensure that we successfully
added a new todo list.

We have one more item to mention in the server.xml configuration file: the Maven
placeholder variable ${project.build.directory}/${project.build.finalName}. This
variable is resolved later by the maven-resources-plugin because we do not point to the WAR
file but to the exploded WAR location to improve the application start and reload performance.
Now, we examine the Maven configuration.
70 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

http://jwebunit.sourceforge.net/jwebunit-htmlunit-plugin/

When running integration tests by using the mvn verify command, based on our
configuration in the pom.xml file, the maven-war-plugin creates the exploded WAR directory
and a packaged WAR file in the /target directory.

The following list describes each phase:

� The pre-integration-test phase:

a. The maven-resources-plugin copies the server configuration template from the
src/test/resources/wlp-config/server.xml file to the
target/wlp-config/server.xml file. At the same time, it filters the file and resolves and
replaces property placeholders with property values that are provided by the Maven
run time.

b. The liberty-maven-plugin installs the Liberty profile server binary files from the
todo-liberty-server artifact to the target/liberty/wlp location and creates a
defaultServer based on using the configuration file that is in the
target/wlp-config/server.xml file,

c. The liberty-maven-plugin starts the Liberty profile server instance.

d. Liberty automatically deploys the WAR file that is configured in the server.xml file.

� The integration-test phase:

a. The maven-failsafe-plugin runs JUnit on the WicketApplicationITest test case.

b. The testWicketApplication() method instantiates an instance of the JWebUnit
WebTester client, points it to the running test server at localhost:9080, and performs
the user simulation.

� The post-integration-test phase:

The liberty-maven-plugin stops the Liberty profile server.

This configuration can also be used for console-based deployments during application
development when you do not use Eclipse and the installed Liberty profile server. If you want
to create only the server, start it, and deploy the Todo application, you must call mvn
pre-integration-tests. This command starts all plug-ins to set up and deploy a server, but
skips integration tests and does not shut down the server.

If you want to make changes to the application code under /src/main to redeploy the
application, run the mvn package command. This command creates the web archive; because
updateTrigger polling is enabled, the server realizes the change and instantly reloads the
application.

If unit test cases exist, you can skip them by using the mvn -DskipTests package.

To stop WebSphere Liberty profile server, run the mvn liberty:stop-server command.

Important: The running of tests matching *ITest.java is excluded for the surefire
plug-in that runs the test case in the wrong phase (test), which is before the Liberty
profile server is created and started.
Chapter 5. Front-end development on the Liberty profile server 71

72 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Chapter 6. Deploying the Liberty profile
server with Opscode Chef

This chapter describes the basic steps of how to install the Liberty profile server on a remote
system and to deploy our sample application by using the Opscode Chef deployment
automation solution.

The chapter includes the following topics:

� About Knife, Recipe, and other terms
� Preparing for Chef
� Installing Liberty profile server with Chef

6

© Copyright IBM Corp. 2014, 2015. All rights reserved. 73

6.1 About Knife, Recipe, and other terms

Chef partially uses a unique terminology in an analogy to real-life cooking, and might be
confusing when you are getting started:

� Knife: This command-line tool interacts with the Chef framework. It is used to create
cookbooks and configurations and to issue deploy commands.

� Resource: This is a module that knows how to configure components of a specific type.
Just as you might have a resource that is named blender in your own kitchen that knows
how to configure (that is, puree) vegetables and fruits, Chef has a resource that is named
package that can install and configure binary packages, and a resource that is named
service that can manage services.

� Recipe: This collection of instructions must be run in a specific order on a target node to
achieve eventually a configuration state that you want. Recipes delegate to resources,
which are then responsible for configuring the required components. Recipes might also
include other recipes, either from the same or a different cookbook.

� Cookbook: This is a container and name space for one or more recipes and the
associated resources, configurations, and metadata.

� Kitchen: This local configuration repository holds all cookbooks, node configurations, and
so on, that are required to deploy nodes in an environment. Knife is run within a Kitchen.
Kitchens can be managed by version control systems.

� Cooking: With Knife (that is, by running the knife solo cook <options> command),
cooking effectively means deploying configurations to one or more target nodes.

For more information, see the following resources:

� Overview of the Chef architecture and its building blocks at the following website:

http://docs.opscode.com/chef_overview.html

� Chef glossary at the following website:

https://wiki.opscode.com/display/chef/Glossary

6.2 Preparing for Chef

This section describes the initial preparations for working with Chef.

The standard Chef setup that is advocated by Opscode involves the installation and
configuration of a full Chef server and the rollout of Chef agents on all target nodes. The
chef-solo stand-alone mode allows local deployments without needing the Chef infrastructure.
Using chef-solo with the open source add-on knife-solo elegantly overcomes the limitation of
“local configurations only,” allowing agent-less deployment of remote nodes.

For more information, see the following resources:

� The knife-solo plug-in is available at the following website:

http://matschaffer.github.io/knife-solo/

� A good introductory video to knife-solo is at the following website:

http://devops.mashion.net/2011/08/04/chef-solo-basics/
74 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

http://docs.opscode.com/chef_overview.html
https://wiki.opscode.com/display/chef/Glossary
http://matschaffer.github.io/knife-solo/
http://devops.mashion.net/2011/08/04/chef-solo-basics/

6.2.1 Preparing the test machines

For the examples in this chapter to work without alteration, you must prepare two servers (for
example, virtual machines) with Ubuntu Server as the operating system.

Prepare two physical or virtual machines within the same network segment with Internet
connectivity and complete the following steps on both machines:

1. Install Ubuntu Server 14.04, which you can download from the following website:

http://www.ubuntu.com/download/server

2. Install OpenSSH by running the following command:

sudo apt-get install ssh

3. Create a user who is named chef, on both machines, by running the following command:

sudo adduser chef

4. Optional: Grant password-less execution of sudo commands to the chef user by adding the
following line to the /etc/sudoers file:

chef ALL=NOPASSWD: ALL

Change the host name of the first machine to chefmaster and enable SSH connectivity to the
second machine:

1. Edit the /etc/hostname file and change ubuntu to chefmaster.

2. Edit the /etc/hosts file to change ubuntu to chefmaster and add a line with the IP address
of the second machine and the host name chefslave, as in this example:

192.168.140.3 chefslave

3. Restart the machine.

4. Verify that you can access the subordinate machine through SSH by using chefslave as
the host name by running the following command:

ssh chef@chefslave

Change the host name of the second machine to chefslave and enable SSH connectivity to
the first machine:

1. Edit the /etc/hostname file and change ubuntu to chefslave.

2. Edit the /etc/hosts file, change ubuntu to chefslave, and add a line with the IP address of
the second machine and the host name chefmaster, as in this example:

192.168.140.2 chefmaster

3. Restart the machine.

4. Verify that you can access the master machine through SSH by using chefmaster as the
host name:

ssh chef@chefmaster

Note: Although granting this permission is optional, when it is not granted, you might
receive password prompts during deployments.
Chapter 6. Deploying the Liberty profile server with Opscode Chef 75

http://www.ubuntu.com/download/server

6.2.2 Installing Chef

After setting up the initial machine, you can now install Chef on the master node. Log in to
chefmaster and do the following actions on the command line:

1. Configure password-less SSH Public Key authentication for logins to chefslave by using
the ssh-keygen and ssh-copy-id commands (Example 6-1).

Example 6-1 Configure SSH Public Key authentication

chef@chefmaster:~$ ssh-keygen -t rsa -b 2048
Generating public/private rsa key pair.
Enter file in which to save the key (/home/chef/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/chef/.ssh/id_rsa.
Your public key has been saved in /home/chef/.ssh/id_rsa.pub.
...
chef@chefmaster:~$ ssh-copy-id chef@chefslave
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any
that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now
it is to install the new keys
chef@chefslave's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'chef@chefslave'"
and check to make sure that only the key(s) you wanted were added.

chef@chefslave:~$ ssh chef@chefslave
Welcome to Ubuntu 14.04.2 LTS (GNU/Linux 3.16.0-30-generic x86_64)

 * Documentation: https://help.ubuntu.com/
...
chef@chefslave:~$

2. Install Chef by using the Opscode multiplatform installer Omnibus Installer. See
Example 6-2.

Example 6-2 Install Chef with the Omnibus Installer

chef@chefmaster:~$ curl -L https://www.opscode.com/chef/install.sh | sudo bash
% Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 18736 100 18736 0 0 13557 0 0:00:01 0:00:01 --:--:-- 13566
Downloading Chef for ubuntu...
...
Installing Chef
installing with dpkg...
Selecting previously unselected package chef.
(Reading database ... 61256 files and directories currently installed.)
Preparing to unpack .../chef_12.3.0-1_amd64.deb ...
Unpacking chef (12.3.0-1) ...

Note: Even after setting up password-less SSH authentication, you might still be
prompted for a password when running knife-solo commands because some of them
rely on the running of Linux commands through sudo. To avoid this situation, add a
corresponding change to the sudo configuration.
76 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Setting up chef (12.3.0-1) ...
Thank you for installing Chef!

If the curl command is not installed, you can either install it by running sudo apt-get
install curl or use wget instead as follows:

wget -qO- https://www.opscode.com/chef/install.sh | sudo bash

3. Verify that the Chef binary files are installed correctly by using the commands in
Example 6-3.

Example 6-3 Chef installation verification

chef@ubuntu:~$ tree -L 1 /opt/chef/
/opt/chef/
••• bin
••• embedded
••• version-manifest.json
••• version-manifest.txt

2 directories, 2file

chef@ubuntu:~$ knife -v
Chef: 12.3.0

4. Install knife-solo, which adds the solo subcommand to the knife command-line tool. After
issuing the command, it might take some time until you see any progress in the console.
See Example 6-4.

Example 6-4 Install knife-solo

chef@chefmaster:~$ sudo /opt/chef/embedded/bin/gem install knife-solo
Fetching: knife-solo-0.4.2.gem (100%)
Thanks for installing knife-solo!

If you run into any issues please let us know at:
 https://github.com/matschaffer/knife-solo/issues

If you are upgrading knife-solo please uninstall any old versions by
running `gem clean knife-solo` to avoid any errors.

See http://bit.ly/CHEF-3255 for more information on the knife bug
that causes this.
Successfully installed knife-solo-0.4.2
Parsing documentation for knife-solo-0.4.2
Installing ri documentation for knife-solo-0.4.2
Done installing documentation for knife-solo after 1 seconds
1 gem installed

5. Configure knife with several default values. See Example 6-5. You can ignore the
displayed warnings.

Example 6-5 Configure knife

chef@chefmaster:~$ knife configure -r . --defaults
WARNING: No knife configuration file found

You must place your client key in:
 /home/chef/.chef/chef.pem
Before running commands with Knife!
Chapter 6. Deploying the Liberty profile server with Opscode Chef 77

You must place your validation key in:
 /etc/chef-server/chef-validator.pem
Before generating instance data with Knife!

Configuration file written to /home/chef/.chef/knife.rb

6. Create a configuration repository called mychefrepo in the user’s home directory by using
the knife solo init <reponame> command (see Example 6-6).

Example 6-6 Create a configuration repository

chef@chefmaster:~$ knife solo init mychefrepo
Creating kitchen...
Creating knife.rb in kitchen...
Creating cupboards...

chef@chefmaster:~$ tree -a mychefrepo/ | grep -v .git
mychefrepo/
••• .chef
• ••• knife.rb
••• cookbooks
••• data_bags
••• environments
••• nodes
••• roles
••• site-cookbooks

7 directories, 8 files

7. Use the cd command (Example 6-7) to change to the newly created repository and run the
knife solo prepare chef@chefslave command, which installs Chef on the remote
subordinate node.

Example 6-7 Install Chef on the remote subordinate node

chef@chefmaster:~$ cd mychefrepo
chef@chefmaster:~/mychefrepo$ knife solo prepare chef@chefslave
Bootstrapping Chef...
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 18736 100 18736 0 0 14360 0 0:00:01 0:00:01 --:--:-- 14368
Downloading Chef 12.3.0 for ubuntu...
downloading
https://www.opscode.com/chef/metadata?v=12.3.0&prerelease=false&nightlies=false&p=ubuntu
&pv=14.04&m=x86_64
 to file /tmp/install.sh.8218/metadata.txt
trying wget...
url
https://opscode-omnibus-packages.s3.amazonaws.com/ubuntu/10.04/x86_64/chef_12.3.0-1_amd6
4.deb
md5 d8421c9b3010deb03e713ada00387e8a
sha256 e06eb748e44d0a323f4334aececdf3c2c74d2f97323678ad3a43c33ac32b4f81
downloaded metadata file looks valid...
78 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

downloading
https://opscode-omnibus-packages.s3.amazonaws.com/ubuntu/10.04/x86_64/chef_12.3.0-1_amd6
4.deb
 to file /tmp/install.sh.8218/chef_12.3.0-1_amd64.deb
trying wget...
Comparing checksum with sha256sum...
Installing Chef 12.3.0
installing with dpkg...
Selecting previously unselected package chef.
(Reading database ... 61272 files and directories currently installed.)
Preparing to unpack .../chef_12.3.0-1_amd64.deb ...
Unpacking chef (12.3.0-1) ...
Setting up chef (12.3.0-1) ...
Thank you for installing Chef!
Generating node config 'nodes/chefslave.json'...

8. In addition to installing Chef on the subordinate node, the knife solo prepare command
also creates a node configuration file under the mychefrepo/nodes/chefslave.json
location, with an empty run list configuration of {"run_list":[]}. The run list describes
which recipes should be run on this node during “cooking”. Even with an empty run list, the
deployment process can be started for verification purposes. See Example 6-8.

Example 6-8 Deployment test run

chef@chefmaster:~/mychefrepo$ knife solo cook chef@chefslave
Running Chef on chefslave...
Checking Chef version...
Uploading the kitchen...
Generating solo config...
Running Chef...
Starting Chef Client, version 12.3.0
Compiling Cookbooks...
Converging 0 resources

Running handlers:
Running handlers complete
Chef Client finished, 0/0 resources updated in 1.465028986 seconds

When you run the knife solo cook command, knife-solo generates a chef-solo
configuration based on the content of mychefrepo, uploads it to the /home/chef/chef-solo
directory on the remote node (chefslave), and starts the chef-solo command on the
remote node to perform the local deployment based on the currently empty run list
configuration.
Chapter 6. Deploying the Liberty profile server with Opscode Chef 79

6.3 Installing Liberty profile server with Chef

Now that knife-solo is installed and remote connectivity is verified, you can configure
mychefrepo for the Liberty profile server deployments to the subordinate node.

6.3.1 Loading the wlp cookbook

To install the Liberty profile server by using Chef, the wlp cookbook that contains the
necessary recipes must be loaded into the local repository. To achieve this task, first
download the cookbook by using the knife cookbook site download <cookbook> command
and then extract the archives content into the mychefrepo cookbooks directory. See
Example 6-9.

Example 6-9 Install the wlp cookbook

chef@chefmaster:~/mychefrepo$ cd cookbooks

chef@chefmaster:~/mychefrepo/cookbooks$ knife cookbook site download wlp
Downloading wlp from the cookbooks site at version 0.3.0 to
/home/chef/mychefrepo/cookbooks/wlp-0.3.0.tar.gz
Cookbook saved: /home/chef/mychefrepo/cookbooks/wlp-0.3.0.tar.gz

chef@chefmaster:~/mychefrepo/cookbooks$ tar -xzf wlp-0.3.0.tar.gz

chef@chefmaster:~/mychefrepo/cookbooks$ rm wlp-0.3.0.tar.gz

chef@chefmaster:~/mychefrepo/cookbooks$ tree -L 2
.
••• wlp
 ••• attributes
 ••• Berksfile
 ••• CHANGELOG.md
 ••• CONTRIBUTING.md
 ••• DEVELOPING.md
 ••• Gemfile
 ••• libraries
 ••• LICENSE
 ••• metadata.json
 ••• metadata.rb
 ••• providers
 ••• Rakefile
 ••• README.md
 ••• recipes
 ••• resources
 ••• templates

6.3.2 Deploying the Liberty profile server binary files

Download the Liberty binary JAR files from the following location and place them in a
directory on a web server that is reachable from the test servers:

https://developer.ibm.com/wasdev/downloads/liberty-profile-using-non-eclipse-environments/

For example, place them here:

http://repo.local/wlp/8.5.5.6/
80 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

https://developer.ibm.com/wasdev/downloads/liberty-profile-using-non-eclipse-environments/

The cookbook’s website lists all the contained recipes and configurable attributes:

http://community.opscode.com/cookbooks/wlp

Based on this information, modify the chefslave’s node configuration at
mychefrepo/nodes/chefslave.json, as shown in Example 6-10.

Example 6-10 Chef subordinate node configuration to install the Liberty profile server

{
"wlp": {

"user": "wlp",
"group": "wlp",
"base_dir": "/opt/ibm",
"install_method": "archive",
"install_java": true,
"archive": {

"base_url": "http://repo.local/wlp/8.5.5.6/",
"accept_license": true,
"extended": { "install": true },
"extras": { "install": false }

}
},

"run_list":["recipe[wlp::default]"]
}

This configuration instructs chef to run the default receipt that is found in the wlp cookbook
and parameterize its execution with the configuration parameters. The current configuration
results in an installation of the Liberty profile server at /opt/ibm/wlp under ownership of a
to-be-created user wlp. The Liberty profile server binary files are automatically downloaded
from the specified IBM website during installation, including the extended content.

To install Liberty profile server, you must “cook” the subordinate node again by running knife.
See Example 6-11.

Example 6-11 Deploy Liberty profile server binary files - failing attempt

chef@chefmaster:~/mychefrepo$ knife solo cook chef@chefslave
Running Chef on chefslave...
Checking Chef version...
Uploading the kitchen...
Generating solo config...
Running Chef...
Starting Chef Client, version 12.3.0
Compiling Cookbooks...

Running handlers:
[2015-05-28T12:12:28+09:00] ERROR: Running exception handlers
Running handlers complete
[2015-05-28T12:12:28+09:00] ERROR: Exception handlers complete

No cost versus license: Be aware that these binary files are provided as a no-charge
option for development purposes only. If you plan to deploy Liberty profile server to
production, you must purchase an appropriate license.
Chapter 6. Deploying the Liberty profile server with Opscode Chef 81

http://community.opscode.com/cookbooks/wlp

[2015-05-28T12:12:28+09:00] FATAL: Stacktrace dumped to
/var/chef/cache/chef-stacktrace.out
Chef Client failed. 0 resources updated in 1.279817549 seconds
[2015-05-28T12:12:29+09:00] ERROR: Cookbook java not found. If you're loading java
from another cookbook, make sure you configure the dependency in your metadata
[2015-05-28T12:12:29+09:00] FATAL: Chef::Exceptions::ChildConvergeError: Chef run
process exited unsuccessfully (exit code 1)
ERROR: RuntimeError: chef-solo failed. See output above.

Unfortunately, the first attempt to deploy Liberty profile server failed. The reason is that the
wlp cookbook has a reference to another cookbook called java, which must be made
available to the local repository too. Several other cookbooks are also missing, which you
realize on subsequent attempts. To have the deployment succeed, you must install these
cookbooks: java, aws, windows, and chef_handler. See Example 6-12.

Example 6-12 Load the required cookbooks in to the repository

chef@chefmaster:~/mychefrepo$ cd cookbooks/

chef@chefmaster:~/mychefrepo/cookbooks$ knife cookbook site download java
Downloading java from the cookbooks site at version 1.31.0 to
/home/chef/mychefrepo/cookbooks/java-1.31.0.tar.gz
Cookbook saved: /home/chef/mychefrepo/cookbooks/java-1.31.0.tar.gz

chef@chefmaster:~/mychefrepo/cookbooks$ knife cookbook site download aws
Downloading aws from the cookbooks site at version 2.7.0 to
/home/chef/mychefrepo/cookbooks/aws-2.7.0.tar.gz
Cookbook saved: /home/chef/mychefrepo/cookbooks/aws-2.7.0.tar.gz

chef@chefmaster:~/mychefrepo/cookbooks$ knife cookbook site download windows
Downloading windows from the cookbooks site at version 1.37.0 to
/home/chef/mychefrepo/cookbooks/windows-1.37.0.tar.gz
Cookbook saved: /home/chef/mychefrepo/cookbooks/windows-1.37.0.tar.gz

chef@chefmaster:~/mychefrepo/cookbooks$ knife cookbook site download chef_handler
Downloading chef_handler from the cookbooks site at version 1.1.9 to
/home/chef/mychefrepo/cookbooks/chef_handler-1.1.9.tar.gz
Cookbook saved: /home/chef/mychefrepo/cookbooks/chef_handler-1.1.9.tar.gz

chef@chefmaster:~/mychefrepo/cookbooks$ find *.tar.gz -exec tar -xzf {} \;

chef@chefmaster:~/mychefrepo/cookbooks$ rm *.tar.gz

chef@chefmaster:~/mychefrepo/cookbooks$ ls
aws chef_handler java windows wlp

After the required cookbooks are installed, you can retry the deployment. See Example 6-13.

Example 6-13 Deploy Liberty profile server binary files - successful attempt

chef@chefmaster:~/mychefrepo$ knife solo cook chef@chefslave
Running Chef on chefslave...
Checking Chef version...
Uploading the kitchen...
Generating solo config...
Running Chef...
82 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Starting Chef Client, version 12.3.0
Compiling Cookbooks...
Converging 14 resources
Recipe: wlp::default
 * group[wlp] action create
 - create wlp
 * user[wlp] action create
 - create user wlp
 * directory[/opt/ibm] action create
 - create new directory /opt/ibm
 - change mode from '' to '0755'
 - change owner from '' to 'wlp'
 - change group from '' to 'wlp'
Recipe: java::openjdk
 * apt_package[openjdk-6-jdk] action install

 - install version 6b35-1.13.7-1ubuntu0.14.04.1 of package openjdk-6-jdk
 * apt_package[openjdk-6-jre-headless] action install (up to date)
 * java_alternatives[set-java-alternatives] action set
 - Add alternative for apt
 - Add alternative for java
 - Set alternative for java
 - Add alternative for javaws
 - Set alternative for javaws
 - Add alternative for keytool
 - Set alternative for keytool
 - Add alternative for orbd
 - Set alternative for orbd
 - Add alternative for pack200
 - Set alternative for pack200
 - Add alternative for policytool
 - Set alternative for policytool
 - Add alternative for rmid
 - Set alternative for rmid
 - Add alternative for rmiregistry
 - Set alternative for rmiregistry
 - Add alternative for servertool
 - Set alternative for servertool
 - Add alternative for tnameserv
 - Set alternative for tnameserv
 - Add alternative for unpack200
 - Set alternative for unpack200
Recipe: java::default_java_symlink
 * link[/usr/lib/jvm/default-java] action create
 - create symlink at /usr/lib/jvm/default-java to
/usr/lib/jvm/java-6-openjdk-amd64
Recipe: java::set_java_home
 * ruby_block[set-env-java-home] action run
 - execute the ruby block set-env-java-home
 * directory[/etc/profile.d] action create (up to date)
 * file[/etc/profile.d/jdk.sh] action create
 - create new file /etc/profile.d/jdk.sh
 - update content in file /etc/profile.d/jdk.sh from none to 37eba7
 --- /etc/profile.d/jdk.sh 2015-05-28 12:20:57.969165302 +0900
Chapter 6. Deploying the Liberty profile server with Opscode Chef 83

 +++ /etc/profile.d/.jdk.sh20150528-10989-14y6cn 2015-05-28
12:20:57.969165302 +0900
 @@ -1 +1,2 @@
 +export JAVA_HOME=/usr/lib/jvm/java-6-openjdk-amd64
 - change mode from '' to '0755'
Recipe: wlp::_archive_install
 * remote_file[/var/chef/cache/wlp-developers-runtime-8.5.5.4.jar] action create
 - create new file /var/chef/cache/wlp-developers-runtime-8.5.5.4.jar
 - update content in file /var/chef/cache/wlp-developers-runtime-8.5.5.4.jar
from none to 4a65f4
 (file sizes exceed 10000000 bytes, diff output suppressed)
 - change owner from '' to 'wlp'
 - change group from '' to 'wlp'
 * remote_file[/var/chef/cache/wlp-developers-extended-8.5.5.4.jar] action create
 - create new file /var/chef/cache/wlp-developers-extended-8.5.5.4.jar
 - update content in file /var/chef/cache/wlp-developers-extended-8.5.5.4.jar
from none to 590478
 (file sizes exceed 10000000 bytes, diff output suppressed)
 - change owner from '' to 'wlp'
 - change group from '' to 'wlp'
 * execute[install wlp-developers-runtime-8.5.5.4.jar] action run
 - execute java -jar /var/chef/cache/wlp-developers-runtime-8.5.5.4.jar
--acceptLicense /opt/ibm
 * execute[install wlp-developers-extended-8.5.5.4.jar] action run
 - execute java -jar /var/chef/cache/wlp-developers-extended-8.5.5.4.jar
--acceptLicense /opt/ibm

Running handlers:
Running handlers complete
Chef Client finished, 12/14 resources updated in 183.322256896 seconds

You can now log in to the subordinate node and verify the correct installation of the Liberty
profile server binary files. See Example 6-14.

Example 6-14 Verify the Liberty profile server binary installation on the remote node

chef@chefslave:~$ ls -l /opt/ibm/wlp/
total 64
drwxr-xr-x 5 wlp wlp 4096 May 28 12:22 bin
drwxr-xr-x 3 wlp wlp 4096 May 28 12:22 clients
-rw-r--r-- 1 wlp wlp 307 May 28 12:22 Copyright.txt
drwxr-xr-x 5 wlp wlp 4096 May 28 12:22 dev
drwxr-xr-x 3 wlp wlp 4096 May 28 12:22 lafiles
drwxr-xr-x 8 wlp wlp 24576 May 28 12:22 lib
-rw-r--r-- 1 wlp wlp 11428 May 28 12:22 README.TXT
drwxr-xr-x 3 wlp wlp 4096 May 28 12:22 templates
drwxr-xr-x 4 wlp wlp 4096 May 28 12:22 usr

chef@chefslave:~$ /opt/ibm/wlp/bin/productInfo validate
Start product validation...
Validating feature: appSecurity-1.0... PASS!
Validating feature: appSecurity-2.0... PASS!
Validating feature: beanValidation-1.0... PASS!
Validating feature: blueprint-1.0... PASS!
Validating feature: cdi-1.0... PASS!
...
84 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Validating feature: wasJmsSecurity-1.0... PASS!
Validating feature: wasJmsServer-1.0... PASS!
Validating feature: webCache-1.0... PASS!
Validating feature: webProfile-6.0... PASS!
Validating feature: wmqJmsClient-1.1... PASS!
Validating feature: wsSecurity-1.1... PASS!
Product validation completed successfully.

6.3.3 Creating Liberty profile server configurations

Now that the Liberty profile server binary installation is successful, you can extend the node
configuration and add instructions to create two dedicated Liberty profile server
configurations for the REST-based and the Wicket-based Todo List Application.

This task can be achieved by using the serverconfig recipe of the wlp cookbook. This recipe
has its configuration under the [“wlp”][“servers”] key in the attributes map. Add the
configuration that is outlined in Example 6-15 to the mychefrepo/nodes/chefslave.json file.

Example 6-15 Extended Chef subordinate node configuration with server creation recipe

{
"wlp": {

"user": "wlp",
"group": "wlp",
"base_dir": "/opt/ibm",
"install_method": "archive",
"install_java": true,
"archive": {

"base_url": "http://repo.local/wlp/8.5.5.6/",
"accept_license": true,
"extended": { "install": true },
"extras": { ”install": false }

},
"servers": {

"defaultServer" : { "enabled": false },
"todo-ui-rest" : {

"enabled": true,
"description" : "Server for REST-based TODO list application",
"featureManager" : {

"feature": ["servlet-3.1", "jaxrs-2.0", "ejbLite-3.2"]
},
"httpEndpoint" : {

"id" : "defaultHttpEndpoint",
"host" : "*",
"httpPort" : "9081"

}
},
"todo-ui-wicket" : {

"enabled": true,
"description" : "Server for Wicket-based TODO list application",
"featureManager" : {

"feature": ["servlet-3.1", "jdbc-4.1", "jndi-1.0"]
},
"httpEndpoint" : {

"id" : "defaultHttpEndpoint",
"host" : "*",
"httpPort" : "9082"

}

Chapter 6. Deploying the Liberty profile server with Opscode Chef 85

}
}

},

"run_list":["recipe[wlp::default]", "recipe[wlp::serverconfig]"]
}

By default, the serverconfig recipe creates a new server configuration called defaultServer.
To avoid that, we set the enabled option to FALSE for the defaultServer.

Using the feature option for each server, only those runtime features are enabled that are
required by the respective application. The wlp::serverconfig recipe is added to the end of
the run_list attribute value. In this way, the recipe is run after the wlp::default recipe, which
is responsible for installing the Liberty profile server binary files.

After you update the node configuration, run the knife solo cook command again
(Example 6-16).

Example 6-16 Output of Liberty profile server creation with knife-solo

chef@chefmaster:~/mychefrepo$ knife solo cook chef@chefslave
Running Chef on chefslave...
Checking Chef version...
Uploading the kitchen...
Generating solo config...
Running Chef...
Starting Chef Client, version 12.3.0
Compiling Cookbooks...
Converging 18 resources
Recipe: wlp::default
 * group[wlp] action create (up to date)
 * user[wlp] action create (up to date)
 * directory[/opt/ibm] action create (up to date)
Recipe: java::openjdk
 * apt_package[openjdk-6-jdk] action install (up to date)
 * apt_package[openjdk-6-jre-headless] action install (up to date)
 * java_alternatives[set-java-alternatives] action set (up to date)
Recipe: java::default_java_symlink
 * link[/usr/lib/jvm/default-java] action create (up to date)
Recipe: java::set_java_home
 * ruby_block[set-env-java-home] action run
 - execute the ruby block set-env-java-home
 * directory[/etc/profile.d] action create (up to date)
 * file[/etc/profile.d/jdk.sh] action create (up to date)
Recipe: wlp::_archive_install
 * remote_file[/var/chef/cache/wlp-developers-runtime-8.5.5.4.jar] action create
(skipped due to not_if)
 * remote_file[/var/chef/cache/wlp-developers-extended-8.5.5.4.jar] action create
(skipped due to not_if)
 * execute[install wlp-developers-runtime-8.5.5.4.jar] action run (skipped due to
not_if)
 * execute[install wlp-developers-extended-8.5.5.4.jar] action run (skipped due
to not_if)
Recipe: wlp::serverconfig
 * directory[/opt/ibm/wlp/usr/servers/todo-ui-rest] action create
 - create new directory /opt/ibm/wlp/usr/servers/todo-ui-rest
86 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

 - change mode from '' to '0775'
 - change owner from '' to 'wlp'
 - change group from '' to 'wlp'
 * wlp_config[/opt/ibm/wlp/usr/servers/todo-ui-rest/server.xml] action create

 * directory[/opt/ibm/wlp/usr/servers/todo-ui-wicket] action create
 - create new directory /opt/ibm/wlp/usr/servers/todo-ui-wicket
 - change mode from '' to '0775'
 - change owner from '' to 'wlp'
 - change group from '' to 'wlp'
 * wlp_config[/opt/ibm/wlp/usr/servers/todo-ui-wicket/server.xml] action create

Running handlers:
Running handlers complete
Chef Client finished, 5/14 resources updated in 3.929106105 seconds

Deploying a fresh node with this configuration can result in the installation of Java, the Liberty
binary files, and eventually in the creation of the server configurations. Because all operations
in Chef are independent, deploying a subordinate node (which already has Java and the
Liberty profile server binary files that are installed from the previous deployment) creates only
the two server configurations. Execution of the other recipes result in no system changes.

You can now verify the created server configurations on the subordinate node (see
Example 6-17).

Example 6-17 Verification of the created server configurations on the subordinate node

chef@chefslave:~$ tree /opt/ibm/wlp/usr/servers/
/opt/ibm/wlp/usr/servers/
••• todo-ui-rest
• ••• server.xml
••• todo-ui-wicket
 ••• server.xml

2 directories, 2 files
chef@chefslave:~$ cat /opt/ibm/wlp/usr/servers/todo-ui-rest/server.xml
<server description="Server for REST-based TODO list application">
 <featureManager>
 <feature>servlet-3.1</feature>
 <feature>jaxrs-2.0</feature>
 <feature>ejbLite-3.2</feature>
 </featureManager>
 <httpEndpoint id="defaultHttpEndpoint" host="*" httpPort="9081"/>
</server>

chef@chefslave:~$ cat /opt/ibm/wlp/usr/servers/todo-ui-wicket/server.xml
<server description="Server for Wicket-based TODO list application">
 <featureManager>
 <feature>servlet-3.1</feature>
 <feature>jdbc-4.1</feature>
 <feature>jndi-1.0</feature>
 </featureManager>
 <httpEndpoint id="defaultHttpEndpoint" host="*" httpPort="9082"/>
</server>
Chapter 6. Deploying the Liberty profile server with Opscode Chef 87

6.3.4 Starting Liberty profile servers

At the time of writing, the available version of the wlp cookbook implements functions to start
and stop Liberty profile servers only as resource modules and not as recipes. Because only
recipes can be specified in a node configuration’s run list, we must create our own recipes
that use these resources.

When updating the wlp cookbook sample, we do not create our recipes in the existing wlp
cookbook but create a cookbook that is named todoapp that holds our recipes, as shown in
Example 6-18.

Example 6-18 Create a cookbook

chef@chefmaster:~/mychefrepo$ knife cookbook create todoapp -o cookbooks
** Creating cookbook todoapp in /home/chef/mychefrepo/cookbooks
** Creating README for cookbook: todoapp
** Creating CHANGELOG for cookbook: todoapp
** Creating metadata for cookbook: todoapp

Because we want to use resources that are defined in the wlp cookbook in our recipes part of
the todoapp cookbook, we must declare a dependency to the wlp cookbook. This is done by
adding the following line to the mychefrepo/cookbooks/todoapp/metadata.rb file
(Example 6-19):

depends 'wlp'

Example 6-19 Cookbook metadata file with declared wlp dependency

chef@chefmaster:~/mychefrepo$ cat cookbooks/todoapp/metadata.rb
name 'todoapp'
maintainer 'YOUR_COMPANY_NAME'
maintainer_email 'YOUR_EMAIL'
license 'All rights reserved'
description 'Installs/Configures todoapp'
long_description IO.read(File.join(File.dirname(__FILE__), 'README.md'))
version '0.1.0'
depends 'wlp'

After making the resources of the wlp cookbook available to the local name space of recipes
in our cookbook, we now create a recipe that is named start-servers that starts all servers that
are defined in the node’s attributes map under the ["wlp"]["servers"] key that has the
enabled attribute set to TRUE. We simply reuse the wlp::serverconfig recipe’s attribute
configuration in the node configuration file.

In mychefrepo, create a recipe at cookbooks/todoapp/recipes/start-servers.rb by using the
content that is shown in Example 6-20.

Example 6-20 start-servers recipe

#
Cookbook Name:: todoapp
Recipe:: start-servers

iterate over all entries under the ["wlp"]["servers"] key
of the current node's attributes map
node[:wlp][:servers].each_pair do |key, value|

map = value.to_hash()
88 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

enabled = map.fetch("enabled", nil)

only consider enabled servers
if enabled.nil? || enabled == true

determine the server-name based on the "serverName" attribute value
if exists, otherwise use the key of the current "servers" map entry
serverName = map.fetch("serverName", nil) || key

for each server execute the recipe wlp_server::start
wlp_server "#{serverName}" do

clean all caches before server start
clean true
action :start

end

end
end

To use the start-servers recipe, we add it to the run list of the node configuration. Therefore,
alter the run_list declaration in the nodes/chefslave.json file as follows:

"run_list":["recipe[wlp::default]", "recipe[wlp::serverconfig]",
"recipe[todoapp::start-servers]"]

Rerunning the deployment by running the knife solo cook command now starts the servers
that are defined in the node configuration. See Example 6-21.

Example 6-21 Run a deployment that starts Liberty profile servers

chef@chefmaster:~/mychefrepo$ knife solo cook chef@chefslave
Running Chef on chefslave...
Checking Chef version...
Uploading the kitchen...
Generating solo config...
Running Chef...
Starting Chef Client, version 12.3.0
Compiling Cookbooks...
Converging 20 resources
Recipe: wlp::default

... (output omitted)
Recipe: todoapp::start-servers

... (output omitted)
- change mode from '' to '0755'
 - change owner from '' to 'root'
 - change group from '' to 'root'
 * service[wlp-todo-ui-rest] action enable
 - enable service service[wlp-todo-ui-rest]
 * service[wlp-todo-ui-rest] action start
 - start service service[wlp-todo-ui-rest]

... (output omitted)
- change mode from '' to '0755'
 - change owner from '' to 'root'
 - change group from '' to 'root'
 * service[wlp-todo-ui-wicket] action enable
 - enable service service[wlp-todo-ui-wicket]
 * service[wlp-todo-ui-wicket] action start
 - start service service[wlp-todo-ui-wicket]
Chapter 6. Deploying the Liberty profile server with Opscode Chef 89

You can verify that the servers are running now by checking for the existence of the
corresponding Java process on the subordinate node and also by using the service scripts
that were conveniently created by the wlp::start resource. See Example 6-22.

Example 6-22 Run a deployment that starts Liberty profile servers

chef@chefslave:~$ ps -efww | grep java | grep -v grep

wlp 23612 1 5 13:42 ? 00:00:02
/usr/lib/jvm/java-6-openjdk-amd64/jre/bin/java
-javaagent:/opt/ibm/wlp/bin/tools/ws-javaagent.jar -Djava.awt.headless=true
-XX:MaxPermSize=256m -jar /opt/ibm/wlp/bin/tools/ws-server.jar todo-ui-rest
--clean

wlp 23740 1 8 13:42 ? 00:00:03
/usr/lib/jvm/java-6-openjdk-amd64/jre/bin/java
-javaagent:/opt/ibm/wlp/bin/tools/ws-javaagent.jar -Djava.awt.headless=true
-XX:MaxPermSize=256m -jar /opt/ibm/wlp/bin/tools/ws-server.jar todo-ui-wicket
--clean

chef@chefslave:~$ sudo /etc/init.d/wlp-todo-ui-rest status
Server todo-ui-rest is running with process ID 23612.

chef@chefslave:~$ sudo /etc/init.d/wlp-todo-ui-wicket status
Server todo-ui-wicket is running with process ID 23740.
90 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Chapter 7. Working with third-party tools on
the Liberty profile server

This chapter demonstrates how to use third-party tools, such as Apache ActiveMQ, for
implementing JMS functions by using Liberty profile. It also demonstrates how to integrate
third-party mail servers into Liberty profile for sending and receiving mail from your
application code.

The chapter includes the following topics:

� Apache ActiveMQ with Liberty profile server
� Apache James with Liberty profile server

7

© Copyright IBM Corp. 2014, 2015. All rights reserved. 91

7.1 Apache ActiveMQ with Liberty profile server

Apache ActiveMQ is one of the most popular open source message-oriented middleware
products in existence today. It is a prime product that is used in enterprise environments
because it supports many advanced features, such as multiple instances to store messages,
and clustering environments.

Apache ActiveMQ offers the following features:

� Supports many cross-language clients and protocols.

� Has easy-to-use Enterprise Integration Patterns.

� Supports advanced features, such as message groups, virtual destinations, wildcards,
and composite destinations.

� Fully supports JMS 1.1 and Java Platform, Enterprise Edition 1.4 with support for
transient, persistent, transactional, and XA messaging.

� Supports pluggable transport protocols, such as in-VM, TCP, SSL, NIO, UDP, multicast,
JGroups, and JXTA transports.

� Supports fast persistence by using JDBC along with a high performance journal.

� Is designed for high performance clustering, client/server, and peer based communication.

� Has a REST API to provide technology-independent and language-neutral web-based API
for messaging.

� Uses Ajax to support web streaming to web browsers by using pure DHTML, allowing web
browsers to be part of the messaging fabric.

� CXF and Axis Support so that ActiveMQ can be easily dropped into either of these web
service stacks to provide reliable messaging.

Liberty profile server supports the following JMS messaging providers:

� Liberty profile server embedded messaging engine as the JMS messaging provider
(supports JMS 2.0)

� Service integration bus, which is the default messaging provider of WebSphere
Application Server

� WebSphere MQ messaging provider, which uses the WebSphere MQ system as the
provider (supports JMS 2.0)

In addition, external JMS providers such as Apache ActiveMQ can also be integrated with
Liberty profile server.

7.1.1 Example: Simple JMS application on a Liberty profile server

In this example, you write, deploy, and test a simple JMS application on a Liberty profile
server. The application sends and consumes a message through an ActiveMQ instance
running outside the Liberty profile server.

Lack of JMS 2.0 support: Apache ActiveMQ 5.11 does not support the JMS 2.0 API,
which is required by the Java Platform, Enterprise Edition 7 specification. For that
reason, examples in this chapter must use the JMS 1.1 API.
92 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Prerequisites
To write and test the JMS application on Liberty profile server, complete these prerequisite
steps:

1. Download Apache ActiveMQ for Windows from the following website:

http://www.apache.org/dyn/closer.cgi?path=/activemq/5.11.1/apache-activemq-5.11
.1-bin.zip

2. Extract the compressed file and start ActiveMQ by running the activemq start command
from the bin folder, as shown in Example 7-1.

On a successful start, ActiveMQ starts listening for connection at tcp://localhost:61616.

Example 7-1 Start ActiveMQ

C:\apache-activemq-5.11.1\bin>activemq start
Java Runtime: Oracle Corporation 1.7.0_67 C:\Java\jdk1.7.0_67\jre
 Heap sizes: current=1013632k free=991262k max=1013632k
....
INFO | ActiveMQ WebConsole available at http://0.0.0.0:8161/
INFO | Initializing Spring FrameworkServlet 'dispatcher'
INFO | jolokia-agent: No access restrictor found at
classpath:/jolokia-access.xml, access to all MBeans is allowed

3. You can also open ActiveMQ Web Console by using the following URL:

http://localhost:8161/admin/

4. The default user name and password for ActiveMQ Web Console login is admin.

Writing, deploying, and testing the JMS sample application
To write a simple JMS application that can send and receive a message by using JNDI
support in ActiveMQ, complete the following steps:

1. Create a simple web application by using Eclipse or Rational Application Developer.

2. Add the jndi.properties file (in Figure 7-1) to the class path, which is the /src folder.

Figure 7-1 jndi.properties

3. Copy the JMS implementation classes (activemq-all.jar) from the root folder of the
ActiveMQ installation directory to the lib folder of the web application.

java.naming.factory.initial =
org.apache.activemq.jndi.ActiveMQInitialContextFactory

use the following property to configure the default connector
java.naming.provider.url = tcp://localhost:61616

use the following property to specify the JNDI name the connection factory
should appear as.
#connectionFactoryNames = connectionFactory, queueConnectionFactory,
topicConnectionFactry
connectionFactoryNames = connectionFactory

register some queues in JNDI using the form
queue.[jndiName] = [physicalName]
queue.MyQueue = Q1
Chapter 7. Working with third-party tools on the Liberty profile server 93

http://www.apache.org/dyn/closer.cgi?path=/activemq/5.11.1/apache-activemq-5.11.1-bin.zip

4. Write a simple servlet that gets InitialContext and then the resource JNDI names by reading
the jndi.properties file (in Figure 7-1 on page 93).

By using the resource JNDI names and the JMS implementation classes, the servlet
sends and receives a message, as shown in Figure 7-2.

Figure 7-2 sendAndReceive method inside the servlet

Bundled: The JMS implementation classes (activemq-all.jar) are bundled within the
application because Liberty profile server does not provide an Apache ActiveMQ
implementation.

public void sendAndReceive(HttpServletRequest request,
HttpServletResponse response) throws Exception {

PrintWriter out = response.getWriter();
out.println("SendAndReceive Started");

Context ctx = new InitialContext();

QueueConnectionFactory cf1 = (QueueConnectionFactory)
ctx.lookup("connectionFactory");

Queue queue = (Queue) ctx.lookup("MyQueue");
out.println("QCF and Queue lookup completed !!");

QueueConnection con = cf1.createQueueConnection();

// start the connection to receive message
con.start();

// create a queue session to send a message
QueueSession sessionSender = con.createQueueSession(false,

javax.jms.Session.AUTO_ACKNOWLEDGE);

QueueSender send = sessionSender.createSender(queue);
out.println("Message sent successfully
");
// send a sample message
send.send(sessionSender.createTextMessage("Liberty Sample Message"));
out.println("Message sent successfully
");

// create a queue receiver object
QueueReceiver rec = sessionSender.createReceiver(queue);

// receive message from Queue
TextMessage msg = (TextMessage) rec.receive();

out.println("Received Message Successfully :" + msg.getText() +
“
”);

if (con != null)
con.close();

out.println("SendAndReceive Completed
");
}// end of SendAndReceive
94 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

The project hierarchy now looks like Figure 7-3.

Figure 7-3 JMSApp project hierarchy

5. Save and export the application as the JMSApp.war file.

6. Add servlet-3.1 to the Liberty server.xml file, as shown in Figure 7-4.

Figure 7-4 Liberty server.xml

7. Deploy the JMSApp.war file on the Liberty profile server by copying it to the dropins folder.

8. Point to the following URL for starting the JMS Servlet on Liberty profile server:

http://<hostname>:<httpport>/JMSApp/JMSSampleP2P?ACTION=sendAndReceive

The servlet should send and receive a message by using the Apache ActiveMQ JMS
provider, as shown in Figure 7-5.

Figure 7-5 SendAndReceive window

<featureManager>
 <feature>servlet-3.1</feature>
</featureManager>
Chapter 7. Working with third-party tools on the Liberty profile server 95

7.2 Apache James with Liberty profile server

Apache James is a 100% pure Java SMTP, POP3 Mail server, IMAP (James V3), and NNTP
News (James V2) server that is a complete and portable enterprise mail/messaging engine
solution based on available open messaging protocols.

One of the benefits of James over other mail platforms is its support for building custom mail
handling applications.

Liberty profile server supports JavaMail features, as required by the Java EE 7 specification.
You can send and receive emails running on a Liberty profile server.

7.2.1 Example

In this example, you write, deploy, and test a simple JavaMail application on the Liberty profile
server. This application sends mail to a valid recipient through an externally running Apache
James Mail server instance.

Prerequisites
The following prerequisites must be met before writing and testing the JavaMail application on
Liberty profile server:

1. Download Apache James from the following website:

http://www.motorlogy.com/apache//james/server/apache-james-2.3.2.zip

2. Extract the compressed file and start the James Mail server by running the run.bat
command from inside the bin folder.

3. Look for the Apache James is successfully started in XXXX milliseconds message in
the command-line console.

Writing, testing, and deploying the JavaMail sample application
To write a simple JavaMail application that can send a mail to a valid recipient through the
James Mail server, complete the following steps:

1. Create a simple web application by using Eclipse or Rational Application Developer.

2. Create a servlet by using the content that is shown in Example 7-2. Make sure to use the
correct “toAddress” value.

Example 7-2 Mail sending servlet

@WebServlet("/MailSender")
public class MailSender extends HttpServlet {

@Resource(lookup="mail/itsoMailSession")
Session mailSession;

protected void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {

System.out.println("Sending test email");
String toAddress = "valid@Email.Address";
String message = "Test message";
if(request.getParameter("msg") != null) {

message = request.getParameter("msg");
}
Message mail = new MimeMessage(mailSession);
try {
96 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

http://www.motorlogy.com/apache//james/server/apache-james-2.3.2.zip

mail.setRecipient(Message.RecipientType.TO, new
InternetAddress(toAddress));

mail.setSubject("Test subject");
mail.setSentDate(new Date());
mail.setText(message);
Transport.send(mail);
System.out.println("Message sent successfully");

} catch (MessagingException e) {
e.printStackTrace();

}
}

}

3. Configure the mail session in the Liberty profile server:

a. In the Servers view, expand the Liberty profile server and double-click Server
Configuration.

b. In the Configuration Structure section, select Server Configuration and click Add.

c. In the Select the element to add field, start typing mail and select Mail Session
Object, as shown in Figure 7-6.

Figure 7-6 Add the Mail Session element
Chapter 7. Working with third-party tools on the Liberty profile server 97

d. Provide the Mail Session parameters, that is, the Mail session ID, JNDI name,
description, mail server host, valid user name, and password for your mail server. You
can also provide a default “From” address. The parameters are shown in Figure 7-7.

Figure 7-7 Mail Session details

Instead of using tools, the same result can be achieved by editing directly the server.xml
file. Example 7-3 shows part of the server.xml file that is related to this configuration.

Example 7-3 Mail Session in server.xml

<mailSession
 description="Mail session for testing"
 from="Liberty2@itso.ibm.com"
 host="localhost"
 jndiName="mail/itsoMailSession"
 mailSessionID="itsoMailSession"
 user="validUser@account.com"
 password="password"/>

4. Add the servlet-3.1, cdi-1.2, and javaMail-1.5 features to the Liberty server.xml file, as
shown in Figure 7-8.

Figure 7-8 Enable features in the server.xml file

5. Deploy the application on the Liberty profile server by copying it to the dropins folder or
running it directly from the workspace.

6. Use the following URL to start the MailServlet on Liberty profile server:

http://<hostname>:<httpport>/ITSOMailApp/MailSender

A message should now be sent to the recipient that is mentioned in the servlet that uses the
James mail server that is running outside of the Liberty profile server.

<featureManager>
<feature>servlet-3.1</feature>
<feature>javaMail-1.5</feature>
<feature>cdi-1.2</feature>

</featureManager>
98 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Appendix A. Additional material

This book refers to additional material that can be downloaded from the Internet as described
in the following sections.

Locating the web material

The web material that is associated with this book is available in softcopy on the Internet from
the IBM Redbooks web server. Point your web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG248194

Alternatively, you can go to the IBM Redbooks website at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the IBM
Redbooks form number, SG24-8194.

Using the web material

The additional web material that accompanies this book includes the following files:

File name Description
SG248194.zip Todo Sample Source code

Downloading and extracting the web material

Create a subdirectory (folder) on your workstation, and extract the contents of the web
material .zip file into this folder.

A

© Copyright IBM Corp. 2014, 2015. All rights reserved. 99

ftp://www.redbooks.ibm.com/redbooks/SG248194
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

100 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

Related publications

The publications that are listed in this section are considered suitable for a more detailed
description of the topics that are covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Some publications referenced in this list might be available in softcopy only.

� WebSphere Application Server Liberty Profile Guide for Developers, SG24-8076

� WebSphere Application Server V8.5 Administration and Configuration Guide for Liberty
Profile, SG24-8170

� WebSphere Application Server V8.5 Administration and Configuration Guide for the Full
Profile, SG24-8056

You can search for, view, download, or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� Apache Maven installation instructions:

http://maven.apache.org/download.cgi#Installation_Instructions

� The Apache Software Foundation - Apache Download Mirrors:

http://www.apache.org/dyn/closer.cgi?path=/activemq/apache-activemq/5.8.0/apach
e-activemq-5.8.0-bin.zip

� Arquillian:

http://arquillian.org/

� Configuration elements in the server.xml file:

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wl
p.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-1-1-0

� Developing applications with WebSphere Developer Tools and Liberty profile:

https://www.ibmdw.net/wasdev/docs/developing-applications-wdt-liberty-profile/

� DevOpsCasts Chef Solo Basics:

http://devops.mashion.net/2011/08/04/chef-solo-basics/

� Download Apache James:

http://www.motorlogy.com/apache//james/server/apache-james-2.3.2.zip

� Download WebSphere Application Server Liberty profile:

http://wasdev.net/downloads
© Copyright IBM Corp. 2014, 2015. All rights reserved. 101

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/autodita/rwlp_metatype_core.html?cp=SSD28V_8.5.5%2F1-1-1-0
https://www.ibmdw.net/wasdev/docs/developing-applications-wdt-liberty-profile/
http://maven.apache.org/download.cgi#Installation_Instructions
http://arquillian.org/
http://devops.mashion.net/2011/08/04/chef-solo-basics/
http://www.apache.org/dyn/closer.cgi?path=/activemq/apache-activemq/5.8.0/apache-activemq-5.8.0-bin.zip
http://www.motorlogy.com/apache//james/server/apache-james-2.3.2.zip
http://wasdev.net/downloads

� flapdoodle-oss / de.flapdoodle.embed.mongo:

https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo

� Getting Started with dojox/mobile:

http://dojotoolkit.org/documentation/tutorials/1.9/mobile/tweetview/getting_sta
rted/

� H2 Database Engine:

http://www.h2database.com/

� JWeUnit:

http://jwebunit.sourceforge.net/

� knife-solo:

http://matschaffer.github.io/knife-solo/

� Liberty profile: Configuration elements in the server.xml file:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F1-0-2-1-0

� Liberty profile features:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.multiplatform.doc/ae/rwlp_feat.html?cp=SSAW57_8.5.5%2F3-0-2-2-0

� Liberty profile - Security:

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.doc/ae/cwlp_sec.html

� Liberty profile V8.5.5 Next Alpha:

https://www.ibmdw.net/wasdev/

� Maven Integration (m2e):

http://www.eclipse.org/m2e/

� Orika¶:

https://code.google.com/p/orika/

� Opscode Chef Glossary:

https://wiki.opscode.com/display/chef/Glossary

� An Overview of Chef:

http://docs.opscode.com/chef_overview.html

� Packaging a Liberty profile server from the command prompt:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/wasinfo/v8r5/index.j
sp?topic=%2Fcom.ibm.websphere.wlp.core.doc%2Fae%2Ftwlp_setup_package_server.htm
l

� Programming model support:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/wasinfo/v8r5/topic/c
om.ibm.websphere.wlp.nd.doc/ae/rwlp_prog_model_support.html

� REST-assured:

https://code.google.com/p/rest-assured/

� Spring Data – One API To Rule Them All:

http://www.infoq.com/articles/spring-data-intro
102 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/autodita/rwlp_metatype_4ic.html?cp=SSAW57_8.5.5%2F1-0-2-1-0
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/cwlp_sec.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.core.doc%2Fae%2Ftwlp_setup_package_server.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/wasinfo/v8r5/topic/com.ibm.websphere.wlp.nd.doc/ae/rwlp_prog_model_support.html
https://www.ibmdw.net/wasdev/
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_feat.html?cp=SSAW57_8.5.5%2F3-0-2-2-0
http://www.eclipse.org/m2e/
https://code.google.com/p/orika/
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
http://www.infoq.com/articles/spring-data-intro
http://www.h2database.com/
http://dojotoolkit.org/documentation/tutorials/1.9/mobile/tweetview/getting_started/
http://jwebunit.sourceforge.net/
https://code.google.com/p/rest-assured/
http://docs.opscode.com/chef_overview.html
https://wiki.opscode.com/display/chef/Glossary
http://matschaffer.github.io/knife-solo/

� Subclipse download and installation:

http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA

� Tuning the Liberty profile:

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wl
p.core.doc/ae/twlp_tun.html

� Ubuntu Server:

http://www.ubuntu.com/download/server

� WLP V8.5 - Managed:

https://docs.jboss.org/author/display/ARQ/WLP+V8.5+-+Managed

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 103

http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core.doc/ae/twlp_tun.html
http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA
https://docs.jboss.org/author/display/ARQ/WLP+V8.5+-+Managed
http://www.ubuntu.com/download/server
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

104 Configuring and Deploying Open Source with IBM WebSphere Application Server Liberty Profile

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Configuring and Deploying Open Source w
ith IBM

 W
ebSphere Application Server Liberty Profile

ibm.com/redbooks

SG24-8194-01

ISBN 0738440884

Printed in U.S.A.

Back cover

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	IBM Redbooks promotions
	Preface
	Authors
	.Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. IBM WebSphere Application Server Liberty profile
	1.1 Overview of Liberty profile server
	1.2 Strengths of Liberty profile server
	1.2.1 Simple configuration
	1.2.2 Runtime composition with features and services
	1.2.3 Developer first focus
	1.2.4 Multiple programming model support
	1.2.5 Easy extensibility for custom features and third-party components
	1.2.6 Easy access
	1.2.7 Fast and small footprint
	1.2.8 Compatibility with WebSphere Application Server full profile

	Chapter 2. Open source frameworks and toolkits selection
	2.1 Apache Maven
	2.2 Spring Framework
	2.2.1 Spring Framework modules

	2.3 Hibernate
	2.4 Jenkins
	2.5 Opscode Chef
	2.6 Arquillian
	2.7 MongoDB

	Chapter 3. Implementing and testing back-end services on Liberty profile server
	3.1 Setting up the development environment
	3.2 Project outline of the Todo list sample application
	3.2.1 The simple todo-parent project
	3.2.2 The todo-service-api project
	3.2.3 The todo-liberty-server project
	3.2.4 The todo-service-inmemory-impl project
	3.2.5 The todo-service-mongodb-impl project
	3.2.6 The todo-service-jpa-impl project

	3.3 Docker Hub support

	Chapter 4. Continuous integration with Jenkins on Liberty profile server
	4.1 Installing Jenkins on a Liberty profile server
	4.1.1 Setting JENKINS_HOME
	4.1.2 Securing Jenkins on a Liberty profile server
	4.1.3 Configuring Jenkins

	4.2 Setting up a Jenkins job

	Chapter 5. Front-end development on the Liberty profile server
	5.1 RESTful web service with an Ajax front end
	5.1.1 Java web services on the Liberty profile server
	5.1.2 Java API for RESTful web services
	5.1.3 Dojo Toolkit
	5.1.4 Integration testing with JWebUnit on the Liberty profile server

	5.2 Apache Wicket
	5.2.1 Simple Todo application in Apache Wicket
	5.2.2 Setting up the Apache Wicket with Spring and JPA Hibernate project
	5.2.3 Developing the Todo application
	5.2.4 Issues found during development
	5.2.5 Testing the Todo Wicket application

	Chapter 6. Deploying the Liberty profile server with Opscode Chef
	6.1 About Knife, Recipe, and other terms
	6.2 Preparing for Chef
	6.2.1 Preparing the test machines
	6.2.2 Installing Chef

	6.3 Installing Liberty profile server with Chef
	6.3.1 Loading the wlp cookbook
	6.3.2 Deploying the Liberty profile server binary files
	6.3.3 Creating Liberty profile server configurations
	6.3.4 Starting Liberty profile servers

	Chapter 7. Working with third-party tools on the Liberty profile server
	7.1 Apache ActiveMQ with Liberty profile server
	7.1.1 Example: Simple JMS application on a Liberty profile server

	7.2 Apache James with Liberty profile server
	7.2.1 Example

	Appendix A. Additional material
	Locating the web material
	Using the web material
	Downloading and extracting the web material

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

