
ibm.com/redbooks

IBM® Information Management Software Front cover

IBM DB2 11 for z/OS
Technical Overview

Paolo Bruni
Felipe Bortoletto

Ravikumar Kalyanasundaram
Sabine Kaschta
Glenn McGeoch
Cristian Molaro

Understand the synergy with System z
platform

Enhance applications and avoid
incompatibilities

Run business analytics and
scoring adapter

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM DB2 11 for z/OS Technical Overview

December 2013

SG24-8180-00

© Copyright International Business Machines Corporation 2013. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (December 2013)

This edition applies to Version 11, Release 1 of DB2 for z/OS (program number 5615-DB2) and Version 11,
Release 1 of DB2 Utilities Suite for z/OS (program number 5655-W87).

Note: Before using this information and the product it supports, read the information in “Notices” on
page xxi.

Note: This book is based on a pre-GA version of a product and may not apply when the product becomes
generally available. We recommend that you consult the product documentation or follow-on versions of
this book for more current information.

Contents

Figures . xi

Tables . xiii

Examples .xv

Notices . xxi
Trademarks . xxii

Summary of changes . xxiii
December 2013, First Edition. xxiii

May 2014, First Update. xxiii

Preface . xxv
Authors. xxv
Now you can become a published author, too! . xxvii
Comments welcome. .xxviii
Stay connected to IBM Redbooks publications .xxviii

Chapter 1. DB2 11 for z/OS at a glance . 1
1.1 Subsystem . 2
1.2 Application functions . 2
1.3 Operations and performance . 3

Part 1. Subsystem. 5

Chapter 2. Synergy with System z. 7
2.1 Synergy with IBM zEnterprise System . 8

2.1.1 Faster CPU speed . 8
2.1.2 More system capacity . 8
2.1.3 zEC12 hardware features . 8

2.2 Synergy with IBM System z and z/OS . 12
2.2.1 AUTOSIZE options VPSIZEMIN and VPSIZEMAX. 12
2.2.2 1 MB page frames for DB2 execution code . 12
2.2.3 Improved performance of batch updates in data sharing 13
2.2.4 Improved usability and consistency for security administration 13
2.2.5 Log writing. 13

2.3 Using zIIP speciality processors . 14
2.4 Reduced need for REORG . 15
2.5 DFSMS storage tiers . 16

2.5.1 Use cases for storage tiers . 18
2.5.2 Setup and invocation of storage tiers . 18
2.5.3 Use cases for DB2 . 20

2.6 Additional System z enhancements . 21
2.6.1 Enhancing DB2 BACKUP SYSTEM solution . 21
2.6.2 z/OS DFSMS VSAM RLS for z/OS catalog support . 21
2.6.3 DDF Synchronous Receive support . 21
2.6.4 zEnterprise Data Compression . 21

Chapter 3. Scalability . 23
© Copyright IBM Corp. 2013. All rights reserved. iii

3.1 Extended RBA and LRSN . 24
3.1.1 Reaching the end of the basic RBA . 24
3.1.2 The new 10 byte RBA and LRSN . 25
3.1.3 Considerations before converting to extended format . 29
3.1.4 Steps for enabling the extended RBA/LRSN format . 32
3.1.5 Converting the BSDS . 32
3.1.6 Converting DB2 catalog and directory . 35
3.1.7 Converting data from 6 byte to 10 byte RBA/LRSN or vice versa. 36
3.1.8 Additional considerations regarding utilities . 41

3.2 NOT LOGGED for declared global temporary tables . 44
3.2.1 Syntax extension. 44
3.2.2 Undo processing for NOT LOGGED DGTTs . 45
3.2.3 Thread reuse. 46
3.2.4 Sample scenarios . 46

3.3 More open data sets (DSMAX) . 49
3.4 PBG mapping tables to lift the 64 GB limit . 49

3.4.1 Autonomic creation of the mapping table . 49
3.4.2 Mapping tables up to 16 TB . 50

Chapter 4. Availability . 51
4.1 Online schema changes and enhanced recovery options . 52

4.1.1 Scope of enhancements for online schema changes in DB2 11. 52
4.1.2 How it works . 53
4.1.3 Effect of MODIFY RECOVERY. 57
4.1.4 Considerations for LOBs. 57
4.1.5 Restrictions for the window between PIT recovery and REORG 58
4.1.6 More restrictions for PIT recovery after materializing REORG 59
4.1.7 Determine if a table space is eligible for PIT recovery prior to REORG 59

4.2 Automatic recovery of indexes from GRECP or LPL status . 60
4.2.1 RESTORE SYSTEM after two-pass LPL/GRECP recovery has occurred 61
4.2.2 RECOVER INDEX after two-pass LPL/GRECP recovery has occurred 61

4.3 Improved availability when altering limit keys . 61
4.3.1 Considerations for tables containing LOBs. 63
4.3.2 LOAD REPLACE . 64
4.3.3 RECOVER . 64

4.4 Work file database enhancements . 65
4.4.1 WFSTGUSE_AGENT_THRESHOLD subsystem parameter 66
4.4.2 WFSTGUSE_SYSTEM_THRESHOLD subsystem parameter 68
4.4.3 Systems programmer response to DSNI052I/DSNI053I. 69

4.5 Governing of parallel processing of utilities. 70
4.6 Compression dictionary availability for CDC tables. 72
4.7 DROP column support . 73

4.7.1 Changes to the catalog as a result of dropping a column. 75
4.7.2 Undo a DROP COLUMN. 75
4.7.3 Impact of DROP COLUMN on utilities . 76
4.7.4 Impact of DROP COLUMN on applications . 79
4.7.5 Restrictions for DROP COLUMN . 79

4.8 Defer define object enhancements . 80
4.9 Allow BIND, REBIND, and DDL to break-in persistent threads. 81
4.10 Idle thread break-in . 82

4.10.1 Improvements for DDF threads. 83
4.10.2 Improvements for non-DDF threads . 83
iv IBM DB2 11 for z/OS Technical Overview

Chapter 5. Data sharing . 85
5.1 Group buffer pool write-around protocol . 86
5.2 Improved castout processing . 87

5.2.1 Reduced wait time for I/O completion . 88
5.2.2 Reduced notify message size sent to castout owners . 88
5.2.3 More granular class castout threshold . 88

5.3 Improved DELETE_NAME performance. 89
5.4 Restart light with CASTOUT option. 90
5.5 Locking enhancements . 91

5.5.1 Conditional propagation of child Update locks to the coupling facility. 91
5.5.2 Improved performance in handling lock waiters . 91
5.5.3 Increase in maximum number of CF lock table entries . 92
5.5.4 Throttle batched unlock requests . 92
5.5.5 Improved IRLM resource hash table algorithm . 93

5.6 Index availability and performance . 93
5.6.1 Avoid placing indexes in RBDP state during group restart 93
5.6.2 Reduce synchronous log writes during index structure modifications. 94

5.7 Group buffer pool write performance . 94
5.8 Automatic LPL recovery at end of restart . 94
5.9 Log record sequence number spin avoidance . 95

Part 2. Application functions . 97

Chapter 6. SQL . 99
6.1 Introduction . 100
6.2 Global variables . 102

6.2.1 DDL and catalog information . 103
6.2.2 Qualifying global variables . 103
6.2.3 Global variable’s scope. 103
6.2.4 Global variable’s naming resolution . 104

6.3 Array data type . 104
6.3.1 Ordinary arrays . 105
6.3.2 Associative arrays. 105
6.3.3 ARRAY_EXISTS predicate . 105

6.4 Aliases and public aliases for SEQUENCES . 106
6.4.1 Private ALIAS for a SEQUENCE . 106
6.4.2 Public ALIAS for a SEQUENCE . 107
6.4.3 Dropping an alias for sequence . 109
6.4.4 Security considerations. 109
6.4.5 Considerations regarding application compatibility setting 110

6.5 New built-in functions . 112
6.5.1 ARRAY_AGG . 112
6.5.2 ARRAY_DELETE . 112
6.5.3 ARRAY_FIRST . 112
6.5.4 ARRAY_LAST. 113
6.5.5 ARRAY_NEXT . 113
6.5.6 ARRAY_PRIOR . 113
6.5.7 CARDINALITY . 113
6.5.8 MAX_CARDINALITY. 113
6.5.9 TRIM_ARRAY. 113
6.5.10 UNNEST (table function). 114
6.5.11 Arrays in MERGE statement . 114

6.6 SET CURRENT APPLICATION COMPATIBILITY . 114
 Contents v

6.7 Temporal special registers . 115
6.7.1 Scope of session-level special registers . 117
6.7.2 SYSTIMESENSITIVE and BUSTIMESENSITIVE. 117

6.8 Temporal support on VIEWs . 117
6.9 DGTT . 120
6.10 CUBE, ROLLUP and GROUPING SETS . 120

6.10.1 GROUPING SETS . 121
6.10.2 ROLLUP . 122
6.10.3 CUBE . 124
6.10.4 Grand total . 126
6.10.5 Grouping expression. 126

6.11 ALTER TABLE DROP COLUMN . 126
6.12 LIKE_BLANK_INSIGNIFICANT DSNZPARM . 127

Chapter 7. Application enablement . 129
7.1 Ensuring application compatibility . 130
7.2 Transparent archiving of temporal data . 130

7.2.1 Controls of archive transparency . 132
7.2.2 Sample code for enabling archive transparency. 132
7.2.3 Inserting rows into archive enabled table . 133
7.2.4 Deleting rows from an archive enabled table . 133
7.2.5 Querying archive enabled table . 134
7.2.6 Using a dynamic transaction with archive transparency 135
7.2.7 Static application scenario . 135
7.2.8 DISABLE ARCHIVE . 136
7.2.9 Analytics Accelerator - HPSS considerations . 136

7.3 Providing support for big data . 136
7.3.1 Enhancing big data analytics with Apache Hadoop . 138
7.3.2 Example HDFS_READ with a generic table UDF. 144
7.3.3 Example JAQL_SUBMIT. 145

7.4 Using the scoring adapter to add predictive analytics to OLTP applications. 146
7.5 Using JavaScript Object Notation with IBM DB2. 149
7.6 Suppressing null indexes . 149

Chapter 8. XML . 151
8.1 XQuery support . 152

8.1.1 FLWOR expressions. 153
8.1.2 XQuery constructors . 161
8.1.3 Conditional expressions . 162
8.1.4 Built-in functions . 163
8.1.5 XQuery prolog. 163

8.2 XML performance enhancements in DB2 10 and DB2 11 . 166
8.2.1 Eliminate hotspots during XML insert . 167
8.2.2 Validate binary XML . 167
8.2.3 Avoid revalidation during LOAD . 167
8.2.4 Partial revalidation . 168
8.2.5 XMLTABLE performance improvements. 168

8.3 XQuery FLWOR expressions performance enhancements . 168
8.4 XMLTABLE performance enhancements in DB2 11. 169

8.4.1 Date/Time predicate pushdown . 169
8.4.2 Optimize index key range for varchar predicates . 170
8.4.3 Pushdown of column casting into XPath. 170

Chapter 9. Connectivity and administration routines . 171
vi IBM DB2 11 for z/OS Technical Overview

9.1 Client information enhancements . 172
9.1.1 Expansion of the length of some Client information fields 172
9.1.2 Introduction the new client information field Client Correlation Token 173
9.1.3 Introduction of a new built-in session global variable . 177
9.1.4 Using the client information fields . 178

9.2 Cancel thread and cancel SQL statement improvements . 202
9.2.1 Changes in Cancel DDF thread . 202
9.2.2 Changes in SQL statement interruption processing . 205

9.3 Continuous block fetching . 207
9.4 Support for global variables . 210
9.5 Local stored procedure execution improvement . 214
9.6 Multi-threaded Java stored procedure environment . 216
9.7 ADMIN_COMMAND_MVS stored procedure . 217
9.8 Drivers, clients, and connectivity requirements . 224

Part 3. Operations and performance . 237

Chapter 10. Security . 239
10.1 Enhancements for exit authorization checking . 240

10.1.1 Use owner privileges for authorization . 241
10.1.2 Refresh DB2 cache entries when RACF permissions change 242

10.2 Enhancements to program authorization . 250
10.3 Column masking enhancements. 263

10.3.1 Remove column access control restrictions for GROUP BY. 265
10.3.2 Correct implementation of aggregate function with DISTINCT 266
10.3.3 Column access control for UNION . 266

Chapter 11. Utilities. 269
11.1 Online REORG enhancements . 270

11.1.1 Improve performance of partition-level REORG with non partitioned secondary
indexes . 270

11.1.2 SWITCH phase impact reduction . 273
11.1.3 Physically delete empty partition-by-growth partitions 277
11.1.4 Automated REORG mapping table management . 278
11.1.5 REORG without SORTing data. 281
11.1.6 Partition-level inline image copy . 283
11.1.7 Improved REORG LISTDEF processing. 285
11.1.8 REBALANCE enhancements . 288
11.1.9 REORG of LOB enhancements . 291
11.1.10 Improved REORG serviceability . 292
11.1.11 REORG change of defaults to match preferred practices. 293

11.2 Enhanced statistics . 293
11.2.1 RUNSTATS RESET ACCESSPATH . 293
11.2.2 RUNSTATS USE PROFILE usability for LISTDEF. 298

11.3 Backup and recovery enhancements . 299
11.3.1 SYSLGRNX recording for catalog and directory table 299
11.3.2 VCAT name translation for RESTORE SYSTEM . 299
11.3.3 Remove the incompatibility of REORG and COPY. 301
11.3.4 Removal of many point-in-time recovery restrictions . 301

11.4 LOAD and UNLOAD enhancements . 301
11.4.1 LOAD SHRLEVEL NONE with PARALLEL option . 301
11.4.2 LOAD SHRLEVEL CHANGE with PARALLEL option. 303
11.4.3 Addition of crossloader support for XML. 305
11.4.4 More offload to zIIP with NPSIs . 305
 Contents vii

11.5 Compression dictionaries for Change Data Capture. 305
11.6 General enhancements. 306

11.6.1 DISPLAY UTILITY additional output . 306
11.6.2 Improved TEMPLATE for extended format data sets . 306
11.6.3 DSN1COPY . 308
11.6.4 REPAIR utility . 310
11.6.5 Command to externalize RTS statistics . 311
11.6.6 DSNACCOX . 312

11.7 Deprecated functions . 313

Chapter 12. Installation and migration . 315
12.1 Currency of versions and migration paths. 316
12.2 Prerequisites for DB2 11 . 318

12.2.1 Processors . 318
12.2.2 Auxiliary storage . 318
12.2.3 Operational requirements . 319
12.2.4 Optional program requirements . 320

12.3 DB2 11 installation changes and considerations . 321
12.3.1 More support of naming standards in install and IVP jobs 321
12.3.2 No more EDM calculations . 325
12.3.3 Modified installation jobs. 327
12.3.4 New installation job DSNTIJCB. 329
12.3.5 Miscellaneous . 329

12.4 Considerations for migrating to DB2 11 . 333
12.4.1 Premigration considerations . 333
12.4.2 DB2 11 CM . 337
12.4.3 DB2 11 ENFM and NFM . 339

12.5 Subsystem parameters . 346
12.5.1 New system parameters . 346
12.5.2 Changed defaults for existing system parameters . 354
12.5.3 Removed system parameters . 355
12.5.4 Deprecated system parameters . 357

12.6 Release incompatibilities. 357
12.6.1 Application and SQL release incompatibilities . 357
12.6.2 Utility release incompatibilities . 366
12.6.3 Command release incompatibilities . 368
12.6.4 Storage release incompatibilities . 369
12.6.5 Functions that are deprecated . 369
12.6.6 Functions that are no longer supported . 371

12.7 Controlling application compatibility . 373
12.7.1 Example of DB2 10 application compatibility . 373
12.7.2 Overview of application compatibility in DB2 11 . 374

Chapter 13. Performance . 383
13.1 Performance expectations . 384
13.2 System level performance. 386

13.2.1 Internal optimization . 386
13.2.2 Logging . 387
13.2.3 Synergy with System z . 387
13.2.4 Buffer management . 389
13.2.5 Data sharing . 389

13.3 Reduced need for REORG . 390
13.3.1 Asynchronous removal of pseudo-deleted indexes . 391
viii IBM DB2 11 for z/OS Technical Overview

13.3.2 Indirect reference avoidance. 398
13.4 More opportunities for RELEASE(DEALLOCATE) . 401
13.5 Optimizer enhancements . 401

13.5.1 Identification of critical statistics for improved query performance 402

Part 4. Appendixes . 409

Appendix A. Information about IFCID changes . 411
A.1 New IFCIDs . 412

A.1.1 IFCID 377: Pseudo-deleted index entries are automatically cleaned up 412
A.1.2 IFCID 106 . 412
A.1.3 IFCID 27: Monitor sparse index usage . 413
A.1.4 IFCID 382 and 383: Records suspend operations for parallel task 414

A.2 Aggregate accounting overview and purpose. 415
A.3 IFCID 53 and 58 enhancements overview . 416
A.4 Accounting trace enhancements overview . 416

A.4.1 New field QWHCAACE. 417
A.4.2 QWACZIIP_ELIGIBLE field . 417

A.5 IRLM Storage Accounting enhancement . 418
A.6 Stored procedure monitoring overview and purpose . 421
A.7 Other accounting changes . 427

A.7.1 Reduced NOT ACCOUNTED FOR time. 427
A.7.2 Specialty engine time in the CPU header . 427
A.7.3 Larger RBA and LRSN . 428
A.7.4 Buffer manager force write . 429
A.7.5 Parallelism performance enhancement . 429
A.7.6 Temporal support . 431
A.7.7 IFCID 002/225: Arrays support . 431
A.7.8 IFCID 003/239: Autonomous transaction support. 432
A.7.9 IFCID 366: Application incompatibility . 432
A.7.10 IFCID 230/256: Castout enhancements . 434

Appendix B. Summary of relevant maintenance . 437
B.1 DB2 APARs . 438
B.2 z/OS APARs . 439
B.3 OMEGAMON PE APARs . 439

Related publications . 441
IBM Redbooks publications . 441
Other publications . 441
Online resources . 442
Help from IBM . 442

Index . 443
 Contents ix

x IBM DB2 11 for z/OS Technical Overview

Figures

2-1 The classic DFSMS storage hierarchy . 16
2-2 Storage tiers overview . 17
3-1 LRSN delta explanation . 25
3-2 10-byte RBA/LRSN formats . 26
3-3 REORG TABLESPACE with Index conversion. 38
3-4 DSN1COPY: Catalog information mismatch. 40
3-5 PIT RECOVERY . 43
3-6 CREATE DGTT syntax with NOT LOGGED options . 44
4-1 PIT Recovery after materializing REORG of DB2 10 change. 53
4-2 MODIFY RECOVERY scenario . 57
4-3 RBDP after failing LPL or GRECP recovery in DB2 10. 60
4-4 RECOVER with ALTER LIMIT option . 64
4-5 RECOVER to CURRENT after DROP COLUMN . 76
4-6 RECOVER to LOGPOINT after DROP COLUMN. 76
4-7 TABLE layout after dropping a column . 78
4-8 Effect of DSN1COPY for a table with dropped column. 79
4-9 DBD lock on first insert . 80
4-10 DEFER DEFINE enhancement . 81
6-1 CREATE ALIAS statement syntax . 106
6-2 Application compatibility V11R1 . 110
6-3 Application compatibility V10R1 . 111
6-4 Result of sample query using GROUPING SETS (WORKDEPT, EDLEVEL, SEX) . . 121
7-1 Need for differently structured data to gain business insights 137
7-2 DB2 11 for z/OS enhancing Analytics on z platform with big data 138
7-3 Hadoop key components . 139
7-4 HDFS overview . 140
7-5 MapReduce overview . 141
7-6 JAQL query components . 142
7-7 Big data use cases . 144
7-8 SPSS Modeler stream . 147
7-9 Publish for server scoring adapter option . 147
9-1 RMF Workload, LPAR CPU utilization . 190
9-2 RMF Workload, LPAR CPU utilization per WLM Report Class. 190
9-3 SQL based continuous block fetch . 208
9-4 Package based continuous block fetch. 208
9-5 Summary of local stored procedure improvements. 215
9-6 Moving to multi-threaded JVM environment . 217
9-7 Calling ADMIN_COMMAND_MVS from Data Studio . 219
9-8 ADMIN_COMMAND_MVS parameters in Data Studio . 220
9-9 Calling ADMIN_COMMAND_MVS: Result1 panel . 220
9-10 AR and AS DRDA components . 225
9-11 DB2 JDBC driver Versions web page . 227
9-12 db2 JDBC driver versions web page. 228
9-13 IBM Data Studio 3.2 and DB2 11 . 229
9-14 IBM Data Studio 4.1 and DB2 11 . 229
9-15 How to identify the Data Studio version . 230
10-1 DB2 10 and RACF Access Control Authorization Exit Authorization 240
10-2 DB2 11 and RACF Access Control Authorization Exit Authorization 243
© Copyright IBM Corp. 2013. All rights reserved. xi

10-3 DB2 11 REBIND PLAN command and PROGAUTH . 251
11-1 REORG TABLE SPACE PART with NPSIs . 271
11-2 New SORTNPSI keyword . 271
11-3 New DSNZPARM REORG_PART_SORT_NPSI . 272
11-4 Switch phase impact reduction . 274
11-5 Partition-level inline image copy performance . 285
11-6 AREO status after REORG REBALANCE . 291
11-7 RESTORE SYSTEM syntax diagram with SWITCH VCAT and SYSVALUEDDN . . 300
11-8 LOAD SHRLEVEL NONE PARALLEL . 302
11-9 LOAD SHRLEVEL CHANGE PARALLEL. 304
11-10 DSNACCOX performance . 313
12-1 Currency of versions . 316
12-2 DB2 versions and required z/OS level . 316
12-3 Migration modes and paths. 317
12-4 DSNTIPG install panel . 322
12-5 EXPAND screen for panel DSNTIPG . 324
12-6 Install Panel DSNTIPC . 326
12-7 DSNTIPC results when using DSNTIDXB member . 327
12-8 DSNTIJXC/DSNTXAZP . 330
12-9 CREATE new DB2 11 DSNTIDxx input from old DB2 10 DSNTIDxx 331
12-10 DB2 11 migration process at a glance . 333
12-11 V11 modes and APPLCOMPAT(V10R1) . 378
12-12 V11+1 modes and APPLCOMPAT(V10R1) . 379
13-1 DB2 11 performance: CPU changes per workload type . 385
13-2 DB2 10 performance expectations . 385
13-3 DB2 11 performance expectations . 386
13-4 DB2 buffer pool frame size options. 388
13-5 The pseudo-delete process . 392
13-6 Automated pseudo-delete cleanup process . 393
13-7 Example of using SYSINDEXCLEANUP for cleanup of pseudo-deleted entries . . . 394
13-8 Indirect reference - Overflow records . 399
13-9 DB2 statistics and the optimizer, previous to DB2 11 . 402
13-10 The DB2 11 optimizer and BIND, REBIND, and PREPARE: statistics feedback . . 403
13-11 he DB2 11 optimizer and EXPLAIN: statistics feedback. 404
13-12 Statistics granularity in SYSIBM.SYSSTATFEEDBACK table 405
A-1 Stored procedure monitoring . 423
xii IBM DB2 11 for z/OS Technical Overview

Tables

3-1 UTILITY_OBJECT_CONVERSION . 37
3-2 SYSCOPY values for ICTYPE and TTYPE . 39
3-3 Composition of BACKUP token . 41
4-1 PIT recover allowed after materializing REORG. 52
4-2 SYSPENDINGDDL entry after RECOVER to PIT before materializing REORG 54
4-3 WFSTGUSE_AGENT_THRESHOLD . 66
4-4 WFSTGUSE_AGENT_THRESHOLD sample. 67
4-5 DB2 behavior for WSTGUSE based on WFDBSEP setting . 68
4-6 Maximum WORKFILE storage configured . 69
4-7 Entry values for SYSPENDINGDDL . 73
6-1 Summary of SQL statements/features in DB2 11 for z/OS. 100
6-2 EMP_TEMPORAL_HIST table contents . 117
6-3 EMP_TEMPORAL table contents . 117
6-4 Sample time stamp values . 119
8-1 XQuery FLWOR expression keywords . 153
9-1 Client information fields length changes with DB2 11 for z/OS. 172
9-2 DSNRLMTxx longer columns in DB2 11. 182
9-3 DSNRLMTxx column difference summary DB2 10 versus DB2 11 184
9-4 DDF - WLM classification attributes in z/OS 1.13 . 190
9-5 New DDF - WLM classification attributes in z/OS 2.1 . 191
9-6 Client information property values for type 4 connectivity to DB2 for z/OS. 197
9-7 Preliminary internal lab performance results. 210
10-1 SYSIBM.DSNPROGAUTH fields description . 252
10-2 SYSIBM.DSNPROGAUTH fields description . 253
10-3 DISTINCT and aggregation with column masking in DB2 10 versus DB2 11. 266
11-1 SORTDATA YES/NO RECLUSTER YES/NO summary . 281
11-2 New default statistics values. 294
11-3 REPAIR CATALOG utility will update the following catalog columns 310
11-4 DB2 Utility options deprecated . 314
12-1 Mandatory operational requirements . 319
12-2 Target system conditional operational requirements . 319
12-3 EDM Pool stepped sizings . 325
12-4 Number of catalog and directory objects . 341
12-5 Tables having inline LOB columns . 341
12-6 System parameters with changed limits . 354
12-7 Removed system parameters . 355
12-8 DROP example for CLONE . 361
12-9 APPLCOMPAT defaults for BIND . 375
12-10 Behavior of V10R1 application compatibility . 376
13-1 SYSIBM.SYSINDEXCLEANUP . 395
13-2 TYPE of statistics recommendation . 405
13-3 REASON why statistics are recommended. 406
A-1 The QXST control block size is enlarged . 429
A-2 IFCID221 . 430
A-3 IFCID225 . 430
A-4 IFCID316, The QW0316 control block size is enlarged.. 430
A-5 IFCID401, The QW0401 control block size is enlarged.. 431
A-6 QW00xxER . 431
© Copyright IBM Corp. 2013. All rights reserved. xiii

B-1 DB2 10 current function and performance related APARs . 438
B-2 z/OS DB2-related APARs. 439
B-3 OMEGAMON PE GA and DB2 related APARs . 439
xiv IBM DB2 11 for z/OS Technical Overview

Examples

2-1 ALTER BUFFERPOOL command to use 2 GB frame size. 10
2-2 Results of ALTER BUFFERPOOL command to change FRAMESIZE. 10
2-3 DISPLAY BUFFERPOOL command to show 2 GB frame size. 10
2-4 Results of DISPLAY BUFFERPOOL command showing 2 GB frame defined 10
2-5 Results of DISPLAY BUFFERPOOL command showing 2 GB and 1 MB frame

allocation . 11
2-6 D VIRTSTOR command to show the maximum allocation of 2 GB and 1 MB frames . 12
3-1 Output of DISPLAY GROUP command . 26
3-2 Ten byte RBA in MSTR in CM . 27
3-3 Log record in CM . 27
3-4 DSN1PRNT of a header page in extended format . 28
3-5 DSN1PRNT of a header page in basic format . 28
3-6 DSNJCNVT control statement . 33
3-7 DSNJU004 JCL. 33
3-8 DSNJU004 output showing if DSNJCNVT has run. 34
3-9 Output of TEST option . 41
3-10 Repair output . 41
3-11 BACKUP token prior to BSDS conversion . 41
3-12 BACKUP SYSTEM job output after BSDS conversion . 42
3-13 DSNJU004 after BACKUP SYSTEM for non-data sharing system. 42
3-14 BACK SYSTEM job output from data sharing system . 42
3-15 DSNJU004 after BACKUP SYSTEM for data sharing . 42
3-16 Error message for not found map table space . 49
4-1 DDL for table creation . 53
4-2 Selecting from SYSCOPY. 55
4-3 AREOR for all three partitions of the PBR . 62
4-4 WFSTGUSE per agent message . 67
4-5 WFSTGUSE per system message . 68
5-1 DISPLAY GROUPBUFFERPOOL output with write-around statistics 87
5-2 DISPLAY GBPOOL command output for percentage based CLASST threshold 89
5-3 ALTER GBPOOL command to express CLASST in number of pages 89
5-4 ALTER GBPOOL command output showing CLASST in number of pages 89
5-5 Syntax of MODIFY irlmproc,SET command . 92
6-1 Sample create global variable statement . 103
6-2 Scope of global variable: Different SQL statements on the same DB2 connection . . 103
6-3 Sample - Ordinary Array definition . 105
6-4 Associative array data type - sample CREATE, DECLARE, and SET statements . . . 105
6-5 ARRAY_EXISTS predicate syntax . 105
6-6 Array data type create statement and sample use case in a scalar function 112
6-7 Sample invocation of UNNEST table function . 114
6-8 Sample invocation of UNNEST table function with ORDINALITY clause 114
6-9 APPLICATION COMPATIBILITY - Setting the special register values. 114
6-10 Sample SET CURRENT TEMPORAL BUSINESS_TIME statement 115
6-11 SET CURRENT TEMPORAL SYSTEM_TIME to past time period. 115
6-12 SET CURRENT TEMPORAL SYSTEM_TIME to future time period 116
6-13 Sample temporal table DDL statements . 118
6-14 Sample VIEW statement on a temporal table along with a temporal Query 119
6-15 Selecting with AS OF . 120
© Copyright IBM Corp. 2013. All rights reserved. xv

6-16 Sample SQL statement utilizing GROUP BY GROUPING SETS. 121
6-17 Sample ROLLUP construct . 122
6-18 Sample ROLLUP result set . 122
6-19 Selecting with grouping sets . 123
6-20 Sample SQL statement using CUBE construct in a GROUP BY clause. 124
6-21 Result set from the sample CUBE construct. 124
6-22 LIKE BLANK INSIGNIFICANT DSNZPARM behavior with trailing blanks 128
6-23 Sample LIKE predicate to illustrate the stripping of trailing blanks 128
7-1 DDL for ARCHIVE ENABLE . 132
7-2 ALTER TABLE ADD COLUMN on an archive enabled table 133
7-3 Sample INSERT statement with MOVE_TO_ARCHIVE set to N 133
7-4 Error message on an INSERT with MOVE_TO_ARCHIVE set to ' N'. 133
7-5 Sample DELETE from an Archive Enabled Table . 134
7-6 Sample SELECT statement on an archive enabled table . 135
7-7 Sample cursor statement in a static application . 135
7-8 DDL for DISABLE ARCHIVE statement . 136
7-9 Sample Generic Table UDF code . 144
7-10 Sample HDFS_READ from a CSV file . 145
7-11 Sample JAQL_SUBMIT . 145
7-12 Nested UDF calls . 146
7-13 Sample SQL statement for a scoring adapter for DB2 on z/OS 148
8-1 DDL for purchaseOrdersXML table. 153
8-2 DDL for statusXML table . 154
8-3 INSERT statements for purchaseOrdersXML table . 154
8-4 INSERT statements for statusXML table . 156
8-5 Use of FLWOR “for” keyword to loop through a sequence of values 157
8-6 Results of sample XQuery using FLWOR keyword “for”. 157
8-7 Sample XQuery using FLWOR keyword “for” and XMLSERIALIZE 158
8-8 Sample XQuery using all FLWOR keywords . 159
8-9 Results of sample XQuery using all FLWOR keywords . 159
8-10 XQuery FLWOR expression to express a join . 160
8-11 Results of XQuery FLWOR expression to express a join . 160
8-12 Example of an XQuery constructor . 161
8-13 Sample XQuery using conditional expression . 162
8-14 Results of sample XQuery using conditional expression . 163
8-15 Sample XQuery using fn:avg built-in function . 163
8-16 Syntax for boundary-space declaration . 164
8-17 Syntax for copy namespaces declaration . 164
8-18 Declaration example preserving boundary space and copy namespaces 165
8-19 Results of query to preserve boundary space and copy namespaces 165
8-20 Declaration example not preserving boundary space and copy namespaces 166
8-21 Results of query to not preserve boundary space and copy namespaces 166
8-22 Example of avoiding XML schema revalidation . 167
8-23 UPDATE of an XML document with partial revalidation . 168
9-1 -DIS THD(*) DETAIL . 173
9-2 Retrieve the CURRENT CLIENT_CORR_TOKEN value using SQL 173
9-3 Value of CURRENT CLIENT_CORR_TOKEN . 174
9-4 Client correlation token components. 174
9-5 Java and CURRENT CLIENT_CORR_TOKEN . 174
9-6 Java program output, overriding the correlation token . 175
9-7 -DIS THD(*) DETAIL and the client correlation token value . 175
9-8 DDL and Insert for example table . 175
9-9 Contents of example table . 176
xvi IBM DB2 11 for z/OS Technical Overview

9-10 Using the CURRENT CLIENT_CORR_TOKEN in SQL . 176
9-11 Java and SQL exploiting CURRENT CLIENT_CORR_TOKEN 176
9-12 Java application execution output . 177
9-13 Query on SYSIBM.SYSVARIABLES . 178
9-14 OMPE command JCL example. 179
9-15 OMPE Accounting Trace Long - JDBC driver 10.1 fix pack 0. 180
9-16 OMPE Accounting Trace Long - JDBC driver 10.5 fix pack 2. 180
9-17 JDBC driver correlation: Old Java driver. 180
9-18 JDBC driver correlation: New Java driver . 180
9-19 OMPE Accounting Trace report, identification section . 181
9-20 DDL to create the RLMT table DSNRLMT01, DB2 11 version 183
9-21 DDL to create the RLMT table DSNRLMT01, DB2 10 version 183
9-22 Start Resource Limit Facility command. 184
9-23 Successful start of RLF. 184
9-24 Starting RLIMIT in DB2 10 with DSNRLMT01 version DB2 11. 185
9-25 -DIS RLIMIT: RLF partially started . 185
9-26 Starting RLIMIT in DB2 11 CM with DSNRLMT01 version DB2 11 185
9-27 -DIS RLIMIT: RLF partially started . 186
9-28 -DIS RLIMIT output example . 186
9-29 ALTER TABLE SYSIBM.DSNRLMT01 . 186
9-30 Copying RLMT data to a DB2 11 version of the table. 186
9-31 Copying RLST data to a DB2 11 version of the table . 187
9-32 -STA RLIMIT command . 187
9-33 Starting RLIMIT on a new set of RLF tables . 187
9-34 WLM Modify Rules for the Subsystem Type panel . 192
9-35 Setting accounting information in a Java program . 192
9-36 WLM classification rules: nesting accounting information. 193
9-37 installing WLM definitions . 193
9-38 WLM Service definition installation successful . 194
9-39 Activating WLM definitions . 194
9-40 WLM Policy activated . 194
9-41 RMF Enclave Report panel . 194
9-42 Enclave details in RMF Enclave report . 195
9-43 RMF Enclave Classification Attributes . 195
9-44 WLM_SET_CLIENT_INFO syntax . 196
9-45 Using the setClientInfo Java method . 197
9-46 Java program: setting client information fields . 198
9-47 Java sample program output . 200
9-48 -DIS THD(*) DETAIL . 200
9-49 DIS THD(*) DETAIL and message V436 . 201
9-50 DIS THD(*) DETAIL and message V436 missing . 201
9-51 CANCEL THREAD command in DB2 11 . 203
9-52 -DISPLAY THREAD(*) LOCATION(*) command . 203
9-53 CANCEL DDF THREAD command syntax . 203
9-54 CANCEL DDF THD FORCE example. 204
9-55 DB2 11 new message DSNV519I . 204
9-56 Structure of DB2 message DSNV519I . 204
9-57 CANCEL DDF THREAD command. 205
9-58 CANCEL THREAD command output example . 205
9-59 Cancelled thread: DB2 MSTR feedback . 205
9-60 JCC trace and the default interrupt processing mode. 206
9-61 SPUFI panel DSNEBP11, defaults for REBIND PACKAGE 208
9-62 REBIND PACKAGE with DBPROTOCOL(DRDACBF) option 209
 Examples xvii

9-63 REBIND output . 209
9-64 Structure of SQLCODE -30045. 212
9-65 Syntax CALL ADMIN_COMMAND_MVS . 218
9-66 Message DSNA601I . 219
9-67 ADMIN_COMMAND_MVS and WLM DISPLAY: system log messages. 220
9-68 RACF - GENERAL RESOURCE SERVICES panel . 221
9-69 RACF SEARCH FOR GENERAL RESOURCE PROFILES panel 221
9-70 RACF COMMAND OUTPUT, MVS.MCSOPER . 222
9-71 RACF COMMAND OUTPUT, resource MVS.MCSOPER.* 222
9-72 RACF define resource MVS.MCSOPER.DSNADMCM . 222
9-73 RACF define resource output example. 223
9-74 RACF SETROPTS REFRESH command. 223
9-75 RACF resources search result . 223
9-76 RACF resource MVS.MCSOPER.DSNADMCM . 223
9-77 Error message DSNA628I . 223
9-78 RACF message ICH408I . 224
9-79 RACF PERMIT MVS.MCSOPER.DSNADMCM . 224
9-80 RACF SETROPTS RACLIST(OPERCMDS) REFRESH command 224
9-81 RACF MVS.MCSOPER.DSNADMCM resource details . 224
9-82 Using the db2level command . 226
9-83 Running the db2jcc utility . 226
9-84 Db2jcc utility output . 226
9-85 JDBC connection url String with TRACE_ALL . 227
9-86 JDBC trace output. 227
9-87 -DIS DDF output example. 230
9-88 DB2 Command Line Processor initial contents. 231
9-89 DB2 catalog TCP/IP node example . 231
9-90 Sample Windows hosts file . 232
9-91 DB2 catalog TCP/IP node example using an hosts file entry 232
9-92 DB2 catalog TCP/IP node output example . 232
9-93 DB2 terminate example . 232
9-94 DB2 list node directory command example . 233
9-95 DB2 catalog database command example . 233
9-96 DB2 catalog database command output example . 233
9-97 DB2 list database directory command output example. 233
9-98 Connect to a DB2 for z/OS database using the CLP . 234
9-99 DB2 catalog ODBC data source command example . 235
9-100 DB2 catalog ODBC data source command output example. 235
9-101 DB2 LIST ODBC DATA SOURCES command example . 235
10-1 RACF permit ACCESS(READ) on CLASS(DSNR). 242
10-2 RACF PERMIT command and % generic resource character 245
10-3 RACF PERMIT DELETE command . 245
10-4 SQLCODE -551 explanation and RACF changes . 246
10-5 Updates to DB2 message DSNT210I . 247
10-6 DSNX235I . 247
10-7 DSNX236I . 248
10-8 DSNX237I . 249
10-9 REBIND to enable PROGAUTH . 251
10-10 DDL for creating the table SYSIBM.DSNPROGAUTH . 252
10-11 DSNTIJSG extract: sample INSERT in SYSIBM.DSNPROGAUTH 253
10-12 REBIND PLAN output showing PROGAUTH enabled . 254
10-13 BIND PLAN DSNTIA11 in job DSNTIJTM. 255
10-14 BIND PLAN DSNTIA11 output . 255
xviii IBM DB2 11 for z/OS Technical Overview

10-15 SYSPLAN query to show a PLAN’s PROGAUTH value . 256
10-16 SQL query on SYSIBM.SYSPACKLIST . 256
10-17 SQL query on SYSIBM.SYSPACKAGE . 257
10-18 INSERT SQL on SYSIBM.DSNPROGAUTH . 258
10-19 SQL query on SYSIBM.DSNPROGAUTH . 258
10-20 Testing program authentication with DSNTIAD . 258
10-21 Program authentication preventing execution. 258
10-22 Updating SYSIBM.DSNPROGAUTH to allow program execution 259
10-23 SQL query on SYSIBM.DSNPROGAUTH, ENABLED = ‘Y’ 259
10-24 Program authentication allowing execution . 259
10-25 SQL to find DBNAME and TSNAME of SYSIBM.DSNPROGAUTH 260
10-26 Display status of SYSIBM.DSNPROGAUTH table space status 260
10-27 SYSIBM.DSNPROGAUTH not available prevents program execution. 260
10-28 DB2 MSTR message 00C90081. 261
10-29 SPUFI option AUTOCOMMIT = NO . 261
10-30 SQL to update SYSIBM.DSNPROGAUTH . 262
10-31 Locks on SYSIBM.DSNPROGAUTH table space. 262
10-32 Program failure due to locks on SYSIBM.DSNPROGAUTH. 262
10-33 Sample table and data for column mask example . 263
10-34 Creating a column mask . 263
10-35 Activating column access control . 264
10-36 Column access control effects on SELECT . 264
10-37 Deactivating column access control . 265
10-38 SQLCODE -20478 . 265
10-39 Aggregate function with DISTINCT in SQL. 266
11-1 REORG TABLESPACE PART WITH SORTNPSI YES . 272
11-2 REORG TABLESPACE PART WITH SORTNPSI YES job output 273
11-3 REORG TABLESPACE PART WITH DRAIN_ALLPARTS YES. 275
11-4 REORG TABLESPACE PART WITH DRAIN_ALLPARTS YES job output 275
11-5 Mapping table with the DB2 10 format and run REORG . 278
11-6 Mapping table with the DB2 11 format and run REORG . 279
11-7 Mapping table and run REORG . 280
11-8 Database and table space format when automatically created by DB2 280
11-9 REORG TABLESPACE SHRLEVEL CHANGE SORTDATA NO RECLUSTER NO 282
11-10 REORG TABLESPACE SHRLEVEL CHANGE SORTDATA NO RECLUSTER NO job

output . 283
11-11 REORG TABLESPACE PART WITH INLINE IMAGE COPY 283
11-12 REORG TABLESPACE PART WITH INLINE IMAGE COPY job output 284
11-13 REORG TABLESPACE PART WITH LISTPARTS. 286
11-14 REORG TABLESPACE PART WITH LISTPARTS job output 287
11-15 REORG TABLESPACE REBALANCE SHRLEVEL CHANGE 288
11-16 REORG TABLESPACE REBALANCE SHRLEVEL CHANGE job output. 289
11-17 REORG LOB SHRLEVE NONE . 291
11-18 REORG LOB SHRLEVE NONE job output. 292
11-19 REORG SHRLEVEL CHANGE LOGRANGES NO. 292
11-20 REORG SHRLEVEL CHANGE LOGRANGES NO job output 292
11-21 RUNSTATS RESET option. 296
11-22 RUNSTATS RESET job output . 298
11-23 RUNSTATS USE PROFILE usability for LISTDEF. 298
11-24 RUNSTATS USE PROFILE usability for LISTDEF job output 298
11-25 RESTORE SYSTEM LOGONLY SWITCH VCAT. 300
11-26 LOAD SHRLEVEL NONE with PARALLEL option . 302
11-27 LOAD SHRLEVEL NONE with PARALLEL option job output 303
 Examples xix

11-28 LOAD SHRLEVEL CHANGE with PARALLEL option. 304
11-29 LOAD SHRLEVEL CHANGE with PARALLEL option job output 305
11-30 DISPLAY UTILITY command output. 306
11-31 TEMPLATE with DSNTYPE EXTREQ and TIME LOCAL. 307
12-1 Missing fallback PTF error message. 335
12-2 Install and IVP jobs generated as result of ENFM installation CLIST completion. . . 339
12-3 -DIS GROUP result from non-data-sharing subsystem . 342
12-4 DSNU2902I error message. 343
12-5 DSNU2902I message text . 343
12-6 -DISPLAY GROUP DETAIL output . 344
12-7 -DIS GROUP DETAIL output in ENFM . 344
12-8 LIKE_BLANK_INSIGNIFICANT . 348
12-9 Books definition. 361
12-10 CAST as TIMESTAMP with APPLCOMPAT set to V10R1. 365
12-11 CAST as TIMESTAMP with APPLCOMPAT set to V11R1. 365
12-12 Invoke scalar function TIMESTAMP with store clock value 366
12-13 V9 result of implicit cast of decimal using CHAR function. 373
12-14 V10 result of implicit cast of decimal using CHAR function. 373
12-15 IFCID 366 record description . 380
12-16 IFCID 376 record description . 381
13-1 Enable the cleanup on all indexes . 396
13-2 Disable the cleanup on all indexes . 396
13-3 Disable cleanup on all indexes except on every Saturday and Sunday 396
13-4 Disable cleanup on all indexes every day from 8am to 6pm local time. 397
13-5 Disable cleanup on all indexes in database RMCDB00 . 397
13-6 Two rows on the same level with conflicting information about Monday. 397
13-7 Sample use of the new FOR UPDATE option of PCTFREE. 400
A-1 New IFCID 377 to record index pseudo delete daemon cleanup 412
A-2 Changed IFCID 106 to record INDEXCLEANUP_THREADS 412
A-3 New IFCID 27 . 413
A-4 IFCID 2 and IFCID 3. 414
A-5 New IFCID 382 and 383 to record suspend operations for parallel task 414
A-6 IFCID369 - Aggregate accounting interface details . 415
A-7 IFCID0053 . 416
A-8 IFCID0058 . 416
A-9 Accounting trace enhancements filed QHWCAACE. 417
A-10 Accounting trace enhancements QWACZIIP_ELIGIBLE . 417
A-11 DXR100I message . 418
A-12 IFCID217, IFCID225 and IFCID106 . 419
A-13 IFCID0380 . 423
A-14 QW0381 details . 425
A-15 QW0497 details . 425
A-16 QW0498 details . 425
A-17 QW0499 details . 426
A-18 CPU time that was spent running on a Specialty Engine . 427
A-19 Incompatible changes for new RBA/LRSN. 428
A-20 IFCID127 and IFCID 128 . 429
A-21 Changes IFCID 002/225 to record arrays support . 431
A-22 Changes IFCID 003/239 to record autonomous transactions 432
A-23 Changes IFCID 366 to record application incompatibility . 432
A-24 Changes IFCID 230/256 to record castout queue threshold 434
xx IBM DB2 11 for z/OS Technical Overview

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2013. All rights reserved. xxi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
DB2®
DB2 Connect™
Distributed Relational Database

Architecture™
DRDA®
DS8000®
FICON®
FlashCopy®
IBM®
IMS™
InfoSphere®

iSeries®
Language Environment®
MQSeries®
MVS™
OMEGAMON®
Optim™
Parallel Sysplex®
pureQuery™
pureXML®
RACF®
Redbooks®
Redbooks (logo) ®

RETAIN®
RMF™
SPSS®
System i®
System Storage®
System z®
Tivoli®
VTAM®
WebSphere®
z/OS®
z10™
zEnterprise™

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
xxii IBM DB2 11 for z/OS Technical Overview

http://www.ibm.com/legal/copytrade.shtml

Summary of changes

This section describes the technical changes made in this edition of the book and in previous
editions. This edition might also include minor corrections and editorial changes that are not
identified.

Summary of Changes
for SG24-8180-00
for IBM DB2 11 for z/OS Technical Overview
as created or updated on May 5, 2016.

December 2013, First Edition

This revision of the first edition published December 2013, reflects the addition, deletion, or
modification of new and changed information described below.

May 2014, First Update

Changed information
� Replaced Figure 4-9 on page 80.
� Removed an error message at “Problem determination” on page 254.
� Corrected parameter spelling of PROGAUTH keyword.

New information
� Updated RSU at Appendix B.1, “DB2 APARs” on page 438.
© Copyright IBM Corp. 2013. All rights reserved. xxiii

xxiv IBM DB2 11 for z/OS Technical Overview

Preface

IBM® DB2® Version 11.1 for z/OS® (DB2 11 for z/OS or just DB2 11 throughout this book) is
the fifteenth release of DB2 for IBM MVS™. It brings performance and synergy with the IBM
System z® hardware and opportunities to drive business value in the following areas:

� Unmatched reliability, availability, and scalability

– Improved data sharing performance and efficiency
– Less downtime by removing growth limitations
– Simplified management, improved autonomics, and reduced planned outages

� Save money, save time

– Aggressive CPU reduction goals
– Additional utilities performance and CPU improvements
– Save time and resources with new autonomic and application development capabilities

� Simpler, faster migration

– SQL compatibility, divorce system migration from application migration
– Access path stability improvements
– Better application performance with SQL and XML enhancements

� Enhanced business analytics

– Faster, more efficient performance for query workloads
– Accelerator enhancements
– More efficient inline database scoring enables predictive analytics

The DB2 11 environment is available either for new installations of DB2 or for migrations from
DB2 10 for z/OS subsystems only.

This IBM Redbooks® publication introduces the enhancements made available with DB2 11
for z/OS. The contents help database administrators to understand the new functions and
performance enhancements, to plan for ways to use the key new capabilities, and to justify
the investment in installing or migrating to DB2 11.

Authors

This book was produced by a team of specialists from around the world working at the IBM
Silicon Valley Lab, San Jose, California.

Paolo Bruni is a DB2 Information Management Project Leader at the International Technical
Support Organization based in the Silicon Valley Lab. He has authored several IBM
Redbooks publications about DB2 for z/OS and related tools, and has conducted workshops
and seminars worldwide. During his years with IBM, in development and in the field, Paolo
has worked mostly on database systems.

Felipe Bortoletto is a Certified IBM IT Specialist in information management and an IBM
Certified DBA for DB2 for z/OS V7, V8, V9 and DB2 10. He has 18 years of experience in IT
with 13 years of experience with DB2 for z/OS. He joined IBM 9 years ago and is currently a
member of the IBM GBS in Brazil. He holds a degree in Computer Science from UNICAMP.
Felipe co-authored Securing and Auditing Data on DB2 for z/OS, SG24-7720 and DB2 10 for
z/OS Performance Topics, SG24-7942.
© Copyright IBM Corp. 2013. All rights reserved. xxv

Ravikumar Kalyanasundaram is an IBM Certified Thought Leader in the I/T Specialist
profession and a Distinguished I/T Specialist (Certified by The Open Group). He has more
than 21 years of experience and currently working as a Senior Managing Consultant at IBM
Software Group - IM Lab Services. He provides technical consulting services to clients world
wide, utilizing specialized knowledge and skills in DB2 for z/OS database, Analytics
Accelerator and Information Management tools. He provides a truly integrated set of high
quality services with a focus on database performance management. He plays a direct role in
increasing the long term strength and enhancing the market position and competitive posture
of IBM database products and tools. He holds a Bachelors degree in Electrical and
Electronics Engineering and a Masters degree in Business Administration (MBA). He is a
detail oriented person, with outstanding project management, problem-solving, team-building
and decision making skills. Ravi is a co-author of several IBM Redbooks publications,
including Optimizing Restore and Recovery Solutions with DB2 Recovery Expert for z/OS
V2.1, SG24-7606, DB2 9 for z/OS: Resource Serialization and Concurrency Control,
SG24-4725, DB2 10 for z/OS Performance Topics, SG24-7942, Optimizing DB2 Queries with
IBM DB2 Analytics Accelerator for z/OS, SG24-8005, Hybrid Analytics Solution using IBM
DB2 Analytics Accelerator for z/OS V3.1, SG24-8151.

Sabine Kaschta is a DB2 Specialist working for the IBM Software Group in Germany.
Currently, she works as a Segment Skills Planner for the worldwide curriculum for DB2 for
z/OS training as well as IT consultant. She also works on course development and in her role
as IT consultant enjoys teaching customized workshops for customers worldwide. Sabine has
22 years of experience working with DB2. Before joining IBM in 1998, she worked for a
third-party vendor providing second-level support for DB2 utilities. She is experienced in DB2
system programming and client/server implementations in the insurance industry in Germany.
She co-authored several IBM Redbooks publications, including DB2 UDB for OS/390 and
Continuous Availability, SG24-5486, Cross-Platform DB2 Distributed Stored Procedures:
Building and Debugging, SG24-5485, IBM TotalStorage Migration Guide for the SAP User,
SG24-6400, DB2 UDB for z/OS Version 8: Everything You Ever Wanted to Know, ... and
More, SG24-6079, DB2 9 for z/OS Technical Overview, SG24-7330, DB2 9 for z/OS Stored
Procedures: Through the CALL and Beyond, SG24-7604, and DB2 9 for z/OS: Deploying
SOA Solutions, SG24-7663, DB2 10 for z/OS Technical Overview, SG24-7892.

Glenn McGeoch is a Senior DB2 Consultant for the IBM DB2 for z/OS Lab Services
organization based in San Francisco, CA, US. He has 36 years of experience in the software
industry, with 28 years of experience in working with DB2 for z/OS. He holds a degree in
Business Administration from the University of Massachusetts and an MBA from Rensselaer
Polytechnic Institute. Glenn worked for 19 years as an IBM customer with a focus on IBM
CICS® and DB2 application development, and spent the last 17 years with IBM assisting DB2
customers. His areas of expertise include application design and performance, stored
procedures, and DB2 migration planning. He has presented to regional DB2 User Groups and
to customers on various DB2 topics. Glenn co-authored several IBM Redbooks publications,
including DB2 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7083, DB2
9 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7604, DB2 10 for z/OS
Performance Topics, SG24-7942, and Streamline Business with Consolidation and
Conversion to DB2 for z/OS, SG24-8044.

Cristian Molaro is an IBM Gold Consultant, an independent DB2 specialist, and an instructor
based in Belgium. He has been recognized by IBM as an IBM Champion for Information
Management in 2009, 2010, 2011, 2012, and 2013. His main activity is linked to DB2 for z/OS
administration and performance. Cristian is co-author of several IBM Redbooks publications
related to DB2. He holds a Chemical Engineering degree and a Masters degree in
Management Sciences. Cristian was recognized by IBM as “TOP” EMEA Consultant at the
IDUG EMEA DB2 Tech Conference Prague 2011.
xxvi IBM DB2 11 for z/OS Technical Overview

Special thanks to people worldwide who have contributed to the preparation of the material
for the Sequoia Introduction Program and the programming specifications. We have used that
material as the basis for this book.

Thanks to the following people for their contributions to this project:

Bob Haimowitz
International Technical Support Organization

Jeff Berger
Mengchu Cai
Gayathiri Chandran
Ramani Croisettier
Janet Figone
Bill Franklin
Jeff Josten
Akiko Hoshikawa
Gopal Krishnan
Laura Kunioka-Weis
Allan Lebovitz
Chris Leung
Maggie Lin
Irene Liu
John Lyle
Jane Man
Bruce McAlister
Ka-Chun Ng
Jim Pickel
Emily Prakash
Terry Purcell
Jim Ruddy
John Tobler
Jay Yothers
Debbie Yu
IBM Silicon Valley Lab

Shirley Brost
IBM Information Management Lab Services

Robert Gensler
Glenn Wilcock
IBM Tucson Lab

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.
 Preface xxvii

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks publications

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xxviii IBM DB2 11 for z/OS Technical Overview

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. DB2 11 for z/OS at a glance

DB2 11 for z/OS delivers key innovations that reduce your total cost of ownership and that
increase availability, scalability, and security for your business-critical information. In addition,
DB2 11 for z/OS offers improvements for analytics and makes installation and migration
simpler and faster. DB2 11 for z/OS can also connect core operational data with big data to
drive more business value and uses secure connections to support increasing mobile device
requests.

This chapter provides a brief overview of the most important functions provided by IBM DB2
Version 11.1 for z/OS (also referred to as DB2 11 for z/OS or just DB2 11 throughout this
book). For the purposes of this discussion, these functions are divided into the following
categories, which correspond to the parts of this book:

� Subsystem
� Application functions
� Operations and performance

1

© Copyright IBM Corp. 2013. All rights reserved. 1

1.1 Subsystem

As with all previous versions, DB2 11 for z/OS takes advantage of the latest improvements in
the platform. DB2 11 increases the synergy with System z hardware and software to provide
better performance, more resilience, and better function for an overall improved value.

DB2 11 benefits from advances in large real memory support, faster processors, and better
hardware compression.

Additional RUNSTATS and LOAD workloads can now take advantage of zIIP engines, driving
faster LOAD processing, improved performance, and CPU savings. With IBM zEnterprise™
EC12 (zEC12) and DB2 11, you can achieve additional CPU reductions by using pageable
large (1 MB) page frames and Flash Express and by supporting 2 GB page frames.

In DB2 11, the relative byte address (RBA) and log record sequence number (LRSN) log
records are expanded from basic 6-byte format to extended 10-byte format. You also can
convert the RBA and LRSN to extended 10-byte format to avoid reaching the logging limits.
Extending the RBA and LRSN to 10-byte format helps to avoid wrapping of the RBA and
LRSN values, which can cause system problems. In addition, the increased precision of the
10-byte format for the LRSN provides performance improvements for data sharing
environments.

In DB2 11 you can alter the limit keys for a partitioned table space without impacting the
availability of the data. When you change the limit key values, the data remains available, and
applications can continue to access the data.

Under some conditions, DB2 11 can improve performance, because there is less need to use
a REORG utility. These improvements come in the following ways:

� By automatically cleaning up pseudo-deleted index entries.

� Second, by managing free space differently to reduce the number of indirect references
when the row size varies.

1.2 Application functions

DB2 11 delivers several SQL enhancements that can help applications to ease development
and porting. DB2 11 also provides several enhancements to the support of IBM pureXML®,
stored procedures, and connectivity. Application-enabling infrastructure changes allow for
intersection with big data, XML, and e-business.

In addition to providing more SQL aggregation improvements, the combination of z/OS
Communication Server for TCP/IP, DB2 11 functions and the many new features in IBM DB2
Analytics Accelerator V4 improve the bandwidth of the hybrid system solution for OLTP and
analytical workloads.

IBM also provides the InfoSphere® BigInsights solution, which brings the power of Hadoop to
the enterprise. DB2 11 provides an efficient access to BigInsights data with the use of a
“universal table” user-defined function that allows this data to be read in DB2. Alternatively,
DB2 data can also be accessed from BigInsights using a Jaql JDBC driver.

In DB2 11, expanded support for SQL, XML, and temporal tables can result in improved
application performance.
2 IBM DB2 11 for z/OS Technical Overview

DB2 11 allows you to automatically insert rows that are deleted from one table into a separate
table called an archive table. Archive tables provide the following benefits:

� DB2 can manage historical data for you. You do not have to manually move data to a
separate table.

� Because rows that are infrequently accessed are stored in a separate table, you can
potentially improve the performance of queries against the archive-enabled table.

� You can modify queries to include or exclude archive table data without having to change
the SQL statement and prepare the application again. Instead, you can control the scope
of the query with a global variable.

� You can store archive tables on a lower-cost device to reduce operating costs.

1.3 Operations and performance

With key enhancements in DB2 11, DB2 for z/OS and System z continue to lead the industry
in security and auditing. With DB2 11 RACF® Exit enhancements, external security that is
managed by RACF administrators can now fully handle access to DB2 objects. This function
provides the following benefits:

� The use of the OWNER keyword is now acceptable by RACF. A new installation parameter
allows the use of the package OWNER for static and dynamic SQL authorization.

� A refresh function for DB2’s authorization cache is implemented, which allows RACF to
dynamically notify changes and keep the security definitions synchronized.

� DB2 11 also removes some of the restrictions on the use of the SQL GROUP BY, DISTINCT,
and UNION clauses when querying a masked table.

Utilities have enhancements that can significantly reduce execution time for REORG, more zIIP
eligibility for the RUNSTATS utility. Point-in-time recovery is now allowed, which follows dynamic
schema changes and can improve application availability and DBA productivity.

In DB2 11, simpler, faster migration results in a faster return on your investment. This version
of DB2 for z/OS provides enhancements to the DB2 installation CLIST, ISPF panels, and jobs,
and provides new installation verification procedures (IVPs). Also, a new feature helps to
streamline the migration process by allowing an application with incompatible SQL or XML to
continue running on DB2 11 without requiring code changes. You no longer need to wait for
application changes to be planned and delivered for your business to realize the benefits of
DB2 11.

Performance improvements in DB2 11 focus on optimizing query processing and reducing
CPU processing time without causing significant administration or application changes.
However, DB2 11 also offers a balanced approach to performance improvements across all
types of workloads, whether your workloads are for online transaction processing (OLTP),
batch, or utilities.

Early measurements show DB2 11 CPU savings of up to 10% for complex OLTP and
update-intensive batch workloads when compared to DB2 10. Queries can see up to 25%
DB2 CPU savings for uncompressed tables and up to 40% when running against compressed
tables. Benefits can be achieved without any application changes, just binding. More CPU
savings are possible for specific workloads, with application changes.
Chapter 1. DB2 11 for z/OS at a glance 3

4 IBM DB2 11 for z/OS Technical Overview

Part 1 Subsystem

DB2 continues to evolve by removing structural constraints to support its increasing use by
concurrent workloads. Several improvements to the DB2 engine allow better and more use of
System z hardware and software functions that provide growth, performance, and cost of
ownership reduction.

The following chapters in this part describe functions generally related to the DB2 subsystem
and the z/OS platform:

� Chapter 2, “Synergy with System z” on page 7
� Chapter 3, “Scalability” on page 23
� Chapter 4, “Availability” on page 51
� Chapter 5, “Data sharing” on page 85

Part 1
© Copyright IBM Corp. 2013. All rights reserved. 5

6 IBM DB2 11 for z/OS Technical Overview

Chapter 2. Synergy with System z

As with all previous versions, DB2 11 for z/OS takes advantage of the latest improvements in
the platform. DB2 11 increases the synergy with System z hardware and software to provide
better performance, more resilience, and better function for an overall improved value. In
addition, DB2 11 benefits from advances in large real memory support, faster processors,
and better hardware compression.

DB2 for z/OS is designed to take advantage of the System z platform to provide capabilities
that are unmatched in other database software products. The DB2 development team works
closely with the System z hardware and software teams to take advantage of existing
System z enhancements and to drive many of the enhancements that are available on the
System z platform.

This chapter describes the synergy between DB2 11 and the System z hardware and
software that removes constraints for growth, improves reliability and availability, and
continues to improve total cost of ownership and performance. It also outlines features and
functions of the IBM zEnterprise platform and z/OS V2R1 that are expected to benefit DB2 for
z/OS. It includes the following topics:

� Synergy with IBM zEnterprise System
� Synergy with IBM System z and z/OS
� Using zIIP speciality processors
� Reduced need for REORG
� DFSMS storage tiers
� Additional System z enhancements

2

© Copyright IBM Corp. 2013. All rights reserved. 7

2.1 Synergy with IBM zEnterprise System

The IBM zEnterprise System delivers unique value and industry-leading capabilities that
allow you to maximize the business value of your unique information. The IBM zEnterprise
EC12 (zEC12) is the cornerstone of the latest zEnterprise System and flagship of the IBM
Systems portfolio. The superscalar design allows the zEC12 to deliver a record-level capacity.
It is powered by 120 of the world’s most powerful microprocessors that run at 5.5 GHz and is
capable of executing more than 78,000 millions of instructions per second (MIPS).

DB2 for z/OS takes advantage of the following features available with the zEC12:

� Faster CPU speed speed
� More system capacity
� zEC12 hardware features

2.1.1 Faster CPU speed

The CPU speed of the zEC12 has been measured at 1.25 times the speed of the z196. The
improved CPU speed of the zEC12 provides the following performance improvements over
the z196 for DB2:

� 20-28% CPU reduction for OLTP workloads
� 25% CPU reduction for Query and Utility workloads
� 1-15% less compression overhead with DB2 data

2.1.2 More system capacity

The zEC12 provides up to 50% more total capacity than the z196. This increase capacity
makes the zEC12 an excellent choice to grow either horizontally or vertically within one
server. The zEC12 is a good choice if you are planning a large scale consolidation because of
its ability to provide secure data serving and to support mission-critical transaction
processing. DB2 11 provides scalability features, as described in Chapter 3, “Scalability” on
page 23. The zEC12 provides the synergy to take advantage of these scalability
enhancements in DB2 11.

2.1.3 zEC12 hardware features

DB2 11 takes advantage of the following hardware features of the zEC12.

Large frame area (LFAREA)
The large frame area is used for the fixed 1 MB large page frames and fixed 2 GB large page
frames. Using large page frames can improve performance for some applications by reducing
the overhead of dynamic address translation. This improvement is achieved by each large
frame requiring only one entry in the translation lookaside buffer (TLB), as compared to the
larger number of entries that are required for an equivalent number of 4 KB page frames. A
single TLB entry improves TLB coverage for users of large page frames by increasing the hit
rate and decreasing the number of TLB misses that an application incurs.

TLB buffer: Memory addresses that are referred to by a process are virtual addresses and
require translation to the physical address. The TLB is a relatively small cache area that is
used to perform this address translation.
8 IBM DB2 11 for z/OS Technical Overview

Large pages are a performance improvement feature for some cases, but switching to large
pages is not recommended for all workloads. Large pages provide performance value to a
select set of applications that can generally be characterized as memory access-intensive
and long-running. These applications meet the following criteria:

� They must reference large ranges of memory.

� They tend to exhaust the private storage areas that are available within the 2 GB address
space (such as IBM WebSphere®), or they use private storage that is above the 2 GB
address space (such as IBM DB2).

Flash memory and pageable 1 MB page frames
The zEC12 supports an optional hardware feature called Flash Express memory cards. These
memory cards are supported in an I/O drawer with other I/O cards. The cards come in pairs
for improved availability, and no HCD/IOCP definition is required. Flash memory is assigned
to partitions the same way that main memory is assigned, and each partition’s flash memory
is isolated, similar to main memory. You can dynamically increase the maximum amount of
flash memory on a partition, and you can dynamically configure flash memory into and out of
the partition.

You can use flash memory to solve many different problems. Flash memory is much faster
than spinning disk, but it is much slower than main memory. Flash memory takes less power
to utilize than either option.

With the combination of Flash Express installed on a zEC12 and the pageable 1 MB large
page frame support in z/OS V1R13, DB2 takes advantage of the large page frame support by
allocating internal control blocks (PMBs) using 1 MB pageable storage. These large page
frames can be paged to and from Flash Express, and performance might be improved due to
a reduction in TLB misses and an increase in the TLB hit rate.

Flash memory can also be used to improve SVC dump data capture time. It removes the
requirement for pageable link pack area (PLPA) and common page data sets when used for
cold start IPLs.

This feature requires zEC12 (2827) hardware with Flash Express installed and z/OS V1R13
and above with requisite PTFs (FMID JBB778H). APARs PM85944 and PM90486 retrofit this
feature to DB2 10 for z/OS.

2 GB large page frames
A 2 GB page frame is a memory page that is 2048 times larger than a 1 MB page and
524,288 times larger than the ordinary 4 KB base page. 2 GB large page frames allow for a
single TLB entry to fulfill many more address translations than either a large page or an
ordinary base page. 2 GB large page frames provide exploiters with much better TLB
coverage and, therefore, potentially allow the following benefits:

� Better performance by decreasing the number of TLB misses that an application incurs
� Less time spent converting virtual addresses into physical addresses
� Less real storage used to maintain DAT structures

Note that 2 GB large pages require z/OS V2R1 and the hardware features of the zEC12.

The Buffer Manager component of DB2 uses a 2 GB frame size only when there are at least
2 GB of buffer storage to allocate and when the buffer pool is defined as long-term page fixed.
For example, if you specify a small buffer pool size, such as VPSIZE=20000, a 2 GB frame is
not used. If you specify VPSIZE=524288 for a 4 KB buffer pool, you are requesting a buffer pool
that can contain 524,288 pages that are 4 KB in size, for a total of 2,147,483,648 bytes, which
is exactly 2 GB. In this case, you get exactly one 2 GB frame allocated. If you specify
Chapter 2. Synergy with System z 9

VPSIZE=600000, you get one 2 GB frame, with the remainder of the buffer pool allocated in
1 MB frames up to the specified size.

For DB2 to take advantage of 2 GB large pages, the ALTER BUFFERPOOL command now
includes the FRAMESIZE attribute. The valid values are 4 KB, 1 MB and 2 GB. Example 2-1
runs the ALTER BUFFERPOOL command to establish a page fixed buffer pool with 2 GB pages.

Example 2-1 ALTER BUFFERPOOL command to use 2 GB frame size

 DB2 COMMANDS SSID: DB1D
===>

Position cursor on the command line you want to execute and press ENTER

Cmd 1 ===> -ALTER BUFFERPOOL(BP4) VPSIZE(600000) FRAMESIZE(2G) PGFIX(YES)
Cmd 2 ===>
Cmd 3 ===>

Example 2-2 shows the results of the ALTER command. The DSNB543I message shows that
the PGFIX attribute is set to YES. The DSNB522I message shows that the FRAMESIZE attribute is
set.

Example 2-2 Results of ALTER BUFFERPOOL command to change FRAMESIZE

DSNB522I -DB1D VPSIZE FOR BP4 HAS BEEN SET
DSNB543I -DB1D THE PGFIX ATTRIBUTE IS ALTERED FOR
 BUFFER POOL BP4
 CURRENT ATTRIBUTE = YES
 NEW ATTRIBUTE = YES
 THE NEW ATTRIBUTE IS IN PENDING STATE.
DSNB522I -DB1D FRAME FOR BP4 HAS BEEN SET
DSN9022I -DB1D DSNB1CMD '-ALTER BUFFERPOOL' NORMAL COMPLETION

To validate that the frame size was set properly and that DB2 uses a 2 GB frame,
Example 2-3 issues the DISPLAY BUFFERPOOL command.

Example 2-3 DISPLAY BUFFERPOOL command to show 2 GB frame size

 DB2 COMMANDS SSID: DB1D
===>

Position cursor on the command line you want to execute and press ENTER

Cmd 1 ===> -DISPLAY BUFFERPOOL(BP4) DETAIL

Example 2-4 shows the results of the DISPLAY command. Note that the preferred frame size is
2 GB. However, no buffers have yet been allocated to the 2 GB frame because no DB2
workload has been run that uses this buffer pool since altering the size.

Example 2-4 Results of DISPLAY BUFFERPOOL command showing 2 GB frame defined

DSNB401I -DB1D BUFFERPOOL NAME BP4, BUFFERPOOL ID 4, USE COUNT 0
DSNB402I -DB1D BUFFER POOL SIZE = 600000 BUFFERS AUTOSIZE = NO
 VPSIZE MINIMUM = 0 VPSIZE MAXIMUM = 0
 ALLOCATED = 0 TO BE DELETED = 0
 IN-USE/UPDATED = 0
10 IBM DB2 11 for z/OS Technical Overview

DSNB406I -DB1D PGFIX ATTRIBUTE -
 CURRENT = YES
 PENDING = YES
 PAGE STEALING METHOD = LRU
DSNB404I -DB1D THRESHOLDS -
 VP SEQUENTIAL = 80
 DEFERRED WRITE = 30 VERTICAL DEFERRED WRT = 5, 0
 PARALLEL SEQUENTIAL =50 ASSISTING PARALLEL SEQT= 0
DSNB546I -DB1D PREFERRED FRAME SIZE 2G
 0 BUFFERS USING 2G FRAME SIZE ALLOCATED

Next, a table is created with a long row (2021 bytes in this case) that was not compressed.
For this example, 3.3 million rows are inserted into the table and then a SELECT * is issued on
the table with no WHERE clause to ensure that all the rows and all the columns on each row are
read.

After running the SQL statements, a DISPLAY BUFFERPOOL command is issued again.
Example 2-5 shows the results.

Example 2-5 Results of DISPLAY BUFFERPOOL command showing 2 GB and 1 MB frame allocation

DSNB401I -DB1D BUFFERPOOL NAME BP4, BUFFERPOOL ID 4, USE COUNT 1
DSNB402I -DB1D BUFFER POOL SIZE = 600000 BUFFERS AUTOSIZE = NO
 VPSIZE MINIMUM = 0 VPSIZE MAXIMUM = 0
 ALLOCATED = 600000 TO BE DELETED = 0
 IN-USE/UPDATED = 0
DSNB406I -DB1D PGFIX ATTRIBUTE -
 CURRENT = YES
 PENDING = YES
 PAGE STEALING METHOD = LRU
DSNB404I -DB1D THRESHOLDS -
 VP SEQUENTIAL = 80
 DEFERRED WRITE = 30 VERTICAL DEFERRED WRT = 5, 0
 PARALLEL SEQUENTIAL =50 ASSISTING PARALLEL SEQT= 0
DSNB546I -DB1D PREFERRED FRAME SIZE 2G
 524288 BUFFERS USING 2G FRAME SIZE ALLOCATED
DSNB546I -DB1D PREFERRED FRAME SIZE 2G
 19200 BUFFERS USING 1M FRAME SIZE ALLOCATED
DSNB546I -DB1D PREFERRED FRAME SIZE 2G
 56512 BUFFERS USING 4K FRAME SIZE ALLOCATED

Note that the buffer pool is defined as 600,000 buffers, which is a little more than 2 GB.
Because a large enough workload was run to use more than 2 GB of buffer pool storage, DB2
allocated 524,288 pages to a 2 GB frame, which amounts to exactly 2 GB of storage. DB2
then allocated 19,200 pages to 1 MB frames, which amounts to 75 1 MB frames. The
remaining 56,512 pages were allocated to 4 KB frames.

You might have expected all the storage above 2 GB to be allocated to 1 MB frames.
However, DB2 does use some internal calculations to allocate what is left over after the 2 GB
allocation, and it does not always come out to exactly what the system has defined. For this
example, the DISPLAY VIRTSTOR,LFAREA command was run to see the maximum possible
allocation to each frame size.

Example 2-6 shows the results of the DISPLAY command. In this test case, a maximum of 100
page frames can be used for a frame size of 1 MB. Based on the internal calculation, DB2
Chapter 2. Synergy with System z 11

allocated 75 page frames of 1 MB each (19200 * 4096 / 1024 / 1024), with the remaining
56,512 pages allocated using a 4 KB frame size.

Example 2-6 D VIRTSTOR command to show the maximum allocation of 2 GB and 1 MB frames

D VIRTSTOR,LFAREA
IAR019I 18.51.21 DISPLAY VIRTSTOR 200
 SOURCE = 00
 TOTAL LFAREA = 100M , 2G
 LFAREA AVAILABLE = 20M , 0G
 LFAREA ALLOCATED (1M) = 80M
 LFAREA ALLOCATED (4K) = 0M
 MAX LFAREA ALLOCATED (1M) = 80M
 MAX LFAREA ALLOCATED (4K) = 0M
 LFAREA ALLOCATED (PAGEABLE1M) = 0M
 MAX LFAREA ALLOCATED (PAGEABLE1M) = 0M
 LFAREA ALLOCATED NUMBER OF 2G PAGES = 1
 MAX LFAREA ALLOCATED NUMBER OF 2G PAGES = 1

2.2 Synergy with IBM System z and z/OS

This section discusses interfaces that are used by DB2 11 to take advantage of the synergy
potential between the System z hardware and the z/OS operating system software. There are
a number of features in DB2 11 that use features in different versions of the z/OS operating
system. DB2 11 takes advantage of the following features available in z/OS:

� AUTOSIZE options VPSIZEMIN and VPSIZEMAX
� 1 MB page frames for DB2 execution code
� Improved performance of batch updates in data sharing
� Improved usability and consistency for security administration
� Log writing

2.2.1 AUTOSIZE options VPSIZEMIN and VPSIZEMAX

The AUTOSIZE attribute of the ALTER BUFFERPOOL command specifies whether DB2 uses
Workload Manager (WLM) services, if available, to increase the buffer pool size automatically
as appropriate.

The VPSIZEMIN and VPSIZEMAX attributes have been added to the ALTER BUFFERPOOL command
to allow more control. These attributes specify the minimum and maximum size for a buffer
pool when AUTOSIZE(YES) is in effect beyond the DB2 increase or decrease of the buffer pool
size by +/-25%. They require z/OS V2R1.

2.2.2 1 MB page frames for DB2 execution code

In z/OS V2R1, the execution code for DB2 itself can be backed by 1 MB pageable page
frames. It is available only with Flash Express configured, which can result in CPU reductions
that are associated with loading the code.
12 IBM DB2 11 for z/OS Technical Overview

2.2.3 Improved performance of batch updates in data sharing

z/OS V2.1 with IBM DB2 11 for z/OS running on zEC12 or zBC12, or later systems with
CFLEVEL 18, is planned to take advantage of the function to allow batched updates to be
written directly to disk without being cached in the coupling facility in an IBM Parallel
Sysplex®. This function can help avoid application stalls that might sometimes occur during
large concurrent batch updates.

When a page set is GBP-dependent, if GBPCACHE CHANGED is used, both COMMITs and
DEREFFED WRITEs need to write the pages to the GBP. If the I/O subsystem is slower at
casting out pages from the GBP to DASD (or to a remote site) than the rate at which deferred
writes are filling up the GBP, COMMITS are suspended and cast out operations can free
space in the GBP. Typically the deferred writes done on behalf of batch updates are the
culprit. In effect, DB2 is thrashing the coupling facility, because there is no value in having the
deferred writes be written to the GBP. DB2 11 solves this situation with the support of
changes to z/OS.

The z/OS support for this function is also available on IBM zEnterprise 196 (z196) and
zEnterprise 114 (z114) servers with CFLEVEL 17 and an MCL, and on z/OS V1.12 and z/OS
V1.13 with the PTF for APAR OA40966.

This feature is described in more detail in 5.1, “Group buffer pool write-around protocol” on
page 86.

2.2.4 Improved usability and consistency for security administration

DB2 11 for z/OS is designed to improve usability and consistency for security administration.
z/OS V2.1 RACF, when used with DB2 11, is designed to provide consistency between DB2
and RACF access controls for bind and rebind under an owner’s authorization identifier,
RACF security exit support for declared global temporary tables (DGTT), and support for
automatic authorization statement cache refreshes when RACF profiles are changed. This is
intended to make DB2 security administration easier.

Details on security enhancements can be found in Chapter 10, “Security” on page 239.

2.2.5 Log writing

As a performance improvement in DB2 11, log records are written without the need to first
space switch to the xxxxMSTR address space. To support this change, log buffers must be
moved from their current location in xxxxMSTR 31-bit private to common storage. Because
the log buffers can be large, up to 400 MB, it is not practical to move the log buffers to ECSA
because most systems would not have enough ECSA available for a single request of this
size. The log buffers are moved to 64-bit common (HCSA).

The amount of HCSA used is roughly the size of the log buffers specified by the OUTBUFF
parameter plus 15%. The SYS1.PARMLIB setting for HVCOMMON must be large enough to
accommodate this size for each DB2 11 subsystem active on an LPAR. In addition, the
buffers can reside in 1 MB page frames, if available. You might want to increase the
SYS1.PARMLIB setting for LFAREA to allow for this allocation.

IFCID 225 includes statistics for the common storage used by log manager buffers and
control structures.

This function is enabled in conversion mode (CM).
Chapter 2. Synergy with System z 13

2.3 Using zIIP speciality processors

DB2 for z/OS began using zIIP specialty processors in V8 and continued to improve total cost
of ownership (TCO) by further using zIIP engines in DB2 9 and DB2 10. DB2 11 continues
this trend by providing additional zIIP workload eligibility, as described in this section.

zIIP is designed to help free general computing capacity and lower software costs for select
DB2 workloads. The initial DB2 implementation of zIIP was targeted towards reducing the
software costs for business intelligence (BI), enterprise resource planning (ERP), and
customer relationship management (CRM) workloads on the mainframe. However, non-DB2
workloads can take advantage of zIIP as well.

The amount of redirect in each case varies based on workload characteristics.

The following DB2 11 for z/OS processing is authorized to execute on zIIP:1

� Asynchronous processing that is executed under enclave SRBs and that will be “charged”
for CPU consumption purposes to a DB2 address space (rather than to user applications),
with the exception of P-lock negotiation processing

Such zIIP eligible processing includes:

– Cleanup of pseudo deleted index entries as part of DB2 system task cleanup

– Cleanup of XML multi-version documents (available in DB2 10 for z/OS through APAR
PM72526)

– Log write and log read

� The DB2 base LOAD, REORG, and REBUILD INDEX utility processing of inline statistics
collection that DB2 directs to be executed under enclave Service Request Blocks (SRBs)2

� The DB2 base processing of the RUNSTATS utility Column Group Distribution statistics
collection that DB2 directs to be executed under enclave SRBs2

� The DB2 base LOAD utility index management processing when running LOAD REPLACE that
DB2 directs to be executed under enclave SRBs2

From the DB2 address space point of view:

� DBM1 address space

– System task performing clean up of pseudo-deleted index entries

– Portions of XML multi version documents cleanup processing (also available in DB2 10
through APAR PM72526)

– System-related asynchronous SRB processing with the exception of P-lock negotiation
processing

� MSTR address space

System related asynchronous SRB processing, such as log write or log read

� Utilities

1 This information provides only general descriptions of the types and portions of workloads that are eligible for
execution on IBM Specialty Engines (for example, zIIPs, zAAPs, and IFLs). IBM authorizes customers to use IBM
Specialty Engines only to execute the processing of eligible workloads of specific programs expressly authorized
by IBM as specified in the “Authorized Use Table for IBM Machines” provided at:
http://www.ibm.com/systems/support/machine_warranties/machine_code/aut.html
No other workload processing is authorized for execution on a Specialty Engine. IBM offers Specialty Engine at a
lower price than General Processors/Central Processors because customers are authorized to use Specialty
Engines only to process certain types or amounts of workloads as specified by IBM in the Authorized Use Table.

2 DB2 does not direct all such base utility processing to be executed under enclave SRBs.
14 IBM DB2 11 for z/OS Technical Overview

http://www.ibm.com/systems/support/machine_warranties/machine_code/aut.html

– Portions of inline statistics gathering processing during LOAD, REORG, and REBUILD index
processing

– Portions of RUNSTATS column group distribution statistics processing

– The work on elimination on NPSIs during LOAD REPLACE PART with dummy input

Refer to the IBM documentation for software and hardware requisites for zIIP at:

http://www.ibm.com/systems/z/hardware/features/ziip/about.html

zAAP on zIIP
IBM continues to support running IBM System z Application Assist Processor (zAAP)
workloads on IBM System z Integrated Information Processor (zIIP) processors (zAAP on
zIIP). z/OS V2.1 is designed to remove the restriction that prevents zAAP-eligible workloads
from running on zIIP processors when a zAAP is installed on the server. This support is
intended to help facilitate migration and testing of zAAP workloads on zIIP processors. This
support is also available with the PTF for APAR OA38829 for z/OS V1.12 and z/OS V1.13.

IBM zEnterprise EC12 is planned to be the last high-end System z server to offer support for
zAAP specialty engine processors. IBM intends to continue support for running zAAP
workloads on zIIP processors (zAAP on zIIP).

2.4 Reduced need for REORG

Starting in 2009, several product enhancements emerged that improved performance for
disorganized index and data. These enhancements provided less need to run expensive DB2
REORGs. DB2 11 continues this progress towards reducing the need for REORGs. This
section reviews what has happened since 2009 and explains features in DB2 11 that help to
further reduce the need for REORG.

In 2009 IBM and other vendors began to offer solid-state disks (SSD) for enterprise storage.
SSD has no mechanical seeks or rotational delays that are associated with disorganized
data, enabling the device to efficiently stream the data no matter how the data is organized.
Random pages are still not streamed as fast as sequential pages, but the performance gap
between random and sequential data is significantly reduced.

In 2011 IBM delivered High Performance FICON® (zHPF) support for DB2 list prefetch with
its IBM System Storage® DS8000® Licensed Machine Code (LMC) level R6.2. This support
also requires a z196 or zEC12 processor. In addition, IBM delivered FICON Express 8S
channels for these two processors. FICON Express 8S is optimized for zHPF. Using zHPF,
FICON Express 8S can read discontiguous pages faster.

R6.2 also introduced List Prefetch Optimizer to optimize the fetching of data from disk when
DB2 is using list prefetch. List Prefetch Optimizer requires zHPF. List Prefetch Optimizer is
optimal for both random pages (as is the case with a disorganized index scan) and
skip-sequential scans (as is the case with a sorted RID list). List Prefetch Optimizer is
especially good in conjunction with solid-state disks. For details, see GPFS in the Cloud:
Storage Virtualization with NPIV on IBM System p and IBM System Storage DS5300,
REDP-4682.

Furthermore, R7.2 recently delivered Flash Optimized Offering for the DS8870. It is expected
that some disorganized index scans might benefit from this support when using SSD. See the
recent announcement at:
Chapter 2. Synergy with System z 15

http://www-03.ibm.com/systems/z/hardware/features/ziip/about.html

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=8
97/ENUS113-174

The price of SSD is rapidly coming down and gaining market share. As cost reduction
happens, DB2 10 and 11 are well positioned to take advantage of this hardware to further
reduce the need for REORGs.

2.5 DFSMS storage tiers

The classic z/OS DFSMS storage hierarchy involves a three-level hierarchy. Data that is
regularly accessed is maintained on a fast drive Primary Level (Level 0) that is managed by
DFSMShsm. When the data is no longer accessed regularly, it is migrated to Migration Level
1 (ML1), which is typically on a less expensive disk drive. When the data has not been
accessed for a longer period of time, then it is migrated to Migration Level 2 (ML2), which is
typically on tape.

Figure 2-1 shows an example of the classic three-level storage hierarchy.

Figure 2-1 The classic DFSMS storage hierarchy

Over the years, typical configurations have changed to leave data on Level 0 longer and then
migrate directly to ML2, bypassing ML1. When ML2 is a Virtual Tape Server (VTS), then VTS
disk cache replaces the ML1 tier. The VTS disk cache implementation provides the following
savings:

� Eliminates MIPS required for software compression to ML1
� Eliminates DFSMShsm ML1 to ML2 processing
16 IBM DB2 11 for z/OS Technical Overview

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS113-174

Although the classic DFSMS storage hierarchy provides these benefits, this storage
management solution also have the following shortcomings:

� There is no policy-based automation for moving data within the Primary Storage Hierarchy
(Level 0)

� There is no policy-based management of Active (open) data

z/OS V2R1 DFSMS introduces a storage tiers solution. This solution provides an automated,
policy-based space management that moves data from tier to tier within the Primary (Level 0)
Hierarchy. The storage tiers solution provides the following benefits:

� It better aligns storage costs with changing business value.

� It minimizes the TCO for System z data by actively managing data on the lowest cost
storage that meets the business needs of the data.

Within the storage tiers solution, automated movement of data is provided through the
existing DFSMShsm Space Management function. Movement is referred to as a class
transition. The data that is moved remains in its original format and can be accessed
immediately after the movement is complete.

The storage tiers solution replaces ML1 with a Nearline level, which represents data that is
not at the Enterprise (Level 0) level but still needs to be accessed relatively quickly. That is, it
is not “hot” data, but it is not “frigid” data either. The data is either cool or cold, which means it
is not accessed that frequently. The storage tiers solution allows this “cool” data to be
transitioned from the Enterprise level (Level 0) to the Nearline level (Level 1) after some
specified period of time. The data that is stored in the Nearline level is still stored on DASD
and is still immediately accessible. The data is just transitioned to a different class of storage.

Figure 2-2 shows an overview of the storage tiers solution.

Figure 2-2 Storage tiers overview
Chapter 2. Synergy with System z 17

The critical enterprise data, or “hot” data as it is sometimes called, is stored on Enterprise
Level storage, or tier 0. The less critical, but still regularly accessed, data is stored on
Nearline Level storage, or tier 1. Data on the Nearline level that is not accessed in 32 days is
migrated to ML2 storage.

2.5.1 Use cases for storage tiers

The following data set examples benefit from the storage tiers solution.

One case that benefits is where the data sets are not currently eligible for migration because
they always need to be immediately accessible. In this situation, a delay while waiting for the
data set to be recalled is unacceptable. These data sets can be allocated on a particular class
of storage and then later transitioned to a less expensive class of storage for permanent
retention.

A second case that might benefit is when there are data sets that are eligible for migration
today, but there is a benefit to keeping them online for a longer period of time. In this case, it
makes sense to convert the migration of data sets to transition to a lower cost storage and
then to increase the number of days that the data sets must be unreferenced before migrating
directly to ML2.

Note that there is a difference between the HSM migrate/recall functions and class
transitions. When a data set is recalled, it is returned to the class of storage as directed by the
automatic class selection (ACS) routines, which typically is higher than where a data set
resides after a transition. When a data set transitions to a lower class of storage, it remains
there until it is transitioned again or until it migrates.

2.5.2 Setup and invocation of storage tiers

DFSMShsm Space Management processing uses policy-based automation to ensure that
volumes within the Primary Storage Hierarchy have enough free space for new data and to
ensure that data is stored at the lowest acceptable tier in the Storage Hierarchy. This function
is accomplished through the following processes:

� Data set expiration

� Migration of unreferenced data to the Migration Hierarchy

� “Class Transitions” within the Primary Hierarchy

Class Transition processing is new and is used by the storage tier solution. This processing is
integrated into the following existing DFSMShsm Space Management functions:

� Primary Space Management

� On-Demand Migration, which is a new function introduced in V1R13

This function performs space management on a volume as soon as it goes over its high
threshold. It is a replacement for on-the-hour Interval Migration processing.

� Interval Migration

When a volume is selected for space management processing due to being over a
threshold, in addition to existing expiration and migration checking, space management
functions determines if a data set is eligible to be transitioned, based on management
class criteria.
18 IBM DB2 11 for z/OS Technical Overview

SMS Management Class
The SMS Management Class provides the Class Transition policies, which include the
following components:

� Class Transition Criteria
� Serialization Error Exit
� Transition Copy Technique

Each of these policies is discussed in more detail in the sections that follow.

Class Transition Criteria
This criteria determines if and when a data set should be transitioned. This criteria includes
information about how long since the data set was created and how long since the data set
was used. In addition, there is a periodic setting that specifies that a data set should be
transitioned monthly, quarterly, or annually, regardless of the usage of the data set.

Serialization Error Exit
This exit indicates what type of special processing occurs if the data set cannot be serialized,
meaning that the data set is open and it cannot be moved. The following serialization error
exit setting options are available:

� NONE
� DB2
� CICS
� zFS
� EXIT

If the setting is DB2, the exit invokes DB2 to close and unallocate the object. If this operation
is successful, the object is serialized and moved, and DB2 is invoked to reopen the object. For
DB2 data, the data set can always be open, and special processing might be needed to
transition the data at any time. Because it is expected that data sets can be open, the default
is to not issue an error message if a data set cannot be exclusively serialized; it is just
skipped, which is similar to migration processing.

Transition Copy Technique
This technique setting indicates which copy technique is used to move the data set. The
following techniques are available:

� Standard uses standard I/O, which is the default.

� Fast Replication Preferred prefers Fast Replication. If it cannot be used, standard I/O is
used.

� Fast Replication Required requires Fast Replication. If it cannot be used, fail the data
movement. This technique requires the target volume to be in the same storage controller.

� Preserve Mirror Preferred prefers to use Preserve Mirror. This technique indicates that a
Metro Mirror primary volume is allowed to become an IBM FlashCopy® target volume. If
Preserve Mirror cannot be used, FlashCopy or standard I/O can be used.

� Preserve Mirror Required requires Preserve Mirror. The transition is performed only if the
Metro Mirror primary target volume does not go duplex pending. This parameter has no
affect if the target volume is not a Metro Mirror primary volume.

Storage Group Processing Priority
In addition to the class transition policies, the new Storage Group Processing Priority
specifies the relative order in which storage groups are processed during Primary Space
Management. To help ensure that the “receiving” storage groups have enough space for the
Chapter 2. Synergy with System z 19

data sets that are moved to them, a new storage group Processing Priority is provided. These
storage groups are assigned a higher priority. Storage Groups are processed in the order of
their priority. A higher value means a higher priority. The valid values are 1 to 100, with a
default of 50.

After DFSMShsm determines that a data set has met the Class Transition criteria specified by
the Management Class, it invokes the ACS routines to determine what the transition should
be. The ACS routines are invoked with the new ACS environment (the &ACSENVIR variable)
value of SPMGCLTR, for “space management class transition.” The following ACS routines are
invoked in the order shown:

� Storage Class
� Management Class
� Storage Group

Any or all policies can be transitioned.

The Storage Class indicates the “preferred” class of storage to which the data set is allocated.
If the storage class changes but the storage group remains the same and if a device matching
the new storage class attributes cannot be selected, the data set is not moved.

When a new management class is assigned, DFSMShsm begins using the newly assigned
policies to manage the data set. If only the management class changes, the data set is
altered to assign it to the new management class, and no data movement is performed.

During processing of the Storage Group routine, from 1 to 15 storage groups can be returned.
The storage administrator ensures that a different storage group name provides a meaningful
transition.

When DFSMShsm determines that a data set should be moved for a Class Transition,
DFSMSdss is invoked to perform a Logical COPY with the DELETE command. In this case,
DFSMSdss is the full data mover, unlike migrate/recall and backup/recover processing where
DSS is only the half data mover. DFSMSdss handles the Copy Technique and Exit
processing. After the movement, the data set retains all existing attributes and can be
immediately accessed.

The ICF catalog is updated as a part of the movement. No new DFSMShsm control data set
records are created for transitions; however, new functional statistics record (FSR) type 24 is
created for reporting purposes.

2.5.3 Use cases for DB2

Possible use cases for storage tiers for DB2 data are cases where the data is partitioned and
the data is date or time dependent and the latest data is always added to the end. For
example, if a table is defined as partitioned by range (PBR) and the partitioning key is defined
as a date or time stamp, you can design it such that each partition held one month’s worth of
data. If the most frequently accessed data is data within the last 60 days, you can set up
storage tiers such that the partition that contains the current month’s data is on Primary
storage, and the two partitions that contain the prior two month’s data are on Nearline
storage. All data prior to those months are on Migration Level 2 storage.

A similar scenario can be made for partition by growth (PBG) table spaces, with the
assumption that newly added partitions contain the data for which there is the most interest.
20 IBM DB2 11 for z/OS Technical Overview

2.6 Additional System z enhancements

The following additional enhancements to the System z hardware and software platform also
provide benefits to DB2 for z/OS.

2.6.1 Enhancing DB2 BACKUP SYSTEM solution

DB2 11 enables recovery of single pageset from DB2 system-level backup even if original
volume does not have sufficient space and enables exploitation of FlashCopy consistency
group for DB2 BACKUP SYSTEM. It also enables restoration of a pageset to a different
name.

FRBACKUP COPYPOOL with consistency allows you to create a backup of the log copypool
with consistency. Prior to DB2 11, you need a conditional restart of DB2 with a log truncation
point that corresponds to the data complete LRSN of the system-level backup. The
conditional restart is needed to compensate for the fuzziness of the backup of the log
copypool. If the backup of the log copy pool is taken with consistency, you no longer need to
do a conditional restart of DB2.

You can use the FlashCopy Consistency Group function to minimize application impact when
making consistent copies of data spanning multiple volumes. The procedure consists of
freezing the source volume during each volume copy operation and thawing the frozen
volumes using the CGCREATED command after a FlashCopy Consistency Group is formed.
During the time period between the first and the last volumes are frozen, no dependent write
updates occur, which allows a consistent copy of logically related data that spans multiple
volumes.

2.6.2 z/OS DFSMS VSAM RLS for z/OS catalog support

In a Parallel Sysplex environment, z/OS V2.1 extends support for the VSAM record-level
sharing (RLS) environment to catalogs to allow improvements to both single-system and
shared catalog performance.

DB2 9 and above can see improved DB2 data set open/close performance.

2.6.3 DDF Synchronous Receive support

DB2 10 currently uses Asynchronous Receive, which requires extra SRB dispatching. DB2 11
uses the z/OS 1.13 Communication Server services for synchronous receive. The benefits
are reduced CPU for DIST address space, especially for high performance DBATs or long
running transactions.

No application changes or binds are required.

2.6.4 zEnterprise Data Compression

zEnterprise Data Compression (zEDC) for z/OS V2.1, a priced optional feature of z/OS that
runs on zEC12 and zBC12 systems with the zEDC Express adapter, is designed to support a
new data compression function. This facility is designed to provide high-performance,
low-latency compression without significant CPU overhead. Initially, z/OS allows you to
specify that SMF data written to log streams be compressed, which is expected to reduce
disk storage requirements for SMF data and reduce SMF and System Logger CPU
Chapter 2. Synergy with System z 21

consumption for writing SMF data. For more information about this function, see Subsystem
and Transaction Monitoring and Tuning with DB2 11 for z/OS, SG24-8182.

Further support for zEDC is also planned. Corresponding support in the SMF dump program
IFASMFDL is designed to support both hardware-based and software based decompression,
and software-based decompression support is available on z/OS V1.12 and z/OS V1.13 with
the PTF for APAR OA41156. This function allows higher write rates for SMF data when
hardware compression is enabled. IBM RMF™ support for hardware compression includes
SMF Type 74 subtype 9 records and a Monitor I PCIE Activity report that provides information
about compression activity on the system.

In addition, plans are to make the BSAM and QSAM access methods available by the end of
the first quarter of 2014. These functions can help you save disk space, improve effective
channel and network bandwidth without incurring significant CPU overhead, and improve the
efficiency of cross-platform data exchange.

Plans are also to provide support for DFSMSdss to take advantage of zEDC by the end of the
third quarter 2014. This function is designed to be available for dumping and restoring data
and also when DFSMShsm uses DFSMSdss to move data. This function can provide efficient
compression with lower CPU overheads than the processor- and software-based
compression methods currently available.
22 IBM DB2 11 for z/OS Technical Overview

Chapter 3. Scalability

Business resiliency is a key component of the value proposition of DB2 for z/OS and the
System z platform, supporting your efforts to keep your business running even when the
workload keeps growing or you need to make changes. DB2 11 innovations drive new value
in resiliency through scalability improvements and fewer outages—planned or unplanned.

The most important scalability enhancement delivers the ability to switch to a longer log RBA
and LRSN value. This allows for logging capability that should cover you for the next decades
even with growth at more than historic rates.

This chapter describes the following:

� Extended RBA and LRSN
� NOT LOGGED for declared global temporary tables
� More open data sets (DSMAX)
� PBG mapping tables to lift the 64 GB limit

3

© Copyright IBM Corp. 2013. All rights reserved. 23

3.1 Extended RBA and LRSN

Since the initial version of DB2, the relative byte address (RBA) of log records has been 6
bytes. This size provides 256 TB of log record addressing capacity over the life of a DB2
non-data sharing subsystem. In DB2 environments with high logging volumes, there have
been several cases where users have exhausted DB2’s logging capacity. When this happens,
DB2 initially issues DSNJ032E and DSNJ033E warning messages and eventually terminates
if you do not address the situation.

The following sections describe the current, basic format, RBA, and the enabling of the DB2
11, extended format RBA/LRSN:

� Reaching the end of the basic RBA
� The new 10 byte RBA and LRSN
� Considerations before converting to extended format
� Steps for enabling the extended RBA/LRSN format
� Converting the BSDS
� NOT LOGGED for declared global temporary tables
� Converting data from 6 byte to 10 byte RBA/LRSN or vice versa
� Additional considerations regarding utilities

3.1.1 Reaching the end of the basic RBA

When the end of the log RBA range is reached, you must take manual recovery actions to
reset the RBA back to zero.

You also need to reset the PGLOGRBA values in every page for all objects. This change
necessitates an extended outage.

For data sharing, the process is less intrusive, and involves shutting down the affected
member and starting a new member to take its place. Data sharing is less intrusive because
PGLOGRBA contains an log record sequence number (LRSN), which is a 6-bite value
derived from the TOD clock value to be used for all members of the data sharing group. This
value will not run out until the year 2042.

Data sharing customers who have disabled and re-enabled data sharing can have LRSN
values “in the future” with respect to the TOD clock. This is, because during the re-enable
process, DB2 records an LRSN “delta” value in the BSDS which gets added to the TOD clock
value to derive the LRSN.

Another way that you end up with an LRSN value that is “in the future” is when you enable
data sharing for a subsystem that has a RBA value that is numerically greater than the current
TOD clock value. This might be done when a non data sharing system is approaching the
end-of-range of its RBA, so enabling data sharing can yield a few extra years before the
problem must be dealt with.

Therefore, some customers will run out of LRSN range well before 2042.

Note: The LRSN delta only occurs if the RBA of the originating member is higher than the
STCK value at the moment data sharing is turned on. The determined delta is common to
all members of a data sharing group. Its purpose is to ensure that an LRSN value is always
larger than any of the RBAs used on any member. This delta is kept in each member’s
BSDS and in the SCA.a

a. The shared communications area (SCA) is a list structure in the coupling facility.
24 IBM DB2 11 for z/OS Technical Overview

Figure 3-1 shows an example of how an LRSN delta is calculated and applied to find the real
LRSN value that is associated with the various log records. The example also shows how the
LRSN of this system would progress from August 5, 2013 to April 04, 2018 due to the
necessary delta.

Figure 3-1 LRSN delta explanation

The 6-byte LRSN provides a granularity of 16 microseconds, On faster machines, many
consecutive log records can have duplicate LRSN values. DB2 9 and DB2 10 provide
enhancements so that DB2 no longer has to ‘spin’ in the Log Manager to avoid duplicate
LRSNs for most cases, but there are still some cases where CPU spinning is necessary. This
adds considerable overhead. Extending the LRSN to use more of the TOD clock precision
eliminates the need to “spin” to obtain a unique value, which improves data sharing
performance.

To address these problems, the RBA and LRSN are being expanded to 10 bytes.

The LRSN is expanded allowing for over five orders of magnitude greater granularity and over
30,000 years before the end of range is encountered. The 10 byte RBA value should be large
enough that it will take many decades to exhaust even if hardware speeds continue to
increase at their historic rates.

3.1.2 The new 10 byte RBA and LRSN

RBA and LRSN values have both been extended to 10 bytes from the previous six byte size.
For an RBA, a six byte value is converted to a ten byte value by adding zeroes to the four
most significant bytes, to the left side of the value.

Important: If you use a tool, such as the IBM z/OS Store Clock converter, keep in mind
that you have to add two bytes x’0000’ to the LRSN value that you see.

Enable data sharing on: August 05, 2013 at 10:00:00
Store Clock value for this time is: x‘CBC40A7D1C80‘ *

Assumption: Initial member operates at x‘CFFFFFFFFFFF‘

Calculate delta: x‘D00000000000‘ – x‘CBC40A7D1C80‘

LRSN delta = x‘43BF582E380 ‘

Instead of x‘CBC40A7D1C80‘, the log record uses
LRSN x‘D43BF582E380‘, which represents
April 4, 2018 at 16:49:54, which makes it operate
‘in the future‘
Chapter 3. Scalability 25

The new RBA limits
For an LRSN, the existing value has one zero byte added to the left side and three bytes
added to the right side. The three bytes on the right side can be zero or x'FF', depending on
the usage. In particular, zero padding applies to new log records that are generated, and
x'FF' padding is used for existing LRSN records that are generated. Figure 3-2 visualizes this
example.

Figure 3-2 10-byte RBA/LRSN formats

Even if you do nothing with regards to larger RBAs and LRSNs, when starting DB2 11 in
conversion mode (CM), these longer records are displayed everywhere in DB2.

As shown in Example 3-1, which lists the output of a -DIS GROUP command, subsystem DB0B
is currently running in DB2 11 CM.

Example 3-1 Output of DISPLAY GROUP command

DSN7100I -DB0B DSN7GCMD
 *** BEGIN DISPLAY OF GROUP(........) CATALOG LEVEL(111) MODE(CM)
 PROTOCOL LEVEL(2) GROUP ATTACH NAME(....)
 --
 DB2 DB2 SYSTEM IRLM
 MEMBER ID SUBSYS CMDPREF STATUS LVL NAME SUBSYS IRLMPROC
 -------- --- ---- -------- -------- --- -------- ---- --------
 0 DB0B -DB0B ACTIVE 111 SC63 ID0B DB0BIRLM
 --
 SPT01 INLINE LENGTH: 32138
 *** END DISPLAY OF GROUP(........)
 DSN9022I -DB0B DSN7GCMD 'DISPLAY GROUP ' NORMAL COMPLETION

Ten byte RBA:

0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 A B C D E F 1

New 4 bytes Old 6 bytes

Ten byte LRSN for new log record:

0 0 1 2 3 4 5 6 7 8 9 A B C D E F 1 0 0 0 0 0 0

New 3 bytesOld 6 bytes
New 1
byte

280 bytes

Supports over 30000 years

Ten byte LRSN if generated by a utility for an existing record :

0 0 1 2 3 4 5 6 7 8 9 A B C D E F 1 F F F F F F

New 3 bytesOld 6 bytes
New 1
byte

Supports over 30000 years
26 IBM DB2 11 for z/OS Technical Overview

All messages, log records, and so on are already handling the RBA in the 10 byte, the
extended format.

Example 3-2 shows the longer RBA values in the messages of the starting MSTR address
space.

Example 3-2 Ten byte RBA in MSTR in CM

. .
 Display Filter View Print Options Search Help

 SDSF OUTPUT DISPLAY DB0BMSTR STC03760 DSID 2 LINE 26 COLUMNS 21- 100
 COMMAND INPUT ===> SCROLL ===> CSR
DSNY001I -DB0B SUBSYSTEM STARTING
DSNJ127I -DB0B SYSTEM TIMESTAMP FOR BSDS= 13.190 06:32:16.83
DSNJ001I -DB0B DSNJW007 CURRENT COPY 1 ACTIVE LOG 425
DATA SET IS DSNAME=DB0BL.LOGCOPY1.DS01,
STARTRBA=0000000000002C4C0000,ENDRBA=0000000000002E67FFFF
DSNJ001I -DB0B DSNJW007 CURRENT COPY 2 ACTIVE LOG 426
DATA SET IS DSNAME=DB0BL.LOGCOPY2.DS01,
STARTRBA=0000000000002C4C0000,ENDRBA=0000000000002E67FFFF
DSNJ099I -DB0B LOG RECORDING TO COMMENCE WITH 427
STARTRBA=0000000000002C539000
S DB0BDBM1
S DB0BDIST
DSNR001I -DB0B RESTART INITIATED
DSNR003I -DB0B RESTART...PRIOR CHECKPOINT RBA=0000000000002C5339EE
DSNR004I -DB0B RESTART...UR STATUS COUNTS 442
IN COMMIT=0, INDOUBT=0, INFLIGHT=0, IN ABORT=0, POSTPONED ABORT=0
DSNR005I -DB0B RESTART...COUNTS AFTER FORWARD 443
 F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE
.....

Example 3-3 shows an extract of the archive log. The RBA and LRSN hexadecimal values
appear in the expanded format.

Example 3-3 Log record in CM

DSN1LPRT UR CONNID=DB0B CORRID=021.OPNLGR00 AUTHID=SYSOPR PLAN=SYSTEM
 START DATE=00.162 TIME=21:40:02 DISP=COMMITTED INFO=COMPLETE
 STARTRBA=0000000000003DB1827A ENDRBA=0000000000003DB18658
 STARTLRSN=00CBC49885F1B4000000 ENDLRSN=00CBC49885F1D6000000
 NID=* LUWID=USIBMSC.SCPDB0B.CBC49885F1A9.0001
 COORDINATOR=* PARTICIPANTS=*
 DATA MODIFIED:
 DATABASE=0001=DSNDB01 PAGE SET=00CF=SYSLGRNX
 DATABASE=0001=DSNDB01 PAGE SET=0087=DSNLLX01
 DATABASE=0001=DSNDB01 PAGE SET=0086=DSNLLX02

You see all these extended format RBAs and LRSNs but you are not yet actually using its
functionality.

The new page format for larger RBA and LRSN
Because the RBA for non-data sharing or the LRSN for data sharing that correspond to the
last logged update to a page (table or index page) are stored in a fixed six byte location in
Chapter 3. Scalability 27

each page (PGLOGRBA), the format of the pages needs to change to accommodate the new,
larger value. This format is supported in New Function Mode (NFM), ENFM*, and CM*, that
is, any mode that does not support coexistence with or fall back to an earlier release.

The terms basic format and extended format refer to objects that are in the 6 byte and 10 byte
PGLOGRBA formats, respectively. An object can be converted to and from EXTENDED format by
using the REORG, REBUILD, or LOAD REPLACE utilities.

Refer to Example 3-4 for the changed layout of the header page.

Example 3-4 DSN1PRNT of a header page in extended format

PAGE: # 00000000
--
 HEADER PAGE: PGCOMB='10'X PGBIGRBA='0000000000014AC0F7C7'X PGNUM='00000000'X PGFLAGS='38'X
 HPGOBID='01340005'X HPGHPREF='00000002'X HPGCATRL='00'X HPGREL='D7'X HPGZLD='00'X
 HPGCATV='00'X HPGTORBA='000000000000'X HPGTSTMP='20130725163247762845'X
 HPGSSNM='DB1A' HPGFOID='0004'X HPGPGSZ='1000'X HPGSGSZ='0004'X HPGPARTN='0000'X
 HPGZ3PNO='000000'X HPGZNUMP='00'X HPGTBLC='0001'X HPGROID='0006'X
 HPGZ4PNO='00000000'X HPGMAXL='0059'X HPGNUMCO='000E'X HPGFLAGS='0008'X
 HPGFLAGS2='00'X HPGFLAGS3='80'X HPGCONTM='20130807162852039670'X
 HPGSGNAM='SYSDEFLT' HPGVCATN='DB1AD ' HPGRBRBA='000000000000'X
 HPGLEVEL='000000000000'X HPGPLEVL='000000000000'X HPGCLRSN='000000000000'X
 HPGSCCSI='0025'X HPGDCCSI='0000'X HPGMCCSI='0000'X HPGDSSZ='00200000'X
 HPGFLAG2='00'X HPGEPOCH='0000'X HPGRBLP='000000000000'X HPGDNUMB='1F'X
 HPGDNUMC='0007'X HPGDFSG='00000000'X HPGDLSG='00000000'X HPGSISP='00000000'X
 HPGBIGTORBA='00000000000000000000'X HPGBIGRBRBA='0000000000014ABD9979'X
 HPGBIGLEVEL='00000000000000000000'X HPGBIGPLEVL='00000000000000000000'X
 HPGBIGCLRSN='0000000000014AC0F7C7'X HPGBIGRBLP='00000000000000000000'X FOEND='52'X

For your convenience, Example 3-5 also shows the header page of a table space that is still in
basic format.

Notice the difference highlighted in blue in both outputs. The extended format header page
has seven new fields at the bottom of the page, which all contain the three letters BIG in the
field names. In addition, PGLOGRBA is changed to PGBIGRBA, which can now hold the 10 byte
RBA.

Also notice that the FOEND field at the end of the page contains a character if the page set is
still stored and worked within basic format. If it is converted to extended format, it contains a
hexadecimal value.

Example 3-5 DSN1PRNT of a header page in basic format

PAGE: # 00000000 --
 HEADER PAGE: PGCOMB='00'X PGLOGRBA='0000044F9766'X PGNUM='00000000'X PGFLAGS='38'X
 HPGOBID='01120002'X HPGHPREF='0000001A'X HPGCATRL='00'X HPGREL='D6'X HPGZLD='00'X
 HPGCATV='00'X HPGTORBA='000000000000'X HPGTSTMP='20110428113926841184'X
 HPGSSNM='DB0B' HPGFOID='0001'X HPGPGSZ='1000'X HPGSGSZ='0004'X HPGPARTN='0000'X
 HPGZ3PNO='000000'X HPGZNUMP='00'X HPGTBLC='0002'X HPGROID='0000'X
 HPGZ4PNO='00000000'X HPGMAXL='0000'X HPGNUMCO='0000'X HPGFLAGS='0008'X
 HPGFLAGS2='00'X HPGFLAGS3='00'X HPGCONTM='20110428114327048498'X
 HPGSGNAM='DSN8G100' HPGVCATN='DB0BD ' HPGRBRBA='0000044FBDE4'X
 HPGLEVEL='0000044FBDE4'X HPGPLEVL='000000000000'X HPGCLRSN='0000044F9766'X
 HPGSCCSI='0025'X HPGDCCSI='0000'X HPGMCCSI='0000'X HPGDSSZ='00200000'X
 HPGFLAG2='00'X HPGEPOCH='0000'X HPGRBLP='000000000000'X HPGDNUMB='1F'X
 HPGDNUMC='0007'X HPGDFSG='00000000'X HPGDLSG='00000000'X HPGSISP='00000000'X
 FOEND='E'
28 IBM DB2 11 for z/OS Technical Overview

Other types of pages, such as data or dictionary pages, are different but have the same BIG
fields. You can search for PGBIG or simply check out the FOEND information. If FOEND appears in
hexadecimal, you are currently looking at a page set that has been converted to EXTENDED
format.

3.1.3 Considerations before converting to extended format

Partitioned tables and indexes can be converted one partition at a time. You do not need to
convert all partitions at the same time, except for PBG hashed table spaces that require the
entire table to be REORGed when being converted. XML tables with 8 byte version IDs must
also have all partitions converted at the same time. Also, CLONE tables cannot be converted
until the clone is dropped. The SYSINDEXPART and SYSTABLEPART catalog tables include an
indicator of what format the partition is expected to be in.

This value is not guaranteed to be accurate because DSN1COPY can cause the format to
change without updating the catalog. Therefore, this value is for informational purposes only,
such for determining what objects might or might not have been converted to the new format.
You can use the REPAIR utility to correct the format column, if it is incorrect. Utilities that
change the format of the object also update the catalog columns.

The soft and hard limit
There are two logging limits that impact SQL and utility processing. These log limits are
expressed as RBAs in non-data sharing and as LRSNs time-derived values in data sharing.
For data sharing, the RBA value triggers warning messages from the log manager, but it does
not affect utilities behavior because the LRSN value is used instead of the RBA value in
database objects.

Warning messages already existed in DB2 10 for a subsystem that is approaching the end of
its RBA range. When the subsystem reaches the critical threshold, the subsystem is
terminated and can be restarted only in LIGHT mode or with ACCESS(MAINT). The same
applies when approaching the end of the LRSN range.

A warning message is issued starting approximately one year before the LRSN range will be
exhausted and is reissued for every log switch. At about two months before the end of the
LRSN range, the soft limit processing begins (as described in the next section). At about two
weeks before the end of the LRSN range, the subsystem terminates and can be started only
in LIGHT mode or with ACCESS(MAINT) until the BSDS is converted. If the BSDS is not
converted to the new format and if the LRSN has exceeded the 6 byte maximum, the
subsystem is not allowed to restart until the BSDS is converted.

The soft limit
This limit occurs at RBA 'FFF800000000'x or at an LRSN approximately two months before
the 6 byte capacity is exhausted. This advisory limit, also known as the soft limit, marks the
beginning of new utility behaviors for any utility that updates a BASIC format object. The new
behaviors at this limit are as follows:

� Objects in basic 6 byte format are available for read-only access. Attempts to update these
objects are rejected. If you need to update table spaces and indexes that have reached
the soft limit, you need to convert them to extended 10 byte format.

� As a general rule, with exceptions noted in the final item in this list, utilities that attempt to
log an update of a BASIC page set fail with a DSNT500-style resource unavailable error
and the '00C2026D'x reason code.
Chapter 3. Scalability 29

� The following catalog table spaces, and their indexes, are heavily used by utilities. If these
table spaces are in BASIC format at the soft limit, utilities are significantly impacted and in
many cases unusable.

– DSNDB01.SYSUTILX
– DSNDB06.SYSTSCPY
– DSNDB01.SYSLGRNX

� If you cannot use a utility while in this phase but if this utility did not change the format of
the page set from BASIC to EXTENDED (that is, left it in BASIC format), the page set is
available only for read-only access.

� The following utilities are not affected by the restrictions that are put in place after the soft
limit is reached:

– Utilities that do not have a target object, such as STOSPACE
– Utilities that do not update the target object, such as REPORT
– Utilities that are in the process of converting page sets to the EXTENDED format
– Utilities that are invoked against EXTENDED format page sets
– Utilities that open the output object as non-recoverable

The hard limit
The actual logging limit occurs when the RBA or LRSN no longer fits in 6 bytes. At this time,
the soft limit restrictions remain in place. In addition, you must convert the BSDS to start DB2.
If BSDS is not converted, the attempt to start DB2 fails. As a consequence, you cannot use
any online utilities.

New subsystem parameters for extended RBA
The following subsystem parameters are related to the extended RBAs and LRSNs when
dealing with DB2 objects:

� OBJECT_CREATE_FORMAT
� UTILITY_OBJECT_CONVERSION

OBJECT_CREATE_FORMAT
The OBJECT_CREATE_FORMAT subsystem parameter specifies whether DB2 creates new table
spaces and indexes to use a basic or extended log record format.

The acceptable values are BASIC and EXTENDED. The default value depends on whether a
subsystem is newly installed in DB2 11 or migrated from DB2 10. The default value is
EXTENDED for the newly installed DB2 and BASIC for migration.

� BASIC

New table spaces and indexes are created with a maximum of 256 TB of log record
addressing capacity over the life of a DB2 subsystem, or a maximum log record sequence
number (LRSN) of 2**48 over the life of a DB2 data-sharing group. Use BASIC if you intend
to use this instance of DB2 to copy or recover data from an instance of DB2 that does not
support the EXTENDED format. However, after the 6 byte logging limit is exceeded, all new
objects are created in EXTENDED format.

Important: When your DB2 subsystem hits the soft limit and the DSNDB06.SYSTSCPY
table space is still in BASIC format, you cannot run the RECOVER utility for any table space
any longer. The RECOVER command always records its execution in SYSIBM.SYSCOPY,
which is stored in this table space.
30 IBM DB2 11 for z/OS Technical Overview

� EXTENDED

New table spaces and indexes are created with a maximum of 1 YB (yottabyte1) of log
record addressing capacity over the life of a DB2 subsystem or a maximum LRSN of 2**80
over the life of the DB2 data-sharing group. This setting is the default. Use this setting in
either of the following situations:

– When DB2 is likely to exhaust the basic log format. This setting is required to update
database objects if the DB2 log RBA exceeds 2**48 for non-data-sharing environments
or if the LRSN exceeds x'FFFFFFFFFFFF' for data-sharing environments.

– In data-sharing environments only, when duplicate LRSN values occur because the
processing speed exceeds the precision of the traditional log addressing format.

There is no way of overriding this setting with any keyword in the DDL syntax.

UTILITY_OBJECT_CONVERSION
The value of the UTILITY_OBJECT_CONVERSION parameter specifies whether DB2 utilities that
accept the RBALRSN_CONVERSION option convert existing table spaces and indexes to 6 byte
page format, to a 10 byte page format, or perform no conversion.

The following values are acceptable for this parameter:

� BASIC

Existing table spaces and indexes that use extended 10-byte page format are converted to
basic 6-byte page format. The BASIC option is allowed only if the OBJECT CREATE FORMAT
field is also set to BASIC.

� EXTENDED

Existing table spaces and indexes that use 6-byte page format are converted to extended
10-byte page format. The EXTENDED option is allowed only if the OBJECT CREATE FORMAT
field is also set to EXTENDED.

� NOBASIC

Existing table spaces and indexes that use 6-byte page format are converted to extended
10-byte page format. Table spaces and indexes that already use extended 10-byte page

1 The byte units are: Kilobyte ·Megabyte ·Gigabyte ·Terabyte ·Petabyte ·Exabyte ·Zettabyte ·Yottabyte

Important: In conversion mode, basic 6 byte format is used regardless of the setting of this
parameter.

Important: The setting for this system parameter is ignored after you hit the hard limit.
Objects are always created in EXTENDED format in this situation.

Note: The RBALRSN_CONVERSION keyword is available for the following utility control
statements:

� REORG TABLESPACE
� REORG INDEX
� REBUILD INDEX
� LOAD

When you specify this keyword in the utility control statement, it generally overrides the
current setting of the subsystem parameter unless set to NOBASIC (see Table 3-1 on
page 37).
Chapter 3. Scalability 31

format cannot be returned to the 6-byte page format. When this setting is in effect, utilities
that specify the RBALRSN_CONVERSION keyword with BASIC fail. In addition, utilities that
specify RBALRSN_CONVERSION keyword with NONE when the object is in 6-byte page format
fail. The NOBASIC value is allowed in this field only if the OBJECT CREATE FORMAT field is set
to EXTENDED.

� NONE (default)

No conversion is performed. This option is the default setting of this parameter. The NONE
option is allowed regardless of the OBJECT CREATE FORMAT setting.

Conversion from six to 10 byte RBA and LRSN and vice versa is only possible in NFM.

3.1.4 Steps for enabling the extended RBA/LRSN format

To fully enable the extended RBA/LRSN format, you need complete the following important
tasks in NFM for DB2 11. Although you should run the BSDS conversion first, to improve
performance, you can complete the other tasks in any order.

� Convert the BSDS records to support EXTENDED format (install job DSNTIJCB), as
described 3.1.5, “Converting the BSDS” on page 32.

This conversion causes outage for non-data-sharing subsystems. You need to plan for
stopping DB2 and running the DSNTIJCB. It is a fast execution.

In data sharing, you can convert a member at the time and avoid outage.

� Convert the DB2 catalog and directory table spaces and indexes to extended format, as
described in 3.1.6, “Converting DB2 catalog and directory” on page 35, and then install
the DSNTIJCV job.

This task is mainly a REORG SHRLEVEL CHANGE, because it causes no outage. Furthermore,
you can break the DSNTIJCV job logically by object and execute it a bit at the time if
necessary.

� Convert the user data, as described in “The new page format for larger RBA and LRSN”
on page 27 and 3.1.7, “Converting data from 6 byte to 10 byte RBA/LRSN or vice versa”
on page 36.

You also need to decide which DSNZPARM option to use. See “New subsystem parameters for
extended RBA” on page 30. In addition, keep an eye on the extended RBA disk space
increase.

3.1.5 Converting the BSDS

The first step towards being able to use the extended RBA/LRSN format is to run the
DSNJCNVT stand-alone utility for BSDS conversion. Running DSNJCNVT is optional and can be
done any time after migrating to DB2 11 New Function Mode (NFM) if you are not
approaching the end of the 6 byte range. The conversion is required during the DB2
installation if the RBA or LRSN is approaching the end of the 6 byte range.

Important: If you use the NOBASIC value, you prevent the user from overriding the
system parameter setting with the utility control statement.

Important: After migrating to NFM, check the RBA situation and decide if migration to
extended RBS/LRSN is needed.
32 IBM DB2 11 for z/OS Technical Overview

For a data-sharing installation, if the LRSN is approaching the end of the 6 byte range, the
BSDS of each member can be converted one at a time. If the RBA or LRSN are approaching
the end of the 6 byte range, you need to convert the database objects also. They become
read-only when the end of the range is reached.

Considerations for running DSNJCNVT
Keep in mind the following considerations when running the DSNJCNVT stand-alone utility:

� You must stop the DB2 subsystem that owns the BSDSs that are to be converted.
DSNJCNVT is a stand-alone utility.

� In a data-sharing environment, allow DB2 utilities that read the logs of peer members to
finish before converting the BSDSs.

� In a data-sharing environment, stop data replication products before the conversion to
ensure that the old BSDSs can be successfully renamed and replaced by the converted
BSDSs. The preferred procedure is to stop the replication product first and then stop the
DB2 system that is to have its BSDSs converted. This procedure allows sharing systems
to deallocate the BSDSs when the state of the member changes to inactive.

� The RACF user ID that is running DSNJCNVT must have read/write access to the new
BSDSs and read access to the old BSDSs.

� The DB2 subsystem that owns the BSDS that is to be converted must start after the data
sharing group was migrated to DB2 11 NFM.

� Conversion to the new BSDS format is required to write new format log records and
remove the 6 byte RBA and LRSN limits.

Sample DSNJCNVT JCL
The statements in Example 3-6 specify that DSNJCNVT stand-alone utility is to convert the
BSDS to support 10 byte RBA and LRSN fields.

Example 3-6 DSNJCNVT control statement

//CONVERT EXEC PGM=DSNJCNVT,REGION=64M
//SYSUT1 DD DSN=DB2A.OLD.BSDS01,DISP=SHR
//SYSUT2 DD DSN=DB2A.OLD.BSDS02,DISP=SHR
//SYSUT3 DD DSN=DB2A.BSDS01,DISP=OLD
//SYSUT4 DD DSN=DB2A.BSDS02,DISP=OLD
//SYSPRINT DD SYSOUT=*

DSNJU004 to check if conversion has run
You can use the Print Log Map (DSNJU004) stand-alone utility to check if the conversion for a
specific subsystem or member was performed. See the JCL shown in Example 3-7.

Example 3-7 DSNJU004 JCL

//DSNTLOG EXEC PGM=DSNJU004
//STEPLIB DD DISP=SHR,DSN=your.SDSNEXIT
// DD DISP=SHR,DSN=your.SDSNLOAD
//SYSUT1 DD DISP=SHR,DSN=your.BSDS01
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
//*
Chapter 3. Scalability 33

The resulting messages are shown in Example 3-8. The line marked in bold in this example
indicates that for the DB2 subsystem the conversion has not been run yet.

Example 3-8 DSNJU004 output showing if DSNJCNVT has run

DSNJCNVB CONVERSION PROGRAM HAS RUN DDNAME=SYSUT1
DSNJCNVT CONVERSION PROGRAM HAS NOT RUN DDNAME=SYSUT1
 LOG MAP OF BSDS DATA SET COPY 1, DSN=DB0BB.BSDS01
 LTIME INDICATES LOCAL TIME, ALL OTHER TIMES ARE GMT.
 DATA SHARING MODE IS OFF
 SYSTEM TIMESTAMP - DATE=2013.217 LTIME=12:27:14.79
 UTILITY TIMESTAMP - DATE=2013.178 LTIME= 8:13:30.76
 VSAM CATALOG NAME=DB0BD
 HIGHEST RBA WRITTEN 0000000000003DB21472 2013.217
 HIGHEST RBA OFFLOADED 0000000000003DB21FFF
 RBA WHEN CONVERTED TO V4 00000000000000000000

Install job DSNTIJCB
The DSNTIJCB new installation job applies the needed changes to the BSDS. It includes the
following job steps:

DSNTDEF Activates IDCAMS to define new BSDS data sets with CLUSTER, DATA,
and INDEX components under the temporary names
prefix.BSDS01.NEW and prefix.BSDS02.NEW.

DSNTCNVT Activates DSNJCNVT to read records from the existing BSDS, converts
them to support the extended RBA and LRSN format, and writes them
into the prefix.BSDS01.NEW and prefix.BSDS02.NEW data sets.

DSNTRENO Renames the existing BSDS data sets to backup names,
prefix.BSDS01.OLDFMT and prefix.BSDS02.OLDFMT.

DSNTRENN Renames prefix.BSDS01.NEW and prefix.BSDS02.NEW to
prefix.BSDS01 and prefix.BSDS02.

The job completes with return code zero. The following message displays in the job log:

IDC0002I IDCAMS PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS 0
DSNJ200I DSNJCNVT CONVERT UTILITY PROCESSING COMPLETED SUCCESSFULLY FOR MEMBER
DB1A

After the BSDS is converted, the physical log records are written in the new format. A larger
log record header (LRH) is required for the larger RBA and LRSN values, and there are
changes to the format of the log data sets as well (collectively called new format logs).
Members of a data sharing group can be converted one at a time and can run with a mix of
converted and not converted members is supported.

Important: if you want the new BSDS format, you need to convert to it in NFM regardless
of whether you installed or migrated to DB2 11.

Note: Looking at the DSNJU004 output, RBAs and LRSNs already are shown in a 10 byte
format. The DSNJU004 stand-alone utility, as most DB2 externalization functions, uses the
extended format, but DB2 still stores the RBAs and LRSNs as 6 byte values until the
conversion is completed. The conversion changes the CI size for existing BSDSs from
4 KB to 8 KB so that it can accommodate the larger record sizes.
34 IBM DB2 11 for z/OS Technical Overview

3.1.6 Converting DB2 catalog and directory

Because catalog and directory are composed of table and index spaces, you have to change
the RBA/LRSN formats for those also. You need to distinguish between subsystems, which
are newly installed in DB2 11, and those that are migrated from DB2 10.

New installations
For new installations all catalog and directory table spaces and indexes are always created in
the extended object format. The setting of OBJECT_CREATE_FORMAT system parameter is not
honored for catalog and directory objects. As a result, if you query the catalog of a newly
installed subsystem, the RBA_FORMAT column of SYSIBM.SYSTABLEPART and
SYSIBM.SYSINDEXPART contains value ‘E’ for all catalog and directory objects.

Migrated subsystems
The tables that are newly created in CM are as follows:

NAME TSNAME
---------+---------+---------+
SYSOBD_AUX SYSTSOBX
SYSQUERYPREDICATE SYSTSQRE
SYSQUERYSEL SYSTSQRS
SYSVARIABLES_DESC SYSTSVAD
SYSVARIABLEAUTH SYSTSVAU
SYSINDEXCLEANUP SYSTSIXC
SYSSTATFEEDBACK SYSTSSFB
SYSVARIABLES SYSTSVAR
SYSVARIABLES_TEXT SYSTSVAT

All the table spaces holding these tables are created using the BASIC format. You can verify
this RBA_FORMAT browsing column in SYSIBM.SYSTABLEPART. The associated indexes are in
basic format as well, because the EXTENDED format for page sets and for the BSDS is available
only in NFM.

DSNTIJCV
DB2 11 introduces the DSNTIJCV new installation job for catalog conversion, which is
customized during the ENFM installation/migration job generation.

You can use the DSNTIJCV installation job to convert the DB2 catalog and directory table
spaces and their indexes to extended RBA/LRSN format. You need to be in NFM when you
run this job. Do not rearrange the processing sequence and the table space grouping in this
job. The COPY and REORG steps use LISTDEF filtering to exclude table spaces that are
already in extended format, because they have been converted previously.

The main objective of the DSNTIJCV job is to migrate the catalog and directory to EXTENDED
format. However, you can also it to change the catalog and directory back from EXTENDED
format to BASIC format.

The following list shows a detailed description of the job steps as described in the job prolog:

JCVTRM00 STEP TERMINATE PENDING UTILITIES FOR THIS JOB

Tips: The conversion only takes a few seconds. In addition, if the conversion fails, you can
restart DB2 with the old BSDS while you resolve the problem of the failure. You can test the
conversion with a copy of the BSDS before you really convert the actual BSDS.
Chapter 3. Scalability 35

JCVCVT01 STEP CONVERT SYSUTILX DIRECTORY TABLE SPACE
JCVCPY01 STEP IMAGE COPY THE CONVERTED SYSUTILX TABLE SPACE
JCVCPY02 STEP IMAGE COPY THE SYSLGRNX TABLE SPACE
JCVCVT02 STEP CONVERT THE FORMAT OF THE SYSLGRNX TABLE SPACE
JCVCPY03 STEP COPY OTHER DIRECTORY TABLE SPACES TO BE CONVERTED
JCVCVT03 STEP CONVERT THE OTHER DIRECTORY TABLE SPACES
JCVCPY04 STEP COPY THE DIRECTORY LOB TABLE SPACES
JCVCVT04 STEP CONVERT THE DIRECTORY LOB TABLE SPACES
JCVCPY05 STEP COPY THE SYSTSCPY CATALOG TABLE SPACE
JCVCVT05 STEP CONVERT THE SYSTSCPY CATALOG TABLE SPACE
JCVCPY06 STEP COPY OTHER CATALOG TABLE SPACES TO BE CONVERTED (PART 1)
JCVCVT06 STEP CONVERT OTHER CATALOG TABLE SPACES (PART 1)
JCVCPY07 STEP COPY RELATED CATALOG LOB TABLE SPACES (PART 1)
JCVCVT07 STEP CONVERT RELATED CATALOG LOB TABLE SPACES (PART 1)
JCVCPY08 STEP COPY OTHER CATALOG TABLE SPACES TO BE CONVERTED (PART 2)
JCVCVT08 STEP CONVERT OTHER CATALOG TABLE SPACES (PART 2)
JCVCPY09 STEP COPY RELATED CATALOG LOB TABLE SPACES (PART 2)
JCVCVT09 STEP CONVERT RELATED CATALOG LOB TABLE SPACES (PART 2)
JCVCPY10 STEP COPY OTHER CATALOG TABLE SPACES TO BE CONVERTED (PART 3)
JCVCVT10 STEP CONVERT OTHER CATALOG TABLE SPACES (PART 3)
JCVCPY11 STEP COPY RELATED CATALOG LOB TABLE SPACES (PART 3)
JCVCVT11 STEP CONVERT RELATED CATALOG LOB TABLE SPACES (PART 3)
JCVCPY12 STEP COPY OTHER CATALOG TABLE SPACES TO BE CONVERTED (PART 4)
JCVCVT12 STEP CONVERT OTHER CATALOG TABLE SPACES (PART 4)
JCVCPY13 STEP COPY RELATED CATALOG LOB TABLE SPACES (PART 4)
JCVCVT13 STEP CONVERT RELATED CATALOG LOB TABLE SPACES (PART 4)

3.1.7 Converting data from 6 byte to 10 byte RBA/LRSN or vice versa

The most obvious way to convert the RBA/LRSN format of an existing page set from 6 bytes
to 10 bytes are the REORG TABLESPACE and REORG INDEX utilities.

You can convert a partitioned table space index one part at a time with the following
exceptions:

� PBG table spaces that are organized by hash must be converted at table space level, that
is all parts in one REORG job.

� Tables with 8 byte XML version IDs must also be converted at the table level.

� Tables that are in an active clone relationship cannot be converted. You must drop the
clone first.

Important: The catalog and directory are special DB2 objects. Carefully watch your
subsystems RBAs and LRSNs. Definitely make sure that you do not hit the hard limit with
the catalog and directory not being migrated to the EXTENDED format. The ability of utilities
to convert, especially the SYSUTILX, SYSTSCPY, and SYSLGRNX utilities to the EXTENDED format
after you hit the hard limit, is more restricted than for any other page set. It might occur that
you cannot convert these objects using regular utilities, and you might be forced to follow a
manual procedure to reset RBA and LRSN for your subsystem.

Tip: Make sure you closely watch for messages about potential soft limit hits for your DB2
subsystem. Consider a timely conversion of your subsystem’s BSDSs before you run into
major problems and convert the catalog directory early enough to avoid major problems
with hitting the hard limit.
36 IBM DB2 11 for z/OS Technical Overview

The REORG INDEX and REORG TABLESPACE utilities
The REORG TABLESPACE and REORG INDEX utilities in SHRLEVEL REFERENCE or NONE have three
new utility control statements that influence if and how an RBA/LRSN conversion is
performed during the utility execution.

The UTILITY_OBJECT_CONVERSION DSNZPARM setting is used when the utility control statement
does not specify the RBALRSN_CONVERSION keyword with the following options:

BASIC Existing table spaces and indexes that use extended 10 byte page
format are converted to basic 6 byte page format. The BASIC option is
allowed only if the OBJECT CREATE FORMAT field is also set to BASIC.

EXTENDED Existing table spaces and indexes that use 6 byte page format are
converted to extended 10 byte page format. The EXTENDED option is
allowed only if the OBJECT CREATE FORMAT field is also set to EXTENDED.

NOBASIC Existing table spaces and indexes that use 6 byte page format are
converted to extended 10 byte page format. Table spaces and indexes
that already use extended 10 byte page format cannot be returned to
the 6 byte page format. When this setting is in effect, utilities that
specify the RBALRSN_CONVERSION keyword with the BASIC option fail. In
addition, utilities that specify the RBALRSN_CONVERSION keyword with
NONE when the object is in 6 byte page format fail. The NOBASIC option
is allowed in this field only if the OBJECT CREATE FORMAT field is set to
EXTENDED. If a value is not specified for RBALRSN_CONVERSION, the
RBALRSN_CONVERSION value defaults to EXTENDED.

NONE No conversion is performed. This option is the default setting of this
parameter. The NONE option is allowed regardless of the OBJECT CREATE
FORMAT setting.

Table 3-1 shows what type of conversion is performed and the error messages, depending on
the system parameter setting and the usage of the RBALRSN_CONVERSION keyword in the utility
control statement. For REORG TABLESPACE, all the results listed in the four NFM columns also
apply to the conversion of all indexes that are defined on the tables in the table space that is
being reorganized.

Table 3-1 UTILITY_OBJECT_CONVERSION

Utility
option

UTILITY_OBJECT_CONVERSION

NONE BASIC EXTENDED NOBASIC

CM NFM CM NFM CM NFM CM NFM

NONE DSNU169Ia
DSNU123Ib

a. DSNU169I The OBJECT CONVERSION REQUESTED BY requestor-type requestor-name requestor-operand IS IGNORED
b. DSNU123I csect-name ATTEMPT TO USE NEW FUNCTION BEFORE NEW FUNCTION MODE

NONE DSNU169I
DSNU123I

NONE DSNU169I
DSNU123I

NONE DSNU169I
DSNU123I

fails if
object is
BASIC

BASIC DSNU169I
DSNU123I

BASIC DSNU169I
DSNU123I

BASIC DSNU169I
DSNU123I

BASIC DSNU169I
DSNU123

fails

EXTENDED DSNU169I
DSNU123I

EXTENDED DSNU169I
DSNU123I

EXTENDED DSNU169I
DSNU123I

EXTENDED DSNU169I
DSNU123I

EXTENDED

omitted ignored NONE ignored BASIC ignored EXTENDED ignored EXTENDED
Chapter 3. Scalability 37

Even if the table space is not actually converted by the REORG, because it already exists in the
requested format, the index is converted to the same format as the table space. See
Figure 3-3.

Figure 3-3 REORG TABLESPACE with Index conversion

If a conversion of the RBA/LRSN format occurs during the REORG, the job output provides the
following message:

DSNU1169I -DB1A 220 18:59:09.53 DSNURFIJ - TABLESPACE SABIDB3.SEGMENT CONVERTED BY
KEYWORD TO EXTENDED RBA/LRSN FORMAT

A new RBA_FORMAT column is added to the SYSIBM.SYSTABLEPART and SYSIBM.SYSINDEXPART
catalog tables. The values in this column are:

B Basic, with 6 byte RBA/LRSN format

E Extended, with 10 byte RBA/LRSN format

U Undefined, where DEFINE NO was specified when creating the table
space, and the table space is not an XML table space with XML
versions.

blank For migrated objects

In addition to this new column, which indicates the RBA/LRSN format for a given page set, the
TTYPE column on the SYSIBM.SYSCOPY catalog table adds additional information when a utility
execution leads to a format conversion. If the resulting format is EXTENDED, you see an E in this
column and if it is BASIC the value is B. As a consequence, you might see the combinations as
listed in Table 3-2 in SYSIBM.SYSCOPY.

Active CLONE relationship restriction: If there is an active CLONE relationship, page set
conversion is not performed. If this request is based on a system parameter setting, the
fact that a conversion is requested is ignored. If, however, you request this conversion
through a RBALRSN_CONVERSON utility control statement, a DSNU1459 error message is
issued.

System parameter OBJECT_CREATE_FORMAT = BASIC

CREATE TS

BASIC
Format,
TTYPE=B

REORG TS
...EXTENDED

EXTENDED
Format,
TTYPE=E

CREATE IX

IX in
BASIC
Format,
TTYPE=B

REORG TS
...EXTENDED

TS not changed,
IX in EXTENDED Format,
ICTYPE W for TS /TTYPE F,
No entry for IX
38 IBM DB2 11 for z/OS Technical Overview

Table 3-2 SYSCOPY values for ICTYPE and TTYPE

LOAD REPLACE
In addition to the REORG TABLESPACE and REORG INDEX utilities, LOAD with option REPLACE is
another way to convert a page set’s RBA and LRSN length. The setting of
UTILITY_OBJECT_CONVERSION system parameter applies, analogous to REORG, only past
conversion mode. The RBALRSN_CONVERSION utility control statement can be set to NONE, BASIC,
EXTENDED, and the utility behavior is basically the same as described in “The REORG INDEX
and REORG TABLESPACE utilities” on page 37.

Keep in mind that specifying the RBALRSN_CONVERSION can only make sense on LOAD REPLACE.
If you use LOAD RESUME, the nature of the utility is to load only a subset of the total number of
rows into a table (space). Having a few rows use a 6 byte RBA and some using a 10 byte RBA
really does not make sense. You receive the following error message when you try to request
a conversion during a LOAD RESUME:

DSNU071 KEYWORD ‘RBALRSN_CONVERSION REQUIRES KEYWORD ‘REPLACE’.

REBUILD INDEX
In DB2 11 NFM, the same functionality and the same rules apply for the conversion of RBAs
and LRSNs as described for REORG INDEX and TABLESPACE and for LOAD REPLACE.

DSN1COPY
DSN1COPY is a stand-alone utility. When you use this utility to overlay data of an existing table
space with image copy data from an image copy that you created earlier, DB2 does not check
or modify anything in the catalog.

Using the DSN1COPY utility can cause a mismatch between the information stored in the
catalog and the actual table space format, as illustrated in Figure 3-4. This scenario assumes
a TS is created in EXTENDED format (with the OBJECT_CREATE_FORMAT=EXTENDED system
parameter). Take an image copy of the page set and subsequently reorganize it. Using the
REORG control statement, specify the RBALRSN_CONVERSION option with BASIC value. This option
changes the format of the table space from EXTENDED to BASIC. This change is also reflected in
the SYSIBM.SYSTABLESPACE table RBA_FORMAT column, which now shows the B value. Next, run
the DSN1COPY utility, and overlay the table space data with what is on image copy FC1, that is
data in EXTENDED format. Now there is a mismatch between the information that is stored in
the catalog and what is in the table space.

Utility ICTYPE TTYPE

REORG LOG YES X B or E

REORG LOG NO W B or E

RECOVER PIT P B or E

REBUILD INDEX B B or E

LOAD REPLACE LOG YES R B or E

LOAD REPLACE LOG NO S B or E

Note: For index spaces, the entries occur only if they are copy-enabled. In addition, they
are also generated only through the REORG INDEX, REBUILD INDEX, and RECOVER to PIT
utilities. Thus, if the RBA/LRSN format is changed, through a REORG TABLESPACE, no
information about this change is kept in the SYSIBM.SYSCOPY.
Chapter 3. Scalability 39

Figure 3-4 DSN1COPY: Catalog information mismatch

When you start working with the table stored in this table space, these is no message or, even
worse, error message, but the mismatch is nevertheless not nice. You can use the REPAIR
utility with the CATALOG option to fix this mismatch.

The REPAIR CATALOG option is a new option on the REPAIR utility. It indicates that the REPAIR
utility is to validate information in the catalog for the specified table space. When you specify
REPAIR CATALOG, the utility performs the following actions:

1. Compares the following information in the catalog with the data:

– Row format (can be either reordered row format or basic row format)
– RBA format (can be either 6 byte format or 10 byte format)
– Data version information (same functionality that is performed with REPAIR VERSIONS)
– Hash space value

For these items, if the information in the catalog is different from the data, the REPAIR utility
changes the values in the catalog to match the data.

2. Validates the following information:

– DBID, PSID, and OBID
– Table space type
– SEGSIZE
– PAGESIZE
– Table definition

For these items, if the information in the catalog is different from the data, the REPAIR utility
does not correct the information in the catalog. Instead, the REPAIR utility fails and reports
the mismatched information in a message. To correct the mismatched information, take
the action that is documented for the message that you receive.

REPAIR CATALOG does not make any corrections for indexes. If you or the REPAIR utility made
corrections to the data or catalog as a result of running REPAIR CATALOG, rebuild any indexes
on the target tables.

System parameter OBJECT_CREATE_FORMAT = EXTENDED

COPY TS REORG TS
BASIC

BASIC FORMAT
TTYPE=B

DSN1COPY
FC1 to TS

RC0,
RBA_FORMAT=B,
Data format = E

CREATE TS

FC1

FC2
EXTENDED
FORMAT Mismatch!

REPAIR
CATALOG TS

RC0,
RBA_FORMAT=E,
Data format = E
40 IBM DB2 11 for z/OS Technical Overview

The syntax for the REPAIR utility includes a TEST option that you can specify together with
REPAIR CATALOG. This option indicates that the REPAIR utility is not to correct any mismatched
information. Wih this option set, the utility checks all of the same information that it checks
when you specify REPAIR CATALOG. However, any information differences between the data
and catalog are reported only in messages. The utility does not take any corrective actions.

Example 3-9 shows the results before running REPAIR CATALOG for the situation described in
Figure 3-4 on page 40, using the TEST option.

Example 3-9 Output of TEST option

DSNU674I -DB1A 221 15:58:59.95 DSNUCBVR - RBA FORMAT FOR DBID=X'014F'
PSID=X'0005' IN THE DB2 CATALOG IS BASIC, BUT IN THE PAGE SET IS EXPANDED.

Then, subsequently running the REPAIR utility, the utility reports the messages shown in
Example 3-10.

Example 3-10 Repair output

DSNU674I -DB1A 221 16:41:23.70 DSNUCBVR - RBA FORMAT FOR DBID=X'014F'
PSID=X'0005' IN THE DB2 CATALOG IS BASIC, BUT IN THE PAGE SET IS EXPANDED.
DSNU695I -DB1A 221 16:41:23.71 DSNUCBVR - INFORMATION IN THE CATALOG WAS UPDATED
 TO MATCH THE PAGE SET

3.1.8 Additional considerations regarding utilities

This section discusses several aspects about how utilities are affected by extended
RBA/LRSNs and how utilities support RBS/LRSNs.

BACKUP/RESTORE SYSTEM
When you run the BACKUP SYSTEM utility, a token is associated with the backup to identify it. In
a system for which the BSDS is not converted so that it can hold the extended RBAs and
LRSNs, the token is 18 bytes long. In this situation, the token is composed as explained in
Table 3-3.

Table 3-3 Composition of BACKUP token

Example 3-11 shows a token resulting from a BACKUP SYSTEM execution on a DB2 subsystem
for which the BSDS is not converted to the extended RBA/LRSN.

Example 3-11 BACKUP token prior to BSDS conversion

TOKEN = X'C4C2F0C2CBC85E68889EE60800003E44A7B1'

After you have converted the BSDS, the information given in the job output is different. First,
the length of the token is increased by 4 bytes, which are added to the RBA at the end of the
token. No change occurs for the time of day, which you can expect, because the BSDS
conversion is for both, 10 bytes by RBAs as well as 10 bytes by LRSNs. Second, the job

Field Field description Length

DB2 SSID DB2 subsystem ID 4 bytes

TOD Time of day of SYSPITR = LRSN 8 bytes

RBA Checkpoint RBA of last checkpoint before
BACKUP

6 bytes
Chapter 3. Scalability 41

output is slightly changed. It shows both the tokenand the real value that is stored in the
BSDS for the time of day.

Example 3-12 shows how the token changed and the additional information for the DATA
COMPLETE LRSN, which in fact is 10 bytes long.

Example 3-12 BACKUP SYSTEM job output after BSDS conversion

DSNU1600I 220 17:06:57.72 DSNUVBBD - BACKUP SYSTEM UTILITY FOR DATA STARTING,
 COPYPOOL = DSN$DB1A$DB
 TOKEN = X'C4C2F1C1CBC8654135D846040000000000014B43AB62'.
DSNU1614I 220 17:06:59.95 DSNUVBBD - BACKUP SYSTEM UTILITY FOR DATA COMPLETED
 COPYPOOL = DSN$DB1A$DB
 TOKEN = X'C4C2F1C1CBC8654135D846040000000000014B43AB62'
 DATA COMPLETE LRSN = X'0000000000014B43F6DA'
 ELAPSED TIME = 00:00:02.

Also, if you print the BSDS afterwards and scroll to the section that lists all available SYSTEM
BACKUPS, the long LRSN is also listed. Example 3-13 contains the information about one
existing system level backup. Notice the entries showing up in the EXTENDED format.

Example 3-13 DSNJU004 after BACKUP SYSTEM for non-data sharing system

START STCK DATA COMPLETE
 DATA LOG RBLP LRSN
---------------- ---------------- -------------------- --------------------
CBC8654135D84604 0000000000000000 0000000000014B43AB62 0000000000014B43F6DA
 TOKEN = C4C2F1C1CBC8654135D846040000000000014B43AB62
 Z/OS 1.13 CAT=YES
 LOCATION NAME = DB1A

Things are a little different for data sharing systems. Example 3-14 shows almost the same
data as Example 3-12, with the exception that the last 10 bytes of the token do not represent
an RBA but an LRSN.

Example 3-14 BACK SYSTEM job output from data sharing system

DSNU1600I 220 16:05:48.87 DSNUVBBD - BACKUP SYSTEM UTILITY FOR DATA STARTING,
 COPYPOOL = DSN$DB1B$DB
 TOKEN = X'C4F1C2F1CBC8579652E78E0A00CBC85695DC17000000'.
DSNU1614I 220 16:05:49.80 DSNUVBBD - BACKUP SYSTEM UTILITY FOR DATA COMPLETED
 COPYPOOL = DSN$DB1B$DB
 TOKEN = X'C4F1C2F1CBC8579652E78E0A00CBC85695DC17000000'
 DATA COMPLETE LRSN = X'00CBC8579651972A2200'
 ELAPSED TIME = 00:00:00.

For completion, Example 3-15 shows the information listed in the BSDS for the data sharing
system.

Example 3-15 DSNJU004 after BACKUP SYSTEM for data sharing

START STCK DATA COMPLETE
 DATA LOG RBLP LRSN
---------------- ---------------- -------------------- --------------------
CBC8579652E78E0A 0000000000000000 00CBC85695DC17000000 00CBC8579651972A2200
 TOKEN = C4F1C2F1CBC8579652E78E0A00CBC85695DC17000000
 Z/OS 1.13 CAT=YES
42 IBM DB2 11 for z/OS Technical Overview

 LOCATION NAME = DB1B

RECOVER
The RECOVER utility TORBA, TOLOGPOINT, and RESTORBEFORE keywords now accept 6 byte or
10 byte RBAs or LRSNs. Operands of 6 bytes or less are interpreted as being in BASIC
format. Operands greater than 6 bytes are interpreted as being in EXTENDED format.

The RECOVER utility now can handle the different RBA/LRSN formats. Figure 3-5 illustrates
what happens when you recover a page set to a point prior to changing the RBA/LRSN
format.

Figure 3-5 PIT RECOVERY

This example creates an object in BASIC format and take an image copy, which in this situation
includes the data in BASIC format. Subsequently, the RBA/LRSN format changes using a
REORG TABLESPACE. Because changing the RBA/LRSN format is possible only with a SHRLEVEL
REFERENCE or CHANGE REORG, an image copy is mandatory. This image copy contains the data
in EXTENDED format. If you had to perform a subsequent RECOVER to current, you use this image
copy, and the object remains in EXTENDED format.

If you decide not to recover to CURRENT, but to image copy FC1, RECOVER also accepts this
image copy as a recover basis. It uses the data as is on the image copy and recovers the data
up to the point that you specify on your RECOVER TABLESPACE statement. If you specify any
given RBA between FC1 and FC2, the result is a recovered object in BASIC format. The fact
that the object is reverted to BASIC format is mentioned in the job output through the following
message:

DSNU1169I -DB1A 220 18:59:09.53 DSNURFIJ - TABLESPACE SABIDB3.SEGMENT CONVERTED BY
KEYWORD TO BASIC RBA/LRSN FORMAT.

System parameter OBJECT_CREATE_FORMAT = BASIC

COPY TS REORG TS
...EXTENDED

EXTENDED
Format,
TTYPE=E

RECOVER
TS TO
TO FC1CREATE TS

FC1

FC2

RC 4,
TS FORMAT BASIC,
IX in RBDP
Chapter 3. Scalability 43

In addition, several catalog changes are also applied to reflect this conversion.
RBALRSN_FORMAT in SYSIBM.SYSTABLEPART is set to B and also the entry for the PIT recovery in
SYSIBM.SYSCOPY indicates this through the TTYPE column for the PIT recovery record.

REPORT RECOVERY
The REPORT RECOVERY utility output now accommodates the longer RBAs and LRSNs. The
utility output is restricted to 120 bytes in length, which means that the existing layout is
compressed. So if you rely on processing the output automatically, make sure that you review
current processes and adjust accordingly.

3.2 NOT LOGGED for declared global temporary tables

A declared global temporary table (DGTT) is used by an application to store intermediate
SQL results data while an application is still running. DB2 11 improves this implementation by
allowing the option to avoid logging during insert, update, and delete activity to DGTTs. This
option can improve the performance and usability of DGTTs by applications. It is also in line
with DB2 family compatibility because for DB2 for Linux, UNIX, and Windows already
supports not-logged DGTTs.

With the ability to choose to not log DGTT activity, it might be beneficial for you to use DGTTs
instead of a created global temporary table (CGTT). Although CGTTs support not logging
and can provide better performance because the schema is known prior to execution of the
application program, CGTTs do not support certain key features, such as indexes.

3.2.1 Syntax extension

Figure 3-6 illustrates the DECLARE GLOBAL TEMPORARY TABLE syntax.

Figure 3-6 CREATE DGTT syntax with NOT LOGGED options

The syntax in Figure 3-6 shows that a DGTT now has the following different logging options:

� LOGGED
44 IBM DB2 11 for z/OS Technical Overview

This option is the default and the current behavior. In this case, DB2 logs all changes, and
during ROLLBACK or ROLLBACK TO SAVEPOINT, the changes to the DGTT are undone.

� NOT LOGGED ON ROLLBACK DELETE ROWS

This option specifies that you do not want logging to occur for this table, and during
ROLLBACK or ROLLBACK TO SAVEPOINT, all rows in the DGTT are deleted if any change was
made in the duration.

� NOT LOGGED ON ROLLBACK PRESERVE ROWS

This option specifies that you do not want logging to occur for this table, and during
ROLLBACK or ROLLBACK TO SAVEPOINT, the rows in the DGTT are preserved as they are.

You usually think about rollbacks in an error situation when there is a negative SQLCODE or
message returned to the application. This kind of rollback is not affected by the new behavior.
In the case of an error situation during an SQL statement, where an SQLCODE or message is
issued, if an update was made to a DGTT and LOGGED is specified, the changes to the DGTT
are undone.

Also, in the case of an error situation during an SQL statement, where an SQLCODE or
message is issued, if an update was made to a DGTT and NOT LOGGED is specified, all rows in
that DGTT are deleted, regardless of the DELETE/PRESERVE ROWS qualification.

3.2.2 Undo processing for NOT LOGGED DGTTs

Undo processing operates by reading the information on the log in a backward direction and
backs out the changes made by the current unit of recovery, as indicated by the log records
encountered. Undo processing is entered for of a number of reasons:

� The application issues the ROLLBACK SQL statement.

The undo processing depends on ON ROLLBACK DELETE/PRESERVE specification described
previously. If you specified NOT LOGGED ON ROLLBACK DELETE ROWS on the DECLARE GLOBAL
TEMPORARY TABLE statement and if the DGTT was updated since the last COMMIT, all rows in
the DGTT are deleted. The DGTT itself remains available; however, all cursors open
against the DGTT are closed.

If you specified NOT LOGGED ON ROLLBACK PRESERVE ROWS, all rows in the DGTT are
preserved as is. The DGTT and the rows are available.

� The application issues the ROLLBACK TO SAVEPOINT statement.

In this case the undo processing depends on the ON ROLLBACK DELETE/PRESERVE
specification described previously.

If you specified NOT LOGGED ON ROLLBACK DELETE ROWS and if the DGTT was updated since
the last COMMIT, all rows in the DGTT are deleted. The DGTT itself is available; however, all
cursors open against the DGTT remain open but not positioned because the rows are
deleted.

If you used NOT LOGGED ON ROLLBACK PRESERVE ROWS on the DECLARE GLOBAL TEMPORARY
TABLE statement, all rows in the DGTT are preserved as is. The DGTT and the rows are
available.

� If there is an error while the application executes an INSERT, UPDATE, or DELETE statement,
all rows are deleted from the DGTT. This type of error includes, for example, a duplicate

Important: Your decision on the ROLLBACK behavior for DGTTs affects only situations in
which your application explicitly issues a ROLLBACK statement.
Chapter 3. Scalability 45

key violation. The DGTT itself is available; however, any cursors open against the DGTT
remain open but no longer have position.

� If an application gets cancelled using a -CANCEL THREAD command, all rows are deleted
from the DGTT, and the DGTT is dropped.

� For statements that insert multiple rows, the ATOMIC and NOT ATOMIC CONTINUE ON
SQLEXCEPTION options of the INSERT statement determine the result of an error inserting
any of the rows.

– The ATOMIC option specifies that if the insert for any row fails, all changes made to the
database by any of the inserts, including changes made by successful inserts, are
undone. This option is the default.

– The NOT ATOMIC CONTINUE ON SQLEXCEPTION option specifies that, regardless of the
failure of any particular insert of a row, the INSERT statement will not undo any changes
made to the database by the successful inserts of other rows, and inserting will be
attempted for subsequent rows. However, the minimum level of atomicity is at least that
of a single insert (that is, it is not possible for a partial insert to complete), including any
triggers that might have been executed as a result of the INSERT statement.

The ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION clauses can be specified for a static
multiple-row-insert. However, do not specify this clause for a dynamic INSERT statement.
For a dynamic statement, use the ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION
clause as an attribute on the PREPARE statement.

3.2.3 Thread reuse

A thread is qualified for reuse if the table was defined with both the ON COMMIT DELETE ROWS
attribute, which is the default, and the NOT LOGGED ON ROLLBACK DELETE ROWS attribute, which
is not the default.

A thread is not qualified for reuse if the table is defined with PRESERVE ROWS specified either ON
COMMIT or NOT LOGGED ON ROLLBACK.

3.2.4 Sample scenarios

The following examples summarize these types of scenarios.

Example 1
Assume that the application has the following sequence of SQL statements:

1. DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK DELETE ROWS
2. CREATE UNIQUE INDEX on DT1
3. INSERT INTO DT1 (successful)
4. INSERT INTO DT1 (duplicate key error)

In this error situation, because no UNDO log records are available due to NOT LOGGED
specification, DB2 deletes all the rows in DT1. However, the DGTT, DT1, are available for
INSERT, UPDATE, DELETE, and FETCH.

Example 2
Assume that the application has the following sequence of SQL statements:

1. DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK DELETE ROWS

2. CREATE UNIQUE INDEX on DT1

3. INSERT INTO DT1 (successful)
46 IBM DB2 11 for z/OS Technical Overview

4. INSERT INTO DT1 (successful)

5. DECLARE GLOBAL TEMPORARY TABLE DT2 NOT LOGGED ON ROLLBACK DELETE ROWS (declaring a
second DGTT) produces an internal error such as no space.

In this error situation, DB2 only undoes anything done for DECLARE DT2. DT1 remains as is,
with 2 inserted rows, and available for further updates.

Example 3
Assume the following sequence of steps:

1. DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK DELETE ROWS
2. CREATE UNIQUE INDEX on DT1
3. INSERT INTO DT1 (successful)
4. INSERT INTO DT1 (successful)
5. DECLARE GLOBAL TEMPORARY TABLE DT2 NOT LOGGED ON ROLLBACK DELETE ROWS
6. INSERT INTO DT2 (successful)
7. INSERT INTO DT2 (duplicate key error)

In this situation, DB2 delete rows from DT2, because the error was on INSERT into DT2.

Example 4
Assumes the following sequence of SQL statements:

1. DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK DELETE ROWS
2. INSERT INTO DT1 with a subselect
3. COMMIT
4. DECLARE CURSOR C1 on DT1
5. OPEN C1
6. FETCH C1
7. UPDATE where current of C1
8. INSERT into DT1
9. ROLLBACK

This roll back causes DB2 to delete all the rows in DT1. Even the inserted rows that were
committed. However, the DGTT, DT1, is available for INSERT, UPDATE, DELETE, and FETCH.

Example 5
Assume the application has the following sequence of SQL statements:

1. DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK DELETE ROWS
2. INSERT INTO DT1 with a subselect
3. COMMIT
4. DECLARE CURSOR C1 on DT1
5. OPEN C1
6. FETCH C1
7. ROLLBACK

This rollback does not delete the rows in DT1 because no updates were made to DT1 since
the last commit.
Chapter 3. Scalability 47

Example 6
Assume the following sequence of statements:

1. DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK DELETE ROWS
2. INSERT INTO DT1 with a subselect
3. DECLARE CURSOR C1 on DT1
4. OPEN C1
5. FETCH C1
6. ROLLBACK

This rollback deallocates the DGTT because there was no COMMIT after it was declared. The
NOT LOGGED attribute does not apply to log records written during the DECLARE and DROP of the
DGTT.

Example 7
The following example is a sequence of steps for a DGTT, which is defined as NOT LOGGED ON
ROLLBACK PRESERVE ROWS:

1. DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK PRESERVE ROWS
2. INSERT INTO DT1 with a subselect
3. COMMIT
4. DECLARE CURSOR C1 on DT1
5. OPEN C1
6. FETCH C1
7. UPDATE where current of C1
8. INSERT into DT1
9. DELETE FROM T2 (T2 is a different table unrelated to DGTT and is logged)
10.ROLLBACK

This roll back causes DB2 to rollback the DELETE from T2; however the DGTT, DT1, remains
untouched because of the PRESERVE ROWS specification.

Example 8
Assume the following SQL statements are executed in the application:

1. DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK PRESERVE ROWS
2. INSERT INTO DT1 with a subselect
3. DECLARE CURSOR C1 on DT1
4. OPEN C1
5. FETCH C1
6. ROLLBACK

This rollback deallocates the DGTT because there was no COMMIT after it was declared. The
NOT LOGGED attribute does not apply to log records written during the DECLARE and DROP of the
DGTT.

Example 9
Assume that the application has the following sequence of SQL statements:

Difference with this example in the roll back: Note the difference here. When NOT
LOGGED ON ROLLBACK DELETE ROWS is specified, insert, update, and delete activity is not
logged. During a ROLLBACK or ROLLBACK TO SAVE POINT, if there was any updates to the
DGTT since the last COMMIT statement, all rows from the DGTT are deleted, and any open
cursors against the DGTT have no position. If the declaration of the DGTT itself was not
committed, the DGTT itself is rolled back.
48 IBM DB2 11 for z/OS Technical Overview

1. DECLARE GLOBAL TEMPORARY TABLE DT1 NOT LOGGED ON ROLLBACK DELETE ROWS
2. CREATE UNIQUE INDEX on DT1
3. INSERT INTO DT1 (successful)
4. SET SAVEPOINT SP1
5. INSERT INTO DT1 (successful)
6. DECLARE GLOBAL TEMPORARY TABLE DT2 NOT LOGGED ON ROLLBACK DELETE ROWS
7. INSERT INTO DT2 (successful)
8. ROLLBACK TO SP1

In this situation, DB2 deletes rows from DT1 and DT2. DB2 also undoes the declare of DT2.
DT1 will still be available.

3.3 More open data sets (DSMAX)

The DSMAX subsystem parameter determines the maximum number of data sets that is to be
allowed open at one time. DB2 11 increases the maximum number from 100,000 to 200,000.
Although the maximum number of concurrently open data sets is 200,000, the practical limit
might be significantly less on any given DB2 subsystem, depending on availability of virtual
storage below the 2 GB bar. In most cases, a value of 50,000 to 75,000 open data sets is
sufficient. The maximum number of 200, 000 open data sets is available in DB2 11 CM and
has is retrofitted to DB2 10 through APAR PM88166.

3.4 PBG mapping tables to lift the 64 GB limit

When you reorganize a table space using SHRLEVEL CHANGE, you have to use a mapping table.
For each row, the mapping table records the position of each record (RID) in the original table
space and the one that it is to be found on the reorganized shadow copy.

DB2 11 includes the following enhancements related to the mapping tables:

� The mapping table can be created automatically by DB2 during REORG execution.
� The mapping table can grow up to 16 TB.

3.4.1 Autonomic creation of the mapping table

When processing a REORG TABLESPACE SHRLEVEL CHANGE request, the REORG utility has the
option to create its own mapping table and mapping index, instead of relying on a user’s input.
Use the REORG_MAPPING_DATABASE system parameter to specify a valid database name, and
do not specify anything for the mapping table on the utility control statement. This action
directs REORG to allocate the mapping table in the database that is specified.

If the name is valid only in terms of following the naming rules for database names but if the
name that you specify is not an existing database in the DB2 subsystem, the REORG fails while
trying to allocate a table space for the mapping table in this database.

Example 3-16 shows the error message in the utility output in this case.

Example 3-16 Error message for not found map table space

DSNUGUTC - REORG TABLESPACE SABIDB3.SEGMENT SHRLEVEL CHANGE
.35 DSNURMAP - MAPPING DATABASE yourdb IS INVALID
DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8
Chapter 3. Scalability 49

The autonomic creation of mapping tables is described in more detail at 11.1.4, “Automated
REORG mapping table management” on page 278.

3.4.2 Mapping tables up to 16 TB

Mapping tables must store information about each row’s source and target RID. Thus, a REORG
job can hit the limit of 64 GB when very large table spaces are reorganized. Prior to DB2 11,
this limit meant a mapping table had to be a segmented table space. With growing data
needs, REORG jobs can hit the limit more often. DB2 11 allows you to use PBG table spaces for
storing mapping tables, which practically eliminates the limit.

To determine how much space you need for a REORG, make the following calculation for the
index:

1.1 * Number-of-rows-in-table-space * 31
50 IBM DB2 11 for z/OS Technical Overview

Chapter 4. Availability

DB2 11 for z/OS continues to bring changes that can improve availability. These new
functions keep up with the demands of transaction processing and business intelligence that
require on-demand actions and changes without interruption of service. DB2 11 delivers
increased application and subsystem availability with more functions for schema evolution,
autonomics, governance, and usability.

This chapter describes the following enhancements:

� Online schema changes and enhanced recovery options
� Automatic recovery of indexes from GRECP or LPL status
� Improved availability when altering limit keys
� Work file database enhancements
� Governing of parallel processing of utilities
� Compression dictionary availability for CDC tables
� DROP column support
� Defer define object enhancements
� Allow BIND, REBIND, and DDL to break-in persistent threads
� Idle thread break-in

Other enhancements that indirectly improve availability are described at 2.4, “Reduced need
for REORG” on page 15 and 13.3, “Reduced need for REORG” on page 390.

4

© Copyright IBM Corp. 2013. All rights reserved. 51

4.1 Online schema changes and enhanced recovery options

With DB2 10, several online schema options allow you to make changes to database objects
(indexes and table spaces) while maximizing availability of altered objects. ALTER statements
(such as changing segment size, data set size, buffer pool with a different page size, the
MEMBER CLUSTER attribute, and table space type) are among the changes that you can execute
while applications are running. These changes are deferred and are not materialized
immediately, leaving the altered objects available.

DB2 10 alters are called pending changes. Their materialization requires reorganization of the
affected objects.

DB2 10 introduced the following supported pending definition changes:

� Alter segment size (SEGSIZE) on partition-by-growth universal table space (PBG UTS),
partition-by-range universal table space (PBR UTS), and XML table space.

� Alter data set size (DSSIZE) on partition-by-growth universal table space (PBG UTS),
partition-by-range universal table space (PBR UTS), XML table space, and large object
(LOB) table space.

� Alter buffer pool with a different page size on partition-by-growth universal table space
(PBG UTS), partition-by-range universal table space (PBR UTS), and LOB table space.

� Alter buffer pool with a different page size on index that is associated with universal table
space (UTS).

� Alter MEMBER CLUSTER on partition-by-growth universal table space (PBG UTS), and
partition-by-range universal table space (PBR UTS).

� Convert single-table classic partitioned table space to partition-by-range universal table
space (PBR UTS).

� Convert single-table classic simple table space to partition-by-growth universal table
space (PBG UTS).

� Convert single-table classic segmented table space to partition-by-growth universal table
space (PBG UTS).

4.1.1 Scope of enhancements for online schema changes in DB2 11

DB2 10 does not allow point-in-time (PIT) recoveries prior to a materializing REORG job.
DB2 11 lifts this restriction for some of the DB2 10 pending alters. Table 4-1 lists the online
schema change types for which PIT recoveries are now possible after a materializing REORG.

Table 4-1 PIT recover allowed after materializing REORG

Table 4-1, does not include PBG table spaces. For a list of restrictions that are currently in
place, refer to 4.1.7, “Determine if a table space is eligible for PIT recovery prior to REORG”
on page 59.

DB2 10 online
schema change

LOB auxiliary table
space

XML auxiliary table
space

PBR table space

ALTER DSSIZE YES YES YES

ALTER PAGESIZE YES NO YES

ALTER SEGSIZE NO YES YES

ALTER MEMBER CLUSTER NO NO YES
52 IBM DB2 11 for z/OS Technical Overview

4.1.2 How it works

Starting in DB2 11 NFM, in the cases listed in Table 4-1, you can recover an LOB table space,
XML table space, or PBR to a point in time (PIT) that is prior to the materialization of
supported DB2 10 table space attributes pending definition changes. After the RECOVER job is
executed, the table space is placed in REORP restrictive state. You must run a subsequent
REORG on the entire table space to finalize the point-in-time recovery process.

Figure 4-1 shows the details of a PIT recovery.

Figure 4-1 PIT Recovery after materializing REORG of DB2 10 change

This example starts with the creation of a database, a table space, and table. Then, it inserts
some rows, as shown in Example 4-1 for the DDL.

Example 4-1 DDL for table creation

CREATE DATABASE SABIDB4;
CREATE TABLESPACE SABITS1 IN SABIDB4 NUMPARTS 3 ;
CREATE TABLE SABITB4 LIKE SYSIBM.SYSCOPY

Prerequisite note: The prerequisite for being able to use the new functionality is that the
materializing REORG job is executed in DB2 11 New Function Mode. Thus, this
enhancement is available in New Function Mode (NFM). In addition, for table spaces that
have gone through the supported schema changes in DB2 10 NFM or DB2 11 conversion
mode (CM) and that have had the materializing REORG, even in DB2 11 NFM you cannot do
a PIT to any point before that REORG.

CRE DB;
CRE TS;
CRE TB;

COPY DB1.TS1;

P1

P2 P3

ALTER TS
SEGSIZE 64

TS is set to
RW,AREOR

QUIESCE TS REORG TS

RC 4
TS in RW

2 entries added to SYSIBM.SYSOBDS:
OBID 1 � OBDTYPE = L (for OBDFILE)
OBID 2 � OBDTYPE = P (for OBDPSET)

OBID 1 � OBDTYPE = L (for OBDFILE)
OBID 2 � OBDTYPE = P (for OBDPSET)

RECOVER TS
To Quiesce

RC 4
TS in RW,REORP

ADD row to table
SYSPENDINGDDL

REORG TS

ALTER TS
SEGSIZE 64 REORG TS

Add 2 more entries
to SYSOBDS

RC 4
TS in RW

RC 4
TS in RW,AREOR

RC 4
TS in RW

P1

P2 P3

P1

P2 P3

P1

P2 P3
Chapter 4. Availability 53

 PARTITION BY (DBNAME)
 (PARTITION 1 ENDING AT ('AAAAAA'),
 PARTITION 2 ENDING AT ('EEEEEE'),
 PARTITION 3 ENDING AT ('ZZZZZZ'))
 IN SABIDB4.SABITS1 ;
 COMMIT;
 INSERT INTO SABITB4 SELECT * FROM SYSIBM.SYSCOPY ;

Next, the example takes an image copy. If you have the FlashCopy technology available, take
a FCIC.

Then, the example executes one of the DB2 10 ALTER statements listed in Table 4-1 as
eligible for this enhancement. In this case the SEGSIZE of the table space is changed from 32
to 64. As a result of this change, the table space is placed in AREOR status. The QUIESCE utility
that runs immediately after the ALTER facilitates an RBA for subsequent recovery.

To materialize the pending change and to get rid of the AREOR status, run the following
command:

REORG TABLESPACE SABIDB4.SABITS1 SHRLEVEL REFERENCE

An inline image copy is mandatory for a REORG SHRLEVEL REFERENCE. Thus, REORG materializes
the pending changes and also produces an image copy. In addition, starting with DB2 11, the
materializing REORG leads to entries in the SYSIBM.SYSOBDS table. This table stores information
about object definitions as they were at that time. The effect of this online schema change is
that the following rows are added to the SYSIBM.SYSOBDS table:

� One row with OBDTYPE=L, which contains information about an OBDFILE. OBDFILE entries
describe the file object descriptor (OBD).

� A second row with OBDTYPE=P, which contains information about an OBDPSET. OBDPSET
records describe either a data page set or index page set OBD.

The next step is to actually do the recovery to the RBA of the QUIESCE point. The recover
works fine, but leaves the table space in REORP status because the contents of the image copy
do not match the structure of the table space as it is currently described in the catalog. REORP
is a restrictive state. Thus, this state does not allow any interaction with the underlying table
space. In addition to setting the REORP status, a row is added to the SYSIBM.SYSPENDINGDDL
table, which indicates that there are necessary actions to take for this table space. The row
that is inserted into the SYSIBM.SYSPENDINGDDL table contains the information listed in
Table 4-2.

Table 4-2 SYSPENDINGDDL entry after RECOVER to PIT before materializing REORG

Tip: Refer to DB2 11 for z/OS Diagnosis Guide and Reference, LY37-3222 for details about
the object descriptors and the layout of the SYSIBM.SYSOBDS table.

Note: One of the columns in the SYSIBM.SYSOBDS table is VERSION. This column is the
version of the original object for an OBD image that was captured during the ALTER that
creates a new version. This value is -1 if this row is inserted because of a materializing
REORG.

Column name Value

DBNAME Database Name
54 IBM DB2 11 for z/OS Technical Overview

In addition to the entries in the SYSIBM.SYSPENDINGDDL and SYSIBM.SYSOBDS tables, these
steps also generate entries in the SYSIBM.SYSCOPY tables. Selecting the rows that are
produced shows the information in Example 4-2.

Example 4-2 Selecting from SYSCOPY

SELECT ICTYPE, STYPE, TTYPE, OLDEST_VERSION, DSNUM
FROM SYSIBM.SYSCOPY
ORDER BY TIMESTAMP DESC

---------+---------+---------+---------+---------+-------
ICTYPE STYPE TTYPE OLDEST_VERSION DSNUM

TSNAME Table Space Name

DBID DBID

PSID PSID of table space

OBJSCHEMA Database name

OBJNAME Table space name

OBJOBID Table space file OBID

OBJTYPE ‘S’

STATEMENT_TYPE ‘R’

OPTION_ENVID Default to 0

OPTION_KEYWORD ‘TOLOGPOINT’ or ‘TORBA’

OPTION_VALUE RBA/LRSN value to be recovered to as a string of
characters

OPTION_SEQNO 1

CREATEDTS Time stamp of when RECOVER was executed

RELCREATED Current release of DB2

IBMREQD ‘N’

ROWID Generated by DB2

STATEMENT_TEXT Empty string

COLNAME Empty string

PARTITION Default to 0

PARTITION_KEYWORD Empty string

Note: The only way to remove this entry from the SYSIBM.SYSPENDINGDDL table is to run a
REORG SHRLEVEL CHANGE or REFERENCE.

ALTER TABLESPACE ... DROP PENDING CHANGES does not help for entries that are added as
a result of RECOVER TABLESPACE to a PIT before a REORG that materialized some of the online
schema changes.

Column name Value
Chapter 4. Availability 55

---------+---------+---------+---------+---------+-------
P C -1 0
F W 0 0
W F 0 0
A S 00000032 0 0
Q W -1 0
F T C 0 0
F T C 0 3
F T C 0 2
F T C 0 1
C L E 0 0

This information includes a couple of new entry types. TTYPE for the ALTER (row 4) shows the
SEGSIZE setting that was in place at the time the ALTER was executed. The OLDEST_VERSION
column contains a -1 for the QUIESCE and the PIT.

To make the table space fully available again, now run a REORG with SHRLEVEL REFERENCE or
CHANGE.

REORG SHRLEVEL NONE is not allowed in this situation, which is different behavior from the
situation in which the table space also has one or more entries in SYSIBM.SYSPENDINGDDL and
is currently placed in AREOR status. When you try to run REORG SHRLEVEL NONE in one of those
situations, REORG runs but does not materialize the pending change. In this situation, with
REORP due to RECOVER, you receive the following message:

DSNU2921I -DB1A 212 13:37:42.18 DSNURFIT - OPTION SHRLEVEL REFERENCE IS REQUIRED
ON TABLESPACE SABIDB4.SABITS1 TO COMPLETE THE POINT-IN-TIME RECOVERY PROCESS

If you specify SHRLEVEL CHANGE, instead of REFERENCE, DB2 accepts it, but under the covers it
executes a SHRLEVEL REFERENCE and lets you know about this change through the following
message:

DSNU124I -DB1A 212 14:11:42.09 DSNURFIT - SHRLEVEL CHANGE SPECIFICATION IS
IGNORED AND SHRLEVEL REFERENCE IS IN EFFECT FOR CURRENT UTILITY EXECUTION

You have to make sure that you reorganize the entire table space to finalize the PIT recovery
process. A partition level recovery is not an option here, and you are notified about it the a
DSNU256I message.

Next in this scenario shown in Figure 4-1 on page 53, ALTER the SEGSIZE of the table space
again, which again leads to AREOR advisory state. To remove the AREOR status and to
materialize this change, run REORG SHRLEVEL REFERENCE/CHANGE again. This REORG now leads
to two additional rows in the SYSIBM.SYSOBDS table. Because the structure of the table space
has changed again, DB2 now has to save the table space layout as it was before the
materializing REORG to enable you to run subsequent PIT recoveries at a later point in time.

Note: The value -1 for OLDEST_VERSION for the QUIESCE and the PIT is set for entries for
which the version information really does not matter.
56 IBM DB2 11 for z/OS Technical Overview

4.1.3 Effect of MODIFY RECOVERY

As described previously and as shown in Figure 4-1 on page 53, pending definition changes
now also lead to new entries in the SYSIBM.SYSOBDS catalog table. Because this table grows
large over time, you can remove entries using the MODIFY RECOVERY utility. This utility removes
entries that correspond to the rows that are being removed from the SYSIBM.SYSCOPY catalog
table also, as shown in Figure 4-2.

Figure 4-2 MODIFY RECOVERY scenario

4.1.4 Considerations for LOBs

Although Table 4-1 on page 52 lists some of the online schema changes for LOBs that qualify
for PIT recoveries after materializing REORG, this section describes the specialties that come
along with LOBs and XML table spaces.

If you have recovered a table space that contains LOB columns and if the LOB table spaces
have undergone materialized online schema changes, to finalize the PIT recovery process
you must reorganize the LOB table spaces first after RECOVER. If your base table space did
not have any materialized online schema changes then there is no need to also reorganize it

CRE DB;
CRE TS;
CRE TB;

COPY DB1.TS1;

P1

P2 P3

ALTER TS
SEGSIZE 64

TS is set to
RW,AREOR

QUIESCE TS REORG TS

RC 4
TS in RW

2 entries added to SYSIBM.SYSOBDS:
OBID 1 � OBDTYPE = L (for OBDFILE)
OBID 2 � OBDTYPE = P (for OBDPSET)

OBID 1 � OBDTYPE = L (for OBDFILE)
OBID 2 � OBDTYPE = P (for OBDPSET)

RECOVER TS
To Quiesce

RC 4
TS in RW,REORP

ADD row to table
SYSPENDINGDDL

REORG TS

ALTER TS
SEGSIZE 64 REORG TS

Add 2 more entries
to SYSOBDS

MODIFY RECOVERY
RETAIN LAST (1)

Remove :
•First two entries from
SYSIBM.SYSOBDS
•Corresponding SYSCOPY
and SYSLGRNX entries

RC 4
TS in RW

RC 4
TS in RW,AREOR

RC 4
TS in RW

P1

P2 P3

P1

P2 P3

P1

P2 P3

Using this utility with a table space in REORP status: The MODIFY RECOVERY utility is not
allowed if a table space is in REORP restrictive status after a RECOVER job was run to recover
the data to a PIT before the materialization of pending definition changes on the table
space. You must run REORG before you can use the MODIFY RECOVERY utility on this table
space again.
Chapter 4. Availability 57

after the RECOVER. If after the RECOVER you check the table space status for both the LOB and
base table space or spaces, you can see that only the ones with materialized online schema
changes are set to REORP status. However, if your base table space is in REORP status after the
PIT recovery, you must reorganize the base table space. This reorganization then pulls the
LOB table spaces again and reorganize them again. The reason for that is that AUX YES is
set on default due to the REORP restrictive status on the base table space.

If by accident you do not follow this described order, that is with LOB table spaces first, then
the reorganization of the base table space fails with a return code 8 and a DSNU1159I
message. If the base table space is not in REORP but the LOB table space is and if you run a
REORG on the base table space, which includes the reorganization of the LOB table space or
spaces, the REORG runs and completes with RC 4. In addition, if you look at the job output, you
do not find any indication that the REORP status has not been reset. Instead the REORG utility
issues the following message:

AUXILIARY TABLESPACE DSN00051.LI8ZSEO8 WILL BE REORGANIZED IN PARALLEL WITH THE
BASE TABLEPACE

However, if you check the status of the LOB table space after the reorganization of the base
table space is complete, notice that the LOB table space is still in REORP status.

4.1.5 Restrictions for the window between PIT recovery and REORG

PIT recovery includes the following restrictions:

� You cannot execute any CREATE, ALTER, RENAME, and DROP TABLE statements on the table
space objects, objects contained in the table space, and any auxiliary objects associated
with the table space if the subsequent REORG has not been executed yet.

– That is, pending definition changes are not allowed on the table space objects, objects
contained in the table space, indexes on tables in the table space, and any auxiliary
objects associated with the table space during the window between the PITR and the
subsequent REORG.

– The following actions are not allowed:

• CREATE AUXILIARY TABLE
• CREATE INDEX
• CREATE TABLE
• DROP TABLE (of base TS, associated LOB TS, associated XML TS)
• RENAME INDEX (of index on base table, auxiliary index, XML index, and so on)
• RENAME TABLE
• ALTER INDEX (of index on base table, auxiliary index, XML index, and so on)
• ALTER TABLE (of base TS, associated LOB TS, associated XML TS)
• ALTER TABLESPACE (of base TS, associated LOB TS, associated XML TS)

Existing SQLCODE -20385 with new reason code 28 is issued.

� The only utilities that are allowed when the table space is in REORG-pending (REORP)
restrictive status during the window between the PITR and the subsequent REORG are:

– REORG

– RECOVER to the same point in time (PIT), that means that you could to another PIT to the
same RBA or LOGPOINT or a RECOVER to CURRENT

– REPORT RECOVERY

– REPAIR DBD
58 IBM DB2 11 for z/OS Technical Overview

All the other utility jobs (COPY, COPYTOCOPY, MERGECOPY, MODIFY RECOVERY, LOAD, and UNLOAD) fail
and DSNU933I new message returns code 8 (RC=8) to indicate that the object needs to be
reorganized to make the object descriptor consistent.

4.1.6 More restrictions for PIT recovery after materializing REORG

Consider the following RECOVER restrictions for recovering a table space to a PIT prior to a
materializing REORG job:

� You cannot recover an index to a PIT prior to the materialization of pending definition
changes.

� If allowed, the PIT recovery must always be done for the entire table space.

� PIT recovery prior to a materializing REORG is not allowed if there are outstanding
unmaterialized pending definition changes on the object. If you need to do the PIT
recovery, you can do an ALTER TABLESPACE DROP PENDING CHANGES.

� If you use VERIFYSET NO1 an such a PIT recovery, DB2 overrides it and executes
VERIFYSET YES instead.

� The table space that you want to recover to a PIT before the materialization must not
contain a CLONE table.

– If a CLONE exists, you must drop the relationship first. When you try to recover
nevertheless without dropping you see the message:

DSNU1319I -DB1A 212 18:17:19.78 DSNUCAIN - POINT-IN-TIME RECOVERY IS NOT
ALLOWED BECAUSE TABLESPACE DSN00051.LI8ZSEO8 CONTAINS A CLONE TABLE

– If you executed EXCHANGE DATA BETWEEN TABLE base and clone past the point to which
you want to recover, RECOVER is not allowed. You get the message:

DSNUCASA - RECOVER CANNOT PROCEED FOR TABLESPACE DSN00051.SABITB6
BECAUSE A SYSIBM.SYSCOPY RECORD HAS BEEN ENCOUNTERED WHICH HAS
DBNAME=DSN00051 TSNAME=SABITB6 DSNUM=0 ICTYPE=A STYPE=E
STARTRBA=X'0000000000014797BB88' LOWDSNUM=0 HIGHDSNUM=0

4.1.7 Determine if a table space is eligible for PIT recovery prior to REORG

There are many restrictions for a PIT recovery to a PIT prior to the materialization of a
pending change. If you do not want to run into surprises when you attempt a PIT recovery,
you need to analyze the situation. Right now there is no easy way to determine whether a PIT
recovery will work for a given table space. The REPORT RECOVERY utility does not provide help
in terms of available issues. The only thing that might help is the eye-catcher ##, which
surrounds the ICTYPE information for all table spaces for which a materializing REORG was run
previously.

Thus, the best way to check whether a PIT is feasible is based on the entries in the
SYSIBM.SYSCOPY catalog table, which includes the necessary information for the RECOVER utility.

1 Specifies whether the RECOVER utility verifies that all related objects that are required for a PIT recovery are included
in the RECOVER control statement. This option applies to point-in-time recoveries of base objects and related objects.
VERIFYSET NO behavior is always in effect for PIT recoveries of catalog and directory objects.
Chapter 4. Availability 59

4.2 Automatic recovery of indexes from GRECP or LPL status

This improvement applies only to a special situation in which DB2 has to mark an index as
rebuild pending (RBDP). A RBDP restrictive state can greatly affect the system and application
availability. Thus, although it is a specific issue and might not happen often, this function is an
improvement in DB2 11. In a small timing window, if there is an index tree structural
modification in progress in a situation in which the index is put into LPL or GRECP status, the
LPL or GRECP recovery might fail, as illustrated in Figure 4-3.

Figure 4-3 RBDP after failing LPL or GRECP recovery in DB2 10

This situation can lead to the RBDP restrictive state of the index space, which then will require
a potentially long REBUILD INDEX utility execution.

In the example, assume that UR1 changes a key A on page 3 of the index space. UR2 does
some work that leads to a needed split of page 3. Now, for some reason page 3 is put in LPL
state. While in LPL, furthermore assume that the change of key A on page 3 is rolled back.
The rollback is noted on the log as compensation log record (CLR). In addition, UR2 also rolls
back the page split. If automatic LPL recovery occurs, DB2 first applies the rollback of the
change for key A, and then the rollback of the split to page 3, which then leads to the loss of
the information regarding the rollback of key A. Because this behavior is not correct, DB2 sets
RBDP on the index space.

This described behavior is an availability exposure addressed by DB2 11 with a two-pass
LPL/GRECP recovery. The behavior works as follows:

� The CLR is skipped in the first pass. The UNDO of the page split is applied first.

� Then in a second pass the CLR is applied and the UNDO is skipped. As a result, the LPL
recovery can complete correctly and the RBDP status can be avoided.

If DB2 uses this two-pass LPL/GRECP recovery, you are notified by a DSNI051I message,
which indicates the starting point of the second pass LOG APPLY during LPL or GRECP
recovery.

Attention: After completion of the two-pass LPL/GRECP recovery, DB2 sets ICOPY status
for COPY YES indexes. This setting keeps DB2 from applying the logs that are written before
the image copy taken time and, therefore, avoids marking an index into RBDP also. Thus, to
avoid running into a situation where copy-enabled indexes are set to ICOPY and you cannot
use the RECOVER INDEX utility, monitor the system log for a DSNI051I message.

UR1 -
Change key
A on page
page 3

UR2 – split
page 3, add
page 5

Assumption:
page 3 set to
LPL

Assumption:
UR1 Roll
back change
key A

=> Write LCR
with
Rollback
information

Assumption:
UR2 Roll
back change
to page 3

Log

=> Automatic
LPL recovery
fails ! Index
placed in RBDP

DB2 10:
60 IBM DB2 11 for z/OS Technical Overview

4.2.1 RESTORE SYSTEM after two-pass LPL/GRECP recovery has occurred

With the start of a two-pass LPL/GRECP recovery, DB2 writes a new log record type to
indicate that this index has gone through the two-pass LPL or GRECP recovery.

If there are indexes that have gone through the two-pass LPL or GRECP recovery earlier or if
the indexes are still in LPL or GRECP state and the CLRs are written before physical undo logs,
these indexes are left in rebuild pending state after the RESTORE SYSTEM utility.

4.2.2 RECOVER INDEX after two-pass LPL/GRECP recovery has occurred

If you recover a COPY YES index that has gone through the two-pass LPL or GRECP recovery
and if the RECOVER utility needs to apply the logs processed by the two-pass LPL or GRECP
recovery, or if the index is still in LPL or GRECP state, but the LCLRs are written before
physical undo logs, this index is left in rebuild pending state after the RECOVER utility. Thus, you
still need to rebuild this index after the RECOVER utility. However, the occurrence of this type of
situation is rare.

4.3 Improved availability when altering limit keys

For range-partitioned tables, data rows are stored in data partitions based on the
user-specified partition limit key values. After using the table space for a certain time, the
partition boundaries that you originally decided to use might not fit well anymore due to data
skew or data growth. As a consequence, you might have need to redistribute data across
adjacent partitions by using one of the following methods:

� Run the REORG TABLEPACE command with the REBALANCE option, which was introduced with
DB2 8.

� Use the ALTER option to change the limit key values with the ALTER TABLE DDL statement.

In DB2 10, when you alter the limit keys for a range-partitioned table space, all affected
partitions are immediately placed in a REORG pending restrictive state. When table space
partitions are in REORP status, the partitions either need to be loaded with LOAD REPLACE or
reorganized immediately.

To improve data availability, DB2 11 handles the alter of limit keys for range-partitioned table
as pending changes. Thus, similar to many other pending changes introduced starting with
DB2 10 and continuing in DB2 11, the limit key values for affected partitions are not applied
immediately but are recorded in the SYSIBM.SYSPENDINGDDL DB2 catalog table.

To illustrate the needed step, the following statements create a table with three partitions:

CREATE TABLESPACE SABITS1 IN SABIDB3 NUMPARTS 3 ;
CREATE TABLE SABITB3 LIKE DSN81110.EMP
 PARTITION BY (EMPNO)
 (PARTITION 1 ENDING AT ('000020'),
 PARTITION 2 ENDING AT ('000040'),

Index-controlled partitioning: The information in this section applies to universal
range-partitioned (PBR) and classic table-controlled range-partitioned table spaces. If you
still use index-controlled partitioning, you must switch to table-controlled partitioning first.
The easiest way to accomplish this step is to ALTER the clustering index to NOT CLUSTER and
then ALTER it back to CLUSTER.
Chapter 4. Availability 61

 PARTITION 3 ENDING AT ('999999'))
 IN SABIDB3.SABITS1 ;

Issue the following command:

ALTER TABLE SABITB3 PARTITION 1 ENDING AT (‘000020)

DB2 responds with the following message:

DSNT404I SQLCODE = 610, WARNING: A CREATE/ALTER ON OBJECT SABINE.SABITB3 HAS
 PLACED OBJECT IN ADVISORY REORG PENDING

Checking the SYSIBM.SYSPENDINGDDL table, a row is added to it, but the table space is not
placed in AREOR. In fact there is nothing that needs to be changed. The row that is placed in
the SYSIBM.SYSPENDINGDDL table shows the following characteristics:

� OBJTYPE column = 'T'
� PARTITION column = n (physical partition number of the affected partition)
� PARTITION_KEYWORD = “ALTER”
� OPTION_KEYWORD = “ENDING AT”
� OPTION_VALUE = “xxxx”, which is the limit key

Because the previous alteration did not really change the limit key for the table, you can
change partition 1 from ‘000020’ to ‘000040’ in the next approach. This change results in the
following misleading error message:

DSNT408I SQLCODE = -636, ERROR: RANGES SPECIFIED FOR PARTITION 2 ARE NOT VALID

This table definition attempts to alter partition 1 to the high key that is currently specified for
partition 2. Thus, to set the limit key for partition 1 to ‘000040’, the limit key for partition 2 must
be increased first. You can accomplish this increase and the increase for partition 1 in one UR
or in separate URs. After successful execution of the mentioned two alters, the entire table
space is set to AREOR advisory state, as shown in Example 4-3.

Example 4-3 AREOR for all three partitions of the PBR

DSNT360I -DB1A ***********************************
 DSNT361I -DB1A * DISPLAY DATABASE SUMMARY
 * GLOBAL
 DSNT360I -DB1A ***********************************
 DSNT362I -DB1A DATABASE = SABIDB3 STATUS = RW
 DBD LENGTH = 4028
 DSNT397I -DB1A
 NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
 -------- ---- ----- ----------------- -------- -------- -------- -----
 SABITS1 TS 0001 RW,AREOR
 -THRU 0003
 SABITS1 TS
 ******* DISPLAY OF DATABASE SABIDB3 ENDED **********************
 DSN9022I -DB1A DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

At this point nothing has really changed. To materialize the changed limit keys, run REORG with
either SHRLEVEL CHANGE or SHRLEVEL REFERENCE. Within the REORG utility output, notice the
following messages, which indicate that in fact the REORG materializes the pending changes:

DSNU2916I - PENDING ALTER LIMIT KEY VALUES ARE BEING MATERIALIZED
DSNU1163I - APPLYING PENDING DEFINITION CHANGES COMPLETE FOR SABIDB3.SABITS1
62 IBM DB2 11 for z/OS Technical Overview

The reorganization ends with return code 4 if it completes successfully. A SYSIBM.SYSCOPY
record with ICTYPE=A and STYPE=K is inserted for each affected data partition.

Packages of the underlying table are invalidated by the REORG utility.

This function is available in NFM and it only applies to UTS PBR and table controlled
partitioning. An ALTER LIMIT KEY on index controlled partitioned table spaces would set them
in REORGP.

APAR PM89655 adds the following new DSNZPARM values to help in this situation:

� The PREVENT_ALTERTB_LIMITKEY system parameter is used to disable altering of limit key
values through an ALTER TABLE statement for index-controlled partitioned table spaces.
The default value is NO, the existing behavior. This system parameter takes effect in DB2
11 for z/OS NFM (and is ignored in DB2 11 for z/OS CM). Such altering would cause the
table space to be placed in reorganization pending (REORP) status.

� The PREVENT_NEW_IXCTRL_PART system parameter is used to prevent creation of new
index-controlled partitioned tables. The default value is NO, the existing behavior. This
system parameter takes effect in DB2 10 for z/OS NFM (and is ignored in DB2 10 for z/OS
CM). Table controlled partitioning should be used.

4.3.1 Considerations for tables containing LOBs

Starting with DB2 10, if you request FlashCopy image copies as inline copies, the image
copies are created for both, the base table space and the LOB or AUX table spaces.

FlashCopy image copies are used if:

� You set the subsystem parameter FLASHCOPY_REORG_TS to YES and omit the
FLASHCOPY keyword on the REORG table space control statement

� You use whatever setting for subsystem parameter FLASHCOPY_REORG_TS and
specify FLASHCOPY YES on the utility control statement.

When requesting a FlashCopy inline image copy, you must specify a TEMPLATE prior to the
REORG statement.

Sample utility control statements are:

TEMPLATE SCOPY1 UNIT(SYSDA) DISP(MOD,CATLG,CATLG)
SPACE=(10,10) TRK
DSN(DB2R8.&SN..D&JDATE..T&TIME..P&PART.)
REORG TABLESPACE DSN00063.PARTTB
SHRLEVEL REFERENCE
AUX YES COPYDDN(SCOPY1)

Note: If you decided to change the limit keys yourself, rather than letting DB2 do it through
REORG ... REBALANCE, with the REBALANCE keyword, is not allowed if pending limit key
changes are waiting for its materialization. However, if you change your mind after you
issued the ALTER TABLE statements and you prefer to let DB2 do the rebalancing, you still
have to option to use ALTER TABLESPACE DROP PENDING CHANGES. The DROP PENDING
CHANGES option removes all entries for this table space from SYSIBM.SYSPENDINGDDL and
removes the AREOR status.
Chapter 4. Availability 63

4.3.2 LOAD REPLACE

Prior to DB2 11 NFM, all ALTER limit key executions are immediate in a sense that the new
limit keys are stored in the catalog immediately, and the affected table space partitions are
placed into a REORP restrictive state. The REORG or LOAD REPLACE can be used to materialize
alter limit key changes by reformatting the data sets and removing the REORP status on the
affected data partitions.

However, with DB2 11 NFM you get the new behavior with pending alter limit keys. The only
way to materialize pending changes is using the REORG utility. So a LOAD REPLACE can no
longer be used for the materialization of new limit keys after you are in NFM. If you run a LOAD
REPLACE while you still have unmaterialized pending changes for your limit keys, the load
should run successful but does load new data records based on the existing limit key values
prior to the pending alter limit key changes.

4.3.3 RECOVER

A PIT recovery across an online REORG that materialized the pending alter limit key changes is
now supported. However, be aware that the data partitions for which you applied limit key
changes before the REORG are placed in REORP restrictive state. In the RESTORE phase, all rows
are processed on a page-per-page basis. Thus, all image copied pages of partition 1 are
going back to partition 1, all copied pages of partition 2 are written to the VSAM cluster of
partition 2, and so on, as shown in Figure 4-4.

Figure 4-4 RECOVER with ALTER LIMIT option

P1

P2

P3

ALTER
limit keysCOPY TS

P1 P2 P3

REORG
(materialize)

RECOVER
tocopy

P3

P2

P1

P2

P3

P1

Limit key
In catalog

1000

2000

9999

Limit key
In catalog

700

2000

9999

700

2000

9999

Limit key
In catalog

R
E
O
R
P

64 IBM DB2 11 for z/OS Technical Overview

In addition, the limit keys that are stored in the catalog are still the limit keys that you set
earlier using ALTER TABLE. With the recover you just recover the data to a prior PIT and not the
schema. So after the RECOVER, there is a mismatch between which rows are expected in each
of the partitions and the data that is really there. You can resolve this mismatch using a REORG
on the affected table space partition.

4.4 Work file database enhancements

Each DB2 subsystem has a WORKFILE database. In a data sharing system, each data sharing
member has its own WORKFILE database.

DB2 uses the WORKFILE database to keep the declared global temp tables (DGTTs) and other
non-DGTT temporary data, such as created global temp tables (CGTTs) and DB2 work data,
to support queries by SQL applications that need to perform SORTs that are held in 'work
files. DGTTs are used for DGTTs declared by external applications, DB2-internal
implementation of static scrollable cursors, DB2-internal implementation instead of triggers,
and so on.

A WORKFILE database can have up to 500 table spaces for all kinds of temporary data
together. A table space in the WORKFILE database can be created as a PBG table space that is
partitioned and segmented or as a classic segmented table space that is non-partitioned and
segmented. PBG tables spaces are DB2-managed. Non-PBG table spaces can be either
DB2-managed or user-managed or both. Each table space in the WORKFILE database can hold
multiple DGTT tables or work files (depending on their size). A single work file’s (non-DGTT)
data can reside in multiple WORKFILE database table spaces (that is one work file can span up
to 255 table spaces) if necessary.

However, a single DGTT cannot span multiple table spaces. That is, a DGTT can use storage
in its initially-assigned table space only. If a DGTT is assigned a table space that is also
shared by work files, it is possible that the DGTT can run out of necessary space. To alleviate
storage shortage for DGTTs, DB2 currently implements a preference logic in the selection of
WORKFILE database table spaces for DGTTs versus work files, as follows:

For DGTTs, DB2 attempts to allocate storage from a list of DB2-defined table spaces with
non-zero secondary quantity (SECQTY = -1 or SECQTY > 0) first, before looking for storage from
table spaces with a zero secondary quantity. The selection criteria for work files is in the
opposite direction. DB2-defined table spaces with SECQTY = 0 or user-defined table spaces
are first used for work files.

This preference logic works effectively only if the WORKFILE database contains a mixture of
DB2-managed table spaces with zero and non-zero secondary quantities and user-defined
table spaces.

DB2 10 includes the WFDBSEP system parameter, which isolates certain type of work file table
spaces for DGTT or non-DGTT use only.

Important: Only partitions 1 and 2 are placed in REORP status, because the ALTER of the
limit key for partition 1 affected only these two partitions. As a consequence, you
reorganize only these two partitions to make the table space available.
Chapter 4. Availability 65

If WFDBSEP is set to YES, then:

� PBG table spaces and DB2-managed non-PBG (classic segmented) table spaces with a
non-zero secondary quantity (that is, SECQTY = -1 or > 0) are reserved for DGTT use only
(as DGTT-Preferred).

� DB2-managed non-PBG (classic segmented) table spaces with a zero secondary quantity
(SECQTY = 0) and user-managed non-PBG table spaces are reserved for work files use
only.

If the preferred table spaces are not available or they do not have sufficient storage, they get a
SQLCODE -904 resource unavailable error. Even though DB2 10 keeps track of the WORKFILE
database space usage through some statistic trace records, there are no alerts issued by
DB2 when critical storage shortage conditions are approached either at agent level or at
system level.

DB2 11 is enhanced to allow you to tell DB2 using two new system parameters which we are
going to describe on the following few pages, to issue warning messages when WORKFILE
database space-usage approaches a critical level. These system parameters allow you to
monitor space used by DGTTs and “regular” work files separately.

4.4.1 WFSTGUSE_AGENT_THRESHOLD subsystem parameter

DB2 11 introduces a new subsystem parameter WFSTGUSE_AGENT_THRESHOLD to define the
agent-level space-usage alert threshold. The system parameter is online-changeable.

The WFSTGUSE_AGENT_THRESHOLD subsystem parameter determines the percentage of
available space in the work file database on a DB2 subsystem or data sharing member that
can be consumed by a single agent before DB2 issues a warning message.

The percentage can range from 0 to 100, with a default value of 0, which basically means that
this function is not used, that is DB2 does not issue agent-level space usage warnings for the
work file database. For a value greater than 0, refer to Table 4-3 to determine how this
DSNZPARM influences DB2 behavior.

Table 4-3 WFSTGUSE_AGENT_THRESHOLD

WFDBSEP setting DB2 behavior

YES Issue a warning message in the following situations:
� When the percentage of total temporary work file space for one agent

reaches or exceeds the percentage of WFSTGUSE_AGENT_THRESHOLD.
� The percentage of total configured work file-storage in the WORKFILE

database consumed by one agent reaches or exceeds the percentage
set in WFSTGUSE_AGENT_THRESHOLD.

NO When an agent’s combined total used storage for DGTTs (temporary work
files) and sort work files reaches or exceeds the percentage set in
WFSTGUSE_AGENT_THRESHOLD
66 IBM DB2 11 for z/OS Technical Overview

Table 4-4 shows a few scenarios to demonstrate DB2 behavior in detail.

Table 4-4 WFSTGUSE_AGENT_THRESHOLD sample

Example 4-4 shows message DSNI052I, which was issued as a result of reaching the
specified threshold for one agent. In this case, the setting for WFDBSEP is NO. As a result, the
message FOR DECLARED GLOBAL TEMP TABLES AND WORK FILES displays in Example 4-4.

Example 4-4 WFSTGUSE per agent message

DSNI052I -DB1A DSNISGNS AN AGENT HAS EXCEEDED THE 519
THRESHOLD FOR STORAGE USE
 IN WORK FILE DATABASE DSNDB07
 FOR DECLARED GLOBAL TEMP TABLES AND WORK FILES.
 THRESHOLD = 1 PERCENT.
 TOTAL STORAGE CONFIGURED = 336 KB
 CONNECTION ID = DB1A
 CORRELATION ID = SABINE
 LUWID = USIBMSC.SCPDB1A.CBC5C3757ECE=21
 PACKAGE NAME = DSNESM68
 PLAN NAME = DSNESPCS

The total space configured for a table space in the WORKFILE database is determined during
restart based on the PRIQTY and SECQTY specified on CREATE TABLESPACE. For the calculation
DB2 assumes that the user has made the defined storage available for all the table spaces
using a storage group. One exception occurs for user-defined table spaces. DB2 can only
calculate the space for those objects when it opens the page set.

WFDBSEP Total Sort
work file
defined

Total Temp
work file
defined

WFSTGUSE_AGENT
_THRESHOLD

WFDB
storage used
by agent

Warning
issued?

YES 1 GB 1 GB 10% 20% Sortwork YES

YES 1 GB 1 GB 10% 20% Temp YES

YES 1 GB 1 GB 10% 7% Sortwork
7% Temp

NO

YES 1 GB 1 GB 10% 10% Sortwork
5% Temp

YES

YES 1 GB 1 GB 10% 4% Sortwork
7% Temp

NO

NO 1 GB 1 GB 10% 20% Sortwork YES

NO 1 GB 1 GB 10% 20% Temp YES

NO 1 GB 1 GB 10% 7% Sortwork
7% Temp

YES

NO 1 GB 1 GB 10% 10% Sortwork
5% Temp

YES

NO 1 GB 1 GB 10% 4% Sortwork
7% Temp

YES

Note: DB2 issues this message only once per commit scope. So do not wait for repeated
messages before you take action.
Chapter 4. Availability 67

4.4.2 WFSTGUSE_SYSTEM_THRESHOLD subsystem parameter

The WFSTGUSE_SYSTEM_THRESHOLD subsystem parameter determines the percentage of
available space in the work file database on a DB2 subsystem or data sharing member that
can be consumed by all agents before a warning message is issued.

Acceptable values are in the range between 0 to 100. The default is set to 90%. Example 4-5
sets the threshold to a low value of 2%. The message that you get in case the system-wide
threshold is reached is slightly different from that in Example 4-4. Example 4-5 shows the
message for the system-level space warning.

Example 4-5 WFSTGUSE per system message

DSNI053I -DB1A DSNISGNS THE DB2 SUBSYSTEM HAS 521
EXCEEDED THE THRESHOLD FOR
 STORAGE USE IN WORK FILE DATABASE DSNDB07
 FOR DECLARED GLOBAL TEMP TABLES AND WORK FILES.
 THRESHOLD = 2 PERCENT.
 TOTAL STORAGE CONFIGURED = 336 KB.

When this value is 0, DB2 does not issue system-level space usage warnings for the work file
database.

When the value is not equal zero, DB2 behaves as listed in table Table 4-5.

Table 4-5 DB2 behavior for WSTGUSE based on WFDBSEP setting

Note: If DB2 has not opened all user-defined table space objects for the WORKFILE
database yet, DB2 does not know about the sizes for these objects. Therefore, it might
happen that an agent has used up a high percentage of the available space in DSNDB07 but
that a warning is not issued, because one or two small user-defined work files are not
opened yet.

WFDBSEP setting DB2 behavior

YES Issue a warning message in the following situations:
� When the total system level storage used for DGTTs reaches or

exceeds the WFSTGUSE_SYSTEM_THRESHOLD percentage of the
total configured DGTT-storage in the WORKFILE database.

� The total system-level storage used for work files reaches or
exceeds the WFSTGUSE_SYSTEM_THRESHOLD percentage of the
total configured work files-storage in the WORKFILE database.

NO Issue a warning message when the total system level storage used
for DGTTs and work files together reaches or exceeds the
WFSTGUSE_SYSTEM_THRESHOLD percentage of the total configured
storage in the WORKFILE database.

Note: The DSNI053 message is issued at 5 minutes interval, if the criteria for issuing the
message continues to exist. You cannot influence this interval.You can adjust this interval if
you get too many messages in the MSTR address space using the following methods:

� Increase the percentage for the WFSTGUSE_SYSTEM_THRESHOLD system parameter, but
keep in mind the implications.

� Increase the number or size of the WORKFILE database table spaces.
68 IBM DB2 11 for z/OS Technical Overview

The total space configured for a table space in the WORKFILE database is determined during
restart based on the PRIQTY and SECQTY specified on CREATE TABLESPACE. For the calculation
DB2 assumes that the user made the defined storage available for all the table spaces using
a storage group. One exception occurs for user-defined table spaces. DB2 can calculate only
the space for those objects when it opens the page set. Refer to Table 4-6 for more details.

Table 4-6 Maximum WORKFILE storage configured

4.4.3 Systems programmer response to DSNI052I/DSNI053I

Determine whether the warning threshold that is specified by subsystem parameter
WFSTGUSE_SYSTEM_THRESHOLD or WFSTGUSE_AGENT_THRESHOLD are too low.

If this is not the case, take one or both of the following actions:

� Create additional table spaces in the work file database of the object types that are
specified in this message.

Use the DSNTWFG exec in job step DSNTIST of installation job DSNTIJTM to create additional
table spaces.

� Change the value of subsystem parameter WFDBSEP from NO to YES.

Important: If DB2 has not opened all user-defined table space objects for the WORKFILE
database, DB2 does not know about the sizes for these objects. Therefore, it might happen
that an agent has used up a high percentage of the available space in DSNDB07 but that a
warning is not issued, because one or two small user-defined work files are not opened.

Table space PRIQTY SECQTY Maximum storage configured for the
table space

PBG -1 DSSIZE * MAXPARTITIONS GB

PBG > 0 DSSIZE * MAXPARTITIONS GB

PBG 0 MIN(PRIQTY, DSSIZE) GB

DB2-managed Non-PBG < 2 GB -1 64 GB

DB2-managed Non-PBG < 2 GB > 0 64 GB

DB2-managed Non-PBG < 2 GB 0 PRIQTY GB

DB2-managed Non-PBG >= 2 GB 64 GB

User-managed Non PBG
with number of data sets > 1

Number of data sets * 2 GB

User-managed Non PBG
with number of data sets > 1

0 PRIQTY GB

User-managed Non PBG
with number of data sets > 1

> 0 2 GB
Chapter 4. Availability 69

4.5 Governing of parallel processing of utilities

DB2 processes various tasks for various utilities in parallel. Sometimes you have to ask for it,
and sometimes DB2 determines the possible degree of parallelism by itself. The following
utilities can have some work run in parallel:

� REORG TABLESPACE
� REBUILD INDEX
� CHECK INDEX
� UNLOAD
� LOAD

This utilities include a new PARAMDEG_UTIL subsystem parameter that allows you to limit the
number of parallel tasks for utilities for a data sharing member.

REORG TABLESPACE
REORG TABLESPACE uses parallel index build if more than one index needs to be built (including
the mapping index for SHRLEVEL CHANGE). You can either let the utility dynamically allocate the
data sets that SORT needs for this parallel index build or provide the necessary data sets
yourself. The number of subtasks must be less than or equal to the number that is specified
by the PARALLEL option. If you do not specify the PARALLEL option, the PARAMDEG_UTIL
subsystem parameter determines the maximum degree of parallelism for the utility.

Neither the PARALLEL nor PARAMDEG_UTIL affect the degree of parallelism used by the unload
phase of REORG.

REBUILD INDEX
For REBUILD INDEX the PARALLEL(num-subtasks) keyword specifies the maximum number of
subtasks that are to be started in parallel to rebuild indexes. If the PARALLEL keyword is
omitted, the maximum number of subtasks is limited by either the number of partitions being
unloaded or the number of indexes built.

REBUILD INDEX typically allocates subtasks in groups of two or three, so the actual number of
subtasks that are started might be less than the number specified on PARALLEL.

The specified number of subtasks for PARALLEL always overrides the specification of the
PARAMDEG_UTIL subsystem parameter. Thus, PARALLEL can be smaller or larger than the value
of PARAMDEG_UTIL.

The num-subtasks value specifies the maximum number of subtasks and must be an integer
between 0 and 32767, inclusive. If the specified value for num-subtasks is greater than
32767, the REBUILD INDEX statement fails. If 0 or no value is specified for num-subtasks, the
REBUILD INDEX utility uses the optimal number of parallel subtasks. If the specified value for
num-subtasks is greater than the calculated optimal number, the REBUILD INDEX utility limits
the number of parallel subtasks to the optimal number with applied constraints.

Incompatibility: In DB2 11 conversion mode, the degree of parallelism can increase for
the REBUILD INDEX utility.

The REBUILD INDEX utility previously limited the degree of parallelism to 18 subtasks. Now,
because of the PARALLEL option value or the PARAMDEG_UTIL subsystem parameter value,
the amount of parallelism might increase.
70 IBM DB2 11 for z/OS Technical Overview

CHECK INDEX
If you specify more than one index, CHECK INDEX checks the indexes in parallel unless they are
constrained by available memory, sort work files, or the PARALLEL option. Sorting the index
keys and checking multiple indexes in parallel, rather than sequentially, reduces the elapsed
time for a CHECK INDEX job.

If you do not specify the PARALLEL option, the PARAMDEG_UTIL subsystem parameter
determines the maximum degree of parallelism for the utility.

UNLOAD
The unload utility also has a new PARALLEL keyword. This keyword specifies the maximum
number of subtasks to be used in parallel to process the unloading of a partitioned table
space. If the PARALLEL keyword is omitted, the maximum number of subtasks possible is
determined by the number of partitions being unloaded.

The (num-subtasks) value specifies the maximum number of subtasks that are to be
processed in parallel. The value must be an integer between 0 and 32767, inclusive. If the
specified value for num-subtasks is greater than 32767, the UNLOAD statement fails. If 0 or no
value is specified for num-subtasks, the UNLOAD utility uses the optimal number of parallel
subtasks after applying constraints. If the specified value for num-subtasks is greater than the
calculated optimal number, the UNLOAD utility limits the number of parallel subtasks to the
optimal number. The specified number of subtasks for PARALLEL always overrides the
specification of PARAMDEG_UTIL, so it can be smaller or larger than the DSNZPARM value.

LOAD
For a single input data set, the PARALLEL option specifies the maximum number of subtasks
that are to be used in parallel when loading a table space from a single input data set and
building the indexes. By using parallel subtasks, the utility can potentially reduce the elapsed
time of the load operation.

For multiple input data sets, where there is one data set for each partition, the PARALLEL
option specifies the maximum number of subtasks to be used with loading the data partitions,
building the indexes, and gathering statistics. This option applies to classic and
range-partitioned table spaces. If the PARALLEL option is omitted, the load operation uses the
optimal number of subtasks with applied constraints.

The PARALLEL option overrides PARAMDEG_UTIL: The specified number of subtasks
for the PARALLEL option always overrides the specification of the PARAMDEG_UTIL subsystem
parameter. Thus, the PARALLEL value can be smaller or larger than the value of
PARAMDEG_UTIL.
Chapter 4. Availability 71

The LOAD utility calculates an optimal number of subtasks to process in parallel based on
memory constraints, virtual storage constraints, and the number of available processors. If 0
or no value is specified for num-subtasks, the LOAD utility uses the optimal number of parallel
subtasks. If the specified value for num-subtasks is greater than the calculated optimal
number, the LOAD utility limits the number of parallel subtasks to the optimal number. If the
specified value for num-subtasks is less than the calculated optimal number, the LOAD utility
uses the specified value. If the specified value for num-subtasks is greater than 32767, the
LOAD statement fails.

4.6 Compression dictionary availability for CDC tables

The DB2 instrumentation facility interface (IFI) provides the ability to read log records for data
replication products to process the changes to a table from insert, update, and delete
operations. If the table is compressed, IFI needs a dictionary to decompress the log record
data. Compression dictionaries are created during LOAD or REORG or by using COMPRESS on
INSERT. DB2 uses these compression dictionaries when compressed record information must
be read from the log for replication purposes.

However, if you execute a subsequent REORG or LOAD operation and if you do not specify the
KEEPDICTIONARY option, DB2 builds a new compression dictionary during the utility execution.
This action is OK for all subsequent DML on the table data. However, a problem can occur if a
data replication product needs to read log records that require information included in the old
compression dictionary. The old compression dictionary is kept in memory as long as DB2 is
up and running but is discarded if you have to shut down the DB2 system. In addition, in a
data sharing group, the old compression dictionary is kept only in the memory of the member
on which you run the LOAD or REORG. The other members or the data sharing group are not
aware of the old compression dictionary, and the information about its existence cannot be
shared with different data sharing members.

DB2 11 provides relief to this situation. The change applies only to tables that are created
with CHANGE DATA CAPTURE and COMPRESS YES. If you run LOAD or REORG for those objects, DB2
now saves the old compression dictionary. DB2 externalizes the old compression dictionary to
the log and adds a record with ICTYPE ‘J’ to the SYSIBM.SYSCOPY table. The START_RBA
column of this new records points to the RBA of the data sharing member’s log to which the
compression dictionary is externalized.

Restriction: The PARALLEL option is not valid in the following situations:

� For a single input data set, the LOAD statement includes any of the following options:

– SPANNED YES
– INCURSOR
– PRESORTED
– FORMAT INTERNAL
– COLGROUP

� The table space to be loaded is a PBG table space.

� The table to be loaded has XML columns and is in a simple or segmented table space,
and the LOAD statement includes the SHRLEVEL CHANGE option.

� The table to be loaded has LOB or XML columns, and the LOAD statement includes the
SHRLEVEL NONE option.
72 IBM DB2 11 for z/OS Technical Overview

In a data sharing environment, DB2 merges log records if the value of the IFI READS
qualification WQALFLTR is X'00'. If WQALFLTR is X'01', log records are not merged. The
iinstrumentation facility component identifier (IFCID) can retrieve log records from the archive
data sets.

This improvement is available in CM.

4.7 DROP column support

With DB2 you had the ability to complete the following tasks:

� Add a column to an existing table (V1)
� Alter a column on an existing table (V8)
� Rename a column on an existing table (V9)

The ability to drop a column from an existing table has been a requirement because an
abandoned column produces the following types of costs:

� Space in every row stored in the table
� Space in every image copy of the table space
� Space taken up in the log records written for the table
� Additional CPU and elapsed time in all aspects of accessing and maintaining the data
� DBA time “remembering” that the column is redundant

Without the ability to drop a column from an existing table, the procedure of getting rid of the
redundant column is to schedule an outage, unload the data, drop the table, re-create the
table without that column, load the data, and potentially redo grants.

DB2 11 lets you drop existing columns from a table through an ALTER TABLE ... DROP
COLUMN.. RESTRICT SQL statement if there are no dependent objects such as indexes,
triggers, unique or check constraints, row permissions, column masks and so on, defined on
this column. Views dependent on the table are implicitly regenerated.

DB2 10 introduced pending changes for online schema changes. An ALTER TABLE to drop one
or more columns of a table is a pending change. The drop is not materialized immediately
after the ALTER TABLE statement completes, instead one row for each dropped column is
inserted into the SYSIBM.SYSPENDINGDDL catalog table and the table space holding the affected
table is placed in AREOR advisory pending state.

For example, if the sc1.table1 table resides in the DB1.TS1 table space, and the table has 10
columns, with the names column1...column10. To drop column10, execute the following ALTER
TABLE statement:

ALTER TABLE sc1.table1 DROP COLUMN column10 RESTRICT

Upon execution of the this ALTER statement, the entries listed in Table 4-7 are inserted into
SYSPENDINGDDL.

Table 4-7 Entry values for SYSPENDINGDDL

SYSPENDINGDDL catalog field Value

DBNAME ' DB1

TSNAME TS1

DBID DBIS of DB1
Chapter 4. Availability 73

Because it is only an advisory state, the object is fully available for any DML statements. In
order to actually materialize the change, you have to run a REORG TABLESPACE utility with
SHRLEVEL REFERENCE or CHANGE.

You can run a REORG with SHRLEVEL NONE as well while the table space is in AREOR status, but
SHRLEVEL NONE would not materialize the pending change or changes.

The REORG with SHRLEVEL REFERENCE or CHANGE performs the following actions:

� Generate a new table version.

� Update the catalog definition to remove any references to the dropped column.

� Revoke any associated column level privileges.

� Update the data to remove any data for the dropped column.

� Collect statistics for the table space and associated indexes with the default options (TABLE
ALL INDEX ALL UPDATE ALL HISTORY ALL) if the STATISTICS keyword was not specified with
the utility.

� Invalidate any packages and dynamic cached statements that are dependent on the table.

� Create a SYSCOPY record for the dropped column.

� Remove the pending drop column entry from SYSPENDINGDDL.

� Issue a DSNU1166I warning message with RC=4 to indicate that some partition statistics
might have become obsolete. The partition statistics that might be obsolete are COLGROUP
statistics, KEYCARD statistics, HISTOGRAM statistics, frequency statistics with NUMCOLS > 1,
and statistics for extended indexes where applicable.

PSID PSID of TS1

OBJSCHEMA sc1

OBJNAME table1

COLNAME colun10

OBJOBID OBID of sc1.table1

OBJTPYE T

STATEMENT_TYPE A

COLUMN_KEYWORD DROP

OPTION_KEYWORD RESTRICT

OPTION_VALUE empty string

STATEMENT_TEXT ALTER TABLE sc1.table1 DROP COLUM
column10 RESTRICT

Important: You must execute the REORG TABLESPACE utility to materialize the pending DROP
COLUMN on the entire table space. If you only REORG a subset of partitions of a partitioned
table space, the REORG runs, but the pending changes continue to be pending changes and
the table space remains in AREOR status.

SYSPENDINGDDL catalog field Value
74 IBM DB2 11 for z/OS Technical Overview

� The user should execute the RUNSTATS utility to collect the partition statistics again.

� Clear the AREOR state from the table space.

4.7.1 Changes to the catalog as a result of dropping a column

As a result of dropping one or more columns from a table, several updates need to be applied
to the DB2 catalog. You see the following subset of changes after the successful materializing
REORG:

� A new table version is generated:

– SYSTABLESPACE.CURRENT_VERSION is updated
– SYSTABLES.VERSION is updated.

� SYSTABLES.COLCOUNT is decreased.

� SYSTABLES.RECLENGTH is decreased.

� SYSCOLUMNS.COLNO is changed for all subsequent columns.

� If the dropped column is a LOB column, the related auxiliary objects for all partitions are
dropped.

4.7.2 Undo a DROP COLUMN

A DROP COLUMN cannot be undone after you materialized it using REORG TABLESPACE. However,
after you execute a pending ALTER TABLE DROP COLUMN, and before the drop is materialized by
a REORG utility, you can remove the pending alter using ALTER TABLESPACE DROP PENDING
CHANGES.

Tip: A new option is available on the RUNSTATS utility control statement, RESET ACCESSPATH.
You might want to run RUNSTATS with this statement prior to running REORG TABLESPACE to
materialize the pending DROP COLUMN. RUNSTATS TABLESPACE ... RESET ACCESSPATH does
not gather any statistics. Instead it only resets any access path related statistics in the
catalog tables.

Note: If you drop multiple columns and run REORG TABLESPACE only once to materialize
this change, only one version is generated for it.

Important: The removal of the pending alter that you initiated using the ALTER TABLE
command does not work through another ALTER TABLE command but needs to be an ALTER
TABLESPACE command instead!

In addition, removing pending alters for a given table space is not granular. If you use the
DROP PENDING CHANGES option on the ALTER TABLESPACE command, all pending changes for
the specified table space are removed.
Chapter 4. Availability 75

4.7.3 Impact of DROP COLUMN on utilities

This section describes the impact of DROP COLUMN on utilities.

RECOVER
Recovery to a PIT prior to a materializing REORG is not allowed. Because the materializing
REORG must be a SHRLEVEL REFERENCE or SHRLEVEL CHANGE REORG, the REORG produces an
image copy. As shown in Figure 4-5, two image copies FC1 and FC2 that existed prior to the
materializing REORG are no longer valid image copies.

Figure 4-5 RECOVER to CURRENT after DROP COLUMN

In case you need to a recover after the reorganization, this process works properly if you
need to recover to CURRENT. However, if your want to recover to any point prior to the image
copy that was taken with the materializing REORG, as shown in Figure 4-6, the process fails
with a DSNU5561I message and RC8.

Figure 4-6 RECOVER to LOGPOINT after DROP COLUMN

RECOVER to
CURRENT

DML activities

DROP
COLUMN

FC1 FC2

FC3 FC3 + log records

Reorg removes the dropped
column and creates inline
image copy FC3

QUIESCE

TABLESPACE

LRSN x�A�

RENT

RECOVER to
LOGPOINT
x�A�

DML activities

DROP
COLUMN

FC1 FC2

FC3 FC3 + log records

Reorg removes the dropped
column and creates inline
image copy FC3

QUIESCE

TABLESPAC
E

LRSN x�A�
76 IBM DB2 11 for z/OS Technical Overview

UNLOAD
Unless you do something to the physical data sets of image copies FC1 and FC2 in
Figure 4-7 on page 78, they continue to exist even if they are not usable by RECOVER any more.
As a consequence, you might think that unloading data might work even after the DROP COLUMN
is materialized. It does not. If the image copy contains data for dropped columns, the attempt
to unload ends with DSNU1227I and RC8.

DSN1COPY
The DSN1COPY utility is another method to copy data from still existing image copies to the
table space cluster. If you run the DSN1COPY utility and use, for example, image copy FC2 as
shown in Figure 4-7, you are using an image copy on which the structure of the data rows is
different than the one that is known to the DB2 catalog. The DSN1COPY utility is a stand-alone
utility. When you run it, DB2 does not check the contents of the input data set and also does
not compare it to whatever is defined in the DB2 catalog. As a consequence, a DSN1COPY utility
execution that copies over the contents of FC2 to the table space cluster, completes with RC
0 if done correctly.

If you subsequently try to select from the table you run into errors if the expected data type
does not fit with the encountered data type on the data page.

Tip: Because the image copy that is created during the REORG is the only good image copy
that you have at this point, create at least two image copies during the REORG.
Chapter 4. Availability 77

Figure 4-7 illustrates how the layout of the EMPLOYEE table changes after DROP COLUMN and the
materializing REORG. If later on you use DSN1COPY to copy the contents of FC1 to the table
space cluster of DB1.TS1, no problems occur, because DSN1COPY does not check the column
layout.

Figure 4-7 TABLE layout after dropping a column

EMPNO
CHAR(6)

FIRSTNME
CHAR(6)

LASTNAME
CHAR(10)

HIREDATE
DATE

SALARY
DECIMAL(6,2)

000010 JOHN MILLER 2010-01-01 5675.67

000020 TOM BLACK 2001-01-10 4300.80

EMPLOYEE

ALTER TABLE EMPLOYEE DROP COLUMN LASTNAME RESTRICT;

EMPNO
CHAR(6)

FIRSTNME
CHAR(6)

HIREDATE
DATE

SALARY
DECIMAL(6,2)

000010 JOHN 2010-01-01 5675.67

000020 TOM 2001-01-10 4300.80

EMPLOYEE

COPY TABLESPACE DB1.TS1;

FC1

REORG TABLESPACE DB1.TS1 SHRLEVEL CHANGE;
78 IBM DB2 11 for z/OS Technical Overview

As shown in Figure 4-8, a subsequent usage of the EMPLOYEE table might or might not be
successful. If you just selected from columns that are before the dropped column, you get the
correct results back. If you also select from column, which were repositioned in the table
order, there is a high potential that the attempt to read the data will fail. Even if it does not fail,
because the data types fit with the column definition, you will definitely get the wrong data
returned, that is the information that was previously stored in the dropped column.

Figure 4-8 Effect of DSN1COPY for a table with dropped column

4.7.4 Impact of DROP COLUMN on applications

Dropping a column is not just a matter of executing the new ALTER statement introduced by
DB2 11. It also needs planning and careful analysis and communication.

Any packages and statements in the dynamic statement cache that are dependent on the
table holding the column that you are planning to drop are invalidated after you run the
materializing REORG statement. If system parameter ABIND is set to YES or COEXIST, an
automatic rebuild occurs the next time the application is called. The rebind succeeds if the
application does not have any reference to the column that you dropped. In case you missed
any packages that are in fact still referencing the column or columns, the automatic rebuild
fails and the package is set to inoperative status. Thus, you have to correct the failing SQL
statement in the package and execute a BIND package to reactivate the package in question.

The analogous is true for dynamic SQL statements, which are invalidated in the dynamic
statement cache.

4.7.5 Restrictions for DROP COLUMN

Keep in mind the following restrictions to the DROP COLUMN function:

� Only allowed for tables residing in a UTS.
� Not allowed if the table is an MQT or for tables which are referenced by an MQT
� Not allowed for columns belonging to a system-period temporal table or a history table
� Not allowed for tables with EDITPROC or VALIDPROC defined on it.

EMPNO
CHAR(6)

FIRSTNME
CHAR(6)

HIREDATE
DATE

SALARY
DECIMAL(6,2)

000010 JOHN MILLER 2010-01-01 5675.67

000020 TOM BLACK 2001-01-10 4300.80

EMPLOYEE

DSN1COPY Image Copy FC1 to table space cluster

SELECT EMPNO, FIRSTNME from EMPLOYEE;

SELECT EMPNO, FIRSTNME, HIREDATE from EMPLOYEE;
SELECT * from EMPLOYEE;
Chapter 4. Availability 79

� Not allowed for CGTTs.
� The partitioning key column cannot be dropped.
� The hash key column for a table space defined as organized by hash cannot be dropped.
� DOCID columns cannot be dropped.
� ROWID columns with GENERATED BY DEFAULT or with a dependent LOB cannot be dropped.
� Security label columns (row permissions or column masks) cannot be dropped.

4.8 Defer define object enhancements

The enhancements described in this section are mostly helpful for applications whose
database design has the following characteristics:

� Objects are created with the DEFER YES option
� Many objects that share one database

For these objects, a problem can occur when users insert or load data into the logically
existing tables that are not physically defined. When these tables are first used, DB2 needs to
take an exclusive lock for the database descriptor (DBD). This lock is held until the unit of
recovery that completes the data successfully creates the cluster and then completes all the
inserts or load action. If there are other tables that are also used for the first time, they also
require a DBD lock so that there is a high potential that these tables will run into a time out
condition.

Figure 4-9 illustrates this situation. UR1 issues an INSERT statement, which leads to a DBD
lock and a VSAM DEFINE. This lock then starts the inserts. The DBD lock is not released until
UR1 commits.

Figure 4-9 DBD lock on first insert

DB2 11 allows the lock to be releases on the database descriptor earlier. Thus, instead of
waiting for the inserts to complete the unit of recovery per commit, DB2 11 now releases the
lock as soon as the table or index space is physically defined. Refer to Figure 4-10. Because
80 IBM DB2 11 for z/OS Technical Overview

UR1 releases the DBD lock immediately after the DEFINE CLUSTER, UR2 does not time out, but
UR2 can itself take the DBD lock, DEFINE the cluster for table TAB2, release the lock again,
and start with the inserts.

Figure 4-10 DEFER DEFINE enhancement

4.9 Allow BIND, REBIND, and DDL to break-in persistent
threads

You need to find windows of opportunity when you can make changes to applications, which
sometimes requires that you bind packages and plans or make changes to the database by
submitting DDL. Historically, it is difficult to execute a BIND command or a DDL statement at
times when applications are running, especially applications bound with
RELEASE(DEALLOCATE).

One of the BIND/REBIND options for BIND PLAN and BIND PACKAGE is RELEASE. The RELEASE
option determines when to release resources that a program uses, either at each commit
point or when the program terminates.

You can set RELEASE to COMMIT, DEALLOCATE, or INHERITFROMPLAN. COMMIT releases resources at
each commit point, unless cursors are held. If the application accesses the object again, it
must acquire the lock again. RELEASE(DEALLOCATE) releases resources only when the program
terminates. RELEASE(DEALLOCATE) has the advantage that it requires less CPU (up to 20%)
than RELEASE(COMMIT). Alternatively, RELEASE(COMMIT) has the advantage of allowing other
processes, such as BIND/REBIND and the execution of DDL, to break in more easily and use
needed resources to complete successfully rather than time out.

DB2 10 introduced the -MODIFY DDF PKGREL(COMMIT/BNDOPT) command. When you issue the
-MODIFY DDF PKGREL(COMMIT) command, DB2 temporarily changes the behavior of DDF
threads bound with RELEASE(DEALLOCATE) so that they act as though they were bound with
RELEASE(COMMIT). The idea behind it allows BIND, REBIND, and DDL and utilities to break in to
persistent threads on COMMIT rather than waiting for the application to allocate and therefore
undergo the risk of running into time out situations.

TAB1 TAB2

TAB3 TAB4

DB1

INSERT INTO
TAB1 (UR1)

Assumption: All tables created with option DEFINE NO!

DBD lock VSAM DEFINE TS cluster release start inserting

COMMIT

INSERT INTO
TAB2 (UR2)

Wait for
DBD lock

Release
DBD lock

COMMIT

Take
DBD lock

VSAM
Define

INSERT

DBD lock
Chapter 4. Availability 81

DB2 11 introduces a PKGREL_COMMIT system parameter that can be set to YES or NO. YES is the
default. If set to YES it allows a persistent DB2 thread, at COMMIT or ROLLBACK, to implicitly
release a package that is bound with RELEASE(DEALLOCATE) and active on that thread if there
is a BIND REPLACE/REBIND PACKAGE, online schema change operation (for example, DDL), or
online REORG with deferred ALTER operation that needs to quiesce or invalidate the package.
So think of it as though you are tapping the executing holder of the thread on the shoulder,
and when it comes to their next commit, they change to RELEASE(COMMIT) for that thread.

This described behavior is not available for the following circumstances:

� Packages that have OPEN and HELD cursors at the time of the COMMIT or ROLLBACK
� Packages that are bound with KEEPDYNAMIC(YES)
� COMMIT or ROLLBACK options that occur within a DB2 stored procedure

The PKGREL_COMMIT system parameter is online changeable.

This option is available only in NFM.

4.10 Idle thread break-in

RELEASE is a BIND option that tells DB2 how to handle the caching of package locks and
structures. The default is setting for this BIND option is COMMIT. Thus, DB2 frees package
structures upon commit. The alternative option is DEALLOCATE. With RELEASE(DEALLOCATE)
package structures persist until full thread deallocation.

RELEASE(DEALLOCATE) potentially can improve performance in the following circumstance:

� Long running batch jobs that COMMIT frequently
� Thread reuse for example for CICS protected threads or JCC Type 2 applications.

RELEASE(DEALLOCATE) is not used pervasively for the following reasons:

� Your system might have virtual storage constraints, which was true primarily for DB2 9 and
earlier.

� RELEASE DEALLOCATE was not allowed for DDF workload from DB2 V6 and DB2 10.

� If application do not release resources upon commit, this means that BINDs or REORGS
for example have little chance to break in during long running batch applications.

DB2 10 introduced high performance DBATS, the re-enablement of the RELEASE(DEALLOCATE)
bind option for DDF threads. For the high performance DBATs you have a chance to change
the originally picked bind option of RELEASE(DEALLOCATE) on the fly. The way to do this is by
using the -MODIFY DDF PKGREL(COMMIT) command. After you issue this command, new DDF
DBAT threads bound with RELEASE(DEALLOCATE) behave as though they were bound with
RELEASE(COMMIT) and, therefore, increase the chances for BINDs and REORGs to break in at
COMMIT. The existing DBATs remains as RELEASE(DEALLOCATE) until 200 commits.

After you are finished with your planned actions, you can reverse the behavior to
RELEASE(DEALLOCATE) using -MODIFY DDF PKGREL(BNDOPT) command. If you do not issue this
command, behavior is reversed back automatically after 200 commits.

Important: This behavior is available only for ACTIVE persistent threads. If the thread is
waiting for some other things to complete and is not currently ACTIVE in DB2, the
BIND/REBIND/DDL/Utility is not able to break in.
82 IBM DB2 11 for z/OS Technical Overview

DB2 11 continues to improve this situation for processes that have a need to break in.
RELEASE(COMMIT) mode takes effect on the next COMMIT if there is a waiter and not just for new
DBATs.

4.10.1 Improvements for DDF threads

As with DB2 10, you enable the improvements for DDF thread using the -MODIFY DDF
PKGREL(COMMIT) command.

Disabling has changed a bit. You can still use -MODIFY DDF PKGREL(COMMIT) command, but in
addition, it is reversed to RELEASE(DEALLOCATE) much earlier than before. It is automatically
done on the next COMMIT if there is a waiter on a package lock.

4.10.2 Improvements for non-DDF threads

DB2 11 now also focuses on non-DDF threads.

Active threads
DB2 11 introduces a the PKRGEL_COMMIT system parameter. This subsystem parameter
specifies whether at COMMIT or ROLLBACK a persistent DB2 thread releases a package that is
active on that thread if certain DB2 operations are waiting for exclusive access to that
package.

Idle threads
In DB2 11 with APAR PM95929 applied, if a package lock appears to be at risk of a timeout, a
broadcast is sent to all members of a data sharing group to recycle any idle threads from local
attaches, that is for example CICS, IBM IMS™, RRSAF and so on. The risk of timeout is
indicated at 1/2 of the internal resource lock manager (IRLM) timeout limit (the IRLMRWT
subsystem parameter).

A thread is eligible for recycling if all of the following statements are true:

� It is at a transaction boundary.
� It is not running in DB2.
� It has not committed or rolled back in an interval that is larger than half of IRLMRWT.

The recycle processing fences the API and issues a “dummy” COMMIT for the idle thread,
which allows package locks to be freed. If an attempt to use the idle thread is made during the
recycle processing, it is delayed until the recycle is complete. The recycle is rapid and delays
are minimal.

Important: This process does not address threads with held cursor across commits and
does not address long running transactions holding package locks.

Maintenance in this area includes APARs PM95929, PM96001, and PM96004.
Chapter 4. Availability 83

84 IBM DB2 11 for z/OS Technical Overview

Chapter 5. Data sharing

DB2 data sharing can provide the following advantages over database architectures:

� Separate, independent DB2 systems
� Improved DB2 availability during both planned and unplanned outages
� Increased scalability because you are not bound by the limits of a single DB2 system
� Greater flexibility when configuring systems

These advantages and an overview of the operational aspects of data sharing are described
in detail in DB2 11 for z/OS Data Sharing: Planning and Administration, SC19-4055.

DB2 11 for z/OS provides a number of enhancements to data sharing. These enhancements
provide improved availability, scalability, and performance. All of these enhancements are
available in DB2 11 conversion mode (CM) unless otherwise noted.

This chapter describes the following enhancements to data sharing:

� Group buffer pool write-around protocol
� Improved castout processing
� Improved DELETE_NAME performance
� Restart light with CASTOUT option
� Locking enhancements
� Index availability and performance
� Group buffer pool write performance
� Automatic LPL recovery at end of restart
� Log record sequence number spin avoidance

5

© Copyright IBM Corp. 2013. All rights reserved. 85

5.1 Group buffer pool write-around protocol

DB2 environments that have data sharing enabled can have multiple applications
concurrently accessing data from any member of a data sharing group, with many members
potentially reading and writing the same data. When multiple members of a data sharing
group open the same table space, index space, or partition, and at least one of them opens it
for writing, the data is said to be of inter-DB2 read/write interest to the members.

To control access to data that is of inter-DB2 read/write interest, whenever the data is
changed, DB2 caches it in a storage area that is called a group buffer pool (GBP) in the
coupling facility. When there is inter-DB2 read/write interest in a particular table space, index,
or partition, it is dependent on the group buffer pool, or GBP-dependent (group buffer
pool-dependent).

In DB2 data sharing, when batch jobs or utilities run against GBP-dependent objects, it can
result in heavy, sustained GBP page write activity. When this happens, the GBP can begin to
fill up with changed pages which can result in application slowdowns or, in severe cases,
pages being written to the logical page list (LPL), which cause DB2 data outages.

Over the years, this has consistently been one of the top data sharing customer complaints,
and many customers, after having suffered through these slowdowns or outages, have
over-allocated the GBP structures, which introduces its own set of problems. An
over-allocated GBP drives up cost and can result in performance or scalability concerns
because of the overly large GBP structure sizes. As a large GBP becomes polluted with lots
of changed pages, the resulting flood of castout related CF commands, and in some cases
the CF, becomes unresponsive because of this flood of write and castout commands.

DB2 11 addresses these issues by providing a capability to bypass writing pages to the GBP
in certain situations and write the pages directly to DASD instead, while using the GBP to
send buffer invalidate signals. This feature is referred to as GBP write-around.

Two thresholds are used to determine whether GBP write-around is invoked for all objects in a
GBP or for a page set/partition: the GBP castout threshold; and the class castout threshold.
When the GBP castout threshold hits 50%, meaning that 50% of the GBP is occupied by
changed pages, then write-around is invoked for writing pages for all objects. When the class
castout threshold hits 20%, meaning that 20% of a class castout queue is occupied by
changed pages, then DB2 employs the write-around protocol for the page set/partition. The
write-around process at the GBP level continues until the GBP castout threshold drops to
40%. The write-around process at the page set/partition level continues until the class castout
threshold drops to 10%. These threshold values are fixed; you cannot change them.

If either threshold is reached, the write-around protocol at the appropriate level is invoked.
The processing occurs as follows:

� Changed pages are conditionally written to the GBP. Conditional write means that if a
page is already cached in the GBP then the write is allowed to proceed, and if the page is
not already cached then the write fails. A DISPLAY GROUPBUFFERPOOL command with the
MDETAIL option shows the number of pages written through a write-around processing in
the DSNB777I informational message that is displayed as part of the output.

� If the write failed, the page is written to DASD, and the GBP is used to send buffer
invalidate signals to the other members.
86 IBM DB2 11 for z/OS Technical Overview

Example 5-1 shows a DISPLAY GROUPBUFFERPOOL command for a buffer pool that includes an
object that was updated from one member and selected from another member, which forces
the object to become GBP-dependent. Following the command is partial output from the
command, including the DSNB777I message.

Example 5-1 DISPLAY GROUPBUFFERPOOL output with write-around statistics

 DB2 COMMANDS SSID: D1B1
===>

Position cursor on the command line you want to execute and press ENTER

Cmd 1 ===> -DISPLAY GROUPBUFFERPOOL(GBP0) MDETAIL

DSNB750I -D1B1 DISPLAY FOR GROUP BUFFER POOL GBP0 FOLLOWS
DSNB755I -D1B1 DB2 GROUP BUFFER POOL STATUS
 CONNECTED = YES
 CURRENT DIRECTORY TO DATA RATIO = 5
 PENDING DIRECTORY TO DATA RATIO = 5
 CURRENT GBPCACHE ATTRIBUTE = YES
 PENDING GBPCACHE ATTRIBUTE = YES

DSNB777I -D1B1 ASYNCHRONOUS WRITES
 CHANGED PAGES = 0
 CLEAN PAGES = 0
 FAILED DUE TO LACK OF STORAGE = 0
 WRITE-AROUND PAGES = 0

The benefit of GBP write-around is that DB2 automatically detects the flooding of writes to the
GBP, and automatically responds by dynamically switching to the GBP write-around protocol
for those objects that are causing the heaviest write activity. Only the deferred writes are
affected. Commits continues to write GBP-dependent page sets to the GBP. After the GBP
storage shortage is relieved, DB2 resorts back to normal GBP write activity for all
GBP-dependent objects.

If a page is already in the GBP, the deferred writes will update the page in the GBP rather
than writing the page to DASD (conditional write).

GBP write-around does not solve the underlying I/O subsystem issues that contributed to the
GBP being flooded. The I/O subsystem problem will remain, however, it doesn't matter that
the batch updates slow down a little bit as long as the COMMITs perform better. But, it is
possible that eventually the COMMITs themselves will flood the GBP if the batch updates
continue to flood the I/O subsystem.

This support is provided in z/OS 1.12 and above, with Coupling Facility Control Code (CFCC)
Level 17 and 18 on z196 and later hardware.

5.2 Improved castout processing

In prior versions of DB2, data sharing environments with heavy write activity cause pages to
be written to the group buffer pools faster than the castout engines can process them. As a
result, the group buffer pools become congested with changed pages and, in extreme cases,
group buffer pool full conditions might occur. This inefficient castout processing often results
Chapter 5. Data sharing 87

in application response time issues. DB2 11 provides the following enhancements to make
castout processing more efficient.

� Reduced wait time for I/O completion
� Reduced notify message size sent to castout owners
� More granular class castout threshold

5.2.1 Reduced wait time for I/O completion

The read of the GBP for castout processing now overlaps the write I/O operation to DASD. In
prior versions, DB2 waited until a page read from the GBP was written to DASD before
another page was read from the GBP. This wait time is reduced by overlapping the read for
castout with the write to DASD.

5.2.2 Reduced notify message size sent to castout owners

The size of the message indicating the status of the castout processing is reduced.
Previously, the notification message sent to castout owners was a list of pages, which can be
large if many pages are cast out. Now the message includes a list of page sets or partitions,
instead of a list of pages, which considerably reduces the size of the message.

5.2.3 More granular class castout threshold

Castout processing now provides more granularity for the class castout threshold. Previously,
the class castout threshold was specified as a percentage of the number of data entries. The
smallest allowable number was 1%. For a really large GBP, a value of 1% still results in
thousands of pages being cast out at a time, which can stress the castout engines and the
coupling facility. The capability to allow for a value smaller than 1% was needed.

The syntax for the ALTER GROUPBUFFERPOOL command is changed to allow the class castout
threshold to be specified as either a percentage of the number of data entries or an absolute
number of pages. The new syntax for the CLASST option is as follows:

CLASST(class-threshold1,class-threshold2)

You can use the class-threshold1 variable to represent the class castout threshold in terms
of a percentage of data entries. It can be specified as an integer between 0 and 90,
representing 0% to 90%. The default value is 5%.

You can use the class-threshold2 variable to represent the class castout threshold in terms
of an absolute number of pages. It can be specified as an integer between 0 and 32767. The
default value is 0.

Do not specify a value for both variables. If you do, the value of class-threshold2 is ignored.
If you want to specify the threshold in terms of a percentage of data entries, which was the
only behavior prior to DB2 11, specify a non-zero value for the first variable and a zero value
for the second variable. If you need to specify a value smaller than 1% for a large GBP,
specify a zero value for the first variable and the desired number of pages at which castout
should occur for the second variable.
88 IBM DB2 11 for z/OS Technical Overview

In the data sharing environment for this example, the GBP0 group buffer pool is defined with
CLASST values of 5 and 0. Example 5-2 shows the output of a DISPLAY GBPOOL command,
which is an abbreviation of the DISPLAY GROUPBUFFERPOOL command, showing the class
castout threshold (CLASST) values of 5 and 0.

Example 5-2 DISPLAY GBPOOL command output for percentage based CLASST threshold

DSNB750I -D1B1 DISPLAY FOR GROUP BUFFER POOL GBP0 FOLLOWS
DSNB755I -D1B1 DB2 GROUP BUFFER POOL STATUS
 CONNECTED = YES
 CURRENT DIRECTORY TO DATA RATIO = 5
 PENDING DIRECTORY TO DATA RATIO = 5
 CURRENT GBPCACHE ATTRIBUTE = YES
 PENDING GBPCACHE ATTRIBUTE = YES
DSNB756I -D1B1 CLASS CASTOUT THRESHOLD = 5, 0
 GROUP BUFFER POOL CASTOUT THRESHOLD = 30%
 GROUP BUFFER POOL CHECKPOINT INTERVAL = 4 MINUTES
 RECOVERY STATUS = NORMAL

Example 5-3 shows an example of an ALTER GROUPBUFFERPOOL command to specify a class
castout threshold such that pages are cast out when 500 changed pages are in the GBP.

Example 5-3 ALTER GBPOOL command to express CLASST in number of pages

 DB2 COMMANDS SSID: D1B1
===>
DSNE294I SYSTEM RETCODE=000 USER OR DSN RETCODE=0
Position cursor on the command line you want to execute and press ENTER

Cmd 3 ===> -ALTER GBPOOL(GBP0) CLASST(0,500)

Example 5-4 shows the output of the ALTER GBPOOL command.

Example 5-4 ALTER GBPOOL command output showing CLASST in number of pages

DSNB804I -D1B1 CLASS CASTOUT THRESHOLD SET TO 0,500 FOR GBP0
DSN9022I -D1B1 DSNB1CMD '-ALTER GBPOOL' NORMAL COMPLETION

You can only expect to see a benefit to using the second threshold value for a GBP that is
large enough that it is causing a delay at castout time.

5.3 Improved DELETE_NAME performance

After all pages for a page set are cast out, the page set becomes non-GBP-dependent. DB2
then uses a cache DELETE_NAME request to delete both data and directory entries from the
GBP. At the same time, cross-invalidation signals are sent to each member that has interest in
the page set to indicate that there is no longer GBP-dependency for that page set.

Normally this cross-invalidation process completes without issue. In rare cases, there might
be a high number of DELETE_NAME requests due to time-outs when sending cross-invalidation
signals to data sharing members when there is a long distance between the members and the
coupling facility.
Chapter 5. Data sharing 89

In prior versions, DB2 delivered some maintenance that deleted only the data entries to avoid
timeouts caused by cross invalidation. However, these enhancements did not provide the
desired effect.

DB2 11 resolves this issue by suppressing the cross-invalidation signals during the
processing of DELETE_NAME requests.

All the necessary cross-invalidation signals have already been sent when the pages were
previously written to the GBP. The cross-invalidations for DELETE_NAME are not needed after
casting out the pages; therefore, the cross-invalidation signals can be suppressed.

New features in cross-system extended services for z/OS (XES) and CFCC are required to
use the DELETE_NAME performance enhancement. The specific requirements are as
follows:

� The GBP must be allocated in a coupling facility of CFLEVEL=17 or higher. The “suppress
cross-invalidation” functionality is supported on the following combinations of hardware
and CFCC levels:

– z114 (2818) DR93G CFCC EC N48162 CFCC Release 17 at the requisite microcode
load (MCL) level

– z196 (2817) DR93G CFCC EC N48162 CFCC Release 17 at the requisite microcode
load (MCL) level

– zEC12 (2827) CFCC Release 18

� The DB2 member that performs castout must be running on z114 or z196 that supports
the “suppress cross-invalidation” functionality or a zEC12. The following z/OS releases
support the “suppress cross-invalidation” functionality:

– z/OS V1R12 and later with APAR OA38419 installed

This feature has also been retrofitted to DB2 9 and DB2 10 through APAR PM67544.

5.4 Restart light with CASTOUT option

If a failed DB2 subsystem was running on a z/OS image that is no longer available, that
subsystem can hold locks on behalf of transactions that were executing at the time of the
failure. If those locks were global locks, which are locks on resources that are actively shared,
then the update type locks in the lock structure are changed to retained locks. In this scenario,
it is critical to restart the failed DB2 in another z/OS image in the same Parallel Sysplex
(where another member might be active) to release the retained locks. Otherwise, no other
access is allowed to the resources protected by those locks until the underlying changes are
either committed or backed out.

When restarting a failed DB2 subsystem on another z/OS image, the other z/OS image might
not have the resources to handle the workload of an additional DB2 subsystem. The option to
restart DB2 in LIGHT mode enables DB2 to restart with a minimal storage footprint to quickly
release retained locks and then terminate normally.

Prior to DB2 11, restart light released most, but not all, retained locks. Restart light was
designed to restart quickly with a minimal storage footprint. Therefore, restart light did not go
through castout processing and, as a result, retained page set P-locks in IX or SIX mode were
not released. Utilities can be blocked from running by these retained page set P-locks,
therefore impacting overall DB2 availability.
90 IBM DB2 11 for z/OS Technical Overview

DB2 11 introduces an enhancement to the restart light process to also include castout
processing. The syntax of the START command is enhanced to include the LIGHT(CASTOUT)
option. When this new option is used, transaction retained locks are released as usual, but
the restart also kicks off castout processing. After castout is completed, the page sets
become non-GBP-dependent, and the page set P-locks in IX or SIX mode are released.

The default for the LIGHT restart option is NO, which means that DB2 performs a complete
restart and not a light restart. Of the remaining three LIGHT values, CASTOUT, YES and
NOINDOUBTS, the value of CASTOUT involves the most steps, because it also includes castout
processing. The YES and NOINDOUBTS options do not provide castout processing. The values
for the LIGHT option are mutually exclusive.

Restart might take longer to run with LIGHT(CASTOUT) than with LIGHT(YES), but the benefit is
that utilities can now be run without disruption, therefore increasing availability. If you are
dependent upon running utilities as soon as possible after the restart, then you might want to
investigate the LIGHT(CASTOUT) option. If you are more focused on getting the DB2 subsystem
up as quickly as possible and will deal with retained page set P-locks on your own, you might
want to use LIGHT(YES) or LIGHT(NOINDOUBTS) instead.

5.5 Locking enhancements

DB2 11 includes a number of locking enhancements that provide improved reliability,
availability, and scalability. Many of these locking enhancements also provide benefits in a
data sharing environment. This section describes the following locking enhancements:

� Conditional propagation of child Update locks to the coupling facility
� Improved performance in handling lock waiters
� Increase in maximum number of CF lock table entries
� Throttle batched unlock requests
� Improved IRLM resource hash table algorithm

5.5.1 Conditional propagation of child Update locks to the coupling facility

Prior to internal resource lock manager (IRLM) 2.3, IRLM propagates U state child locks for S
state parent page set P-Locks in all cases. Propagation of U state child locks are not
necessary in cases where only a single member is doing updates to a table in a data sharing
environment. Propagating a large number of U state child locks to the CF incurs unnecessary
overhead and should be avoided until it is necessary.

In DB2 11, IRLM 2.3 propagates shared S state parent page set P-locks to the CF as XES
exclusive requests and suppresses any update U state child lock propagations until there is
global contention on the parent page set P-lock.

This enhancement improves the performance of SELECT FOR UPDATE statements in data
sharing environments.

5.5.2 Improved performance in handling lock waiters

In prior versions of DB2, in a large data sharing group with a large number of processes
waiting on locks, there can be a performance cost for managing the lock waiters. DB2 11, with
IRLM 2.3, introduces an improved deadlock and contention algorithm. This improved
algorithm results in reduced CPU time for processes with many lock waiters and also reduces
the number of lock suspensions.
Chapter 5. Data sharing 91

5.5.3 Increase in maximum number of CF lock table entries

IRLM previously limited the number of CF lock structure table entries (LTEs) to a maximum
value of 1 GB. Because the maximum LTEs supported by XES is 2 GB, there is no reason for
IRLM to put its own limit for the LTEs. Therefore, in DB2 11, with IRLM 2.3, you can specify a
lock table size as big as 2 GB as supported by XES.

This enhancement reduces contention when accessing the lock structure in the CF. It also
reduces the possibility of false contention, which can occur when the number of LTEs is too
small compared to the number of different resource names that can acquire locks.

You can use the MODIFY irlmproc,SET z/OS command to change the number of lock table
entries. Example 5-5 shows the syntax for this command.

Example 5-5 Syntax of MODIFY irlmproc,SET command

>>-MODIFY--irlmproc,SET-+-,DEADLOCK=nnnn---------------+-------><
 +-,LTE=nnnn--------------------+
 +-,MLT=nnnnnU------------------+
 +-,PVT=nnnn--------------------+
 +-,TIMEOUT=nnnn,subsystem-name-+
 | .-10--. |
 '-,TRACE=-+-nnn-+--------------'

You can increase the number of lock table entries by changing the value of the LTE option.
You must set it to an exact power of 2. Each increment in value represents 1,048,576 LTE
entries. To set it to the maximum number of LTEs, 2 GB, specify a value of 2048.

Because the command is a z/OS IRLM command, it can be issued only from a z/OS console.
You also need to rebuild the CF lock structure to enable the new LTE size.

5.5.4 Throttle batched unlock requests

If a thread in a data sharing environment holds million of locks and is going through
de-allocation, IRLM sends unlock requests for all of the locks in a batch unlock request to
XES. If this process is done under non-preemptible SRB mode in a uni-processor
environment, the unlock request process occupies the processor until all of the unlock
requests are processed. As a result, this flood of unlock requests can cause XES to receive
an abend178 because real storage manager (RSM) cannot find any available real storage
frame.

IRLM 2.2 and 2.3 are enhanced through APAR PM60449 to change the way that IRLM
handles batch unlock processing when a thread is holding more than 128,000 locks. The
unlock request runs as a queued request under an IRLM SRB and does a status STOP SRB
after running for some time. The batch unlock processing continues when this SRB is
resumed again.

This change reduces storage constraints on XES and also reduces secondary latch
contention in IRLM. This change allows other higher priority work from RSM and XES to run,
which can improve conditions that result in a hang.
92 IBM DB2 11 for z/OS Technical Overview

5.5.5 Improved IRLM resource hash table algorithm

IRLM 2.2 introduced through APAR PK50095 the capability to have an expanded resource
hash table to handle anticipated higher locking volumes. IRLM provided support for a 64 KB
hash table in DB2 10.

IRLM internally goes through the resource hash table serially every deadlock cycle while
holding the main latch, preventing any other work from processing in IRLM. With higher
volumes of threads and more and more locks being held, this hash table processing drives up
the CPU time with every deadlock cycle.

In DB2 11, with IRLM 2.3, the resource hash table algorithm is improved to perform the
deadlock cycle processing more efficiently. This improvement results in less CPU time
associated with this process and reduced contention on lock structure access.

5.6 Index availability and performance

DB2 11 includes a number of index enhancements that provide improved availability and
performance in data sharing environments. This section describes the following index
enhancements:

� Avoid placing indexes in RBDP state during group restart
� Reduce synchronous log writes during index structure modifications

5.6.1 Avoid placing indexes in RBDP state during group restart

There are certain recovery scenarios where objects are placed in the logical page list (LPL) or
in group buffer pool recovery pending (GRECP) state. A small timing window exists where, if
there is an index tree structural modification (Index SMOD) in progress when the index is put
into LPL or GRECP state, the index manager can write logical compensation log records
(LCLRs) before writing the physical NOT APPLY undo log records for the unfinished index
SMODs. Later, the LPL or GRECP recovery fails and the index is left in rebuild pending
(RBDP) state when the LCLRs are processed before the physical undo logs are processed.
After the LPL or GRECP recovery completes in this scenario, you still need to spend time to
rebuild the index, which can take hours if the affected index is large. Ideally, you want to be
able to run LPL and GRECP recovery and recover the indexes at the same time.

In DB2 11, if there is an index tree structural modification in progress when the index is put
into LPL or GRECP state, then DB2 goes through a two-pass LPL or GRECP log apply
process to recover the index. The second pass makes indexes available after the LPL or
GRECP recovery process is completed. A DSNI051I message is issued at the start of the
second pass. The LPL or GRECP recovery might take longer to finish when the second pass
is needed, but you will not need to spend a longer amount of time to rebuild the index. This
enhancement reduces DB2 outage time and increases index availability.

Also refer to 4.2, “Automatic recovery of indexes from GRECP or LPL status” on page 60 for
more information.

This enhancement is available in DB2 11 New Function Mode (NFM) only.
Chapter 5. Data sharing 93

5.6.2 Reduce synchronous log writes during index structure modifications

As rows are inserted in data sharing environments, index pages often need to be split as new
keys fill the existing pages. The index split logic for GBP-dependent indexes causes two
synchronous log writes, which can have a significant impact on transaction or batch
performance. A similar situation exists for deletes where empty index pages get pruned from
the index tree. There are five synchronous log writes in the delete case.

A related issue occurs when there are massive deletes from an index while the index is not
GBP-dependent, and then the index becomes GBP-dependent as the backout starts. This
situation has caused some backouts to take 10 to 20 times longer than the unit of work,
because of the need to force several log write I/Os when adding deleted pages back into the
index tree as part of the undo of the deletes.

DB2 11 reduces the synchronous log writes for index split and index page delete operations.
Rather than do the log force write I/Os after processing begins and then again at the end of
the process, the log force write I/Os occur only once at the end of the process. This
enhancement improves performance for index splits and for pseudo deletes.

DB2 11 also reduces backout time by reducing the number of log force write I/Os during a
rollback of deleted pages. DB2 11 can tell whether an index split operation completed
successfully and will not roll back a successfully completed index split operation.

5.7 Group buffer pool write performance

The GBP batch write processing in DB2 11 has been enhanced to avoid pagefix operations
by allocating fixed storage for GBP batch write. This enhancement provides a reduction in the
path length for the COMMIT processing.

5.8 Automatic LPL recovery at end of restart

There are occasionally times when there are not enough pages available in the GBP to
accept a write from the local buffer pool. The write is attempted a few times while DB2 goes
through the castout process in an attempt to free more pages. However, after a few
unsuccessful attempts, DB2 gives up and inserts an entry for the page in the LPL, where it is
unavailable for any access until the LPL condition is removed. The LPL exception condition is
set if pages cannot be read from or written to the GBP.

Prior to DB2 11, in a data sharing environment, when pages were added to the LPL by an
active member while one of the members was down and holding retain locks, there was no
automatic LPL recovery performed when the failed member restarted. This process resulted
in an extended outage for application programs, which impacted overall system availability.

To recover these LPL pages, you had to manually resolve the LPL objects by issuing a -START
DB(xx) SPACE(yy) command for every object with an LPL exception condition. This manual
process can be time consuming if there are many objects with pages in the LPL, therefore
extending the time that some applications are unavailable. This manual process can also be
error prone, because some of the objects can be missed when issuing the -START commands,
especially when there is a long list of objects to be recovered.

DB2 11 improves upon the LPL recovery process by initiating automatic LPL recovery of
objects at the end of both normal (non-PIT recovery) restart and restart light. If the restart
94 IBM DB2 11 for z/OS Technical Overview

involves any indoubt or postponed abort (PA) units of recovery (URs) then the LPL recovery
associated with those URs is not automatically triggered at the end of restart. These objects
cannot be automatically recovered because DB2 does not know the entire LPL log range for
indoubt and PA URs until they are resolved.

The auto-LPL recovery process is not triggered for any of the following circumstances:

� If the DB2 member is started in access maintenance mode
� If the DB2 member is started in point-in-time (PIT) Recovery mode
� If the DB2 member is started at a tracker site
� If the DB2 member is involved in any type of conditional restart
� If DEFER ALL was specified on installation panel DSNTIPS
� For objects explicitly listed in a DEFER object list on installation panel DSNTIPS
� For table spaces defined as NOT LOGGED

The processing for automatic LPL recovery is similar to the auto-GRECP recovery processing
that is done at the end of restart in that the auto-LPL recovery uses the existing messages to
report LPL recovery progress, errors and successful completion. It makes only one attempt to
automatically recover LPL objects. If the auto-LPL recovery fails at restart time, then either
the DBA can manually recover the LPL objects by issuing -START DB commands or mainline
auto-LPL recovery can perform the recovery at the appropriate time.

In the following conditions, an LPL object can remain in LPL after the end of restart auto-LPL
recovery is completed:

� If any error is encountered during log apply

� If an active member continues to add new pages to the LPL or extends the LPL range
while the restarting member is performing the auto-LPL recovery

The mainline auto-LPL recovery processing has always had retry logic to drive the LPL
recovery one more time if the LPL page range or log range is extended. Auto-LPL continues
to honor the same retry logic except during restart light. Because auto-LPL recovery is
initiated during restart light, the auto-LPL recovery task serializes with DB2 shutdown; the
end of restart auto-LPL recovery will complete before DB2 is terminated at the end of restart
light.

At the end of auto-LPL recovery, each member issues a DSNI049I message on the console to
indicate that LPL recovery of all objects is completed. This is the same message that has
been issued in prior versions of DB2 when the -START DB command completes, and is still
issued when the -START DB command completes if you need to issue the command because
auto-LPL recovery cannot complete due to one of the reasons listed above. The message is
always issued to make it easier for you to automate the recovery process using whatever tool
or manual procedure you have implemented.

5.9 Log record sequence number spin avoidance

Enhancements were made in both DB2 9 and DB2 10 in the area of log record sequence
number (LRSN) spin avoidance. DB2 9 allowed for duplicate LRSN values for consecutive log
records on a given member. DB2 10 further extended LRSN spin avoidance by allowing for
duplicate LRSN values for consecutive log records for inserts to the same data page.

Each of these enhancements meant that a DB2 member did not need to “spin” consuming
CPU resources under the log latch to wait for the next LRSN increment. This function can
avoid significant CPU overhead and log latch contention (LC19) in data sharing environments
with heavy logging.
Chapter 5. Data sharing 95

The DB2 9 and DB2 10 enhancements avoided the need to “spin” in the Log Manager to
avoid duplicate LRSNs for most cases. However, some cases still exist where CPU spinning
is necessary, which adds overhead. For example, consecutive DELETE or UPDATE operations to
the same page require LRSN spin.

DB2 11 extends the LRSN to use more of the TOD clock precision. RBA and LRSN values
are expanded from 6 bytes to 10 bytes so that it can take hundreds of years to exhaust a DB2
subsystem’s or data sharing group’s logging capacity, based on current and projected logging
rates. Details about the expanded RBA and LRSN vales are provided in 3.1, “Extended RBA
and LRSN” on page 24.

Data sharing environments can take advantage of the larger LRSN values and avoid LRSN
spin altogether.
96 IBM DB2 11 for z/OS Technical Overview

Part 2 Application functions

This part describes functions that help to enable the application development with DB2 11 for
z/OS.

DB2 11 delivers several SQL enhancements that can help applications to ease development
and porting. DB2 11 also provides several enhancements to the support of pureXML, stored
procedures, and connectivity.

Application-enabling infrastructure changes allow for intersection with big data. XML and
e-business have each a dedicated chapter.

This part includes the following chapters:

� Chapter 6, “SQL” on page 99
� Chapter 7, “Application enablement” on page 129
� Chapter 8, “XML” on page 151
� Chapter 9, “Connectivity and administration routines” on page 171

Part 2
© Copyright IBM Corp. 2013. All rights reserved. 97

98 IBM DB2 11 for z/OS Technical Overview

Chapter 6. SQL

This chapter describes the SQL features and enhancements that are delivered with DB2 11
for z/OS. The audience for this chapter is the application developers and database
administrators.

This chapter includes the following topics:

� Introduction
� Global variables
� Array data type
� Aliases and public aliases for SEQUENCES
� New built-in functions
� SET CURRENT APPLICATION COMPATIBILITY
� Temporal special registers
� Temporal support on VIEWs
� DGTT
� CUBE, ROLLUP and GROUPING SETS
� LIKE_BLANK_INSIGNIFICANT DSNZPARM

6

Good news for application managers and developers:

DB2 11 has mechanisms in place to limit potential SQL (and XML) incompatibilities on
application DML statements by allowing you to complete the following tasks:

� Identify applications affected by incompatible SQL (and XML) changes through trace
records

� Control the compatibility level to DB2 10 at an application (package) level

See 6.6, “SET CURRENT APPLICATION COMPATIBILITY” on page 114 and 12.6,
“Release incompatibilities” on page 357.
© Copyright IBM Corp. 2013. All rights reserved. 99

6.1 Introduction

This section provides a summary of SQL features and enhancements to existing SQL
statements.

Table 6-1 lists the key new SQL features which are discussed in other parts of this chapter.
This table contains DML, DCL, and DDL statements that are new to DB2 11 for z/OS.

Table 6-1 Summary of SQL statements/features in DB2 11 for z/OS

SQL statement/feature Description

CREATE VARIABLE Defines Global variables.
Read 6.2, “Global variables” on page 102.

CREATE TYPE (array)
(DROP TYPE clause can be used to drop the array
data type)

Defines an array data type.
Read 6.3, “Array data type” on page 104 and 6.5,
“New built-in functions” on page 112 for the
associated built-in functions.

SET CURRENT APPLICATION COMPATIBILITY Sets application compatibility level for
dynamic/distributed applications. Works similar
to the static equivalent APPLCOMPAT bind
parameter.
Read 6.6, “SET CURRENT APPLICATION
COMPATIBILITY” on page 114.

SET CURRENT TEMPORAL BUSINESS_TIME Sets the business time for use with temporal
tables.

SET CURRENT TEMPORAL SYSTEM_TIME Sets the system time for use with temporal tables.

SET assignment-statement (this is not truly new) Sets the assignment-statement (DB2 SQL) The
SET assignment-statement is a reclassification of
the documentation of the SET host-variable and
SET transition-variable statements into a single
statement.

ALTER FUNCTION (SQL scalar) and
CREATE FUNCTION (SQL scalar)

New clauses:
� BUSINESS_TIME SENSITIVE
� SYSTEM_TIME SENSITIVE
� ARCHIVE SENSITIVE
� APPLCOMPAT

Changed clauses:
� data-type
� data-type2, which can include

array-type-name

ALTER PROCEDURE (SQL native) and
CREATE PROCEDURE (SQL native)

New clauses:
� BUSINESS_TIME SENSITIVE
� SYSTEM_TIME SENSITIVE
� ARCHIVE SENSITIVE
� APPLCOMPAT

Changed clause:
� data-type, which can include

array-type-name
100 IBM DB2 11 for z/OS Technical Overview

CREATE PROCEDURE (external) Changed clause:
� data-type, which can include

array-type-name

ALTER TABLE DROP COLUMN New clause

ALTER TABLE ENABLE ARCHIVE New clauses:
� ENABLE ARCHIVE
� DISABLE ARCHIVE

ALTER TABLESPACE and
CREATE TABLESPACE

Changed clause:
� PCTFREE, which can now include FOR

UPDATE smallint

COMMENT Changed clause:
� data-type, which can include

array-type-name

CREATE INDEX New clauses:
� INCLUDE NULL KEYS
� EXCLUDE NULL KEYS

DECLARE GLOBAL TEMPORARY TABLE New clause:
� LOGGED
� NOT LOGGED

EXECUTE Changed clauses:
The object of the USING clause can be an SQL
variable, SQL parameter,
global variable, or host variable.

FETCH Changed clauses:
The object of the INTO clause can be a host
variable, a global variable, an SQL parameter, an
SQL variable, a transition variable, or an array
element.

GRANT (function or procedure privileges) and
corresponding REVOKE

Changed clauses:
� data-type, which can include

array-type-name

GRANT (type or JAR privileges) and
corresponding REVOKE

Changed clauses:
The object of the TYPE clause can be a distinct
type or an array type

SELECT INTO Changed clauses:
The object of the INTO clause can be a host
variable, a global variable, an SQL parameter, an
SQL variable, a transition variable, or an array
element.

SET PATH Changed clauses:
The SYSTEM PATH now includes the following
schemas:
� SYSIBM
� SYSFUN
� SYSPROC
� SYSIBMADM

SQL statement/feature Description
Chapter 6. SQL 101

Refer to DB2 11 for z/OS What's New?, GC19-4068 for an alphabetical listing of the summary
of changes to existing and new SQL statements.

6.2 Global variables

Traditionally within a relational database system, most interactions between an application
and the DBMS are in the form of SQL statements within a connection. To share information
between SQL statements within the same application context, the application that issued the
SQL statements has to do this work by copying the values from the output arguments, such
as host variables, of one statement to the input host variables of another. Similarly, when
applications issue host-language calls to another application, host variables need to be
passed among applications as input or output parameters for the applications to share
common variable. Furthermore, SQL statements that are defined and contained within the
DBMS, such as the SQL statements in the trigger bodies, cannot access this shared
information.

These restrictions limit the flexibility of relational database systems and, thus, the ability of
users of such systems to implement complex, interactive models within the database itself.
Users of such systems are forced to put supporting logic inside their applications to access
and transfer user application information and internal database information within a relational
database system. Ensuring the security of the information that is transferred and accessed is
also left to the user to enforce in their application logic.

To overcome this restriction and to maximize the flexibility of a DBMS, global variables are
introduced in DB2 11 for z/OS. A global variable can be created, instantiated, accessed, and
modified by the applications. Global variables are named memory variables that you can
access and modify through SQL statements. Global variables enable you to share relational
data between SQL statements without the need for application logic to support this data
transfer. You can control access to global variables through the GRANT (global variable
privileges) and REVOKE (global variable privileges) statements.

A global variable is associated with a specific application context, and contains a value that is
unique to that application scope. A created global variable is available to any active SQL
statement running against the database on which the variable was defined. A global variable
can be associated with more than one application scope, but its value will be specific to each
application scope.

SQL statements sharing the same connection (that is, under the same application scope) can
create, access, and modify the same global variables. This enhancement includes the
following functional additions to DB2.

SQL statement with subselect Changed clauses:
The collection-derived-table clause is added to
table-reference in the FROM clause of a subselect.

VALUES INTO Changed clauses:
The object of the INTO clause can be a host
variable, a global variable, an SQL parameter, an
SQL variable, a transition variable, or an array
element.

SQL statement/feature Description
102 IBM DB2 11 for z/OS Technical Overview

6.2.1 DDL and catalog information

A new DDL statement allowing the application to create global variable to be shared among
SQL statements using the same connection. A sample CREATE statement is depicted in
Example 6-1.

Example 6-1 Sample create global variable statement

CREATE VARIABLE BATCH_START_TS TIMESTAMP
DEFAULT CURRENT TIMESTAMP;

The new SYSIBM.SYSVARIABLES table includes one row for each global variable that is created.

The new SYSIBM.SYSVARIABLEAUTH table includes one row for each privilege of each
authorization ID that has privileges on a global variable.

The SYSIBM.SYSVARIABLES_TEXT table is an auxiliary table for the DEFAULTTEXT column of the
SYSIBM.SYSVARIABLES table.

6.2.2 Qualifying global variables

Global variable names are qualified two-part names. For unqualified global variables, the
implicit qualifier facilitates the naming resolution of global variables. DB2 determines the
implicit qualifier for global variables as follows:

The schemas in the SQL PATH are searched in order from left to right for a matching global
variable. If a global variable matches the global variable name in reference, resolution is
complete. If no matching global variable is found after completing this step, an error is
returned.

6.2.3 Global variable’s scope

The scope of global variable’s definition is similar to that of DB2 special register’s, in that,
when created, the definitions of global variables are shared across different DB2 connections.
However, each connection maintains its own instance of the global variable, such that the
variable’s content is only shared among SQL statements within the same connection.

For example, if you use a Global variable, which was created using the DDL in Example 6-1 in
a program, the first invocation of this Global variable has the same value as the current time
stamp. The subsequent use of this global variable retains the initial instantiated value for the
duration of the connection.

Example 6-2 shows how a Global variable’s value of 2013-08-02-14.59.46.423414 remains
the same in different SQL statements (when referenced) within the same DB2 connection.

Example 6-2 Scope of global variable: Different SQL statements on the same DB2 connection

-- Initial execution of the SQL
SELECT BATCH_START_TS, CURRENT TIMESTAMP
FROM SYSIBM.SYSDUMMY1
;
-- Result set from the initial execution

BATCH_START_TS CURRENT TIMESTAMP
2013-08-02-14.59.46.423414 2013-08-02-14.59.46.423414
Chapter 6. SQL 103

-- Second execution of the same SQL statement in the same SPUFI session

SELECT BATCH_START_TS, CURRENT TIMESTAMP
FROM SYSIBM.SYSDUMMY1
;
-- Result set from the second execution
BATCH_START_TS CURRENT TIMESTAMP

2013-08-02-14.59.46.423414 2013-08-02-14.59.46.424678

-- Third execution of the same SQL statement in the same SPUFI session

SELECT BATCH_START_TS, CURRENT TIMESTAMP
FROM SYSIBM.SYSDUMMY1
;
-- Result set from the third execution
BATCH_START_TS CURRENT TIMESTAMP

2013-08-02-14.59.46.423414 2013-08-02-14.59.46.425282

If you rerun this set of SQL statements at a different point in time (for example, in a different
SPUFI session another time), it results in a different instantiated value for the global variable.
That value remains in effect until the end of that connection.

6.2.4 Global variable’s naming resolution

DB2 naming resolution precedence rule is modified to include global variable references. If at
the time of naming resolution, the definition of the referenced global variable does not exist,
message DSNX200I or DSNX100I will be issued during BIND if VALIDATE(BIND) or
VALIDATE(RUN) were specified, respectively, on the BIND command.

6.3 Array data type

An array type is a user-defined data type that is an ordinary array or an associative array. The
elements of an array type are based on one of the existing built-in data types.

Note: It is also possible that during static bind time, the checked objects preceding global
variables in naming resolution might not exist yet, resulting in the object name being
resolved to global variables, provided that the variable definitions exist. In this case, the
resolved name remains as global variables, even if the object becomes available before the
execution of this statement, because the naming resolution was already done at static bind
time.

Note: The array data type can only be used as one of the following data types:

� An SQL variable
� A parameter or RETURNS data-type of an SQL scalar function
� A parameter of a native SQL procedure
� The target data type for a CAST specification
104 IBM DB2 11 for z/OS Technical Overview

Currently, the array data type is not supported in other contexts, such as columns of tables
and views, triggers, and client interfaces that are not essential for migrating applications.

The CREATE TYPE (array) statement defines an array data type. The SYSIBM.SYSDATATYPES
table contains one row for each array data type defined.

DROP TYPE array_name statement drops an array data type created using the CREATE TYPE
array_name statement.

6.3.1 Ordinary arrays

An array with a user-defined upper bound on the number of elements, which are referenced
by their ordinal position in the array.

After the execution of the assignment statement in Example 6-3, the cardinality of mySimpleA
is set to 100. The elements with array indexes with values 1 to 99 are implicitly initialized to
NULL.

Example 6-3 Sample - Ordinary Array definition

CREATE TYPE simple AS INTEGER ARRAY[];
BEGIN

SET mySimpleA[100] = 123;
END

6.3.2 Associative arrays

An array with no user-defined upper bound on the number of elements, which are ordered by
and can be referenced by an array index value. Array index values are unique and do not
have to be contiguous.

After the execution of the assignment statement in Example 6-4, the cardinality of the array is
set to 1.

Example 6-4 Associative array data type - sample CREATE, DECLARE, and SET statements

CREATE TYPE assoc AS INTEGER ARRAY[INTEGER];
BEGIN

SET myAssocA[100] = 123;
END

6.3.3 ARRAY_EXISTS predicate

The ARRAY_EXISTS predicate tests for the existence of an array element with the specified
index in an array. Example 6-5 shows the syntax of this new predicate.

Example 6-5 ARRAY_EXISTS predicate syntax

ARRAY_EXISTS (array-expression,array-index)
Chapter 6. SQL 105

The ARRAY_EXISTS predicate produces the following results:

� True if array-variable includes an array index that is equal to the result of casting
array-index to the data type of the array index of array-variable.

� False under either of the following conditions:

– The array-variable does not include an array index that is equal to the result of casting
array-index to the data type of the array index of array-variable.

– Either argument is null.

� Never unknown.

6.4 Aliases and public aliases for SEQUENCES

DB2 10 for z/OS supports aliases for tables, views, and aliases. The definition of these
aliases is recorded in the SYSIBM.SYSTABLES catalog table, with a value of A for the TYPE
column. IBM DB2 for Linux, UNIX, and Windows supports aliases on aliases, tables, views,
nicknames (federated related), module names (related to competitive database product with
PL/SQL), and sequence objects. Competitive database products also allow synonyms to be
created for sequence objects.

DB2 11 extends the support for SEQUENCE objects so that you can now create:

� A private ALIAS for a SEQUENCE
� A public ALIAS for a SEQUENCE

This section describes how to create and use these aliases for SEQUENCES and provide related
considerations.

6.4.1 Private ALIAS for a SEQUENCE

The CREATE ALIAS syntax is extended as shown in Figure 6-1.

Figure 6-1 CREATE ALIAS statement syntax

Assuming that your CURRENT SQLID is user2, to create a private ALIAS user2.SEQ1 for
user1.SEQ1 sequence, you can use either of the following DDL statements:

CREATE ALIAS user2.SEQ1 FOR user1.SEQ1

CREATE ALIAS

PUBLIC

table-alias

sequence-alias

alias-name
TABLE

table-name

view-name

alias-name2

FOR

alias-name SEQUENCEFOR sequence-name

table-alias

sequence-alias
106 IBM DB2 11 for z/OS Technical Overview

CREATE ALIAS SEQ1 FOR user1.SQ1

Both statements result in the creation of a private ALIAS user2.SEQ1. However, you cannot
issue both statements. The second CREATE ALIAS fails with -601.

The information for table aliases was recorded in the SYSIBM.SYSTABLES table, and the
information about the existence of the alias for user1.SEQ1 is recorded in the
SYSIBM.SYSSEQUENCES table.

For this example, the SYSIBM.SYSSEQUENCES table include the following information:

SCHEMA user2
OWNER user2
NAME SEQ1
SEQTYPE A
SEQID an ID, for example 453
CREATEDBY user2
INCREMENT 0
START 0
MAXVALUE 0
….

Other columns include characteristics of the SEQUENCE 0 or N, as follows:

…..
SEQSCHEMA user1 (schema of the sequence the alias depends on)
SEQNAME SEQ1 (name of the sequence, the alias depends on)
….

You can use this alias with any of the SEQUENCE related statements, such as NEXT VALUE or
PREVIOUS VALUE. Thus, for example, user2 can successfully execute the following statement,
assuming that the user1.TAB1 table is an existing table:

INSERT INTO user1.TAB1 VALUES(NEXT VALUE FOR SEQ1, 'AAA');

This INSERT command inserts one row into user1.TAB1 table and inserts the next available
value for the user1.SEQ1 sequence, using characteristics such as INCREMENTS, MAXVALUE, and
so on, of the user1.SEQ1 sequence.

6.4.2 Public ALIAS for a SEQUENCE

As mentioned previously, in addition to the ability of creating private aliases for sequences,
DB2 11 allows you to create public aliases. All public aliases are created in the new
SYSPUBLIC schema. This creation happens implicitly or explicitly, meaning that DB2
automatically assigns schema SYSPUBLIC to the ALIAS if you omit the schema name. As a
consequence, the following statements create a SYSPUBLIC SEQ2 public alias for a user1.SEQ1
schema:

CREATE PUBLIC ALIAS SEQ2 FOR SEQUENCE user1.SEQ1
CREATE PUBLIC ALIAS SYSPUBLIC.SEQ2 for SEQUENCE user1.SEQ1

Both statements lead to the same information inserted into the SYSIBM.SYSSEQUENCES table, as
follows:

SCHEMA SYSPUBLIC
OWNER user2
NAME SEQ1
SEQTYPE A
SEQID a ID, for example 453
Chapter 6. SQL 107

CREATEDBY user2
INCREMENT 0
START 0
MAXVALUE 0
….

Other columns include characteristics of the SEQUENCE 0 or N, as follows:

…..
SEQSCHEMA user1 (schema of the sequence the alias depends on)
SEQNAME SEQ1 (name of the sequence, the alias depends on)
….

A public alias can always be referenced without qualifying its name with a schema name. The
implicit qualifier of a public alias is SYSPUBLIC, which can also be specified explicitly.

When DB2 resolves an unqualified name, private aliases are considered before public
aliases.

When there is a reference to a sequence, DB2 must resolve the reference to one of the
following sequences:

� A private alias for a sequence
� A public alias for a sequence
� A sequence

For example, assume that a sequence named orders_seq exists, defined as follows, and an
alias is named orders_seq_A is defined for this sequence. The orders_seq sequence
generates odd values starting with 1, as follows:

CREATE SEQUENCE orders_seq AS INT
START WITH 1
INCREMENT BY 2
MINVALUE 1
NO MAXVALUE
NO CYCLE
NO CACHE
ORDER ;

CREATE ALIAS orders_seq_A FOR SEQUENCE orders_seq;

Another sequence named orders_seq2 exists as follows, and a public alias named
orders_seq_A is defined for this sequence. The orders_seq2 sequence generates even
values starting with 2, as follows:

CREATE SEQUENCE orders_seq2 AS INT
START WITH 2
INCREMENT BY 2
MINVALUE 2
NO MAXVALUE
NO CYCLE
NO CACHE
ORDER ;

CREATE PUBLIC ALIAS orders_seq_A FOR SEQUENCE orders_seq2;

Note that both of these aliases have the same name, but different schemas. The first alias
defined is a private alias, and it is qualified with the default schema. The second alias was
defined as a public alias, which means that it is qualified by SYSPUBLIC.
108 IBM DB2 11 for z/OS Technical Overview

The following customer_orders_t table demonstrates the use of sequence aliases:

CREATE TABLE customer_orders_t
(order_id INT NOT NULL ,
order_date DATE NOT NULL)

A NEXT VALUE sequence reference provides the value for the ORDER_ID column of the table in
the following INSERT statement. The sequence reference specifies ORDERS_SEQ_A for the
sequence. This name can represent a sequence itself, or it can be a reference to a private
alias for a sequence or a public alias for a sequence. DB2 goes through a process of name
resolution to determine the sequence to be used.

INSERT INTO customer_orders_t
VALUES (NEXT VALUE FOR orders_seq_A, CURRENT DATE) ;

Issuing a select statement shows the value that was generated for the sequence (the value of
the ORDER_ID column) and that determined which sequence alias was used.

SELECT * FROM customer_orders_t;

Returns:

ORDER_ID ORDER_DATE

----------- ---------- -----------

1 07/11/2012

The value of 1 for the ORDER_ID column indicates that the ORDERS_SEQ sequence generated the
value for the column. DB2 used the ORDERS_SEQ sequence, because the unqualified reference
to ORDERS_SEQ_A resolved to the private alias ORDERS_SEQ_A, which is defined for the sequence
ORDERS_SEQ.

6.4.3 Dropping an alias for sequence

Dropping a sequence alias (private or public) is restricted if any of the following dependencies
exist:

� A trigger that uses the sequence in a NEXT VALUE or PREVIOUS VALUE expression exists.

� An inline SQL function1 that uses the sequences in a NEXT VALUE or PREVIOUS VALUE
expression exists.

When an alias for a sequence is dropped, all packages that refer to the sequence alias are
invalidated.

6.4.4 Security considerations

To create an alias for a sequence, the privilege set must include at least one of the listed
authorities or privileges:

� The CREATEIN privilege on the schema
� SYSADM or SYSCTRL authority
� System DBADM
Chapter 6. SQL 109

6.4.5 Considerations regarding application compatibility setting

Public aliases or private aliases can only be created and used in New Function Mode (NFM).
In addition to that, to make use of private or public aliases, the value of special register
CURRENT APPLICATION COMPATIBILITY must implicitly or explicitly be set to V11R1.

Assume that you have multiple sequences defined maybe to generate only odd or even
numbers as discussed earlier. If these sequences, or public or private aliases, all have the
same name, DB2 resolves the names as also discussed before. However, the results differ,
depending on the value that is currently set for the CURRENT APPLICATION COMPATIBILITY
special register.

Refer to the next two figures to explore the differences. Figure 6-2 represents V11R1
compatibility.

Figure 6-2 Application compatibility V11R1

Application compatibility V11R1

INSERT INTO TAB1 VALUES(NEXT VALUE for SEQ1)

INSERT INTO TAB1 VALUES(NEXT VALUE for user1.SEQ1)

INSERT INTO TAB1 VALUES(NEXT VALUE for abc.SEQ1)

INSERT INTO TAB1 VALUES(NEXT VALUE for SYSPUBLIC.SEQ1)

INSERT INTO TAB1 VALUES(NEXT VALUE for SEQ2)

SET CURRENT SQLID = ´ABC´

2

1

2

3

user1.SEQ1
sequence

abc.SEQ1
private alias

SYSPUBLIC.SEQ1
public alias

1 2 3

SYSPUBLIC.SEQ2
public alias

4

4

110 IBM DB2 11 for z/OS Technical Overview

The behavior for APPLICATION COMPATIBILITY set to V11R1 is as described before, but if you
set it to V10R1, as shown in Figure 6-3, you receive negative SQL codes in all cases in which
the new aliases for sequences are used.

Figure 6-3 Application compatibility V10R1

In two of these cases you receive the following message because you try to explicitly request
the use of aliases for sequences:

DSNT408I SQLCODE = -4743, ERROR: ATTEMPT TO USE A FUNCTION WHEN THE
 APPLICATION COMPATIBILITY SETTING IS SET FOR A PREVIOUS LEVEL

The -204 code received in the example where you implicitly try to use the public alias for the
sequence occurs because DB2 does not even consider the existence of the sequence
definition 4.

For the sequence, if APPLCOMPAT='V10R1', and the sequence is not qualified, there is no
attempt to resolve it in the SYSPUBLIC schema. If it cannot be resolved at the first try through
the private schema, DB2 issues -204.

If APPLCOMPAT='V11R1', and the sequence is not qualified, DB2 tries to resolve it in the
SYSPUBLIC schema if it cannot be resolved at the first try through the private schema.

If the sequence is qualified, DB2 only tries to resolve in that specified qualifier.

After a sequence is resolved, if it is resolved to a public alias, it must be in V11R1. Otherwise,
a -4743 error is issued.

CURRENT PATH does not include SYSPUBLIC; however, the public aliases that exist in this
schema are found.

This behavior needs to be thoroughly checked when you start using aliases for sequences in
NFM, while still running application with an application compatibility setting other than V11R1.

Application compatibility V10R1

user1.SEQ1
sequence

abc.SEQ1
private alias

SYSPUBLIC.SEQ1
public alias

INSERT INTO TAB1 VALUES(NEXT VALUE for SEQ1)

INSERT INTO TAB1 VALUES(NEXT VALUE for user1.SEQ1)

INSERT INTO TAB1 VALUES(NEXT VALUE for abc.SEQ1)

INSERT INTO TAB1 VALUES(NEXT VALUE for SYSPUBLIC.SEQ1)

INSERT INTO TAB1 VALUES(NEXT VALUE for SEQ2)

SET CURRENT SQLID = ´ABC´

1 2 3

1

1

SQLCODE -4743

SYSPUBLIC.SEQ2
public alias

4

SQLCODE -204

SQLCODE -4743
Chapter 6. SQL 111

6.5 New built-in functions

DB2 11 for z/OS includes new built-in functions that improve the power of the SQL language.
The schema is SYSIBM. Refer to DB2 11 for z/OS SQL Reference, SC19-4066 for syntax
alternatives and additional examples.

6.5.1 ARRAY_AGG

The ARRAY_AGG function returns an array in which each value of the input set is assigned to an
element of the array. ARRAY_AGG can be invoked in the following situations:

� Select list of a SELECT INTO statement

� Select list of a fullselect in the definition of a cursor that is not scrollable

� Select list of a scalar fullselect as a source data item for a SET assignment-statement (or
SQL PL assignment-statement)

� A RETURN statement in an SQL scalar function

Example 6-6 shows a sample CREATE array data type followed by a sample UDF where the
array data type is used in a RETURN statement of an SQL scalar function. This sample UDF
uses the ARRAY_AGG (aggregate) function and returns an array data type to the caller.

Example 6-6 Array data type create statement and sample use case in a scalar function

CREATE TYPE PHONELIST AS CHAR(4) ARRAY[];

CREATE FUNCTION PHONELIST_UDF (LOWSAL DECIMAL(9,2))
 RETURNS PHONELIST
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
RETURN
(SELECT ARRAY_AGG(PHONENO ORDER BY SALARY)
 FROM DSN81110.EMP WHERE SALARY > LOWSAL)

6.5.2 ARRAY_DELETE

The ARRAY_DELETE function deletes elements from an array. This function can be specified
only in the following specific contexts:

� As a source value for a SET assignment-statement (or SQL PL assignment-statement) or
VALUES INTO statement.

� As the value to be returned in a RETURN statement in an SQL scalar function.

6.5.3 ARRAY_FIRST

The ARRAY_FIRST function returns the minimum array index value of an array. The data type of
the result is the data type of the array index, which is INTEGER for an ordinary array. If array
expression is not null and the array is not empty, the value of the result is the minimum array
index value, which is 1 for an ordinary array.
112 IBM DB2 11 for z/OS Technical Overview

6.5.4 ARRAY_LAST

The ARRAY_LAST function returns the maximum array index value of an array. The data type of
the result is the data type of the array index, which is INTEGER for an ordinary array. If the array
expression is not null and the array is not empty, the value of the result is the maximum array
index value, which is the cardinality of the array for an ordinary array.

6.5.5 ARRAY_NEXT

The ARRAY_NEXT function returns the next larger array index value, relative to a specified array
index value.

6.5.6 ARRAY_PRIOR

The ARRAY_PRIOR function returns the next smaller array index value, relative to a specified
array index value.

6.5.7 CARDINALITY

The CARDINALITY function returns the number of elements in an array. The data type of the
result is BIGINT.

The result of the CARDINALITY function is as follows:

� For an ordinary array, the result is the highest array index for which the array has an
assigned element. Elements that have been assigned the null value are considered to be
assigned elements.

� For an associative array, the result is the actual number of unique array index values that
are defined in array-expression.

� For an empty array, the result is 0.

6.5.8 MAX_CARDINALITY

The MAX_CARDINALITY function returns the maximum number of elements that an array can
contain. This value is the cardinality that was specified in the CREATE TYPE statement for an
ordinary array type.

The result of the MAX_CARDINALITY function is as follows:

� For an ordinary array, the result is the maximum number of elements that an array can
contain.

� For an associative array, the result is the null value.

6.5.9 TRIM_ARRAY

The TRIM_ARRAY function deletes elements from the end of an ordinary array. It can be invoked
only in the following contexts:

� A source value for SET assignment-statement or SQL PL assignment-statement, or a
VALUES INTO statement

� The value that is returned in a RETURN statement in an SQL scalar function
Chapter 6. SQL 113

6.5.10 UNNEST (table function)

Treat an array like a table to fetch data (that is, rows) from the array. You can use the UNNEST
construct (collection-derived table), which returns a result table that contains a row for each
element of an array. For example, using the UNNEST operation, you can retrieve a list of the
phone numbers from the array returned by the PHONELIST_UDF as shown in Example 6-7.

Example 6-7 Sample invocation of UNNEST table function

SELECT * FROM dsn81110.emp WHERE phoneno = ANY (SELECT T.PHONE FROM
unnest(phonelist_udf(30000)) AS T(PHONE))

The WITH ORDINALITY clause in Example 6-8 indicates that the result table is to include an
additional column that reflects the ordinal position of each array element within the array. This
additional column is the last column of the result table from the UNNEST operation.

Example 6-8 Sample invocation of UNNEST table function with ORDINALITY clause

SELECT T.ARRAY_IX_SEQ, T.PHONE
FROM UNNEST(PHONELIST_UDF(20000)) WITH ORDINALITY AS T(PHONE, ARRAY_IX_SEQ);

In Example 6-8, the correlation clause following the WITH ORDINALITY clause, specifies that
the additional column is named ARRAY_IX_SEQ, and the array element column is named PHONE.
These column names can be explicitly referenced in the select list of the query.

6.5.11 Arrays in MERGE statement

With the introduction of limited support for arrays, an array value (that is, “whole array”) can
be specified in MERGE statements in a context that allows for an array value. For example, an
array can be referenced in a predicate of a merge statement.

Note that a value to be assigned to a column with a MERGE statement must not be an array
value, because a column cannot be defined as an array. However, an array value can be
referenced in an expression that provides the source value to be assigned, as long as the
result of the expression is assignable to the target column.

6.6 SET CURRENT APPLICATION COMPATIBILITY

This special register is applicable only to dynamic SQL. CURRENT APPLICATION COMPATIBILITY
specifies the DB2 release level that the dynamic SQL is compatible with. The data type is
VARCHAR(10). A routine environment cannot inherit this special register value from the caller's
environment, even if the routine was created with the INHERIT SPECIAL REGISTER option.

You can change the value of this special register by executing the SET CURRENT APPLICATION
COMPATIBILITY statement as shown in Example 6-9.

Example 6-9 APPLICATION COMPATIBILITY - Setting the special register values

SET CURRENT APPLICATION COMPATIBILITY = 'V11R1'
SET CURRENT APPLICATION COMPATIBILITY = 'V10R1'
114 IBM DB2 11 for z/OS Technical Overview

As shown in Example 6-9, possible values for the APPLICATION COMPATIBILITY special
register are V10R1 and V11R1.

� V10R1: Dynamic SQL statements are executed as they were in V10R1.

� V11R1: Dynamic SQL statements are executed with the new functionality of V11R1, which is
not necessarily compatible with V10R1.

The value of V11R1 cannot be specified until DB2 11 for z/OS is in New Function Mode (NFM).
By the same token, new options offered in V11 can be used in dynamic SQL statements only
when this special register value has the V11R1 value (or implicitly inherited it from the
DSNZPARM value default). For example, the SYSTIMESENSITIVE, BUSTIMESENSITIVE, and
ARCHIVESENSITIVE options cannot be explicitly specified with the value of YES in NFM if this
special register is set to V10R1. However, the IFCID 376 trace record can be used to identify
those applications that can observe V11 incompatible changes when this special register is
set to V11R1.

Additional details about application compatibility feature is discussed in 12.7, “Controlling
application compatibility” on page 373.

See also DB2 11 for z/OS Installation and Migration, SC19-4056.

6.7 Temporal special registers

The SET statement in Example 6-10 sets the CURRENT TEMPORAL BUSINESS_TIME special
register to last month. Assume that temporal table is an application-period temporal table with
a BUSINESS_TIME period. The setting of the special register CURRENT TEMPORAL BUSINESS_TIME
affects the update of temporal table that follows.

Example 6-10 shows sample set statements.

Example 6-10 Sample SET CURRENT TEMPORAL BUSINESS_TIME statement

SET CURRENT APPLICATION COMPATIBILITY = 'V11R1'
SET CURRENT TEMPORAL BUSINESS_TIME = CURRENT TIMESTAMP - 1 MONTH;
SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP + 5 DAYS;

Example 6-11 shows a setting of compatibility.

Example 6-11 SET CURRENT TEMPORAL SYSTEM_TIME to past time period

SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL
WHERE EMPNO = 10;
---------+---------+---------+---------+-----
EMPNO BONUS
---------+---------+---------+---------+-----
000010 1000.00

SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL
FOR SYSTEM_TIME AS OF CURRENT TIMESTAMP - 2 DAYS
WHERE EMPNO = 10;
---------+---------+---------+---------+-----
EMPNO BONUS
---------+---------+---------+---------+-----
000010 1000.00
Chapter 6. SQL 115

SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';
SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 2 DAYS;
UPDATE DB2R4.EMP_TEMPORAL SET BONUS = 777 WHERE EMPNO = 10;
--DSNE615I NUMBER OF ROWS AFFECTED IS 1

SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL
FOR SYSTEM_TIME AS OF CURRENT TIMESTAMP
WHERE EMPNO = 10;
---------+---------+---------+---------+---------
EMPNO BONUS
---------+---------+---------+---------+---------
000010 777.00

SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL
FOR SYSTEM_TIME AS OF CURRENT TIMESTAMP - 5 DAYS
WHERE EMPNO = 10;
---------+---------+---------+---------+---------+
EMPNO BONUS
---------+---------+---------+---------+---------+
000010 1000.00

SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL
FOR SYSTEM_TIME AS OF CURRENT TIMESTAMP - 2 DAYS
WHERE EMPNO = 10;
---------+---------+---------+---------+--------
EMPNO BONUS
---------+---------+---------+---------+--------
000010 1000.00

SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';
SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 2 DAYS;
SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL
WHERE EMPNO = 10;
---------+---------+
EMPNO BONUS
---------+---------+
000010 777.00

Example 6-12 is not exactly working like a time machine.

Example 6-12 SET CURRENT TEMPORAL SYSTEM_TIME to future time period

SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';
SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP + 2 MONTHS;
UPDATE DB2R4.EMP_TEMPORAL SET BONUS = 2222 WHERE EMPNO = 10;
--DSNE615I NUMBER OF ROWS AFFECTED IS 1

SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL
FOR SYSTEM_TIME AS OF CURRENT TIMESTAMP + 1 MONTH
WHERE EMPNO = 10
---------+---------+---------+---------+---------+
EMPNO BONUS
---------+---------+---------+---------+---------+
000010 2222.00
116 IBM DB2 11 for z/OS Technical Overview

SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL
FOR SYSTEM_TIME AS OF CURRENT TIMESTAMP
WHERE EMPNO = 10
---------+---------+---------+---------+----
EMPNO BONUS
---------+---------+---------+---------+----
000010 2222.00

SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';
SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 2 DAYS;
SELECT EMPNO, BONUS FROM DB2R4.EMP_TEMPORAL
WHERE EMPNO = 10
---------+---------+---------+---------+----
EMPNO BONUS
---------+---------+---------+---------+----
000010 2222.00

This behavior is not expected and can be explained by browsing the underlying tables directly,
as shown in Table 6-2 and Table 6-3.

Table 6-2 EMP_TEMPORAL_HIST table contents

Table 6-3 EMP_TEMPORAL table contents

6.7.1 Scope of session-level special registers

For temporal query, it implicitly adds “FOR SYSTEM_TIME AS OF Current Temporal
System_Time” for system-period temporal table, and “FOR BUSNESS_TIME AS OF Current
Temporal Business_Time” for application-period temporal table.

6.7.2 SYSTIMESENSITIVE and BUSTIMESENSITIVE

Two new bind options are available in DB2 11 for z/OS so that applications can choose
whether to be sensitive to the Current Temporal System_Time and Current Temporal
Business_Time special registers.

Default is YES for these two BIND parameters.

6.8 Temporal support on VIEWs

In DB2 11 for z/OS, the PERIOD specification is extended to CREATE VIEW statements to provide
the temporal support to users of views. The period specification is ignored if the view does not
reference relevant type of temporal tables.

EMPNO BONUS START_TS END_TS

10 1000 2013-08-26-00.21.00.753406376000 2013-09-09-00.59.10.635906699000

10 777 2013-09-09-00.59.10.635906699000 2013-09-09-01.36.34.073591227000

EMPNO BONUS START_TS END_TS

10 2222 2013-09-09-01.36.34.073591227000 9999-12-30-00.00.00.000000000000
Chapter 6. SQL 117

Example 6-13 contains the DDL used to define the temporal tables referenced in this section.

Example 6-13 Sample temporal table DDL statements

CREATE TABLE DB2R4.EMP_TEMPORAL
 (EMPNO CHAR(6) FOR SBCS DATA NOT NULL,
 FIRSTNME VARCHAR(12) FOR SBCS DATA NOT NULL,
 MIDINIT CHAR(1) FOR SBCS DATA NOT NULL,
 LASTNAME VARCHAR(15) FOR SBCS DATA NOT NULL,
 WORKDEPT CHAR(3) FOR SBCS DATA WITH DEFAULT NULL,
 PHONENO CHAR(4) FOR SBCS DATA WITH DEFAULT NULL,
 HIREDATE DATE WITH DEFAULT NULL,
 JOB CHAR(8) FOR SBCS DATA WITH DEFAULT NULL,
 EDLEVEL SMALLINT WITH DEFAULT NULL,
 SEX CHAR(1) FOR SBCS DATA WITH DEFAULT NULL,
 BIRTHDATE DATE WITH DEFAULT NULL,
 SALARY DECIMAL(9, 2) WITH DEFAULT NULL,
 BONUS DECIMAL(9, 2) WITH DEFAULT NULL,
 COMM DECIMAL(9, 2) WITH DEFAULT NULL,
 START_TS TIMESTAMP (12) WITHOUT TIME ZONE NOT NULL
 GENERATED ALWAYS AS ROW BEGIN,
 END_TS TIMESTAMP (12) WITHOUT TIME ZONE NOT NULL
 GENERATED ALWAYS AS ROW END,
 TRANS_ID TIMESTAMP (12) WITHOUT TIME ZONE
 GENERATED ALWAYS AS TRANSACTION START ID,
 PERIOD SYSTEM_TIME (START_TS, END_TS),
 CONSTRAINT EMPNO
 PRIMARY KEY (EMPNO))
 PARTITION BY (EMPNO ASC)
 (PARTITION 1 ENDING AT ('099999'),
 PARTITION 2 ENDING AT ('199999'),
 PARTITION 3 ENDING AT ('299999'),
 PARTITION 4 ENDING AT ('499999'),
 PARTITION 5 ENDING AT ('999999'))
 AUDIT NONE
 DATA CAPTURE NONE
 CCSID EBCDIC
 NOT VOLATILE
 APPEND NO ;
COMMIT;

CREATE TABLE DB2R4.EMP_TEMPORAL_HIST
 (EMPNO CHAR(6) FOR SBCS DATA NOT NULL,
 FIRSTNME VARCHAR(12) FOR SBCS DATA NOT NULL,
 MIDINIT CHAR(1) FOR SBCS DATA NOT NULL,
 LASTNAME VARCHAR(15) FOR SBCS DATA NOT NULL,
 WORKDEPT CHAR(3) FOR SBCS DATA WITH DEFAULT NULL,
 PHONENO CHAR(4) FOR SBCS DATA WITH DEFAULT NULL,
 HIREDATE DATE WITH DEFAULT NULL,
 JOB CHAR(8) FOR SBCS DATA WITH DEFAULT NULL,
 EDLEVEL SMALLINT WITH DEFAULT NULL,
 SEX CHAR(1) FOR SBCS DATA WITH DEFAULT NULL,
 BIRTHDATE DATE WITH DEFAULT NULL,
 SALARY DECIMAL(9, 2) WITH DEFAULT NULL,
 BONUS DECIMAL(9, 2) WITH DEFAULT NULL,
118 IBM DB2 11 for z/OS Technical Overview

 COMM DECIMAL(9, 2) WITH DEFAULT NULL,
 START_TS TIMESTAMP (12) WITHOUT TIME ZONE NOT NULL,
 END_TS TIMESTAMP (12) WITHOUT TIME ZONE NOT NULL,
 TRANS_ID TIMESTAMP (12) WITHOUT TIME ZONE
 WITH DEFAULT NULL)
 PARTITION BY (EMPNO ASC)
 (PARTITION 1 ENDING AT ('099999'),
 PARTITION 2 ENDING AT ('199999'),
 PARTITION 3 ENDING AT ('299999'),
 PARTITION 4 ENDING AT ('499999'),
 PARTITION 5 ENDING AT ('999999'))
 AUDIT NONE
 DATA CAPTURE NONE
 CCSID EBCDIC
 NOT VOLATILE
 APPEND NO ;
COMMIT;

ALTER TABLE
 EMP_TEMPORAL
 ADD VERSIONING USE HISTORY TABLE
 EMP_TEMPORAL_HIST ;

Example 6-14 shows a sample CREATE VIEW statement defined on a temporal table and a
sample SELECT statement that can query the view as of certain point in time.

Example 6-14 Sample VIEW statement on a temporal table along with a temporal Query

CREATE VIEW v0 (EMPNO, SALARY, COMM)
AS SELECT EMPNO, SALARY, COMM
FROM EMP_TEMPORAL ;

-- The following is a sample temporal query on the above view
SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';
SELECT * FROM V0
FOR SYSTEM_TIME AS OF TIMESTAMP '2013-08-25 23:55:00' ;

For illustration purposes, if the bi-temporal table contains rows with the START_TS and END_TS
column values shown in Table 6-4, none of the rows are picked up by the query coded in the
Example 6-14. However, the result set includes all the rows if the same query is run without
the FOR SYSTEM_TIME AS OF TIMESTAMP clause.

Table 6-4 Sample time stamp values

START_TS END_TS

2013-08-26-00.21.00.753406376000 9999-12-30-00.00.00.000000000000
Chapter 6. SQL 119

The second sample SELECT statement as shown in Example 6-15 returns all the rows for
which the timestamp value specified in the AS OF clause (that is, 2013-10-10 00:22:00) lies
between the START_TS and END_TS values on the rows involved. For example, if all the rows
pertaining to the view had the same set of values tabulated in Table 6-4, all the rows are
returned by the query coded in Example 6-15.

Example 6-15 Selecting with AS OF

SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';
SELECT * FROM V0
FOR SYSTEM_TIME AS OF TIMESTAMP '2013-10-10 00:22:00' ;

Both the sample temporal queries are coded with the SET CURRENT APPLICATION
COMPATIBILITY = 'V11R1 statement to emphasize the fact that this is a new function and it will
not work if your Application Compatibility level is set to V10R1.

6.9 DGTT

The DECLARED GLOBAL TEMPORARY TABLE statement now includes a clause to specify logging
behavior. The logging attribute for the DGTT is at the table level as opposed to the logging
attribute that is at the table space level for base tables.

A DGTT has the following different logging options:

� LOGGED, which is the default and the current behavior. In this case, DB2 logs all changes
and during ROLLBACK or ROLLBACK TO SAVEPOINT, the changes to the DGTT are undone.

� NOT LOGGED ON ROLLBACK DELETE ROWS, which specifies no logging and during ROLLBACK or
ROLLBACK TO SAVEPOINT, all rows in the DGTT are deleted if any change was made in the
duration.

� NOT LOGGED ON ROLLBACK PRESERVE ROWS, which specifies no logging and during ROLLBACK
or ROLLBACK TO SAVEPOINT, the rows in the DGTT will be preserved as they are.

In the case of an error situation during an SQL statement, where an SQLCODE or message
is issued, if an update was made to a DGTT and LOGGED is specified, the changes to the
DGTT are undone.

In the case of an error situation during an SQL statement, where an SQLCODE or message
is issued, if an update was made to a DGTT and NOT LOGGED is specified, all rows in that
DGTT are deleted, regardless of the DELETE/PRESERVE ROWS qualification.

DB2 can provide full incremental bind avoidance when used in a loop by switching to short
prepare with RELEASE(DEALLOCATE).

6.10 CUBE, ROLLUP and GROUPING SETS

Grouping-sets and super-groups are two new options under GROUP BY clause (of the SELECT
statement). A super-group stands for ROLLUP, CUBE or grand-total clause. ROLLUP is helpful in

Note: DB2 11 for z/OS removes DB2 10 restrictions that period specification and period
clause can only be specified with base table references and appropriate type of temporal
tables.
120 IBM DB2 11 for z/OS Technical Overview

providing subtotaling along a hierarchical dimension such as time or geography. CUBE is
helpful in queries that aggregate based on columns from multiple dimensions.

With support for rollup, cube, and grouping-sets specifications, the SQL coding complexity
can be reduced greatly and the SQL performance can be improved dramatically.

6.10.1 GROUPING SETS

The GROUPING SETS option can be thought of as the union of two or more groups of rows into a
single result set. It is logically equivalent to the union of multiple subselects with the group by
clause in each subselect corresponding to one grouping set. This is similar to the DB2 for
Linux, UNIX, and Windows and DB2 for IBM System i® support for grouping-sets and
super-group specifications.

Example 6-16 shows a sample SQL statement by using the GROUP BY clause with the
GROUPING SETS option. Figure 6-4 shows the result set of this SQL statement.

Example 6-16 Sample SQL statement utilizing GROUP BY GROUPING SETS

SELECT WORKDEPT, EDLEVEL, SEX, SUM(SALARY) as SUM_SALARY, AVG(SALARY) as
AVG_SALARY, COUNT(*) as COUNT
 FROM DSN81110.EMP WHERE SALARY > 20000
 GROUP BY GROUPING SETS (WORKDEPT, EDLEVEL, SEX)

The result set is logically equivalent to the union all of three subselects with the group by
clause in each subselect corresponding to one column each from the three columns on the
grouping sets specification (while the other two column values are shown as NULLs).

Figure 6-4 Result of sample query using GROUPING SETS (WORKDEPT, EDLEVEL, SEX)
Chapter 6. SQL 121

6.10.2 ROLLUP

A ROLLUP grouping is an extension to the GROUP BY clause that produces a result set
containing sub-total rows in addition to the “regular” grouped rows. Subtotal rows are
“super-aggregate” rows that contain further aggregates whose values are derived by applying
the same column functions that were used to obtain the grouped rows. These rows are called
sub-total rows, because that is their most common use; however, any column function can be
used for the aggregation.

A ROLLUP grouping is a series of grouping-sets. The general specification of a ROLLUP with n
elements:

GROUP BY ROLLUP(C1,C2,...,Cn-1,Cn)

is equivalent to

GROUP BY GROUPING SETS((C1,C2,...,Cn-1,Cn),
(C1,C2,...,Cn-1),
...
(C1,C2),
(C1),
())

For example, SUM and AVG are used in Example 6-17 is similar to Example 6-16 on
page 121.

Example 6-17 Sample ROLLUP construct

SELECT WORKDEPT, EDLEVEL, SEX, SUM(SALARY) as SUM_SALARY,
AVG(SALARY) as AVG_SALARY, COUNT(*) as COUNT
 FROM DSN81110.EMP WHERE SALARY > 20000
 GROUP BY ROLLUP (WORKDEPT, EDLEVEL, SEX)

Example 6-18 shows the result set for the query in Example 6-17.

Example 6-18 Sample ROLLUP result set

WORKDEPT EDLEVEL SEX SUM_SALARY AVG_SALARY COUNT
 -------- ------- ---- ---------- -------------- -----
 A00 14 M 29250.00 29250.00000000 1
 A00 18 F 52750.00 52750.00000000 1
 A00 19 M 46500.00 46500.00000000 1
 B01 18 M 41250.00 41250.00000000 1
 C01 16 F 23800.00 23800.00000000 1
 C01 18 F 28420.00 28420.00000000 1
 C01 20 F 38250.00 38250.00000000 1
 D11 16 M 130400.00 26080.00000000 5
 D11 17 F 43590.00 21795.00000000 2
 D11 18 F 29840.00 29840.00000000 1
 D21 14 M 22180.00 22180.00000000 1
 D21 15 F 27380.00 27380.00000000 1
 D21 16 F 36170.00 36170.00000000 1
 D21 17 M 28760.00 28760.00000000 1
 E01 16 M 40175.00 40175.00000000 1
 E11 16 F 29750.00 29750.00000000 1
 E11 17 F 26250.00 26250.00000000 1
 E21 14 M 51520.00 25760.00000000 2
 E21 16 M 23840.00 23840.00000000 1
122 IBM DB2 11 for z/OS Technical Overview

 A00 14 NULL 29250.00 29250.00000000 1
 A00 18 NULL 52750.00 52750.00000000 1
 A00 19 NULL 46500.00 46500.00000000 1
 B01 18 NULL 41250.00 41250.00000000 1
 C01 16 NULL 23800.00 23800.00000000 1
 C01 18 NULL 28420.00 28420.00000000 1
 C01 20 NULL 38250.00 38250.00000000 1
 D11 16 NULL 130400.00 26080.00000000 5
 D11 17 NULL 43590.00 21795.00000000 2
 D11 18 NULL 29840.00 29840.00000000 1
 D21 14 NULL 22180.00 22180.00000000 1
 D21 15 NULL 27380.00 27380.00000000 1
 D21 16 NULL 36170.00 36170.00000000 1
 D21 17 NULL 28760.00 28760.00000000 1
 E01 16 NULL 40175.00 40175.00000000 1
 E11 16 NULL 29750.00 29750.00000000 1
 E11 17 NULL 26250.00 26250.00000000 1
 E21 14 NULL 51520.00 25760.00000000 2
 E21 16 NULL 23840.00 23840.00000000 1
 A00 NULL NULL 128500.00 42833.33333333 3
 B01 NULL NULL 41250.00 41250.00000000 1
 C01 NULL NULL 90470.00 30156.66666666 3
 D11 NULL NULL 203830.00 25478.75000000 8
 D21 NULL NULL 114490.00 28622.50000000 4
 E01 NULL NULL 40175.00 40175.00000000 1
 E11 NULL NULL 56000.00 28000.00000000 2
 E21 NULL NULL 75360.00 25120.00000000 3
 NULL NULL NULL 750075.00 30003.00000000 25

Note that the n elements of the ROLLUP translate to n+1 grouping sets. Note also that the order
in which the grouping-expressions is specified is significant for ROLLUP. For example:

GROUP BY ROLLUP(a,b)

Is equivalent to

GROUP BY GROUPING SETS((a,b),
(a),
())

While

GROUP BY ROLLUP(b,a)

Is the same as

GROUP BY GROUPING SETS((b,a),
(b),
())

The SQL code in Example 6-19 is the equivalent of Example 6-17 on page 122.

Example 6-19 Selecting with grouping sets

SELECT WORKDEPT, EDLEVEL, SEX, SUM(SALARY) as SUM_SALARY, AVG(SALARY) AS
AVG_SALARY, count(*) as COUNT
 FROM DSN81110.EMP WHERE SALARY > 20000
Chapter 6. SQL 123

 GROUP BY GROUPING SETS ((WORKDEPT, EDLEVEL, SEX),(WORKDEPT, EDLEVEL),
(WORKDEPT),())

Grand total for the result of this query is the last row on the query result set shown in
Example 6-18 on page 122, which can also be identified by the row containing null values for
all the three columns on the ROLLUP clause (that is, WORKDEPT, EDLEVEL, SEX).

6.10.3 CUBE

A CUBE grouping is an extension to the GROUP BY clause that produces a result set that
contains all the rows of a ROLLUP aggregation and, in addition, contains crosstabulation rows.
Cross-tabulation rows are additional super-aggregate rows that are not part of an aggregation
with sub-totals.

Like a ROLLUP, a CUBE grouping can also be thought of as a series of grouping-sets. In the case
of a CUBE, all permutations of the cubed grouping-expression-list are computed along with the
grand total. Therefore, the n elements of a CUBE translate to 2**n (2 to the power n)
grouping-sets. For example, a specification of

GROUP BY CUBE(a,b,c)

is equivalent to

GROUP BY GROUPING SETS((a,b,c),
(a,b),
(a,c),
(b,c),
(a),
(b),
(c),
())

Notice that the three elements of the CUBE translate to eight grouping sets. The order of
specification of elements does not matter for CUBE.

Example 6-20 shows a sample SQL statement using CUBE in the GROUP BY clause with
similar code used in the ROLLUP description in Example 6-17 on page 122.

Example 6-20 Sample SQL statement using CUBE construct in a GROUP BY clause

SELECT WORKDEPT, EDLEVEL, SEX, SUM(SALARY) as SUM_SALARY, AVG(SALARY) AS
AVG_SALARY, count(*) as COUNT
 FROM DSN81110.EMP WHERE SALARY > 20000
 GROUP BY CUBE (WORKDEPT, EDLEVEL, SEX);

Example 6-21 shows the result set for the query in Example 6-20.

Example 6-21 Result set from the sample CUBE construct

WORKDEPT EDLEVEL SEX SUM_SALARY AVG_SALARY COUNT
 -------- ------- ---- ---------- -------------- -----
 A00 14 M 29250.00 29250.00000000 1
 A00 18 F 52750.00 52750.00000000 1
 A00 19 M 46500.00 46500.00000000 1
 B01 18 M 41250.00 41250.00000000 1
 C01 16 F 23800.00 23800.00000000 1
 C01 18 F 28420.00 28420.00000000 1
124 IBM DB2 11 for z/OS Technical Overview

 C01 20 F 38250.00 38250.00000000 1
 D11 16 M 130400.00 26080.00000000 5
 D11 17 F 43590.00 21795.00000000 2
 D11 18 F 29840.00 29840.00000000 1
 D21 14 M 22180.00 22180.00000000 1
 D21 15 F 27380.00 27380.00000000 1
 D21 16 F 36170.00 36170.00000000 1
 D21 17 M 28760.00 28760.00000000 1
 E01 16 M 40175.00 40175.00000000 1
 E11 16 F 29750.00 29750.00000000 1
 E11 17 F 26250.00 26250.00000000 1
 E21 14 M 51520.00 25760.00000000 2
 E21 16 M 23840.00 23840.00000000 1
 NULL 14 M 102950.00 25737.50000000 4
 NULL 15 F 27380.00 27380.00000000 1
 NULL 16 F 89720.00 29906.66666666 3
 NULL 16 M 194415.00 27773.57142857 7
 NULL 17 F 69840.00 23280.00000000 3
 NULL 17 M 28760.00 28760.00000000 1
 NULL 18 F 111010.00 37003.33333333 3
 NULL 18 M 41250.00 41250.00000000 1
 NULL 19 M 46500.00 46500.00000000 1
 NULL 20 F 38250.00 38250.00000000 1
 A00 NULL F 52750.00 52750.00000000 1
 A00 NULL M 75750.00 37875.00000000 2
 B01 NULL M 41250.00 41250.00000000 1
 C01 NULL F 90470.00 30156.66666666 3
 D11 NULL F 73430.00 24476.66666666 3
 D11 NULL M 130400.00 26080.00000000 5
 D21 NULL F 63550.00 31775.00000000 2
 D21 NULL M 50940.00 25470.00000000 2
 E01 NULL M 40175.00 40175.00000000 1
 E11 NULL F 56000.00 28000.00000000 2
 E21 NULL M 75360.00 25120.00000000 3
 A00 14 NULL 29250.00 29250.00000000 1
 A00 18 NULL 52750.00 52750.00000000 1
 A00 19 NULL 46500.00 46500.00000000 1
 B01 18 NULL 41250.00 41250.00000000 1
 C01 16 NULL 23800.00 23800.00000000 1
 C01 18 NULL 28420.00 28420.00000000 1
 C01 20 NULL 38250.00 38250.00000000 1
 D11 16 NULL 130400.00 26080.00000000 5
 D11 17 NULL 43590.00 21795.00000000 2
 D11 18 NULL 29840.00 29840.00000000 1
 D21 14 NULL 22180.00 22180.00000000 1
 D21 15 NULL 27380.00 27380.00000000 1
 D21 16 NULL 36170.00 36170.00000000 1
 D21 17 NULL 28760.00 28760.00000000 1
 E01 16 NULL 40175.00 40175.00000000 1
 E11 16 NULL 29750.00 29750.00000000 1
 E11 17 NULL 26250.00 26250.00000000 1
 E21 14 NULL 51520.00 25760.00000000 2
 E21 16 NULL 23840.00 23840.00000000 1
 NULL NULL F 336200.00 30563.63636363 11
 NULL NULL M 413875.00 29562.50000000 14
Chapter 6. SQL 125

 NULL 14 NULL 102950.00 25737.50000000 4
 NULL 15 NULL 27380.00 27380.00000000 1
 NULL 16 NULL 284135.00 28413.50000000 10
 NULL 17 NULL 98600.00 24650.00000000 4
 NULL 18 NULL 152260.00 38065.00000000 4
 NULL 19 NULL 46500.00 46500.00000000 1
 NULL 20 NULL 38250.00 38250.00000000 1
 A00 NULL NULL 128500.00 42833.33333333 3
 B01 NULL NULL 41250.00 41250.00000000 1
 C01 NULL NULL 90470.00 30156.66666666 3
 D11 NULL NULL 203830.00 25478.75000000 8
 D21 NULL NULL 114490.00 28622.50000000 4
 E01 NULL NULL 40175.00 40175.00000000 1
 E11 NULL NULL 56000.00 28000.00000000 2
 E21 NULL NULL 75360.00 25120.00000000 3
 NULL NULL NULL 750075.00 30003.00000000 25

In Example 6-20, CUBE (WORKDEPT, EDLEVEL, SEX) and CUBE (EDLEVEL, WORKDEPT, SEX) yield
the same result sets. The use of the word same applies to content of the result set, not to its
order.

6.10.4 Grand total

Both CUBE and ROLLUP return a row that is the overall (grand total) aggregation, which can be
separately specified with empty parentheses within the GROUPING SET clause. It can also be
specified directly in the GROUP BY clause, although there is no effect on the result of the query.

6.10.5 Grouping expression

When used in conjunction with grouping-sets and super-groups, the GROUPING function returns
a value that indicates whether a row returned in a GROUP BY result is a row that is generated by
a grouping set that excludes the column represented by expression. The result of the function
is a small integer value, such as 1 or 0.

For details, see:

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=%2Fcom.ibm.
db2z11.doc.updates%2Fsrc%2Ftpc%2Fdb2z_bif_grouping.htm

6.11 ALTER TABLE DROP COLUMN

This function drops the identified column from the table. Any privileges that are associated
with the column are revoked.

A column cannot be dropped if any of the following conditions are true:

� The containing table space is not a universal table space.

� The table is a created global temporary table.

� The table is a system-period temporal table.

� The table is a history table.

� The table is an archive-enabled table.
126 IBM DB2 11 for z/OS Technical Overview

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=%2Fcom.ibm.db2z11.doc.updates%2Fsrc%2Ftpc%2Fdb2z_bif_grouping.htm

� The table is an archive table.

� The table has an edit procedure or a validation exit procedure.

� The table contains check constraints.

� The table is a materialized query table.

� The table is referenced in a materialized query table definition.

� The column is defined as a security label column.

� The column is an XML column.

� The column is a DOCID column.

� The column is a hidden ROWID column.

� The column is defined as ROWID GENERATED BY DEFAULT, and the table contains a hidden
ROWID column.

� The column is a ROWID column on which there is a dependent LOB column.

� The column is part of the table partitioning key.

� The column is part of the hash key.

� All of the remaining columns in the table are hidden.

� A view that is dependent on the table has INSTEAD OF triggers.

� A trigger is defined on the table.

� Any of the following objects are dependent on the table:

– Extended indexes
– Row permissions
– Column masks
– Inline SQL table functions

ALTER TABLE DROP COLUMN is considered a pending definition change, at the time that the
ALTER statement is executed, semantic validation and authorization checking are performed
as usual. However, the drop is not applied to the current definition or data at the time of the
ALTER (that is, catalog and data are untouched). An entry is recorded in the
SYSIBM.SYSPENDINGDDL catalog table for the pending drop column, and the table space is
placed in an advisory REORG-pending (AREOR) state.

6.12 LIKE_BLANK_INSIGNIFICANT DSNZPARM

The LIKE_BLANK_INSIGNIFICANT DSNZPARM value specifies whether blanks are significant
when applying the LIKE predicate to a string. If set, the blank insignificant behavior applies.

This DSNZPARM value provides a new behavior for the LIKE predicate that treats trailing blanks
within fixed length character strings as insignificant. This behavior is “more compatible” with
the results for variable length strings.

This system parameter is off after a fresh install of DB2 for z/OS. If the DB2 system is
migrated to DB2 11, the LIKE_BLANK_INSIGNIFICANT behavior is disabled by default. The
system parameter can be enabled in conversion mode (CM).

This option can significantly impact the behavior of SQL statements if you have a LIKE
predicate in your SQL statement and if the column referred in the LIKE predicate includes
undesirable trailing blanks.
Chapter 6. SQL 127

Before the LIKE predicate is applied, any trailing blanks in a CHARACTER or GRAPHIC column are
stripped to the last non-blank character. If the column contains all blanks, the blank in
character position 1 is not stripped. After stripping occurs, the LIKE predicate is applied
against the stripped column data. Example 6-22 illustrates this behavior.

Example 6-22 LIKE BLANK INSIGNIFICANT DSNZPARM behavior with trailing blanks

CREATE TABLE BINSIGNIFICANT (C1 CHAR(10));
INSERT INTO BINSIGNIFICANT VALUES(' AA ');
INSERT INTO BINSIGNIFICANT VALUES('A AA A');
INSERT INTO BINSIGNIFICANT VALUES('AA ');
INSERT INTO BINSIGNIFICANT VALUES('AAA A ');

SELECT * FROM BINSIGNIFICANT
WHERE C1 LIKE '%AA'

---------+---------+---------+---------
C1
---------+---------+---------+---------
 AA
AA

Example 6-23 illustrates the situation when the LIKE predicate contains one or more of the
“match any character” (usually underscore) in the last position. The “blank significant”
(pre-V11 behavior), might have resulted in a match if the last character in the column
contained the blank character. The “blank insignificant” behavior no longer results in a match
when the column data contains trailing blanks (because the trailing blanks are being stripped
during predicate evaluation).

Example 6-23 Sample LIKE predicate to illustrate the stripping of trailing blanks

SELECT C1
FROM BINSIGNIFICANT
WHERE C1 LIKE '%AA_';

The LIKE predicate in Example 6-23 does not even match the two fixed length strings it
matched in Example 6-22, although there is a trailing blank in those two rows immediately
after the string AA.

Trailing blanks note: Although trailing blanks in the column data are insignificant, trailing
blanks in the LIKE predicate are significant.
128 IBM DB2 11 for z/OS Technical Overview

Chapter 7. Application enablement

This chapter describes DB2 11 for z/OS functions, not strictly confined to SQL, that provide
infrastructure support for new applications or that simplify portability of existing applications to
DB2 for z/OS from other database systems.

This chapter includes the following topics:

� Ensuring application compatibility
� Transparent archiving of temporal data
� Providing support for big data
� Using the scoring adapter to add predictive analytics to OLTP applications
� Using JavaScript Object Notation with IBM DB2
� Suppressing null indexes

7

© Copyright IBM Corp. 2013. All rights reserved. 129

7.1 Ensuring application compatibility

DB2 11 for z/OS has mechanisms in place to limit potential SQL and XML incompatibilities on
application DML statements. It allows you to ensure application compatibility by using the
following functions:

� Identify applications that are affected by incompatible SQL and XML changes through
trace records

This function provides a mechanism to discover which applications will be affected.

– The DSNTIJPM migration job is updated to warn of Static SQL packages affected.
– IFCID 366 is updated to report on Dynamic SQL.

� Control the compatibility level to DB2 10 at application level

The following methods apply to transitioning to new behavior:

– APPLCOMPAT(VnnR1) BIND/REBIND option for static SQL
– APPLCOMPAT DSNZPARM for static SQL indicates default value
– CURRENT APPLICATION COMPATIBILITY special register for dynamic SQL
– DSN_PROFILE_ATTRIBUTES for IBM DRDA® applications

For dynamic SQL statements, the APPLICATION COMPATIBILITY special register value must be
set to appropriate value, and for static SQL statements, the APPLCOMPAT bind option must
contain the desired value.

Details about the APPLICATION COMPATIBILITY special register are discussed in 6.6, “SET
CURRENT APPLICATION COMPATIBILITY” on page 114.

Details about the APPLCOMPAT BIND/REBIND option are discussed at 12.6.1, “Application and
SQL release incompatibilities” on page 357.

The APPLCOMPAT bind option applies only to DML (or DDL that contains DML, such as CREATE
VIEW, CREATE MASK, MQTs, and so on) not DDL or DCL. For example, DB2 allows the user to
CREATE objects, but application compatibility is not checked until the object is referenced:

� The CREATE TYPE (array) is allowed, but SET array-variable = ... is subject to
application compatibility rules (that is, array-variable only available in V11R1 mode).

� The BIND option applies to packages: stored procedures, user-defined functions (UDFs),
triggers, applications, and so on.

7.2 Transparent archiving of temporal data

DB2 11 for z/OS provides basic archive and retrieval functions using SQL through a two table
approach. The table that contains the current data is called an archive-enabled table, and the
table that holds the pre-existing rows is called an archive table. An application can design its
own way to archive data, or DB2 can automatically move rows deleted from an
archive-enabled table to the associated archive table. The retrieval of data from a base table
or a base table plus its associated archive table is controlled by the setting of a built-in system
defined global variable without changing SQL in the applications.

Note: In a distributed environment, if DB2 is configured with APPLCOMPAT(V11R1), the value
of the accounting string that is returned has a maximum length of 255 bytes. If DB2 is
configured with APPLCOMPAT(V10R1), the value of the accounting string that is returned has a
maximum length of the value returned is 200 bytes.
130 IBM DB2 11 for z/OS Technical Overview

Whether DB2 automatically moves deleted rows to the archive table depends on the setting of
a new global variable. Additionally, you can use the LOAD utility with resume behavior to
archive data.

You can define a table as an archive-enabled table with an associated archive table for
historical rows. The ALTER TABLE statement is extended with an ENABLE ARCHIVE clause to
change an existing table into an archive-enabled table with an associated archive table. You
can use the table as the archive table is specified in the USE clause. Defining a table as an
archive-enabled table results in package invalidation of existing applications that reference
the table.

After a table is defined as an archive-enabled table:

� ALTER TABLE with the ADD COLUMN clause also implicitly adds the new column to the
associated archive table.

� If the SYSIBMADM.GET_ARCHIVE global variable is set to Y, data is retrieved from the archive
table when an archive-enabled table is referenced in a table-reference. The access of
historical data in the archive table is “transparent” to the application. All subsequent SQL
statements including those from invoked function, stored procedure, and trigger. This
allows the application to see both active and archive data without modifying the SQL
statements in multiple packages. DB2 rewrites the query with UNION ALL operator.

� If the SYSIBMADM.MOVE_TO_ARCHIVE global variable is set to Y, historical data is stored in the
associated archive table when a row is deleted in an archive-enabled table. The storing of
a row of historical data in the archive table is “transparent” to the application. When the
global variable is set to Y, an update operation will return an error.

� Any reference to an archive-enabled table for existing values in an INSERT, UPDATE, DELETE,
or MERGE will not include rows of the associated archive table.

� A system-period temporal table or application-period temporal table cannot be referenced
in a data manipulation statement when the archive-enabled table is also referenced when
both tables are considered for transparent archive transformations.

Two new updatable global variables are introduced to give control over whether archived rows
for rows deleted from an archive-enabled table are automatically written to an associated
archive table and whether rows in the archive table are included when an archive-enabled
table is referenced in a table-reference.

If the majority of applications retrieve data from base table, there should be no performance
degradation by UNION ALL to its associated archive table.

You can use the DISABLE ARCHIVE clause on the ALTER TABLE statement to remove the
relationship between the archive-enabled table and the associated archive table. After the
ALTER statement is successfully processed, both tables are considered ordinary tables. See
7.2.7, “Static application scenario” on page 135 for additional details.

Important: For archive-enabled tables, you do not need to change the application. No
DBA intervention to recall data is required.

Tip: A table cannot be defined as both an archive-enabled table and a system-period
temporal table.
Chapter 7. Application enablement 131

7.2.1 Controls of archive transparency

The following bind/routine options are added to control the sensitivity to the settings of the
SYSIBMADM.GET_ARCHIVE global variable:

� ARCHIVESENSITIVE (default YES)

– BIND PACKAGE
– REBIND PACKAGE
– REBIND TRIGGER PACKAGE
– CREATE TRIGGER (implicit trigger package)

� ARCHIVE SENSITIVE (default YES)

– CREATE FUNCTION (SQL scalar)
– ALTER FUNCTION (SQL scalar)
– CREATE PROCEDURE (SQL native)
– ALTER PROCEDURE (SQL native)

� ARCHIVE SENSITIVE (DB2I panels)

– DB2I Panel DSNEBP10
– DB2I Panel DSNEBP11
– DB2I Panel DSNEBP19

7.2.2 Sample code for enabling archive transparency

To use archive transparency, you need two tables properly defined. Then, issue an ALTER
TABLE statement to define the relationship between the two tables.

Example 7-1 shows sample DDL statements for an archive-enabled table that stores active
data, the archive table that stores archive data, and the ALTER table to enable archive
transparency feature.

Example 7-1 DDL for ARCHIVE ENABLE

-- Main table which will be archive enabled
CREATE TABLE POLICY_INFO_AET
(POLICY_ID CHAR(10) NOT NULL,
COVERAGE INT NOT NULL);

-- Archive table to store archive data
CREATE TABLE POLICY_INFO_ARC
(POLICY_ID CHAR(10) NOT NULL,
COVERAGE INT NOT NULL);

-- If the APPLCOMPAT is not set to V11R1 then use the following statement
SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';

-- ARCHIVE ENABLE -- ALTER table to enable archive transparency
ALTER TABLE POLICY_INFO_AET ENABLE ARCHIVE USE POLICY_INFO_ARC;

Important: The CREATE TRIGGER and REBIND TRIGGER PACKAGE options fail if the trigger has
an archive-enabled table reference in the WHEN clause and the trigger package is generated
with ARCHIVESENSITIVE YES.
132 IBM DB2 11 for z/OS Technical Overview

A single ALTER statement to add a column or multiple columns on an archive-enabled table
also adds the same column or columns to an archive table. Example 7-2 shows a sample
ALTER TABLE statement.

Example 7-2 ALTER TABLE ADD COLUMN on an archive enabled table

ALTER TABLE POLICY_INFO_AET ADD COLUMN UPDATE_TS TIMESTAMP(12);

After executing the ALTER TABLE ADD COLUMN statement in Example 7-2, DB2 also implicitly
adds an UPDATE_TS column to the archive table automatically (that is, policy_info_arc table).

7.2.3 Inserting rows into archive enabled table

The INSERT, UPDATE, and MERGE statements are all blocked in archive mode. These statements
use the following options:

� If SYSIBMADM.MOVE_TO_ARCHIVE = ‘Y’, the INSERT, UPDATE, and MERGE statements fail based
on the assumption that in archive mode, you can only DELETE.

� If SYSIBMADM.MOVE_TO_ARCHIVE = ‘N’, no archive mode failure occurs (that is, it is business
as usual).

� If SYSIBMADM.MOVE_TO_ARCHIVE = ‘E’, the behavior is similar to Y, but adds flexibility. The E
setting does not restrict the use of the data change statements. Users that favor the
restriction can set the global variable to Y, and users that do not want the restriction can set
the global variable to E.

Example 7-3 shows a sample SQL INSERT statement, along with valid values for the
APPLICATION COMPATIBILITY special register and the MOVE_TO_ARCHIVE global variable.

Example 7-3 Sample INSERT statement with MOVE_TO_ARCHIVE set to N

SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';
SET SYSIBMADM.MOVE_TO_ARCHIVE = 'N';
INSERT INTO POLICY_INFO_AET
(SELECT J_POLICY, COVERAGE_NBR, CHG_TIMESTAMP
 FROM DSN81110.TEMP)

Example 7-4 shows the negative SQLCODE and the accompanying error message when an
INSERT statement was attempted on an archive enabled table with SET
SYSIBMADM.MOVE_TO_ARCHIVE = 'Y'.

Example 7-4 Error message on an INSERT with MOVE_TO_ARCHIVE set to ' N'

DSNT408I SQLCODE = -20555, ERROR: AN ARCHIVE-ENABLED TABLE IS NOT ALLOWED IN THE
SPECIFIED CONTEXT. REASON CODE 2

7.2.4 Deleting rows from an archive enabled table

A single DELETE statement can trigger transparent archive when MOVE_TO_ARCHIVE global
variable is in effect. No additional privilege is required on an archive table. Only the privileges
on the delete of an archive-enabled table are needed.
Chapter 7. Application enablement 133

Given an SQL DELETE from an archive enabled table, regardless of whether it is dynamic or
static SQL and whether the package is bound with the ARCHIVESENSITIVE option YES or NO:

� If the built-in SYSIBMADM.MOVE_TO_ARCHIVE global variable contains the Y value, for each
row deleted from the archive-enabled table, DB2 inserts it into the corresponding archive
table.

� If the built-in SYSIBMADM.MOVE_TO_ARCHIVE global variable contains the N value (the default),
DB2 does no data propagation to the archive table. It basically works similar to a regular
delete statement.

This feature is basically an SQL performance improvement to help archiving data with a
single DELETE. For the application, there is no change on the data-change SQL statements
(that is, transparent to the application).

Example 7-5 shows a sample DELETE statement along with valid values for the APPLICATION
COMPATIBILITY special register and the MOVE_TO_ARCHIVE global variable.

Example 7-5 Sample DELETE from an Archive Enabled Table

SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';
SET SYSIBMADM.MOVE_TO_ARCHIVE = 'Y';
DELETE FROM POLICY_INFO_AET
WHERE UPDATE_TS < CURRENT TIMESTAMP - 7 YEARS;

7.2.5 Querying archive enabled table

There is no need to change SQL statements in an existing application to get current data only
or to get both current and archive data. The setting of the SYSIBMADM.GET_ARCHIVE built-in
global variable offers transparent access to archive data for queries.

If the application wants to get the result from both base and archive table, use the following
option:

SET SYSIBMADM.GET_ARCHIVE = ‘Y’ ;

If the application just wants to access the active data, use the following default option:

SET SYSIBMADM.GET_ARCHIVE = ‘N’ ;

Note: If the CID 65 field QW0065ER DS CL2 EXPANSION REASON shows the A value, the implicit
query transformation driven by the built-in SYSIBMADM.GET_ARCHIVE global variable or the
ARCHIVESENSITIVE did happen.

Note: If the CID 65 field QW0065ER DS CL2 EXPANSION REASON shows a blank value, the
implicit query transformation driven by the built-in SYSIBMADM.GET_ARCHIVE global variable
and ARCHIVESENSITIVE bind option did not happen.
134 IBM DB2 11 for z/OS Technical Overview

Example 7-6 shows a sample query along with valid values for the APPLICATION
COMPATIBILITY special register and the MOVE_TO_ARCHIVE global variable. This SELECT
statement is internally converted to include an implicit UNION ALL operation with the
corresponding archive table.

Example 7-6 Sample SELECT statement on an archive enabled table

SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';
SET SQSIBMADM.GET_ARCHIVE = ‘Y’ ;
SELECT * FROM POLICY_INFO_AET

7.2.6 Using a dynamic transaction with archive transparency

The steps to use a dynamic transaction with archive transparency include:

� Define the archive-enabled table
� Define the archive table
� Build the link using ALTER TABLE ENABLE ARCHIVE
� Archive data, before DELETE by executing SET SYSIBMADM.MOVE_TO_ARCHIVE = 'Y' ;

When DELETE statements are executed on an archive enabled table, DB2 deletes the record
or records as usual. In addition, the deleted rows are inserted into the corresponding archive
table.

To access both base and archive data, before PREPARE or EXECUTE IMMEDIATE, use the
following option:

SET SYSIBMADM.GET_ARCHIVE = 'Y' ;

7.2.7 Static application scenario

The cursor on an archive enabled table is defined as usual as for a regular table as shown in
Example 7-7 in an application program.

Example 7-7 Sample cursor statement in a static application

DECLARE CUR1 CURSOR FOR
SELECT * FROM POLICY_INFO_AET
WHERE POLICY_ID = :H1 ;

Bind the package that contains the cursor with ARCHIVESENSITIVE YES. Note the default is
YES, which can be omitted.

DB2 generates the following internal sections:

� The normal section with blank value of EXPANSION_REASON in SYSIBM.SYSPACKSTMT:

SELECT * FROM POLICY_INFO_AET WHERE POLICY_ID = :h1 ;

� The extended section with A value of EXPANSION_REASON in SYSIBM.SYSPACKSTMT:

SELECT * FROM (SELECT * FROM POLICY_INFO_AET UNION ALL SELECT * FROM
POLICY_INFO_ARC) WHERE POLICY_ID = :h1 ;

Note: Except the target table of INSERT/UPDATE/DELETE/MERGE, DB2 expands all
archive-enabled table references to the table expression with UNION ALL of base and
archive table.
Chapter 7. Application enablement 135

When using EXPLAIN facilities (either through BIND with EXPLAIN(YES) or through the EXPLAIN
statement), PLAN_TABLE includes two plans for each query referencing archive-enabled table
or tables (that is, one without archive table access and one with archive table access). The
expansion_reason includes blank and “A” respectively.

7.2.8 DISABLE ARCHIVE

The ALTER TABLE statement can also be used to specify that the table is no longer an
archive-enabled table using the DISABLE ARCHIVE clause. The table name must identify an
archive-enabled table The definition of the columns is not changed, but the table is no longer
treated as an archive-enabled table. The data in both tables are unaffected by the ALTER
statement. The relationship between the archive-enabled table and the associated archive
table is removed. The archive table is not dropped. Only the relationship between the two
tables is removed. Subsequent queries that reference the table will not consider rows in the
archive table regardless of the setting of the SYSIBMADM.GET_ARCHIVE global variable, and
deleted rows will not be moved to the archive table regardless of the setting of
SYSIBMADM.MOVE_TO_ARCHIVE global variable.

Example 7-8 shows a sample ALTER TABLE statement with the DISABLE ARCHIVE clause on the
sample archive-enabled table that is used in this chapter.

Example 7-8 DDL for DISABLE ARCHIVE statement

-- If the APPLCOMPAT is not set to V11R1 then use the following statement
SET CURRENT APPLICATION COMPATIBILITY = 'V11R1';

-- ALTER table to disable archive transparency
ALTER TABLE POLICY_INFO_AET DISABLE ARCHIVE;

After successful execution of the ALTER TABLE ... DISABLE ARCHIVE statement, the packages
and statements in the dynamic statement cache that reference this table are invalidated.

Archiving cannot be disabled if there are any views, materialized query table definitions, or
inline SQL table functions that reference the table.

7.2.9 Analytics Accelerator - HPSS considerations

The IBM DB2 Analytics Accelerator V3 (and later) has an archive transparency function with
High Performance Storage feature. This feature of the Accelerator is supported by DB2 11 for
z/OS, which allows applications to deal with local archive tables compared to completely
offloaded archive tables with Analytics Accelerators.

7.3 Providing support for big data

Big data systems are used for analytics. They accept “queries” and return results, usually
asynchronously. With DB2 11 for z/OS, applications can connect to both big data systems
and DB2 to provide integration. However, SQL connection to big data systems provides
convenience with simplified interface and better productivity.

Opportunities exist to lower risk and cost and to create up-sell and cross-sell opportunities by
looking at information about social networking (such as Facebook, Twitter, and LinkedIn), and
studying data from telemetry devices (machine to machine), detecting customer sentiment in
emails, audio, video. However, the challenge remains as to how to integrate this “noise.”
136 IBM DB2 11 for z/OS Technical Overview

Slowly over time, the circle of trust widened, as shown in Figure 7-1, to include other forms of
“differently structured” data.

For example, email is generally structured “From, to, date, and time stamp, subject,
attachments, main body with containing sentences, verbs, nouns, adjectives, propositions
and closing remarks.” It is structured differently from non-relational data. This is to enhance
and augment our knowledge about entities relevant to our business. That way, we can gain
deeper insights that help lower business risks and costs, and increase revenue and profit
through innovative business models.

Figure 7-1 Need for differently structured data to gain business insights

The amount and types of data being captured for business analysis is growing. A classic
example of this large superset of data is web logs, which contain unstructured raw data.

Demand for differently structured data to be
seamlessly integrated, to augment analytics /
decisions

• Analytics and decision engines

reside where the DWH /

transaction data is

• “Noise” (veractity) surrounds

the core business data

• Social Media, emails, docs,

telemetry, voice, video, content

• Expanding our insights –

getting closer to the “truth”

• Lower risk and cost

• Increased profitability

“Circle of trust”
widens

DataData
WarehouseWarehouse

BusinessBusiness
AnalyticsAnalytics

DB2 for z/OSDB2 for z/OS
IMSIMS

InformationInformation
GovernanceGovernance

IntegrationIntegration
Chapter 7. Application enablement 137

7.3.1 Enhancing big data analytics with Apache Hadoop

In an increasing trend unstructured data is being stored on new frameworks. These
infrastructures encompass hardware and software support such as new file systems, query
languages, and appliances. A prime example of DB2 use of Apache Hadoop is shown in DB2
11 for z/OS enhancing Analytics on z platform with big dataDB2 11 for z/OS enhancing
Analytics on z platform with big dataFigure 7-2.

Figure 7-2 DB2 11 for z/OS enhancing Analytics on z platform with big data
138 IBM DB2 11 for z/OS Technical Overview

Apache Hadoop is a Java-based framework that supports data intensive distributed
applications and allows applications to work with thousands of nodes and petabytes of data.

As shown in Figure 7-3, Hadoop framework is ideal for distributed processing of large data
sets. It is designed to run on large clusters of commodity hardware.

Figure 7-3 Hadoop key components

The Hadoop framework includes the following main components:

� The file systems (HDFS)

HDFS is a distributed, scalable, and portable file system written in Java for the Hadoop
framework, that provides high-throughput access to application data.

� The MapReduce engine

The MapReduce engine consists of one JobTracker, to which client applications submit
MapReduce jobs. The JobTracker pushes work to available TaskTracker nodes in the
cluster, striving to keep the work as close to the data as possible.
Chapter 7. Application enablement 139

Hadoop distributed file system
The Hadoop distributed file system (HDFS) is designed to be highly fault tolerant, as
illustrated in Figure 7-4.

Figure 7-4 HDFS overview

Each node in a Hadoop instance typically has a single name-node; a cluster of data-nodes
form the HDFS cluster. Each data-node serves up blocks of data over the network using a
block protocol specific to HDFS.

Large files are broken into blocks of fixed size (default = 64 MB), and distributed across
multiple machines. Blocks are replicated. Block Replicas are distributed across servers and
racks. It achieves reliability by replicating the data across multiple nodes, and hence does not
require RAID storage. With the default replication value, 3, data is stored on three nodes. Two
are on the same rack, and one node is on a different rack. This policy cuts the inter-rack write
traffic which generally improves write performance. The chance of rack failure is far less than
that of node failure. Data nodes can talk to each other to rebalance data, to move copies
around, and to keep the replication of data high.

HDFS was designed to handle very large files. HDFS was designed for mostly immutable files
and might not be suitable for systems requiring concurrent write operations. HDFS
applications need a write-once-read-many access model for files. After a file is created,
written, and closed, it need not be changed. This assumption simplifies data coherency
issues and enables high throughput data access.

Hadoop Distributed File System (HDFS)

Files are broken in to large blocks
(default=64MB).

Blocks are replicated
(default=3 times)
and distributed
across the cluster.

– Durability

– Availability

– Throughput

Optimized for

� Streaming reads of large
files
– write-once-read-many access

model, append-only
140 IBM DB2 11 for z/OS Technical Overview

MapReduce
Multiple Mappers send data to the multiple Shuffles, which then pass data to the Reducers for
“Divide and Conquer” plus mass parallel processing, as shown in Figure 7-5.

Figure 7-5 MapReduce overview

For example, for an input file that is split into four blocks, with each block containing a list of
receipts, there are four mappers. Each mapper reads one block in parallel. The mapper reads
each receipt and generates a pair (seller, amount). All the pairs for seller1 are sent to reducer
R1, and all seller2 pairs are sent to R2. The reducer then calculates the total amount for each
seller.

The Map function only cares about the current key and value. The Reduce function only cares
about the current key and its values. A Mapper can invoke Map on an arbitrary number of
input keys and values or just some fraction of the input data set. A Reducer can invoke
Reduce on an arbitrary number of the unique keys but all the values for that key.

Jaql, the JSON query language
Java MapReduce provides most flexibility and performance, but tedious development cycle (it
is similar to the assembly language of Hadoop). Jaql is a functional, declarative query
language that is designed by IBM to process large data sets. For parallelism, Jaql rewrites
high-level queries, when appropriate, into “low-level” queries consisting of MapReduce jobs.

Read more about how DB2 and JSON work together in 7.5, “Using JavaScript Object
Notation with IBM DB2” on page 149.

MapReduce
� A simple, yet powerful framework for parallel computation

– Applicable to many problems, flexible data format

� Basic steps:
– Do parallel computation (Map) on each block (split) of data in an HDFS

file and output a stream of (key, value) pairs to the local file system

– Redistribute (shuffle) the map output by key

– Do another parallel computation on the redistributed map output and write
results into HDFS (Reduce)

M1

M4

M2

M3

R1

R2s
h

u
ff

le

Mapper Reducer
Chapter 7. Application enablement 141

SQL within Jaql
Jaql integrates an SQL expression that should make it easier for users with an SQL
background to write MapReduce scripts in Jaql for the BigInsights environment. SQL within
Jaql also makes it easier to integrate existing SQL applications and tooling with Jaql.

Analyze big data with JAQL
Jaql query has three components, as shown in Figure 7-6. You can think of a Jaql query as a
pipeline. A Jaql query reads input data from a source. A source is anything from which data
can be read, such as a file. A source is the only mandatory part of a Jaql query. Next, the data
is manipulated according to the operators or functions that were specified in the query. Finally,
the data is output to a sink. A sink is anything to which data can be written.

Figure 7-6 JAQL query components

Typical results from big data are in a table form.So, DB2 11 for z/OS provides a single table
function to interface with such systems, which requires generic table UDF that returns a table
of any shape. Existing infrastructure require one UDF per result type/shape.

� Phase 1: specify the return in FROM clause after the table UDF
� Phase 2: use DESCRIBE interface to get result table shape dynamically

Integration with Hadoop-based IBM BigInsights big data platform
The goal here is to integrate DB2 11 for z/OS with Hadoop based BigInsights Bigdata
platform thereby enabling traditional applications on DB2 for z/OS to access Big Data
analytics.

The following UDFs are provided to access BigInsight from DB2 for z/OS:

� HDFS_Read is a user-defined table function to read a file in Hadoop file system. The output
schema is determined at query time.

� JAQL_Submit is a user-defined scalar function to submit a JAQL script to BigInsight.

Analyze big data with JAQL

 A JAQL query has three components

 JAQL I/O functions read and write data from various data
stores and formats (JSON, XML, CSV,…).

 Operators could be filter, transform, join, group by, any JAQL
functions and so on.
142 IBM DB2 11 for z/OS Technical Overview

Analytics jobs can be specified using JSON Query Language (JAQL) submitted to
BigInsights, and the results stored in Hadoop Distributed File System (HDFS). The table UDF
(HDFS_READ) reads the Bigdata analytic result from HDFS, for subsequent use in an SQL
query. The HDFS_READ UDF output table can have variable shapes.

DB2 11 supports generic table UDF by enabling this function. It also supports the security
model of BigInsight, though the BigInsights console and Representational State Transfer
(REST).

Consider the following DB2-BigInsights integration use case:

� BigInsights ingests data that usually is not ingested by established structured data
analysis systems such as DB2, for example email from all clients sent to an insurance
company.

� DB2 kicks off a Hadoop job on BigInsights that analyzes emails and identifies customers
who have expressed dissatisfaction with the service. It looks for the words cancel,
terminate, switch, or synonyms thereof and the names of the company’s competitors.

� The BigInsights job runs successfully, creates a file of results (names and email
addresses of customers at risk), and terminates.

� DB2 reads the BigInsights result file using user-defined table function (HDFS_READ).

� DB2 joins the result with the Agent table and alerts the agents of the at-risk customers.
The agents act upon the at-risk customer and offer a promotion to stave off defection.

REST with SOA: REST is the preferred way of communicating in service-oriented
architecture (SOA) environments.
Chapter 7. Application enablement 143

Other use cases are shown in Figure 7-7. These five use cases are the sweet spots for the
scenarios discussed in this chapter.

Figure 7-7 Big data use cases

7.3.2 Example HDFS_READ with a generic table UDF

The HDFS_READ UDF is a generic table UDF that access HDFS and returns a table of variable
shape. Generic TUDF does not specify output table schema at create time but at reference
time. The file in HDFS must be in delimited format. It connects BigInsights through REST API.

The HDFS_READ UDF takes the following arguments:

� URL, that sets the server address and path of the file in the HDFS
� The option-string that specifies DELIMITER, USER, and PASSWORD

Example 7-9 shows the sample table UDF code along with how it can be invoked from a
SELECT statement.

Example 7-9 Sample Generic Table UDF code

CREATE FUNCTION hdfsRead (handle VARCHAR (xxxx))
RETURNS GENERIC TABLE
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME ‘jar:com.ibm.XAP.hdfsRead' ;

SELECT TX.*
FROM TABLE(hdfsRead(‘http://172.16.134.134:8080/data/sample.csv’
) AS TX (station VARCHAR(35),
year VARCHAR(4),
month VARCHAR(2),
loc VARCHAR(10),

Big Data Exploration

Find, visualize, understand
all big data to improve
decision making

Enhanced 360o View
of the Customer

Extend existing customer
views (MDM, CRM, etc) by
incorporating additional
internal and external
information sources

Operations Analysis

Analyze a variety of machine
data for improved business
results

Data Warehouse Augmentation

Integrate big data and data warehouse
capabilities to increase operational
efficiency

Security/Intelligence
Extension

Lower risk, detect fraud
and monitor cyber
security in real-time

Big Data Use Cases
144 IBM DB2 11 for z/OS Technical Overview

count VARCHAR(5),
minCO2 VARCHAR(7),
maxCO2 VARCHAR(7),
avgCO2 VARCHAR(20));

The HDFS_READ table function returns one row for each record (or line) in the file. If the number
of the result columns m is less than the number of fields in each record, the first m fields of
each record is returned. If a field has no value (two adjacent comma), a null value is returned
for the corresponding column.

Example 7-10 shows a sample CSV file stored in HDFS.

Example 7-10 Sample HDFS_READ from a CSV file

-- Sample CSV file content stored in HDFS
1997,Ford, E350,"ac, abs, moon",3000.00
1999,Chevy, "Venture ""Extended Edition""", ,4900.00
1996,Jeep,Grand Cherokee,"MUST SELL! air, moon roof, loaded",4799.00

-- Sample SELECT statement
Select * From table (HDFS_Read('http://BI.foo.com/data/controller/dfs/file.csv',
 ‘user=scott
password=tiger'))
 as X (year integer, make varchar(10), model varchar(30),
 description varchar(40), price decimal(8,2));

--Results

7.3.3 Example JAQL_SUBMIT

The first query in Example 7-10, submits to BigInsight a Jaql query which read receipts data
in JSON format, select the interested fields: seller’s ID, the subtotal amount of the receipt,
which is total minus the tax, then group by seller and calculate the total revenue of each seller,
and write it to an output file test1.csv in comma delimited format.

Assume that T2 is the table contained the tax filing information of each company. The second
query in Example 7-11 read the Jaql result file and join it with T2 to find those companies
whose reported revenue in their tax form is not equal to the total revenue collected from
receipts.

Example 7-11 Sample JAQL_SUBMIT

Select Jaql_submit('read(hdfs("receipts.json"))
 -> transform { seller: $.issuer.id,
subtotal: $.subtotal }
 -> group by $seller =$.seller
 into {$seller, revenue: sum($.subtotal))
 -> write (del(location=''/test1.csv''))', ‘’
 'http://kea.svl.ibm.com', ‘TIMEOUT=60 USER=scott PASSWORD=tiger'))

YEAR MAKE MODEL DESCRIPTION PRICE
1997 Ford E350 ac, abs, moon roof, fully loaded 3000
1999 Chevy Venture "Extended Edition" (null) 4900
Chapter 7. Application enablement 145

From SYSIBM.SYSDUMMY1;

Select * From TABLE(HDFS_READ(
 'http://kea.svl.ibm.com/data/controller/dfs/test1.csv',
 'USER=scott PASSWORD=tiger‘))
 AS X (seller varchar(10), revenue decimal(10,2)), T2
Where X.seller = T2.id and X.revenue <> T2.revenue

Example 7-12 shows another example of JAQL_SUBMIT UDF with nested construct.

Example 7-12 Nested UDF calls

Select *
From Table(hdfs_read(Jaql_submit('read(hdfs("receipts.dat"))
 -> transform { seller: $.Emisor.rfc,
 amount: $.Conceptos }
 -> group by $seller =$.seller
 into {$seller, total:sum($.amount))
 -> write(del(location=''/tmp/test1.csv''))',
 'http://kea.svl.ibm.com:8080/data/controller/dfs/tmp/test1.csv',
 'http://kea.svl.ibm.com:8080',
 ‘USER=SCOTT PASSWORD=TIGER'),
 ‘USER=SCOTT PASSWORD=TIGER’))
 AS X (seller varchar(10),
 total decimal(10,2));

7.4 Using the scoring adapter to add predictive analytics to
OLTP applications

You can use IBM SPSS® Modeler Server 15, together with SPSS Modeler Server Scoring
Adapter 15 for DB2 on z/OS, to add predictive analytics to OLTP applications that are running
on z/OS. You use SPSS Modeler Server to create and train the models and publish them into
DB2 on z/OS.

The scoring adapter for DB2 on z/OS provides a scoring engine that runs the UDF run time.
The adapter defines a UDF that applications can start by using SQL to run the scoring
models synchronously, in-line within their transactions, by using live transaction data as the
input for scoring to maximize the effectiveness of scoring results.
146 IBM DB2 11 for z/OS Technical Overview

Figure 7-8 shows a sample SPSS Modeler stream. You must publish a model nugget, for
example, NN_Is_Fraud, to the scoring adapter.

Figure 7-8 SPSS Modeler stream

You must establish a connection to the database before you publish the model nugget. After
you set up the connection, publish the nugget to the scoring adapter by clicking File →
Publish for server scoring adapter, as shown in Figure 7-9.

Figure 7-9 Publish for server scoring adapter option

When a model is published to a server scoring adapter, it generates a sample SQL statement.
This SQL statement uses UDFs to start the SPSS model that was built earlier and generates
a predictive score that can be used by a decision management system.
Chapter 7. Application enablement 147

Example 7-13 shows a sample SQL statement for a scoring adapter.

Example 7-13 Sample SQL statement for a scoring adapter for DB2 on z/OS

SELECT
UNPACK

(HUMSPSS.SCORE_COMPONENT('P',
'demo_UDF',
PACK(CCSID 1208, T0.C0,T0.C1,T0.C2,T0.C3,T0.C4,T0.C5,T0.C6,T0.C7,

T0.C8,T0.C9,T0.C10,T0.C11,T0.C12,T0.C13,T0.C14,
T0.C15,T0.C16,T0.C17,T0.C18,T0.C19,T0.C20,T0.C21,
T0.C22,T0.C23

)
)

).* AS
(
C24 BIGINT,C25 DOUBLE,C26 DOUBLE
)

FROM (
SELECT

T0."CARD_ID" AS C0,
T0."T_AMOUNT" AS C1,
T0."T_NO_OVER500" AS C2,
T0."C_BALANCE_LIMIT" AS C3,
T0."C_AMOUNT_LAST_MONTH" AS C4,
T0."TIME_NO_3HOUR" AS C5,
T0."TIME_AMOUNT_3HOUR" AS C6,
T0."M_HISTORY" AS C7,
T0."M_TYPE" AS C8,
T0."T_TIME" AS C9,
T0."E_TIME_LAG" AS C10,
T0."TIME_REJECT" AS C11,
T0."E_REJECT" AS C12,
T0."LIMIT" AS C13,
T0."GENDER" AS C14,
T0."EDU_LEVEL" AS C15,
T0."MAR_STAT" AS C16,
T0."IMP_LEV" AS C17,
T0."OCCUPATION" AS C18,
T0."ECO_CAT" AS C19,
T0."ANNUAL_SALARY" AS C20,
T0."OWN_HOU_FLAG" AS C21,
T0."VENDORS_IN_30_MINUTES" AS C22,
T0."MERCHANT_COUNTRY" AS C23
FROM ${TABLE0} T0

) AS T0

In the example, the SQL query returns Score(C24), Confidence(C25), and Normalized
Propensity(C26) as output predicted scores that can be used by a decision management
system for making runtime decisions. Running the scoring adapter SQL within the DB2
environment provides scalability and performance similar to DB2 for z/OS. This situation
makes it possible to handle large transaction volumes and heavy workloads and also meet
stringent response time requirements and SLAs.
148 IBM DB2 11 for z/OS Technical Overview

7.5 Using JavaScript Object Notation with IBM DB2

JavaScript Object Notation (JSON) is a lightweight, text-based, human-readable format. It is a
language-independent data interchange format that is becoming increasingly popular as an
alternative to XML. JSON is currently supported by many different programming language
APIs, which makes it a simple to use document format.

JSON is based on a subset of the JavaScript Programming Language, Standard ECMA-262
Third Edition, December 1999. It is a text format that is language independent but uses
conventions that are familiar to programmers of the C-family of languages.

Many applications might use it just for data interchange. Thus, they rarely save the JSON files
to disk as the interchanges occur between Internet-connected computers. However, for
databases, sending and retrieving data from the IBM DB2 platform to the Internet and thus
creating the requirement to be able to use DB2 as a repository of JSON documents is critical.

The IBM DB2 Accessories Suite for DB2 11 feature is enhanced with necessary components
to enable DB2 for z/OS to be used as a JSON document store. Included are the following
JSON capabilities:

� A programming interface for Java applications to store, update and intelligently query
JSON documents

� A command line processor for performing administration tasks and data access operations
on JSON data

� A Wire Listener service that extends the support to other languages through an open
source wire protocol for accessing JSON data

The JSON capability is a driver-based solution that embraces the flexibility of the JSON data
representation within the context of an RDBMS that includes well-known enterprise features
and quality of service.

With this offering, applications can manage JSON documents in DB2 for z/OS using a new
application programming interface (API) which is designed after the MongoDB data model
and query language. This API uses available DB2 for z/OS capabilities to store, modify, and
retrieve JSON documents. This allows existing DB2 administration skills, resources, and
processes to be utilized for managing this new type of data in DB2 for z/OS.

Using JSON capability, users can interact with JSON data in the following ways:

� They can administer and interactively query JSON data using a command line shell.

� They can programmatically store and query data from Java programs using a driver for
JSON supplied by IBM that enables them to connect to their JSON data through the same
JDBC driver used for SQL access.

� They can use any driver that implements the MongoDB protocol. This function enables
them to access JSON stored from a variety of modern languages, including node.js, PHP,
Python, and Ruby, and more traditional languages such as C, C++, and Perl.

7.6 Suppressing null indexes

Having to index every data row affects performance and the size of the index. When creating
an index, it is useful to exclude one or more values from being indexed, such as values that
will never be used in a query, for example NULL, blank, and 0. DB2 11 NFM can improve
insert performance of NULL entries by the option of excluding NULL rows from indexes.
Chapter 7. Application enablement 149

The CREATE INDEX statement is changed to state EXCLUDE NULL KEYS, and the RUNSTATS utility
collect statistics only on non-NULL value.

All table statistics derived from an index are adjusted by the number of excluded NULL values.
Therefore the table statistics will be the same whether they were derived from a table scan,
an EXCLUDE NULL KEYS index, or a non-EXCLUDE NULL KEYS index (or INCLUDE NULL KEYS
index). After converting existing indexes to EXCLUDE NULL indexes, monitor application
performance. Insert performance should improve and query performance difference should
be minimal.
150 IBM DB2 11 for z/OS Technical Overview

Chapter 8. XML

Extensible Markup Language (XML) is a markup language that defines a set of rules for
encoding documents in a format that is both human-readable and machine-readable. The first
working draft of an XML specification was published in 1996. XML 1.0 became a Worldwide
Web Consortium (W3C) recommendation on February 10, 1998.

DB2 9 for z/OS introduced support for the XML data type through the use of its pureXML
capabilities and hybrid database engine. With DB2 9, XML data previously stored in the
traditional relational format can be stored natively as XML.

Many enhancements to XML processing were provided through maintenance in DB2 9 and in
DB2 10. Those functions and enhancements are documented in DB2 10 for z/OS Technical
Overview, SG24-7892 and Extremely pureXML in DB2 10 for z/OS, SG24-7915.

DB2 11 provides many additional enhancements to XML functionality. Some of these
enhancements are also retrofitted to DB2 10.

This chapter describes the following XML enhancements in DB2:

� XQuery support
� XML performance enhancements in DB2 10 and DB2 11
� XQuery FLWOR expressions performance enhancements
� XMLTABLE performance enhancements in DB2 11

8

© Copyright IBM Corp. 2013. All rights reserved. 151

8.1 XQuery support

The capability to store and access XML documents in DB2 for z/OS using an XML data type
was first introduced in DB2 9. The initial implementation of XML in DB2 made use of the
XPath language, which is a language for navigating XML documents and addressing parts of
XML documents. XPath is a subset of XQuery, which is a richer language for accessing XML
documents.

Although you can code SQL statements to access XML documents in DB2 9, the XPath
language make it difficult to write meaningful queries against XML data. In addition, the XPath
language support in DB2 for z/OS is a small subset of the XQuery language that is supported
on DB2 for Linux, UNIX, and Windows, which makes porting applications from DB2 for Linux,
UNIX, and Windows to DB2 for z/OS difficult. As a result, you likely faced lost productivity due
to the following issues:

� Rewriting XQuery queries to use syntax that DB2 supported
� Using a mixture of XPath and SQL/XML, which can be difficult to express
� Some query semantics not supported by XPath on DB2
� Challenges porting applications between different DB2 family members

The XQuery language support provided in DB2 11 and retrofitted to DB2 10 using APARs
PM47617 and PM47618 allows application programmers to express such semantics and
avoid unnecessary query rewrites. You can now spend less time switching back and forth
between XQuery and SQL/XML and can express queries purely using XQuery instead.
Differences between XQuery language support in DB2 for z/OS and DB2 for Linux, UNIX, and
Windows still exist, but now in DB2 for z/OS, you can use commonly used XQuery language
features, such as for, let, constructors, and if-then-else.

You still use the same XML functions available in prior versions of DB2, such as XMLQUERY,
XMLEXISTS, and XMLTABLE. The XMLQUERY function is used in the SELECT clause of an SQL
query to specify which XML data to retrieve. The XMLTABLE function is used in the FROM clause
to extract XML data in a table format. The XMLEXISTS function is used in the WHERE clause to
specify under which conditions to retrieve the data.

The difference is that you now have a much richer set of XML expressions that you can supply
to the XML functions. You can use the following types of expressions alone or in combination:

� FLWOR expressions

A FLWOR expression is a loop construct for manipulating XML documents in an
application-like manner. The name (pronounced flower) is an acronym for the keywords
used in the expression (FLWOR = For-Let-Where-Order By-Return).

� XQuery constructors

Instead of using publishing functions for creating XML elements, documents, and other
XML constructs, you can now write them as literals anywhere that you can write an
expression of the same type.

� Conditional expressions

You can use IF-THEN-ELSE logic anywhere you can use an expression within an XQuery
expression.

� Built-in functions

New built-in function for XQuery to return the average of the values in a sequence.
152 IBM DB2 11 for z/OS Technical Overview

� XQuery prolog

The prolog has new declarations that define the processing environment for a query for
XQuery.

In the following sections we provide some details and examples of using each of these types
of expressions.

8.1.1 FLWOR expressions

Table 8-1 lists a description and example of usage for each keyword for FLWOR.

Table 8-1 XQuery FLWOR expression keywords

The FLWOR expression keyword syntax provides similar capabilities for XML data as SQL
keywords do for relational data. The following example queries show how these keywords are
used.

The first example creates two tables with XML data:

� One table to contain purchase order information
� One table to contain customer status information

Each table includes two columns:

� An INTEGER column that is defined as an IDENTITY column
� An XML column to contain the customer data

Example 8-1 shows the DDL for the purchaseOrdersXML table.

Example 8-1 DDL for purchaseOrdersXML table

CREATE TABLESPACE DB2R3XTS IN DSNDB04 BUFFERPOOL BP4
USING STOGROUP SYSDEFLT
PRIQTY 1000
SECQTY 1000
;
CREATE TABLE purchaseOrdersXML

Keyword Description

for Allows a variable to loop through a sequence of values. These can be literals, XPath
expressions, and so on. The looping variable is prefixed with $, as with other variables
in XML expressions. An example is as follows:
for $i in /$po//item

let Assigns a variable a single value. This can be a literal, an XPath expression, and so
on. The variable is prefixed with $. An example is as follows:
let $p := $po/ipo:purchaseOrder/items/item/USPrice

where Defines the criteria for which values are to be returned, as with an SQL query. An
example is as follows:
where $j/name=$i/billTo/name and $j/status="premier"

order by Orders the output specified in the return clause, as with an SQL query. An example is
as follows:
order by xs:decimal($i/USPrice) descending

return Specifies what is to be returned from each iteration of the FLWOR expression. The
final result is their concatenation.
return $i
Chapter 8. XML 153

(id_col INTEGER GENERATED BY DEFAULT
 AS IDENTITY(START WITH 1
 INCREMENT BY 1,
 CACHE 20) NOT NULL,
 po XML
)
IN DSNDB04.DB2R3XTS
;

Example 8-2 shows the DDL for the statusXML table.

Example 8-2 DDL for statusXML table

CREATE TABLESPACE DB2R3XT2 IN DSNDB04 BUFFERPOOL BP4
USING STOGROUP SYSDEFLT
PRIQTY 1000
SECQTY 1000
;
CREATE TABLE statusXML
(id_col INTEGER GENERATED BY DEFAULT
 AS IDENTITY(START WITH 1
 INCREMENT BY 1,
 CACHE 20) NOT NULL,
 status XML
)
IN DSNDB04.DB2R3XT2
;

Example 8-3 shows the SQL statements to insert two rows into the purchaseOrdersXML
table. Note a value for the ID_COL column is not provided, because that column is defined as
an IDENTITY column and a value is generated by default.

Example 8-3 INSERT statements for purchaseOrdersXML table

INSERT INTO purchaseOrdersXML
(po)
VALUES(XMLPARSE(DOCUMENT
'<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="1999-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>

Important: Unlike SQL statements on a relational data, XQuery statements are case
sensitive. If you intend to replicate these tests, you need to make sure that you set CAPS
OFF if running these examples in SPUFI.
154 IBM DB2 11 for z/OS Technical Overview

 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>1999-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2000-01-03</shipDate>
 </item>
 </items>
 </ipo:purchaseOrder>
'))
;
INSERT INTO purchaseOrdersXML
(po)
VALUES(XMLPARSE(DOCUMENT
'<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="1999-12-01">
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>James Doe</name>
 <street>77 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Hal Yee</name>
 <street>99 University Avenue</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <billTo xsi:type="ipo:USAddress">
 <name>Albert James</name>
 <street>5 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
Chapter 8. XML 155

 <zip>95819</zip>
 </billTo>
 <items>
 <item partNum="844-AA">
 <productName>Lapis bracelet</productName>
 <quantity>1</quantity>
 <USPrice>89.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>1999-12-08</shipDate>
 </item>
 <item partNum="947-ZG">
 <productName>Sapphire Earring</productName>
 <quantity>2</quantity>
 <USPrice>187.99</USPrice>
 <shipDate>2000-01-05</shipDate>
 </item>
 </items>
 </ipo:purchaseOrder>
'))
;

Example 8-4 shows the SQL statements to insert two rows into the statusXML table. Again,
only the contents of the XML column are shown. DB2 generates the value for the IDENTITY
column.

Example 8-4 INSERT statements for statusXML table

INSERT INTO statusXML
(status) VALUES(XMLPARSE(DOCUMENT
'<status>
 <statusItem>
 <name>Robert Smith</name>
 <status>premier</status>
 <comment>Orders a lot of jewelry</comment>
 <comment>Has friends in the Silicon Valley</comment>
 </statusItem>
 <statusItem>
 <name>Jason C</name>
 <status>blacklist</status>
 <comment>This guy doesn''t pay his bills!</comment>
 </statusItem>
</status>'))
;
INSERT INTO statusXML
(status) VALUES(XMLPARSE(DOCUMENT
'<status>
 <statusItem>
 <name>Albert James</name>
 <status>regular</status>
 <comment>Occasionally orders jewelry</comment>
 <comment>Has friends in San Francisco city</comment>
 </statusItem>
 <statusItem>
 <name>James B</name>
 <status>blacklist</status>
 <comment>This guy doesn''t pay his bills!</comment>
156 IBM DB2 11 for z/OS Technical Overview

 </statusItem>
</status>'))
;

Now that there is XML data in the two tables, the next examples show the FLWOR code
expressions to retrieve XML data and format the results.

Simple FLWOR use case
The for keyword allows a variable to loop through a sequence of values, similar to a cursor
on relational data. Example 8-5 shows how to use the for keyword to read through all the
rows in the purchaseOrdersXML table.

Example 8-5 Use of FLWOR “for” keyword to loop through a sequence of values

SELECT XMLQUERY(
 'declare namespace ipo="http://www.example.com/IPO";
 for $i in $po/ipo:purchaseOrder
 return
 <itemsShipped xmlns:ipo="http://www.example.com/IPO">
 <to> {$i/shipTo/name/text()} </to>
 <items> {$i/items/item} </items>
 </itemsShipped>'
 PASSING PO as "po")
FROM purchaseOrdersXML;

Example 8-6 shows the results of the query. When you run this example query in SPUFI, the
results for each row is shown on one line. This example is formatted to make it easier for you
to read.

Example 8-6 Results of sample XQuery using FLWOR keyword “for”

<?xml version="1.0" encoding="IBM037"?>
<itemsShipped xmlns:ipo="http://www.example.com/IPO">
 <to>Helen ZoeJoe Lee</to>
 <items>
 <item xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>1999-12-05</shipDate>
 </item>
 <item xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2000-01-03</shipDate>
 </item>
 </items>
</itemsShipped>
<?xml version="1.0" encoding="IBM037"?>
<itemsShipped xmlns:ipo="http://www.example.com/IPO">
 <to>James DoeHal Yee</to>
 <items>
 <item xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" partNum="844-AA">
Chapter 8. XML 157

 <productName>Lapis bracelet</productName>
 <quantity>1</quantity>
 <USPrice>89.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>1999-12-08</shipDate>
 </item>
 <item xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" partNum="947-ZG">
 <productName>Sapphire Earring</productName>
 <quantity>2</quantity>
 <USPrice>187.99</USPrice>
 <shipDate>2000-01-05</shipDate>
 </item>
 </items>
</itemsShipped>
DSNE610I NUMBER OF ROWS DISPLAYED IS 2

Notice that before each row returned there is a string of text that looks as follows:

<?xml version="1.0" encoding="IBM037"?>

This information is called the XML declaration, which is kind of like a header for an XML
document. If the data has an XML declaration before it is sent to the database server, the
XML declaration is not preserved. However, for DB2 ODBC and embedded SQL applications,
implicit serialization is used by default. With implicit serialization, the DB2 database server
adds an XML declaration, with the appropriate encoding specification, to the data. For Java
and .NET applications, the DB2 database server does not add an XML declaration, but if you
retrieve the data into a DB2 XML object and use certain methods to retrieve the data from that
object, the IBM Data Server Driver for JDBC and SQLJ adds an XML declaration.

If you do not want to display the XML declaration as part of the output and just want to display
the data, you can use the XMLSERIALIZE function with the EXCLUDING XMLDECLARATION option
on the results of the XMLQUERY function to exclude the XML declaration.

Example 8-7 shows a sample XQuery statement using the XMLSERIALIZE function.

Example 8-7 Sample XQuery using FLWOR keyword “for” and XMLSERIALIZE

SELECT XMLSERIALIZE(XMLQUERY(
 'declare namespace ipo="http://www.example.com/IPO";
 for $i in $po/ipo:purchaseOrder
 return
 <itemsShipped xmlns:ipo="http://www.example.com/IPO">
 <to> {$i/shipTo/name/text()} </to>
 <items> {$i/items/item} </items>
 </itemsShipped>'
 PASSING PO as "po")
AS CLOB
VERSION '1.0'
EXCLUDING XMLDECLARATION)
FROM purchaseOrdersXML;

The query results are exactly the same but without the XML declaration information before
each row. This scenario excludes the XMLSERIALIZE function from all subsequent examples in
this chapter to make the SQL statements easier to read. It also removes the XML declaration
from all subsequent results, for the same reasons. The inclusion or exclusion of XML
158 IBM DB2 11 for z/OS Technical Overview

declaration information in your query results depends on the source from which you execute
your query and whether you use the XMLSERIALIZE function. <<STOP>>

Use of all FLWOR keywords
Now that we have seen a simple example of a FLWOR expression in XQuery, let’s build an
example that uses all the keywords. Let us read the statusXML table to return all customers
who have a status of “blacklist”. Example 8-8 shows the XQuery expression that we wrote to
accomplish the desired result.

Example 8-8 Sample XQuery using all FLWOR keywords

SELECT XMLQUERY (
'for $i1 in $st/status/statusItem
let $sts := $i1/status
where $sts = "blacklist"
order by $i1/name
return
$i1/name'
PASSING STATUS AS "st")
FROM statusXML;

Example 8-9 shows the results of this query.

Example 8-9 Results of sample XQuery using all FLWOR keywords

<name>Jason C</name>
<name>James B</name>

Note that only the names for Jason C and James B are returned, because they are the only
names with a status of “blacklist”. They show up on different rows of the result because they
reside in different documents within the database.

Be careful when using the let keyword in combination with the for keyword. Example 8-8
uses the for keyword to set up a loop through all the statusItem elements. This, it uses the
let keyword to assign the variable $sts to each single status element within the loop that is
set up with the for keyword. This variable definition refers to $i1 instead of
$st/status/statusItem. As a result, you have to read through the only documents once.

If you had used the let keyword to assign the variable $sts to each single status element by
referring to the element directly, instead of through the for loop, you code the let expression
as follows:

let $sts := $st/status/statusItem/status

This code produces an incorrect result because the where keyword operates on the $sts
variable, and the $sts variable is based on the entire element name. It does not refer to the
for loop. Therefore, the criteria specified in the where clause is not applied to the data
returned by the for loop, and you get data that you do not expect to be returned.
Chapter 8. XML 159

Use of FLWOR expression to join two tables
The next example takes the FLWOR expression capability one step further. Using the two tables
created earlier, purchaseOrdersXML and statusXML, this example writes an XQuery FLWOR
expression to find those purchase orders that were ordered by a “premier” customer. A join of
the two tables is required to produce this result. Example 8-10 shows the FLWOR expression.

Example 8-10 XQuery FLWOR expression to express a join

SELECT XMLSERIALIZE(XMLQUERY(
'declare namespace ipo="http://www.example.com/IPO";
 for $i in $po/ipo:purchaseOrder,
 $j in $status/status/statusItem
 where $j/name=$i/billTo/name and $j/status="premier"
 return $i'
PASSING T1.PO as "po", T2.status as "status")
AS CLOB VERSION '1.0' EXCLUDING XMLDECLARATION)
FROM purchaseOrdersXML T1, statusXML T2
WHERE XMLEXISTS('declare namespace ipo="http://www.example.com/IPO";
 $status/status/statusItem[status="premier"
and
 name =$po/ipo:purchaseOrder/billTo/name]'
PASSING T1.PO as "po", T2.status as "status");

Note that three of the FLWOR keywords are present in this example. The for keyword is used to
allow us to loop through all of the purchase orders (using variable $i) and through all of the
customer statuses (using variable $j). The where keyword is used to join the two tables on
name and to only show rows with a status of “premier.” The return keyword is used to return
the purchase order data specified in the variable $i.

Example 8-11 shows the results.

Example 8-11 Results of XQuery FLWOR expression to express a join

<ipo:purchaseOrder
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ipo="http://www.example.com/IPO"
orderDate="1999-12-01">
<shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>55 Eden Street</street>
 <city>San Jose</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
</shipTo>
<shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Joe Lee</name>
 <street>66 University Avenue</street>
 <city>Palo Alto</city>
 <state>CA</state>
 <postcode>CB1 1JR</postcode>
</shipTo>
<billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
160 IBM DB2 11 for z/OS Technical Overview

 <zip>95819</zip>
</billTo>
<items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays!</ipo:comment>
 <shipDate>1999-12-05</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <shipDate>2000-01-03</shipDate>
 </item>
</items>
</ipo:purchaseOrder>
DSNE610I NUMBER OF ROWS DISPLAYED IS 1

If you look at the data that was inserted into the statusXML table, Robert Smith is the only
premier customer. Therefore, the results of the query show only the purchase order that was
billed to Robert Smith.

Note that an XQuery “join” is different from an SQL join. An XQuery join is used to join nodes
between two documents. It is not intended to join multiple rows of a DB2 table. The XMLEXISTS
and XMLTABLE functions can be used for that purpose. Use an XQuery join as an extension to
the SQL syntax, not in place of the SQL join. That is why the example shows an XQuery join
on the name nodes as an XMLEXISTS function. The XQuery join produces the intended results,
but it does not eliminate those rows that do not qualify. The result is returned as empty rows.
The XMLEXISTS function eliminates the non-qualifying rows.

It is best to ensure that an XML index exists for this type of query. An XML index can be used
only with the XMLEXISTS and XMLTABLE functions; it cannot be used for the XMLQUERY function
because of the non-qualifying empty rows.

8.1.2 XQuery constructors

Constructors create XML structures within a query. DB2 9 supported only SQL/XML
constructors, such as XMLELEMENT and XMLATTRIBUTES. The XQuery language provides the
following kinds of constructors:

� Direct constructors
� Computed constructors

DB2 11 supports both direct element constructors and document node constructors. Direct
constructors use an XML-like notation to create XML structures within a query. XQuery
provides direct constructors for creating element nodes (which might include attribute nodes,
text nodes, and nested element nodes), processing instruction nodes, and comment nodes.
For example, the constructor shown in Example 8-12 creates a book element that contains an
attribute and some nested elements.

Example 8-12 Example of an XQuery constructor

<book isbn="isbn-0060229357">
 <title>Harold and the Purple Crayon</title>
Chapter 8. XML 161

 <author>
 <first>Crockett</first>
 <last>Johnson</last>
 </author>
</book>

A document node constructor constructs the root node of an XML document. It is equivalent
to the XMLDOCUMENT function but can be used in an XQuery expression.

Enclosed expressions are used in constructors to provide computed values for element and
attribute content. These expressions are evaluated and replaced by their value when the
constructor is processed. Enclosed expressions are enclosed in curly braces ({}) to
distinguish them from literal text. Enclosed expressions can be used in the following
constructors to provide computed values:

� Direct element constructors:

– An attribute value in the start tag of a direct element constructor can include an
enclosed expression.

– The content of a direct element constructor can include an enclosed expression that
computes both the content and the attributes of the constructed node.

� Document node constructor:

– An enclosed expression can be used to generate the content of the node.

The FLWOR example shown in Example 8-5 on page 157 includes two examples of using
braces to build an XQuery constructor based on a computed element or attribute value:

<to> {$i/shipTo/name/text()} </to>
<items> {$i/items/item} </items>

These two cases constructed the elements <to> and <items>. Example 8-6 on page 157
shows the results from this query, which includes the following lines:

<to>Helen ZoeJoe Lee</to>
 <items>

These two lines represent the XQuery elements constructed in the example.

8.1.3 Conditional expressions

Conditional expressions use the keywords if, then, and else to evaluate one of two
expressions based on whether the value of a test expression is true or false. DB2 11 supports
conditional expressions within an XQuery expression.

This example shows how conditional expressions work in XQuery. Example 8-13 shows a
query that produces a shipping cost for items in purchase orders. If the price of the item is
less than US $100, the shipping cost is US $5.00. Otherwise, the shipping cost is US $10.00.

Example 8-13 Sample XQuery using conditional expression

SELECT XMLQUERY(
 'declare namespace ipo="http://www.example.com/IPO";
 for $i in $po/ipo:purchaseOrder/items/item
 return (
 if (xs:decimal($i/USPrice) < 100)
 then fn:concat($i/productName, " : shipping=US$", 5)
 else fn:concat($i/productName, " : shipping=US$", 10))'
162 IBM DB2 11 for z/OS Technical Overview

 PASSING po as "po")
FROM purchaseordersXML;

Example 8-14 shows the results of the query.

Example 8-14 Results of sample XQuery using conditional expression

Lapis necklace : shipping=US$5 Sapphire Bracelet : shipping=US$10
Lapis bracelet : shipping=US$5 Sapphire Earring : shipping=US$10

8.1.4 Built-in functions

DB2 9 provided some built-in functions that you could use with your XPath queries. With the
implementation of XQuery, you can now take advantage of a fn:avg built-in function to return
the average of the values in a sequence.

This example uses the fn:avg function to show the average US price for items in a purchase
order. Example 8-15 shows a sample XQuery statement to calculate this average.

Example 8-15 Sample XQuery using fn:avg built-in function

SELECT XMLQUERY(
 'declare namespace ipo="http://www.example.com/IPO";
 for $i in $po/ipo:purchaseOrder/items
 return (fn:avg($i/item/USPrice))'
 PASSING po as "po")
FROM purchaseordersXML;

Because there are two purchase orders in the purchaseordersXML table, with two items in
each purchase order, when the query is run, it produces two rows with one value in each row.

139.47
138.97

The US prices for the two items in the first purchase order are $99.95 and $178.99, and the
US prices for the two items in the second purchase order are $89.95 and $187.99. If you do
the math, you can see that the function is producing the average value for each purchase
order.

8.1.5 XQuery prolog

The prolog is series of declarations that define the processing environment for a query. Each
declaration in the prolog is followed by a semicolon (;). The prolog is an optional part of the
query; a valid query can consist of a query body with no prolog.

The prolog can contain the following different types of declarations:

� Boundary space declaration
� Copy namespaces declaration
� Namespace declarations
� Default namespace declaration

The namespace declarations and default namespace declaration are available in the XPath
query language. The boundary space declaration and copy namespaces declaration are
added with the XQuery support.
Chapter 8. XML 163

Boundary space declaration
The boundary space declaration controls whether whitespace between the tags is preserved.
Example 8-16 shows the syntax for the declaration.

Example 8-16 Syntax for boundary-space declaration

>>----declare--boundary-space--+--strip-----+--;----><
 '--preserve--'

The boundary-space declaration can have the following values:

strip Specifies that boundary whitespace is removed when elements are
constructed.

preserve Specifies that boundary whitespace is preserved when elements are
constructed.

The default behavior is to strip the boundary whitespace.

Copy namespaces declaration
XML namespaces are used for providing uniquely named elements and attributes in an XML
document. They are defined in a W3C recommendation. An XML instance can contain
element or attribute names from more than one XML vocabulary, which is a collection of
element and attribute names with definitions of their meanings and their structural
relationships and constraints.

Because there can potentially be some ambiguity between identically named elements or
attributes, each vocabulary can be given a namespace, and the namespace can be
referenced in the XML expression to resolve any ambiguity. A namespace name is a uniform
resource identifier (URI).

XML lets you create your own vocabulary or tags that are meaningful. After you have created
the vocabulary using XSD, you can associate it with an XML instance using an xsi
namespace. Consider the following example of a namespace in XML:

<item xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" partNum="833-AA">

Although a namespace is associated with an XML document, you might or might not want to
display the namespace information when you display data from the document.

The copy namespaces declaration controls how the namespace bindings are assigned when
an existing element node is copied by an element constructor or document node constructor.
Example 8-17 shows the syntax for a copy namespaces declaration.

Example 8-17 Syntax for copy namespaces declaration

>>----declare--copy-namespaces--+--preserve-----+-,--inherit--;----><
 '--no-preserve--'

The copy namespaces declaration can have the following values:

preserve Specifies that all in-scope namespaces of the original element are
retained in the new copy.

no-preserve Specifies that unreferenced in-scope namespaces of the original
element are not retained in the new copy.

The inherit option specifies that the copied node inherits in-scope namespaces from the
constructed node.
164 IBM DB2 11 for z/OS Technical Overview

Use of boundary space and copy namespaces declarations
These two new declarations introduced with the XQuery support can make a considerable
difference in how the result of your queries are displayed, as shown in the following examples.

The query in Example 8-18 specifies that you want to reserve and whitespace between the
tags and that all in-scope namespaces of the original element are retained in the new copy
that is created by the XQuery expression. This query shows that some whitespace in the
definition of the <product> element.

Example 8-18 Declaration example preserving boundary space and copy namespaces

SELECT XMLSERIALIZE(
 XMLQUERY (
'declare namespace ipo="http://www.example.com/IPO";
declare boundary-space preserve;
declare namespace ipo2="http://www.example.com/IPO2";
declare copy-namespaces preserve, inherit;
<order_list> {
for $i in $po/ipo:purchaseOrder/items/item
return
<product> {$i/productName, $i/USPrice} </product>}
</order_list>'
PASSING po as "po")
AS CLOB
VERSION '1.0'
EXCLUDING XMLDECLARATION)
FROM purchaseordersXML
;

Example 8-19 shows the results of this query. Note the space between the elements
<order_list> and <product> and between <product> and <productName>.

Example 8-19 Results of query to preserve boundary space and copy namespaces

<order_list> <product> <productName
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ipo="http://www.example.com/IPO">Lapis necklace</productName><USPrice
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ipo="http://www.example.com/IPO">99.95</USPrice> </product><product>
<productName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ipo="http://www.example.com/IPO">Sapphire Bracelet</productName><USPrice
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ipo="http://www.example.com/IPO">178.99</USPrice> </product>
</order_list>
<order_list> <product> <productName
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ipo="http://www.example.com/IPO">Lapis bracelet</productName><USPrice
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ipo="http://www.example.com/IPO">89.95</USPrice> </product><product>
<productName xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ipo="http://www.example.com/IPO">Sapphire Earring</productName><USPrice
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ipo="http://www.example.com/IPO">187.99</USPrice> </product>
</order_list>
DSNE610I NUMBER OF ROWS DISPLAYED IS 2
Chapter 8. XML 165

The next example runs the same query with the declarations changed. It strips out any
whitespace and does not preserve any copied namespaces. Example 8-20 shows this query.

Example 8-20 Declaration example not preserving boundary space and copy namespaces

SELECT XMLSERIALIZE(
 XMLQUERY (
'declare namespace ipo="http://www.example.com/IPO";
declare boundary-space strip;
declare namespace ipo2="http://www.example.com/IPO2";
declare copy-namespaces no-preserve, inherit;
<order_list> {
for $i in $po/ipo:purchaseOrder/items/item
return
<product> {$i/productName, $i/USPrice} </product>}
</order_list>'
PASSING po as "po")
AS CLOB
VERSION '1.0'
EXCLUDING XMLDECLARATION)
FROM purchaseordersXML
;

Example 8-21 shows the results.

Example 8-21 Results of query to not preserve boundary space and copy namespaces

<order_list><product><productName>Lapis
necklace</productName><USPrice>99.95</USPrice></product><product><productName>Sapp
hire Bracelet</productName><USPrice>178.99</USPrice></product></order_list>
<order_list><product><productName>Lapis
bracelet</productName><USPrice>89.95</USPrice></product><product><productName>Sapp
hire Earring</productName><USPrice>187.99</USPrice></product></order_list>
DSNE610I NUMBER OF ROWS DISPLAYED IS 2

Notice that there is no space between the element names and that the namespaces are not
listed. As a result, the output is much smaller than in the case where the boundary spaces
and the copy namespaces are preserved.

8.2 XML performance enhancements in DB2 10 and DB2 11

There are a number of performance enhancements to XML processing in DB2 11 that were
also retrofitted to DB2 10. This section describes the following XML performance
enhancements:

� Eliminate hotspots during XML insert
� Validate binary XML
� Avoid revalidation during LOAD
� Partial revalidation
� XMLTABLE performance improvements
166 IBM DB2 11 for z/OS Technical Overview

8.2.1 Eliminate hotspots during XML insert

A performance issue with XML documents in DB2 10 might occur when a document is
inserted. Because DB2 10 generates DOCID values in sequential order through an implicitly
created sequence object, and the indexes on the XML DOCID and NODEID are non-partitioned
indexes (NPIs), concurrent inserts of XML documents into the same table causes hotspots in
these NPIs. As the number of threads increases, the time spent waiting for a page latch
increases.

DB2 11 allows randomization of the DOCIDs, which eliminates the hotspots in both indexes.
To enable randomization of the DOCIDs, set the RANDOMIZE XML DOCID system parameter on
installation panel DSNTIP8 to YES. This change affects only newly created XML columns; it has
no impact on existing XML columns.

There is a slight regression in the performance of sequential prefetch due to the loss of index
look-aside capabilities.

This feature is also retrofitted to DB2 10 through APARs PM31486, PM31487, and PM44216.

8.2.2 Validate binary XML

When DB2 10 validates binary XML, DB2 needs to serialize the binary XML into string XML,
which defeats the purpose of using binary XML. DB2 11 now validates binary XML directly,
without the need to serialize it.

DB2 11 can now perform an INSERT of an XML column with type modifier using binary XML.
This results in a 30-40% CPU reduction compared to DB2 10, and a 15-18% CPU reduction
versus the INSERT performance of string XML.

The LOAD utility also benefits from this enhancement, with a 41% CPU reduction compared to
DB2 10, and an 18% improvement versus string XML.

This performance enhancement requires z/OS V1R13 with PTF UA63422 or z/OS V1R12
with PTF UA65591.

8.2.3 Avoid revalidation during LOAD

XML schema validation is the process of determining whether the structure, content, and data
types of an XML document are valid according to an XML schema. In addition, XML schema
validation strips ignorable whitespace from the input document.

Consider the case where you have two tables that contain the same XML column with the
same schema. You want to unload the data from one table and load it into another table.
Example 8-22 shows what the steps to perform this task might look like.

Example 8-22 Example of avoiding XML schema revalidation

1. CREATE TABLE T1
(ID INTEGER,
XMLCOL XML(XMLSCHEMA ID SYSXSR.PO1));

2. CREATE TABLE T2
(ID INTEGER,
XMLCOL XML(XMLSCHEMA ID SYSXSR.PO1));

3. Populate table T1
Chapter 8. XML 167

4. UNLOAD from T1 using binary XML

5. LOAD into T2 using binary XML

In the example case, DB2 11 provides savings during step 5 by avoiding XML validation
because the data was already validated according to the same schema when it was initially
loaded or inserted into table T1. Tests to avoid this revalidation have shown elapsed time
savings between 29 and 43% and CPU savings between 61 and 76%.

8.2.4 Partial revalidation

The initial implementation of XML required that, when an XML document was modified, the
whole document had to be revalidated. This could be costly if it is a large document.

DB2 11 provides the capability to revalidate only the changed part of a document. Consider
the sequence of steps shown in Example 8-23.

Example 8-23 UPDATE of an XML document with partial revalidation

1. CREATE TABLE T1 (ORDER XML(XMLSCHEMA ID sysxsr.PO1));

2. INSERT INTO T1 (ORDER) VALUES (...);

3. UPDATE T1 SET ORDER =
XMLModify(‘replace value of node //item[1]/shipDate with “2012-05-25”’);

In this example, only <shipDate> is revalidated. The performance benefit depends on the size
of the document and the size of the updated portion. For documents that are 10 MB in size,
we have seen up to a 92% CPU reduction. For smaller documents that are only 10 KB in size,
we have seen up to a 60% CPU reduction.

8.2.5 XMLTABLE performance improvements

The following XMLTABLE performance improvements are available in both DB2 10 and DB2 11:

� Remove unreferenced column definitions, which resulted in a 47% CPU reduction on an
XMLTABLE expression with 30 columns

� Merge common column path expressions, which resulted in up to a 74% reduction on
XPath storage consumption

� Storage reuse for output XML columns, which resolves an SQLCODE -904 issue and is
available with APAR PM69176.

8.3 XQuery FLWOR expressions performance enhancements

Although XQuery support is also provided in DB2 10 with some maintenance applied, there
are additional XQuery performance enhancements that are available only in DB2 that are
related to FLWOR expression. These enhancements are described in this section.

Just as there is the concept of predicate push down when evaluating SQL predicates, there is
the same concept with the XQuery language. In the case of XQuery, the predicates are
pushed down from an XQuery expression to an XPath expression.
168 IBM DB2 11 for z/OS Technical Overview

Consider the following FLWOR expression:

for $i in /order/items/item
where $i/price > 100
return $i/desc

DB2 pushes the WHERE predicate into XPath as follows:

for $i in /order/items/item[price > 100]
return $i/desc

Another performance improvement is that DB2 can translate a simple FLWOR expression to
XPath. For example, the following FLWOR expression:

for $i in /order/shipTo return $i

Can be rewritten into an XPath expression as follows:

/order/shipTo

These enhancements can provide up to a 60% CPU reduction for qualified queries.

8.4 XMLTABLE performance enhancements in DB2 11

The following XMLTABLE enhancements are available only in DB2 11:

� Date/Time predicate pushdown
� Optimize index key range for varchar predicates
� Pushdown of column casting into XPath

8.4.1 Date/Time predicate pushdown

You can code some XML queries that require you to evaluate date and time predicates. An
example of such a query using the XMLTABLE function is as follows:

SELECT X.* FROM T1,
 XMLTABLE(‘//item’ passing T1.order
 COLUMN partNO varchar(8) path ‘@partNo’,
 shipDate Date path ‘shipDate’) X
 Where x.shipDate = ‘2011-05-23’;

In this particular example, the date predicate is outside of the XMLTABLE function. Thus, even if
there is an XML index, it is not used.

DB2 11 pushes the date predicate into XPath, enabling the use of an existing XML index. The
translated query looks as follows:

SELECT * FROM T1,
 XMLTABLE(‘//item[shipDate=$d]’ passing T1.order,
 cast(‘2011-05-23’ as Date) as “d”
 COLUMN partNO varchar(8) path ‘@partNo’,
 shipDate Date path ‘shipDate’) X;

Note: The date predicate is now within the XMLTABLE function. An index can now be used,
which provides magnitudes of performance improvement.
Chapter 8. XML 169

8.4.2 Optimize index key range for varchar predicates

When you use the XMLTABLE function to return the results of an XQuery expression as a table,
and you define a column in that XMLTABLE function as VARCHAR, prior to DB2 11 there was no
way to specify an upper limit to the values that could qualify for the query. Consider the
following example query:

SELECT X.* FROM T1,
 XMLTABLE(‘//item’ passing T1.order
 COLUMN partNO varchar(6) path ‘@partNo’,
 shipDate Date path ‘shipDate’) X
 Where x.partNo = ‘872-AA’;

Evaluation of this query was challenging because there was no upper end to the index values,
because the results were VARCHAR.

DB2 11 improves the performance of this query by adding an extra upper bound predicate to
reduce the index key range. The query is rewritten as follows:

SELECT * FROM T1,
 XMLTABLE(‘//item[left(@partNo,6)=$d]’
 passing T1.order, ‘872-AA’ as “d”
 COLUMN partNO char(8) path ‘@partNo’,
 shipDate Date path ‘shipDate’) X
 where XMLEXISTS (‘//item[@partNo>=$d and
 @partNo <= $u]’ passing
 T1.order, ‘872-AA’ as “d”, ‘872-AA’||X’FF’ as “u”);

Tests resulted in orders of magnitude improvement in CPU time and Getpage counts for
affected queries.

8.4.3 Pushdown of column casting into XPath

When the XMLTABLE function’s output columns are of any SQL type, DB2 used to evaluate the
column XPath first and generate an intermediate XML node sequence, then cast the
intermediate result to the SQL data type. DB2 11 now combines these two steps into one.

This enhancement provides up to a 40% CPU reduction and a 20% savings in storage for
some XMLTABLE queries with many output columns.
170 IBM DB2 11 for z/OS Technical Overview

Chapter 9. Connectivity and administration
routines

DB2 11 sees further improvements of universal drivers for accessing data on any local or
remote server. In addition, DB2 11 for z/OS provides a number of enhancements to improve
the availability and performance of distributed applications.

This chapter describes these topics:

� Client information enhancements
� Cancel thread and cancel SQL statement improvements
� Continuous block fetching
� Support for global variables
� Local stored procedure execution improvement
� Multi-threaded Java stored procedure environment
� ADMIN_COMMAND_MVS stored procedure
� Drivers, clients, and connectivity requirements

9

© Copyright IBM Corp. 2013. All rights reserved. 171

9.1 Client information enhancements

The DB2 client information fields are available on each distributed connection to a DB2 for
z/OS database server. These fields are also available in other members of the DB2 family of
databases. They enable a distributed application to provide additional information to DB2 that
can be used to classify the workload within WLM, or to filter accounting reports, for example.

Up to DB2 10 for z/OS, client information lengths are arbitrary and are restrictive compared to
other platforms of the DB2 product family.

Changes introduced in DB2 11 help to address the following needs:

� To be able to use longer fields to store business meaningful information in the client
application registers

� To be able to override the current DRDA correlation token with a business value to
correlate application work across the enterprise

At a glance, the improvements introduced by DB2 11 for z/OS in this area can be summarized
as follows:

� Expansion of the length of some Client information fields
� Introduction of a new Client information field: Client Correlation Token
� Introduction of a new built-in session global variable: SYSIBM.CLIENT_IPADDR

These changes, how to take advantage of them, and their practical considerations are
described in the following sections.

9.1.1 Expansion of the length of some Client information fields

DB2 11 enhances Client information in DB2 for z/OS by expanding the lengths of these fields:

� Client User ID
� Client Application Name
� Client Workstation Name
� Client Accounting Information

Table 9-1 list the Client information field length DB2 11 for z/OS in contrast with the lengths of
these fields in DB2 10.

Table 9-1 Client information fields length changes with DB2 11 for z/OS

The longer client information length provide better granularity in the exploitation of this
information, and compatibility with other databases member of the DB2 family of products.
The longer client info strings are exploited in:

� WLM enclave classification
� DB2 supplied SYSPROC.WLM_SET_CLIENT_INFO stored procedure

Field name Max length in DB2 10 Max length in DB2 11

Client User ID 16 bytes 128 bytes

Client Application Name 32 bytes 255 bytes

Client Accounting Information 200 bytes 255 bytes

Client Workstation Name 18 bytes 255 bytes

Client Correlation Token N/A 255 bytes
172 IBM DB2 11 for z/OS Technical Overview

� RRSAF DSNRLI SET_CLIENT_ID function
� Rollup accounting
� Profile Monitoring for remote threads and connections
� Resource Limit Facility (RLF)
� Client information special registers
� DISPLAY THREAD command output
� Various trace records, such as IFCIDs 172, 196, 313, and 316
� Various messages that present thread-info

The 9.1.4, “Using the client information fields” on page 178 provides examples and guidelines
to exploit the longer client information fields.

9.1.2 Introduction the new client information field Client Correlation Token

DB2 11 introduces a the client correlation token client information field, which is an unique
token that allows the application to correlate application work across the distributed
transaction. The default value of the client correlation token is the DRDA correlation token,
The data type is VARCHAR(255).

Example 9-1 shows the results of the -DIS THD(*) DETAIL command. Note the DSNV442I
message.

Example 9-1 -DIS THD(*) DETAIL

DSNV401I -DB1A DISPLAY THREAD REPORT FOLLOWS -
DSNV402I -DB1A ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
SERVER RA * 6 db2jcc_appli DB2R1 DISTSERV 0131 395
 V437-WORKSTATION=9.55.137.33
 USERID=DB2R1
 APPLICATION NAME=db2jcc_application
 V441-ACCOUNTING=JCC036609.55.137.33
 V442-CRTKN=::9.55.137.33.52646.CBBF468B1B73
 V482-WLM-INFO=DDFBAT:1:3:1
 V445-G9378921.CDA6.CBBF468B1B73=395 ACCESSING DATA FOR
 (1)::9.55.137.33
 V447--INDEX SESSID A ST TIME
 V448--(1) 38420:52646 W R2 1321311013868

The DB2 DSNV442I message contains detail output from the DISPLAY THREAD command. It
provides details about the correlation token after the V442-CRTKN keyword.

The CURRENT CLIENT_CORR_TOKEN special register
The CURRENT CLIENT_CORR_TOKEN special register contains the value of the client correlation
token from the client information that is specified for the connection. The data type is
VARCHAR(255).

Example 9-2 shows a simple query example that can be used to retrieve the value of this
special register using SQL.

Example 9-2 Retrieve the CURRENT CLIENT_CORR_TOKEN value using SQL

SELECT CURRENT CLIENT_CORR_TOKEN
 FROM SYSIBM.SYSDUMMY1;
Chapter 9. Connectivity and administration routines 173

Example 9-3 shows the output of the execution of this query in this environment.

Example 9-3 Value of CURRENT CLIENT_CORR_TOKEN

::9.55.137.33.54132.CBBF794F9C68

The correlation token is made up of three components separated by periods. Its structure is
shown in Example 9-4.

Example 9-4 Client correlation token components

ip-address.port-address.unique-id

The the correlation token includes the following components:

ip-address The IP address of the originating requester, which is 3 to 39 characters
in length

port-address The port address, which is 1 to 8 characters in length
unique-id An unique logical unit of work identifier, which is 12 characters in

length

You can change the value of this special register to a more meaningful value, for example by
using one of the following application programming interfaces:

� SQLE_CLIENT_INFO_PROGRAMID (sqleseti)

� java.sql.Connection.setClientInfo (JDBC)

� The RRS DSNRLI SIGNON, AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID function

Example 9-5 shows how to extract and how to override this special register in a Java
program.

Example 9-5 Java and CURRENT CLIENT_CORR_TOKEN

import com.ibm.db2.jcc.DB2Connection;
import java.sql.*;

public class DB211NewDriverCorrToken {

 public static Connection con = null;
 public static CallableStatement cstmt;
 public static ResultSet results;
 public static boolean debug = true;

 public static void main(String args[]) throws Exception {
 Statement stmt; ResultSet rs; String corr_token;
 String url = "jdbc:db2://redbook8:38420/DB1A" +
 ":user=db2r1;password=******;";
 try {
 Class.forName("com.ibm.db2.jcc.DB2Driver");
 } catch (java.lang.ClassNotFoundException e) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(e.getMessage());
 }
 con = DriverManager.getConnection(url);
 DB2Connection db2con = (DB2Connection) con;
 con.setAutoCommit(false);
 // Extract original Correlation Token
 stmt = con.createStatement();
 rs = stmt.executeQuery("SELECT CURRENT CLIENT_CORR_TOKEN FROM SYSIBM.SYSDUMMY1;");
 rs.next(); corr_token = rs.getString(1);
174 IBM DB2 11 for z/OS Technical Overview

 System.out.println("CORR TOKEN = " + corr_token);
 rs.close(); stmt.close();
 // Override original Correlation Token
 db2con.setClientInfo("ClientCorrelationToken","BRXLS_APPCRIS");
 stmt = con.createStatement();
 rs = stmt.executeQuery("SELECT CURRENT CLIENT_CORR_TOKEN FROM SYSIBM.SYSDUMMY1;");
 rs.next();
 corr_token = rs.getString(1);
 System.out.println("CORR TOKEN = " + corr_token);
 rs.close(); stmt.close();
 }
}

This program connect to DB2, selects the CURRENT CLIENT_CORR_TOKEN value in a string
variable, overrides this information, and prints the new value. Example 9-6 shows the
execution results.

Example 9-6 Java program output, overriding the correlation token

CORR TOKEN = ::9.55.137.134.62461.CBC82DBC97F5
CORR TOKEN = BRXLS_APPCRIS

Example 9-7 shows how the -DIS THD(*) DETAIL command provides the correlation token
information in DSNV442I message.

Example 9-7 -DIS THD(*) DETAIL and the client correlation token value

NAME ST A REQ ID AUTHID PLAN ASID TOKEN
SERVER RA * 8 db2jcc_appli DB2R1 DISTSERV 0133 139
 V437-WORKSTATION=192.168.150.1
 USERID=db2r1
 APPLICATION NAME=db2jcc_application
 V441-ACCOUNTING=JCC04170192.168.150.1
 V442-CRTKN=BRXLS_APPCRIS
 V482-WLM-INFO=DDFBAT:1:3:1
 V445-G9378986.F843.CBC840370D33=139 ACCESSING DATA FOR
 (1)::9.55.137.134
 V447--INDEX SESSID A ST TIME
 V448--(1) 38420:63555 W R2 1322014211550

In DB2 11, you can override the client correlation token. This option allows you to use this
register for application purposes. You can, for example, feedback a program with different
data depending on the value of this register.

As an example, consider the simple table created and populated with the information shown
in Example 9-8.

Example 9-8 DDL and Insert for example table

CREATE TABLE COD_TAB (BUS_COD INTEGER, CORR_ID VARCHAR(255));
INSERT INTO COD_TAB (BUS_COD, CORR_ID) VALUES (1000,'BRXLS_APPCRIS');
INSERT INTO COD_TAB (BUS_COD, CORR_ID) VALUES (2000,'ROME_APPCRIS');
INSERT INTO COD_TAB (BUS_COD, CORR_ID) VALUES (3000,'MILANO_APPCRIS');
INSERT INTO COD_TAB (BUS_COD, CORR_ID) VALUES (4000,'PARIS_APPCRIS');
INSERT INTO COD_TAB (BUS_COD, CORR_ID) VALUES (5000,'SJOSE_APPCRIS');
INSERT INTO COD_TAB (BUS_COD, CORR_ID) VALUES (5000,'MADRID_APPCRIS');
Chapter 9. Connectivity and administration routines 175

Example 9-9 shows the contents of the table after the execution of the SQL.

Example 9-9 Contents of example table

---------+---------+---------+---------+---------+---------+---------+
SELECT * FROM COD_TAB;
---------+---------+---------+---------+---------+---------+---------+
 BUS_COD CORR_ID
---------+---------+---------+---------+---------+---------+---------+
 1000 BRXLS_APPCRIS
 2000 ROME_APPCRIS
 3000 MILANO_APPCRIS
 4000 PARIS_APPCRIS
 5000 SJOSE_APPCRIS
 5000 MADRID_APPCRIS
DSNE610I NUMBER OF ROWS DISPLAYED IS 6
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+

In this table, the BUS_COD column represents any kind of business information, such as a
business code. The CORR_ID column contains the information to be matched with the value of
the correlation token. Example 9-10 shows a SQL example where the BUS_COD value is
returned based on the information in the special register CURRENT CLIENT_CORR_TOKEN.

Example 9-10 Using the CURRENT CLIENT_CORR_TOKEN in SQL

SELECT BUS_COD
 FROM COD_TAB
 WHERE CORR_ID = CURRENT CLIENT_CORR_TOKEN

Example 9-11 is a Java implementation of this technique. When invoked, this program
receives a certain value as input parameter. This value is used in the program to set the client
correlation token information. The value of the CURRENT CLIENT_CORR_TOKEN in the exploited in
the embedded SQL.

Example 9-11 Java and SQL exploiting CURRENT CLIENT_CORR_TOKEN

import com.ibm.db2.jcc.DB2Connection;
import java.sql.*;

public class DB211NewDriverCorrToken {

 public static Connection con = null;
 public static CallableStatement cstmt;
 public static ResultSet results;
 public static boolean debug = true;

 public static void main(String args[]) throws Exception {
 System.out.println("Input correlation token = " + args[0]);
 Statement stmt;
 ResultSet rs;
 String corr_token;
 String url = "jdbc:db2://redbook8:38420/DB1A"
 + ":user=db2r1;password=******;";
 try {
 Class.forName("com.ibm.db2.jcc.DB2Driver");
 } catch (java.lang.ClassNotFoundException e) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(e.getMessage());
 }
176 IBM DB2 11 for z/OS Technical Overview

 con = DriverManager.getConnection(url);
 DB2Connection db2con = (DB2Connection) con;
 con.setAutoCommit(false);
 // Override original Correlation Token
 db2con.setClientInfo("ClientCorrelationToken", args[0]);
 stmt = con.createStatement();
 rs = stmt.executeQuery("SELECT CURRENT CLIENT_CORR_TOKEN FROM SYSIBM.SYSDUMMY1;");
 rs.next();
 corr_token = rs.getString(1);
 System.out.println("CORR TOKEN = " + corr_token);
 rs.close();
 stmt.close();
 // Use new Correlation Token value
 db2con.setClientInfo("ClientCorrelationToken", args[0]);
 stmt = con.createStatement();
 rs = stmt.executeQuery("SELECT BUS_COD FROM COD_TAB\n"
 + " WHERE CORR_ID = CURRENT CLIENT_CORR_TOKEN;");
 rs.next();
 corr_token = rs.getString(1);
 System.out.println("BUS CODE = " + corr_token);
 rs.close();
 stmt.close();

 }
}

These tests executed the program by passing the BRXLS_APPCRIS value as the parameter.
Example 9-12 shows the execution output when running this program.

Example 9-12 Java application execution output

Input correlation token = BRXLS_APPCRIS
CORR TOKEN = BRXLS_APPCRIS
BUS CODE = 1000

This client information field cannot be used for classifying DDF work within WLM.

9.1.3 Introduction of a new built-in session global variable

DB2 11 provides a new built-in session global variable named SYSIBM.CLIENT_IPADDR. This
global variable contains the value of the client IP address for the connection, as follows:

� For remote client connections, the value is the host IP address the application that is used
to establish the connection.

� For local host applications, the value is NULL.

� For remote host applications, the value is the IP address that is associated with the DB2
subsystem used to establish the connection.

The data type is CHAR(39). SYSIBM.CLIENT_IPADDR displays the TCP/IP IPv6 colon
hexadecimal format. For example:

IPv6 : 1111:2222:3333:4444:5555:6666:7777:8888
IPv4 : (9.30.115.135) mapped as IPv6 : 0000:0000:0000:FFFF:9:30:115:135

DB2 obtains TCP/IP IPv6 address value from network, the client does not provide it or set it.
DB2 sets this value only if client is using TCP/IP or SSL protocol.
Chapter 9. Connectivity and administration routines 177

SYSIBM.CLIENT_IPADDR can be used for classifying DDF work with WLM using the Client IP
Address (CIP) WLM workload qualifier. For DDF workload type, the CIP is the source client
IPv6 address associated with the DDF server thread. The maximum length is 39 bytes.

Example 9-13 shows how you can query the DB2 SYSIBM.SYSVARIABLES table to get details
about CLIENT_IPADDR.

Example 9-13 Query on SYSIBM.SYSVARIABLES

---------+---------+---------+---------+---------+---------+---------+
SELECT
CAST(SCHEMA AS CHAR(10)) AS SCHEMA,
CAST(NAME AS CHAR(20)) AS NAME,
CAST(TYPENAME AS CHAR(10)) AS TYPE , LENGTH , DEFAULT
FROM SYSIBM.SYSVARIABLES
WHERE NAME = 'CLIENT_IPADDR' WITH UR;
---------+---------+---------+---------+---------+---------+---------+
SCHEMA NAME TYPE LENGTH DEFAULT
---------+---------+---------+---------+---------+---------+---------+
SYSIBM CLIENT_IPADDR CHAR 39 N
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+

9.1.4 Using the client information fields

This section describes how the changes in client information fields are used.

DB2 messages
The following DB2 messages are updated in DB2 11 to take advantage of longer field lengths:

DSNB260I A long-running reader has reached the maximum permitted time
without issuing either a COMMIT or ROLLBACK statement.

DSNI031I Lock escalation has occurred for the specified object.

DSNR048I This message is produced periodically during the backout process of
an in-abort unit of recovery.

DSNR035I This message indicates that during checkpoint processing, DB2
encountered an uncommitted unit of recovery (UR) that has an inflight
or indoubt status.

DSNJ031I A UR has reached the threshold number of log records that were
written without a commit or rollback operation.

DSNT318I A plan cannot get an internal resource lock manager (IRLM) lock
because the resource is held by a P-lock in the data sharing group,
and the maximum amount of time to wait for the locked resource was
exceeded.

DSNT375I A plan has been denied an IRLM lock because of a detected deadlock.

DSNT376I A plan has been denied an IRLM lock because of a timeout.

DSNT377I A plan cannot gain an IRLM lock because a required resource is
currently undergoing recovery.

Note: The value of SYSIBM.CLIENT_IPADDR is NULL if the client did not connect to TCP/IP or
SSL protocol.
178 IBM DB2 11 for z/OS Technical Overview

DSNT378I A plan cannot get an IRLM lock because the resource is held by a
retained lock on behalf of another member in the data sharing group,
and the amount of time to wait for the locked resource was exceeded.

Accounting with OMPE1

The START TRACE command starts DB2 traces. You can limit the collection of trace data to
particular applications or users and to limit the data collected to particular traces and trace
events. You can use trace filters to exclude the collection of trace data from specific contexts
and to exclude the collection of specific traces and trace events. The following types of trace
filters are available:

� USERID or XUSERID

Specifies the user ID. Use USERID to constrain the trace to the specified user IDs or
XUSERID to exclude the specified user IDs. You can specify multiple values and wildcard
values. The value can be up to 16 characters.

� APPNAME or XAPPNAME

Specifies the application name. Use APPNAME to constrain the trace to the specified
applications or XAPPNAME to exclude the specified applications. You can specify multiple
values and wildcard values.

� WRKSTN or XWRKSTN

Specifies the workstation name. Use WRKSTN to constrain the trace to the specified
workstations or XWRKSTN to exclude the specified workstations. You can specify multiple
values and wildcard values.

Example 9-14 shows an OMPE JCL example as used in this environment for the creation of
the reports exposed in this section.

Example 9-14 OMPE command JCL example

//PE EXEC PGM=FPECMAIN
//STEPLIB DD DISP=SHR,DSN=OMPE.V520.D130306.V11DRP5.TKANMOD
//INPUTDD DD DISP=SHR,DSN=SMFDATA.DB2RECS.G4829V00
//JOBSUMDD DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//ACRPTDD DD SYSOUT=*
//UTTRCDD1 DD SYSOUT=*
//SYSIN DD *
 ACCOUNTING
 REPORT
 LAYOUT(LONG)
 INCLUDE(SUBSYSTEM(DB1A))
 TRACE
 LAYOUT(LONG)
 INCLUDE(SUBSYSTEM(DB1A))
EXEC
/*

1 IBM Tivoli® OMEGAMON® XE for DB2 Performance Expert on z/OS

Note: The START TRACE command filtering parameters, USERID and XUSERID, APPNAME and
XAPPNAME, and WRKSTN and XWRKSTN are not be enhanced to support the new longer lengths
for the client information fields.
Chapter 9. Connectivity and administration routines 179

Example 9-15 shows part of a OMPE Accounting Trace Long report. The report was created
using records produced by an application using a supported version of JDBC driver. Being
the driver 10.1 fix pack 0 if it is supported by DB2 11. However, this driver cannot use the
longer client information fields.

Example 9-15 OMPE Accounting Trace Long - JDBC driver 10.1 fix pack 0

1 LOCATION: DB1A OMEGAMON XE FOR DB2 PERFORMANCE EXPERT (V5R2M0) PAGE: 1-159
 GROUP: N/P ACCOUNTING TRACE - LONG REQUESTED FROM: NOT SPECIFIED
 MEMBER: N/P TO: NOT SPECIFIED
 SUBSYSTEM: DB1A ACTUAL FROM: 08/01/13 20:56:51.31
 DB2 VERSION: V11

 ---- IDENTIFICATION --
 ACCT TSTAMP: 08/01/13 22:38:35.36 PLANNAME: DB211Jav WLM SCL: DDFBAT CICS NET: N/A
 BEGIN TIME : 08/01/13 22:38:13.08 PROD TYP: JDBC DRIVER CICS LUN: N/A
 END TIME : 08/01/13 22:38:35.36 PROD VER: V4 R13M0 LUW NET: G9378921 CICS INS: N/A
 REQUESTER : ::9.55.137.33 CORRNAME: db2jcc_a LUW LUN: D8DE
 MAINPACK : DB211Jav CORRNMBR: ppli LUW INS: CBBFAC8093E3 ENDUSER : ClientUser_01234
 PRIMAUTH : DB2R1 CONNTYPE: DRDA LUW SEQ: 2 TRANSACT: DB211JavaNewDriver_0123456789012
 ORIGAUTH : DB2R1 CONNECT : SERVER WSNAME : WorkstationName_01

Example 9-16 show a report that belongs to the same application but running with the DB2
10.5 fix pack 2 of the driver. In this case, the application is able to exploit the longer fields. In
these reports, note the ENDUSER, TRANSACT, and WSNAME fields differences.

Example 9-16 OMPE Accounting Trace Long - JDBC driver 10.5 fix pack 2

1 LOCATION: DB1A OMEGAMON XE FOR DB2 PERFORMANCE EXPERT (V5R2M0) PAGE: 1-148
 GROUP: N/P ACCOUNTING TRACE - LONG REQUESTED FROM: NOT SPECIFIED
 MEMBER: N/P TO: NOT SPECIFIED
 SUBSYSTEM: DB1A ACTUAL FROM: 08/01/13 20:56:51.31
 DB2 VERSION: V11

 ---- IDENTIFICATION --
 ACCT TSTAMP: 08/01/13 22:36:37.38 PLANNAME: DB211Jav WLM SCL: DDFBAT CICS NET: N/A
 BEGIN TIME : 08/01/13 22:36:15.07 PROD TYP: JDBC DRIVER CICS LUN: N/A
 END TIME : 08/01/13 22:36:37.38 PROD VER: V4 R17M0 LUW NET: G9378921 CICS INS: N/A
 REQUESTER : ::9.55.137.33 CORRNAME: db2jcc_a LUW LUN: D8D9
 MAINPACK : DB211Jav CORRNMBR: ppli LUW INS: CBBFAC100F80 ENDUSER : ClientUser_012#1
 PRIMAUTH : DB2R1 CONNTYPE: DRDA LUW SEQ: 2 TRANSACT: DB211JavaNewDriver_01234567890#1
 ORIGAUTH : DB2R1 CONNECT : SERVER WSNAME : WorkstationName_#1

Example 9-17 shows the JDBC driver correlation section as produced with the SMF records
created by the application using the old Java driver.

Example 9-17 JDBC driver correlation: Old Java driver

---- INITIAL DB2 COMMON SERVER OR UNIVERSAL JDBC DRIVER CORRELATION --
 PRODUCT ID : JDBC DRIVER
 PRODUCT VERSION: V4 R13M0
 CLIENT PLATFORM: WorkstationName_01
 CLIENT APPLNAME: DB211JavaNewDriver_0
 CLIENT AUTHID : ClientUs
 DDCS ACC.SUFFIX: ClientAccountingInformation_01234567890123456789012345678901234567890123456789012345678901234567890123456789012345
 67890123456789012345678901234567890123456789012345678901234567890123456789012345678901

Example 9-18 shows the same section of the report for the records created using the new
Java driver. There is no difference in both cases.

Example 9-18 JDBC driver correlation: New Java driver

---- INITIAL DB2 COMMON SERVER OR UNIVERSAL JDBC DRIVER CORRELATION --
 PRODUCT ID : JDBC DRIVER
 PRODUCT VERSION: V4 R17M0
 CLIENT PLATFORM: WorkstationName_01
 CLIENT APPLNAME: DB211JavaNewDriver_0
 CLIENT AUTHID : ClientUs
 DDCS ACC.SUFFIX: ClientAccountingInformation_01234567890123456789012345678901234567890123456789012345678901234567890123456789012345
 67890123456789012345678901234567890123456789012345678901234567890123456789012345678901
180 IBM DB2 11 for z/OS Technical Overview

However, using the new Java driver results in an expended identification section, as shown in
Example 9-19. This example shows how the longer client field information fields are truncated
in the OMPE report. This section is not available if the application was executed with the old
Java driver.

Example 9-19 OMPE Accounting Trace report, identification section

---- IDENTIFICATION --
 ACCT TSTAMP: 08/01/13 22:36:37.38 PLANNAME: DB211Jav WLM SCL: DDFBAT CICS NET: N/A
 BEGIN TIME : 08/01/13 22:36:15.07 PROD TYP: JDBC DRIVER CICS LUN: N/A
 END TIME : 08/01/13 22:36:37.38 PROD VER: V4 R17M0 LUW NET: G9378921 CICS INS: N/A
 REQUESTER : ::9.55.137.33 CORRNAME: db2jcc_a LUW LUN: D8D9
 MAINPACK : DB211Jav CORRNMBR: ppli LUW INS: CBBFAC100F80 ENDUSER : ClientUser_012#1
 PRIMAUTH : DB2R1 CONNTYPE: DRDA LUW SEQ: 2 TRANSACT: DB211JavaNewDriver_01234567890#1
 ORIGAUTH : DB2R1 CONNECT : SERVER WSNAME : WorkstationName_#1

 --
 |TRUNCATED VALUE FULL VALUE |
 |ClientUser_012#1 ClientUser_0123456789012345678901234567890123456789012345678901234567890123456789012345678901|
 | 23456789012345678901234567890123456 |
 |DB211JavaNewDriver_01234567890#1 DB211JavaNewDriver_01234567890123456789012345678901234567890123456789012345678901234567890123|
 | 456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456|
 | 7890123456789012345678901234567890123456789 |
 |WorkstationName_#1 WorkstationName_01234567890123456789012345678901234567890123456789012345678901234567890123456|
 | 789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789|
 | 0123456789012345678901234567890123456789 |
 --

Application and SQL release incompatibility considerations
This section covers Application and SQL release incompatibility considerations that apply to
the DB2 11 changes related to client information fields changes.

Truncated client information values
In previous versions of DB2, client information values were truncated and padded to the
maximum length. In DB2 11, trailing blanks are removed.

When the application compatibility of a package is set to V11R1, the application might receive
a different length client information value than in previous versions of DB2. The value is no
longer padded to the supported maximum length and trailing blanks are removed.

You can find more information about application compatibility in 6.6, “SET CURRENT
APPLICATION COMPATIBILITY” on page 114.

SYSPROC.ADMIN_COMMAND_DB2 stored procedure
The DB2 provided SYSPROC.ADMIN_COMMAND_DB2 stored procedure executes DB2 commands
on a connected DB2 subsystem, or on a DB2 data sharing group member. This stored
procedure also returns the command output messages.

Starting in DB2 11 conversion mode (CM), the ADMIN_COMMAND_DB2 result set row returned in
the created SYSIBM.DB2_THREAD_STATUS global temporary table when processing-type = “THD”
has changed. The column data type and maximum lengths for WORKSTATION, USERID,
APPLICATION, and ACCOUNTING has changed. Existing applications now receive a VARCHAR data
type and possibly a different length client information value. The length is no longer padded to
the supported maximum length.

Attention: In DB2 11 New Function Mode (NFM), special registers for client information
fields might return different length values
Chapter 9. Connectivity and administration routines 181

Client information special registers length
In DB2 11 NFM, special registers for client information fields might return different length
values. The values in these special registers change:

� CURRENT CLIENT_USERID
� CURRENT CLIENT_WRKSTNAME
� CURRENT CLIENT_APPLNAME
� CURRENT CLIENT_ACCTNG

In addition, the value of these special register change based on the application compatibility
level. Whereas in previous version of DB2 special register values were truncated and padded,
trailing blanks are removed in DB2 11. In consequence, when the application compatibility for
a package is set to V11R1, the application might receive a different length client information
value than they did previously.

Special registers
A special register is a storage area that is defined for an application process by DB2 and is
used to store information that can be referenced in SQL statements. A reference to a special
register is a reference to a value provided by the current server.

The following special registers related to the client information are available:

� CURRENT CLIENT_ACCTNG contains the value of the accounting string from the client
information that is specified for the connection.

� CURRENT CLIENT_APPLNAME contains the value of the application name from the client
information that is specified for the connection.

� CURRENT CLIENT_CORR_TOKEN contains the value of the client correlation token from the
client information that is specified for the connection.

� CURRENT CLIENT_USERID contains the value of the client user ID from the client information
that is specified for the connection.

� CURRENT CLIENT_WRKSTNNAME contains the value of the workstation name from the client
information that is specified for the connection.

Resource Limit Facility
Resource limit tables can be used to limit the amount of resources used by SQL statements
that run on middleware servers. Statements can be limited based on this client information:

� Application name
� User ID
� Workstation ID
� IP address

Resource limits apply only to dynamic SQL statements. The resource limit facility does not
control static SQL statements regardless of whether they are issued locally or remotely.

The RLF table DSNRLMTxx columns are changed to support the longer lengths for client
information fields, as summarized in Table 9-2.

Table 9-2 DSNRLMTxx longer columns in DB2 11

Column name DB2 11 Comment

RLFEUAN VARCHAR(255) Specifies an application name

RLFEUID VARCHAR(128) Specifies a user ID

RLFEUWN VARCHAR(255) Specifies a user’s workstation name
182 IBM DB2 11 for z/OS Technical Overview

The DDL use to create the RLMT table (DSNRLMTxx) are provided in the DB2 DSNTIJSG
installation job. DB2 11 provides the long field version of the table in DSNTIJSG.

Example 9-20 shows the long field version DDL as provided in DSNTIJSG in DB2 11. The DDL
is commented out in the job.

Example 9-20 DDL to create the RLMT table DSNRLMT01, DB2 11 version

//**
//* USE THE FOLLOWING DDL TO CREATE AN OPTIONAL RLST AND INDEX FOR
//* RLF GOVERNING BASED ON END-USER ID, APPLICATION NAME, WORKSTATION
//* ID, AND IP ADDRESS. SEE THE DB2 PERFORMANCE MONITORING AND TUNING
//* GUIDE FOR MORE INFORMATION ABOUT THIS TABLE.
//*
//* CREATE TABLE DSNRLMT01
//* (RLFFUNC CHAR(1) NOT NULL WITH DEFAULT,
//* RLFEUAN VARCHAR(255) NOT NULL WITH DEFAULT,
//* RLFEUID VARCHAR(128) NOT NULL WITH DEFAULT,
//* RLFEUWN VARCHAR(255) NOT NULL WITH DEFAULT,
//* RLFIP CHAR(254) NOT NULL WITH DEFAULT,
//* ASUTIME INTEGER,
//* RLFASUERR INTEGER,
//* RLFASUWARN INTEGER,
//* RLF_CATEGORY_B CHAR(1) NOT NULL WITH DEFAULT)
//* IN DSNRLST.DSNRLS01;
//*
//* CREATE UNIQUE INDEX DSNMRL01
//* ON DSNRLMT01
//* (RLFFUNC, RLFEUAN DESC, RLFEUID DESC,
//* RLFEUWN DESC, RLFIP DESC)
//* CLUSTER CLOSE NO;
//**

For comparison, Example 9-21 shows the DSNRLMT01 DDL as provided in DSNTIJSG in DB2 10.
The DDL is commented out in the job.

Example 9-21 DDL to create the RLMT table DSNRLMT01, DB2 10 version

//**
//* USE THE FOLLOWING DDL TO CREATE AN OPTIONAL RLST AND INDEX FOR
//* RLF GOVERNING BASED ON END-USER ID, APPLICATION NAME, WORKSTATION
//* ID, AND IP ADDRESS. SEE THE DB2 PERFORMANCE MONITORING AND TUNING
//* GUIDE FOR MORE INFORMATION ABOUT THIS TABLE.
//*
//* CREATE TABLE DSNRLMT01
//* (RLFFUNC CHAR(1) NOT NULL WITH DEFAULT,
//* RLFEUAN CHAR(32) NOT NULL WITH DEFAULT,
//* RLFEUID CHAR(16) NOT NULL WITH DEFAULT,
//* RLFEUWN CHAR(18) NOT NULL WITH DEFAULT,
//* RLFIP CHAR(254) NOT NULL WITH DEFAULT,

RLFIP CHAR(254) The IP address of the location where the request
originated

Note: The DB2 11 DSNTIJSG installation job provides the DDL for the long field version of
the RLMT table, but long fields can be used in NFM only

Column name DB2 11 Comment
Chapter 9. Connectivity and administration routines 183

//* ASUTIME INTEGER,
//* RLFASUERR INTEGER,
//* RLFASUWARN INTEGER,
//* RLF_CATEGORY_B CHAR(1) NOT NULL WITH DEFAULT)
//* IN DSNRLST.DSNRLS01;
//*
//* CREATE UNIQUE INDEX DSNMRL01
//* ON DSNRLMT01
//* (RLFFUNC, RLFEUAN DESC, RLFEUID DESC,
//* RLFEUWN DESC, RLFIP DESC)
//* CLUSTER CLOSE NO;
//**

Table 9-3 summarizes the column definition differences between the DB2 10 and DB2 11
versions of the DSNRLMTxx tables.

Table 9-3 DSNRLMTxx column difference summary DB2 10 versus DB2 11

Special considerations with DSNRLMT01 and DB2 versions
Special considerations apply for different combinations of RLMT table and DB2 versions. This
section describes the different behaviors observed for different scenarios.

Example 9-22 shows the command used for starting the resource limit facility using the set of
RLF tables 01.

Example 9-22 Start Resource Limit Facility command

-STA RLIMIT ID=01

For DB2 11 NFM with DB2 10 version of DSNRLMT01, Example 9-23 shows the output of the
START RLIMIT command.

Example 9-23 Successful start of RLF

DSNT704I -DB1A SYSIBM.DSNRLST01 HAS BEEN STARTED FOR THE RESOURCE
LIMIT FACILITY
DSNT704I -DB1A SYSIBM.DSNRLMT01 HAS BEEN STARTED FOR THE RESOURCE
LIMIT FACILITY
DSN9022I -DB1A DSNTCSTR 'START RLIMIT' NORMAL COMPLETION

RLF starts correctly when running DB2 11 and the DB2 10 version of the RLF tables.

Tip: Verify that the value in RLFAUTH results as the table creator when running these DDL
statements. This system parameter defines the authorization ID of the DB2 governor RLF

Column name DB2 10 DB2 11 Comment

RLFEUAN CHAR(32) VARCHAR(255) Specifies an application name

RLFEUID CHAR(16) VARCHAR(128) Specifies a user ID

RLFEUWN CHAR(18) VARCHAR(255) Specifies a user’s workstation
name

RLFIP CHAR(254) CHAR(254) The IP address of the location
where the request originated
184 IBM DB2 11 for z/OS Technical Overview

For DB2 10 NFM with DB2 11 version of DSNRLMT01, Example 9-24 shows the output of the
START RLIMIT command.

Example 9-24 Starting RLIMIT in DB2 10 with DSNRLMT01 version DB2 11

DSNT707I -DB0A COLUMN RLFEUAN IN TABLE SYSIBM.DSNRLMT01 IS
INCORRECTLY DEFINED. THE COLUMN DEFINITION IS VARCHAR WITH LENGTH 255
AND NULL ATTRIBUTE N. THE COLUMN DEFINITION SHOULD BE CHAR WITH
LENGTH 32 AND NULL ATTRIBUTE N. THE START RLIMIT COMMAND WILL NOT USE
THIS TABLE.
DSNT707I -DB0A COLUMN RLFEUID IN TABLE SYSIBM.DSNRLMT01 IS
INCORRECTLY DEFINED. THE COLUMN DEFINITION IS VARCHAR WITH LENGTH 128
AND NULL ATTRIBUTE N. THE COLUMN DEFINITION SHOULD BE CHAR WITH
LENGTH 16 AND NULL ATTRIBUTE N. THE START RLIMIT COMMAND WILL NOT USE
THIS TABLE.
DSNT707I -DB0A COLUMN RLFEUWN IN TABLE SYSIBM.DSNRLMT01 IS
INCORRECTLY DEFINED. THE COLUMN DEFINITION IS VARCHAR WITH LENGTH 255
AND NULL ATTRIBUTE N. THE COLUMN DEFINITION SHOULD BE CHAR WITH
LENGTH 18 AND NULL ATTRIBUTE N. THE START RLIMIT COMMAND WILL NOT USE
THIS TABLE.
DSNT704I -DB0A SYSIBM.DSNRLST01 HAS BEEN STARTED FOR THE RESOURCE
LIMIT FACILITY
DSNT727I -DB0A TABLE SYSIBM.DSNRLMT01 WILL NOT BE USED BY THE
RESOURCE LIMIT FACILITY
DSN9022I -DB0A DSNTCSTR 'START RLIMIT' NORMAL COMPLETION

This example shows that the DB2 11 version of the RLMT table is not usable in a DB2 10
subsystem. As a result, RLF is partially started and there is no support for the RLMT table in
this case. Example 9-25 shows this evidence, this is the output of the -DISPLAY RLIMIT
command.

Example 9-25 -DIS RLIMIT: RLF partially started

DSNT700I -DB0A SYSIBM.DSNRLST01 IS THE ACTIVE RESOURCE LIMIT
SPECIFICATION TABLE
DSN9022I -DB0A DSNTCDIS 'DISPLAY RLIMIT' NORMAL COMPLETION

For DB2 11 CM with DB2 11 version of DSNRLMT01, Example 9-26 shows the output of the
START RLIMIT command.

Example 9-26 Starting RLIMIT in DB2 11 CM with DSNRLMT01 version DB2 11

DSNT728I -DB0B THE FORMAT OF TABLE SYSIBM.DSNRLMT01 IS NOT SUPPORTED
IN COMPATIBILITY MODE. THE START RLIMIT COMMAND WILL NOT USE THIS
TABLE.
DSNT704I -DB0B SYSIBM.DSNRLST01 HAS BEEN STARTED FOR THE RESOURCE
LIMIT FACILITY
DSNT727I -DB0B TABLE SYSIBM.DSNRLMT01 WILL NOT BE USED BY THE
RESOURCE LIMIT FACILITY
DSN9022I -DB0B DSNTCSTR 'START RLIMIT' NORMAL COMPLETION

Chapter 9. Connectivity and administration routines 185

The DB2 11 of the RLMT table is not compatible with DB2 11 CM. There is no support for
RLMT in this scenario. Example 9-27 shows that RLF is partially active.

Example 9-27 -DIS RLIMIT: RLF partially started

DSNT700I -DB0B SYSIBM.DSNRLST01 IS THE ACTIVE RESOURCE LIMIT
SPECIFICATION TABLE
DSN9022I -DB0B DSNTCDIS 'DISPLAY RLIMIT' NORMAL COMPLETION

Converting resource limit facility (RLF) tables
When migrated to DB2 11 NFM, you have to convert the resource limit facility (RLF) tables to
take advantage of the longer client information fields. Follow these steps to alter and existing
RLF table. Verify the status of RLF by executing a -DIS RLIMIT command. An output example
is shown in Example 9-28.

Example 9-28 -DIS RLIMIT output example

DSNT700I -DB1A SYSIBM.DSNRLST01 IS THE ACTIVE RESOURCE LIMIT
SPECIFICATION TABLE
DSNT700I -DB1A SYSIBM.DSNRLMT01 IS THE ACTIVE RESOURCE LIMIT
SPECIFICATION TABLE
DSN9022I -DB1A DSNTCDIS 'DISPLAY RLIMIT' NORMAL COMPLETION

After stopping RLF you can alter the RLMT table to the new format. Example 9-29 shows the
SQL used for altering the RLMT table to the DB2 11 NFM supported format.

Example 9-29 ALTER TABLE SYSIBM.DSNRLMT01

ALTER TABLE SYSIBM.DSNRLMT01 ALTER COLUMN RLFEUAN
 SET DATA TYPE VARCHAR(255);
ALTER TABLE SYSIBM.DSNRLMT01 ALTER COLUMN RLFEUID
 SET DATA TYPE VARCHAR(128);
ALTER TABLE SYSIBM.DSNRLMT01 ALTER COLUMN RLFEUWN
 SET DATA TYPE VARCHAR(255);

Converting resource limit facility (RLF) tables, no RLF outage
If your installation cannot afford to run without RLF active, this alternative method allows for a
RLMT migration without RLF outage. Using the DB2 11 DDL in DSNTIJSG, create a new RMT
table with a non -used ID. For example, create DSNRLMT02 where the current RLMT table is
DSNRLMT01. If needed, create an ID=02 of the table DSNRLSTxx as well.

You can copy the RLF definitions from the ID=01 to the ID=02 tables using SQL. Example 9-30
documents the SQL used to copy data from the old to the new version of the RLMT table.

Example 9-30 Copying RLMT data to a DB2 11 version of the table

INSERT INTO SYSIBM.DSNRLMT02
 (RLFFUNC, RLFEUAN, RLFEUID, RLFEUWN, RLFIP,
 ASUTIME, RLFASUERR, RLFASUWARN, RLF_CATEGORY_B)
SELECT
 RLFFUNC, RLFEUAN, RLFEUID, RLFEUWN, RLFIP,
 ASUTIME, RLFASUERR, RLFASUWARN, RLF_CATEGORY_B
 FROM SYSIBM.DSNRLMT01;
186 IBM DB2 11 for z/OS Technical Overview

Example 9-31 shows the SQL used to copy data between RLST tables.

Example 9-31 Copying RLST data to a DB2 11 version of the table

INSERT INTO SYSIBM.DSNRLST02
 (AUTHID, PLANNAME, ASUTIME, LUNAME, RLFFUNC,
 RLFBIND, RLFCOLLN, RLFPKG, RLFASUERR,
 RLFASUWARN, RLF_CATEGORY_B)
SELECT
 AUTHID, PLANNAME, ASUTIME, LUNAME, RLFFUNC,
 RLFBIND, RLFCOLLN, RLFPKG, RLFASUERR,
 RLFASUWARN, RLF_CATEGORY_B
 FROM SYSIBM.DSNRLST01;

After the new RLST and RLMT tables are populated with the original data, you can switch the
RLF definitions without outage. In this example, you can issue the START RLIMIT command
using ID=02, as shown in Example 9-32, even if RLF is active with ID=01.

Example 9-32 -STA RLIMIT command

-STA RLIMIT ID=02

Example 9-33 shows the output of this command. Note the DSNT709I message. This message
informs that a START RLIMIT command was entered and that the facility was already active.
The facility remains active and switches from using the old table name to the new one.

Example 9-33 Starting RLIMIT on a new set of RLF tables

DSNT709I -DB1A SYSIBM.DSNRLST02 NOW ACTIVE. SYSIBM.DSNRLST01 WAS OLD
RESOURCE LIMIT SPECIFICATION TABLE
DSNT709I -DB1A SYSIBM.DSNRLMT02 NOW ACTIVE. SYSIBM.DSNRLMT01 WAS OLD
RESOURCE LIMIT SPECIFICATION TABLE
DSN9022I -DB1A DSNTCSTR 'START RLIMIT' NORMAL COMPLETION

Profile monitoring for remote threads and connections
Profile tables identify contexts in which DB2 takes particular actions such resource
monitoring, subsystem parameter customization, and dynamic SQL stabilization. The
contexts might identify statements, threads, or connections based on information about the
originating application, system, or user.

A profile is a set of criteria that identifies a particular context on a DB2 subsystem. A profile is
defined by a record in the SYSIBM.DSN_PROFILE_TABLE table. The profile tables and related
indexes are created by the DSNTIJSG job during DB2 installation or migration.

A complete set of profile tables and related indexes includes the following objects:

� SYSIBM.DSN_PROFILE_TABLE
� SYSIBM.DSN_PROFILE_HISTORY
� SYSIBM.DSN_PROFILE_ATTRIBUTES
� SYSIBM.DSN_PROFILE_ATTRIBUTES_HISTORY
� SYSIBM.DSN_PROFILE_TABLE_IX_ALL
� SYSIBM.DSN_PROFILE_TABLE_IX2_ALL
� SYSIBM.DSN_PROFILE_ATTRIBUTES_IX_ALL

Tip: While RLF is active, you can switch RLF tables by executing the START RLIMIT
command using a new ID.
Chapter 9. Connectivity and administration routines 187

The monitoring functions are defined by inserting rows in the DSN_PROFILE_ATTRIBUTES table.
You can specify the following values in the KEYWORD column of the DSN_PROFILE_ATTRIBUTES
table:

� MONITOR THREADS
� MONITOR CONNECTIONS
� MONITOR IDLE THREADS

MONITOR THREADS indicates that the profile monitors the total number of concurrent active
remote threads according to the following filter criteria defined on SYSIBM.DSN_PROFILE_TABLE:

� LOCATION
� IPADDR
� PRDID
� ROLE AUTHID
� COLLID
� PKGNAME

The system-wide threshold that is defined by the value of the MAXDBAT subsystem parameter
continues to apply.

MONITOR CONNECTIONS indicates that the profile monitors the total number of remote
connections from TCP/IP requesters. The only filtering criteria is the LOCATION column in the
SYSIBM. DSN_PROFILE_TABLE. Nevertheless, you can specify either an IP address or a
domain name for its value. The system-wide threshold that is defined by the value of the
CONDBAT subsystem parameter continues to apply.

MONITOR IDLE THREADS indicates that the profile monitors the approximate time (in seconds)
that an active server thread is allowed to remain idle. A zero value means that matching
threads are allowed to remain idle indefinitely.

At a glance, system profile monitoring allows to tailor the values of the following otherwise
subsystem-level parameters to the need of any application:

� MAXDBAT
� CONDBAT
� IDTHTOIN

After profiling is correctly defined, use the -START PROFILE DB2 command to start profile
monitoring. Issue a -STOP PROFILE command. to disable all profile functions.

The following DSN_PROFILE_TABLE columns are defined as VARCHAR(255) in DB2 10 for z/OS,
but their values are truncated as follows:

� CLIENT_APPLNAME: truncated to 32 bytes
� CLIENT_USERID: truncated to 16 bytes
� CLIENT_WRKSTNNAME: truncated to 18 bytes

There is no change in behavior in DB2 11 conversion mode. The -START PROFILE command
continues to truncate the client information field’s information in the DSN_PROFILE_TABLE, as in
DB2 10.

Tip: Refer toDB2 11 for z/OS Managing Performance, SC19-4060 for details about the
profile tables

Important: By making client information fields longer, DB2 11 provides greater granularity
for managing DDF connections, threads, and idle thread timeout.
188 IBM DB2 11 for z/OS Technical Overview

In DB2 11 New Function Mode (NFM), the complete value of columns CLIENT_APPLNAME and
CLIENT_WRKSTNNAME, up to 255 bytes, is honoured. The value in column CLIENT_USERID is
considered up to 128 bytes.

Workload management
For mixed workloads, the general recommendation is to use multiple WLM service classes to
differentiate users and applications that have different levels of importance for the business.

A WLM Service class describes a group of work within a workload with similar performance
characteristics. A service class is a key construct for WLM. Each service class has at least
one period, and each period has one goal. Address spaces and transactions are assigned to
service classes using classification rules. Within a workload, a group of work with similar
performance requirements can share the same service class.

WLM Report Classes refers to an aggregate set of work for reporting purposes. You can use
report classes to analyze the performances of individual workloads running in the same or
different service classes. Work is classified into report classes using the same classification
rules that are used for classification into service classes. A useful way to contrast report
classes to service classes is that report classes are used for monitoring work; service classes
are primarily to be used for managing work.

As an example, the following general considerations might apply to your workload
environment:

� Use WLM service classes with percentile response time goals for early periods that have
frequent completions of short consumption work.

� Use WLM service classes with velocity goals for later periods containing work having
less-frequent completions and larger, perhaps more varying, resource consumption
characteristics.

� Potentially use a discretionary goal for the last period, which might not be applicable in
OLTP environments with high CPU utilization, because it can result in severe DB2 locking
issues.

The design of a WLM strategy must match the workload characteristics. For example,
operational BI queries are typically numerous and small CPU consumers. Therefore, they
have WLM service classes with response time goals and fall into early periods. Alternatively,
data mining activity might be less frequent, long-running, and have wide variability in resource
consumption. It is therefore likely to be targeted for WLM service classes with velocity goals
and later periods.

WLM Classification rules are the filters that WLM uses to associate a transaction’s external
properties (also called work qualifiers, such as LU name or user ID) with a WLM service
class. As a preferred practice, classify each distributed request within WLM. If you do not
classify your DDF transactions into specific WLM service classes, they are assigned to the
default service class for the DDF workload.

Optionally, you can assign incoming work to a report class. Report classes can be used to
report on a subset of transactions running in a single service class but also to combine
transactions running in different service classes within one report class.

Important: IBM Data Server Driver or Client level DB2 10.5 Fix Pack 2 is required to
exploit the enhanced client information fields. Previous levels do not take advantage, even
if the DB2 server is running DB2 11 for z/OS NFM
Chapter 9. Connectivity and administration routines 189

Figure 9-1 shows a LPAR level CPU utilization report for a given DB2 workload. This report is
based on the RMF Workload (type 72) records. In this example, it is not possible to identify
how the CPU utilization is distributed by application.

Figure 9-1 RMF Workload, LPAR CPU utilization

For the same workload, it is possible to obtain a more detailed overview of the CPU utilization
by using WLM Report Class. Figure 9-2 shows a graph of the same scenario when the CPU
utilization report is plotted by Report Class. In this case it is possible to identify which part of
the application is active a different periods.

Figure 9-2 RMF Workload, LPAR CPU utilization per WLM Report Class

WLM Classification Rules are the rules you define to categorize work into service classes,
and optionally report classes, based on work qualifiers. A work qualifier is what identifies a
work request to the system. The first qualifier is the subsystem type that receives the work
request.

Table 9-4 list the WLM classification attributes, or qualifiers, that pertain to DB2 DDF threads
in z/OS 1.13.

Table 9-4 DDF - WLM classification attributes in z/OS 1.13

Attribute Classify workload based on

AI Accounting information

CAI Client accounting information
190 IBM DB2 11 for z/OS Technical Overview

z/OS 2.1 introduces a new WLM classify work request macro service, IWM4CLSY. this new
macro supports the new longer lengths client information fields to classify DDF server
threads. There are new WLM classification attributes to support the longer lengths client
information fields. These new attributes are listed in Table 9-5.

Table 9-5 New DDF - WLM classification attributes in z/OS 2.1

The SPM qualifier has a maximum length of 255 bytes. The first 16 bytes contain the client's
user ID. The next 18 bytes contain the client's workstation name. The remaining 221 bytes are
reserved. If the length of the client's user ID is less than 16 bytes, SPM uses blanks after the
user ID to pad the length. If the length of the client's workstation name is less than 18 bytes,
SPM uses blanks after the workstation name to pad the length. The values of the client user
ID and client workstation name are the truncated to 16 bytes and 18 bytes respectively. The
full lengths, 128 bytes and 255 bytes respectively, are specified in the CUI and CWN
attributes, as listed in Table 9-5.

CI DB2 correlation ID of the DDF thread

CN Collection name

LU IBM VTAM® LUNAME

NET VTAM NETID

PK Name of the first package accessed

PN Plan name

PR Stored procedure name

SI Subsystem instance

SSC Subsystem collection name

UI User id

Attribute Classify workload based on Maximum length

CUI Client user ID 128 bytes

CWN Client workstation name 255 bytes

CTN Client transaction (application) name 255 bytes

CIP Client IP address 39 bytes

CAI Client accounting information 512 bytes

PC Process name 32 bytes

SPM Subsystem parameter 255 bytes

Note: Refer to the IBM publication “z/OS MVS Planning Workload Management” for more
details about WLM and its components.

Attribute Classify workload based on
Chapter 9. Connectivity and administration routines 191

Example 9-34 shows an example of the WLM ISPF panel Modify Rules for the Subsystem
Type in a z/OS 2.1 LPAR.

Example 9-34 WLM Modify Rules for the Subsystem Type panel

.
 Subsystem-Type Xref Notes Options Help
--
 Modify Rules for the Subsystem Type Row 1 to 2 of 2
Command ===> ___ Scroll ===> PAGE

Subsystem Type . : DDF Fold qualifier names? N (Y or N)
Description . . . DDF clasificatoin rules

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: DDFUNKWN REPUNKWN
 ____ 1 SI DB1D* ___ DDFDEFLT REPDEFLT
 ____ 2 AI Bxls* 56 DDFHI REPBXLS

In this example, if a DDF work request comes in from an DB2 subsystem other than DB1D,
then it is assigned to the default Service and Report Class DDFUNKWN and REPUNKWN. A
request coming from DB1D with Accounting Information starting with the string Bxls gets
assigned to DDFHI and REPBXLS. The order of the nesting and the order of the level 1
qualifiers, determine the hierarchy of the classification rules.

Example 9-35 uses a Java application to drive the distributed workload. In the program, the
accounting information is set.

Example 9-35 Setting accounting information in a Java program

con = DriverManager.getConnection(url);
DB2Connection db2con = (DB2Connection) con;
con.setAutoCommit(false);
db2con.setClientInfo("ClientAccountingInformation", "BxlsAPP_Choco01");

In the “Fold qualifier names” option, set to the default Y, means that the qualifier names is
folded to uppercase as soon as you type them and press Enter. If you set this option to N, the
qualifier names remains in the case they are typed in. Leave this option set to Y unless you
know that you need mixed case qualifier names in your classification rules.

You can use masking and wild card notation to group qualifiers that share a common
substring. For work qualifiers that run longer than eight characters, you can use a start
position to indicate how far to index into the character string. The name field for work
qualifiers is 8 characters long. You can use nesting for the work qualifiers that run longer than
8 characters. Use the following fields:

� Accounting information
� Client accounting information
� Client IP address
� Client transaction name
� Client user ID

Important: The start of the Client Accounting Information string has to be 56 in the WLM
ISPF panel to match the beginning of the string used in the program
192 IBM DB2 11 for z/OS Technical Overview

� Client workstation name
� Collection name
� Correlation information
� Package name
� Procedure name
� Process name
� Scheduling environment
� Subsystem parameter
� zEnterprise service class name

From this list, the fields Scheduling environment and zEnterprise service class name are not
applicable for DDF workloads.

For example, for DDF workload, Accounting Information is the value of the DB2 accounting
string associated with the DDF server thread. Because DB2 supports more than 8 characters
in accounting information, and the WLM ISPF application allows only 8 characters per rule,
the application allows “nesting” for accounting information.

By nesting work qualifiers you can exploit the longer client information fields introduced in
DB2 11. Example 9-36 shows an example.

Example 9-36 WLM classification rules: nesting accounting information

Subsystem-Type Xref Notes Options Help
--
 Modify Rules for the Subsystem Type Row 1 to 3 of 3
Command ===> ___ Scroll ===> PAGE

Subsystem Type . : DDF Fold qualifier names? N (Y or N)
Description . . . DDF clasificatoin rules

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: DDFUNKWN REPUNKWN
 ____ 1 SI DB1D* ___ DDFDEFLT REPDEFLT
 ____ 2 AI BxlsAPP* 56 DDFHI REPBXLS
 ____ 3 AI Choco* 63 DDFHI REPCHOCO

In this configuration, and application with accounting information starting with the string
BxlsAPP is classified in the DDFHI service class and REPBXLS report class. If the application
has an accounting information field starting with BxlsAPP_Choco uses the REPCHOCO report
class instead.

To activate the WLM changes use the Utilities menu entry, and then option 1 Install definition,
as shown in Example 9-37.

Example 9-37 installing WLM definitions

File Utilities Notes Options Help
----- +---+ ----------------
Funct | 1 1. Install definition | Appl LEVEL029
Comma | 2. Extract definition | _______________
 | 3. Activate service policy |
Defin | 4. Allocate couple data set |
 | 5. Allocate couple data set using CDS values |
Defin | 6. Validate definition |
Chapter 9. Connectivity and administration routines 193

Descr +---+ _

Select one of the
following options. ___ 1. Policies
 2. Workloads
 3. Resource Groups

When installation is successful, the system provide the feedback shown in Example 9-38

Example 9-38 WLM Service definition installation successful

Service definition was installed. (IWMAM038)

Changes to the WLM policy have to be activated to be made effective.

Example 9-39 shows how the WLM policy activation can be done using the WLM ISPF
panels.

Example 9-39 Activating WLM definitions

File Utilities Notes Options Help
 ----- +---+ ----------------
 Funct | 3 1. Install definition | Appl LEVEL029
 Comma | 2. Extract definition | _______________
 | 3. Activate service policy |
 Defin | 4. Allocate couple data set |
 | 5. Allocate couple data set using CDS values |
 Defin | 6. Validate definition |
 Descr +---+ _

 Select one of the
 following options. ___ 1. Policies
 2. Workloads
 3. Resource Groups

As confirmation, the IWM001I system message is written in to system console, as shown in
Example 9-40.

Example 9-40 WLM Policy activated

IWM001I WORKLOAD MANAGEMENT POLICY DB211TO NOW IN EFFECT

There are many ways of verifying of the WLM classification is working as expected. A simple
and quick way is to explore the DDF activity in the RMF Enclave Report panel. The Enclave
report provides detailed information about the activities of enclaves.

Example 9-41 shows an example of the RMF Enclave Report panel in z/OS 2.1.

Example 9-41 RMF Enclave Report panel

RMF V2R1 Enclave Report Line 1 of 5
Command ===> Scroll ===> CSR

Samples: 100 System: SC76 Date: 08/07/13 Time: 19.36.40 Range: 100 Sec

Current options: Subsystem Type: ALL -- CPU Util --
 Enclave Owner: Appl% EAppl%
 Class/Group: 0.2 1.9

194 IBM DB2 11 for z/OS Technical Overview

Enclave Attribute CLS/GRP P Goal % D X EAppl% TCPU USG DLY IDL

*SUMMARY 0.811
ENC00002 SYSSTC 1 N/A Y 0.736 12.62 34 3.0 0.0
ENC00004 DDFHI 2 50 0.040 0.100 100 0.0 0.0
ENC00003 DDFHI 2 50 W 0.036 0.083 0.0 0.0 0.0
ENC00001 SYSSTC 1 N/A Y 0.000 0.025 0.0 0.0 0.0

This example shows the ENC00004 and ENC00003 enclaves running on the DDFHI service
class. Selecting one of the enclaves provide access to the Enclave Classification Attributes
panel where you can obtain more details, as shown in Example 9-42.

Example 9-42 Enclave details in RMF Enclave report

RMF V2R1 Enclave Report Line 1 of 5
 Command ===> Scroll ===> CSR

 Samples: +---+
 | RMF Enclave Classification Attributes |
 Current o | |
 | The following details are available for enclave ENC00004 |
 | Press Enter to return to the Report panel. |
 | |
 Enclave | More: + |
 | Subsystem Type: DDF Owner: DB1DDIST System: SC76 |
 *SUMMARY | Accounting Information . . . : |
 ENC00002 | JCC04170192.168.150.1 BxlsA |
 ENC00004 | PP_Choco01 |
 ENC00003 | |
 ENC00001 | Collection Name : NULLID |
 | Connection Type : SERVER |
 | Correlation Information . . : db2jcc_appli |
 | LU Name : |
 | Net ID : |
 | Plan Name : DISTSERV |
 | Priority : |
 | Process Name : db2jcc_application |
 | Transaction/Job Class . . . : |
 | Transaction/Job Name : |
 | User ID : DB2RS1 |

Navigating down this panels provide access to the Client Information Field values. A partial
example is shown in Example 9-43.

Example 9-43 RMF Enclave Classification Attributes

RMF V2R1 Enclave Report Line 1 of 5
 Command ===> Scroll ===> CSR

 Samples: +---+
 | RMF Enclave Classification Attributes |
 Current o | |
 | The following details are available for enclave ENC00004 |
 | Press Enter to return to the Report panel. |
 | |
 Enclave | More: - + |
 | |
 *SUMMARY | |
 ENC00002 | Client IP Address : |
 ENC00004 | 0000:0000:0000:0000:0000:0000:9.55.137. |
Chapter 9. Connectivity and administration routines 195

 ENC00003 | Client User ID : |
 ENC00001 | db2rs1 |
 | |
 | |
 | Client Transaction Name . . : |
 | db2jcc_application |
 | |
 | |
 | |
 | |
 | Client Workstation/Host Name : |
 | 192.168.150.1 |

As discussed in this chapter, the driver version can influence the length of the client
information field that is sent to the DB2 server. For example, a Java program setting the client
accounting information with a string of 255 characters sends the complete string when using
a DB2 driver 10.5 fix pack 2. The same application executed with a lower version of the driver
sends the string truncated to 200 characters. WLM classification rules taking advantage of
the longer client information fields introduced in DB2 11 behave different if the driver used by
the applications is not the one required to fully exploit the DRDA changes in DB2 11 (9.5 fix
pack 2).

Setting Client info fields
This section discusses these topics related to how to change the Client info values:

� WLM_SET_CLIENT_INFO stored procedure
� Setting Client info in Java applications
� Setting Client info in DB2 command line processor scripts

WLM_SET_CLIENT_INFO stored procedure
WLM_SET_CLIENT_INFO is a DB2 provided, WLM established, stored procedure. It allows the
caller to set client information that is associated with the current connection at the DB2 for
z/OS server. It is of particular use for connections where DB2 for z/OS is the requester
because in such situations there is no other way of setting the client information values.
These DB2 for z/OS client special registers can be changed by calling WLM_SET_CLIENT_INFO:

� CURRENT CLIENT_ACCTNG
� CURRENT CLIENT_USERID
� CURRENT CLIENT_WRKSTNNAME
� CURRENT CLIENT_APPLNAME

Example 9-44 shows the WLM_SET_CLIENT_INFO call syntax.

Example 9-44 WLM_SET_CLIENT_INFO syntax

>>-WLM_SET_CLIENT_INFO--(--+-client_userid-+--,--+-client_wrkstnname-+--,-->
 '-NULL----------' '-NULL--------------'

Important: With DB2 11 longer client information fields, WLM classification rules might
behave inconsistently, depending on the driver version used by the applications.

Important: The WLM_SET_CLIENT_INFO stored procedure that is shipped with DB2 11 for
z/OS does not allow to change the value of the new client information register CURRENT
CLIENT_CORR_TOKEN, nor to update the system built-in session global variable
SYSIBM.CLIENT_IPADDR.
196 IBM DB2 11 for z/OS Technical Overview

>--+-client_applname-+--,--+-client_acctstr-+--)---------------><
 '-NULL------------' '-NULL-----------'

The WLM_SET_CLIENT_INFO procedure uses the following parameters:

client_userid A VARCHAR(255) input parameter that specifies the user ID for the
client. If NULL is specified, the value remains unchanged. If an empty
string is specified, the user ID for the client is reset to the default value.
If the value specified exceeds 128 bytes, it is truncated to 128 bytes.

client_wrkstnname A VARCHAR(255) input parameter that specifies the workstation name
for the client. If NULL is specified, the value remains unchanged. If an
empty string is specified, the workstation name for the client is reset to
the default value.

client_applname A VARCHAR(255) input parameter that specifies the application name
for the client. If NULL is specified, the value remains unchanged. If an
empty string is specified, the application name for the client is reset to
the default value.

client_acctstr A VARCHAR(255) input parameter that specifies the accounting string
for the client. If NULL is specified, the value remains unchanged. If an
empty string is specified, the accounting string for the client is reset to
the default value.

Setting Client info in Java applications
Table 9-6 summarizes the client information properties values for Java type 4 connectivity to
DB2 for z/OS. It also shows the default values and the DB2 special register that can be used
to read this information at run time.

Table 9-6 Client information property values for type 4 connectivity to DB2 for z/OS

These properties can be modified using the setClientInfo Java method. Example 9-45
shows how to setup the client user ID using this method. In this example, db2con is an
established connection to DB2 for z/OS.

Example 9-45 Using the setClientInfo Java method

db2con.setClientInfo("ClientUser",
"ClientUser_0123456789012345678901234567890123456789012345678901234567890123456789
0123456789012345678901234567890123456789012345678901234567890123456789012345678901
2345678901234567890123456789012345678901234567890123456789");

Name Max
length

Default value Special register

ApplicationName 255 bytes The string “db2jcc_application” CURRENT CLIENT_APPLNAME

ClientAccountingInformation 255 JCCversionclient-ip CURRENT CLIENT_ACCTNG

ClientCorrelationToken 255 Data server generated LUWID CURRENT
CLIENT_CORR_TOKEN

ClientHostname 255 The string “db2jcc_local” CURRENT
CLIENT_WRKSTNNAME

ClientUser 128 The user ID that was specified
when the connection was
established

CURRENT CLIENT_USERID
Chapter 9. Connectivity and administration routines 197

Example 9-46 shows a fully functional Java program that can be used to test the new lengths
provided by DB2 11. This example sets 4 client information fields and execute some SQL
code.

Example 9-46 Java program: setting client information fields

import com.ibm.db2.jcc.DB2Connection;
import java.sql.*;

public class DB211NewDriver {

 public static Connection con = null;
 public static CallableStatement cstmt;
 public static ResultSet results;
 public static boolean debug = true;

 public static void main(String args[]) throws Exception {
 String url = "jdbc:db2://redbook8:38420/DB1A"
 + ":user=db2r1;password=********;"
 + "traceLevel="
 + (com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL) + ";"
 +
"traceFile=c:\\work\\Author\\Redbook#8\\DRDA_traces\\DB211NewDriver.trace;";
 try {
 Class.forName("com.ibm.db2.jcc.DB2Driver");
 } catch (java.lang.ClassNotFoundException e) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(e.getMessage());
 }
 con = DriverManager.getConnection(url);
 DB2Connection db2con = (DB2Connection) con;
 con.setAutoCommit(false);

 db2con.setClientInfo("ClientUser",
"ClientUser_0123456789012345678901234567890123456789012345678901234567890123456789012345678
9012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
0123456789012345678901234567890123456789");
 db2con.setClientInfo("ClientAccountingInformation",
"ClientAccountingInformation_01234567890123456789012345678901234567890123456789012345678901
2345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012
345678901234567890123456789012345678901234567890123456789");
 db2con.setClientInfo("ClientHostname",
"WorkstationName_01234567890123456789012345678901234567890123456789012345678901234567890123
4567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234
567890123456789012345678901234567890123456789");
 db2con.setClientInfo("ApplicationName",
"DB211JavaNewDriver_01234567890123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901
234567890123456789012345678901234567890123456789");
 db2con.setClientInfo("ClientCorrelationToken", "BXLS001");

 query1(con);
 query2(con);
 }

 public static void query1(Connection con) {
 System.out.println("Starting DB211NewDriver V1");
 Statement stmt;
 ResultSet rs;
 String planname;
 try {
198 IBM DB2 11 for z/OS Technical Overview

 stmt = con.createStatement();
 rs = stmt.executeQuery("SELECT NAME FROM SYSIBM.SYSPLAN WHERE PROGAUTH = 'D'");
 System.out.println("--> Query executed. resultset follows");
 while (rs.next()) {
 planname = rs.getString(1);
 System.out.println("PLAN NAME = " + planname);
 // Force 1 second sleep for easier monitoring
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 }
 }
 System.out.println("--> Resultset exhausted");
 rs.close();
 stmt.close();
 } catch (SQLException e) {
 System.out.println("==> SQLException = " + e);
 System.out.println("==> SQLCODE = " + e.getErrorCode());
 System.out.println("==> SQLSTATE = " + e.getSQLState());
 System.out.println("==> Text of Error Message = " + e.getMessage());
 }
 }

 public static void query2(Connection con) {
 System.out.println("Starting query2");
 Statement stmt;
 ResultSet rs;
 String currclntacctng;
 try {
 stmt = con.createStatement();
 rs = stmt.executeQuery("select CURRENT CLIENT_ACCTNG from sysibm.sysdummy1;");
 System.out.println("--> Query executed. resultset follows");
 while (rs.next()) {
 currclntacctng = rs.getString(1);
 System.out.println("CURRENT CLIENT_ACCTNG = " + currclntacctng);
 // Force 1 second sleep for easier monitoring
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ex) {
 Thread.currentThread().interrupt();
 }
 }
 System.out.println("--> Resultset exhausted");
 rs.close();
 stmt.close();
 } catch (SQLException e) {
 System.out.println("==> SQLException = " + e);
 System.out.println("==> SQLCODE = " + e.getErrorCode());
 System.out.println("==> SQLSTATE = " + e.getSQLState());
 System.out.println("==> Text of Error Message = " + e.getMessage());
 }
 }
}

Tip: To keep an active connection with DB2 during the complete execution of the program
and to make easier to monitor it online using commands, disable Autocommit by modifying
the connection with con.setAutoCommit(false);
Chapter 9. Connectivity and administration routines 199

Example 9-47 shows the output of the execution of this program in this example test
environment.

Example 9-47 Java sample program output

Starting DB211NewDriver V1
--> Query executed. resultset follows
PLAN NAME = DSNTIA11
PLAN NAME = DSNREXX
PLAN NAME = DSNESPCS
....
PLAN NAME = ADB2RIP
PLAN NAME = ADB2WCL
PLAN NAME = ADB27SPC
--> Resultset exhausted
Starting query2
--> Query executed. resultset follows
CURRENT CLIENT_ACCTNG =
ClientAccountingInformation_012345678901234567890123456789012345678901234567890123456789012
3456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123
45678901234567890123456789012345678901234567890123456789
--> Resultset exhausted

Example 9-48 shows the result of the DB2 command -DIS THD(*) DETAIL when the type 4
driver is DB2 10.5 fix pack 2.

Example 9-48 -DIS THD(*) DETAIL

NAME ST A REQ ID AUTHID PLAN ASID TOKEN
SERVER RA * 2 db2jcc_appli DB2R1 DISTSERV 0131 621
 V437-WORKSTATION=WorkstationName_012345678901234567890123456789012345
 67890123456789012345678901234567890123456789012345678901234567
 89012345678901234567890123456789012345678901234567890123456789
 01234567890123456789012345678901234567890123456789
 USERID=ClientUser_0123456789012345678901234567890123456789012345
 67890123456789012345678901234567890123456789012345678901234567
 890123456
 APPLICATION NAME=DB211JavaNewDriver_0123456789012345678901234567
 89012345678901234567890123456789012345678901234567890123456789
 01234567890123456789012345678901234567890123456789012345678901
 2345678901234567890123456789012345678901234567890123456789
 V441-ACCOUNTING=ClientAccountingInformation_0123456789012345678901234
 5678901234567890123456789012345678901234567890123456789012345678
 9012345678901234567890123456789012345678901234567890123456789012
 345678901234567890123456789012345678901234567890123456789
 V442-CRTKN=BXLS001
 V482-WLM-INFO=DDFBAT:1:3:1
 V445-G9378921.D8D9.CBBFAC100F80=621 ACCESSING DATA FOR
 (1)::9.55.137.33
 V447--INDEX SESSID A ST TIME
 V448--(1) 38420:55513 W R2 1321318355007

DB2 DSNV436I message contains detail output from the DISPLAY THREAD command, which is
part of the DSNV401I message. If a thread is processing an SQL statement, the output
includes the following information about the SQL statement and the program that contains the
statement.
200 IBM DB2 11 for z/OS Technical Overview

Example 9-49 illustrates the output of the -DIS THD(*) DETAIL command while a Java
application was executing a SQL statement. This results in the inclusion of message V436 in
the output.

Example 9-49 DIS THD(*) DETAIL and message V436

-DB1A DIS THD(*) DET
DSNV401I -DB1A DISPLAY THREAD REPORT FOLLOWS - DSNV402I -DB1A ACTIVE THREADS - 717
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
SERVER RA * 2 db2jcc_appli DB2R6 DISTSERV 00A2 839
 V437-WORKSTATION=9.55.137.146
 USERID=db2r6
 APPLICATION NAME=db2jcc_application
 V441-ACCOUNTING=JCC041709.55.137.146
 V436-PGM=NULLID.SYSLH200, SEC=1, STMNT=0, THREAD-INFO=DB2R6:9.55.137.
 146:db2r6:db2jcc_application:DYNAMIC:59:*:<BRXLS_APPCRIS>
 V442-CRTKN=BRXLS_APPCRIS
 V482-WLM-INFO=DDFDEF:2:4:*
 V445-G9378992.CB66.CBF19D605478=839 ACCESSING DATA FOR
 (1)::9.55.137.146
 V447--INDEX SESSID A ST TIME
 V448--(1) 38420:52070 S2 1325311562154

In V436 message, the section THREAD-INFO provides information about the thread presented
in a colon-delimited list that contains the following segments:

� The primary authorization ID that is associated with the thread.

� The name of the user's workstation.

� The ID of the user.

� The name of the application.

� The statement type for the currently executing statement: dynamic or static.

� The statement identifier for the currently executing statement, if available. The statement
identifier can be used to identify the particular SQL statement.

– For static statements, the statement identifier correlates to the STMT_ID column in the
SYSIBM.SYSPACKSTMT table.

– For dynamic statements, the statement identifier correlates to the STMT_ID column in
the DSN_STATEMENT_CACHE_TABLE table

� The name of the role that is associated with the thread.

� The correlation token that can be used to correlate work at the remote system with work
that runs at the DB2 subsystem. The default correlation token, if available, is enclosed in <
and > characters, and contains three components, which are separated by periods:

– A 3 - 39 character IP address
– A 1 - 8 character port address
– A 12 character unique identifier

Example 9-50 shows the output of -DIS THD(*) DETAIL for the same scenario, with the
original application still running but not executing a query in DB2. This results in V436 not be
presented in the output.

Example 9-50 DIS THD(*) DETAIL and message V436 missing

-DB1A DIS THD(*) DET DSNV401I -DB1A DISPLAY THREAD REPORT FOLLOWS - DSNV402I -DB1A ACTIVE
THREADS - 721
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
SERVER RA * 3 db2jcc_appli DB2R6 DISTSERV 00A2 839
Chapter 9. Connectivity and administration routines 201

 V437-WORKSTATION=9.55.137.146
 USERID=db2r6
 APPLICATION NAME=db2jcc_application
 V441-ACCOUNTING=JCC041709.55.137.146
 V442-CRTKN=BRXLS_APPCRIS
 V482-WLM-INFO=DDFDEF:2:4:20
 V445-G9378992.CB66.CBF19D605478=839 ACCESSING DATA FOR
 (1)::9.55.137.146
 V447--INDEX SESSID A ST TIME
 V448--(1) 38420:52070 N R2 1325311562639

9.2 Cancel thread and cancel SQL statement improvements

This section discusses the following improvements for distributed application accessing DB2
11 for z/OS:

� Changes in Cancel DDF thread
� Changes in SQL statement interruption processing

9.2.1 Changes in Cancel DDF thread

The DB2 CANCEL THREAD command cancels processing for specific local or distributed
threads. The DDF option is used to identify distributed threads for which you want to cancel
processing.

In previous versions of DB2 for z/OS, the DDF cancel command and the SQL Cancel
command might not work to cancel hung threads or interrupt long running SQL statements.
DB2 11 for z/OS introduces the following improvements:

� Enhance the DDF cancel command to use a new z/OS function to terminate a
preemptable SRB

� Remove the restrictions preventing the SQL Cancel from interrupting any long running
SQL statement

The DB2 for z/OS CANCEL THREAD command is a reactive command by design. A DB2 thread
is flagged only as being canceled. The thread processing continues until it reaches a cancel
detection point where the thread reacts by abnormally terminating itself. These cancel
detection points are numerous and strategically distributed in the DB2 code.

This reactive cancel behavior is usually sufficient and successful, but there are cases where
the continued processing of the thread might be such that a cancel detection point might not
be encountered in a timely manner, or not at all, including in the following cases:

� Relatively tight loops in DB2 processing due to the extensive processing nature of the a
SQL statement

� Relatively tight loops in DB2 processing due to a DB2 logic error

In these cases, the reactive nature of the DB2 CANCEL THREAD command is ineffective and a
more proactive cancel behavior would be more reliable.

To satisfy this requirement, a new z/OS function allows to terminate DBAT related SRB and
Enclave processing in a way that allows for DB2 functional recovery. A new z/OS CALLRTM
TYPE=SRBTERM service is provided in z/OS 1.13 to allow the DB2 CANCEL THREAD command
processing to proactively cancel the thread when it is executing under an SRB.
202 IBM DB2 11 for z/OS Technical Overview

To allow for this, the CANCEL THREAD command in DB2 11 includes a new FORCE option.
Example 9-51 shows the syntax of the CANCEL THREAD command in DB2 11. Note the addition
of the new FORCE option.

Example 9-51 CANCEL THREAD command in DB2 11

>>-CANCEL--+-THREAD(token)-----------+--+------+--+-------+----->
 '-DDF THREAD(-+-luwid-+-)-' '-DUMP-' '-LOCAL-'
 '-token-'

>--+-----------+--+-------+------------------------------------><
 '-NOBACKOUT-' '-FORCE-'

Use the FORCE option to instruct DB2 to attempt to purge the thread of a remote connection in
the DB2 server. The FORCE option is accepted only after a request to CANCEL THREAD is issued
without the FORCE option.

You can use the DISPLAY THREAD command to display information by location. Example 9-52
shows the results of the DISPLAY THREAD(*) LOCATION(*) command.

Example 9-52 -DISPLAY THREAD(*) LOCATION(*) command

DSNV401I -DB1A DISPLAY THREAD REPORT FOLLOWS -
DSNV402I -DB1A ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
SERVER RA * 4 db2jcc_appli DB2R1 DISTSERV 0130 60
 V437-WORKSTATION=9.55.137.139
 USERID=db2r1
 APPLICATION NAME=db2jcc_application
 V442-CRTKN=::9.55.137.139.52107.CBC10606A950
 V445-G937898B.CB8B.CBC10606A950=60 ACCESSING DATA FOR
 ::9.55.137.139
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I -DB1A DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

In this example, the thread token that is assigned to the thread is 60, as shown under the
TOKEN keyword. The CANCEL DDF THREAD command syntax accepts either a thread token or a
thread luwid as input, as shown in Example 9-53.

Example 9-53 CANCEL DDF THREAD command syntax

-CANCEL DDF THREAD (token or luwid)

Important: z/OS CALLRTM TYPE=SRBTERM service is provided in z/OS 2.1 or z/OS 1.13
retrofitted through APAR OA39392.

Attention: The FORCE option can potentially affect theDB2 subsystem. Use it to cancel
threads that impact the DB2 subsystem and cannot be canceled without FORCE.

Important: Even with the FORCE option, sensitive processing is still shielded to protect the
subsystem. In these situations, FORCE might not work as expected.
Chapter 9. Connectivity and administration routines 203

As from DB2 11, the CANCEL DDF THREAD commands accepts the FORCE option. For this
example, when using the thread token as input parameter, this command can be written as
shown in Example 9-54.

Example 9-54 CANCEL DDF THD FORCE example

-CAN DDF THD(60) FORCE

Example 9-55 shows the DB2 feedback after the execution of this command.

Example 9-55 DB2 11 new message DSNV519I

DSNV519I -DB1A DSNLCNCL CANCEL THREAD COMMAND WITH FORCE OPTION FOR
'60' HAS COMPLETED WITH RETURN CODE X'0001'

DB2 11 introduces the DSNV519I message. This message is provided when the CANCEL
THREAD FORCE command is issued and indicates the success or failure of the command
through a return code. That is: to determine the successful or failure of this command, you
have to interpret the return code provided by DSNV519I.

Example 9-56 shows the structure of the message DSNV519I.

Example 9-56 Structure of DB2 message DSNV519I

CANCEL THREAD COMMAND WITH FORCE OPTION FOR token-id HAS COMPLETED WITH RETURN CODE return-code

The DSNV519I message provides this information:

token-id Either a thread identifier or a logical unit of work identifier (luwid)
returned from the DISPLAY THREAD command

return-code A numeric value that indicates the success or failure of the CANCEL
THREAD command

The return-code can use the following possible values:

X’0000’ The CANCEL THREAD command successfully completed.

X’0001’ The CANCEL THREAD command was not accepted. The FORCE option is
not allowed until a CANCEL THREAD without the FORCE option is first
attempted.

X’0002’ The CANCEL THREAD command was not accepted. The CANCEL THREAD
command with the FORCE option for the same token-id cannot be
repeated.

X’0003’ The CANCEL THREAD command was not accepted. The token-id cannot
be found.

X’0004’ The CANCEL THREAD command was not accepted. The token-id is
associated with a DDF disconnected DBAT on the DB2 server.

Example 9-55 receives an X’0001’ return code when executing the CANCEL THD command in
Example 9-54. This return code is a consequence of using the FORCE option before executing
a non-FORCE command. At this point, no action against the target thread has been performed
by DB2. In this scenario the only next option to cancel this tread is then to execute a
non-FORCE CANCEL THD command as shown in Example 9-57.

Note: The CANCEL THREAD command has no effect if the thread is not active or suspended
in DB2.
204 IBM DB2 11 for z/OS Technical Overview

Example 9-57 CANCEL DDF THREAD command

-CAN DDF THD(60)

Example 9-58 shows the DB2 feedback on the execution of this command.

Example 9-58 CANCEL THREAD command output example

DSNL010I -DB1A DDF THREAD '60' HAS BEEN CANCELLED

In this example, the thread was effectively and immediately cancelled. This can be confirmed
by a DISPLAY THREAD command, or by inspecting the DB2 MSTR address space feedback.
Example 9-59 shows how the termination of the thread is reported in the MSTR address
space of this example DB2 subsystem.

Example 9-59 Cancelled thread: DB2 MSTR feedback

20.24.21 STC06973 DSNL027I -DB1A SERVER DISTRIBUTED AGENT WITH 220
 220 LUWID=G937898B.CB8B.CBC10606A950=60
 220
 220 THREAD-INFO=DB2R1:9.55.137.139:db2r1:db2jcc_application:*:*:*:<::9.55
 220 .137.139.52107.CBC10606A950>
 220 RECEIVED ABEND=04E
 220 FOR REASON=00D3001A
20.24.21 STC06973 DSNL028I -DB1A G937898B.CB8B.CBC10606A950=60 221
 221 ACCESSING DATA FOR
 221 LOCATION ::9.55.137.139
 221 IPADDR ::9.55.137.139
20.24.21 STC06973 DSNL511I -DB1A DSNLIENO TCP/IP CONVERSATION FAILED 222
 222 TO LOCATION ::9.55.137.139
 222 IPADDR=::9.55.137.139 PORT=52107
 222 SOCKET=SENDMSG RETURN CODE=3448 REASON CODE=00000000

The 00D3001A reason code indicates that a CANCEL DDF THREAD command naming a
distributed thread caused the thread to be terminated. If the thread not being cancelled
because of the reason discussed previously in this section, a CANCEL DDF THREAD option FORCE
would be accepted by DB2.

9.2.2 Changes in SQL statement interruption processing

Prior to DB2 for z/OS Version 8, the only way to interrupt SQL statement processing that was
executing on behalf of a remote application was for the remote application to terminate its
connection to the DB2 for z/OS server. This interrupted the SQL statement by terminating the
entire DB2 for z/OS server thread (DBAT) and all SQL in the transaction were also aborted.

To allow applications to remain connected to the DB2 for z/OS sever, DB2 for z/OS V8
introduced the ability to interrupt the operation of individual SQL statements. DB2 returns an
SQLCODE indicating that the specific SQL statement was canceled, while maintaining the
connection with the remote application and the effects of all previous SQL in the transaction.

Application driver environments typically have the following property settings that determine
which form of SQL Interruption are used:

� To interrupt the SQL statement
� To interrupt the entire connection
Chapter 9. Connectivity and administration routines 205

The default client driver behavior is the more granular approach to interrupt just the SQL
statement, as opposed to terminating the connection.

For example, the interruptProcessingMode property specifies the behavior of the IBM Data
Server Driver for JDBC and SQLJ when an application executes the Statement.cancel
method. Possible values are:

� DB2BaseDataSource.INTERRUPT_PROCESSING_MODE_DISABLED (0)

Interrupt processing is disabled. When an application executes Statement.cancel, the
IBM Data Server Driver for JDBC and SQLJ does nothing

� DB2BaseDataSource.INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL (1)

This is the default value. When an application executes Statement.cancel, the IBM Data
Server Driver for JDBC and SQLJ cancels the currently executing statement. If the data
server does not support interrupt processing, the driver throws an SQLException.

� DB2BaseDataSource.INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET (2)

When an application executes Statement.cancel, the driver drops the underlying socket

Example 9-60 shows a portion of a JCC trace for a Java application connecting to a DB2 11
for z/OS server.This example highlights the default queryTimeoutInterruptProcessingMode=1
property value. This value indicates that the driver is working with interrupt processing.

Example 9-60 JCC trace and the default interrupt processing mode

[jcc] pureQuery present = false
[jcc] END TRACE_DRIVER_CONFIGURATION
[jcc] BEGIN TRACE_CONNECTS
[jcc] Attempting connection to redbook8:38420/DB1A
[jcc] Using properties: { maxStatements=0, currentPackagePath=null, currentLockTimeout=-2147483647,
timerLevelForQueryTimeOut=0, optimizationProfileToFlush=null, timeFormat=1, monitorPort=0, sendCharInputsUTF8=0,
...
currentSchema=null, CR_LOCKBLOB=null, traceLevel=-1, enableRowsetSupport=0, clientDebugInfo=null, dataSourceName=null,
enableAlternateServerListFirstConnect=0, maxRetriesForClientReroute=-1, fetchSize=-1, queryDataSize=0,
queryTimeoutInterruptProcessingMode=1, alternateGroupServerName=null, clientRerouteAlternateServerName=null,
DBTEMP=/tmp, enableT2zosLBF=0, SUBQCACHESZ=10, ssid=null, maxConnCachedParamBufferSize=1048576,
fullyMaterializeInputStreamsOnBatchExecution=0, alternateGroupPortNumber=null,
...
defaultIsolationLevel=2, deferPrepares=true, currentDegree=null, DUMPMEM=null, memberConnectTimeout=0 }
[jcc] END TRACE_CONNECTS

The SQL statement Interruption technique is the more granular and preferred operation with
respect to remote applications. Nevertheless, the statement interruption processing is not
completely reliable in some scenarios. As a consequence, there is a strong recommendation
for users to use the more drastic, but more effective,
INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET method that terminates the
connection.

However, it is often difficult for users to modify the client driver property to use the more
reliable form. As a consequence, until the DB2 SQL statement Interrupt processing can be
made more reliable, DB2 compensates by changing its SQL Interruption processing to
behave as though the connection had been terminated.

This way, SQL statement interruption is more reliable at a DB2 for z/OS server system, but at
the expense of terminating the connection with the remote application. This condition should
be handled by the application.
206 IBM DB2 11 for z/OS Technical Overview

In DB2 11, when DB2 receives a DRDA SQL Interrupt from a remote client, it closes the
connection and terminate the thread under which the statement is running, instead of
interrupting just the statement and returning an SQLCODE=-952.

Depending on whether the remote client has enabled Sysplex Workload Balancing
(sysplexWLB) and if the application has resources that need to persist across transactions
preventing the connection from being reused by a different application at the end of a
transaction, the remote application might receive the following SQLCODEs:

-30081 An application gets this SQLCODE if the client does not support
sysplexWLB or the connection cannot be reused. The client has to
reconnect to DB2 before executing the application again

-30108 An application gets this SQLCODE if the client supports sysplexWLB
and the connection can be reused but the client cannot retry the failed
statement seamless to the application. The client, however,
reconnects to DB2 before returning the SQLCODE to the application
so that the application can retry the failed transaction immediately

0 An application can get this SQLCODE if the client supports
sysplexWLB, the connection can be reused and the client seamlessly
retried the failed statement which completed successfully

9.3 Continuous block fetching

DB2 11 introduces package-based continuous block fetch. It can improve performance for
retrieval of large, read-only result sets from a remote DB2 for z/OS server.

Like the previously existing SQL-based continuous block fetch, package-based continuous
block fetch causes fewer messages to be transmitted from the requester to retrieve the entire
result set. However, package-based continuous block fetch is easier to configure. It requires
only that you bind your applications with the new DBPROTOCOL(DRDACBF) option. You do not
need to modify your applications or set subsystem parameters to indicate the maximum
number of blocks to be returned for a remote request. This change is available in NFM and
requires APPLCOMPAT = V11R1 to be set.

The new package-based continuous block fetch is more efficient than SQL-based continuous
block fetch. With package-based continuous block fetch, the requester opens a secondary
connection to the DB2 server for each read-only cursor. The DB2 server returns extra query
blocks until the all rows for the cursor have been retrieved. When the cursor is closed, the
secondary connection is implicitly closed.

Important: DB2 11for z/OS provides improved performance for distributed applications
that return large result sets
Chapter 9. Connectivity and administration routines 207

Figure 9-3 shows a representation of how SQL Based Continuous Block Fetch works. Using
this technique, DB2 can send numerous query blocks per request. A single connection is
used for all SQL. The implication for the single connection is that other SQL, outside of the
cursors, cannot use the connection while the cursor driven blocks are using the connection.

Figure 9-3 SQL based continuous block fetch

Figure 9-4 shows a representation of the Package Based Continuous Block Fetch, introduced
in DB2 11. With this method, query blocks flow on a secondary connection until the cursor is
exhausted. As a consequence, the network latency is significantly improved. When the result
set or cursor is exhausted, the DB2 server terminates the connection and the thread is
immediately pooled.

Figure 9-4 Package based continuous block fetch

Example 9-61 shows the changes to the SPUFI REBIND panels to indicate the DRDACBF option.

Example 9-61 SPUFI panel DSNEBP11, defaults for REBIND PACKAGE

DSNEBP11 DEFAULTS FOR REBIND PACKAGE SSID: DB1A
COMMAND ===>

Change default options as necessary.
----------------- Use the UP/DOWN keys to access all options ------------------
 More: -
 UNICODE, or ccsid)
11 OPTIMIZATION HINT ===> SAME > (SAME or 'hint-id')
12 IMMEDIATE WRITE.......... ===> SAME (SAME, NO, YES,
208 IBM DB2 11 for z/OS Technical Overview

 or INHERITFROMPLAN)
13 DBPROTOCOL ===> SAME (SAME, DRDA, DRDACBF)
14 DYNAMIC RULES ===> SAME (SAME, RUN, BIND,
 DEFINERUN, DEFINEBIND,
 INVOKERUN or INVOKEBIND)
15 PLAN MANAGEMENT ===> DEFAULT (DEFAULT, BASIC, EXTENDED, OFF)
16 ACCESS PATH REUSE ===> DEFAULT (DEFAULT, ERROR, NONE, or WARN)
17 ACCESS PATH COMPARISON .. ===> DEFAULT (DEFAULT, ERROR, NONE, or WARN)
18 ACCESS PATH RETAIN DUPS . ===> DEFAULT (DEFAULT, NO, or YES)
19 SYSTEM_TIME SENSITIVE ... ===> SAME (SAME, NO, or YES)
20 BUSINESS_TIME SENSITIVE . ===> SAME (SAME, NO, or YES)
21 ARCHIVE SENSITIVE ===> SAME (SAME, NO, or YES)
22 APPLICATION COMPATIBILITY ===> SAME (SAME, V10R1, or V11R1)

PRESS: ENTER to continue UP/DOWN to scroll RETURN to EXIT

Example 9-62 shows an example of REBIND PACKAGE command using the
DBPROTOCOL(DRDACBF) option.

Example 9-62 REBIND PACKAGE with DBPROTOCOL(DRDACBF) option

//DRDACBF1 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//STEPLIB DD DSN=DB1AT.SDSNLOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DB1A)
 REBIND PACKAGE(DSN8BH11.DSN8BC3) DBPROTOCOL(DRDACBF)
/*

Example 9-63 shows the output of the execution of this REBIND command.

Example 9-63 REBIND output

1READY
 DSN SYSTEM(DB1A)
 DSN
 REBIND PACKAGE(DSN8BH11.DSN8BC3) DBPROTOCOL(DRDACBF)
 WARNING, ONLY IBM-SUPPLIED COLLECTION-IDS SHOULD BEGIN WITH "DSN"
 WARNING, ONLY IBM-SUPPLIED PACKAGE-IDS SHOULD BEGIN WITH "DSN"
 DSNT254I -DB1A DSNTBRB2 REBIND OPTIONS FOR
 PACKAGE = DB1A.DSN8BH11.DSN8BC3.()
 ACTION
 OWNER SYSADM
 QUALIFIER SYSADM
 VALIDATE RUN
 EXPLAIN NO
 ISOLATION CS
 RELEASE
 COPY
 APREUSE
 APCOMPARE
 APRETAINDUP YES
 BUSTIMESENSITIVE YES
 SYSTIMESENSITIVE YES
 ARCHIVESENSITIVE YES
 APPLCOMPAT V11R1
 DSNT255I -DB1A DSNTBRB2 REBIND OPTIONS FOR
 PACKAGE = DB1A.DSN8BH11.DSN8BC3.()
 SQLERROR NOPACKAGE
 CURRENTDATA YES
Chapter 9. Connectivity and administration routines 209

 DEGREE 1
 DYNAMICRULES
 DEFER
 REOPT NONE
 KEEPDYNAMIC NO
 IMMEDWRITE INHERITFROMPLAN
 DBPROTOCOL DRDACBF
 OPTHINT
 ENCODING EBCDIC(00037)
 PLANMGMT EXTENDED
 PLANMGMTSCOPE STATIC
 CONCURRENTACCESSRESOLUTION
 EXTENDEDINDICATOR
 PATH
 DSNT232I -DB1A SUCCESSFUL REBIND FOR
 PACKAGE = DB1A.DSN8BH11.DSN8BC3.()
 DSN
 END
 READY
 END

Package-based continuous block fetch provides a performance advantage for a DB2 for z/OS
application with the following characteristics:

� The application queries only remote sites

� The application does not contain INSERT, UPDATE, DELETE or MERGE statements

� No statement in the application creates a unit of recovery on the remote site. This situation
results in an SQL error when the application package is bound for package-based
continuous block fetch

Table 9-7 shows the results observed during IBM conducted preliminary internal lab
performance tests. In this table, results are expressed as delta %.

Table 9-7 Preliminary internal lab performance results

9.4 Support for global variables

This section describes the use of global variables.

DB2 supports the following types of distributed protocols an application can use to execute a
statement on a remote system:

� When the application explicitly connects to the remote server, application-directed access

� When the application implicitly connects to the remote server by using three-part name
references, system-directed access

Application-directed access
When using application-directed access, the location and platform of the system executing
the statement is known to the application. The application, which had connected to DB2 and

Delta % Class 1 Elapsed
Time

Class 2 Elapsed
Time

Class 1 CPU
Time

Class 2 CPU
Time

Server -29,5 -8,3 -20 -5,8

Requester -31,1 -31,1 -13 -13
210 IBM DB2 11 for z/OS Technical Overview

possibly run some statements, now connects to another location. In doing so, the application
must then establish the session environment it needs to run any of its statements while
connected to this new location. Thus, any session information, special registers and
user-defined session global variables, are maintained between the application itself and the
current serving location. If the application decides to temporarily move away from this location
to another, the session information would be preserved at this serving location until the
connection between the requesting and serving locations was terminated.

System-directed access
When using system-directed access, the location and platform of the system executing the
statement is transparent to the application. The application connects to DB2 and runs the
statement as though executing on the local system. You can create aliases for remote objects
which allows you to reference remote objects without any change to your application. Users
access them with the same syntax and application environment as local objects. When DB2
parses the statement and determines the object is on a remote system, DB2 implicitly
connects to the system and forwards the statement to the other system.

For example, an application connects to the EAST location and queries the DEPT table. If the
DEPT table is moved to the WEST location, you can create an alias on the EAST location for
the DEPT table on the WEST location, the application can continue to issue the query without
change. Even if the application directly references the DEPT table at the WEST location by
using an explicit 3-part name reference, the application is still just referencing a table/view
object without regard to the fact that communications have to be established to the WEST
location to access the DEPT table

To maintain location transparency, DB2 ensures the application execution environment is
maintained across systems. Special registers used to store information that can be
referenced in SQL statements and set by the application are maintained by DB2 on both the
local and remote systems transparent to the application. For example, if an application issues
the SET CURRENT PRECISION statement to assign a value to the CURRENT PRECISION special
register, The CURRENT PRECISION register value is propagated to the remote system prior to
executing the statement. When the statement is executed, special register settings set by the
application are used to process the statement on the other system.

To maintain location transparency for user-defined session global variables, DB2 ensures the
global variables and their values set by the application context are maintained and persist
across systems. Because any statement executed locally can reference or alter any
user-defined session global variable, an instance of any global variable with its last updated
value must be created on the remote system prior to executing the statement. Thus, global
variables values are maintained by DB2 on both the local and remote systems for the
application process.

For example, if an application sets some global variables and then executes a
system-directed SQL statement, the global variable settings are propagated to the remote
system. Prior to the execution of the statement, the remote system uses the global variable
definitions and values sent from the requesting system to create instances of the user-defined
global variables. The statement is then executed on the remote system.

If any changes are made to user-defined session global variables on the remote system by
the just executed statement, the definitions and updated values of the changed user-defined
session global variables are returned to the requesting system. The requesting system then
updates any already instantiated user-defined session global variables or creates instances
of newly set user-defined session global variables. For this all to work correctly, the definitions
of the global variables, that is CREATE VARIABLE statements, must be identical on both the
requesting and serving systems or SQLCODE -30045 is issued.
Chapter 9. Connectivity and administration routines 211

Example 9-64 shows the structure of the SQL error code -30045.

Example 9-64 Structure of SQLCODE -30045

EXECUTION FAILED BECAUSE THE DEFINITION OF OBJECT object-name OF TYPE object-type BEING
ACCESSED AT server-name-1 DIFFERS FROM THE DEFINITION OF THE OBJECT AT server-name-2

As a result of the error reported by the SQL error code -30045, the statement cannot be
processed. Refer to the IBM documentation “DB2 for z/OS Codes” for more details about this
SQL error code.

Finally, an application can intermix application-directed and system-directed statements on
the same connection. How session information is maintained is dependent on the persistence
of any connection created between the two locations. Mixing protocols that utilize
user-defined session global variables can result in unexpected behavior and is prevented. If
an application intermixes distributed protocols where a statement first used
application-directed protocols and was then followed by a statement using system-directed
protocols, an SQLCODE -30047 exception is generated.

For example, an application issues a statement that uses an ALIAS to refer to a table at
another location and then calls a procedure which issues a CONNECT statement and issues
statements to the same location, the connection has executed statements using both
protocols.

Persistence of connections is governed by the SQL RELEASE statement and how the plan was
bound as follows:

� For z/OS applications, the DISCONNECT bind plan option determines when connections are
dropped during commit operations. The default value is EXPLICIT. If EXPLICIT is used, the
application must issue a RELEASE statement prior to a COMMIT to have a connection
dropped during commit processing.

If no RELEASE statements are issued, the connections persist until the application ends.
Another possible option is AUTOMATIC. When the AUTOMATIC bind option is in control, all
connections to remote servers from the requester is dropped when a COMMIT is
processed. The final value of the DISCONNECT bind option is CONDITIONAL. It behaves
similarly to AUTOMATIC with one exception. If a WITH HOLD cursor is still open against a
location, the connection is not dropped when a COMMIT is processed. If the application
eventually closes the cursor, a subsequent COMMIT then causes the connection to be
dropped.

� For IBM DB2 Connect™ applications, the EXPLICIT behavior is used and cannot be
changed.

� The above connection persistence rules apply whether or not the application was
prepared (not bound) under connect type-1 or connect type-2 rules.

Based on the above connection persistence rules, SQL statements that are processed at a
location under application-directed protocols behave as follows:

� All statement references to user-defined session global variables, both input and output,
refer to the user-defined session global variables at the serving location. User-defined
session global variables at the requesting location are neither updated nor referenced as a
result of either dynamic or static SQL statements in this scenario.

Important: The global variable definitions must exist at every remote location that is
accessed by an application, and the definitions must be identical. Otherwise, the
application receives SQLCODE -30045.
212 IBM DB2 11 for z/OS Technical Overview

� The content of the user-defined session global variables at the serving location persists
until the connection is dropped. Whether connect type-1 or connect type-2 rules are used,
the connection type is not be a factor and doesn't affect when a connection is dropped.
Any subsequent references to user defined session global variables at the location where
the connection had been dropped cause the user defined session global variables to be
instantiated with default values again; otherwise, subsequent references to the
user-defined session global variables use the values last updated.

Based on these connection persistence rules, SQL statements that are processed using
system-directed protocols behave as follows:

� Contents of the user-defined session global variables that are instantiated at the
requesting location are sent to the serving location, such that the same user-defined
session global variable values are used during the processing of the SQL statement at
both locations.

� User-defined session global variables that are the target of the output process from the
SQL statement are made to both the user-defined session global variables at both
locations.

� For static SQL statements referencing objects and user-defined session global variables
that use system-directed access, a package must be bound at both locations. If at the time
of the static bind, different definition exists on the requester location and server location for
the same user defined session global variable, the executable runtime structures are
generated differently. At execution time, DB2 issues an -30045 exception to indicate a
mismatch of user-defined session global variable definitions if referenced on both sites.

� For dynamic statements referencing objects and user-defined session global variables at
remote locations through system-directed distributed processing, there is no
corresponding restriction as static statements. However, if the SQL statement uses a
user-defined session global variable and DB2 determines there is a definition mismatch,
DB2 issues the -30045 error.

If the application connected to DB2 issues statements that use both system-directed
protocols and application directed protocols to the same location, they share the same
connection. For example, an application connects to the HDQ location and issues a
statement that uses an ALIAS to query a table at the MFG location. The next statement calls
a procedure on the HDQ location. If procedure issues a CONNECT statement to the MFG
location, the same connection is used. Mixing protocols which use user-defined global
variables can cause nondeterministic results. Mixing distributed protocol statements on the
same connection that use user-defined session variables is prevented by DB2 issuing an
SQLCODE -30047 exception.

For DB2 Connect clients that are sysplexWLB enabled which performs transaction level load
balancing across a data sharing group, connections persist across different members of the
data sharing group. To support user defined session global variables an upgrade of the client
is needed with this feature enabled. DB2 returns changed user-defined session global
variables to the client driver to allow the client to replay them when the application connection
is transparently moved to a different member of the data sharing group.

Global variables in SQL statements referencing remote servers
In the case of static statements referencing a 3-part remote object, or a statically bound
statement executed when the CURRENT SERVER is a remote server, DB2 marks the current
section as a distributed-section at the requester site, and all SQL processing occurs at the
target server site.

This means, the created global variables at the local requester site are not used in the
processing of the SQL statement, because the processing occurs at the server.
Chapter 9. Connectivity and administration routines 213

DB2 requires the package to exist at both the requester and the server sites for DRDA
communication protocol. Thus, the packages on all sites need to be created first using some
form of BIND PACKAGE command. However, because the bind occurs on different sites, the
global variables might not be all created, or if created might not share the same definition nor
DEFAULT expressions. Incongruous definitions or instantiation of global variables can result in
different outcomes when the same SQL statement is executed locally versus remotely

Global variables scope with Thread-Reuse
DB2 Distributed Data Facility (DDF) can employ thread-reuse to enhance performance when
multiple connections are made to the DB2 server. If a connection (or thread) in DB2 qualifies
for reuse, then it is returned to the reusable thread pool at COMMIT or ROLLBACK, waiting for the
next connection request. The next connection request can be from a different application, or it
can be the continuation of the previous application. Because global variables are not affected
by COMMIT nor ROLLBACK, the content must persist across COMMIT and ROLLBACK, and therefore,
across reusable threads.

When a thread is reused for an application that referenced global variables, all instantiated
variables are “replayed” for the reused thread such that all values recorded from the previous
thread are copied over to the current reused thread. This ensures the persistence of the
instantiated global variable across reusable threads.

9.5 Local stored procedure execution improvement

DB2 11 delivers performance optimization for processing stored procedure calls from local
ODBC and JDBC applications by improving stored procedure result set processing. This is
beneficial for customers who call stored procedures from a local JDBC or ODBC
environment, such as WebSphere on z/OS or MessageBroker on z/OS, encapsulating SQL in
stored procedures. The enhancements do not require changes to the application and are
available in CM.

The enhancements are in the following areas:

� The communication between the ODBC or JDBC/SQLJ driver and DB2 to execute the
CALL statement.

Bundling CALL and DESCRIBE PROCEDURE and bundling ALLOCATE CURSOR and DESCRIBE
CURSOR to reduce trips from ODBC/JDBC driver to DBM1.

� The communication between the ODBC or JDBC/SQLJ driver and DB2 to return the result
set metadata.

� The processing of the result sets returned from the called stored procedure using limited
block fetch and progressive streaming (which is better performing than multi-row fetch).

� The communication between ODBC or JDBC/SQLJ driver and DB2 by implicitly closing
the result sets at their termination (SQLCODE +100).

� Support of 64bit private variables area for in/out parameters.

Allows the exchange of parameter larger than 32 KB, such as parameter of data type LOB
(with usage of 64-bit DB2VAR for input/output parameters).

� More efficient way to describe stored procedure parameters.

Similar enhancements had been introduced with DB2 10 for local ODBC/JDBC, but not for
stored procedures.
214 IBM DB2 11 for z/OS Technical Overview

Figure 9-5 summarizes the enhancements.

Figure 9-5 Summary of local stored procedure improvements

The ODBC driver supports the optimization of stored procedure result set processing by
enabling block fetch through the LIMITEDBLOCK, QUERYDATASIZE, and STREAMBUFFERSIZE
keywords in the initialization file data source section. The keyword values are read from the
data source stanza following a successful connect.

The LIMITEDBLOCK keyword specifies if the driver is to attempt a block fetch when fetching a
result set at the connected data source (server). The acceptable keyword values are 0 and 1:

0 No block fetch.

1 (default) The driver would attempt a block fetch and return as many rows as can
fit in a data block in a single fetch provided that blocking is supported
at the server for the result set being fetched. The driver currently does
not perform block fetch if any of the columns in the result set is a LOB,
XML, or file reference.

QUERYDATASIZE specifies the size of the data block in bytes. The default for QUERYDATASIZE is
32 KB (32767). The maximum data block size is 1048575 in 32 KB increments.

STREAMBUFFERSIZE is the threshold value, in bytes (default 1 MB) to return LOB or XML as
inline data or as internal token:

� If size of LOB or XML object <= STREAMBUFFERSIZE, data returned inline
� If size of LOB or XML object >= STREAMBUFFERSIZE, progressive reference returned

The JDBC driver supports stored procedure optimization transparently.

� The queryDataSize property also used for stored procedure result sets

32 KB, up to 1 MB in 32 KB increments

� FET_BUF_SIZE (64 KB) keyword can be used to limit rows per buffer
Chapter 9. Connectivity and administration routines 215

The tests have shown better performance for local ODBC and Type 2 applications that call
local stored procedures because of:

� More efficient blocking of data in returned result sets
� More efficient retrieval of LOB and XML result sets
� Reduced traffic for implicit close

9.6 Multi-threaded Java stored procedure environment

DB2 11 adds support for running Java stored procedures in a 64-bit Java virtual machines
(JVM). Earlier versions of DB2 run Java stored procedures in 31-bit JVM only, and each JVM
can run only one Java stored procedure at a time.

With DB2 10, the behavior is single threaded JVM for Java stored procedures can be
summarized as follows:

� WLM stored procedure address space (WLM-SPAS)

� 1 JVM per TCB in WLM-SPAS

– Large storage footprint per TCB
– Overhead on starting JVMs

� The recommended NUMTCB is 8 or less per WLM application environment

– NUMTCB used is typically 2-5

� There are performance and scalability implications for Java stored procedures

� They use a 31-bit JVM

With DB2 11, see Figure 9-6, Java stored procedures use multi-threaded JVMs. DB2 11 can
concurrently run multiple Java stored procedures in 64-bit JVMs. Therefore, more Java stored
procedures can run in a single stored procedure address space than in earlier DB2 versions.

� One 64-bit JVM per WLM-SPAS

– Less overhead to start JVM
– Smaller JVM storage footprint

� NUMTCB of 25 or more per WLM application environment

– Better scalability

� It requires JDK 1.6
– 64-bit JDK
– IBM Data Server Driver for JDBC and SQLJ

The multi-threaded JVM executes a new DSNX9WJM module in the WLM application
environment which is specified on the start-up JCL.

The existing application environments need to be modified or new application environments
defined to take advantage of more TCBs (larger NUMTCB).
216 IBM DB2 11 for z/OS Technical Overview

Figure 9-6 Moving to multi-threaded JVM environment

Most existing Java stored procedures can be altered to run in new multi-threaded
environment. If the Java stored procedure invokes a native method through JNI calls, the
dynamic link library (DLL) for native functions must be compiled and linked in 64-bit mode.

While in data sharing coexistence, multi-threaded Java stored procedures can be used in CM
mode but all members must use new DSNX9WJM module for that WLM environment if stored
procedures uses native JNI calls.

9.7 ADMIN_COMMAND_MVS stored procedure

DB2 provides stored procedures that you can call in your application programs to perform
administrative functions.

You can use the DB2 provided SYSPROC.ADMIN_COMMAND_MVS stored procedure to issue the
following z/OS commands:

� QUERY COPYPOOL
� LIST COPYPOOL
� DB2 START
� DB2 STOP
� DUMP
� DISPLAY WLM

SYSPROC.ADMIN_COMMAND_MVS (also retrofitted to DB2 10 by APAR PM93773) extends the list to
the following available command related stored procedures:

� ADMIN_COMMAND_DB2
� ADMIN_COMMAND_DSN
� ADMIN_COMMAND_UNIX

Note: Native non-Java code must be rebuilt and tested for the 64-bit environment.
Chapter 9. Connectivity and administration routines 217

This stored procedure runs in a WLM-established stored procedures address space, and all
of the libraries that are specified in the STEPLIB DD statement must be APF-authorized.
Example 9-65 shows the syntax for calling ADMIN_COMMAND_MVS.

Example 9-65 Syntax CALL ADMIN_COMMAND_MVS

>>-CALL--ADMIN_COMMAND_MVS--(----type---,----------------------->

>--+-command_prefix-+-,--+-remote_system-+-,--+-jobname-+-,----->
 '-NULL-----------' '-NULL----------' '-NULL----'

>----command---,--+-parameters-+-,--+-subparameters-+-,--------->
 '-NULL-------' '-NULL----------'

>--+-wait_timeout-+--return-code,--command_completion_code,----->
 '-NULL---------'

>--+-message-+--)--><
 '-NULL----'

The call parameter type cannot be NULL, and it accepts these values:

� HSM
� DB2
� DUMP
� WLM

This stored procedure returns the following output parameters:

return-code Provides the return code from the stored procedure. Possible
values are 0,4,8, and 12.

command_completion_code Indicates the completion status of the command. Possible values
are 0,4,8,12 and 16.

message Contains messages that describe the error that was encountered
by the stored procedure.

Execution example: display WLM
To display the WLM application environments using ADMIN_COMMAND_MVS you have to specify
these parameters:

� Type: Use the value WLM
� Command: Use the value DISPLAY
� Parameters: Specify either APPLENV=name or APPLENV=*

Tip: Refer to DB2 11 for z/OS Administration Guide, SC19-4050 for details about
ADMIN_COMMAND_MVS parameters.
218 IBM DB2 11 for z/OS Technical Overview

All the other parameters have to be defined as NULL. Figure 9-7 shows an example of calling
ADMIN_COMMAND_MVS from Data Studio.

Figure 9-7 Calling ADMIN_COMMAND_MVS from Data Studio

For parameter that are not filled in, use the Set to Null button in this dialog box. Otherwise,
the execution of the stored procedure fails with return code 12 and DSNA601I message.

Example 9-66 is an illustration of the feedback received when using an invalid
COMMAND_PREFIX parameter.

Example 9-66 Message DSNA601I

DSNA601I DSNADMCM THE PARAMETER COMMAND_PREFIX IS NOT VALID. INVALID REASON CODE=5

DSNA601I indicates that the parameter specified in the message is not valid. The cause of
the invalid error is identified by the INVALID REASON CODE value in the message text. The
specified parameter is not valid for the indicated reason, as follows:

� REASON CODE=1: Value is not an acceptable value
� REASON CODE=2: Value is not unique
� REASON CODE=3: Value is null
� REASON CODE=4: Value is blank
� REASON CODE=5: Value is not null
� REASON CODE=6: Value is too long
� REASON CODE=7: Named parameter is not known
� REASON CODE=8: Named parameter is missing
Chapter 9. Connectivity and administration routines 219

Figure 9-8 shows the parameters panel in Data Studio after successful execution. Note the
parameters RETURN_CODE = 0 and COMMAND_COMPLETION_CODE = 0. MSG is Null.

Figure 9-8 ADMIN_COMMAND_MVS parameters in Data Studio

The actual WLM DISPLAY results are reported in the Result1 panel, as shown in Figure 9-9.

Figure 9-9 Calling ADMIN_COMMAND_MVS: Result1 panel

In addition, the WLM DISPLAY output command is listed in the system log, as shown in
Example 9-67.

Example 9-67 ADMIN_COMMAND_MVS and WLM DISPLAY: system log messages

15:52:51.67 STC06093 00000090 ICH70001I DB2R1 LAST ACCESS AT 15:39:32 ON FRIDAY, JULY 26, 2013
15:52:51.70 STC06093 00000290 IEA630I OPERATOR DSNADMCM NOW ACTIVE, SYSTEM=SC63 , LU=DSNADMCM
15:52:51.70 DSNADMCM 00000290 DISPLAY WLM,APPLENV=*
15:52:51.73 DSNADMCM 00000090 IWM029I 15.52.51 WLM DISPLAY 337
 337 00000090 APPLICATION ENVIRONMENT NAME STATE STATE DATA
 337 00000090 BARTSRV AVAILABLE
 337 00000090 BBOASR1 AVAILABLE
 337 00000090 BBOASR2 AVAILABLE
 337 00000090 CBINTFRP AVAILABLE
220 IBM DB2 11 for z/OS Technical Overview

 337 00000090 CBNAMING AVAILABLE
...

In this example, STC06093 is the WLM address space that supports the execution of the stored
procedure. DSNADMCM is the name of the extended MCS console that issue the requested
command.

Security considerations
To execute the CALL statement, the owner of the package or plan that contains the CALL
statement must have one or more of the following privileges:

� The EXECUTE privilege on the stored procedure
� Ownership of the stored procedure
� SYSADM authority

The load module for ADMIN_COMMAND_MVS is named DSNADMCM. This name can be used in the
definition of some specific RACF resources as a way of increasing security.

The caller of ADMIN_COMMAND_MVS must have READ access to the RACF MVS.MCSOPER.* or to the
MVS.MCSOPER.DSNADMCM resource profile of the OPERCMDS class. RACF perform access checks
starting by the most restrictive resource profile. If MVS.MCSOPER.DSNADMCM is not defined, RACF
checks for MVS.MCSOPER.*.

You can use the RACF ISPF panels to investigate the access defined on the resource
MVS.MCSOPER.* following these steps:

1. Open the RACF ISPF main menu to receive the SERVICES OPTION MENU.

2. Select option 2. GENERAL RESOURCE PROFILES.

3. You are now in the GENERAL RESOURCE PROFILE SERVICES panel. Select option S.
SEARCH.

4. Press Enter to access to the GENERAL RESOURCE SERVICES - SEARCH panel.

5. Enter OPERCMDS in the CLASS option, as shown in Example 9-68.

Example 9-68 RACF - GENERAL RESOURCE SERVICES panel

RACF - GENERAL RESOURCE SERVICES - SEARCH
 OPTION ===>

 ENTER THE FOLLOWING PROFILE INFORMATION:

 CLASS ===> OPERCMDS

 PROFILE ===>

6. Press Enter to access the SEARCH FOR GENERAL RESOURCE PROFILES panel.
Fill-in MASK1 with MVS, and MASK2 with MCSOPER, as shown in Example 9-69. Press
Enter to continue.

Example 9-69 RACF SEARCH FOR GENERAL RESOURCE PROFILES panel

RACF - SEARCH FOR GENERAL RESOURCE PROFILES
 COMMAND ===>

 ENTER MASK(S) OR FILTER (OPTIONAL):

 MASK1 ===> MVS

Chapter 9. Connectivity and administration routines 221

 <= end of data

 MASK2 ===> MCSOPER

 <= end of data

7. In next panel, SEARCH FOR GENERAL RESOURCE PROFILES, just press Enter to
continue.

8. Example 9-70 shows the RACF command output.

Example 9-70 RACF COMMAND OUTPUT, MVS.MCSOPER

BROWSE - RACF COMMAND OUTPUT------------------------ LINE 00000000 COL 001 080
 COMMAND ===> SCROLL ===> CSR
********************************* Top of Data **********************************
MVS.MCSOPER.ABC
MVS.MCSOPER.AOPAOP1C
MVS.MCSOPER.PLUGH
MVS.MCSOPER.* (G)
******************************** Bottom of Data ********************************

The MVS.MCSOPER.DSNADMCM profile is not defined in this environment. Access is controlled by
the profile MVS.MCSOPER.*, a RACF generic profile. Using the RACF ISPF panel GENERAL
RESOURCE SERVICES - DISPLAY you can browse the access definitions on this resource.
Example 9-71 illustrates the RACF command output obtained when using this panel.

Example 9-71 RACF COMMAND OUTPUT, resource MVS.MCSOPER.*

BROWSE - RACF COMMAND OUTPUT------------------------ LINE 00000000 COL 001 080
 COMMAND ===> SCROLL ===> CSR
********************************* Top of Data **********************************
CLASS NAME
----- ----
OPERCMDS MVS.MCSOPER.* (G)

LEVEL OWNER UNIVERSAL ACCESS YOUR ACCESS WARNING
----- -------- ---------------- ----------- -------
 00 TRAUNER CONTROL CONTROL NO

...
******************************** Bottom of Data ********************************

The RACF Universal Access Authority (UACC) is assigned by default to a user id unless there
is a more restrictive access definition. In this example, every user receives CONTROL access
on the resource MVS.MCSOPER.* and, in consequence, there is no RACF restriction on the
execution of the ADMIN_COMMAND_MVS stored procedure.

A way to increase the security control is to create the MVS.MCSOPER.DSNADMCM resource and to
administer granular access to it. Example 9-72 shows the RACF command. Note that the
access by default is NONE, that is, initially no user ID has access to the resource.

Example 9-72 RACF define resource MVS.MCSOPER.DSNADMCM

RDEFINE OPERCMDS MVS.MCSOPER.DSNADMCM UACC(NONE)
222 IBM DB2 11 for z/OS Technical Overview

Example 9-73 shows the resulting output at execution.

Example 9-73 RACF define resource output example

RACLISTED PROFILES FOR OPERCMDS WILL NOT REFLECT THE ADDITION(S) UNTIL A SETROPTS REFRESH
IS ISSUED.

The RACF class has to be refreshed to activate the changes. Example 9-74 shows the
command to execute a RACF SETROPTS REFRESH command.

Example 9-74 RACF SETROPTS REFRESH command

SETROPTS RACLIST(OPERCMDS) REFRESH

Example 9-75 shows the resulting resource definitions after the execution of these RACF
commands.

Example 9-75 RACF resources search result

BROWSE - RACF COMMAND OUTPUT------------------------ LINE 00000000 COL 001 080
 COMMAND ===> SCROLL ===> CSR
********************************* Top of Data **********************************
MVS.MCSOPER.ABC
MVS.MCSOPER.AOPAOP1C
MVS.MCSOPER.DSNADMCM
MVS.MCSOPER.PLUGH
MVS.MCSOPER.* (G)
******************************** Bottom of Data ********************************

Example 9-76 shows the details of the MVS.MCSOPER.DSNADMCM RACF resource.

Example 9-76 RACF resource MVS.MCSOPER.DSNADMCM

BROWSE - RACF COMMAND OUTPUT------------------------ LINE 00000000 COL 001 080
 COMMAND ===> SCROLL ===> CSR
********************************* Top of Data **********************************
CLASS NAME
----- ----
OPERCMDS MVS.MCSOPER.DSNADMCM

LEVEL OWNER UNIVERSAL ACCESS YOUR ACCESS WARNING
----- -------- ---------------- ----------- -------
 00 DB2R1 NONE NONE NO

...
******************************** Bottom of Data ********************************

This example shows that both universal access and user id DB2R1’s access is NONE. As a
result, any attempt to execute the ADMIN_COMMAND_MVS by the user id DB2R1, or any other user
not explicitly authorized in RACF, fails. Under these settings, the calling application receives
Return Code 12 at call. Example 9-77 shows the accompanying error message.

Example 9-77 Error message DSNA628I

DSNA628I DSNADMCM THE STORED PROCEDURE SYSPROC.ADMIN_COMMAND_MVS ENCOUNTERED AN ERROR
WHILE USING THE EXTENDED MCS CONSOLE TO ISSUE THE MVS SYSTEM COMMAND DISPLAY WLM,APPLENV=*.
EMCS activation failed. Macro MCSOPER: RC=0C,RSN=00
Chapter 9. Connectivity and administration routines 223

At failure, RACF writes a ICH408I error message in the system console, as shown in
Example 9-78.

Example 9-78 RACF message ICH408I

IEA631I OPERATOR DSNADMCM NOW INACTIVE, SYSTEM=SC63 , LU=DSNADMCM
ICH70001I DB2R1 LAST ACCESS AT 17:53:40 ON FRIDAY, JULY 26, 2013
ICH408I USER(DB2R1) GROUP(SYS1) NAME(PAOLO BRUNI) 481
 MVS.MCSOPER.DSNADMCM CL(OPERCMDS)
 INSUFFICIENT ACCESS AUTHORITY
 ACCESS INTENT(READ) ACCESS ALLOWED(NONE)

This message shows that RACF is not allowing the user id DB2R1 to access the RACF
resource MVS.MCSOPER.DSNADMCM. Because this is a requirement for the execution of the
ADMIN_COMMAND_MVS stored procedure, the call fails. To provide access to this resource, you
can use the RACF PERMIT command as shown in Example 9-79.

Example 9-79 RACF PERMIT MVS.MCSOPER.DSNADMCM

PERMIT MVS.MCSOPER.DSNADMCM CLASS(OPERCMDS) ACC(READ) ID(DB2R1)

The execution of this command has to be followed by a RACF SETROPTS command to activate
changes, as shown in Example 9-80.

Example 9-80 RACF SETROPTS RACLIST(OPERCMDS) REFRESH command

SETROPTS RACLIST(OPERCMDS) REFRESH

Example 9-81 shows that DB2R1 has READ access on the resource MVS.MCSOPER.DSNADMCM.
The call of the ADMIN_COMMAND_MVS stored procedure by DB2R1 is now allowed by RACF.

Example 9-81 RACF MVS.MCSOPER.DSNADMCM resource details

BROWSE - RACF COMMAND OUTPUT------------------------ LINE 00000000 COL 001 080
 COMMAND ===> SCROLL ===> CSR
********************************* Top of Data **********************************
CLASS NAME
----- ----
OPERCMDS MVS.MCSOPER.DSNADMCM

LEVEL OWNER UNIVERSAL ACCESS YOUR ACCESS WARNING
----- -------- ---------------- ----------- -------
 00 DB2R1 NONE READ NO

...
******************************** Bottom of Data ********************************

9.8 Drivers, clients, and connectivity requirements

Distributed clients communicate to DB2 11 for z/OS using the IBM Distributed Relational
Database Architecture™ (DRDA) protocol. DRDA is an open, vendor-independent
architecture that supports the connectivity between a client and database servers. It was
initially developed by IBM and then adopted by The Open Group as an industry standard
interoperability protocol.
224 IBM DB2 11 for z/OS Technical Overview

In DRDA terms, the Application Requester function accepts SQL requests from an application
and redirect them to an Application Server for processing. The Application Server function
receives requests from Application Requesters and processes them. The Application Server
can process part of the request and forwards the applicable portion of the request to a
database server.

In a distributed application environment accessing DB2 for z/OS, the Application Requester
function is supported by a DB2 Client, by a DB2 driver, or by a DB2 Connect server. The
Application Server function is integrated in DB2 for z/OS.

Figure 9-10 shows a schematic representation of the AR and AS DRDA components involved
in a client to DB2 communication.

Figure 9-10 AR and AS DRDA components

Improvements related to the distributed access to DB2 11 to z/OS might require changes at
the Client, driver or DB2 Connect side.

DB2 Clients, Drivers and DB2 Connect DB2 10.5 FP2 are required to fully take advantage of
DB2 11 for z/OS distributed features, such as:

� CALL with array type arguments
� Larger CLIENT INFO properties (including new correlation token)
� Implicit COMMIT for stored procedures
� Sysplex support for Global Session Variables

The DRDA protocol implements DRDA levels to group improvements and features. A down
level DRDA Client works with DB2 11, but it cannot use all the benefits of DB2 11. Any
in-service level of DB2 Client, DB2 Drivers, or DB2 Connect server should work with DB2 11
CM and DB2 11 NFM. At the moment of this writing, versions 9.5 and later are in-service.
DB2 Connect V9.5 is planned to be out of service at April-2014.

DB2 Connect drivers seamlessly handle the migration path from DB2 10 for z/OS to DB2 11
CM, and from them to DB2 11 NFM. In a data sharing environment, applications continue to
function as members are migrated one by one.
Chapter 9. Connectivity and administration routines 225

During migration, these considerations apply:

� While in DB2 11 CM, applications continue to see DB2 10 function level.

� After migrating to DB2 11 NFM, new connections see DB2 11 function level when using
APPLCOMPAT set to V11R1.

Verifying the level of DB2 Clients and DB2 Drivers
To exploit the latest DB2 11 distributed access improvements, you have to work with a DB2
driver or client DB2 10.5 fix pack 2.

Use the db2level command to show the current version and service level of a DB2 client or
DB2 Connect server. Example 9-82 shows the execution of db2level on a Windows machine.
Among other details, this example shows that this Client in DB2 10.5 with Fix Pack 0.

Example 9-82 Using the db2level command

C:\Program Files\IBM\SQLLIB_03\BIN>db2level
DB21085I This instance or install (instance name, where applicable: "DB2_03")
uses "64" bits and DB2 code release "SQL10050" with level identifier
"0601010E".
Informational tokens are "DB2 v10.5.0.420", "s130528", "NTX64105", and Fix Pack
"0".
Product is installed at "C:\PROGRA~1\IBM\SQLLIB~3" with DB2 Copy Name
"DB2V10R5".

C:\Program Files\IBM\SQLLIB_03\BIN>

The db2level command is not available for Java drivers. For JDBC or SQLJ applications, if
you are using the IBM DB2 driver for SQLJ and JDBC, you can determine the level of the
driver by running the db2jcc utility, as shown in Example 9-83.

Example 9-83 Running the db2jcc utility

java com.ibm.db2.jcc.DB2Jcc -version

Example 9-84 shows the db2jcc output in this example test environment. There is no
information about the driver version nor Fix Pack level. This can be an inconvenient because
the DB2 11 for z/OS requirements for Clients and Drivers are expressed on these terms.

Example 9-84 Db2jcc utility output

C:\Program Files\IBM\SQLLIB_03\BIN>java com.ibm.db2.jcc.DB2Jcc -version
IBM DB2 JDBC Universal Driver Architecture 3.66.46

C:\Program Files\IBM\SQLLIB_03\BIN>

There is no direct way to discern which JDBC driver (JCC) version corresponds with each
DB2 release and Fix Pack level. Nevertheless, there is a way to map the driver architecture,
provided by db2jcc -version, with that information.

Note: At the moment of this writing, the latest drivers and clients are available at the web
page “Download initial DB2 10.5 clients and drivers” at
http://www.ibm.com/support/docview.wss?uid=swg21385217
226 IBM DB2 11 for z/OS Technical Overview

http://www.ibm.com/support/docview.wss?uid=swg21385217

Figure 9-11 shows a partial view of the DB2 JDBC driver Versions web page. It highlights how
to match the driver’s architecture to the DB2 version and Fix Pack level.

Figure 9-11 DB2 JDBC driver Versions web page

The IBM DB2 JDBC Universal Driver Architecture 3.66.46, as shown in Example 9-84,
correspond to DB2 DB2 10.5 FP0 (GA).

Example 9-85 shows how the JDBC connection string can be used to activate a JDBC trace.

Example 9-85 JDBC connection url String with TRACE_ALL

String url = "jdbc:db2://redbook8:38420/DB1A" +
 ":user=db2r1;password=******;" +
 "traceLevel=" +
 (com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL) + ";" +
 "traceFile=c:\\work\\Author\\Redbook#8\\DRDA_traces\\DB211OldDriver.trace;";

Example 9-86 shows a partial example of the JDBC trace output as a result of the syntax in
Example 9-85.

Example 9-86 JDBC trace output

[jcc] BEGIN TRACE_XML_CONFIGURATION_FILE
[jcc] dsdriverConfigFile=null
[jcc] END TRACE_XML_CONFIGURATION_FILE

[jcc] BEGIN TRACE_DRIVER_CONFIGURATION
[jcc] Driver: IBM Data Server driver for JDBC and SQLJ 4.13.127
[jcc] Compatible JRE versions: { 1.6, 1.7 }

Note: To find the correlation between the Java driver architecture and the driver version
visit the page “DB2 JDBC driver Versions” at
http://www.ibm.com/support/docview.wss?rs=71&uid=swg21363866
Chapter 9. Connectivity and administration routines 227

http://www.ibm.com/support/docview.wss?rs=71&uid=swg21363866

[jcc] Target server licensing restrictions: { z/OS: enabled; SQLDS: enabled
[jcc] License editions: { O: not found; ZS: not found; IS: not found; AS: n
[jcc] Range checking enabled: true
[jcc] Bug check level: 0xff
[jcc] Default fetch size: 64
[jcc] Default isolation: 2
[jcc] Collect performance statistics: false
[jcc] No security manager detected.
[jcc] Detected local client host: x1/9.55.137.33

Figure 9-12 shows a portion of the “DB2 JDBC driver Versions” at:

http://www.ibm.com/support/docview.wss?rs=71&uid=swg21363866

This figure highlights the link between the driver version and the DB2 level of the driver.

Figure 9-12 db2 JDBC driver versions web page

Data Studio
IBM Data Studio provides database developers and database administrators with an
integrated, modular environment for development and productive administration of DB2
databases. IBM Data Studio is a fully licensed product available at no charge and with no time
restrictions.

Important: IBM Data Studio supports DB2 11 for z/OS with V4.1 or later, which can be
downloaded at no additional charge from:

http://www.ibm.com/developerworks/downloads/im/data/
228 IBM DB2 11 for z/OS Technical Overview

http://www.ibm.com/developerworks/downloads/im/data/
http://www.ibm.com/support/docview.wss?rs=71&uid=swg21363866

Figure 9-13 shows that IBM Data Studio V3.2 identifies a DB2 11 NFM database as a DB2 10
NFM subsystem.

Figure 9-13 IBM Data Studio 3.2 and DB2 11

Figure 9-14 shows that IBM Data Studio 4.1 correctly identifies the server as a DB2 11 NFM.

Figure 9-14 IBM Data Studio 4.1 and DB2 11
Chapter 9. Connectivity and administration routines 229

Using the Data Studio application menu, select Help → About IBM Data Studio to verify the
Data Studio version. Figure 9-15 shows the About IBM Data Studio window with the version
information.

Figure 9-15 How to identify the Data Studio version

You can use Data Studio 4.1 with a DB2 10 for z/OS database. In that case, the PTF
UK91146 must be applied to the DB2 10 for z/OS data server that you want to connect to
prevent connectivity problems. Refer to the technote (troubleshooting) “Connecting to DB2
z/OS 10 with Data Studio V4.1 or InfoSphere Data Architect V9.1 results in SQL error code
-4499 or -1224” available at:

http://www.ibm.com/support/docview.wss?uid=swg21641377

How to catalog a DB2 for z/OS database using commands
To access a DB2 for z/OS server using a Client, you have to catalog it. The DB2 Client version
10 does not comes with the Configuration Assistant. In previous versions, the Configuration
Assistance, a GUI tool, can be used to catalog a DB2 for z/OS database as a ODBC data
source in a Windows system machine. With DB2 10, the configuration has to be done using
commands. This section describes the steps involved on the process.

Start by getting the host database configuration information by issuing the -DIS DDF DETAIL
command. Example 9-87 shows the output of this command.

Example 9-87 -DIS DDF output example

DSNL080I -DB1A DSNLTDDF DISPLAY DDF REPORT FOLLOWS:
DSNL081I STATUS=STARTD
DSNL082I LOCATION LUNAME GENERICLU
DSNL083I DB1A USIBMSC.SCPDB1A -NONE
DSNL084I TCPPORT=38420 SECPORT=38422 RESPORT=38421 IPNAME=-NONE
DSNL085I IPADDR=::9.12.6.70
DSNL086I SQL DOMAIN=wtsc63.itso.ibm.com
DSNL090I DT=I CONDBAT= 10000 MDBAT= 200
DSNL092I ADBAT= 1 QUEDBAT= 0 INADBAT= 0 CONQUED= 0
DSNL093I DSCDBAT= 1 INACONN= 2
DSNL105I CURRENT DDF OPTIONS ARE:
230 IBM DB2 11 for z/OS Technical Overview

http://www.ibm.com/support/docview.wss?uid=swg21641377

DSNL106I PKGREL = COMMIT
DSNL099I DSNLTDDF DISPLAY DDF REPORT COMPLETE

Note the following information:

� Location, provided in message DSNL083I. DB1A in this example.
� TCP/IP port, provided in message DSNL084I. 38420 in this example.

The IP address provided in message DSNL085I might not work as a target IP from your
workstation, depending from where it was obtained. Refer to the documentation of message
DSNL085I for more details. In this example environment, the DB2 server can be reached by
using the 9.12.6.70 IP address. This information is used in commands within the DB2 CLP.
The CLP is part of the DB2 client, and it is included in other DB2 offerings as well.

If you have installed a DB2 client, you can use a DB2 CLP command window to catalog a
DB2 for z/OS database in a windows server or workstation. Example 9-88 shows the initial
contents when opening a DB2 Client 10.5.0 CLP window.

Example 9-88 DB2 Command Line Processor initial contents

Command Line Processor for DB2 Client 10.5.0

You can issue database manager commands and SQL statements from the command
prompt. For example:
 db2 => connect to sample
 db2 => bind sample.bnd

For general help, type: ?.
For command help, type: ? command, where command can be
the first few keywords of a database manager command. For example:
 ? CATALOG DATABASE for help on the CATALOG DATABASE command
 ? CATALOG for help on all of the CATALOG commands.

To exit db2 interactive mode, type QUIT at the command prompt. Outside
interactive mode, all commands must be prefixed with 'db2'.
To list the current command option settings, type LIST COMMAND OPTIONS.

For more detailed help, refer to the Online Reference Manual.

db2 =>

The first step is to catalog a TCP/IP node using the CLP. Cataloging a TCP/IP node adds an
entry to the Data Server Client node directory that describes the remote node. This entry
specifies the chosen alias (node_name), the host name (or ip_address), and the svcename (or
port_number) that the client uses to access the remote host.

Example 9-89 shows the commands that can be used.

Example 9-89 DB2 catalog TCP/IP node example

catalog tcpip node SC63 remote 9.12.6.70 server 38420 ostype mvs

In general, it is a preferred practice to use machine names instead if IP addresses when
cataloging a remote server. Using names means fewer configuration points to maintain in
case of an IP address change. You can use a DNS (domain name server) for mapping a
server name to an IP address to make this information available to your network. If the scope
is your own workstation, it is in general simpler to just maintain a hosts file. In Windows 7, the
hosts files are located at C:\Windows\System32\drivers\etc\hosts.
Chapter 9. Connectivity and administration routines 231

Example 9-90 shows a sample Windows hosts file that is customized with the information
about the System z server that runs the target DB2 11 for z/OS.

Example 9-90 Sample Windows hosts file

This is a sample HOSTS file used by Microsoft TCP/IP for Windows.
#
This file contains the mappings of IP addresses to host names. Each
entry should be kept on an individual line. The IP address should
be placed in the first column followed by the corresponding host name.
The IP address and the host name should be separated by at least one
space.
#
localhost name resolution is handled within DNS itself.
127.0.0.1 localhost
::1 localhost
9.12.6.70 redbook8

After updating the hosts file as shown in this example, a reference to redbook8 is redirected to
the IP address 9.12.6.70. In consequence, the DB2 catalog TCP/IP node can be simplified as
shown in Example 9-91.

Example 9-91 DB2 catalog TCP/IP node example using an hosts file entry

catalog tcpip node SC63 remote redbook8 server 38420 ostype mvs

Example 9-92 illustrates the output of this command.

Example 9-92 DB2 catalog TCP/IP node output example

db2 => catalog tcpip node SC63 remote redbook8 server 38420 ostype mvs
DB20000I The CATALOG TCPIP NODE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.
db2 =>

The DB21056W message indicates that changes might not be effective immediately, and that a
directory refresh might be required to make the updates effective. Execute the terminate
command, as illustrated in Example 9-93.

Example 9-93 DB2 terminate example

db2 => terminate
DB20000I The TERMINATE command completed successfully.
C:\Program Files\IBM\SQLLIB_03\BIN>

The node directory is created and maintained on each database client. The directory contains
an entry for each remote database partition server having one or more databases that the
client can access. The DB2 client uses the communication endpoint information in the node
directory whenever a database connection or instance attachment is requested. The entries
in the directory also contain information about the type of communication protocol to be used

Tip: To refresh the CLP directory cache, issue a db2 terminate command. To refresh the
directory information for another application, stop and restart that application. To refresh
the directory information for the database, stop (db2stop) and restart (db2start) the
database
232 IBM DB2 11 for z/OS Technical Overview

to communicate from the client to the remote database partition. Cataloging a local database
partition creates an alias for an instance that resides on the same computer.

Example 9-94 illustrates the execution of a list node directory command in this example
test environment. Use this command to verify the successful addition of the node.

Example 9-94 DB2 list node directory command example

C:\Program Files\IBM\SQLLIB_03\BIN>db2 list node directory

 Node Directory

 Number of entries in the directory = 1

Node 1 entry:

 Node name = SC63
 Comment =
 Directory entry type = LOCAL
 Protocol = TCPIP
 Hostname = redbook8
 Service name = 38420

C:\Program Files\IBM\SQLLIB_03\BIN>

The catalog database command stores database location information in the system
database directory. The database can be located either on the local workstation or on a
remote database partition server. Example 9-95 illustrates the command used in this example
test environment to catalog the DB2 11 target database.

Example 9-95 DB2 catalog database command example

catalog database DB1A as DB1A at node SC63 authentication SERVER_ENCRYPT

Example 9-96 shows the results of executing this command.

Example 9-96 DB2 catalog database command output example

db2 => catalog database DB1A as DB1A at node SC63 authentication SERVER_ENCRYPT
DB20000I The CATALOG DATABASE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.
db2 =>

The list database directory command lists the contents of the system database directory.
Use this command to verify the addition of a database, as illustrated in Example 9-97.

Example 9-97 DB2 list database directory command output example

db2 => list database directory

 System Database Directory

 Number of entries in the directory = 3

Database 1 entry:

 Database alias = BLUDB01
 Database name = BLUDB01
 Local database directory = C:
Chapter 9. Connectivity and administration routines 233

 Database release level = 10.00
 Comment =
 Directory entry type = Indirect
 Catalog database partition number = 0
 Alternate server hostname =
 Alternate server port number =

Database 2 entry:

 Database alias = DB1A
 Database name = DB1A
 Node name = SC63
 Database release level = 10.00
 Comment =
 Directory entry type = Remote
 Authentication = SERVER_ENCRYPT
 Catalog database partition number = -1
 Alternate server hostname =
 Alternate server port number =

Database 3 entry:

 Database alias = SAMPLE
 Database name = SAMPLE
 Local database directory = C:
 Database release level = 10.00
 Comment =
 Directory entry type = Indirect
 Catalog database partition number = 0
 Alternate server hostname =
 Alternate server port number =

db2 =>

This example shows that the DB2 Client can be used to connect to two local databases
(SAMPLE and BLUDB01) and to the remote database DB1A, the target. Applications connect
using the database alias value that is provided in this command.

Finally, connect to the target database using the CLP for verification, as shown in
Example 9-98.

Example 9-98 Connect to a DB2 for z/OS database using the CLP

db2 => connect to DB1A user db2r1
Enter current password for db2r1:

 Database Connection Information

 Database server = DB2 z/OS 11.1.5
 SQL authorization ID = DB2R1
 Local database alias = DB1A

db2 =>

This example shows a connection to the target DB1A, which is DB2 11 for z/OS database.

A data source, in ODBC (Open Database Connectivity) terminology, is a user-defined name
for a specific database or file system. That name is used to access the database or file
system through ODBC APIs. Either user or system data sources can be cataloged. A user
234 IBM DB2 11 for z/OS Technical Overview

data source is only visible to the user who cataloged it, whereas a system data source is
visible to and can be used by all other users. The CATALOG ODBC DATA SOURCE command is
used to catalog a user or system ODBC data source. Example 9-99 shows the command to
be executed in this example environment.

Example 9-99 DB2 catalog ODBC data source command example

catalog odbc data source DB1A

Example 9-100 illustrates the execution results in this environment.

Example 9-100 DB2 catalog ODBC data source command output example

db2 => catalog odbc data source DB1A
DB20000I The CATALOG USER ODBC DATA SOURCE command completed successfully.
db2 =>

Use the list ODBC data sources command to confirm the changes, as shown in
Example 9-101.

Example 9-101 DB2 LIST ODBC DATA SOURCES command example

db2 => list odbc data sources
 User ODBC Data Sources

Data source name Description
-------------------------------- --
MS Access Database Microsoft Access driver (*.mdb)
Excel Files Microsoft Excel driver (*.xls)
dBASE Files Microsoft dBase driver (*.dbf)
DZA1 IBM DB2 ODBC DRIVER - DB2COPY1
BRUXLS IBM DB2 ODBC DRIVER - DB2COPY1
DB1A IBM DB2 ODBC DRIVER - DB2V10R5
db2 =>
Chapter 9. Connectivity and administration routines 235

236 IBM DB2 11 for z/OS Technical Overview

Part 3 Operations and
performance

Integration of DB2 11 with z/OS Security Server (RACF) helps in operational compliance
(both regulatory and governance) and separation of duty and more flexibility is added to
masking functions.

DB2 Utilities Suite for z/OS V11 (program number 5655-W87) delivers full support for the
significant enhancements in DB2 11 and delivers improvements in availability (online REORG
granularity) and zIIP eligibility.

DB2 11 can improve performance by taking advantage of the platform functions, reducing
path length in several situations, and further reducing virtual storage requirements below the
bar. In addition, installation and migration functions use the established conversion mode and
New Function Mode (NFM) statuses and allow new options to reduce incompatibility
situations.

This part includes the following chapters:

� Chapter 10, “Security” on page 239
� Chapter 11, “Utilities” on page 269
� Chapter 12, “Installation and migration” on page 315
� Chapter 13, “Performance” on page 383

Part 3
© Copyright IBM Corp. 2013. All rights reserved. 237

238 IBM DB2 11 for z/OS Technical Overview

Chapter 10. Security

DB2 includes the following main security topics:

� DB2 enhancements for exit authorization checking

– DB2 provides the accessor environment element (ACEE) of the package owner for
authorization checking when the access control authorization exit is active

– DB2 also refreshes the cache entries of the package authorization, the routine
authorization, the DDF user authorization, and the dynamic statement when a user
profile or resource access is changed in RACF and the access control authorization
exit is active.

� DB2 enhancements for program authorization

DB2 provides the capability to check whether an application program is authorized to use
a plan.

� DB2 enhancement to the masking functions

DB2 removes some restrictions related to aggregation of data while using the masking
functions.

This chapter describes these changes in the following sections:

� Enhancements for exit authorization checking
� Enhancements to program authorization
� Column masking enhancements

10
© Copyright IBM Corp. 2013. All rights reserved. 239

10.1 Enhancements for exit authorization checking

The Access Control Authorization Exit (DSNX@XAC) enables to use external security such
as RACF for authorization checking for DB2 objects, authorities, commands, and utilities.
There are certain instances where the authorization checking done by RACF is different from
the authorization checking done by DB2. Due to new regulations and separation of duties
requirements, customers who are moving to use RACF for authorization consider the
differences as serious limitations in adopting RACF authorization.

Figure 10-1 provides an overview of the relationship between DB2 10 and the RACF Access
Control Authorization Exit Authorization.

Figure 10-1 DB2 10 and RACF Access Control Authorization Exit Authorization

The authorization process, when DB2 security is in RACF, flows as follows:

� DB2 obtains RACF information through the DSNX@XAC exit

� DB2 caches the successful authorization for packages, routines and dynamic statements
execution in the three caches. They are represented with dotted boxes in Figure 10-1.

As a result of the DB2 security in RACF implementation in DB2 10, the following concerns
can appear:

� The OWNER keyword is not honored when RACF exit is used to control authorization

– RACF checks the invoker (primary authorization ID) not the owner during BIND, REBIND,
and AUTOBIND

– AUTOBIND fails if the invoker is not authorized

� Use of the DYNAMICRULES(BIND) option with dynamic SQL

RACF checks the invoker ID regardless of DYNAMICRULES specification. RACF authorization
fails if the invoker is not authorized to execute the SQL statements in the package.

� AUTOBIND

Invoker is checked for authorization to execute the SQL statements. RACF authorization
fails if the invoker is not authorized to execute the SQL statements in the package.
240 IBM DB2 11 for z/OS Technical Overview

� DB2 10 static packages not invalidated following a RACF REVOKE

RACF authorization checked at BIND/REBIND

� DB2 10 dynamic statement cache and authorization caches never flushed at RACF
change

– DB2 cache can retain privileges after RACF REVOKE

– DBAs must take action (GRANT/REVOKE/RUNSTATS) to sync with RACF

� DB2 10 caches are refreshed every 3 minutes

Flushing the cache takes time and resources

DB2 11 introduces changes that address these issues. The following sections describe these
enhancements.

10.1.1 Use owner privileges for authorization

During AUTOBIND, DB2 provides the ACEE of the runner for exit authorization. Most of the
time, runner does not have the privilege to execute the SQL statements in the package, which
causes AUTOBIND to fail.

Similarly, when BIND OWNER option is specified, RACF always checks authorization on the
runner. Also, when embedded dynamic SQL in packages bound with DYNAMICRULES(BIND)
option is executed, it is expected that the auth-id checked for authorization is the package
owner. However, DB2 provides the ACEE of the runner. Thus, every user executing the
package has to be provided access.

Previous to DB2 11, when using Access Control Authorization Exit (DSNX@XAC) for
authorization:

� BIND and REBIND commands do not support the OWNER keyword.

� The AUTOBIND fails, which causes application outage.

� For packages bound with DYNAMICRULES(BIND), the dynamic SQL statement authorization
requires the runner to have the privilege.

DB2 11 addresses this limitation by providing the ACEE of the package owner to perform
authorization checking when processing auto bind, the BIND and REBIND commands; and the
ACEE of the authorization ID to perform dynamic SQL authorization checking, when
DYNAMICRULES value other than RUN is in effect. For dynamic SQL authorization checking, the
DYNAMICRULES behavior determines whether the authorization ID is the package owner, the
routine definer or the routine invoker.

DB2 11 for z/OS, when using DSNX@XAC exit authorization, is enhanced to:

� Support of the OWNER keyword for the BIND and REBIND commands.
� Support owner authorization during AUTOBIND.
� Support DYNAMICRULES(BIND) behavior for dynamic SQL statements.

DB2 11 introduces the capability to provide the owner ACEE for authorization checking, when
access control authorization exit is active. The owner can be a valid user or a group in ACF,
which allows the package owner to be used for authorization checking during auto bind and
BIND or REBIND command processing. This function also allows package owner or routine
definer or routine invoker as determined by the DYNAMICRULES behavior to be used for dynamic
SQL authorization checking, when the DYNAMICRULES bind option value other than RUN is in
effect and that DYNAMICRULES authorization ID is cached in the dynamic statement cache.
Chapter 10. Security 241

DB2 11 introduces the AUTHEXIT_CHECK installation parameter, which allows you to specify
whether the owner or the primary authorization ID is to be used for authorization checks when
the access control authorization exit is active. This parameter takes the following values:

DB2 Specifies that DB2 provides the ACEE of the package owner to
perform authorization checking when processing the AUTOBIND, BIND,
and REBIND commands. DB2 provides the ACEE of the authorization
ID as determined by the DYNAMICRULES option to perform dynamic SQL
authorization checking. The access control authorization exit uses the
ACEE for XAPLUCHK for authorization checking. The XAPLUCHK
authorization ID can be a user or a group in RACF

PRIMARY Specifies that DB2 provides the ACEE of the primary authorization ID
to perform all authorization checks. The primary authorization ID must
be permitted access to the resources in RACF.

The default value is PRIMARY. This install parameter is not online updatable. It is part of the
DSN6SPRM macro. This parameter in added to the DB2 Protection panel, DSNTIPP.

If system parameter, AUTHEXIT_CHECK is set to DB2, then DB2 provides the ACEE of the
package owner to perform authorization checking when processing auto bind, the BIND and
REBIND commands; and the ACEE of the authorization ID to perform dynamic SQL
authorization checking, when DYNAMICRULES value other than RUN is in effect. For dynamic
SQL authorization checking, the DYNAMICRULES behavior determines whether the authorization
ID is the package owner, the routine definer or the routine invoker. Hence, this owner
authorization ID has to be permitted access to resources in RACF in the previously described
scenarios.

To ensure successful authorization checks with the owner ACEE, the owner authorization ID
in XAPLUCHK must be permitted access to the resources in RACF. If the owner is a group in
RACF, you need to permit the group access to the resource associated with the connection in
the RACF DSNR class. You can issue the PERMIT command to grant a group access to the
resource BATCH in the DSNR class. Example 10-1 illustrates the RACF command to permit
access on the DB2 subsystem DB1A to the DB2GRP group.

Example 10-1 RACF permit ACCESS(READ) on CLASS(DSNR)

PERMIT DB1A.BATCH CLASS(DSNR) ID(DB2GRP) ACCESS(READ)

Also, this owner RACF group must have authorization to execute all the statements
embedded in the package for successful processing of BIND/REBIND command, auto bind,
and dynamic SQL authorization when DYNAMICRULES value other than RUN is in effect.

10.1.2 Refresh DB2 cache entries when RACF permissions change

Previous to DB2 11, when DB2 caches are enabled and RACF permissions change in RACF,
then the package authorization cache, routine authorization cache and dynamic statement
cache are not refreshed to reflect the change. To refresh the cache entries, SQL GRANT and
REVOKE statements have to be issued or to invalidate the entry from dynamic statement cache,
RUNSTATS utility has to be executed.
242 IBM DB2 11 for z/OS Technical Overview

DB2 11 introduces the capability to refresh the DB2 following cache entries when access
control authorization exit is active and RACF permissions change:

� Package
� Authorization cache
� Routine authorization cache
� Dynamic statement cache

DB2 11 implements this enhancement by listening to the following ENF signals sent by RACF
and refreshing the DB2 authorization related cache entries:

� Type 71 ENF signals when a user’s permission is changed in RACF
� Type 79 ENF signals when a user’s permission to access a resource is changed in RACF
� Type 62 ENF signals when RACF options are refreshed

Figure 10-2 is a schema of the relationship between DB2 11 and RACF. Changes made in
RACF (point 1 in the figure) are communicated to DB2 to take action accordingly (point 2 in
the figure).

Figure 10-2 DB2 11 and RACF Access Control Authorization Exit Authorization

ENF 71 is issued for change in a user or group profile. When ENF 71 is issued, DB2
refreshes the cache entries for the affected user or group.

ENF 79 is issued for change in a user’s or group’s authorization to resources. When ENF 79
is issued, DB2 caches the resource changes, as the resource changes will not take effect
until the SETROPTS RACLIST REFRESH command is issued.

ENF 62 is issued for the SETROPTS RACLIST REFRESH command. When ENF 62 is issued, DB2
refreshes the cache entries for the resources that are cached during ENF 79 notification.

Important: DB2 only listens to the ENF signals sent by RACF. If other vendor products are
used for access control, the caches cannot be refreshed.
Chapter 10. Security 243

DB2 11 listens to the type 71 ENF signal issued by RACF for the following RACF commands:

� ALTUSER
� CONNECT
� DELUSER
� DELGROUP
� REMOVE

DB2 listens to the type 79 ENF signal issued by RACF for the following RACF commands:

� PERMIT options:

– DELETE
– ACCESS(NONE)
– RESET
– WHEN(CRITERIA(SQLROLE ….))

� RALTER options:

– UACC(NONE)
– DELMEM

� RDELETE

ENF 79 signal is issued only for classes that have been defined in the RACF Class Descriptor
Table with the SIGNAL=YES option. The SIGNAL=YES option is enabled, by default, for the
following IBM supplied RACF resource classes for DB2:

� MDSNPK / GDSNPK
� MDSNTB / GDSNTB
� MDSNSP / GDSNSP
� MDSNSQ / GDSNSQ
� DSNADM and MDSNSM / GDSNSM
� MDSNUF / GDSNUF
� MDSNGV / GDSNGV

The class names for DB2 objects in both single-subsystem scope and multiple-subsystem
scope are supported.

This list shows the RACF classes and the corresponding caches that are impacted by the
revocation:

� MDSNPK, Package Authorization Cache

� MDSNTB, MDSNSQ, and MDSNGV, Dynamic Statement Cache

� MDSNSP, Routine Authorization Cache

� MDSNUF, Routine Authorization Cache, Dynamic Statement Cache

Note: For ALTUSER and CONNECT command notifications, DB2 processes the signal only
when REVOKE option is specified.

Attention: The cache entries are not refreshed when the RDELETE command is issued to
delete general resource profiles for DSNADM and MDSNSM/GDSNSM classes without a profile
name

Tip: If you are defining classes for DB2 objects and administrative authorities and not
using IBM supplied RACF resource classes for DB2, then you need to enable the
SIGNAL=YES option for these classes.
244 IBM DB2 11 for z/OS Technical Overview

� DSNADM and MDSNSM, Package and Routine Authorization Caches, Dynamic Statement
Cache

The RACF discrete and generic resource names in the profile are supported with the
following restrictions:

� Generic character ampersand (&) indicates that RACF is to use a profile in the RACFVARS
class to determine the actual values to use for that part of the profile name. The ENF
signal notification for profile that contains ampersand is ignored and not processed by DB2
for cache refresh

� Generic character % is not supported in the privilege part of the profile for cache refresh.
The ENF signal notification is ignored. Example 10-2 illustrates this situation.

Example 10-2 RACF PERMIT command and % generic resource character

PERMIT SYS1.SCHM1.PROCA2.EXE%UTE ID(CRIS03) DELETE CLASS(MDSNSP)

� Generic characters in profile names for all classes other than DSNADM class: If a profile has
less number of parts than supported by the CLASS parameter and contains generic
characters * or **, then depending on the specification of the generic character all objects
or all privileges for the specified CLASS parameter can be considered for cache refresh. As
an illustration, the command in Example 10-3 results in all the entries in the package
authorization cache for user USER01 being deleted.

Example 10-3 RACF PERMIT DELETE command

PERMIT SYS1.** ID(USER01) DELETE CLASS(MDSNPK)

� Revoking DSNADM class authority or MDSNSM class SQLADM authority:

– ID(*) is not supported for cache refresh. The ENF signal notification is ignored.

– When ID (auth-id) is specified, all the entries in the caches for the specified auth-id
can be deleted.

DB2 also checks for static package dependency and invalidates the package when one of the
following resource class permissions is removed from the user:

� INSERT, UPDATE, DELETE, or SELECT on a table

� USAGE on a sequence

� EXECUTE on a stored procedure

� EXECUTE on an UDF (Dependent packages are marked inoperative.)

� READ or WRITE on a global variable

If EXECUTE on a package is revoked from the user, DB2 will check for plan dependency and
invalidates the plan.

A package can be invalidated only when DB2 is active during ENF notification and if the name
of the affected RACF profile contains discrete characters. ENF notification ignores a profile if
it is associated with the DSNADM class or if its name contains any generic characters (*, **, &,
%).

If the package owner is a user (not a RACF group) and if the user is associated with a group
that had the required privileges when the package was bound, you need to explicitly permit
the user all the privileges required for invalidating the package and then delete the
permissions in RACF.
Chapter 10. Security 245

DB2 11 introduces the AUTHEXIT_CACHEREFRESH installation parameter to support the
implementation of this function. This system parameter specifies whether the cache entries of
the package authorization, the routine authorization, the DDF user authentication, and the
dynamic statement are refreshed and whether the dependent packages are invalidated when
a user profile or resource access is changed in RACF. The cache entries are refreshed only
when the access control authorization exit (DSNX@XAC) is active

This parameter supports the following values:

ALL Specifies that DB2 refreshes the cache entries of the package
authorization, the routine authorization, and the dynamic statement
and invalidates dependent packages when the user profile or resource
access is changed in RACF.

NONE Specifies that DB2 does not refresh the cache entries of the package
authorization, the routine authorization, and the dynamic statement or
invalidate dependent packages when the user profile or resource
access is changed in RACF.

The default value is NONE. This install parameter is not online updatable. It is part of the
DSN6SPRM macro. This parameter in added to the DB2 Protection panel, DSNTIPP.

When access control authorization exit is active and system parameter,
AUTHEXIT_CACHEREFRESH is set to YES, then DB2 listens to the type 62, type 71, and type 79
ENF signals issued by RACF for user profile or resource access changes and refreshes the
DB2 cache entries accordingly. If you are defining classes for DB2 objects and administrative
authorities and not using IBM supplied RACF resource classes for DB2, then you need to
enable the SIGNAL=YES option for these classes.

RACF access control module (DSNXRXAC) support
To support new functionality, DB2 11 introduces the following changes in the RACF access
control module (DSNXRXAC):

� Support the Global Variable privileges, READ (READAUTH) and WRITE (WRITEAUTH). IBM
supplied RACF resource class for global variable is MDSNGV/GDSNGV.

� Return the RACLISTED classes at DB2 start in the new XAPL field, XAPLCLST.

� Support all authorization checks that are associated with AUTOBIND requests for
user-defined functions. This removes the return code 8 and reason code 17 issued for the
authorization failures associated with AUTOBIND requests for user-defined functions.

DB2 11 introduces the IFCID 386 for the serviceability of RACF ENF signal processing. This
trace is written when DB2 receives the ENF signal that is processed by DB2.

The explanation of the SQLCODE -551 (auth-id DOES NOT HAVE THE PRIVILEGE TO PERFORM
OPERATION operation ON OBJECT object-name) is enhanced as shown in Example 10-4.

Example 10-4 SQLCODE -551 explanation and RACF changes

This error might occur for packages that are bound with the DYNAMICRULES(BIND)
option when authorization caching, statement caching, or both are enabled and if
the following conditions exist:

The access control authorization exit routine is active
The AUTHEXIT_CHECK system parameter is set to PRIMARY

Note: Static package invalidation for the revoked privilege is supported with some
restrictions, if a group associated with the user allowed access.
246 IBM DB2 11 for z/OS Technical Overview

The authorization ID of the process does not have the necessary privileges.
If the access control authorization exit is active and the AUTHEXIT_CHECK system
parameter is set to DB2, this error might occur if ACEE cannot be created for the
authorization ID auth-id.

The “Explanation” and “System programmer response” sections are updated in the DSNT210I,
DSNT235I, DSNT241I, and DSNX101I message. Example 10-5 shows the changes in the
DSNT210I message.

Example 10-5 Updates to DB2 message DSNT210I

...
Explanation
The indicated authorization ID does not have the indicated privilege and therefore
cannot invoke the indicated BIND subcommand against the indicated application
plan. If the access control authorization exit is active and the AUTHEXIT_CHECK
system parameter is set to DB2, this error might occur if ACEE cannot be created
for the indicated authorization ID.
....
System programmer response
If the indicated privilege is BINDADD, then the privilege to invoke the BIND
subcommand with the ACTION(ADD) option must be granted to the indicated
authorization ID. If the indicated privilege is BIND, the privilege to invoke a
BIND subcommand against the indicated application plan must be granted to the
indicated authorization ID.

If you use the access control authorization exit, ensure that the indicated
authorization ID is defined in RACF and granted the indicated privilege in RACF.

DB2 introduces the following DB2 messages:

� DSNX235I
� DSNX236I
� DSNX237I

Their contents are listed in Example 10-6, Example 10-7, and Example 10-8.

Example 10-6 DSNX235I

REGISTRATION OF THE RACF ENF MESSAGE LISTENER EXIT WITH THE ENF FACILITY FOR ENF
enf-signal FAILED WITH RETURN CODE return-code.

Explanation
The process that registers DB2 with the RACF Event Notification Facility (ENF)
message listener exit for listening to the specified ENF signal returned an
unexpected return code.

enf-signal
The possible values are 62, 71, and 79.

return-code
Hexadecimal value of the z/OS ENFREQ macro return code.

System action
DB2 is not registered to listen to the specified ENF signal notification. DB2
continues its startup.
Chapter 10. Security 247

System administrator response
Notify the security administrator. Restart DB2 after the ENF signal notification
problem is fixed.

Security administrator response
Make sure that DB2 is registered to listen to the specified ENF signal
notification.

Operator response
No action is required.

Example 10-7 DSNX236I

DSNX236I
A RESOURCE resource-name TYPE OF RESOURCE resource-type FOR PROCESSING ENF SIGNAL
FOR AUTHID authid OPERATION operation ON OBJECT object-name IS NOT AVAILABLE FOR
REASON reason-code. ENF SIGNALS RECEIVED FOR CLASS class-name ARE NOT PROCESSED
FOR PACKAGE INVALIDATION.

Explanation
The ENF signal process for package invalidation has failed because a required
resource resource-name is not available. The ENF signals received for the class
class-name are not processed.

resource-name
The name of the resource.

resource-type
The type of the resource.

authorization-ID
The authorization identifier that is identified in the message. The
authorization-ID can be a role.

operation
The operation that is performed.

object-name
The name of the object. If the operation is EXECUTE PACKAGE, the object name
consists of the collection ID and the package name. For all other operations, the
object name consists of the schema name and the object name.

reason-code
A numeric value that indicates the reason for the failure of the operation.

class-name
The name of the RACF resource class for DB2 objects and administrative
authorities.

System action
The ENF signal processing continues.

System administrator response
248 IBM DB2 11 for z/OS Technical Overview

Ensure that the required resource is available for the ENF signal process.
Manually restart the package invalidation process. Notify the security
administrator.

Security administrator response
Identify the RACF commands that were issued to remove resource access for the
specified RACF class. Permit the user access to the identified resources and then
delete the permissions in RACF.

Operator response
No action is required.

Example 10-8 DSNX237I

DSNX237I
AN ABEND HAS OCCURRED DURING ENF SIGNAL PROCESSING. ENF SIGNALS RECEIVED FOR CLASS
class-name ARE NOT PROCESSED.

Explanation
An abend has occurred in DB2 when processing the ENF signal received from the
security server. The ENF signals received for the class-name are not processed.

class-name
RACF resource class for DB2 objects and administrative authorities

System action
The ENF signal processing continues.

System administrator response
Manually restart the cache refresh and package invalidation processes. Notify the
security administrator.

Security administrator response
Identify the RACF commands that were issued to remove resource access for the
specified RACF class. Permit the user access to the identified resources and then
delete the permissions in RACF.

Operator response
No action is required.

Performance expectations
Performance is expected to improve when package owner is used for dynamic SQL
authorization checking when DYNAMICRULES(BIND) is in effect, because the package owner ID
along with the authorization information will be cached with the dynamic SQL statements for
subsequent executions after initial invocations, DB2 will no longer need to go through RACF
to check runner’s SQL ID at run time. It is expected that, performance wise, using DB2
authorization is now similar to AUTHEXIT_CHECK = DB2 and slower than AUTHEXIT_CHECK =
PRIMARY. Also some improvements are expected in both statement level cache and package
cache.
Chapter 10. Security 249

10.2 Enhancements to program authorization

DB2 11 provides an approach to verify that an application program using a DB2 application
plan is correct when accessing DB2. An DB2 plan relates an application process to a local
instance of DB2 and specifies processing options. One of the options is a list of package
names that can be used by the application plan.

This list controls packages that can be used by any program that uses the plan. It is provided
by the owner of the plan when the plan is bound to DB2. If any user is granted execute
privilege on the plan, the user can execute any program using the plan and any package
identified in the package list.

Plan owners might not know in advance which programs or packages that might use a plan.
In these cases, the plan owner must create a plan that allows any collection or any package to
be used by any program executing the plan. If a user has execute authority to run the plan,
the user can accidentally invoke the wrong program or change the application program to
execute different packages. A user can execute packages the plan owner never intended to
be called. To protect from these types of mistakes, a new bind option is added to the BIND
PLAN and REBIND PLAN commands. When the new option is set, DB2 performs an extra check
when the program identifies to DB2. The check verifies if the program is a valid program that
can execute the plan.

Program authorization is a useful technique when you do not know all of the programs and
packages that might use a plan. In addition, program authorization lets you determine at the
time that a program is loaded whether it has been modified. Program authorization is
performed in addition to package authorization.

Some restrictions apply. Programs that run in the following environments do not support
program authorization:

� RRSAF applications that issue CREATE THREAD with a collection name and, therefore, use
the special default plan name ?RRSAF.

� Multicontext ODBC applications that use the RRSAF attachment facility and the plan
name DSNACLI

� Programs that run in stored procedure address spaces

Enabling program authorization
Program authorization is enabled for a program and its plan if the following conditions are
true:

� The plan is bound with the new BIND PLAN and REBIND PLAN option PROGAUTH(ENABLE)
� The SYSIBM.DSNPROGAUTH table contains a row for the program and the plan.

BIND and REBIND option PROGAUTH
The PROGAUTH BIND and REBIND option specifies whether DB2 performs program authorization
checking to determine whether DB2 can execute a plan. It accepts the following values:

DISABLE Specifies that program authorization checking is not performed.
ENABLE Specifies that program authorization checking is performed.

The default value for BIND PLAN is DISABLE. The default value for REBIND PLAN is the existing
value. This option is not applicable for BIND and REBIND PACKAGE.

Important: DB2 11 program authorization provides an approach to verify that an
application program using a DB2 application plan is correct when accessing DB2.
250 IBM DB2 11 for z/OS Technical Overview

Figure 10-3 shows a partial representation of the DB2 11 REBIND PLAN command, including
the new PROGAUTH option.

Figure 10-3 DB2 11 REBIND PLAN command and PROGAUTH

DB2 11 updates the SYSIBM.SYSPLAN catalog table to include the new PROGAUTH column. This
column is defined as CHAR(1) NOT NULL WITH DEFAULT 'D’. It indicates DB2 to check program
association with the plan. It takes the following values:

E Verify if program is enabled to execute the plan
D Disabled

The default value is D, disabled.

Example 10-9 shows a simple example of a REBIND using a DB2 PLAN, DSNTIA11, to implement
DB2 program authorization by using the PROGAUTH REBIND option.

Example 10-9 REBIND to enable PROGAUTH

//YOUR_JOB_CARD_COMES_HERE...
//*---
//REBIND EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DISP=(SHR),DSN=DB1AT.SDSNLOAD
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DB1A)

REBIND PLAN (DSNTIA11) +
 PROGAUTH (E)
END
/*

Table SYSIBM.DSNPROGAUTH
The SYSIBM.DSNPROGAUTH table enables program authorization with or without program data
integrity checking. Add a row in the SYSIBM.DSNPROGAUTH table for each program and plan
combination for which the plan is bound with PROGAUTH(ENABLE).

 .-,---------.
 V |
>>-REBIND PLAN--(-+---plan-name-+-+-)--------------------------->
 '-*-------------'

>--+---------------------------+--+-------------------------+--->
 | .-COLLID(*)-------------. | '-OWNER(authorization-id)-'
 '-+-COLLID(collection-id)-+-'

...

>--+-------------------------+---------------------------------><
 | .-DISABLE-. |
 '-PROGAUTH(-+-ENABLE--+-)-'
Chapter 10. Security 251

The program name that you need to insert in the row depends on the attachment facility that
the program uses to connect to DB2, as follows:

� If the program uses the TSO attachment facility, the program name is the name that you
specify in the DSN RUN subcommand.

� If the program uses any other attachment facility, the program name is the name of the
module that is executed first under the job step TCB.

The DSNTIJSG job contains a sample INSERT statement for a SYSIBM.DSNPROGAUTH row. You can
modify the INSERT statement and execute it to add a row for a program and plan. The
SYSIBM.DSNPROGAUTH program authorization table is used to verify that a program is authorized
to use a plan. The table is created by the DB2 provided the DSNTIJSG installation job.

Example 10-10 illustrates a DDL that can be used for creating this table.

Example 10-10 DDL for creating the table SYSIBM.DSNPROGAUTH

CREATE DATABASE DSNMDCDB STOGROUP SYSDEFLT CCSID UNICODE;

CREATE TABLESPACE DSNMDCTS IN DSNMDCDB
 BUFFERPOOL BP0 LOCKSIZE ROW LOCKMAX SYSTEM
 CLOSE NO CCSID UNICODE USING STOGROUP SYSDEFLT;

CREATE TABLE SYSIBM.DSNPROGAUTH
 ("PROGNAME" VARCHAR(24) NOT NULL
 , "PLANNAME" VARCHAR(24) NOT NULL
 , "PROGMDCVAL" CHAR(16) FOR BIT DATA
 NOT NULL
 WITH DEFAULT
 X'00000000000000000000000000000000'
 , "PROGMDCPAD" CHAR(1) NOT NULL
 WITH DEFAULT '2'
 CHECK(PROGMDCPAD = '2'
 OR PROGMDCPAD = '4')
 , "CREATOR" VARCHAR(128) NOT NULL
 WITH DEFAULT
 CURRENT SQLID
 , "ENABLED" CHAR(1) NOT NULL
 WITH DEFAULT 'N'
 CHECK(ENABLED = 'Y'
 OR ENABLED = 'N')
 , "CREATETS" TIMESTAMP NOT NULL WITH DEFAULT
 , "REMARKS" VARCHAR(762)
)
 IN DSNMDCDB.DSNMDCTS CCSID UNICODE;

CREATE UNIQUE INDEX SYSIBM.DSNPROGAUTH_IDX1
 ON SYSIBM.DSNPROGAUTH
 ("PROGNAME"
 , "PLANNAME"
)
 BUFFERPOOL BP0 CLOSE NO USING STOGROUP SYSDEFLT;

Table 10-1 shows the SYSIBM.DSNPROGAUTH column’s description.

Table 10-1 SYSIBM.DSNPROGAUTH fields description

Column name Description

PROGNAME Name of the application program enabled to run the plan
252 IBM DB2 11 for z/OS Technical Overview

Table 10-2 shows the SYSIBM.DSNPROGAUTH column’s data type and default values.

Table 10-2 SYSIBM.DSNPROGAUTH fields description

SYSIBM.DSNPROGAUTH is a user maintained table. A sample INSERT statement is provided in the
DB2 provided DSNTIJSG job, as shown in Example 10-11.

Example 10-11 DSNTIJSG extract: sample INSERT in SYSIBM.DSNPROGAUTH

//* *
//* Here is a sample insert statement for the DSNPROGAUTH table.
//* *
//* INSERT INTO SYSIBM.DSNPROGAUTH
//* ("PROGNAME"
//* , "PLANNAME"
//* , "PROGMDCVAL"
//* , "PROGMDCPAD"
//* , "CREATOR"
//* , "ENABLED"
//* , "CREATETS"
//* , "REMARKS"
//*)
//* VALUES('DSNTIAD'
//* , 'DSNTIA!!'
//* , X'00000000000000000000000000000000'
//* , '2'

PLANNAME Name of the application plan that the program can execute

PROGMDCVAL Reserved

PROGMDCPAD Reserved

CREATOR Authorization ID that inserted or last modified the row

ENABLED Indicates whether the program authorization is enabled. This column can have one of the
following values:
Y Program authorization is enabled
N Program authorization is disabled

CREATETS Time when the row was inserted or updated

REMARKS Comments about this program authorization record

Column name Description

Column name Data type and default value

PROGNAME VARCHAR(24) NOT NULL

PLANNAME VARCHAR(24) NOT NUL

PROGMDCVAL CHAR(16) NOT NULL FOR BIT DATA WITH DEFAULT

PROGMDCPAD CHAR(1) NOT NULL WITH DEFAULT '2’

CREATOR ARCHAR(128) NOT NULL WITH DEFAULT CURRENT SQLID

ENABLED CHAR(1) NOT NULL WITH DEFAULT 'N’

CREATETS TIMESTAMP NOT NULL WITH DEFAULT

REMARKS VARCHAR(762)
Chapter 10. Security 253

//* , CURRENT SQLID
//* , 'N'
//* , CURRENT TIMESTAMP
//* , 'EXAMPLE DSNPROGAUTH ENTRY (DISABLED)'
//*);
//*

Problem determination
To support the program authorization functionality, DB2 11 adds the following error reason
codes:

00F3003A An error occurred while processing the Program Name parameter.
This parameter was provided by the attachment facility on a request to
allocate a DB2 plan to the application. Either an abend occurred
accessing the Program Name or the starting character of the
parameter string is out of range. As a result, the request is not
processed.

00F3003B The program authorization is enabled by specifying PROGAUTH option
when the plan was bound. The program name associated with this
connection is not authorized to use the specified plan name. The
request to allocate a plan to the program name is denied.

00E70026 The program authorization is enabled by specifying PROGAUTH option
when the plan was bound. The SYSIBM.DSNPROGAUTH program name
validation table or SYSIBM.DSNPROGAUTH_INDX1 index do not exist. The
request to allocate the plan is not processed.

00E70028 The program authorization is enabled by specifying the PROGAUTH
option when the plan was bound. The SYSIBM.DSNPROGAUTH program
name validation table or SYSIBM.DSNPROGAUTH_INDX1 index is not
defined correctly. The request to allocate the plan is not processed.

The DB2 DSNT252I message is updated to display the PROGAUTH option. This message shows
the BIND or REBIND options that were used for the plan during bind or rebind processing.
Example 10-12 shows the message DSNT252I.

Example 10-12 REBIND PLAN output showing PROGAUTH enabled

READY
DSN SYSTEM(DB1A)
DSN
DSN
REBIND PLAN (DSNTIA11) PROGAUTH (E)
WARNING, ONLY IBM-SUPPLIED PLAN SHOULD BEGIN WITH "DSN"
DSNT252I -DB1A DSNTBRB REBIND OPTIONS FOR PLAN DSNTIA11
 ACTION
 OWNER SYSADM
 VALIDATE RUN
 ISOLATION CS
 ACQUIRE USE
 RELEASE COMMIT
 EXPLAIN NO
 DYNAMICRULES RUN
 PROGAUTH ENABLE
DSNT253I -DB1A DSNTBRB REBIND OPTIONS FOR PLAN DSNTIA11
 NODEFER PREPARE
 CACHESIZE 3072
 QUALIFIER SYSADM
 CURRENTSERVER
254 IBM DB2 11 for z/OS Technical Overview

 CURRENTDATA YES
 DEGREE 1
 SQLRULES DB2
 DISCONNECT EXPLICIT
 REOPT NONE
 KEEPDYNAMIC NO
 IMMEDWRITE NO
 DBPROTOCOL DRDA
 OPTHINT
 ENCODING EBCDIC(00037)
 CONCURRENTACCESSRESOLUTION
 PATH
DSNT200I -DB1A REBIND FOR PLAN DSNTIA11 SUCCESSFUL
DSN
END
READY
END

Implementation example
This section describes the steps involved in enabling a DB2 11 program authorization for a
existing PLAN with the following objectives:

� To limit and secure the packages that can be executed through a PLAN
� To guaranty that a package is not altered

The DB2 provided JCL DSNTIJTM, that is part of the DB2 installation stream, performs the BIND
of the DSNTIAD package and its PLAN, DSNTIA11 for DB2 11. Example 10-13 shows the JCL
used for this example.

Example 10-13 BIND PLAN DSNTIA11 in job DSNTIJTM

//DSNTIAS EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DB1A)
 BIND PACKAGE(DSNTIA11) MEM(DSNTIAD) -
 ACT(REP) ISO(CS) CURRENTDATA(YES) ENCODING(EBCDIC) -
 LIB('DB1AM.DBRMLIB.DATA')
 BIND PLAN(DSNTIA11) PKLIST(DSNTIA11.DSNTIAD) -
 ACTION(REPLACE) RETAIN +
 ISO(CS) CURRENTDATA(YES) ENCODING(EBCDIC)
 END
//*

Example 10-14 shows a portion of the output of the BIND PLAN DSNTIA11 command. This
example exposes the defaults used in this example environment. It also highlights the
PROGAUTH keyword in the DSNT252I message. Because PROGAUTH was not specified during
BIND, the resulting value for this option is DISABLE, as shown in this example.

Example 10-14 BIND PLAN DSNTIA11 output

DSN
 BIND PLAN(DSNTIA11) PKLIST(DSNTIA11.DSNTIAD)
 ACTION(REPLACE) RETAIN ISO(CS) CURRENTDATA(YES) ENCODING(EBCDIC)
WARNING, ONLY IBM-SUPPLIED PLAN SHOULD BEGIN WITH "DSN"
DSNT252I -DB1A DSNTBCM1 BIND OPTIONS FOR PLAN DSNTIA11
 ACTION REPLACE RETAIN
Chapter 10. Security 255

 OWNER DB2R1
 VALIDATE RUN
 ISOLATION CS
 ACQUIRE USE
 RELEASE COMMIT
 EXPLAIN NO
 DYNAMICRULES RUN
 PROGAUTH DISABLE
DSNT253I -DB1A DSNTBCM1 BIND OPTIONS FOR PLAN DSNTIA11
 NODEFER PREPARE
 CACHESIZE 3072
 QUALIFIER DB2R1
 CURRENTSERVER
 CURRENTDATA YES
 DEGREE 1
 SQLRULES DB2
 DISCONNECT EXPLICIT
 NOREOPT VARS
 KEEPDYNAMIC NO
 IMMEDWRITE NO
 DBPROTOCOL DRDA
 OPTHINT
 ENCODING EBCDIC(00037)
 CONCURRENTACCESSRESOLUTION
 PATH
DSNT200I -DB1A BIND FOR PLAN DSNTIA11 SUCCESSFUL

A SQL query on the DB2 SYSPLAN catalog table allows to check the value of PROGAUTH, as
shown in Example 10-15. The query result of this example is consistent with the DB2
DSNT252I message obtained during the BIND PLAN command execution.

Example 10-15 SYSPLAN query to show a PLAN’s PROGAUTH value

---------+---------+---------+---------+---------+---------+---------+---------+---------+
SELECT
 NAME, VALID,OPERATIVE,
 CAST(QUALIFIER AS CHAR(10)) AS QUALIFIER,
 RELBOUND, PROGAUTH, PLENTRIES
FROM SYSIBM.SYSPLAN
WHERE NAME = 'DSNTIA11'
WITH UR
---------+---------+---------+---------+---------+---------+---------+---------+---------+
NAME VALID OPERATIVE QUALIFIER RELBOUND PROGAUTH PLENTRIES
---------+---------+---------+---------+---------+---------+---------+---------+---------+
DSNTIA11 Y Y DB2R1 P D 1
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+---------+---------+

In this example, the PLENTRIES column indicates that the number of package list entries in the
SYSIBM.SYSPACKLIST table is 1 for this plan. The SYSIBM.SYSPACKLIST table contains one or
more rows for every local application plan bound with a package list. Each row represents a
unique entry in the plan's package list.

Example 10-16 shows an example of SQL query on SYSIBM.SYSPACKLIST to find the
relationship between a PLAN and a package list (or collection).

Example 10-16 SQL query on SYSIBM.SYSPACKLIST

SELECT
256 IBM DB2 11 for z/OS Technical Overview

 PLANNAME, CAST(COLLID AS CHAR(10)) AS COLLID, NAME
FROM SYSIBM.SYSPACKLIST
WHERE PLANNAME = 'DSNTIA11'
WITH UR;
---------+---------+---------+---------+---------+---------+
PLANNAME COLLID NAME
---------+---------+---------+---------+---------+---------+
DSNTIA11 DSNTIA11 DSNTIAD
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

The COLLID column indicates the collection name for the package. An asterisk (*) indicates
that the collection name is determined at run time. This example explicitly defines the
collection DSNTIA11. The column NAME indicates the name of the package. An asterisk (*)
indicates an entire collection. Example 10-17 shows an example of SQL query on SQL query
on SYSIBM.SYSPACKAGE.

Example 10-17 SQL query on SYSIBM.SYSPACKAGE

---------+---------+---------+---------+---------+---------+
SELECT
 CAST(COLLID AS CHAR(10)) AS COLLID,
 CAST(NAME AS CHAR(10)) AS NAME,
 VALID, OPERATIVE, APPLCOMPAT
FROM SYSIBM.SYSPACKAGE
WHERE COLLID = 'DSNTIA11'
WITH UR;
---------+---------+---------+---------+---------+---------+
COLLID NAME VALID OPERATIVE APPLCOMPAT
---------+---------+---------+---------+---------+---------+
DSNTIA11 DSNTIAD Y Y V11R1
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+

To enable program authorization control, the following minimum information for the
SYSIBM.DSNPROGAUTH table is required:

PROGNAME The program name
PLANNAME The PLAN name
ENABLED Insert value Y to enable program authorization

The following columns are not explicitly populated for this example:

� PROGMDCVAL: Modification detection code (MDC) value of the application program. The
default value (a string of binary zeros) specifies that MDC is not to be used.

� PROGMDCPAD: The type of padding used to calculate the MDC value. Not applicable in this
example, as per the value for PROGMDCVAL.

� CREATOR: The default for this column, CURRENT SQLID, is OK for the purposes of this
example.

� CREATETS: The default for this column, CURRENT TIMESTAMP, is OK for the purposes of this
example.

� The column REMARKS can be used for documentation purposes.

Example 10-18 shows the SQL used for this test.
Chapter 10. Security 257

Example 10-18 INSERT SQL on SYSIBM.DSNPROGAUTH

INSERT INTO SYSIBM.DSNPROGAUTH
 ("PROGNAME"
 , "PLANNAME"
 , "REMARKS"
)
 VALUES('DSNTIAD'
 , 'DSNTIA11'
 , 'DB2 11 program authorization test1'
);

Example 10-19 shows the INSERT results as reported with a SQL query on
SYSIBM.DSNPROGAUTH. Notice the value N for the ENABLED column.

Example 10-19 SQL query on SYSIBM.DSNPROGAUTH

---------+---------+---------+---------+---------+---------+---------+---
SELECT
 CAST(PROGNAME AS CHAR(10)) AS PROGRNAME,
 CAST(PLANNAME AS CHAR(10)) AS PLANNAME,
 PROGMDCVAL, PROGMDCPAD,
 CAST(CREATOR AS CHAR(10)) AS CREATOR,
 ENABLED
FROM SYSIBM.DSNPROGAUTH
WITH UR;
---------+---------+---------+---------+---------+---------+---------+---
PROGRNAME PLANNAME PROGMDCVAL PROGMDCPAD CREATOR ENABLED
---------+---------+---------+---------+---------+---------+---------+---
DSNTIAD DSNTIA11 2 DB2R1 N
DSNE610I NUMBER OF ROWS DISPLAYED IS 1

Example 10-20 shows the JCL used to invoke DSNTIAD for testing the program authentication
functionality.

Example 10-20 Testing program authentication with DSNTIAD

//*---
//RUNTIAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DISP=(SHR),DSN=DB1AT.SDSNLOAD
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DB1A)
 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA11) -
 LIB('DB1AM.RUNLIB.LOAD')
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
 SET CURRENT SQLID = 'SYSADM';
 CREATE VARIABLE CRISTIAN.TEMPVAR01 CHAR(10) DEFAULT 'NOT_INIT';
/*

The execution of the program fails as reported in Example 10-21.

Example 10-21 Program authentication preventing execution

READY
 DSN SYSTEM(DB1A)
DSN
 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA11) LIB('DB1AM.RUNLIB.LOAD')
258 IBM DB2 11 for z/OS Technical Overview

PLAN DSNTIA11 NOT AUTHORIZED FOR SUBSYSTEM DB1A AND AUTH ID DB2R1
DSN
END
 DSNTIAD - SAMPLE DYNAMIC SQL PROGRAM 2.0

 SET CURRENT SQLID = 'SYSADM'
 SQL ERROR DURING EXECUTE IMMEDIATE
DSNT408I SQLCODE = -924, ERROR: DB2 CONNECTION INTERNAL ERROR, 0001, 0008, 00F3003B
DSNT418I SQLSTATE = 58006 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNAET03 SQL PROCEDURE DETECTING ERROR

To allow the execution of the program, the ENABLED column of the SYSIBM.DSNPROGAUTH table
has to be changed to Y, as shown in Example 10-22.

Example 10-22 Updating SYSIBM.DSNPROGAUTH to allow program execution

---------+---------+---------+---------+---------+---------+---------+
UPDATE SYSIBM.DSNPROGAUTH
SET ENABLED = 'Y'
WHERE PROGNAME = 'DSNTIAD';
---------+---------+---------+---------+---------+---------+---------+
DSNE615I NUMBER OF ROWS AFFECTED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+---------+

Example 10-23 shows the results. Note the value Y for ENABLED.

Example 10-23 SQL query on SYSIBM.DSNPROGAUTH, ENABLED = ‘Y’

SELECT
 CAST(PROGNAME AS CHAR(10)) AS PROGRNAME,
 CAST(PLANNAME AS CHAR(10)) AS PLANNAME,
 PROGMDCVAL, PROGMDCPAD,
 CAST(CREATOR AS CHAR(10)) AS CREATOR,
 ENABLED
FROM SYSIBM.DSNPROGAUTH
WITH UR;
---------+---------+---------+---------+---------+---------+---------+---------+
PROGRNAME PLANNAME PROGMDCVAL PROGMDCPAD CREATOR ENABLED
---------+---------+---------+---------+---------+---------+---------+---------+
DSNTIAD DSNTIA11 2 DB2R1 Y
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

The execution of the program is now allowed, and the results are shown in Example 10-24.

Example 10-24 Program authentication allowing execution

READY
 DSN SYSTEM(DB1A)
DSN
 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA11) LIB('DB1AM.RUNLIB.LOAD')
DSN
END
 DSNTIAD - SAMPLE DYNAMIC SQL PROGRAM 2.0

 SET CURRENT SQLID = 'SYSADM'
DSNT400I SQLCODE = 000, SUCCESSFUL EXECUTION
Chapter 10. Security 259

Troubleshooting: table DSNPROGAUTH not available
This section describes the DB2 behavior when a PLAN is enabled for program authentication,
but the DB2 SYSIBM.DSNPROGAUTH table is not available. The query in Example 10-25 shows
the database and table space name of the SYSIBM.DSNPROGAUTH table as created in this test
environment.

Example 10-25 SQL to find DBNAME and TSNAME of SYSIBM.DSNPROGAUTH

---------+---------+---------+---------+---------+---------+
SELECT
 DBNAME, TSNAME
FROM SYSIBM.SYSTABLES WHERE NAME = 'DSNPROGAUTH'
 AND OWNER = 'SYSIBM'
WITH UR;
---------+---------+---------+---------+---------+---------+
DBNAME TSNAME
---------+---------+---------+---------+---------+---------+
DSNMDCDB DSNMDCTS
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+

To force a resource not available error, this example stops the SYSIBM.DSNPROGAUTH table
space. The unavailability of the table space is confirmed with a display command.
Example 10-26 shows the output of this command.

Example 10-26 Display status of SYSIBM.DSNPROGAUTH table space status

DSNT360I -DB1A ***********************************
DSNT361I -DB1A * DISPLAY DATABASE SUMMARY
 * GLOBAL
DSNT360I -DB1A ***********************************
DSNT362I -DB1A DATABASE = DSNMDCDB STATUS = RW
 DBD LENGTH = 4028
DSNT397I -DB1A
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
DSNMDCTS TS STOP
******* DISPLAY OF DATABASE DSNMDCDB ENDED **********************
DSN9022I -DB1A DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

At this point, the execution of any program defined with program authentication fails, as
shown in Example 10-27.

Example 10-27 SYSIBM.DSNPROGAUTH not available prevents program execution

READY
 DSN SYSTEM(DB1A)
DSN
 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA11) LIB('DB1AM.RUNLIB.LOAD')
SUBSYSTEM RESOURCE NEEDED FOR PLAN DSNTIA11, AUTH ID DB2R1, AND SUBSYSTEM DB1A IS NOT
AVAILABLE
FEEDBACK - REASON CODE X'00C90081' TYPE X'00000200' RESOURCE NAME- DSNMDCDB.DSNMDCTS
DSN
END
 DSNTIAD - SAMPLE DYNAMIC SQL PROGRAM 2.0

 SET CURRENT SQLID = 'SYSADM'
 SQL ERROR DURING EXECUTE IMMEDIATE
260 IBM DB2 11 for z/OS Technical Overview

DSNT408I SQLCODE = -923, ERROR: CONNECTION NOT ESTABLISHED: DB2 ACCESS, REASON 00C90081,
TYPE 00000200, NAME
 DSNMDCDB.DSNMDCTS
DSNT418I SQLSTATE = 57015 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNAET03 SQL PROCEDURE DETECTING ERROR

The DB2 MSTR address space reports message 00C90081, as shown in Example 10-28.
The 00C90081 message indicates that an attempt was made to allocate a resource that is
stopped for all access.

Example 10-28 DB2 MSTR message 00C90081

DSNT501I -DB1A DSNIDBET RESOURCE UNAVAILABLE 734
 CORRELATION-ID=DB2R1
 CONNECTION-ID=TSO
 LUW-ID=USIBMSC.SCPDB1A.CBB6B8D881E6=829
 REASON 00C90081
 TYPE 00000200
 NAME DSNMDCDB.DSNMDCTS

Troubleshooting: contention on table DSNPROGAUTH
To simulate locking contention on the table SYSIBM.DSNPROGAUTH, this example performs
an update on the table using SPUFI with AUTOCOMMIT set to NO, as shown in Example 10-29.

Example 10-29 SPUFI option AUTOCOMMIT = NO

SPUFI SSID: DB1A
===>

Enter the input data set name: (Can be sequential or partitioned)
 1 DATA SET NAME ... ===> 'DB2R1.UTIL.SECURITY(DSNPROG)'
 2 VOLUME SERIAL ... ===> (Enter if not cataloged)
 3 DATA SET PASSWORD ===> (Enter if password protected)

Enter the output data set name: (Must be a sequential data set)
 4 DATA SET NAME ... ===> 'DB2R1.SPUFIOUT'

Specify processing options:
 5 CHANGE DEFAULTS ===> YES (Y/N - Display SPUFI defaults panel?)
 6 EDIT INPUT ===> YES (Y/N - Enter SQL statements?)
 7 EXECUTE ===> YES (Y/N - Execute SQL statements?)
 8 AUTOCOMMIT ===> NO (Y/N - Commit after successful run?)
 9 BROWSE OUTPUT ... ===> YES (Y/N - Browse output data set?)

For remote SQL processing:
10 CONNECT LOCATION ===>

PRESS: ENTER to process END to exit HELP for more information

The SQL query used in this test is shown in Example 10-30. Notice the DB2 DSNE6141
message.

Important: A PLAN with program authentication enabled will fail the execution of a package
if DB2 cannot verify the contents of SYSIBM.DSNPROGAUTH.
Chapter 10. Security 261

Example 10-30 SQL to update SYSIBM.DSNPROGAUTH

---------+---------+---------+---------+---------+---------+
 UPDATE SYSIBM.DSNPROGAUTH
 SET ENABLED = 'Y'
 WHERE PROGNAME = 'DSNTIAD';
---------+---------+---------+---------+---------+---------+
DSNE615I NUMBER OF ROWS AFFECTED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+
DSNE614I AUTOCOMMIT IS NO; NO CHANGES COMMITTED
---------+---------+---------+---------+---------+---------+-

As a result of the SPUFI AUTOCOMMIT = NO option, there are locks held by SPUFI on the
SYSIBM.DSNPROGAUTH table until the user explicitly commits the changes. A batch program
running a PLAN with program authentication enabled attempts to access the table previous
allowing the execution of a package.

The locks are shown with a DISPLAY command, of which output can be seen in
Example 10-31.

Example 10-31 Locks on SYSIBM.DSNPROGAUTH table space

DSNT360I -DB1A ***********************************
DSNT361I -DB1A * DISPLAY DATABASE SUMMARY
 * GLOBAL LOCKS
DSNT360I -DB1A ***********************************
DSNT362I -DB1A DATABASE = DSNMDCDB STATUS = RW
 DBD LENGTH = 4028
DSNT397I -DB1A
NAME TYPE PART STATUS CONNID CORRID LOCKINFO
-------- ---- ----- ----------------- -------- ------------ ---------
DSNMDCTS TS RW BATCH DB2R1S H-IS,S,C
 - AGENT TOKEN 851
DSNMDCTS TS RW TSO DB2R1 H-IX,S,C
 - AGENT TOKEN 844
3 TB BATCH DB2R1S H-IS,T,C
 - AGENT TOKEN 851
3 TB TSO DB2R1 H-IX,T,C
 - AGENT TOKEN 844
******* DISPLAY OF DATABASE DSNMDCDB ENDED **********************
DSN9022I -DB1A DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

This example show the locks originated by the TSO user DB2R1, using SPUFI, and the batch
correlation ID DB2R1S. The batch program fails as shown in Example 10-32.

Example 10-32 Program failure due to locks on SYSIBM.DSNPROGAUTH

READY
 DSN SYSTEM(DB1A)
DSN
 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA11) LIB('DB1AM.RUNLIB.LOAD')
SUBSYSTEM RESOURCE NEEDED FOR PLAN DSNTIA11, AUTH ID DB2R1, AND SUBSYSTEM DB1A IS NOT
AVAILABLE
FEEDBACK - REASON CODE X'00C9008E' TYPE X'00000304' RESOURCE NAME-
DSNMDCDB.DSNMDCTS.X'000002' '.X'01'
DSN
END
 DSNTIAD - SAMPLE DYNAMIC SQL PROGRAM 2.0
262 IBM DB2 11 for z/OS Technical Overview

 SET CURRENT SQLID = 'SYSADM'
 SQL ERROR DURING EXECUTE IMMEDIATE
DSNT408I SQLCODE = -923, ERROR: CONNECTION NOT ESTABLISHED: DB2 ACCESS, REASON 00C9008E,
TYPE 00000304, NAME
 DSNMDCDB.DSNMDCTS.X'000002' '.X'01'
DSNT418I SQLSTATE = 57015 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNAET03 SQL PROCEDURE DETECTING ERROR

Note the DB2 00C9008E message. It indicates that a lock request cannot be granted, and the
request waited for a period longer than the maximum specified by the installation. As
indicated by NAME in this message, the lock was not obtained on the SYSIBM.DSNPROGAUTH
table.

10.3 Column masking enhancements

Row and column access control enables you to manage access to a table at the level of a
row, a column, or both. You can implement row access control through row permissions and
column access control through column masks.

A column mask is a database object that describes a specific column access control rule for a
column. In the form of an SQL CASE expression, the rule specifies the condition under which a
user, group, or role can receive the masked values that are returned for a column.

If the SEPARATE_SECURITY system parameter is set to YES, you must have the SECADM authority
to create a column mask. If SEPARATE_SECURITY is set to NO, you must have the SECADM or
SYSADM authority.

Example 10-33 shows a sample DDL and DML code that you can use to test column masks.
This code creates a simple table and add some sample records into it.

Example 10-33 Sample table and data for column mask example

CREATE TABLE CLIENTS
 (NAME CHAR(10),
 COUNTRY CHAR(10),
 PHONE# CHAR(10));

INSERT INTO CLIENTS VALUES ('CRISTIAN','BELGIUM','+321234567');
INSERT INTO CLIENTS VALUES ('FERNANDO','SPAIN ','+331234567');
INSERT INTO CLIENTS VALUES ('TATIANA ','BELGIUM','+341234567');
INSERT INTO CLIENTS VALUES ('MARTINA ','ITALY ','+391234567');
INSERT INTO CLIENTS VALUES ('KATRIN ','GERMANY','+321234567');

Example 10-34 shows the SQL that can be used to create 2 column masks on the table. With
these examples, DB2 will mask the values of the columns COUNTRY and PHONE# for users other
than CRIS.

Example 10-34 Creating a column mask

CREATE MASK COUNTRY_MASK ON CLIENTS
 FOR COLUMN COUNTRY
 RETURN

Attention: Contention on the SYSIBM.DSNPROGAUTH table can cause application
performance or application availability problems
Chapter 10. Security 263

 CASE WHEN CURRENT SQLID = 'CRIS'
 THEN COUNTRY
 ELSE CHAR('----------')
 END
 ENABLE;

CREATE MASK PHONE#_MASK ON CLIENTS
 FOR COLUMN PHONE#
 RETURN
 CASE WHEN CURRENT SQLID = 'CRIS'
 THEN PHONE#
 ELSE SUBSTR(PHONE#, 1, 3) || CHAR('-XXX-XX')
 END
 ENABLE;

To activate column access control on this table, issue the ALTER statement shown in
Example 10-35.

Example 10-35 Activating column access control

ALTER TABLE CLIENTS ACTIVATE COLUMN ACCESS CONTROL;

Example 10-36 shows the results of executing the same SELECT statement with different
SQLIDs on a table with column access control activated.

Example 10-36 Column access control effects on SELECT

---------+---------+---------+---------+---------+---------+---------+
SET CURRENT SCHEMA = 'CRIS';
---------+---------+---------+---------+---------+---------+---------+
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+---------+
SET CURRENT SQLID = 'CRIS';
---------+---------+---------+---------+---------+---------+---------+
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+---------+
SELECT * FROM CLIENTS;
---------+---------+---------+---------+---------+---------+---------+
NAME COUNTRY PHONE#
---------+---------+---------+---------+---------+---------+---------+
CRISTIAN BELGIUM +321234567
FERNANDO SPAIN +331234567
TATIANA BELGIUM +341234567
MARTINA ITALY +391234567
KATRIN GERMANY +321234567
DSNE610I NUMBER OF ROWS DISPLAYED IS 5
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+

SET CURRENT SQLID = 'TOTO';
---------+---------+---------+---------+---------+---------+---------+
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+---------+
SELECT * FROM CLIENTS;
---------+---------+---------+---------+---------+---------+---------+
NAME COUNTRY PHONE#
---------+---------+---------+---------+---------+---------+---------+
CRISTIAN ---------- +32-XXX-XX
FERNANDO ---------- +33-XXX-XX
TATIANA ---------- +34-XXX-XX
264 IBM DB2 11 for z/OS Technical Overview

MARTINA ---------- +39-XXX-XX
KATRIN ---------- +32-XXX-XX
DSNE610I NUMBER OF ROWS DISPLAYED IS 5
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+---------+

To deactivate column access control on this example table, issue the ALTER statement shown
in Example 10-37.

Example 10-37 Deactivating column access control

ALTER TABLE CLIENTS DEACTIVATE COLUMN ACCESS CONTROL;

10.3.1 Remove column access control restrictions for GROUP BY

In DB2 10 for z/OS, column access control (column mask) is restricted for GROUP BY in the
statements for some scenarios. After definition and activation of column access control on a
table, users might receive SQLCODE -20478 reason codes 3, 4, 5, or 6 at query execution.
An abstract of the SQLCODE -20478 message definition is shown in Example 10-38.

Example 10-38 SQLCODE -20478

THE STATEMENT CANNOT BE PROCESSED BECAUSE COLUMN MASK mask-name (DEFINED FOR
COLUMN column-name) EXISTS AND THE COLUMN MASK CANNOT BE APPLIED OR THE DEFINITION
OF THE MASK CONFLICTS WITH THE REQUESTED STATEMENT. REASON CODE reason-code.

In DB2 10, the user can receive one of the following reason codes:

� 3: The column is also referenced in a grouping expression of the GROUP BY clause.

� 4: When a table contains a column that has a column mask defined on it, each column
that is in the table must be referenced as a simple column reference in the GROUP BY
clause. Such columns must not be referenced in a grouping expression in the GROUP BY
clause.

� 5: The select list includes an aggregate function and the column that is identified by
column-name is specified as an input argument to the function. In this case, the column
mask must not reference a scalar fullselect or an aggregate function.

� 6: A column in the select list maps directly or indirectly to the column column-name of a
table expression, view, or common table expression. Such a column must be referenced
only as an argument to an aggregate function in the select list.

Use the following possible solutions for these reason codes:

� reason code 3: Either do not reference the column in the select list or do not reference
the column in an expression in the GROUP BY clause.

� reason code 4: Either do not reference the column in the select list or change the
GROUP BY clause to include only a simple column reference for each column of the same
table that is referenced in the mask-name mask.

� reason code 5: Either do not reference the column in the select list or do not specify the
column as an argument to the aggregate function.

� reason code 6: Either change the query to specify the column as an argument to an
aggregate function or remove the GROUP BY clause.

DB2 11 removes column access control restrictions for GROUP BY as follows:
Chapter 10. Security 265

� Remove SQLCODE -20478 reason code 5: if column mask contains a scalar fullselect or
an aggregate function, allow to apply the column mask under an aggregate function

� Remove SQLCODE -20478 reason codes 3, 4, or 6: if column mask contains
non-grouping columns, allow to apply the column mask when there is a GROUP BY
clause

The support for GROUP BY column access control starts in DB2 11 New Function Mode
(NFM) when APPLCOMPAT='V11R1'. No REBIND is needed to get the GROUP BY support.

10.3.2 Correct implementation of aggregate function with DISTINCT

In DB2 10, after APAR PM61099, DB2 disallows a column mask on a column that is the input
to an aggregate DISTINCT function by issuing -20478 reason code 26.

Example 10-39 shows a sample query that can show this behavior.

Example 10-39 Aggregate function with DISTINCT in SQL

SELECT COUNT(DISTINCT PHONE#) FROM CLIENTS;

Table 10-3 summarizes the changes in behavior when comparing DB2 10 to DB2 11.

Table 10-3 DISTINCT and aggregation with column masking in DB2 10 versus DB2 11

Support for aggregate function with DISTINCT column starts in DB2 11 NFM when
APPLCOMPAT = 'V11R1'. To avoid the inconsistent result during migration and fallback, the
correction is retrofitted to DB2 10 NFM. Rebind is needed to correct the aggregate functions
with the DISTINCT keyword.

10.3.3 Column access control for UNION

DB2 10 restricted the column access control (column masks) from all set operations, like
UNION, INTERSECT, and EXCEPT, by issuing SQLCODE -20478 reason code 1 and 2.

DB2 11 supports the column access control for UNION DISTINCT and UNION ALL in DB2 11
NFM when APPLCOMPAT = 'V11R1'.

The expression corresponding to the nth column in R1 and R2 can reference columns with
column masks. The nth column of the result of the union can be derived from the masked
values in R1 or R2.

With UNION DISTINCT, the duplication elimination is based on the unmasked values in R1 and
R2. Because each row of the result table of the union is either a row from R1 or a row from
R2, the output values in the result table of the union might vary. For example, if a row in R1 is
derived from the masked value but a row in R2 is derived from the unmasked value, and if the
row in the result table of the union is from R1, the masked value is returned, but if the row in
the result table of the union is from R2, the unmasked value is returned.

DISTINCT Aggregation

DB2 10 On masked value On masked value

DB2 11 On unmasked value On masked value
266 IBM DB2 11 for z/OS Technical Overview

The following examples illustrate when the values in the result table of the union can vary:

� The expression corresponding to the nth column in R1 references columns with column
masks but the expression corresponding to the nth column in R2 does not, or vise versa.

� Both expressions corresponding to the nth column in R1 and R2 reference columns with
column masks but they are different column masks.

� The column mask definition references columns that are not the same column for which
the column mask is defined and those columns are not part of the UNION DISTINCT
operation. It is recommended not to reference other columns in the column mask
definition.

EXCEPT and INTERSECT can be intermixed with UNION, as long as the rows in R1 and R2 for
EXCEPT and INTERSECT do not reference columns with column masks.
Chapter 10. Security 267

268 IBM DB2 11 for z/OS Technical Overview

Chapter 11. Utilities

IBM DB2 Utilities Suite for z/OS is a comprehensive set of tools for managing all DB2 data
maintenance tasks. DB2 11 includes a variety of improvements to utilities. These utilities are
enhanced to support all new functions in DB2 11. The support also includes more widespread
use of the System z platform functions, such as more zIIP exploitation. Finally, DB2 11 utilities
show the trend to simplifying data management, resource consumption, and maximize
availability.

The best utility is the one that you do not need to schedule, or even better you do not need to
run. One example is the function described at 4.10, “Idle thread break-in” on page 82, which
relieves the need to run REORG INDEX for the purpose of removing the pseudo deleted index
entries.

This chapter describes enhancements to utilities and includes the following topics:

� Online REORG enhancements
� Enhanced statistics
� Backup and recovery enhancements
� LOAD and UNLOAD enhancements
� Compression dictionaries for Change Data Capture
� General enhancements
� Deprecated functions

For more information, see DB2 11 for z/OS Utility Guide and Reference, SC19-4067.

11
© Copyright IBM Corp. 2013. All rights reserved. 269

11.1 Online REORG enhancements

Online REORG is an availability enhancement to DB2 introduced in DB2 V5. It increases
availability of a table space or index while it is being reorganized. Online REORG reloads the
reorganized table space and rebuilds the indexes into shadow table spaces and indexes. It
then switches the original data sets and the new ones at the end of the REORG making the
objects unavailable for a short time. There is just a small unavailability when the applications
are drained in the final log iteration phase (CHANGE only) and the switch phase. By using drain
and retry options, the draining process can be controlled without leading to resource
unavailability conditions for the applications and the process can be repeated until the REORG
finishes successfully.

By online REORG, we mean REORG.... SHRLEVEL REFERENCE or REORG.... SHRLEVEL
CHANGE. REORG SHRLEVEL NONE continues to delete and rebuild the DB2 objects.

Online REORG is enhanced throughout several DB2 releases to bring more usability and help
users to reach continuous availability.

This section describes the following DB2 11 improvements to online REORG:

� Improve performance of partition-level REORG with non partitioned secondary indexes
� SWITCH phase impact reduction
� Physically delete empty partition-by-growth partitions
� Automated REORG mapping table management
� REORG without SORTing data
� Partition-level inline image copy
� Improved REORG LISTDEF processing
� REBALANCE enhancements
� REORG of LOB enhancements
� Improved REORG serviceability
� REORG change of defaults to match preferred practices

11.1.1 Improve performance of partition-level REORG with non partitioned
secondary indexes

Since the removal of the BUILD2 phase for partition-level REORG in DB2 9, the performance of
REORG was degraded in some cases due to the cost of building shadow non partitioned
secondary indexes (NPSIs). Shadow NPSIs are populated initially with keys of partitions
which are not in the scope of the REORG during the UNLOAD phase. Then keys from parts within
the scope of the REORG are sorted and inserted into the shadow NPSI during the SORT and
REBUILD phases, respectively.

Significant performance improvement can be achieved by sorting all keys of the NPSI in the
same sort operation and rebuilding the index from the entire set of sorted keys.

DB2 11 modifies the processing of NPSIs for REORG TABLESPACE PART SHRLEVEL
CHANGE/REFERENCE when NPSIs are defined on the table space. Processing of NPSIs in this
case is done in one of the following ways:

� During UNLOAD, one or more subtasks unload NPSI keys from partitions not within the
scope of the REORG and build the shadow NPSI. Keys from partitions within the scope of
the REORG are generated from the reorganized data rows, sorted, and inserted in the
shadow index.

� During UNLOAD, one or more subtasks process NPSI keys from partitions not within the
scope of the REORG. These keys are routed to a sort process to be sorted with the keys
270 IBM DB2 11 for z/OS Technical Overview

from partitions within the scope of the REORG. The shadow NPSI is built from this sorted set
of keys.

This function can improve performance and leaves the previous behavior intact. It also allows
the user to control the behavior through the DSNZPARM REORG_PART_SORT_NPSI value with a
SORTNPSI keyword. See Figure 11-1.

Figure 11-1 REORG TABLE SPACE PART with NPSIs

This keyword is ignored for a REORG that is not partition-level or a REORG with no NPSIs.

Figure 11-2 shows the following possible set of options for the SORTNPSI keyword:

� When SORTNPSI is specified as YES or AUTO, all keys can be sorted.

� When SORTNPSI is not specified, and REORG_PART_SORT_NPSI is set to YES or AUTO, all keys
can be sorted as well.

� If any of the two parameters are set to NO, the previous method is used.

Figure 11-2 New SORTNPSI keyword

If the SORTNPSI keyword is not specified, the value is determined by the DSNZPARM
REORG_PART_SORT_NPSI value (default is NO). The REORG_PART_SORT_NPSI default is changeable
online and has member scope in data sharing.

DB2 for z/OS Sequoia

REORG TABLE SPACE PART with NPSIs

106, JAN, KY
101, FEB, DE
102, MAR, MO AL

DE
KY
LA
MN
MO
MS
NC
NJ

REORG TABLE SPACE PART 1:2 SHRLEVEL CHANGE
with

ZPARM REORG_PART_SORT_NPSI or SORTNPSI set to YES

205, JAN, AL
206, FEB, NC
201, JUL, NJ

304, APR, MS
301, NOV, LA
303, MAY, MN

These keys are routed to a sort process to be
sorted with the keys from parts within the scope
of the REORG. The shadow NPSI is built from
this sorted set of keys – This is the new
behaviour

Partitioned Table

NPSI

During the UNLOAD phase, one or more
subtasks unload NPSI keys from parts not
within the scope of REORG.

106, JAN, KY
101, FEB, DE
102, MAR, MO

205, JAN, AL
206, FEB, NC
201, JUL, NJ

AL
DE
KY
LA
MN
MO
MS
NC
NJ

Shadow
NPSI
Chapter 11. Utilities 271

Figure 11-3 shows the options for the DSNZPARM REORG_PART_SORT_NPSI value.

Figure 11-3 New DSNZPARM REORG_PART_SORT_NPSI

The following options are available for the DSNZPARM REORG_PART_SORT_NPSI value:

AUTO Specifies that if sorting all keys of the non-partitioned secondary
indexes improves the elapsed time and CPU performance, all keys are
sorted.It uses catalog statistics and RTS information.

YES Specifies that if sorting all keys of the non-partitioned secondary
indexes improves the elapsed time, all keys are sorted.

NO Specifies that only keys of the non-partitioned secondary indexes that
are in the scope of the REORG are sorted.

The following new message is issued when all keys of an NPSI are sorted during a
partition-level REORG TABLESPACE.

DSNU1242I
csect-name ALL KEYS OF A NON-PARTITIONED SECONDARY INDEX WILL BE SORTED

Example 11-1 shows an example of REORG TABLESPACE PART WITH SORTNPSI YES.

Example 11-1 REORG TABLESPACE PART WITH SORTNPSI YES

/*JOB
//PROCLIB JCLLIB ORDER=DB1AM.PROCLIB
//REORG EXEC DSNUPROC,SYSTEM=DB1A,
// LIB='DB1AT.SDSNLOAD',
// UID='OREORG' UTPROC='PREVIEW'
//DSNUPROC.SYSIN DD *
 TEMPLATE COPY DSN 'DB2R2.&DB..&TS..P&PA..T&TIME.'
 DISP (NEW,CATLG,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE UT1 DSN 'DB2R2.&DB..&TS..P&PA..SYSUT1'
 DISP (NEW,DELETE,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE SRTOUT DSN 'DB2R2.&DB..&TS..P&PA..SORTOUT'
 DISP (NEW,DELETE,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE REC DSN 'DB2R2.&DB..&TS..P&PA..SYSREC'
 DISP (NEW,DELETE,DELETE)
UNIT SYSDA
 SPACE (5,5) CYL
 REORG TABLESPACE DSN8D11A.DSN8S11E PART(1:4)
 SORTNPSI YES
 COPYDDN(COPY) UNLDDN REC
 LOG NO
 SHRLEVEL REFERENCE
272 IBM DB2 11 for z/OS Technical Overview

Example 11-2 shows the job output.

Example 11-2 REORG TABLESPACE PART WITH SORTNPSI YES job output

DSNU000I 205 14:13:42.62 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

DSNU050I 205 14:13:42.64 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E PART(1:4)
SORTNPSI YES COPYDDN(COPY) UNLDDN REC LOG NO SHRLEVEL REFERENCE
 DSNU2904I -DB1A 205 14:13:43.45 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN
 DSNU1242I -DB1A 205 14:13:43.45 DSNURFUI - ALL KEYS OF A NON-PARTITIONED SECONDARY INDEX WILL BE SORTED
 DSNU2903I 205 14:13:43.45 DSNURORG - PARTITION LEVEL INLINE COPY DATASETS WILL BE ALLOCATED

DSNU010I 205 14:13:46.19 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

The measurements results show that REORG of 40% of partitions showed 55% reduction on
elapsed time and an increase of 22% in CPU time. DB2 SORT gives additional reduction on
elapsed time and reduces CPU time. In general, when reorganizing more than 50% of your
table, this option is a good option.

11.1.2 SWITCH phase impact reduction

This new feature provides relief for online REORG when acquiring DRAIN during the SWITCH
phase (for example, in a situation where users have a partitioned table space with 10
partitions and need to REORG the first five partitions). DB2 10 utility requests a DRAIN for
partition 1, then partition 2, and so on until gets the DRAIN for the five partitions. However,
often this process runs out of the specified DRAIN_WAIT time before it arrives on part five. This
process causes the utility to abend and leaves the table space partition in UTRO access, with
the updates failing with -904 reason code.

Note: This function was retrofitted by APAR PM55051 to DB2 9 with PTF UK78231 and
DB2 10 with PTF UK78229.
Chapter 11. Utilities 273

DB2 11 sets a flag to prevent new CLAIM for the PARTs specified on REORG, before starting
DRAIN for part 1. Thus, new application threads need to wait until REORG acquires all the DRAINs
to proceeded, as illustrated in Figure 11-4.

Figure 11-4 Switch phase impact reduction

This technique solves the issue on DRAIN PARTs but it can still be a problem when draining the
NPSI. When REORG is requesting DRAIN for part 1 to 5, an application can come in and
request a row that is on PART 6. REORG lets the application get this CLAIM, but more
importantly is that the application also gets a CLAIM on the NPSI. Later, the application wants
a row that is on PART 3 and waits for REORG to finish, but REORG is waiting to the application to
finish as well and release the NPSI. In this case, a deadlock situation occurs.

To solve this issue, DB2 11 provides the new DRAIN_ALLPARTS YES option, that tells DB2 to
obtains the table space level drain on the entire partitioned table space temporarily first, then
DRAIN the NPSIs, release the drain on the entire partitioned table space, and start draining the
target data partitions and the indexes.

This process provides relief by eliminating DRAIN timeout or deadlocks caused by the reverse
order of object-draining by REORG and object-claiming by DML statement.

DB2 10:

REORG TS

DSNUM 1:5

Begin SWITCH phase

Log

Insert into P1 & P4

drain P1

Wait for
drain

drain

P2

Insert into P3 & P4

DRAIN_WAIT = 10 minutes

10 minutes

Drain

P3

Wait for
drain DRAIN_WAIT

Time exeeded

P1

P2
P3

P4
P5

DB2 11:

REORG TS

DSNUM 1:5

Begin SWITCH phase

Log

Insert into P1 & P4

drain P1

Wait
for

drain
drain

P2

Insert into P3 & P4

DRAIN_WAIT = 10 minutes

10 minutes

drain

P3

P1

P2
P3

P4
P5

SET
FLAG* drain P1

* No new CLAIMS for partitions
being reorged

drain

P4

drain

P5

REORG
completes

Inserts
start here
274 IBM DB2 11 for z/OS Technical Overview

The DRAIN_ALLPARTS option specifies the action to take during a part level REORG TABLESPACE
SHRLEVEL REFERENCE or CHANGE when a non partitioned secondary index is defined on a
partitioned table space. It supports the following values:

NO REORG drains the target data partitions serially followed by the non
partitioned secondary indexes. This option is the default behavior.

YES REORG obtains the table space level drain on the entire partitioned table
space first, before draining the target data partitions and the indexes.
This option can provide relief by eliminating drain timeout or deadlocks
caused by the reverse order of object-draining by REORG and
object-claiming by DML statements.

Example 11-3 shows an example of REORG TABLESPACE PART with DRAIN_ALLPARTS YES.

Example 11-3 REORG TABLESPACE PART WITH DRAIN_ALLPARTS YES

/*JOB
//PROCLIB JCLLIB ORDER=DB1AM.PROCLIB
//REORG EXEC DSNUPROC,SYSTEM=DB1A,
// LIB='DB1AT.SDSNLOAD',
// UID='OREORG' UTPROC='PREVIEW'
//DSNUPROC.SYSIN DD *
 TEMPLATE COPY DSN 'DB2R2.&DB..&TS..P&PA..T&TIME.'
 DISP (NEW,CATLG,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE UT1 DSN 'DB2R2.&DB..&TS..P&PA..SYSUT1'
 DISP (NEW,DELETE,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE SRTOUT DSN 'DB2R2.&DB..&TS..P&PA..SORTOUT'
 DISP (NEW,DELETE,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE REC DSN 'DB2R2.&DB..&TS..P&PA..SYSREC'
 DISP (NEW,DELETE,DELETE)

UNIT SYSDA
SPACE (5,5) CYL

 REORG TABLESPACE DSN8D11A.DSN8S11E PART(1:4)
DRAIN_ALLPARTS YES

 COPYDDN(COPY) UNLDDN REC
 LOG NO
 SHRLEVEL REFERENCE

Example 11-4 shows the job output.

Example 11-4 REORG TABLESPACE PART WITH DRAIN_ALLPARTS YES job output

DSNU000I 206 14:39:24.36 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

0DSNU050I 206 14:39:24.39 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E PART(1:4) DRAIN_ALLPARTS YES COPYDDN(
 COPY) UNLDDN REC LOG NO SHRLEVEL REFERENCE

-DB1A 206 14:39:26.89 DSNURLOG - DRAIN ALL WITH START TIME 2013-07-25-14.39.26.899227 HAS COMPLETED SUCCESSFULLY
 DSNU1139I 206 14:39:26.94 DSNURLGD - FINAL LOG ITERATION STATISTICS. NUMBER OF LOG RECORDS = 0
 DSNU386I 206 14:39:26.94 DSNURLGD - LOG PHASE STATISTICS. NUMBER OF ITERATIONS = 1, NUMBER OF LOG RECORDS = 0
 DSNU385I 206 14:39:26.94 DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:00:00
 DSNU387I 206 14:39:27.11 DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:00
Chapter 11. Utilities 275

 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 1
 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 2
 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 3
 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 4
 DSNU010I 206 14:39:27.97 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Timing of SWITCH phase with MAXRO DEFER
During an online REORG SHRLEVEL CHANGE, DB2 allows changes during each iteration of the
LOG phase, which can cause the LOG phase to never end. Thus, the REORG utility must at some
time switch to read-only access during the LOG phase. Then, it has to apply only the changes
accumulated during the previous iteration before it enters the SWITCH phase. Because the
switching to read-only access impacts your applications, the REORG utility allows you to decide
and specify, using the MAXRO utility, how long can you tolerate a read-only period in your
environment.

Based on the changes for the previous iteration, the REORG utility estimates how long the next
iteration takes. If its estimate is lower than or equal to the value specified using the MAXRO
parameter, the REORG utility switches to read-only access or even to no access allowed,
depending on what you have requested, and the last iteration takes place.

The MAXRO DEFER option causes log processing to continue indefinitely until you change MAXRO
using the ALTER UTILITY command, or the last iteration is forced by LONGLOG, or the
reorganization is terminated.

DB2 11 allows you to govern the timing of drain and switch for long-running REORGs without
the need to schedule a separate ALTER UTILITY command with a new SWITCHTIME parameter
to determine the earliest point at which drain processing is attempted. The timestamp option
determines the time at which the final log iteration of the LOG phase is to begin. This time must
not have already occurred when REORG is run. It simply tells REORG when you want to apply the
DRAIN and switch without the need of issuing the ALTER UTILITY command.

The SWITCHTIME option specifies the time for the final log iteration of the LOG phase to begin.
The final result and all the time stamp calculation of DEADLINE is in TIMESTAMP(6). This
keyword can be specified in conjunction with the MAXRO keyword. REORG can enter the final log
iteration of the LOG phase before the specified SWITCHTIME value if the MAXRO criteria is met.
This option supports the following values:

NONE Does not specify a time for the final log iteration of the LOG
phase. This option is the default behavior.

timestamp Specifies the time the final log iteration of the LOG phase is to
begin. This time must not have already occurred when REORG
is run.

labeled-duration-expression Calculates the time for the final log iteration of LOG phase is to
begin. The calculation is based on either CURRENT TIMESTAMP
or CURRENT DATE.

To add a labeled duration expression, select to begin your labeled duration expression with
either the Current date or the Current time stamp using the following expression:

labeled-duration-expression:
CURRENT_DATE
CURRENT_TIMESTAMP WITH TIME ZONE +/- constant YEAR

YEARS

Note: This feature does not affect REORG of the whole table space because it is only one
DRAIN on the whole table space.
276 IBM DB2 11 for z/OS Technical Overview

MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

The NEWMAXRO option specifies the maximum amount of time for the last log iteration after
SWITCHTIME is met. Requires keyword SWITCHTIME to be specified. This value overrides the
existing MAXRO parameter specified. This option supports the following values:

NONE Specifies that when the specified SWITCHTIME is met, REORG proceeds
to the last log iteration without taking into log processing time into
consideration. Specifying NONE results in REORG entering the last log
iteration almost immediately at or after the specified SWITCHTIME. This
value is the default.

integer Specifies the number of seconds. Specifying a small positive value
reduces the length of the period of read-only access, but it might
increase the elapsed time for REORG to complete. If you specify a huge
positive value, it probably ensure REORG enters the last log iteration
almost immediately at or after the specified SWITCHTIME.

You can add or subtract one or more constant values to specify the switch time. This switch
time must not have already occurred when REORG is run. CURRENT TIMESTAMP and CURRENT
DATE are evaluated once, when the REORG statement is first processed. If a list of objects is
specified, the same value is in effect for all objects in the list.

11.1.3 Physically delete empty partition-by-growth partitions

REORG a partition-by-growth (PBG) table space prior to DB2 11 can result in empty physical
partitions at the end. To avoid this issue, DB2 11 includes the DSNZPARM
REORG_DROP_PBG_PARTS value. This option specifies whether the REORG utility removes trailing
empty partitions when operating on an entire PBG table space. It uses the following syntax:

Acceptable values: DISABLE, ENABLE
Default: DISABLE
Update: option 31 on panel DSNTIPB
DSNZPxxx: DSN6SPRM REORG_DROP_PBG_PARTS

An empty trailing partition occurs when the REORG utility moves all data records from a
partition into lower numbered partitions. This parameter is meaningful only when the REORG
utility is run against an entire PBG table space. It is ignored for the others types of table
spaces and for REORG of a PBG if you specify PARTs. It cannot be specified at the REORG
statement level only as a DSNZPARM value.

Note: You cannot run a PIT recovery prior to such (pruning) REORG.
Chapter 11. Utilities 277

11.1.4 Automated REORG mapping table management

During the REORG LOG phase, DB2 log records for the changes done to the original table space
are applied to the shadow table space. In order to map these changes to the shadow table
space, the REORG utility uses a mapping table. The mapping table and the index must be
created before the REORG utility is executed.

The mapping table DDL must change in DB2 11 due to the RBA/LRSN change. In order to
help DBAs, DB2 11 can automatically create a mapping table, but if users do not want to pay
the cost of creating mapping table automatically during all REORGs, the users can continue to
create their own mapping tables.

Here are the rules on creating mapping tables:

� If the mapping table is specified and it is in correct format, then honor the specification.

� Else if specified but in the incorrect format, then create a new mapping table in the same
database as the original mapping table.

� Else if the mapping table is not specified and the DSNZPARM REORG_MAPPING_DATABASE value
is specified, then create in the DSNZPARM database. The REORG utility fails with RC8 and a
DSNU2902I message occurs, if the specified database name in the keyword or zParm is not
found.

� Else create in the implicit database.

� DROP at end of REORG or end of last REORG, if there are multiple REORGs in the job step.

The MAPPINGDATABASE option specifies the database in which REORG implicitly creates the
mapping table and index objects. This keyword overrides the subsystem parameter value in
REORG_MAPPING_DATABASE. The value cannot be DSNDB01, DSNDB06, or DSNDB07, implicit
database, a work file or temporary database.

As an example, consider the following scenario, which executes a REORG:

1. Create a mapping table with the DB2 10 format and run REORG, as shown in Example 11-5.

Example 11-5 Mapping table with the DB2 10 format and run REORG

CREATE TABLE DB2R2.MAPPTBL (
TYPE CHAR(1) FOR SBCS DATA NOT NULL,
SOURCE_RID CHAR(5) FOR SBCS DATA NOT NULL,
TARGET_XRID CHAR(9) FOR SBCS DATA NOT NULL,
LRSN CHAR(6) FOR SBCS DATA NOT NULL --- DB2 10 format

)
IN DSN8D11P.DSN8S11Q
AUDIT NONE
DATA CAPTURE NONE
CCSID EBCDIC;

CREATE UNIQUE INDEX DB2R2.XMAPPTBL
ON DB2R2.MAPPTBL
(SOURCE_RIDASC,
 TYPE ASC,
 TARGET_XRIDASC,
 LRSN ASC)
NOT CLUSTER
USING STOGROUP DSN8G110
 PRIQTY -1
 SECQTY -1
BUFFERPOOL BP0
CLOSE NO
PIECESIZE 2097152 K;
278 IBM DB2 11 for z/OS Technical Overview

//DSNUPROC.SYSIN DD *
REORG TABLESPACE DSN8D11A.DSN8S11E
 COPYDDN(COPY) UNLDDN REC
 LOG NO
 SHRLEVEL CHANGE
 MAPPINGTABLE DB2R2.MAPPTBL
//

1DSNU000I 207 16:33:32.49 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

0DSNU050I 207 16:33:32.51 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E COPYDDN(COPY) UNLDDN REC
LOG NO SHRLEVEL
 CHANGE MAPPINGTABLE DB2R2.MAPPTBL
 DSNU2900I -DB1A 207 16:33:32.51 DSNURMAP - MAPPING TABLE IS SPECIFIED WITH A NON-EXPANDED LRSN COLUMN
 DSNU2904I -DB1A 207 16:33:34.59 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN
 DSNU2901I -DB1A 207 16:33:34.67 DSNURMAP - MAPPING TABLE DB2R2.REORG_MAPTABLE_OREORG_0000
 AND MAPPING INDEX DB2R2.REORG_MAPINDEX_OREORG_0000
 CREATED IN DSN8D11P.RM23B859

DSNU010I 207 16:33:38.47 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

2. Create a mapping table with the DB2 11 format and run REORG, as shown in Example 11-6.

Example 11-6 Mapping table with the DB2 11 format and run REORG

CREATE TABLE DB2R2.MAPPTBL (
TYPE CHAR(1) FOR SBCS DATA NOT NULL,
SOURCE_RID CHAR(5) FOR SBCS DATA NOT NULL,
TARGET_XRID CHAR(9) FOR SBCS DATA NOT NULL,
LRSN CHAR(10) FOR SBCS DATA NOT NULL -- DB2 11 format

)
IN DSN8D11P.DSN8S11Q
AUDIT NONE
DATA CAPTURE NONE
CCSID EBCDIC;

CREATE UNIQUE INDEX DB2R2.XMAPPTBL
ON DB2R2.MAPPTBL
(SOURCE_RIDASC,
 TYPE ASC,
 TARGET_XRIDASC,
 LRSN ASC)
NOT CLUSTER
USING STOGROUP DSN8G110
 PRIQTY -1
 SECQTY -1
BUFFERPOOL BP0
CLOSE NO
PIECESIZE 2097152 K;

//DSNUPROC.SYSIN DD *
REORG TABLESPACE DSN8D11A.DSN8S11E
 COPYDDN(COPY) UNLDDN REC
 LOG NO
 SHRLEVEL CHANGE
 MAPPINGTABLE DB2R2.MAPPTBL
//

1DSNU000I 207 16:37:49.77 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

0DSNU050I 207 16:37:49.79 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E COPYDDN(COPY) UNLDDN REC
LOG NO SHRLEVEL
 CHANGE MAPPINGTABLE DB2R2.MAPPTBL
 DSNU2904I -DB1A 207 16:37:51.73 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN
Chapter 11. Utilities 279

DSNU010I 207 16:37:55.22 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

3. On the last scenario, there is no mapping table, and REORG was run. DB2 automatically
creates a mapping table, as shown in Example 11-7.

Example 11-7 Mapping table and run REORG

//DSNUPROC.SYSIN DD *
REORG TABLESPACE DSN8D11A.DSN8S11E
 COPYDDN(COPY) UNLDDN REC
 LOG NO
 SHRLEVEL CHANGE
//

1DSNU000I 207 16:04:46.22 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG

0DSNU050I 207 16:04:46.27 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E COPYDDN(COPY) UNLDDN REC
LOG NO SHRLEVEL
 CHANGE
 DSNU2904I -DB1A 207 16:04:48.53 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN
 DSNU2901I -DB1A 207 16:04:48.70 DSNURMAP - MAPPING TABLE DB2R2.REORG_MAPTABLE_OREORG_0000
 AND MAPPING INDEX DB2R2.REORG_MAPINDEX_OREORG_0000
 CREATED IN DSN00035.REORGRMA

 DSNU010I 207 16:04:52.69 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 11-8 shows how the database and table space look when automatically created.

Example 11-8 Database and table space format when automatically created by DB2

CREATE DATABASE "DSN00035"
BUFFERPOOL BP0
INDEXBP BP0
STOGROUP SYSDEFLT
CCSID EBCDIC;

CREATE TABLESPACE "REORGRMA"
IN DSN00035
USING STOGROUP SYSDEFLT
 PRIQTY -1
 SECQTY -1
DSSIZE 4 G
MAXPARTITIONS 256
SEGSIZE 32
BUFFERPOOL BP0
CCSID EBCDIC
LOCKMAX SYSTEM
LOCKSIZE ROW
MAXROWS 255;

Prior to DB2 11, the mapping table needs to be create in a segmented table space which
limits the number of rows to REORG. DB2 11 allows the mapping table to be created in
segmented and the PBG table space. The PBG definition allows to increase the mapping
table max size to 16 TB, and it was also retrofitted to DB2 10 and 9 through APAR PM58177.

Note: DB2 11 New Function Mode (NFM) requires a new format mapping table and
conversion mode (CM), CM*, ENFM, and ENFM* support the traditional and new format of
mapping tables.
280 IBM DB2 11 for z/OS Technical Overview

11.1.5 REORG without SORTing data

When SORTDATA is specified on the REORG utility control statement for a segmented table
space, DB2 always unloads rows in physical sequence, that is, table by table, segment by
segment, page by page, and row by row. If at least one of the tables in the segmented table
space has an explicit clustering index, rows are passed to DFSORT for sorting. Rows are sorted
in the sequence of the table’s explicit or implicit clustering index. If the table does not have an
index, rows are not sorted. If a table does not have an explicit clustering index, then the first
index created on the table is called the implicit clustering index.

For a partitioned table space, rows of the entire table space or of the partitions to be
reorganized are unloaded in physical sequence, that is, page by page and row by row, and
passed to DFSORT (or an equivalent sort utility) to be sorted in the sequence implied by the
partitioning index.

Generally, physically unloading rows and sorting them by DFSORT is faster than unloading rows
by using a clustering index, especially when the cluster ratio (CLUSTERRATIOF) of the index is
less than 95%. Thus, so the lower the cluster ratio, the higher is the performance
improvement when using SORTDATA.

Increasingly, REORGs are performed for reasons other than to gain clustering of data.
Examples are when REORG is used for database conversion, alter segmented size, alter page
size, materialize pending changes.

Prior of DB2 11, users do not have the ability to avoid the cost of reclustering.

DB2 11 has implemented the support of SORTDATA NO with SHRLEVEL CHANGE and also a new
REORG parameter RECLUSTER YES/NO option on SORTDATA NO, With RECLUSTER NO, REORG does
not unload data through the clustering index and does not sort data records in clustering
order.

If users want to run a REORG and they do not care about CLUSTERing data, because this is a
conversion table space operation or because the data is already in cluster order, or because
the application does not take advantages of clustering data order, you can now specify the
option SORTDATA NO RECLUSTER NO and DB2 does not sort data. This new feature cuts down
the cost of SORTing your data. The option also helps some users that like the use of SORTDATA
NO but they do not have enough DASD space that DFSORT needs to sort your data.

SORTDATA NO tells DB2 to unload using the cluster index or unloading the physical order and
pass it to DFSORT. On both ways, your table is in cluster order at the end.

Table 11-1 summarizes the SORTDATA YES/NO RECLUSTER YES/NO behavior.

Table 11-1 SORTDATA YES/NO RECLUSTER YES/NO summary

Object description SORTDATA SORTDATA NO,
RECLUSTER NO

SORTDATA NO,
RECLUSTER YES

Segmented table
space without index

Unloaded table by table,
segment by segment, page by
page, and row by row

Unloaded table by table,
segment by segment, page by
page, and row by row

Unloaded table by table,
segment by segment, page by
page, and row by row,
reclustered following the
column sequence
Chapter 11. Utilities 281

Example 11-9 shows an example of REORG TABLESPACE SHRLEVEL CHANGE SORTDATA NO
RECLUSTER NO.

Example 11-9 REORG TABLESPACE SHRLEVEL CHANGE SORTDATA NO RECLUSTER NO

/*JOB
/*JOBPARM S=SC63,L=9999
//PROCLIB JCLLIB ORDER=DB1AM.PROCLIB
//REORG EXEC DSNUPROC,SYSTEM=DB1A,
// LIB='DB1AT.SDSNLOAD',
// UID='OREORG' UTPROC='PREVIEW'
//DSNUPROC.SYSIN DD *
 TEMPLATE COPY DSN 'DB2R2.&DB..&TS..T&TIME.'
 DISP (NEW,CATLG,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE UT1 DSN 'DB2R2.&DB..&TS..SYSUT1'
 DISP (NEW,DELETE,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE SRTOUT DSN 'DB2R2.&DB..&TS..SORTOUT'
 DISP (NEW,DELETE,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE REC DSN 'DB2R2.&DB..&TS..SYSREC'
DISP (NEW,DELETE,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 REORG TABLESPACE DSN8D11A.DSN8S11E
 SORTDATA NO RECLUSTER NO
 SORTDEVT SYSDA SORTNUM 32
 COPYDDN(COPY) UNLDDN REC
 LOG NO
 SHRLEVEL CHANGE

Example 11-10 shows the job output.

Partitioned table
space without index

Unloaded table by table,
segment by segment, page by
page, and row by row

Unloaded segment by
segment (if UTS), page by
page, and row by row

Unloaded table by table,
segment by segment, page by
page, and row by row,
reclustered following the
partitioning key

Table space with
one clustering index

Rows are passed to DFSORT
for sorting, reloaded in
sequence of the clustering
index

Unloaded table by table,
segment by segment (if UTS),
page by page, and row by row.
Clustering Index is NOT used

Data records are to be
reclustered and to be
unloaded by the clustering
index.

Table space with
indexes, but no
clustering

Rows are passed to DFSORT
for sorting, the index which
was created first is used for
clustering sequence

Unloaded table by table,
segment by
segment (if UTS), page by
page, and row by row.
Clustering Index is NOT used

Data records are to be
reclustered and to be
unloaded by the 1st index
created for any table in the
table space

Object description SORTDATA SORTDATA NO,
RECLUSTER NO

SORTDATA NO,
RECLUSTER YES
282 IBM DB2 11 for z/OS Technical Overview

Example 11-10 REORG TABLESPACE SHRLEVEL CHANGE SORTDATA NO RECLUSTER NO job output

1DSNU000I 211 14:59:33.41 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG
 DSNU1044I 211 14:59:33.42 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 211 14:59:33.42 DSNUGUTC - TEMPLATE
 DSNU1035I 211 14:59:33.43 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 211 14:59:33.43 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E SORTDATA NO RECLUSTER NO SORTDEVT SYSDA
 SORTNUM 32 COPYDDN(COPY) UNLDDN REC LOG NO SHRLEVEL CHANGE
 DSNU2904I -DB1A 211 14:59:34.68 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN
 DSNU2901I -DB1A 211 14:59:34.91 DSNURMAP - MAPPING TABLE DB2R2.REORG_MAPTABLE_OREORG_0000
 AND MAPPING INDEX DB2R2.REORG_MAPINDEX_OREORG_0000
 CREATED IN DSN00043.REORGRMA

 DSNU251I 211 14:59:36.49 DSNURULD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=32
 DSNU252I 211 14:59:36.49 DSNURULD - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=32 FOR TABLESPACE
DSN8D11A.DSN8S11E

 DSNU302I 211 14:59:36.85 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=32
 DSNU300I 211 14:59:36.85 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU394I -DB1A 211 14:59:36.94 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=32 FOR INDEX
 DB2R2.REORG_MAPINDEX_OREORG_0000
 DSNU393I -DB1A 211 14:59:37.00 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=32 FOR INDEX DSN81110.XEMP1 PART
1
 DSNU394I -DB1A 211 14:59:37.06 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=32 FOR INDEX DSN81110.XEMP2
 DSNU391I 211 14:59:37.06 DSNURPTB - SORTBLD PHASE STATISTICS. NUMBER OF INDEXES = 3
 DSNU392I 211 14:59:37.06 DSNURPTB - SORTBLD PHASE COMPLETE, ELAPSED TIME = 00:00:00
 DSNU1138I -DB1A 211 14:59:37.38 DSNURLOG - DRAIN ALL WITH START TIME 2013-07-30-14.59.37.382492 HAS COMPLETED
SUCCESSFULLY

 DSNU010I 211 14:59:38.95 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

11.1.6 Partition-level inline image copy

Prior to DB2 11, when you take an inline image copy during a REORG of a table space with a lot
of partitions, DB2 creates one large inline image copy data set with all the partitions. If later
on you decide to recovery a single partition, the recovery time for reading the large image
copy to return one partition is much higher than if you have an image copy data set per
partition.

DB2 11 takes an image copy per partition when you specify &PA. or &PART on the TEMPLATEs.
Example 11-11 shows a REORG TABLESPACE PART WITH INLINE IMAGE COPY.

Example 11-11 REORG TABLESPACE PART WITH INLINE IMAGE COPY

/*JOB
//PROCLIB JCLLIB ORDER=DB1AM.PROCLIB
//REORG EXEC DSNUPROC,SYSTEM=DB1A,
// LIB='DB1AT.SDSNLOAD',
// UID='OREORG' UTPROC='PREVIEW'
//DSNUPROC.SYSIN DD *
 TEMPLATE COPY DSN 'DB2R2.&DB..&TS..P&PA..T&TIME.'
 DISP (NEW,CATLG,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE UT1 DSN 'DB2R2.&DB..&TS..P&PA..SYSUT1'
 DISP (NEW,DELETE,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE SRTOUT DSN 'DB2R2.&DB..&TS..P&PA..SORTOUT'
 DISP (NEW,DELETE,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
Chapter 11. Utilities 283

 TEMPLATE REC DSN 'DB2R2.&DB..&TS..P&PA..SYSREC'
 DISP (NEW,DELETE,DELETE)

UNIT SYSDA
 SPACE (5,5) CYL

REORG TABLESPACE DSN8D11A.DSN8S11E PART(1:4)
 COPYDDN(COPY) UNLDDN REC
 LOG NO
 SHRLEVEL REFERENCE

Example 11-12 shows the job output.

Example 11-12 REORG TABLESPACE PART WITH INLINE IMAGE COPY job output

1DSNU000I 206 14:39:24.36 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG
 DSNU1044I 206 14:39:24.39 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 206 14:39:24.39 DSNUGUTC - TEMPLATE COPY DSN 'DB2R2.&DB..&TS..P&PA..T&TIME.' DISP(NEW, CATLG, DELETE)
 UNIT SYSDA SPACE(5, 5) CYL
 DSNU1035I 206 14:39:24.39 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 206 14:39:24.39 DSNUGUTC - TEMPLATE UT1 DSN 'DB2R2.&DB..&TS..P&PA..SYSUT1' DISP(NEW, DELETE, DELETE)
 UNIT SYSDA SPACE(5, 5) CYL
 DSNU1035I 206 14:39:24.39 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 206 14:39:24.39 DSNUGUTC - TEMPLATE SRTOUT DSN 'DB2R2.&DB..&TS..P&PA..SORTOUT' DISP(NEW, DELETE,
 DELETE) UNIT SYSDA SPACE(5, 5) CYL
 DSNU1035I 206 14:39:24.39 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 206 14:39:24.39 DSNUGUTC - TEMPLATE REC DSN 'DB2R2.&DB..&TS..P&PA..SYSREC' DISP(NEW, DELETE, DELETE)
 UNIT SYSDA SPACE(5, 5) CYL
 DSNU1035I 206 14:39:24.39 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 206 14:39:24.39 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E PART(1:4) COPYDDN(
 COPY) UNLDDN REC LOG NO SHRLEVEL REFERENCE

DSNU2903I 206 14:39:25.78 DSNURORG - PARTITION LEVEL INLINE COPY DATASETS WILL BE ALLOCATED
 DSNU1038I 206 14:39:25.82 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY
 DDNAME=SYS00001
 DSN=DB2R2.DSN8D11A.DSN8S11E.P00001.T183949
 DSNU1038I 206 14:39:25.87 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY
 DDNAME=SYS00002
 DSN=DB2R2.DSN8D11A.DSN8S11E.P00002.T183949
 DSNU1038I 206 14:39:25.88 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY
 DDNAME=SYS00003
 DSN=DB2R2.DSN8D11A.DSN8S11E.P00003.T183949
 DSNU1038I 206 14:39:25.94 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY
 DDNAME=SYS00004
 DSN=DB2R2.DSN8D11A.DSN8S11E.P00004.T183949

DSNU250I 206 14:39:26.27 DSNURPRD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU400I 206 14:39:26.41 DSNURBID - COPY PROCESSED FOR TABLESPACE DSN8D11A.DSN8S11E PART 1
 NUMBER OF PAGES=10
 AVERAGE PERCENT FREE SPACE PER PAGE = 6.60
 PERCENT OF CHANGED PAGES =100.00
 ELAPSED TIME=00:00:00
 DSNU400I 206 14:39:26.42 DSNURBID - COPY PROCESSED FOR TABLESPACE DSN8D11A.DSN8S11E PART 2
 NUMBER OF PAGES=2
 AVERAGE PERCENT FREE SPACE PER PAGE = 0.00
 PERCENT OF CHANGED PAGES =100.00
 ELAPSED TIME=00:00:00
 DSNU400I 206 14:39:26.42 DSNURBID - COPY PROCESSED FOR TABLESPACE DSN8D11A.DSN8S11E PART 3
 NUMBER OF PAGES=4
 AVERAGE PERCENT FREE SPACE PER PAGE = 19.75
 PERCENT OF CHANGED PAGES =100.00
 ELAPSED TIME=00:00:00
 DSNU400I 206 14:39:26.44 DSNURBID - COPY PROCESSED FOR TABLESPACE DSN8D11A.DSN8S11E PART 4
 NUMBER OF PAGES=2
 AVERAGE PERCENT FREE SPACE PER PAGE = 0.00
 PERCENT OF CHANGED PAGES =100.00
 ELAPSED TIME=00:00:00
284 IBM DB2 11 for z/OS Technical Overview

DSNU387I 206 14:39:27.11 DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:00
 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 1
 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 2
 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 3
 DSNU428I 206 14:39:27.12 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 4
 DSNU010I 206 14:39:27.97 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 11-5 shows the performance improvement for RECOVERY of a single partition of a
twenty partitions table space. The elapsed time is reduced by 28% and CPU time is reduced
by 49%.

Figure 11-5 Partition-level inline image copy performance

11.1.7 Improved REORG LISTDEF processing

Prior of DB2 9, when you specify a set of partitions on a REORG, such as partition 1 to 10, DB2
REORGs partition 1, when finished that, then REORGs partition 2, and so on until partition 10. On
DB2 9 DB2 starts to process all specified partition together, which is much more efficient, but
it also needs more DASD space to shadow all PARTs.

In order to give the users an option to choose between all PARTS together or not, DB2 10
implements the PARALLEL keyword YES|NO where PARALLEL NO means REORG reorganizes one
data partition at a time if data partitions are specified at the part level in the LISTDEF. DB2 11
provide a new option, LISTPARTS n, where user can determine the n maximum number of
data partitions to be reorganized in a single REORG execution. This option enables customer to
further fine-tune and balance between the resource consumption and performance trade off
of the REORG utility. If customer does not have enough DASD for all parts but are able to handle
say 20% of them.

When LISTPARTS keyword is not specified, REORG defaults to the setting of the existent
REORG_LIST_PROCESSING zParm in determining whether to process data partitions together or

Partition-level inline image copy

0

2

4

6

8

1 0

1 2

1 4

E l a p s e d C P U

T a b le s p a c e
im a g e c o p y

P a r t i t i o n
im a g e c o p y

 RECOVER of single partition of a 20 partition table space
– ET reduced by 28%

– CPU reduced by 49%
Chapter 11. Utilities 285

not. If REORG_LIST_PROCESSING is set to SERIAL, this equates to specifying LISTPARTS 1. If
REORG_LIST_PROCESSING is set to PARALLEL, then all specified partitions will be reorganized in a
single REORG.

PARALLEL YES/NO is deprecated but still supported in DB2 11. The following rules apply to
existing REORG jobs:

� If PARALLEL YES is specified, it equates to not specifying LISTPARTS but overriding the
REORG_LIST_PROCESSING zParm value to PARALLEL for current REORG execution. It means,
REORG all specified partition together.

� If PARALLEL NO is specified, it equates to LISTPARTS 1, and REORG will process data
partitions one at a time as specified in the LISTDEF.

The LISTPARTS option specifies the maximum number of data partitions to be reorganized in a
single REORG on a LISTDEF that contains PARTLEVEL list items. It supports the following values:

n Specifies an integer that represents the maximum number of data
partitions to be reorganized at the same time. A valid value is greater
than 0. If LISTPARTS is not specified, the default value is the setting of
the REORG_LIST_PROCESSING subsystem parameter.

Example 11-13 shows an example of REORG TABLESPACE PART WITH LISTPARTS n.

Example 11-13 REORG TABLESPACE PART WITH LISTPARTS

/*JOBPARM S=SC63,L=9999
//PROCLIB JCLLIB ORDER=DB1AM.PROCLIB
//REORG EXEC DSNUPROC,SYSTEM=DB1A,
// LIB='DB1AT.SDSNLOAD',
// UID='OREORG' UTPROC='PREVIEW'
//DSNUPROC.SYSIN DD *
 TEMPLATE COPY DSN 'DB2R2.&DB..&TS..P&PA..T&TIME.'
 DISP (NEW,CATLG,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE UT1 DSN 'DB2R2.&DB..&TS..P&PA..SYSUT1'
 DISP (NEW,DELETE,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE SRTOUT DSN 'DB2R2.&DB..&TS..P&PA..SORTOUT'
 DISP (NEW,DELETE,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE REC DSN 'DB2R2.&DB..&TS..P&PA..SYSREC'
 DISP (NEW,DELETE,DELETE)

UNIT SYSDA
 SPACE (5,5) CYL
 LISTDEF REOLIST INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 1
 INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 2
 INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 3
 INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 4
 REORG TABLESPACE LIST REOLIST
 LISTPARTS 3
 COPYDDN(COPY) UNLDDN REC
 LOG NO
 SHRLEVEL REFERENCE
286 IBM DB2 11 for z/OS Technical Overview

Example 11-14 shows the job output. Note that, because LISTPARTS 3 was specified, DB2
processes the first three parts and, when it finishes, DB2 starts part four.

Example 11-14 REORG TABLESPACE PART WITH LISTPARTS job output

1DSNU000I 211 13:38:50.09 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG
 DSNU1044I 211 13:38:50.11 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 211 13:38:50.11 DSNUGUTC - TEMPLATE
DSNU1035I 211 13:38:50.11 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
0D0DSNU050I 211 13:38:50.11 DSNUGUTC - LISTDEF REOLIST INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 1 INCLUDE
TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 2
INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 3
INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 4
 DSNU1035I 211 13:38:50.11 DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 211 13:38:50.11 DSNUGUTC - REORG TABLESPACE LIST REOLIST LISTPARTS 3 COPYDDN(COPY) UNLDDN REC LOG NO
 SHRLEVEL REFERENCE
 DSNU1039I 211 13:38:50.13 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE DSN8D11A.DSN8S11E PARTITION 1 -- only 3 PARTS
 DSNU1039I 211 13:38:50.13 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE DSN8D11A.DSN8S11E PARTITION 2
 DSNU1039I 211 13:38:50.13 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE DSN8D11A.DSN8S11E PARTITION 3
 DSNU2904I -DB1A 211 13:38:51.15 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN
 DSNU1242I -DB1A 211 13:38:51.15 DSNURFUI - ALL KEYS OF A NON-PARTITIONED SECONDARY INDEX WILL BE SORTED
 DSNU2903I 211 13:38:51.15 DSNURORG - PARTITION LEVEL INLINE COPY DATASETS WILL BE ALLOCATED

DSNU251I -DB1A 211 13:38:51.50 DSNURPUT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=32 FOR TABLESPACE
 DSN8D11A.DSN8S11E PART 1
 DSNU251I -DB1A 211 13:38:51.50 DSNURPUT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
 DSN8D11A.DSN8S11E PART 2
 DSNU251I -DB1A 211 13:38:51.50 DSNURPUT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=10 FOR TABLESPACE
 DSN8D11A.DSN8S11E PART 3
 DSNU252I -DB1A 211 13:38:51.50 DSNURPUT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=42 FOR TABLESPACE
 DSN8D11A.DSN8S11E
 DSNU250I 211 13:38:51.51 DSNURPRD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00

 DSNU1138I -DB1A 211 13:38:52.44 DSNURLOG - DRAIN ALL WITH START TIME 2013-07-30-13.38.52.447315 HAS COMPLETED
SUCCESSFULLY
 DSNU1139I 211 13:38:52.49 DSNURLGD - FINAL LOG ITERATION STATISTICS. NUMBER OF LOG RECORDS = 0
 DSNU386I 211 13:38:52.49 DSNURLGD - LOG PHASE STATISTICS. NUMBER OF ITERATIONS = 1, NUMBER OF LOG RECORDS = 0
 DSNU385I 211 13:38:52.49 DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:00:00
 DSNU387I 211 13:38:52.63 DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:00
 DSNU428I 211 13:38:52.63 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 1
 DSNU428I 211 13:38:52.63 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 2
 DSNU428I 211 13:38:52.63 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 3
 DSNU1039I 211 13:38:53.77 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE DSN8D11A.DSN8S11E PARTITION 4 -- Then parts 4
 DSNU2904I -DB1A 211 13:38:54.34 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN
 DSNU2903I 211 13:38:54.34 DSNURORG - PARTITION LEVEL INLINE COPY DATASETS WILL BE ALLOCATED
 DSNU1038I 211 13:38:54.38 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY
 DDNAME=SYS00005
 DSN=DB2R2.DSN8D11A.DSN8S11E.P00004.T173915
 DSNU3345I 211 13:38:54.38 DSNURPCT - MAXIMUM UTILITY PARALLELISM IS 6 BASED ON NUMBER OF PARTITIONS AND INDEXES
DSNU251I -DB1A 211 13:38:54.58 DSNURPUT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
DSN8D11A.DSN8S11E PART 4
 DSNU252I -DB1A 211 13:38:54.58 DSNURPUT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
DSN8D11A.DSN8S11E
 DSNU250I 211 13:38:54.59 DSNURPRD - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU400I 211 13:38:54.65 DSNURBID - COPY PROCESSED FOR TABLESPACE DSN8D11A.DSN8S11E PART 4
 NUMBER OF PAGES=2
 AVERAGE PERCENT FREE SPACE PER PAGE = 0.00
 PERCENT OF CHANGED PAGES =100.00
 ELAPSED TIME=00:00:00
 DSNU303I -DB1A 211 13:38:54.66 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE DSN81110.EMP PART=4
 DSNU302I 211 13:38:54.66 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=0
 DSNU300I 211 13:38:54.66 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU393I -DB1A 211 13:38:54.68 DSNURBXE - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=0 FOR INDEX DSN81110.XEMP1 PART 4

DSNU385I 211 13:38:55.09 DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:00:00
Chapter 11. Utilities 287

 DSNU387I 211 13:38:55.22 DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:00
 DSNU428I 211 13:38:55.22 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DSN8D11A.DSN8S11E PARTITION 4
 DSNU010I 211 13:38:55.61 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

11.1.8 REBALANCE enhancements

REORG REBALANCE allows the partitions of a partitioned table space to be rebalanced, altering
their limit keys, avoiding expensive unloading, recreating, and reloading of the entire table
space and, thus, improving its availability.

With versions prior of DB2 11, users are not able to execute REORG REBALANCE SHRLEVEL
CHANGE. This option is now allowed in DB2 11.

Example 11-15 shows an example of REORG TABLESPACE REBALANCE SHRLEVEL CHANGE.

Example 11-15 REORG TABLESPACE REBALANCE SHRLEVEL CHANGE

set current sqlid = 'DB2R2';
CREATE DATABASE DB2RDB4
CREATE TABLESPACE DB2RTS1
 IN DB2RDB4
CREATE TABLE DB2R2.DB2RTB4
 (DBNAME CHAR(8) FOR SBCS DATA NOT NULL,
...
MODECREATED CHAR(2) FOR SBCS DATA NOT NULL
 WITH DEFAULT)
IN db2rDB4.db2rTS1
PARTITION BY (DBNAME ASC)
 (PARTITION 1 ENDING AT ('AAAAAA'),
 PARTITION 2 ENDING AT ('BBBBBB'),
 PARTITION 3 ENDING AT ('ZZZZZZ'))
;

/*JOBPARM S=SC63,L=9999
//PROCLIB JCLLIB ORDER=DB1AM.PROCLIB
//REORG EXEC DSNUPROC,SYSTEM=DB1A,
// LIB='DB1AT.SDSNLOAD',
// UID='OREORG' UTPROC='PREVIEW'
//DSNUPROC.SYSIN DD *
 TEMPLATE COPY DSN 'DB2R2.&DB..&TS..P&PA..T&TIME.'
 DISP (NEW,CATLG,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE UT1 DSN 'DB2R2.&DB..&TS..P&PA..SYSUT1'
 DISP (NEW,DELETE,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE SRTOUT DSN 'DB2R2.&DB..&TS..P&PA..SORTOUT'
 DISP (NEW,DELETE,DELETE)
 UNIT SYSDA
 SPACE (5,5) CYL
 TEMPLATE REC DSN 'DB2R2.&DB..&TS..P&PA..SYSREC'
 DISP (NEW,DELETE,DELETE)

UNIT SYSDA
 SPACE (5,5) CYL

REORG TABLESPACE DB2RDB4.DB2RTS1
 REBALANCE

 COPYDDN(COPY) UNLDDN REC
 LOG NO
288 IBM DB2 11 for z/OS Technical Overview

 SHRLEVEL CHANGE

Example 11-16 shows the job output.

Example 11-16 REORG TABLESPACE REBALANCE SHRLEVEL CHANGE job output

1DSNU000I 217 14:43:26.54 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG
 DSNU1044I 217 14:43:26.57 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 217 14:43:26.58 DSNUGUTC - TEMPLATE COPY DSN 'DB2R2.&DB..&TS..P&PA..T&TIME.' DISP(NEW, CATLG, DELETE)
 UNIT SYSDA SPACE(5, 5) CYL
 DSNU1035I 217 14:43:26.58 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

0DSNU050I 217 14:43:26.58 DSNUGUTC - REORG TABLESPACE DB2RDB4.DB2RTS1 REBALANCE COPYDDN(COPY) UNLDDN REC LOG NO
 SHRLEVEL CHANGE
 DSNU2904I -DB1A 217 14:43:27.15 DSNURFTB - DATA RECORDS WILL BE UNLOADED VIA TABLE SPACE SCAN
 DSNU2901I -DB1A 217 14:43:27.48 DSNURMAP - MAPPING TABLE DB2R2.REORG_MAPTABLE_OREORG_0000
 AND MAPPING INDEX DB2R2.REORG_MAPINDEX_OREORG_0000
 CREATED IN DSN00062.REORGRMA

 DSNU3340I 217 14:43:28.14 DSNUGSRT - UTILITY PERFORMS DYNAMIC ALLOCATION OF SORT DISK SPACE
 DSNU251I 217 14:43:28.21 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR TABLESPACE
 DB2RDB4.DB2RTS1 PART 1
 DSNU251I 217 14:43:28.21 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=25 FOR TABLESPACE
 DB2RDB4.DB2RTS1 PART 2
 DSNU251I 217 14:43:28.21 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=260 FOR TABLESPACE
 DB2RDB4.DB2RTS1 PART 3
 DSNU252I 217 14:43:28.21 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=285 FOR TABLESPACE
 DB2RDB4.DB2RTS1
 DSNU250I 217 14:43:28.21 DSNUGSRT - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU3345I 217 14:43:28.30 DSNURPIB - MAXIMUM UTILITY PARALLELISM IS 3 BASED ON NUMBER OF PARTITIONS AND INDEXES
 DSNU397I 217 14:43:28.30 DSNURPIB - NUMBER OF TASKS CONSTRAINED BY CPUS TO 3
 DSNU3340I 217 14:43:28.30 DSNUGSOR - UTILITY PERFORMS DYNAMIC ALLOCATION OF SORT DISK SPACE
 DSNU2906I -DB1A 217 14:43:28.30 DSNURBAT - REBALANCE PARTITION SUMMARY ON DB2RDB4.DB2RTS1
 LPART PPART ROWCOUNT LIMITKEY
 ------ ------ -------------------- --
 1 1 89 X'C4E2D5F0F0F0F2F7'
 2 2 114 X'C4E2D5F8C4F1F1C1'
 3 3 82 X'E9E9E9E9E9E9FFFF'
 DSNU303I -DB1A 217 14:43:28.40 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=89 FOR TABLE DB2R2.DB2RTB4
 PART=1
 DSNU303I -DB1A 217 14:43:28.40 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=114 FOR TABLE DB2R2.DB2RTB4
 PART=2
 DSNU303I -DB1A 217 14:43:28.40 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=82 FOR TABLE DB2R2.DB2RTB4
 PART=3
 DSNU304I -DB1A 217 14:43:28.40 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=285 FOR TABLE DB2R2.DB2RTB4
 DSNU302I 217 14:43:28.41 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=285
 DSNU300I 217 14:43:28.41 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
DSNU387I 217 14:43:28.67 DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:00
DSNU010I 217 14:43:29.49 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

REORG REBALANCE issue with data distribution
Today, when REORG REBALANCE is run on a partitioned table space with high skewed data
distribution, often times the REORG utility fails with RC8 and the DSNU1130I – NOT ALL
PARTITIONS POPULATED BY REBALANCE – PROCESSING TERMINATES message. In the extreme
cases, the REBALANCE option might be suppressed by the DSNU1128I – FEWER PAGES THAN
PARTS – REBALANCE message ignored. These error scenarios tend to happen on a table space
where the number of records or number of unique limit key values are small in relation to the
number of partitions being reorganized, resulting in the 'insufficient data' to rebalance type of
errors.
Chapter 11. Utilities 289

To address these issues, DB2 11 REBALANCE logic was optimized to become more resilient
against failures on table space with skewed data distribution. This includes getting better
statistics on the data being reorganized, to leaving trailing empty partitions at successful
rebalance operation. Note that this does not mean the DSNU1130I and DSNU1128I limitations
will be eliminated altogether, but rather aim to reduce the likelihood that data rebalancing fails
with these symptoms.

Empty partitions with compression dictionary
Traditionally, REORG builds a compression dictionary on the data partitions as data got
unloaded during the UNLOAD phase, which presents a problem to REORG REBALANCE execution,
where there might not be any or enough data records unloaded from a partition to build a
compression dictionary during UNLOAD. If data records get loaded into this partition later on as
a result of data rebalancing, then none of these data records will get compressed, requiring a
subsequent REORG to gain compression.

To address this issue, REORG REBALANCE will now build a single compression dictionary for all
target partitions. The primary reason for this behavior is that today, compression dictionaries
are built based on the unloaded records, which do not represent the records that got loaded
back into the same partition in reload. Thus, this solution mimics that of partition-by-growth
table space, and provides relief for partitions that do not have compression dictionaries built
today. If users are satisfied with the existing compression ratio, KEEPDICTIONARY should be
specified.

REORG SORTCLUSTER option
With DB2 10, REORG REBALANCE sorts the data records based on the limit key value. In the
event that the limit key columns is not defined as a superset of (or identical to) the clustering
index columns, REORG REBALANCE sets the affected data partitions in AREO* on successful
completion. This behavior was a contradictory statement to many users who have had just
run the REORG utility, by recommending another subsequent REORG to put the data records into
clustering order.
290 IBM DB2 11 for z/OS Technical Overview

With DB2 11, a new keyword option is introduced to specify whether or not REBALANCE should
also sort the data records in clustering order, in addition to the existing partitioning order. This
is an optional keyword because there is additional resource consumption on sort due to the
extra sort field for clustering order. Clustering might be not important for the target table space
in some situations. Figure 11-6 shows this behavior.

Figure 11-6 AREO status after REORG REBALANCE

The SORTCLUSTER option determines if REBALANCE is to attempt to sort the data records into
clustering order. This option is ignored if no clustering index exists in the table, or when the
limit key columns are identical to or are a superset of the clustering index columns. It supports
the following values:

NO Specifies that the data records are not to be explicitly sorted into
clustering order. This option is the default behavior. If SORTCLUSTER NO
is explicitly specified, AREO* is not set on the affected data partitions
upon REORG REBALANCE completion.

YES Specifies that the data records are to be explicitly sorted into
clustering order as needed.

11.1.9 REORG of LOB enhancements

DB2 10 implemented REORG LOB SHRLEVEL CHANGE and it also removed REORG LOB SHRLEVE
NONE. However, in DB2 10 specifying REORG with SHRLEVEL NONE returns RC0 with MSGDSNU126.

DB2 11 changes the return code from RC0 to RC8.

Example 11-17 shows the new return code of REORG LOB SHRLEVE NONE.

Example 11-17 REORG LOB SHRLEVE NONE

/*JOBPARM S=SC63,L=9999
//PROCLIB JCLLIB ORDER=DB1AM.PROCLIB
//REORG EXEC DSNUPROC,SYSTEM=DB1A,
// LIB='DB1AT.SDSNLOAD',
// UID='OREORG' UTPROC='PREVIEW'

EMPNO LASTNAME FIRSTNAME ZIP EDLEVEL HIREDATE

000010 KASCHTA SABINE 111111 10 01.10.1998

EMPNO LASTNAME FIRSTNAME ZIP EDLEVEL HIREDATE

000100 MOLARO CHRISTIAN 888888 8 15.12.1988

000110 MCGEOCH GLENN 222222 10 01.03.2001

000120 BRUNI PAOLO 777777 10 01.10.1977

000130 BORTOLETTO FELIPE 444444 9 01.07.2002

REORG TABLESPACE REBALANCE

Partitioning key: EMPNO

Clustering Index: LASTNAME

EMPNO

EMPNO LASTNAME FIRSTNAME ZIP EDLEVEL HIREDATE

000010 KASCHTA SABINE 111111 10 01.10.1998

000110 MCGEOCH GLENN 222222 10 01.03.2001

000100 MOLARO CHRISTIAN 222222 10 01.03.2001

EMPNO LASTNAME FIRSTNAME ZIP EDLEVEL HIREDATE

000130 BORTOLETTO FELIPE 444444 9 01.07.2002

000120 BRUNI PAOLO 777777 8 01.10.1977

Table space set to

AREO* advisory status !!
Chapter 11. Utilities 291

//DSNUPROC.SYSIN DD *
REORG TABLESPACE ADBDCHG.ADBSCFGL
COPYDDN(COPY) UNLDDN REC
 LOG NO
 SHRLEVEL NONE

Example 11-18 shows the job output.

Example 11-18 REORG LOB SHRLEVE NONE job output

1DSNU000I 212 10:10:30.78 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG
 DSNU1044I 212 10:10:30.79 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU1035I 212 10:10:30.80 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 212 10:10:30.80 DSNUGUTC - REORG TABLESPACE ADBDCHG.ADBSCFGL COPYDDN(COPY) UNLDDN REC LOG NO SHRLEVEL NONE
 DSNU126I -DB1A 212 10:10:30.80 DSNURFIT - REORG SHRLEVEL NONE ON LOB TABLE SPACE IS NO LONGER SUPPORTED
 DSNU012I 212 10:10:30.80 DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

11.1.10 Improved REORG serviceability

When something goes wrong with SYSLGRNX, IBM support can recommend users to run REORG
LOGRANGES NO; however, this option cannot be execute with SHRLEVEL CHANGE prior of DB2 11.

DB2 11allows to use online REORG even when SYSLGRNX cannot be relied upon, by supporting
the LOGRANGES NO option for REORG SHRLEVEL CHANGE. This option tells REORG not to use
SYSLGRNX information during the LOGAPPLY phase. The downside of this option is that it can
cause REORG to run much longer. In a data sharing environment this option can result in the
merging of all logs from all members.

Example 11-19 shows an example of REORG SHRLEVEL CHANGE LOGRANGES NO.

Example 11-19 REORG SHRLEVEL CHANGE LOGRANGES NO

/*JOBPARM S=SC63,L=9999
//PROCLIB JCLLIB ORDER=DB1AM.PROCLIB
//REORG EXEC DSNUPROC,SYSTEM=DB1A,
// LIB='DB1AT.SDSNLOAD',
// UID='OREORG' UTPROC='PREVIEW'
//DSNUPROC.SYSIN DD *
REORG TABLESPACE DSN8D11A.DSN8S11E
COPYDDN(COPY) UNLDDN REC
 LOG NO
 SHRLEVEL CHANGE
 LOGRANGES NO

Example 11-20 shows the job output.

Example 11-20 REORG SHRLEVEL CHANGE LOGRANGES NO job output

1DSNU000I 213 18:14:44.47 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OREORG
 DSNU1044I 213 18:14:44.48 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 213 18:14:44.49 DSNUGUTC - TEMPLATE DSNU1035I
0DSNU050I 213 18:14:44.49 DSNUGUTC - REORG TABLESPACE DSN8D11A.DSN8S11E COPYDDN(COPY) UNLDDN REC LOG NO SHRLEVEL
 CHANGE LOGRANGES NO
DSNU250I 213 18:14:48.14 DSNUGSRT - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00

DSNU1136I -DB1A 213 18:14:49.00 DSNURLOG - SYSLGRNX IS NOT USED FOR LOG READ DUE TO LOGRANGES NO SPECIFICATION
 D DSNU010I 213 18:14:52.32 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0
292 IBM DB2 11 for z/OS Technical Overview

11.1.11 REORG change of defaults to match preferred practices

To improve experience and to reinforce the preferred practices, the following default behaviors
and values of REORG are modified:

� DRAIN from WRITERS to DRAIN ALL.

DRAIN ALL is the new default instead of the existing DRAIN WRITERS default setting. In
numerous cases DRAIN ALL tends to increase the likelihood of online REORG breaking-in for
the SWITCH phase outage. This is applicable to both REORG TABLESPACE and REORG INDEX.

� DISCARD to DISCARD NOPAD YES and UNLOAD EXTERNAL to UNLOAD EXTERNAL NOPAD YES.

The NOPAD option in UNLOAD EXTERNAL and also in DISCARD clause is the default settings.
This option improves performance of the REORG utility because padding the variable length
data might result in significant overhead. However, because today the only way to ask for
padding of the unloaded or discarded data is by not specifying the NOPAD keyword, making
the NOPAD keyword the default does not allow the option to unload or discard data in the
padded format. As a result, the NOPAD keyword accepts an additional YES | NO parameter.
The default is NOPAD specified, which has the same behavior as NOPAD YES. But users can
then specify NOPAD NO to request padded data.

11.2 Enhanced statistics

Starting from DB2 10, a portion of the RUNSTATS utility is made eligible for zIIP redirection.
Less complex statistics (for example, frequency statistics) get most of their execution eligible
for zIIP. Complex statistics requiring call to a sort product, such as DFSORT, can benefit from
zIIP eligibility of the sort product. zIIP eligibility can reach up to 99.9% for RUNSTATS with no
additional parameters and it goes down for more complex statistics.

Basically, with DB2 10, you find a varying degree of zIIP eligibility when you execute your
RUNSTATS utility workload and there is no zIIP eligibility for inline statistics in DB2 10.

DB2 11 has the ability to route more RUNSTATS workload to zIIP, the complex statistics, and the
distribution statistics, reaching up to 80% zIIP-eligible. DB2 11 also can reroute up to 30% of
inline statistics to zIIP.

To avoid the need of RUNSTATS after a REORG, DB2 11 implement the following enhancement for
inline statistics:

� Inline statistics collection on NPSIs during REORG with SORTNPSI
� Inline histogram statistics
� Inline DSTATS

This section describes the following RUNSTATS enhancements:

� RUNSTATS RESET ACCESSPATH
� RUNSTATS USE PROFILE usability for LISTDEF

11.2.1 RUNSTATS RESET ACCESSPATH

You can use the RUNSTATS utility to remove out-of-date access path statistics for DB2 objects.
When the RUNSTATS utility is invoked over a period of time, statistics are collected
incrementally for target objects. The combination of many changes to target objects and
many RUNSTATS invocations, perhaps with different options, might result in some previously
collected statistics becoming outdated. Such out-of-date statistics might cause DB2 to
choose inefficient access paths for SQL statements. One solution is to invoke the RUNSTATS
Chapter 11. Utilities 293

utility again to refresh the statistics. However, the task of formulating RUNSTATS invocations to
solve the problem might prove difficult because of the complicated nature of the many
previous RUNSTATS invocations.

When this situation occurs, you can invoke the RUNSTATS utility to reset the access path
statistics for all tables and indexes in a specified table space. When you reset the statistics,
the default values are used. No statistics are gathered or reported. Space statistics and
real-time statistics are not reset for the specified objects. After your reset access path
statistics, the previous values cannot be recovered if no statistics history is available

To reset access path statistics invoke the RUNSTATS utility, and specify the following options:

� Specify the RESET ACCESSPATH option.

� Optionally specify the HISTORY ACCESSPATH option to record that the access path statistics
were reset in rows in the SYSIBM.SYSTABLES_HIST and SYSIBM.SYSINDEXES_HIST statistics
tables. This option only records that the reset occurred and does not save the access path
statistics values that are reset.

For example, you might issue the following utility control statement:

RUNSTATS TABLESPACE db-name.ts-name TABLE table-name RESET ACCESSPATH

Statistics are not collected. Instead, the RUNSTATS utility resets the access path statistics.

Certain catalog table rows are updated with default values, and rows are deleted from other
catalog tables. All updated rows in the catalog tables contain the same timestamp value.
Real-time statistics and space for the specified object are not reset. However, the dynamic
statement cache is invalidated.

Table 11-2 shows the new default values for statistics.

Table 11-2 New default statistics values

Catalog table Column Changed value

SYSTABLESPACE NACTIVE -1

NACVTIVEF -1

STATSTIME The TIMESTAMP value for the reset operation

SYSCOLUMNS COLCARD -1

COLCARDF -1

HIGH2KEY Zero-length blank

LOW2KEY Zero-length blank

STATSTIME The TIMESTAMP value for the reset operation

STATS_FORMAT Blank
294 IBM DB2 11 for z/OS Technical Overview

Applicable rows are deleted from the following catalog tables for the specified objects:

� SYSIBM.SYSTABSTATS
� SYSIBM.SYSCOLSTATS
� SYSIBM.SYSINDEXSTATS
� SYSIBM.SYSCOLDIST
� SYSIBM.SYSCOLDISTSTATS
� SYSIBM.SYSKEYTARGETSTATS
� SYSIBM.SYSKEYTGTDIST
� SYSIBM.SYSKEYTGTDISTSTATS

After resetting the statistics, you might want to invoke the RUNSTATS utility again with different
options to capture new statistic.

SYSTABLES CARD -1

CARDF -1

NPAGES -1

NPAGESF -1

PCTPAGES -1

PCTROWCOMP -1

STATSTIME The TIMESTAMP value for the reset operation

SYSINDEXES CLUSTERED ‘N’

NLEAF -1

NLEVELS -1

FIRSTKEYCARD -1

FULLKEYCARD -1

FIRSTKEYCARDF -1

FULLKEYCARDF -1

CLUSTERRATIO 0

CLUSTERRATIOF 0

DATAREPEATFACTORF -1

STATSTIME The TIMESTAMP value for the reset operation

SYSKEYTARGETS CARDF -1

HIGH2KEY Zero-length blank

LOW2KEY Zero-length blank

STATSTIME TIMESTAMP

STATS_FORMAT Blank

Catalog table Column Changed value
Chapter 11. Utilities 295

Example 11-21 shows an example of RUNSTATS RESET option.

Example 11-21 RUNSTATS RESET option

Statistics before reset
select NACTIVE
 ,STATSTIME
 from sysibm.SYSTABLESPACE
 where NAME = 'DSN8S11E';
 NACTIVE STATSTIME
 15 2013-08-01-19.37.32.770296

select COLCARD
 ,HIGH2KEY
 ,LOW2KEY
 from sysibm.SYSCOLUMNS
 where tbcreator = 'DSN81110' and TBNAME = 'EMP';
 COLCARD HIGH2KEY LOW2KEY
 32 000330 000020
 30 WILLIAM CHRISTINE
 19 W A
 31 WALKER BROWN
 8 E11 B01
 32 9001 0942
 31
 8 PRES CLERK
 8
 2 M F
 30
 32 0 0
 8 0 ? 0
 32 0 0

select CARD
 ,NPAGES
 ,PCTPAGES
 ,PCTROWCOMP
 from sysibm.SYSTABLES
 where creator = 'DSN81110' and NAME = 'EMP';
CARD NPAGES PCTPAGES PCTROWCOMP
32 1 6 100

 select CLUSTERED
 ,NLEAF
 ,NLEVELS
 ,FIRSTKEYCARD
 ,FULLKEYCARD
 ,CLUSTERRATIO
 from sysibm.SYSINDEXES
 where creator = 'DSN81110' and TBNAME = 'EMP';
CLUSTERED NLEAF NLEVELS FIRSTKEYCARD FULLKEYCARD CLUSTERRATIO
Y 1 2 32 32 100
N -1 -1 -1 -1 0
DSNE610I NUMBER OF ROWS DISPLAYED IS 2

/*JOBPARM S=SC63,L=9999
//PROCLIB JCLLIB ORDER=DB1AM.PROCLIB
//REORG EXEC DSNUPROC,SYSTEM=DB1A,
// LIB='DB1AT.SDSNLOAD',
// UID='ORUN' UTPROC='PREVIEW'
296 IBM DB2 11 for z/OS Technical Overview

//DSNUPROC.SYSIN DD *
RUNSTATS TABLESPACE DSN8D11A.DSN8S11E RESET ACCESSPATH

Statistics after reset
select NACTIVE
 ,STATSTIME
 from sysibm.SYSTABLESPACE
 where NAME = 'DSN8S11E';
 NACTIVE STATSTIME
 -1 2013-08-05-22.02.23.547981
DSNE610I NUMBER OF ROWS DISPLAYED IS 1

select COLCARD
 ,HIGH2KEY
 ,LOW2KEY
 from sysibm.SYSCOLUMNS
 where tbcreator = 'DSN81110' and TBNAME = 'EMP';
 COLCARD HIGH2KEY LOW2KEY
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
DSNE610I NUMBER OF ROWS DISPLAYED IS 14

select CARD
 ,NPAGES
 ,PCTPAGES
 ,PCTROWCOMP
 from sysibm.SYSTABLES
 where creator = 'DSN81110' and NAME = 'DSN8S11E';
CARD NPAGES PCTPAGES PCTROWCOMP
-1 -1 -1 -1

 select CLUSTERED
 ,NLEAF
 ,NLEVELS
 ,FIRSTKEYCARD
 ,FULLKEYCARD
 ,CLUSTERRATIO
 from sysibm.SYSINDEXES
 where creator = 'DSN81110' and TBNAME = 'EMP';
CLUSTERED NLEAF NLEVELS FIRSTKEYCARD FULLKEYCARD CLUSTERRATIO
N -1 -1 -1 -1 0
N -1 -1 -1 -1 0
DSNE610I NUMBER OF ROWS DISPLAYED IS 2
Chapter 11. Utilities 297

Example 11-22 shows the job output.

Example 11-22 RUNSTATS RESET job output

1DSNU000I 213 18:49:50.21 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = ORUN
 DSNU1044I 213 18:49:50.22 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 213 18:49:50.22 DSNUGUTC - RUNSTATS TABLESPACE DSN8D11A.DSN8S11E RESET ACCESSPATH
 DSNU1380I -DB1A 213 18:49:50.22 DSNUSRST - SYSCOLSTATS CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL
 DSNU1380I -DB1A 213 18:49:50.22 DSNUSRST - SYSTABSTATS CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL
 DSNU1380I -DB1A 213 18:49:50.22 DSNUSRST - SYSCOLDISTSTATS CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL
 DSNU1380I -DB1A 213 18:49:50.22 DSNUSRST - SYSCOLUMNS CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL
 DSNU1380I -DB1A 213 18:49:50.22 DSNUSRST - SYSTABLES CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL
 DSNU1380I -DB1A 213 18:49:50.23 DSNUSRST - SYSCOLDIST CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL
 DSNU1380I -DB1A 213 18:49:50.23 DSNUSRST - SYSTABLESPACE CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL
 DSNU1380I -DB1A 213 18:49:50.23 DSNUSRST - SYSINDEXSTATS CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL
 DSNU1380I -DB1A 213 18:49:50.23 DSNUSRST - SYSINDEXES CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL
 DSNU620I -DB1A 213 18:49:50.23 DSNUSRST - RUNSTATS CATALOG TIMESTAMP = 2013-08-01-18.49.50.227714
 DSNU010I 213 18:49:50.23 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

11.2.2 RUNSTATS USE PROFILE usability for LISTDEF

DB2 11 improves RUNSTATS USE PROFILE usability for LISTDEF processing. If users execute a
RUNSTATS USE PROFILE for a list of table spaces and one table space in the list does not have
a profile, DB2 will gather default statistics, before DB2 11 utility terminate with error.

Example 11-23 shows an example of RUNSTATS USE PROFILE with LISTDEF when a table
spaces in the list does not have a profile.

Example 11-23 RUNSTATS USE PROFILE usability for LISTDEF

/*JOBPARM S=SC63,L=9999
//PROCLIB JCLLIB ORDER=DB1AM.PROCLIB
//REORG EXEC DSNUPROC,SYSTEM=DB1A,
// LIB='DB1AT.SDSNLOAD',
// UID='ORUN' UTPROC='PREVIEW'
//DSNUPROC.SYSIN DD *
LISTDEF RUNLIST INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 1
INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 2
INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 3
INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 4
 RUNSTATS TABLESPACE LIST RUNLIST TABLE ALL USE PROFILE

Example 11-24 shows the job output.

Example 11-24 RUNSTATS USE PROFILE usability for LISTDEF job output

1DS
1DSNU000I 213 19:37:32.45 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = ORUN
 DSNU1044I 213 19:37:32.46 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 213 19:37:32.47 DSNUGUTC - LISTDEF RUNLIST INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 1 INCLUDE
 TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 2 INCLUDE TABLESPACE DSN8D11A.DSN8S11E PARTLEVEL 3 INCLUDE TABLESPACE
 DSN8D11A.DSN8S11E PARTLEVEL 4
 DSNU1035I 213 19:37:32.47 DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 213 19:37:32.47 DSNUGUTC - RUNSTATS TABLESPACE LIST RUNLIST TABLE ALL USE PROFILE
 DSNU1039I 213 19:37:32.48 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE DSN8D11A.DSN8S11E PARTITION 1
 DSNU1382I -DB1A 213 19:37:32.48 DSNUGPRF - THE STATS PROFILE FOR TABLE EMP NOT FOUND.
 DEFAULT PROFILE STATS COLLECTED
 DSNU1368I 213 19:37:32.48 DSNUGPRB - PARSING STATS PROFILE FOR TABLE EMP
 DSNU1369I 213 19:37:32.48 DSNUGPRB - PARSING STATS PROFILE FOR TABLE EMP COMPLETED
 DSNU610I -DB1A 213 19:37:32.61 DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR DSN8D11A.DSN8S11E SUCCESSFUL
 DSNU610I -DB1A 213 19:37:32.61 DSNUSUPT - SYSTABSTATS CATALOG UPDATE FOR DSN81110.EMP SUCCESSFUL
298 IBM DB2 11 for z/OS Technical Overview

 DSNU610I -DB1A 213 19:37:32.62 DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR DSN81110.EMP SUCCESSFUL
 DSNU610I -DB1A 213 19:37:32.62 DSNUSUTB - SYSTABLES CATALOG UPDATE FOR DSN81110.EMP SUCCESSFUL
 DSNU610I -DB1A 213 19:37:32.63 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR DSN81110.EMP SUCCESSFUL
 DSNU610I -DB1A 213 19:37:32.63 DSNUSUTS - SYSTABLESPACE CATALOG UPDATE FOR DSN8D11A.DSN8S11E SUCCESSFUL
 DSNU610I -DB1A 213 19:37:32.63 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR DSN81110.XEMP1 SUCCESSFUL
 DSNU610I -DB1A 213 19:37:32.63 DSNUSUPI - SYSINDEXSTATS CATALOG UPDATE FOR DSN81110.XEMP1 SUCCESSFUL
 DSNU610I -DB1A 213 19:37:32.63 DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR DSN81110.XEMP1 SUCCESSFUL
 DSNU610I -DB1A 213 19:37:32.63 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR DSN81110.XEMP1 SUCCESSFUL
 DSNU610I -DB1A 213 19:37:32.63 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR DSN81110.XEMP1 SUCCESSFUL
 DSNU620I -DB1A 213 19:37:32.63 DSNUSEOF - RUNSTATS CATALOG TIMESTAMP = 2013-08-01-19.37.32.488783

 DSNU010I 213 19:37:32.84 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=4

11.3 Backup and recovery enhancements

This section describes the following major backup and recovery enhancements:

� SYSLGRNX recording for catalog and directory table
� VCAT name translation for RESTORE SYSTEM
� Remove the incompatibility of REORG and COPY
� Removal of many point-in-time recovery restrictions

11.3.1 SYSLGRNX recording for catalog and directory table

Prior to DB2 11, the update ranges for some DB2 directory objects are not recorded in
SYSIBM.SYSLGRNX. This can result in an unnecessary full log scan extended recovery time for
critical directory objects. DB2 11 enables SYSLGRNX recording for the following objects:

� DSNDB01.SCT02
� DSNDB01.SPT01
� DSNDB01.SYSSPUXA
� DSNDB01.SYSSPUXB
� Indexes over the above table spaces.

The RECOVER utility uses the SYSLGRNX records to selectively read and apply the log records for
ranges of update. Thus, users have a faster catalog and directory recovery process, because
DB2 filters the part of log to read and apply using SYSLGRNX.

11.3.2 VCAT name translation for RESTORE SYSTEM

With DB2 10, users who clone their DB2 systems within the same SYSPLEX using a
system-level backup as a base, do not have a way to apply log records to update their data to
a desired point in time. This restriction exists because the high-level qualifier, the ICF catalog
VCAT alias, on the cloned DB2 system must be different from the high level qualifier on the
source DB2 system.
Chapter 11. Utilities 299

DB2 11 implements a new VCAT name translation for RESTORE SYSTEM for system cloning. It
also supports log apply. A new sequential input data set that contains the old and new VCAT
alias values, identified by using the SYSVALUEDDN option is to be provided by the user.
Figure 11-7 shows the syntax diagram.

Figure 11-7 RESTORE SYSTEM syntax diagram with SWITCH VCAT and SYSVALUEDDN

The SYSVALUEDDN option supports the following values:

SWITCH VCAT Indicates that the integrated catalog facility (ICF) alias (VCAT)
names are to be substituted with those names that are
provided when the log is processed. Every VCAT
encountered in the log must be specified in the SYSVALUEDDN
data set. This option might be used in the process of cloning a
DB2 subsystem.

SYSVALUEDDN ('ddname') Specifies that the DD statement for the control statements
specifying the integrated catalog facility (ICF) VCAT aliases
used when processing log records.ddname can be up to eight
characters, and must start with an alphabetic or national bank
character.

The default value is SYSVALUEDDN(SYSVALUE), where SYSVALUE
identifies the primary data set.

SYSVALUE Data set description VCAT alias values data set Defines a set of records which
contain integrated catalog facility (ICF) catalog VCAT alias
names. Each record must contain a pair of VCAT alias names
separated by only a comma. The first VCAT alias name is the
name used when the system level backup was created.

Example 11-25 recovering a backup system after the database volumes have already been
restored and VCAT aliases renamed The LOGONLY keyword in the following control statement
indicates that RESTORE SYSTEM is to apply any outstanding log changes to the database, the
utility is not to restore the volume copies. In this example, the database volumes have already
been restored outside of DB2. Note that RESTORE SYSTEM applies log changes; it never
restores the log copy pool. The SWITCH VCAT SYSVALUEDDN(SYSVALUE) keywords indicate that
the SYSVALUE DD name data set contains a list of pairs of integrated catalog facility VCAT
aliases. The first VCAT alias is the name when the backup was created and the second VCAT
alias is the name after any renaming has completed. The VCAT alias DSNC000 is specified as
both the first and second alias since it was not renamed and might be encountered in the log.

Example 11-25 RESTORE SYSTEM LOGONLY SWITCH VCAT

//STEP1 EXEC DSNUPROC,TIME=1440,
// UTPROC='',
// SYSTEM='DSN'
//SYSIN DD *
RESTORE SYSTEM LOGONLY SWITCH VCAT SYSVALUEDDN(SYSVALUE)
/*
//SYSVALUE DD *
300 IBM DB2 11 for z/OS Technical Overview

VCAT1,VCAT2
VCAT5,Z1234567
DSNC000,DSNC000
/*

11.3.3 Remove the incompatibility of REORG and COPY

Some users run online REORG for a whole weekend and for business reason they also need to
take frequent image copies. DB2 11 removes the incompatibility of REORG and COPY and it
allows COPY TABLESPACE SHRLEVEL CHANGE to run at the same time as REORG TABLESPACE
SHRLEVEL CHANGE, until REORG is able to drain the claimers.

For details about which utilities can run concurrently with COPY on the same target object, see
DB2 11 for z/OS Utility Guide and Reference, SC19-4067.

11.3.4 Removal of many point-in-time recovery restrictions

DB2 11 removes many restrictions on point-in-time (PIT), which is recovery to a point prior to
the execution of the materializing REORG.

PIT recovery restrictions are removed for the following points:

� LOB table spaces
� XML table spaces
� PBR table spaces
� Including when immediate alters have occurred since materializing REORG

PIT recovery restrictions are still in place for the following points:

� Table space conversion
� PBG table spaces
� PBG partition pruning
� Online DROP COLUMN

There is further information about PIT recovery on 4.1.1, “Scope of enhancements for online
schema changes in DB2 11” on page 52.

11.4 LOAD and UNLOAD enhancements

This section describes the following LOAD and UNLOAD enhancements:

� LOAD SHRLEVEL NONE with PARALLEL option
� LOAD SHRLEVEL CHANGE with PARALLEL option
� Addition of crossloader support for XML
� More offload to zIIP with NPSIs

11.4.1 LOAD SHRLEVEL NONE with PARALLEL option

The best way to LOAD is split your input data set into part and load individual data set into part
of partition table space. However, splitting your input data set sometimes is not an easy
process and you may need to create a batch job to do the work using DFSORT, REXX,
COBOL program. DB2 11 deliveries a performance improvement for LOAD SHRLEVEL NONE
when the input data is in a single input data set with the new PARALLEL option, If you specify
Chapter 11. Utilities 301

the PARALLEL keyword, the LOAD utility can use multiple parallel subtasks, which can reduce
the elapsed time for the load.

This kind of parallelism is useful when the utility is CPU bound. It does not increase I/O
parallelism. CPU bottlenecks are typical of CCSID conversion, numeric conversion,
compression, complex data types and VARCHAR columns. This kind of parallelism is also useful
to overlap the synchronous I/Os of multiple indexes. Hence, the more indexes, the greater the
benefit.

SHRLEVEL NONE appends to the end of the end of the table instead of trying to store the rows in
cluster sequence. Free space searches are not a consideration. However, there is still
overhead to insert keys into the index. There can be synchronous I/Os and index splits.
Performance is sensitive to whether or not the input data is sorted. If the input data is
unsorted, parallelism is of greater value than it would be for presorted input. The CPU
overhead of parallelism is also somewhat higher for sorted input. Nevertheless, if the LOAD is
the type that uses a lot of CPU time, parallelism will help reduce the elapsed time.

With a high degree of parallelism there will be an extra overhead on CPU time, so that should
be factored in when determining the degree of parallelism specified with the PARALLEL
keyword. The recommendation is to specify PARALLEL 0 or PARALLEL without a number
specified so DB2 can determine the most optimal degree of parallelism. Whether or not the
input data is sorted also affects the performance, because the parallel tasks may suffer from
contention.

Measurements show that LOAD SHRLEVEL NONE PARALLEL reduced up to 50% of elapsed time
with unsorted data, as shown in Figure 11-8.

Figure 11-8 LOAD SHRLEVEL NONE PARALLEL

Example 11-26 shows an example of LOAD SHRLEVEL NONE with PARALLEL option.

Example 11-26 LOAD SHRLEVEL NONE with PARALLEL option

/*JOBPARM S=SC63,L=9999
//PROCLIB JCLLIB ORDER=DB1AM.PROCLIB
//LOAD EXEC DSNUPROC,SYSTEM=DB1A,
// LIB='DB1AT.SDSNLOAD',

LOAD and UNLOAD enhancements
�LOAD SHRLEVEL NONE PARALLEL with single input dataset

– Parallel data conversion

– 50% ET reduction possible on single SYSREC load

– Not supported for PBG

Input

SYSREC
Read

Part

1

Part

2

Conversion 1

Conversion 4

Conversion 2

Conversion 5

Conversion 3 Load task
302 IBM DB2 11 for z/OS Technical Overview

// UID='LOADPP' UTPROC='PREVIEW'
//DSNUPROC.SYSREC DD DSN=DB2R2.SYSREC,DISP=SHR
//DSNUPROC.SYSIN DD *
 TEMPLATE ...
 LOAD DATA INDDN SYSREC
 LOG NO REPLACE PARALLEL
 EBCDIC CCSID(00037,00000,00000)
 WORKDDN(UT1,SRTOUT) DISCARDS 0 DISCARDDN DIS ERRDDN ERR
 COPYDDN COPY STATISTICS TABLE(ALL) INDEX(ALL)
 INTO TABLE
 "DB2R2".
 "DB2RTB4"
 WHEN(00001:00002) = X'0003'
 NUMRECS 285

(COLUMNS..)

Example 11-24 shows the job output.

Example 11-27 LOAD SHRLEVEL NONE with PARALLEL option job output

1DSNU000I 218 16:43:44.86 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = LOADPP
 DSNU1044I 218 16:43:44.87 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 218 16:43:44.88 DSNUGUTC - TEMPLATE
0DSNU050I 218 16:43:44.88 DSNUGUTC - LOAD DATA INDDN SYSREC LOG NO REPLACE PARALLEL EBCDIC CCSID(37, 0, 0)
 WORKDDN(UT1, SRTOUT) DISCARDS 0 DISCARDDN DIS ERRDDN ERR COPYDDN COPY STATISTICS TABLE(ALL) INDEX(ALL)
 DSNU650I -DB1A 218 16:43:44.88 DSNURWI - INTO TABLE "DB2R2". "DB2RTB4" WHEN(1:2)=X'0003' NUMRECS 285
 DSNU650I -DB1A 218 16:43:44.88 DSNURWI - ("DBNAME" POSITION(3:10) CHAR(8),

DSNU650I -DB1A 218 16:43:44.88 DSNURWI - "MODECREATED" POSITION(2005:2006) CHAR(2))

 DSNU350I -DB1A 218 16:43:45.89 DSNURRST - EXISTING RECORDS DELETED FROM TABLESPACE
 DSNU1177I 218 16:43:45.91 DSNURPNP - TABLE SPACE WILL BE LOADED IN PARALLEL, NUMBER OF TASKS = 4
 DSNU400I 218 16:43:45.99 DSNURBID - COPY
 DSNU304I -DB1A 218 16:43:46.14 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=285 FOR TABLE DB2R2.DB2RTB4
 DSNU1147I -DB1A 218 16:43:46.14 DSNURWT - (RE)LOAD PHASE STATISTICS - TOTAL NUMBER OF RECORDS LOADED=285 FOR TABLESPACE
 DB2RDB4.DB2RTS1
 DSNU428I 218 16:43:46.14 DSNURILD - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DB2RDB4.DB2RTS1
 DSNU302I 218 16:43:46.14 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=285
 DSNU300I 218 16:43:46.14 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:01
 DSNU610I -DB1A 218 16:43:46.43 DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR DB2RDB4.DB2RTS1 SUCCESSFUL
 DSNU610I -DB1A 218 16:43:46.43 DSNUSUPT - SYSTABSTATS CATALOG UPDATE FOR DB2R2.DB2RTB4 SUCCESSFUL
 DSNU610I -DB1A 218 16:43:46.45 DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR DB2R2.DB2RTB4 SUCCESSFUL
 DSNU610I -DB1A 218 16:43:46.45 DSNUSUTB - SYSTABLES CATALOG UPDATE FOR DB2R2.DB2RTB4 SUCCESSFUL
 DSNU610I -DB1A 218 16:43:46.46 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR DB2R2.DB2RTB4 SUCCESSFUL
 DSNU610I -DB1A 218 16:43:46.46 DSNUSUTS - SYSTABLESPACE CATALOG UPDATE FOR DB2RDB4.DB2RTS1 SUCCESSFUL
 DSNU620I -DB1A 218 16:43:46.46 DSNUSEF2 - RUNSTATS CATALOG TIMESTAMP = 2013-08-06-16.43.45.909408
 DSNU010I 218 16:43:46.51 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

11.4.2 LOAD SHRLEVEL CHANGE with PARALLEL option

The SHRLEVEL CHANGE option usually has higher CPU time than the SHRLEVEL NONE option.
Thus, parallelism provides more value for SHRLEVEL CHANGE than it does for SHRLEVEL NONE.

Unlike SHRLEVEL NONE, SHRLEVEL CHANGE stores the rows in cluster sequence (rather than
appending the rows to the end of the table). As with ordinary SQL inserts, performance is
sensitive to space search algorithms and contention between parallel inserts. If the table
space has free space, DB2 spends less time searching for space and there is less contention.
Whether or not there is contention, parallelism may significantly reduce the elapsed time for
Chapter 11. Utilities 303

the LOAD utility. However, if there is contention, expect a more significant increase in the CPU
time, and a lot more CPU increase, than you have with SHRLEVEL NONE.

LOAD SHRLEVEL CHANGE PARALLEL for single input data set shows 80% reduction on elapsed
time due to multiple parallel subtasks allocation, as shown in Figure 11-9.

Figure 11-9 LOAD SHRLEVEL CHANGE PARALLEL

Example 11-28 shows an example of LOAD SHRLEVEL CHANGE with PARALLEL option.

Example 11-28 LOAD SHRLEVEL CHANGE with PARALLEL option

/*JOBPARM S=SC63,L=9999
//PROCLIB JCLLIB ORDER=DB1AM.PROCLIB
//LOAD EXEC DSNUPROC,SYSTEM=DB1A,
// LIB='DB1AT.SDSNLOAD',
// UID='LOADPP' UTPROC='PREVIEW'
//DSNUPROC.SYSREC DD DSN=DB2R2.SYSREC,DISP=SHR
//DSNUPROC.SYSIN DD *
 TEMPLATE ...

LOAD DATA INDDN SYSREC
 RESUME YES PARALLEL SHRLEVEL CHANGE
 EBCDIC CCSID(00037,00000,00000)
 WORKDDN(UT1,SRTOUT) DISCARDS 0 DISCARDDN DIS ERRDDN ERR
 INTO TABLE
 "DB2R2".
 "DB2RTB4"
 WHEN(00001:00002) = X'0003'
 NUMRECS 285

(COLUMNS..)

Example 11-29 shows the job output.

LOAD and UNLOAD enhancements
�LOAD SHRLEVEL CHANGE PARALLEL

– Supports non-partitioned as well as partitioned

– Single input dataset

– >80% ET reduction

– Not supported for PBG

Input

SYSREC
Read task

Part

1

Part

2

Conversion 1

Conversion 4

Conversion 2

Conversion 3
304 IBM DB2 11 for z/OS Technical Overview

Example 11-29 LOAD SHRLEVEL CHANGE with PARALLEL option job output

1DSNU000I 218 16:45:21.01 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = LOADPP
 DSNU1044I 218 16:45:21.05 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 218 16:45:21.06 DSNUGUTC - TEMPLATE

0DSNU050I 218 16:45:21.06 DSNUGUTC - LOAD DATA INDDN SYSREC RESUME YES PARALLEL SHRLEVEL CHANGE
EBCDIC CCSID(37, 0, 0) WORKDDN(UT1, SRTOUT) DISCARDS 0 DISCARDDN DIS ERRDDN ERR
 DSNU650I -DB1A 218 16:45:21.06 DSNURWI - INTO TABLE "DB2R2". "DB2RTB4" WHEN(1:2)=X'0003' NUMRECS 285
 DSNU650I -DB1A 218 16:45:21.06 DSNURWI - ("DBNAME" POSITION(3:10) CHAR(8),

DSNU650I -DB1A 218 16:45:21.06 DSNURWI - "MODECREATED" POSITION(2005:2006) CHAR(2))

 DSNU1177I 218 16:45:21.17 DSNURPLL - TABLE SPACE WILL BE LOADED IN PARALLEL, NUMBER OF TASKS = 24
 DSNU397I 218 16:45:21.17 DSNURPLL - NUMBER OF TASKS CONSTRAINED BY CPUS TO 24
 DSNU1114I -DB1A 218 16:45:21.20 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS LOADED =285 FOR TABLE
 DB2R2.DB2RTB4
 DSNU1147I -DB1A 218 16:45:21.20 DSNURWT - (RE)LOAD PHASE STATISTICS - TOTAL NUMBER OF RECORDS LOADED=285 FOR TABLESPACE
 DB2RDB4.DB2RTS1
 DSNU302I 218 16:45:21.21 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=285
 DSNU300I 218 16:45:21.21 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
 DSNU010I 218 16:45:21.23 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

11.4.3 Addition of crossloader support for XML

DB2 10 implemented the crossloader support for LOB and DB2 11 adds the support for XML
data and it also reduces virtual storage requirement and avoids DSNU1178i errors by
exploiting FETCH CONTINUE for processing large LOBs and XML data in crossloader.

11.4.4 More offload to zIIP with NPSIs

When users want to clean the whole partition of a table space executing LOAD REPLACE PART
with dummy input, DB2 11 reroutes up to 100% of the workload to eliminate the rows from
NPSIs to zIIP.

11.5 Compression dictionaries for Change Data Capture

For users that use IFI 306, QREP users need to read log records, decompress them and
process them. If the users have run a REORG or LOAD and built a new compression dictionary,

Note: WIth the LOAD PARALLEL option, enable parallelism for the following table space
types:

� Simple
� Segmented
� Classic partitioned
� Partition by range

PBG is not supported.

PARALLEL keyword for faster utilities: DB2 11 improves the algorithm that decides the
level of utilities parallelism for faster utilities. You can find further information about the use
of PARALLEL keyword for utilities in 4.5, “Governing of parallel processing of utilities” on
page 70.
Chapter 11. Utilities 305

IFI 306 readers still need the old dictionary to read data in the log. DB2 11 stores the old
compression dictionary in the log and IFI 306 read automatically retrieves old compression
dictionary if necessary. This new feature is transparent for IFI 306 readers, because it was
implemented in DB2.

You can find more information about compression dictionary in 4.6, “Compression dictionary
availability for CDC tables” on page 72.

11.6 General enhancements

This section describes the following DB2 utilities general enhancements:

� DISPLAY UTILITY additional output
� Improved TEMPLATE for extended format data sets
� DSN1COPY
� Command to externalize RTS statistics
� DSNACCOX

11.6.1 DISPLAY UTILITY additional output

Users match utility ID with the job name to identify the job when executing the -DISPLAY
UTILITY command. DB2 11 modifies this command output to show JOBNAME and the start time
stamp. See Example 11-30.

Example 11-30 DISPLAY UTILITY command output

DSNU105I -DB1A DSNUGDIS - USERID = DB2R2
 MEMBER =
 UTILID = OREORG
 PROCESSING UTILITY STATEMENT 1
 UTILITY = REORG
 PHASE = RELOAD COUNT = 0
 NUMBER OF OBJECTS IN LIST = 1
 LAST OBJECT STARTED = 1
 STATUS = ACTIVE
 JOBNAME = DB2R2TSC
 TIME STARTED = 2013-08-08-20:30:05
 DSNU347I -DB1A DSNUGDIS -
 DEADLINE = NONE
 DSNU384I -DB1A DSNUGDIS -
 MAXRO = 180 SECONDS
 LONGLOG = CONTINUE
 DELAY = 1200 SECONDS
 DSNU111I -DB1A DSNUGDIS - SUBPHASE = COPY COUNT = 10
 DSN9022I -DB1A DSNUGCCC '-DIS UTIL' NORMAL COMPLETION

11.6.2 Improved TEMPLATE for extended format data sets

Utility TEMPLATEs are heavily used by users to automatically allocate utility data sets. As user
data has grown, the size of the utility data sets has also increased and it can exceed the
maximum size of basic sequential data sets.
306 IBM DB2 11 for z/OS Technical Overview

Users would like to specify DSNTYPE on their TEMPLATEs to easily automate the allocation of
large format or extended format sequential data sets which have a much larger maximum size
than basic sequential data sets. Today users must change their SMS data class routines to
use large format or extended format sequential data sets. Also, the date and time variables for
TEMPLATE data set names are always resolved to reflect the Coordinated Universal Time
(UTC) values rather than the local date and time. This makes it difficult to correlate the utility
data set to the local date and time when it was created.

DB2 11 enhances TEMPLATEs by adding a new DSNTYPE options to support large format and
extended format data sets and adds new TEMPLATE data set name DATE and TIME variables to
support the options.

DSNTYPE Specifies the type of data set to be allocated.

The new options are as follows:

BASIC Specifies a basic format data set. No more than 65535 tracks can be
allocated.

LARGE Specifies a large format data set. Greater than 65535 tracks can be
allocated.

EXTREQ Specifies an extended format data set is required.

EXTPREF Specifies an extended format data set is preferred.

TIME Specifies time used in expansion of date and time DSN variables. The
default TIME value is determined by the TEMPLATE_TIME subsystem
parameter.

LOCAL Use local time at the DB2 server in the expansion of date and time in
DSN variables.

UTC Use Coordinated Universal Time (UTC) in the expansion of date and
time in DSN variable

Example 11-31 shows a COPY utility execution with extended format required and time (of the
store clock of the INIT phase) in local time.

Example 11-31 TEMPLATE with DSNTYPE EXTREQ and TIME LOCAL

/*JOB
//PROCLIB JCLLIB ORDER=DB1AM.PROCLIB
//REORG EXEC DSNUPROC,SYSTEM=DB1A,
// LIB='DB1AT.SDSNLOAD',
// UID='OCOPY' UTPROC='PREVIEW'
//DSNUPROC.SYSIN DD *
 TEMPLATE COPY DSN 'DB1AD.&DB..&TS..T&TIME.'
 DISP (NEW,CATLG,DELETE) UNIT SYSDA
 DSNTYPE EXTREQ TIME LOCAL
 SPACE (5,5) CYL
 COPY TABLESPACE DSN8D11A.DSN8S11E
 COPYDDN(COPY)
1DSNU000I 220 20:54:12.94 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = OCOPY
 DSNU1044I 220 20:54:12.95 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
0DSNU050I 220 20:54:12.95 DSNUGUTC - TEMPLATE COPY DSN 'DB1AD.&DB..&TS..T&TIME.'
DISP(NEW, CATLG, DELETE) UNIT SYSDA DSNTYPE EXTREQ TIME LOCAL SPACE(5, 5) CYL
 DSNU1035I 220 20:54:12.95 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I 220 20:54:12.95 DSNUGUTC - COPY TABLESPACE DSN8D11A.DSN8S11E COPYDDN(COPY)
 DSNU1038I 220 20:54:13.00 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=COPY
 DDNAME=SYS00001
 DSN=DB1AD.DSN8D11A.DSN8S11E.T205412
 DSNU400I 220 20:54:13.07 DSNUBBID - COPY PROCESSED FOR TABLESPACE DSN8D11A.DSN8S11E
Chapter 11. Utilities 307

 NUMBER OF PAGES=15
 AVERAGE PERCENT FREE SPACE PER PAGE = 4.40
 PERCENT OF CHANGED PAGES = 0.00
 ELAPSED TIME=00:00:00
 DSNU428I -DB1A 220 20:54:13.08 DSNUBAFI - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE
DSN8D11A.DSN8S11E
 DSNU010I 220 20:54:13.08 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Here is generated dataset.
NONVSAM ------- DB1AD.DSN8D11A.DSN8S11E.T205412
 IN-CAT --- UCAT.DB1ADATA
 HISTORY
 DATASET-OWNER-----(NULL) CREATION--------2013.220
 RELEASE----------------2 EXPIRATION------0000.000
 ACCOUNT-INFO-----------------------------------(NULL)
 SMSDATA
 STORAGECLASS ---DB1ADATA MANAGEMENTCLASS---MCDB22
 DATACLASS --------(NULL) LBACKUP ---0000.000.0000
 VOLUMES
 VOLSER------------SBOXG2 DEVTYPE------X'3010200F' FSEQN---------
---------0
 ASSOCIATIONS--------(NULL)
 ATTRIBUTES
 STRIPE-COUNT-----------1
 EXTENDED

11.6.3 DSN1COPY

Users very often take a DSN1COPY of a table space and use that copy to populate another table
space in the same or different DB2 subsystem. If an improper process is used to transfer data
with DSN1COPY, it can cause abends, data corruption or storage overlays in the target table
space. The data integrity issue usually is not discovered until data has been stored into the
target table space and system failure has occurred.

The typical scenarios are the following:

� A wrong DBID, PSID or OBID is specified while transferring the data using DSN1COPY
OBIDXLAT option.

� The user copies data from one type of table space and populates it to a different type of
table space, except XML table space.

� The user takes a DSN1COPY of a table space and populates data to the other table space
which has a different data version number and/or table schema definition.

� The user takes a DSN1COPY of a table space that is in basic row format (BRF) and copies it
to a table space that is in reordered row format (RRF) or vice versa.

� The DSN1COPY table has 10 bytes expanded RBA format but the target table space has still
the basic 6 bytes RBA format or vice versa.

DB2 11 improves data availability by providing the validation between data and catalog
definition during the first physical open of the page set. If any inconsistency is found in the
process, access to the data is blocked and an error message is issued. The following data
mismatch is detected during physical open:

� DBID, PSID, or OBID

� SEGSIZE or PAGESIZE

� Table space type definition. This includes the following table space type:
308 IBM DB2 11 for z/OS Technical Overview

– Segmented table space
– Classic partition table space
– Partition by range universal table space
– Partition by range universal table space with MEMBER CLUSTER attribute
– Partitioned by growth universal table space
– Partitioned by growth universal table space with MEMBER CLUSTER attribute
– XML version table space

� Table schema definition if there is only one table in the table space and there is an
OBDREC stored in the system page.

In addition, the REPAIR CATALOG utility can also correct the following mismatches in the catalog
(Record format, RBA format, Data Version number and Hash Data Page value) see 11.6.4,
“REPAIR utility” on page 310.

As an example, if the physical open of data set triggered by DML detects that the data is
populated by DSN1COPY, the following data is validated.

� DBID, PSID, or OBID on the header page is validated. The OBID on the header page only
records the first table on the table space. Therefore, the OBID validation can be done if
one table resides in the table space. If error found for this case, a SQLCODE -904 with
reason code 00C900E0 is issued.

� The SEGSIZE or PAGESIZE and table space type definition on the header page is validated.

– If error found due to mismatch of SEGSIZE, a SQLCODE -904 with reason code
00C900E1 is issued.

– If error found due to mismatch of page size, a SQLCODE -904 with reason code
00C900E2 is issued.

� Table schema definition is validate if there is only one table in the table space and also the
system page exists in the page set. If the system page exists, then the latest version of the
OBDREC will be retrieved from system page. Total number of columns and each column's
data type and its data length is validated with current OBDREC.

– If any error found due to mismatch of schema, a SQLCODE -904 with reason code
00C900E3

As a result, any error found during this process, a SQLCODE -904 with proper reason code is
issued. The physical open process is terminated.

To avoid any performance impact during physical open, the validation of data against catalog
definition is not performed if the following condition exists:

� Physical open is triggered by Utility.

This include REPAIR VERSIONS and REPAIR CATALOG utility

� Restart of the DB2

� Header page has not been formatted yet.

� REPAIR utility operates on the header page.

At the end of REPAIR utility, it will close the page set. Therefore, the validation can be done
by the subsequent physical open.

� LOG apply phase
Chapter 11. Utilities 309

11.6.4 REPAIR utility

The REPAIR utility now checks for and fixes any inconsistencies between the information in the
catalog and the data. Specifically the REPAIR utility can check the values for DBID, PSID,
OBID, SEGSIZE, PAGESIZE, table space type, table schema, record format, RBA format, data
version number, and the hash data page.

The record row format, RRF, BRF or RBA, format such as 6 byte verse 10 byte RBA format
will not be validated during physical open because the information about the header page can
represent the actual data format. The mismatch between catalog and data will not interfere
with the accessing of data.The DB2 REPAIR utility will provide the similar capability to detect
the data inconsistency as data set open triggered by DML explained above.

There are two new keywords added to the REPAIR Utility:

� REPAIR CATALOG
� REPAIR CATALOG TEST

REPAIR Utility with CATALOG keyword
Example of statement:

REPAIR CATALOG TABLESPACE DBNAMET01.TSNAMET01

A new keyword CATALOG is introduced. This includes validation of metadata and the original
function of REPAIR VERSION utility. As the result, the following data is modified in the OBDs.

� RRF/BRF format. During the mainline DML code path or utility path, the reference of
record format is always based on the physical data. However, if it is necessary, the
REPAIR utility can be used to fix the catalog definition.

� The format now supports 6 bytes RBA format versus 10 bytes RBA format, which is similar
to RRF/BRF format.

� Data version information. This process is equivalent to the current REPAIR VERSION utility.
Unlike data checking during the physical open, the REPAIR utility checks the table’s schema
for all the tables in the table space. However, only the table space has system page and its
latest version from the system page will be used to validate its schema with catalog.

� Hash data page value. This is similar to RRF/BRF record format behavior, the mainline or
utility code path can tolerate the inconsistency between data and catalog definition.
However, this value can effect REORG or LOAD REPLACE utility if it is not being corrected. As
the result, the REPAIR utility will modify the catalog be match the data set.

The REPAIR utility updates the following catalog columns to match the physical data in the
table space, as listed in Table 11-3.

Table 11-3 REPAIR CATALOG utility will update the following catalog columns

Table Column Description

SYSTABLEPART FORMAT Updated to match the Reorder Row Format of the
table space

SYSTABLEPART RBA_FORMAT Updated to match the RBA format of the Table
Space

SYSTABLEPART HASHDATAPAGES Updated with the hash data page found in the PBR
Universal Table Space if table has hash
organization
310 IBM DB2 11 for z/OS Technical Overview

In addition, the REPAIR utility with the CATALOG keyword also validates the following
information.

� DBID/PSID mismatch. If there is only one table in the table space, the REPAIR utility also
validates OBID mismatch between page set and catalog.

� Table space type mismatch.

� SEGSIZE mismatch.

� PAGESIZE mismatch.

� Table definition mismatch. This validation includes the total number of columns, column
data type and column defined length of the table.

As a result, If any mismatch is found between the data and catalog, the REPAIR utility cannot
repair the information in catalog. The REPAIR utility fails with a return code 8 and reports the
mismatch with a message. You need to take an action to correct the mismatch information.

REPAIR CATALOG TEST utility
Example of statement:

REPAIR CATALOG TABLESPACE DBNAMET01.TSNAMET01 TEST

A new keyword CATALOG TEST is introduced. The function of this keyword is similar to the
REPAIR CATALOG except the mismatch information will not be corrected in the catalog. The
mismatch information that results in none zero return code will be reported.

11.6.5 Command to externalize RTS statistics

The real-time SYSIBM.SYSTABLESPACESTATS and SYSIBM.SYSINDEXSPACESTATS statistic tables
provide statistical information about the table and index spaces in the database system. The
tables are updated every 30 minutes (by default). As a consequence, the statistics are 15
minutes old (on average) when a user or a tool are querying the tables. This can causes

SYSTABLESPACE HASHDATAPAGES Updated with the hash data page found in the
PBG Universal Table Space if table has hash
organization

SYSTABLES VERSION Updated with the highest version in the table
space

SYSTABLEPART OLDEST_VERSION Updated with the lowest version in the table space

SYSTABLESPACE OLDEST_VERSION Updated with the lowest version in the table space

SYSTABLESPACE CURRENT_VERSION Updated the highest version in the table space

SYSCOPY ICTYPE Put a new row with ICTYPE='V' to indicate
REPAIR touched the object

Table Column Description

Note: REPAIR CATALOG does not check limit key values.

You cannot specify CATALOG for LOB or XML table spaces

REPAIR CATALOG does not make any corrections for indexes. If you or REPAIR made
corrections to the data or catalog as a result of running REPAIR CATALOG, rebuild any
indexes on the target tables
Chapter 11. Utilities 311

some tools which rely on RTS information, such as DSNACCOX, to provide wrong
recommendations on heavily changed objects. DB2 11 implements a new command option
added to the DB2 ACCESS command, so that the users can trigger the externalization of the
in-memory RTS blocks, before calling recommendation tools, such as DSNACCOX.

A new STATS keyword value added to the existing MODE keyword on the DB2 ACCESS
command. The MODE(STATS) option results in the externalization of the real-time statistics in
memory blocks.

The DB2 ACCESS DATABASE command forces a physical open of a table space, index space, or
partition, or removes the GBP-dependent status for a table space, index space, or partition,
and externalizes the real-time statistics in-memory blocks to the real-time statistics tables.
The MODE keyword specifies the desired action.

MODE(STATS) Externalizes the in-memory statistics to the real-time statistic tables. In
data sharing environments, the in-memory statistics are externalized
for all members. This mode does not physically open the page sets or
change the states of the page sets.

Examples are:

ACCESS DB(dbname) SP(spname) MODE(STATS) PART(part)
ACCESS DB(dbname) SP(spname) MODE(STATS)
ACCESS DB(dbname) SP(*) MODE(STATS)
ACCESS DB(*) SP(*) MODE(STATS)

The last sample command externalizes all in-memory statistics that are currently held in the
system to the real-time statistics table.

11.6.6 DSNACCOX

DSNACCOX is a sample stored procedure that uses data from the SYSIBM.SYSTABLESPACESTATS
and SYSIBM.SYSSYSINDEXSPACESTATS real-time statistics tables to make the following
recommendations:

� It recommends when you should reorganize, image copy, or update statistics for table
spaces or index spaces.

� Indicates when a data set has exceeded a specified threshold for the number of extents
that it occupies.

� Indicates whether objects are in a restricted state.

DB2 11 implements the following enhancement on DSNACCOX:

� When the user has a lot of small objects that are almost empty, DSNACCOX recommends
REORG on the objects because the DATASPACERATIO threshold had been exceeded, so for
small objects Space Allocated/Space Used is always larger than the default
DATASPACERATIO of 2. DB2 11 changes the default to -1 which turn off this criteria and it
does not effect users which had changed the value. If you want to use DATASPACERATIO,
modify the application to pass a positive value for DATASPACERATIO parameter.

� Unable to differentiate between LOB, XML, or base table spaces, DSNACCOX used to return
all table space as TS (standard table space). DB2 11 returns object type XS and LS to
differentiate XML and LOB table spaces from TS for regular table space.

� DSNACCOX used to recommend REORG on an NPI even when one or more of the table
space partitions have been recommended for REORG or RUNSTATS. DB2 11 enhances
DSNACCOX to optionally skip REORG recommendation on NPI index when any of the table
space partitions had been recommended for REORG.
312 IBM DB2 11 for z/OS Technical Overview

� Better granularity in the evaluation. Many users rely on frequent runs of DSNACCOX, but they
might be interested only in a certain objects. DB2 10 evaluates every rows in the RTS
tables and eliminates them using an SQL WHERE clause when the return cursor is opened.
DB2 11enhances DSNACCOX to parse the CRITERIA input parameter, and if possible, apply
the CRITERIA as a WHERE clause when DSNACCOX queries RTS tables. This action results in
less objects to be evaluated, improving performance.

Figure 11-10 shows DSNACCOX performance when the DBNAME criterion is applied.

Figure 11-10 DSNACCOX performance

11.7 Deprecated functions

DB2 10 NFM does not support REORG SHRLEVEL NONE for LOBs, but it returns RC0 with
MSGDSNU126I. In DB2 11 when users try to run REORG SHRLEVEL NONE for LOBs the return code
changed to RC8.

When DSN1CHKR is invoked in DB2 11, you will see the same messages as DB2 10 NFM. It will
produce following messages:

DSN1800I START OF DSN1CHKR FOR JOB - DSN1CHKM, DURING JOBSTEP - xxxxxxxx
DSN1998I INPUT DSNAME = DSNC000.xxxxxx.xxxxxxx.xxxxxxxx.I0001.A001 , VSAM
DSN1810I INPUT DATA SET INVALID, NOT A CHECKABLE SYSTEM TABLESPACE
DSN1816I DSN1CHKR TERMINATED WITH ERRORS, 00000000 PAGES PROCESSED

The DB2 11 documentation was updated to indicate that DSN1CHKR is no longer supported,
and that DSN1810I and DSN1816I error messages continue to be generated when it is invoked.
The DB2 10 documentation was updated to indicate that DSN1CHKR is deprecated.

DB2 11 begins the deprecation process of utility functions which are replaced by a new
feature or can now be done by a non utility application. The INDREFLIMIT, OFFPOSLIMIT,
LEAFDISTLIMIT, and CHANGELIMIT keywords were introduced before tools or stored procedures
were available to give recommendations when an object needed to be reorganized or copied.

DSNACCOX query performance with WHERE DB=x

0

50

100

150

200

250

300

350

400

D B2 10 E lapsed

D B2 11 E lapsed
Chapter 11. Utilities 313

However, tools and a stored procedure are now available to provide recommendations for
REORG and COPY. Thus, you can use those tools or the DSNACCOX stored procedure.

The DB2 Utility options in Table 11-4 are deprecated. Although they are supported in DB2
V11, they will be removed in a later release of DB2.

Table 11-4 DB2 Utility options deprecated

Function Option

REORG TABLESPACE UNLOAD ONLY Use the UNLOAD utility instead

REORG TABLESPACE UNLOAD PAUSE Use the UNLOAD FORMAT INTERNAL utility
instead

REORG TABLESPACE UNLOAD EXTERNAL Use the UNLOAD utility instead

REORG TABLESPACE INDREFLIMIT Use the DSNACCOX to determine whether the
object needs to be reorganized

REORG TABLESPACE OFFPOSLIMIT Use the DSNACCOX to determine whether the
object needs to be reorganized

REORG TABLESPACE
INDREFLIMIT|OFFPOSLIMIT REPORTONLY

REPORTONLY valid only with INDREFLIMIT or
OFFPOSLIMIT

REORG INDEX LEAFDISTLIMIT REPORTONLY REPORTONLY valid only when LEAFDISTLIMIT
is specified

REORG INDEX UNLOAD ONLY If the function is needed, use DIAGNOSE to
stop the process

REORG INDEX UNLOAD PAUSE If function is needed, use DIAGNOSE to stop
the process

REORG INDEX LEAFDISTLIMIT Use DSNACCOX to determine whether the
object needs to be reorganized

LOAD FORMAT UNLOAD Use LOAD FORMAT INTERNAL to load data
unloaded with UNLOAD FORMAT INTERNAL

COPY CHANGELIMIT Use DSNACCOX to determine whether the
object needs to be copied

REPAIR VERSIONS Use the REPAIR CATALOG instead
314 IBM DB2 11 for z/OS Technical Overview

Chapter 12. Installation and migration

This chapter provides information to help you evaluate the changes in DB2 11 for z/OS and to
plan for a successful installation of or migration to DB2 11 for z/OS. It includes the following
topics:

� Currency of versions and migration paths
� Prerequisites for DB2 11
� DB2 11 installation changes and considerations
� Considerations for migrating to DB2 11
� Subsystem parameters
� Release incompatibilities
� Controlling application compatibility

12
© Copyright IBM Corp. 2013. All rights reserved. 315

12.1 Currency of versions and migration paths

Figure 12-1 is an overview over the general availability (GA) and end of service (EOS) dates
for DB2 for z/OS.

Figure 12-1 Currency of versions

Before you begin the installation or migration process, look at the big picture. You need to be
aware of the major requirements to get from your current version of DB2 to DB2 11 for z/OS.
You need to know where you are currently and where you need to be before you embark on
this process considering DB2, z/OS, and tools.

Figure 12-2 points out the versions, currency dates, and the minimum required z/OS levels.

Figure 12-2 DB2 versions and required z/OS level

V4

V5

V6

V7

V8

V9

V10GA

EOS

Nov 1995

Jun 1997

Jun 1999

Mar 2001

Mar 2004

Mar 2007

Oct 2010

Dec 2001

Dec 2002

Jun 2005

Jun 2008

Apr 2012

June 2014

TBD

V11

Oct 2013

TBD
316 IBM DB2 11 for z/OS Technical Overview

The discussion in this book, and mostly in Chapter 2, “Synergy with System z” on page 7, has
described the functions of DB2 that you can enable if your z/OS level is z/OS 2.1, rather than
the minimum required level z/OS 1.13. If there are functions you need with z/OS 2.1, you
need to take into account the z/OS migration first.

As shown in Figure 12-1, for DB2 10 provides the opportunity to get to it by using a skip-level
migration from DB2 V8. For DB2 11 skipping level is not allowed. Thus, if you are on DB2 9,
you first have to move to DB2 10 to migrate to DB2 11. As a result, the migration process has
fewer modes than for the migration to DB2 10.

The modes that you can use while migrating to DB2 10 are DB2 11 conversion mode (CM),
DB2 11 CM*, DB2 11 ENFM, DB2 11 ENFM*, DB2 11 NFM.

Figure 12-3 summarizes the possible migration modes and how you can get to each of them.

Figure 12-3 Migration modes and paths

DB2 can operate in the following various mode during the migration to DB2 11: =

CM Conversion mode is the mode DB2 is in when DB2 11 is started for the
first time after migration from DB2 10. When DB2 11 is started for the
first time, you see messages indicating that the code DB2 is running
under is the DB2 11 code, but that the catalog is still in DB2 10. You
must fix this mismatch after you started DB2 with V11 code. Job
DSNTIJTC is the installation job that handles this catalog adjustment.
After successful execution of DSNTIJTC DB2 still remains in DB2 11
CM. Data sharing systems can be migrated from DB2 10 NFM to DB2
11 CM one member at a time. DSNTIJTC needs to be executed only
once, because it is in the nature of a DB2 data sharing group that the
catalog is common and shared among the members. CM is the only
mode that allows for release co-existence between DB2 10 and DB2
11 members.

ENFM The Enabling New Function Mode is entered after installation job
DSNTIJEN is executed. This job invokes the CATENFM utility with the

Important: Fallback to DB2 10 NFM is possible only from CM. This point is illustrated by
the vertical bar in Figure 12-3 and is labelled as the Point of no return.

DB2 10
NFM

DB2 11
CM

DB2 11
ENFM

DB2 11
NFM

DB2 11
CM*

DB2 11
CM*

DB2 11
ENFM*

Point of
no return
Chapter 12. Installation and migration 317

START option, which prepares the DB2 catalog for DB2 11. H describe
this step in 12.4.3, “DB2 11 ENFM and NFM” on page 339.

DB2 remains in this mode until all the enabling functions are
completed. Data sharing systems can only have DB2 11 members in
this mode.

NFM After the catalog migration completes successfully, you can use job
DSNTIJNF, which also invokes the CATENFM utility, but this time with
the COMPLETE option to reach New Function Mode. This mode
indicates that all catalog changes are complete and new functions can
now be used.

ENFM* The ENFM* mode is the same as ENFM, but the * indicates that at one
time DB2 was at DB2 11 NFM. Objects that were created when the
system was at NFM can still be accessed but no new objects can be
created. When the system is in ENFM* it cannot fallback to DB2 10 or
coexist with a DB2 10 system.

CM* This mode is the same as CM, but the * indicates that at one time the
subsystem was at a higher level. Objects that were created at the
higher level can still be accessed. When DB2 is in CM* it cannot
fallback to DB2 10 or coexist with a DB2 10 system.

12.2 Prerequisites for DB2 11

This section describes the prerequisite requirements for hardware and software to
successfully install and work with DB2 11 for z/OS.

12.2.1 Processors

DB2 11 operates on IBM z10™ or later processors running z/OS 1.13 or later. The
processors must have enough real storage to satisfy the combined requirements of:

� DB2 11 for z/OS

� z/OS

� The appropriate DFSMS storage management subsystem components, access methods,
telecommunications, batch requirements and other applications required in your
environment.

12.2.2 Auxiliary storage

The minimum disk space requirement, based on installing DB2 using the panel default values
is approximately 1.3 GB. You need additional space for your data.

Tip: DB2 11 requires increased real storage as compared to DB2 10 for z/OS.

Note: The default values might not meet your installation’s needs. Over time more disk
space might be required for your DB2 subsystems.
318 IBM DB2 11 for z/OS Technical Overview

12.2.3 Operational requirements

Operational requirements are the products that are required and must be present on the
system or the products that are not required but should be present on the system for this
product to operate all or part it its functions.

Mandatory requirements
Mandatory operational requisites identify products that are required for DB2 to operate its
basic functions. Table 12-1 lists these requirements tor DB2 11.

Table 12-1 Mandatory operational requirements

The following functions in DB2 11 require z/OS V2.1

� 2 GB large pages
� 1 MB fixed page frames for DB2 execution code
� Improved performance of batch updates in data sharing
� Improved usability and consistency for security administration

For details, see Chapter 2, “Synergy with System z” on page 7.

Conditional operational requirements
Conditional operational requisites identify products that are not required for DB2 11 to operate
its basic functions but are required at run time to operate specific functions. Table 12-2 lists
the requirements.

Table 12-2 Target system conditional operational requirements

Program number Product name and minimum service level

5615-DB2 DB2 11 for z/OS, DB2 base APAR PM93577

5615-DB2 DB2 11 for z/OS, internal resource lock
manager (IRLM) 2.3, plus APARs PM84765 and
PM85053

Any one of the following:

5694-A01 z/OS (DFSMS, IBM Language Environment®
Base Services, Security Server/RACF) V1.13

5650-ZOS z/OS (DFSMS, Language Environment Base
Services, Security Server/RACF) V2.1

Program
number

Product name and minimum
service level

Function

5655-N98 IBM SDK for z/OS, Java 2
Technology Edition

Applications or stored procedures written in Java,
such as those using the JDBC or SQLJ interfaces
to DB2;
Decimal Float data type usage in Java (in a 31-bit
environment)

5655-N99 IBM SDK for z/OS, Java 2
Technology Edition

Applications or stored procedures written in Java,
such as those using the JDBC or SQLJ interfaces
to DB2;
Decimal Float data type usage in Java (in a 64-bit
environment)
Chapter 12. Installation and migration 319

12.2.4 Optional program requirements

This section describes which version of associated products are tolerated by DB2 11.

Connectivity
DB2 for z/OS supports DRDA as an open interface allowing access from any client.

DB2 Connect Version 10.1 Fixpack 2 or DB2 Connect Version 9.7 Fixpack 6 clients or higher
are the minimum required levels for a seamless migration.

However, DB2 Connect Version 10.5 Fixpack 2 is required to support some DB2 11 for z/OS
features, such as:

� Array support
� Autocommit performance improvements for procedures and cursors
� Data sharing support for global variables
� Longer client information fields

For details, see Chapter 9, “Connectivity and administration routines” on page 171.

DB2 11 acting as a client supports the following relational database products:

� DB2 Enterprise Server (ESE) for Linux, UNIX and Windows, V9.5 (575-F41) or later
� DB2 Express Edition for Linux, UNIX and Windows, V9.5 (5724-E49) or later
� Database Enterprise Developer Edition V 9.5 (5724-N76) or later
� DB2 for IBM iSeries® V6.1. (5761-SS1) or later
� DB2 Server for VSE & VM V7.3 (5697-F42) or later
� Any other DRDA compliant client or relational DBMS server

Development tools
The following products improve the productivity of database designers, administrators and
application developers that are working with DB2 11:

� InfoSphere Optim™ pureQuery™ Runtime for z/OS V3.3 (5655-W92)
� InfoSphere Optim Configuration Manager for DB2 for z/OS V3.1 (5655-AA3)
� IBM Data Studio V4.1

5697-A01 z/OS 1.13 Web Deliverable 1 MB pageable for new FRAMESIZE and
PGFIX(NO) in DB2 11 for buffer pool

5697-A01 z/OS 1.13 APAR OA40967 2 GB page for new FRAMESIZE option in DB2 11
for buffer pool

5635-A02 Information Management
System (IMS) V11.01.00

Transaction Management

5655-M15 Customer Information Control
System (CICS) Transaction
Server for z/OS V03.01.00 and
V03.02.00

Transaction Management
For V03.01.00 and V03.02.00 you need APAR
PM01800 to return the correct Version and
Release number for DB2 11

Program
number

Product name and minimum
service level

Function
320 IBM DB2 11 for z/OS Technical Overview

Programming languages
The minimum levels for programming languages are:

� Enterprise COBOL for z/OS V3.4 (5655-G53) or later

� VS Fortran 2.6 (5668-806, 5688-087, 5668-805). New data type and function are not
supported since DB2 9.

� Enterprise PL/I for z/OS V3.9 (5655-H31)

IBM DB2 Accessories Suite for z/OS
IBM DB2 Accessories Suite for z/OS, V3.1 (5697-Q04) is a no-charge offering consisting of
three features, each bundling components designed to enhance your use of DB2 for z/OS,
including the addition of and changes to the following components:

� The DB2 Accessories Suite V11 feature provides spatial functions supporting DB2 11 for
z/OS.

� The JSON capability bundles necessary components that enable DB2 10 for z/OS to be
used as a JSON document store.

� An update to Data Studio 4.1 delivers health monitoring, single query tuning, and
application development tools for DB2 for z/OS.

12.3 DB2 11 installation changes and considerations

As DB2 evolves in its overall improved functionality, there are also several changes which
apply to the installation of a DB2 11 subsystem. This section describes the following DB2 11
installation changes and considerations:

� More support of naming standards in install and IVP jobs
� No more EDM calculations
� Modified installation jobs
� New installation job DSNTIJCB
� Miscellaneous

12.3.1 More support of naming standards in install and IVP jobs

When you enter the installation panel through CLIST DSNTINST, the first panel that you see is
DSNTIDA1. This panel was changed in DB2 10, allowing you to use different prefixes for the
SMP/E target library names and for everything else. This enhancement avoids the additional
editing on subsequent panels such as panel DSNTIPT, where you can specify all the output
library names that you would like to use.
Chapter 12. Installation and migration 321

Starting with DB2 11, a new panel DSNTIPG has been added to the install dialog.
Figure 12-4 shows the new install panel DSNTIPG. The information that you can provide here
gives great flexibility to change user IDs and library name prefixes for the installation and IVP
job which are generated through the dialog.

Figure 12-4 DSNTIPG install panel

The following options are available in the new panel:

� 1 ROUTINES CREATOR

The ROUTINES CREATOR field specifies the CURRENT SQLID setting that is to be used
when creating, configuring, and validating most DB2-supplied routines. This field also
specifies the default OWNER that is to be used when binding packages for these routines.

Acceptable values are 1 to 8 characters, the first of which must be an alphabetic character.

The value that you enter in the ROUTINES CREATOR field is assigned by the installation
CLIST as the setting of the AUTHID parameter for installation programs DSNTRIN in job
DSNTIJRT and DSNTRVFY in DSNTIJRV job.

The AUTHID parameter is used by the DSNTRIN program as the CURRENT SQLID setting when
creating and configuring DB2-supplied routines. The DSNTRIN program also uses the
AUTHID parameter as the default OWNER when binding packages for the DB2-supplied
routines.

The AUTHID parameter is used by the DSNTRVFY program as the CURRENT SQLID setting
when validating DB2-supplied routines. The DSNTRVFY program also uses the AUTHID
parameter as the default OWNER when binding packages for validation of these routines.

DSNTIPG INSTALL DB2 - INSTALLATION PREFERENCES
 ===>

 Enter authorization IDs for installing DB2-supplied routines:
 1 ROUTINES CREATOR ===> SYSADM Authid to create and bind DB2 routines
 2 SEC DEF CREATOR ===> SYSADM Authid for routines w/ SECURITY DEFINER

 Enter authorization IDs for other installation and IVP jobs:
 3 INSTALL SQL ID ===> SYSADM To process SQL in install jobs
 4 INSTALL PKG OWNER ===> To own packages bound by install jobs
 5 INSTALL GRANTEE(S)===> PUBLIC > To be granted access on objects created
 by install jobs

 Enter the prefix for data sets created by installation and IVP jobs:
 6 INSTALL IC PREFIX ===> DSN1110 For COPY data sets
 7 INSTALL DS PREFIX ===> DSN1110 For other data sets

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE
 . .
322 IBM DB2 11 for z/OS Technical Overview

� 2 SEC DEF CREATOR

The value of the SEC DEF CREATOR field specifies the CURRENT SQLID setting that is
to be used when creating and configuring DB2-supplied routines that are defined with the
SECURITY DEFINER option.

Acceptable values are 1 to 8 characters, the first of which must be an alphabetic character.

The value that you enter in the SEC DEF CREATOR field is assigned by the installation
CLIST as the setting of the SECDEFID parameter for installation program DSNTRIN in job
DSNTIJRT.

The SECDEFID parameter is used by the DSNTRIN program as the CURRENT SQLID setting
when creating and configuring DB2-supplied routines that have the SECURITY DEFINER
attribute. The default owner of the packages that are bound for these routines is the ID that
is specified in the ROUTINES CREATOR field.

� 3 INSTALL SQL ID

The INSTALL SQL ID field specifies the CURRENT SQLID setting that is to be used when
SQL is processed by most DB2 installation and sample jobs.

This field does not apply to the DSNTIJRT and DSNTIJRV jobs. For these jobs, you can use
the ROUTINES CREATOR and SEC DEF CREATOR fields, which are also on the DSNTIPG panel,
to specify the CURRENT SQLID.

� 4 INSTALL PACKAGE OWNER

The INSTALL PKG OWNER field specifies the authorization ID to assign as the owner of
packages and plans that are bound by most installation and sample jobs.

This field does not apply to the DSNTIJRT and DSNTIJRV jobs. Use installation panels
DSNTIPRA - DSNTIPRP to specify package owners for stored procedures that are provided
by DB2.

� 5 INSTALL GRANTEE(S)

The INSTALL GRANTEE(S) field specifies the authorization IDs that are to be granted
access to objects that are created and bound by most installation and sample jobs.

This field does not apply to the DSNTIJRT and DSNTIJRV jobs. Use installation panels
DSNTIPRA - DSNTIPRP to specify authorization IDs for routines that are provided by DB2.

Use commas to separate individual IDs. Do not use embedded blanks. You can enter up to
44 characters, including commas.

To be able to enter more than one ID, type EXPAND in the command line, place the cursor
on the input field, and hit enter. You then get a screen that allows you to enter various IDs
up to a length of 44 bytes in total.

Note: Specify an authorization ID that has installation system administrator authority.
Routines that are created or configured with installation system administrator authority
are marked as system-defined.

System-defined routines can be executed by the system DBADM and SQLADM
authorities, which fits well with popular SQL tuning tools. For example, IBM Optim
Query Tuner requires many of the DB2-supplied stored procedures to be available and
accessible by an authority that focuses on SQL tuning activities.

Note: Specify an ID that can be used as a logon ID because it is used by WLM to
execute routines that have the SECURITY DEFINER attribute.
Chapter 12. Installation and migration 323

Alternatively, you can also assign EXPAND to one of your function keys, place the cursor into
the input field, and press Enter to open the ISPEXPND screen shown in Figure 12-5.

Figure 12-5 EXPAND screen for panel DSNTIPG

The authorization IDs that you enter in this field are granted the following privileges:

– The USE privilege for STOGROUPs and table spaces that are created by IVP jobs

– The USE privilege for buffer pool BP0, the SYSDEFLT storage group, and table space
DSNDB04.SYSDEFLT

– The DBADM privilege for databases that are created by IVP jobs

– The CREATETAB and CREATETS privileges for the temporary database, DSNDB04

– The DELETE, INSERT, SELECT, and UPDATE privileges for tables and created global
temporary tables that are created by IVP and installation jobs other than DSNTIJRT

– The EXECUTE privilege for packages and plans that are bound by IVP and installation
jobs other than DSNTIJRT

– The BIND privilege on most plans that are bound by IVP jobs

� 6 INSTALL IC PREFIX field

The INSTALL IC PREFIX field specifies the prefix for image copy data sets that are
created by DB2 installation and IVP jobs.

This is especially beneficial because the image copy prefix almost always had to be
changed in the past in jobs, for example DSNTEJ0.

The value that you can specify here are 1 to 17 characters that form a valid z/OS data set
name prefix.

� 7 INSTALL DS PREFIX field

The INSTALL DS PREFIX field specifies the prefix for most data sets that are created by most
DB2 installation and IVP jobs. This field does not apply to data sets that are created by job
324 IBM DB2 11 for z/OS Technical Overview

DSNTIJIN, which applies for example to TEMPLATE or LISTDEFs that are created as part of the
IVP jobs.

Again, the value that you can specify here are 1 to 17 characters that form a valid z/OS data
set name prefix.

12.3.2 No more EDM calculations

Traditionally the installation CLIST used linear calculations based on the estimate number of
databases, plan, and so on to determine the settings of the various EDM pools. These
calculations have changed with the changes in virtual storage use by DB2 and have now
been replaced by stepped sizing according to your site’s size. These are the five defined
stepped sizes:

Small site: About 100 plans, 50 application databases, and 1000 tables
Small-Medium site: About 200 plans, 200 application databases, and 4000 tables
Medium site: About 400 plans, 400 application databases, and 8000 tables
Medium-Large site: About 600 plans, 600 application databases and 12,000 tables
Large site: About 800 plans, 800 application databases, and 16,000 tables

These settings are starting points. You have to check your actual requirements.

Based on the numbers indicated on the installation CLIST panels, Table 12-3 lists pool sizes.

Table 12-3 EDM Pool stepped sizings

When you get to the DSNTIPC panel, shown in Figure 12-6, you can override the calculated
stepped sizes. This example decreases the storage sizes that installation CLIST has picked
based on the values entered on previous installation panels.

If you compare the values in Table 12-3 with the values that were assigned to the 3 EDM
pools, you can see that they match with the ones for a small site. This, in fact is what you
would get if you accept the default values coming from input member DSNTIDXA.

System size/
parameter name

EDMDBDC (KB) EDMSTMTC (KB) EDM_SKELETON_ POOL
(KB)

Small 40960 122880 81920

Small-Medium 102400 307200 204800

Medium 204800 614400 409600

Medium-Large 409600 1228800 819200

Large 819200 2457600 1638400
Chapter 12. Installation and migration 325

Figure 12-6 Install Panel DSNTIPC

If you are installing DB2 for the first time and not using SAP, use the supplied defaults input
member, DSNTIDXA. If you are using SAP, you should specify DSNTIDXB, the SAP-specific
input member. If you process the panels several times within a single run of the CLIST, all the
previous values that are entered, except edited output data sets, remain the same.

If you use the SAP input member, the calculated storage sizes are quite different as shown in
Figure 12-7.

DSNTIPC INSTALL DB2 - CLIST CALCULATIONS - PANEL 1
===>
 You can update the DSMAX, EDMPOOL STATEMENT CACHE (if CACHE DYNAMIC is YES),
 EDM DBD CACHE, SORT POOL, and RID POOL sizes if necessary.
 Calculated Override
 1 DSMAX - MAXIMUM OPEN DATA SETS = 20000 (1-200000)
 2 DSNT485I EDM STATEMENT CACHE = 122880 K K
 3 DSNT485I EDM DBD CACHE = 40960 K K
 4 DSNT485I EDM SKELETON POOL SIZE = 81920 K K
 5 DSNT485I EDM LIMIT BELOW THE BAR = 0 K K
 6 DSNT485I BUFFER POOL SIZE = 109 M
 7 DSNT485I SORT POOL SIZE = 10000 K K
 8 DSNT485I MAX IN-MEMORY SORT SIZE = 1000 K K
 9 DSNT485I RID POOL SIZE = 400000 K K
10 DSNT485I DATA SET STORAGE SIZE = 26000 K
11 DSNT485I CODE STORAGE SIZE = 38200 K
12 DSNT485I WORKING STORAGE SIZE = 45024 K
13 DSNT486I TOTAL MAIN STORAGE = 617 M M
14 DSNT487I TOTAL STORAGE BELOW 16M = 1036 K WITH SWA ABOVE 16M LINE
15 DSNT438I IRLM LOCK MAXIMUM SPACE = 2160 M, AVAILABLE = 2160 M

PRESS: ENTER to continue RETURN to exit HELP for more information
326 IBM DB2 11 for z/OS Technical Overview

Figure 12-7 DSNTIPC results when using DSNTIDXB member

12.3.3 Modified installation jobs

Several installation jobs have been changed fromDB2 10 to reflect the product layout in DB2
11. This section lists the changed jobs and provides a few details about the changes:

� DSNTIJIN
� DSNTIJUZ
� DSNTIJID, DSNTIJIE, and DSNTIJIF
� DSNTIJSG
� DSNTIJRT
� DSNTIJIC

DSNTIJIN
During installation, the DSNTIJIN job defines VSAM and non-VSAM data sets for DB2. The
following groups of changes are applied to this job:

� The VSAM DEFINE statement for the BSDS data sets have been modified. The changes are
necessary to support for longer RBA/LRSN.

� The job steps that were used to defined the following table space have been removed:

– DSNDB06.SYSCOPY

The SYSIBM.SYSCOPY table now resides in the DSNDB06.SYSTSCPY table space.

DSNTIPC INSTALL DB2 - CLIST CALCULATIONS - PANEL 1
 ===>

 You can update the DSMAX, EDM STATEMENT CACHE (if CACHE DYNAMIC is YES),
 EDM DBD CACHE, EDM SKELETON POOL, SORT POOL, and RID POOL sizes if necessary.
 Calculated Override
 1 DSMAX - MAXIMUM OPEN DATA SETS = 20000 20000
(1-200000)
 2 DSNT485I EDM STATEMENT CACHE = 300000 K K
 3 DSNT485I EDM DBD CACHE = 150000 K K
 4 DSNT485I EDM SKELETON POOL SIZE = 81920 K K
 5 DSNT485I EDM LIMIT BELOW THE BAR = 0 K K
 6 DSNT485I BUFFER POOL SIZE = 2085 M
 7 DSNT485I SORT POOL SIZE = 10000 K 64000 K
 8 DSNT485I MAX IN-MEMORY SORT SIZE = 1000 K K
 9 DSNT485I RID POOL SIZE = 400000 K 100000 K
 10 DSNT485I DATA SET STORAGE SIZE = 26000 K
 11 DSNT485I CODE STORAGE SIZE = 38200 K
 12 DSNT485I WORKING STORAGE SIZE = 17404 K
 13 DSNT486I TOTAL MAIN STORAGE = 2566 M 2326 M
 14 DSNT487I TOTAL STORAGE BELOW 16M = 1269 K WITH SWA ABOVE 16M LINE
 15 DSNT438I IRLM LOCK MAXIMUM SPACE = 1292763 M, AVAILABLE = 4096 M
 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE
 . .
Chapter 12. Installation and migration 327

– DSNDB06.SYSSTR

This table space used to contain the following tables:

• SYSIBM.SYSSTRINGS
• SYSIBM.SYSCHECKS
• SYSIBM.SYSCHECKDEP
• SYSIBM.SYSCHECKS2

DB2 11 defines one table space for each table. The following new table spaces are
listed in the order corresponding to the tables:

• DSNDB06.SYSTSSRG
• DSNDB06.SYSTSCHKS
• DSNDB06.SYSTSCHKD
• DSNDB06.SYSTSCHX

– DSNDB06.SYSRTSTS

This table space used to contain the following tables:

• SYSIBM.SYSTABLESPACESTATS
• SYSIBM.SYSINDEXSPACESTATS

DB2 11 defines one table space per each of these tables. The following new table
spaces are listed in the order corresponding to the tables:

• DSNDB06.SYSTSTSS
• DSNDB06.SYSTSISS

� New job steps have been added for new table spaces and index spaces.

DB2 11 has 16 new table spaces and 17 new index spaces, including the table spaces and
associated index spaces that listed previously.

The additional four table spaces are:

– DSNDB06.SYSTSQRE for the SYSIBM.SYSQUERYPREDICATE table (plus two indexes)
– DSNDB06.SYSTSQRS for the SYSIBM.SYSQUERYSEL table (plus two indexes)
– DSNDB06.SYSTSIXS for the SYSIBM.SYSINDEXES table (plus two indexes)
– DSNDB06.SYSTSSFB for the SYSIBM.SYSSTATFEEDBACK table (plus three indexes)

DSNTIJUZ
The DSNTIJUZ job defines the DB2 data-only DSNZPxxx subsystem parameter module, the
application defaults load module, and the data-only DSNHMCID load module.

As with every release, there are multiple changes to this job. Many system parameters were
added, some updated and some removed. Refer to the 12.5.1, “New system parameters” on
page 346, 12.5.2, “Changed defaults for existing system parameters” on page 354, and
12.5.3, “Removed system parameters” on page 355.

DSNTIJID, DSNTIJIE, and DSNTIJIF
After you define your system data sets and DB2 initialization parameters, you must initialize
your system data sets executing these jobs in the shown sequence.

The DSNTIJID job records the active log data set names to the BSDS, formats the active log
data sets, and initializes the DB2 directory table spaces and indexes. The BSDS is initialized
in the basic, pre-DB2 11 format. After you complete your installation, you can optionally use
the DSNTIJCB job to convert the BSDS to the new format that supports 10-byte RBA and
LRSN fields.

The DSNTIJIE job initializes the DB2 catalog table spaces and indexes.
328 IBM DB2 11 for z/OS Technical Overview

The DSNTIJIF job initializes the remaining DB2 catalog table spaces and indexes.

Those jobs are adjusted to the removed and new catalog and directory table spaces and
indexes. See “DSNTIJIN” on page 327 for additional information about which objects these
are.

DSNTIJSG
During installation, the DSNTIJSG job binds DB2-supplied packages, plans and creates a few
objects such as the RLF database and related objects. This job added the creation of the
query optimization database in step DSNTIJQ (EXPLAIN tables in schema SYSIBM.)

In DB2 11 is, this job also creates, the program authorization database, table space, table,
and index. The SYSIBM.DSNPROGAUTH program authorization table is used to verify that a
program is authorized to use a plan. A sample INSERT statement is provided, which you can
uncomment, customize, and execute to populate the table. See 10.2, “Enhancements to
program authorization” on page 250.

DSNTIJRT
DSNTIJRT creates all DB2-provided routines. It is good practice to run this job in CM and again
after DB2 enters NFM in case any packages for DB2-supplied routines need to be refreshed.
Some new routines might also be added to DB2 11 and not created until NFM.

DSNTIJIC
This job takes image copies of the DB2 11 catalog and directory.

In addition to adjusting the job to the correct table space names, the SHRLEVEL option has also
been changed to SHRLEVEL (CHANGE) for all catalog and directory table spaces. It was
SHRLEVEL(REFERENCE) in DB2 10.

12.3.4 New installation job DSNTIJCB

The DSNTIJCB job is an optional job to convert existing BSDSs to the extended format.

Refer to the discussion in 3.1, “Extended RBA and LRSN” on page 24.

12.3.5 Miscellaneous

In addition to the changes in the installation process that discussed earlier in this chapter,
there are some minor but useful things listed in this section:

� How to create a DB2 11 INSTALL member from your DB2 10 member
� BIND PLAN with RETAIN option
� Use of SYNONYMS replaced by ALIASES

How to create a DB2 11 INSTALL member from your DB2 10 member
If you already have one or more DB2 for z/OS subsystems installed on your system, and you
need to create one more, it is sometimes convenient to install the new one using the
configuration (system parameter) settings of an existing DB2 system. One reason might be
that system tests before you actually start migrating an existing subsystem to DB2 11.

Important: Do not run this job before you are in NFM. The DB2 subsystem must be
stopped in order to run this job.
Chapter 12. Installation and migration 329

To generate customized installation jobs, you have to go through the installation CLIST. The
installation CLIST needs an input member containing pre-set values for most of the system
parameters. DB2 11 provides an input member with default settings to get started. However
you might not want to start with the IBM provided default values, but with values as they are
set for one of your subsystems in DB2 10.

One way to get the current values is to manually compare the defaults that DB2 11 provides in
member prefix.sdsnsamp(DSNTIDXA) and override those with what you currently have
available for DB2 10. This process might not be the best method for the following reasons:

� You might overlook something that can cause issues later.

� The DSNTIDxx member that you used during your DB2 10 installation or migration might be
stale, because after the installation or migration you might have changed several system
parameters not going through the official update process but through manual changes in
the DSNTIJUZ job instead.

You can follow the procedure documented here to convert your stale DB2 10 DSNTIDxx
member to a DB2 11 DSNTIDxx member and start the installation from there.

First, remember the DSNTIJXZ job. This job calls the DSNTXAZP program to update a stale
DSNTIDxx member with the current DSNZPARM settings. Refer to Figure 12-8. DSNTIJXZ
connects to an active DB2 and reads the active system parameter settings. The result is a
new DSNTIDyy member, which is up-to-date. The job output on the right gives you a listing with
information about how the input DSNTIDxx differs from the actual settings of this subsystem.

Figure 12-8 DSNTIJXC/DSNTXAZP

The following steps look at the process that involves using this DSNTIJXC job. Figure 12-9
assumes that the whole process starts with a stale DSNTIDxx and an intact, existing DB2
subsystem. Start on the top left.

1. Run DSNTIJXZ on DB2 10 to refresh you DB2 10 DSNTIDxx member. Figure 12-9 assumes
the output member would be DSNTIDyy.

DSNTXAZP

Existing
DSNTIDxx SSID

Updated
DSNTIDyy
330 IBM DB2 11 for z/OS Technical Overview

2. Run the DB2 11 install CLIST in MIGRATE mode and specify:

– DSNTIDyy as migration input member
– DB2 11 DSNTIDXA as input member
– A member, for example DSNTIDzz to receive the changes

3. Discard the customized migration jobs. They are not needed for the task here.

4. Run the DB2 11 install CLIST in INSTALL mode and specify DSNTIDzz as the input member.

You are now ready to use the generated, customized install jobs for the installation of a new
DB2 subsystem, which uses system parameter settings like the subsystems that you
identified as a good one to get started with.

Figure 12-9 CREATE new DB2 11 DSNTIDxx input from old DB2 10 DSNTIDxx

BIND PLAN with RETAIN option
Many installation and IVP jobs bind plans that are sometimes used during the installation or
verification process and can also be used for various tasks by different users later.

Up to DB2 10, the BIND PLAN statements did not include the RETAIN® option on the ACTION
keyword. The RETAIN option preserves EXECUTE privileges when you replace a plan. If
ownership of the plan changes, the new owner has to grant the privileges BIND and EXECUTE to
the previous owner. RETAIN is not the default. If you do not specify RETAIN, everyone but the
plan owner loses the EXECUTE privilege (but not the BIND privilege).

Stale
DB2 10
DSNTIDxx

DB2 10
DSNTIJXZ /
DSNTXAZP

Refreshed
DB2 10
DSNTIDyy

Edited
DB2 11
Migrate Jobs

DB2 11
DSNTIDzz

Edited
DB2 11
Install jobs

DB2 11
DSNTIDaa

DB2 11
DSNTIDXA

DB2 11
Installation CLIST
MIGRATE mode

DB2 11
Installation CLIST
INSTALL mode

DB2 10
Chapter 12. Installation and migration 331

In DB2 11 the following Installation and verification jobs now specify RETAIN on their BIND
PLAN statements:

� IVP jobs

– DSNTEJ1L
– DSNTEJ1P
– DSNTEJ1S
– DSNTEJ2A
– DSNTEJ2C
– DSNTEJ2D
– DSNTEJ2E
– DSNTEJ2F
– DSNTEJ2H
– DSNTEJ2P
– DSNTEJ3C
– DSNTEJ3P
– DSNTEJ4C
– DSNTEJ4P
– DSNTEJ5C
– DSNTEJ5P
– DSNTEJ6U
– DSNTEJ71
– DSNTEJ73
– DSNTEJ75
– DSNTEJ76
– DSNTEJ77
– DSNTEJ78

� Installation jobs

– DSNTIJSG
– DSNTIJTM

Use of SYNONYMS replaced by ALIASES
In DB2 10, SYNONYMs are deprecated and will not be enhanced starting from DB2 10.
Synonyms behave differently with DB2 for z/OS than with the other DB2 family products.
Synonyms are not recommended for use when writing new SQL statements or when creating
portable applications. Use aliases instead.

Synonyms are no longer used in DB2 11 IVP jobs. The following jobs have changed to use
ALIASES instead of SYNONYMs:

� DSNTEJ1

The DSNTEJ1 job creates all objects that are to be used by the sample verification jobs.

� DSNTEJ1U

The DSNTEJ1U job creates a database, table space, and table with Unicode CCSID.

DSNTEJ1U loads data into the table from a data set that contains a full range of characters in
an EBCDIC Latin-1 code page, which results in a mix of single and double-byte characters
in the Unicode table. It then runs DSNTEP2 to select and display the data in hex format.

� DSNTEJ7

The DSNTEJ7 job demonstrates how to create a LOB table with all the accompanying LOB
table spaces, auxiliary tables, and indexes. DSNTEJ7 also demonstrates how to use the
DB2 LOAD utility to load a LOB table.
332 IBM DB2 11 for z/OS Technical Overview

12.4 Considerations for migrating to DB2 11

Migrating a DB2 subsystem means to move from one software version to another. As stated
earlier in this chapter, a migration to DB2 11 is possible only if your subsystem is on DB2 10
NFM when you start the migration process. The sequence of jobs shown in Figure 12-10
gives an overview of the migration process, listing changes in the speech bubbles next to the
boxes representing individual migration steps.

Figure 12-10 DB2 11 migration process at a glance

The next sections discuss what has changed in terms of the following functions:

� Premigration considerations
� DB2 11 CM
� DB2 11 ENFM and NFM

12.4.1 Premigration considerations

Before you actually start your DB2 subsystem in conversion mode using the DB2 11 code,
plan for the new version. This planning includes completing the activities listed in this section
and carefully reviewing the release incompatibilities discussed in 12.6, “Release
incompatibilities” on page 357.

DSNTIJXZ
DSNTIDxx
refresh

DSNTIJPM
Premigration
checkout

DB2 10 DSNTIJIC
Copy catalog
and directory

STOP DB2

DSNTIJMV
Define DB2 to
z/OS

DSNTIJUZ
Create zparm and
DECP module

DSNTIJIN
Define system
data sets

DSNTIJEX
Create auth exit
modules

REFRESH z/OS
PARMLIB and
start DB2 11

DSNTIPB in DB2
10

Backs up addl.
WLM procs

SYSPARMS
•Added
•Removed
•Updated

New EXPLAIN
tables

Drop obsolete
MQ routines

Run to validate
migrated
routines

Includes (but
ignores) NFM
table spaces

Different TSs
affected

Adjusted for new
table spaces

NEWFUN=V11

Pick up new Bind
options

RERUN to create
missing routines

RERUN to
validate all
routines

Includes (but
ignores) obsolete
table spaces

DSNTIJTC
Tailor the DB2
catalog & dir

DSNTIJTM
Default Stogroup
& WFDB

DSNTIJSG
Create user-
managed objects

DSNTIJRT
Install & config
DB2 routines

DSNTIJRV
Validate DB2
routines

DSNTIJIC
Copy catalog and
directory

DSNTIJEN
Enter Enable New
Function Mode

DSNTIJCI
CHECK INDEXes
affected by ENFM

DSNTIJCB
Convert BSDS to
new format

DSNTIJVC
Convert cat/dir to
EXTENDED RBA

DSNTIJNF
Activate New
Function Mode

DSNTIJNG
Create NFM
DSNHDECP

DSNTIJNX
Bind SPUFI & DB2
REXX

DSNTIJRT
Install & configure
DB2 routines

DSNTIJRV
Validate DB2
routines

DSNTIJIC
Copy catalog and
directory

DSNTEJxx
Verify the
installation
Chapter 12. Installation and migration 333

Items deprecated in earlier versions are now eliminated
Each DB2 release deprecates items. To deprecate something does not mean that the function
does not exist anymore. Instead, no new development effort is spent on these items. Thus,
you need to prepare for the removal of the function in a subsequent release. The following
items are eliminated in DB2 11:

� Password protection for active log and archive log data sets

� DSNH CLIST NEWFUN values of V8 and V9

� Some DB2 supplied routines:

– SYSPROC.DSNAEXP
– AMI-based DB2 MQ functions, see APAR PK37290 for guidance
– DB2MQ1C.*
– DB2MQ2C.*
– DB2MQ1N.*
– DB2MQ2N.*

� CHARSET application programming default value is removed in DB2 11.

CHARSET was a DSNHDECP parameter used to specify whether the character set associated
with the default EBCDIC CCSID was either ALPHANUM or KATAKANA. Prior to DB2 8, this
function was needed by DB2 parser for parsing in EBCDIC. Beginning in DB2 V8, parser
parses statements in Unicode and no longer needs to know whether the character set is
alphanumeric or Katakana.

� BIND PACKAGE options ENABLE and DISABLE (REMOTE) REMOTE
(location-name,…,<luname>,…)

In DB2 11, you cannot use the BIND PACKAGE options ENABLE and DISABLE (REMOTE)
REMOTE (location-name,…,<luname>,…) to enable or disable specific remote connections.
You can use the ENABLE(REMOTE) or DISABLE(REMOTE) options to enable or disable all
remote connections.

� Sysplex query parallelism

In DB2 11, sysplex query parallelism is no longer supported. Packages that used sysplex
query parallelism in releases before DB2 11 use CPU parallelism in DB2 11.

If you system was allowed to use sysplex query parallelism at all was determined by the
setting of system parameter COORDNTR. Because sysplex query parallelism is
eliminated from DB2 11, the system parameter is also removed from the DSNZPARM module.

� DSN1CHKR

In DB2 11, the DSN1CHKR utility is no longer needed and therefore not longer supported.
You can use DSN1CHKR in versions prior to DB2 10 NFM to scan the specified table space
for broken links, broken hash chains, and records that are not part of any link or chain.

Because DB2 10 New Function Mode (NFM), catalog and directory table spaces do not
contain hashes or links. Thus, DSN1CHKR is unnecessary.

The DSN1810I and DSN1816I messages are issued when the DSN1CHKR utility is invoked.

Fallback PTF
In the rare case of a severe error while operating under DB2 11 conversion mode, you might
need to return to operation on the previous version. This process is called fallback. After
fallback, the catalog remains a DB2 11 CM catalog.

DB2 10 by its nature does not support all the changes that occurred to the catalog during the
CATMAINT utility execution that made the catalog a DB2 11 CM catalog. This means that a
certain maintenance level is required on your DB2 10 code to tolerate these changes.
334 IBM DB2 11 for z/OS Technical Overview

A fallback PTF plus prerequisite PTFs prepare the DB2 10 code to handle a DB2 11 catalog.
DB2 10 must have started at least once with this fallback PTF applied. When you try to start
DB2 with the DB2 11 code base for the first time, and your DB2 10 system has never been
started with this PTF applied, you receive the error message shown in Example 12-1.

Example 12-1 Missing fallback PTF error message

DSNR045I -DB0B DSNRRPRC DB2 SUBSYSTEM IS STARTING 883
AND
 IT WAS NOT STARTED IN A
 PREVIOUS RELEASE WITH THE FALLBACK SPE APPLIED.
 FALLBACK SPE APAR: PM31841
 NEW RELEASE LEVEL: 0000D780
 KNOWN LEVEL(S): 0000D6700000D6720000D6750000D680000

Premigration checkout job DSNTIJPM
On DB2 11 target data set prefix.SDSNSAMP, that is, not on the customized
NEW.SDSNSAMP, you can find job DSNTIJPM. Run this job on DB2 10 prior to your
migration to DB2 11. It queries the DB2 catalog to identify conditions that you need to take
into account before you attempt to of after you migrated to DB2 11.

To allow customers maximum time to prepare for migration to a new release, the DSNTIJPM
job is also shipped under a different name in the previous release. For example:

� V8 DSNTIJPM is shipped as DSNTIJP8 in V7
� V9 DSNTIJPM is shipped as DSNTIJP9 in V8
� V10 DSNTIJPM is shipped as DSNTIJPA in V8 and V9
� V11 DSNTIJPM is shipped as DSNTIJPB in V10

This arrangement permits customers to begin preparing for migration in advance of buying
and SMP/E-installing the new version.

The DSNTIJPB job is added to DB2 10 through maintenance (APAR PM94057) some time
before DB2 11 is generally available (GA), which allows you to run these reports as early as
possible so that you have enough time to action on the items that might be found in your
catalog.

DSNTIJPB uses DB2 REXX Language Support, which is bound by running installation job
DSNTIJTM, job step DSNTIRX. If you did not bind the packages and plan for DB2 REXX when
you migrated to DB2 10 for z/OS, use the DSNTIJTM job, the DSNTIRX job step, to do so before
running DSNTIJPB.

At the time this book was written, this job generates 24 reports, that include the following
information:

1. Existence of the previous-release sample database. The objects in this database are
needed for the IVP jobs that you are supposed to run in CM.

2. User-defined indexes on the DB2 catalog that reside in user-managed page sets. Because
these indexes reside on user-managed storage, you need to modify the ENFM catalog
conversion job, DSNTIJEN, to define shadow data sets for them for use by DB2 online
REORG. Use the job step descriptions in the prolog of DSNTIJEN to determine the

Important: As you can see from message DSNR45i, the V10/V11 Fallback SPE APAR is
PM31841, PTF UK96357 for the fallback SPE. You need to install the PTF to prepare your
subsystems for the migration to DB2 11.
Chapter 12. Installation and migration 335

appropriate placement of the AMS DELETE and DEFINE statements for each shadow data
set you need to add.

3. User-defined indexes on the DB2 catalog that reside in DB2-controlled page sets.
DSNTIJEN is going to handle those indexes automatically, but before running DSNTIJEN,
you should review the current space allocations for the data sets for these indexes and
increase the space for any that are approaching capacity to accommodate expansion
during catalog conversion.

4. Plans last bound prior to DB2 9. These plans are auto-rebound when they are called for
the first time in DB2 11 if your setting for system parameter ABIND is set to YES or
COEXIST. If COEXIST. If ABIND is set to NO, DB2 V11 returns SQLCODE -908
(SQLSTATE 23510) for all attempts to use any such plan until it is explicitly rebound.

5. Plans last bound prior to DB2 9. Same as 4.

6. EXPLAIN tables, which are not in the expected DB2 10 format. Consider running the
DSNTIJXA job for those tables.

7. Reserved report.

8. A list of MQTs that are affected by migration job DSNTIJEN. You need to drop these MQTs
before starting migration to DB2 V11 ENFM, otherwise CATENFM processing might fail.
You can recreate them after you have completed running job DSNTIJEN.

9. AMI IBM MQSeries® functions that were deprecated in V8 and 9 and became obsolete in
DB2 10. These are now dropped when you run DSNTIJRT, the job that creates DB2
provided routines and related objects.

10.XML MQSeries functions that were deprecated in V8 and 9 and became obsolete in DB2
10. These are now dropped when you run DSNTIJRT, the job that creates DB2 provided
routines and related objects.

11.A list of simple table spaces. Simple table spaces were deprecated with DB2 9. You can
still keep them in DB2 11, but you should migrate them to any other table space type,
because if you accidently drop a simple table space, you are unable to recreate it as such
in DB2 11. The same is true for DB2 10.

12.Trigger packages that have an invalid SECTNOI. These invalid SECTNOI were caused by
a bug, which were corrected by PTF UK42129. Drop and re-create those triggers,
because they might cause unpredictable results.

13.Views that contain a reference to a temporal table, such as for example:

CREATE VIEW VW1 AS (SELECT * FROM POLICY_INFO
 FOR BUSINESS_TIME AS OF '2008-06-15'
 WHERE POLICY_ID = 'A123') ;

The use of such views was allowed at DB2 10 GA, but the support was discontinued with
APAR PM45015 later. These views should be dropped to avoid migration errors.

14.MQTs with a period specification. See 13 for an explanation

15.SQL functions with a period specification. See 13 for an explanation.

Attention: The DSNTIJXA job converts all EXPLAIN tables in the system to DB2 10. DB2
10 format explain tables are only allowed encoded in UNICODE. Thus, if the DSNTIJXA
job expands the format of any EXPLAIN tables from say DB2 9 format to DB2 10
format, but those are still encoded in EBCDIC, they are unusable after the expansion.
You must then use the DSNTIJXB and DSNTIJXC jobs to convert it from EBCDIC to
UNICODE!
336 IBM DB2 11 for z/OS Technical Overview

16.Catalog table spaces with version errors. It might occur that the oldest version is larger
than the current version. You must correct this problem by running MODIFY RECOVERY,
followed by an REORG before you start your catalog migration.

17.A list of packages that reference catalog tables that are stored in one of the following
catalog table spaces:

– SYSCOPY
– SYSSTR
– SYSRTSTS

As discussed earlier in this chapter, these table spaces are dropped and replaced by new
table spaces in DB2 11. The first time you touch these tables in DB2 11, DB2 executes an
automatic rebuild if ABIND is set to YES or COEXIST. If ABIND = NO, then SQLCODE -908
occurs.

18.The SYSIBM.SYSCOPY and SYSIBM.SYSOBDS catalog tables can contain orphaned rows due
to a bug that is now fixed. These rows do not cause trouble while you are on DB2 10 but
might interfere with the catalog migration. If report 18 returns a few rows, you must run the
REPAIR utility as follows for each of the RIDs listed in this report:

REPAIR OBJECT
 LOCATE TABLESPACE DSNDB06.SYSALTER RID X'<rid>' DELETE

19.Report orphaned rows in SYSTABSTATS.

20.Report orphaned rows in SYSCOLAUTH.

21.Report inconsistent version numbers in the DB2 catalog.

22.Report plan dependencies on table spaces processed by ENFM.

23.Report package dependencies on table spaces processed by DSNTIJTC.

24.Report plan dependencies on table spaces processed by DSNTIJTC.

12.4.2 DB2 11 CM

Conversion mode is the first mode you enter when you migrate to DB2 11. It is an important
step in the migration process, because after you are in DB2 11 CM, all operation is done
using the new code base. Refer to DB2 11 for z/OS Installation and Migration, SC19-4056 for
a detailed description about all jobs and the sequence to use to execute those to migrate your
DB2 subsystems to CM.

This section focuses on the changes in this process from DB2 10 for the following jobs:

� DSNTIJMV
� DSNTIJUZ
� DSNTIJRT
� DSNTIJIC

Consider using the DB2 10 DSNTIJXZ job to refresh your DB2 10 DSNTIDxx member before you
use it as migration input to the DB2 11 installation CLIST. Refer to 12.3.5, “Miscellaneous” on
page 329 for information about how to create a member for installing a new DB2 11 based on
an existing DB2 10.

DSNTIJMV
The DSNTIJMV migration job is not new in DB2 11. DSNTIJMV first renames existing members
containing started task JCL, such as xxxxMSTR, xxxxDBM1, and so on.
Chapter 12. Installation and migration 337

In a second step, it updates JCL, which can, for example, contain release dependent data set
names for data sets, such as SDSNLOAD and so on. The JCL is generated into the procedure
library that you indicated on the data set names panel of the installation CLIST.

Since DB2 10, the installation CLIST also generates the procedure JCL for the core WLM
environments which are associated with the many DB2 supplied stored procedures. The
library names used in these JCL members might also require changes. For this purpose, the
DB2 11 CLIST now also renames the members containing the WLM procedure JCL. This task
adds 11 additional RENAME statements to this job.

DSNTIJUZ
DSNTIJUZ creates the DSNZPARM and DSNHDECP load modules. If you compare the DB2 10
version of this job with DB2 11, you find that there are many new and removed system
parameters. System parameters are discussed in 12.5.1, “New system parameters” on
page 346, 12.5.2, “Changed defaults for existing system parameters” on page 354, and
12.5.3, “Removed system parameters” on page 355.

DSNTIJRT
Execute this job twice when you are migrating from DB2 10 to DB2 11. The first time is when
you are in conversion mode and the second time when you are in NFM.

DSNTIJRT creates stored procedure ADMIN_COMMAND_MVS in DB2 11 CM (if it was not already
created before migrating from DB2 10). The DB2-supplied stored procedure is described at
9.7, “ADMIN_COMMAND_MVS stored procedure” on page 217.

Conversion mode
Changes that occur when you run this job in CM are:

1. Drop all existing obsolete AMI-based DB2 MQ functions and all DB2 XML MQ routines.
You can use the following query if you would like to identify the affected routines:

 SELECT SCHEMA
 , NAME
 , SPECIFICNAME
 , ROUTINETYPE
 FROM SYSIBM.SYSROUTINES
 WHERE SCHEMA IN ('DB2MQ1C' , 'DB2MQ2C'
 , 'DB2MQ1N' , 'DB2MQ2N'
 , 'DMQXML1C', 'DMQXML2C'
)
ORDER BY SCHEMA, SPECIFICNAME;

These routines are also identified in one report after running job DSNTIJPM/B as
described in “Premigration checkout job DSNTIJPM” on page 335.

2. Bind all packages from DB2 11 DBRMs.

NFM
You must run this job a second time in NFM. This time, DB2 creates:

� Associated created global temporary table SYSIBM.MVS_CMD_OUTPUT

Note: DSNTRIN is a program called by job DSNTIJRT to install and configure
DB2-supplied routines. This includes validation and adjustment of various SQL objects that
are used by the routines and that have been modified in the service stream or on a product
version/release boundary. Current APARs for this program are PM45652 and PM93782.
338 IBM DB2 11 for z/OS Technical Overview

DSNTIJIC
DSNTIJTC is a sample job that copies DB2 subsystem’s catalog and directory. Starting with
DB2 11 CM, this job has seven additional table spaces included in the list of objects to copy.

These following table spaces in ENFM replace three DB2 10 table spaces as follows:

� DSNDB06.SYSTSCPY replaces DSNDB06.SYSCOPY

� DSNDB06.SYSTSCKS, DSNDB06.SYSTSCHX, DSNDB06.SYSTSCKD, and DSNDB06.SYSTSSRG replace
DSNDB06.SYSSTR

� DSNDB06.SYSTSISS and DSNDB06.SYSTSTSS replace DSNDB06.SYSRTSTS

These new table spaces are only created in ENFM, but DSNTIJIC is changed starting in CM,
so the following message indicates that there is special handling in place for those objects by
DB2:

DSNU1530I CSECT-NAME - OBSOLETE OR NFM CATALOG OR DIRECTORY OBJECT object-type
DSNDB0n.object-name WILL NOT BE PROCESSED

The same message is issued if you run DSNTIJIC in NFM and the three replaced table spaces
have been removed from the catalog.

A second change in DSNTIJIC is that the copies are produced using SHRLEVEL CHANGE instead
of SHRLEVEL REFERENCE. You might want to consider changing your own image copy jobs
accordingly.

Application compatibility
A new DB2 version typically comes with several changes or enhancements to SQL. These
changes are listed in 12.6.1, “Application and SQL release incompatibilities” on page 357.

In the past releases all applications affected by those incompatibilities had to be adjusted to
the new behavior of DB2 prior to the migration.

DB2 11 introduces support of SQL application compatibility using a system parameter,
special register and bind option. This function is described in 12.7.1, “Example of DB2 10
application compatibility” on page 373.

12.4.3 DB2 11 ENFM and NFM

After you have successfully tested DB2 11 in CM for a reasonable time, you continue the
migration to NFM. If you complete the few panels of the installation CLIST in ENFM mode, the
CLIST generates the necessary installation and IVP on the library that you specified.
Example 12-2 shows the list of generated jobs.

Example 12-2 Install and IVP jobs generated as result of ENFM installation CLIST completion

DSNT478I BEGINNING EDITED DATA SET OUTPUT
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJEN)', ENFM PROCESSING
DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJNH)', HALT ENFM PROCESSING

Tip: DSNTIJIC is not changed in NFM. You can remove the job steps to remove those three
COPY steps from the job manually.

In case you do not use DSNTIJIC to copy your catalog and directory, make sure to adjust
your own copy job accordingly. You might want to refer to DSNTIJIC if you are not sure
about the order by which copy the catalog and directory objects.
Chapter 12. Installation and migration 339

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJNF)', TURN NEW FUNCTION
MODE ON
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJNX)', CREATE NFM-DEPENDENT
OBJECTS
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJES)', DISABLE USE OF NEW
FUNCTION (ENFM*)
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJCS)', RETURN FROM ENFM OR
 ENFM* TO CM*
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJCI)', CHECK INDEXES AFTER
 ENFM
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJCV)', CONVERT CATALOG AND
 DIRECTORY FORMAT
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTESC)', SAMPLE DATA
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTESH)', SAMPLE DATA
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTESD)', SAMPLE DATA
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTESA)', SAMPLE DATA
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTESE)', SAMPLE DATA
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ0)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ1)', SAMPLE JCL
DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ1L)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ1P)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ1S)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ1T)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ1U)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2A)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2C)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2D)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2E)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2F)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2H)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2P)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ2U)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ3C)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ3P)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ3M)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ4C)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ4P)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ5A)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ5C)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ5P)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ6O)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ6R)', SAMPLE JCL
DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ6U)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ6V)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ6W)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ6Z)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSN8ES1)', SAMPLE SQL PROCEDURE
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSN8ES2)', SAMPLE SQL PROCEDURE
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ63)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ64)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ65)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ66)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ67)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ7)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ71)', SAMPLE JCL
340 IBM DB2 11 for z/OS Technical Overview

 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ73)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ75)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ76)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ77)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTEJ78)', SAMPLE JCL
 DSNT489I CLIST EDITING 'DB0BM.NEW.ENFM.SDSNSAMP(DSNTIJNG)', UPDATE DSNHDECP FOR
 ENFM

The number of installation jobs, that is the ones that start with DSNTI, are just a handful. You
most likely only run few of them because the majority deals with halting processes or going
backwards rather than forward.

Refer to Figure 12-10 on page 333 for an overview of the job steps described here:

� DSNTIJEN
� DSNTIJNX
� DSNTIJRT

DSNTIJEN
DSNTIJEN prepares the DB2 catalog and directory for NFM. This job has been around since
DB2 8. However, each version requires different changes to the DB2 catalog and therefore
contains different steps and its execution time varies accordingly. After you have first started
DSNTIJEN, the status of your DB2 11 subsystem changes from CM to enabling-NFM (ENFM).

After DSNTIJEN has completed, all DB2 11 catalog changes are completed as well. Table 12-4
show the progression of the number of objects of the DB2 catalog and directory across the
DB2 versions.

Table 12-4 Number of catalog and directory objects

The following SELECT statement lists the names of the catalog columns defined as inline LOBs
and their table names, as shown in Table 12-5:

SELECT NAME,TBNAME,TBCREATOR,LENGTH FROM SYSIBM.SYSCOLUMNS WHERE TBCREATOR LIKE
‘SYS%’ AND COLTYPE IN (‘BLOB’,‘CLOB’) AND LENGTH > 4;

Table 12-5 Tables having inline LOB columns

Version Table
Spaces

Tables Indexes Columns LOB
columns

Inline LOB
columns

V1 11 25 27 269 0 0

V3 11 43 44 584 0 0

V5 12 54 62 731 0 0

V7 20 84 118 1212 2 0

V8 22 85 132 1265 2 0

V9 28 104 165 1652 6 0

V10 95 134 233 2036 36 4

V11 108 143 250 2202 42 9

COLUMN NAME TBNAME TBCREATOR INLINE LENGTH

SPT_DATA SPTR SYSIBM 32146
Chapter 12. Installation and migration 341

The output of -DIS GROUP to check the mode is shown in Example 12-3.

Example 12-3 -DIS GROUP result from non-data-sharing subsystem

DSN7100I -DB0B DSN7GCMD
*** BEGIN DISPLAY OF GROUP(........) CATALOG LEVEL(111) MODE(CM)
 PROTOCOL LEVEL(2) GROUP ATTACH NAME(....)
--
DB2 DB2 SYSTEM IRLM
MEMBER ID SUBSYS CMDPREF STATUS LVL NAME SUBSYS IRLMPROC
-------- --- ---- -------- -------- --- -------- ---- --------
........ 0 DB0B -DB0B ACTIVE 111 SC63 ID0B DB0BIRLM
--
SPT01 INLINE LENGTH: 32138
*** END DISPLAY OF GROUP(........)
DSN9022I -DB0B DSN7GCMD 'DISPLAY GROUP ' NORMAL COMPLETION

In general, job DSNTIJEN performs the following functions:

� Saves the current RBA or LRSN in the BSDS.

� Converts SYSCOPY to a new table space, SYSTSCPY.

� Converts SYSRTSTS to two new table spaces, SYSTSISS and SYSTSTSS.

� Converts SYSSTR to four new table spaces, SYSTSCKS, SYSTSCHX, SYSTSCKD, and
SYSTSSRG.

� During REORG, converts all table spaces and indexes that are processed by DSNTIJEN
to use the RBA and LRSN format that is specified in the
DSN6SPRM.UTILITY_OBJECT_CONVERSION setting.

� Resets and re-initializes the SYSUTILX table space in step ENFM0010. Therefore, utilities
should not be run during this step.

� Changes types and lengths of existing catalog columns.

DESCRIPTOR SYSCONTROLS SYSIBM 12004

RULETEXT SYSCONTROLS SYSIBM 16004

STATEMENT SYSPACKSTMT SYSIBM 15364

STMTBLOB SYSPACKSTMT SYSIBM 7172

STMTTEXT SYSQUERY SYSIBM 2052

DEFAULTTEXT SYSVARIABLE SYSIBM 2004

DESCRIPTOR SYSVARIABLES SYSIBM 2004

PARSETREE SYSVIEWS SYSIBM 27674

Tip: If you are not sure in which mode your DB2 subsystem currently runs, you can use
DB2 command -DIS GROUP or -DIS GROUP DETAIL. The command works in data sharing
and non-data sharing.

COLUMN NAME TBNAME TBCREATOR INLINE LENGTH
342 IBM DB2 11 for z/OS Technical Overview

DSNTIJEN consists of the following job steps:

ENFM0000 Terminates pending DSNENFM.* utilities.
ENFM000A Gets a list of table spaces that are in ICOPY and COPY status.
ENFM000B Image copies table spaces that are identified in job step ENFM000A.
ENFM0001 Updates the catalog for the new release.
ENFM0010 Enabling-NFM for SYSUTILX.
ENFM002x Enabling-NFM steps for SYSLGRNX.
ENFM003x Enabling-NFM steps for SYSCOPY.
ENFM004x Enabling-NFM steps for SYSRTSTS.
ENFM005x Enabling-NFM steps for SYSTSIXS.
ENFM006x Enabling-NFM steps for SYSTSTAB.
ENFM007x Enabling-NFM steps for SYSSTR.
ENFM9900 Terminates pending DSNENFM.* utilities

When the DSNTIJEN job ran to migrate the DB2 subsystem to DB2 11 ENFM, the error
message shown in Example 12-4 was encountered.

Example 12-4 DSNU2902I error message

DSNU2902I -DB0B 251 04:29:53.96 DSNURMAP - MAPPING DATABASE MAPDB IS INVALID

This is a new error message. The autonomic creation of mapping tables for REORG
SHRLEVEL CHANGE is described in 11.1.4, “Automated REORG mapping table
management” on page 278.

The message text clearly describes the problem as shown in Example 12-5. This example
uses the MAPDB in REORG_MAPPING_DATABASE system parameter but have not created this
database in the subsystem. To correct the problem, which caused DSNTIJEN to end with RC 8,
the database MAPDB needs to be created.

Example 12-5 DSNU2902I message text

DSNU2902I
csect-name MAPPING DATABASE database-name IS INVALID

Explanation
The REORG utility statement has detected that the database that is specified for
the REORG TABLESPACE utility MAPPINGDATABASE keyword or the REORG_MAPPING_DATABASE
subsystem parameter does not exist or cannot be used to implicitly create a
mapping table.

csect-name
The name of the control section that issued the message.
database-name
The name of the database.
System action
Utility processing terminates.

Administrator response
Specify a valid database name for the REORG TABLESPACE utility MAPPINGDATABASE
keyword or specify a valid value for the REORG_MAPPING_DATABASE subsystem
parameter.
Severity
8 (error)
Chapter 12. Installation and migration 343

Because DSNTIJEN failed, not all table spaces changed during ENFM catalog processing have
been adjusted correctly. Example 12-6 shows the results of -DIS GROUP DETAIL DB2
command. Only SYSUTILX has been completed at this point. All other table spaces listed here
still need to be processed.

Note that the MODE this is displayed in the second line of the command output is already set to
EN, because the example is now at a point of no return.

Example 12-6 -DISPLAY GROUP DETAIL output

DSN7100I -DB0B DSN7GCMD
 *** BEGIN DISPLAY OF GROUP(........) CATALOG LEVEL(111) MODE(EN)
 PROTOCOL LEVEL(2) GROUP ATTACH NAME(....)
 --
 DB2 DB2 SYSTEM IRLM
 MEMBER ID SUBSYS CMDPREF STATUS LVL NAME SUBSYS IRLMPROC
 -------- --- ---- -------- -------- --- -------- ---- --------
 0 DB0B -DB0B ACTIVE 111 SC63 ID0B DB0BIRLM
 --
 TABLE ENABLED
 SPACE NEW FUNCTION
 -------- ------------
 SYSUTILX YES
 SYSLGRNX NO
 SYSCOPY NO
 SYSRTSTS NO
 SYSTSIXS NO
 SYSTSTAB NO
 SYSSTR NO
 --
 SPT01 INLINE LENGTH: 32138
 *** END DISPLAY OF GROUP(........)
 DSN9022I -DB0B DSN7GCMD 'DISPLAY GROUP ' NORMAL COMPLETION

After creation of database MAPDB, the DSNTIJEN job is run. After completion of DSNTIJEN, the
-DISPLAY GROUP DETAIL command output in Example 12-7shows that all page sets, which are
touched during CATENFM execution are now ready for NFM.

Example 12-7 -DIS GROUP DETAIL output in ENFM

DSN7100I -DB0B DSN7GCMD
 *** BEGIN DISPLAY OF GROUP(........) CATALOG LEVEL(111) MODE(EN)
 PROTOCOL LEVEL(2) GROUP ATTACH NAME(....)
 --
 DB2 DB2 SYSTEM IRLM
 MEMBER ID SUBSYS CMDPREF STATUS LVL NAME SUBSYS IRLMPROC
 -------- --- ---- -------- -------- --- -------- ---- --------
 0 DB0B -DB0B ACTIVE 111 SC63 ID0B DB0BIRLM
 --
 TABLE ENABLED
 SPACE NEW FUNCTION
 -------- ------------

Restriction: When you entered mode EN and left CM, you cannot fallback to DB2 10 NFM
anymore!
344 IBM DB2 11 for z/OS Technical Overview

 SYSUTILX YES
 SYSLGRNX YES
 SYSCOPY YES
 SYSRTSTS YES
 SYSTSIXS YES
 SYSTSTAB YES
 SYSSTR YES
 --
 SPT01 INLINE LENGTH: 32138
 *** END DISPLAY OF GROUP(........)
 DSN9022I -DB0B DSN7GCMD 'DISPLAY GROUP ' NORMAL COMPLETION

The subsystem in this example is a small sandbox system. The DSNTIJEN job completed in
0.78 minutes elapsed time. Experiences from the early support program show that the
elapsed time for the ENFM-NFM migration of other subsystems was also short, that is
approximately in the 2 minute interval.

However, the majority of the time is spent reorganizing the following table spaces:

� DSNDB01.SYSLGRNX
� DSNDB06.SYSCOPY
� DSNDB06.SYSRTSTS
� DSNDB06.SYSTSIXS
� DSNDB06.SYSTSTAB
� DSNDB06.SYSSTR

So if you want to determine what the expected elapsed time for your subsystems might be,
you can reorg those table spaces and add up the elapsed time.

DSNTIJNX
The DSNTIJNX job creates installation objects that are dependent on NFM. DSNTIJNX creates a
new DSNRLMTxx table (used by the Resource Limit Facility) in the new format plus statements
for altering an existing DSNRLMTxx table to the new format after DB2 enters NFM.

DSNTIJNX also rebinds both SPUFI packages and REXX Language Support packages with
the bind options supported in DB2 11 NFM:

� ARCHIVESENSITIVE

Determines whether references to archive enabled tables in static SQL statements and
dynamic SQL statements are affected by the value of a new SYSIBMADM.GET_ARCHIVE
global variable. This global variable indicates whether a reference to an archive enabled
table in a table-reference should include rows in the associated archive table.

Refer to 6.2, “Global variables” on page 102 for an explanation about global variables.

Archive enabled tables are discussed in 7.2, “Transparent archiving of temporal data” on
page 130.

Tip: If DSNTIJEN fails, fix the reason for the failure and rerun the job without modifying it at
all. Just re-submit it. Steps that were already completed previously are figured out and the
job continues with the correct step.

Tip: In order to reduce the elapsed time for CATENFM, make sure that you use MODIFY
RECOVERY to clean up obsolete SYSLGRNX and SYSCOPY entries.
Chapter 12. Installation and migration 345

� SYSTIMESENSITIVE

Indicates whether references to system-period temporal tables in static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL SYSTEM_TIME
special register. When a system-periods temporal table is referenced and the value in
effect for the CURRENT TEMPORAL SYSTEM_TIME special register is not the null value, the
following period specification in implicit: FOR SYSTEM_TI;E AS OF CURRENT
TEMPORAL SYSTEM_TIME.

� BUSTIMESENSITIVE

Indicates whether references to system-period temporal tables in static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL BUSINESS_TIME
special register. When a system-period temporal table is referenced and the value in effect
for the CURRENT TEMPORAL BUSINESS_TIME special register is not the null value, the
following period specification is implicit: FOR SYSTEM_TIME AS OF CURRENT
TEMPORAL BUSINESS_TIME.

DSNTIJRT
If you are migrating from DB2 10, you should run this job two times. Refer to “DSNTIJRT” on
page 338, which describes the steps necessary to get into DB2 11 conversion mode.

When you execute the job, it creates the new stored procedure SYSPROC.ADMIN_COMMAND_MVS
(if not already created in DB2 10) and its created global temporary table
SYSIBM.MVS_CMD_OUTPUT.

12.5 Subsystem parameters

New DB2 releases typically have new and removed system parameters (DSNZPARMs) as well
as changes in their default values. This section describes the following information:

� New system parameters
� Changed defaults for existing system parameters
� Removed system parameters
� Deprecated system parameters

12.5.1 New system parameters

This section describes new system parameters introduced with DB2 11 and gives a brief
explanation about their functionality:

� APPLCOMPAT
� AUTHEXIT_CACHEREFRESH
� AUTHEXIT_CHECK
� INDEX_CLEANUP_THREADS
� LIKE_BLANK_INSIGNIFICANT
� MAXSORT_IN_MEMORY
� OBJECT_CREATE_FORMAT
� PARAMDEG_DPSI
� PARAMDEG_UTIL
� PCTFREE_UPD
� PKGREL_COMMIT
� PREVENT_ALTERTB_LIMITKEY
� REORG_DROP_PBG_PARTS
� REORG_MAPPING_DATABASE
346 IBM DB2 11 for z/OS Technical Overview

� STATFDBK_SCOPE
� TEMPLATE TIME
� UTILITY_OBJECT_CONVERSION
� WFSTGUSE_AGENT_THRESHOLD
� WFSTGUSE_SYSTEM_THRESHOLD

APPLCOMPAT
The APPL COMPAT LEVEL field on panel DSNTIP41 specifies the default release level value
of the APPLCOMPAT BIND and REBIND option.

Acceptable values are V10R1 and V11R1. The default behavior is V10R1 after migration and
V11R1 for a new installation. See “Example of DB2 10 application compatibility” on page 373.

AUTHEXIT_CACHEREFRESH
The AUTHEXIT_CACHEREFRESH system parameter specifies whether entries in the cache
package authorization cache, the routine authorization cache, the DDF user authentication
cache, and the dynamic statement cache are refreshed or whether the dependent packages
are invalidated when access control authorization exit is active and the user profile is changed
in RACF. Acceptable values are ALL and NONE, with a default of NONE.

ALL Specifies that DB2 refreshes the cache entries of the package
authorization, the routine authorization, and the dynamic statement
and invalidates dependent packages when the user profile or resource
access is changed in RACF. The cache entries are refreshed only
when the access control authorization exit is active.

NONE Specifies that DB2 does not refresh the cache entries of the package
authorization, the routine authorization, and the dynamic statement or
invalidate dependent packages when the user profile or resource
access is changed in RACF. This is the default value for the field.

When the AUTHEXIT_CACHEREFRESH system parameter is set to ALL and the access
control authorization exit is active, DB2 listens to type 62, type 71, and type 79 ENF signals
from RACF for user profile or resource access changes and refreshes the DB2 cache entries
accordingly. If you define RACF classes for DB2 objects and administrative authorities without
using IBM-supplied RACF resource classes, you need to enable the SIGNAL=YES option for
these classes in the RACF Class Descriptor Table.

AUTHEXIT_CHECK
The AUTHEXIT_CHECK subsystem parameter specifies whether the owner or the primary
authorization ID is used for authorization checks when the access control authorization exit
(DSNX@XAC) is active.

Acceptable values are PRIMARY and DB2, the default is PRIMARY.

PRIMARY Specifies that DB2 provides the ACEE of the primary authorization ID
to perform all authorization checks. The primary authorization ID must
be permitted access to the resources in RACF. This is the default value
for the field.

DB2 Specifies that DB2 provides the ACEE of the package owner to
perform authorization checking when processing the AUTOBIND, BIND,
and REBIND commands. DB2 provides the ACEE of the authorization
ID as determined by the DYNAMICRULES option to perform dynamic
SQL authorization checking. The access control authorization exit
uses the ACEE for XAPLUCHK for authorization checking.
Chapter 12. Installation and migration 347

The XAPLUCHK authorization ID can be a user or a group in RACF. To
ensure successful authorization checks with the owner ACEE, the
owner authorization ID in XAPLUCHK must be permitted access to the
resources in RACF. If the owner is a group in RACF, you need to
permit the group access to the resource associated with the
connection in the RACF DSNR class. You can issue the PERMIT
command to grant a group access to subsystem.BATCH in the DSNR
class, as follows:

PERMIT DSN.BATCH CLASS(DSNR) ID(DB2GRP) ACCESS(READ)

INDEX_CLEANUP_THREADS
INDEX_CLEANUP_THREADS specifies the maximum number of threads that can be created
to process the cleanup of pseudo-deleted index entries on this subsystem or data sharing
member. Pseudo-deleted entries in an index are entries that are logically deleted but still
physically present in the index.

Acceptable values are in the range between 0 and 128, with a default of 10.

This parameter works in conjunction with the SYSIBM.SYSINDEXCLEANUP catalog table,
which controls cleanup processing of pseudo-deleted index entries.

The default setting is appropriate for most situations. However, a larger setting might be
appropriate in cases where large indexed tables or large numbers of indexed tables are
constantly modified. A smaller value might be appropriate in cases where thread count is
severely constrained.

When INDEX_CLEANUP_THREADS is set to 0, no cleanup is performed by the subsystem
or data sharing member regardless of the entries in the SYSIBM.SYSINDEXCLEANUP
catalog table.

Refer to 4.10, “Idle thread break-in” on page 82 for a discussion of index cleanup.

LIKE_BLANK_INSIGNIFICANT
The LIKE BLANK INSIGNIFICANT field specifies whether blanks are significant when
applying the LIKE predicate to a string. If set, the blank insignificant behavior applies.

Acceptable values are NO and YES. NO is the default setting, which actually represents the
DB2 10 behavior.

NO LIKE treats trailing blanks within fixed-length character strings as
significant.

YES When the LIKE predicate is applied against fixed-length character
column data, DB2 strips trailing blanks from the data before
performing the comparison. If the data is all blank, DB2 reduces it to a
single blank before performing the comparison.

Refer to Example 12-8 for a few simple examples of the result DB2 returns based on the
setting for this system parameter.

Example 12-8 LIKE_BLANK_INSIGNIFICANT

Given:
CREATE TABLE LIKETEST (C1 CHAR(10));
INSERT INTO LIKETEST VALUES(' AA ');
INSERT INTO LIKETEST VALUES('A AA A');
348 IBM DB2 11 for z/OS Technical Overview

When LIKE_BLANK_INSIGNIFICANT=NO

for:
SELECT * FROM LIKETEST
WHERE C1 LIKE 'AA%'
=> No rows are returned

for:
SELECT * FROM LIKETEST
WHERE C1 LIKE '%AA'
=> No rows are returned

for:
SELECT * FROM LIKETEST
WHERE C1 LIKE '%AA%'
=> ' AA ' and 'A AA A' are returned

When LIKE_BLANK_INSIGNIFICANT=YES

for:
SELECT * FROM LIKETEST
WHERE C1 LIKE 'AA%'
=> No rows are returned

for:
SELECT * FROM LIKETEST
WHERE C1 LIKE '%AA'
=> ' AA ' is returned

for:
SELECT * FROM LIKETEST
WHERE C1 LIKE '%AA%'
=> ' AA ' and 'A AA A' are returned

MAXSORT_IN_MEMORY
The MAXSORT_IN_MEMORY subsystem parameter specifies the maximum allocation of
storage in kilobytes for a query that contains an ORDER BY clause, a GROUP BY clause, or
both. The storage is allocated only during the processing of the query. Increasing the value in
this field can improve performance of such queries but might require large amounts of real
storage when several such queries run simultaneously.

Acceptable values: 1000 to the value specified in SORT POOL SIZE, whichever is larger

The default value: 1000.

This value is used for the final in-memory work file storage for the final sort. So it can use up
to this value. Because the default for the SORT POOL size is 10,000 and if this value is set to
1000, then sort will still only use up to 1 MB for the final in-memory sort work file.

You would need to adjust this value to a larger number if you want more in-memory storage
for the final work file. Say if you sets it to 128000 and you still have 10,000 for the SORT
POOL SIZE, then sort will only use up to the maximum. Sort only allocates the storage
needed for this which can be up to the value defined. So if sort only needs 10 KB, then that is
all it will allocate.
Chapter 12. Installation and migration 349

OBJECT_CREATE_FORMAT
The OBJECT_CREATE_FORMAT subsystem parameter specifies whether DB2 is to create
new table spaces and indexes to use a basic or extended log record format. See 3.1,
“Extended RBA and LRSN” on page 24.

PARAMDEG_DPSI
The PARAMDEG_DPSI system parameter specifies the maximum degree of parallelism that
you can specify for a parallel group in which a data partitioned secondary index (DPSI) is
used to drive parallelism.

A DPSI is a non partitioning index that is physically partitioned according to the partitioning
scheme of the table. When you specify a value of greater than 0 for this parameter, you limit
the degree of parallelism for DPSIs so that DB2 does not create too many parallel tasks that
use virtual storage.

Acceptable values are between 0-254, and DISABLE. The default is 0.

0 Specifies that DB2 uses the value that is specified for the PARAMDEG
subsystem parameter, instead of PARAMDEG_DPSI, to control the degree
of parallelism when DPSI is used to drive parallelism. This is the
default value for the field.

1 Specifies that DB2 creates multiple child tasks but works on one task
at a time when DPSI is used to drive parallelism.

2-254 Specifies that DB2 creates multiple child tasks and works concurrently
on the tasks that are specified. The number of specified tasks can be
larger or smaller than the number of tasks as specified in PARAMDEG.
When PARAMDEG is set to 1, the rest of the query does not have any
parallelism.

DISABLE Specifies that DB2 does not use DPSI to drive parallelism. Parallelism
might still occur for the query if PARAMDEG is greater than 1.

PARAMDEG_UTIL
The PARAMDEG_UTIL subsystem parameter specifies the maximum number of parallel subtasks
for some utilities.

PARAMDEG_UTIL affects the following utilities:

� REORG TABLESPACE
� REBUILD INDEX
� CHECK INDEX
� UNLOAD
� LOAD

Acceptable values are positive integers between 0 to 32767, with a default of 0.

0 No additional constraint is placed on the maximum degree of
parallelism in a utility.

1 to 32767 Specifies the maximum number of parallel subtasks for all affected
utilities.

PCTFREE_UPD
The PCTFREE_UPD subsystem parameter specifies the default value to use for the PCTFREE FOR
UPDATE clause of CREATE TABLESPACE or ALTER TABLESPACE statements. It specifies the default
amount of free space to reserve on each page for use by subsequent UPDATE operations when
350 IBM DB2 11 for z/OS Technical Overview

data is added to the table by INSERT operations or utilities. This parameter has no effect on
table spaces that have fixed length rows.

Acceptable values are AUTO and 0 to 99, with a default of 0. This value is used as the default
FOR UPDATE value when no PCTFREE FOR UPDATE clause is specified for a CREATE TABLESPACE or
ALTER TABLESPACE statement.

AUTO DB2 uses real-time statistics values to automatically calculate the
percentage of free space that is to be used by update operations. This
value is equivalent to specifying PCTFREE FOR UPDATE -1 in the CREATE
TABLESPACE or ALTER TABLESPACE statement.

0 to 99 DB2 reserves the specified percentage of space for use by update
operations.

Without having experience with this function, you would assume that setting a value at page
set level is more efficient in most cases than setting a positive integer for the system
parameter.

For the use of PCTFREE_UPD, see 13.3, “Reduced need for REORG” on page 390.

PKGREL_COMMIT
The PKGREL_COMMIT subsystem parameter specifies whether, at COMMIT or ROLLBACK, a
persistent DB2 thread will release a package that is active on that thread if certain DB2
operations are waiting for exclusive access to that package.

The value in this field is meaningful only for packages that are bound with the
RELEASE(DEALLOCATE) bind option.

Acceptable values are YES and NO, with a default setting of YES

� YES

For packages that are bound with the RELEASE(DEALLOCATE) option, the following
operations are permitted at COMMIT or ROLLBACK while the package is active and
allocated by DB2 for a persistent DB2 thread:

– BIND REPLACE PACKAGE and REBIND PACKAGE requests, including auto rebind
online schema changes for tables and indexes that are statically referenced by the
package

– Online REORG operations that materialize pending definition changes for objects that
are statically referenced by the package

� NO

DB2 will not implicitly release an active package at COMMIT or ROLLBACK for a
persistent DB2 thread. See 4.9, “Allow BIND, REBIND, and DDL to break-in persistent
threads” on page 81.

PREVENT_ALTERTB_LIMITKEY
PREVENT_ALTERTB_LIMITKEY determines whether DB2 disallows altering the limit key by using
an ALTER TABLE statement for index-controlled partitioned table spaces. This alter operation
places the table space in REORG-pending (REORP) restrictive status, and the data is
unavailable until the affected partitions are reorganized. Use PREVENT_ALTERTB_LIMITKEY to
avoid this data unavailability.
Chapter 12. Installation and migration 351

The values are acceptable:

NO Specifies that you can alter a limit key by using an ALTER TABLE
statement for index-controlled partitioned table spaces. This is the
default.

YES Specifies that altering a limit key by using an ALTER TABLE statement
for index-controlled partitioned table spaces is not permitted. An ALTER
TABLE statement must not attempt to alter the limit key for an
index-controlled partitioned table.

REC_FASTREPLICATION
The REC_FASTREPLICATION parameter specifies whether the RECOVER utility uses FlashCopy to
recover from a FlashCopy image copy. The following values are acceptable:

NONE The RECOVER utility uses standard I/O to restore a FlashCopy image
copy.

PREFERRED The RECOVER utility uses FlashCopy to recover from a FlashCopy
image copy if FlashCopy support is available. This is the default.

REQUIRED The RECOVER utility forces the use of FlashCopy to recover from a
FlashCopy image copy to ensure that recovery occurs as quickly as
possible. This option causes RECOVERY to fail if FlashCopy cannot be
used.

If you use BACKUP SYSTEM to create system-level backups, note that a recovery from a
FlashCopy image copy that uses FlashCopy for the restore can cause BACKUP SYSTEM to fail
because bidirectional FlashCopy is not supported.

REORG_DROP_PBG_PARTS
The REORG_DROP_PBG_PARTS subsystem parameter specifies whether the REORG utility removes
trailing empty partitions when operating on an entire partition-by-growth table space. An
empty trailing partition occurs when the REORG utility moves all data records from a partition
into lower numbered partitions.

Acceptable values are DISABLE and ENABLE, with a default setting of DISABLE.

This parameter is meaningful only when the REORG utility is run against an entire PBG table
space. It is ignored for a REORG of a non-partition-by-growth table space, for a partition-level

Note: The focus here is on index-controlled partitioned table spaces. Altering an index key
of a table-controlled partitioned table space is not this much of an issue, because this is
considered a pending change, that is the table space is set to advisory state AREOR
instead of restrictive state REORP.

Tip: Instead of wanting to make use of this system parameter, you might want to migrate
your index-controlled partitioned table spaces to table-controlled partitioning. The easy
way to accomplish this is to ALTER the clustering Index, which at the same time is the
clustering index, to NOT CLUSTER and ALTER it back to CLUSTER right after this.

Note: The last sentence in the description for option REQUIRED does not mean that DB2
fails if you only have sequential image copies that are sufficient for the recovery of your
page set. The whole DSNZPARM applies only to FlashCopy image copies.
352 IBM DB2 11 for z/OS Technical Overview

REORG of partition-by-growth table spaces, and for a REORG of a hash partition-by-growth table
space.

ENABLE Specifies that any trailing empty partitions that are present at the
successful completion of the REORG are always removed. LOB table
spaces and auxiliary indexes that are associated with these empty
partition-by-growth partitions are also removed.

DISABLE Specifies that the number of partition-by-growth partitions at the
successful completion of the REORG are always equal or greater than
the number of partitions before the REORG utility was run. Even if the
REORG is able to relocate all data records into the lowest numbered
partitions, trailing empty partition-by-growth partitions are retained.

REORG_MAPPING_DATABASE
The REORG_MAPPING_DATABASE subsystem parameter specifies the default database that REORG
TABLESPACE SHRLEVEL CHANGE uses to implicitly create the mapping table.

An acceptable value is a character string of a maximum of 8 bytes length. The default value
are 8 blanks, implying an implicitly defined database will be used

When processing a REORG TABLESPACE SHRLEVEL CHANGE request, the REORG utility has the
option to create its own mapping table and mapping index, instead of relying on user's input.
Specifying this subsystem parameter with a valid database name directs REORG to allocate
the mapping table in the database that is specified. By default, REORG uses an implicitly
defined database for the mapping table allocation. For details, see 11.1.4, “Automated
REORG mapping table management” on page 278.

STATFDBK_SCOPE
The STATFDBK_SCOPE subsystem parameter specifies the scope of the SQL statements that
DB2 collects statistics recommendations for in the SYSIBM.SYSSTATFEEDBACK catalog table.

The following are acceptable values:

NONE No statistics recommendations are collected in the catalog table.

DYNAMIC Statistics recommendations are collected in the catalog table for
dynamic SQL statements only.

STATIC Statistics recommendations are collected in the catalog table for static
SQL statements only.

ALL Statistics recommendations are collected in the catalog table for all
SQL Statements. This is the default.

Foe details, see 13.5.1, “Identification of critical statistics for improved query performance” on
page 402.

TEMPLATE TIME
The TEMPLATE_TIME subsystem parameter specifies the default setting for the TIME option
of the TEMPLATE statement.

Acceptable values are UTC and LOCAL, with a default of UTC.

Note: Even though all DB2 users can query the SYSIBM.SYSSTATFEEDBACK table, the
implemented functionality is primarily meant to be used by certain SQL optimization tools
to help you improve access path selection for SQL statements.
Chapter 12. Installation and migration 353

UTC Coordinated Universal Time.
LOCAL Local time at the DB2 database manager.

UTILITY_OBJECT_CONVERSION
The value of the UTILITY_OBJECT_CONVERSION parameter specifies whether DB2 utilities
that accept the RBALRSN_CONVERSION option will convert existing table spaces and
indexes to 6-byte page format, to a 10-byte page format or prevent conversion of a 10-byte
format to a 6-byte page format.

The default behavior normally applies when the utility control statement does not specify the
RBALRSN_CONVERSION option. Alternatively, the UTILITY_OBJECT_CONVERSION
parameter can also be used to prevent use of RBALRSN_CONVERSION options to convert
existing table spaces and indexes to 6-byte page format

For a more detailed description about this system parameter and extended RBAs and LRSNs
in general, refer to 3.1, “Extended RBA and LRSN” on page 24.

WFSTGUSE_AGENT_THRESHOLD
The WFSTGUSE_AGENT_THRESHOLD subsystem parameter determines the percentage
of available space in the work file database on a DB2 subsystem or data sharing member that
can be consumed by a single agent before a warning message is issued.

Refer to 4.4, “Work file database enhancements” on page 65 for the usage and implications of
the settings for this system parameter.

WFSTGUSE_SYSTEM_THRESHOLD
The WFSTGUSE_SYSTEM_THRESHOLD subsystem parameter determines the percentage
of available space in the work file database on a DB2 subsystem or data sharing member that
can be consumed by all agents before a warning message is issued.

Refer to 4.4, “Work file database enhancements” on page 65 if you want to learn more about
the usage and implications based on the settings for this system parameter

12.5.2 Changed defaults for existing system parameters

Besides the many new system parameters introduced with DB2 11 for z/OS, there are also a
number of changed system parameters. Table 12-6 shows a list of affected system
parameters.

Table 12-6 System parameters with changed limits

Tip: Set all DB2 data sharing members to the same value.

System parameter Change Description

DSMAX Upper limit increased from
100,000 to 200,000

The maximum number of data sets that can be
open at one time.

EDMDBDC Upper limit increased from
2097152 to 4194304

The minimum size (in KB) of the DBD cache that
is to be used by EDM.

EDMSTMTC Upper limit increased from
1048576 to 4194304

The size (in KB) of the statement cache that is to
be used by the EDM.

EDM_SKELETON_POOL Upper limit increased from
2097152 to 4194304

The minimum size of the EDM skeleton pool in KB.
354 IBM DB2 11 for z/OS Technical Overview

12.5.3 Removed system parameters

The category of system parameters described in this section are those that have been
removed. The fact that system parameters have been removed does not necessarily mean
that the functions that they influenced is taken out of DB2. Rather there is no way any longer
to influence the behavior of DB2 with regards to the function of these system parameters.

Table 12-7 lists the removed system parameters.

Table 12-7 Removed system parameters

MAXKEEPD Upper limit increased from
65535 to 204800

The total number of prepared, dynamic SQL
statements that can be saved past a commit point
by all threads in the system using
KEEPDYNAMIC(YES) bind option.

REORG_LIST_PROCESSING Default was changed from
SERIAL to PARALLEL

The default setting for the PARALLEL option of the
DB2 REORG TABLESPACE utility. The PARALLEL option
indicates whether REORG TABLESPACE processes all
partitions specified in the input LISTDEF statement
in a single utility execution (PARALLEL YES) or
process each in a separate utility execution
(PARALLEL NO).

REORG_PART_SORT_NPSI Default was changed from NO
to AUTO

Specifies the default method of building a
non-partitioned secondary index (NPSI) during
REORG TABLESPACE PART. This setting will be used
when the SORTNPSI keyword is not provided in the
utility control statement. The SORTNPSI keyword
specifies whether REORG TABLESPACE PART decides
to sort all keys of a NPSI and how to make that
decision. The setting is ignored for a REORG which
is not part-level or a REORG with no NPSIs.

SUBQ_MIDX Default was changed from
DISABLE to ENABLE

Whether to enable or disable multiple index
access for queries having subquery predicates.

PREVENT_NEW_IXCTRL_
PART

Default was changed from NO
to YES.

Determines whether DB2 disallows the creation of
new index-controlled partitioned tables. This
subsystem parameter ensures that new
partitioned tables use table-controlled partitioning,
which is the preferred partitioning method for
non-universal table spaces.

System parameter Change Description

System parameter DB2 11 behavior Description

MVSGP and MVSGP2 Names, respectively, a group of MSS volumes to be used
for archive 1 log data sets and group of MSS values to be
used for archive 2 log data sets. DB2 11 does not
recognize these devices.
There were opaque system parameter, residing in
DSN6ARVP. They are still there, but ignored if set.

CCORDNTR NO Specifies whether this DB2 member can coordinate
parallel processing on other members of the group.
Chapter 12. Installation and migration 355

ASSIST NO Specifies whether this DB2 member can assist a
parallelism coordinator with parallel processing. Because
there cannot be coordinators anymore, there cannot be
any assistants either.

OPTIXIO ON OPTIXIO=ON means that DB2 provides stability to I/O
costing for queries, with less sensitivity to buffer pool
sizes. Use of OPTIXIO=OFF can cause access path
selection to be heavily influenced by object size and buffer
pool size.

OPTIOWGT ENABLE Controls how DB2 balances the I/O cost and CPU
estimates when selecting access paths.

OJPERFEH YES Specifies whether to enable outer join enhancements.

PTCDIO OFF Enables an optimizer fix for inefficient index path for a
single-table query.

RETVLCFK NO Specifies whether the VARCHAR column is to be retrieved
from a padded index.

DISABSL NO Specifies whether SQLWARN1 and SQLWARN5 are set for
non-scrollable cursors on OPEN and ALLOCATE CURSOR.

SMSDCFL blank Specifies the DFSMS data class for indexes

STATCLUS ENHANCED Specifies the type of clustering statistics to be collected by
the RUNSTATS utility. ENHANCED means that DB2 uses an
improved algorithm for collecting statistics in effect with
the drawback that it can change many access paths.

SEQCACH SEQ Specifies whether to use the sequential mode to read
cached data from a 3990 controller. Prefetch reads will
always use sequential access.

SEQPRES YES Specifies whether DB2 utilities that do a scan of a non
partitioning index followed by an update of a subset of the
pages in the index allow data to remain in cache longer
when reading data.

DISABSCL NO Specifies whether SQLWARN1 and SQLWARN5 are set for
non-scrollable cursors on OPEN and ALLOCATE CURSOR.

OPTIOPIN YES Specifies whether the DB2 optimizer should use an
improved costing formula to estimate the cost of index and
data access to the inner table of a join.

PGRNGSCR YES Specifies whether to enable a DB2 optimizer change that
can improve performance of queries that contain one or
more of the following predicates:
Timestamp < <host-var or string constant>
Timestamp <= <host-var or string constant>
Timestamp >= <host-var or string constant>
Timestamp > <host-var or string constant>
Timestamp BETWEEN <host-var or string constant>
AND <host-var or string constant>

System parameter DB2 11 behavior Description
356 IBM DB2 11 for z/OS Technical Overview

12.5.4 Deprecated system parameters

The only subsystem parameter deprecated in DB2 11 is PRIVATE_PROTOCOL.

12.6 Release incompatibilities

This section describes the following types of incompatibilities:

� Application and SQL release incompatibilities
� Example of DB2 10 application compatibility
� Utility release incompatibilities
� Command release incompatibilities
� Storage release incompatibilities
� Functions that are deprecated
� Functions that are no longer supported

12.6.1 Application and SQL release incompatibilities

There are IBM and industry standards for SQL that DB2 for z/OS must be compliant with.
DB2 for z/OS might be out of compliance because of a defect or an incomplete
implementation. When detected and prioritized accordingly, try to fix those compliance issues
with one of the upcoming new product releases. The fix might lead to an incompatible
change. If the applications are not adjusted to the changed behavior before going to the new
release, this might break existing applications after the release migration. These changes,
which might lead to incompatibilities are saved up and introduced only on DB2 release
boundary and not with maintenance stream within one major release.

Change to determination of ASUTIME for dynamic statements
In DB2 11 NFM with application compatibility set to V11R1, the dynamic SQL ASUTIME limit for
each routine is used by the resource limit facility. The ASUTIME limit that is specified for the
routine determines the limit. If the dynamic SQL statements in a routine use more ASUTIME
than the limit, then SQLCODE -905 is returned. This SQLCODE occurs even if the value is
lower than the ASUTIME limit of a top-level calling package. The ASUTIME limit that is specified
for the top-level calling package is not considered. In previous versions of DB2, SQLCODE
-905 is issued only when the limit of the top-level calling package is encountered.

The possible impact to your DB2 environment might be that because the limit is enforced for
each monitored routine, your applications might return more SQLCODE -905 errors.

While in conversion mode with application compatibility for your package set to value V10R1,
run your applications with IFCID 0366 or IFCID 0376 enabled. Then, review the trace output
for incompatible changes with the identifier 1103. Review and, if necessary, adjust the ASUTIME
limits on routines and packages that use dynamic SQL.

Automatic rebind of plans and packages created before DB2 Version 9
Plans and packages that were last bound before Version 9 are not supported in DB2 11 CM
and later.

Note: All the system parameters that are listed in Table 12-7 were already defined as
deprecated in DB2 10.
Chapter 12. Installation and migration 357

� Possible impact to your DB2 environment:

If you specify YES or COEXIST for the ABIND subsystem parameter, DB2 11 automatically
rebinds plans and packages that were bound before Version 9. As a result, an execution
delay might occur the first time that such a plan or package is loaded. Also, the automatic
rebind might change the access path to a potentially more efficient access path.

If you specify NO for the ABIND subsystem parameter, negative SQLCODEs are returned for
each attempt to run a package or plan that was bound before Version 9. SQLCODE -908,
SQLSTATE 23510 is returned for packages, and SQLCODE -923, SQLSTATE 57015 is
returned for plans until they are rebound in DB2 11.

� Actions to take:

To identify plans and packages that were bound before Version 9, run the DB2 11
premigration job DSNTIJPM on your DB2 10 catalog. If the job output reports some
packages, you might want to rebind while still in DB2 10 to prevent those automatic
rebinds to occur.

Invalidated plans and packages
During the enabling-NFM processing, plans and packages that reference the DB2 catalog
and directory table spaces which are changed by CATENFM, become invalidated.

Refer to “DSNTIJEN” on page 341 for the list of table spaces which are modified during
CATENFM:

The packages that are dependent on the following catalog tables are also invalidated:

� SYSIBM.SYSCOPY
� SYSIBM.SYSCHECKS
� SYSIBM.SYSCHECKS2
� SYSIBM.SYSCHECKDEP
� SYSIBM.SYSSTRINGS
� SYSIBM.SYSINDEXSPACESTATS
� SYSIBM.SYSTABLESPACESTATS

Actions to take:

� For SYSLGRNX, existing CHAR(6) columns were changed to CHAR(10). You might need
to modify your application before it can run successfully.

� For SYSUTILX, the RBA fields were moved to new fields.

� The SYSCOPY table space was replaced by a new table space, SYSTSCPY.

� The SYSRTSTS table space was replaced by two new table spaces, SYSTSTSS and SYSTSISS.
SYSTSTSS contains the SYSIBM.SYSTABLESPACESTATS catalog table and SYSTSISS contains
the SYSIBM.SYSINDEXSPACESTATS table.

� The SYSSTR table space was replaced by the following table spaces:

– SYSTSCKS, which contains SYSIBM.SYSCHECKS
– SYSTSCHX, which contains SYSIBM.SYSCHECKS2
– SYSTSCKD, which contains SYSIBM.SYSCHECKDEP
– SYSTSSRG, which contains the SYSIBM.SYSSTRINGS catalog table
358 IBM DB2 11 for z/OS Technical Overview

Default for ODBC limited block fetch
The default for the LIMITEDBLOCKFETCH initialization keyword changed.

Limited block fetch guarantees the transfer of a minimum amount of data in response to each
request from the requesting system.

With limited block fetch, a single conversation is used to transfer messages and data between
the requester and server for multiple cursors. Processing at the requester and server is
synchronous. The requester sends a request to the server, which causes the server to send a
response back to the requester. The server must then wait for another request to tell it what
should be done next.

In DB2 10, ODBC limited block fetch was disabled by default. In DB2 11 NFM, ODBC limited
block fetch is enabled by default.

The possible impact to your DB2 environment is that your applications might use limited block
fetch, when they did not do so previously.

Views, MQTs, and SQL table functions with period specifications
In DB2 11, views, materialized query tables, and SQL table functions that were created with
period specifications in DB2 10 are not supported. Period specifications refer to either
system-time or application-time (formerly known as system-time) temporal tables. If such
views, materialized query tables, or SQL functions are used in DB2 11, incorrect results might
occur.

Important: For all the new table spaces mentioned previously, you must make sure that
you adjust your procedures, such as COPY of the DB2 catalog and directory, as well
RECOVER of catalog and directory. When you adjust your procedures, you must make
sure that you remember that there is a specific order, which is required for copying and
recovering your catalog and directory.

Refer to the description of the RECOVER utility in DB2 11 for z/OS Utility Guide and
Reference, SC19-4067 for more information.

Also, make sure that you carefully thing about any other processes or products, which can
rely on the old page set names and adjust those accordingly.

Tip: If the default is not appropriate for your ODBC applications, you can change it by
modifying the value of the LIMITEDBLOCKFETCH initialization keyword.
Chapter 12. Installation and migration 359

To prepare for this change, drop all views, materialized query tables, and SQL table functions
that contain a SYSTEM_TIME or BUSINESS_TIME period specification.

To identify such existing views, materialized query tables, and SQL table functions, run the
DB2 11 premigration job DSNTIJPM on your DB2 10 catalog. You can also manually issue
the following queries.

� To identify views and materialized query tables that were created with a period
specification, issue the following query:

SELECT * FROM SYSIBM.SYSVIEWDEP WHERE BTYPE IN ('W', 'Z') AND DTYPE IN ('V',
'M');

� To identify SQL table functions that were created with a period specification, issue the
following query:

SELECT * FROM SYSIBM.SYSDEPENDENCIES WHERE BTYPE = 'Z';

� To identify SQL scalar functions that were created with a period specification or period
clause, issue the following query:

SELECT * FROM SYSIBM.SYSPACKDEP WHERE BTYPE IN ('W', 'Z') AND DTYPE = 'N';

Dropping columns named CLONE, ORGANIZATION, or VERSIONING
In DB2 11 NFM, a column that is named CLONE, ORGANIZATION, or VERSIONING should be
specified as a delimited identifier to be dropped from a table.

Prior to DB2 11, CLONE, ORGANIZATION, and VERSIONING are reserved keywords that can
appear after the DROP keyword in an ALTER TABLE statement. When CLONE, ORGANIZATION, or
VERSIONING is specified as a simple token (that is, not as a delimited identifier), these
keywords can only match the DROP CLONE, DROP ORGANIZATION, or DROP VERSIONING clauses on
an ALTER TABLE statement.

If you intend to drop a column named CLONE, ORGANIZATION, or VERSIONING in DB2 11, and the
name is specified as a simple token on the ALTER TABLE statement, the DB2 subsystem might
interpret the ALTER TABLE statement as specifying the DROP CLONE, DROP ORGANIZATION, or
DROP VERSIONING clauses instead of the DROP COLUMN clause.

To drop a column named CLONE, ORGANIZATION, or VERSIONING in DB2 11, the name must be
specified as a delimited identifier (for example, DROP "ORGANIZATION" or DROP "CLONE",
assuming is the delimiter for a delimited identifier.

Note: In DB2 11, you can still create a view to reference a System Period Temporal Table
(STT), but a temporal predicate (For System_Time....) is not allowed in the view definition.
The following option is allowed:

CREATE VIEW V_STT1 AS SELECT * from STT1

The following option not allowed:

CREATE VIEW V_STT1_NO AS SELECT * FROM STT1 FOR SYSTEM_TIME AS OF 2013-09-26
15:25:00.0

The temporal predicate is disallowed in a view definition to avoid nesting of temporal
predicates, such as:

SELECT * FROM V_STT1_NO FOR SYSTEM TIME AS OF 2012-09-27 09:00:00.0.

In this case, there is no clearly defined semantic whether to use the temporal predicate
from the outmost SELECT or the inner most SELECT.
360 IBM DB2 11 for z/OS Technical Overview

Alternatively, you can specify the optional COLUMN keyword in the DROP COLUMN clause, for
example DROP COLUMN ORGANIZATION or DROP COLUMN CLONE.

See Table 12-8 for a summary of DROP COLUMN for CLONE.

Table 12-8 DROP example for CLONE

Allow XPath processing to continue with error on filtered results
In DB2 11 NFM with application compatibility set to V11R1, XPath processing might return
fewer errors on predicate expressions with an explicit cast or an operation with an invalid
value.

In previous versions of DB2, even though the invalid result is filtered from the result set, XPath
processing returns an error SQLCODE. In DB2 11, examples of XPath expressions that have
fewer errors include situations when:

� Data is filtered from the result by the predicate before an invalid operation such as division
of a number by zero

� Data is explicitly cast to an incompatible data type

Here is an example, with the definition of two books. See Example 12-9.

Example 12-9 Books definition

<books>
 <book><title>XQuery 3.0</title>
 <publishDate>soon</publishDate>

Prerequisite status SQL statement Result

CLONE relationship exists ALTER TABLE ... DROP CLONE RC 0, Clone table dropped

CLONE relationship exists ALTER TABLE ... DROP “CLONE” SQLCODE -148, reason-code 11, which means:
The ALTER statement attempted to change a
table that has a defined clone, or a table that is a
clone.

CLONE relationship exists ALTER TABLE ... DROP COLUMN
CLONE

SQLCODE +610, because this is a schema
change which leads to AREOR, that is it is a
pending change.

NO CLONE relationship ALTER TABLE ... DROP CLONE SQLCODE -650, reason-code 20, which means:
ALTER TABLE DROP CLONE cannot be used to
drop a clone when the table does not have a
defined clone.

NO CLONE relationship ALTER TABLE ... DROP “CLONE” SQLCODE -104, because DROP COLUMN
needs keyword RESTRICT

NO CLONE relationship ALTER TABLE .. DROP “CLONE”
RESTRICT

SQLCODE +610, because this is a schema
change which leads to AREOR, that is it is a
pending change.

NO CLONE relationship ALTER TABLE ... DROP COLUMN
CLONE

SQLCODE +610, because this is a schema
change which leads to AREOR, that is it is a
pending change.

Tip: While in conversion mode with application compatibility for your package set to value
V10R1, run your applications with IFCID 0366 or IFCID 0376 enabled. Then, review the
trace output for incompatible changes with the identifier 1102.
Chapter 12. Installation and migration 361

 <price>40.00</price>
 <edition>kindle</edition>
 </book>
 <book><title>XQuery 3.0</title>
 <publishDate>2013-09-30</publishDate>
 <price>50.00</price>
 <edition>paper</edition>
 </book>
</books>

Here is the query:

XMLQUERY('/books/book[title = "XQuery 3.0"][xs:date(publishDate) >
"2013-10-01"][edition="paper"]' passing xmlcol)

You can see that xs:date(publishDate) would be an error for the first book because “soon”
cannot be cast to date. However, it depends on the order the predicates are evaluated. If
[edition="paper"] is evaluated first, the first book would be filtered out before the cast on
date. If xs:date(publishDate) > "2013-10-01" is evaluated first, then the error shows up.

DB2 11 defers the error reporting until the last predicate is evaluated. Thus, the error is not
reported. Due to the flexibility of XML, we try to provide more usability and fewer errors.

XML document node implicitly added on insert and update
In DB2 11 NFM with application compatibility set to V11R1, if an XML document does not have
a document node, then one is added during insert and update operations.

In previous versions of DB2, document nodes are not implicitly added and an SQL insert or
update of an XML document returned SQLCODE -20345. To avoid the error, an application
needs to invoke the XMLDOCUMENT function before the insert or update.

In DB2 11, an XML document node is added, if one does not exist in the XML document.

The result is, that your applications might return fewer errors on insert and update operations.

Here is an example:

select xmlelement(element "test", 1) from sysibm.sysdummy1;

returns

<?xml version="1.0"><test>1</test>
insert into T1(xmlcol) values ('<?xml version="1.0"><test>1</test>');

works fine.

However, if you use XMLELEMENT directly in the insert as shown in the following example, you
get -20345 on DB2 10.

insert into T1(xmlcol) values (xmlelement(element "test", 1));

Tip: While in conversion mode with application compatibility for your package set to value
V10R1, run your applications with IFCID 0366 or IFCID 0376 enabled. Then, review the
trace output for incompatible changes with the identifier 1101. In addition, you can review
your applications for use of the XMLDOCUMENT function.
362 IBM DB2 11 for z/OS Technical Overview

The reason is that in DB2 that XMLELEMENT generates an XML element node but it does not
generate a document node which is an invisible root of an XML tree. Insert requires an
document node. Thus, you get -20345.

The reason that insert with XML string works is because the XMLPARSE function implicitly
generates an XML document node. With DB2 10, you have to inject an XMLDOCUMENT function
as shown in the following example to make the insert work.

insert into T1(xmlcol) values (XMLDOCUMENT(xmlelement(element "test", 1)));

On DB2 11, you do not have to do that. The original insert would work.

Client information results from ADMIN_COMMAND_DB2
Starting in DB2 11 CM, the ADMIN_COMMAND_DB2 result set row in the created global temporary
table SYSIBM.DB2_THREAD_STATUS when processing-type = "THD" has changed. The column
data type and maximum lengths for WORKSTATION, USERID, APPLICATION, and ACCOUNTING
have changed.

In DB2 11 the following column data types and lengths change:

� WORKSTATION increases from CHAR(18) to VARCHAR(255).
� USERID increases from CHAR(16) to VARCHAR(128).
� APPLICATION increases from CHAR(32) to VARCHAR(255).
� ACCOUNTING increases from CHAR(247) to VARCHAR(255).

Your applications now receive a VARCHAR data type and possibly a different length client
information value. The length is no longer padded to the supported maximum length.

In DB2 11, the stored procedure SYSPROC.ADMIN_COMMAND_DB2 also allows users to
specify PROCESSING_TYPE (formerly PARSE_TYPE) LOB tables spaces (LS), XML table
spaces (XS) and unknown spaces (UN) to retrieve information about table spaces when
issuing the command -DISPLAY DATABASE. Based on the three output messages by type from
ADMIN_COMMAND_DB2, you can generate COPY utility jobs to create image copies for the
table spaces.

You should review your applications for use of the ADMIN_COMMAND_DB2 stored
procedure.

Altering limit keys blocks immediate definition changes
In DB2 11 NFM, if you alter a limit key for certain table space types, you cannot make any
immediate definition changes until the limit key changes are materialized.

In previous versions of DB2, altering a limit key was an immediate definition change. In DB2
11, altering a limit key for one of the following types of partitioned table spaces is now a
pending definition change:

� Range-partitioned universal table spaces

� Table spaces that are partitioned (non-universal) with table-controlled partitioning

As in DB2 10, you cannot make immediate definition changes before pending definition
changes are materialized.

Restriction: Some immediate alter operations that worked in previous versions of DB2
might fail in DB2 11 with SQLCODE -20385 reason code 1 or 2.
Chapter 12. Installation and migration 363

The new way for altering limit keys is described in detail in 4.3, “Improved availability when
altering limit keys” on page 61.

Removing the SYSPUBLIC schema from the SQL PATH routine option
Starting in DB2 11 conversion mode, SYSPUBLIC is the schema that is used for public
aliases. As such, the SQL PATH routine option must not specify the SYSPUBLIC schema.

In previous versions of DB2, you could not define functions, procedures, distinct types, and
sequences in the SYSPUBLIC schema, but you were not restricted from specifying
SYSPUBLIC as part of the SQL PATH. If you had specified SYSPUBLIC as part of the SQL
PATH, it had no effect on their applications. With DB2 11 you will no longer be able to specify
SYSPUBLIC as part of the SQL PATH.

Creation or resolution of some objects that worked in previous versions of DB2 might fail in
DB2 11 with SQLCODE -713 if SYSPUBLIC is specified as part of the SQL PATH.

Query the catalog to see if any object schemas use SYSPUBLIC as the schema qualifier.
This is highly unlikely for any object, but most likely with objects that use the SQL PATH
(functions, procedures, distinct types, and sequences).

Change any existing SET PATH statements to not specify SYSPUBLIC as a schema.

SYSIBMADM schema added to the SQL path
In DB2 11 NFM with application compatibility set to V11R1, SYSIBMADM is added to the SQL
path as an implicit schema.

If SYSIBMADM is not specified as an explicit schema in the SQL path, it is included as an implicit
schema at the beginning of the path after SYSIBM, SYSFUN, and SYSPROC.

Applications that reference the content of the CURRENT PATH special register now have the
SYSIBMADM schema returned when implicit schemas are included in the path. For example, the
statement SELECT CURRENT PATH FROM SYSIBM.SYSDUMMY1 now returns “SYSIBM”, ”SYSFUN”,
”SYSPROC”, ”SYSIBMADM”, ”authid”, where authid is the authorization ID of the statement,
instead of “SYSIBM”, ”SYSFUN”, ”SYSPROC”, ”authid.”

Change in result for CAST(string AS TIMESTAMP)
In DB2 11 NFM with application compatibility set to V11R1, the result of CAST(string AS
TIMESTAMP) is changed in some cases.

Previously, when DB2 executed CAST(string AS TIMESTAMP), DB2 interpreted an 8-byte
string as a Store Clock value and a 13-byte string as a GENERATE_UNIQUE value. This
interpretation might result in an incorrect result from the CAST specification. Starting with
DB2 11, with the application compatibility set to V11R1, when an 8-byte string or a 13-byte
string is input to CAST(string AS TIMESTAMP), DB2 interprets the input strings as string
representations of TIMESTAMP values.

An invalid representation of an 8-byte or 13-byte string in CAST(string AS TIMESTAMP)
results in SQLCODE -180.

Suppose that you execute the SQL statements in DB2 11 NFM listed in Example 12-10 and
Example 12-11 which show the DB2 10 and the DB2 11 behavior.

The examples should help you understand the issue.
364 IBM DB2 11 for z/OS Technical Overview

Example 12-10 sets APPLCOMPAT special register to V10R1 to simulate the DB2 10 behavior.
The casting character string 01/01/2013 to TIMESTAMP, which is supposed to represent
January 1st, 2013, results in a completely different timestamp, dated 2034.

In the second part of Example 12-10, you see that if you provide the first 8 bytes of the store
clock value, that is X'CAB5060708090100', which represents January 1st, 2013, casting
returns the expected date.

Example 12-10 CAST as TIMESTAMP with APPLCOMPAT set to V10R1

SELECT CAST('1/1/2013' AS TIMESTAMP) FROM SYSIBM.SYSDUMMY1;
---------+---------+---------+---------+---------+---------+

---------+---------+---------+---------+---------+---------+
2034-07-25-16.43.41.599503

SELECT CAST(X'CAB5060708090100' AS TIMESTAMP) FROM SYSIBM.SYSDUMMY1;
---------+---------+---------+---------+---------+---------+--------

---------+---------+---------+---------+---------+---------+--------
2013-01-01-20.37.04.246928

Example 12-11 uses the exact same SQL statements but sets the APPLCOMPAT special register
to V11R1. The first SELECT statement now returns what you in fact might have expected, that
is the date of January 1st, 2013.

The second SELECT statement fails now, because in DB2 11, DB2 interprets the input
strings as string representations of TIMESTAMP values, which X'CAB5060708090100'
clearly not is.

Example 12-11 CAST as TIMESTAMP with APPLCOMPAT set to V11R1

SELECT CAST('1/1/2013' AS TIMESTAMP) FROM SYSIBM.SYSDUMMY1;
---------+---------+---------+---------+---------+---------

---------+---------+---------+---------+---------+---------
2013-01-01-00.00.00.000000

SELECT CAST(X'CAB5060708090100' AS TIMESTAMP) FROM SYSIBM.SYSDUMMY1; 00
---------+---------+---------+---------+---------+---------+---------+----

---------+---------+---------+---------+---------+---------+---------+----
DSNE610I NUMBER OF ROWS DISPLAYED IS 0
DSNT408I SQLCODE = -180, ERROR: THE DATE, TIME, OR TIMESTAMP VALUE *N IS
 INVALID

Example 12-12 lists an example.

Tip: While in DB2 11 conversion mode, or in DB2 11 NFM with application compatibility set
to V10R1, identify applications with this incompatibility by starting a trace for IFCID 0366 or
IFCID 0376, and then running the applications. Review the trace output for incompatible
changes with the identifier 1109. If you need to convert Store Clock values to the
TIMESTAMP data type, use the TIMESTAMP built-in function instead of CAST(string AS
TIMESTAMP).
Chapter 12. Installation and migration 365

Example 12-12 Invoke scalar function TIMESTAMP with store clock value

SELECT TIMESTAMP(X'CAB5060708090100') FROM SYSIBM.SYSDUMMY1;
---------+---------+---------+---------+---------+---------+-

---------+---------+---------+---------+---------+---------+-
2013-01-01-20.37.04.246928

New maximum lengths for values that are returned for some built-in
functions
In DB2 11 NFM with application compatibility set to V11R1, the maximum lengths for values
that are returned for the SPACE and VARCHAR built-in functions are decreased from 32767 to
32764.

If the length of the output string for any of these functions is greater than 32764 bytes,
SQLCODE -171 is returned.

Review your applications for use of these functions, and, if necessary, modify the function
input so that the result does not exceed 32764 bytes. While in conversion mode with
application compatibility for your package set to value V10R1, run your applications with IFCID
0366 or IFCID 0376 enabled. Then, review the trace output for incompatible changes with the
identifier 1110 or 1111.

Timestamp string representations
DB2 11 NFM with application compatibility set to V11R1 strictly enforces valid string
representations of timestamp values.

DB2 11 behavior with application compatibility set to V11R1 is equivalent to DB2 10 with
subsystem parameter BIF_COMPATIBILITY = CURRENT. With application compatibility set to
V10R1, the enforcement of valid string representations depends on the BIF_COMPATIBILITY
value.

Review your setting of the BIF_COMPATIBILITY subsystem parameter. If the value is not
CURRENT, while in conversion mode with application compatibility for your package set to value
V10R1, run your applications with IFCID 0366 or IFCID 0376. Then, review the trace output
with the function identifier 3 to identify SQL with unsupported time stamp values. Make
appropriate changes to your SQL.

12.6.2 Utility release incompatibilities

As for some other areas, utilities also have some incompatible changes, which are described
in this section.

Parallelism change to the REBUILD INDEX utility
In DB2 11 conversion mode, the degree of parallelism can increase for the REBUILD INDEX
utility.

The REBUILD INDEX utility previously limited the degree of parallelism to 18 subtasks. Now,
because of the PARALLEL option value or the PARAMDEG_UTIL subsystem parameter value, the
amount of parallelism might increase.

Attention: Increasing the degree of parallelism could constrain your system resources.
366 IBM DB2 11 for z/OS Technical Overview

Refer to “PARAMDEG_UTIL” on page 350 if you want to read more about PARAMDEG_UTIL
system parameter.

Changes to REORG default values
In DB2 11 conversion mode, the following changes are made to the default values for the
REORG utilities:

The following changes are made to the default values for the REORG TABLESPACE utility:

� The default DRAIN value is changed from WRITERS to ALL.

� The NOPAD keyword is now the default value in the UNLOAD EXTERNAL clause and the
DISCARD clause.

For the REORG INDEX utility the default for the DRAIN value is also changed from WRITERS to ALL.

Change to DSNU126I return code when running REORG on an LOB table
space
DB2 10 deprecated the use of REORG TABLESPACE SHRLEVEL NONE for LOB table spaces. When
you nevertheless used it, a REORG SHRLEVEL REFERENCE was performed and the DSNU126I
message, which indicates that SHRLEVEL NONE is no longer supported, was associated with
RC 0. If you try to use REORG LOG SHRLEVEL NONE, the job fails with DSNU126I and return code
8.

In preparation for this change, review your REORG job outputs for instances of DSNU126I while
you are still running in DB2 10.

Changes to RECOVER utility
The TOLOGPOINT, TORBA, and RESTOREBEFORE keywords can accept basic 6-byte format or
extended 10-byte format based on the length of the RBA or LRSN value that is specified.
Previously, any length was accepted and then extended or truncated as required.

Operands of 6 bytes or less are interpreted as being in basic 6-byte format. Operands greater
than 6 bytes are interpreted as being in ended 10-byte format. In both cases, padding on the
left with X'00' occurs to form complete 6-byte or 10-byte operands. Conversion between basic
and extended format is performed as required for the recovery operation.

Changes to DSNACCOX stored procedure default values
In DB2 11 NFM, changes are made to the defaults of the DSNACCOX stored procedure.

RRTDataSpaceRat input parameter default value is -1. Previously, it was 2.0.

RRTDataSpaceRat is the ratio of the space allocated to the actual space used. Specifies a
criterion for recommending that the REORG utility is to be run on table space for space
reclamation. If the following condition is true, DSNACCOX recommends running REORG:

� The object is not using hash organization.

� The SPACE allocated is greater than RRTDataSpaceRat multiplied by the actual space used.
(SPACE > RRTDataSpaceRat × (DATASIZE/1024))

Tip: Review your calls to the DSNACCOX stored procedure. Look for NULL as the value of
RRTDataSpaceRat. The new default turns off this criterion. Any positive values continue to
be processed as in DB2 10.
Chapter 12. Installation and migration 367

Changes to DSNACCOX stored procedure result set
In DB2 11 NFM, ’XS’ for XML table spaces and ’LS’ for LOB table spaces are now possible
values of the OBJECTTYPE column results.

Review your processing of results from the DSNACCOX stored procedure. Unexpected
values might be handled as invalid by applications processing these result sets.

Changes to DSNACCOX processing for REORG and COPY
recommendations
In DB2 11 NFM, more information is evaluated when REORG or COPY is recommended.

When the input parameter QueryType specifies REORG or COPY recommendations,
DSNACCOX also checks the database exception table (DBET) entry for an exception state.

Review your processing of results from the DSNACCOX stored procedure. Unexpected
values might be handled as invalid. Database exception table (DBET) states are added to the
OBJECTSTATUS column of the result set.

Changes to DSNACCOX stored procedure processing for ChkLvl 8
In DB2 11 NFM, a new row is not inserted if the result set already has a recommendation for
a utility operation.

When the input parameter ChkLvl specifies level 8 processing, DSNACCOX adds the utility
operation recommendation to an existing row if one exists for the object. If an existing row
does not exist, DSNACCOX continues to add a row.

ChkLvl 8 means: Check for objects that have restricted states. The value of the QueryType
option must be ALL or contain RESTRICTED when this value is specified. The
OBJECTSTATUS column of the result set indicates the restricted state of the object. A row is
added to the result set for each object that has a restricted state.

Review your processing of results from the DSNACCOX stored procedure. Unexpected
values might be handled as invalid. New rows for objects are only added to the result set if the
object is not already present.

Differences in materializing limit key changes
In DB2 11 NFM, you can no longer materialize limit key changes for certain types of table
spaces by using REORG TABLESPACE SHRLEVEL NONE or LOAD REPLACE.

Instead, this alter is a pending definition change, and the data remains accessible before the
limit key changes are materialized. However, you cannot use the REORG TABLESPACE
utility with the SHRLEVEL NONE option or the LOAD utility with the REPLACE option to
materialize these changes. (SHRLEVEL NONE is the default value for REORG
TABLESPACE. If you do not specify the SHRLEVEL option for REORG TABLESPACE,
SHRLEVEL NONE is in effect.)

To learn more about the new behavior for limit key changes, you should refer to 4.3,
“Improved availability when altering limit keys” on page 61.

12.6.3 Command release incompatibilities

In terms of commands, there are just a few incompatible changes that you should be aware
of. They are listed within this section.
368 IBM DB2 11 for z/OS Technical Overview

Change to DISPLAY UTILITY output
The output for the DISPLAY UTILITY command now includes the date and the time when the
job was submitted.

A sample output is available in 11.6.1, “DISPLAY UTILITY additional output” on page 306.

Removing the SYSPUBLIC schema from the PATH bind option
Starting in DB2 11 conversion mode, SYSPUBLIC is the schema that is used for public
aliases. As such, the PATH bind option must not specify the SYSPUBLIC schema.

In previous versions of DB2, you were not restricted from specifying SYSPUBLIC as part of
the PATH bind option. With DB2 11 you will no longer be able to specify SYSPUBLIC as part
of the PATH bind option.

Creation or resolution of some objects that worked in previous versions of DB2 might fail in
DB2 11 with SQLCODE -713 if SYSPUBLIC is specified as part of the PATH bind option.

Query the catalog to see if any object schemas use SYSPUBLIC as the schema qualifier.
This is highly unlikely for any object, but most likely with objects that use the PATH (functions,
procedures, and sequences).

Change any existing PATH bind option to not specify SYSPUBLIC as a schema.

12.6.4 Storage release incompatibilities

When you migrate to DB2 11, be aware of the storage release incompatibilities.

There is a new minimum that your z/OS application programmers have to set for HVSHARE.

In DB2 11, the required amount of contiguous 64-bit shared private storage for each DB2
subsystem is 1 TB. In previous releases, the minimum requirement was 128 GB.

12.6.5 Functions that are deprecated

During migration, be aware of the functions that are deprecated in DB2 11. Although they are
supported in DB2 11, support for these functions might be removed in the future. Avoid
creating new dependencies that rely on these functions, and if you have existing
dependencies on them, develop plans to remove these dependencies.

The following functions are deprecated in DB2 11.

Tip: Determine if any of your applications parse output of the DISPLAY UTILITY command
and update the applications if needed.

Note: PUBLIC ALIASES can only be defined for SEQUENCEs. This functionality does not
apply to tables.

Restriction: If you do not have an adequate amount of contiguous 64-bit shared private
storage, DB2 11 will not start.
Chapter 12. Installation and migration 369

NEWFUN SQL processing options and DECP values
The SQL processing options NEWFUN(YES) and NEWFUN(NO) are deprecated, and the
NEWFUN(V11) option is added in DB2 11. Use NEWFUN(V11) instead of NEWFUN(YES).
Use NEWFUN(V10) instead of NEWFUN(NO). The NEWFUN(V8) and NEWFUN(V9) values
are supported in DB2 11, but they cause the precompilation process to support only a Version
8 or Version 9 level of function.

The DSNHDECP parameter values NEWFUN=YES and NEWFUN=NO are also deprecated.
Although these values are supported in DB2 11, you should use NEWFUN=V11 instead of
NEWFUN=YES and use NEWFUN=V10 instead of NEWFUN=NO.

Some utility options
The following DB2 utility options are deprecated. Although they are supported in DB2 11, they
will be removed in a later release of DB2.

� REORG TABLESPACE UNLOAD ONLY

Use the UNLOAD utility instead.

� REORG TABLESPACE UNLOAD PAUSE

Use the UNLOAD FORMAT INTERNAL utility instead.

� REORG TABLESPACE UNLOAD EXTERNAL

Use the UNLOAD utility instead.

� REORG TABLESPACE INDREFLIMIT

Use the DSNACCOX stored procedure to determine if the object needs to be reorganized.

� REORG TABLESPACE OFFPOSLIMIT

Use the SYSPROC.DSNACCOX stored procedure to determine if the object needs to be
reorganized.

� REORG TABLESPACE INDREFLIMIT REPORTONLY and REORG TABLESPACE OFFPOSLIMIT
REPORTONLY

REPORTONLY is valid only when the INDREFLIMIT or OFFPOSLIMIT option is specified, and
these options are deprecated.

� REORG INDEX UNLOAD ONLY

Use the DIAGNOSE utility stop the process instead.

� REORG INDEX UNLOAD PAUSE

Use the DIAGNOSE utility stop the process instead.

� REORG INDEX LEAFDISTLIMIT

Use the DSNACCOX stored procedure to determine if the object needs to be reorganized.

� REORG INDEX LEAFDISTLIMIT REPORTONLY

REPORTONLY is valid only when the LEAFDISTLIMIT option is specified, and this option is
deprecated.

� LOAD FORMAT UNLOAD

This is what you used when you generated the SYSREC using REORG TABLESPACE UNLOAD
ONLY. A few steps back indicated that this deprecated in DB2 11 and that you should use
UNLOAD FORMAT INTERNAL if you want to generate the same type of date.

Note: You can only use NEWFUN(V8) or NEWFUN(V9) as a precompiler option. It is not
allowed as DSNHDECP parameter option.
370 IBM DB2 11 for z/OS Technical Overview

Use the LOAD FORMAT INTERNAL option to load data that was unloaded with UNLOAD
FORMAT INTERNAL.

� COPY CHANGELIMIT

Use the DSNACCOX stored procedure to determine if the object needs to be copied.

� REPAIR VERSIONS

Use the REPAIR CATALOG utility instead.

12.6.6 Functions that are no longer supported

If you are migrating to DB2 11 from DB2 10, be aware of the functions that are no longer
supported.

Password protection for active log and archive log data sets
As of DB2 11, password protection for active log and archive log data sets is no longer
supported.

Previous NEWFUN values
As of DB2 11, the DSNH CLIST no longer supports values of NEWFUN=V8 or NEWFUN=V9.

Some DB2-supplied routines
The following DB2-supplied routines are removed in DB2 11 and are unavailable to callers
after migration to conversion mode. A report is added to the DSNTIJPM premigration job to
detect occurrences of these routines on an existing subsystem or data sharing group, and to
specify that these routines are not available in DB2 11.

� SYSPROC.DSNAEXP

� AMI-based DB2 MQ functions1

– DB2MQ1C.GETCOL
– DB2MQ1C.MQPUBLISH
– DB2MQ1C.MQREAD
– DB2MQ1C.MQREADALL
– DB2MQ1C.MQREADALLCLOB
– DB2MQ1C.MQREADCLOB
– DB2MQ1C.MQRECEIVE
– DB2MQ1C.MQRECEIVEALL
– DB2MQ1C.MQRECEIVEALLCLOB
– DB2MQ1C.MQRECEIVECLOB
– DB2MQ1C.MQSEND
– DB2MQ1C.MQSUBSCRIBE
– DB2MQ1C.MQUNSUBSCRIBE
– DB2MQ2C.GETCOL
– DB2MQ2C.MQPUBLISH
– DB2MQ2C.MQREAD
– DB2MQ2C.MQREADALL
– DB2MQ2C.MQREADALLCLOB
– DB2MQ2C.MQREADCLOB
– DB2MQ2C.MQRECEIVE
– DB2MQ2C.MQRECEIVEALL
– DB2MQ2C.MQRECEIVEALLCLOB

1 They were deprecated in DB2 9. You can convert those applications that use the AMI-based functions to use the
MQI-based functions
Chapter 12. Installation and migration 371

– DB2MQ2C.MQRECEIVECLOB
– DB2MQ2C.MQSEND
– DB2MQ2C.MQSUBSCRIBE
– DB2MQ2C.MQUNSUBSCRIBE
– DB2MQ1N.GETCOL
– DB2MQ1N.MQPUBLISH
– DB2MQ1N.MQREAD
– DB2MQ1N.MQREADALL
– DB2MQ1N.MQREADALLCLOB
– DB2MQ1N.MQREADCLOB
– DB2MQ1N.MQRECEIVE
– DB2MQ1N.MQRECEIVEALL
– DB2MQ1N.MQRECEIVEALLCLOB
– DB2MQ1N.MQRECEIVECLOB
– DB2MQ1N.MQSEND
– DB2MQ1N.MQSUBSCRIBE
– DB2MQ1N.MQUNSUBSCRIBE
– DB2MQ2N.GETCOL
– DB2MQ2N.MQPUBLISH
– DB2MQ2N.MQREAD
– DB2MQ2N.MQREADALL
– DB2MQ2N.MQREADALLCLOB
– DB2MQ2N.MQREADCLOB
– DB2MQ2N.MQRECEIVE
– DB2MQ2N.MQRECEIVEALL
– DB2MQ2N.MQRECEIVEALLCLOB
– DB2MQ2N.MQRECEIVECLOB
– DB2MQ2N.MQSEND
– DB2MQ2N.MQSUBSCRIBE
– DB2MQ2N.MQUNSUBSCRIBE

An application programming default value
The following application programming default value is removed in DB2 11:

CHARSET

ENABLE and DISABLE (REMOTE) REMOTE
(location-name,…,<luname>,…)
In DB2 11, you cannot use the BIND PACKAGE options ENABLE and DISABLE (REMOTE)
REMOTE (location-name,…,<luname>,…) to enable or disable specific remote connections.
You can use the ENABLE(REMOTE) or DISABLE(REMOTE) options to enable or disable all
remote connections.

Sysplex query parallelism
In DB2 11, Sysplex query parallelism is no longer supported. Packages that used Sysplex
query parallelism in releases before DB2 11 use CPU parallelism in DB2 11.

DSN1CHKR utility
In DB2 11, the DSN1CHKR utility is no longer supported. The DSN1810I and DSN1816I
messages are issued when the DSN1CHKR utility is invoked.
372 IBM DB2 11 for z/OS Technical Overview

12.7 Controlling application compatibility

Requirements coming from SQL standard compliance and completion of support for new
functions produce changes that might impact the compatibility of existing applications.

We look at a pervasive example of incompatibility in DB2 10 and provide an overview of the
application compatibility support in DB2 11.

� Example of DB2 10 application compatibility
� Overview of application compatibility in DB2 11

12.7.1 Example of DB2 10 application compatibility

One example for an incompatible change in DB2 10 was the changed results of a CHAR
built-in scalar function. V9 result for CHAR was not consistent with the result for VARCHAR
and CAST of decimal data types.

The problem that was raised for those functions was that leading zeroes were no longer
returned when there is a decimal point. Though the functions were now working as designed
to conform to SQL standards, this is an incompatible change if the applications rely on the
leading zeros.

Example 12-13 shows the result of the implicit casting of a decimal value using the CHAR
built-in scalar function in DB2 9. Notice that the leading zeros are included in the result in
column DEC2CHAR but not in DECVARCHAR.

Example 12-13 V9 result of implicit cast of decimal using CHAR function

SELECT CHAR (DECIMAL(00123.45,7,2)) AS DEC2CHAR
, VARCHAR (DECIMAL(00123.45,7,2)) AS DEC2VARCHAR
FROM SYSIBM.SYSDUMMY1 ;
---------+---------+---------+---------+---------+---------+---
DEC2CHAR DEC2VARCHAR
---------+---------+---------+---------+---------+---------+---
00123.45 123.45
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

The incompatible change in DB2 10 is shown in Example 12-14. The same SELECT in DB2
10 shows that the result of CHAR is consistent with what VARCHAR returns.

Example 12-14 V10 result of implicit cast of decimal using CHAR function

SELECT CHAR (DECIMAL(00123.45,7,2)) AS DEC2CHAR
, VARCHAR (DECIMAL(00123.45,7,2)) AS DEC2VARCHAR
FROM SYSIBM.SYSDUMMY1 ;
---------+---------+---------+---------+---------+---------+-----
DEC2CHAR DEC2VARCHAR
---------+---------+---------+---------+---------+---------+-----
123.45 123.45
DSNE610I NUMBER OF ROWS DISPLAYED IS 1
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

The explicit CAST of a 00123.45 decimal value to CHAR or VARCHAR always returned the 123.45
character string.
Chapter 12. Installation and migration 373

The change to be consistent in DB2 10 caused some applications to be incompatible. DB2 10
introduced a BIF_COMPATIBILITY system parameter. If the BIF_COMPATIBILITY subsystem
parameter is set to V9_DECIMAL_VARCHAR, it reverts the result to how it looked before migrating
to DB2 10. Another way to bring back the DB2 9 behavior was at the SYSCOMPAT_V9
package-level setting to beginning of PATH BIND option or in CURRENT PATH.

Because at some point you should have adjusted your applications to the SQL Standard,
IFCID 366 was also introduced. You can use IFCID 366 to report applications that use the
build-in scalar function CHAR with a decimal value. The trace record is written out once per
thread for a particular SQL statement. Thus, this trace record can help identify which
applications need to be changed to support the new behavior.

Start the trace by using the following DB2 command:

-START TRACE(P) CLASS(32) IFCID(366)

A detailed description about which information you can get from turning on the tracing of
IFCID 366 is provided later in this section, after a description of the enhancements that are
introduced for similar incompatibility situation in DB2 11.

12.7.2 Overview of application compatibility in DB2 11

Sometimes incompatible changes cannot be avoided when SQL functionality is changed in a
new DB2 release. DB2 11 helps you decide when your applications are ready for new SQL
functionality.

You can influence the availability of new SQL functions after you are in NFM in the following
ways:

� A new system parameter providing the default BIND option

New system parameter APPLCOMPAT is introduced to support the concept of V10
Application Compatibility. Acceptable values are V10R1 and V11R1. When you migrate a
DB2 subsystem, the setting defaults to V10R1. When you install a new DB2 subsystem, it
defaults to V11R1.

V10R1 The default BIND option is V10R1 compatibility behavior.

V11R1 The default BIND option is Vd11R1 compatibility behavior. This
value is allowed in only NFM.

Note: If an index expression is created with the CHAR BIF in the index key, the trace is
written during the execution of the INSERT SQL statement that inserts into the index.
Likewise, for a materialized query table, the trace record is written on REFRESH TABLE.
374 IBM DB2 11 for z/OS Technical Overview

� BIND/REBIND options for packages

The APPLCOMPAT BIND option specifies the package compatibility level behavior for static
SQL. The acceptable values and meanings are the same as described for the system
parameter.

Use Table 12-9 to determine defaults that apply if you do not specify the APPLCOMPAT
keyword on the BIND or REBIND statements.

Table 12-9 APPLCOMPAT defaults for BIND

� Special Register for Dynamic SQL (CURRENT APPLICATION COMPATIBILITY)

The CURRENT APPLICATION COMPATIBILITY specifies the compatibility level support for
dynamic SQL.

The data type is VARCHAR(10).

The initial value of CURRENT APPLICATION COMPATIBILITY is determined by the value of the
APPLCOMPAT bind parameter for the package. The initial value of CURRENT APPLICATION
COMPATIBILITY in a user-defined function or stored procedure is inherited from the value of
bind option APPLCOMPAT for the user-defined function or stored procedure package

Set the value with the SET APPLICATION COMPATIBILITY statement.

When your DB2 environment is migrated to NFM you can run applications with the features
and behavior of either previous versions or the current version. For static SQL, the behavior is
determined by application compatibility value of a package. For dynamic SQL, the behavior is
determined by the APPLICATION COMPATIBILITY special register. If no application compatibility

Attention: Even if you are still in DB2 11 compatibility mode, the assembly of your
DSNZPARM works fine if you set the value to V11R1, which you are supposed to use only
after you are in NFM.

Also, activating the changed DSNZPARM by using the -SET SYSPARM command or by
restarting your DB2 subsystem works fine. You will not see any indication that the system
parameter is set to a “wrong” setting in the sense that you cannot use the V11R1 while in
CM.

If you try to BIND a package without specifying anything for APPLCOMPAT on the BIND
statement, DB2 uses whatever is set in APPLCOMPAT system parameter and this would be
V11R1 in this scenario. As a consequence, the BIND fails with the following error message:

DSNT225I -DB0B BIND ERROR FOR PACKAGE DB0B.DSNESPCS.DSNESM68 APPLCOMPAT(V11R1)
OPTION IS NOT SUPPORTED
DSNT233I -DB0B UNSUCCESSFUL BIND FOR PACKAGE =
DB0B.DSNESPCS.DSNESM68.(UK92200)

Process Default value

BIND PLAN N/A

BIND PACKAGE The value of subsystem parameter APPLCOMPAT

REBIND PLAN N/A

REBIND PACKAGE Existing value. If there is no existing value, the APPLCOMPAT
subsystem parameter is used.

REBIND TRIGGER PACKAGE Existing value. If there is no existing value, the APPLCOMPAT
subsystem parameter is used.
Chapter 12. Installation and migration 375

value is set, then the default value is determined by the APPLCOMPAT subsystem parameter.
The default APPLCOMPAT value for a new installation is set to the current DB2 version. The
default APPLCOMPAT value for a migrated environment is set to the previous DB2 version.

APPLCOMPAT = V10R1
When you set the application compatibility value to V10R1, applications that attempt to use
functions and features that are introduced in DB2 11 or later might behave differently or
receive an error.

When your DB2 11 environment is migrated to NFM, you can run individual applications with
some of the features and behavior of DB2 10. If application compatibility is set to V10R1 and
you attempt to use the new functions of a later version, SQL might behave differently or result
in a negative SQLCODE, such as SQLCODE -4743.

A migrated DB2 11 environment in conversion mode can have only applications that are
bound with V10R1 application compatibility. This behavior ensures that fallback to a previous
version of DB2 is successful.

Table 12-10 shows many of the features and functions that are controlled by application
compatibility, and the results if you specify V10R1.

You might want to ignore the IFCID information in the third column for now. The contents of
the IFCID records are discussed later.

Table 12-10 Behavior of V10R1 application compatibility

Attention: If you get an error testing DB2 11 DML in NFM, double check the setting of
CURRENT APPLICATION COMPATIBILITY for dynamic SQL, and APPLCOMPAT bind option for
static SQL.

Feature or function Result with V10R1
application compatibility

IFCID 0366 or
IFCID 0376
trace function
code

Specification of bind option DBPROTOCOL(DRDACBF) DSNT298I

A period specification that follows the name of a view in the FROM
clause of a query

SQLCODE -4743

A period clause that follows the name of a target view in an
UPDATE or DELETE statement

SQLCODE -4743

A SET CURRENT TEMPORAL SYSTEM_TIME statement SQLCODE -4743

A SET CURRENT TEMPORAL BUSINESS_TIME statement SQLCODE -4743

A SET SYSIBMADM.MOVE_TO_ARCHIVE or SET
SYSIBMADM.GET_ARCHIVE global variable assignment
statement

SQLCODE -4743

Use of array operations and built-in functions such as:
� Use of the UNNEST collection-derived-table
� Use of the ARRAY_FIRST, ARRAY_LAST, ARRAY_NEXT,

ARRAY_PRIOR, ARRAY_AGG, TRIM_ARRAY,
CARDINALITY, MAX_CARDINALITY built-in functions

A SET assignment-statement of an array element as a target table
A CAST specification with a parameter marker as the source and
an array as the data type

SQLCODE -4743
376 IBM DB2 11 for z/OS Technical Overview

An aggregate function that contains the keyword DISTINCT and
references a column that is defined with a column mask

SQLCODE -20478

A reference to an alias for a sequence object or a public alias for
a sequence object

SQLCODE -4743

Invocation of the SPACE or VARCHAR built-in function when the
result is defined as VARCHAR(32765), VARCHAR(32766), or
VARCHAR(32767)

No error 1110, 1111

A SELECT with a table function reference that includes a typed
correlation clause

SQLCODE -4743

An implicit insert or update of an XML document node SQLCODE -20345 1101

A predicate expression with an explicit cast or an operation with
an invalid value that does not affect the results of XPath
processing

SQLCODE -20345 1102

A CALL statement that specifies an autonomous procedure SQLCODE -4743

The lengths of values that are returned from CURRENT
CLIENT_USERID, CURRENT CLIENT_WRKSTNNAME,
CURRENT CLIENT_APPLNAME, or CURRENT
CLIENT_ACCTNG special register are longer than the DB2 10
limits.

The special register values are
truncated to the DB2 10
maximum lengths and padded
with blanks

1104, 1105,
1106, 1107

How the resource limit facility uses ASUTIME value for nested
routines

SQLCODE -905 is issued only
when the ASUTIME limit of the
top-level calling package is
encountered.

1103

A CAST(string as TIMESTAMP) specification with an input string of
length of 8 or an input string of length 13

An explicit cast specification
from string as TIMESTAMP
interprets an 8-byte character
string as a Store Clock value
and a 13-byte string as a
GENERATE_UNIQUE value.
CAST result might be incorrect.

1109

Feature or function Result with V10R1
application compatibility

IFCID 0366 or
IFCID 0376
trace function
code

Attention: APPLCOMPAT(V10R1) is assumed for all static SQL packages bound prior to
and in DB2 10.
Chapter 12. Installation and migration 377

Valid time frame for APPLCOMPAT (V10R1)
As described, APPLCOMPAT(V10R1) is valid in all modes of DB2 11. Which setting is valid in
which mode is also summarized in

Figure 12-11 V11 modes and APPLCOMPAT(V10R1)

Even though you are just now starting with DB2 11, looking ahead into DB2 11+1, you might
ask yourself if V10R1 is still a valid option there. Figure 12-12, shows what you can expect! In
DB2 V11 + 1, you are allowed to still stick with APPLCOMPAT(V10R1) in all modes. In
addition to that all modes also support APPLCOMPAT (V11R1). Just the new VnnR1 setting is
only allowed once you are in DB2 11+1 NFM.

Important: Static SQL packages, which were last bound prior to V9 are invalidated in
conversion mode and go through automatic rebind the first time they are called. If you
would like to prevent those automatic rebinds, you can:

� SET system parameter ABIND to NO. If you do this, you must remember that the
program would not be able to execute successfully, because it remains invalidated.

� Rebind affected packages while you are still in DB2 10 NFM.

The list of affected packages is one of the reports generated by pre-migration job
DSNTIJPM/B as explained in “Premigration checkout job DSNTIJPM” on page 335.

1

Migration DB2 10 � DB2 11 (V11R1)
DB2 11 Enabling

New Function Mode
(ENFM)

DB2 11
Catalog

Data Sharing
Coexistence

DB2 11
Conversion
Mode (CM)

DB2 11 New
Function Mode

(NFM)

(CATMAIN
T UPDATE)

(CATENFM
COMPLETE)

(CATENFM
START)

DB2 10
Catalog

DB2 11
Libraries

DB2 10
Libraries

DB2 10 New
Function Mode
(NFM) With SPE

1 � 2 months

1 week

Minutes

Bind with APPLCOMPAT(V10R1) option only
Bind with
APPLCOMPAT(V10R1) or
APPLCOMPAT(V11R1)
378 IBM DB2 11 for z/OS Technical Overview

Prior to migrating to DB2 11+1, if you run the pre-migration job DSNTIJPx, you can expect to
see warnings for all packages, which are at that time bound with APPLCOMPAT(V10R1) and
APPLCOMPAT(VnnR1).

Figure 12-12 V11+1 modes and APPLCOMPAT(V10R1)

Looking ahead to DB2 11 + 2, DSNTIJPx pre-migration job acts as listed here:

� Warnings for packages bound with APPLCOMPAT for DB2 11 + 1

� Warnings for packages bound with APPLCOMPAT for DB2 11

� Errors for packages bound with APPLCOMPAT(V10R1)

– Packages set as Inoperative
– No AUTOBIND allowed
– SQL must be changed to be valid for DB2 11 or DB2 11 +1 or +2

How to find applications that use incompatible SQL statements?
After this extensive description of the Application Compatibility feature in DB2 11, and after
you learned that at the second release past DB2 11 you are no longer allowed to use V10R1,
you might ask yourself what IBM does for you to help identify the applications, for which you
need to take action changing the used SQL to make them compatible with any subsequent
release.

The answer is instrumentation!

1

Migration DB2 11(V11R1) � DB2 11+1 (VnnR1)
DB2 11+1 Enabling
New Function Mode

(ENFM)

DB2 11+1
Catalog

Data Sharing
Coexistence

DB2 11+1
Conversion
Mode (CM)

DB2 11+1 New
Function Mode

(NFM)

(CATMAIN
T UPDATE)

(CATENFM
COMPLETE)

(CATENFM
START)

DB2 11
Catalog

DB2 11+1
Libraries

DB2 11
Libraries

DB2 11 New
Function Mode
(NFM) With SPE

1 � 2 months

1 week

2 hours

Bind with APPLCOMPAT(V10R1) or

APPLCOMPAT(V11R1)
Bind with
APPLCOMPAT(V10R1) or
APPLCOMPAT(V11R1) or
APPLCOMPAT(VnnR1)
Chapter 12. Installation and migration 379

IFCID 366 has already been introduced with DB2 10, which at that time primarily was
intended to help identify applications which use implicit casting of decimal data using the
CHAR function. IFCID 366 reports on packages affected in both modes and dynamic SQL

DB2 11 introduces a second IFCID, IFCID 376. IFCID 376 is a roll up of 366. DB2 writes One
record for each unique static or dynamic statement

If you want to collect this type of information, you must turn on the tracing those IFCIDs.

Example 12-15 shows the description of the information that you can gain from tracing IFCID
366. Also refer to the description of field QW0366FN. Different finding are categorized in
different values. The numbers listed in there also corresponding to the trace function codes
listed in Table 12-10 on page 376.

Example 12-15 IFCID 366 record description

0366 QW0366 ________________IFCID 0366______________________________
0366 QW0366 IFCID 0366 RECORDS INFORMATION THAT CAN BE USED TO
0366 QW0366 IDENTIFY APPLICATIONS THAT ARE AFFECTED BY INCOMPATIBLE
0366 QW0366 CHANGE
0366 QW0366
0366 QW0366 THIS TRACE RECORD MIGHT CONTAIN INFORMATION ABOUT MULTIPLE
0366 QW0366 INSTANCES OF AN SQL STATEMENT. FOR EXAMPLE, WHEN THE SAME
0366 QW0366 DYNAMIC STATEMENT IS EXECUTED BY SEVERAL THREADS, OR
0366 QW0366 MULTIPLE TIMES BY THE SAME THREAD, MULTIPLE RECORDS ARE
0366 QW0366 WRITTEN.
0366 QW0366
0366 QW0366 THIS RECORD IS FOR SERVICEABILITY ONLY.
0366 QW0366 ---
0366 QW0366FN THIS FIELD CAN HAVE THE FOLLOWING VALUES:
0366 QW0366FN 1: THE DB2 9 FOR Z/OS VERSION OF
0366 QW0366FN SYSIBM.CHAR(DECIMAL-EXPR) WAS EXECUTED.
0366 QW0366FN 2: THE DB2 9 FOR Z/OS VERSION OF
0366 QW0366FN SYSIBM.VARCHAR(DECIMAL-EXPR),
0366 QW0366FN CAST (DECIMAL AS VARCHAR), OR
0366 QW0366FN CAST (DECIMAL AS CHAR) WAS EXECUTED.
0366 QW0366FN 3: AN UNSUPPORTED CHARACTER STRING REPRESENTATION
0366 QW0366FN OF A TIMESTAMP WAS USED.
0366 QW0366FN 4: THE DB2 10 FOR Z/OS DEFAULT SQL PATH WAS USED,
0366 QW0366FN INSTEAD OF THE V11 PATH, WHICH HAS MORE IMPLICIT
0366 QW0366FN SCHEMAS.
0366 QW0366FN 1101: AN INSERT STATEMENT THAT INSERTS INTO AN XML COLUMN
0366 QW0366FN WITHOUT THE XMLDOCUMENT FUNCTION WAS EXECUTED,
0366 QW0366FN WHICH GENERATES SQLCODE -20345 ON A DB2 RELEASE
0366 QW0366FN PRIOR TO V11, BUT DOES NOT GENERATE AN ERROR
0366 QW0366FN STARTING IN V11.
0366 QW0366FN 1102: V10 XPATH EVALUATION BEHAVIOR WAS IN EFFECT, WHICH
0366 QW0366FN RESULTED IN AN ERROR. FOR EXAMPLE, A DATA TYPE
0366 QW0366FN CONVERSION ERROR OCCURRED FOR A PREDICATE THAT
0366 QW0366FN WOULD OTHERWISE BE EVALUATED TO FALSE. STARTING IN
0366 QW0366FN V11, SUCH ERRORS MIGHT ARE SUPPRESSED.
0366 QW0366FN 1103: A DYNAMIC SQL STATEMENT USES THE ASUTIME LIMIT THAT
0366 QW0366FN WAS SET FOR THE ENTIRE THREAD FOR RLF REACTIVE
0366 QW0366FN GOVERNING. FOR EXAMPLE, WHEN A DYNAMIC SQL STATEMENT
0366 QW0366FN IS PROCESSED FROM PACKAGE A, IF THE ASUTIME LIMIT
0366 QW0366FN WAS ALREADY SET DURING OTHER DYNAMIC SQL PROCESSING
0366 QW0366FN FROM PACKAGE B IN THE SAME THREAD, THE SQL FROM
0366 QW0366FN PACKAGE A USES THE ASUTIME LIMIT THAT WAS SET DURING
0366 QW0366FN THE SQL PROCESSING FROM PACKAGE B. STARTING WITH V11,
0366 QW0366FN DYNAMIC SQL FROM MULTIPLE PACKAGES USES THE ASUTIME
380 IBM DB2 11 for z/OS Technical Overview

0366 QW0366FN LIMIT THAT IS SET IN THEIR OWN PACKAGE INFORMATION.
0366 QW0366FN 1104: THE CLIENT_USERID SPECIAL REGISTER WAS SET TO A
0366 QW0366FN VALUE THAT IS LONGER THAN THE SUPPORTED LENGTH
0366 QW0366FN PRIOR TO V11. THE VALUE WAS TRUNCATED.
0366 QW0366FN 1105: THE CLIENT_WRKSTNNAME SPECIAL REGISTER WAS SET TO
0366 QW0366FN A VALUE THAT IS LONGER THAN THE SUPPORTED LENGTH
0366 QW0366FN PRIOR TO V11. THE VALUE WAS TRUNCATED.
0366 QW0366FN 1106: THE CLIENT_APPLNAME SPECIAL REGISTER WAS SET TO
0366 QW0366FN A VALUE THAT IS LONGER THAN THE SUPPORTED LENGTH
0366 QW0366FN PRIOR TO V11. THE VALUE WAS TRUNCATED.
0366 QW0366FN 1107: THE CLIENT_ACCTNG SPECIAL REGISTER WAS SET TO
0366 QW0366FN A VALUE THAT IS LONGER THAN THE SUPPORTED LENGTH
0366 QW0366FN PRIOR TO V11. THE VALUE WAS TRUNCATED.
0366 QW0366FN 1108: THE CLIENT_USERID, CLIENT_WRKSTNNAME,
0366 QW0366FN CLIENT_APPLNAME, OR CLIENT_ACCTG SPECIAL REGISTER
0366 QW0366FN WAS SET TO A VALUE THAT IS LONGER THAN THE
0366 QW0366FN SUPPORTED LENGTH PRIOR TO V11. THE TRUNCATED VALUE
0366 QW0366FN WAS USED FOR A RESOURCE LIMIT FACILITY SEARCH.
0366 QW0366FN 1109: CAST(STRING AS TIMESTAMP) WAS EXECUTED WITH ONE
0366 QW0366FN OF THE FOLLOWING TYPES OF INPUT STRINGS:
0366 QW0366FN - A STRING OF LENGTH 8, WHICH DB2 TREATED AS A
0366 QW0366FN STORE CLOCK VALUE.
0366 QW0366FN - A STRING OF LENGTH 13, WHICH DB2 TREATED AS A
0366 QW0366FN GENERATE_UNIQUE VALUE.
0366 QW0366FN PRIOR TO V11, THIS BEHAVIOR IS INVALID FOR A CAST.
0366 QW0366FN IT IS VALID FOR THE TIMESTAMP BUILT-IN FUNCTION
0366 QW0366FN ONLY. STARTING IN V11, INPUT TO CAST IS NOT
0366 QW0366FN TREATED AS A STORE CLOCK VALUE OR A
0366 QW0366FN GENERATE_UNIQUE VALUE.
0366 QW0366FN 1110: THE VALUE OF THE ARGUMENT OF THE SPACE BUILT-IN
0366 QW0366FN FUNCTION WAS GREATER THAN 32764.
0366 QW0366FN 1111: THE VALUE OF THE OPTIONAL INTEGER ARGUMENT OF THE
0366 QW0366FN VARCHAR BUILT-IN FUNCTION WAS GREATER THAN 32764.
0366 QW0366SN STATEMENT NUMBER FOR THE QUERY.
0366 QW0366PL PLAN NAME FOR THE QUERY.
0366 QW0366TS TIMESTAMP FOR THE QUERY.
0366 QW0366SI STATEMENT IDENTIFIER.
0366 QW0366TY STATEMENT INFORMATION:
0366 QW0366DY X'8000': STATEMENT IS DYNAMIC.
0366 QW0366SC X'4000': STATEMENT IS STATIC.
0366 QW0366PC_OFF OFFSET FROM QW0366 TO QW0366PC_LEN.
0366 QW0366PN_OFF OFFSET FROM QW0366 TO QW0366PN_LEN.
0366 QW0366VL DS VERSION LENGTH.
0366 QW0366VN DS VERSION.
0366 QW0366PC_LEN LENGTH OF THE FOLLOWING FIELD.
0366 QW0366PC_VAR %U PACKAGE COLLECTION ID.
0366 QW0366PN_LEN LENGTH OF THE FOLLOWING FIELD.

Example 12-16 lists the description of IFCID record 376.

Example 12-16 IFCID 376 record description

0376 QW0376 ________________IFCID 0376______________________________
0376 QW0376 IFCID 0376 RECORDS INFORMATION ABOUT SQL STATEMENTS
0376 QW0376 THAT HAVE POTENTIAL INCOMPATIBLE CHANGES WHEN YOU SWITCH
0376 QW0376 TO NEW APPLICATION BEHAVIOR.
0376 QW0376
0376 QW0376 THIS TRACE RECORD IS SIMILAR TO THE IFCID 0366 RECORD,
0376 QW0376 EXCEPT THAT THIS TRACE RECORD CONTAINS INFORMATION FOR
0376 QW0376 UNIQUE INSTANCES OF SQL STATEMENTS. THIS TRACE
Chapter 12. Installation and migration 381

0376 QW0376 RECORD IS WRITTEN ONCE FOR EACH UNIQUE INSTANCE
0376 QW0376 OF THE FOLLOWING TYPES OF SQL STATEMENTS:
0376 QW0376 - DYNAMIC STATEMENTS IN THE DYNAMIC STATEMENT CACHE
0376 QW0376 - STATIC STATEMENTS THAT WERE BOUND IN VERSION 10
0376 QW0376 NEW-FUNCTION MODE OR LATER
0376 QW0376 FOR STATIC SQL STATEMENTS THAT WERE BOUND BEFORE VERSION
0376 QW0376 10 NEW-FUNCTION MODE, THIS RECORD IS WRITTEN ONCE FOR
0376 QW0376 UNIQUE COMBINATION OF PLAN, PACKAGE ID, AND STATEMENT
0376 QW0376 NUMBER. ON RARE OCCASIONS, MORE THAN ONE TRACE RECORD
0376 QW0376 MIGHT BE WRITTEN.
0376 QW0376
0376 QW0376 THIS RECORD IS FOR SERVICEABILITY ONLY.
0376 QW0376 ---
0376 QW0376FN THIS FIELD HAS THE SAME VALUES AS QW0366.
0376 QW0376SN STATEMENT NUMBER FOR THE QUERY.
0376 QW0376PL PLAN NAME FOR THE QUERY.
0376 QW0376TS TIMESTAMP FOR THE QUERY.
0376 QW0376SI STATEMENT IDENTIFIER.
0376 QW0376TY STATEMENT INFORMATION:
0376 QW0376TY X'8000': STATEMENT IS DYNAMIC.
0376 QW0376TY X'4000': STATEMENT IS STATIC.
0376 QW0376SE SECTION NUMBER.
0376 QW0376PC_OFF OFFSET FROM QW0376 TO QW0376PC_LEN.
0376 QW0376PN_OFF OFFSET FROM QW0376 TO QW0376PN_LEN.
0376 QW0376VL DS VERSION LENGTH.
0376 QW0376VN DS VERSION.
0376 QW0376PC_LEN LENGTH OF THE FOLLOWING FIELD.
0376 QW0376PC_VAR %U PACKAGE COLLECTION ID.
0376 QW0376PN_LEN LENGTH OF THE FOLLOWING FIELD.
0376 QW0376PN_VAR %U PROGRAM NAME.

DB2 catalog support for APPLCOMPAT
A new column APPLCOMPAT has been added to DB2 catalog tables SYSIBM.SYSPACKAGE
and SYSIBM.SYSPACKCOPY. Possible values are:

V10R1 SQL statements in the package have V10R1 compatibility behavior.

V11R1 SQL statements in the package have V11R1 compatibility behavior.
382 IBM DB2 11 for z/OS Technical Overview

Chapter 13. Performance

DB2 11 focuses on a number of performance benefits, especially in the area of CPU cost
reduction, scalability enhancements and user pain points such as providing consistent
system and application performance with less need to reorganize objects and with less need
for performance tuning.

This chapter describes performance enhancements in DB2 11. Many of these improvements
are available by migrating to DB2 11 and rebinding.

This chapter includes the following topics:

� Performance expectations
� System level performance
� Reduced need for REORG
� More opportunities for RELEASE(DEALLOCATE)
� Optimizer enhancements

13
© Copyright IBM Corp. 2013. All rights reserved. 383

13.1 Performance expectations

DB2 11 provides many performance improvements. This section discusses the results of
IBM’s early observations and the feedback from the ESP program.

When reading this section, keep in mind that results can vary, depending on environment
conditions. Nevertheless, it is important to realize that most of the storage and CPU
improvements available in DB2 11 for z/OS can be achieved in conversion mode (CM) and
only after REBIND.

The following observations are expected to be reported by users when comparing DB2 10 to
DB2 11 workloads, after REBIND, and under the same working conditions, including equivalent
BIND/REBIND options, such as RELEASE.

OLTP workloads can show 0% to 10% CPU reduction in CM mode after REBIND. Results might
be better for write intensive workloads. Statements processing large number of columns
might show even further CPU reduction. Further improvements are executed for workloads
accessing a single or a few table space partitions out of 500 or more partitions and using the
RELEASE(COMMMIT) BIND/REBIND option.

Data warehousing queries are expected to show from 5% to 40% CPU reduction. Higher
improvement can be seen for queries that take advantage of access path improvements in
DB2 11 after REBIND or PREPARE. Better results are expected if the tables being accessed are
compressed. Queries with table space scan can show better results. Higher improvement are
expected for processes with sort intensive workloads.

Update Intensive Batch are expected to report from 5% to15% CPU reduction, with better
results in data sharing environments, especially in New Function Mode (NFM) with EXTENDED
LRSN format.

Important: Although REBIND might not be needed to migrate to DB2 11, REBIND is often
required to obtain the performance benefits of DB2 11
384 IBM DB2 11 for z/OS Technical Overview

Figure 13-1 illustrates the DB2 11 performance expectations per workload type.

Figure 13-1 DB2 11 performance: CPU changes per workload type

As a reference, and for comparison purposes, Figure 13-2 shows the performance
expectations published for DB2 10 for z/OS at the equivalent moment in the lifecycle of the
database product.

Figure 13-2 DB2 10 performance expectations

Important: Additional CPU savings might been seen by taking advantage of other DB2 11
capabilities.
Chapter 13. Performance 385

Figure 13-3 rearranges the DB2 11 expected values in the same format and scale.

Figure 13-3 DB2 11 performance expectations

These figures allow you to compare the expected performance changes between DB2 10 and
DB2 11 for z/OS.

At a glance, DB2 11 for z/OS continues the CPU reduction trend introduced by DB2 10. Users
obtain more functionality with less CPU. This fact has the potential to lead to a financial Total
Cost of Ownership reduction by means of less CPU associated costs.

The fundamentals for the DB1 CPU reductions are described in the following sections.

13.2 System level performance

There are a number of system level performance enhancements in DB2 11. This section
describes the following topics:

� Internal optimization
� Logging
� Synergy with System z
� Buffer management
� Data sharing

13.2.1 Internal optimization

DB2 11 provides performance benefits through some internal optimizations of the DB2 code.
These optimizations fall into the following categories:

Customized machine code generation for repeated operations
The customized machine code can provide improved performance for SQL column
processing and for RDS sort operations.

Scalability Improvement
z/OS V1.13 supports 64-bit code execution. DB2 takes advantage of this feature by using a
64-bit XProc that is above the bar and some code optimization, which results in a further
reduction of DBM1 virtual storage consumption below the bar.
386 IBM DB2 11 for z/OS Technical Overview

New decompression routine
DB2 11 provides a new decompression routine. This new routine provides a significant CPU
reduction to speed up the expansion operation when compressed rows are read.

The new decompression routine is compatible with the existing compression routine. You do
not need to take any action to take advantage of this performance feature.

Scalability improvement with large number of partitions
This internal optimization enhancement will provide performance benefits for packages bound
with RELEASE(COMMIT) and that are accessing partitioned table spaces. This enhancement
works with all types of partitioned table spaces: classic partitioned; Universal Table Space
(UTS) partition by range; and UTS partition by growth.

The extreme case for biggest performance improvement is found for applications that issue a
single SELECT statement that touches one partition of a UTS that has 4096 partitions.

13.2.2 Logging

This section describes the two key performance enhancements related to logging in DB2 11.

Large RBA/LRSN support
DB2 11 extends RBA and LRSN values from 6 to 10 bytes. You can find more details about
the implementation of this feature in 3.1, “Extended RBA and LRSN” on page 24.

DB2 11 uses the extended RBA and LRSN values internally and converts the logs to basic
format in both CM and NFM. You need to run stand-alone utility DSNJCNVT to convert the
BSDS to the extended format. Conversion to the new BSDS format is required to write new
format log records and remove the 6-byte RBA and LRSN limits.

Your application objects (tables and indexes) also eventually need to be converted to a new
page format to accommodate the larger value. Until the BSDS and your application objects
are converted to EXTENDED format, you can expect some conversion overhead associated with
the extended log RBA and LRSN values.

If you are running a data sharing environment, after you have completed the conversion to the
extended LRSN values, there will be no more overhead associated with LRSN spin, which
can provide a significant CPU reduction in batch write operations in data sharing. See 5.9,
“Log record sequence number spin avoidance” on page 95 for more details.

Log buffers in 64 bit common
DB2 11 provides a reduction in CPU cost by removing cross address space operations for
logging activity. There is an optional 1 MB of storage for log buffers, if the LPAR is configured
with a large frame area (LFAREA). You can find more details about the LFAREA feature of the
zEC12 in 2.1.3, “zEC12 hardware features” on page 8. This enhancement provides a
significant CPU reduction for update intensive batch jobs.

13.2.3 Synergy with System z

There are a number of enhancements in DB2 10 and DB2 11 that take advantage of features
in the System z hardware and operating system. These features are discussed in more detail
in Chapter 2, “Synergy with System z” on page 7.

This section describes performance benefits of the synergy between DB2 and System z.
Chapter 13. Performance 387

More usage of large page frames
The large frame area (LFAREA) of storage on the zEC12 hardware is used for fixed 1 MB
large page frames and fixed 2 GB large page frames. Log buffers can now take advantage of
1 MB fixed page frames. These changes make more frame sizes available for DB2 buffer
pools. With DB2 11 and zEC12 hardware, buffer pools can utilize 2 GB fixed page frames for
additional CPU reduction.

Figure 13-4 shows the different combinations of frame size and page size that are supported
in DB2 11 and prior versions and on the level of hardware. You can see that with 1 MB page
fixed frames on DB2 10 and 11 on z10 and later hardware, or with 2 GB page fixed frames on
DB2 11 with zEC12 hardware, you can benefit from CPU reductions during I/O processing
and from an improved hit rate on the translation look-aside buffer (TLB), which is used to
translate a virtual address to a physical address.

Figure 13-4 DB2 buffer pool frame size options

Flash Express
The zEC12 supports an optional hardware feature called Flash Express memory cards. You
can use this feature to improve the performance when accessing buffer pool control blocks
and the performance of executing the DB2 code. You can find more details about Flash
Express in 2.1.3, “zEC12 hardware features” on page 8.

More zIIP Exploitation
DB2 11 will further use the zIIP specialty processors by making additional processes
available for zIIP redirect. Those processes are described in 2.3, “Using zIIP speciality
processors” on page 14.

DB2 Buffer Pool - Frame size

Frame
size

Page
fix

Supported
DB2

H/W
Requirement

Benefit

4K NO All N/A Most flexible configuration

4K YES All N/A CPU reduction during I/O

1M NO DB2 11 zEC12 and Flash
Express

CPU reduction from TLB hit

1M YES DB2 10 above z10 above

LFAREA 1M=xx

CPU reduction during I/O,
CPU reduction from TLB hit

2G YES DB2 11 zEC12

LFAREA 2G=xx

CPU reduction during I/O,
CPU reduction from TLB hit
388 IBM DB2 11 for z/OS Technical Overview

13.2.4 Buffer management

DB2 11 provides the following performance enhancements for buffer pool processing.

Faster buffer pool allocation
In DB2 11 it is significantly faster to allocate large buffer pools, such as ones that are 5 to 10
GB or larger. In DB2 10, buffer pool storage was allocated as it was needed. In DB2 11, there
is virtual allocation of the buffer pool with the defined size, but real storage allocation is done
as needed.

Improved buffer pool metrics
DB2 classifies Getpages as either random or sequential, and DB2 uses the VPSEQT buffer
pool parameter to protect random pages from being overrun by sequential pages. DB2 11
enforces a more rigorous alignment between how the Getpages are classified and whether or
not DB2 has prefetched the pages. For example, if dynamic prefetch was used, the Getpages
will now be classified as sequential. Also, when DB2 is using list prefetch to read a
disorganized index or to read pages in a RID list, the Getpages will not be classified as
sequential. Utilities that use format writes will also classify the pages as sequential. The first
consequence of this change is that the random buffer hit is a more accurate measure of buffer
pool performance. A second consequence is that sequential synchronous I/Os can be used to
identify the fact that either DB2 failed to prefetch those pages, or the pages were prefetched
and then stolen prior to the getpages, which was a problem that was difficult to detect with
prior DB2 versions. Buffer tuning is never easy, but DB2 11 makes it easier.

In addition, DB2 now reports the length of the sequential LRU chain. This support was
retrofitted to DB2 10 in PM70981. Using this statistic, you can more easily judge the degree to
which prefetch activity is affecting the buffer pool. You can judge from this statistic whether
lowering VPSEQT will help to increase the buffer pool hit ratio. (It will not be as long as the
number of sequential buffers is less than VPSEQTxVPSIZE). Conversely, just because the length
of the sequential LRU chain is less than VPSEQTxVPSIZE does not mean that the prefetch
activity is not affecting the random buffer hit ratio. As always, remember that lowering
VPSEQT might introduce synchronous sequential I/Os if you do not have enough sequential
buffers to support the prefetch activity in your system.

More MRU usage for utilities
DB2 9 and DB2 10 provided reductions in CPU for utility processing due to changes in
buffering from Least Recently Used (LRU) to Most Recently Used (MRU) for the COPY utility.
DB2 11 further improves performance by expanding the MRU buffering to the UNLOAD utility
and to the RUNSTATS utility for table spaces and indexes. In addition, the MRU processing will
also be used for the UNLOAD phase of the following utilities:

� REORG TABLESPACE
� REBUILD INDEX
� CHECK INDEX and DATA

13.2.5 Data sharing

DB2 11 provides the following performance enhancements for data sharing environments.

Reduction of log force write during tree structure modification
DB2 provides a throughput improvement for INSERT and DELETE workloads by reducing the
number of log force writes per index modification event. This results in a reduction in elapsed
time and a minor CPU time reduction. This enhancement also provides log disk I/O relief.
Chapter 13. Performance 389

Data sharing availability and performance improvements
DB2 11 provides the following availability and performance improvements for data sharing:

� CASTOUT performance improvement
� GBP write around
� CF DELETE NAME enhancement
� Internal resource lock manager (IRLM) enhancements

All of these enhancements are described in detail in Chapter 5, “Data sharing” on page 85.

13.3 Reduced need for REORG

The hardware enhancements that provide a foundation for reducing the need for REORGs are
described in 2.4, “Reduced need for REORG” on page 15. However, DB2 10 for z/OS also
decreased the need for REORGs with the following additional enhancements:

� List prefetch to perform disorganized index scan

DB2 9 RID list scans can benefit from the new hardware features, DB2 10 can also benefit
from these hardware features when it scans a disorganized index. See GPFS in the Cloud:
Storage Virtualization with NPIV on IBM System p and IBM System Storage DS5300,
REDP-4682. The I/O time to read a disorganized index is still greater than the I/O time to
read an organized index, but remember that the I/O is asynchronous. If the index scan is
CPU intensive, then organizing the index will not reduce the elapsed time to scan the
index at all.

� Row level sequential detection (RLSD)

RLSD makes sequential detection more robust as the cluster ratio drops below 100%,
ensuring that DB2 uses dynamic prefetch for clustered pages and limiting the
synchronous I/O to unclustered pages.

As DB2 continues to move in the direction towards reduced REORGs, keep in mind that the goal
is not to completely eliminate all REORGs. For example, the requirements for materializing
pending ALTERs are not going away. However, the performance gap between organized and
disorganized data should shrink and the tendency to run unnecessary REORG should be
reduced.

Some misconceptions abound about the value of redistributing or re-establishing free space.
If you never reorganize an index and randomly insert keys into it, it will tend to have about
25% free space. If you reorganize the index and use PCTFREE 10, you will shrink the index
and increase the likelihood of more index splits. Thus, do not try to use REORG for the purpose
of avoiding index splits.

The effect of clustering is also often misunderstood. The benefit of clustering is normally
associated with the performance of a range scan, where the cluster index is used to
determine a range of pages to read. If REORG can shrink the number of GETPAGEs, range scan
performance might improve, which is often the case. However, when your query uses a
screening predicate, it is often true that REORG does not reduce the number of GETPAGEs for
such queries. If REORG does not reduce the number of GETPAGEs, it probably is not improving
the performance. Thus, the need for REORG depends a lot on the types of queries that you run.
390 IBM DB2 11 for z/OS Technical Overview

DB2 11 is the next step in the evolution towards meeting the goal of reducing the need for
Reorgs. The following features of DB2 11 move in this direction and provide a more
consistent performance:

� Asynchronous removal of pseudo-deleted indexes
� Indirect reference avoidance

In addition to reducing the need for REORGs, DB2 11 also improves the performance of the
switch phase of REORG, reducing the amount of time during the switch phase that the objects
are unavailable to the application. More about the switch phase is discussed in 11.1.2,
“SWITCH phase impact reduction” on page 273.

13.3.1 Asynchronous removal of pseudo-deleted indexes

This enhancement can reduce the size of some indexes, which can improve SQL
performance and reduce the need to run the REORG INDEX utility.

Prior to DB2 11, when rows are deleted, index entries are not physically deleted unless the
delete operation has exclusive control over the index page set. Instead, these index entries
that correspond to deleted rows are marked as pseudo-deleted. These index entries are
called pseudo-deleted index entries.

Pseudo-empty index pages are pages that contain only pseudo-deleted index entries. DB2
attempts to clean up pseudo-empty index pages as part of the SQL DELETE processing.
However, if some of the pseudo-deleted entries in the page are not committed during the SQL
DELETE processing, cleanup cannot be performed. Therefore, some pseudo-empty pages are
likely not cleaned up. Index entries are only marked pseudo-deleted to handle a combination
of other processes using index access and the potential roll back of deleted rows.

Subsequent searches continue to access these pseudo-deleted entries, which can gradually
degrade performance as more rows are deleted. The pseudo-deleted index entries can also
result in time-outs and deadlocks for applications that insert data into tables with unique
indexes.

A large amount of update activity over a period of time can provide for inconsistent
performance and the need to REORG your tables and indexes regularly to restore desired
performance. The average transaction response time increases throughout the week until a
REORG is done.
Chapter 13. Performance 391

Figure 13-5 shows an example of the pseudo-delete process. The index entries for rows 2
and 4 both have a value of DBA for the RESP column and are marked as pseudo-deleted, as
denoted by the PD in the figure.

Figure 13-5 The pseudo-delete process

There is a performance impact for maintaining index pseudo delete entries. SQL operations
such as SELECT, FETCH, UPDATE, or DELETE that require an index search can result in more
getpages and more lock requests to access the required data. INSERT, UPDATE, and DELETE
operations might see concurrency issues. There can be collisions with committed
pseudo-deleted index entries. Also, RID reuse by an INSERT statement following a DELETE
statement can cause a deadlock. Frequent execution of the REORG INDEX utility is required to
reduce the impact of the pseudo-deleted index entries.

In DB2 11, in addition to the cleanup that was previously done, DB2 autonomically deletes
pseudo-empty index pages and pseudo deleted index entries independently of the SQL
DELETE transaction.

Index cleanup is performed only on the indexes that have been opened for
INSERT/DELETE/UPDATE by other DB2 processes. The presence of the pseudo deleted entries
can be detected by SQL queries or INSERT/DELETE/UPDATE processes. There can be large
number of pseudo deleted entries in an index, but if this index is not already opened for
INSERT/DELETE/UPDATE, the cleanup does not happen. The cleanup rate depends on several
factors such as the rate that the pseudo deleted entries are generated, the number of threads
allowed to run cleanup concurrently, and the commit frequency of the unit of work which
generates the pseudo deleted index entries.

This function is designed to remove committed pseudo-deleted entries from the indexes with
minimal or no disruption to other concurrent DB2 work in the system.

Note: When the system has been configured with one or multiple zIIP processors, this
automated cleanup function runs under enclave service request blocks (SRBs) that are
zIIP-eligible.

Pseudo-deleted Index Entries
Pseudo-delete process

–When table rows are deleted, index RIDs are pseudo-deleted, unless
the delete process has locked the entire table

TAB 1 ID LNam
e

Resp

Row 1 1234 Smith Mgr

Row 2 2468 Doe DBA

Row 3 3579 Brown Cons

Row 4 4826 Jones DBA

Dupl IX KEY 2 RID 1 RID 2RID 2 RID 3

KEY 1Unique IX RID 1 KEY 2 RID 2 KEY 3 RID 3 KEY 4 RID 4

DELETE FROM TAB1
WHERE RESP = ‘DBA’;
- Row 2 and Row 4 deleted
- 4 RIDS pseudo-deleted PD
392 IBM DB2 11 for z/OS Technical Overview

INDEXCLEANUP_THREADS subsystem parameter
DB2 11 provides an automated cleanup function that is completed under system tasks
running as enclave SRBs. The new DB2 system parameter INDEX_CLEANUP_THREADS
determines the number of threads that are allowed to work on the cleanup of pseudo deleted
index entries. You can specify any value between 0 and 128. If you set this subsystem
parameter to 0, this means that you do not want any additional index cleanup to occur.

If system parameter INDEX_CLEANUP_THREADS has a value greater than zero, DB2 checks Real
Time Statistics (RTS) information to identify the indexes with a large number of
pseudo-deleted entries or pseudo empty pages. If the identified indexes have already been
opened for update, then daemon code schedules a cleanup on these indexes. There is a
parent daemon thread per DB2 member, which checks the RTS by looping through RTS
blocks for all objects in the system, and identifies the candidate indexes for cleanup. Then the
parent daemon thread dispatches child daemon threads (up to the number defined in
INDEX_CLEANUP_THREADS) to perform the cleanup function. Each child thread works on one
index at a time.

The RTS information is checked periodically to identify the indexes with the most
pseudo-deletes. There is a limited number of threads doing cleanup (the default is 10, the
maximum is 128). The index can only be cleaned up when a thread is freed up, and the index
candidates are sorted based on the number of pseudo-deletes, so the ones with the most
pseudo-deletes get cleaned up first.

Figure 13-6 shows the DB2 11 pseudo-delete cleanup process.

Figure 13-6 Automated pseudo-delete cleanup process

The automated cleanup of pseudo deleted entries in DB2 11 cleans up both pseudo empty
index pages and pseudo deleted index entries. The benefits of this process are that it reduces
the impact of pseudo delete entries and it reduces the need to run the REORG INDEX utility. The
potential concerns about the automated clean up are possible CPU overhead, disruption to
other concurrent threads and an increase in log volume introduced by the cleanup process.

Child cleanup
thread IX4

Cleanup Process
Cleanup process

–Cleanup is done under system tasks, which run as enclave SRBs
–They are zIIP eligible to address CPU concerns

• Parent thread (one per DB2 member) loops through RTS to find candidates

NAME … NPAGES … REORGPSEUDODELETES

IX1 nn 100 xx 5000

IX2 nn 1000 xx 20000

IX3 nn 500 xx 100000

IX4 nn 2000 xx 75000

SYSIBM.SYSINDEXSPACESTATS

Parent
thread

Index

IX3

IX4

IX2

IX1

SELECT FROM… ORDER BY

Child cleanup
thread IX3

–Child cleanup thread only started
if Index already open for INSERT,
UPDATE or DELETE

• ‘X’-type P-lock already held
Chapter 13. Performance 393

Potential disruption introduced by these concerns can be minimized by managing the number
of cleanup threads through the value you choose for system parameter
INDEX_CLEANUP_THREADS. In data sharing, each member of the group can use a different
setting for INDEX_CLEANUP_THREADS.

New catalog table SYSIBM.SYSINDEXCLEANUP
You can also control the cleanup function on the object level by inserting rows into the new
SYSIBM.SYSINDEXCLEANUP catalog table. You can use this table to specify the time when
indexes are subject to cleanup. It indicates when and which indexes are enabled or disabled
for cleanup. The catalog table includes the following information for use in the cleanup
process:

� Name of databases and indexes
� Cleanup enabled or disabled
� Day of week or day of month
� Start time and end time

Figure 13-7 shows an example of using the SYSIBM.SYSINDEXCLEANUP catalog table to control
the cleanup of pseudo-deleted index entries for two databases. If the
SYSIBM.SYSINDEXCLEANUP table is not accessible, index cleanup is disabled. Because the data
is stored in a catalog table, a single set of values exists in each row for all members in a data
sharing group, as opposed to the INDEX_CLEANUP_THREADS system parameter, which can have
a separate value for each member.

Figure 13-7 Example of using SYSINDEXCLEANUP for cleanup of pseudo-deleted entries

Use the catalog table as an exception only, for those cases when you know there is a
disruption.

DB2 provides instrumentation for the cleanup by introducing IFCID 377, which is written once
per index page being cleaned up.

Using SYSIBM.SYSINDEXCLEANUP

Examples
–All index spaces in DB_1234 are enabled for cleanup on Sundays from

4:30 until noon, except
• Index space IX_9876 is always disabled for cleanup. REORG INDEX

requires specific window determined by DBA
–All index spaces in DB_XYZ disabled for cleanup on Saturdays, and

• Index space IX_ABC is disabled for cleanup on the 30th of each month from
1:30 to 7:30

DBNAME INDEX-
SPACE

ENABLE_
DISABLE

MONTH
_WEEK

MONTH DAY START
_TIME

END
_TIME

DB_1234 NULL E W NULL 7 043000 120000

DB_1234 IX_9876 D NULL NULL NULL NULL NULL

DB_XYZ NULL D W NULL 6 NULL NULL

DB_XYZ IX_ABC D M NULL 30 013000 073000

SYSIBM.SYSINDEXCLEANUP
394 IBM DB2 11 for z/OS Technical Overview

Table 13-1 shows the layout of the new catalog table with a short description of its columns.

Table 13-1 SYSIBM.SYSINDEXCLEANUP

When there is an index that needs to be cleaned up, DB2 checks the
SYSIBM.SYSINDEXCLEANUP catalog table to see if entries in this table allow this index to be
cleaned up at the current time.

If the SYSIBM.SYSINDEXCLEANUP catalog table is not accessible, index cleanup is disabled, no
index can be cleaned up in the system.

Each row in the SYSIBM.SYSINDEXCLEANUP catalog table has database name (DBNAME) and
index space name (INDEXSPACE) information. DBNAME and INDEXSPACE columns are nullable
columns.

There is also time window information specified in the SYSIBM.SYSINDEXCLEANUP catalog table.

The value of the ENABLE_DISABLE column indicates whether the cleanup is enabled (value E)
or disabled (value D) for the specified index space during the time window. In data sharing,
the rows in the SYSIBM.SYSINDEXCLEANUP catalog table apply to all DB2 members.

For the DB2 members with INDEXCLEANUP_THREADS set to a non zero value, if the
SYSIBM.SYSINDEXCLEANUP table is empty, index cleanup is enabled for all indexes on the
system. In order to disable the cleanup for certain indexes during certain time period, you can
insert rows into the SYSIBM.SYSINDEXCLEANUP catalog table to control the cleanup at the object
level.

Column name Description

DBNAME The name of the database that contains the index space.

INDEXSPACE The name of the index space

ENABLE_DISABLE Specifies whether the row enables or disables cleanup for the specified index space.
'E' Enabled
'D' Disabled

MONTH_WEEK Indicates the meaning of the value of the DAY column:
'M' The value indicates the day of the month.
'W' The value indicates a day of the week.

MONTH The month in which the time window applies. For example a 1 value indicates January
and a 12 value indicates December. If this column contains NULL, the time window
applies to all months. If the value of the MONTH_WEEK column is 'W', this value must
be NULL.

WEEK The day of the month or the day of the week for which the time window applies, as
specified by the value of the MONTH_WEEK column.
For example, if MONTH_WEEK='W', a 1 value indicates Monday and 7 indicates
Sunday.
If the value of this column is NULL, the time window applies to every day of the month
or every day of the week.

START_TIME The local time at the beginning of the time window specified by the row. When this
column contains a null value, the row applies at all times on the specified days. This
column must contain NULL if the END_TIME column contains NULL.

END_TIME The local time at the end of the time window specified by the row. When this column
contains a null value, the row applies at all times on the specified days. This column
must contain NULL if the START_TIME column contains NULL.
Chapter 13. Performance 395

There are three levels of control that can be achieved with different settings on DBNAME and
INDEXSPACE columns. When DBNAME and INDEXSPACE columns are both NULL, the row applies to
all indexes on the system, it is defined on system level. When DBNAME is not NULL but
INDEXSPACE is NULL, the row applies to all the indexes in the specified database, it is defined
on database level. When the DBNAME and INDEXSPACE names are both not NULL, the row
applies to a single index, it is defined on index level. If the DBNAME column has a NULL value,
but INDEXSPACE column has a not NULL value, the row is not valid.

If there are multiple rows applicable to the same index a nd these rows cover overlapping time
window, but with conflicting information in the ENABLE_DISABLE column, the rows defined on
index level override the rows defined on database level, which in turn override the rows
defined on system level. If these rows are defined on same level, the index cleanup function is
disabled during the overlapping time window for the specified indexes.

To minimize the performance impact, the checking of the SYSIBM.SYSINDEXCLEANUP catalog
table is no real-time. Instead there is up to 10 minutes delay between the time a row is
inserted into the SYSIBM.SYSINDEXCLEANUP catalog table and the time that DB2 checks the
newly inserted row. As a consequence, plan ahead of time when using this table to control the
index cleanup.

Use SYSIBM.SYSINDEXCLEANUP catalog table only as an exception table when the default
behavior is not desired. Make sure that you keep this table at a reasonable size.

The following examples show the use of the SYSIBM.SYSINDEXCLEANUP catalog table.

Example 13-1 shows how to enable the cleanup on all indexes.

Example 13-1 Enable the cleanup on all indexes

INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,
ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values(NULL,NULL,'E', 'W', NULL, NULL, NULL , NULL);
or
keep the table empty

Example 13-2 shows how to disable the cleanup on all indexes.

Example 13-2 Disable the cleanup on all indexes

INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,
ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values(NULL,NULL,'D', 'W', NULL, NULL, NULL , NULL);
OR
set subsystem parameter INDEXCLEANUP_THREADS to be zero.

Example 13-3 shows how to disable the cleanup on all indexes except on every Saturday and
Sunday.

Example 13-3 Disable cleanup on all indexes except on every Saturday and Sunday

INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,
ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values(NULL,NULL,'D', 'W', NULL, 1, NULL , NULL);

Tip: If you need to turn off the index cleanup immediately, you can set the
INDEXCLEANUP_THREADS system parameter to zero and activate the new setting using the
-SET SYSPARM DB2 command.
396 IBM DB2 11 for z/OS Technical Overview

INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,
ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values(NULL,NULL,'D', 'W', NULL, 2, NULL , NULL);
INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,
ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values(NULL,NULL,'D', 'W', NULL, 3, NULL , NULL);
INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,
ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values(NULL,NULL,'D', 'W', NULL, 4, NULL , NULL);
INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,
ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values(NULL,NULL,'D', 'W', NULL, 5, NULL , NULL);

Example 13-4 shows how to disable cleanup on all indexes every day from 8 am to 6 pm local
time.

Example 13-4 Disable cleanup on all indexes every day from 8am to 6pm local time

INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,
ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values(NULL,NULL,'D', 'W', NULL, NULL,'08:00:00' , '18:00:00');
Disable cleanup on index IX1 in database RMCDB00 on June 1st.
INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,
ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values('RMCDB00','IX1','D', 'M', 6, 1,NULL,NULL);

Example 13-5 shows how to disable cleanup on all indexes in database RMCDB00 on every
Monday from 8 am to 5 pm.

Example 13-5 Disable cleanup on all indexes in database RMCDB00

INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,
ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values('RMCDB00',NULL,'D', 'W', NULL, 1,'08:00:00','17:00:00');
Disable cleanup on all indexes in database RMCDB00 but enable cleanup on index IX1
in
the same database.
INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,
ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values('RMCDB00',NULL,'D', 'W', NULL, NULL,NULL,NULL);
INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,
ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values('RMCDB00','IX1','E', 'W', NULL, NULL,NULL,NULL);

Example 13-6 shows two rows on the same level with conflicting information about Monday,
cleanup is disabled on Monday.

Example 13-6 Two rows on the same level with conflicting information about Monday

INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,
ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values('RMCDB00',NULL,'D', 'W', NULL, 1,NULL,NULL);
INSERT INTO SYSIBM.SYSINDEXCLEANUP(DBNAME, INDEXSPACE,
ENABLE_DISABLE, MONTH_WEEK, MONTH, DAY, START_TIME, END_TIME)
values('RMCDB00',NULL,'E', 'W', NULL, 1,NULL,NULL);
Chapter 13. Performance 397

The cleanup of pseudo-deleted index entries starts with DB2 11 CM.

13.3.2 Indirect reference avoidance

When using variable length rows, or when using data compression, if a row is updated and
the row size increases but can no longer fit on the original page, DB2 finds another page to
store the row. It then modifies the original RID (Row IDentifier) to point at the overflow RID,
thus creating an indirect reference because every access to the row requires an extra level of
indirection to find the row. An indirect reference requires an extra DB2 Getpage, which often
requires extra synchronous I/O.

How can you tell if your data base contains indirect references? You can tell by monitoring
NEARINDREF and FARINDREF in SYSIBM.SYSTABLEPART. A “near” overflow is one that is likely to be
prefetched by dynamic prefetch. However, random row access is more or less equally
affected by both “near” and “far” indirect reference.

Let’s consider now the type of applications that are most likely to suffer a lot of indirect
references. Nullable VARCHAR columns are indicative of the worst case, because some
applications insert null values and later update the null values. The greater the update size
quantity is as a percentage of the original row size, the more likely it is that indirect references
will occur.

Indirect references are also possible when compression is used because a row might not
compress as well after an update. Alternatively, a non-null VARCHAR column might grow. But,
these situations do not necessarily cause indirect references in a systematic fashion the way
nullable VARCHAR columns do.

REORG cleans up existing indirect references and also re-establishes more free space through
PCTFREE. PCTFREE is the percentage of space on each page that REORG reserves. LOAD REPLACE
also establish such free space. That reserved space is used by both inserts and updates. The
inserts use it to maintain clustering. There is nothing in DB2 10 to prevent the inserts from
consuming all of the free space, leaving no reserved space for the updates to increase the
row size. Consequently, cluster ratios and indirect references tend to be correlated. If the
cluster ratio is high, there will not be a lot of indirect references. When the reserved space
becomes exhausted, the cluster ratio starts to degrade and updates that increase the row
size start to cause indirect references.

When the reserved space is used up, the inserts start to become sequential. Thus, new rows
are appended to the end of the table. If those newly inserted rows are also updated in the
same order that the rows were inserted, then the overflows are sequential too, although the
new rows and the overflows can be interspersed among each other. This function becomes
important when you consider dynamic prefetch and sequential prefetch, but it is not important
when you consider random fetch or list prefetch.

MAXROWS is the only tuning feature in DB2 10 that enables customers to avoid indirect
references. If MAXROWS is based on the maximum row size, there will never be any indirect
references. Alternatively, if MAXROWS is based on the average row size, indirect references will
usually be avoided. However, the success of MAXROWS depends on the row size distribution
being somewhat static. If the new rows that are created on Tuesday are of a different size
than the rows that were created on Monday, it is hard to choose an optimal MAXROWS value
that can apply to both days. Such dynamically changing distributions are unlikely, but

Note: You can activate IFCID 0377 to monitor the cleanup processing for pseudo-empty
index pages and pseudo-deleted index entries.
398 IBM DB2 11 for z/OS Technical Overview

nevertheless using MAXROWS requires you to do some performance monitoring. is desirable.
DB2 11 provides an autonomic solution.

Figure 13-8 shows an example of how an update to a VARCHAR column or to a compressed row
that results in a larger row can cause the row to no longer fit on the same page. These rows
need to be relocated to a new page, and a pointer to the new page is placed on the original
page.

These indirect references cause the following negative impacts:

� Additional getpages and potentially additional I/Os to the overflow pages
� Lower clustering
� REORG TS is necessary to remove indirect references

Figure 13-8 Indirect reference - Overflow records

DB2 11 provides the capability to reduce the number of indirect references by allowing the
insert process to reserve the space for subsequent updates. This is accomplished through
the new FOR UPDATE option of the CREATE TABLESPACE statement:

CREATE/ALTER TABLESPACE PCTFREE x FOR UPDATE y

The explanation of the syntax is as follows:

� x = % of free space to leave in each data page by LOAD or REORG
� y = % of free space to leave in each data page by INSERT, LOAD, or REORG

An INSERT statement preserves the value provided by y% while REORG preserves (x+y) %.

The PCTFREE_UPD (PERCENT FREE FOR UPDATE) system parameter provides the system default
for the FOR UPDATE value. If the system parameter value is not specified, then the behavior is
the same as in DB2 10.

There is also an autonomic option available by specifying PERCENT FOR UPDATE on the CREATE
TABLESPACE statement to override the default system parameter.
Chapter 13. Performance 399

Example 13-7 shows the use of the new FOR UPDATE option on the CREATE TABLESPACE
statement.

Example 13-7 Sample use of the new FOR UPDATE option of PCTFREE

CREATE TABLESPACE TS1
FREEPAGE 0
PCTFREE 20 FOR UPDATE 10

In either of these cases, DB2 determines the value to use by using the history of UPDATE
behavior based on Real Time Statistics (RTS). Use FOR UPDATE -1 unless you know better
due to consistent behavior of certain table spaces.

PCTFREE FOR UPDATE 0 indicates that DB2 will not reserve any space for updates, unless the
PCTFREE_UPD system parameter is set to AUTO, in which case the behavior is the same as
PCTFREE FOR UPDATE -1. If you really want to force DB2 to honor PCTFREE FOR UPDATE 0 for
some table spaces, then you cannot use PCTFREE_UPD AUTO. However, you can also minimize
the effect of PCTFREE FOR UPDATE by setting it to 1%.

The autonomic behavior (FOR UPDATE -1) is a learning process based on RTS values for
update rate and updated row size. If there are no UPDATEs or an infrequent number of UPDATEs,
then either no space or less space is reserved for update. If there is a significant UPDATE
rate, then the INSERT process will calculate the row size and reserve the appropriate space for
subsequent UPDATEs.

The REORG and LOAD utilities calculate an estimated PCTFREE FOR UPDATE for INSERT statements
to use. This value is stored in the PCTFREE_UPD_CALC column of catalog table
SYSIBM.SYSTABLEPART.

INSERT processing continues to adjust the value based on RTS values.

Migration considerations
For DB2 to begin to make intelligent autonomic decisions about free space management,
RTS in DB2 11 collects UPDATE information about the growth (or reduction) in the update row
sizes. This RTS information is stored in REORGUPDATESIZE in SYSIBM.SYSTABLESPACESTATS as
soon as you migrate to NFM, no matter what you set for PCTFREE FOR UPDATE or PCTFREE_UPD.

When you alter PCTFREE FOR UPDATE to -1 or modify PCTFREE_UPD to AUTO, DB2 uses
REORGUPDATESIZE. However, unless the old RTS statistics for the number of inserts, updates
and deletes are consistent, DB2 might not reserve much space, because the statistics are not
consistent with each other.

To make them consistent, you can manually update REORGINSERTS, REORGUPDATES, and
REORGDELETES in SYSIBM.SYSTABLESPACESTATS to 0. Alternatively, you can run REORG.
Subsequently, you might still see more indirect references initially, but because the RTS
statistics are consistent, after there have been a sufficient number of updates after, DB2 can
derive a proper amount of space to reserve for updates.

When using the autonomic option, DB2 recalculates a new value after each RTS interval.
Thus, the shorter the RTS interval is, the quicker DB2 reacts.

For tables spaces with heavy update activity (and especially for compressed data), specify a
PCTFREE FOR UPDATE value. The FOR UPDATE value specifies the percentage of each page that
is reserved to be used only by future update operations. When you specify FOR UDPATE -1,
DB2 uses real-time statistics to automatically calculate how much free space to reserve for
updates.
400 IBM DB2 11 for z/OS Technical Overview

When you specify both PCTFREE and FOR UPDATE values, the percentage of free space
reserved by a REORG or LOAD REPLACE operation is the sum of the two values.

13.4 More opportunities for RELEASE(DEALLOCATE)

In many cases, you specify RELEASE(DEALLOCATE) as a BIND option for applications that have
critical performance needs, due to the CPU costs incurred to free resources at COMMIT points.
You then reacquire those resources when needed if you specified RELEASE(COMMIT) instead.
However, RELEASE(DEALLOCATE) needed to be used with caution, because in the case of
persistent threads, the thread might not be deallocated for a long period of time.

As a DBA, you might need to break into these persistent threads to take one of the following
actions:

� Perform a BIND REPLACE or REBIND PACKAGE for an application bound with
RELEASE(DEALLOCATE)

� Perform online schema changes to tables or indexes accessed by an application bound
with RELEASE(DEALLOCATE)

� Run an online REORG utility to materialize pending ALTERs that affect applications bound
with RELEASE(DEALLOCATE)

The problem in each of these scenarios is that you needed to identify and stop/cancel any
active persistent DB2 threads running packages bound with RELEASE(DEALLOCATE) before you
can take any of the actions listed previously.

DB2 11 introduces the PKGREL_COMMIT system parameter, which you can use to handle those
scenarios where you need to break into a persistent thread to accomplish one of these listed
tasks. PKGREL_COMMIT is an online-changeable DB2 11 installation system parameter that,
when set to YES, allows DB2 to break into persistent threads at COMMIT or ROLLBACK points. If
the parameter is set to YES and a package is bound with RELEASE(DEALLOCATE) and if DB2
detects a BIND REPLACE or REBIND PACKAGE command, a DDL statement or a utility operation
that needs to quiesce or invalidate the application’s DB2 package, then DB2 will implicitly
de-allocate/release the package at a COMMIT or ROLLBACK.

With the PKGREL_COMMIT system parameter set to YES, you no longer need to identify in
advance and stop or cancel any active persistent DB2 threads running packages bound with
RELEASE(DEALLOCATE) before attempting a BIND REPLACE/REBIND PACKAGE command, schema
change or utility associated with those packages. Instead, the behavior is the same as though
the package was bound with RELEASE(COMMIT).

This new behavior is not supported for any of the following situations:

� Packages that have OPEN and HELD cursors at the time of the COMMIT or ROLLBACK
� Packages that are bound with KEEPDYNAMIC(YES)
� When the COMMIT or ROLLBACK occurs within a DB2 stored procedure

The DB2 11 default for parameter PKGREL_COMMIT is YES.

13.5 Optimizer enhancements

The following optimizer enhancements are provided in DB2 11 to improve application
performance:
Chapter 13. Performance 401

13.5.1 Identification of critical statistics for improved query performance

You might often find it challenging to know what statistics to collect to obtain the best possible
access path for your SQL statements. At an individual query level, identification of important
statistics is difficult. At an application or subsystem level, identification of important statistics
requires that you have knowledge of each SQL statement. If you have ad-hoc dynamic SQL in
your environment, then the closest representation of the workload is the contents of your
dynamic statement cache, which by nature of realistic size limitations can only contain a
portion of the dynamic SQL that is actually executed.

If you collect insufficient statistics, you might end up with an inefficient access path and poor
query performance. In general, collecting more complete and accurate statistics results in
more accurately estimated selectivity, which results in improved access path choices. There
are still scenarios where cost estimation is difficult and performance regression can occur.
However, deciding to collect less information and depending on more inaccuracy to get a
better access path by chance is not a viable long term strategy.

Figure 13-9 illustrates the classic way of collecting and exploiting DB2 statistics, prior to DB2
11. The DB2 optimizer exploits the statistics in the DB2 catalog, does not takes advantage of
the Real Time Statistics, and does not provide feedback about the value of the existing
statistics.

Figure 13-9 DB2 statistics and the optimizer, previous to DB2 11

DB2 provides an enhancement to externalize missing statistics information during query
optimization. Statistics collection utilities can then use this information as input to collect the
missing statistics at the next execution.

This enhancement externalizes statistics recommendations for missing or conflicting statistics
encountered during query optimization. The statistics recommendations can then be used to
402 IBM DB2 11 for z/OS Technical Overview

drive RUNSTATS such that DB2 has more accurate and complete statistics during query
optimization and, as a result, can choose more efficient access paths.

Figure 13-10 illustrates how the DB2 11 optimizer provides feedback about the DB2 statistics
at BIND, REBIND, and PREPARE.

Figure 13-10 The DB2 11 optimizer and BIND, REBIND, and PREPARE: statistics feedback

On every BIND and PREPARE DB2 identifies missing or conflicting statistics, which are then
externalized to a SYSIBM.SYSSTATFEEDBACK catalog table. This catalog table is populated
asynchronously to avoid any performance impact to the PREPARE process. The frequency
with which the statistics recommendations are externalized to the SYSIBM.SYSSTATFEEDBACK
table is controlled by existing STATSINT subsystem parameter.

DB2 also externalizes statistics recommendations during EXPLAIN processing. A new
DSN_STAT_FEEDBACK explain table is populated synchronously with the statistics
recommendations during EXPLAIN processing.
Chapter 13. Performance 403

Figure 13-11 shows the relationship between the DB2 statistics, PREPARE, and the optimizer
feedback.

Figure 13-11 he DB2 11 optimizer and EXPLAIN: statistics feedback

The contents of the SYSSTATFEEDBACK or DSN_STAT_FEEDBACK tables can be used to generate
input to the RUNSTATS utility to allow more complete statistics to be collected. DB2 will not
convert the output of the SYSIBM.SYSSTATFEEDBACK to a format directly consumable by
RUNSTATS. However, you can use capabilities built into the Optim Query Workload Tuner tool to
identify what statistics to collect and to generate RUNSTATS control statements to collect those
statistics.

To maintain an accurate picture of currently missing statistics in catalog table
SYSIBM.SYSSTATFEEDBACK, the RUNSTATS utility ensures that recommendations for statistics that
have subsequently been collected do not remain in the SYSSTATFEEDBACK catalog table. The
DSN_STAT_FEEDBACK explain table maintains the set of missing statistics as of the EXPLAIN time
and is not affected by the execution of the RUNSTATS utility.

Interpreting the statistics recommendations
In addition to using Optim Query Workload Tuner to generate statistics, you can manually
create your own RUNSTATS jobs based on the information in the SYSSTATFEEDBACK table. Here
are some guidelines on how to interpret the statistics recommendations and what to focus on.

Note: Statistics recommendations are not made for volatile tables, declared global
temporary tables (DGTTs), or created global temporary tables (CGTTs).
404 IBM DB2 11 for z/OS Technical Overview

The statistics recommendations can be at the table, index or column level. Therefore, the
SYSSTATFEEDBACK table includes columns that can represent any of these identifiers, as shown
in Figure 13-12.

Figure 13-12 Statistics granularity in SYSIBM.SYSSTATFEEDBACK table

In addition to the identifying information, the following additional columns in the table contain
information that you can use to determine what statistics to collect:

� TYPE
� REASON

The TYPE column specifies the statistics to collect, and the REASON column identifies why the
type of statistics were recommended. You can use the information in both of these columns to
make decisions about what statistics to collect.

The TYPE column is defined as CHAR(1). Table 13-2 lists the possible values for the TYPE
column.

Table 13-2 TYPE of statistics recommendation

TYPE value Type of statistic to collect

C Cardinality

F Frequency

H Histogram

I Index

T Table

Statistic could be recommended at table, index or column level
Chapter 13. Performance 405

The REASON column is defined as CHAR(8). Table 13-3 lists the possible values for the REASON
column.

Table 13-3 REASON why statistics are recommended

Interpreting the TYPE column
The TYPE column identifies one of the following possible types of statistics that are
recommended, depending on the value for TYPE:

� If TYPE = T, then collect basic table statistics. The RUNSTATS format to use is:

RUNSTATS TABLESPACE ...
TABLE(table-name)

� If TYPE = I, then collect basic index statistics. The RUNSTATS format to use is:

RUNSTATS INDEX

� If TYPE = C, then collect cardinality statistics. The RUNSTATS format to use depends on
whether the recommendation is for single column cardinality statistics or multi-column
cardinality statistics, which is indicated by the NUMCOLUMNS column.

For single column cardinality statistics, use the COLUMN option of RUNSTATS:

RUNSTATS TABLESPACE ...
TABLE(table-name)
COLUMN(column-name)

For multi-column cardinality statistics, use the COLGROUP option of RUNSTATS:

RUNSTATS TABLESPACE ...
TABLE(table-name)
COLGROUP(column-name1,column-name2 ...)

� If TYPE = F, then collect frequency statistics. Use the FREQVAL option of RUNSTATS:

RUNSTATS TABLESPACE ...
TABLE(table-name
COLGROUP(column-name) FREQVAL COUNT integer

� If TYPE = H, then collect histogram statistics. Use the HISTOGRAM option of RUNSTATS:

RUNSTATS TABLESPACE ...
TABLE(table-name)
COLGROUP(column-name) HISTOGRAM

REASON values Description

BASIC A basic statistic value for a column, table or index is missing.

KEYCARD The cardinalities of index key columns are missing.

LOWCARD The cardinality of the column is a low value, which indicates that data
skew is likely.

NULLABLE Distribution statistics are not available for a nullable column.

DEFAULT A predicate references a value that is probably a default value.

RANGEPRD Histogram statistics are not available for a range predicate.

PARALLEL Parallelism can be improved by uniform partitioning of key ranges.

CONFLICT Another statistic conflicts with this statistic.

COMPFFIX Multi-column cardinality statistics are needed for an index compound filter
factor.
406 IBM DB2 11 for z/OS Technical Overview

Interpreting the REASON column
The REASON column identifies one of nine possible reasons why the statistics are being
recommended. Each REASON value is described in Table 13-3 on page 406. Here are some
recommendations for interpreting the REASON values and focusing on those that will provide
the most benefit.

Your first priority should be to focus on any statistics recommendations with a REASON of BASIC.
This reason indicates that basic table or index statistics are missing. The optimizer can only
use default values if basic statistics are missing, and default statistics will not provide you with
optimal access paths.

Your second priority should be any statistics recommendations with a REASON of CONFLICT.
This reason indicates that there is a conflict between table and index statistics or between
frequency and cardinality statistics. The existence of a conflict implies that statistics were run
on different objects at different times.

After addressing any recommendations for BASIC and CONFLICT, focus on LOWCARD, NULLABLE,
and DEFAULT recommendations. Any other reasons are targeted towards a more specific
recommendation and might require further investigation.

Additional notes on interpreting the recommendations
The recommendations provided by this enhancement are only recommendations for a
statistic that can be used if it is collected. The recommendation is not a guarantee that the
statistic is needed.

There is still a benefit to making an attempt to determine whether collecting the
recommended statistics will add value, meaning whether it will provide information that will aid
the optimizer in determining the least cost access path. For example, if the TYPE is F, for
frequency, you might want to investigate whether the data is really skewed before collecting
the frequency statistics. In addition, you need to decide what is a good value to use for the
COUNT option. Typically, 10 is a good default, but if the value of COLCARDF column in
SYSIBM.SYSCOLUMNS is less than or equal to 10, then use a COUNT value of one less than the
COLCARDF value.

In addition, you need to look at the REASON value when making your decision. For example. if
the TYPE = F for frequency statistics, but the REASON is NULLABLE, and if NULL is the most
frequently occurring value, then you only need a COUNT value of 1, not 10.

Controlling externalization of statistics recommendations
DB2 provides two mechanisms to control when statistics recommendations are externalized
to the SYSIBM.SYSSTATFEEDBACK catalog table.

The first mechanism is new subsystem parameter STATFDBK_SCOPE, which takes one of the
following values:

NONE Disable collection of recommended RUNSTATS
STATIC Collect recommended RUNSTATS for static queries only
DYNAMIC Collect recommended RUNSTATS for dynamic queries only
ALL Collect recommended RUNSTATS for all SQL statements (default)

The second mechanism is a new column in SYSTABLES named STATS_FEEDBACK, which
provides control of statistics recommendations at the table level. If STATS_FEEDBACK is updated
to a value of N for a given table, no statistics recommendations will be made for that table or
its associated columns and indexes. The default value for this column is Y for YES.
Chapter 13. Performance 407

Independent of the settings of the STATFDBK_SCOPE parameter and STATS_FEEDBACK column in
SYSTABLES, recommended statistics are written to the DSN_STAT_FEEDBACK explain table. These
two mechanisms govern population of recommendations to the SYSSTATFEEDBACK catalog
table only.
408 IBM DB2 11 for z/OS Technical Overview

Part 4 Appendixes

This part of the book includes the following appendixes:

� Appendix A, “Information about IFCID changes” on page 411
� Appendix B, “Summary of relevant maintenance” on page 437

Part 4
© Copyright IBM Corp. 2013. All rights reserved. 409

410 IBM DB2 11 for z/OS Technical Overview

Appendix A. Information about IFCID changes

This appendix includes the details of new or changed IFCIDs previously discussed in the
chapters of this book. For more information about IFCIDs, refer to DB2 11 for z/OS What's
New?, GC19-4068. For collecting accounting and statistics, see Subsystem and Transaction
Monitoring and Tuning with DB2 11 for z/OS, SG24-8182.

DB2 for z/OS has system limits, object and SQL limits, length limits for identifiers and strings,
and limits for certain data type values. Restrictions exist on the use of certain names that are
used by DB2. In some cases, names are reserved and cannot be used by application
programs. In other cases, certain names are not recommended for use by application
programs though not prevented by the database manager.

For information about limits and name restrictions, refer to DB2 11 for z/OS SQL Reference,
SC19-4066.

You can find up-to-date mapping in the SDSNMACS data set that is delivered with DB2.

This appendix includes the following topics:

� New IFCIDs
� Aggregate accounting overview and purpose
� IFCID 53 and 58 enhancements overview
� Accounting trace enhancements overview
� IRLM Storage Accounting enhancement
� Stored procedure monitoring overview and purpose
� Other accounting changes

A

© Copyright IBM Corp. 2013. All rights reserved. 411

A.1 New IFCIDs

DB2 11 includes the following instrumentation facility component identifiers (IFCIDs):

� IFCID 377: Pseudo-deleted index entries are automatically cleaned up
� IFCID 27: Monitor sparse index usage
� IFCID 382 and 383: Records suspend operations for parallel task

A.1.1 IFCID 377: Pseudo-deleted index entries are automatically cleaned up

IFCID 377 is introduced to monitor the index daemon activity when it cleans up committed
pseudo deleted entries from an index. It includes the DBID, PSID of the index being cleaned
up, the partition number of the index and the page number being cleaned up. It has an
indicator to show if the cleanup is a pseudo empty page cleanup, in which case the pseudo
empty index page is deleted from the index tree, or if the cleanup is pseudo deleted entry
cleanup, in which case the index page remains in the index tree. Only committed pseudo
deleted entries are removed from the index page. It also has a field to show the number of
pseudo deleted entries removed from each index page.

The IFCID 377 record is written once per each index page being cleaned up. It is not included
in any trace class because its volume can be large.

Example A-1 maps the new IFCID 377.

Example A-1 New IFCID 377 to record index pseudo delete daemon cleanup

* IFCID 0377 to record index pseudo delete daemon cleanup *

*
QW0377 DSECT IFCID(QWHS0377)
QW0377DB DS CL2 DATA BASE ID
QW0377OB DS CL2 INDEX PAGE SET ID
QW0377PT DS CL2 PARTITION NUMBER
QW0377FL DS CL1 FLAGS
 DS CL1 RESERVED
QW0377PG DS CL4 PAGE NUMBER of the index page cleaned up
QW0377NU DS CL4 NUMBER OF PSEUDO DELETED ENTRIES REMOVED
QW0377DL EQU X'80' PSEUDO EMPTY PAGE IS DELETED
QW0377CL EQU X'40' PSEUDO DELETED ENTRIES CLEANED UP
*

A.1.2 IFCID 106

The QWP4IXCU field is added to trace the internal settings of the new INDEXCLEANUP_THREADS
subsystem parameter. The IFCID 106 formatter stored procedures, SYSPROC.DSNWZP and
SYSPROC.ADMIN_INFO_SYSPARM are updated to report the INDEXCLEANUP_THREADS setting.

Example A-2 maps the new IFCID 106.

Example A-2 Changed IFCID 106 to record INDEXCLEANUP_THREADS

QWP4DM1636 DS CL8 (s) DM1636
QWP4MIMTS DS F MAXSORT_IN_MEMORY N4504r5
QWP4MUSE DS XL2 (s) N4504r5
QWP4IXCU DS H INDEXCLEANUP_THREADS n0010r5
QWP4DEGD DS F PARAMDEG_DPSI n231r5
412 IBM DB2 11 for z/OS Technical Overview

 DS CL132 UNUSED n0010r5
 **
 * ASSEMBLY DATE *
 **
 QWP4DATE DS CL8 (S)

A.1.3 IFCID 27: Monitor sparse index usage

New IFCID 27 records are added to let the user know which type of sparse index is used for
probing, the amount of storage used, and many other characteristics about the current sparse
index. Also global trace records are added to IFCID 2 and 3 to let the user know if the sparse
index cannot be optimized because not enough storage is available or if it had to be placed
into a physical work file, which might hurt query performance.

With this new instrumentation, you can adjust the MXDTCACH value higher or lower, depending
on the storage available on your system and to make the query perform at its most optimal
performance, as shown in Example A-3.

Example A-3 New IFCID 27

**
* IFC ID 0027 FOR RMID 20 RECORDS DETAILED SORT INFORMATION. *
* NUMBER OF SEQUENTIAL RECORDS IN THIS WORKFILE. *
**
*
QW0027 DSECT IFCID(QWHS0027)
QW0027NR DS D NUMBER OF RECORDS IN THE NEW WORKFILE
QW0027SP DS CL1 TYPE OF QW0027 RECORD:
* ****************** CONSTANTS FOR QW0027SP **************************
QW0027CB EQU C'B' INPUT PHASE OR MERGE PASS END
* INDICATES SPARSE INDEX COMBINATION
* OF HASH AND WORKFILE USED
* (BOTH IN-MEMORY AND PHYS. WORKFILE)
QW0027CH EQU C'H' INPUT PHASE OR MERGE PASS END
* INDICATES SPARSE INDEX HASH USED
* (IN-MEMORY WORKFILE ONLY)
QW0027CO EQU C'O' INPUT PHASE OR MERGE PASS END
* INDICATES SPARSE INDEX BINARY USED
* (IN-MEMORY WORKFILE ONLY)
QW0027CS EQU C'S' INPUT PHASE OR MERGE PASS END
* INDICATES NO SPARSE INDEX WAS USED
* BECAUSE OF STORAGE CONSTRAINTS
QW0027CT EQU C'T' INPUT PHASE OR MERGE PASS END
* INDICATES SPARSE INDEX WORKFILE USED
QW0027CW EQU C'W' INPUT PHASE OR MERGE PASS END
* INDICATES NO SPARSE INDEX USED
* **
DS CL3 RESERVED
**
* THE FOLLOWING INFORMATION FOR IFC ID 27 WILL ONLY BE SET IF THE *
* CURRENT SORT IS PROCESSING A SPARSE INDEX, OTHERWISE SET TO 0. *
**
QW0027SF DS F SKIP FACTOR IF SPARSE INDEX RECORDS
* IN WORKFILE. 1 IF IN-MEMORY
QW0027OZ DS D SIZE OF SPARSE INDEX SPACE USED
Appendix A. Information about IFCID changes 413

* (IN KB)
QW0027IE DS F NUMBER OF RECORDS IN IN-MEMORY
* PART OF SPARSE INDEX
QW0027WE DS F NUMBER OF RECORDS IN WORKFILE
* PART OF SPARSE INDEX
QW0027DS DS F DATA AREA SIZE FOR SPARSE INDEX
* (IN BYTES)
QW0027KS DS F KEY SIZE FOR SPARSE INDEX (IN BYTES)
QW0027TS DS F TOTAL NUMBER OF SPARSE INDEXES IN QUERY
QW0027SC DS F CURRENT SPARSE INDEX BEING PROCESSED
QW0027TZ DS D APS ESTIMATED SIZE OF ALL SPARSE
* INDEXES IN QUERY IF ALL IN-MEMORY (IN KB)
QW0027IR DS D APS ESTIMATED NUMBER OF RECORDS IN CURRENT SPARSE INDEX

The IFCID 2 trace record is for the system statistics records and IFCID 3 is for accounting
records. Sparse index adds two additional records to the system statistics and accounting
records to let the user know the number of times that sparse index used a physical work file
and the number of times that sparse index ran into storage problems where it had to disable
sparse index. This information is tracked per transaction. Below are the instrumentation
changes for IFCID 2 and IFCID 3. See Example A-4 on page 414

Example A-4 IFCID 2 and IFCID 3

...
QXSISTOR DS D THE NUMBER OF TIMES THAT SPARSE INDEX
* WAS DISABLED BECAUSE OF INSUFFICIENT
* STORAGE.
QXSIWF DS D THE NUMBER OF TIMES THAT SPARSE INDEX
* BUILT A PHYSICAL WORK FILE FOR PROBING.
...

A.1.4 IFCID 382 and 383: Records suspend operations for parallel task

Two new IFCIDs are introduced that are part of the following classes:

� Accounting Class 3
� Accounting Class 8
� Monitor Class 3
� Monitor Class 8

If IFCID382 and IFCID383 are started to an external destination. Example A-5 lists the new
IFCID 382/383 to records suspend operations for parallel task.

Example A-5 New IFCID 382 and 383 to record suspend operations for parallel task

* BEGIN Suspend for parallel task synchronization *

*QW0382 DSECT IFCID(QWHS0382)
*QW0382ST DS CL1 Type of task suspended.
*QW0382PT EQU C'P' Task suspended is a parent
*QW0382CT EQU C'C' Task suspended is a child
*

* END Suspend for parallel task synchronization *

*QW0383 DSECT IFCID(QWHS0383)
414 IBM DB2 11 for z/OS Technical Overview

*QW0383RT DS CL1 Type of task resumed.
*QW0383PT EQU C'P' Task resumed is a parent
*QW0383CT EQU C'C' Task resumed is a child
*

A.2 Aggregate accounting overview and purpose

Users need to externalize accounting values at the statistics intervals. Analysis of various
performance problems suffers greatly from the need to identify the correct time frame. In
addition, to do so, analysis of all accounting records is required. DB2 10 added IFCID369 to
STATISTICS CLASS 9 and externalize them every minute. IFCID369 externalizes the
summation of all agents that completed processing during this 1 minute interval. See
Example A-6 for details.

Example A-6 IFCID369 - Aggregate accounting interface details

**
* IFCID 369 is a statistics record containing wait and CPU *
* aggregated by connection type. It is written at statistics *
* intervals and is available via the IFI READS interface. *
* *
* This record contains 4 sections mapped as follows: *
* *
* Data Section 1 is mapped by QW0369_1 *
* Data Section 2 is a repeating group, each mapped by QW0369_2 *
* Data Section 3 is a repeating group, each mapped by DSNDQWAC *
* Data Section 4 is a repeating group, each mapped by DSNDQWAX *
* *
* Notes: *
* 1.Statistics collection will become enabled when both IFCID 369 *
* and IFCID 3 is enabled on the system. *
* 2.All counters will be reset to zeroes when DB2 is restarted *
* 3.Statistics are aggregated by connection type. If no agents *
* for that connection type have executed since the 369 *
* collection in enabled, no data will be externalized for that *
* connection type. *
* 4.QWACPCNT indicates the number of transactions aggregated for *
* a given connection type. *
* *
**
QW0369_1 DSECT
QW0369ST DS CL8 Timestamp when 369 statistics collection
* was enabled
QW0369SP DS CL8 Timestamp when 369 statistics collection
* was disabled
*
QW0369_2 DSECT
QW0369CN DS CL8 Connection name
Appendix A. Information about IFCID changes 415

A.3 IFCID 53 and 58 enhancements overview

IFCIDs 53 and 58 are the end SQL statement IFCIDs for a number of SQL statement types.
To understand which SQL statement type a given IFCID 53/58 closes, it is necessary to
correlate to a specific begin SQL statement (IFCID 66). DB2 11 adds an identifier to IFCID
53/58 to make the beginning SQL statement IFCID unnecessary. The QW0058TOS and
QW0053TOS fields are introduced.

Example A-7 shows the details for IFCID0053.

Example A-7 IFCID0053

**
* IFC ID 0053 FOR RMID 22 *
* CHANGED 8-17-87 - THIS RECORD CHANGED TO DEFINE END OF DESCRIBE*
* SQL COMMIT, SQL ROLLBACK, OR AN ERROR CONDITION OCCURRED BEFORE*
* SQL STATEMENT ANALYZED. THE BEGINNING STATEMENT IS NOT *
* RECORDED. IT IS AN UNPAIRED EVENT. *
**
*
QW0053TOS DS X Type of SQL Request
* Constants for QW0053TOS field are defined in
* QW0058 mapping.
*

Example A-8 shows the details for IFCID0058.

Example A-8 IFCID0058

*
*/**/
/ IFC ID 0058 FOR RMID 22 RECORDS END SQL STATEMENT EXECUTION */
*/**/
*
QW0058TOS DS X Type of SQL Request
*
*/**/

A.4 Accounting trace enhancements overview

Accounting trace contains thread execution information, such as CPU consumed, waiting
times, SQL executions, number of lock events, commits, buffer pool requests, RLF numbers,
DDF process, RID pool, and start and stop times. This section includes information about the
following trace enhancements:

� New field QWHCAACE
� QWACZIIP_ELIGIBLE field

Note: IFCID0058 is identical to IFCID0053. If both IFCI0058 and IFCID0053 are started,
IFCID0058s without an BEGIN SQL statement are written as IFCID0053.
416 IBM DB2 11 for z/OS Technical Overview

A.4.1 New field QWHCAACE

Correlating some performance records that are written by system agents on behalf of an
accounting interval is difficult. A QWHCAACE field is introduced to the correlation header
(QWHC) to make correlation easier. QHWCAACE can be correlated to QWHSACE. See
Example A-9. For child tasks, the ACE of the parent is stored in QWHCAACE.

Example A-9 Accounting trace enhancements filed QHWCAACE

QWHCAACE DS CL8 /* This field is 0 if this IFCID */
* /* written outside an accounting */
* /* interval. Otherwise it is the */
* /* ACE of the agent that initiated*/
* /* the accounting interval. This */
* /* can be used to correlate to */
* /* QWHSACE for the non-rollup */
* /* IFCID3's. For DDF/RRSAF rollup */
* /* accounting, it can be */
* /* used to correlate to QWARACE. */

A.4.2 QWACZIIP_ELIGIBLE field

To show on a DB2 accounting report whether a user’s workload running on a general purpose
engine is eligible to run on a zIIP specialty engine if one is installed, DB2 10 APAR PM57206
reintroduces the QWACZIIP_ELIGIBLE field in IFCID3 as a serviceability field. The field captures
the IBM specialty engine eligible time that is run on a general purpose CP for a subset of IBM
specialty engine eligible processing. More specifically, the time reflects the eligible time for the
following functions:

� Distributed DBATs
� Parallel query parent threads
� zIIP eligible utilities

All other cases of IBM specialty engine offload are not reflected in this serviceability field.
DB2 11 removes the restrictions and captures all zIIP and zAAP time for any kind of
transaction.

Example A-10 shows the QWACZIIP_ELIGIBLE field in DB2 10 and DB2 11.

Example A-10 Accounting trace enhancements QWACZIIP_ELIGIBLE

DB2 11
QWACZIIP_ELIGIBLE DS CL8 /* (S) Accumulated CPU executed on a */
* /* standard CP for IBM specialty engine */
* /* eligible work. */
* /* For parallel query parent records the */
* /* value will reflect zIIP eligible time */
* /* for the parent and the child tasks. */
 /* Child task records will have a 0 value.*/

DB2 10
QWACZIIP_ELIGIBLE DS CL8 /* (S) Accumulated CPU executed on a */
* /* standard CP for zIIP-eligible work. */
* /* This field will reflect zIIP eligible */
* /* time for accounting records written */
* /* for: */
Appendix A. Information about IFCID changes 417

* /* 1) distributed DBATs */
* /* 2) parallel query parents */
* /* 3) zIIP eligible utilities */
* /* For parallel query parent records the */
* /* value will reflect zIIP eligible time */
* /* for the parent and the child tasks. */
* /* Child task records will have a 0 value.*/
* /* All other cases of specialty engine */
* /* offload are NOT reflected in this */
* /* field. */

A.5 IRLM Storage Accounting enhancement

Enhanced monitoring of IRLM common and private storage usage. IRLM added additional
information to the existing DXR100I message to provide details of IRLM storage usage in
ECSA and Private, including tracking details like high water marks, compressions and
expansions counts when F,IRLMxx, STATUS,STOR command is issued, See Example A-11.

Example A-11 DXR100I message

DXR100I IR21021 STOR STATS
 PC: YES LTEW:n/a LTE: M RLE: RLEUSE:
 BB PVT: 1495M AB PVT (MEMLIMIT): 16383P
 CSA USE: ACNT: 0K AHWM: 0K CUR: 309K HWM: 309K
 ABOVE 16M: 16 309K BELOW 16M: 0 0K
 AB CUR: 25M AB HWM: 150M
 PVT USE: BB CUR: 4377K AB CUR: 5M
 BB HWM: 1.5M AB HWM: 12M
 CLASS TYPE SEGS MEM TYPE SEGS MEM TYPE SEGS MEM
 ACCNT T-1 2 4M T-2 1 1M T-3 1 4K
 PROC WRK 4 20K SRB 1 1K OTH 1 1K
 MISC VAR 8 4310K N-V 12 323K FIX 1 24K

 **
 * IRLM Serviceability only: Storage subpool statistics *
 **
 Pool Name Ptype Storage #Segments #Elem/S #EXPN #CMPR
 DESP LCVBN -------- ------ ---- ---- ----
 IB LCFBN -------- ------ ---- ---- ----
 ISL GCFBN -------- ------ ---- ---- ----
 NCB GCFBN -------- ------ ---- ---- ----
 NPL GCFBN -------- ------ ---- ---- ----
 QEFX LNFBN -------- ------ ---- ---- ----
 QE28 GNFBN -------- ------ ---- ---- ----
 RHBL LNFAA -------- ------ ---- ---- ----
 RHLB LCFAA -------- ------ ---- ---- ----
 RHWK GCFBN -------- ------ ---- ---- ----
 RHWL LCFBN -------- ------ ---- ---- ----
 RLB LCFAA -------- ------ ---- ---- ----
 RLBI LNFBA -------- ------ ---- ---- ----
 SIDB GCFBN -------- ------ ---- ---- ----
 SPL GCFBN -------- ------ ---- ---- ----
 SRB GNFBN -------- ------ ---- ---- ----
 STKS GNFBN -------- ------ ---- ---- ----
418 IBM DB2 11 for z/OS Technical Overview

 TRCE GNVBN -------- ------ ---- ---- ----
 VARG GCVBN -------- ------ ---- ---- ----
 VARL LCVBN -------- ------ ---- ---- ----
 VGFX GCVBN -------- ------ ---- ---- ----
 VMSG LCVBN -------- ------ ---- ---- ----
 WHB LCFBA -------- ------ ---- ---- ----
 DXR100I End of display

DB2 also issue a STAT request to get the IRLM system statistics and capture into IFCID225,
IFCID217 and IFCID106 traces. See Example A-12.

Example A-12 IFCID217, IFCID225 and IFCID106

**
* IFCID 0217 for storage manager pool statistics. *
**
*
* Section QWT02R1O is mapped by QW0217.
*
* Section QWT02R2O is mapped by QW02172. There will be
* a repeating group entry for each:
* 1. DBM1 private pool (31 or 64-bit)
* 2. Common pool (31 or 64-bit)
* 3. Shared pool
* Agent local pools will not be reported in this section.
*
* Section QWT02R3O is mapped by QW02173. There will be a
* repeating group entry for each agent local storage pool.
* Agent local storage pools are in 31-bit DBM1 private or in
* 64-bit shared storage.
*
* Section QWT02R40 is mapped by QW02174. There will be a
* repeating group entry for each IRLM storage pool. IRLM pools
* can be in ECSA, 31-bit private, 64-bit common, or 64-bit private.
*
* The maximum number of QW02172 or QW02173 sections in a single
* record is 200. If there are more than 200 QW02172 or QW02173
* sections to be reported then multiple IFCID217 records are
* generated in a sequence.
*
* DB2 will generate 1 or more IFCID217 records per statistics
* interval. The last IFCID 0217 in the sequence will contain
* a QW02174 member with QW02174S = 0.
*
* When activated, IFCID217 is recorded at 1 minute intervals.
......

QW0217QA DS CL24 Authorization ID %U
QW02173N DS 0C End of QW02173 mapping
*
* IRLM Storage Pools
QW02174 DSECT Pointed to by QWT02R40
QW02174_PNM DS CL8 Pool Name
QW02174_CSEG DS F Current number of segments
QW02174_HSEG DS F High number of segments
Appendix A. Information about IFCID changes 419

QW02174_PEX DS F Number of pool expansions
QW02174_PCM DS F Number of pool compressions
 DS CL8 Reserved
QW02174_FLG1 DS X Flags
QW02174S EQU X'80' 1 = More QW02174 data will follow in one or
* more IFCID217
QW02174E EQU X'40' 1 = Internal error occurred while gathering
* stats data. Data in this section is
* invalid.
QW02174N DS 0C End of QW02174 mapping
* *
**
............

* ! IFCID225 summarizes system storage usage
* ! The record is divided into data sections described as follows:
* !
* ! Data Section 1: Address Space Summary (QW0225)
* ! This data section can be a repeating group.
* ! It will report data for DBM1 and DIST
* ! address spaces. Use QW0225AN to identify
* ! the address space being described.
* ! Data Section 2: Thread information (QW02252)
* ! Data Section 3: Shared and Common Storage Summary (QW02253)
* ! Data Section 4: Statement Cache and xPROC Detail (QW02254)
* ! Data Section 5: Pool Details (QW02255)
* ! Data Section 6: IRLM Pool Details (QW02256)
......

QW0225RP DS D ! Total RID pool storage
* ! (64-bit shared fixed pool)
QW0225CD DS D ! Total compression dictionary storage
* ! (64-bit DBM1 private GETMAINed)
*
* Data Section 6: IRLM Storage Information
QW02256 DSECT
QW0225I_ABCSA DS D ! Total of all currently used 64-bit common
* ! storage in all IRLM 64-bit common pools
QW0225I_ABCSH DS D ! High water mark for 64-bit common storage
* ! requests of all 64-bit common IRLM pools
QW0225I_BBPVT DS D ! Total of all currently used 31-bit private
* ! storage in all IRLM 31-bit private pools
QW0225I_BBPVH DS D ! High water mark for 31-bit private storage
* ! requests of all 31-bit private IRLM pools
QW0225I_ABPVT DS D ! Total of all currently used 64-bit private
* ! storage in all IRLM 64-bit private pools
QW0225I_ABPVH DS D ! High water mark for 64-bit private storage
* ! requests of all 64-bit private IRLM pools
QW0225I_BBESCA DS D ! Total of all currently used ESCA storage

* ! in all IRLM ECSA pools
QW0225I_BBESCAH DS D ! High water mark for ESCA storage requests
* ! of all ESCA IRLM Pools
*

420 IBM DB2 11 for z/OS Technical Overview

DSNDQWPZ.copy will be changed as following to include IRLM private
storage limits.

*
**
* IRLM processing parms. *
**
QWP5 DSECT
QWP5FLG DS X /* Process flags */
QWP5PCY EQU X'80' /* 1=PC yes specified */
 DS XL3 /* Reserved */
QWP5DLOK DS H /* Wait time for local deadlock */
QWP5DCYC DS H /* # of local cycles/global cycle */
QWP5TVAL DS F /* Timeout interval */
QWP5MCSA DS F /* IRLM maximum CSA usage allowed */
QWP5HASH DS F /* MVS lock table hash entries */
QWP5PHSH DS F /* Pending # Hash entries */
QWP5RLE DS F /* MVS lock table list entries */
 DS F /* Reserved */
QWP5BPM DS D /* Maximum amount of 31-Bit IRLM
* private storage available (out
* of total 2G virtual storage
* limit) for normal operations in
* IRLM. IRLM reserves an
* additional 10% of the total 2G
* virtual storage, for use by
* requests in IRLM. */
QWP5APM DS D /* Maximum amount of 64-Bit IRLM
* private storage available (out
* of total storage set as the
* MEMLIMIT) for normal operations
* in IRLM. IRLM reserves an
* additional 10% of the total
* MEMLIMIT storage, for use by
* 'must complete' requests in
* IRLM. */
*
**

A.6 Stored procedure monitoring overview and purpose

Stored procedure (SP) and user-defined function (UDF) performance and tuning analysis is
typically performed by using a combination of IFCID3 and IFCID239. IFCID3 provides
plan-level information and aggregates all executions of store procedures or UDFs into
common fields. This method can create difficulty when tuning multiple procedures or
functions that are executed in a given transaction.

IFCID239 is also used for performance and tuning analysis at the package level. This method
provides better granularity than IFCID3 but still might not be sufficient for all transactions,
because multiple package executions reported together, CPU, elapsed, and suspend time
reflect averages across many stored procedure packages.
Appendix A. Information about IFCID changes 421

If a procedure or function is executed multiple times, the variation between executions cannot
be identified. Instrumentation enhancements are needed. DB2 implements multiple IFCID
enhancements to provide more effective performance and tuning analysis of stored
procedures and UDF. they are:

� IFCID233 is written at the beginning and end of a stored procedure or UDF invocation.
This record is enhanced with the invoking statement ID, the invoking statement type, the
version ID (applies only to versioned procedures), and the routine ID.

� New IFCIDs 380 and 381 are created for stored procedure and UDF detail respectively.
These records have the following data sections:

– Data section 1 is mapped by QW0233.

– Data section 2 is mapped by QW0380, which includes CP, specialty engine, and
elapsed time details for nested activity.

You can use a series of 380 or 381 records to determine the amount of class 1 and class 2
CP, specialty engine, and elapsed time relative to the execution of a given stored
procedure or user-defined function. See DSNDQW05 for mapping details.

� New IFCIDs 497, 498, and 499 are created for statement level detail. These records track
dynamic and static DML statements executed by a transaction, including those executed
within a stored procedure or user-defined function. A series of IFCID 497, 498, or 499
records can be used to determine the statements executed for a given transaction. Note:
Any packages containing static SQL statements that existed prior to DB2 10 must be
rebound in DB2 10 New Function Mode (NFM), not necessarily with this APAR applied, to
obtain a valid statement ID.

� A new performance class 24 is created to encapsulate IFCID380 and IFCID499 for stored
procedure detail analysis (see Figure A-1).

Note: The routine ID can be zero if a REBIND is not performed for packages containing
CALL statements where the stored procedure name is a literal. See DSNDQW02 for
mapping details
422 IBM DB2 11 for z/OS Technical Overview

Figure A-1 Stored procedure monitoring

If you are interested in using the functions provided, consider the following actions:

� For a CALL statement to a DB2 for z/OS stored procedure, the stored procedure name can
be identified by using a literal or by using a host variable or parameter marker. When using
a literal for the stored procedure name and to benefit from the enhancement that provides
a valid routine ID in various IFCID records, the packages that contain the CALL statement
must be rebound.

� For an SQL statement that invokes a DB2 for z/OS UDF, and to benefit from the
enhancement to provide a valid routine ID in various IFCID records, the packages that
contain the SQL statement must be rebound.

� The mapping of IFCID233 remains compatible with prior versions and no immediate
change is required. However, you need to change applications that parse this record to
take advantage of the new fields.

See the following IFCIDs definitions for further details:

� QW0380
� QW0381
� QW0497
� QW0498
� QW0499

Example A-13 shows the details for QW0380.

Example A-13 IFCID0380

* IFCID 380 is a stored procedure detail record. It is written at *
* the beginning and the end of a CALL statement for both external *
* and native stored procedures. *
* *

Stored Procedure Monitoring

Connect

CALL
mySP (:p1)

Commit

Insert

Open

Client

SQL1

SQL2

Return

Fetch to fill
row buffer

IFCID 380 written here
for mySP begin. Will
contain 0’s for current

CP, specialty engine and
elapsed times

IFCID 380 written here
for mySP end. Will

contain values that can
be compared to the

begin IFCID380 record
for mySP

IFCID 497 written here
with all non-nested

statement IDs executed
(i.e., the CALL

statement)

IFCID 499 written here
with all statement IDs

executed in the SP
(i.e., SQL1, SQL2)
Appendix A. Information about IFCID changes 423

* The record contains 2 data sections mapped as follows: *
* *
* Data section 1 will be mapped by qw0233 in DSNDQW03 *
* Data section 2 will be mapped by qw0380 below *
* *
* Notes: *
* 1. The mapping of QW0380 is also used by IFCID381. *
* 2. All times are in clock units. *
* 3. Times for IFCID380 reflect the total time at the time of *
* record write for all SP invocations. This includes SQLPL and *
* WLM stored procedures. *
* 4. Times for IFCID381 reflect the total time at the time of *
* record write for all UDF invocations. This includes UDFs *
* executed on the main application execution unit and WLM *
* UDFs. *
* 5. Class 1 accounting must be enabled for this *
* section to be written. *
* 6. If class 2 accounting is not enabled, the class 2 counters *
* will be zero. *
* 7. If class 1 and class 2 accounting are enabled during SP *
* or UDF execution, the below values may be inconsistent *
* (e.g., class 2 time may exceed class 1) *

QW0380 DSECT
QW0380_CLS1CP DS CL8 Current total nested
* class 1 CP time. This does
* not include time spent
* executing on an IBM
* specialty engine.
QW0380_CLS1se DS CL8 Current total nested
* class 1 specialty engine
* time.
QW0380_CLS2CP DS CL8 Current total nested
* class 2 CP time. This is
* time in DB2 processing
* SQL statements. This time also
* includes in DB2 time needed to
* connect and disconnect the SP
* task for non-SQLP stored
* procedures. This does not
* include time spent executing
* on an IBM specialty engine.
QW0380_CLS2se DS CL8 Current total nested
* class 2 specialty engine time.
* This is time in DB2 processing
* SQL statements.
QW0380_CLS2elap DS CL8 Current total nested
* elapsed class 2 time. This is
* time in DB2 processing
* SQL statements. This time also
* includes in DB2 time needed to
* connect and disconnect the SP
* task for non-SQLP stored
* procedures.
*
424 IBM DB2 11 for z/OS Technical Overview

Example A-14 shows the details for QW0381.

Example A-14 QW0381 details

* IFCID 381 is a UDF detail record. It is written at *
* the beginning and the end of a UDF invocation. *
* The record contains 2 data sections mapped as follows: *
* *
* Data section 1 will be mapped by qw0233 in DSNDQW03 *
* Data section 2 will be mapped by qw0380 above *

For QW0497 details, see Example A-15.

Example A-15 QW0497 details

* IFCID 497 is the statement ID detail record for statements *
* executed outside of a stored procedure or UDF environment. *
* This typically would be referred to as a non-nested environment *
* with the exception that statements executed by triggers on the *
* main application execution unit will be recorded in this record. *
* *
* It is mapped identically to IFCID499 and may be written for *
* reasons: *
* QW0499OV *
* QW0499AC *
* QW0499SB *
* QW0499UB *
* *
* Notes: *
* 1. Parallel child tasks will not externalize this IFCID. *
* 2. Autonomous procedures will not externalize this IFCID. *
* 3. For dynamic statements, only statements qualifying for the *
* dynamic statement cache will be returned. *
* 4. For static statements, some statement IDs may not *
* correlate to IFCID401 static statement cache IDs. *
* *

Example A-16 shows the details for QW0498.

Example A-16 QW0498 details

* IFCID 498 is the statement ID detail record for statements *
* executed inside of UDF environment. This includes WLM UDFs and *
* non-inline scalar functions. *
* *
* It is mapped identically to IFCID499 and may be written for *
* reasons: *
* QW0499OV *
* QW0499SB *
Appendix A. Information about IFCID changes 425

* QW0499UB *
* QW0499UE *
* *
* Notes: *
* 1. Parallel child tasks will not externalize this IFCID. *
* 2. Autonomous procedures will not externalize this IFCID. *
* 3. For dynamic statements, only statements qualifying for the *
* dynamic statement cache will be returned. *
* 4. For static statements, some statement IDs may not *
* correlate to IFCID401 static statement cache IDs. *
* *

Example A-17 shows the details for QW0499.

Example A-17 QW0499 details

* IFCID 499 is the statement ID detail record for statements *
* executed inside of stored procedure environment. This includes *
* WLM SPs and native stored procedures. *
* *
* It is mapped below and may be written for reasons: *
* QW0499OV *
* QW0499SB *
* QW0499UB *
* QW0499SE *
* *
* Notes: *
* 1. Parallel child tasks will not externalize this IFCID. *
* 2. Autonomous procedures will not externalize this IFCID. *
* 3. For dynamic statements, only statements qualifying for the *
* dynamic statement cache will be returned. *
* 4. For static statements, some statement IDs may not *
* correlate to IFCID401 static statement cache IDs. *
* *

*
* Data section 1
QW0499 DSECT IFCID(QWHS0499)
QW0499RS DS XL4 Reason IFCID was externalized
QW0499OV EQU X'00000001' The maximum number of unique
* statement ID's were collected
QW0499AC EQU X'00000002' The transaction/accounting
* interval is ending
QW0499SB EQU X'00000003' A stored procedure is beginning
QW0499SE EQU X'00000004' A stored procedure is ending
QW0499UB EQU X'00000005' A UDF is beginning
QW0499UE EQU X'00000006' A UDF is ending
*
* Data section 2 is a repeating group of each individual unique
* statement ID's
QW04992 DSECT
QW0499SID DS CL8 Statement ID
QW0499NEC DS D Number of Executions
QW0499STY DS CL2 Statement type
426 IBM DB2 11 for z/OS Technical Overview

QW0499DY EQU X'8000' Statement is dynamic
QW0499SC EQU X'4000' Statement is static
QW0499CL EQU X'2000' Statement is a CALL statement
 MEND */
*

A.7 Other accounting changes

The section describes the following accounting changes:

� Reduced NOT ACCOUNTED FOR time
� Specialty engine time in the CPU header
� Larger RBA and LRSN

A.7.1 Reduced NOT ACCOUNTED FOR time

DB2 further reduces the amount of NOT ACCOUNTED FOR times present in the following
accounting records:

� Buffer Manger force write, which is the time is added to the existing Buffer Manager Class
three buckets

� Parallel Query Parent/Child Synchronization, which is a New Class 3 bucket
(qwac_pqs_wait/qwac_pqs_count) is added.

� Log Manager read, which is the time is added to the existing Log Manager Class 3 buckets

A.7.2 Specialty engine time in the CPU header

DB2 adds a field to the CPU Header (DSNDQWHU) to quickly determine CPU time that was spent
running on a Specialty Engine. See Example A-18.

Example A-18 CPU time that was spent running on a Specialty Engine

* /*INSTRUMENTATION CPU HEADER DATA */
QWHULEN DS XL2 /* LENGTH OF HEADER */
QWHUTYP DS XL1 /* TYPE OF HEADER - CPU MAPPED QWHSHU08 */
 DS XL1 /* RESERVED */
QWHUCPU DS XL8 /* CPU time of the currently dispatched */
* /* execution unit (TCB or SRB). This */
* /* time includes CPU consumed on an IBM */
* /* specialty engine. Binary zero */
* /* indicates CPU time was not available. */

QWHUCNT DS XL2 /* (S) COUNT FIELD RESERVED */
QWHUSE DS XL8 /* CPU time of the currently dispatched */
* /* execution unit (TCB or SRB) consumed */
* /* on an IBM speciailty engine. */
* /* Note: A given ACE token may */
* /* run under one or more MVS dispatchable*/
* /* execution units. Thus the CPU time for*/
* /* a given ACE may decrease between */
* /* events. This is true for both QWHUCPU */
* /* and QWHUSE. */
Appendix A. Information about IFCID changes 427

QWHUEND DS 0C

A.7.3 Larger RBA and LRSN

Numerous instrumentation changes are required to support a 10-byte RBA/LRSN. Any
application parsing the following records needs to be modified to fully take advantage of the
new RBA size in these records. An attempt was made to maintain the offsets of other record
fields when possible. The following records or mappings in Example A-19 have incompatible
changes with prior releases:

� DSNDWQAL (while offsets are not changed for existing fields, applications using the
pre-existing WQALLRBA offset ceases to function)

� DSNDIFCA for IFCID129 and IFCID306 requests
� IFCID32
� IFCID34
� IFCID36
� IFCID38
� IFCID39
� IFCID43
� IFCID114
� IFCID119
� IFCID126
� IFCID129
� IFCID185
� IFCID203
� IFCID261
� IFCID306
� IFCID335

Other record changes result in parsing applications reading in zeroes for RBA/LRSN fields
using the old offsets.

Example A-19 Incompatible changes for new RBA/LRSN

WQALLN6 EQU 264 /* VERSION 6 LENGTH - */
* /* INCLUDES EUID, EUTX, EUWN */
* /* FIELDS */
WQALLN9 EQU 920 /* Version 9 length */
WQALLN11 EQU 1024 /* Version 11 length */
...
WQALCDCD DS CL1 /* DB2 CHANGED DATA CAPTURE REQUEST FLAG
* /* Y - DATA DESCRIPTION RETURNED FOR EACH */
* /* READS 185 (OTHER THAN REDRIVE */
* /* REQUESTS) FOR A NEW TABLE */
* /* N - NO DATA DESCRIPTIONS WILL BE */
* /* RETURNED. */
* /* A - A DATA DESCTIPTION WILL ONLY BE */
* /* RETURNED THE FIRST TIME OR WHEN */
* /* IT IS CHANGED FOR A GIVEN TABLE. */
* /* THIS IS THE DEFAULT. */
* /* SEE IFCID 185 IN DSNDQW02. DEFINITION */
* /* OF DATA DESCRIPTION BEGINS WITH FIELD */
* /* QW0185DD */
 DS CL9 /* Reserved */
...
428 IBM DB2 11 for z/OS Technical Overview

WQALFVAL64 DS D /* 64-bit threshold value for IFCID 316 and */
* /* 401 requests. If this is non-zero and */
* /* the target system is v10 or higher, this */
* /* value will be used in place of WQALFVAL. */
WQALLRBA DS 0CL12
WQALRBAM DS CL2 /* For IFCID 306, this is the member ID */
* /* for a WQALMODD call */
WQALRBA10 DS CL10 /* For IFCID 129, this is the starting */
* /* log RBA of the CI(s) to be returned */
* /* For IFCID 306, this is the log RBA or */
* /* LRSN to be used in a WQALMODF or */
* /* WQALMODD call */
 DS CL100 /* Reserved */
WQALEND DS 0F /* END OF BLOCK */

A.7.4 Buffer manager force write

Buffer manager force write Class 3 accounting times are added to the existing QWACAWTW
and QWACARNW fields. In addition, Example A-20 shows the details of these IFCIDs.

Example A-20 IFCID127 and IFCID 128

QW0127F DS C FLAG FOR TYPE OF I/O
QW0127FR EQU C'R' READ I/O WAIT
QW0127FW EQU C'W' WRITE I/O WAIT
QW0127FF EQU C'F' BUFFER MANAGER FORCE WRITE I/O WAIT
QW0127BP DS F BUFFER POOL INTERNAL ID (049
QW0128F DS C FLAG FOR TYPE OF I/O
QW0128FR EQU C'R' READ I/O WAIT
QW0128FW EQU C'W' WRITE I/O WAIT
QW0128FF EQU C'F' BUFFER MANAGER FORCE WRITE I/O WAIT
QW0128AC DS F ACE TOKEN OF ACTUAL REQUESTOR.

A.7.5 Parallelism performance enhancement

The IFCIDs listed in the following tables were changed to track the effect of changes to the
degree of parallelism after parallel system negotiation that occurs because of resource
constraints.

A.7.5.1 Accounting and statistics
Table A-1 lists the accounting and statistics IFCIDs.

Table A-1 The QXST control block size is enlarged

Name Description

QXSTOREDGRP Number of parallel group degree be reduced due to system negotiation
result of system stress level

QXSTODGNGRP Number of parallel group is degenerated to sequential due to system
negotiation result of system stress level
Appendix A. Information about IFCID changes 429

A.7.5.2 IFCID 221
Table A-2 lists IFCID 221 details.

Table A-2 IFCID221

A.7.5.3 IFCID 225
Table A-3 lists IFCIS 225 details.

Table A-3 IFCID225

A.7.5.4 IFCID 316
Table A-4 lists IFCID 316 details.

Table A-4 IFCID316, The QW0316 control block size is enlarged.

A.7.5.5 IFCID 401
Table A-5 lists IFCID 401 details.

QXMAXESTIDG Maximum parallel group estimated degree. It is the bind time estimated
degree based on the cost formula. If the parallel group contains a host
variable or parameter marker, then bind time estimates the parallel group
degree based on a valid assumption value.

QXMAXPLANDG Maximum parallel group plan degree. It is the ideal parallel group degree
obtained at execution time after the host variable or parameter marker
value is plug-in and before buffer pool negotiation and system negotiation
are performed.

QXPAROPT Serviceability

Name Description

QW0221STOLEV Serviceability

QW0221STOMAP Serviceability

Name Description

QW0225_RS Serviceability

Name Description

QW0316AVGESTI Average of parallel group estimated degree. Estimated degree is the bind
time estimated parallel group degree based on the cost formula. If the
parallel group contains a host variable or parameter marker, then bind time
estimates the parallel group degree based on a valid assumption value.

QX0316AVGPLAN Average of parallel group plan degree. Plan degree is the ideal parallel
group degree obtained at execution time after the host variable or
parameter marker value is plug-in and before buffer pool negotiation and
system negotiation are performed.

QW0316AVGACT Average of parallel group actual degree. The actual degree is obtained at
execution time after consider the buffer pool negotiation and system
negotiation.

Name Description
430 IBM DB2 11 for z/OS Technical Overview

Table A-5 IFCID401, The QW0401 control block size is enlarged.

A.7.6 Temporal support

The following IFCIDs were changed to indicate the impacts of the CURRENT TEMPORAL
BUSINESS_TIME special register, the CURRENT TEMPORAL SYSTEM_TIME special register, and the
SYSIBMADM.GET_ARCHIVE built-in global variable:

� 0053
� 0058
� 0059
� 0060
� 0061
� 0064
� 0065
� 0066
� 0401

See Table A-6.

Table A-6 QW00xxER

A.7.7 IFCID 002/225: Arrays support

Example A-21 lists the changes to IFCID 002 and 225 to support arrays.

Example A-21 Changes IFCID 002/225 to record arrays support

IFC ID 0002 IS RESERVED FOR DATA BASE STATISTICS RECORDS AND IS
MAPPED BY MACRO DSNDQWST SUPTYPE=1

! IFCID225 summarizes system storage usage

Name Description

QW0401AVGESTI Average of parallel group estimated degree. Estimated degree is the bind
time estimated parallel group degree based on the cost formula. If the
parallel group contains a host variable or parameter marker, then bind time
estimates the parallel group degree based on a valid assumption value.

QW0401AVGPLAN Average of parallel group plan degree. Plan degree is the ideal parallel
group degree obtained at execution time after the host variable or
parameter marker value is plug-in and before buffer pool negotiation and
system negotiation are performed.

QW0401AVGACT Average of parallel group actual degree. The actual degree is obtained at
execution time after consider the buffer pool negotiation and system
negotiation.

Name Description

QW00xxER SB The query contains implicit query transformation driven by the
CURRENT TEMPORAL SYSTEM_TIME special register and the
CURRENT TEMPORAL BUSINESS_TIME special register.
Blank The query does not contain implicit query transformation driven
by the SYSIBMADM.GET_ARCHIVE built-in global variable, the
CURRENT TEMPORAL BUSINESS_TIME special register, or the
CURRENT TEMPORAL SYSTEM_TIME special register.
Appendix A. Information about IFCID changes 431

QW0225AR DS D ! Total array variable storage *

A.7.8 IFCID 003/239: Autonomous transaction support

Example A-22 lists the changes to IFCID 003 and 239 to support autonomous transactions.

Example A-22 Changes IFCID 003/239 to record autonomous transactions

IFC ID 0003 IS RESERVED FOR ACCOUNTING RECORDS AND IS
MAPPED BY MACRO DSNDQWAS

* IFCID 0239 FOR RMID 26 *
* THIS RECORD IS WRITTEN WHEN A PACKAGE/DBRM ACCOUNTING INFORMATION*
* IS AVAILABLE FOR MORE THAN 10 PACKAGES/DBRMs. *
* SEE DSNDQWAS FOR THE MAPPING OF IFCID 239. *

A.7.9 IFCID 366: Application incompatibility

To reference the new longer lengths values, the application (package) bind option,
APPLCOMPAT must specify the value, V11R1. If the application APPLCOMPAT bind option does not
specify V11R1 (for example, V10R1) the application continues to reference the shorter
(truncated) client information values.

If the application APPLCOMPAT bind option is not set, the value of the APPLCOMPAT bind option is
defaulted to the DB2 subsystem parameter APPLCOMPAT (DSN6PRM) value.

Example A-23 lists the changes to IFCID 366 to record application incompatibility.

Example A-23 Changes IFCID 366 to record application incompatibility

** IFCID 0366 is a serviceability trace. It can be used to identify *
** applications that are affected by incompatible changes. *
** The QW0366FN field indicates the type of incompatible change: *
** *
** QW0366FN = 1 *
**
** QW0366FN = 2 *
** *
** QW0366FN = 3
** *
** QW0366FN = 1101 *
** Indicates that the INSERT statement that inserts into an XML *
** column without XMLDOCUMENT function has been processed (which *
** should result in SQLCODE -20345 when run on DB2 release prior *

Note: Applications that wants to retrieve the new longer lengths client information special
register values (for example, using the SET host-variable SQL statement) need to ensure
the target (receiving) host variable is defined to be large enough to receive the maximum
length of the new longer length values. If this is not performed, your application receives a
warning message. An IFCID366 trace record is also recorded to indicate such
incompatibility has been detected by DB2.
432 IBM DB2 11 for z/OS Technical Overview

** to DB2 11). Starting with DB2 11, SQL error will no longer be *
** issued. *
** Application will no longer recieve SQLCODE for this statement. *
** *
** QW0366FN = 1102 *
** Indicates that V10 XPath evaluation behavior was in effect which*
** resulted in an error. For instance, a data type conversion error*
** could have occured for a predicate that would otherwise be *
** evaluated to false. tarting from DB2 11,such "irrelevant" errors*
** might be suppressed so an application might no longer recieve *
** the SQLCODE for this statement. *
** *
** QW0366FN = 1103 *
** Indicates that a dynamic SQL uses the ASUTime limit that has *
** been set for the entire thread for RLF reactive governing. *
** For instance, when a dynamic SQL is processed from package A, *
** if the ASUTime limit is already set during other dynamic SQL *
** processing from package B in the same thread, the SQL from *
** package A will use the ASUTime limit set during the SQL *
** processing from package B.Stating with DB2 11, dynamic SQLs from*
** multiple packages will use the ASUTime limit that is set *
** considering its own package information. *
** *
** QW0366FN = 1104, 1105, 1106, 1107 *
** Indicates that CLIENT special register (CLIENT_USERID, *
** CLIENT_WRKSTNNAME, CLIENT_APPLNAME, CLIENT_ACCTNG) has been set *
** to a value that is longer than what is supported prior to DB2 11*
** A shorter value has been used instead. *
** *
** QW0366FN = 1108 *
** Indicates that CLIENT special register (CLIENT_USERID, *
** CLIENT_WRKSTNNAME, CLIENT_APPLNAME, CLIENT_ACCTNG) has been set *
** to a value that is longer than what is supported prior to DB2 11*
** Truncated values upto the supported lengths prior to DB2 11 have*
** been used for RLF table search instead. *
** *
** QW0366FN = 1109 *
** Indicates that CAST(string AS TIMESTAMP) was processed for the *
** input string of length 8 and input was treated as a store clock *
** value (or input string was of length 13 and was treated as a *
** GENERATE_UNIQUE value). This behavior is incorrect for a CAST *
** and is valid for TIMESTAMP built-in function only. This behavior*
** is being corrected in DB2 11 so that input to CAST is not *
** treated as a store clock value nor GENERATE_UNIQUE. *
** *
** QW0366FN = 1110 *
** Indicates the integer argument of SPACE function is greater *
** than 32764. *
** *
** QW0366FN = 1111 *
** Indicates the optional integer argument of VARCHAR function *
** has a value greater than 32764. *

QW0366 DSECT
Appendix A. Information about IFCID changes 433

QW0366FN DS F Incompatible change indicator
*............................QW0366FN CONSTANTS........................
C_QW0366_CHAR EQU 0001 V9 SYSIBM.CHAR(decimal-expr) function
C_QW0366_VCHAR EQU 0002 V9 SYSIBM.VARCHAR(decimal-expr) function
* CAST (decimal as VARCHAR or CHAR)
C_QW0366_TMS EQU 0003 Unsupported character string
* rpresentation of a timestamp
C_QW0366_XMLINS EQU 1101 Insert into an XML column without
* XMLDOCUMENT function
C_QW0366_XPATHERR EQU 1102 XPath evaluation error
C_QW0366_RLF EQU 1103 RLF governing
C_QW0366_CLIENTAC EQU 1104 Long CLIENT_ACCTNG Special Reg value
C_QW0366_CLIENTAP EQU 1105 Long CLIENT_APPLNAME Special Reg value
C_QW0366_CLIENTUS EQU 1106 Long CLIENT_USERID Special Reg value
C_QW0366_CLIENTWK EQU 1107 Long CLIENT_WRKSTNNAME Special Reg value
C_QW0366_CLIENTSR EQU 1108 Long client Special Reg value for RLF
C_QW0366_TMSCAST EQU 1109 CAST(string AS TIMESTAMP)
C_QW0366_SPACEINT EQU 1110 SPACE integer argument greater than 32764
C_QW0366_VCHARINT EQU 1111 VARCHAR int argument greater than 32764
*..
QW0366SN DS F Statement number of the query
QW0366PL DS CL8 Plan name for this query
QW0366TS DS CL8 Timestamp for this query
QW0366SI DS CL8 Statement Identifier
QW0366TY DS XL2 Statement information
*............................QW0366TY CONSTANTS........................
C_QW0366DYN EQU X'8000' Statement is dynamic
C_QW0366STC EQU X'4000' Statement is static
*..
QW0366SE DS H Section number
QW0366PC_Off DS H Offset from QW0366 to Package
* Collection ID
QW0366PN_Off DS H Offset from QW0366 to
* Program name
QW0366VER DS 0C Package Version
QW0366VL DS H Version length
QW0366VN DS CL64 Version name
*
QW0366PC_D DSECT
QW0366PC_Len DS H Length of Package Collection ID
QW0366PC_Var DS 0CL128 %U Package Collection ID
*
QW0366PN_D DSECT
QW0366PN_Len DS H Length of Program Name
QW0366PN_Var DS 0CL128 %U Program Name
*

A.7.10 IFCID 230/256: Castout enhancements

Example A-24 lists the changes to IFCID 230 and 256 to record class castout queue
threshold values, based on the number of pages.

Example A-24 Changes IFCID 230/256 to record castout queue threshold

434 IBM DB2 11 for z/OS Technical Overview

* IFCID 0256 FOR RMID 10 TO RECORD THE EFFECTS OF AN ISSUED
* DB2 -ALTER GROUPBUFFERPOOL COMMAND.

*
QW0256 DSECT IFCID(QWHS0256)
QW0256GB DS CL8 GROUP BUFFER POOL NAME
QW0256OR DS CL6 OLD DIRECTORY TO DATA RATIO VALUE
QW0256OC DS XL1 OLD CLASST VALUE
QW0256OG DS XL1 OLD GBPOOLT VALUE
QW0256OK DS XL4 OLD GBPCHKPT VALUE
QW0256NR DS CL6 NEW DIRECTORY TO DATA RATIO VALUE
QW0256NC DS XL1 NEW CLASST VALUE
QW0256NG DS XL1 NEW GBPOOLT VALUE
QW0256ON DS XL2 OLD CLASST (BUF-NUM BASED)
QW0256NN DS XL2 NEW CLASST (BUF-NUM BASED)
QW0256NK DS XL4 NEW GBPCHKPT VALUE
QW0256OA DS CL1 OLD AUTOREC SETTING rev code a
QW0256NA DS CL1 NEW AUTOREC Setting rev code a
QW0256OB DS CL1 Old GBPCACHE setting
QW0256NB DS CL1 New GBPCACHE setting
QW0256AY EQU C'Y' AUTOREC or GBPCACHE (YES)
QW0256AN EQU C'N' AUTOREC or GBPCACHE (NO)
QW0256EN DS 0C END OF QW0256
Appendix A. Information about IFCID changes 435

436 IBM DB2 11 for z/OS Technical Overview

Appendix B. Summary of relevant
maintenance

With a new version of DB2 reaching general availability, the maintenance stream becomes
extremely important. Feedback from early users and development of additional functions
cause a flux of APARs that enrich and improve the product code.

This appendix describes the following recent maintenance for DB2 11 for z/OS:

� DB2 APARs
� z/OS APARs
� OMEGAMON/PE APARs

These APARs represent a snapshot of the current maintenance at the time of writing. For an
up-to-date list, ensure sure that you contact your IBM Service Representative for the most
current maintenance at the time of your installation. Also check on IBM RETAIN for the
applicability of these APARs to your environment and to verify prerequisites and
post-requisites.

Use the Consolidated Service Test (CST) as the base for service as described at:

http://www.ibm.com/systems/z/os/zos/support/servicetest/

DB2 11 is now included in the RSU.

The most recent planned quarterly RSU is CST1Q14 (RSU1403), dated April 4 2014 for DB2
10 and DB2 11. This addendum is based on all service through the end of December 2013
not already marked RSU, PE resolution and HIPER/Security/Integrity/Pervasive PTFs and
their associated requisites and supersedes through the end of February 2014.) as described
at.

http://www.ibm.com/systems/resources/RSU1312.pdf

B

© Copyright IBM Corp. 2013. All rights reserved. 437

http://www.ibm.com/systems/z/os/zos/support/servicetest/
http://www.ibm.com/systems/resources/RSU1312.pdf

B.1 DB2 APARs

Table B-1 lists the APARs that provide functional and performance enhancements to DB2 11
for z/OS. This list is not and cannot be exhaustive; check RETAIN and the DB2 website for a
complete list.

Table B-1 DB2 10 current function and performance related APARs

APAR # Area Text PTF and notes

II10817 Storage Info APAR for storage usage error

II11334 TCP/IP Info APAR for Communication Server

II14219 zIIP zIIP exploitation support use information

II14334 LOBs Info APAR to link together all the LOB support delivery
APARs

II14426 XML Info APAR to link together all the XML support delivery
APARs

II14441 Incorrout PTFs Preferred DB2 9 SQL INCORROUT PTFs

II14587 Workfile DB2 9 and 10 work file recommendations

II14619 Migration Info APAR for DB2 10 DDF migration

II14660 V11 migration Info APAR to link together all the migration APARs to
V11

PM31841 V11 Migration Toleration of fall back to V10 UK96357
V10

PM45652 Migration prefix.SDSNLINK lib UK74535
V10

PM80004 DDF Synchronous Receive UK92097

PM84765 IRLM New option (QWAITER) to QUERYFST request used
by DB2

UK92494

PM85053 IRLM IRLM enhancement for DB2 V11 to suppress
unnecessary child lock propagation to the CF lock
structure

UK92783

PM89117 V11 Migration New functions UK95677
V10

PM89655 DSNZPARM Restrictions for IXcontrolled TS
PREVENT_NEW_IXCTRL_PART and
PREVENT_ALTERTB_LIMITKEY

UK98189
also V10

PM91565 Premigration
DSNTIJPM

SQLCODE -104 UK95419

PM92730 DSNTIJMV Corrections to job for migration UK98196
also V9, V10

PM93577 Query in
DSNESQ

DSNTESQ insert INS32 needs to be updated. UK98216
also V9, V10

PM94681 ADMIN_INFO_S
QL

Collection features, enhancements, and service OPEN
438 IBM DB2 11 for z/OS Technical Overview

B.2 z/OS APARs

Table B-2 lists the APARs that provide additional enhancements for z/OS. This list is not and
cannot be exhaustive; check RETAIN and the DB2 website for a complete list.

Table B-2 z/OS DB2-related APARs

B.3 OMEGAMON PE APARs

Table B-3 lists the APARs that provide additional enhancements for IBM Tivoli OMEGAMON
XE for DB2 PE on z/OS V5.2.0, PID 5655-W37. This list is not and cannot be exhaustive;
check RETAIN and the DB2 tools website for a complete list.

Table B-3 OMEGAMON PE GA and DB2 related APARs

PM94715 ENFM Improve step ENFM001. Systems with a large number
of rows in SYSIBM.SYSCOLUMNS the DSNTIJEN step
ENFM0001 can take longer to complete.

UK97335

PM95294 ALTER Reduce sync getpageS against DSNTPX01 index of
SYSCOLDISTSTATS table.

UK97912
also V10

PM95929 Thread break in The need to break in for BIND/DDL activity - Early code UI13368
also V10

PM96001 Thread break in Toleration code for all V11 members UI12985
also V10

PM96004 Thread break in Enabling code UI12985
also V10

APAR # Area Text PTF and notes

APAR # Area Text PTF and notes

OA37550 Coupling Facility Performance improvements are needed for coupling
facility cache structures to avoid flooding the coupling
facility cache with changed data and avoid excessive
delays and backlogs for cast-out processing.

UA66419

 OA39392 CALLRTM
TYPE=SRBTER
M

Terminate a pre-emptable SRB in the -CANCEL
THREAD with FORCE option

UA66823

OA40967 RSM
Enablement
Offering

2 GB frame support UA68169

OA41617 IGX00031/IGX0
0032 modules

DFSMS control block accessing support for
NON_VSAM_XTIOT = YES in DEVSUPxx

UA69320

APAR # Area Text PTF and notes

II14438 Info APAR for known issues causing high CPU
utilization.
Appendix B. Summary of relevant maintenance 439

440 IBM DB2 11 for z/OS Technical Overview

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks publications

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� DB2 10 for z/OS Technical Overview, SG24-7892
� Extremely pureXML in DB2 10 for z/OS, SG24-7915
� DB2 for z/OS and List Prefetch Optimizer, REDP-4862
� Subsystem and Transaction Monitoring and Tuning with DB2 11 for z/OS, SG24-8182

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Other publications

These publications are also relevant as further information sources:

� DB2 11 for z/OS Administration Guide, SC19-4050

� DB2 11 for z/OS Application Programming and SQL Guide, SC19-4051

� DB2 11 for z/OS Application Programming Guide and Reference for Java, SC19-4052

� DB2 11 for z/OS Codes, GC19-4053

� DB2 11 for z/OS Command Reference, SC19-4054

� DB2 11 for z/OS Data Sharing: Planning and Administration, SC19-4055

� DB2 11 for z/OS Installation and Migration, SC19-4056

� DB2 11 for z/OS Internationalization Guide, SC19-4057

� Introduction to DB2 for z/OS, SC19-4058

� DB2 11 for z/OS DB2 11 for z/OS IRLM Messages and Codes for IMS and DB2 for z/OS,
GC19-2666

� DB2 11 for z/OS Managing Performance, SC19-4060

� DB2 11 for z/OS Managing Security, SC19-4061

� DB2 11 for z/OS Messages, GC19-4062

� DB2 11 for z/OS ODBC Guide and Reference, SC19-4063

� DB2 11 for z/OS pureXML Guide, SC19-4064

� DB2 11 for z/OS RACF Access Control Module Guide, SC19-4065

� DB2 11 for z/OS SQL Reference, SC19-4066
© Copyright IBM Corp. 2013. All rights reserved. 441

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

� DB2 11 for z/OS Utility Guide and Reference, SC19-4067

� DB2 11 for z/OS What's New?, GC19-4068

� DB2 11 for z/OS Diagnosis Guide and Reference, LY37-3222

Online resources

These websites are also relevant as further information sources:

� DD2 11 for z/OS

http://www-01.ibm.com/software/data/db2/zos/family/db211/

� DB2 Information Management Tools and DB2 11 for z/OS Compatibility

http://www-01.ibm.com/support/docview.wss?uid=swg21609691

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
442 IBM DB2 11 for z/OS Technical Overview

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-01.ibm.com/software/data/db2/zos/family/db211/
http://www-01.ibm.com/support/docview.wss?uid=swg21609691

Index

A
ABIND 79, 336
access 2, 9, 33, 86, 102, 152, 195, 239, 273, 318, 320
access control 239, 347
Access Control Authorization Exit 240
access path 75, 293, 353, 356
ADVISORY REORG 62
aggregate functions 266
ALTER BUFFERPOOL 10
ALTER statement 73, 127, 131, 264, 361
ALTER TABLE 58, 101, 131, 186, 264, 351–352

statement 61, 127, 131, 352
ALTER TABLESPACE 55, 101, 350–351

command 75
option 63
statement 351

ALTER TABLESPACE statement 351
APAR 13, 49, 83, 90, 168, 203, 273, 319–320
APIs 149, 234
APPLCOMPAT 432
application xxv, 3, 8, 44, 51, 86, 97, 99, 130, 152, 172,
239, 274, 320–321
AREOR 54, 127, 352, 361
AREOR state 75
AREOR status 54
argument 106, 265
attribute 10, 46, 52, 120, 161, 323
AUTHEXIT_CHECK 347
auxiliary index 58

B
base table 57, 120, 130
base tables 120
BIGINT 113, 148
bind option 82, 130, 212, 241, 339, 351
bind parameter 100, 375
BIT 252
BSDS 24, 327
buffer pool 9, 52, 86, 320

activity 87
BP0 324
manager 93
size 9, 52, 356
space 52, 86, 324
storage 9, 86, 324

buffer pools 87
Business resiliency 23
BUSINESS_TIME period 115, 360

C
catalog table 30, 54, 127, 251, 294, 328–329
CATMAINT 334
CCSID 118, 148, 252, 278, 332
© Copyright IBM Corp. 2013. All rights reserved.
CF 86
character string 192, 353, 365

explicit cast 377
CHECK INDEX 70, 350
CICS 19, 82, 180, 320
class 17, 86, 174, 242, 348
CLOB 158
CLUSTER 34, 52, 183, 278, 352
CM 26, 53, 85, 127, 181, 280, 317
COLGROUP 72
COLLID 188, 251
colon 177
column mask 263, 377
Column name 54, 182, 252
command line

processor 149, 196
COMMENT 101
components 19, 34, 139, 174, 318, 321
compression 2, 7, 72, 290
compression dictionary 72
condition 80, 94, 206, 263, 367
CONNECT 180, 244
conversion mode 31, 70, 85, 127, 188, 333–334
COPY 20, 27, 59, 209, 272, 322, 339
COUNT 10, 121, 266
CPU overhead 21, 95
CPU reduction xxv, 8, 167
CPU time 91, 170, 273
CREATE TABLE

LIKE 53
CREATOR 252, 322
cross invalidation 90
CS 209, 254
CURRENT SQLID 252, 322
CURRENT TIMESTAMP 103, 134, 254, 276

D
data xxv, 1, 8, 52, 85, 100, 151, 171, 239, 269, 317–318,
411
data page 54, 95
data set 18, 52, 141, 193, 261, 283, 324–325

maximum number 71
data sharing 2, 13, 65, 85, 178, 271, 319
Data type 253
Database name 55, 233
database object 263
database system 102
DATASIZE 367
DATE 27, 118, 276, 365
DB2

tools xxv
DB2 10 xxv, 9, 25, 52, 90, 99, 130, 151, 172, 240, 273,
317

base 335
 443

break 81
change 52, 188, 241, 373
conversion mode 337
data 61, 225, 290
DB2 catalog 61
ENFM 317–318
enhancement 54, 167, 321
environment 225, 376
format 278, 336
function 225, 359
group 317
installation CLIST 330
make 363
NFM 53, 184, 266, 376
premigration 358
running 44, 81, 180, 317
SQL 44, 152, 230, 359
table spaces 50, 53, 329
tolerate 334
track 66
use 65, 152, 230, 321
utility 54, 167, 273, 334

DB2 8 341
DB2 9 xxv, 14, 25, 82, 90, 151, 270, 321

DB2 10 95, 336
system 336

DB2 authorization 243
DB2 family 44, 152, 172, 332
DB2 member 90, 355
DB2 subsystem 5, 24, 65, 90, 177, 242, 321
DB2 system xxvi, 14, 33, 72, 85, 127
DB2 utility 370
DB2 Version

9 357
DB2 Version 5 270
DBAT 202
DBET 368
DBM1 address space 14
DBMS 102, 320
DBNAME 54, 260, 288
DBPROTOCOL 207, 255, 376
DDF 81, 177, 239
DDL 31, 53, 100, 132, 153, 183, 252, 278
decimal 145, 153, 373
default value 66, 88, 173, 242, 334
definition change 127, 363
DEGREE 210, 255
DELETE 20, 45, 96, 120, 131, 210, 244, 272, 324, 391
delete 44, 72, 89, 133, 244, 270
DFSMS 16, 318
DISPLAY THREAD 173
Distributed 143, 214
domain name 188
DRAIN ALL 293
DRAIN_ALLPARTS YES 274
DRDA 172, 255, 320
DSMAX 49
DSN1COPY 29, 77
DSN6SPRM 242, 277, 342
DSNAME 27

DSNDB01.SYSUTILX 30
DSNJU004 33
DSNT404I SQLCODE 62
DSNT408I 62, 133, 259, 365
DSNT408I SQLCODE 261
DSNT415I SQLERRP 259
DSNT418I SQLSTATE 259
DSNTEP2 332
DSNTIJIN 325
DSNTIJMV 337
DSNTIJPM 335
DSNTIJTM 69, 255, 332
DSNTIJXA 336
DSNTIJXB 336
DSNTIJXC 330
DSNTIJXZ 330
DSNTWFG 69
DSNU2921I 56
DSNUM 55
DSNZPARM 66, 115, 271, 330

APPLCOMPAT 432
DSMAX 49
INDEX_CLEANUP_THREADS 393
OBJECT_CREATE_FORMAT 30
PARAMDEG_UTIL 70
PKGREL_COMMIT 82
PKRGEL_COMMIT 83
REORG_DROP_PBG_PARTS 277
REORG_MAPPING_DATABASE 49, 278
REORG_PART_SORT_NPSI 271
UTILITY_OBJECT_CONVERSION 31
WFSTGUSE_AGENT_THRESHOLD 66
WFSTGUSE_SYSTEM_THRESHOLD 68

DSSIZE 52, 280
dynamic SQL 79, 114, 130, 182, 240, 345
dynamic SQL statement 241
Dynamic statement cache 243, 412, 414, 431–432, 434

E
efficiency xxv, 22
element 101, 159, 376
ENFM 28, 280, 317
environment xxv, 20, 33, 73, 89, 114, 130, 153, 174, 255,
276, 318, 437
error message 19, 38, 62, 133, 223, 335
EXPLAIN 209, 254, 329
Explain 336
explicit cast 361
expression 105, 135, 152, 263, 276, 374

F
FALLBACK SPE

APAR 335
Fallback SPE 335
fallback SPE 335
FETCH 46, 101
fetch 114, 207, 359
FlashCopy 19, 54, 352
FlashCopy consistency group 21
444 IBM DB2 11 for z/OS Technical Overview

FlashCopy image copy 352
flexibility 85, 102, 141, 322
FOR BIT DATA 253
function 2, 7, 53, 93, 101, 131, 152, 173, 265, 269

G
GENERATED ALWAYS 118
GENERATED BY DEFAULT 80, 127, 154
GRECP 60, 93
GRP 195

H
handle 43, 82, 90, 140, 225, 285, 336
hash key 80, 127
hash table 93
HISTOGRAM 74
history table 79, 126
host variable 101
host variables 102

I
I/O 9, 88, 352
IBM DB2

Driver 226
IBMREQD 55
ICTYPE 39, 55
IDCAMS 34
IFCID record 381
II10817 438
II11334 438
II14219 438
II14334 438
II1440 438
II14426 438
II14438 439
II14441 438
II14587 438
II14619 438
image copy 39, 54, 283, 324
IMMEDWRITE 210, 255
IMPLICIT 380
implicit cast 373
implicit casting 373
IMS 83, 320
index xxviii, 14, 27, 52, 86, 105, 161, 192, 254, 269, 328
index page

split 94
INDEX_CLEANUP_THREADS 348, 393
input parameter 176, 367
INSERT 45, 54, 128, 131, 175, 252, 324
insert 3, 44, 53, 134, 154, 252, 362
installation 1, 32, 69, 95, 167, 183, 252, 315
installation CLIST 3, 322
installation job

DSNTIJSG 183
INSTANCE 382
IP address 174
IRLM 26, 178, 319

IS 10, 27, 56, 133, 158, 176, 256, 279, 335
IX 90, 262

J
Java 139, 158, 174, 319
JCC 82, 206
JDBC 149, 158, 174, 319
JDBC driver 180

K
KB 8, 34, 67, 168, 325
KB buffer pool 9
keyword 31, 153, 173, 240, 271, 331

L
LANGUAGE SQL 112
LENGTH 26, 62, 178, 260, 342
LIKE 61, 127, 348
list 86, 112, 172, 244, 277, 327
LOAD 2, 28, 59, 131, 167, 258, 283, 332
LOB 36, 52, 127, 291, 332
LOB table 52, 332
LOB table space 53, 367
LOBs 57
locking 91, 189, 261
locks 82, 90, 262
LOG 27, 272, 367
log record 2, 24, 60, 95, 350
log record sequence number 30
LOGGED 95, 101
logging 2, 23, 95, 120
long-running reader 178
LPAR 190
LPL 60, 86
LRSN 23, 55, 95, 278, 327
LRSN spin avoidance 95

M
M 122, 192, 296, 395
maintenance 90, 151, 269, 334, 437
materialization 52
materialized query tables 359
maximum number 49, 70, 92, 113, 207, 348
MAXRO 276
MAXSORT_IN_MEMORY 349
MEMBER CLUSTER 52
MERGE 114, 131, 210
Migration 17, 337
Migration Level 1 16
Migration Level 2 16
MODIFY 57, 92, 337
MSTR address space 14, 27, 68, 205, 261

N
namespace 157
native SQL procedure 104
NFM 28, 33, 53, 93, 181, 266, 280, 317
 Index 445

node 140, 161, 231, 362
non partitioned secondary indexes 270
NOPAD 293
NPAGESF 295
NPSI 270
NULL 101, 132, 154, 177, 251, 278, 367, 395
null value 113, 145, 346, 395
numeric value 204
NUMPARTS 53

O
OA37550 439
OA38419 90
OA38829 15
OA39392 203, 439
OA40967 439
OA41156 22
OA41617 439
Object 149, 281
OBJECT_CREATE_FORMAT 30, 35
OBJECTTYPE 368
ODBC 158, 230, 250, 359
online reorg 270
online schema change 52
optimization 329
options 19, 44, 52, 115, 132, 194, 243, 270, 334
ORDER 55, 112, 168, 272, 338
ORDER BY 349

P
page set 28, 54, 86, 351
page size 52, 281
panel DSNTIPG 322
PARAMDEG_DPSI 350
PARAMDEG_UTIL 350
parameter marker 376
PART 15, 36, 62, 260, 270
PARTITION 54, 118, 273
partition-by-growth 52, 277, 352
partition-by-growth table space 72, 352
PARTITIONED 272
partitioned table space 2, 36, 52, 273, 352
partitioning 20, 61, 127, 281, 350
partitions 9, 29, 61, 88, 270, 351
PBG table space 65, 277, 352
PBR table space 52
PCTFREE_UPD 350, 399
pending changes 52, 281
Performance xxv, 3, 179, 249
performance xxv, 2, 5, 7, 25, 85, 121, 166, 171, 237, 249,
270, 319, 391
performance improvement 9, 134, 169, 270
PGFIX 10, 320
PIT 301
PK37290 334
PKGREL_COMMIT 82, 351
PM31486 167
PM31487 167
PM31841 335, 438

PM44216 167
PM45015 336
PM45652 338, 438
PM47617 152
PM47618 152
PM55051 273
PM58177 280
PM61099 266
PM67544 90
PM69176 168
PM70981 389
PM72526 14
PM80004 438
PM84765 319, 438
PM8505 319
PM85053 438
PM85944 9
PM88166 49
PM89117 438
PM89655 63, 438
PM90486 9
PM91565 438
PM92730 438
PM93577 319, 438
PM93773 217
PM93782 338
PM94057 335
PM94681 438
PM94715 439
PM95294 439
PM95929 83, 439
PM9600 83
PM96001 439
PM96004 83, 439
point-in-time recovery 301
PORT 205
precompiler 370
predicate 105, 168, 348
prefix 34, 322
PREVENT_ALTERTB_LIMITKEY 63, 351
PREVENT_NEW_IXCTRL_PART 63
Primary Level 16
PROCESSING SYSIN 283
PTF 13, 167, 230, 273, 334
pureXML 2, 97, 151

Q
QUALIFIER 209, 254
query xxv, 3, 35, 114, 152, 173, 256, 321

R
RACF 13, 33, 221, 239, 319
RACF group 242
RACF profiles 13
range-partitioned table space 61
range-partitioned table spaces 61
RBA 23, 54, 96, 278, 327
RBDP 60, 93
READS 73
446 IBM DB2 11 for z/OS Technical Overview

Real 92, 294
real storage 9, 92, 318
reason code 29, 58, 205, 246, 273, 363
REBIND PACKAGE 82, 132, 208, 250, 351
rebuild pending 60, 93
REC_FASTREPLICATION 352
RECOVER 30, 53, 352
Redbooks website 441

Contact us xxviii
REGION 33
RELCREATED 55
remote location 212
remote server 171
RENAME INDEX 58
REOPT 210, 255
reordered row format 40
REORG 14, 28, 52, 127, 269–270, 335
REORG TABLESPACE 31, 54, 270, 343

control statement 37, 75
job 284, 367
pending definition change 368
statement 37, 75
utility 37, 70, 343
utility execution 37

REORG utility 49, 58, 276, 343
REORG_DROP_PBG_PARTS 352
REORG_MAPPING_DATABASE 49, 343, 353
REORP 53, 351
REPAIR 29, 58, 337
REPORT 30, 58, 173
REPORT RECOVERY utility 44, 59
repository 149
requirements 21, 90, 148, 189, 240, 316
RESET 75, 244, 293
resource unavailable 29, 66
RESTART 27
restart light 90
RESTRICT 73, 361
return 3, 34, 58, 120, 131, 152, 181, 246, 283
RID 49
RIDs 337
RIVATE_PROTOCOL 357
ROLLBACK 45, 82, 120, 178, 351
row access

control 263
row format 40
row permissions 73, 263
ROWID 55, 127
RRSAF 83, 173, 250
RTS 272
RUNSTATS 2, 75, 241, 293, 356

S
same page 96
same way 9
SCA 24
scalar functions 360
SCHEMA 178, 264, 338
schema 44, 51, 142, 167, 243, 329
SECADM authority 263

SECURITY 261, 322
segment size 52
segmented table space 50, 52, 280
SEGSIZE 40, 52, 280
SEPARATE_SECURITY 263
SEQ 180, 356
Server 144, 158, 189, 319
SET 10, 27, 89, 100, 132, 168, 186, 258, 396
SHRLEVEL 43, 54, 270, 329
side 25, 225
simple table space 52
skip-level migration 317
SMF 21, 180
SMS Transition Class 19
SORTNPSI 271
spin avoidance 95
SPT01 26, 342
SPUFI 104, 154, 208, 261, 345
SQL xxv, 2, 11, 29, 65, 99, 152, 173, 240, 293, 322
SQL PL 112
SQL procedure 104
SQL Reference 112
SQL scalar 100, 132

function 112
SQL scalar function 104
SQL statement 3, 45, 73, 100, 200, 241, 361
SQL table 127, 136, 359
SQL table functions 360
SQL variable 101
SQL/XML 152
SQLADM 245, 323
SQLCODE 45, 58, 133, 168, 176, 246, 336
SQLCODE +610 361
SQLCODE -104 361
SQLCODE -20345 362
SQLERROR 209
SQLJ 158, 206, 319
SQLJ applications 226
SQLSTATE 199, 259, 336
SSID 10, 41, 87, 208, 261
SSL 177
statement 3, 13, 33, 100, 131, 158, 178, 239, 274, 327
STATFDBK_SCOPE 353
static SQL 130, 182, 345
statistics 15, 71, 87, 228, 272, 351
STATUS 26, 62, 87, 159, 230, 260, 342
Storage Group Processing Priority 19
STOSPACE 30
STYPE 55
SUBSTR 264
SWITCH VCAT 300
SWITCHTIME 276
synchronous receive 21
SYSADM 209, 254, 322
SYSADM authority 221, 263
SYSCOLUMNS 75, 294
SYSCOPY 30, 53, 327
SYSIBM.DSN_PROFILE_ATTRIBUTES 187
SYSIBM.DSN_PROFILE_TABLE 187
SYSIBM.MVS_CMD_OUTPUT 338
 Index 447

SYSIBM.SYSCOPY 38, 54, 327
SYSIBM.SYSDEPENDENCIES 360
SYSIBM.SYSDUMMY1 103, 146, 173, 364
SYSIBM.SYSINDEXSPACESTATS 328
SYSIBM.SYSPACKDEP 360
SYSIBM.SYSPENDINGDDL 54, 127
SYSIBM.SYSROUTINES 338
SYSIBM.SYSTABLEPART 38
SYSIBM.SYSTABLES 260
SYSIBM.SYSTABLESPACE 39
SYSIBM.SYSTABLESPACESTATS 328
SYSIN 33, 179, 258, 272
SYSLGRNX 27, 292, 343
SYSOPR 27
SYSPACKAGE 257, 382
SYSPACKSTMT 135, 201
SYSPRINT 33, 251
SYSPROC.ADMIN_COMMAND_DB2 363
SYSPROC.ADMIN_COMMAND_MVS 346
SYSPROC.ADMIN_INFO_SYSPARM 412
SYSPROC.DSNACCOX 370
SYSPROC.DSNAEXP 371
SYSPROC.DSNWZP 412
SYSTABLEPART 29
system parameter 31, 65, 127, 167, 184, 242, 329
System z xxv, 2, 5, 7, 23, 232, 269
system-period temporal table 79, 117, 131, 346
SYSVALUEDDN 300

T
table expression 265
table space

data 2, 39, 86, 127, 270, 351
DB1.TS1 73
definition 53, 280, 363
execution 30, 62
level 36, 56, 120, 274, 352
name 49, 260
option 39, 329
page 28, 281
page set 39, 67
partition 86, 273
REORG TABLESPACE 37, 74
scan 334
structure 54
type 52, 336

tables 3, 13, 58, 100, 131, 153, 182, 278, 324
TABLESPACE statement 43, 351
TBNAME 296
TCP/IP 177
TEMPLATE_TIME 353
temporal 2, 79, 100, 130, 336
TEXT 438–439
TIME 27, 56, 118, 173, 272, 353
TIMESTAMP 27, 55, 103, 133, 252, 276, 364
timestamp value 120, 294
trace record 115, 374
traces 179
triggers 29, 73, 105, 336
TS 39, 58, 260, 272

TYPE 62, 100, 178, 260, 278, 380
Type 2 82

U
UA63422 167
UA66419 439
UA66823 439
UA68169 439
UA69320 439
UDF 112, 142
UDFs 147
UI12985 439
UI13368 439
UK74535 438
UK78229 273
UK78231 273
UK91146 230
UK92097 438
UK92494 438
UK92783 438
UK95419 438
UK95677 438
UK96357 438
UK97335 439
UK97912 439
UK98189 438
UK98196 438
UK98216 438
Unicode 332
UNIQUE 46, 183, 252, 278, 381
universal table space 52, 126
UNLOAD 59, 168, 270, 350
UPDATE 45, 74, 91, 101, 131, 168, 210, 324
URI 164
user data 234
user-defined function 375
UTILITY_OBJECT_CONVERSION 31, 354
UTS 52, 282

V
VALUE 181, 365
VALUES 62, 102, 154, 175, 253, 348
VARCHAR 114, 144, 170, 173, 252, 356
variable 3, 20, 88, 100, 130, 153, 172, 246, 293, 345
VERSION 54, 158, 180, 380
Version xxv, 1, 14, 54, 136, 205, 320
versions 2, 7, 38, 87, 152, 181, 288, 316
virtual storage

use 350
VPSIZE 9
VSAM record-level sharing 21

W
WFDBSEP 65
WFSTGUSE_AGENT_THRESHOLD 66, 354
WFSTGUSE_SYSTEM_THRESHOLD 68, 354
whitespace 164
WITH 27, 58, 114, 154, 178, 272
448 IBM DB2 11 for z/OS Technical Overview

WLM 12, 172, 323
work file 66, 278, 354
workfile 65, 349
workfile database 66
workfiles 65

X
XML xxv, 2, 14, 29, 52, 97, 99, 130, 151, 338
XML column 127, 153
XML columns 72, 167
XML data 151
XML data type 152
XML documents 152
XML index 58, 161
XML schema 167
XML schema validation 167
XMLEXISTS 152
xmlns 154
XMLPARSE 154
XMLQUERY 152
XMLQUERY function 158
XPath 152, 361
XPath expression 153

Z
z/OS xxv, 1, 5, 7, 85, 97, 99, 130, 151, 171, 241, 269
z/OS Installation 337
zEnterprise Data Compression 21
zIIP 2, 269, 392
 Index 449

450 IBM DB2 11 for z/OS Technical Overview

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

IBM
 DB2 11 for z/OS Technical Overview

IBM
 DB2 11 for z/OS Technical

Overview

IBM
 DB2 11 for z/OS Technical

Overview

IBM
 DB2 11 for z/OS Technical Overview

IBM
 DB2 11 for z/OS Technical

Overview

IBM
 DB2 11 for z/OS Technical

Overview

®

SG24-8180-00 ISBN 0738439053

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

IBM DB2 11 for z/OS
Technical Overview

Understand the
synergy with System
z platform

Enhance applications
and avoid
incompatibilities

Run business
analytics and scoring
adapter

IBM DB2 Version 11.1 for z/OS (DB2 11 for z/OS or just DB2 11 throughout this
book) is the fifteenth release of DB2 for MVS. It brings performance and
synergy with the new System z hardware and new opportunities to drive
business value in the following areas:

� Unmatched reliability, availability, and scalability
– Improved data sharing performance and efficiency
– Even less downtime by removing growth limitations
– Simplified management, improved autonomics, and reduce planned

outages with more online schema changes and utilities improvements
� Save money, save time

– Aggressive CPU reduction goals
– Additional utilities performance and CPU improvements
– Save time and resources with new autonomic and application

development capabilities
� Simpler, faster migration

– SQL compatibility, divorce system migration from application
migration

– Access path stability improvements
– Better application performance with SQL and XML enhancements

� Enhanced business analytics
– Faster, more efficient performance for query workloads
– Accelerator enhancements
– More efficient inline database scoring enables predictive analytics

The DB2 11 environment is available either for brand new installations of DB2,
or for migrations from DB2 10 for z/OS subsystems only.

This IBM Redbooks publication introduces the enhancements made available
with DB2 11 for z/OS. The contents help database administrators understand
the new functions and performance enhancements, start planning for
exploiting the key new capabilities, and justify the investment in installing or
migrating to DB2 11.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Summary of changes
	December 2013, First Edition
	May 2014, First Update

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks publications

	Chapter 1. DB2 11 for z/OS at a glance
	1.1 Subsystem
	1.2 Application functions
	1.3 Operations and performance

	Part 1 Subsystem
	Chapter 2. Synergy with System z
	2.1 Synergy with IBM zEnterprise System
	2.1.1 Faster CPU speed
	2.1.2 More system capacity
	2.1.3 zEC12 hardware features

	2.2 Synergy with IBM System z and z/OS
	2.2.1 AUTOSIZE options VPSIZEMIN and VPSIZEMAX
	2.2.2 1 MB page frames for DB2 execution code
	2.2.3 Improved performance of batch updates in data sharing
	2.2.4 Improved usability and consistency for security administration
	2.2.5 Log writing

	2.3 Using zIIP speciality processors
	2.4 Reduced need for REORG
	2.5 DFSMS storage tiers
	2.5.1 Use cases for storage tiers
	2.5.2 Setup and invocation of storage tiers
	2.5.3 Use cases for DB2

	2.6 Additional System z enhancements
	2.6.1 Enhancing DB2 BACKUP SYSTEM solution
	2.6.2 z/OS DFSMS VSAM RLS for z/OS catalog support
	2.6.3 DDF Synchronous Receive support
	2.6.4 zEnterprise Data Compression

	Chapter 3. Scalability
	3.1 Extended RBA and LRSN
	3.1.1 Reaching the end of the basic RBA
	3.1.2 The new 10 byte RBA and LRSN
	3.1.3 Considerations before converting to extended format
	3.1.4 Steps for enabling the extended RBA/LRSN format
	3.1.5 Converting the BSDS
	3.1.6 Converting DB2 catalog and directory
	3.1.7 Converting data from 6 byte to 10 byte RBA/LRSN or vice versa
	3.1.8 Additional considerations regarding utilities

	3.2 NOT LOGGED for declared global temporary tables
	3.2.1 Syntax extension
	3.2.2 Undo processing for NOT LOGGED DGTTs
	3.2.3 Thread reuse
	3.2.4 Sample scenarios

	3.3 More open data sets (DSMAX)
	3.4 PBG mapping tables to lift the 64 GB limit
	3.4.1 Autonomic creation of the mapping table
	3.4.2 Mapping tables up to 16 TB

	Chapter 4. Availability
	4.1 Online schema changes and enhanced recovery options
	4.1.1 Scope of enhancements for online schema changes in DB2 11
	4.1.2 How it works
	4.1.3 Effect of MODIFY RECOVERY
	4.1.4 Considerations for LOBs
	4.1.5 Restrictions for the window between PIT recovery and REORG
	4.1.6 More restrictions for PIT recovery after materializing REORG
	4.1.7 Determine if a table space is eligible for PIT recovery prior to REORG

	4.2 Automatic recovery of indexes from GRECP or LPL status
	4.2.1 RESTORE SYSTEM after two-pass LPL/GRECP recovery has occurred
	4.2.2 RECOVER INDEX after two-pass LPL/GRECP recovery has occurred

	4.3 Improved availability when altering limit keys
	4.3.1 Considerations for tables containing LOBs
	4.3.2 LOAD REPLACE
	4.3.3 RECOVER

	4.4 Work file database enhancements
	4.4.1 WFSTGUSE_AGENT_THRESHOLD subsystem parameter
	4.4.2 WFSTGUSE_SYSTEM_THRESHOLD subsystem parameter
	4.4.3 Systems programmer response to DSNI052I/DSNI053I

	4.5 Governing of parallel processing of utilities
	4.6 Compression dictionary availability for CDC tables
	4.7 DROP column support
	4.7.1 Changes to the catalog as a result of dropping a column
	4.7.2 Undo a DROP COLUMN
	4.7.3 Impact of DROP COLUMN on utilities
	4.7.4 Impact of DROP COLUMN on applications
	4.7.5 Restrictions for DROP COLUMN

	4.8 Defer define object enhancements
	4.9 Allow BIND, REBIND, and DDL to break-in persistent threads
	4.10 Idle thread break-in
	4.10.1 Improvements for DDF threads
	4.10.2 Improvements for non-DDF threads

	Chapter 5. Data sharing
	5.1 Group buffer pool write-around protocol
	5.2 Improved castout processing
	5.2.1 Reduced wait time for I/O completion
	5.2.2 Reduced notify message size sent to castout owners
	5.2.3 More granular class castout threshold

	5.3 Improved DELETE_NAME performance
	5.4 Restart light with CASTOUT option
	5.5 Locking enhancements
	5.5.1 Conditional propagation of child Update locks to the coupling facility
	5.5.2 Improved performance in handling lock waiters
	5.5.3 Increase in maximum number of CF lock table entries
	5.5.4 Throttle batched unlock requests
	5.5.5 Improved IRLM resource hash table algorithm

	5.6 Index availability and performance
	5.6.1 Avoid placing indexes in RBDP state during group restart
	5.6.2 Reduce synchronous log writes during index structure modifications

	5.7 Group buffer pool write performance
	5.8 Automatic LPL recovery at end of restart
	5.9 Log record sequence number spin avoidance

	Part 2 Application functions
	Chapter 6. SQL
	6.1 Introduction
	6.2 Global variables
	6.2.1 DDL and catalog information
	6.2.2 Qualifying global variables
	6.2.3 Global variable’s scope
	6.2.4 Global variable’s naming resolution

	6.3 Array data type
	6.3.1 Ordinary arrays
	6.3.2 Associative arrays
	6.3.3 ARRAY_EXISTS predicate

	6.4 Aliases and public aliases for SEQUENCES
	6.4.1 Private ALIAS for a SEQUENCE
	6.4.2 Public ALIAS for a SEQUENCE
	6.4.3 Dropping an alias for sequence
	6.4.4 Security considerations
	6.4.5 Considerations regarding application compatibility setting

	6.5 New built-in functions
	6.5.1 ARRAY_AGG
	6.5.2 ARRAY_DELETE
	6.5.3 ARRAY_FIRST
	6.5.4 ARRAY_LAST
	6.5.5 ARRAY_NEXT
	6.5.6 ARRAY_PRIOR
	6.5.7 CARDINALITY
	6.5.8 MAX_CARDINALITY
	6.5.9 TRIM_ARRAY
	6.5.10 UNNEST (table function)
	6.5.11 Arrays in MERGE statement

	6.6 SET CURRENT APPLICATION COMPATIBILITY
	6.7 Temporal special registers
	6.7.1 Scope of session-level special registers
	6.7.2 SYSTIMESENSITIVE and BUSTIMESENSITIVE

	6.8 Temporal support on VIEWs
	6.9 DGTT
	6.10 CUBE, ROLLUP and GROUPING SETS
	6.10.1 GROUPING SETS
	6.10.2 ROLLUP
	6.10.3 CUBE
	6.10.4 Grand total
	6.10.5 Grouping expression

	6.11 ALTER TABLE DROP COLUMN
	6.12 LIKE_BLANK_INSIGNIFICANT DSNZPARM

	Chapter 7. Application enablement
	7.1 Ensuring application compatibility
	7.2 Transparent archiving of temporal data
	7.2.1 Controls of archive transparency
	7.2.2 Sample code for enabling archive transparency
	7.2.3 Inserting rows into archive enabled table
	7.2.4 Deleting rows from an archive enabled table
	7.2.5 Querying archive enabled table
	7.2.6 Using a dynamic transaction with archive transparency
	7.2.7 Static application scenario
	7.2.8 DISABLE ARCHIVE
	7.2.9 Analytics Accelerator - HPSS considerations

	7.3 Providing support for big data
	7.3.1 Enhancing big data analytics with Apache Hadoop
	7.3.2 Example HDFS_READ with a generic table UDF
	7.3.3 Example JAQL_SUBMIT

	7.4 Using the scoring adapter to add predictive analytics to OLTP applications
	7.5 Using JavaScript Object Notation with IBM DB2
	7.6 Suppressing null indexes

	Chapter 8. XML
	8.1 XQuery support
	8.1.1 FLWOR expressions
	8.1.2 XQuery constructors
	8.1.3 Conditional expressions
	8.1.4 Built-in functions
	8.1.5 XQuery prolog

	8.2 XML performance enhancements in DB2 10 and DB2 11
	8.2.1 Eliminate hotspots during XML insert
	8.2.2 Validate binary XML
	8.2.3 Avoid revalidation during LOAD
	8.2.4 Partial revalidation
	8.2.5 XMLTABLE performance improvements

	8.3 XQuery FLWOR expressions performance enhancements
	8.4 XMLTABLE performance enhancements in DB2 11
	8.4.1 Date/Time predicate pushdown
	8.4.2 Optimize index key range for varchar predicates
	8.4.3 Pushdown of column casting into XPath

	Chapter 9. Connectivity and administration routines
	9.1 Client information enhancements
	9.1.1 Expansion of the length of some Client information fields
	9.1.2 Introduction the new client information field Client Correlation Token
	9.1.3 Introduction of a new built-in session global variable
	9.1.4 Using the client information fields

	9.2 Cancel thread and cancel SQL statement improvements
	9.2.1 Changes in Cancel DDF thread
	9.2.2 Changes in SQL statement interruption processing

	9.3 Continuous block fetching
	9.4 Support for global variables
	9.5 Local stored procedure execution improvement
	9.6 Multi-threaded Java stored procedure environment
	9.7 ADMIN_COMMAND_MVS stored procedure
	9.8 Drivers, clients, and connectivity requirements

	Part 3 Operations and performance
	Chapter 10. Security
	10.1 Enhancements for exit authorization checking
	10.1.1 Use owner privileges for authorization
	10.1.2 Refresh DB2 cache entries when RACF permissions change

	10.2 Enhancements to program authorization
	10.3 Column masking enhancements
	10.3.1 Remove column access control restrictions for GROUP BY
	10.3.2 Correct implementation of aggregate function with DISTINCT
	10.3.3 Column access control for UNION

	Chapter 11. Utilities
	11.1 Online REORG enhancements
	11.1.1 Improve performance of partition-level REORG with non partitioned secondary indexes
	11.1.2 SWITCH phase impact reduction
	11.1.3 Physically delete empty partition-by-growth partitions
	11.1.4 Automated REORG mapping table management
	11.1.5 REORG without SORTing data
	11.1.6 Partition-level inline image copy
	11.1.7 Improved REORG LISTDEF processing
	11.1.8 REBALANCE enhancements
	11.1.9 REORG of LOB enhancements
	11.1.10 Improved REORG serviceability
	11.1.11 REORG change of defaults to match preferred practices

	11.2 Enhanced statistics
	11.2.1 RUNSTATS RESET ACCESSPATH
	11.2.2 RUNSTATS USE PROFILE usability for LISTDEF

	11.3 Backup and recovery enhancements
	11.3.1 SYSLGRNX recording for catalog and directory table
	11.3.2 VCAT name translation for RESTORE SYSTEM
	11.3.3 Remove the incompatibility of REORG and COPY
	11.3.4 Removal of many point-in-time recovery restrictions

	11.4 LOAD and UNLOAD enhancements
	11.4.1 LOAD SHRLEVEL NONE with PARALLEL option
	11.4.2 LOAD SHRLEVEL CHANGE with PARALLEL option
	11.4.3 Addition of crossloader support for XML
	11.4.4 More offload to zIIP with NPSIs

	11.5 Compression dictionaries for Change Data Capture
	11.6 General enhancements
	11.6.1 DISPLAY UTILITY additional output
	11.6.2 Improved TEMPLATE for extended format data sets
	11.6.3 DSN1COPY
	11.6.4 REPAIR utility
	11.6.5 Command to externalize RTS statistics
	11.6.6 DSNACCOX

	11.7 Deprecated functions

	Chapter 12. Installation and migration
	12.1 Currency of versions and migration paths
	12.2 Prerequisites for DB2 11
	12.2.1 Processors
	12.2.2 Auxiliary storage
	12.2.3 Operational requirements
	12.2.4 Optional program requirements

	12.3 DB2 11 installation changes and considerations
	12.3.1 More support of naming standards in install and IVP jobs
	12.3.2 No more EDM calculations
	12.3.3 Modified installation jobs
	12.3.4 New installation job DSNTIJCB
	12.3.5 Miscellaneous

	12.4 Considerations for migrating to DB2 11
	12.4.1 Premigration considerations
	12.4.2 DB2 11 CM
	12.4.3 DB2 11 ENFM and NFM

	12.5 Subsystem parameters
	12.5.1 New system parameters
	12.5.2 Changed defaults for existing system parameters
	12.5.3 Removed system parameters
	12.5.4 Deprecated system parameters

	12.6 Release incompatibilities
	12.6.1 Application and SQL release incompatibilities
	12.6.2 Utility release incompatibilities
	12.6.3 Command release incompatibilities
	12.6.4 Storage release incompatibilities
	12.6.5 Functions that are deprecated
	12.6.6 Functions that are no longer supported

	12.7 Controlling application compatibility
	12.7.1 Example of DB2 10 application compatibility
	12.7.2 Overview of application compatibility in DB2 11

	Chapter 13. Performance
	13.1 Performance expectations
	13.2 System level performance
	13.2.1 Internal optimization
	13.2.2 Logging
	13.2.3 Synergy with System z
	13.2.4 Buffer management
	13.2.5 Data sharing

	13.3 Reduced need for REORG
	13.3.1 Asynchronous removal of pseudo-deleted indexes
	13.3.2 Indirect reference avoidance

	13.4 More opportunities for RELEASE(DEALLOCATE)
	13.5 Optimizer enhancements
	13.5.1 Identification of critical statistics for improved query performance

	Part 4 Appendixes
	Appendix A. Information about IFCID changes
	A.1 New IFCIDs
	A.1.1 IFCID 377: Pseudo-deleted index entries are automatically cleaned up
	A.1.2 IFCID 106
	A.1.3 IFCID 27: Monitor sparse index usage
	A.1.4 IFCID 382 and 383: Records suspend operations for parallel task

	A.2 Aggregate accounting overview and purpose
	A.3 IFCID 53 and 58 enhancements overview
	A.4 Accounting trace enhancements overview
	A.4.1 New field QWHCAACE
	A.4.2 QWACZIIP_ELIGIBLE field

	A.5 IRLM Storage Accounting enhancement
	A.6 Stored procedure monitoring overview and purpose
	A.7 Other accounting changes
	A.7.1 Reduced NOT ACCOUNTED FOR time
	A.7.2 Specialty engine time in the CPU header
	A.7.3 Larger RBA and LRSN
	A.7.4 Buffer manager force write
	A.7.5 Parallelism performance enhancement
	A.7.6 Temporal support
	A.7.7 IFCID 002/225: Arrays support
	A.7.8 IFCID 003/239: Autonomous transaction support
	A.7.9 IFCID 366: Application incompatibility
	A.7.10 IFCID 230/256: Castout enhancements

	Appendix B. Summary of relevant maintenance
	B.1 DB2 APARs
	B.2 z/OS APARs
	B.3 OMEGAMON PE APARs

	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	Help from IBM

	Index
	Back cover

