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Chapter 1. Overview of IBM WebSphere 
Application Server Liberty 
for administrators

IBM WebSphere Application Server (WAS) Liberty is a lightweight, highly composable, fast to 
start, dynamic application server runtime environment. This chapter provides an introduction 
to WAS Liberty and its architecture.

In this chapter, the following topics are discussed:

� Introduction to WAS Liberty
� Product editions
� Runtime architecture
� Feature configuration
� Directory structure
� Configuration files
� System management
� Security
� Multi-server environments
� Serviceability and troubleshooting
� Application development and deployment tools

1
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1.1  Introduction to WAS Liberty

WAS Liberty (herein called Liberty) is a lightweight, modular profile of IBM WebSphere 
Application Server. Liberty provides a dynamic, flexible runtime for Java applications, by 
providing the complete Java EE 7 platform and a subset of the full WebSphere Application 
Server API. Applications that are developed on Liberty generally run without any changes to 
WAS Classic.

Liberty is ideal for use in both development and production environments. Within the 
development environment, Liberty supports the same platforms as the full application server, 
plus the Mac OS X operating system. Liberty is a good option for developers who are building 
web applications that do not require the full Java EE environment of traditional enterprise 
application server profiles. Each runtime instance can be customized to match the needs of 
the application. In production environments, enterprise qualities of service, such as security 
and monitoring, are enabled as required.

Liberty has a simplified installation and uses an easy-to-configure XML configuration file 
format. Liberty allows fine-grained configuration of each server instance so that only those 
services needed by the hosted application are loaded into the server process. This approach 
keeps the memory footprint low and the server start time very fast. For example, if an 
application requires only a servlet engine, Liberty can be configured to start the kernel, an 
HTTP transport for connection, and the web container. If the application needs additional 
features, such as database connectivity, the Liberty configuration can be dynamically 
modified to include the Java Database Connectivity (JDBC) feature without the need of a 
server restart. While most of the Liberty components are shared with WAS Classic, the 
Liberty kernel is new and is based on Open Service Gateway initiative (OSGi) services that 
provide highly dynamic behavior. This method allows features, application, and configuration 
to be added to (and removed from) a running server, with no restarts required.

Because a Liberty server is lightweight, it can be packaged easily with applications in a 
compressed file. This package can be stored, distributed to colleagues, and used to deploy 
the application to a different location or to another system. It can even be embedded in your 
own product distribution.

Liberty includes the following key features:

� A dynamic and flexible runtime to load only what the application needs

� A quick start time (under 5 seconds with simple web applications)

� A simplified configuration that uses a single configuration file or modular configuration

� Support for deploying applications developed in Liberty to run in WAS Classic

� Full Java EE 7 platform and OSGi application support

� Flexible DevOps for fast, continuous deployments

� A secure server environment. User registry options include single or federated LDAP 
registries, role-based authorization. Other secure options for SSL, single sign-on, custom 
login modules, OAuth support, and more

� Integrated configuration of MongoDB and CouchDB, NoSQL database systems

� Ability to deploy an application and configured server as a package

� Ability to cluster servers for high availability and scalability

� Ability to extend Liberty with custom features by using OSGi bundles, including web 
application bundles

� Centralized operational management of groups of Liberty servers and of Liberty clusters
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� Support for HTTP session and dynamic web content caching

� Support for binary logging

� Managed, centralized deployment for many nodes of a packaged application and server 
using the Job Manager

� Enhanced administration capabilities by using the Liberty Administration Center (Admin 
Center)

� A high-performance threading model that provides a significant performance boost for 
highly concurrent workloads

� Liberty performance is improved across start, footprint, and runtime with IBM JDK 8 for 
multiple workloads

� Availability of WebSphere Application Server Developer Tools as Eclipse plug-ins for 
broad tool support

� Security enhancements for Simple and Protected GSSAPI Negotiation Mechanism 
(SPNEGO) to enable single sign-on (SSO) mechanism for Liberty in Kerberos 
environments, OpenID and OpenID Connect protocols, and Open Trusted Technology 
Provider Standard (OTTP-S) Accreditation

� Support for IBM z/OS® platform native features such as System Authorization Facility 
(SAF), Resource Recovery Services (RRS), and z/OS Workload Manager (WLM)

For more information about Liberty, go to the IBM Knowledge Center at the following web 
address:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.d
oc/ae/cwlp_about.html

1.1.1  Java EE 7 and Liberty 

Liberty now supports the full Java Platform, Enterprise Edition (Java EE) 7. Liberty also has 
partial support for the Java EE 6 platform, including the Java EE 6 Web Profile, web services, 
Java Message Service (JMS), and message-driven beans (MDBs). The Java EE 6 features 
should be used when developing applications on Liberty that will be deployed to WAS Classic 
until WAS Classic also has support for Java EE 7.

The Java EE 7 Web Profile provides specifications for web applications. Java EE 6 introduced 
the Web Profile to help developers of dynamic web applications, providing technologies, such 
as EJB Lite, Java Persistence API, and Java Transaction API. The Java EE 7 Web Profile 
updates the specifications of the original Web Profile and adds support for HTML5, new 
technologies, such as WebSocket and JavaScript Object Notation (JSON), and provides 
updates to existing technologies.

The Java EE 7 full platform includes the Web Profile specifications and specifications for 
remote EJB, web service, batch, and other applications. It also adds support for application 
security, deployment, and management. All Java EE 7 specifications (or JSRs) are in the full 
platform. Specifications for web applications are in the Web Profile, a subset of the full 
platform.

Java EE 7 has over 20 new or changed specifications. These new features have been added 
to Liberty across V8.5.5.4, V8.5.5.5, and V8.5.5.6 deliveries and they do not replace the Java 
EE 6 features. In fact, you do not have to take advantage of Java EE 7. You can continue to 
use Java EE 6 features; you do not have to migrate your existing applications. If you use any 
Java EE 7 features, you also need to use Java SE 7 or Java SE 8. 
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A key feature in Liberty is the ability to mix and match features from Java EE 6 and Java EE 7 
in your Liberty environment. This technique allows you to combine features from Java EE 6 
and Java EE 7 to build a complete Java stack based on your application needs. However, you 
cannot use the same feature in Java EE 6 and Java EE 7 on the same Liberty server 
instance. This statement means you cannot use two different versions of the same API on the 
Liberty server. For example, you cannot use servlet-3.0 from Java EE 6 and servlet-3.1 from 
Java EE 7 on the same Liberty server. Also, some combinations of Java EE 6 and Java EE 7 
are not compatible and can cause an error when the server starts. To see a complete list of 
the supported Java EE 6 and Java EE 7 feature combinations, see the following IBM 
Knowledge Center web page:

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.
doc/ae/rwlp_prog_model_supported_combos.html

1.2  Product editions

Because different application scenarios require different levels of application server 
capabilities, WebSphere Application Server is available in multiple packaging editions. Each 
packaging edition includes the application server component and an appropriate combination 
of complementary products, for example, IBM HTTP Server, IBM Assembly and Deploy Tools 
for WebSphere Administration, Edge components, and other products. Although these 
options share a common foundation, each provides unique benefits to meet the needs of 
applications and the infrastructure that supports them. As your business grows, the 
WebSphere Application Server family provides a migration path to more complex 
configurations.

The following editions are available:

� WebSphere Application Server Express
� WebSphere Application Server Base
� WebSphere Application Server Network Deployment
� WebSphere Application Server for z/OS
� WebSphere Application Server for Developers
� WebSphere Application Server Hypervisor Edition
� WebSphere Application Server Liberty Core
� WebSphere Application Server Community Edition

WebSphere Application Server (base edition), WebSphere Application Server Network 
Deployment, and WebSphere Application Server for Developers are also available in a Tools 
Edition. The Tools Editions are bundles of a WebSphere Application Server runtime and 
development tools. 

For more information about the Tools Editions, go to the following web address:

http://www.ibm.com/software/webservers/appserv/was/tools

WebSphere Application Server provides two runtime profiles: WAS Classic and Liberty. The 
runtime that has always been available with the WebSphere Application Server is referred to 
as WAS Classic, also known as the full profile. The application serving runtime, provided by 
WAS Classic, is composed of a wide spectrum of components that are always available in the 
application server.

Starting with WebSphere Application Server V8.5, Liberty is included with each package. 
Liberty is highly composable where you have many features installed but you can configure 
only the features that you need. You can design your server configuration to match the needs 
of your applications.
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Liberty is also available as a stand-alone offering, called WebSphere Application Server 
Liberty Core. Each package, except for Liberty Core and Community Edition, includes both 
the WAS Classic application server and a Liberty application server. The Community Edition 
is open source based and contains neither WAS Classic or Liberty. The features available for 
each runtime, for example programming model support, vary among the different packaging 
options.

WebSphere Application Server (base edition), WebSphere Application Server Network 
Deployment, and WebSphere Application Server for z/OS include WebSphere eXtreme Scale 
in the package and entitlements to its use. Both Liberty and WAS Classic can take advantage 
of the caching abilities of WebSphere eXtreme Scale.

Figure 1-1 shows a high-level view of the WebSphere Application Server packaging editions.

Figure 1-1   WebSphere Application Server V8.5 packaging editions

WebSphere Application Server offers a continuous delivery model to deliver new features and 
functions to WAS Liberty. The continuous delivery model provides new optionally installable 
features and functions, which can be added to an existing Liberty installation at the latest 
service level with no requirement for a version upgrade or migration. The continuous delivery 
model allows IBM to deliver features at regular intervals so you do not have to wait for these 
new technologies to be released at the next major release.
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It is important to understand what you get when you purchase a specific edition and what 
installation options you have to select from. Figure 1-2 shows a high-level view of the 
WebSphere Application Server packaging options and what is included in each edition. 

Figure 1-2   WebSphere edition offerings

There are a few key points to note on the various package editions:

� Liberty Core includes support for the Java EE 6 and Java EE 7 Web Profiles

� Liberty in WebSphere Application Server (base) and higher editions includes support for 
the Java EE 6 Web Profile and the Java EE 7 Full platform including the Web Profile

� WAS Classic in each of the package offerings includes support for the Java EE 6 Full 
platform

� Liberty in the Network Deployment edition builds on everything in Liberty in the Express 
and Base editions plus topology management, enterprise class clustering provided by the 
collective controller, and Intelligent Management features

� Liberty in the z/OS edition includes the Liberty features that come with the Network 
Deployment edition offering plus z/OS specific features

� When you purchase either the WebSphere Application Server Express, Base, Network 
Deployment, or z/OS editions, you have your choice of using WAS Liberty or WAS Classic
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1.2.1  Liberty licensing

Liberty also provides a no-charge and no-support option for web-centric applications for use 
in small test and production environments, which includes both on-premises or in the cloud. 
This use is restricted to a total of 2 GB of Java virtual machine (JVM) heap size across all 
instances of application servers for the licensee. IBM also provides an in-place option to 
upgrade from a no-charge, no-support to other WebSphere Application Server package 
offerings.

Liberty is very flexible with license upgrades and there is a simple process to upgrade your 
Liberty license. For example, if you downloaded and are using the Liberty development 
runtime, which includes a development license. And you want to upgrade this license to a full 
production license. Perhaps you want clustering and auto scaling capabilities in your runtime 
which requires the Network Deployment license. To upgrade, simply go to Passport 
Advantage and download the license that you need. The license is a JAR file that you apply to 
your production-ready machine. In this simple process, you were able to upgrade easily from 
a development license to a fully supported production Network Deployment license.

1.2.2  The Liberty Repository

The rapid evolution and adoption of cloud, mobile, and social media technologies are driving 
the demand for delivering applications faster and more frequently. WebSphere Application 
Server is now delivering features for Liberty on a continual basis by using the Liberty 
Repository. The Liberty Repository provides an online mechanism to deliver Liberty and 
additional content, enabling a single point of access for various asset types. The Liberty 
Repository provides early access to supported new content, including new product 
capabilities, when they are delivered, rather than waiting for a new release.

You can use the Liberty Repository to easily extend or enhance your Liberty-based 
applications. The optional, production-ready features can be quickly and easily added to an 
existing Liberty installation. Simply choose the features that you want and then install the 
features to the applicable product service level. The features that you add inherit the same 
support of your existing installation.

In addition to features, the repository also includes artifacts, such as administration scripts, 
samples, configuration snippets, and artifacts that integrate open source projects more quickly 
and effectively. These assets are specifically designed to encompass end-to-end integration 
and provide important business value for the entire life-cycle of your Liberty application.

There are a few ways that you can access the online Liberty Repository:

� From the Downloads page on the WASdev.net web site
� From within the developer tools
� By using the Installation Manager and command-line utilities such as the installUtility 

command

In addition to accessing assets in the public, online Liberty Repository, you can create the 
following types of repositories to enable on-premises or offline access to Liberty Repository 
assets:

� Liberty Asset Repository Service (LARS): An open source service that you can use to 
create an on-premises repository that is remotely accessible behind the firewall of an 
enterprise. 

� Local directory-based repository: Local directory-based repositories that you create when 
you download assets by using the installUtility download command.
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For example, from behind your firewall you want to set up a local repository where you can 
install new features. You can set up a Liberty server to host a local repository. You can use the 
LARS client on GitHub on WASdev.net to populate your local repository on your Liberty 
server. You can now host a local repository and install new features through this local 
repository behind your firewall.

For more information about using the Liberty Repository and installing assets, see Chapter 3, 
“Installing and updating Liberty” on page 37. 

1.3  Runtime architecture

The highly dynamic and composable nature of the Liberty runtime is achieved by using the 
OSGi framework as the foundation for the services that manage the component lifecycle. 
Liberty comprises the Liberty kernel and any number of optional features that run inside of a 
single JVM process. Most of the kernel runs as OSGi bundles within an OSGi framework. The 
kernel provides configuration, feature management, and logging services. The features that 
are present in the runtime are specific to the function that is needed for that server instance 
and its applications. 

The Liberty server environment operates from a set of built-in configuration defaults. A Liberty 
server configuration consists of a server.xml file, an optional bootstrap.properties file, and 
any files that are included by these two main configuration files. The server.xml file is the 
primary configuration file for the server and contains information about the following items:

� The features to be included in the runtime environment
� The applications that are deployed into that runtime environment
� Their data sources and operational properties, such as an override to a configuration 

default or a trace specification

The server.xml file can point to (include) one or more remote XML files. This approach 
allows common configuration settings to be reused in multiple configuration files and to be 
shared across multiple servers. You can edit the server.xml file directly by using an XML 
editor, an Eclipse-based editor, or the Config tool in the Admin Center web UI.

Figure 1-3 on page 9 shows an overview of the Liberty architecture.
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Figure 1-3   Liberty architecture

When the server is started, the launcher bootstraps the kernel and starts the OSGi 
framework. The server configuration is parsed, and features are loaded by the feature 
manager. The kernel makes extensive use of OSGi services to provide a highly dynamic 
runtime:

� System configuration is managed by the OSGi configuration admin service.

� The OSGi declarative services component is used to manage the lifecycle of system 
services. 

� Application and configuration file changes are detected by the file monitor service. The file 
monitor service detects changes that are then reflected in real-time updates.

The use of the OSGi declarative services component enables functions to be decomposed 
into discrete services, which are activated only when needed. This technique helps the 
runtime to be late and lazy, keeping the footprint small and the start fast. Declarative services 
are added or removed from the OSGi service registry, and dependencies between services 
can be resolved without loading implementation classes. Service activation can be delayed 
until a service is used, when the service reference is resolved. Configuration for each service 
is injected as the service is activated and is reinjected if the configuration is later modified.
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Most of the Liberty capabilities come from WAS Classic. This fact is important because when 
developing applications on Liberty, developers can be confident that their code runs in exactly 
the same way that it runs on the full WAS Classic. Also, because the tested and proven 
functionality from WAS Classic is used in Liberty, it is a solid foundation as a production 
environment. Figure 1-4 shows the stack of Liberty, which shares the same code with WAS 
Classic. The main exception to this is the JAX-WS web services stack: WAS Classic uses 
Apache Axis 2 while Liberty used Apache CXF. This design point is important to consider 
when developing web applications that need to run on both runtime environments as the 
applications need to adhere to the JAX-WS specification and not use any implementation 
packages directly.

Figure 1-4   The WebSphere Application Server features as part of the Liberty stack

1.4  Feature configuration

Features are the units of functions that control the parts of the runtime environment that are 
loaded into a Liberty server. Each Liberty server is configured using a server.xml 
configuration file and features are specified in this file. Each feature has its own version 
identifier, so multiple versions of the same feature can run in the same server.

Features can define programming models, administrative capabilities, security features, and 
more. The set of features differs between Liberty distributions depending on the support 
provided with the edition. A list of key features supported by Liberty can be found in the IBM 
Knowledge Center in the “Liberty features” topic specific to the packaging option. For 
example, a full list of features for Network Deployment can be found at the following web 
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Each feature has a version identifier. This identifier is provided so that multiple versions of the 
same feature can be used in subsequent releases. 

Some features include other features. For example, the jsp-2.2 feature includes the 
servlet-3.0 feature. This situation is because to run the JSP page, you need a web 
container. Similarly, the jsf-2.0 feature includes the jsp-2.2 feature.

The feature manager maps each feature name to a list of bundles that provide the feature. 
When a feature configuration is changed, the feature manager recalculates the list of required 
bundles. It stops and uninstalls those bundles that are no longer needed, and then installs 
and starts any additions. It also skips any features that are already loaded. All features are 
designed to cope with other features that are added or removed dynamically. 

Figure 1-5 shows an overview of dynamic feature management in Liberty. 

Figure 1-5   Dynamic feature management in Liberty 

Features are included in a Liberty server in the following steps:

1. The OSGi Configuration Admin service reads the server.xml file and injects the feature 
configuration into the feature manager service. 

2. The feature manager then maps each feature name to a list of bundles that provide the 
feature. 

3. With all of the appropriate bundles ready, the feature manager installs and starts the 
features in the OSGi framework. 

The feature manager also responds to configuration changes by dynamically adding and 
removing features while the server is running.
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Figure 1-6 lists the Liberty V8.5.5.7 features (Java EE 7) that are supported in Liberty of each 
WebSphere Application Server package edition.

Figure 1-6   Java EE 7 features supported in Liberty V8.5.5.7 of each WebSphere Application Server package edition

Figure 1-7 on page 13 lists the Liberty V8.5.5.7 features (Java EE 6) that are supported in 
Liberty of each WebSphere Application Server package edition.
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Figure 1-7   Java EE 6 features supported in Liberty V8.5.5.7 of each WebSphere Application Server package edition

1.5  Directory structure

The Liberty directory structure has three distinct areas that, by default, are all nested under 
the same parent location. However, they can easily be separated through the use of two 
environment variables. These three areas are:

� The product files, which may be modified by IBM service application and should not be 
customized by the user. These files can be placed on a read-only file system.

� The user files, including configuration and applications, which will not be modified by IBM 
service application and, which can be placed on a read-only file system.

� The server output area, which will be modified by the server instance as it operates and 
must be on a read/write file system.
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Figure 1-8 shows Liberty files and the directory structure.

Figure 1-8   Liberty files and directory structure

The product directories include bin, clients, dev, lafiles, lib, and templates. The user 
directories include etc and usr. The server output directory is, by default, the server_name 
directory. For example, server1 and server 2, as shown in Figure 1-8.

The key Liberty directories are: 

� bin

This directory contains scripts used to manage the Liberty server instance for Windows 
(ending with bat extension) and UNIX (without any extension) operating systems:

– server and server.bat: Used to create, start, stop, run, package, or create dumps of 
the Liberty server. The IBM Knowledge Center has more information about using the 
server command at the following web address:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.multiplatform.doc/ae/rwlp_command_server.html?cp=SSAW57_8.5.5%2F3-3-11-
0-3-2-1-0

Tip: Not all files or folders are displayed after the installation of Liberty. Many of the files 
are optional and are not required by the Liberty runtime environment. The Liberty 
installation directory is often represented by the ${wlp.install.dir} variable in 
configuration files.
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– securityUtility and securityUtility.bat: Used to encode passwords included in 
server.xml configurations and to create a default certification for use during a server 
configuration. The IBM Knowledge Center has more information about using the 
securityUtility command at the following web address:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.multiplatform.doc/ae/rwlp_command_securityutil.html?cp=SSAW57_8.5.5%2F3
-3-11-0-4-1-2-0

– featureManager and featureManager.bat: Used to install a feature package as a 
subsystem archive (esa) and generate an XML list of all features included in this 
installation of Liberty. The IBM Knowledge Center has more information about using 
the featureManager command at the following web address: 

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.multiplatform.doc/ae/rwlp_command_featuremanager.html?cp=SSAW57_8.5.5%2
F3-3-11-0-1-2-2-0

– productInfo and productInfo.bat: Provides a list of all features included in this 
installation of Liberty. Compares iFixes (applied to this current installation and a new 
fixpack level) and lists any interim fixes not in the fix pack. It can also compare with a 
supplied list of interim fixes and note if they are included in the current version. Used 
also to validate a production installation against a product checksum file. The IBM 
Knowledge Center has for more information about using the productInfo command at 
the following web address:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.multiplatform.doc/ae/rwlp_command_productinfo.html?cp=SSAW57_8.5.5%2F3-
3-11-0-1-3-0

– binaryLog and binaryLog.bat: Used to view or copy the contents of a binary logging 
repository, or list the available server process instances in the repository. For more 
information about using the binaryLog command, go to the IBM Knowledge Center at 
web address:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.doc/ae/rwlp_logviewer.html?cp=SSAW57_8.5.5%2F1-0-2-10-0

– configUtility and configUtility.bat: Used to download configuration snippets from 
the IBM WebSphere Liberty Repository and to replace configuration snippet variables 
with your input values. The IBM Knowledge Center has for more information about 
using the configUtility command, at the following web address:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.multiplatform.doc/ae/rwlp_command_configutil.html

– installUtility and installUtility.bat: Used to install assets in your Liberty profile 
environment and view required asset information. Before you can access the IBM 
WebSphere Liberty Repository by using the installUtility command, you must 
install the beta version of the Liberty profile for WebSphere Application Server. More 
information about using the installUtility command is available in the IBM 
Knowledge Center at the following web address:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wl
p.nd.multiplatform.doc/ae/t_install_assets_installUtility.html?cp=SSAW57_8.5
.5%2F3-3-11-0-1-2-1
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– isadc and isadc.bat: Used to run the IBM® Support Assistant Data Collector for IBM 
WebSphere® Application Server, a tool that you can run to gather data from your 
Liberty server system for problem determination purposes. More information about 
using the isadc command is available in the IBM Knowledge Center at the following 
web address:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd
.multiplatform.doc/ae/ttrb_isadcstart.html

Additional command scripts are added by some features as they are added to your 
Liberty environment.

� etc

This directory is optional. It can be used to customize the Liberty installation. The settings 
applied to files in this directory will apply to all Liberty servers. If there are no etc directory 
or configuration files, the default settings for the JVM and Liberty runtime are used: 

– jvm.options: Used to customize default JVM runtime parameters
– server.env: Used to configure default Liberty server environment variables

For details about customizing the Liberty environment, go to IBM Knowledge Center at the 
following web address: 

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/twlp_admin_customvars.html?cp=SSAW57_8.5.5%2F3-3-11-0-3-
2-0

� lafiles

This directory contains the Liberty license information files. 

� lib

This directory contains the Liberty libraries. 

� templates

This directory contains samples for specific configurations and a sample server.xml file 
for Liberty.

� usr

By default, this directory contains server instances with their configuration inside a servers 
directory, applications, and any resources that can be shared between servers inside the 
shared directory.

� usr/servers/<server_name/configDropins

This directory is used to dynamically add a configuration to the server by placing 
configuration files in the directory. 

In addition to the Liberty structure, there is a set of directories and files for the Liberty server 
instance. This root directory is often referred to by using the ${server.config.dir} variable in 
server.xml.
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Figure 1-9 illustrates the structure of a Liberty server instance called server2.

Figure 1-9   Liberty server instance files and directory structure

The key Liberty instance directories include:

� apps

This directory is optional. It can contain deployed applications or application descriptors 
when the applications are deployed using the WebSphere developer tools. This directory 
is the default location for the Liberty server to look for applications. 

� dropins

This directory is created by default and is automatically monitored. If you drop an 
application into this directory, the application is automatically deployed on the server. 
Similarly, if the application is deleted from the directory, the application is automatically 
removed from the server. The dropins directory can be used for applications that do not 
require additional configuration, such as security role mapping. If you put your applications 
in the dropins directory, you must not include an entry for the application in the server 
configuration. Otherwise, the server tries to load the application twice and an error might 
occur.

There are several options for placing applications in the dropins directory. Each option 
provides a way for the server to determine the application type. The following list describes 
the placement options:

– Place the archive file with its identifying suffix (ear, war, wab, and so on) directly into 
the dropins directory:

${server.config.dir}/dropins/myApp.war

– Extract the archive file into a directory that is named with the application name and the 
identifying suffix:

${server.config.dir}/dropins/myApp.war/WEB-INF/...

– Place the archive file or the extracted archive into a subdirectory that is named with the 
identifying suffix:

${server.config.dir}/dropins/war/myApp/WEB-INF/...
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� configDropins

You can place configuration dropins files in either the configDropins/defaults directory or 
in the configDropins/overrides directory.

– If you place these files in the defaults directory, the configuration is applied before the 
server configuration. In this case, the files provide default values, which you can 
override in the main server.xml file or the included files.

– If you place the configuration dropins files in the overrides directory, the configuration 
is applied after the server configuration. In this case, the files override the main 
server.xml or included files.

� logs

This directory contains the logs produced by the Liberty server. By default, this is the place 
where the trace or message logs are written. It also contains the first failure data captures 
(FFDCs). If you enable the HPEL log system, two directories are created inside the log 
directory. The two directories created are logdata, containing the HPEL binary database; 
and tracedata, containing the binary trace data database.

� resources

This directory contains additional resources for the Liberty server instance. For example, 
keystores generated by the Liberty server are located at this directory.

� tranlog

This directory contains the transactional logs that are produced by the server runtime and 
the applications. The transactional logs are used to commit or roll back transactional 
resources.

� workarea

This directory is created during the first server run. It contains the Liberty server 
operational files.

For more information about Liberty files and directories, go to the IBM Knowledge Center at 
the following web address:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.m
ultiplatform.doc/ae/rwlp_dirs.html?cp=SSAW57_8.5.5%2F3-3-11-0-2-0

1.6  Configuration files

Runtime services provide their configuration defaults so that the configuration you need to 
specify is kept to a minimum. At server start (or when the user configuration files are 
changed), the kernel parses your configuration and applies it over the system defaults. The 
set of configuration properties belonging to each service is injected into the service each time 
the configuration is updated.

The Liberty configuration in described in XML files that are small, easy to back up, and easy 
to copy to another system. Because they are XML files, they are human readable and editable 
in a text editor. The files are composed so that they are easily customized. You can add 
features to add more configurations to the system easily.

A Liberty server can be customized using a few simple files:

� server.xml

The primary configuration file for the Liberty server. This file is the one non-optional 
configuration file. It has a simple XML format that is suitable for text editors.
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� bootstrap.properties

An optional text file used to customize the kernel bootstrap process or to specify additional 
variables for use in server.xml.

� jvm.options 

An optional file used to specify JVM options for the server. If this file is present, it 
supersedes the jvm.options file in the /etc directory (only one file is used).

� server.env

An optional file used to customize environment variables used to launch the server. If both 
this file and the /etc/server.env file are present, the contents of both are merged 
together with values specific to the server superseding values specified for the installation.

The optional files are not created by default, whereas server.xml is always created. For more 
information about these files, see the README.TXT file in the installation directory or the 
IBM Knowledge Center at the following web address:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.m
ultiplatform.doc/ae/twlp_admin_customvars.html?cp=SSAW57_8.5.5%2F3-3-11-0-3-2-0

To effectively manage the configuration files of multiple servers, the administrator can create 
a globally accessible file share where the configuration files reside. Each server has access 
to this file share and uses it as its main configuration repository. A similar solution can be 
applied to a shared application’s directory, so only one version of the application is used by all 
Liberty servers.

These techniques enable the administrator to control the server runtime configuration from a 
single place. For environments where there are multiple administrators with different roles 
who manage different aspects of the server, the configuration of the server can be placed in 
separate files. Each file contains configuration fragments dedicated to a given administrator 
and is referenced by the main configuration file using the include tag, as illustrated in 
Figure 1-10 on page 20.

Authorization to the configuration files can be achieved on the operating system level. For 
example, a deployer has access to use a shared applications directory and has permissions 
to write to the apps.xml file. Similarly, the configuration of the user registry can be dedicated 
to a separate user who is authorized to the ldapRegistry.xml file. 
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Figure 1-10   Liberty management in multi-administrator environments

1.7  System management

Typical administration actions in a Liberty environment include creating, starting, and 
stopping a server, querying the status of a server, packaging a server, and performing 
troubleshooting actions, such as creating a dump for diagnosis.

Liberty servers are administered using line commands, scripts, the Admin Center web UI, 
APIs, or from the WebSphere developer tools. Liberty Management APIs include Java 
Management Extensions (JMX) MBeans and Representational State Transfer (REST) 
application programming interfaces (APIs). Liberty can be administered through JMX calls to 
the server MBeans and by direct modification or replacement of the configuration files; no 
command-line tool is required. REST APIs can be used for mapping to MBeans or for file 
transfer.

Liberty does not ship a scripting language runtime. However, for simple and flexible 
management by using scripting, you can use the following items:

� Any Java enabled language such as Jython, JRuby, Groovy, or others 
� Any REST-capable language such as Python, CURL, Go, or others
� Various sample scripts on WASdev.net

On a z/OS platform, you can use IBM MVS™ operator commands to start, stop, or modify 
Liberty. Liberty servers can also be accessed from JMX clients, such as using the jConsole 
tool provided in the Java SDK to monitor data. 

Administrator

apps.xml
_________
_________
_________

Deployer

server.xml

<include file = "apps.xml"/>
<include file = "ldapRegistry"/>
...

LDAP Administrator

ldapRegistry.xml
_________
_________
_________

Using scripts: You can find administration scripts on the WASdev.net website. Select the 
Downloads option; then, search on Admin scripts to see a list.

The WASdev.net website can be found at the following link:

https://developer.ibm.com/wasdev
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The WebSphere Liberty Administrative Center (Admin Center) feature is available for Liberty, 
which provides a web-based graphical interface for Liberty servers and resource 
management. It has been designed around a toolbox model, so you can select tools in a 
customized Admin Center instance. Do not confuse this with the Integration Solutions 
Console, also called the Admin Console, in WAS Classic. The Liberty Admin Center is 
designed to be more goal and task oriented.

The Admin Center tools allow operations against both stand-alone servers and collectives. 
You can view the whole collective topology and can control servers and applications, and 
deploying server packages to host machines that are registered to the collective. You can also 
control the set of tools that you have access to from the Admin Center.

For more information about using the Admin Center web UI, see Chapter 4, “Working with 
Liberty profile servers” on page 55.

1.7.1  Topologies

One of the benefits of Liberty is that you have a wide choice of options when configuring a 
deployment environment. You can deploy Liberty as a stand-alone individual server or as part 
of a collective, which is used to manage multiple servers from a single management domain. 
You can also deploy Liberty as part of a traditional WebSphere Application Server cell. 

Liberty, being small, easy to run and use, and flexible, it lends well to running in the cloud. You 
can deploy Liberty in a platform as a service (PaaS), various on-premises cloud offerings, and 
in containers. Liberty is being designed to run in any environment that you want to run it in.

Liberty servers can be deployed and administered individually, from a job manager, or by a 
collective controller as part of a collective. The collective controller provides for a centralized 
administrative control point to perform operations.

The Job Manager is a server type that was added to support flexible management. Both the 
Job Manager and the collective controller provide agent-less management of Liberty servers. 
Either tool allows you to create, update, and remove servers, and to update server 
configurations and applications. The collective controller, like the Job Manager, allows you to 
monitor server status but without having to submit a job. The collective controller however, 
also allows you to cluster Liberty servers for high availability and scalability.

In V8.5.5, the WebSphere Network Deployment Assisted Lifecycle model was extended to 
include Liberty servers. Under this model, existing Liberty servers can be started, stopped, 
and monitored from a deployment manager process in a traditional WebSphere Application 
Server cell. Server configuration and log files can be uploaded to and downloaded from the 
deployment manager process, and viewed in a text editor in the WebSphere administration 
console. Unlike the Job Manager model, Assisted Lifecycle can also manage Liberty servers 
in dynamic clusters, meaning that the servers can be automatically stopped and started in 
response to changes in workload. Servers cannot be created using this model, and node 
agents are required on the Liberty host machines.

Liberty in the cloud and containers
Liberty is an enterprise Java application platform that provides separation of concern and 
independence from the target hosting environment. This platform can include:

� On-premises bare metal hardware

� Hypervisors or lightweight container (Docker for virtualized environments)

� On-premises cloud offerings (IBM PureApplication Systems)
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� Several infrastructure as a service (IaaS) providers (IBM SoftLayer®, Amazon AWS, and 
Microsoft Azure)

� PaaS providers (Bluemix, Cloud Foundry, OpenShift, and Heroku)

Docker is an open source platform that uses Linux containerization and a layered file system. 
A Docker image containing the IBM WebSphere Application Server for Developers Liberty 
V8.5.5 is available on Docker Hub. This image allows you to get the lightweight Liberty server 
up and running quickly in your Docker environment with only a single command. Docker 
enhancements include ease of configuring a Liberty server into a Docker container and run it 
anywhere. Liberty docker images are available as an official repository on Docker Hub. For 
more flexibility, you can easily build a custom image using the Dockerfiles (build scripts for 
Docker images) from the open source GitHub repository on WASdev.net. It is important to 
note that running Liberty inside a Docker container is fully supported for production use.

For more information about Docker and Liberty, go to the following web address:

https://hub.docker.com/_/websphere-liberty

Liberty collectives move nicely to IaaS clouds, such as SoftLayer and IBM PureSystems®, 
which provide efficient deployment of cells and collectives both on-premises and 
off-premises. If you want more control over the environment, you can let IBM manage the 
hardware and the operating system and get started immediately on your project with the IBM 
SoftLayer IaaS offering. With flexible billing, on-demand deployment, and single-screen 
management, it is a great way to build your Liberty cloud. You deploy your applications in a 
Liberty package compressed file along with Java, extract, and run. You can set up a complete 
deployment in a few hours instead of having to wait for hardware.

IBM Bluemix™ is a platform as a service (PaaS) offering that delivers quick and easy cloud 
capabilities to deploy and maintain your web application, with minimal hassle and overhead. 
Hosting applications on Bluemix provides users with many advantages. Bluemix is an 
end-to-end offering that provides developers with a complete set of DevOps tools and 
integrated services to simplify development, test, build, and deploy applications. Moreover, 
applications that are hosted by Bluemix have access to the capabilities of the underlying 
cloud infrastructure. Such an infrastructure provides the best support for non-functional 
requirements (such as scalability, performance, availability, and security) that are needed for 
enterprise applications. All that you need is your web application. IBM supplies everything 
else. You can use a command-line client or lightweight Eclipse tools to deploy your application 
into the Bluemix cloud, and it is immediately available over the Internet. The Liberty runtime is 
available through the Liberty build pack, which can automatically bind your application to 
many of the Bluemix services, so they are quick and easy to use.

For a list of Liberty features supported in Bluemix, go to the following web address:

https://www.ng.bluemix.net/docs/starters/liberty/index.html#libertyfeatures

1.8  Security

Security is an essential component of any enterprise-level application. Liberty provides 
support for securing the server runtime environment and applications by using user registries, 
authentication, and authorization. For secure communication between the client and the 
server, you can enable SSL for Liberty. A minimal or detailed configuration can be done by 
adding the ssl-1.0 server feature to the server configuration file.
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For authenticating users, Liberty supports the following configurations:

� A basic user registry that defines user and group information for authentication to the 
Liberty server.

� A Lightweight Directory Access Protocol (LDAP) server used for authentication.

� System Authorization Facility (SAF) registry for authorization on z/OS.

� Federated LDAP registries, where two or more LDAP registries are defined so that the 
operations, such as a search for a user, are executed on all the registries.

� Custom user registries installed as an extension to Liberty.

� Integration with a third-party security service using trust association interceptors (TAIs). A 
TAI is used to validate HTTP requests between a third-party security server and a Liberty 
server. The TAI can be called before or after single sign-on (SSO).

� SSO so that web users can authenticate once when accessing Liberty resources such as 
HTML, JSP files, and servlets. Users can also authenticate once when accessing 
resources in multiple Liberty servers that share Lightweight Third Party Authentication 
(LTPA) keys.

� A custom Java Authentication and Authorization Service (JAAS) login module to make 
additional authentication decisions or to make finer-grained authorization decisions inside 
an application.

The sync-to-OS-thread feature for z/OS allows the synchronization of a Java thread identity 
(or JAAS subject) with the OS thread identity during the current Java EE application request. 
If you do not choose this option, the OS thread identity value is the same as the servant 
identity value.

To configure authorizations for an application, you can add authorization tables to the 
application. The server then reads the deployment descriptor of the application to determine 
whether the user or group has the privilege to access the resource.

Authorization to resources by using the OAuth 2.0 protocol is also supported. OAuth is an 
open standard for delegated authorization. With the OAuth authorization framework, a user 
can grant a third-party application access to their information stored with another HTTP 
service without sharing their access permissions or the full extent of their data.

The enforcement of security constraints to applications, and to web service and JMS 
transports, can be added incrementally to the server configuration by using distinct features. 
This approach aids the application developer in performing simple unit testing of the 
application function first, then enabling security for a second, iterative phase of testing.

Liberty provides a utility to encrypt passwords that are stored in the server.xml file. Three 
mechanisms are supported: Exclusive decisions and merges (XOR) (the default), Advanced 
Encryption Standard (AES), and hash. It is important to note that encrypting passwords in the 
configuration files is a common corporate requirement, but does not, in isolation, make the 
passwords secure. Either the passwords themselves or the encryption key, must be kept in a 
separate (included) configuration file that is protected by operating system file permissions or 
some similar secure mechanism.

JMX clients connecting to a Liberty server have two options. The client can use the local 
connector, which is protected by the policy implemented by the SDK in use. Currently, that 
policy requires that the client runs on the same host as the Liberty server, and under the 
same user ID. Clients that want to connect to a remote Liberty server use the REST 
connector. Remote access through the REST connector is protected by a single administrator 
role and the use of Secure Sockets Layer (SSL).
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There are several security configuration examples on the WASdev.net website for reference 
when configuring security for your applications on Liberty, available at the following web 
address: 

https://www.ibmdw.net/wasdev/category/repo/config-snippets

The Liberty server also provides various plug points that extend the security infrastructure.

Liberty supports the following key security capabilities: 

� SAML 2.0 enables WAS Liberty to support SAML 2.0 web browser single sign-on profile. A 
web user authenticates to a SAML identity provider (IdP), and Liberty makes the 
authorization decision based on assertion from IdP without the requirement of 
on-premises user registry. 

� The Simple and Protected GSS API Negotiation Mechanism (SPNEGO) to enable SSO 
mechanism for Liberty in Kerberos environments. This feature provides capabilities similar 
to those available for WAS Classic.

� OpenID and OpenID Connect protocols to help simplify the task of authenticating and 
authorizing mobile and cloud centric applications.

� Open Trusted Technology Provider Standard (OTTP-S) Accreditation: WebSphere 
Application Server is now the leading OTTP-S accredited application server provider. 

For more details about securing Liberty, go to the related IBM Knowledge Center web page at 
the following web address:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.d
oc/ae/cwlp_sec.html

1.9  Multi-server environments

Individual developers typically work in single-server environments, but at the same time, 
Liberty is also suited for production. Using multiple Liberty servers can provide the availability 
and scalability for running critical applications.
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1.9.1  Using multiple non-clustered Liberty servers 

Before V8.5.5, Liberty did not offer the option of clustering servers for availability and 
scalability, but you can distribute work among multiple servers. Figure 1-11 illustrates an 
example of a Liberty topology that meets these requirements.

Figure 1-11   Example of a multiple Liberty server topology

To achieve such a topology, multiple Liberty servers are installed. The inbound traffic to the 
applications is spread by the HTTP servers, which are configured with the Liberty servers 
using the HTTP server plug-in or configuration specific to the HTTP proxy of choice. To 
distribute incoming requests, a load balancer might also be used (for example, a hardware 
appliance or IBM WebSphere Application Server Edge Components). Notice that a database 
is used for session persistence to allow failover of stateful HTTP sessions. For this purpose, 
the sessionDatabase-1.0 feature is used.

To improve the administration aspect of such a topology, the WebSphere Network 
Deployment job manager profile is used in this example to deploy and manage all of the 
Liberty servers using the WebSphere centralized installation manager component. This 
reduces the time needed to manage all the Liberty servers because it can be automated and 
done remotely.

Configuration files: To ensure that the Liberty servers run with the same resources, a 
global configuration file can be made available for all instances, for example, using a 
shared file system or remote HTTP server. All Liberty servers read the shared server.xml 
configuration file but keep their local bootstrap.properties file where their environment 
configuration is kept. This process allows the Liberty servers to be installed on different 
operating systems. The same method can be used to configure applications, where they 
are placed in a single, shared directory that is available to all server instances.
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1.9.2  Using Liberty collectives and clustered servers

Liberty servers can now be administered as a part of a common management domain, called 
a Liberty collective. This structure is added to the administration options for Liberty for 
operational efficiency and convenience and to introduce high availability features. 

A collective comprises at least one Liberty server configured as a collective controller and 
possibly one or more Liberty servers configured as collective members. Membership in a 
Liberty collective is optional. For a member to be part of a collective, it has to join a collective 
controller. A member can join only one collective. The collective can have more than one 
controller for failover and workload balancing reasons, but the member only communicates 
with one controller at a time. The communication between the member and the controller is 
done over the IBM JMX Rest Controller with MBean operations. Communication between 
controllers and members is always authenticated and protected using SSL. 

A Liberty server that is configured as the collective controller can optionally provide full 
lifecycle management to all members in the collective, including product installation and 
maintenance, and operational access to all servers in the collective, without requiring an 
agent. The collective controller includes operations to start and stop servers, invoke 
administrative operations, and perform file transfer in support of configuration changes and 
application installation. All Liberty servers can be members of a collective, but only Network 
Deployment or WebSphere Application Server for z/OS provide the support needed to create 
a collective controller. 

A set of collective controllers is called a replica set. There can be only one replica set per 
collective and all controllers must be part of it. When there is more than one collective 
controller, each collective controller replicates its data to the other collective controllers in the 
replica set to allow for high availability and data protection. The replica set is logically present 
even when only one controller is in use. 

Liberty servers in a collective can be clustered to provide scalability and availability of 
applications. The cluster can be treated as a single object in the collective, simplifying the 
operational management of the servers in the cluster. The members of the cluster can be 
configured individually, or can share a configuration. A single collective can have multiple 
clusters, but a server can only be part of one cluster at a time. 

A Liberty server that is configured into a collective can join a cluster by enabling the proper 
feature and configuring the cluster name. All members that specify the same cluster name are 
members of that cluster. The recommendation for a replica set is that it contains at least three 
collective controllers. A web server plug-in is used to distribute work across the servers in the 
cluster.

Figure 1-12 on page 27 illustrates a collective with clustered servers.
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Figure 1-12   Liberty administrative domain

The collective controller provides support for managing the servers in the cluster as one 
object, including starting and stopping the servers, updating the configuration of the servers, 
installing and uninstalling applications. The collective controller also provides you the 
capability of adding capacity to an existing cluster and generating the merged web server 
plug-in configuration for the cluster.

Liberty in production
Liberty is suitable for production environments, providing a fast start, a small footprint, 
clustering and failover capabilities, and simple administration. The following scenario 
illustrates a common usage case for Liberty.

The administrator for the production system has received the applications from the 
developers, which are packaged for deployment. The administrator builds a production 
environment that consists of a cluster of several Liberty servers that are spread across 
multiple systems. Using a cluster provides scalability and availability features that are 
required for a production application environment. The administrator can start, stop, or check 
the status of the servers in the cluster as a single entity.

To use the cluster capabilities, the administrator builds a collective that consists of one Liberty 
server that acts as a collective controller and four Liberty servers to act as collective 
members. If failover of the controller itself is required (for highly available central 
management), a replica set of three or more controllers can be used (always an odd number). 
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Then, the collective members are configured as the application cluster. The time that is 
required for this is only a few minutes. Two simple commands create and configure a server 
as a collective controller or member. A server becomes a part of a cluster with the addition of 
the clusterMember-1.0 feature and naming the same cluster name in a clusterMember 
element. Servers can be dynamically added to and removed from the cluster by simply 
updating their configuration. In this scenario, the configuration for the application is stored in a 
common location and that file is pointed to with an include element in each server 
configuration file, thus deploying the application to the cluster.

The administrator generates a web server plug-in that is used by the web server to route 
requests among the cluster members. When the web server receives requests for the 
application, the plug-in routes the requests to the servers in a round-robin manner. 

For more information about administering collectives and collective controllers, see 
Chapter 5, “Administering the WebSphere Liberty profile” on page 71.

1.10  Serviceability and troubleshooting 

Liberty provides basic implementations of logging, trace, and first failure data capture (FFDC) 
services to help you identify and diagnose problems. Messages are sent to a single log file 
that contains INFO and other (AUDIT, WARNING, ERROR, FAILURE) messages. The log is a 
plain-text file that can be read using a text editor. If trace is enabled, the trace entries are sent 
to a separate trace data file. Tracing and logging settings can be set in the server.xml file, or 
to diagnose errors with server start (before server.xml is read), these properties can be set in 
the bootstrap properties.

The binary logging implementation in WAS Classic has been ported to Liberty, providing you 
with the same performance benefits that you find with WAS Classic. Log and trace entries are 
stored in a binary format in a log data or trace data repository. The binary data can be copied 
into a plain text format for viewing with the binaryLog command. Binary logging is designed to 
perform better than the commonly used text logs. All data that is generated by the server is 
stored in a repository and only formatted in a human readable form when required. Binary 
logging stores data in large blocks, which is more efficient than storing the same amount of 
data in smaller blocks. 

Timed operations is a feature that tracks the duration of Java Database Connectivity (JDBC) 
operations running in the server and logs a warning when operations take more or less time 
to run than expected. A report is created in the server log file, which contains details about 
which operations took the longest amount of time to execute. To use timed operations, you 
configure the timedOperations-1.0 feature. Then, you can run the server dump command and 
the timed operations feature generates a report containing information about all operations 
that it has tracked. This feature helps you to see when certain actions in the server are 
operating more slowly than you expect, for example, to help locate bottlenecks in database 
access.

Liberty also provides the server dump command for problem diagnosis for a Liberty server. 
The result file that is obtained from this command contains server configuration, log 
information, and details of the deployed applications in the work area directory. Usually, a 
running server includes the following information:

� State of each OSGi bundle in the server
� Wiring information for each OSGi bundle in the server
� A component list that is managed by the Service Component Runtime (SCR)
� Detailed information about each component from SCR
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Liberty also provides a server javadump command to help you diagnose problems on a 
running server at the JVM level, such as hung threads, deadlocks, excessive processor, 
excessive memory consumption, memory leaks, and defects in the virtual machine.

Request timing allows you to provide better troubleshooting in your environment providing 
early detection of failing servers. Request timing is a feature where you specify a threshold, 
beyond which a request is too slow or the request is hung. Implemented by using the 
requestTiming-1.0 feature, it provides diagnostic information when the duration of any request 
exceeds the configured threshold. Then, a warning message is written in the messages log 
file. To use this feature, you indicate either the slowRequestThreshold, 
hungRequestThreshold, or both in the server configuration file giving a particular value. Also, 
when a request is detected to be hanging, a series of three thread dumps is initiated. After the 
completion of the three thread dumps, further thread dumps are created only if the new 
requests are detected to be hanging. 

Complementary to request timing is the event logging feature. The event logging feature logs 
events as they flow through the system, or, when the application requests are running in the 
Liberty server. Each request is associated with a unique correlator called the request ID and 
the context information that helps you to understand the request-specific data. This allows 
you to track a request from the beginning to the end, where you can examine the duration of 
the request in the exit event entries. For example, you can track servlet executions that 
exceed some specific time limit duration. 

To help you avoid problems, Liberty provides monitoring support for the following runtime 
components:

� JVM
� Web applications
� Thread pools
� Database connection pools
� Messaging
� Web services
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1.11  Application development and deployment tools

There are two developer tools for use with Liberty: IBM Rational Application Developer for 
WebSphere Software and WebSphere Application Server Developer Tools for Eclipse. 
Typically, an administrator would not use application development tools, but if you are running 
the Liberty servers in a test environment, or learning how to configure servers and deploy 
applications, using a developer tool provides visual tools that can help you create your 
configuration.

IBM Rational Application Developer for WebSphere Software V9 provides a development 
environment for building applications that run on WebSphere Application Server. This tool 
supports all Java EE artifacts that are supported by WebSphere Application Server, such as 
servlets, JavaServer Pages (JSP), JavaServer Faces (JSF), Enterprise JavaBeans (EJB), 
Extensible Markup Language (XML), Session Initiation Protocol (SIP), Portlet, and web 
services. It also includes integration with the OSGi programming model. 

The workbench contains wizards and editors that help build standards-compliant, 
business-critical Java EE, Web 2.0, and service-oriented architecture applications. Code 
quality tools help teams find and correct problems before they escalate into expensive 
problems. Rational Application Developer for WebSphere Software can be used to develop 
applications for both WAS Classic and Liberty. 

For more information about Rational Application Developer for WebSphere Software V9, go to 
the following web address: 

http://www.ibm.com/software/awdtools/developer/application

The IBM WebSphere Application Server Developer Tools for Eclipse V8.5.5 provides a 
development environment for developing, assembling, and deploying Java EE, OSGi, Web 
2.0, and Mobile applications, and supports multiple versions of WebSphere Application 
Server. When combined with Eclipse SDK and Eclipse Web Tools Platform, WebSphere 
Application Server Developer Tools for Eclipse provides a lightweight environment for 
developing Java EE applications.

WebSphere Application Server Developer Tools for Eclipse is a no-charge edition for 
developer desktop and includes Eclipse adapters. With V8.5.5, WebSphere Application 
Server and WebSphere Application Server Developer Tools for Eclipse editions are provided 
at no charge for developer desktops and supported under production runtime licenses. While 
not as rich in features as Rational Application Developer for WebSphere Software, this tool is 
an attractive option for developers using both Liberty and WAS Classic.

For more information about WebSphere Application Server Developer Tools for Eclipse and 
access to the tool, go to the following web address: 

https://www.ibm.com/developerworks/community/blogs/wasdev/entry/downloads_final_re
leases?lang=en

WebSphere developer tools: Rational Application Developer for WebSphere Software 
and WebSphere Application Server Developer Tools for Eclipse provide many of the same 
developer features and the process to use these features is the same regardless of the 
tool. When you see a reference to “WebSphere developer tools” in this book, we are 
referring to either of these products.
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Chapter 2. Liberty for the cloud

Liberty, with its small runtime size, low memory footprint, and fast start time, is the only Java 
application server that is designed to provide a runtime environment, specifically for the cloud. 
There are many choices of deployment environments, such as IBM Bluemix, another platform 
as a service (PaaS), or containers.

The following topics are discussed in this chapter:

� Liberty in the cloud
� Administration of Liberty on cloud platforms

2
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2.1  Liberty in the cloud

When running Java applications in the cloud, the supporting runtime needs to fit the cloud. 
The Liberty cloud-ready runtime environment is ideal for the cloud, with features that promote 
efficiency and ease-of-use. 

2.1.1  Why Liberty is an ideal runtime for the cloud

Liberty is suited for the cloud for the following reasons:

� Small runtime size

Liberty is provided as a considerably small-size runtime. For example, a Java Platform, 
Enterprise Edition 7 Web Profile package is 63 MB. The non-feature kernel package is 
only 11 MB. In addition, you can use the minify package operation to repackage your 
Liberty server runtime environment with only the required features and your applications, 
and then deploy to your environment. This means you can save deployment time and 
reduce storage costs.

� Low memory footprint

Liberty is a highly composable and dynamic runtime environment. It only activates 
features that you configure, so the memory footprint is quite small. For example, a 
benchmark application named TradeLite runs under 64 MB of Java heap size. This means 
you can run many application instances per machine, which can diminish the 
megabyte-hours that you pay for.

� Fast start time

Liberty starts and stops quickly because of the lightness of the runtime size and memory 
footprint. It can start in just a few seconds. Liberty promotes application elasticity, enabling 
applications to rapidly scale-up and scale-down as the workload changes. 

� Easy instance creation

Liberty can package your application, configuration, and runtime environments into a 
single package file, and then the application can be deployed to a new instance by 
unpacking, making deployment fast and easy. You also have the benefit of elastic scaling, 
which involves creating and destroying application instances. 

� Easy migration

Liberty product files are well separated from user files. Configuration files are simple and 
are completely under the control of the users. If Liberty provides a new function, it is 
supplied as an additional feature package, and so, in most cases, does not affect your 
applications and configurations. This means you can easily update your Liberty runtime 
environment without impacting the existing applications running on your cloud, and you 
can keep all of your instances running at the latest middleware version to reduce risks 
such as security.

2.1.2  Liberty licensing

You can start your business on the cloud by using the no-charge version of Liberty. As your 
business grows, you can purchase an upgrade and a fee-based license.

For more information about Liberty licensing, see 1.2.1, “Liberty licensing” on page 7. 
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2.2  Administration of Liberty on cloud platforms

Liberty provides a common runtime environment for applications running in different cloud 
environments, but the administration of Liberty in these different environments tends to vary 
widely. At one end of the spectrum, a PaaS environment can provide a completely installed, 
configured, and managed runtime, with little for an administrator to do other than monitor the 
health of the application. At the other end of the spectrum, an infrastructure as a service 
(IaaS) environment simply provides a hosted virtual machine (VM), and the administrator 
needs to install, configure, and manage the runtime environment in much the same way as in 
a data center. The cloud provides a great deal of choice, and the degree of administrative 
involvement and control is often a key factor in deciding which type of cloud service to use. 
Administrative operations and responsibilities increase as you move from Instant Runtimes 
(Cloud Foundry1), Containers (Docker2), and Bluemix Virtual Machines on OpenStack3, to 
IBM WebSphere Application Server on Cloud. You can choose the best infrastructure for your 
environment, or use one of these products in combination with your current application, data, 
and services. 

Figure 2-1 shows a Liberty cloud quick compare chart.

Figure 2-1   Liberty cloud quick compare chart

1  Cloud Foundry is an open source project (https://www.cloudfoundry.org)
2  Docker is an open source project (https://www.docker.com)
3  OpenStack is an open source project (https://www.openstack.org)
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2.2.1  Software as a service

In a software as a service (SaaS) platform, everything is provided for you except the 
application data. The vendor provides the application code, and sometimes the developer has 
limited access to modify the software in use. SaaS is typically not selected for deploying 
custom applications because the vendor provides the entire software package. Moreover, 
SaaS offers limited control over the hosted application, and it is often difficult to integrate 
external workflows into the system. Application servers that are available from IBM for use in 
the cloud are described as follows. 

IBM Application Server on Cloud 
IBM Application Server on Cloud is an offering with two platforms: IBM SoftLayer and 
Bluemix.

SoftLayer as software as a service
SoftLayer is a dedicated offering that provides WebSphere Application Server with a 
customized and entitled instance of IBM PureApplication Service. It is a simplified 
orchestration environment and operations console, entitled for Liberty Core for Bluemix. It is a 
pay-as-you-go offering with self-service, predefined patterns. PureApplication Service on 
SoftLayer enables the seamless extension of compute resources from on-premises to cloud 
environments. You can use WebSphere Application Server Patterns to create virtualization 
patterns for Liberty. The Bring Your Own Software and License (BYOSL) option of 
WebSphere Application Server lets you deploy applications on SoftLayer for a superior 
self-service experience.

Bluemix as software as a service
Bluemix provides Liberty as a Java runtime platform. It is an open-standard cloud platform for 
building, running, and managing applications. With Bluemix, developers can focus on building 
excellent user experiences with flexible compute options, a choice of DevOps tooling, and a 
powerful set of IBM and third-party application programming interfaces (APIs) and services. 
SoftLayer provides IaaS for off-premises cloud deployment with WebSphere Application 
Server.

2.2.2  Containers

Containers allow you to package an application and all of its dependencies into a 
standardized unit for software development and deployment. Containers can enable 
applications to run reliably and easily when moved from one computing environment to 
another. Containers guarantee that applications run in the same way, regardless of the 
environment the container is running in. This can be from a developer’s computer to a test 
environment, from a staging environment to production, or from a physical machine in a data 
center to a VM in a private or public cloud. Every container runs applications in an isolated 
environment. Moreover, the isolation allows you to run many containers simultaneously on 
one host.

IBM Containers

IBM Containers can be used to run Docker containers in a hosted Bluemix cloud. Docker 
adds an engine that deploys an application to the virtual environment that you use for running 
your containers. Docker also provides an environment that you can use to run code. When 
you are ready, Docker provides the means for transferring code from development to test, and 
ultimately to production.
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Features of IBM Containers include integrated tools, such as log analytics, performance 
monitoring and delivery pipeline, elastic scaling, zero downtime deployments, and automated 
image security and vulnerability scanning. You will also have access to the Bluemix catalog of 
over 100 cloud services, including IBM Watson, analytics, the Internet of Things (IoT) mobile, 
and more.

For more information about IBM Containers, see the following website:

https://www.ng.bluemix.net/docs/containers/container_index.html

IBM Containers provide a Liberty image. See the following website:

https://www.ng.bluemix.net/docs/containers/container_images_creating_ov.html#conta
iner_images_liberty

2.2.3  Platform as a service

In platform as a service (PaaS), everything is provided except the application code, users, 
and data. Typically, when using a PaaS, the vendor maintains the application server, 
databases, and all of the necessary operating system components. PaaS provides a 
complete environment that is actively managed. For most runtimes, PaaS provides scaling 
without modification.

IBM Bluemix Instant Runtimes 
Instant Runtimes is a PaaS service provided by Bluemix. You can use runtimes to get your 
application up and running quickly, with no need to set up and manage VMs and operating 
systems. Instant Runtimes is based on Cloud Foundry, which means that community 
buildpacks or tooling plug-ins for Cloud Foundry also work with Instant Runtimes.

Bluemix Instant Runtimes provides a dashboard for you to create, view, and manage your 
applications and services, and to monitor application resource usage. With the Bluemix 
dashboard, you can also manage organizations, spaces, and user access. It provides access 
to a wide variety of services that can be incorporated into an application. 

With Bluemix Instant Runtimes, you can simply push Java EE applications (WAR or EAR file 
formats) and select what services are needed for your application. Server configuration is 
generated by the Liberty buildpack. However, you might need to modify the server.xml file for 
a standard Liberty deployment. For this and similar cases, you need to package your Liberty 
server and push the package to Bluemix instead of the WAR or EAR file. This package 
includes everything on the Liberty server, including the modified server.xml file and your 
application. In Instant Runtimes, no direct involvement of an administrator is needed.

For more information about Bluemix Instant Runtimes, see the following site: 

https://www.ng.bluemix.net/docs/starters/rt_landing.html

For more information about Liberty for Java runtime, powered by the Cloud Foundry Liberty 
build pack, see this site:

https://www.ng.bluemix.net/docs/starters/liberty/index.html

There are several boilerplates in Bluemix. A boilerplate contains an application, the 
associated runtime environment, and predefined services for a particular domain. You can 
find boilerplates that use Liberty for Java for its runtime in the Bluemix catalog at this site:

https://console.ng.bluemix.net/catalog
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2.2.4  Infrastructure as a service

Infrastructure as a service (IaaS) is a platform where an infrastructure is provided for you. It 
provides basic services, such as virtual servers and data storage, in one platform. With one 
click, you can create VMs hosted by a provider running the operating system of your choice. 
The vendor providing the machine is responsible for connectivity and for initial provisioning of 
the system. You are responsible for all other details. For example, the vendor provides the 
machine and an operating system, and you install all of the software packages, application 
runtimes, servers, and the databases that your application requires. 

Generally, IaaS requires that you have one or more system administrators to manage the 
system and apply firewall rules, patches, and security errata on a frequent basis. You have 
complete control over every aspect of the system. However, you are responsible for system 
uptime and security, so you need system administration knowledge or a team of 
administrators to maintain the system. The involvement of administrators here is similar to 
that of on-premises, non-cloud system administration.

IBM Bluemix Virtual Machine
Bluemix Virtual Machine is an IaaS provided by Bluemix as a beta release. It uses OpenStack 
software to run and manage VMs. Key OpenStack services, such as auto scaling, and object 
storage, can be used in conjunction with Bluemix services to build and run hybrid applications 
without any of the overhead of managing physical servers. 

OpenStack gives the administrator full control and responsibility. WebSphere Application 
Server on Cloud is a ready-to-use WebSphere Application Server based on IBM 
PureApplication. Little or no changes are required on the existing applications to migrate from 
an on-premises system. 

For more information about Bluemix Virtual Machines, see this site: 

https://www.ng.bluemix.net/docs/virtualmachines/vm_index.html

You can run applications using any of the built-in starter packages in Bluemix Virtual 
Machines.

Important: You can use one of the default images that are provided with Bluemix. 
However, to create a VM instance from a VM image for which the operating system 
requires a license, you must provide the corresponding license to run it in Bluemix.
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Chapter 3. Installing and updating Liberty

You can install the Liberty application-serving environment by using several different 
methods. In this chapter, each method is presented so that you can use the most suitable one 
depending on your environment.

This chapter includes the following topics:

� Configuring the Java Runtime
� Installation using downloaded files and archives
� Installation by IBM Installation Manager using the GUI
� Installation on z/OS
� Considerations for upgrading Liberty V8.5.0 to V8.5.5
� Installing content from Liberty Repository
� Updating Liberty

In addition to the installation methods discussed in this chapter, developers also have the 
option of installing Liberty by using WebSphere developer tools. More information can be 
found in WebSphere Application Server Liberty Profile Guide for Developers, SG24-8076.

You can obtain the latest Liberty package from the following WASdev community website:

https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download
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3.1  Configuring the Java Runtime

Liberty requires a Java Runtime Environment (JRE) to run in. You can install IBM WebSphere 
SDK Java Technology Edition for Liberty by using IBM Installation Manager. In addition, ZIP 
archive packages including IBM SDK Java Technology Edition Version 8 are available in 
Microsoft Windows, Linux x86, Linux PPC, and Linux PPC Language Environment platform. 
Otherwise, you must provide a JRE in other ways, and you must specify the JRE location to 
use it. The JVM on the system PATH is used by default.

On Microsoft Windows systems, you can use the syntax in Example 3-1 to set the 
JAVA_HOME property by providing your JRE installation directory. These commands set the 
environment variables, and the set command is only valid in the command prompt window 
that you are currently in (or shell if you are on UNIX).

Example 3-1   Setting the JRE for Liberty on Windows

set JAVA_HOME=C:\IBM\jre6
set PATH=%JAVA_HOME%\bin;%PATH%

The Liberty runtime searches for the java command in the following order: JAVA_HOME, 
JRE_HOME, installed Liberty JRE (directed in wlp/java/java.env), and PATH.

Additionally, you can use the Liberty server.env configuration file to set up a specified Java 
Runtime. To configure the Java runtime using this file, add the following line to the file:

JAVA_HOME=C:\IBM\jre6

The server.env file can exist in server configuration directories and the etc directory in the 
Liberty installed location. For more information, see 1.5, “Directory structure” on page 13 and 
1.6, “Configuration files” on page 18. Settings in etc/server.env are overwritten by server 
settings. If the file does not exist, you can create it manually.

Important: The minimum supported Java levels are described in the IBM Knowledge 
Center. See “Troubleshooting the Liberty profile → Runtime environment known 
restrictions” in your selected edition’s document. Following is the Network Deployment 
edition URL:

http://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_restrict.html#rwlp_restrict__rest13

Liberty is supported by any compliant Java SE 6, Java SE7, or Java SE 8 runtime 
environment. You can use any Java SE-compliant runtime with Liberty. Where possible, an 
IBM provided Java is the ideal choice because IBM supports the entire stack, including 
Java, but you can use a JVM from Oracle or the OS vendor where applicable.
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3.2  Installation using downloaded files and archives

There are two methods for installing Liberty. You can use IBM Installation Manager or use 
downloaded archive files. For an archive installation, you can choose from two types of 
archives:

� Java archive (JAR) file

If you have a license for the WebSphere Application Server product, this type of archive 
file can be downloaded as an edition-specific JAR file from Passport Advantage Online 
(http://www.ibm.com/software/howtobuy/passportadvantage). The associated service is 
available from Fix Central (http://www.ibm.com/support/fixcentral). The fix packs for 
the archive are complete replacements, so download from Fix Central to get the latest 
version. You can use it in a production environment with guaranteed service levels and 
IBM support.

In addition, a no-charge, unsupported edition can be downloaded from the following site:

http://WASdev.net

� ZIP archive

Installing Liberty from the ZIP files enables no-charge, unsupported, unlimited use in 
development environments and unsupported limited use in small-scale test and 
production environments.

This type of archive file can be downloaded from Fix Central or WASdev.net.

If you download and install Liberty from an unsupported JAR or ZIP file, you can later 
purchase a supported edition and upgrade the license for your existing installation.

3.2.1  Installation by extracting a Java archive file

You can install Liberty by extracting a JAR file. The JAR file does not contain new features 
such as javaee-7.0. You can install additional features from the Liberty Repository; see 3.6, 
“Installing content from Liberty Repository” on page 47.

There are three types of archives for each edition of WebSphere Application Server:

� Runtime JAR files: wlp-<edition>-runtime-<version>.jar

This archive contains Liberty server and core features. It is Java EE 6 Web Profile 
certified. In the Network Deployment edition, Collective Controller and Static Cluster 
Member features are initially included.

� Extended Programming Models JAR files: wlp-extended-<version>.jar

This archive includes Web Services, JMS, and MongoDB support.

� Extras JAR files: wlp-extras-<version>.jar

This archive includes the embeddable EJB Container and JPA client.

Note: On the z/OS platform, installing Liberty by extracting an archive file is not supported.
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To manually install a Liberty archive, follow these steps:

1. Extract the contents to your preferred directory:

a. Run the command to extract the contents of the Liberty archive, for example: 

java -jar wlp-nd-runtime-8.5.5.7.jar

b. Press x to skip reading the license terms, or press Enter to view them.

c. Press Enter to view the license agreement.

d. Press 1 if you agree to the license terms and want to proceed.

e. Provide the installation path for Liberty, for example C:\IBM\WebSphere, and press 
Enter.

2. Optional: Extract the programming model extensions in the same manner, for example:

java -jar wlp-extended-8.5.5.7.jar --acceptLicense C:\IBM\WebSphere

3. Optional: Set the JAVA_HOME property for your environment; see 3.1, “Configuring the 
Java Runtime” on page 38.

3.2.2  Installation by extracting a ZIP archive file

You can install Liberty and optional features by extracting a ZIP archive file. These archive 
files are designed to help you quickly get started with Liberty. After you install Liberty, you can 
install additional features by using the installUtility command; see 3.6, “Installing content 
from Liberty Repository” on page 47.

Following is a list of the Liberty ZIP archive files. You can choose what fits your requirements:

� WAS Liberty Kernel: wlp-kernel-<version>.zip

This basic ZIP file includes only the kernel of the Liberty server and no features.

� WAS Liberty with Java EE 7 Web Profile: wlp-webProfile7-<version>.zip

This archive ZIP file includes the kernel and features that support the Java EE 7 Web 
Profile.

� WAS Liberty with Java EE 7 Web Profile with Java 8: 
wlp-webProfile7-java8-<platform>-<architecture>-<version>.zip

These ZIP files include the kernel, IBM SDK Java Technology Edition Version 8, and 
features that support the Java EE 7 Web Profile. There are individual ZIP files for each 
available platform and architecture.

� WAS Liberty with Java EE 7 Full Platform: wlp-javaee7-<version>.zip

This ZIP file includes the kernel and features that support Java EE 7.

� WAS Liberty with Java EE 7 Application Client: wlp-javaeeClient7-<version>.zip

This ZIP file includes the kernel and the Java EE 7 application client.

Alternative: You can use command line options as follows:

java -jar wlp-nd-runtime-8.5.5.7.jar --acceptLicense C:\IBM\WebSphere

Liberty installation location: In this document, we refer to the Liberty installation 
directory as Liberty_Home. In this example, Liberty_Home is C:\IBM\WebSphere\wlp 
directory.
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To install from a ZIP file, use the following procedure:

1. Extract the ZIP file to your preferred directory. All of the files are stored in wlp directory. For 
example:

unzip wlp-webProfile7-java8-linux-x86_64-8.5.5.7.zip

2. Optional: If you extract a non Java include ZIP file, set the JAVA_HOME property for your 
environment; see 3.1, “Configuring the Java Runtime” on page 38.

3.3  Installation by IBM Installation Manager using the GUI

To install Liberty by using IBM Installation Manager, use the following procedure:

1. Install IBM Installation Manager and prepare to install Liberty. See the following URL:

http://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/twlp_ins_installation_dist_im.html

2. Install Liberty and IBM WebSphere SDK Java Technology Edition for Liberty.

Optional: Install features and addons without connecting to the Internet.

3.3.1  Install Liberty and IBM WebSphere SDK Java Technology Edition for 
Liberty

If you are using IBM Installation Manager GUI, add repositories to your IBM Installation 
Manager preferences. Liberty has three options for accessing the product repositories to 
install:

� Access the physical media, and use local installation
� Download the files from the Passport Advantage site, and use local installation
� Access the live repositories, and use web-based installation

In addition, if you add repositories for IBM WebSphere SDK Java Technology Edition for 
Liberty, you can install it at the same time with Liberty. You can choose a Java from Version 
6.0, 7.0, 7.1, or 8.0. Version 7.1 and 8.0 repositories are only available from the web, 
downloaded from Fix Central or installed directly from the live repositories.

Figure 3-1 illustrates using local installation repositories of Liberty and Java. 

Figure 3-1   Obtain the product repositories
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Figure 3-2 shows both Liberty and SDK IBM WebSphere SDK Java Technology Edition 
Version 8.0 are selected to install.

Figure 3-2   Select Liberty and SDK Java

Figure 3-3 indicates the selection of features that you want to install. You can select to install 
the embeddable EJB container and JPA client. After the installation is complete, this feature 
can also be added or removed by using IBM Installation Manager.

Figure 3-3   Select the features

In the next step, you can install additional Liberty Repository addons and features. If you do 
not want to select any additional addons and features, skip this step. After you complete the 
installation, you can install additional addons and features by using the installUtility 
command. To learn more about Liberty Repository and installUtility, see 3.6, “Installing 
content from Liberty Repository” on page 47.

Figure 3-4 is a selection whether you want to install addons and features from the 
IBM WebSphere Liberty Repository. If you choose not to connect to the IBM WebSphere 
Liberty Repository, you can still install addons and features from the configured location, see 
3.3.2, “Install features and addons without connecting to the Internet” on page 43.

Figure 3-4   Select whether you want to install addons and features from the IBM WebSphere Liberty 
Repository
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In this step, you can launch an Asset Selection wizard, which is shown in Figure 3-5. Select 
each addon or feature that you want to install.

Figure 3-5   Asset Selection wizard

3.3.2  Install features and addons without connecting to the Internet

If your environment cannot connect to the IBM WebSphere Liberty Repository, you can install 
addons and features from configured directory-based repositories or an instance of the 
Liberty Asset Repository Service. You can add the repository URL or directory to your 
IBM Installation Manager preferences, as illustrated in Figure 3-6. 

Figure 3-6   Add directory-based repositories to IBM Installation Manager repositories preference
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This sample shows that you use an extracted wlp-featureRepo-8.5.5.7.zip downloaded from 
Fix Central to install features and addons for Liberty Version 8.5.5.7. In this way, you can 
install the newest features or addons at the Asset Selection wizard as illustrated in Figure 3-7, 
without connecting to the Internet.

Figure 3-7   Javaee-7.0 feature from local directory-based repositories

3.4  Installation on z/OS

To install WebSphere Application Server Liberty for z/OS, follow these steps:

1. Obtain and create an IBM Installation Manager. See the following URL:

http://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.wlp.z
series.doc/ae/twlp_ins_installation_zos_imkit.html

2. Obtain the product repositories.

3. Install WebSphere Application Server Liberty for z/OS.

Optional: Install Liberty Repository features and addons.

4. Install IBM WebSphere SDK Java Technology Edition for Liberty.

3.4.1  Install WebSphere Application Server Liberty for z/OS

WebSphere Application Server Liberty for z/OS offerings is distributed as IBM Installation 
Manager repositories. The initial repository can be obtained by one of the following methods:

� SMP/E: Installing with SMP/E by using a ServicePac, SystemPac, or CBPDO
� Without SMP/E: Copying from the product physical media or ShopzSeries

New service levels can be installed by the following methods:

� If you use the SMP/E repository, you can apply program temporary fixes (PTFs) to add a 
single level of the service repository to the SME/E repository. Then, you can upgrade 
Liberty from the service repository by using IBM Installation Manager.

� Whichever you use, SMP/E repository or without SMP/E repository, you can download a 
service repository from Fix Central and upgrade Liberty from the downloaded service 
repository by using IBM Installation Manager.

To install Liberty, you use the imcl command with the following parameters: 

<package name> The package name to be installed

-installationDirectory The directory where the package is installed

-repositories The repository location
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-sharedResourcesDirectory A directory to store artifacts during installation (only specified 
the first time that you use this IBM Installation Manager to 
install a product)

-acceptLicense Accepts the software license agreement

The following command is an example to install Liberty:

InstallationManager/bin/eclipse/tools/imcl install 
com.ibm.websphere.liberty.zOS.v85 -installationDirectory 
/usr/lpp/zWebSphere/Liberty/V8R5 -repositories ~/8.5.5.7/LIBERTYPROFILE 
-acceptLicense

You can also follow the package name (and version) with a comma and a list of optional 
features separated by commas. The following features are available for WebSphere 
Application Server Liberty for z/OS. The keyword name for each feature is provided in 
parentheses:

� WebSphere Application Server Liberty (liberty)

This is a core feature of Liberty. It is always installed.

� Embeddable EJB container and JPA client (embeddablecontainer)

This option installs the embeddable EJB container and JPA client.

When you install a new copy of WebSphere Application Server Liberty for z/OS and do not 
specify the features to be installed, embeddablecontainer is installed by default. If you do not 
want to install embeddablecontainer, you can specify only liberty in the list.

3.4.2  Install Liberty Repository features and addons

If you want to install Liberty repository features with the installation by using IBM Installation 
Manager installation, specify the short name or symbolic names on the user.feature option of 
the -properties parameter. Multiple feature names are separated with double commas. The 
following example installs IBM z/OS Connect and WebSphere optimized local adapters for 
z/OS features:

InstallationManager/bin/eclipse/tools/imcl install 
com.ibm.websphere.liberty.zOS.v85 -installationDirectory 
/usr/lpp/zWebSphere/Liberty/V8R5 -repositories ~/8.5.5.7/LIBERTYPROFILE 
-properties user.feature=zosConnect-1.0,,zosLocalAdapters-1.0 -acceptLicense

You can add the Extended Programming Model features by specifying the user.addon option:

InstallationManager/bin/eclipse/tools/imcl install 
com.ibm.websphere.liberty.zOS.v85 -installationDirectory 
/usr/lpp/zWebSphere/Liberty/V8R5 -repositories ~/8.5.5.7/LIBERTYPROFILE 
-properties 
user.feature=zosConnect-1.0,,zosLocalAdapters-1.0,user.addon=extendedPackage-1.0 
-acceptLicense
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You can also install addons and features from instances of the Liberty Asset Repository 
Service or local directory-based repositories. For more information about these asset 
repositories, see 3.6, “Installing content from Liberty Repository” on page 47. You can add the 
repository URL or directory on the -repositories parameter:

InstallationManager/bin/eclipse/tools/imcl install 
com.ibm.websphere.liberty.zOS.v85 -installationDirectory 
/usr/lpp/zWebSphere/Liberty/V8R5 -repositories
~/8.5.5.7/LIBERTYPROFILE,/u/mtres1/8.5.5.7/wlp-featureRepo-8.5.5.7 -properties 
user.addon=zosBundle -acceptLicense

3.4.3  Install IBM WebSphere SDK Java Technology Edition for Liberty

You can install IBM WebSphere SDK Java Technology Edition Version 7.0, 7.1, or 8.0 for 
Liberty by using IBM Installation Manager.

The repository for Version 7.0 is part of WebSphere Application Server for z/OS Version 8.5 
product. You can install the repository with SMP/E, download the installation files from 
IBM Fix Central, or install directly from the service repository. As for Version 7.1 and 8.0, you 
can download the installation files from IBM Fix Central, or install directly from the service 
repository. These are not available in SMP/E format.

The following command is an example to install Version 8.0:

InstallationManager/bin/eclipse/tools/imcl install 
com.ibm.websphere.liberty.IBMJAVA.v80 -installationDirectory 
/usr/lpp/zWebSphere/Liberty/V8R5 -repositories ~/8.5.5.7/IBMLIBERTYJAVA 
-acceptLicense

You must set the installationDirectory parameter to the same location as the Liberty 
installation.

3.5  Considerations for upgrading Liberty V8.5.0 to V8.5.5

In WebSphere Application Server version 8.5.5, Liberty was promoted from an optionally 
installable feature to an independent offering. If your V8.5.0 installation has Liberty installed 
with IBM Installation Manager, a few extra steps are needed to update your system. 

If you have only Liberty installed, or you have both WAS Classic and Liberty installed and you 
are going to upgrade only Liberty (not WAS Classic), take the following actions to update your 
system:

1. Install Liberty V8.5.5 offering for your edition.

2. Migrate your user data to the new installation. You can copy the usr folder to the new 
installation, or you can set the WLP_USER_DIR environment variable in etc/server.env to 
point to the usr directory of the original installation. These are the same steps typically 
used for an archive update.

3. Ensure that you have the required SDK installed. 
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If you have both WAS Classic and Liberty installed and you are going to upgrade both of 
them, take the following actions to update your installation:

1. In this case, you select to install both WAS Classic and Liberty offerings in IBM Installation 
Manager:

a. During the update flow, you receive a message advising you of the change in 
packaging. When you proceed, WAS Classic updates to V8.5.5. 

Liberty feature is removed from WAS Classic offering, and the installed Liberty folder is 
backed up to wlp.bak_<timestamp> within the installation image. You can continue 
using this Liberty runtime from the backup folder, or you can move it or delete it. 

b. Liberty will be installed in a different location as an independent offering from WAS 
Classic.

2. Migrate your user data to the new installation. 

3. Ensure that you have the required SDK installed.

3.6  Installing content from Liberty Repository

Liberty Repository provides an online mechanism to deliver Liberty and additional content, 
enabling a single point of access for various asset types. Liberty Repository provides early 
access to supported new content, including new product capabilities, when they are 
delivered, rather than waiting for a new release.

Asset types that are available from Liberty Repository are as follows:

Addons Artifacts that are packaged to add new capabilities over an existing 
Liberty installation.

Admin Scripts Sample scripts for common Liberty administrative tasks.

Config Snippets Samples of Liberty server configurations for specific tasks.

Features Individual units of server functionality that can be installed in the 
Liberty runtime environment.

Open Source Integration

Artifacts that provide simple Liberty integration with commonly used 
open source projects.

Products Simple archive installation packages of the Liberty server runtime 
environment.

Product Samples Sample server applications that demonstrate the use of Liberty 
runtime capabilities.

Tools Tools to enable development and testing of Liberty-based applications 
and runtime extensions.

In addition to accessing assets in the public, online Liberty Repository, you can create the 
following types of repositories to enable on-premises or offline access to Liberty Repository 
assets:

� “The Liberty Asset Repository Service”
� “Local directory-based repositories” 
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3.6.1  Installing assets by using the installUtility command

After you install Liberty, you can install addons, features, open source integrations, and 
product samples by running the installUtility command. The installUtility command 
automatically installs dependencies.

For example, the following command installs the mongoDBSample:

Liberty_Home/bin/installUtility install mongoDBSample

This command automatically installs a dependent feature, prerequisite library, and server with 
sample application as follows:

� mongodb-2.0 feature to lib/ and lib/features/
� Java MongoDB Driver library to usr/shared/resources/MongoDBSampleLibs/
� mongoDBSample server with sample application to usr/servers/mongoDBSample/

3.6.2  The IBM WebSphere Liberty Repository

This is a public, IBM hosted repository that is accessible through the Internet. 

If you need to access the Liberty Repository through a firewall, ensure that you have access 
to the following hosts and ports:

� public.dhe.ibm.com on port 443
� asset-websphere.ibm.com on port 443

By default, the installUtility command is configured to install assets only from this 
repository. If you want to install assets from local or your own intranet location, see 3.6.3, “The 
Liberty Asset Repository Service” on page 48 and 3.6.4, “Local directory-based repositories” 
on page 50.

3.6.3  The Liberty Asset Repository Service

This open source service enables you to create an on-premises repository. It is remotely 
accessible behind the firewall. Also, if you develop a Liberty feature, it can be distributed 
remotely.

To get the latest information about LARS, see the WASdev/tool.lars repository on GitHub:

https://github.com/WASdev/tool.lars

Following is a quick way to get started with LARS:

1. Install LARS server:

a. Install Liberty:

java -jar wlp-runtime-8.5.5.7.jar

b. Install any LARS prerequisite features using installUtility:

Liberty_Home/bin/installUtility install cdi-1.0 servlet-3.0 mongodb-2.0 
jaxrs-1.1 cdi-1.0 servlet-3.0 mongodb-2.0 jaxrs-1.1

c. Download a self-extracting jar file installer from the following site:

https://developer.ibm.com/wasdev/downloads/#asset/tools-Liberty_Asset_Reposi
tory_Service
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d. Run larsServerPackage.jar to install prebuild LARS server into your Liberty 
environment:

java -jar larsServerPackage.jar

e. Install and set up MongoDB:

See the following installation guide about how to install MongoDB on your operating 
system:

http://docs.mongodb.org/manual/installation

f. Edit the wlp/usr/servers/larsServer/server.xml file to configure the LARS server. 
You need to configure the following by uncommenting:

i. Uncomment a commented out <basicRegistry> element and change a password for 
admin user. It is assumed ‘adminpassword’ here.

ii. Uncomment a commented out <application-bnd> element.

g. Start the LARS server:

Liberty_Home/bin/server run larsServer

2. Install the LARS client:

a. Download the package file from the following site:

https://developer.ibm.com/wasdev/downloads/#asset/tools-Liberty_Asset_Reposi
tory_Service_Client

b. Unpack larsClient.zip to any directory:

unzip larsClient.zip

c. To verify, issue the larsClient command:

bin/larsClient help

3. To upload a feature:

You can add a feature to the LARS repository by specifying the following command:

bin/larsClient upload --url=http://localhost:9080/ma/v1 --username=admin 
--password=adminpassword my_feature.esa

4. Configure Liberty to use the LARS repository:

If you create a property file Liberty_Home/etc/repositories.properties as shown in 
Example 3-2, you can install a registered feature from the LARS repository.

Example 3-2   repositories.properties for LARS

lars.url=http://localhost:9080/ma/v1
useDefaultRepository=false

To disable access to the public IBM WebSphere Liberty Repository, set the 
useDefaultRepository property to false as shown in Example 3-2. The public repository is 
enabled by default.
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5. Install a feature from the LARS repository by using installUtility:

You can find, install, and download a feature from the LARS repository. Following is an 
example of finding the feature that you uploaded by using the larsClient command in 
Step 3 on page 49:

Liberty_Home/bin/installUtility find my_feature

Example 3-3   installUtility find output

Establishing a connection to the configured repositories...
This process might take several minutes to complete.

Successfully connected to all configured repositories.

Searching assets. This process might take several minutes to complete.

feature : my_feature : my_feature

You can find the feature if the feature is appropriate for your Liberty version.

3.6.4  Local directory-based repositories

This type of repository can be created by using the installUtility download action or 
downloaded from IBM Fix Central:

� Create by using installUtility

You can download assets to your local file system by running the installUtility 
command. After you download assets to your local file system, you can add a local 
directory to your repository configuration so that you can install assets from the directory.

� Download from IBM Fix Central

As an alternative to downloading individual assets, you can download and extract a 
wlp-featureRepo-<version>.zip file from IBM Fix Central. The .zip file contains all 
features and addons for the particular fix pack, with the same structure that was created 
using installUtility. 

For example, the following command downloads the adminCenter-1.0 feature to the 
c:\temp\download directory:

Liberty_Home/bin/installUtility download adminCenter-1.0 
--location=c:\temp\download

The following directory structure is created, and the related features are put in the directory.

Example 3-4   Directory-based repositories structure

c:\temp\download\
repository.config
features\

8.5.5.7\
com.ibm.websphere.appserver.adminCenter-1.0.esa
:
com.ibm.websphere.appserver.adminSecurity-1.0.esa
:

You can download additional assets on the same existing directory.
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If you create a property file, Liberty_Home/etc/repositories.properties as shown in 
Example 3-5, you can install downloaded assets from the local directory.

Example 3-5   repositories.properties for directory-based repositories

local-rep2.url=file:///c:/tmp/download
useDefaultRepository=false

To disable access to the public IBM WebSphere Liberty Repository, set the 
useDefaultRepository property to false as shown in Example 3-5. The public repository is 
enabled by default.

3.7  Updating Liberty

There are two approaches to update the Liberty runtime:

� In-place update

The new version of the product is installed into the directory that it is currently installed in. 
The old version is overwritten. 

� Side-by-side update

The new version of the product is installed as another instance. The old version remains 
in-place.

In addition, the rip-and-replace approach is described in 5.2, “Flexible deployment” on 
page 73. 

Liberty has two methods for installing the runtime environment: Either by using the 
downloaded archive file or by using IBM Installation Manager. Archive file installation can only 
use the side-by-side update approach, and the IBM Installation Manager installation can use 
either approach (in-place or side-by-side). 

There are three types of resources to consider when you update Liberty:

� Product files

Liberty product files that are in bin, clients, dev, lafiles, lib, and templates directories. 
Also, Java product files in java directory are included.

� User files

Files that are in the user directory include server configuration files, applications, and 
shared resources.

� User output files

Files that are generated by the server, for example, log files and temporary disk storage.

Fix pack instructions: All fix packs that update your environment contain detailed 
instructions. Always refer to these instructions before applying the update.
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3.7.1  In-place update

This method overwrites the product files with the new version of the files. IBM Installation 
Manager uses this as the default method. Figure 3-8 shows an example of updating a Liberty 
product file.

Figure 3-8   Updating Liberty by in-place update

3.7.2  Side-by-side update

If you used a JAR or ZIP archive-based installation, you must use this approach to update 
Liberty. You can also use this approach to an IBM Installation Manager installation by a 
procedure in which you install another copy of the Liberty product as a new group.

This approach uses the following process:

1. Install a new version of the product files into a location that is different from the previous 
installation.

2. Create the etc/server.env file in the new Liberty installed location. Set the WLP_USER_DIR 
environment variable to locate the user directory from the previous environment.

3. Stop the old version of the Liberty server.

4. Start the new version of the Liberty server.

Note: If you choose the in-place update method to update the Liberty product files (also 
Java runtime), changes affect all servers that use those product files. You must stop all 
servers on this installation during the Liberty update. 

If this drawback is not acceptable for you, consider using the side-by-side update method 
described in 3.7.2, “Side-by-side update” on page 52.

WLP V2

Update

server1 V1

WLP V1

WLP_OUTPUT_DIR

WLP_USER_DIR

WLP V2

WLP_OUTPUT_DIR

WLP_USER_DIR
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Figure 3-9 illustrates the continued use of the user files and user output directory by setting 
the WLP_USER_DIR environment value on etc/server.env. 

Figure 3-9   Updating Liberty by using the side-by-side update

In this procedure, the old product files are not overwritten. Therefore, you can easily do a 
rollback by stopping the new version of the Liberty server and starting the old one.

Note: The side-by-side approach, using etc/server.env and WLP_USER_DIR environment 
variable for separating product files and user files, is the suggested practice.
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Chapter 4. Working with Liberty profile 
servers

Liberty profile servers are defined by using configuration files. This chapter provides 
information about configuring Liberty profile servers.

In this chapter, the following topics are discussed:

� Working with the bootstrap.properties file
� Working with the server.xml file
� Using WebSphere developer tools to work with the configuration
� Liberty command-line utilities
� Use the configuration dropins folder to specify server configuration
� Configuring dynamic application updates
� Starting and stopping the server using the command line
� Classloaders and shared libraries

4
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4.1  Working with the bootstrap.properties file

The bootstrap.properties file initializes the runtime environment for a particular server. 
Generally, it contains attributes that affect the initialization of the runtime core. This file is not 
required and by default it is not created. If the file is needed, it is created in 
${server.config.dir}. Changes to this file require that the server be restarted. To configure 
the bootstrap.properties file, use key-value pairs. To make comments, use the # sign.

Example 4-1   Sample content of the bootstrap.properties file

# trace logging settings
com.ibm.ws.logging.trace.specification = *=all=enabled

The name-value pairs are available to server.xml (see 4.2, “Working with the server.xml file” 
on page 56). For more information about how these name-value pairs can be used from 
within server.xml, see the following site:

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.cor
e.doc/ae/twlp_inst_bootstrap.html?lang=en

4.2  Working with the server.xml file

Each Liberty profile is configured by using a server.xml configuration file. The only required 
entry in the server.xml file is the server tag, which defines a server configuration scope. 
Example 4-2 gives an example of the basic server.xml file.

Example 4-2   The simplest configuration of the Liberty profile server 

<server> <server/>

4.2.1  Adding new configuration options

The configuration in Example 4-2 enables you to start the Liberty profile server, but more 
settings must be added to run real applications. Example 4-3 gives you a view of what a 
typical configuration looks like. 

Example 4-3   Sample configuration for Liberty profile server

<server description="server2">

<featureManager>
<feature>jsp-2.3</feature>

</featureManager>

<httpEndpoint host="localhost" httpPort="9081" httpsPort="9444" 
id="defaultHttpEndpoint"/>

</server>

One of the most important sections in the configuration file is the feature section. This is the 
place where you configure the server runtime to use the required features for your 
applications. For example, if your application uses only servlets and JavaServer Pages 
(JSPs), the feature configured in Example 4-3 is enough.
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Adding a new feature is as simple as adding a new <feature> element to the 
<featureManager> element. After the file is saved, the file monitor service discovers the 
change, and the Liberty profile server applies the new features to the runtime.

4.2.2  Using include syntax

The server.xml file also allows you to configure other parameters, such as the server 
listening ports and data sources. Although keeping all of the configuration settings for a 
server in a single file eases the complexity of server configuration, the file can grow to a 
substantial size. This is one reason to use the include syntax to move some of the 
configuration into other XML files. Furthermore, the included XML files can also include other 
configuration files. Figure 4-1 illustrates an example of such a case.

Figure 4-1   Splitting the configuration of the Liberty profile into multiple files

The include syntax provides a flexible and powerful way to share all or part of a configuration 
between different servers on the same or even different host machines. You can control how 
the configuration is structured and which pieces are shared by which servers. Included XML 
files can be on the local file system or hosted in the network. The monitor service detects 
changes to the server.xml file and any of the included files. 

<include file="extra.xml"/>
...

Liberty Profile Kernel

OSGi Configuration
Admin Service

Merges user 
configuration
over defaults

... ...

server.xml

extra.xml

more.xml evenmore.xml

<include file="more.xml"/>
<include file="evenmore.xml"/>
...
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By using the include tag, you can rewrite Example 4-3 on page 56 with the configuration 
given in Example 4-4 to add a data source definition.

Example 4-4   Rewritten server.xml configuration file using the include tag

<server description="server2 main configuration">
<featureManager>

<feature>jsp-2.2</feature>
</featureManager>

<httpEndpoint host="localhost" httpPort="9080" httpsPort="9443"
id="defaultHttpEndpoint"/>

<!-- Configuration of external resources -->
<include location="datasourcesConfig.xml"/>

</server>

The configuration now includes an additional datasourcesConfig.xml file. The location is a 
direct path. If you use just the name of the file, both the source and the included file have to 
be in the same directory. Example 4-5 shows the content of the new datasourcesConfig.xml 
file. Notice that the included file also has to contain the server tags. 

Example 4-5   Configuration of an additional datasourcesConfig.xml configuration

<server description="database configuration for server2">
<featureManager>

<feature>jdbc-4.0</feature>
</featureManager>

<jdbcDriver id="DerbyEmbedded" libraryRef="DerbyLib"/>
<library filesetRef="DerbyFileset" id="DerbyLib"/>
<fileset dir="C:/Derby/lib" id="DerbyFileset" includes="derby.jar"/>

<dataSource id="MyDataSource" jdbcDriverRef="DerbyEmbedded"
jndiName="jdbc/MyDataSource" 
syncQueryTimeoutWithTransactionTimeout="false" 
type="javax.sql.DataSource">

<properties.derby.embedded createDatabase="create" databaseName="CUSTDB1"/>
</dataSource>

</server>

The included configuration contains the jdbc-4.0 feature along with the data source 
definition, which is merged by the OSGi Configuration Admin Service as a single 
configuration.

Alternatively, instead of pointing to a file on a file share, you can use a URL under which it is 
accessible, for example:

<include location="http://myfileserver/config/server2/datasourcesConfig.xml"/>

Note: It is possible to use the include syntax to include these files directly from a version 
management system. See the documentation for your specific version of the management 
system for details about how files can be delivered based on URL access.
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4.2.3  Using variables in configuration files

Variables can be used in the configuration of a WAS Liberty server to avoid hardcoding values 
that might change as the server is reused in different environments. Variables can be defined 
in either the server configuration file or in the bootstrap properties file. Changes in the server 
configuration file do not require a server restart to take effect. Changes made in the 
bootstrap.properties file do require a server restart for the changes to take effect.

It is recommended that variables for a particular server, such as port numbers, be specified in 
the bootstrap properties file, allowing the server.xml file to be shared across multiple servers. 
Values that are shared across servers are better defined in a shared xml file that can be 
included in the server.xml of a particular server.

There are a number of predefined variables that can be referenced. These are:

� JVM system properties
� Process environment variables 
� Directory properties defined by the WAS Liberty environment. Following are the key 

variables:
– wlp.install.dir: Root of the WAS Liberty installation 
– wlp.user.dir: The usr directory under the wlp.install.dir
– server.config.dir: The specific server directory under the wlp.user.dir/servers

More information about the directory structure and available properties can be found in the 
IBM Knowledge Center at:

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.cor
e.doc/ae/rwlp_dirs.html?lang=en

Defining variables
Variables can be defined in a number of ways. How they are defined determines the scope of 
the variable. To define a variable in the bootstrap.properties file, the variables are entered 
as a key-value pair as shown in Example 4-6.

Example 4-6   Defining a variable in the bootstrap.properties file

HTTP_default_var=8006

Variables defined in this manner are global in scope. 

Variables can be defined in the server configuration files by using the <variable> tag. 
Variables defined in this manner are also global in scope. Note that if variables are defined 
both in included files and the server.xml file, those defined in the server.xml take 
precedence. Example 4-7 shows how to define the HTTP_Default_var in the server.xml file. 

Example 4-7   Defining variables using the <variable> tag

<variable name="HTTP_Default_var" value="8007" />

Variables can also be defined within the configuration files with a specific scope, that being 
the scope of the configuration elements to which they belong. Another way to define the 
HTTP_Default_var that we previously defined in our bootstrap properties is as shown in 
Example 4-8.

Example 4-8   Defining a variable scoped to its containing configuration element

<httpEndPoint id=”defaultHttpEndpoint” HTTP_Default_var=”8008” .....
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The order of precedence of the variable declarations is that the <variable> declaration 
overrides the bootstrap.properties declaration, which overrides the scoped declaration.

Variables substitution
The variable substitution syntax is ${variable name}. An example of how to use the value of 
the HTTP_Default_var within a configuration file is shown in Example 4-9.

Example 4-9   Using variable within a configuration script

<httpEndPoint id=”defaultHttpEndpoint” HTTP_Default_var=”8008”
host=”*”
httpPort=”${HTTP_Default_var}” />

To use process environment variables, the syntax used for variable substitution is 
${env.variable name}. If the HTTP_Default_var was defined as a process variable, the 
substitution syntax is as shown in Example 4-10. 

Example 4-10   Using a process environment variable in a configuration script

<httpEndPoint id=”defaultHttpEndpoint” HTTP_Default_var=”8008”
host=”*”
httpPort=”${env.HTTP_Default_var}” />

4.2.4  Encrypting passwords

WAS Liberty profile configuration, including any passwords, is kept in text files. To improve 
security, WAS Liberty provides the securityUtility that supports plain text encryption and SSL 
certificate creation.

To encode a password, securityUtility is used with the syntax defined in Example 4-11.

Example 4-11   Syntax for the securityUtility to encode a password

$ securityUtility encode --encoding=encoding_type --key=encyption_key --notrim 
text_to_encode

The encoding type can be any one of the following:

� Exclusive or (XOR); this is the default
� Hash
� Advanced Encryption Standard (AES)

The encryption key is used when encoding using AES encryption. When using AES 
encryption, the encryption key used for decrypting can be overridden from the default by 
setting the wlp.password.encryption.key property. This property should not be set in the 
server.xml file that stores the password, but in a separate configuration file that is included by 
the server.xml file. This separate configuration file should contain only a single property 
declaration, and should be stored outside the normal configuration directory for the server. 

The --notrim parameter specifies whether space characters are removed from the beginning 
and end of the text to encode. If no parameters are given, the command works in interactive 
mode.
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For more information about encryption syntax, see the Liberty profile Security topic in the IBM 
Knowledge Center at this website:

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.cor
e.doc/ae/rwlp_command_securityutil.html?lang=en

4.3  Using WebSphere developer tools to work with the 
configuration

You can use the WebSphere developer tools to work with the server.xml file. Wizards and 
windows in the Eclipse workbench help to configure all of the server properties. To configure 
the server.xml file using WebSphere developer tools, double-click Server Configuration, as 
illustrated in Figure 4-2. 

Figure 4-2   Configuring a Liberty profile server from the WebSphere developer tools

The current server configuration is shown in a new window with all of its features and 
properties listed, as illustrated in Figure 4-3.

Figure 4-3   Configuring a Liberty profile server data source using the WebSphere developer tools
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Instead of typing the name of each of the configuration elements or their numerous 
properties, you can simply click Add, and the WebSphere developer tools guide you with the 
possible values and properties to configure, as shown in Figure 4-4.

Figure 4-4   Available properties for the Liberty data source using WebSphere developer tools

4.4  Liberty command-line utilities

This section provides information about some of the command-line tools that are available 
within a Liberty installation. The utilities covered are not exhaustive for details. For the 
complete set of supported utilities, refer to the IBM Knowledge Center here:

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.cor
e.doc/ae/twlp_admin_script.html?lang=en

4.4.1  Packaging a Liberty server

From the command line, it is possible to create a package file that contains the Liberty 
runtime, the files in the shared resources directory, a specific server, and the applications that 
are embedded in the server. This package can be used to deploy to hosts in a Liberty 
collective, distribute it to colleagues, or even embed it in a product distribution. The server 
installation that you want to package cannot already be joined to a collective. The server to be 
packaged should not be running.

To package the server, the server command is used from the ${wlp.install.dir} directory. 
The format of the package command is shown in Example 4-12.

Example 4-12   Use the server command to create a server package

$ server package myServer --archive=MyServer_Package.zip --include=all
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MyServer is the name of the Liberty profile server and is mandatory. The variable --archive 
specifies the archive to package the server into. It is optional and, if not specified, the archive 
is created as <server name>.zip into the ${server.config.dir} of the server being 
packaged. The --include variable is optional and supports the following values:

� The all value packages the runtime binary files and the relevant files in the WLP_USER_DIR 
directory.

� The usr value packages only relevant files in the WLP_USER_DIR directory and excludes the 
runtime binary files.

� The minify value packages only those parts of the runtime environment and the files in 
the WLP_USR_DIR that are required to run the server. This option significantly reduces the 
size of the resulting archive because it only includes those aspects of the runtime needed 
to support the features defined for the server.

4.4.2  Installing config snippets with the configUtility

The configUtility provides the capability to download configuration snippets from the IBM 
WebSphere Liberty Repository. The Liberty repository configuration snippets are samples of 
Liberty server configurations for specific tasks. The utility provides the capability to replace 
configuration variables with the user’s own input values. To use the configUtility, the Liberty 
repository needs to be set up as documented in 3.6, “Installing content from Liberty 
Repository” on page 47.

To find a configuration snippet, the configUtility is invoked with the find action and the item to 
search for, as shown Example 4-13, where the search is for a configuration snippet that 
contains Remote.

Example 4-13   Using the configUtility to find a config snippet

$ configUtility find Remote
Retrieving snippets that are related to "remote".

remoteAdministration
$

The find operation in Example 4-13 shows that there is one snippet in the repository that 
contains the search string. The configUtility can be used to install the configuration snippet by 
using the find action and optionally the --createConfigFile parameter as shown in 
Example 4-14.

Example 4-14   Using the config utility to install the config snippet

$ configUtility install remoteAdministration 
--createConfigFile=/home/itsousr/myConfigSnippet
Downloading the requested configuration snippet...

    <include location="/home/itsousr/myConfigSnippet" />

Please ensure administrative security is configured for the server.
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The snippet is downloaded to the local file system. The sample snippet is shown in 
Example 4-15.

Example 4-15   Sample remoteAdministration config snippet

<server>

<!-- NOTE: This file is for reference only. -->

<!-- Enable restConnector-1.0 feature -->
<featureManager>

<feature>restConnector-1.0</feature>
</featureManager>

<!-- Simple administrative security configuration. -->
<!-- TODO: Set the security configuration for Administrative access -->
<quickStartSecurity userName="${adminUser}" userPassword="${adminPassword}"/>

<!-- TODO: Set the SSL keystore password -->
<keyStore id="defaultKeyStore" password="${keystorePassword}"/>

<!-- TODO: Set HTTP Endpoint attributes -->
<httpEndpoint id="defaultHttpEndpoint"

host="*"
httpPort="9080"
httpsPort="9443"/>

<!-- TODO: Use readDir and writeDir to specify directories that remote
clients are allowed to have read and write access. There can be 
multiple readDir and writeDir elements. Replace writePath and readPath
variables with your choice of locations or remove them if not needed. -->
<remoteFileAccess>

<writeDir>${writePath}</writeDir>
<readDir>${readPath}</readDir>

</remoteFileAccess>

</server>

The configuration snippet in Example 4-15 contains a number of variables that could be 
replaced with user-specific values by using the --v parameter as shown in Example 4-16.

Example 4-16   Using the config utility to replace variables with user-defined values

configUtility install remoteAdministration --vadminUser=itsousr 
--vadminPassword=secret --vkeystorePassword=secret --vwritePath=/home/itsousr 
--vreadPath=/home/itsousr

More information about this utility can be found in the IBM Knowledge Center:

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.cor
e.doc/ae/rwlp_command_configutil.html?lang=en
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4.4.3  Application client commands

Liberty supports Java applications in the application client container, which can access 
application components (for example, Enterprise JavaBeans (EJB)) that are running on a 
Liberty server. The application client container capability is available as part of the 
javaeeClient-7.0. If this feature is not available in the Liberty installation, it can be installed by 
using the installUtility as shown in Example 4-17.

Example 4-17   Installing the application client capability

$ installUtility install javaeeClient-7.0

As part of this installation, the client command is made available in the 
${wlp.install.dir}/bin directory. The client command can be used to create, run, debug, 
and package application clients. New clients are created using the syntax shown in 
Example 4-18.

Example 4-18   Creating an application client

$ client create MyClient
client MyClient created.
$

The application client is created in the ${wlp.install.dir}/usr/clients directory. Like 
Liberty servers, application clients contain a single point of configuration: the client.xml file, 
which is available in the client directory ${wlp.install.dir}/usr/clientsMyClient. See 
Example 4-18. 

The generated client.xml includes the javaeeClient-7.0 feature as shown in Example 4-19.

Example 4-19   Default application client configuration

<?xml version="1.0" encoding="UTF-8"?>
<client description="new client">

<featureManager>
<feature>javaeeClient-7.0</feature>

</featureManager>
</client>

A client application needs to be added to the client. Details about how to create or add a client 
application can be found in the IBM Redbooks publication: IBM WebSphere Application 
Server Liberty Profile Guide for Developers, SG24-8076: 

http://www.redbooks.ibm.com/abstracts/sg248076.html?Open

The application client can be run by using the client run command as shown in 
Example 4-20.

Example 4-20   Running a client

$ client run MyClient

For more information about the application client capability, see the IBM Knowledge Center: 

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.cor
e.doc/ae/twlp_setup_prepareappclient.html?lang=en
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4.5  Use the configuration dropins folder to specify server 
configuration

Server configurations for Liberty servers can be created by creating configuration dropin files 
and placing these in the configDropins directory. The dropins can be used to either set a 
default configuration or override an existing configuration for a Liberty server standard 
configuration as defined in the server.xml and included files.

The configDropins directory is created under the ${server.config.dir} directory, and it 
contains two subdirectories: defaults and overrides.

If an administrator wants to be able to override the configuration of a specific server.xml, a 
dropin file is created and put in the ${server.config.dir}/configDropins/overrides 
directory. A server can be forced to use a specific port by using the override.xml file shown 
in Example 4-21 and placing this file in the overrides directory for a server.

Example 4-21   Override.xml to override the HTTP_Default_var variable

<server>
<variable name="HTTP_Default_var" value="9083"/>

</server>

The server does not need to be restarted for this to take effect. The current listening port for 
the server will be changed to that defined in the override.xml file. 

If an administrator wants to be able to provide defaults for a particular server instance, a file 
default.xml, with the same content as the overrides.xml, can be placed in the 
${server.config.dir}/configDropins/defaults directory. In our example, if no variable was 
set for the HTTP_Default_var, the value specified in defauls.xml would be used instead.

The configuration for the configDropins directory can be managed through the <config> 
element in server.xml. The ability to monitor changes to the configuration can be controlled 
through the config tag as shown in Example 4-22.

Example 4-22   Disable the monitoring for config updates

<config updateTrigger="disabled"/>

Other aspects of monitoring, such as the monitor interval and action to be taken on error, can 
be configured though the config tag as shown in Example 4-23.

Example 4-23   Modifying other aspects of the config monitor

<config updateTrigger="polled" monitorInterval="10m30s" onError="IGNORE"/>

4.6  Configuring dynamic application updates

The Liberty servers can be configured to be notified of dynamic updates, adding, updating, 
and removing applications. For all deployed applications, server.xml can be configured to 
specify whether application monitoring is enabled and how often to check for updates to 
applications. You can also change the default dropins directory. 
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To configure to only look for updates that are done through the Java Management Extension 
(JMX) managed beans (MBeans) and to disable the dropins directory, add the configuration 
as shown in Example 4-24.

Example 4-24   Change the application monitor to look for updates from the JMX MBeans

<applicationMonitor updateTrigger="mbean" dropinsEnabled="false"/>

The FileNotificationMBean can be used to notify the server which configuration file or files 
need to be dynamically reprocessed.

To allow only updates to the application files, you can use the polled trigger values, and the 
applicationMonitor element should be changed as in Example 4-25. 

Example 4-25   Change the polling rate and monitored application dropins directory

<applicationMonitor updateTrigger="polled" pollingRate="5000ms" 
dropins=${server.config.dir/myDropins"/>

In this example, the pollingRate value specifies that the application monitor polls for changes 
every 5 seconds instead of the default value of half of a second. The default dropins directory 
was changed to monitor the ${server.config.dir}/myDropins directory.

To disable all the monitoring of application changes, the monitorApplication element should 
be changed as shown in Example 4-26.

Example 4-26   Disable the monitoring of application changes

<applicationMonitor updateTrigger="disabled"/>

For more configuration monitoring examples, see the following IBM Knowledge Center 
website:

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.cor
e.doc/ae/twlp_setup_dyn_upd.html?lang=en

4.7  Starting and stopping the server using the command line

The server can be controlled from a single server command in the WLP_INSTALL_DIR/bin 
directory. The following commands can be used to start and stop the server:

� server start <servername>
Starts the server running in the background.

� server run <servername>
Starts the server running in the foreground and writes the console output to the window. To 
stop the Liberty profile server in this mode, press Ctrl+c or kill its process or run server 
stop from another command window.

� server debug <servername>
Starts the server in debug mode.

� server stop <servername>
Stops the server.

� server status <servername>
Displays the current state of the server.
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4.8  Classloaders and shared libraries

The Liberty classloaders hide the classes that make up the Liberty runtime from Java 
Enterprise Edition applications and only exposes the public API. This feature isolates the 
applications from the internal libraries used by Liberty. For example, one of the Open Source 
libraries that Liberty uses is the SLF4J version 1.5.6 library. If an application needs to use a 
different version of the same library, Liberty runtime copy does not interfere with the 
application’s copy. This resolves the problem of accidental usage of the internal server 
libraries.

The following types of libraries can be configured with classloaders: 

� ibm-api (IBM APIs)
� spec (standardized APIs) 
� third-party 

The default behavior of Liberty is to hide the third-party APIs. Example 4-27 shows a 
configuration of a sample application where only standardized APIs are available, and all IBM 
or third-party APIs are hidden.

Example 4-27   Configuration of the application classloader libraries visibility

<application location="SampleApplication.war" type="war">
<classloader apiTypeVisibility="spec" />

</application>

The Liberty classloaders allow for sharing the class instances from libraries between 
applications or by using them privately within the scope of an application. These two models 
are called the common library and the private library. Example 4-28 shows a sample 
configuration of both libraries for the same sample application.

Example 4-28   Configuration of common and private libraries

<application location="SampleApplication.war" type="war">
<classloader commonLibraryRef="mySharedLib" privateLibraryRef="myITSOLib" />

</application>

<library id="mySharedLib">
<fileset dir="${server.config.dir}/mySharedLib" includes="*.jar"/>

</library>

<library id="myITSOLib">
<fileset dir="${server.config.dir}/ITSOLib" includes="*.jar"/>

</library>

The listing defines two shared libraries: mySharedLib and myITSOLib. Class instances from 
libraries in the mySharedLib can be shared with other applications that include mySharedLib 
as a commonLibraryRef.

Instances of the myITSOLib are dedicated to the applications that reference them. There can 
be as many copies of myITSOLib as the applications that need those resources.
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Liberty supports the older method of overriding the default behavior of the classloader 
configuration that uses the profile runtime classes. This configuration can be done by using 
the delegation attribute. The default value of this attribute is parentFirst. If you use 
parentLast, the specified shared classes are loaded with the application, overriding the server 
libraries. Example 4-29 presents this configuration.

Example 4-29   Configuration of delegation mode in the Liberty classloader for the sample application

<application location="SampleApplication.war" type="war">
<classloader commonLibraryRef="mySharedLib" delegation="parentLast" />

</application>

To learn more about the class loaders, see the following IBM Knowledge Center website:

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.cor
e.doc/ae/twlp_classloader.html?lang=en
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Chapter 5. Administering the WebSphere 
Liberty profile

This chapter describes the Liberty environment and how to use the various Liberty tools to 
administer the environment.

This chapter covers the following topics: 

� Installing the sample environment
� Flexible deployment
� The Liberty Management API
� Liberty collectives
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5.1  Installing the sample environment

In this chapter, a number of examples are created showing how collections of Liberty servers 
can be managed through the various administrative tools that are available.

5.1.1  The Liberty environment

A sample Liberty installation is created to exercise the examples in this chapter. Install the 
Liberty environment as described in section 3.2.2, “Installation by extracting a ZIP archive file” 
on page 40. The .zip file that is used for the examples in this section is 
wlp-webProfile7-java8-linux-x86_64-8.5.5.7.zip. All the examples are shown from a 
Linux perspective. 

To support console scripting, the following environment variables are used in the examples 
performed in this chapter: 

� WLP_INSTALL_DIR is equivalent to the Liberty variable ${wlp.install.dir} and points to 
the installation directory of Liberty. For example, Liberty is installed in /home/itsouser/wlp 
so the WLP_INSTALL_DIR = /home/itsouser/wlp 

� SERVER_CONFIG_DIR is equivalent to the Liberty variable $(server.conf.dir} and points to 
the server configuration directory under $WS_INSTALL_DIR/usr/servers. For example, 
server controller1is SERVER_CONFIG_DIR = $WS_INSTALL_DIR/usr/servers/controller1

5.1.2  Installing Jython

Liberty supports scripting in any language though it is recommended that WebSphere 
Administrators use a Java scripting language (Jython, JRuby, Groovy, and so on). In the 
examples that follow, Jython is used. Liberty ships with a Jython library, restConnector.py, 
which provides a Jython interface to the Representational State Transfer (REST) Java 
Management Extensions (JMX) connector of Liberty. This connector has been tested with 
Jython and is compatible with versions 2.5.4 and higher. Liberty does not ship with a Jython 
run time so the user needs to download and configure the run time for themselves.

To use the Jython scripting capabilities, the Jython environment needs to be set up. Use the 
following steps to complete that process:

1. Set the CLASSPATH environment variable to include the restConnector.jar file from the 
${wlp.install.dir}/clients directory, as shown in Example 5-1.

Example 5-1   Add the restConnector.jar to the CLASSPATH

export CLASSPATH=$CLASSPATH:${wlp.install.dir}/clients/restConnector.jar

2. Set up the JYTHONPATH environment variable to include the restConnector.py file from the 
${wlp.install.dir}/clients/jython directory, as shown in Example 5-2.

Example 5-2   Add the restConnector.py to the JYTHONPATH

export JYHTONPATH=$JYTHONPATH:${wlp.install.dir}/clients/jython/restConnector.py
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5.2  Flexible deployment

The flexible nature of Liberty has lead to a different predominant deployment pattern, that of 
rip-and-replace. The complete, configured stack is generated as part of a DevOps flow, and 
is completely replaced with each update. Liberty has a utility to package a server. This utility 
operates on a configured server, with applications installed, and produces a .zip file. The 
.zip file contains the applications, user configuration and resources, and, optionally, the run 
time (product binary files) required by that server’s configuration. 

This customized, configured package can then be quickly deployed to a host machine through 
file transfer and unpackaged. These packages guarantee clean, identical clones on each 
host. The Liberty server packages are ideal for use in DevOps flows, where the server 
package is the output of the build. Tools like uDeploy, Chef, and the Liberty profile itself can 
be used to distribute and unpack that package. 

After unpacking, overrides can be applied to individual hosts: Configuration variables can be 
set for values such as port numbers, and overrides to the packaged configuration can be 
enforced through use of the config overrides directory locations. This rip-and-replace 
approach to deploying prepackaged applications is shown in Figure 5-1.

Figure 5-1   Flexible deployment model

Notes: 

� On some versions of Jython, the JYTHONPATH environment variable is not respected. In 
such cases, the restConnector.py can be copied to the Lib directory of the Jython 
installation.

� All the examples in this section use localhost as the host name. This is not 
recommended for production use. In fact, the host name used in a production 
environment should always be the fully qualified domain name. A host can be 
registered with the collective under different names. It is important that the host name 
specified for the collective registerHost, updateHost, and unregisterHost be 
consistent with the host name that is used for the registered collective members. The 
defaultHostName attribute, in the server member’s server.xml, controls the host name 
to which the server considers itself to belong.

myapp.war

server.xml

liberty runtime

1a - minify option 
packages only the 
runtime features used 
by the server

1 = server package myServer --include=minify

2 - ftp to hosts, unzip and run

3= Resulting I innstalls  
fully supported with fix 
packs and iFixes
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5.3  The Liberty Management API

The management API of Liberty is based on the use of JMX. JMX is a framework that 
provides a standard way of exposing Java resources, in this case the Liberty servers, to 
JMX-enabled clients. An increasing number of Representational State Transfer (REST)-based 
interfaces are being created to manage Liberty in addition to the JMX interfaces. There are 
some new features, such as Batch, that provide only a REST interface and have no JMX 
equivalent. For more details about Batch, refer to the following website:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.m
ultiplatform.doc/ae/twlp_batch_configrest.html?cp=SSAW57_8.5.5%2F3-3-11-0-5-11-1

Various tools can be used to connect to the JMX framework. The standard tools that are used 
to administer Liberty servers are shown in Figure 5-2.

Figure 5-2   Administration tooling

As shown in Figure 5-2, there are four standard tools for managing Liberty (JConsole, 
scripting, Admin Center, and developer tools). Scripting, JConsole, and the Admin Center all 
require a JMX connector to be enabled within the Liberty server (these tools are discussed in 
upcoming sections). Managing Liberty through the development tools is discussed in detail in 
the Redbooks publication IBM WebSphere Application Server Liberty Profile Guide for 
Developers, SG24-8076 and is available at the following website:

http://www.redbooks.ibm.com/abstracts/sg248076.html?Open

5.3.1  Connecting with JMX

Liberty provides two options for connecting to the JMX framework and are noted in the 
following list and discussed in greater detail in later sections: 

� The local connector feature
� The REST connector feature

Note: Both WebSphere Application Server Classic (WAS Classic) and Liberty use JMX as 
the mechanism to expose administrative functions to client tools. However, the MBeans 
that are exposed are different in the two products and hence using the existing WebSphere 
Application Server Classic JMX administrative clients on Liberty does not work. 

Liberty
Profile
Server

jConsole

Scripting

Developer 
Tools

Admin Center
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To explore these options, create a simple server by using the server create command from 
the WLP_INSTALL_DIR/bin directory, as shown in Example 5-3.

Example 5-3   Create a Liberty profile server to demonstrate JMX connectivity

$ server create server1
Server server1 created
$

The new server is created in the WLP_INSTALL_DIR/usr/servers/server1 directory, also 
known as the SERVER_CONFIG_DIR directory. The next sections describe how to enable the 
JMX connector features and connect to this simple server by using the standard tooling.

Connecting with the local connector
To provide a JMX connector to a local client, the local connector feature needs to be added to 
the newly created server. To do this, the localConnector-1.0 feature needs to be added to 
the server.xml found in the SERVER_CONFIG_DIR, as shown in bold in Example 5-4.

Example 5-4   server.xml file with the localConnector-1.0 feature enabled

<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

<!-- Enable features -->
<featureManager>

<feature>webProfile-7.0</feature>
<feature>localConnector-1.0</feature>

</featureManager>

<!-- To access this server from a remote client add a host attribute to the 
following element, e.g. host="*" -->
<httpEndpoint id="defaultHttpEndpoint"

httpPort="9080"
httpsPort="9443" />

</server>

The localConnector allows a client application (on the same host as the Liberty server) to 
access the MBeans of the server. Access through the local connector is protected by the 
policy implemented in the Java Software Development Kit (SDK) in use. Currently, the SDKs 
require that the client runs on the same host as the Liberty server, and under the same user 
ID. 

To be able to test that the local connector is functioning correctly, start the newly created 
server by using the server start command, which is shown in Example 5-5.

Example 5-5   Start the server1 server

$ server start server1
Starting server server1
Server server1 started with process ID 25135
$

To connect to the newly created server from JConsole, start the jconsole command. 
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Figure 5-3 shows the initial connection window for connecting to the Liberty server by using 
the JConsole application. To make the connection to the server, ensure Local Process is 
selected along with the ws-server.jar server1 process. Then, click Connect.

Figure 5-3   Connecting to the Liberty profile server with JCcnsole

The JConsole application initially tries to make a secure connection to the Liberty server. 
Because no security has been configured on the Liberty server, the initial secure connection 
fails and you are then prompted to either cancel or create an insecure connection. Select the 
option to create an Insecure connection.

JConsole uses the extensive instrumentation of the Java virtual machine running the Liberty 
server. JConsole uses this to provide information about the performance and resource 
consumption of the Liberty server itself and applications running within the server. Tabs are 
provided to show an overview of the resource usage. The last tab, the MBean tab shows the 
JMX resources that are available within the Liberty server runtime, and allows a user of the 
JConsole application to invoke the operations on these MBeans.

Note: A Java SDK version 1.6 or higher is needed to test connectivity to the server with the 
local connector feature enabled. The JConsole application is not shipped with the Java 
runtime environment (JRE) releases. If the installation feature described in section 5.1.1, 
“The Liberty environment” on page 72 has been followed, the JConsole application is 
available in the ${wlp.install.dir}/java/java/bin directory.
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The MBeans that are available in the server1 server and their operations can be seen in 
Figure 5-4.

Figure 5-4   JConsole showing available MBeans

In summary, the local connector allows the use of JConsole to connect to a running Liberty 
server. The JConsole application allows the user to browse and invoke operations available 
on the MBeans provided by the Liberty server process 

Connecting with the REST connector
To provide connections to remote clients, Liberty provides the REST connector feature. The 
REST connector provides secure access to the MBeans in the Liberty server. Access through 
the REST connector is protected by a single administrator role. Secure Sockets Layer (SSL) 
is required to keep the communication confidential. 

To configure the server1 server with the REST connector, the restConnector-1.0 feature 
needs to be added to the server.xml. The quickStartSecurity element is added to define 
the administrator for the Liberty administrative domain. In addition, the keystore element is 
added to define the keystore and password used for secure communication. The host 
attribute is added to the httpEndPoint element to allow access to the server from remote 
clients. The updated server.xml is shown in Example 5-6.

Example 5-6   The server.xml with the quickStartSecurity and a keystore defined

<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

<!-- Enable features -->
<featureManager>
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<feature>webProfile-7.0</feature>
<feature>localConnector-1.0</feature>
<feature>restConnector-1.0</feature>

</featureManager>

<!-- To access this server from a remote client add a host attribute to the 
following element, e.g. host="*" -->
<httpEndpoint id="defaultHttpEndpoint"

host=”*”
httpPort="9080"
httpsPort="9443" />

<quickStartSecurity userName="admin" userPassword="adminPwd" />
<keyStore id="defaultKeyStore" password="keystorePwd" />

</server>

At this point, if the Liberty server server1 is running, after saving the configuration changes 
made to the server.xml in Example 5-6 on page 77, the Liberty server process automatically 
reloads the new configuration. 

If the Liberty server, server1, is not running, restart the server with the server start 
command. To see if the configuration successfully changed, review the 
SERVER_CONFIG_DIR/logs/conole.log. The messages shown in Example 5-7 are present in 
the log file if the Liberty server started successfully.

Example 5-7   Console log showing server updating to use new rest connector

[AUDIT   ] CWWKG0016I: Starting server configuration update.
[AUDIT   ] CWWKG0017I: The server configuration was successfully updated in 0.907 
seconds.
[AUDIT   ] CWWKF0012I: The server installed the following features: 
[restConnector-1.0].
[AUDIT   ] CWWKF0008I: Feature update completed in 0.896 seconds.
[AUDIT   ] CWWKT0016I: Web application available (default_host): 
http://localhost:9080/IBMJMXConnectorREST/

The addition of the keyStore element to the server1 configuration, as shown in Example 5-6 
on page 77, causes the server to create keys for the SSL communication in the 
SERVEFR_CONFIG_DIR/resources/security directory.

Notes: 

� All the examples in this chapter use the quickStartSecurity capability. The 
quickStartSecurity element can be used to quickly enable a simple (one user) 
security setup for the Liberty profile. The quickStartSecurity capability should not be 
used for production environments. For more information about securing the Liberty 
administrative domain, see the IBM Knowledge Center at the following website: 

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.w
lp.core.doc/ae/cwlp_sec.html?lang=en

� In this chapter, all passwords are shown in clear text for readability. In a production 
environment, passwords should be encoded or encrypted. The admin password can be 
encoded by using the securityUtility as defined in 4.2.4, “Encrypting passwords” on 
page 60.
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Now that the server1 process is running with the REST connector feature enabled, a number 
of REST APIs can be accessed by any REST-compliant client programming language. The 
API documentation can be accessed through the 
https://localhost:9443/IBMJMXConnectorREST/api, which documents the available APIs, 
which are shown in Figure 5-5. Access to the URL is secured by using the credentials defined 
in the quickStartSecurity element.

Figure 5-5   The IBM JMXConnectorREST API

File transfer
The restConnector-1.0 feature includes the FileTransfer and FileService MBeans. The 
FileTransfer MBean supports delete, upload, and download operations to and from a running 
Liberty server. The FileService MBean provides access to directory lists and file metadata, 
and it also provides archive operations such as create and expand.

The FileTransfer and FileService MBeans are useful for carrying out remote operations on a 
Liberty server, such as updating the configuration or installing an application. 

A configuration update can be performed remotely by uploading the following types of files:

� An updated server.xml
� Other configuration files such as includes (for placement in the includes or the dropins 

directories of the target Liberty server). 
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An application can be installed by the following methods:

� Uploading both the application archive and an updated server.xml file.
� Uploading the application archive to the monitored application dropins folder. For details, 

see 4.6, “Configuring dynamic application updates” on page 66. 

The FileTransfer service can also be used to transfer a packaged Liberty server to a remote 
host with no Liberty servers running. 

The FileTransfer MBean includes configurable read and write lists so that you can control the 
directories that can be read or written when using the FileTransfer MBean.

Liberty scripting for WAS Classic users
When scripting, administrators of WAS Classic can use the wsadmin scripting tool to 
administer production environments. The wsadmin tool provides a command-line interface to 
automate common tasks using Jacl or Jython scripts. The wsadmin tool provides a set of 
objects that can be used to configure and administer application servers, application 
deployment, and server runtime operations. Scripts use these objects to communicate with 
the MBeans that represent live objects running in a WAS Classic server. To run a Jython 
script, the wsadmin command is run from the command line as shown in Example 5-8.

Example 5-8   Command line to execute a jython script using wsadmin

$ wsadmin -jython -f sample.py

The Jython script automatically has access to the wsadmin objects and they can be accessed 
in the Jython script, as shown in Example 5-9.

Example 5-9   Sample wsadmin jython script stop a server

AdminControl.stopServer( ‘serverName‘ )

The wsadmin tool does not apply to Liberty. In Liberty, the administrative scripts communicate 
directly with the MBeans running in the Liberty servers. The basic structure of a Jython script 
for administering the Liberty profile is shown in Example 5-10.

Example 5-10   A sample script showing key aspects of Jython scripting for the Liberty profile

#Import the required modules from the Liberty client. The client files can be 
# found in the WLP_INSTALL_DIR/clients directory.
#The restConnector.jar file needs to be on the CLASSPATH.
import restConnector from JMXRESTConnector

#Allow one to create MBean ObjectName instance from string input
from javax.management import ObjectName

#Set up the trust store for secure communication between client and server
#the truststore variable points to a location on the file system 
#that contains the keystore created when the server was created.
JMXRestConnector.trustStore = 
WLP_INSTALL_DIR/usr/servers/server1/resources/security/key.jks

#The password is that used for the keystore when the server was created
JMSRESTConnector.trustStorePassword = keystorePwd

#Establish connectivity to the server. 
#Use the administrative domain admin user and password 
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#as defined in the server.xml 
connector.connect("localhost",9443,"admin","adminPwd”)

# get an MBean server connection
mconnector = connector.getMbeanServerConnection()

#Identify the MBean to be invoked in this example we will se the File Transfer 
MBean that is made available as part of the installation of the rest connector
fileTransfer = ObjectName( 
"WebSphere:feature=restConnector,type=FileTransfer,name=FileTransfer" )

#Invoke the MBean operation downloadFile to download the server.xml from the 
server to a local directory
mconnection.invoke( fileTransfer, "downloadFile",

[$SERVER_CONFIG_DIR + “/server.xml", "/home/itsouser/server.xml"],
["java.lang.string", "java.lang.string"])

#disconnect from the server
connector.disconnect()

The sample script is saved to a file called testJMXConnection.py on the local file system. The 
script is executed by using the Jython command, as shown in Example 5-11.

Example 5-11   Command to execute the testJMXConnection script

$ jython testJMXConnection.py
Connecting to the server...
Successfully connected to the server "localhost:9443"
$

The script has executed correctly if the server’s server.xml file is available in the 
/home/itsouser directory. 

The available MBeans are documented in the IBM Knowledge Center at the following 
website:

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.cor
e.doc/ae/rwlp_mbeans_list.html

5.3.2  Connecting through the Admin Center

The Liberty Administrative Center (Admin Center) can be used to administer Liberty servers, 
applications, clusters, and hosts from a web browser on a smartphone, tablet, or computer. 
Admin Center offers the ability to view details about and perform operations (start, stop, 
restart, add and remove metadata, enable and disable maintenance mode) on resources 
within the collective. It also offers the ability to edit server configuration files to view bookmark 
information, to add custom tools to monitor server resources, and to deploy server packages 
on hosts within the collective. 

To be able to connect to the Admin Center of a Liberty server, the Admin Center feature first 
needs to be enabled and configured. The webProfile installation does not include the Admin 
Center feature by default. To install the Admin Center feature, use the installUtility 
command (described in 3.6.1, “Installing assets by using the installUtility command” on 
page 48) and install the adminCenter-1.0 feature. 
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To configure the server1 server with the Admin Center feature, the adminCenter-1.0 feature 
is added to the featureManager element in the server.xml of the server1 server. The updated 
server.xml is shown in Example 5-12.

Example 5-12   Updating the server.xml to enable the Admin Center

<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

<!-- Enable features -->
<featureManager>

<feature>webProfile-7.0</feature>
<feature>localConnector-1.0</feature>
<feature>restConnector-1.0</feature>
<feature>adminCenter-1.0</feature>

</featureManager>

<!-- To access this server from a remote client add a host attribute to the 
following element, e.g. host="*" -->
<httpEndpoint id="defaultHttpEndpoint"

host=”*”
httpPort="9080"
httpsPort="9443" />

<quickStartSecurity userName="admin" userPassword="adminPwd" />
<keystore id="defaultKeyStore" password="keystorePwd" />

</server>

If the server1 server is running, it notices the changes made to the server.xml and loads the 
Admin Center. If the load is successful, the messages.log file in the SERVER_CONFIG_DIR/logs 
should contain the messages shown in Example 5-13.

Example 5-13   Successfully loaded the Admin Center

SRVE0169I: Loading Web Module: The Liberty Admin Center.
SRVE0250I: Web Module The Liberty Admin Center has been bound to default_host.

To connect to the Admin Center, use the URL as documented in the messages.log file. This 
example uses https://localhost:9443/adminCenter. The login window displays as shown in 
Figure 5-6. Log in as the administrator by using the credentials that were added to the 
quickStartSecurity tag of the server.xml for server1.

Figure 5-6   Login window for the Admin Center

Note: In example Example 5-12, the restConnector and adminCenter are both enabled in 
the featureManager. The restConnector is extraneous as the adminCenter feature loads 
the restConnector feature and the SSL feature. 
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After logging in, the Admin Center toolkit is displayed as shown in Figure 5-7.

Figure 5-7   The default toolbox for the Admin Center for the jmxconnectiontest server

When first logging in to the Admin Center, the toolbox contains the Server Config and Explore 
tools and a bookmark to WASdev.net. If the Admin Center is run on a collective controller, the 
toolbox also has the Deploy tool. The Deploy tool is not available in this example because the 
server is a stand-alone server. The Deploy tool is investigated further in “Deploying packages 
using the Admin Center” on page 100.

By clicking the Server Config tool, and then selecting server.xml, the server.xml of this 
example’s server can be viewed (see Figure 5-8).

Figure 5-8   The server config tool
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By default, when using the Admin Center, only read access is granted to the server.xml. If 
write access is needed to allow for server.xml updates from the Admin Center, the 
server.xml for server1 needs to be updated to allow remote file access. The updated 
server.xml is shown in Example 5-14.

Example 5-14   Updated server.xml to support write access from the Admin Center

<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

<!-- Enable features -->
<featureManager>

<feature>webProfile-7.0</feature>
<feature>localConnector-1.0</feature>
<feature>restConnector-1.0</feature>
<feature>adminCenter-1.0</feature>

</featureManager>

<!-- To access this server from a remote client add a host attribute to the 
following element, e.g. host="*" -->
<httpEndpoint id="defaultHttpEndpoint"

host=”*”
httpPort="9080"
httpsPort="9443" />

<quickStartSecurity userName="admin" userPassword="adminPwd" />
<keystore id="defaultKeyStore" password="keystorePwd" />
<remoteFileAccess>

<writeDir>${server.config.dir}</writeDir>
</remoteFileAccess>

</server>

The server.xml can now be edited, as shown in Figure 5-9.

Figure 5-9   Admin Center with editable server.xml

Clicking server.xml allows for the configuration of the server.xml to be changed (see 
Figure 5-10 on page 85).
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Figure 5-10   Editable server.xml in the Admin Center

The Explore tool provides the capability to monitor the server processes, start and stop 
applications, and if write is allowed, to also configure servers. The simple single-server 
configuration for this example’s server1 server is shown in Figure 5-11 on page 86.
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Figure 5-11   Liberty profile Admin Center Explore tool

For more information about the capabilities of the Admin Center, see the IBM Knowledge 
Center at the following website:

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.cor
e.doc/ae/twlp_ui.html?lang=en
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5.4  Liberty collectives

The set of Liberty servers in a single administrative domain is called a collective. The 
collective architecture is shown in Figure 5-12.

Figure 5-12   Sample Liberty collective architecture

A collective consists of at least one collective controller. A collective controller is a Liberty 
server configured with the collective controller feature. For production environments, it is 
recommended that three collective controllers are used for resiliency. A set of collective 
controllers is called a replica set. Members of a collective are Liberty servers configured with 
the collective member feature. Collective members can be clustered with the addition of the 
cluster member feature. Collective controllers can also be clustered for high availability and 
scaling purposes.

5.4.1  Comparing Liberty and WAS Classic

Though the administrative domains of the WAS Classic and Liberty profiles are similar in their 
capabilities, the way these capabilities are implemented are different. Table 5-1 on page 88 
provides the comparison of the two profiles.

member1

Collective

controller1

Replica Set

controller2 controller3

member2 member3

Cluster

Replication port Replication port Replication port

HTTPS port HTTPS port HTTPS port

Repository data replication
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Table 5-1   Comparing the Liberty and WAS Classic profiles

5.4.2  Configuring a Liberty collective controller

The collective controller acts as a command and control mechanism for the administrative 
functions of the collective. The collective controller also serves as a storage and collaboration 
mechanism for the collective and cluster members. The collective controller is a standard 
Liberty server with the collective controller feature enabled. 

Feature WAS Classic Liberty

Administrative domain name The administrative domain is 
called a cell.

The administrative domain is 
called a collective.

Administrative server The administrative server is 
called a deployment manager.

The administrative server is 
called a collective controller.

Administrative server process The deployment manager is a 
dedicated process and 
executes no workloads.

The collective controller is a 
feature, which means that it can 
be enabled with any other 
feature. This allows the collect 
controller to run workloads. 
(Running workloads on a 
collective controller in 
production is not 
recommended).

Becoming part of administrative 
domain

The process for entities joining 
the domain is called federation. 
It is a tightly coupled process 
whereby servers federate into 
the cell and give up much of 
their autonomy.

Servers join the collective and 
become collective members. 
The process of joining is very 
lightweight and allows the 
members to be loosely coupled 
to the collective. It is easy for 
members to join and leave the 
collective.

Agent or Agentless The cell environment uses 
agents to facilitate 
management activities. The 
node agent acts as a 
middleman between the 
deployment manager and the 
application servers running on 
a node.

There are no administrative 
agents. A collective controller 
manages the collective 
members directly.

Configuration control The deployment manager owns 
all configuration of all the 
entities within the cell.

Each collective member owns 
its own configuration. Even 
when a member joins or leaves 
a collective, it retains complete 
control over its configuration.

Management API The cell provides MBeans to 
provide management activities. 
It also provides the wsadmin 
command to script access to 
the MBeans through Jacl and 
Jython.

The collective provides MBeans 
to provide management 
activities. These MBeans are 
not the same as the MBeans 
provided by a cell. There is no 
wsadmin command. And 
scripting is supported using 
Jython. Additional languages 
are possible.
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By enabling the collective controller feature, the restConnector is automatically enabled 
(enabling JMX client applications to connect to the controller). For web-based access to the 
collective controller, the adminCenter feature is also enabled, as shown in Figure 5-13.

Figure 5-13   Liberty collective controller features

To create a collective controller, the following procedure should be used:

1. Create a Liberty server.
2. Configure the server as a collective controller.
3. Configure administrative security.
4. Enable the admin center feature for the collective controller.

The details for these steps are covered in the next sections. 

Create a Liberty profile server
Create a server, controller1, by using the server create command as shown in 
Example 5-15.

Example 5-15   Create a Liberty server to act as the collective controller

$ ./server create controller1
Server controller1 created
$

Configure the server as a collective controller
To configure a Liberty server as a collective controller, use the collective command from the 
WLP_INSTALL_DIR/bin directory. This command adds the collective controller feature to the 
servers configuration and creates the required certificates to establish a collective. The 
certificates are created in the SERVER_CONFIG_DIR/resources/security directory. The format 
of the command is shown in Example 5-16.

Example 5-16   Configure the controller1 server as a collective controller

$ collective create controller1 --keystorePassword=keystorePwd 
--createConfigFile=$SERVER_CONFIG_DIR/collective-create-include.xml
Creating required certificates to establish a collective...
This may take a while.
Successfully generated the controller root certificate.

controller1

Replication port

HTTPS port

Collective

collective controller

admin center
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Successfully generated the member root certificate.
Successfully generated the server identity certificate.
Successfully generated the HTTPS certificate.

Successfully set up collective controller configuration for controller2

Add the following lines to the server.xml to enable:

    <include location="${server.config.dir}/collective-create-include.xml" />

Please ensure administrative security is configured for the server.
An administrative user is required to join members to the collective.

$

By using the --createConfigFile option, the collective command creates the collective 
controller configuration in a separate file collective-create-include.xml in the 
SERVER_CONFIG_DIR directory. The contents of this file are shown in Example 5-17.

Example 5-17   collective-create-include.xml

<?xml version="1.0" encoding="UTF-8" ?>
<server description="This file was generated by the 'collective create' command on 
2015-08-11 11:39:55 EDT.">

<featureManager>
<feature>collectiveController-1.0</feature>

</featureManager>

<!-- Define the host name for use by the collective.
If the host name needs to be changed, the server should be
removed from the collective and re-joined or re-replicated. -->
<variable name="defaultHostName" value="localhost" />

<!-- TODO: Set the security configuration for Administrative access -->
<quickStartSecurity userName="" userPassword="" />

<!-- clientAuthenticationSupported set to enable bidirectional trust -->
<ssl id="defaultSSLConfig"

keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore"
clientAuthenticationSupported="true" />

<!-- inbound (HTTPS) keystore -->
<keyStore id="defaultKeyStore" password="{xor}NDomLCswLToPKDs="

location="${server.config.dir}/resources/security/key.jks" />

<!-- inbound (HTTPS) truststore -->
<keyStore id="defaultTrustStore" password="{xor}NDomLCswLToPKDs="

location="${server.config.dir}/resources/security/trust.jks" />

<!-- server identity keystore -->
<keyStore id="serverIdentity" password="{xor}NDomLCswLToPKDs="

location="${server.config.dir}/resources/collective/serverIdentity.jks" />

<!-- collective trust keystore -->
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<keyStore id="collectiveTrust" password="{xor}NDomLCswLToPKDs="
location="${server.config.dir}/resources/collective/collectiveTrust.jks" />

<!-- collective root signers keystore -->
<keyStore id="collectiveRootKeys" password="{xor}NDomLCswLToPKDs="

location="${server.config.dir}/resources/collective/rootKeys.jks" />

</server>

At this point, the SERVER_CONFIG_DIR/configDropin/default directory can be used as the 
path for the --createConfigFile parameter. Using the directory as the path for the parameter 
means the server.xml does not have to be modified to include the 
collective-create-include.xml. See section “Use the configuration dropins folder to specify 
server configuration” on page 66 for details. For clarity in this example, the server.xml is 
modified and the newly created file is included. The ports are also updated to avoid port 
conflicts. The new server.xml is shown in Example 5-18. 

Example 5-18   Collective controller server.xml modified to include collective-create-include.xml

<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

<!-- Enable features -->
<featureManager>

<feature>webProfile-7.0</feature>
</featureManager>

<!-- To access this server from a remote client add a host attribute to the 
following element, e.g. host="*" -->
<httpEndpoint id="defaultHttpEndpoint"

host=”*”
httpPort="9081"
httpsPort="9444" />

<include location="${server.config.dir}/collective-create-include.xml"/>
</server>

Configure administrative security
All the JMX methods and MBeans accessed through the REST connector are currently 
protected by a single role named administrator. To be able to use the JMX methods from a 
remote client, the administrator role needs to be mapped onto a single user. 

Example 5-19 on page 92 shows how to map a user, Admin, to the administrator role to 
secure the collective controller by using the quickStartSecurity element. Mapping to the 
administrator role is accomplished by updating the line in the 
collective-create-include.xml with the TODO comments. The actual user name and 
password details need to be updated, as shown in Example 5-19 on page 92.

Note: The collective controller feature enables a number of other features. One of 
those features enabled is the restConnector-1.0 feature. The restConnector-1.0 feature 
is discussed in “Connecting with the REST connector” on page 77. The entire set of 
features included when enabling the collective controller feature is available in the 
IBM Knowledge Center at the following website:

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.
core.doc/ae/rwlp_feature_adminCenter-1.0.html?lang=en
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Example 5-19   Update the collective-create-include.xml file with user details

<!-- TODO: Set the security configuration for Administrative access -->
    <quickStartSecurity userName="admin" userPassword="adminPwd" />

The webProfile installation does not include the collective controller feature by default. 
To install the collective controller feature, use the installUtility command described in 
3.6.1, “Installing assets by using the installUtility command” on page 48 and install the 
collectiveController-1.0 feature. 

Ensure that the server, server1, is stopped by using the server stop command. At this point, 
the collective controller can be started to ensure that all is functioning correctly. To start the 
collective controller, use the server run command, as shown in Example 5-20.

Example 5-20   Run the collective controller

$ server run controller1
Launching controller1 (WebSphere Application Server 
2015.8.0.0/wlp-1.0.10.20150728-1158) on IBM J9 VM, version pxa6470sr9-20150417_01 
(SR9) (en_US)
[AUDIT   ] CWWKE0001I: The server controller1 has been launched.
[AUDIT   ] CWWKZ0058I: Monitoring dropins for applications. 
[AUDIT   ] CWWKT0016I: Web application available (default_host): 
http://localhost.localdomain:9080/ibm/api/collective/notify/
[AUDIT   ] CWWKT0016I: Web application available (default_host): 
http://localhost.localdomain:9080/IBMJMXConnectorREST/
[AUDIT   ] CWWKT0016I: Web application available (default_host): 
http://localhost.localdomain:9080/ibm/api/
[AUDIT   ] CWWKT0016I: Web application available (default_host): 
http://localhost.localdomain:9080/ibm/adminCenter/explore-1.0/
[AUDIT   ] CWWKT0016I: Web application available (default_host): 
http://localhost.localdomain:9080/ibm/adminCenter/deploy-1.0/
[AUDIT   ] CWWKT0016I: Web application available (default_host): 
http://localhost.localdomain:9080/ibm/adminCenter/serverConfig-1.0/
[AUDIT   ] CWWKT0016I: Web application available (default_host): 
http://localhost.localdomain:9080/adminCenter/
[AUDIT   ] CWWKF0012I: The server installed the following features: 
[collectiveMember-1.0, webProfile-7.0, json-1.0, appSecurity-2.0, jaxrs-2.0, 
jpa-2.1, cdi-1.2, restConnector-1.0, jaxrsClient-2.0, javaMail-1.5, 
distributedMap-1.0, websocket-1.1, el-3.0, jdbc-4.1, ssl-1.0, beanValidation-1.1, 
managedBeans-1.0, servlet-3.1, adminCenter-1.0, jsf-2.2, jsp-2.3, jndi-1.0, 
jsonp-1.0, collectiveController-1.0, ejbLite-3.2].
[AUDIT   ] CWWKF0011I: The server controller1 is ready to run a smarter planet.

5.4.3  Registering host computers within a Liberty collective

A Liberty collective can span a number of host systems. For the host systems to be able to 
communicate, the hosts need to be registered with the Liberty collective controller. 

Tip: When you are starting the collective controller for the first time (or any server), use the 
server run command to start the controller rather than the server start command. This 
allows you to monitor the start messages to catch any configuration errors. The 
server run command does not return control to the command line. Interrupting the server 
by using CTRL-C causes the server to exit.
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Setting up RXA for Liberty collective operations
Before the hosts are added to the Liberty collective, the host operating system needs to be 
configured to support SSH. Liberty collective controllers use the IBM Tivoli® Remote 
Execution and Access (RXA) toolkit to perform selected operations on collective members. 
RXA uses Secure Shell (SSH) for communication. Liberty does provide an SSH client, but the 
host systems that are to be part of the collective need an SSH server installed. See the 
IBM Knowledge Center for information about setting up RXA:

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.cor
e.doc/ae/twlp_set_rxa.html?lang=en

Using the collective command to register the host
A remote host needs to be registered with a Liberty collective controller for the collective 
controller to be able to access applications, command files, and other resources on the host. 
A host does not need any Liberty code installed. An RXA connection suffices (as defined in 
the previous section). Example 5-21 shows how a remote host is registered in the collective 
by using the collective registerHost command.

Example 5-21   Registering a remote host

$ collective registerHost remotehost --host=localhost --port=9444 --user=admin 
--password=adminPwd --rpcUser=remoteUser --rpcUserPassword=remote_Pwd
Registering the host to the collective...

SSL trust has not been established with the target server.

Certificate chain information:
Certificate [0]
Subject DN: CN=localhost.localdomain, OU=controller1, O=ibm, C=us
Issuer DN: OU=controllerRoot, O=6c0ccd20-a340-428d-9cc4-22615c75cb84, 
DC=com.ibm.ws.collective
Serial Number: 222,687,534,027,281
Expires: 8/8/20 3:26 PM
SHA-1 digest: 72:C0:6F:54:36:71:4D:FE:47:B9:C4:29:D7:5C:86:04:CD:8C:F1:CC
MD5 digest: 36:6F:E5:EF:90:68:9D:D6:29:15:BC:17:96:D3:D5:DB

Certificate [1]
Subject DN: OU=controllerRoot, O=6c0ccd20-a340-428d-9cc4-22615c75cb84, 
DC=com.ibm.ws.collective
Issuer DN: OU=controllerRoot, O=6c0ccd20-a340-428d-9cc4-22615c75cb84, 
DC=com.ibm.ws.collective
Serial Number: 222,684,490,785,018
Expires: 8/3/40 3:26 PM
SHA-1 digest: BD:C9:8E:F0:25:90:C7:8B:8B:B0:7A:80:1D:6D:F6:0A:B2:DF:0A:AC
MD5 digest: 7F:18:D7:5E:39:78:5A:23:6C:D7:F5:22:93:96:4B:5D

Do you want to accept the above certificate chain? (y/n) y
Host remotehost successfully registered.

Registration enables the collective controller to access applications, command files, and other 
resources on the host. To do this, the collective controller needs to be running. Certificates 
are needed for secure communication between the host computer and the collective 
controller. The certificate chain created by the collective controller needs to be accepted by 
the user.
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5.4.4  Creating a collective member

A collective member is a Liberty server with the collective member feature enabled, as 
shown in Figure 5-14.

Figure 5-14   A collective member

To create a collective member, the following procedure is required:

1. Create the collective member server.
2. Add the collectiveMember feature.
3. Add the endpoint information for the server.
4. Join the collective member to the collective.

A collective member is created, as with any other Liberty server, by using the server create 
command as shown in Example 5-22. 

Example 5-22   Create the collective member1 server

$ server create member1
Server member1 created
$

The server configuration is created in the WLP_INSTALL_DIR/usr/servers/member1 directory. 
The server.xml needs to be modified because all servers are running on the same host and 
you need to avoid port conflicts. 

The updated server.xml is shown in Example 5-23.

Example 5-23   Update the server.xml of member1 to avoid port conflicts

<server description="new server">

    <!-- Enable features -->
    <featureManager>
        <feature>webProfile-7.0</feature>
    </featureManager>

    <!-- To access this server fy
rom a remote client add a host attribute to the following element, e.g. host="*" 
-->
    <httpEndpoint id="defaultHttpEndpoint"
                  httpPort="9082"

member1

Collective

collective member
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                  httpsPort="9445" />

</server>

This newly created server is then joined to the collective by using the collective join 
command, as shown in Example 5-24.

Example 5-24   Joining a member to the collective

$ collective join member1 --host=localhost --port=9444 --user=admin -- 
password=adminPwd --keystorePassword=keystorePwd 
--createConfigFile=SERVER_CONFIG_DIR/collective-join-include.xml
Joining the collective with target controller localhost:9444...
This may take a while.

SSL trust has not been established with the target server.

Certificate chain information:
Certificate [0]
Subject DN: CN=localhost, OU=controller1, O=ibm, C=us
Issuer DN: OU=controllerRoot, O=b222ec67-3a88-4bd9-9c6d-57ad19d0187e, 
DC=com.ibm.ws.collective
Serial Number: 8,338,143,633,065
Expires: 8/19/20 11:13 AM
SHA-1 digest: 1B:CE:8C:7F:37:A6:5B:A3:06:DF:B9:C7:42:2D:5E:26:22:55:58:C7
MD5 digest: BF:58:7B:7E:B1:A2:40:F0:A4:1C:86:D0:C2:CA:5E:32

Certificate [1]
Subject DN: OU=controllerRoot, O=b222ec67-3a88-4bd9-9c6d-57ad19d0187e, 
DC=com.ibm.ws.collective
Issuer DN: OU=controllerRoot, O=b222ec67-3a88-4bd9-9c6d-57ad19d0187e, 
DC=com.ibm.ws.collective
Serial Number: 8,333,307,608,526
Expires: 8/14/40 11:13 AM
SHA-1 digest: 2E:8A:2B:38:31:18:9A:CC:C8:55:6E:AD:C8:C8:E5:DC:22:8A:DC:42
MD5 digest: FE:DF:00:F3:53:C5:79:E5:80:0E:4D:6A:54:04:47:0E

Do you want to accept the above certificate chain? (y/n) y
Successfully completed MBean request to the controller.

Successfully joined the collective for server member1

Add the following lines to the server.xml to enable:

    <include location="${server.config.dir}/collective-join-include.xml" />

The collective join command creates a configuration file, collective-join-include.xml, 
in the SERVER_CONFIG_DIR directory. This configuration file adds the collectiveMember-1.0 
feature to the featureManager. The collective-join-include.xml configuration file 
configures the collectiveMember to connect to the collective controller host and establishes 
the default SSL configuration and associated keystores. 
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See Example 5-25.

Example 5-25   Content of the collective-join-include.xml file

<?xml version="1.0" encoding="UTF-8" ?>
<server description="This file was generated by the 'collective join' command on 
2015-08-21 11:47:24 EDT.">
    <featureManager>
        <feature>collectiveMember-1.0</feature>
    </featureManager>

    <!-- Define the host name for use by the collective.
         If the host name needs to be changed, the server should be
         removed from the collective and re-joined or re-replicated. -->
    <variable name="defaultHostName" value="localhost" />

    <!-- Connection to the collective controller -->
    <collectiveMember controllerHost="localhost"
                      controllerPort="9444" />

    <!-- clientAuthenticationSupported set to enable bidirectional trust -->
    <ssl id="defaultSSLConfig"
         keyStoreRef="defaultKeyStore"
         trustStoreRef="defaultTrustStore"
         clientAuthenticationSupported="true" />

    <!-- inbound (HTTPS) keystore -->
    <keyStore id="defaultKeyStore" password="{xor}NDomLCswLToPKDs="
              location="${server.config.dir}/resources/security/key.jks" />

    <!-- inbound (HTTPS) truststore -->
    <keyStore id="defaultTrustStore" password="{xor}NDomLCswLToPKDs="
              location="${server.config.dir}/resources/security/trust.jks" />

    <!-- server identity keystore -->
    <keyStore id="serverIdentity" password="{xor}NDomLCswLToPKDs="
              
location="${server.config.dir}/resources/collective/serverIdentity.jks" />

    <!-- collective truststore -->
    <keyStore id="collectiveTrust" password="{xor}NDomLCswLToPKDs="
              
location="${server.config.dir}/resources/collective/collectiveTrust.jks" />

</server>

The collective-join-include.xml file is added to the configuration of the member1 server by 
updating the server.xml, as shown in Example 5-26.

Example 5-26   Updated member1 server.xml with include to collective-join-include.xml

<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

    <!-- Enable features -->
    <featureManager>
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        <feature>webProfile-7.0</feature>
    </featureManager>

    <!-- To access this server from a remote client add a host attribute to the 
following element, e.g. host="*" -->
    <httpEndpoint id="defaultHttpEndpoint"
                  httpPort="9082"
                  httpsPort="9445" />

    <include location="${server.config.dir}/collective-join-include.xml" />

</server>

5.4.5  Adding members to the Liberty profile collective

If the member1 server, as configured in the previous section, is started it will automatically join 
the collective controlled by controller1. Start the member by using the server start 
command, as shown in Example 5-27.

Example 5-27   Start the member1 server by using the start server command

$ server start member1
Server member1 started with process ID 14329.
$

The messages.log for the member1 server should show that the member1 server has joined the 
collective (see Example 5-28).

Example 5-28   Messages.log showing that the member has joined the collective

CWWKX8055I: The collective member has established a connection to the collective 
controller.

In a production environment, a more flexible approach to deployment is needed. The majority 
of times, the collective members are running on hosts other than the host where the collective 
controller is running. To deploy to a remote host, a packaged Liberty server is required. To 
package a server and its configuration for deployment, first stop the member1 server using the 
server stop command. Then, remove the server from the collective by using the collective 
remove command, as shown in Example 5-29.

Example 5-29   Removing a collective member from the collective

$ collective remove member1 --host=localhost --port=9444 --user=admin 
--password=adminPwd
Attempting to unregister the server from the collective...
Host: localhost
User Dir: WLP_INSTALL_DIR/usr/
Server Name: member1

SSL trust has not been established with the target server.

Certificate chain information:
Certificate [0]
Subject DN: CN=localhost, OU=controller1, O=ibm, C=us
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Issuer DN: OU=controllerRoot, O=4e08be6d-173c-4015-a747-b9d0dc7844f1, 
DC=com.ibm.ws.collective
Serial Number: 4,768,750,201,272
Expires: 8/22/20 8:37 AM
SHA-1 digest: D4:EC:C2:30:B0:AA:DB:78:B0:51:99:95:D8:2F:65:98:C9:A5:3D:B2
MD5 digest: EB:D3:89:F9:F8:6D:F0:35:5F:C6:A6:F6:65:C7:29:D3

Certificate [1]
Subject DN: OU=controllerRoot, O=4e08be6d-173c-4015-a747-b9d0dc7844f1, 
DC=com.ibm.ws.collective
Issuer DN: OU=controllerRoot, O=4e08be6d-173c-4015-a747-b9d0dc7844f1, 
DC=com.ibm.ws.collective
Serial Number: 4,761,813,674,008
Expires: 8/17/40 8:37 AM
SHA-1 digest: 52:26:D4:EE:C3:C1:B1:8C:EA:53:47:47:78:7B:4F:71:C8:D7:37:99
MD5 digest: EB:3A:6B:6F:3A:DF:F8:2E:1B:B0:67:D6:02:2D:15:0A

Do you want to accept the above certificate chain? (y/n) y
Server member1 successfully unregistered.

Attempting to remove resources for the collective from the server...
The resources for collective membership were successfully removed.
Removing all administrative metadata from the collective repository...
This may take a while.
Successfully completed the MBean request to the controller.

Please update the server.xml and remove any of the following elements:

    <featureManager>
        <feature>collectiveController-1.0</feature>
        <feature>collectiveMember-1.0</feature>
    </featureManager>
    <collectiveMember ... />
    <hostAuthInfo ... />

Update the member1 server.xml to remove the member information. To update the 
server.xml, remove the include to the collective-join-include.xml and add the 
collectiveMember-1.0 feature. 

Example 5-30 shows the updated server configuration of the member1 server (now a 
stand-alone server).

Example 5-30   Update member1 to be a stand-alone server

<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

    <!-- Enable features -->
    <featureManager>

<feature>webProfile-7.0</feature>
<feature>collectiveMember-1.0</feature>

</featureManager>

<!-- To access this server from a remote client add a host attribute to the 
following element, e.g. host="*" -->
<httpEndpoint id="defaultHttpEndpoint"
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host=”*”
httpPort="9082"
httpsPort="9445" />

</server>

Now, the member1 server is packaged for deployment by using the server package command 
as shown in Example 5-31.

Example 5-31   Packaging the member1 server for deployment

$ server package member1 --archive=/home/itsouser/member1-deployment-package.zip 
--include=minify

The archive parameter specifies where to create the package. The --include=minify option 
specifies that the package should include the minimum set of Liberty binary files and all user 
files for the server being packaged. For information about the server package command, see 
4.4.1, “Packaging a Liberty server” on page 62. 

Before packages can be deployed to a simulated remote host, the collective controller needs 
to be updated for read and write permission to the directory simulating the remote host. To do 
this, the collective updateHost command is used as in Example 5-32.

Example 5-32   Update the collective controller with details about the remote host

$ collective updateHost localhost --host=localhost --port=9444 --user=admin 
--password=adminPwd --rpcUser=itsouser --rpcUserPassword=itsouserPwd 
--hostReadPath=/home/itsouser/remoteHost --hostWritePath=/home/itsouser/remoteHost
--hostJavaHome=/usr/lib/java

The directory must be set as readable and writable for the controller. The controller is also 
provided with the local OS user credentials used to operate on the remote host directories. 
The hostJavaHome is set to the Java home directory for the machine.

Deploying packages with the deploy members script
To deploy the collective member to the collective, the sample script deploy members are 
used. The script can be located at the following website:

https://developer.ibm.com/wasdev/downloads/#asset/scripts-jython-Deploy_Collective
_Members

Details about how to use the script can be found in the readme file that is shipped with the 
script. The rpcUser and rpcUserPassword represent the credentials for the user on the remote 
host. In this example, the credentials of the logged in user are used. The /home/itsouser 
directory needs to have write permissions for the rpcUser. The script is downloaded and 
unpacked into a local directory. The script is executed by using the jython command as 
shown in Example 5-33.

Example 5-33   Using the deployMembers script to deploy member1 to the collective

$ jython deployMembers.py --zipFile=/home/itsouser/member1-deployment-package.zip 
--installDir=/home/itsouser/remote_host --installHost=localhost --rpcUser=itsouser 
--rpcUserPassword=itsouserPwd 
--truststore=LIBERTY_CTRL/wlp/usr/servers/controller1/resources/security/trust.jks 
--truststorePassword=keystorePwd --host=localhost --port=9444 --user=admin 
--password=adminPwd
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The script in Example 5-33 on page 99 performs the following actions:

1. Connect to the server.
2. Register the host system if necessary.
3. Copy the deployment package from the controller host to the member host.
4. Extract the deployment package.
5. Join the member to the collective.
6. Copy the relevant security information from the controller to the member configuration.
7. Start the member1 server.

The output from the deployMembers command should display as shown in Example 5-34.

Example 5-34   Output from the deployMembers command

Connecting to the server...
Successfully connected to the server "localhost:9444"
Assigning host context for: localhost
The host has already been registered, calling updateHost instead.
The host localhost connection information is configured.
Loading and expanding member1-deployment-package.zip on target machine location 
/home/itsouser/remoteHost

Member member1 join the collective
Uploading needed security files to member1
Starting member member1
Server member1 started successfully

A new Liberty installation is created in the /home/itsouser/remoteHost directory 
(REMOTE_WLP_INSTALL_DIR). The logs for the server can be found in the 
REMOTE_WLP_INSTALL_DIR/wlp/usr/servers/member1/logs directory. The messages.log 
should show that the server start was complete, as shown in Example 5-35.

Example 5-35   Output of the messages.log of the member1 server

CWWKX8055I: The collective member has established a connection to the collective 
controller.

Deploying packages using the Admin Center
All deployments only occur against a stand-alone Liberty server, so the server needs to be 
removed from the collective. Stop the member1 server with the server stop command and 
remove the member from the collective by using the collective remove command (as shown 
in Example 5-29 on page 97).

To use the Admin Center for deploying packages, the Admin Center feature is added to the 
controller1 server configuration, as shown in Example 5-36.

Example 5-36   Add the Admin Center feature to the controller1 server.xml

<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

    <!-- Enable features -->
    <featureManager>
        <feature>webProfile-7.0</feature>
        <feature>adminCenter-1.0</feature>
    </featureManager>
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    <!-- To access this server from a remote client add a host attribute to the 
following element, e.g. host="*" -->
    <httpEndpoint id="defaultHttpEndpoint"
                  httpPort="9081"
                  httpsPort="9444" />

    <include location="${server.config.dir}/collective-create-include.xml"/>

</server>

Start the Admin Center by pointing a web browser to https://localhost:9444/adminCenter. 
The Admin Center toolbox should now show the Deploy tool as it is running in the context of a 
collective controller, as shown in Figure 5-15.

Figure 5-15   Admin Center with Deploy tool enables

To deploy the server package, select the Deploy tool and select the localhost entry to add it 
to the selected hosts list box, as shown in Figure 5-16.

Figure 5-16   Select the host for deployment of the package

Note: If the Admin Center feature cannot be loaded, check to see if the Admin Center 
feature is installed in the WLP_INSTALL_DIR. The feature can be installed from a Liberty 
repository as noted in 3.6.1, “Installing assets by using the installUtility command” on 
page 48.
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Add the package to be deployed by scrolling down on the same page and browse for the 
member2-deploy-pacakge.zip file. Then, specify the target directory, 
/home/itsouser/remoteHost, as shown in Figure 5-17.

Figure 5-17   Select package to deploy and target for the deployment

Configure the security credentials for deployment by scrolling down the same page and enter 
the keystore password and the remote management credentials. Use the connection method 
and credentials configured for each target host. You also need to enter the Liberty 
controller1 admin password because access to all operations on the collective controller is 
secured with the administrative role. See Figure 5-18 on page 103.
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Figure 5-18   Deploy the package

To start the deployment, click Deploy. When prompted, close the window, as shown in 
Figure 5-19.

Figure 5-19   Close the deployment window

The deployment runs as a background task. To track the status of the background deployment 
task, select the Background Tasks icon in the upper right corner of the Admin Center. When 
the icon is clicked, it shows the background tasks that are running and completed. 
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If the deployment is successful, the task should show as successful (see Figure 5-20).

Figure 5-20   Deploy completed successfully

5.4.6  Configuring collective controller replica sets

A replica set provides highly available management capabilities for a Liberty administrative 
domain. A replica set is a set of collective controllers that are configured to work together. 
Each replica contains all the processed repository updates from the other replicas within the 
set. Therefore, there is no need for a member to connect to a particular collective controller 
each time that it interacts with the collective. Any of the collective controllers that are 
configured in the replica set can provide the same data. Each server that is part of the replica 
set should have the collective controller feature enabled as shown in Figure 5-21.

Figure 5-21   Creating replica sets for the Liberty profile collective controller

In a production environment, a replica set should have at least three replicas, preferably on 
different hosts. When the replicas are on different hosts, they can use the same port 
numbers. The example created in this section creates three replicas but installs them on the 
same host for simplicity. As a consequence, the port numbers for each collective controller in 
the replica set need to be different.

To create a replica set, the following procedure needs to be followed:

1. Start the initial collective controller (this example reuses the controller created earlier in 
this chapter).

member1

Collective

controller1

Replica Set

controller2 controller3

Replication port Replication port Replication port

HTTPS port HTTPS port HTTPS port

Repository data replication

collective controller

admin center

collective member

collective controller collective controller
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2. Create the replicas of the initial collective controller.

3. Replicate the administrative domain security information.

4. Activate the replicas.

Start the initial collective controller
To create a replica set the initial controller, controller1, must be running. Ensure that the 
initial collective controller is started by using the server status command as shown in 
Example 5-37.

Example 5-37   Checking the status of controller1

$ server status controller1
Server controller1 is running with process ID 3527.
$

If it is not started, start it with the server start command, as shown in Example 5-38.

Example 5-38   Start the initial collective controller

$ server start controller1
Starting server controller1
Server controller1 started with process ID 25187
$

Create the replica collective controller 
A new server instance is created to act as a collective controller replica. The new server is 
created by using the server create command, as shown in Example 5-39.

Example 5-39   Create the replica collective controller

$ server create controller2
Server controller2 created.
$

Replicate the administrative domain security information
For the new server, controller2, to become part of the replica set, the administrative domain 
security configuration needs to be copied from the initial controller, controller1. To do this, 
use the collective replicate command. The parameters for the replicate command are 
noted in the following list:

� Hostname of the host running the initial collective controller (localhost, in our example)
� Port the initial host is listening on 
� Administrative user for the initial controller
� Password for the administrative user
� Password for the keystore of the new replica
� Optionally, the configuration file where the replica configuration is stored
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To create the replica of the initial controller, controller1, the collective replicate 
command is issued, as shown in Example 5-40. A copy of the collective information is 
replicated from the controller1 configuration directory to the controller2 configuration 
directory. Note that SERVER_CONFIG_DIR in the script (Example 5-40) is for the new server 
configuration replica, controller2.

Example 5-40   Running the collective replicate command

$ collective replicate controller2 --host=localhost --port=9444 --user=admin 
--password=adminPwd --keystorePassword=keystorePwd 
--createConfigFile=SERVER_CONFIG_DIR/collective-replica-include.xml

The collective replicate command copies the collective controllers administrative domain 
security credentials to the new replica. The certificate chain needs to be accepted when 
prompted for response. The output of the collective replicate command is shown in 
Example 5-41.

Example 5-41   Output of the collective replicate command

Replicating the target collective controller localhost:9444...
This may take a while.

SSL trust has not been established with the target server.

Certificate chain information:
Certificate [0]
Subject DN: CN=localhost, OU=controller1, O=ibm, C=us
Issuer DN: OU=controllerRoot, O=71a881f1-0b21-48d0-8fcf-d76e69793865, 
DC=com.ibm.ws.collective
Serial Number: 6,026,992,827,355
Expires: 8/12/20 9:13 AM
SHA-1 digest: 6B:C5:E3:C9:0A:83:B5:AD:AD:8B:2C:26:2A:72:EF:D7:45:25:E6:D4
MD5 digest: 05:25:E2:21:D8:F9:40:10:FB:D0:DB:85:BD:70:2C:B6

Certificate [1]
Subject DN: OU=controllerRoot, O=71a881f1-0b21-48d0-8fcf-d76e69793865, 
DC=com.ibm.ws.collective
Issuer DN: OU=controllerRoot, O=71a881f1-0b21-48d0-8fcf-d76e69793865, 
DC=com.ibm.ws.collective
Serial Number: 6,018,568,652,812
Expires: 8/7/40 9:13 AM
SHA-1 digest: 56:AC:E6:B1:37:43:1A:D7:AA:CC:1C:60:2E:7B:0B:57:FF:C4:3A:41
MD5 digest: 83:4C:80:D3:B7:98:3E:EE:56:DC:11:5C:A7:5A:2D:01

Do you want to accept the above certificate chain? (y/n) y
Successfully completed MBean request to the controller.

Successfully replicated the controller as server controller2

Add the following lines to the server.xml to enable:

    <include location="${server.config.dir}/collective-replica-include.xml" />

Please ensure administrative security is configured for the new server
exactly as the current collective controller. Also set the password for
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the collectiveRootKeys to the correct password.
$

To continue configuring the new replica, the server.xml of the controller2 server needs to 
be updated. The update covers the correct port information and the include to the collective 
replica information. See Example 5-42.

Example 5-42   Update the controller2 server.xml

<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

<!-- Enable features -->
<featureManager>

<feature>webProfile-7.0</feature>
</featureManager>

<!-- To access this server from a remote client add a host attribute to the 
following element, e.g. host="*" -->
<httpEndpoint id="defaultHttpEndpoint"
host=”*”
httpPort="9083"
httpsPort="9446" />

<include location="${server.config.dir}/collective-replica-include.xml" />
</server>

The configuration of the newly created replica, controller2, needs to be updated with the 
correct administrative user credentials and replication ports. To do so, the 
collective-replica-include.xml file needs to be updated. The update includes the correct 
replication ports, the admin user and password from the controller1 configuration, and also 
the password for the collectiveRootKeys is copied from the controller1 server 
configuration. See Example 5-43.

Example 5-43   Update the replication ports in the collect-replia-include.xml

<?xml version="1.0" encoding="UTF-8" ?>
<server description="This file was generated by the 'collective replicate' command 
on 2015-08-14 14:01:03 EDT.">
    <featureManager>
        <feature>collectiveController-1.0</feature>
    </featureManager>

    <!-- Define the host name for use by the collective.
         If the host name needs to be changed, the server should be
         removed from the collective and re-joined or re-replicated. -->
    <variable name="defaultHostName" value="localhost" />

    <!-- Configuration of the collective controller replica.
         TODO: If this replica is on the same host as the original controller,
               change the replicaPort.
         TODO: If the target controller's replica port is not 10010
               (the default) change the value in replicaSet. -->
    <collectiveController replicaPort="10011"
                          replicaSet="localhost:10010"
                          isInitialReplicaSet="false" />
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    <!-- TODO: Define the security configuration exactly as defined in the
               target controller from which this was replicated. -->
    <quickStartSecurity userName="admin" userPassword="adminPwd" />

    <!-- clientAuthenticationSupported set to enable bidirectional trust -->
    <ssl id="defaultSSLConfig"
         keyStoreRef="defaultKeyStore"
         trustStoreRef="defaultTrustStore"
         clientAuthenticationSupported="true" />

    <!-- inbound (HTTPS) keystore -->
    <keyStore id="defaultKeyStore" password="controller2Pwd"
              location="${server.config.dir}/resources/security/key.jks" />

    <!-- inbound (HTTPS) truststore -->
    <keyStore id="defaultTrustStore" password="controller2Pwd"
              location="${server.config.dir}/resources/security/trust.jks" />

    <!-- server identity keystore -->
    <keyStore id="serverIdentity" password="controller2Pwd"
              
location="${server.config.dir}/resources/collective/serverIdentity.jks" />

    <!-- collective truststore -->
    <keyStore id="collectiveTrust" password="controller2Pwd‘
              
location="${server.config.dir}/resources/collective/collectiveTrust.jks" />

    <!-- collective root signers keystore
         TODO: set password to the collectiveRootKeys password in the
         original controller -->
    <keyStore id="collectiveRootKeys" password="controller1Pwd"
              location="${server.config.dir}/resources/collective/rootKeys.jks" />

</server>

The replica can now be started by using the server start command, as shown in 
Example 5-44.

Example 5-44   Starting the controller2 replica

$ server start controller2
Starting server controller2
Server controller2 started with process ID 20255.
$

Ensure that the new replica, controller2, has started correctly by verifying that the initial 
controller, controller1, can communicate with the new controller2 replica. Check the 
messages.log file of the controller1 server. The file is found at SERVER_CONFIG_DIR/logs. The 
audit message, CWWKX6009I, should be present in the logs, as shown in Example 5-45 on 
page 109.
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Example 5-45   Message indicating that the replicas can connect to each other

CWWKX6009I: The collective controller successfully connected to replica 
127.0.0.1:10011. Current active replica set is [127.0.0.1:10010]. The configured 
replica set is [127.0.0.1:10010]. The connected standby replicas are 
[127.0.0.1:10011].

Activate the replicas
The new replica needs to be activated. To do this, the collective addReplica command is 
used. The command takes as parameters the host:port of the replica to activate. The 
command also takes the host, port, user, and password of the original controller (see 
Example 5-46).

Example 5-46   Using the collective addReplica command to activate the replica

$ collective addReplica localhost:10011 --host=localhost --port=9444 --user=admin 
--password=adminPwd
Adding the endpoint to the replica set...

SSL trust has not been established with the target server.

Certificate chain information:
Certificate [0]
Subject DN: CN=localhost, OU=controller1, O=ibm, C=us
Issuer DN: OU=controllerRoot, O=b222ec67-3a88-4bd9-9c6d-57ad19d0187e, 
DC=com.ibm.ws.collective
Serial Number: 8,338,143,633,065
Expires: 8/19/20 11:13 AM
SHA-1 digest: 1B:CE:8C:7F:37:A6:5B:A3:06:DF:B9:C7:42:2D:5E:26:22:55:58:C7
MD5 digest: BF:58:7B:7E:B1:A2:40:F0:A4:1C:86:D0:C2:CA:5E:32

Certificate [1]
Subject DN: OU=controllerRoot, O=b222ec67-3a88-4bd9-9c6d-57ad19d0187e, 
DC=com.ibm.ws.collective
Issuer DN: OU=controllerRoot, O=b222ec67-3a88-4bd9-9c6d-57ad19d0187e, 
DC=com.ibm.ws.collective
Serial Number: 8,333,307,608,526
Expires: 8/14/40 11:13 AM
SHA-1 digest: 2E:8A:2B:38:31:18:9A:CC:C8:55:6E:AD:C8:C8:E5:DC:22:8A:DC:42
MD5 digest: FE:DF:00:F3:53:C5:79:E5:80:0E:4D:6A:54:04:47:0E

Do you want to accept the above certificate chain? (y/n) y
Successfully added replica endpoint localhost:10011 to the replica set.
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The messages.log of the two controllers should show that the replicas are communicating 
with each other. The log for the controller1 server should contain the entries shown in 
Example 5-47, verifying that the replica set contains two servers.

Example 5-47   Controller1 messages.log file showing the replica set communication

CWWKX6013I: The collective controller state is {S_PROPOSING}, last proposed 
command is 94, the last accepted command is 94, the last executed command is 94 
and the log is 94.
CWWKX6009I: The collective controller successfully connected to replica 
127.0.0.1:10011. Current active replica set is [127.0.0.1:10010]. The configured 
replica set is [127.0.0.1:10010]. The connected standby replicas are 
[127.0.0.1:10011].
CWWKX6013I: The collective controller state is {S_PROPOSING}, last proposed 
command is 97, the last accepted command is 97, the last executed command is 97 
and the log is 97.
CWWKX6015I: A request to change the active collective controller replica set was 
received and is now processing. The current active replica set is 
{127.0.0.1:10010}. The requested new active replica set is 
{127.0.0.1:10010,127.0.0.1:10011}.
CWWKX6016I: The active collective controller replica set changed successfully. The 
current active replica set is {127.0.0.1:10010,127.0.0.1:10011}. The previous 
active replica set was {127.0.0.1:10010}.

To further verify communication, check the controller2 messages.log file. It should contain 
the entries shown in Example 5-48.

Example 5-48   Controller2 messages.log showing the replica set communication

CWWKX6016I: The active collective controller replica set changed successfully. The 
current active replica set is {127.0.0.1:10011,127.0.0.1:10010}. The previous 
active replica set was {127.0.0.1:10010}.
CWWKX6014I: This collective controller replica finished synchronizing the data 
with the other replicas. The log is 100.   
CWWKX6011I: The collective controller is ready, and can accept requests. The 
leader is 127.0.0.1:10010. Current active replica set is [127.0.0.1:10011, 
127.0.0.1:10010]. The configured replica set is [127.0.0.1:10011, 
127.0.0.1:10010].

5.4.7  Setting up a Liberty server cluster

A Liberty profile server can be configured into a server cluster for more efficient management 
of servers that are hosting the same applications. The cluster provides high availability and 
scalability for the applications. To enable a cluster, the clusterMember-1.0 feature needs to be 
available in the Liberty installation. If this feature is not installed, it can be installed from the 
repository as documented in 3.6.1, “Installing assets by using the installUtility command” on 
page 48. 

Note: To support high availability, there must always be an odd number of controllers within 
a replica set. A third controller should be added following the instructions in this section, 
modifying port numbers to prevent port conflicts.
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The additional cluster members are added to the Liberty topology, as shown in Figure 5-22.

Figure 5-22   Adding clusters to the Liberty profile collective

The following sections show how to create a cluster of two servers, package the servers for 
deployment, and deploy the cluster to the collective. To create and deploy a cluster, the 
following procedure is used:

� Create the cluster member servers.
� Create the deployment package for the cluster member.
� Deploy the cluster member package to the collective.

Create the cluster member servers
Create the cluster member server, clusterMember1, by using the server create command as 
shown in Example 5-49.

Example 5-49   Create the clusterMember1 server

$ server create clusterMember1
server clusterMember1 created.
$

Repeat the operation for the second cluster member, clusterMember2.

Edit the server.xml for both of the new servers to include the cluster member feature. As the 
servers are all running on the same host, the ports for the server need to be changed for each 
of the new servers (ports 9084 and 9447 are used for clusterMember1 and ports 9085 and 9448 
are used for clusterMember2). The clusterMember element is used to specify the cluster 
name.

The updated server.xml is shown in Example 5-50 on page 112. Repeat the creation process 
and configuration updates for clusterMember2 with the correct ports.
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Example 5-50   Update the cluster members server.xml to include the cluster member feature 

<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

<!-- Enable features -->
<featureManager>

<feature>webProfile-7.0</feature>
<feature>clusterMember-1.0</feature>

</featureManager>

<!-- To access this server from a remote client add a host attribute to the 
following element, e.g. host="*" -->
<httpEndpoint id="defaultHttpEndpoint"

hosts=”*”
httpPort="9084"
httpsPort="9447" />

<clusterMember name=”MyCluster” />
</server>

Create the cluster member deployment package 
The servers can be packaged up for deployment by using the server package command. 
Specify the --include=minify information so that the packages contain only the minimal set 
of binary files and the user files, as shown in Example 5-51.

Example 5-51   Package up the cluster members for deployment

$ server package clusterMember1 
--archive=/home/itsouser/clusterMember1-deploy-package-zip --include=minify

Repeat the process for the clusterMember2 server. 

Deploy the cluster member package to the collective
To deploy the packaged cluster member to the collective, the deployMembers script 
documented in 5.4.5, “Adding members to the Liberty profile collective” on page 97 is used. 
The command to deploy the package is shown in Example 5-52.

Example 5-52   Using the deployMembers script to deploy the cluster to the collective

$ jython deployMemebers.py 
--zipFile=/home/itsouser/clusterMember1-deploymentment-package.zip 
--installDir=/home/itsouser/remoteHost --installHost=localhost --rpcUser=itsouser 
--rpcUserPassword=itsouserPwd 
--truststore=WLP_INSTALL_DIR/wlp/usr/servers/controller1/resources/security/trust.
jks --truststorePassword=keystorePwd //host=localhost --port=9444 --user=admin 
--password=adminPwd
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The output from the deployMembers script should be similar to the output shown in 
Example 5-53. The output shows that the package has been deployed to the remote 
locations, unpacked, the cluster member joined to the collective, and finally that the cluster 
member has been started.

Example 5-53   Output from the deployPackage command

Connecting to the server...
Successfully connected to the server "localhost:9444"
Assigning host context for: localhost
The host has already been registered, calling updateHost instead.
The host localhost connection information is configured.
Loading and expanding cluster-deployment-package.zip on target machine location 
/home/itsouser/remoteHost

Member clusterMember1 join the collective
Uploading needed security files to clusterMember1
Starting member clusterMember1
Server clusterMember1 started with process ID 25189

The clusterMember1 files are copied to the /home/itsouser/remoteHost. The log files can be 
found in the SERVER_CONFIG_DIR logs directory of this new server, clusterMember1. The 
messages.log should show that the clusterMember1 server start was complete, as shown in 
Example 5-35 on page 100. The log should also show that the cluster information was 
published to the collective repository on the controller1 server.

Example 5-54   Output of the messages.log of the clusterMember1 server

CWWKX8114I: The server's paths were successfully published to the collective 
repository. 
CWWKX8112I: The server's host information was successfully published to the 
collective repository. 

The deployment should be repeated for the clusterMember2 server.

Using scripts to work with clusters
Sample scripts are available on the WASdev website for managing clusters. The scripts can 
be accessed through the following website: 

https://developer.ibm.com/wasdev/downloads/#filter/sortby=wlpInformation.featuredW
eight;sortorder=desc

Scripts are available to start and stop clusters, list clusters, and list their cluster members. 
Scripts that are available can also generate a plug-in for the cluster, for example, to enable an 
HTTP server to route requests across members in a cluster. The plug-in is required for the 
dynamic routing capability that is explained in more detail in 10.1, “Introduction to Intelligent 
Management” on page 174. 
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Chapter 6. Accessing databases

When an application or WebSphere component requires access to a relational database, that 
database must be defined to WebSphere as a data source. Two basic definitions are required:

� A Java Database Connectivity (JDBC) provider definition describes a vendor-provided 
JDBC driver. It includes the type of database access that it provides and the location of the 
files that provide the implementation. 

� A data source definition defines which JDBC provider to use, the name, and location of the 
database, and other connection properties. 

This chapter provides information about the various considerations for accessing databases 
from WAS Liberty.

This chapter covers the following topics:

� JDBC resources
� Steps to define access to a database
� Configuring data sources in Liberty
� Configuring connection pooling properties in Liberty
� Accessing MongoDB databases
� Logging data source activity
� Using the timed operations feature to monitor database operations

6
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6.1  JDBC resources

The JDBC application programming interface (API) provides a programming interface for data 
access of relational databases from the Java programming language. Liberty supports the 
JDBC API with the jdbc-4.1 feature. The following sections explain how to create and 
configure data source objects for use by JDBC applications. This is the only method to 
connect to a database if you intend to use connection pooling and distributed transactions.

The following database platforms are supported for Liberty: 

� IBM DB2®
� Oracle
� Sybase
� IBM Informix®
� Microsoft SQL Server
� Apache Derby (test and development only)
� MySQL
� Sybase
� SolidDB
� Third-party vendor JDBC data source using SQL99 standards

Liberty supports the use of MongoDB and CouchDB Java driver.

For a current detailed list of the databases supported, see the requirements for Liberty at the 
following website: 

http://www.ibm.com/support/docview.wss?uid=swg27038218#libcore-855

6.1.1  JDBC providers and data sources
A data source represents a real-world source of data, such as a relational database. When a 
data source object is registered with a Java Naming and Directory Interface (JNDI) naming 
service, an application can retrieve it from the naming service and use it to make a connection 
to the associated database.

Information about the data source and how to locate it, such as its name, the server on which 
it resides, its port number, and so on, is stored in the form of properties on the DataSource 
object. Storing this information in this manner makes an application more portable. Portability 
is increased because it does not need to hardcode a driver name, which often includes the 
name of a particular vendor. It also makes maintaining the code easier. For example, if the 
data source is moved to a different server, all that needs to be done is to update the relevant 
property in the data source. None of the code using that data source needs to be managed.

To increase application performance and reduce workload on the database, connections to it 
are typically pooled. In other words, when the application closes the connection, the 
connection is returned to a connection pool, rather than being destroyed.

Data source classes and JDBC drivers are implemented by the data source vendor. By 
configuring a JDBC provider, you provide information about the set of classes that are used to 
implement the data source and the database driver. Also, you provide the environment 
settings for the DataSource object. A driver can be written purely in the Java programming 
language or in a mixture of the Java programming language and the Java Native Interface 
(JNI) native methods.
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6.1.2  WebSphere support for data sources
The following programming model is used for accessing a data source: 

1. An application retrieves a DataSource object from the JNDI naming space.

2. After the DataSource object is obtained, the application code calls the getConnection() 
method on the data source to get a Connection object. The connection is obtained from a 
pool of connections.

3. After the connection is acquired, the application sends SQL queries or updates to the 
database.

6.2  Steps to define access to a database

The following steps are involved in defining access to a database:

1. Verify that connection to the database server is supported by WebSphere Application 
Server. 

2. Ensure that the database is created and can be accessed by the systems that use it.

3. Ensure that the JDBC provider classes are available on the systems that access the 
database. If you are not sure which classes are required, consult the documentation from 
the provider.

4. Configure a JDBC provider in the server configuration. The JDBC provider gives the class 
path of the data source implementation class and the supporting classes for database 
connectivity. This is vendor-specific.

5. Configure a data source. The JDBC data source encapsulates the database-specific 
connection settings. You can configure many data sources that use the same JDBC 
provider. 

6.3  Configuring data sources in Liberty

A data source associated with different JDBC providers can be configured for database 
connectivity in Liberty. The JDBC providers supply the driver implementation classes that are 
required for JDBC connectivity with your specific vendor database. 

Data sources are provided by JDBC drivers and come in the following varieties:

� javax.sql.DataSource

This is the basic form of a data source. It does not provide interoperability that enhances 
connection pooling and cannot participate as a two-phase capable resource in 
transactions involving multiple resources.

� javax.sql.ConnectionPoolDataSource

This type of data source is enabled for connection pooling. It cannot participate as a 
two-phase capable resource in transactions involving multiple resources.

� javax.sql.XADataSource

This type of data source is both enabled for connection pooling and can participate as a 
two-phase capable resource in transactions involving multiple resources.
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Use the following procedure to configure a data source:

1. Liberty needs to be informed where to find the JDBC driver. In the server.xml file, define a 
shared library pointing to the location of your JDBC driver JAR or compressed files. 

Example 6-1 defines a shared library for DB2 driver jar files.

Example 6-1   Shared library for DB2

<library id="DB2JCC4Lib">
    <fileset dir="${shared.resource.dir}/DB2" includes="db2jcc4.jar 
db2jcc_license_cisuz.jar.jar"/>
</library>

2. Define a data source using the JDBC driver. Example 6-2 defines a data source for DB2 
JDBC driver with default data source type. The terms used in Example 6-2 are defined in 
the following list:

– The <dataSource> configuration element defines a data source. 

– The <jdbcDriver> element identifies a JDBC driver, and its attribute libraryRef 
identifies the JDBC driver JAR files and native files. 

– The <properties.db2.jcc> is the data source properties for the IBM Data Server 
Driver for JDBC and SQLJ for DB2. It is the child of the complex type “dataSource.”

Example 6-2   Data source definition for DB2 JDBC driver

<dataSource id="db2" jndiName="jdbc/db2">
    <jdbcDriver libraryRef="DB2JCC4Lib"/>
    <properties.db2.jcc databaseName="SAMPLEDB" serverName="localhost" 
portNumber="50000"/>
</dataSource>

Example 6-3 defines a data source for the DB2 JDBC driver with XADataSource type.

Example 6-3   Data source for DB2 JDBC driver with XADataSource type

<dataSource id="db2xa" jndiName="jdbc/db2xa" type="javax.sql.XADataSource">
    <jdbcDriver libraryRef="DB2JCC4Lib"/>
    <properties.db2.jcc databaseName="SAMPLEDB" serverName="localhost" 
portNumber="50000"/>
</dataSource>

JAR files: The JAR files that are used for accessing your database are not provided as 
part of the Liberty run time. This example uses a DB2 database, which can be 
downloaded from the following website:

http://www.ibm.com/support/docview.wss?uid=swg21363866

Library placement: For easier Liberty server packaging, it is recommended to place 
driver JAR files in the Liberty shared resources folder 
(WLP_HOME\usr\shared\resources). This folder is referred to by default in the server 
variable ${shared.resource.dir}. Create the DB2 subdirectory in that folder and place 
the JAR files in that directory.
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6.3.1  Configuring third-party data sources

This section provides examples of configuring data source elements for commonly used 
databases. 

Example 6-4 configures a shared library and a data source for an Oracle database.

Example 6-4   Data source for Oracle database

<dataSource id="oracle" jndiName="jdbc/oracle">
    <jdbcDriver libraryRef="OracleLib"/>
    <properties.oracle URL="jdbc:oracle:thin:@//localhost:1521/SAMPLEDB"/>
</dataSource>

<library id="OracleLib">
    <fileset dir="${shared.resource.dir}/oracle" includes="*.jar"/>
</library>

Example 6-5 configures a shared library and data source for an embedded Derby database.

Example 6-5   Data source for Derby database

<dataSource id="derbyEmbedded" jndiName="jdbc/derbyEmbedded">
    <jdbcDriver libraryRef="DerbyLib"/>
    <properties.derby.embedded databaseName="C:/databases/SAMPLEDB" 
createDatabase="create"/>
</dataSource>

<library id="DerbyLib">
    <fileset dir="${shared.resource.dir}/derby"/>
</library>

JAR files: The JAR files that are used for accessing your database are not provided as 
part of the Liberty run time. This example uses an Oracle database, which can be 
downloaded from the following website:

http://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-downl
oad-1958347.html

Library placement: For easier Liberty server packaging, it is recommended to put driver 
JAR files in the Liberty shared resources folder (WLP_HOME\usr\shared\resources). This 
folder is referred to by default by the server variable ${shared.resource.dir}. Create the 
oracle subdirectory in that folder and place the JAR files in that directory.

JAR files: The JAR files that are used for accessing your database are not provided as 
part of the Liberty run time. This example uses a Derby database. JAR files that are 
provided as part of your database run time can be downloaded from the following website:

https://db.apache.org/derby/derby_downloads.html

Library placement: For easier Liberty server packaging, it is recommended to place driver 
JAR files in the Liberty shared resources folder (WLP_HOME\usr\shared\resources). This 
folder is referred to by default by the server variable ${shared.resource.dir}. Create the 
Derby subdirectory in that folder and put the JAR files in that directory.
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Example 6-6 configures a shared library and data source for a JDBC driver that is not known 
to Liberty. The JDBC driver is at C:/Drivers/SampleJDBC/sampleDriver.jar and provides an 
implementation of javax.sql.XADataSource named com.ibm.sample.SampleXADataSource. 
The JDBC driver also provides vendor-specific data source properties, such as database 
name, host name, and port.

Example 6-6   Data source for a JDBC driver unknown to Liberty

<dataSource id="sample" jndiName="jdbc/sample" type="javax.sql.XADataSource">
    <jdbcDriver libraryRef="SampleJDBCLib" 
                javax.sql.XADataSource="com.ibm.sample.SampleXADataSource"/>
    <properties databaseName="SAMPLEDB" hostName="localhost" port="12345"/>
</dataSource>

<library id=SampleJDBCLib">
    <fileset dir="C:/Drivers/SampleJDBC/" includes="sampleDriver.jar"/>
</library>

More information about configuring database connectivity in Liberty is provided in the 
IBM Knowledge Center at the following website:

http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/
ae/twlp_dep_configuring_ds.html?cp=SSEQTP_8.5.5%2F1-3-11-0-3-2-19-0-0

6.3.2  Application-defined data sources in Liberty

In Liberty, data sources to databases can be defined within the application through 
annotations or in the deployment descriptor configuration file. Configure a shared library in 
the server.xml configuration file pointing to the location of the JDBC driver jars. Then, using 
either annotations or in the deployment descriptor file, the data source can be defined in the 
application. To define a data source, use the following steps:

1. Configure a shared library in the server.xml configuration file pointing to the location of 
the JDBC driver jars. 

2. Configure the application’s classloader in the server.xml configuration file with a 
commonLibraryRef pointing to the shared library. 

3. Use either annotations or the deployment descriptor file to define the data source in the 
application.

Example 6-7 defines a data source in an application using annotations. 

Example 6-7   Defining a data source using annotations

@DataSourceDefinition(
        name         = "java:comp/env/jdbc/db2",
        className    = "com.ibm.db2.jcc.DB2DataSource",
        databaseName = "SAMPLEDB",
        serverName   = "localhost",
        portNumber   = 50000,
        properties   = { "driverType=4" },
        user         = "user1"
        password     = "pwd1"
        )

public class MyServlet extends HttpServlet {
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    @Resource(lookup="java:comp/env/jdbc/db2")
    DataSource ds;
}

Example 6-8 defines a data source in the application using the deployment descriptor in the 
web.xml configuration file.

Example 6-8   Defines a data source using deployment descriptor

<data-source>
    <name>java:comp/env/jdbc/db2</name>
    <class-name>com.ibm.db2.jcc.DB2DataSource</class-name>
    <server-name>localhost</server-name>
    <port-number>50000</port-number>
    <database-name>SAMPLEDB</database-name>
    <user>user1</user>
    <password>pwd1</password>
    <property><name>driverType</name><value>4</value></property>
  </data-source>

More information about application-defined data sources is provided in the IBM Knowledge 
Center at the following website:

http://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.core
.doc/ae/rwlp_ds_appdefined.html

6.3.3  Runtime data source configuration update in Liberty

In Liberty, a data source is configured by specifying the attributes of the dataSource element 
in the server.xml configuration file. Many attributes for data source are updated dynamically 
at run time. Table 6-1 describes each attribute of the dataSource element and shows how the 
configuration change is applied at run time.

Table 6-1   How configuration update is applied

Attribute name How the configuration update is applied

beginTranForResultSetScrollingAPIs The update is effective immediately.

beginTranForVendorAPIs The update is effective immediately.

commitOrRollbackOnCleanup The update is effective immediately.

connectionManagerRef All connections and the connection pool are 
destroyed. The data source is then managed by the 
new connection manager.

connectionSharing The update is applied with each first connection 
handle in a transaction.

isolationLevel The update is applied with new connection 
requests. Current connections retain their isolation 
level.

jdbcDriverRef All connections and the connection pool are 
destroyed. The new JDBC driver is then used.

jndiName All connections and the connection pool are 
destroyed. The new JNDI name is then used.
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6.4  Configuring connection pooling properties in Liberty

Performance of an application that connects to a database can be greatly affected by the 
availability of connections to the database and how those connections affect the performance 
of the database itself. There are no simple rules that tell you how to configure the connection 
pool properties. Your configuration is highly dependent on application, network, and database 
characteristics. You must coordinate the values that you specify in Liberty closely with the 
database administrator.

Remember to include all resources in capacity planning. If 10 applications all connect to a 
database using separate connection pools of 10 maximum connections, this means that there 
is a theoretical possibility of 100 concurrent connections to the database. Ensure that the 
database server has sufficient memory and processing capacity to support this requirement.

Connection pooling for the data sources in Liberty are configured by defining a connection 
manager for the data source. Example 6-9 defines a connectionManager element in the 
server.xml file to define the connection pool properties for a data source.

Example 6-9   Defines a connectionManager element

<dataSource id="db2" jndiName="jdbc/db2" connectionSharing="MatchCurrentState" 
isolationLevel="TRANSACTION_READ_COMMITTED" statementCacheSize="20">
      <connectionManager maxPoolSize="20" minPoolSize="5" connectionTimeout="10s" 
agedTimeout="30m"/>
      <jdbcDriver libraryRef="DB2JCC4Lib"/>
      <properties.db2.jcc databaseName="SAMPLEDB" serverName="localhost" 
portNumber="50000" currentLockTimeout="30s" />
    </dataSource>

propertiesRef If the data source is Derby Embedded, all 
connections and the connection pool are destroyed 
before new properties go into effect. For other JDBC 
drivers, the new properties go into effect with new 
connection requests.

queryTimeout The update is effective immediately.

statementCacheSize The statement cache is resized upon next use.

supplementalJDBCTrace All connections and the connection pool are 
destroyed. The new setting is then used.

syncQueryTimeoutWithTransactionTimeout The update is effective immediately.

transactional The update is applied to new connections and 
existing connections not in use from the connection 
pool.

type All connections and the connection pool are 
destroyed. The new setting is then used.

Attribute name How the configuration update is applied
122 IBM WebSphere Application Server V8.5 Administration and Configuration Guide for Liberty Profile



Runtime updates can be made to the data source connection pooling configuration without 
restarting the Liberty server. Table 6-2 shows the available attributes and how the 
configuration update is applied. 

Table 6-2    Runtime attributes and how configuration update is applied

6.5  Accessing MongoDB databases

Liberty provides configuration support for MongoDB. MongoDB is a scalable, 
high-performance, open source NoSQL database. For access to a MongoDB instance, 
Liberty applications use the MongoDB Java driver that you configure for the server.

To enable an application to use MongoDB, configure a shared library for the MongoDB Java 
driver and a library reference to the shared library in the server.xml file of Liberty. An 
application can access MongoDB directly from the application or through the mongodb-2.0 
feature and mongoDB instance configurations in the server.xml file.

6.5.1  Configuring Liberty to access MongoDB APIs directly

To configure Liberty to access MongoDB APIs directly, use the following steps: 

1. Install the MongoDB Java driver in a location that your application and the Liberty run time 
can access.

Note: The server uses default values for any connection management settings that are not 
defined on the connection manager element. If a connection manager is not defined at all 
for a data source, the server uses default values for all of the settings.

Attribute name How the configuration update is applied

agedTimeout The update is effective immediately.

connectionTimeout The update is effective immediately.

maxIdleTime The update is effective immediately.

maxNumberOfMCsAllowableInThread The update is effective immediately.

maxPoolSize The update is effective immediately.

minPoolSize The update is effective immediately.

numConnectionsPerThreadLocal The update is effective immediately.

reapTime The update is effective immediately.

purgePolicy The update is effective immediately.

numConnectionsPerThreadLocal The update is effective immediately.
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2. Configure a shared library for the MongoDB driver (.jar in the server.xml) as shown in 
Example 6-10.

Example 6-10   Shared Library Reference for MongoDB driver

<library id="MongoLib">
   <file name="${shared.resource.dir}/mongo/mongo-java-driver-2.13.1.jar" />
</library>

3. Configure the library reference for the shared library in an application element in the 
server.xml file as described in Example 6-11.

Example 6-11   Adding shared library reference on application definition

<application name="mongodemo" location="MongoDemo.war">
<classloader commonLibraryRef="MongoLib" />

</application>

The application can now access the MongoDB APIs directly.

To learn more about configuring a Liberty server to access MongoDB APIs directly, see the 
following IBM Knowledge Center website:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.m
ultiplatform.doc/ae/twlp_mongodb_create.html?cp=SSAW57_8.5.5%2F3-3-11-0-3-2-20-0-1

6.5.2  Configuring Liberty to access MongoDB using runtime injection engine

To use the runtime injection engine, you must have completed the configuration to access 
MongoDB APIs directly, and then complete the following steps: 

1. Add the mongodb-2.0 feature in server.xml file. Enable the jndi-1.0 feature if you want to 
use JNDI to look up resources. The JNDI feature is not required if you use only resource 
injection. Example 6-12 on page 125 shows enabling both features.

JAR files: The JAR files that are used for accessing your database are not provided as 
part of the Liberty run time. This example uses a Mongo database, which can be 
downloaded from the following website:

http://docs.mongodb.org/ecosystem/drivers/java

Library placement: For easier Liberty server packaging, it is recommended to place 
driver JAR files in the Liberty shared resources folder 
(WLP_HOME\usr\shared\resources). This folder is referred to by default by the server 
variable ${shared.resource.dir}. Create the Mongo subdirectory in that folder and 
place the JAR files in that directory.

Note: You must use the MongoDB Version 2.13.1 Java driver. At the writing of this 
book, this is the only compatible version.
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Example 6-12   Enabling mongodb-2.0 and jndi-1.0 feature in server.xml

<featureManager>
   <feature>mongodb-2.0</feature>
   <feature>jndi-1.0</feature>
</featureManager>

2. Configure a mongoDB element that has a reference to the shared library (previously 
created in Example 6-10 on page 124), as shown in Example 6-13.

Example 6-13   Setting a mongoDB element in server.xml

<mongo id="mongo" libraryRef="MongoLib" />

3. Continue configuring that same mongoDB element as described in Example 6-14.

Example 6-14   Configuring a mongoDB element in server.xml

<mongoDB jndiName="mongo/testdb" mongoRef="mongo" databaseName="db-test" />

Configuring a JNDI name enables an application or the Liberty run time to find the 
MongoDB instance. The configuration enables both JNDI lookup and resource injection to 
MongoDB on the Liberty.

An example of server.xml using the features enabled in the previous steps is provided in 
Example 6-15.

Example 6-15   server.xml with mongoDB configured

<server>
<featureManager>

<feature>mongodb-2.0</feature>
<feature>jndi-1.0</feature>
<feature>servlet-3.0</feature>

</featureManager>

<library id="MongoLib">
<file name="${shared.resource.dir}/mongo/mongo-java-driver-2.13.1.jar" />

</library>

<application name="mongodemo" location="MongoDemo.war">
<classloader commonLibraryRef="MongoLib" />

</application>

 <mongo id="mongo" libraryRef="MongoLib" />
<mongoDB jndiName="mongo/testdb" mongoRef="mongo" databaseName="db-test" />

</server>

To learn more about configuring Liberty to access MongoDB using the runtime injection 
engine, see the following IBM Knowledge Center website:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.m
ultiplatform.doc/ae/twlp_mongodb_create.html?cp=SSAW57_8.5.5%2F3-3-11-0-3-2-20-0-1
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6.5.3  Connecting to a distributed set of MongoDB instances

Accessing the data stored in a distributed set of MongoDB instances is almost the same 
procedure as connecting to a single MongoDB instance. Instead of configuring a single 
MongoDB server, you can pass a collection of host names and ports that are either MongoDB 
replica set members or shared mongoDB servers.

If the host:port combinations are replica set members, the client finds all members and uses 
the master by default. If the combinations are shared mongoDB servers, the client sends all 
requests to the closest member with the lowest ping time. If the closest member is down, the 
client automatically fails over to the next server.

The full configuration of Example 6-15 on page 125 with a distributed set of mongoDB 
instances running in the same machine listening on ports 9991, 9992, and 9993 is provided in 
Example 6-16.

Example 6-16   Configuration with a distributed set of mongoDB instances

<server>
<featureManager>

<feature>mongodb-2.0</feature>
<feature>servlet-3.0</feature>

</featureManager>

<library id="MongoLib">
<file name="${shared.resource.dir}/mongo/mongo-java-driver-2.13.1.jar" />

</library>

<application name="mongodemo" location="MongoDemo.war">
<classloader commonLibraryRef="MongoLib" />

</application>

 <mongo id="mongo1" libraryRef="MongoLib" 
hostNames="localhost,localhost,localhost" ports="9991,9992,9993"/>

<mongoDB jndiName="mongo/testdb" mongoRef="mongo" databaseName="db-test" />

</server>

To learn more about connecting to a distributed set of MongoDB, see the following 
IBM Knowledge Center website:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.m
ultiplatform.doc/ae/twlp_mongodb_create.html?cp=SSAW57_8.5.5%2F3-3-11-0-3-2-20-0-1

6.5.4  Configuring secure container-managed MongoDB connections

To use container-managed security, the Mongo configuration element must specify a user 
and a password. Only one user is allowed for each Mongo configuration. All MongoDB 
instances use the specified user and password. For example, all MongoDB instances that 
reference mongo1, in the following example, use mUserName for user and 123 for password. See 
Example 6-17 on page 127.
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Example 6-17   Specifying user name and password

<mongo id="mongo1" libraryRef="MongoLib" user="mUserName" password="123"/>
<mongoDB jndiName="mongo/testdb" mongoRef="mongo1" databaseName="db-test-1"/>
<mongoDB jndiName="mongo/testdb2" mongoRef="mongo1" databaseName="db-test-2"/>

To learn more about the secure MongoDB connections, see the following IBM Knowledge 
Center website:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.m
ultiplatform.doc/ae/twlp_mongodb_create.html?cp=SSAW57_8.5.5%2F3-3-11-0-3-2-20-0-1

6.6  Data access with CouchDB

Data access applications that use CouchDB can run on Liberty. For access to a CouchDB 
instance, applications use the ektorp Java API and a connection instance that is configured 
for the NoSQL database. 

Example 6-18 shows how to define ektorp dependency.

Example 6-18   Defining ektorp dependency in server.xml

<dependency>
    <groupId>org.ektorp</groupId>
    <artifactId>org.ektorp</artifactId>
    <version>1.4.1</version>
</dependency>

To enable an application to use CouchDB, you must configure a shared library for the 
CouchDB Java driver and a library reference to the shared library in the server.xml file of 
Liberty. An application can access CouchDB either directly from the application, or through 
the couchdb-1.0 feature. Applications can access CouchDB instance configurations in the 
server.xml file.

To enable an application to use CouchDB, use the following steps:

1. Configure a shared library. Example 6-19 shows how to configure a shared library for the 
ektorp driver files in the server.xml file of the Liberty server.

Example 6-19   Configuring shared library for ektorp driver files

<library id="couchLibrary">
<fileset dir="${shared.resource.dir}/couch" includes="*.jar"/>
</library>

JAR files: The JAR files that are used for accessing your database are not provided as 
part of the CouchDB run time. This example uses a CouchDB database, which can be 
downloaded from the following website:

http://couchdb.apache.org

Library placement: For easier Liberty server packaging, it is recommended to place driver 
JAR files in the Liberty shared resources folder (WLP_HOME\usr\shared\resources). This 
folder is referred to by default by the server variable ${shared.resource.dir}. Create the 
couch subdirectory in that folder and place the JAR files in that directory. 
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2. Add a CouchDB configuration that has a reference to the shared library just created in 
Example 6-19 on page 127. The next example, Example 6-20, shows how to add 
CouchDB data source.

Example 6-20   Configure CouchDB Datasource feature in server.xml

<couchdb id="couchdb" jndiName="couchdb/connector"
libraryRef="couchLibrary" url="http://localhost:5984"
username="admin" password="password"/>

3. Enable the couchdb-1.0 feature to the server.xml file. See Example 6-21.

Example 6-21   Enabling CouchDB feature in server.xml

<featureManager>
   <feature>couchdb-1.0</feature>
   <feature>jndi-1.0</feature>
</featureManager>

4. Enable direct access to CouchDB from the application. Configure a library reference for 
the shared library in an application element in the server.xml file. See Example 6-22.

Example 6-22   Defining class in an application

<application ...>
   <classloader commonLibraryRef="couchLibrary"/>
</application>

To learn more about configuring a Liberty profile to access CouchDB, see the following 
IBM Knowledge Center website:

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.
multiplatform.doc/ae/twlp_couchdb_create.html

6.7  Logging data source activity

To enable JDBC tracing for Liberty, additional logging for activity on a data source, database 
and driver-specific custom trace setting needs to be enabled. If your JDBC driver does not 
provide its own custom tracing or logging facilities, or the facilities that it provides are minimal, 
you can use supplemental JDBC tracing from the application server. For more information 
about Enabling JDBC Tracing, see the related topic in the IBM Knowledge Center at the 
following website:

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.
multiplatform.doc/ae/twlp_dep_jdbc_trace.html

6.8  Using the timed operations feature to monitor database 
operations

When enabled, the timed operations feature generates a logged warning when JDBC calls 
are operating more slowly or quickly than expected. 
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Periodically, the timed operation feature creates a report in the application server log detailing 
which operations took the longest to execute. If you run the server dump command, the timed 
operation feature generates a report containing the information about all the operations it has 
tracked. You can use the information listed in these reports to decide if anything is running 
slower or faster than you expect or is acceptable.

To enable timed operations, add the timedOperations-1.0 feature to the server.xml file, as 
shown in Example 6-23.

Example 6-23   Enabling timedOperations in server.xml

<featureManager>
        <feature>jdbc-4.1</feature>
        <feature>timedOperations-1.0</feature>
    </featureManager>

The timed operations report contains the 10 longest JDBC timed operations. The frequency 
and enablement of this report is configurable in the server.xml file, with a default of once per 
day (24 hours). It is possible to disable the generation of the report to the logs, or change the 
frequency of the report (for example, to once every 12 hours). To do so, use the 
timedOperation element inside the server.xml, as shown in Example 6-24.

Example 6-24   Disabling the generation of the report and changing the frequency of the report

    <featureManager>
        <feature>jdbc-4.1</feature>
        <feature>timedOperations-1.0</feature>
    </featureManager>

<timedOperation enableReport="false" reportFrequency="12"/>

The configuration in Example 6-25 specifies that the report is generated each hour with the 
first 200 queries. Notice that the entry, enableReport, is omitted because the default value is 
true. The reportFrequency entry (optional) is using the time indicator 1h.

Example 6-25   Generating reports each hour with the first 200 queries

    <featureManager>
        <feature>jdbc-4.1</feature>
        <feature>timedOperations-1.0</feature>
    </featureManager>

<timedOperation reportFrequency="1h" maxNumberTimedOperations="200" />

To get detailed information about the timed operations that have an abnormal behavior, 
change the traceSpecification attribute to include the trace string 
com.ibm.ws.timedoperations.*=FINE in server.xml. 

Note: The value of maxNumberTimedOperations is an integer and the default value is 10000. 
The setting for enableReport is boolean and the default value is true. The 
reportFrequency is a string and its unit of time can be set.
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Example 6-26 shows a trace example in server.xml.

Example 6-26   Trace example in server.xml

<logging traceSpecification="com.ibm.ws.timedoperations.*=FINEST"/>

Trace can be included in the bootstrap.properties file, as shown in Example 6-27.

Example 6-27   Trace example in bootstrap.properties

"com.ibm.ws.timedoperations.*=FINEST"

Example 6-28 shows a sample of an automatically generated report in the log.

Example 6-28   Timed operations report

[4/9/13 7:49:13:590 PDT] 00000018 id=         
com.ibm.wsspi.timedoperations.TimedOperationService          I TRAS0092I: The 
following operations took the longest time to run since the last report has been 
generated:
Operation websphere.datasource.execute:jdbc/DataSource:select count(order) as 
"ordert" from orderb o where o.account_accountid in (select accountid from 
accountb a where a.profile_userid like 'uid:%') took 280ms to complete

For more information about the Timed Operations feature on Liberty, see the following 
IBM Knowledge Center website:

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.
multiplatform.doc/ae/cwlp_timeop.html?lang=en

Note: The values of trace level must be (from higher-detail level to lower-detail level) one of 
these types: FINEST, FINER, FINE, DETAIL, CONFIG, INFO, AUDIT, WARNING, 
SEVERE, or FATAL.
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Chapter 7. Messaging applications

Liberty supports asynchronous messaging as a method of communication through the Java 
Message Service (JMS) programming interface. There are three JMS messaging providers 
that are supported in Liberty:

� The Liberty embedded messaging engine 
� The service integration bus, which is the default messaging provider of WAS Classic
� WebSphere MQ messaging provider, which uses the WebSphere MQ system as the 

provider

For details about elements, their attributes, and properties used in this chapter to configure 
messaging, refer to the following website:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.d
oc/autodita/rwlp_metatype_4ic.html

This chapter includes the following topics:

� Liberty embedded JMS messaging provider
� Interoperating with the service integration bus messaging provider
� WebSphere MQ messaging provider
� Liberty application client container

7
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7.1  Liberty messaging server configuration features

Liberty servers that host messaging applications require the appropriate features to be 
enabled. Those features and what they configure are noted in the following list:

� The wasJmsServer-1.0 feature configures the Liberty server to support the JMS server 
run time. This feature provides the capabilities for connections, transactions, persistence, 
security, and so on.

� The wasJmsClient-1.1 or wasJmsClient-2.0 configures the Liberty server to support JMS 
client connectivity. This feature provides the resource adapter support that allows JMS 
clients to perform synchronous and asynchronous messaging activities.

To enable JMS in a Liberty server, add the wasJmsServer-1.0 or wasJmsClient-x.x features 
in the server.xml file, as shown in Example 7-1.

Example 7-1   Enabling JMS

<featureManager>
    <feature>wasJmsServer-1.0</feature>
    <feature>wasJmsClient-2.0</feature>
    <feature>jndi-1.0</feature>
</featureManager>

The Liberty server also supports the use of message-driven beans (MDBs). The jmsMdb-3.1 
or jmsMdb-3.2 feature provides support for deploying and configuring the JMS resources that 
are required for the MDB to run within Liberty. This feature enables MDB to interact with either 
the embedded Liberty messaging or WebSphere MQ.

If you want to perform a Java Naming and Directory Interface (JNDI) lookup for JMS 
resources, you must also add the jndi-1.0 feature. 

7.2  Liberty embedded JMS messaging provider

For an application to send or receive messages from a destination hosted on a Liberty 
embedded messaging provider, the application must be connected with the messaging 
engine that keeps the queues or topics.

Liberty messaging allows you to use three types of JMS application connectivity:

� The JMS application is running on the same Liberty server as the Liberty messaging 
engine. See section 7.2.1, “Enabling JMS messaging for a single Liberty server” on 
page 133.

� The JMS application is running on a Liberty server and connects over TCP/IP to a Liberty 
messaging engine on a different server. See section 7.2.2, “Enabling JMS messaging 
between two Liberty servers” on page 136.

� The JMS application is running on a WAS Classic server and connects over TCP/IP to a 
Liberty messaging engine. See section 7.3.1, “Enabling service integration bus to connect 
to Liberty messaging” on page 138.

Note: The wasJmsClient-2.0 feature supersedes the wasJmsClient-1.1 feature. The 
wasJmsClient-2.0 feature is compliant with JMS 2.0 specifications and is supported 
only in JDK 7 or later. If you use JDK 6, you must use the wasJmsClient-1.1 feature and 
the JMS 1.1 specification.
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Figure 7-1 illustrates Liberty messaging connectivity.

Figure 7-1   Liberty embedded messaging connectivity

7.2.1  Enabling JMS messaging for a single Liberty server

The steps in this section are applicable to a JMS application being deployed in the same 
Liberty server as is hosting the messaging engine. 

To enable JMS messaging for a single Liberty server, use the following sections:

� Add the features
� Configuring point-to-point messaging (connection to a queue)
� Configuring publish and subscribe messaging (connection to a topic)

Add the features
To enable JMS messaging for this application, add the appropriate feature to enable the JMS 
client or server function.

In this example, the Liberty server hosts a JMS client application and receives requests from 
external JMS applications. Both the wasJmsServer-1.0 and wasJmsClient-x.x features are 
added to the server configuration for this scenario. See Example 7-2.

Example 7-2   JMS client and server features in server.xml

<featureManager>
    <feature>wasJmsServer-1.0</feature>
    <feature>wasJmsClient-2.0</feature>
    <feature>jndi-1.0</feature>
</featureManager>

WAS Liberty Server WAS Liberty Server

WAS Classic Server

JMS Application JMS Application

JMS Application

Messaging
engine

Queue / Topic

In-process

TCP/IP

TCP/IP

Tip: If you have trouble configuring the server for JMS messaging, including using the 
proper elements, attributes, syntax, or other issues, a simple way to get started is to use 
the WebSphere developer tools. The tools provide an editor for server.xml that allows you 
to choose the elements and configure them.
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Configuring point-to-point messaging (connection to a queue)
To configure the messaging engine and the elements that the application uses, proceed with 
the following steps:

1. Use the <messagingEngine> element to create a messaging engine and queue (queue1). 
See Example 7-3.

Example 7-3   Messaging engine definition

<messagingEngine>
    <queue id="queue1" />
</messagingEngine>

2. (Optional) Enable the messaging engine to accept remote incoming messaging 
connections from TCP/IP. To do so, use the <wasJmsEndpoint> element. Use the following 
attributes to specify the host interfaces and ports to use for the endpoint. See 
Example 7-4: 

– The default for the host is localhost. You can use "*" for all available network 
interfaces.

– The default for the JMS port is 7276. Use the wasJmsPort attribute to specify a different 
port.

– The default for the JMS secure port is 7286. Use the wasJmsSSLPort attribute to specify 
a different port.

Example 7-4   JMS endpoint definition

<wasJmsEndpoint
host="*"
wasJmsPort="7276" wasJmsSSLPort="7286" >

</wasJmsEndpoint>

3. Define a JMS queue connection factory for the Liberty messaging engine. See 
Example 7-5.

The connection factory is created with the <jmsQueueConnectionFactory> element and the 
following attributes:

– Use the jndiName attribute to provide the JNDI name for the application to use to 
identify the queue connection factory. 

– (Optional) Specify the connection manager with the <connectionManager> element. 
Attributes for this element can be used to manage the connections, for example, 
connection pool sizes, timeout values, and purge policy.

– Specify the properties.wasJms attribute to indicate that any properties defined within 
the tag are interpreted as WebSphere messaging (Liberty or WAS Classic messaging). 

Example 7-5   Queue connection factory definition

<jmsQueueConnectionFactory jndiName="jms/QueueCF">
<connectionManager maxPoolSize="10" />
<properties.wasJms />

Best practice: Nest the connectionManager (without any id attribute) under the 
connection factory, where it is guaranteed to pool connections only for that one 
connection factory. It is not advised to configure connectionManager as top level with 
an id, because this allows multiple connection factories and data sources to attempt 
to use the same pool, which is not supported.
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</jmsQueueConnectionFactory>

4. Define a JMS queue with the <jmsQueue> element. See Example 7-6:

– Specify the ID attribute to provide a way to reference the element.

– Use the jndiName attribute to define the JNDI name that the application uses to look up 
the queue. 

– Specify the properties.wasJms attribute and the queueName tag to specify the queue to 
which this JMS definition refers. The queue named in the queueName tag refers to the 
queue defined in the messaging engine.

Example 7-6   JMS queue definition

<jmsQueue id="queue1" jndiName="jms/Queue">
<properties.wasJms queueName="queue1" />

</jmsQueue>

Example 7-7 shows the completed definition of point-to-point messaging.

Example 7-7   Point-to-point messaging

<featureManager>
<feature>wasJmsServer-1.0</feature>
<feature>wasJmsClient-2.0</feature>
<feature>jndi-1.0</feature>

</featureManager>

<messagingEngine>
<queue id="queue1" />

</messagingEngine>

<wasJmsEndpoint host="*" wasJmsPort="7276">
</wasJmsEndpoint>

<jmsQueueConnectionFactory jndiName="jms/QueueCF">
<connectionManager maxPoolSize="10" />
<properties.wasJms />

</jmsQueueConnectionFactory>

<jmsQueue id="queue1" jndiName="jms/Queue">
<properties.wasJms queueName="queue1" />

</jmsQueue>

Configuring publish and subscribe messaging (connection to a topic)
Setting up a topic space for publish and subscribe messaging is similar to the process 
detailed in “Configuring point-to-point messaging (connection to a queue)” on page 134. In 
this example, define the following options:

� Define a messaging engine and the topic space.

� (Optional) To enable the messaging engine to accept the remote incoming messaging 
connections from TCP/IP, define a JMS endpoint element with the host and port number.

� Define a JMS topic connection factory to connect to the messaging engine that has the 
topic definition.

(Optional) Define a connection manager. 

� Define a JMS topic.
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Example 7-8 shows a server configured for publish and subscribe messaging.

Example 7-8   Publish and subscribe messaging definition

<featureManager>
<feature>wasJmsServer-1.0</feature>
<feature>wasJmsClient-2.0</feature>
<feature>jndi-1.0</feature>

</featureManager>

<messagingEngine>
<topicSpace id="topicspace1" />

</messagingEngine>

<jmsTopicConnectionFactory jndiName="jms/TopicCF">
<connectionManager maxPoolSize="10" />
<properties.wasJms />

</jmsTopicConnectionFactory>

<jmsTopic jndiName="jms/Topic" id="topic1">
<properties.wasJms topicName="anyTopic" topicSpace="topicspace1" />

</jmsTopic>

7.2.2  Enabling JMS messaging between two Liberty servers

This scenario describes a situation where the JMS client application is running on one Liberty 
server but using a messaging engine that is hosted in another Liberty server (the server).

To configure the Liberty server that is hosting the messaging engine, take the following 
actions:

� Enable wasJmsServer-1.0 feature and (optionally) the jndi-1.0 feature.

� Define a messaging engine and queue.

� By default, the messaging engine listens on port 7276 (unsecured) and 7286 (secured). To 
bind the messaging engine to different ports, specify the ports on the wasJmsEndpoint 
element. 

Example 7-9 shows a Liberty server configuration for the JMS server that is hosting the 
messaging engine.

Example 7-9   Server hosting the messaging engine

<featureManager>
<feature>wasJmsServer-1.0</feature>
<feature>jndi-1.0</feature>

</featureManager>

<wasJmsEndpoint host="*"
wasJmsPort="9011" wasJmsSSLPort="9100" />

<messagingEngine>
<queue id="queue1" />

</messagingEngine>
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To configure the Liberty server that is hosting the JMS client application, take the following 
actions:

� Enable the wasJmsClient-x.x feature and (optionally) the jndi-1.0 feature.

� Configure a JMS queue connection factory for the Liberty messaging engine. 

– Specify properties.wasJms attribute to indicate that any properties defined within the 
tag are interpreted as WebSphere messaging.

Add the remoteServerAddress property to define the TCP/IP connection to the server 
with the messaging engine. The following format is shown in Example 7-10.

Example 7-10   Remote server address definition

remoteServerAddress="JMS_server_host:wasJmsPort:bootstrap_transport_chain"

The terms used in Example 7-10 are defined in the following list:

• JMS_server_host is the host name of the messaging engine server.

• wasJmsPort is one of the following addresses of the messaging engine hosting the 
remote end of the link:

If security is not enabled, use the value for wasJmsPort specified on the 
wasJmsEndpoint element on the server side. 

If security is enabled, use the value for wasJmsSSLPort specified on the 
wasJmsEndpoint element on the server side.

• When connecting to another Liberty server, use the value 
BootstrapBasicMessaging, or for an SSL connection, use 
BootstrapSecureMessaging for the bootstrap transport chain value.

– (Optional) Define a connection manager.

� Define a JMS queue.

Example 7-11 shows a definition of Liberty server that is hosting the client application (but no 
messaging engine).

Example 7-11   Server not hosting any messaging engine

<featureManager>
<feature>wasJmsClient-2.0</feature>
<feature>jndi-1.0</feature>

</featureManager>

<jmsQueueConnectionFactory jndiName="jms/QueueCF">
<connectionManager maxPoolSize="10" />
<properties.wasJms

remoteServerAddress="localhost:9011:BootstrapBasicMessaging" />
</jmsQueueConnectionFactory>

<jmsQueue id="queue1" jndiName="jms/Queue">
<properties.wasJms queueName="queue1" />

</jmsQueue>
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7.3  Interoperating with the service integration bus messaging 
provider

A service integration bus is a group of one or more WAS Classic servers that, as bus 
members, cooperate to provide asynchronous messaging services. The Liberty embedded 
messaging can interoperate with the service integration bus. This interoperation means that 
JMS clients on a Liberty server can send and receive messages to a destination on the WAS 
Classic service integration bus. Also, JMS clients on WAS Classic can send messages to the 
Liberty server.

For more information about the service integration bus, see the WebSphere Application 
Server V8.5.5 IBM Knowledge Center at this website:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/a
e/cjj0000_.html

7.3.1  Enabling service integration bus to connect to Liberty messaging

JMS applications that are deployed in WAS Classic server can be enabled to connect to 
Liberty messaging. Enabling requires you to configure the bus name and the 
ProviderEndPoint in WAS Classic server to specify the host and port where the Liberty 
messaging engine is running.

To start this process, in the WAS Classic administrative console, create a connection factory 
that defines the endpoint for the Liberty messaging engine. Use the following steps: 

1. From the left menu, click Resources → JMS → Connection factories. 
2. In the Connection factories window, click New. 
3. Select the Default messaging provider option and then click OK.

Figure 7-2 on page 139 shows how to create a connection factory by using the administrative 
console.

Note: The JMS resources that are pointing to the Liberty messaging engine must always 
specify the bus name as defaultBus (case sensitive).
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Figure 7-2   Creating Connection Factory

7.3.2  Enabling Liberty server to connect to a bus for point-to-point messaging

To set up the Liberty server to connect to a service integration bus for point-to-point 
messaging, take the following actions:

� Enable wasJmsClient-x.x feature and (optionally) the jndi-1.0 feature.

� Configure a JMS queue connection factory for the Liberty messaging engine. 

– Specify the properties.wasJms attribute to indicate that any properties defined within 
the tag are interpreted as WebSphere messaging.
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– Add the remoteServerAddress property to define the TCP/IP connection to the server 
with the messaging engine. The following format is shown in Example 7-12.

Example 7-12   Remote server address definition

remoteServerAddress="JMS_server_host:wasJmsPort:bootstrap_transport_chain"

The terms used in Example 7-12 are defined in the following list:

• JMS_server_host is the host name of the messaging engine server.

• wasJmsPort is one of the following addresses of the server hosting the messaging 
engine at the remote end of the link:

If security is not enabled, use the value for SIB_ENDPOINT_ADDRESS, which is 7276 by 
default.

For secure connections, use the value for SIB_ENDPOINT_SECURE_ADDRESS, which is 
7286 by default.

• When connecting to another Liberty server, use the value 
BootstrapBasicMessaging, or for an SSL connection, use 
BootstrapSecureMessaging for the bootstrap transport chain value.

For details about these settings for the service integration bus, see the discussion on 
provider endpoints at the following website:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd
.multiplatform.doc/ae/SIBJMSConnectionFactory_DetailForm.html

� Define a JMS queue that names the queue on the service integration bus.

Example 7-13 shows a definition of the Liberty server for connection.

Example 7-13   Enabling Liberty to connect to a bus for point-to-point 

<featureManager>
<feature>wasJmsClient-2.0</feature>
<feature>jndi-1.0</feature>

</featureManager>

<jmsQueueConnectionFactory jndiName="jms/QueueCF">
<properties.wasJms busName="SampleBus"

remoteServerAddress="localhost:7276:BootStrapBasicMessaging"
targetTransportChain="InboundBasicMessaging" />

</jmsQueueConnectionFactory>

<jmsQueue jndiName="jms/Queue">
<properties.wasJms queueName="queue1" />

</jmsQueue>

7.3.3  Enabling Liberty server to connect to a bus for publish and subscribe

To set up the Liberty server to connect to a bus in WAS Classic for publish and subscribe 
domain, take the following actions:

� Enable the wasJmsClient-x.x feature and optionally, the jndi-1.0 feature.

� Define a JMS topic connection factory to define the connection to the messaging engine 
on the service integration bus. 
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� Specify the properties.wasJms attribute with the bus name and the remote server address 
property to define the connection to the messaging engine on the service integration bus. 

� If you need durable topic subscriptions on all connections created by using this connection 
factory, specify clientID attribute in properties.wasJms. 

� Define a JMS topic that identifies the topic on the bus.

Example 7-14 shows a definition of the Liberty server for bus connection.

Example 7-14   Enabling Liberty to connect to a bus for publish and subscribe 

<featureManager>
<feature>wasJmsClient-2.0</feature>
<feature>jndi-1.0</feature>

</featureManager>

<jmsTopicConnectionFactory jndiName="jms/TopicCF">
<properties.wasJms busName="SampleBus"

remoteServerAddress="localhost:7276:BootStrapBasicMessaging"
clientID="defaultID" />

</jmsTopicConnectionFactory>

<jmsTopic jndiName="jms/Topic">
<properties.wasJms topicName="Topic1" />

</jmsTopic>

7.3.4  Enabling Liberty server to connect to a bus for message-driven beans

The Liberty server supports the use of message-driven beans (MDBs) as asynchronous 
message consumers. Incoming messages are passed automatically to the onMessage() 
method of an MDB that is deployed as a listener for the destination. The MDB processes the 
message. In this example, the MDBs are running on the Liberty server and the queue (where 
the messages are received) is on the service integration bus. 

To configure a Liberty server for MDBs that connect to a service integration bus, take the 
following actions: 

� Enable wasJmsClient-1.1 and jmsMdb-3.1 features, or enable wasJmsClient-2.0 and 
jmsMdb-3.2 features. You can optionally enable the jndi-1.0 feature.

� Activation specifications are used to configure inbound message delivery to 
message-driven beans (MDBs) running in the Liberty server. The specification contains 
the information needed to receive messages. A JMS activation specification is associated 
with an MDB during application deployment. 

The JMS activation identifies the endpoint on the service integration bus where the 
messages arrive. 

� Define the JMS queue and specify the queue name.
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Example 7-15 shows a definition of the Liberty server ready to connect to a bus for 
message-driven beans.

Example 7-15   Enabling Liberty to connect to a bus for message-driven beans 

<featureManager>
<feature>wasJmsClient-2.0</feature>
<feature>mdb-3.2</feature>
<feature>jndi-1.0</feature>

</featureManager>

<jmsActivationSpec id="JMSApp/SampleMDB">
<properties.wasJms

destinationRef="JMSQueue"
remoteServerAddress="localhost:7276:BootStrapBasicMessaging"
busName="SampleBus" />

</jmsActivationSpec>

<jmsQueue jndiName="jms/TriggerQ" id="JMSQueue">
<properties.wasJms queueName="Q1" />

</jmsQueue>

7.4  WebSphere MQ messaging provider

The WebSphere MQ messaging provider allows the use of WebSphere MQ system as an 
external provider of JMS messaging resources. WebSphere MQ is both JMS 1.1 and JMS 2.0 
compliant.

The WebSphere MQ messaging provider support in Liberty has the following restrictions:

� The WebSphere MQ classes for Java (often called the Base Java) are not included in the 
WebSphere MQ Liberty messaging feature. (Base Java is included in the resource 
adapter for other application servers but is not recommended for the Base Java APIs in 
the Java Enterprise Edition environments). 

� The WebSphere MQ resource adapter has a transport type of BINDINGS_THEN_CLIENT. This 
transport type is not supported by the WebSphere MQ Liberty messaging feature.

� The Advanced Messaging Security (AMS) feature is not included in the WebSphere MQ 
Liberty messaging feature.

7.4.1  Enabling Liberty to connect WebSphere MQ 

To set up the Liberty server to connect to a WebSphere MQ messaging provider, take the 
following actions:

� Enable the feature wmqJmsClient-1.1 or wmqJmsClient-2.0 in the Feature Manager.

� Define a JMS connection factory to configure the connection to WebSphere MQ. Use 
properties.wmqJms to indicate that the properties are for a WebSphere MQ provider. 
Configure the host name and the name, port, and channel of the queue manager.

(Optional) Define a connection manager.
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� Define a variable that specifies the location of the WebSphere MQ Resource Adapter 
(wmqJmsClient.rar.location).

� Define a JMS queue to provide the queue manager and queue name.

Example 7-16 shows a definition of the Liberty server for connection with WebSphere MQ.

Example 7-16   Enabling Liberty to connect to WebSphere MQ

<featureManager>
<feature>wmqJmsClient-2.0</feature>
<feature>jndi-1.0</feature>

</featureManager>

<jmsConnectionFactory jndiName="jms/wmqCF">
<connectionManager maxPoolSize="2" />
<properties.wmqJms

transportType="CLIENT"
hostName="WebSphereMQhost"
port="1414"
channel="SYSTEM.DEF.SVRCONN"
queueManager="QM01" />

</jmsConnectionFactory>

<variable name="wmqJmsClient.rar.location"
value="/path/to/wmq/rar/wmq.jmsra.rar" />

<jmsQueue id="jms/queue1" jndiName="jms/wmqQ1">
<properties.wmqJms

baseQueueName="queue1"
baseQueueManagerName="QM01" />

</jmsQueue>

For the JMS applications to connect using either the shared memories or in BINDING mode to 
WebSphere MQ, both the Liberty server and WebSphere MQ must be deployed on the same 
server. To allow JMS applications to connect in BINDING mode, use the <nativeLibraryPath> 
element in the server.xml file. Use that path to specify the location of the WebSphere MQ 
native libraries, as shown in Example 7-17.

Example 7-17   Enable JMS application in BINDING mode

<wmqJmsClient nativeLibraryPath="/opt/mqm/java/lib64"/>

7.4.2  Deploying message-driven beans to connect to WebSphere MQ

You can connect to WebSphere MQ using the message-driven beans (MDB). To do so use 
the features jmsMdb-x.x and wmqJmsClient-x.x in the server.xml file.

To set up the Liberty server to connect to WebSphere MQ using the MDB, take the following 
actions:

� Enable the wmqJmsClient-1.1 and the jmsMdb-3.1 features, or enable the 
wmqJmsClient-2.0 and the jmsMdb-3.2 features.

� Define a variable that specifies the location of the WebSphere MQ Resource Adapter 
(wmqJmsClient.rar.location).
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� Define a JMS activation specification. Use the properties.wmqJms attributes to configure 
the transport type, host name, channel, port, and queueManager.

� Define a JMS queue. Use the properties.wmqJms attributes to configure the queue 
manager and queue name. 

Example 7-18 shows a definition of a Liberty server to connect to WebSphere MQ by using 
the message-driven beans.

Example 7-18   Liberty server to connect to WebSphere MQ by using the MDB

<featureManager>
<feature>mdb-3.2</feature>
<feature>wmqJmsClient-2.0</feature>
<feature>jndi-1.0</feature>

</featureManager>

<variable name="wmqJmsClient.rar.location"
value="/path/to/wmq/rar/wmq.jmsra.rar" />

<jmsActivationSpec id="JMSSample/JMSSampleMDB">
<properties.wmqJms destinationRef="jndi/MDBQ"

transportType="CLIENT"
queueManager="MQ01"
hostName="WebSpmereMQhost"
channel="SYSTEM.DEF.SVRCONN"
port="1414" />

</jmsActivationSpec>

<jmsQueue id="jndi/MDBQ" jndiName="jndi/MDBQ">
<properties.wmqJms baseQueueName="MQ01" baseQueueManagerName="queue1" />

</jmsQueue>

Important: The ID value on the jmsActivationSpec element must be in the format of 
application name/bean name or module name/bean name using the following definitions:

Application name The name of the application that is deployed (for example, 
JMSSample). The application name applies only if the bean is 
packaged within an EAR file. The application defaults to the 
base name of the EAR file with no file name extension unless 
specified by the application.xml deployment descriptor.

Module name The name of the module in which the bean is packaged. In a 
stand-alone ejb-jar file or WAR file, the <module-name> defaults 
to the base name of the module with any file name extension 
removed. In an EAR file, the <module-name> defaults to the path 
name of the module with any file name extension removed, but 
with any directory names included. The default <module-name> 
can be overridden by using the module-name element of 
ejb-jar.xml (for ejb-jar files) or web.xml (for WAR files).

Bean name The ejb-name of the enterprise bean. For enterprise beans 
defined through annotation, the bean name defaults to the 
unqualified name of the session bean class, unless specified in 
the contents of the name() attribute of the MessageDriven 
annotation. For enterprise beans defined through ejb-jar.xml, it 
is specified in the <ejb-name> deployment descriptor element.
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7.5  Liberty application client container

Liberty now supports running Java applications in the application client container. See 4.4.3, 
“Application client commands” on page 65. You can configure messaging applications that 
use the wasJmsClient-2.0 feature to run on the client container.

7.5.1  Defining the server

To configure the Liberty server that is hosting the messaging engine, define the 
wasJmsServer-1.0 feature and a messaging engine with queue and topic space to the 
server.xml. Detailed actions are described in 7.2.2, “Enabling JMS messaging between two 
Liberty servers” on page 136. Example 7-19 shows an example definition of a Liberty server 
definition.

Example 7-19   Server hosting the messaging engine

<featureManager>
<feature>wasJmsServer-1.0</feature>

</featureManager>

<messagingEngine>
<queue id="queue1" />
<topicSpace id="topicspace1" />

</messagingEngine>

<wasJmsEndpoint host="*" wasJmsPort="17276" wasJmsSSLPort="17286">
</wasJmsEndpoint>

7.5.2  Creating and configuring the client container

To configure the Liberty client that is running the JMS client application, complete the 
following steps:

1. Create a client container by using the client create command. See Example 7-20.

Example 7-20   Create a client container

Liberty_Home/bin/client create client_name

2. Add the javaeeClient-7.0 feature to the client configuration file.

To enable JMS Client in the client container, add the javaeeClient-7.0 feature in the 
Liberty_Home/usr/clients/client_name/client.xml file. The javaeeClient-7.0 feature 
enables the wasJmsClient-2.0 feature and so on.

3. Add a connection factory and a queue or a topic definition to the client configuration file.

To connect the queue or the topic in the Liberty messaging engine defined in the server, 
configure jmsConnectionFactory and jmsQueue or jmsTopic to the client.xml. 

Example 7-21 on page 146 is an example setting for using point-to-point messaging from the 
client application.
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Example 7-21   Point-to-point messaging client definition

<featureManager>
<feature>javaeeClient-7.0</feature>

</featureManager>

<jmsConnectionFactory jndiName="jms/cf">
<properties.wasJms

remoteServerAddress="localhost:17276:BootstrapBasicMessaging" />
</jmsConnectionFactory>

<jmsQueue jndiName="jms/queue1">
<properties.wasJms queueName="queue1" />

</jmsQueue>

Example 7-22 is an example setting for using publish and subscribe messaging from the 
client application.

Example 7-22   Publish and subscribe messaging client definition

<featureManager>
<feature>javaeeClient-7.0</feature>

</featureManager>

<jmsConnectionFactory jndiName="jms/cf">
<properties.wasJms

remoteServerAddress="localhost:17276:BootstrapBasicMessaging" />
</jmsConnectionFactory>

<jmsTopic jndiName="jms/topic1">
<properties.wasJms topicName="topic1" topicSpace="topicspace1" />

</jmsTopic>

7.5.3  Deploying the JMS client application to the client container

You can deploy your client application by using either of the following steps:

� Place your client application EAR file under the 
Liberty_Home/usr/clients/client_name/apps directory and configure your application to 
the client.xml (as shown in Example 7-23). 

Example 7-23   Client application definition

<application id="CLIENT_APP" name="CLIENT_APP" type="ear"
location="ITSOJMS.ear" />

� Put the application under the Liberty_Home/usr/clients/client_name/dropins directory.

7.5.4  Starting the server and running the client

After completing the previous sections, the JMS client application is ready to run on the 
Liberty application client container. You can now start the server and run the client by using 
the following syntax:

Liberty_Home/bin/server start server_name
Liberty_Home/bin/client run client_name
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Chapter 8. Monitoring the Liberty server 
environment

Monitoring support is provided for Liberty; however, Liberty does not deliver with dedicated 
tools to monitor run time (such as the Tivoli Performance Viewer that is available in the 
WAS Classic administrative console). In Liberty, monitoring the user runtime components 
consists of two steps: Enabling the monitoring feature and using a standard tool for Java 
runtimes to view the monitored data. 

This chapter provides information about monitoring the Liberty application server 
environment. It includes the following topics:

� Introduction to performance monitoring

� Monitoring Liberty using the monitor feature

� Monitoring Liberty using JConsole

� Monitoring Liberty by using the IBM Monitoring and Diagnostics Tools for Java - Health 
Center

� Monitoring Liberty using other tools

� Tuning Liberty

8
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8.1  Introduction to performance monitoring

Performance monitoring means different things to different people. For some, it is a fast 
response time for users. For others, it is the volume of work that can be processed within a 
time period. For others still, it is how rapidly a system can recover from a failure. 

Performance monitoring and tuning is essential in any enterprise, helping to ensure maximum 
returns for the IT investment. Aside from aiding users in getting the best response time, it also 
helps to determine the maximum load that the application can safely support. Performance 
problems in any environment can result in escalated support costs, loss of customer 
confidence, loss of revenue, and loss of credibility.

It is also important to understand that performance monitoring and tuning is an iterative 
process. You need to make a small adjustment, then measure the impact, then perform 
analysis, make another adjustment, and so on. Due to the vast differences in the applications 
the customers build, there are no global solutions that work well in every environment. 
Improving performance is a process of learning and testing. 

8.2  Monitoring Liberty using the monitor feature

The monitor-1.0 feature allows you to track information about the Liberty server run time. 
Adding this feature starts the monitoring functions. The monitoring feature in Liberty is 
different from the Performance Monitoring Infrastructure (PMI) in WAS Classic. The 
monitoring feature in Liberty collects performance data at run time, and the data is available 
as attributes on MXBean Java objects.

Table 8-1 shows the Liberty runtime components that are monitored and their associated 
MXBean. 

Table 8-1   Monitored runtime components and their MXBean

See the following IBM Knowledge Center for detailed information about monitoring Liberty 
using MXBeans:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.d
oc/ae/twlp_mon.html

Runtime component MXBean

JVM WebSphere:type=JvmStats

Web applications WebSphere:type=ServletStats,name=*

The thread pool WebSphere:type=ThreadPoolStats,name=Default Executor

Java API for XML Web 
Services (JAX-WS) endpoints

org.apache.cxf:type=WebServiceStats,service=*,port=*

Session management WebSphere:type=SessionStats,name=*

Connection pool WebSphere:type=ConnectionPool,name=*
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8.3  Monitoring Liberty using JConsole

You can use IBM Java™ Monitoring and Management Console (JConsole) to connect to a 
Java virtual machine (JVM), then look at the performance data that is collected by using each 
attribute of the MXBean. JConsole is a graphical tool that allows you to monitor and manage 
the behavior of Java applications. When JConsole connects to a Java application, it reports 
information about the application. The details include memory usage, the running threads, 
and the loaded classes. This data allows you to monitor the behavior of your application and 
the JVM. This information is useful in understanding performance problems, memory usage 
issues, hangs, and deadlocks.

JConsole is shipped as part of the IBM software development kit (SDK). To run JConsole 
against the Liberty server, start JConsole from the command line, as shown in the following 
syntax: 

<SDK_install>\bin>jconsole.exe

When JConsole launches, a welcome window displays. Connect to the Liberty server Java 
process. To monitor a local process, the JConsole process must run under the same 
operating system user ID and using the same Java runtime as the server. In this case, you 
can choose the local server process. For more information about connecting to JConsole, see 
Chapter 5, “Administering the WebSphere Liberty profile” on page 71. 
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The JConsole loads all runtime information into the tool, including the characteristic of the 
Java runtime, heap size, and CPU usage, as illustrated in Figure 8-1.

Figure 8-1   Monitoring key runtime characteristics of the Liberty server

Using JConsole, you can trigger MBeans operations that are part of Liberty. MBeans are 
available on the MBeans tab. Figure 8-2 on page 151 presents an example of issuing a 
restart operation on the ITSOWebCustomerCredit application. 
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Figure 8-2   Restarting an application deployed on a Liberty server using JConsole

If you enabled the monitoring infrastructure in Liberty, you can also access additional 
MXBeans, such as JvmStats, as illustrated in Figure 8-3.

Figure 8-3   Accessing the Liberty monitoring infrastructure JvmStats MXBean

8.3.1  Monitoring the Liberty run time remotely using a REST connector

Liberty provides a Representational State Transfer (REST) connector to establish a secured 
Java Management Extensions (JMX) connection to the Liberty server by using Secure 
Sockets Layer (SSL). The secured JMX connection is enabled with the feature 
restConnector-1.0.

Note: An application deployed on a Liberty server has unrestricted access to the 
MBeanServer directory. 
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Figure 8-4 shows how a remote JConsole can connect to a Liberty server using the 
restConnector. 

Figure 8-4   Diagram of a remote JConsole connection using restConnector

For more information about a simple method to configure and access the REST connector on 
a Liberty server, see Chapter 5, “Administering the WebSphere Liberty profile” on page 71. 

8.4  Monitoring Liberty by using the IBM Monitoring and 
Diagnostics Tools for Java - Health Center

You can access the status of a running Java application by using the IBM Monitoring and 
Diagnostic Tools for Java - Health Center. The Health Center, available at no charge, is a 
lightweight diagnostic tool and API that monitors active JVMs for Java with minimal 
performance overhead. The Health Center suggests live tuning recommendations for 
Garbage Collection, profiles methods that include call stacks, and highlights contended locks. 

Health Center provides a wealth of knowledge about server performance, including: 

� Memory usage
� Garbage collection statistics
� Method-level profiling
� Threading
� Java Class loading
� Lock contention analysis

Health Center monitors several application areas, using the information to provide 
recommendations and analysis that help you improve the performance and efficiency of your 
application. Health Center can save the data that is obtained from monitoring an application 
and load it again for analysis later.
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Health Center is included as a tool in IBM Support Assistant. Ensure that you install 
IBM Support Assistant on a different machine than the server machine; otherwise, the Health 
Center uses resources from the server process, and your results might not be accurate. You 
can also install and use the Health Center within an Eclipse client. The Health Center works 
only for IBM Java.

The Health Center includes an agent and a client, which you install separately. The Health 
Center agent collects data from a running application in your environment. The agent uses a 
small amount of processor time and memory and must be manually installed in an IBM JVM. 
The Health Center client connects to the agent and interprets the data that is obtained by the 
agent and provides recommendations to improve the performance of the monitored 
application.

Figure 8-5 shows the architecture for the Health Center.

Figure 8-5   Health Center architecture

Using the Health Center
To use the Health Center to monitor Liberty, complete the following steps:

1. Download and install the IBM Support Assistant. The Health Center is a tool within the 
IBM Support Assistant.

You can also download the Health Center from the Liberty Repository at WASdev.net or 
from the Eclipse Marketplace at the following site:

https://marketplace.eclipse.org/content/ibm-monitoring-and-diagnostic-tools-hea
lth-center 

2. Install the Health Center agent. For IBM SDK, Java Technology Edition, obtain updated 
Health Center agents. The IBM SDK contains a Health Center agent, but later versions of 
the agent that contain new function might be available. For the IBM SDK, Java Technology 
Edition, install the agent by extracting the downloaded package into the installation 
directory of the IBM SDK that runs your Java application. The installation directory is the 
parent directory of the jre directory. 

Look at JRE in jre/lib/ext and verify that healthcenter.jar exists. If you do not have the 
agent installed, click the “Enabling an application monitoring” link in the connection wizard 
to install an agent.

3. Configure the Health Center agent. You can run the Health Center agent with the default 
settings, or you can configure various aspects, such as the port to use to communicate 
with the Health Center client, or which connection mode to use. You usually configure the 
agent by setting properties in a properties file. For Java applications, you can also set 
properties from a command line when you start the agent or attach the agent to a running 
application. You can set Health Center agent properties in the following ways:
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– By setting system properties in the Health Center properties file, 
healthcenter.properties. This file is in the jre/lib directory of the JVM that contains 
the agent.

– On the command line when you start the agent as system properties that you set by 
using the -D option of the Java command. For example, 
-Dcom.ibm.java.diagnostics.healthcenter.agent.port=1999. 

– On the command line when you start the agent as part of the -Xhealthcenter option of 
the Java command, when you start the agent and the application to be monitored at the 
same time.

4. Start the Health Center. The connection wizard starts and you enter the host name and 
port for your Liberty server. Then, click Finish to complete the connection.

5. Examine the monitored items and information from the Health Center. The Health Center 
client is split into subsystems, each representing a component of the JVM. 

Figure 8-6 shows the status of the monitored items.

Figure 8-6   Health Center monitoring details

The first step in any Java application performance analysis is to study the garbage collection 
statistics. Click the Garbage Collection link to examine details.
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There are two key items to review first for entry-level analysis:

� The Analysis and Recommendations section

The Analysis and Recommendations section in the lower-left corner provides useful tips 
and information that is based on built-in intelligence in Health Center. These tips can 
indicate garbage collection policy and heap size recommendations, observations about 
memory leaks or System.gc() calls, and more. 

� The Summary panel

The Summary panel at the lower-right of the window contains data for the most important 
statistics to be concerned with. 

You can examine other details, such as:

� Classes, where you can examine the data for Java classes. It displays the density of class 
loading over time, which classes were loaded, and when.

� Locking, which shows information about contention on inflated locks.

� Native Memory, where you can examine native memory usage, JVM native memory, and a 
breakdown of memory sizes, such as free physical, process virtual, and others.

� Profiling, which shows you the methods that are taking the most time.

� Threads, where you can examine the details of the live threads in your environment, such 
as number, current threads, and thread stack.

The status pane displayed in Figure 8-6 on page 154 shows a few areas that are currently 
unavailable. CPU utilization is a current restriction. Method Trace and WebSphere Real Time 
require additional configuration for statuses to appear for monitoring.

For more information about the Health Center, go to the following page:

http://www.ibm.com/developerworks/java/jdk/tools/healthcenter

8.5  Monitoring Liberty using other tools

There are a variety of analysis tools that can help you resolve issues when working with a 
Liberty server.

IBM Support Assistant
The IBM Support Assistant Team Server 5 provides a framework for IBM software products to 
deliver customized self-help information to the different tools within it. You can customize your 
IBM Support Assistant client by using the built-in Update capability to find and install new 
product features or support tools.

The IBM Support Assistant is a self-help problem determination and monitoring application, 
available at no charge. IBM Support Assistant 5 provides desktop tools, report generators, 
and web tools to take advantage of the server-based run time. 

IBM Support Assistant provides a growing collection of tools that can be used in a Liberty 
environment. These tools include:

� Garbage Collection and Memory Visualizer (GCMV)

This tool helps with analyzing garbage collection behavior. You can use the GCMV to help 
visualize trends in native memory and Java heap growth in your server. This is useful to 
determine if you have a memory leak.
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� Memory Analyzer 

This tool is for analyzing Java heap memory by using heap dumps and system core files, 
in addition to Sun HPROF binary dumps. The Memory Analyzer tool provides memory 
leak detection and footprint analysis. The tool can also provide insight into where your 
application might be wasting memory, and can show the contents of method call stacks in 
addition to displaying the contents of any of the structures in your heap.

� Thread and Monitor Dump Analyzer (TMDA)

This tool is used to monitor thread dumps by presenting a list of the threads that existed at 
the time the thread dump was triggered. The tool looks for hangs, bottlenecks, and 
deadlocks. With this tool, you can visualize which threads are affected by slowdowns or 
held locks in the JVM, including information about the stack of each thread.

� Interactive Diagnostic Data Explorer

This tool displays a visual representation of your dump files. It works with system core 
files, IBM heap dump files, and IBM javacore files. The tool provides an editor in which you 
can run commands to find and view objects within your dumps and system cores. This can 
be useful when you are doing in-depth analysis of memory structures in your applications.

You can download the IBM Support Assistant Team Server 5 from the following page:

http://www.ibm.com/software/support/isa/teamserver.html

These tools can also be obtained from the Liberty Repository at WASdev.net or from the 
Eclipse Marketplace. 

Admin Center web UI
The Admin Center provides monitoring information about a Liberty server or application by 
using the Explorer tool. In the Explorer tool, you can track used heap memory, loaded 
classes, active JVM threads, CPU usage, and other metrics, depending on the resource. The 
Monitor view shows the metrics graphically in chart form. 

When monitoring a server, the charts include:

� Used heap memory 
� Loaded classes 
� Active JVM threads
� CPU usage
� Active Liberty threads 

The Active Liberty threads chart is not visible in the Monitor view by default. You can add the 
chart by using the Edit Charts icon.

To use the Admin Center to monitor your environment, follow these steps:

1. Enable the adminCenter-1.0, websocket-1.1, and monitor-1.0 features in server.xml as 
described in Example 8-1.

Example 8-1   Enabling the Admin Center

<featureManager>
 <feature>adminCenter-1.0</feature>
 <feature>websocket-1.1</feature>
 <feature>monitor-1.0</feature>

</featureManager>
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The websocket feature provides a live view of the topology to the Admin Center. If the 
websocket feature is not enabled, the Admin Center periodically and frequently polls for 
changes. 

The monitor feature provides more charts in the Monitor view based on your selection of 
either server or application, and the charts have more configuration options. For example, 
charts for web applications with multiple servlets, servers with active sessions, or servers 
with data sources display a drop-down list from which you can select resources to show in 
the chart.

2. Open the Admin Center and in the Toolbox, click the Explorer tool.

3. Select the server or the application that you want to monitor. Then, click Monitor in the 
navigation menu on the left. 

You can scroll through the page and examine the charts for the data that is being 
monitored. For example, Figure 8-7 shows the chart for Used Heap Memory.

Figure 8-7   Monitoring used heap memory in graphical form

In addition to examining the data in graphical form, you can view just the raw data. To 
examine, click the Actions icon in the upper-right corner of any chart, and select View 
chart data. Figure 8-8 on page 158 shows an example of chart data collected for used 
heap memory.
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Figure 8-8   Used Heap Memory chart raw data

4. By default, with the adminCenter-.10 feature, you can obtain basic JVM metrics on all 
servers. You can obtain additional JVM server metrics when you enable the monitor-1.0 
feature.

To examine more charts, click the Edit Charts icon in the upper right of the page. You can 
see the current charts and add any additional charts. For example, Figure 8-9 shows the 
options when adding a chart where you can add Active Liberty Threads. From Edit Charts, 
you can also remove any charts that you do not want to display. The metrics for threads 
are available on this server because the monitor-1.0 feature is also enabled.

Figure 8-9   Edit charts in the admin center

Other tools
There are additional external monitoring tools that can be used to monitor the Liberty server.
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IBM application performance management solutions help you manage the performance and 
availability of your applications. The application performance management products include:

� IBM Application Performance Management employs user experience monitoring, 
transaction tracking, and resource monitoring of application components to help identify, 
isolate, and resolve problems more quickly.

� IBM Tivoli Composite Application Manager for Application Diagnostics helps you to view 
the health of web applications and servers so that you can resolve performance issues 
faster, reduce downtime costs, and improve customer satisfaction.

� IBM Monitoring provides resource monitoring of infrastructure, application components, 
and cloud workloads to help speed slow transactions, resolve capacity issues, and prevent 
outages.

� IBM Application Diagnostics help you to gain code-level visibility into your applications and 
the health of your application servers to find performance bottlenecks in application code.

� The IBM CA Introscope tool can be used to proactively monitor complex Java and 
composite web applications and other emerging technology environments. It detects 
problems before they affect users and allows you to resolve issues quickly. For more 
information, see the following site: 

http://www.ibm.com/partnerworld/gsd/solutiondetails.do?solution=23517&expand=tr
ue

� The AppDynamics tool, made available by AppDynamics, Inc., can be used to monitor the 
performance of applications across cloud computing environments. For more information, 
see the following site: 

http://www.appdynamics.com

These are just a few of the tools that can be used to monitor the Liberty run time. There are 
many more third-party monitoring tools that can be used to help you monitor and ultimately 
tune your environment.

8.6  Tuning Liberty 

You can tune parameters and attributes of Liberty for better performance. Liberty supports 
different attributes in the server.xml file to influence application performance. 

To achieve better performance, the first place to start is to tune the JVM. Tuning the JVM is 
the most important tuning step, whether you are configuring a development or production 
environment. For a production environment, setting the minimum heap size and maximum 
heap size to the same value can provide the best performance by avoiding heap expansion 
and contraction.

The transport channel services are the next place to look to tune parameters. The transport 
channel services manage client connections, I/O processing for HTTP, thread pools, and 
connection pools. There are numerous attributes that you can tune to improve runtime 
performance, scalability, or both.

Other areas for tuning include the default executor and response time of servlets.

For more information about tuning Liberty, see the WebSphere Application Server 
Performance Cookbook at the following website:

https://publib.boulder.ibm.com/httpserv/cookbook
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Chapter 9. Problem determination tools

Liberty includes logging and tracing capabilities similar to the full profile. Binary logging 
capabilities are available in V8.5.5. This chapter provides information about finding and 
viewing logs, taking traces, and taking dumps for use by IBM support. 

This chapter includes the following topics:

� Text log and trace
� Binary log and trace
� Creating a dump of a Liberty server
� Event logging
� Request timing

9
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9.1  Text log and trace

Liberty servers provide logging and tracing capabilities to help you monitor operations and 
determine the cause of problems. If you do not configure specific attributes for logging and 
tracing, the server environment uses a set of defaults. You can modify the default settings by 
specifying logging properties in the server.xml or bootstrap.properties file. Setting the 
properties in the bootstrap.properties file allow you to initiate tracing for server start. 

In the following discussion, the server.xml file parameters are used to indicate how to 
configure the settings. For information about the equivalent bootstrap.properties settings, 
see the following website:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.m
ultiplatform.doc/ae/rwlp_logging.html?cp=SSAW57_8.5.5%2F3-17-0-0

9.1.1  Configuring the server for logging

By default, log entries are written to two text files (console.log and messages.log) in the 
following location:

${wlp.install.dir}/usr/servers/server_name/logs

This location can be changed by using the logDirectory attribute in the server.xml.

By default, the console.log file contains audit-level messages. The consoleLogLevel attribute 
can be used to change this level. The valid values are INFO, AUDIT, WARNING, ERROR, and 
OFF. 

The messages.log file contains all messages that are written or captured by the logging 
component. This log also contains time stamps and the issuing thread ID. The name of this 
file can be changed with the messageFileName attribute. 

The logging can be controlled through the server configuration. Log files can be set to a 
maximum file size using the maxFileSize attribute. When that size is reached, the log rolls 
over to a new log file. The maxFiles attribute determines how many of each log file are 
kept. By default, a size limitation on the log file is not enforced.

Example 9-1 shows an example of specifying the logging properties in the server.xml file.

Example 9-1   Logging properties in a server.xml file

<logging logDirectory=”/serverlogs/testserver1” />

For documentation of messages, see the IBM Knowledge Center at the following website:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.m
ultiplatform.doc/ae/rwlp_messages.html?cp=SSAW57_8.5.5%2F3-17-0-7

9.1.2  Enabling tracing

Tracing can be enabled for a server. The trace entries are configured by using the 
traceSpecification attribute. The default trace level is *=info.

Trace entries are written to the trace.log file. The trace.log file is only created if additional or 
detailed trace is enabled in the server.xml file. The name of the file can be changed with the 
traceFileName attribute.
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The server trace can expose sensitive data when tracing untyped data, such as bytes 
received over a network connection. The suppressSensitiveTrace attribute, when set to true, 
prevents potentially sensitive information from being exposed in log and trace files. The 
default value is false.

The traceFormat attribute controls the format of the trace log. The default format for Liberty 
is ENHANCED. You can also use BASIC and ADVANCED formats as in the full profile.

Example 9-2 shows how to specify trace settings to trace an application in the server.xml 
file.

Example 9-2   Settings in the server.xml file to trace an application

<logging traceSpecification="*=audit:com.myco.mypackage.*=debug"
traceFileName="trace.log"
maxFileSize="20"
maxFiles="10"
traceFormat="BASIC"/>

9.1.3  Using the WebSphere developer tools to configure logging and trace

The logging and trace settings can also be configured from the WebSphere developer tools. 
Use the following steps to complete that process:

1. In the Servers view, double-click Server Configuration to open the server.xml file.

2. Click Add to add a new element in the configuration. Select Logging.

3. With Logging selected in the configuration list, use the Logging Details panel to configure 
the settings (shown in Figure 9-1).

Figure 9-1   Configuring logging and tracing with the WebSphere developer tools
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9.2  Binary log and trace

Binary logging is a high performance log and trace facility based on the full profile High 
Performance Extensible Logging (HPEL) technology. 

Binary logging provides a convenient mechanism for storing and accessing log, trace, 
System.err, and System.out information produced by the application server or your 
applications. It is an alternative to the default log and trace facility, which provides the JVM 
logs and diagnostic trace files commonly named messages.log and trace.log.

9.2.1  Log data repository

The log data repository is a storage facility for log records. Log data is typically intended to be 
reviewed by administrators. The log data repository includes information from the following 
sources:

� Applications logging

� Server logging in System.out or System.err

� OSGi logging service at level LOG_INFO or higher (including LOG_INFO, LOG_WARNING, and 
LOG_ERROR)

� java.util.logging at level Detail or higher (including Detail, Config, Info, Audit, Warning, 
Severe, Fatal, and any custom levels at level Detail or higher)

9.2.2  Trace data repository

The trace data repository is a storage facility for trace records. Trace data is typically intended 
for use by application programmers or by the WebSphere Application Server support team. 
Trace data includes information from the following sources:

� Applications logging
� OSGi logging service at level LOG_DEBUG 
� Server write to java.util.logging at levels below level Detail (including Fine, Finer, 

Finest, and any custom levels below level Detail).

9.2.3  Log and trace performance

Binary logging has a better performance than the default log and trace facility. One result is 
when using Binary logging the application server can run with trace enabled causing less 
impact to performance than tracing the same components using the default log and trace 
framework. Another result is that applications that frequently write to the logs can run faster 
when using binary logging.

Log and trace events are each stored in only one place
Log events, System.out, and System.err are stored in the log data repository. Trace events 
are stored in the trace data repository. Storing each type of event in only one location ensures 
that performance is not wasted on redundant data storage (shown in Figure 9-2 on 
page 165).
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Figure 9-2   Location of where binary logging saves logs

To learn more about configuring the binary logging service, see the IBM Knowledge Center at 
the following website:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.d
oc/ae/twlp_confHPEL.html?cp=SSAW57_8.5.5%2F1-0-2-10-1

9.2.4  Configuring binary logging

To enable binary logging to capture activity during server start, include the binaryLogging-1.0 
feature in bootstrap.properties, as shown in Example 9-3. This enables logging while the 
server configuration files are processed.

Example 9-3   Configuration of the binary logging using the bootstrap.properties

# Enable Binary Logging HPEL
websphere.log.provider=binaryLogging-1.0

If you only need to enable logging for activity that occurs after start, enable binary logging in 
server.xml as shown in Example 9-4. In this example, the log content is set to expire after 96 
hours and the trace content is configured to retain a maximum of 1024 MB of data. 

Example 9-4   Configuration of the binary logging parameters using the server.xml

<!-- Enable Binary Logging in server.xml -->
<server description="new server">

    <logging>
        <binaryLog purgeMinTime="96"/>
        <binaryTrace purgeMaxSize="1024"/>
    </logging>

</server>

Options, like time expiration and size of binary database, can be set in server.xml or in the 
bootstrap.properties. 

Note: The console log should use consoleLogLevel=OFF where logging performance is 
important because all log and trace is already stored in the logdata and tracedata 
repositories. The console log is still used for anything the console writes to native stderr 
and stdout.
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Depending on what is to be monitored, use the following parameters in Table 9-1 to configure 
binary logging. If you prefer to see the detailed logs on run time, make a change after the 
server load, for this configuration and use the server.xml. It is easier to manage and does not 
require a reboot for the changes to take effect. If you prefer to see detailed logs include a 
code that runs during the server load, such as a feature module, bootstrap.properties is the 
correct choice. Because bootstrap.properties is read once before the server.xml, when 
server.xml starts to be read, binary logging parameters are already defined.

A table with the definitions to server.xml and bootstrap.properties is provided in Table 9-1.

Table 9-1   Binary logging attributes of server.xml and the equivalent properties of bootstrap.properties

Example 9-4 on page 165, if defined in bootstrap.properties, appears as noted here in 
Example 9-5.

Example 9-5   Example of binary logging configuration in bootstrap.properties

# Enable Binary Logging HPEL in bootstrap.properties with options
websphere.log.provider=binaryLogging-1.0

com.ibm.hpel.log.purgeMinTime=96
com.ibm.hpel.trace.purgeMaxSize=1024

Note: Enabling the binaryLogging requires a restart of Liberty.

Logging subelement Attribute Equivalent bootstrap.properties 
property

binaryLog purgeMaxSize

purgeMinTime

fileSwitchTime

bufferingEnabled

outOfSpaceAction

com.ibm.hpel.log.purgeMaxSize 

com.ibm.hpel.log.purgeMinTime 

com.ibm.hpel.log.fileSwitchTime 

com.ibm.hpel.log.bufferingEnabled 

com.ibm.hpel.log.outOfSpaceAction

binaryTrace purgeMaxSize

purgeMinTime

fileSwitchTime

bufferingEnabled

outOfSpaceAction

com.ibm.hpel.trace.purgeMaxSize

com.ibm.hpel.trace.purgeMinTime 

com.ibm.hpel.trace.fileSwitchTime 

com.ibm.hpel.trace.bufferingEnabled

com.ibm.hpel.trace.outOfSpaceAction

Note: After binary logging is enabled, the only text file that continues to receive updates is 
console.log. If you want to trail your logs or trace, you can use the binaryLog 
command-line tool with the --monitor option. For example, consider using 
com.ibm.websphere.logging.hpel API to read the log data and trace data repositories.
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To learn more about configuring the binary logging parameters, see the IBM Knowledge 
Center at the following website:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.d
oc/ae/twlp_confHPEL.html?cp=SSAW57_8.5.5%2F1-0-2-10-1

9.2.5  Using the WebSphere developer tools to configure binary logging 
and trace

The logging and trace settings can be configured from the WebSphere developer tools. Use 
the following steps to complete that process:

1. In the Servers view, double-click Server Configuration to open the server.xml file.

2. Click Add to add an element in the configuration. Select Logging.

3. Select the new Logging in the list and click Add again. Select Binary Log or Binary 
Trace, as shown in Figure 9-3 and click OK.

Figure 9-3   Configuring binary logging and tracing with the WebSphere developer tools
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4. With Binary Log selected in the configuration list, use the Binary Log Details panel to 
configure the settings, as shown in Figure 9-4.

Figure 9-4   Configuring binary logging

5. Select Binary Trace and configure the settings.

9.2.6  Reading logs with the binaryLog command

Use the binaryLog command to view or copy the contents of a binary logging repository, or 
list the available server process instances in the repository. The binaryLog command is 
equivalent to the logViewer command in the profile bin directory of the full profile application 
server.

The binary log and trace facility writes to a repository in a binary format. You can view, query, 
and filter the repository by using the binaryLog command. The binaryLog command provides 
options for quickly converting repository contents into text in various formats, such as basic 
and advanced formats. The command also provides options to make acquiring the data you 
need from the logs easier. For example, it allows you to filter what log records you want by 
level, logger name, date, and time.

Example 9-6 shows the command syntax formula

Example 9-6   Command syntax formula

binaryLog action {serverName | repositoryPath} [options]

The following list defines the terms used in syntax formula that is shown in Example 9-6:

� serverName: Specify the name of a Liberty server with a repository from which to read. 
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� repositoryPath: Specify the path to a repository from which to read. This is typically the 
directory that contains the logdata and tracedata directories.

If serverName or repositoryPath are not specified on the command line, the task is 
performed against the default server instance, defaultServer, if it exists.

� binaryLog action: The value of options is different based on the value of action. 
Following are some action parameters that can be engaged:

– view: Read a repository, optionally filter it, and create a human-readable version.

– copy: Read a repository, optionally filter it, and write the contents to a new repository.

– listInstances: List the server process instances in the repository.

A server instance is the collection of all log or trace records written from the time a 
server is started until it is stopped.

The binaryLog command outputs are placed in /bin directory inside the Liberty server root.

Examples
The following list notes several examples and the syntax used to enact that listed option:

� Display all events in the defaultServer repository between July 19th, 2013 and 
August 2nd, 2013:

binaryLog view --minDate=07/19/13 --maxDate=08/02/13

� Display new events from server myServer, whose specified level is WARNING or higher, by 
using the advanced format as the server writes them to the log repository:

binaryLog view myServer --monitor --minLevel=WARNING --format=advanced

� View log messages from a repository at /apps/server1/logs; include only those that were 
written to the error stream of a specific repository:

binaryLog view /apps/server1/logs --includeLogger=SystemErr 

� View events from the defaultServer repository that occurred before June 14th, 2015 4:28 
PM eastern daylight time:

binaryLog view --maxDate="06/14/15 16:28:00:000 EDT" 

� Write events from the defaultServer repository that contains a 'thread' extension with 
value 'Default Executor-thread-4':

binaryLog view --includeExtension=thread="Default Executor-thread-4" 
--format=advanced

� View the list of server instances in the defaultServer repository:

binaryLog listInstances 

A list of instances is shown in Example 9-7.

Example 9-7   Return of the binaryLog listInstances command

Using D:\wlp\usr\servers\defaultServer\logs as repository directory.

Instance ID                  Start Date
1358809441761                1/21/15 18:04:01:761 EST
1358864476191                1/22/15 9:21:16:191 EST
1358869523192                1/22/15 10:45:23:192 EST
1358871281166                1/22/15 11:14:41:166 EST
1358879829000                1/22/15 13:37:09:000 EST
1358892222067                1/22/15 17:03:42:067 EST
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� View events from the defaultServer by using one of the instance IDs from Example 9-7 on 
page 169:

binaryLog view --includeInstance=1358871281166

� Copy events from the defaultServer, whose specified level is WARNING or higher, from the 
latest server instance to a new repository at /opt/wpl/toSupport directory:

binaryLog copy defaultServer /opt/wpl/toSupport --minLevel=warning 
--includeInstance=latest

To learn more about configuring the binarylog command, see the IBM Knowledge Center at 
the following website:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.d
oc/ae/rwlp_logviewer.html?cp=SSAW57_8.5.5%2F1-0-2-10-0

9.3  Creating a dump of a Liberty server

To capture the state information of a Liberty server, use the dump command. It can be useful 
for problem diagnosis of a Liberty server. The file that the dump command generates contains 
server configuration, log information, and details about the deployed applications. Also, It can 
be used against a running or stopped server; however, if the server is running, the following 
additional information is gathered:

� State of each OSGi bundle in the server
� Wiring information for each OSGi bundle in the server
� Component list managed by the Service Component Runtime (SCR)
� Detailed information about each component from SCR

Example 9-8 shows the running of a dump command.

Example 9-8   Running the server dump command

server dump server1 --archive=/opt/wpl/dump/server1_dump.zip

You can also create a server dump of the Liberty server by using the WebSphere developer 
tools from the menu for the server in the Servers view.

Tip: The binaryLog tool is able to filter log and trace data most efficiently when used with 
the following filter options:

� --minDate
� --maxDate
� --includeThread
� --minLevel
� --maxLevel
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9.4  Event logging

As part of the monitoring and diagnostic capabilities, Liberty generates events at various 
components of Java Platform, Enterprise Edition to track the requests. The eventLogging-1.0 
feature logs such events when the application requests are running. By using this feature, the 
user can track the requests that are running in Liberty. Each request is associated with a 
unique correlator called the request ID and the context information that helps the user to 
understand the request-specific data.

The event logging feature is controlled through the server configuration. This feature is 
configured in the server.xml file, and the default attributes for event logging can also be 
overridden using the server.xml, shown in Example 9-9.

Example 9-9   server.xml

<featureManager>
<feature>eventLogging-1.0</feature>

</featureManager>
<eventLogging minDuration="10ms" />

To learn more about overriding the default attributes, see the IBM Knowledge Center at the 
following website:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.d
oc/ae/rwlp_feature_eventLogging-1.0.html?lang=en

Parsing the event log entries in the messages.log file
The event logs capture the information of the events in the following format, shown in 
Example 9-10.

Example 9-10   Messages.log file

[Log mode] [Request Identifier] # [Event Type] # [Context Information] # 
[Duration] (optional)

The following list defines the terms used in Example 9-10:

� Log mode indicates whether the log was recorded at the entry to the event or the exit from 
the event. BEGIN refers to the entry to the event and END refers to the exit from the event.

� Request identifier is a unique string that is assigned to each request. This can be used 
for filtering events that belong to a particular request. 

� Event type provides information about the event source. The event type can be used for 
filtering events of a specific type.

� Context information of the event provides details relevant to the event type. The 
information varies depending on the event type. Context information can contain multiple 
sections and are separated by | (space|space).

� Duration indicates the time that is taken by the event. The duration appears only in the exit 
event entries.
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9.5  Request timing

The requestTiming-1.0 feature provides diagnostic information when the duration of any 
request exceeds the configured threshold, shown in Example 9-11.

Example 9-11   requestTiming-1.0 feature

<featureManager</>
    <feature/>requestTiming-1.0</feature>
</featureManager>

The request timing feature can track the duration of every request that is coming into the 
system. You can configure the feature to watch for slow and hung requests, as shown in 
Example 9-12.

Example 9-12   Configure requestTiming feature

<requestTiming
 includeContextInfo="true"
 slowRequestThreshold="10s"
 hungRequestThreshold="600s"
 sampleRate="1"
/>

The following list defines the terms that are shown in Example 9-12:

� includeContextInfo indicates if the context information details are included in the log 
output. The default is true.

� slowRequestThreshold is the duration of time that a request can run before being 
considered slow. The default is 10 seconds. You can set to 0 to disable slow request 
checking.

� hungRequestThreshold is the duration of time that a request can run before being 
considered hung. The default is 10 minutes. You can set to 0 to disable hung request 
checking.

� sampleRate is the rate at which the sampling should happen for the slow request tracking. 
The default is every request (1).
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Chapter 10. Intelligent Management

In this chapter, you are introduced to the Intelligent Management capabilities of Liberty.

The following topics are covered:

� Introduction to Intelligent Management
� Dynamic routing
� Auto scaling
� Maintenance mode
� Health management

10
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10.1  Introduction to Intelligent Management

Intelligent Management provides a virtualized infrastructure that redefines the traditional 
concepts of Java Platform, Enterprise Edition resources and applications, and their 
relationships. This application infrastructure virtualization allows the product to automate 
operations in an optimal manner, increasing the quality of service. Intelligent Management 
extends the quality of service that is provided by your middleware environment. In short, you 
experience the benefits of an autonomic middleware environment, which is self-configuring, 
self-protecting, and self-optimizing.

Intelligent Management for Liberty includes the following primary features:

� Dynamic routing 

Routes HTTP requests automatically to the active Liberty servers in a collective.

� Auto scaling 

Starts, stops, or creates Liberty servers in clusters automatically, based on scaling policies

� Health management 

Allows you to specify conditions to watch for and diagnostic actions to automatically take 
when the conditions are observed. You can monitor the status of your application servers, 
sense problem areas, and then respond to these problem areas before an outage occurs. 

� Maintenance mode 

Allows you to prevent the disruption of client requests by routing client traffic that is 
targeted for a server that is in maintenance mode to another server.

It is important to note that the Intelligent Management features in Liberty V8.5.5.7 are only a 
subset of the Intelligent Management features in WAS Classic V8.5.5.

10.2  Dynamic routing

Routing of web requests to servers in a Liberty collective is done by using a web server with 
the WebSphere plug-in. With static routing, the information used to route requests is read 
from a plug-in configuration file. The routing information in the file contains the endpoint 
information of the servers in the collective. The routing information for each server is 
generated by invoking an administrative MBean method on each server. For multiple servers, 
the routing information for the WebSphere plug-in must be merged. The WebSphere Plug-in 
detects when a server or application is unavailable, when communication errors occur with 
the server or application. This topology becomes more complicated as servers or applications 
are added. The routing information in the file must be regenerated for each change. The 
changes must then be merged into the configuration file that is provided to the WebSphere 
plug-in. 

The dynamicRouting-1.0 feature enables routing of HTTP requests to members of Liberty 
collectives without having to regenerate the WebSphere plug-in configuration file when the 
environment changes. When servers, cluster members, applications, or virtual hosts are 
added, removed, started, stopped, or modified, the new information is dynamically delivered 
to the WebSphere plug-in. Requests are routed based on up-to-date information. 

Figure 10-1 on page 175 shows an example of a dynamic routing topology. 
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Figure 10-1   Dynamic routing topology

Collective members publish member-specific routing information to the collective controller. 
The controller uses the published information to create and maintain the routing information 
for the collective. The controller delivers the routing information to the plug-in as the routing 
configuration or state changes. As new controllers with the dynamic routing feature enabled 
are added to the collective, the new controller information is also delivered to the plug-in. The 
plug-in can use the new controllers to fail over to if the original controller becomes unavailable.

The dynamic routing service maintains the current routing information for all of the 
applications in the collective. The Intelligent Management-enabled WebSphere plug-in 
connects to the dynamic routing service and the service delivers up-to-date routing 
information to the plug-in. As the servers and applications in the collective change, the new 
routing information is delivered to the plug-in. The plug-in then routes requests successfully 
into the changed topology. The dynamic routing service also delivers server and application 
start and stop events to the plug-in. 

The main benefit of dynamic routing is that routing information is maintained so that web 
requests are routed successfully as the routing topology changes. The plug-in does not have 
to use communication errors to determine whether an application or server is available. Also, 
the plug-in routing configuration file does not need to be maintained manually. This reduces 
the chances of error in the environment and saves administrative time.

10.2.1  Configuring dynamic routing

To use the dynamic routing feature, you need to configure the dynanamicRouting-1.0 feature 
in the server.xml file on the controller. The dynanamicRouting-1.0 feature provides the 
dynamic routing service.

To configure dynamic routing in your environment, use the following steps:

� Install and configure the Web Server Plug-in for WebSphere Application Server
� Configure a collective
� Configure the dynamic routing feature
� Generate the keystore and plug-in configuration files
� Configure the web server host
� Start the web server
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For more details about configuring a dynamic routing topology in your environment, use the 
following steps:

1. Install and configure the Web Server Plug-in for WebSphere Application Server

The first step is to install a web server that is supported by the Web Server Plug-in for 
WebSphere Application Server, such as the IBM HTTP Server. Then, download and install 
the IBM Installation Manager. To download and get more information about the IBM 
Installation Manager, see the following page: 

http://www.ibm.com/support/docview.wss?uid=swg27025142

You can use the Installation Manager to access online product repositories to install the 
Web Server Plug-in for WebSphere Application Server and the needed interim fix for the 
dynamic routing feature. The interim fix needed is APAR number PI27023.

2. Configure a collective

For details about configuring a collective, controller, and cluster, see Chapter 5, 
“Administering the WebSphere Liberty profile” on page 71. 

3. Configure the dynamic routing feature

Add the dynamicRouting-1.0 feature to the server.xml file on the controller as shown in 
Example 10-1. Ensure that you update the server.xml on each controller that you have in 
your topology.

Example 10-1   Adding the dynamicRouting feature

<featureManager>
<feature>collectiveController-1.0</feature>
<feature>dynamicRouting-1.0</feature>

</featureManager>

After the feature is added, start the controller.

4. Generate the keystore and plug-in configuration files

To generate the keystore and plug-in configuration files, you use the dynamicRouting 
setup command. The --host and --port arguments identify the collective controller that can 
process the command. The --user and --password arguments are the administrative user 
ID and password for authenticating with the controller. If you do not provide the password 
value on the command line, you are prompted to enter it when running the command. You 
also need to include details for the --pluginInstallRoot and --webServerNames arguments.

Example 10-2 shows an example of generating the keystore and plug-in configuration 
files. 

Example 10-2   Generating the keystore and plug-in configuration files

$ ./dynamicRouting setup --host=lexbz181072.lex.dst.ibm.com --port=9449 
--user=liberty --password= --keyStorePassword=liberty 
--pluginInstallRoot=/opt/IBM/WebSphere/Plugins --webServerNames=webserverITSO1
Enter password --password: 

Generating WebSphere plug-in configuration file for web server webserverITSO1

SSL trust has not been established with the target server.

Certificate chain information:
Certificate [0]
Subject DN: CN=lexbz181072.lex.dst.ibm.com, OU=controllerITSO1, O=ibm, C=us
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Issuer DN: OU=controllerRoot, O=b63a4192-885d-4c1b-b3de-6b4b4b0a5dc2, 
DC=com.ibm.ws.collective
Serial Number: 1,041,316,133,498,593
Expires: 8/24/20 3:35 PM
SHA-1 digest: 07:63:DA:7F:D3:4C:20:B8:E3:32:A7:31:5C:34:4B:B9:71:EF:28:53
MD5 digest: 9F:EC:27:81:CC:C1:A0:5A:32:57:FB:29:F4:95:4A:DA

Certificate [1]
Subject DN: OU=controllerRoot, O=b63a4192-885d-4c1b-b3de-6b4b4b0a5dc2, 
DC=com.ibm.ws.collective
Issuer DN: OU=controllerRoot, O=b63a4192-885d-4c1b-b3de-6b4b4b0a5dc2, 
DC=com.ibm.ws.collective
Serial Number: 1,041,305,392,743,106
Expires: 8/19/40 3:34 PM
SHA-1 digest: 06:3F:FC:23:66:B1:32:3D:12:E0:3B:86:D0:D9:CA:14:C6:B4:4E:9B
MD5 digest: 17:32:B6:6E:DC:9F:55:FB:EC:7D:86:C1:C7:51:17:0B

Do you want to accept the above certificate chain? (y/n) y
Successfully completed MBean request to the controller.
Successfully generated WebSphere plug-in configuration file plugin-cfg.xml
Generating keystore for web server webserverITSO1
Successfully completed MBean request to the controller.
Successfully generated keystore plugin-key.jks.

Generated WebSphere plug-in configuration file plugin-cfg.xml
for web server webserverITSO1.
Also generated keystore file plugin-key.jks that enables secure
communication between the Dynamic Routing service and
clients. The file contains personal certificate issued
to DN CN=liberty,OU=client,O=ibm,C=us. Ensure the liberty user exists in the
user registry and has a role assigned.
 If you are using quick start security, add the following line to
 the controller server.xml file and update the password:
   <quickStartSecurity user="liberty" password=""/>

 If you are using basic registry, add the following lines to
 the controller server.xml file and update the password:
   <basicRegistry id="basic" realm="ibm/api">
      <user name="liberty" password=""/>
   </basicRegistry>

   <administrator-role>
     <user>liberty</user>
   </administrator-role>

Copy the WebSphere plug-in configuration file to the directory specified
in the WebSpherePluginConfig directive in the IBM HTTP Server httpd.conf
file. Copy keystore file plugin-key.jks to a directory on the
web server host, and run "gskcmd" to convert the keystore to CMS format and
to set personal certificate as the default.
For example:

gskcmd -keydb -convert -pw <<password>> -db /tmp/plugin-key.jks -old_format jks 
-target /tmp/plugin-key.kdb -new_format cms -stash
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gskcmd -cert -setdefault -pw <<password>> -db /tmp/plugin-key.kdb -label 
default

Copy resulting /tmp/plugin-key.kdb, .sth, .rdb files to the directory 
/opt/IBM/WebSphere/Plugins/config/webserverITSO1/
$

You can see that the output of the command is the plug-in configuration file, 
plugin-cfg.xml, and a keystore containing a personal and signer certificates, 
plugin-key.jks. Both of the files are generated in the directory from where you ran the 
dynamicRouting setup command.

The details of the plugin-cfg.xml file are shown in Example 10-3. Note the 
<IntelligentManagement> element and details in the stanza. Included is information about 
the connector, which indicates the controller details. If you have multiple controllers, there 
will be a connector element for each controller.

Example 10-3   The plugin-cfg.xml configuration file

<?xml version="1.0" encoding="UTF-8"?><!--HTTP server plugin config file for web
serverITSO1 generated on 2015.08.27 at 11:34:32 EDT-->

<Config ASDisableNagle="false" AcceptAllContent="false" AppServerPortPreference=
"HostHeader" ChunkedResponse="false" FIPSEnable="false" IISDisableNagle="false" 
IISPluginPriority="High" IgnoreDNSFailures="false" RefreshInterval="60" Response
ChunkSize="64" SSLConsolidate="false" TrustedProxyEnable="false" VHostMatchingCo
mpat="false">
   <Log LogLevel="Error" Name="/opt/IBM/WebSphere/Plugins/logs/webserverITSO1/ht
tp_plugin.log"/>
   <Property Name="ESIEnable" Value="true"/>
   <Property Name="ESIMaxCacheSize" Value="1024"/>
   <Property Name="ESIInvalidationMonitor" Value="false"/>
   <Property Name="ESIEnableToPassCookies" Value="false"/>
   <Property Name="PluginInstallRoot" Value="/opt/IBM/WebSphere/Plugins/"/>
<!-- Configuration generated using httpEndpointRef=defaultHttpEndpoint-->
<!-- The default_host contained only aliases for endpoint defaultHttpEndpoint.

 The generated VirtualHostGroup will contain only configured web server 
ports:

webserverPort=80
webserverSecurePort=443 -->

   <Property Name="Keyfile" Value="/opt/IBM/WebSphere/Plugins/config/webserverIT
SO1/plugin-key.kdb"/>
   <Property Name="Stashfile" Value="/opt/IBM/WebSphere/Plugins/config/webserver
ITSO1/plugin-key.sth"/>
   <IntelligentManagement>

<Property name="webserverName" value="webserverITSO1"/>
<ConnectorCluster enabled="true" maxRetries="-1" name="default" retryInter

val="60">
<Property name="uri" value="/ibm/api/dynamicRouting"/>
<Connector host="lexbz181072.lex.dst.ibm.com" port="9449" protocol="https">
<Property name="keyring" value="/opt/IBM/WebSphere/Plugins/config/we

bserverITSO1/plugin-key.kdb"/>
</Connector>

</ConnectorCluster>
   </IntelligentManagement>
</Config>
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5. Configure the web server host

The last part of this configuration is to make all of the necessary files available to the 
WebSphere Plug-in the web server host. First, copy the generated plugin-cfg.xml and 
plugin-key.jks files to a temporary directory on the web server host.

Next, set up secure communication between the plug-in and the dynamic routing service. 
The keystore generated by the dynamicRouting setup command, plugin-key.jks, is not 
in a format that can be used by the WebSphere Plug-in. The generated file must be 
converted to a format that can be used by the plug-in, the CMS format. 

The gskcmd command is used to convert the keystore. The command is provided with the 
web server installation. Example 10-4 shows the gskcmd command.

Example 10-4   Example of the gskcmd

$ ./gskcmd -keydb -convert -db /tmp/IHS/plugin-key.jks -old_format jks -target 
/tmp/IHS/plugin-key.jks -new_format cms -stash -pw liberty -new_pw liberty
$

Copy both the plugin-cfg.xml file and all of the converted keystore files to the plug-in 
config directory. Finally, copy the plugin-cfg.xml to the directory specified in the 
WebSpherePluginConfig directive in the IBM HTTP Server (IHS) httpd.conf file. 

6. Start the web server

Start the web server and begin dynamically routing to the applications installed in the 
Liberty collective.

10.3  Auto scaling

Auto scaling provides an autonomic scaling capability of Liberty servers. Auto scaling 
provides JVM elasticity to clusters. With JVM elasticity, auto scaling features dynamically 
adjust the number of running Liberty servers in a cluster based on workload. As workload 
goes up, auto scaling starts cluster members. When workload goes down, auto scaling stops 
cluster members.

Auto scaling also provides Liberty elasticity to clusters. With Liberty elasticity, auto scaling 
features can install Liberty software onto a registered host and create a new server. The 
number of available servers grows when application demand is high and shrinks when 
application demand is low. Because support for Liberty elasticity includes support for JVM 
elasticity, auto scaling can also start or stop servers based on workload. 

To dynamically adjust the number of servers used to service your workload, auto scaling uses 
user-defined scaling policies with the current state of the cluster to determine whether a 
scaling action needs to occur. The machines that host the cluster members provide the data 
on the workload.

Auto scaling is a configurable feature that runs on top of the collective feature. When used in 
coordination with the dynamic routing feature, auto scaling can provide elasticity to clusters to 
support fluctuations in workload demands. 
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The auto scaling feature starts and stops servers or provisions new servers as needed to 
meet scaling policies. As the server state changes, dynamic routing ensures that requests are 
sent correctly to the available servers without requiring an administrator to update the routing 
configuration file. It offers a way to automate cluster monitoring, relieving you of the need to 
gauge how many servers are needed to support the application at any one time. In addition to 
automating this responsibility, auto scaling provides a concise and simple manner for 
managing cluster policy.

Figure 10-2 shows an example of the auto scaling and dynamic routing topology.

Figure 10-2   Auto scaling and dynamic routing topology

10.3.1  Auto scaling features

To set up an auto-scalable cluster, you need at least one collective controller with at least two 
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Collective controllers are required because they provide administration functionality that 
leverages the ability of the collective controller to manage the scaling controller. If replica sets 
are being used, all collective controller members must be scaling controllers. However, only 
one of the running scaling controllers can make decisions. When using replica sets if a 
controller is stopped, another running scaling controller takes over for it.

Scaling members
Scaling members are collective members. The scaling member monitors the resources within 
the server and its host and when needed, it sends this information back to the scaling 
controller. 

Scaling members are divided into two categories: host leaders and host followers. Host 
leaders are scaling members that are elected to talk to the scaling controller. Only one scaling 
member on a host is elected the host leader. All other members of the cluster then become 
host followers who simply monitor their resource usage and pass reports to the host leader. 
The host leader is the only scaling member that communicates with the scaling controller. 

All scaling member servers must belong to a cluster because all scaling policy information is 
applied at the cluster level. A cluster has a unique name within a Liberty collective. All Liberty 
servers that specify the same cluster name within the same collective are members of the 
same cluster. 

10.3.2  Scaling policies

Scaling policies allow you to control the scaling behaviors of clusters. Scaling policies are 
used by the scaling controller to determine when to start or stop members of a cluster. A 
cluster is scaled to meet a minimum or maximum number of servers per cluster or to meet 
resource demands of a cluster. 

Scaling can also happen based on the resource consumption of a cluster. The scaling 
policies allow you to set the minimum and maximum thresholds for server resources, such as 
CPU, memory, and heap. The scaling member sends the metric resource data to the scaling 
controller. If a cluster violates a metric that is defined in a scaling policy, the scaling controller 
reacts accordingly, starting a member if a maximum is breached, or stopping a member if 
usage drops below a minimum.

Scaling policies are defined in two ways:

� By using a built-in scaling policy
� Defining the <defaultScalingPolicy> or <scalingPolicy> elements in the server.xml file on 

the scaling controller

The built-in scaling policy
By default, a built-in scaling policy is embedded in the scaling controller. The built-in scaling 
policy indicates:

� A minimum of two cluster members, if available, are kept active. The minimum number 
might not be met if some or all of the members are exceeding the metric thresholds.

� An additional cluster member is started when the average CPU, heap, or memory use of 
all active members exceeds 90%.

� A cluster member is stopped when the average CPU and heap use drops below 30%. 
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Defining scaling policies, the <defaultScalingPolicy>
You can override the built-in scaling policy if needed by defining scaling policies in the 
server.xml file on the scaling controller. To override the built-in policy, use the 
<defaultScalingPolicy> element. The defaultScalingPolicy indicates the default policy to use 
for any auto-scaled cluster that does not have a specific scaling policy defined.

Example 10-5 shows an example of using the <defaultScalingPolicy> element. The 
<defaultScalingPolicy> element specifies only the attributes that it intends to overwrite. All 
other attributes are inherited from the built-in scaling policy. In this example, the minimum and 
maximum number of scaling members for a cluster is set. The controller uses this information 
to ensure that the number of running servers falls within this bound. 

Example 10-5   The defaultScalingPolicy

<scalingDefinitions>
<defaultScalingPolicy enabled=“true” min=“2” max=“3”/>

</scalingDefinitions> 

The enabled value is set to true, which tells the scaling controller to use this policy. Setting 
the enabled value to false prevents the scaling controller from making scaling decisions.

The policy requires at least two members be running and no more than three should be 
running. If only one scaling member is started, the controller starts another member. If the 
maximum number is three and four members are started, the controller stops one member of 
the cluster to meet the maximum. 

The thresholds for CPU, heap, and memory metrics are inherited from the built-in scaling 
policy. When the average CPU, heap, or memory use of all active members exceeds 90%, 
start a member. When the average CPU and heap use drops below 30%, stop a member.

Defining scaling policies, the <scalingPolicy>
You can also override the built-in policy by using the <scalingPolicy> element. The 
<scalingPolicy> element provides fine-grained control of each cluster’s scaling policy. The 
thresholds defined in the policy are targeted at a specific cluster or clusters by using the 
<bind> element. In addition, the metric policy for a <scalingPolicy> element must be defined, 
or they will not exist. This allows granular control of which metrics are analyzed when making 
scaling decisions.

Example 10-6 shows a scaling policy defined in the server.xml file where the <scalingPolicy> 
element is used. 

Example 10-6   The scalingPolicy

<scalingDefinitions>
<scalingPolicy enabled=“true” min=“2” max=“3”>

<bind cluster=”ITSOCluster”>
<metric name=”cpu” min=”30” max=”80” />

</scalingPolicy>
</scalingDefinitions

The policy is targeted to the ITSOCluster and indicates a CPU metric, with a minimum of 30% 
and maximum of 80% CPU usage. A member is started when the average members CPU 
resource use exceeds 80% and the member is stopped when the average is less than 30%. 
Heap and memory metric data are not used in the scaling decisions by the scaling controller. 
Also, the minimum number of members that should be running is two and the maximum is 
three members.
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Figure 10-3 shows an example of a scaling policy in use in Java virtual machine (JVM) 
elasticity. In this example, a cluster member processes requests from a web server. 
Eventually, the traffic becomes heavy enough to cause it to violate the CPU threshold, 
triggering a message containing the metrics data to be sent to the scaling controller. The 
scaling controller, noticing that the member has violated the upper threshold, starts another 
cluster member to balance the load of requests. With another member started, the CPU of 
both members stabilizes to something reasonable.

Figure 10-3   Scaling policies and JVM elasticity

Figure 10-4 shows an example of a policy in use in Liberty elasticity. In this example, two 
cluster members are processing requests from a web server. Again, the traffic becomes 
heavy enough to cause a violation in the CPU threshold, triggering a message containing the 
metrics data to be sent to the scaling controller. The scaling controller, noticing that the 
members have violated the upper threshold, starts another cluster member to balance the 
load of requests. With another member started, the CPU of all members stabilizes to 
something reasonable.

Figure 10-4   Scaling policies and Liberty elasticity
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10.3.3  Configuring auto scaling for JVM elasticity

When you configure JVM elasticity, the scaling controller can start or stop Liberty servers 
based on resource use and scaling policies. There is no provisioning of new servers.

To configure auto scaling in your environment, use the following steps:

� Configure a controller, collective, replica set, and cluster
� Configure the scaling controller feature
� Configure the scaling member feature
� Define a policy
� Start the members, if needed, and enable more policies

For more details about configuring an auto scaling topology in your environment, use the 
following steps:

1. Configure a controller, collective, replica set, and cluster

Configure and start a controller and if needed, a replica set. Create a collective, add 
members, and create any needed clusters.

For details about configuring a controller, collective, replica set, and clusters, see 
Chapter 5, “Administering the WebSphere Liberty profile” on page 71. 

2. Configure the scaling controller feature

Add the scalingController-1.0 feature to the server.xml file on the controller, as shown in 
Example 10-7. Ensure that you update the server.xml on each controller that you have in 
your topology.

Example 10-7   Adding the scalingController-1.0 feature

<featureManager>
<feature>collectiveController-1.0</feature>
<feature>scalingController-1.0</feature>

</featureManager>

<scalingDefinitions>
    <defaultScalingPolicy enabled=“false” min=“2” max=“4”/>
</scalingDefinitions> 

Because Liberty configuration is dynamic, when you add the scaling controller feature, the 
default scaling policy takes effect and you might get unexpected results. For example, the 
default policy has a minimum of two servers. When you save the server.xml file, the 
scaling controller attempts to start two servers. For this reason, it is best to disable the 
default scaling policy while configuring auto scaling.

Example 10-8 shows an example of the messages that appear in the messages.log file for 
the controller if the scaling policy is enabled. If the scaling policy is enabled=false, the 
messages do not appear in the messages.log file.

Example 10-8   Details from the messages.log file

[ ] 00000032 com.ibm.ws.imf.apc.IMContainerGroupImpl                      I 
CWWKV0405I: The scaling controller cannot meet the minimum instances for 
cluster ITSOCluster because too few scaling members are defined.
[ ] 00000138 com.ibm.ws.imf.apc.IMContainerGroupImpl                      I 
CWWKV0404I: The scaling controller cannot increase the number of servers in 
cluster ITSOCluster because it cannot find a host with the capacity to add a 
server.
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After adding the scaling controller feature, examine the messages.log file to ensure that 
the feature is installed and activated. Look for the message that indicates the server is 
selected to be the primary scaling controller. See Example 10-9.

Example 10-9   Output from the messages.log file

[ ] 00000031 com.ibm.ws.scaling.controller.internal.ScalingControllerImpl I 
CWWKV0100I: The ScalingController feature is activated.
[ ] 00000031 ws.collective.singleton.internal.SingletonServiceManagerImpl I 
CWWKX1002I: Singleton service ScalingControllerSingletonService for scope 
collective is created.
[ ] 00000031 om.ibm.ws.collective.singleton.internal.SingletonServiceImpl I 
CWWKX1019I: The local singleton candidate is elected leader: 
host=lexbz181072.lex.dst.ibm.com; userdir=/opt/IBM/WebSphere/Liberty/usr/; 
server=controllerITSO1; port=9449; service=ScalingControllerSingletonService; 
scope=collective
[ ] 00000031 com.ibm.ws.scaling.controller.messaging.ControllerHaService  I 
CWWKV0102I: This server is elected to be the primary scaling controller.
[ ] 00000031 com.ibm.ws.scaling.manager.stack.internal.StackManagerImpl   I 
CWWKV0302I: The existing stacks are []

3. Configure the scaling member feature

To make a collective member a dynamic cluster member, add the clusterMember-1.0 and 
scalingMember-1.0 features to the server.xml file to all collective members that you want 
the scaling controller to control, as shown in Example 10-10. 

Example 10-10   Adding the member features

<featureManager>
<feature>collectiveMember-1.0</feature>
<feature>clusterMember-1.0</feature>
<feature>scalingMember-1.0</feature>

</featureManager>

<hostSingleton name=”ScalingMemberSingletonService” port=”30003” />

Each scaling member needs to define a <hostSingleton> element in the server.xml. The 
<hostSingleton> element needs to include a hostSingleton name, in this case 
ScalingMemberSingletonService and a port number, such as 30003. You can indicate any 
port number if the port number is unique on the host computer. All scaling members on the 
same host must use the same hostSingleton port. The port is used as a synchronization 
mechanism to elect the host leader.

If the server is not started when you add the features and the hostSingleton element, you 
must start it manually for the scaling controller to recognize the added features. Examine 
the messages.log file for the controller for a CWWKV0121I message. The message 
indicates that the controller recognizes the scaling member.

Only one scaling member per host communicates with the scaling controller. The first 
scaling member to connect to the ScalingMemberSingletonService is elected as the host 
leader. If the host leader stops, another scaling member takes over as the host leader by 
an election process that is arbitrated by the scalingMemberSingletonService. 

Examine the messages.log file on the scaling member to verify that the features are 
activated. You should see that the features are activated, the 
ScalingMemberSingletonService is elected the host leader, and the messenger 
connection goes to the scaling controller. 
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Example 10-11 shows the details from the messages.log file.

Example 10-11   Details from the messages.log file

[ ] 00000020 ws.collective.singleton.internal.SingletonServiceManagerImpl I 
CWWKX1002I: Singleton service ScalingMemberSingletonService for scope host is 
created.
[ ] 00000021 om.ibm.ws.collective.singleton.internal.SingletonServiceImpl I 
CWWKX1019I: The local singleton candidate is elected leader: 
host=lexbz181072.lex.dst.ibm.com; userdir=/opt/IBM/WebSphere/Liberty/usr/; 
server=serverITSO1; port=9448; service=ScalingMemberSingletonService; 
scope=host
[ ] 00000021 com.ibm.ws.scaling.member.internal.ScalingMemberImpl         I 
CWWKV0203I: Server host=lexbz181072.lex.dst.ibm.com; 
userdir=/opt/IBM/WebSphere/Liberty/usr/; server=serverITSO1; port=9448; 
service=ScalingMemberSingletonService; scope=host is elected as the host 
leader.
[ ] 00000020 com.ibm.ws.scaling.member.internal.ScalingMemberImpl         I 
CWWKV0200I: The ScalingMember feature is activated.

If you are using the Admin Center, you can examine the status of the scaling member. 
Figure 10-5 shows the details for serverITSO1 and that the server is auto scaled as noted 
by the identifier Auto scaling policy. The server is also a member of the cluster 
ITSOCluster.

Figure 10-5   Auto scaling policy visual identifier in the Admin Center

4. Define a policy

In this example, all collective members are stopped before the policy is created. However, 
it is not a requirement to stop the collective members before you create a policy. 

Example 10-12 shows an updated defaultScaling policy in the server.xml file on the 
controller. Ensure that you update the server.xml on each controller that you have in your 
topology.

Example 10-12   Updating the defaultScalingPolicy

<scalingDefinitions>
    <defaultScalingPolicy enabled=“true” min=“2” max=“4”/>
</scalingDefinitions> 

5. Start the members, if needed, and enable more policies

In the scenario used in this section, the defaultScalingPolicy was modified to 
enabled=true. This causes the scaling controller to immediately evaluate the policy. 
Because the policy indicates a minimum of two servers started, the scaling controller 
starts the scaling members serverISTO1 and serverISTO2. Example 10-13 on page 187 
shows the details from the messages.log file.
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Example 10-13   Output from the messages.log file

[ ] 0000051f com.ibm.ws.scaling.controller.internal.ScalingExecutorImpl   I 
CWWKV0112I: The scaling controller has successfully started server serverITSO2 
on host lexbz181072.lex.dst.ibm.com.
[ ] 0000053c ctive.repository.internal.metadata.AdminMetadataEventHandler I 
CWWKX9068I: Administrative metadata for resource 
lexbz181072.lex.dst.ibm.com,%2Fopt%2FIBM%2FWebSphere%2FLiberty%2Fusr,serverITSO
2,Sample1 was removed from the collective repository.
[ ] 0000053c ctive.repository.internal.metadata.AdminMetadataEventHandler I 
CWWKX9068I: Administrative metadata for resource 
lexbz181072.lex.dst.ibm.com,%2Fopt%2FIBM%2FWebSphere%2FLiberty%2Fusr,serverITSO
2,snoop was removed from the collective repository.
[ ] 00000523 com.ibm.ws.scaling.controller.internal.ScalingExecutorImpl   I 
CWWKV0112I: The scaling controller has successfully started server serverITSO1 
on host lexbz181072.lex.dst.ibm.com.

Next, if needed, you can create or modify scaling policies.

10.3.4  Configuring auto scaling for Liberty elasticity

When you configure Liberty elasticity, the scaling controller can provision new servers and 
start or stop Liberty servers based on resource use and scaling policies. When provisioning a 
new server, the new server is auto-deployed on available hosts that are registered with the 
collective controller.

With Liberty elasticity, it can deploy the Liberty runtime, Java runtime environment (JRE), and 
Liberty server packages.

To configure auto scaling for Liberty elasticity in your environment, use the following steps:

� Configure a collective to support JVM elasticity
� Configure the dynamic cluster members
� Create packages for deploying to new hosts
� Provide packages to the collective controller to deploy onto a host
� Register each target host with a scaling controller
� Configure a scaling policy

For more information about configuring auto scaling for Liberty elasticity, see the following 
web page:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.m
ultiplatform.doc/ae/twlp_autoscale_configlibertyelast.html?lang=en

10.4  Maintenance mode

Periodic product maintenance is important to keep your system environment working 
correctly, and to avoid trouble caused by known issues. At some point, you might have a 
problem with a host or server and need to run diagnostic tests to troubleshoot a specific host 
or server. These situations can lead to the disruption of client requests to servers in your 
environment.

You can administratively put a host or a server into maintenance mode. In fact, you should set 
maintenance mode before you even begin to perform any diagnostic tests, maintenance, or 
tuning on a host or server. 
Chapter 10. Intelligent Management 187

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_autoscale_configlibertyelast.html?lang=en


You can put a server into maintenance mode when you need to perform server-level problem 
determination. When a server is placed into maintenance mode, you stop routing HTTP 
requests to the server. By default, the web server continues to send requests with affinity to a 
server in maintenance mode. However, you can break affinity to a server and cause requests 
with affinity to be routed to other servers. When a server that is a scaling member is in 
maintenance mode, the scaling controller cannot start or stop that server. Also, the server 
does not count toward the minimum or maximum running instance settings for the dynamic 
cluster.

When a host is placed into maintenance mode, it places all of the servers on the host into 
maintenance mode. The host maintenance mode allows you to put a host into maintenance 
mode when you need to apply operating system fixes or other fixes. When a host is in 
maintenance mode, the scaling controller cannot provision a new server on that host.

You can configure maintenance mode either by using the command line or by using the 
Admin Center. Placing a server into maintenance mode is a persistent change. The host or 
server remains in maintenance mode until you disable it.

10.4.1  Configuring maintenance by using the command line

When configuring maintenance mode by using the command line, there are three actions on 
the collective command that you can use:

� enterMaintenanceMode
� exitMaintenanceMode
� getMaintenanceMode

Example 10-14 shows the syntax for the enterMaintenanceMode command.

Example 10-14   Command syntax for enterMaintenanceMode

$ ./collective enterMaintenanceMode 
  --host=controllerHostName
  --port=controllerHttpsPortNumber
  --user=adminUser
  --password=adminPassword
  --hostName=serverHostName
 [--usrDir=serverUserDirectory]
 [--server=serverName]
 [--break]
 [--force]
 [--autoAcceptCertificates]

The --host and --port arguments identify the collective controller that can process the 
command. The --user and --password arguments are the administrative user ID and 
password for authenticating with the controller. If you do not provide the password value on 
the command line, you are prompted to enter it when running the command. All of these 
arguments are required.

The --hostName, --usrDir, and --server arguments identify the server to be put into 
maintenance mode. If you want to put a host and its servers into maintenance mode, provide 
the --hostName argument only and omit the --usrDir and --server arguments.
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Configuring maintenance mode for a server
The server serverITSO1 on the host lexbz181072.lex.dst.ibm.com is put into maintenance 
mode as shown in Example 10-15. Because the password argument is empty, you are 
prompted to enter the password. You are also prompted to accept the certificate.

Example 10-15   Output of enterMaintenanceMode for serverITSO1

$ ./collective enterMaintenanceMode --host=lexbz181072.lex.dst.ibm.com --password 
--port=9449 --user=liberty --hostName=lexbz181072.lex.dst.ibm.com --password 
--usrDir=/opt/IBM/WebSphere/Liberty/usr --server=serverITSO1
Enter password --password: 

SSL trust has not been established with the target server.

Certificate chain information:
Certificate [0]
Subject DN: CN=lexbz181072.lex.dst.ibm.com, OU=controllerITSO, O=ibm, C=us
Issuer DN: OU=controllerRoot, O=88f53048-e416-4401-9bf5-fc23ab68fa84, 
DC=com.ibm.ws.collective
Serial Number: 958,970,498,256,025
Expires: 8/23/20 4:42 PM
SHA-1 digest: AF:72:AF:3F:A1:0C:3A:DF:C1:42:54:3F:37:30:78:96:60:11:1D:15
MD5 digest: A0:85:04:D9:62:11:73:39:FA:D5:B7:2F:3F:05:30:D2

Certificate [1]
Subject DN: OU=controllerRoot, O=88f53048-e416-4401-9bf5-fc23ab68fa84, 
DC=com.ibm.ws.collective
Issuer DN: OU=controllerRoot, O=88f53048-e416-4401-9bf5-fc23ab68fa84, 
DC=com.ibm.ws.collective
Serial Number: 958,959,416,359,026
Expires: 8/18/40 4:42 PM
SHA-1 digest: 4F:2F:26:D7:7B:61:88:96:D7:FB:5F:AD:0D:5E:CF:96:AC:95:CD:68
MD5 digest: 18:5F:55:F5:29:59:46:DC:35:88:55:23:CD:CB:94:BA

Do you want to accept the above certificate chain? (y/n) y
Successfully set maintenance mode for serverITSO1.

To see the details from the command, examine the messages.log file for the controller. In this 
example, controllerITSO1. Example 10-16 on page 190 shows the messages in the 
messages.log file regarding the enterMaintenanceMode command for serverITSO1. 

Note: All the examples in this section use the fully qualified domain name for the host 
name. In a production environment, you should always use the fully qualified domain 
name. 

A host can be registered with the collective under different names. It is important that the 
host name specified for the collective registerHost, updateHost, and unregisterHost be 
consistent with the host name used for the registered collective members. The 
defaultHostName attribute in the server.xml for the member controls the host name to 
which the server considers itself to belong. All collective commands must use the same 
host name as that used in the defaultHostName attribute in the server.xml file. 
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The option to maintain session affinity to server is set to true, which is the default setting. 
This means that the web server continues to send requests with affinity to this server that is 
now in maintenance mode.

Example 10-16   Details from the messages.log file

[ ] 0000043c .ibm.ws.collective.command.internal.MaintenanceModeMBeanImpl I 
CWWKX7225I: The collective controller is processing a request to place server 
serverITSO1 in user directory /opt/IBM/WebSphere/Liberty/usr on host 
lexbz181072.lex.dst.ibm.com into maintenance mode.  The option to maintain session 
affinity is set to true.  The option to bypass autoScaling violations is set to 
false.
[ ] 0000043c .ibm.ws.collective.command.internal.MaintenanceModeMBeanImpl I 
CWWKX7228I: Server serverITSO1 in user directory /opt/IBM/WebSphere/Liberty/usr on 
host lexbz181072.lex.dst.ibm.com has been placed into maintenance mode.

In Example 10-17, the enterMaintenanceMode command is used to put serverITSO2 into 
maintenance mode. This time, the argument --break is used, which causes requests with 
affinity to be routed to other servers.

Example 10-17   Output of enterMaintenanceMode with the break option

$ ./collective enterMaintenanceMode --host=lexbz181072.lex.dst.ibm.com --password 
--port=9449 --user=liberty --hostName=lexbz181072.lex.dst.ibm.com --password 
--usrDir=/opt/IBM/WebSphere/Liberty/usr --server=serverITSO2 --break
Enter password --password: 

SSL trust has not been established with the target server.

Certificate chain information:
Certificate [0]
Subject DN: CN=lexbz181072.lex.dst.ibm.com, OU=controllerITSO, O=ibm, C=us
Issuer DN: OU=controllerRoot, O=88f53048-e416-4401-9bf5-fc23ab68fa84, 
DC=com.ibm.ws.collective
Serial Number: 958,970,498,256,025
Expires: 8/23/20 4:42 PM
SHA-1 digest: AF:72:AF:3F:A1:0C:3A:DF:C1:42:54:3F:37:30:78:96:60:11:1D:15
MD5 digest: A0:85:04:D9:62:11:73:39:FA:D5:B7:2F:3F:05:30:D2

Certificate [1]
Subject DN: OU=controllerRoot, O=88f53048-e416-4401-9bf5-fc23ab68fa84, 
DC=com.ibm.ws.collective
Issuer DN: OU=controllerRoot, O=88f53048-e416-4401-9bf5-fc23ab68fa84, 
DC=com.ibm.ws.collective
Serial Number: 958,959,416,359,026
Expires: 8/18/40 4:42 PM
SHA-1 digest: 4F:2F:26:D7:7B:61:88:96:D7:FB:5F:AD:0D:5E:CF:96:AC:95:CD:68
MD5 digest: 18:5F:55:F5:29:59:46:DC:35:88:55:23:CD:CB:94:BA

Do you want to accept the above certificate chain? (y/n) y
Successfully set maintenance mode for serverITSO2.

Example 10-18 on page 191 shows the messages in the messages.log file regarding the 
enterMaintenanceMode command for serverITSO2 in the messages.log file where the --break 
argument is used, setting the value to maintain session affinity to false.
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Example 10-18   Details from the messages.log file

[ ] 000004da .ibm.ws.collective.command.internal.MaintenanceModeMBeanImpl I 
CWWKX7225I: The collective controller is processing a request to place server 
serverITSO2 in user directory /opt/IBM/WebSphere/Liberty/usr on host 
lexbz181072.lex.dst.ibm.com into maintenance mode.  The option to maintain session 
affinity is set to false.  The option to bypass autoScaling violations is set to 
false.
[ ] 000004da .ibm.ws.collective.command.internal.MaintenanceModeMBeanImpl I 
CWWKX7228I: Server serverITSO2 in user directory /opt/IBM/WebSphere/Liberty/usr on 
host lexbz181072.lex.dst.ibm.com has been placed into maintenance mode.

To determine the maintenance status of a specific server, use the getMaintenanceMode 
command as shown in Example 10-19. The command arguments are the same for this 
command. The argument --autoAcceptCertificates is used, which means to automatically 
trust Secure Sockets Layer (SSL) certificates during this command.

You can see that serverITSO1 is in maintenance mode. No details about the 
getMaintenanceMode command appear in the messages.log on the collective controller.

Example 10-19   Syntax and output of the getMaintenanceMode command

$ ./collective getMaintenanceMode --host=lexbz181072.lex.dst.ibm.com --password 
--port=9449 --user=liberty --hostName=lexbz181072.lex.dst.ibm.com 
--server=serverITSO1 --usrDir=/opt/IBM/WebSphere/Liberty/usr 
--autoAcceptCertificates
Enter password --password: 

Auto-accepting the certificate chain for target server.
Certificate subject DN: CN=lexbz181072.lex.dst.ibm.com, OU=controllerITSO, O=ibm, 
C=us

serverITSO1 is in maintenance mode.

To exit maintenance mode for a server, use the exitMaintenanceMode command. 
Example 10-20 shows an example of taking serverITSO1 out of maintenanceMode.

Example 10-20   Syntax and output of exitMaintenanceMode command

$ ./collective exitMaintenanceMode --host=lexbz181072.lex.dst.ibm.com --password 
--port=9449 --user=liberty --hostName=lexbz181072.lex.dst.ibm.com 
--server=serverITSO1 --usrDir=/opt/IBM/WebSphere/Liberty/usr 
--autoAcceptCertificates
Enter password --password: 

Auto-accepting the certificate chain for target server.
Certificate subject DN: CN=lexbz181072.lex.dst.ibm.com, OU=controllerITSO, O=ibm, 
C=us

Successfully unset maintenance mode for serverITSO1.
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Example 10-21 shows the output of the exitMaintenanceMode command for the serverITSO1 
in the messages.log file.

Example 10-21   Output in the messages.log file

[ ] 00000475 .ibm.ws.collective.command.internal.MaintenanceModeMBeanImpl I 
CWWKX7230I: The collective controller is processing a request to take server 
serverITSO1 in user directory /opt/IBM/WebSphere/Liberty/usr on host 
lexbz181072.lex.dst.ibm.com out of maintenance mode.
[ ] 00000475 .ibm.ws.collective.command.internal.MaintenanceModeMBeanImpl I 
CWWKX7232I: Server serverITSO1 in user directory /opt/IBM/WebSphere/Liberty/usr on 
host lexbz181072.lex.dst.ibm.com has been taken out of maintenance mode.

Configuring maintenance mode for a host
Example 10-22 shows the command to put the host lexbz181072.lex.dst.ibm.com into 
maintenance mode. In this example, the host and all servers on the host are put into 
maintenance mode.

Example 10-22   Putting a host into maintenance mode

$ ./collective enterMaintenanceMode --host=lexbz181072.lex.dst.ibm.com --password 
--port=9449 --user=liberty --hostName=lexbz181072.lex.dst.ibm.com --password 
Enter password --password: 

SSL trust has not been established with the target server.

Certificate chain information:
Certificate [0]
Subject DN: CN=lexbz181072.lex.dst.ibm.com, OU=controllerITSO, O=ibm, C=us
Issuer DN: OU=controllerRoot, O=88f53048-e416-4401-9bf5-fc23ab68fa84, 
DC=com.ibm.ws.collective
Serial Number: 958,970,498,256,025
Expires: 8/23/20 4:42 PM
SHA-1 digest: AF:72:AF:3F:A1:0C:3A:DF:C1:42:54:3F:37:30:78:96:60:11:1D:15
MD5 digest: A0:85:04:D9:62:11:73:39:FA:D5:B7:2F:3F:05:30:D2

Certificate [1]
Subject DN: OU=controllerRoot, O=88f53048-e416-4401-9bf5-fc23ab68fa84, 
DC=com.ibm.ws.collective
Issuer DN: OU=controllerRoot, O=88f53048-e416-4401-9bf5-fc23ab68fa84, 
DC=com.ibm.ws.collective
Serial Number: 958,959,416,359,026
Expires: 8/18/40 4:42 PM
SHA-1 digest: 4F:2F:26:D7:7B:61:88:96:D7:FB:5F:AD:0D:5E:CF:96:AC:95:CD:68
MD5 digest: 18:5F:55:F5:29:59:46:DC:35:88:55:23:CD:CB:94:BA

Do you want to accept the above certificate chain? (y/n) y
Successfully set maintenance mode for lexbz181072.lex.dst.ibm.com.
Successfully set maintenance mode for serverITSO1.
Successfully set maintenance mode for serverITSO2.

Example 10-23 on page 193 shows the output of the enterMaintenanceMode command for the 
host lexbz181072.lex.dst.ibm.com in the messages.log file.
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Example 10-23   Output in the messages.log file

[ ] 00000485 .ibm.ws.collective.command.internal.MaintenanceModeMBeanImpl I 
CWWKX7224I: The collective controller is processing a request to place host 
lexbz181072.lex.dst.ibm.com into maintenance mode.  The option to maintain session 
affinity is set to true.  The option to bypass autoScaling violations is set to 
false.
[ ] 00000485 .ibm.ws.collective.command.internal.MaintenanceModeMBeanImpl I 
CWWKX7227I: Host lexbz181072.lex.dst.ibm.com has been placed into maintenance 
mode.
[ ] 00000485 .ibm.ws.collective.command.internal.MaintenanceModeMBeanImpl I 
CWWKX7228I: Server serverITSO1 in user directory /opt/IBM/WebSphere/Liberty/usr on 
host lexbz181072.lex.dst.ibm.com has been placed into maintenance mode.
[ ] 00000485 .ibm.ws.collective.command.internal.MaintenanceModeMBeanImpl I 
CWWKX7228I: Server serverITSO2 in user directory /opt/IBM/WebSphere/Liberty/usr on 
host lexbz181072.lex.dst.ibm.com has been placed into maintenance mode.

10.4.2  Configuring maintenance by using the Admin Center

To configure maintenance by using the Admin Center, complete the following steps.

1. Open the Admin Center and log in.

2. In the toolbox, open the Explore tool.

3. From the view, you can select either Servers or Hosts to configure. For example, to 
configure maintenance mode for a server, click Servers. 

For example, in Figure 10-6 there are two servers, serverITSO1 and serverITSO2. To 
configure server maintenance mode for serverITSO1, click the Actions icon → Enable 
Maintenance Mode.

Figure 10-6   Enable server maintenance mode

In Figure 10-7 on page 194, you can see the “Enable maintenance mode” prompt. From 
here, you can choose the toggle option to “Break affinity with active sessions.” Otherwise, 
the default is for the web server to continue to send requests to the server. Finally, click 
Enable.
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Figure 10-7   Enable maintenance mode prompt

In Figure 10-8, you can see that maintenance mode is enabled for serverITSO1 as 
indicated by an orange box around the server. The server, serverITSO2, does not have 
maintenance mode enabled.

Figure 10-8   Maintenance mode for serverITSO1

To disable maintenance mode for a server, click the Actions icon → Disable 
Maintenance Mode as displayed Figure 10-9.

Figure 10-9   Disable maintenance mode
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10.5  Health management

Health management allows you to monitor the status of your servers. The health 
management feature was added to WAS Classic in V8.5. In V8.5.5.7, health management 
functionality was added to Liberty. 

You can use health management to detect and respond to problem areas before an outage 
occurs in your environment. You can manage the health of an environment with a 
policy-driven approach that enables specific actions to occur when monitored criteria are met. 
For example, when memory usage exceeds a percentage of the heap size for a specified 
time, actions can run to recover from the situation.

Health monitoring can help you with both unexpected issues and unanticipated problems in 
your environment. It can help you recover from problems that would otherwise disrupt 
operations and affect performance. 

Health management does not require the use of auto scaling or dynamic routing. However, if 
you want to gain the full functionality of the health management feature, it is recommended 
that both the auto scaling and dynamic routing features be enabled.

The health management feature consists of:

� Health policies
� Health management controller

10.5.1  Health policies

With health management, you can define health policies. A health policy provides a health 
standard for the Liberty environment. Health policies are designed to identify potential 
problems, and take recovery actions when a particular event occurs. You can define health 
policies for common conditions in Liberty. 

Each health policy consists of a condition, one or more targets, and one or more actions. A 
condition indicates what you want to monitor in your Liberty environment. The action defines 
what happens when you encounter that condition. When defining a health policy, you also 
define a health target, which defines where you want to monitor the condition and where you 
want the action to take place. Health targets are identified as a host, server, or cluster.

A key advantage of health management is that when a health policy violation is detected, an 
action plan can be put into effect automatically without requiring administrative interaction. 
Actions to be taken when a monitored condition is detected are designed to recover from the 
problem and help in diagnosis.

Health conditions
Health conditions define the variables that you want to monitor in your environment. The 
health conditions that you can define in Liberty include:

� Excessive memory usage

Triggers when the members associated with this detection-based policy use more memory 
than a percentage of the maximum heap size for a certain amount of time.

� Memory leak

Looks for consistent downward trends in free memory that is available to a server in the 
Java heap. 
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� Excessive average response time

Triggers when the members that are associated with this detection-based policy have an 
average response time for requests that exceed a certain amount of time. 

� Excessive request timeout

Triggers when HTTP requests that are directed to an associated member timeout, and the 
percentage of timeouts exceed the specified value.

You can configure only one health condition per health policy.

There are a few key points to keep in mind regarding health management. In Liberty, the 
dynamic routing feature in Intelligent Management is not required. However, if you want to 
monitor the excessive response time or excessive request timeout conditions by defined 
health policies, you must enable dynamic routing. The excessive response time or excessive 
request timeout conditions also require the IBM HTTP Server plug-in configuration and 
routing requests to your environment. 

If you want to monitor excessive memory usage and memory leak conditions, you must 
configure the Health Analyzer and enable the JVM option -Xhealthcenter:level=inprocess on 
each collective member where you want to monitor the conditions. 

Health actions
Health actions define the action to take when defined conditions are met. The health actions 
that you can define in Liberty include:

� Capture diagnostics such as a heap or thread dump

Taking a JVM heap dump is supported for servers that are running on the IBM software 
development kit (SDK).

� Restart the server

� Put a server into or take a server out of maintenance mode

This action takes advantage of the server maintenance mode feature that is also part of 
the Intelligent Management features in Liberty.

10.5.2  Health management controller

The health management controller is an autonomic manager that constantly monitors the 
defined health policies. When a condition that is specified by a health policy is met in the 
environment, the health management controller executes the configured actions. 

10.5.3  Configuring health management features for Liberty

To use the health management features for Liberty, you must first configure the collective 
feature. Each server where you want to define health policies must be a member of a 
collective. Then, to configure health management for Liberty, you simply modify the 
server.xml file. 

A new element type of <healthPolicy> is used to define a single health policy. If more than one 
policy is needed, you need to add multiple <health policy> elements. 
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Configuring health conditions
To configure the health conditions, add one of the following elements to the <healthPolicy> 
element in your server.xml file on the collective controller:

� Configure the excessive timeout condition as described in Example 10-24. This condition 
specifies the percentage of HTTP requests that can time out. When the percentage of 
requests exceeds the defined value, the health actions run. 

Example 10-24   Configuring the excessive timeout condition

<excessiveRequestTimeout timeoutPercentage=”5”/>

� Configure the excessive response time condition as described in Example 10-25. For this 
condition, if the time exceeds the defined response time threshold, the health actions run.

Example 10-25   Configuring the excessive response time condition

<excessiveResponseTime responseTime=”10s”/>

� Configure the excessive memory usage condition as described in Example 10-26. For this 
condition, when the memory usage exceeds the defined percentage of the heap size for 
the specified time, health actions run.

Example 10-26   Configuring the excessive memory usage condition

<excessiveMemoryUsage heapSizePercentage=”85” timePeriod=”5m”/>

� Configure the memory leak condition as described in Example 10-27. For this condition, 
when a downward trend in free memory is detected, health actions run.

Example 10-27   Configuring the memory leak condition

<memoryLeak/>

Configuring health actions
To configure a health action, add any of the following to the <healthPolicy> element in your 
server.xml file on the collective controller. 

Configure health actions as described in Example 10-28.

Example 10-28   Configuring health actions

<action action”generateServerDump”/>
<action action”generateHeapDump”/>
<action action”restartServer”/>
<action action”setMaintenanceMode”/>
<action action”unsetMaintenanceMode”/>

For each health policy where you indicate the condition, you can have multiple actions. You 
can define a single action or indicate multiple actions. The actions are executed in the order 
that they are defined within the policy.
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Configuring health targets
To configure a health target, add the following to the <healthPolicy> element in your 
server.xml file on the collective controller:

� Configure a cluster health target as described in Example 10-29.

Example 10-29   Configuring the cluster health target

<cluster clusterName=”MyClusterName”/>

� Configure a server health target as described in Example 10-30.

Example 10-30   Configuring the server health target

<server hostName=”MyHostName” wlpUsrDirectory=/optIBM/WebSphere/Liberty 
serverName=”MyServerName”/>

� Configure a host health target as described in Example 10-31.

Example 10-31   Configuring the host health target

<host hostName=”MyHostName”/>

For each health policy where you indicate the condition, you can have multiple actions and 
either a single or multiple targets. All servers identified by all targets listed are monitored on 
an individual server basis for the condition of the policy. 

Configuring health management for your Liberty environment
The health management functionality is enabled by two Liberty features: health manager and 
health analyzer. The health manager feature is added to the collective controller configuration 
and the health analyzer is added to the collective member configuration when needed. If 
memory conditions are not used, it is not needed.

To configure health management in your environment, use the following steps:

� Configure a Liberty collective
� Configure dynamic routing and auto scaling
� Configure the JVM option for memory conditions
� Configure the health manager feature
� Configure the health analyzer feature
� Define your health policies in the server.xml file on your collective controller

For more information about configuring health management in your environment, use the 
following steps:

1. Configure a Liberty collective. 

For more information about how to create a collective and collective controller, see 
Chapter 5, “Administering the WebSphere Liberty profile” on page 71. 

2. Configure dynamic routing and auto scaling

If you want to gain the full functionality of the health management feature, it is 
recommended that both the dynamic routing and auto scaling features be enabled. For 
details about configuring dynamic routing and auto scaling, refer to the sections on each of 
these topics earlier in the chapter.

3. Configure the JVM option for memory conditions
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If memory leak or excessive memory usage conditions are being monitored in a collective 
member, it is necessary to enable a JVM option for the Health Center before configuring 
health management. To configure, add the JVM option -Xhealthcenter:level=inprocess to 
the collective member.

4. Configure the health manager feature.

Add the healthManager-1.0 feature to the server.xml file on your collective controller or 
controllers as described in Example 10-32.

Example 10-32   Configuring the health management feature on the collective controller

<featureManager>
 <feature>collectiveController-1.0</feature>
 <feature>dynamicRouting-1.0</feature>
 <feature>scalingController-1.0</feature>
 <feature>healthManager-1.0</feature>

</featureManager>

5. Configure the health analyzer feature

Add the healthAnalyzer-1.0 feature to the server.xml file for each collective member, as 
described in Example 10-33.

Example 10-33   Configuring the healthAnalyzer feature on the collective members

<featureManager>
 <feature>collectiveMember-1.0</feature>
 <feature>clusterMember-1.0</feature>
 <feature>scalingMember-1.0</feature>
 <feature>healthAnalyzer-1.0</feature>

</featureManager>

6. If you are going to define health policies that target a cluster, you must also configure the 
collective member to be a part of the cluster. To configure a server cluster, see Chapter 5, 
“Administering the WebSphere Liberty profile” on page 71. 

7. Define your health policies in the server.xml file on your collective controller

The example described in Example 10-34 is a basic example where HealthPolicy1 is 
defined with a target of all servers on host lexbz181072.lex.dst.ibm.com. HealthPolicy1 
monitors the excessiveMemoryUsage condition based on the defined thresholds. When 
the memory exceeds 55% of the heap for 5 minutes, the server is put into maintenance 
mode.

Example 10-34   Configuring a health policy

<healthPolicy id=”HealthPolicy1” enable=true”>
<host hostName=”lexbz18.lex.dst.ibm.com” />
<excessiveMemoryUsage heapSizePercentage=”55” timePeriod=”5m” />
<action action=”enterMaintenanceMode” />

</healthPolicy>

8. Examine the messages.log file on the collective controller to observe the details of the 
health policies.
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Example 10-35 shows the output in the monitor.log file on the collective controller when 
the policy is added. You can see that the policy HealthPolicy1 is activated.

Example 10-35   Output in the monitor.log file of the addition of a health policy

CWWKV0609I: The health policy HealthPolicy1 is added.
CWWKV0603I: The health condition 
com.ibm.ws.health.manager.healthPolicy.condition.excessiveMemoryUsage is being 
monitored on target lexbz181072.lex.dst.ibm.com.
CWWKV0607I: The health policy HealthPolicy1 is activated for serverITSO1.
CWWKV0607I: The health policy HealthPolicy1 is activated for serverITSO2.

9. Configure multiple health policies if needed.

Example 10-36 shows multiple health policies defined in the file.

Example 10-36   Configuring multiple health policies

<healthPolicy id=”HealthPolicy1” enable=true”>
<host hostName=lexbz18.lex.dst.ibm.com” />
<excessiveMemoryUsage heapSizePercentage=”55” timePeriod=”5m” />
<action action=”enterMaintenanceMode”/>

</healthPolicy>

healthPolicy id=”HealthPolicy2” enable=true”>
<host hostName=”lexbz19.lex.dst.ibm.com” />
<host hostName=lexbz20.lex.dst.ibm.com” />
<server hostName=”lexbz21.lex.dst.ibm.com” 

wlpUsrDirectory=”/opt/IBM/WebSphere/liberty/wlp” serverName=”serverITSO3” />
<memoryLeak />
<action action=”enterMaintenanceMode” />
<action action=”generateThreadDump” />
<action action=”generateHeapDump” />
<action action=”restartServer” />
<action action=”exitMaintenanceMode” />

</healthPolicy>

<healthPolicy id=”HealthPolicy3” enable=true”>
<cluster ClusterName=ITSOCluster” />
<excessiveRequestTimeout timeoutPercentage=5” />
<action action=”enterMaintenanceMode” />

</healthPolicy>

Again, HealthPolicy1 is defined with a target of all servers on host lexbz18.lex.dst.ibm.com. 
HealthPolicy1 monitors the excessiveMemoryUsage condition based on the defined 
thresholds. When the memory exceeds 55% of the heap for 5 minutes, the action to take is to 
put the server into maintenance mode.

HealthPolicy2 is defined with a target of all servers on host lexbz19.lex.dst.ibm.com and 
lexbz20.lex.dst.ibm.com and server serverITSO3 on lexbz21.lex.dst.ibm.com. HealthPolicy2 
monitors the memory leak condition. When a memory leak is detected, the affected health 
target is placed into maintenance mode, a thread dump is generated, a heap dump is 
generated, the server is restarted, and then maintenance mode is removed.
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HealthPolicy3 is defined with a target the cluster ITSOCluster. HealthPolicy3 monitors the 
excessiveRequestTime condition based on the defined thresholds of 5%. When 5% of the 
HTTP requests to the cluster time-out, the action to take is to place the server into 
maintenance mode. The excessiveRequestTime condition requires the dynamic routing 
feature, so the server.xml file must also include the dynamicRouting-1.0 feature.

If you have a health target defined for a cluster, you must also configure the collective 
members to be part of a server cluster. The server.xml file of the collective member in the 
cluster must include the clusterMember-1.0 feature. For more information about how to create 
a cluster, see Chapter 5, “Administering the WebSphere Liberty profile” on page 71. 

If you want to use both the health management memory conditions and auto scaling features 
in your environment, you must also define the hostSingleton element. Each scaling member 
needs to define a hostSingleton element with a port in the server.xml file. All scaling 
members on the same host must use the same port. You can specify any port number, but the 
port number must be unique on the host computer. 

Example 10-37 shows the details in the server.xml file for a collective member that is part of 
a cluster and is using both health management and auto scaling features in your environment. 
The hostSingleton element is also defined indicating the unique name and port numbers. The 
hostSingleton specification must have a unique port that is separately set for each service.

Example 10-37   Configuring the hostSingleton element

<featureManager>
 <feature>collectiveMember-1.0</feature>
 <feature>clusterMember-1.0</feature>
 <feature>scalingMember-1.0</feature>
 <feature>healthAnalyzer-1.0</feature>

</featureManager>

<hostSingleton name=”ScalingMemberSingletonService” port=”20020”/>
<hostSingleton name=”HealthAnalyzerSingletonService” port=”20021”/>
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Related publications

The publications listed in this section are considered particularly suitable for a more detailed 
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this 
document. Note that some publications referenced in this list might be available in softcopy 
only: 

� WebSphere Application Server: New Features in V8.5.5, REDP-4870

� WebSphere Application Server V8.5.5 Technical Overview, REDP-4855

� IBM WebSphere Application Server V8.5 Concepts, Planning, and Design Guide, 
SG24-8022

� WebSphere Application Server Liberty Profile Guide for Developers, SG24-8076

You can search for, view, download, or order these documents and other Redbooks, 
Redpapers, Web Docs, draft and additional materials, at the following website: 

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� WAS Liberty:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.doc/ae/cwlp_about.html

� Tools editions:

http://www.ibm.com/software/webservers/appserv/was/tools

� Rational Application Developer for WebSphere Software V9:

http://www.ibm.com/software/awdtools/developer/application

� List of the supported Java EE 6 and Java EE 7 feature combinations:

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.
nd.doc/ae/rwlp_prog_model_supported_combos.html

� Features for network deployment:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_feat.html?cp=SSAW57_8.5.5%2F3-0-2-3-0

� Using the server command:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_command_server.html?cp=SSAW57_8.5.5%2F3-3-11-0-3-2-
1-0
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� Using the securityUtility command:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_command_securityutil.html?cp=SSAW57_8.5.5%2F3-3-11-
0-4-1-2-0

� Using the featureManager command: 

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_command_featuremanager.html?cp=SSAW57_8.5.5%2F3-3-1
1-0-1-2-2-0

� Using the productInfo command:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_command_productinfo.html?cp=SSAW57_8.5.5%2F3-3-11-0
-1-3-0

� Customizing the Liberty profile environment: 

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/twlp_admin_customvars.html?cp=SSAW57_8.5.5%2F3-3-11-0-3-
2-0

� Liberty profile files and directories:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_dirs.html?cp=SSAW57_8.5.5%2F3-3-11-0-2-0

� Optional files:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/twlp_admin_customvars.html?cp=SSAW57_8.5.5%2F3-3-11-0-3-
2-0

� Configuring security for your applications on the Liberty profile: 

https://www.ibmdw.net/wasdev/category/repo/config-snippets

� Liberty profile package on WASdev community website:

https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download
?lang=en

� Information on Docker and Liberty:

https://hub.docker.com/_/websphere-liberty

� Liberty features supported in Bluemix:

https://www.ng.bluemix.net/docs/starters/liberty/index.html#libertyfeatures

� Liberty profile security topic:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.doc/ae/cwlp_sec.html

� Information on Liberty Asset Repository Service (LARS):

https://github.com/WASdev/tool.lars

� Configuration monitoring examples:

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.
core.doc/ae/twlp_setup_dyn_upd.html?lang=en 

� Class loaders:

https://www.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.wlp.
core.doc/ae/twlp_classloader.html?lang=en
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� Databases supported for the Liberty profile: 

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921#8.5

� Configuring database connectivity in the Liberty profile:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.doc/ae/twlp_dep_configuring_ds.html?lang=en

� Application-defined data sources:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.doc/ae/rwlp_ds_appdefined.html?lang=en

� Configuring a Liberty profile server to access MongoDB APIs directly:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/twlp_mongodb_create.html?cp=SSAW57_8.5.5%2F3-3-11-0-3-2-
20-0-1

� Installing and configuring an Apache Derby database:

http://db.apache.org/derby/papers/DerbyTut/install_software.html#derby_download

� Information on the Health Center:

http://www.ibm.com/developerworks/java/jdk/tools/healthcenter

� Configuring bootstrap.properties settings:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_logging.html?cp=SSAW57_8.5.5%2F3-17-0-0

� Logging messages:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.multiplatform.doc/ae/rwlp_messages.html?cp=SSAW57_8.5.5%2F3-17-0-7

� Binary logging service:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.doc/ae/twlp_confHPEL.html?cp=SSAW57_8.5.5%2F1-0-2-10-1

� Configuring the binarylog command:

http://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.n
d.doc/ae/rwlp_logviewer.html?cp=SSAW57_8.5.5%2F1-0-2-10-0

� Bluemix Instant Runtimes:

https://www.ng.bluemix.net/docs/starters/rt_landing.html

� Liberty for Java runtime, powered by the Cloud Foundry Liberty build pack:

https://www.ng.bluemix.net/docs/starters/liberty/index.html

� Boilerplates that use Liberty for Java for its runtime in the Bluemix catalog:

https://console.ng.bluemix.net/catalog

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
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