
ibm.com/redbooks

Front cover

IBM Cognos Dynamic Query

Discover how Cognos accelerates
query performance

Learn how to administer the
Cognos query service effectively

Maximize the return on your
analytic investments

Nigel Campbell
Henk Cazemier
Robert Hatfield

Martin Petitclerc
Glen Seeds

Jason Tavoularis

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM Cognos Dynamic Query

September 2013

SG24-8121-00

© Copyright International Business Machines Corporation 2013. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (September 2013)

This edition applies to Version 10, Release 2, Modification 1 of IBM Cognos Business Intelligence (product
number 5724-W12)

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors .x
Now you can become a published author, too! . xii
Comments welcome. xii
Stay connected to IBM Redbooks . xii

Chapter 1. Overview of Cognos Dynamic Query . 1
1.1 Introduction . 2
1.2 Background . 3
1.3 Architecture . 3

1.3.1 Planning and executing the query. 5
1.4 Technology selection guidance. 6

1.4.1 Pure relational analytics . 7
1.4.2 OLAP analytics . 7

Chapter 2. Administration . 11
2.1 Configuring the query service . 12

2.1.1 Memory sizing. 12
2.1.2 Throughput sizing . 15
2.1.3 Multi-server environments. 16

2.2 Data source administration . 17
2.2.1 Connection command blocks . 17
2.2.2 JDBC drivers. 18
2.2.3 OLAP connections . 19
2.2.4 ERP and CRM data sources. 19

2.3 Cache management . 20
2.3.1 Priming the cache . 20
2.3.2 Clearing the cache . 20
2.3.3 Automating cache operations . 21

Chapter 3. Metadata modeling . 25
3.1 Cognos Framework Manager . 26
3.2 Goals of metadata modeling relational data sources . 26

3.2.1 Modeling for self-service analysis . 26
3.3 Framework Manager architecture . 27
3.4 Key objects of a relational model . 28

3.4.1 Query subjects . 28
3.4.2 Dimensions . 30
3.4.3 Determinants. 31
3.4.4 Relationships . 33

3.5 Organizing relational models. 35
3.5.1 Data view . 35
3.5.2 Business logic view. 36
3.5.3 Presentation view . 36
© Copyright IBM Corp. 2013. All rights reserved. iii

3.6 Relational modeling for performance . 36
3.6.1 As view versus minimized SQL generation. 36
3.6.2 Security-aware caching. 39

Chapter 4. Macros . 43
4.1 Macros explained . 44
4.2 Macro language . 45

4.2.1 Operator . 45
4.2.2 List separator character . 45
4.2.3 Functions . 46
4.2.4 Comments. 46
4.2.5 Simple case construct . 46

4.3 Parameter maps . 47
4.4 Session parameters . 49
4.5 Advanced examples . 51

4.5.1 Member unique name for next year . 51
4.5.2 Turning promptmany result into a rowset . 52
4.5.3 Dynamic column drill . 53
4.5.4 Filtering for internal and external customers . 55

Chapter 5. Report authoring . 57
5.1 Authoring interfaces . 58

5.1.1 Cognos Workspace Advanced . 58
5.1.2 Cognos Report Studio. 58

5.2 Processing report executions . 59
5.2.1 Local and database processing . 59

5.3 Database functions . 60
5.4 Dimensional and relational reporting styles . 61
5.5 Suppression . 62
5.6 Dimensional summaries . 63
5.7 Advanced features in Report Studio’s Query Explorer . 64

5.7.1 Reference queries . 64
5.7.2 Union, intersect, and except queries. 65
5.7.3 Join relationships . 66
5.7.4 Master detail relationships . 66

Chapter 6. Optimizing SQL for performance . 67
6.1 Remember that less is faster . 68
6.2 Make use of enforced and non-enforced constraints . 68
6.3 Use indexes and table organization features . 69
6.4 Review column group statistics . 69
6.5 Avoid complex join and filter expressions . 70

6.5.1 Temporal expressions. 70
6.5.2 Expressions on table columns in predicates. 70

6.6 Reduce explicit or implicit conversions . 71
6.7 Minimize complexity of conditional query items . 71
6.8 Review the order of conjunctions and disjunctions . 80
6.9 Avoid performance pitfalls in sub-queries . 81
6.10 Avoid unnecessary outer joins . 84
6.11 Avoid using SQL expression to transpose values . 84
6.12 Apply predicates before groupings . 86
6.13 Trace SQL statements back to reports . 87
iv IBM Cognos Dynamic Query

Chapter 7. Troubleshooting . 89
7.1 Problem solving strategy. 90

7.1.1 The half-split method . 90
7.2 Error messages. 92
7.3 Log files and tracing . 93

7.3.1 Query planning trace. 94
7.3.2 Query execution trace. 94

7.4 Dynamic Query Analyzer . 95
7.4.1 Graph nodes . 96
7.4.2 Views . 97

7.5 IBM technical support . 102
7.5.1 IBM Support Portal . 102
7.5.2 Service requests and PMRs . 103
7.5.3 IBM Fix Central . 103

Related publications . 105
IBM Redbooks . 105
Online resources . 105
Help from IBM . 105
 Contents v

vi IBM Cognos Dynamic Query

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2013. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

BigInsights™
Cognos®
DB2®
developerWorks®
IBM®
IBM PureData™
InfoSphere®
PureData™
Redbooks®
Redbooks (logo) ®
TM1®

The following terms are trademarks of other companies:

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

Netezza, and N logo are trademarks or registered trademarks of IBM International Group B.V., an IBM
Company.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii IBM Cognos Dynamic Query

http://www.ibm.com/legal/copytrade.shtml

Preface

IBM® Cognos® Business Intelligence (BI) helps you make better and smarter business
decisions faster. Advanced visualization capabilities bring your data to life, and you can
consume your Cognos BI reports, scorecards, and dashboards through Internet browsers
and mobile devices or have them sent to your email inbox. In addition, with intuitive
self-service interfaces, you can explore your data and collaborate over the insights you
uncover.

The Cognos BI server interprets user gestures and report specifications and translates them
into data-retrieval queries that are tailored to the most popular relational database
management system (RDBMS), online analytical processing (OLAP), customer relationship
management (CRM), and enterprise resource planning (ERP) sources. The term dynamic
query refers to the planning and execution of queries using the Java-based extensible query
engine in the Cognos platform. Leading practices, learned over decades of BI software
development, were applied to its design.

The dynamic query layer was developed to meet requirements for interactive reporting and
ad hoc analysis. It employs sophisticated, multiphase query optimization techniques and can
dynamically alternate between SQL and MDX processing, depending on what best suits the
scenario.

Dynamic query has several advantages. Advanced in-memory caching and aggregation can
reduce data warehouse workload. Users are provided with a consistent experience, no matter
what the data source is. In addition, simple cache administration and query visualization tools
help reduce total cost of ownership. IT organizations can also take advantage of improved
query performance thanks to the reduction in query planning and execution, along with lighter
database server workloads.

This IBM Redbooks® publication explains how Cognos BI administrators, authors, modelers,
and power users can use the dynamic query layer effectively. It provides guidance on
determining which technology within the dynamic query layer can best satisfy your business
requirements. Administrators can learn how to tune the query service effectively and
preferred practices for managing their business intelligence content. This book includes
information about metadata modeling of relational data sources with IBM Cognos Framework
Manager. It includes considerations that can help you author high-performing applications
that satisfy analytical requirements of users. This book provides guidance about
troubleshooting issues that are related to the dynamic query layer of Cognos BI.
© Copyright IBM Corp. 2013. All rights reserved. ix

Authors

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Rochester Center.

Nigel Campbell is a Senior Developer with IBM Cognos
specializing in data access and query engine technologies used by
IBM Cognos Business Intelligence products. He has more than 25
years in the industry, building products and applications that span
many relational and non-relational platforms.

Henk Cazemier is Senior Development Manager for IBM Relational
Planning and Execution and performs additional work as an
Architect in this area. Henk has worked at IBM for 27 years and
continues to enjoy providing customers with the high-performing
query and reporting software for business analytics.

Robert Hatfield is a Development Manager in the IBM Cognos
Business Intelligence Data Access group with more than 20 years
of experience developing software. He has been involved in
dynamic query and Cognos BI product performance optimization
since before the introduction of dynamic query. He holds a
bachelor’s degree in software systems from the University of
New Brunswick.

Martin Petitclerc is a Business Analytics Software Architect who
has worked in business intelligence software development for more
than 19 years. He has led development projects for reporting
applications, OLAP and database tools, query planning and
execution engines (SQL and MDX), and data mining technology.
x IBM Cognos Dynamic Query

The project that produced this publication was managed by:
Marcela Adan, IBM Redbooks Project Leader

Additional support was provided by:
Deana Coble, IBM Redbooks Technical Writer
Shawn Tooley, IBM Redbooks Technical Writer

Thanks to the following people for their contributions to this project:

Stanley Chauvin
Tod Creasey
David Cummings
Troy Dodsworth
Rick Kenny
Roch Lefebvre
IBM Cognos Development

Armin Kamal
Pierre Valiquette
Daniel Wagemann
IBM Cognos Customer Support, Proven Practices Team

Sean MacPhee
IBM Business Analytics Information Development

Chris McPherson
IBM Business Intelligence Product Management

Glen Seeds is an Architect in the Cognos BI Platform team,
covering all aspects of dimensional queries with a focus on aligning
query engine semantics to the needs of BI authors. He has been
with the company for 14 years and has made significant
contributions to product documentation and training material to
guide authors in creating reports that deliver surprise-free results.

Jason Tavoularis is a Product Manager, focusing on the data
access layer of IBM Cognos software. He has spent the past
several years engaging with IBM Cognos customers through roles
in customer support, demonstrations and enablement, and product
management. He has a bachelor’s degree in computer engineering
and an MBA from the University of Ottawa.
 Preface xi

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xii IBM Cognos Dynamic Query

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks

http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

http://www.redbooks.ibm.com/rss.html

Chapter 1. Overview of Cognos Dynamic
Query

This chapter provides an overview of the dynamic query layer of IBM Cognos Business
Intelligence (BI) software. The chapter includes an introduction to and history of the dynamic
query layer, descriptions of the architecture, and high-level guidance for determining which
technology within the dynamic query layer can best satisfy your business requirements.

The chapter contains the following sections:

� 1.1, “Introduction” on page 2
� 1.2, “Background” on page 3
� 1.3, “Architecture” on page 3
� 1.4, “Technology selection guidance” on page 6

1

© Copyright IBM Corp. 2013. All rights reserved. 1

1.1 Introduction

Cognos Business Intelligence (BI) helps you make better and smarter business decisions
faster. Advanced visualization capabilities bring your data to life, and you can consume your
Cognos BI reports, scorecards, and dashboards through Internet browsers and mobile
devices or have them sent to your email inbox. In addition, intuitive self-service interfaces
allow you to explore your data and collaborate over the insights you uncover.

The Cognos BI server interprets user gestures and report specifications and translates them
into data-retrieval queries that are tailored to the most popular RDBMS, OLAP, CRM, and
ERP sources. The term dynamic query refers to the planning and execution of queries using
the Java-based extensible query engine in the Cognos platform. Leading practices, learned
over decades of BI software development, were applied to its design. Dynamic query retains
result sets and metadata captured from optimized queries to data sources in a 64-bit,
in-memory cache. It can reuse these result sets and metadata to minimize the wait times for
future requests.

The dynamic query layer was developed to meet requirements for interactive reporting and
ad hoc analysis. It employs sophisticated, multiphase query optimization techniques and can
dynamically alternate between SQL and MDX processing, depending on what best suits the
scenario.

Dynamic query has several advantages. Advanced in-memory caching and aggregation can
reduce data warehouse workload. Users are provided with a consistent experience, no matter
what the data source is. In addition, simple cache administration and query visualization tools
help reduce total cost of ownership. IT organizations can also take advantage of improved
query performance thanks to the reduction in query planning and execution, along with lighter
database server workloads.

This book explains how Cognos BI administrators, authors, modelers and power users can
use the dynamic query layer effectively.

The dynamic query layer refers to the query service of Cognos 10, which is powered by an
extensible query engine written in Java. The query layer offers the following key capabilities:

� Open access to the most popular RDBMS, OLAP, CRM, and ERP data sources

� Query optimization techniques to address complex analytical requirements, large and
growing data volumes, and expectations for timeliness

� Enterprise-level scalability and stability

� Intelligent combinations of local and remote processing

� Federation of multiple heterogeneous data sources

� OLAP functionality for relational data sources when using a dimensionally modeled
relational (DMR) package or Cognos Dynamic Cubes

� Security-aware caching

� 64-bit processing

� JDBC connectivity to relational data sources

� Query visualizations for ease of maintenance
2 IBM Cognos Dynamic Query

1.2 Background

New projects in Cognos BI version 10.2.1 are set to the dynamic query mode, which is
powered by an eXtensible Query Engine (XQE) written in Java. XQE, the engine behind the
Cognos BI query service, embraces the principles of abstraction and extensibility, allowing it
to evolve into a more efficient query planner, processor, and executor with every new version
of Cognos BI.

All techniques and product behaviors that are described in this book assume that the project
is using the dynamic query mode. However, existing packages can be set to the compatible
query mode, which, for reasons of compatibility with previous versions, maintains query
behaviors consistent with version 8.4.1 of Cognos BI.

The C++ query engine of version 8.4.1 addressed the analytical challenges of its day, but it
was limited in two fundamental ways. The first is that it is 32 bit, which is a problem because
effective caching of enterprise data requires 64-bit addressable memory. The second is that
its architecture cannot easily adapt to the new trends emerging in the big data era.

XQE was developed to address these limitations and accelerate the improvements to query
performance that is delivered in new versions of Cognos BI.

1.3 Architecture

Some of the content of this section was previously published in IBM developerWorks®1.

The query service accepts data and metadata requests (through the report service
component) from authoring interfaces such as IBM Cognos Report Studio, IBM Cognos
Report Viewer, and other clients. It returns the requested data or messages in a structured
response to the report service component that formats the result for the client. Figure 1-1 on
page 4 presents the workflow of requests and responses between these components.

1 Source: IBM Cognos Proven Practices: The IBM Cognos 10 Dynamic Query Cookbook
http://www.ibm.com/developerworks/data/library/cognos/infrastructure/cognos_specific/page529.html
Chapter 1. Overview of Cognos Dynamic Query 3

http://www.ibm.com/developerworks/data/library/cognos/infrastructure/cognos_specific/page529.html

Figure 1-1 Query service request and response workflow

Figure 1-2 shows the internal architecture of the query service, which consists of the following
major components:

� Transformation engine and transformation libraries

� Query execution engine

� Metadata cache

� Data cache

� RDBMS and OLAP adapters

Figure 1-2 Internal architecture of the query service

XML report specification

report service
BIBusTKServerMain process

C++

query service
Java

data sources

report output
4 IBM Cognos Dynamic Query

The transformation engine does not implement any query planning logic alone. Instead, it
provides an execution environment for query transformations in the transformation libraries,
thus separating planning logic from the engine. The transformations implement query
planning logic for all supported query types and functionality. When there are no more
transformations to be applied, query planning is complete and the transformation engine
passes the resulting run tree to the query execution engine.

The query execution engine can execute any query request, independent of the type of query
and target data source. The engine represents all query results in memory in a single format
that encompasses both dimensional style (with axes, dimensions, and cells) and relational
style (with a tabular format of rows and columns). This allows the engine to combine SQL and
MDX queries in a single run tree, thus enabling simplicity of representation, flexibility in
post-processing, and streamlined query performance. To process the two types of queries,
the query execution engine contains both SQL and MDX engines.

The SQL engine obtains data directly from the RDBMS adapter. The query execution engine
updates the secure data cache with dimensional data for future reuse. The MDX engine
obtains dimensional data either directly from the OLAP adapters or from the data cache.
It also updates and reuses dimensional metadata in the secure member cache. The cache
security features ensure that, by default, no sharing of secured data ever occurs between
users with different security profiles.

The RDBMS and OLAP adapters translate Cognos SQL and MDX queries to a query dialect
suitable and optimized for each data provider. The adapters send the query and fetch results
through the provider’s proprietary interface or a supported standard interface such as JDBC.
There is only one RDBMS adapter, which uses a JDBC interface, because all supported
relational providers are accessible through JDBC. The RDBMS adapter supplies data to
the SQL engine in the query execution engine while the OLAP adapters supply data to the
MDX engine.

1.3.1 Planning and executing the query

Two major components are involved when the query service processes requests: the
transformation engine and the query execution engine. Both engines share a common
environment and operate on the same query structures: the plan tree and the run tree.

An XML parser converts an incoming report request into an initial plan tree, including any
embedded SQL, HiveQL or MDX queries. The tree has two main branches: the query,
describing what the user wants to see, and the QueryResultSet, describing how the user
wants to see the results (such as in a list or crosstab format).

With the tree in place, the planning process can begin. The transformation engine checks
each node in the plan tree to see which query transformations apply to that node. The query
transformations implement the logic that transforms a Cognos query into one or more SQL,
HiveQL or MDX queries that the one or more target data sources can understand. The
transformations also add nodes representing any data manipulation and local processing
operations that might be required to produce the requested result.

The transformations occur in several passes, with potentially several iterations per pass, until
all possible transformations have been applied. During this process, the transformation
engine connects to the IBM Cognos 10 Content Manager to look up model information that
applies to the query being processed. When all transformations have been applied, the plan
tree has morphed into a run tree and is ready for execution.
Chapter 1. Overview of Cognos Dynamic Query 5

The run tree is at the heart of query execution. Results flow from the leaf nodes of the run tree
to the root node, where the result is represented in a format suitable for the report service to
render the report output. A run tree consists of various types of nodes, each representing a
different function:

� SQL execution
� MDX execution
� HiveQL execution
� Data manipulation
� Local processing

In the simplest form of a dimensional style query, MDX execution nodes cause the MDX
engine to pull data from the data cache (if the cache is not available, the engine sends an
MDX query to an OLAP data source). The results are stored in the data cache and go through
some data manipulation nodes in the run tree, which might alter the shape of the results. After
that, local processing nodes flatten the multidimensional result and sort the data before
returning the requested results to the report service.

In a more complex query, such as one against a DMR package, the report request is
dimensional in nature, but the data source is relational. This means the query generated for
the report is MDX, but the data source only understands SQL. Thus the run tree consists of a
mixture of all four types of execution nodes. In this event, the execution engine first sends
SQL queries to the relational data source. Local processing nodes then reshape the results
into dimensional form for storage in the data cache, from which MDX nodes query data just as
they would from a dimensional data provider. Subsequent execution proceeds as it would for
a dimensional query against an OLAP data source.

1.4 Technology selection guidance

Cognos offers several query technologies to address your analytical needs. This section
provides guidance that can lead you to the best solution for your requirements.

Table 1-1 summarizes the guidance regarding when to employ pure relational, IBM Cognos
TM1®, IBM Cognos Dynamic Cubes, or DMR analytics for different application objectives.
The remainder of this section gives details about the optimal scenarios for using each of
these analytic technologies.

Table 1-1 Summary of analytic technology selection guidance

Application objective Preferred technology

� Reporting on leaf-level records
� Static reports (no user requirements for navigating through

business hierarchies)
� Simple list reports

Pure relational

� Users writing back to the same data source being analyzed
� What-if analysis
� Volatile data because of planning and budgeting applications

IBM Cognos TM1

� Self-service interactive analysis
� High performance on large and growing data volumes
� Data warehouse structured in star or snowflake schema

IBM Cognos Dynamic Cubes

� Interactive analysis on operational or transactional database
� Tight control over caching
� Tight control over security

Dimensionally-modeled
relational (DMR)
6 IBM Cognos Dynamic Query

1.4.1 Pure relational analytics

A pure relational package is one created in IBM Cognos Framework Manager over a
relational database without modeling any dimensional context. For many applications, there
is no need for OLAP functionality, such as when the application is primarily for ad hoc queries
or pre-authored reports with no requirement for drilling up and down. In these cases, you
might choose to publish packages based on query subjects alone (with no dimensions
defined). A pure relational approach is best for scheduled reports run against a transactional
or operational database. It works well for simple list reports that aggregate tens of millions of
records. It is common for the target report in a drill-through definition to be purely relational
and contain leaf-level records in a tabular format.

1.4.2 OLAP analytics

OLAP technologies work best for interactive analysis involving frequent examination of cross
sections of your business. OLAP allows users to drill up and down business hierarchies and
interactively create new views of data for specific business contexts. Cognos BI supports
several proprietary and third-party OLAP solutions, including Microsoft Analysis Services and
Oracle Essbase. In addition, it offers intuitive, web-based user interfaces such as Cognos
Workspace Advanced and Analysis Studio that are conducive to navigating your business
hierarchies.

IBM Cognos Dynamic Cubes is the preferred OLAP data source for performance reasons and
is recommended for use unless a specific constraint prevents you from doing so. This section
contains further guidance regarding OLAP technologies in Cognos BI.

Cognos TM1
Cognos TM1 is primarily positioned for financial planning applications where users are
submitting planned budgets, contributions, and resources to a centralized server; everyone is
working with the same basic facts.

The powerful OLAP server of TM1 scales writers to the thousands. Its configurable model,
rules, and user interface layer are used to satisfy a broad range of planning applications
(financial, resource, projects, demand, merchandise, customer churn, customer and product
profitability, and so on).

When TM1 is employed to satisfy write-back requirements of users, it is preferred that those
same TM1 cubes be used for business intelligence reporting and analysis. However, if no
such write requirements exist, an alternative OLAP solution is likely best. This is because
on-demand aggregations and calculations significantly affect first execution (non-cached)
query performance for TM1 cubes when they are loaded with data volumes exceeding 10 GB
of disk data or 10 million records. The nature of a MOLAP2 (self-contained cube) architecture,
such as that of TM1, limits data volumes to what can efficiently be contained in memory.

TM1 is designed for volatility in order to support large numbers of users writing back to the
system. For read-only reporting and analysis requirements, Cognos Dynamic Cubes can
perform better and satisfy a greater number of users.

2 multidimensional online analytical processing (MOLAP)
Chapter 1. Overview of Cognos Dynamic Query 7

Cognos Dynamic Cubes
Cognos Dynamic Cubes is an extension of the dynamic query layer that uses substantial
in-memory data assets and aggregate awareness to achieve high-performance, interactive
analysis and reporting over terabytes of warehouse data. Cognos Dynamic Cubes requires a
data warehouse that is structured in a star or snowflake schema to maximize the performance
characteristics of the solution.

Cognos Dynamic Cubes is the most scalable, high-performing OLAP solution offered by
Cognos BI. Cognos Dynamic Cubes is the preferred solution for customers who have a star-
or snowflake-structured data warehouse and want to enable users to perform self-service
analysis and reporting on large and growing data volumes.

Dimensionally modeled relational (DMR) analytics
A DMR package enables an OLAP experience on top of a relational data source. The
dimensional layer is defined in Cognos Framework Manager.

DMR analytics give you great control over latency. In Report Studio, you can specify at the
query level which queries within a single report can benefit from caching versus which ones
should retrieve live data for every request.

DMR analytics also give you great control over security. You can leverage the security defined
in your database by associating Cognos users, groups, and roles with the corresponding
users, groups, and roles in the RDBMS. In Framework Manager, you can define data-level
security (user-specific filters) or object security (to prevent metadata objects from being
accessible to certain users). The flexibility with respect to security requirements comes at the
expense of less cache sharing. Unlike Cognos Dynamic Cubes, where security is applied on
top of the same cache so that all security profiles are engaging the same cache, with DMR,
there are separate caches for each security profile.

DMR analytics can have a low total cost of ownership. Aside from the administrative overhead
associated with clearing and priming the cache, this approach enables you to essentially
publish and forget, because you do not need to worry about starting or building cubes.

Consider DMR analytics when particular requirements cannot be satisfied by Cognos
Dynamic Cubes. The following most common requirements necessitate DMR analytics
instead of Cognos Dynamic Cubes:

� Need to reuse an existing Framework Manager model

� Strict latency requirements (up-to-the-minute data)

� Complex security requirements

� A data source that cannot be structured as a star or snowflake

� An underlining data source that is supported by DMR but not Cognos Dynamic Cubes

Using DMR instead of Cognos Dynamic Cubes is preferred in the following scenarios
because of the smaller memory footprint and lower administrative overhead:

� Reporting primarily involves batch jobs scheduled outside of business hours.

� Reports primarily retrieve a small result, with minimal use of dimensional functions (as is
often the case with exception and scorecard reports).

� DMR is already in use, and users are sufficiently satisfied with DMR performance.

NOTE: For more information, see IBM Cognos Dynamic Cubes, SG24-8064.
8 IBM Cognos Dynamic Query

Security differences between DMR and Dynamic Cubes
Figure 1-3 highlights the difference between a DMR package and Cognos Dynamic Cubes
with respect to security applied to the corresponding in-memory cubes. A DMR package
filters the data used to build a cube based on security filters that are expressed in relational
terms. In contrast, Cognos Dynamic Cubes reads the data as a super user with the highest
authorization available and then applies security filters expressed in dimensional terms to the
same cube.

Figure 1-3 Comparison of security in a DMR approach and Cognos Dynamic Cubes (DC)
Chapter 1. Overview of Cognos Dynamic Query 9

10 IBM Cognos Dynamic Query

Chapter 2. Administration

This chapter describes configuring the query service, data source administration, and cache
management. Administrators can learn how to tune the query service effectively and about
preferred practices for managing their BI content.

The chapter contains the following sections:

� 2.1, “Configuring the query service” on page 12
� 2.2, “Data source administration” on page 17
� 2.3, “Cache management” on page 20

2

© Copyright IBM Corp. 2013. All rights reserved. 11

2.1 Configuring the query service

When you install the application tier component of IBM Cognos Business Intelligence (BI), the
query service is included and enabled by default. The query service can be disabled, and its
JVM prevented from launching, by using Cognos Configuration.

Most tuning options for the query service are located in Cognos Administration. To configure
settings for the query service, log in to Cognos Administration and then navigate to the
Dispatchers and Services area of the Configuration tab to locate the QueryService object
(highlighted in Figure 2-1).

Figure 2-1 QueryService object on Configuration tab of Cognos Administration

The query service has three categories of settings that can be configured: environment,
logging, and tuning. By default, each instance of the query service acquires applicable
configuration settings from its parent. You can override the acquired values by setting them
explicitly on the Settings tab of the Set properties window for the QueryService.

2.1.1 Memory sizing

Although the query service can operate as a 32-bit Java process in 32-bit installations of
Cognos BI servers, 64-bit servers are preferred. The initial size and size limit of the JVM heap
for the query service can be set in Cognos Administration on the Settings tab of the
QueryService object. By default, both the size and size limit are set to 1 GB. For details about
setting query properties, see the product information center:

http://ibm.co/19eGKCd

In production environments where IBM Cognos Dynamic Cubes is not employed, a good
practice is to set the initial heap size to 4 GB and the limit to 8 GB (a 64-bit server is required
for memory settings above 2 GB). Then, you can monitor system resource usage during peak
periods and adjust the settings accordingly.
12 IBM Cognos Dynamic Query

http://ibm.co/19eGKCd

For a server that is operating one or more Cognos Dynamic Cubes, the size limit of the query
service should be set in accordance with the Cognos Dynamic Cubes hardware sizing
recommendations.

The recommendations are available in an IBM developerWorks article:

http://www.ibm.com/developerworks/library/ba-pp-performance-cognos10-page635/

Monitoring the JVM heap size of the query service
You also can monitor metrics related to the JVM heap size of the query service. Figure 2-2
shows the JVM metrics view of the QueryService in Cognos Administration, which you can
access by navigating to the system area of the Status tab and then selecting the
QueryService object for a particular server.

Figure 2-2 Query service JVM metrics monitor

You can assign a high water mark or threshold for the JVM heap size to cause the indicators
to change color when the JVM heap grows beyond the threshold. You then may want to
assign more memory to a query service when it approaches its configured JVM heap size
limit during peak periods.

Using these query service metrics available in Cognos Administration, you can ensure that
there is enough memory both for typical workloads and for additional, infrequent queries that
require more memory

The preferred settings for the query service JVM heap are an initial size of 4096 MB and a
maximum size of 8192 MB. The intention of these settings is for the system to use 4 GB or
less most of the time, with an additional buffer of 4 GB to handle temporary loads. You can
monitor the high value of the committed heap size to detect if the heap usage is too small.
Figure 2-3 on page 14 shows the JVM usage at the time of system startup.
Chapter 2. Administration 13

http://www.ibm.com/developerworks/library/ba-pp-performance-cognos10-page635/

Figure 2-3 Query service JVM metrics monitor at startup

If the system never needs more than 4 GB of heap, the committed heap size will never
increase. It will stay at 4,294,967,296 bytes. The current heap size high value indicates the
maximum amount of heap that has been used. Because the peak heap size frequently
approaches the committed heap size, the JVM may increase committed heap size. If your
workload causes the heap to always expand above the initially requested heap size, the
initially requested heap size can be increased. If the workload always causes the heap to
expand to the maximum size, the JVM heap size is too small. Figure 2-4 shows a JVM where
the committed heap size has expanded.

Figure 2-4 Committed heap size expansion

In Figure 2-4, the heap expanded but the current heap size is much smaller than the
committed heap size. This is not unusual because of how the JVM operates. The JVM heap is
split into a nursery, or new generation, memory space and a tenured, or old generation,
memory space. If one of these memory spaces is frequently low, the JVM will try to expand it.
In the case of Figure 2-4, the committed heap was increased in order to grow one of these
two heap segments. By increasing the initially requested heap size to 5 GB, the heap
expansion will be avoided entirely.
14 IBM Cognos Dynamic Query

2.1.2 Throughput sizing

With every new release of Cognos BI, optimizations are introduced to maximize the query
service’s throughput. The query service’s cache management system continues to be
optimized, too. These improvements reduce user wait times because the Cognos BI server
retrieves objects from its own in-memory cache faster than it does from a query to a remote
data source. The query service JVM is multi-threaded and makes use of available
processors.

As of Cognos BI version 10.2, the maximum number of threads that the query service can
process concurrently is determined dynamically based on the number of processes and
affinity settings defined for the ReportService within Cognos Administration. By default, the
Cognos BI server is configured to have two report service processes with eight low-affinity
and two high affinity threads for each. With these settings, the query service is capable of
sending 20 concurrent queries to data sources.

If an administrator uses Cognos Administration to adjust either the affinities or the number of
available processes for the ReportService, the query service will automatically adjust to allow
the increase in concurrent requests without requiring any additional query service-specific
configuration changes.

The preferred starting point for tuning your Cognos BI server is to leave the affinity settings at
their default values and set the number of report service processes to 1.5 times number of
available processors. For example, if your Cognos BI server is the only application running on
hardware that has two processors, set the number of processes for the report service during
peak and non-peak periods to three as a starting point, and then monitor system resource
usage and adjust the number accordingly.

Increasing the query service’s throughput is intended to reduce the risk of a user waiting while
their query is queued because the Cognos BI server is operating at capacity. Yet in certain
high-load scenarios, additional throughput might result in longer user wait times. This
additional wait time is attributed to the fact that each concurrent request must establish its
own data source connection and in-memory cache instead of re-using one that was created
by a previous request. For example, when using a query service configured for four report
service processes, each with eight low-affinity and two high-affinity threads, a concurrent
40-user load test will send all 40 requests concurrently. This, in turn, will result in 40
simultaneous data source connections. If the settings were such that only 10 data source
connections could be opened concurrently, then the remaining 30 requests would be satisfied
by reusing one of the 10 initial data source connections, thus reducing the overall load on the
underlying data source. In situations where the overall data source load causes the request
performance to suffer significantly, you can reduce the number of processes for the report
service to limit throughput and make better use of caching.

Batch reporting
The Cognos BI architecture differentiates between the processing of interactive and
non-interactive requests. All requests that are initiated through user activity are processed
by the report service; scheduled or event-driven activity is processed by the batch report
service. The query service returns results retrieved from data sources to the requesting batch
or report service.

Scheduled reporting is a critical aspect of any large-scale enterprise reporting solution. The
effective management of low or non-interactive usage time periods, in combination with an
organization’s data refresh cycles, provides an opportunity for administrators to prepare as
much information as possible during off-peak times for later retrieval by users.
Chapter 2. Administration 15

Reports can be scheduled on an individual, one-by-one basis, but this can be a burden when
you have many reports to schedule. Instead, you can use jobs to execute scheduled activities.
A job is a container of scheduled processing activities that run in a coordinated manner.
Instead of scheduling individual reports, a job allows multiple reports to execute using the
same schedule. Each activity within a job is given a sequence order based on how the job
was selected. Jobs can be submitted to run either all at once (all activities in the job execute
simultaneously) or in sequence (activities execute one at a time based on their sequence
order).

The query service throughput for batch requests is determined in the same manner used for
interactive requests, except that the associated properties of the BatchReportService in
Cognos Administration are retrieved rather than those for the ReportService.

2.1.3 Multi-server environments

By default, Cognos BI loads balance dynamic query report executions among all of the
application tier servers that are operating active query services in the environment. If
existing servers are at capacity during peak periods, you can add more servers to scale
your environment up to accommodate more requests.

Cognos BI version 10.2.1 does not permit a single query execution to write to the in-memory
query service cache of multiple Cognos BI servers. Only the server that executed the query
can have its cache primed by that query. So to best take advantage of query service caching
in a multi-server environment, all content that might use a common cache should be tied to a
single server (assuming the load is not too great for the one server to handle). By configuring
advanced dispatcher routing (ADR), you can route requests based on a Cognos security
profile (user, group or role), or by package. Using ADR, you can minimize the number of
cache misses by directing package A content to server X only, and package B content to
server Y only.

For more information about advance dispatcher routing, see the product information center:

http://ibm.co/138Qa19
16 IBM Cognos Dynamic Query

http://ibm.co/138Qa19

2.2 Data source administration

Figure 2-5 shows how objects are organized in the data source connection area of Cognos
Administration.

Figure 2-5 Structure of data source administration objects

At the highest level are data sources. A data source is really only a container for one or
more connections. When running a report, one or more data sources are accessed based
on how the Framework Manager model was defined. Therefore, the user must appropriate
permissions on the data source object (or objects) being referenced by the report.

Every data source object must contain one or more connection objects. A connection holds
information such as the type of data provider being accessed and the provider’s server
hostname and port number. If a user has permissions on only one connection within a data
source, then that connection is automatically used. If a user has permissions on more than
one connection within a data source, then the user is prompted to declare which connection
they want to use when they run the report.

Within every connection object there can be one sign-on object, more than one sign-on
object, or no sign-on object. A sign-on object simply holds the user name and password
needed to connect to the database (as defined by the connection object). If a user has
permissions on only one sign-on within a connection, then that sign-on is automatically used.
If a user has permissions on more than one sign-on within a connection, then the user is
prompted to declare which sign-on to use when running the report. If a user does not have
permissions on any sign-ons or there are no sign-ons defined in the connection, then that
user is prompted to enter a user name and password for a secured database when running
the report.

2.2.1 Connection command blocks

Connection command blocks are mechanisms with which the Cognos BI server can send
additional context to a data source. Data source administrators want to know details about
applications that connect to their database systems and they use this information for auditing,
workload management, and troubleshooting.

Data source object

Connection object

Signon object

1..1

1..n

1..1

0..n
Chapter 2. Administration 17

Open connection, open session, close session, and close connection command blocks can
be defined on the last window of the New data source wizard in Cognos Administration. Using
these command blocks, Cognos BI administrators can give database administrators details
about reporting and analysis applications and the users who are accessing them. These
details might include the default set of information about authenticated users that is retrieved
from authentication providers.

This information can be extended by specifying custom namespace mappings in Cognos
Configuration. Using the mechanisms built into your database, you can implement the most
appropriate methods of passing Cognos context to the database. The macro functions
supported by the query service can provide information in a command block about users and
reporting application objects, such as packages, reports, or queries. All macro functions can
return values when referenced from a command block, which allows for application context to
be passed to the data source from a command block. Macro functions that reference
parameter maps in a model may also be used.

More information about connection command blocks including instructions and numerous
examples are in the product information center:

http://ibm.co/138SKV7

2.2.2 JDBC drivers

The query service employs Java Database Connectivity (JDBC) driver files to connect to
non-OLAP data sources. Appropriate driver .jar files must be made available to the query
service, so you must have access to the JDBC driver provided by your database vendor.

Start by selecting the driver version that matches the version of your data source. This version
can vary depending on software updates, patches, revisions, and service packs. For some
JDBC drivers, you might also need to make appropriate license files available to the query
service.

With the driver version selected, use the following procedure to make driver and license files
available to the query service.:

1. Install the appropriate database software.

2. Copy the JDBC driver file (or files) to the c10_location\webapps\p2pd\WEB-INF\lib
directory.

3. Stop and restart the Cognos BI server.

You can choose to use a JDBC 4.0 driver (if your vendor offers one) or a JDBC 3.0 driver. For
IBM DB2®, the drivers are named db2jcc4 and db2jcc, respectively. You can use either a
JDBC 4.0 or 3.0 driver as the query service is not dependent on JDBC methods, which only
exist when a JDBC 4.0 driver is present.

The JDBC standard uses terms such as type-2 and type-4 to describe key architectural
implementations. A type-2 driver is a JDBC driver which combines Java code on top of
non-Java libraries that must be installed on the machine. A type-4 driver is written entirely in
Java and communicates with the server using the internal protocol the server understands. A
vendor might offer a type-2 driver and in some cases deliver functionality that is not provided
in their type-4 driver. If your vendor offers a type-2 or type-4 driver, assume that only the
type-4 driver is tested in the IBM lab unless stated otherwise on the Software Compatibility
Report (SPCR) for the version of Cognos BI you are using. The SPCRs for Cognos BI
products are on the Cognos support website:

http://www.ibm.com/support/docview.wss?uid=swg27037784
18 IBM Cognos Dynamic Query

http://ibm.co/138SKV7
http://www.ibm.com/support/docview.wss?uid=swg27037784

In certain cases, a vendor may offer more than one JDBC driver that is capable of interacting
with its servers. For instructions of how to configure the JDBC connection to a particular type
of data source, see the following resources:

� Product information center:

http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/index.jsp

� Cognos support website:

http://www.ibm.com/cognos/support

2.2.3 OLAP connections

The query service connects to OLAP data sources such as IBM Cognos TM1, SAP BW,
Oracle Essbase, and Microsoft Analysis Services through vendor-specific full, or thick, client
software that must be installed on the same server as the query service. Many vendors
distribute their runtime clients with numbers that match the server version with which the
clients were initially released. In some cases, however, the clients can be released with their
own version numbers and release cycles.

Typically, you must configure certain environment variables to allow the query service to
locate the corresponding OLAP client. For instructions on how to configure the native client
connection to a particular type of OLAP data source, see the product information center and
the Cognos support website at the addresses provided at the end of the previous sub-section.

XMLA support
The query service can query Microsoft Analysis Services through XMLA, the industry
standard for analysis. XMLA is based on web standards such as XML, SOAP, and HTTP and
therefore does not require any additional client software to be made available to the Cognos
BI server. XMLA allows the query service installed on Linux and UNIX platforms to support
Microsoft Analysis Services (which has a native client available only on Windows operating
systems).

2.2.4 ERP and CRM data sources

The query service also supports a variety of ERP and CRM providers including SAP ECC,
Oracle Siebel, and Salesforce.com, each of which are treated as relational databases. For
instructions of how to configure connections to these data sources, see the product
information center and the Cognos support website at the addresses provided at the end of
2.2.2, “JDBC drivers” on page 18.
Chapter 2. Administration 19

http://www,ibm.com/cognos/support
http://www.ibm.com/cognos/support
http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/index.jsp
http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/index.jsp

2.3 Cache management

This section covers administrative aspects of managing the query service’s cache. See
Chapter 3, “Metadata modeling” on page 25 for details about the types of objects that can be
cached in the Java memory and the conditions for which those objects may be reused.

2.3.1 Priming the cache

The query service’s in-memory cache can be primed (populated with reusable objects) only
by means of executing reports, either in batch mode or interactively.

Reports that retrieve the most commonly accessed data are best scheduled to execute before
business hours. This minimizes the wait times for users during the day. An effective way of
priming the cache in this manner is to create a job consisting of simple reports that include
the data most frequently consumed during interactive analysis.

Results that are cached from one user’s request may be used for another user’s request
(under default settings) only if both users have the same data security profiles. This is
explained in Chapter 3, “Metadata modeling” on page 25. So, to prime the cache for the
greatest possible number of users, consider scheduling the same report to run under various
security profiles.

Reports that are ideal for cache priming include those from a known set of dashboards that a
majority of users will use. For example, if there is a set of dashboards or reports that most
users use as a starting point, these reports are good candidates for priming because all of
those users can benefit from the fast performance that cached values can provide.

Reports that contain large volumes of data and many levels of hierarchies are also good
candidates for cache priming because other reports that contain a subset of the data and
metadata retrieved when executing the original report might benefit from the associated
cached objects.

2.3.2 Clearing the cache

Java garbage collection is a term used to describe memory management operations in which
memory associated with artifacts that are not actively being used by the program are
automatically reclaimed under certain conditions. In this case, Java garbage collection
automatically begins clearing out memory when the configured size of the query service’s
JVM heap nears the limit of available space. Yet it is best not to rely on this safeguard. The
problem with approaching an out-of-memory condition is that processor cycles result in being
devoted to garbage collection instead of query executions.

Clear cache operations can be initiated manually or scheduled from Cognos Administration.
The Query Service Caching section of the Configuration tab allows for manual cache clearing
and writing the cache state to file for one or more server groups. The Write cache state
feature creates the following time-stamped XML file showing the state of all OLAP caches.

c10\logs\XQE\SALDump_all_all_all_timestamp.xml

In a distributed installation, each report server that has an OLAP cache writes the cache state
file to its local logs directory.
20 IBM Cognos Dynamic Query

Pure relational caching
Results from pure relational queries are retained in memory only while the data source
connection remains open. This is different from dimensional queries, such as those for
DMR packages, which, as of Cognos BI version 10.2, persist in-memory until a manual or
scheduled clear cache operation occurs. Query service data source connections have a
default idle timeout of 300 seconds (5 minutes), but this can be set to a different value using
the Properties window of the query service in Cognos Administration. For details about
modifying these properties, see the product information center:

http://ibm.co/14Vhe5c

DMR, SAP BW, Oracle Essbase, and Cognos Dynamic Cubes caching
The typical cache management strategy when using DMR packages, SAP BW, Oracle
Essbase, and Cognos Dynamic Cubes is to schedule a clear cache operation following a load
of new data in the underlying data source. These caches can be cleared using the query
service administration task wizard in Cognos Administration (shown in Figure 2-6). These
cache clearing tasks can be targeted at a specific package or data source. An asterisk (*)
entered in either the package or data source field is considered a wild card that will clear
everything.

Figure 2-6 New query service administrative task wizard

TM1 caching
The query service can detect updates in Cognos TM1 cubes and automatically clear any
associated stale data from its memory. Therefore taking any action to clear the cache for TM1
data sources is unnecessary.

2.3.3 Automating cache operations

The query service can be instructed to perform cache operations automatically in response to
external events. The Cognos BI Software Development Kit (SDK), trigger-based scheduling,
and the query service’s command line API are the three primary mechanisms for which
you can automate query service cache operations in conjunction with external business
operations such as loading new data into your data warehouse.

The SDK and trigger-based scheduling are the most popular mechanisms to add query
service cache operation automation into programming scripts and are explained in the
standard product documentation. Use of the query service command-line API does not
appear in the product documentation. However, because some system administrators might
find the syntax of the command-line API more convenient than that of the SDK or
trigger-based scheduling, the query service command-line API is explained here.
Chapter 2. Administration 21

http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/topic/com.ibm.swg.ba.cognos.ug_cra.10.2.1.doc/t_configsettings.html?path=2_8_9_0#ConfigSettings
http://ibm.co/14Vhe5c

Managing cache operations with the SDK
The Cognos BI SDK provides a platform-independent automation interface for working with
Cognos BI services and components. The SDK uses a collection of cross-platform web
services, libraries, and programming interfaces. You can choose to automate a specific task
or you can program the entire process, from modeling through to reporting, scheduling, and
distribution.

The query service administration task wizard in Cognos BI was built using the Cognos BI
Software Development Kit (SDK). Any task that can be defined through the wizard can also
be established programmatically using the SDK. For more information, see the Cognos BI
SDK documentation or the following developerWorks article:

http://www.ibm.com/developerworks/data/library/cognos/development/how_to/page565.html

Managing cache operations with trigger-based scheduling
Both priming the query service (by running reports) and clearing the service caches can be
scheduled using the standard scheduling interface of Cognos Connection. There, you can
use triggers to schedule certain actions based on an occurrence, such as a database refresh
or receipt of an email. The occurrence acts as a trigger causing the entry to run, such as
when you run a report every time a database is refreshed. Trigger-based scheduling can help
prevent exposing users to stale data. Triggers provide a mechanism for which to implement a
script for the routine presented in Figure 2-7. To set up a trigger occurrence, see the following
documentation:

http://ibm.co/17Jm9sz

Figure 2-7 Scripting to optimize cache lifecycles

Load data

Clear the cache

Prime the cache
22 IBM Cognos Dynamic Query

http://pic.dhe.ibm.com/infocenter/cbi/v10r2m0/topic/com.ibm.swg.ba.cognos.ug_cra.10.2.0.doc/t_setuptriggereventsonaserver.html#SetUpTriggerEventsonaServer

http://www.ibm.com/developerworks/data/library/cognos/development/how_to/page565.html
http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/index.jsp?topic=%2Fcom.ibm.swg.ba.cognos.ug_cra.10.2.1.doc%2Ft_setuptriggereventsonaserver.html
http://ibm.co/17Jm9sz

Managing cache operations with the command-line API
In addition to the Cognos Administration interface for executing and scheduling cache
management tasks, a command-line API enables manual and automated cache management
outside the normal Cognos BI administration environment. The command-line utility is located
in the c10\bin directory and has either of the following names, depending on your operating
system:

� QueryServiceAdminTask.sh
� QueryServiceAdminTask.bat

The QueryServiceAdminTask utility accepts up to two arguments:

� Cache operation (mandatory)

Here you specify one of the following values to select the corresponding cache operation:

– A value of 1 to clear the cache
– A value of 2 to write the cache state

� Cache subset (optional)

Use this argument to specify the portion of the cache to which the operation applies by
naming a data source, catalog, and cube (separated by forward slashes). You can use the
wildcard character (*) to represent all data source, catalog, or cube names. Omitting this
argument causes the cache operation to apply to the entire cache.

For example, to clear the cache for all cubes in all catalogs under all data sources, enter
the following command in a command shell:

queryServiceAdminTask 1 "*/*/*"

Optionally, you can enter this command:

queryServiceAdminTask 1

Entering QueryServiceAdminTask -help in a command shell displays detailed usage
instructions for the utility.

Because this command-line utility makes an immediate task request, it does not go
through the job scheduler and monitoring service. Consequently, it affects only the
Cognos BI server on which the command is run.
Chapter 2. Administration 23

24 IBM Cognos Dynamic Query

Chapter 3. Metadata modeling

This chapter describes metadata modeling of relational data sources with IBM Cognos
Framework Manager, a metadata modeling tool that drives query generation for IBM Cognos
Business Intelligence (BI). Cognos BI enables performance management on normalized and
denormalized relational data sources and also a variety of OLAP data sources.

The chapter contains the following sections:

� 3.1, “Cognos Framework Manager” on page 26
� 3.2, “Goals of metadata modeling relational data sources” on page 26
� 3.3, “Framework Manager architecture” on page 27
� 3.4, “Key objects of a relational model” on page 28
� 3.5, “Organizing relational models” on page 35
� 3.6, “Relational modeling for performance” on page 36

3

© Copyright IBM Corp. 2013. All rights reserved. 25

3.1 Cognos Framework Manager

With Cognos Framework Manager you can do the following tasks:

� Create a project representing your data source (or sources)
� Import required metadata, such as tables and views, from your data source
� Model the metadata for your users
� Set and manage security
� Publish packages to make appropriate parts of the model available to report authors and

self-service analysts

The chapter presents important reminders, examples, and preferred practices, but assumes
you are already familiar with Framework Manager modeling concepts. It also assumes your
project is using the dynamic query mode.

For additional details about Framework Manager modeling, see the following resources:

� Framework Manager User Guide:

http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/nav/5_10

� Guidelines for Modeling Metadata:

http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/nav/5_5

� IBM developerWorks articles on proven practices in business analytics:

http://www.ibm.com/developerworks/analytics/practices.html

� Business analytics product training from IBM Education:

http://www.ibm.com/software/analytics/training-and-certification/

3.2 Goals of metadata modeling relational data sources

Cognos Framework Manager is a metadata modeling tool where the building blocks for
authoring reports and performing analysis are defined. A Framework Manager model is a
business-focused representation of information from one or more data sources. It allows you
to define reusable objects for security, translations, custom calculations, and other functions
in a way that allows a single model to serve the needs of many groups of users.

Modeling with Framework Manager is an iterative process of refining different views of your
metadata, starting with the data source view, then the business view, and finally the
presentation view that your users consume. The end result is a metadata model that depicts
all of your organization’s data in a simplified way that hides the structural complexity of the
underlying data sources.

3.2.1 Modeling for self-service analysis

Successful self-service applications require presentation layers that have intuitive naming
conventions and data formatting specifications that align with business conventions.

Performance problems associated with long-running queries during ad hoc analysis can be
avoided by adding appropriate embedded filters into the Framework Manager model.
Modelers should also consider adding reusable stand-alone filters and calculations to the
package to help users avoid the wait times that develop during the sequence of steps that
users undertake to define the filters and calculations themselves.
26 IBM Cognos Dynamic Query

http://www.ibm.com/software/analytics/training-and-certification/
http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/nav/5_5
http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/nav/5_10
http://www.ibm.com/developerworks/analytics/practices.html
http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/nav/5_10

3.3 Framework Manager architecture

Framework Manager is a client-side graphical user interface that performs two primary
functions:

� Updates the project's model.xml file, which is the primary repository for models created in
Framework Manager

� Calls on the query service and other components of the Cognos BI server as needed

Figure 3-1 illustrates the communication channels with components of the Cognos BI server
during various Framework Manager operations.

Framework Manager uses information entered into Cognos Configuration to communicate
with server components. For example, Framework Manager uses the configured dispatcher
URI to locate the active content manager service that populates the list of available data
sources for metadata import. When testing query items, the query service on a Cognos BI
server is what establishes connectivity to the data source and returns the requested results to
Framework Manager. Framework Manager does not communicate with dynamic query data
sources directly, which means that the associated JDBC drivers (which Framework Manager
will not use) only need to be made available to the Cognos BI server. Note that a valid
gateway URI must be entered into Cognos Configuration because Framework Manager
connects through the gateway to authenticate users.

Figure 3-1 Framework Manager communication channels with Cognos BI server components

IBM Cognos BI server components

IBM Cognos Framework Manager Relational Metadata Service

Query Service

metadata
extractor/browser

JDBC

RDBMS

OLAP

OLAP Import

test and validation

Query
Framework

Dy namic
Query

Provider

relational import

Package publish

Data source import
publisher/refiner

content
store

database

V5 data serv ice

Content Manager Service

authentication

Authentication Gateway (on web server)
Chapter 3. Metadata modeling 27

3.4 Key objects of a relational model

Query subjects, dimensions, determinants, and relationships are the primary objects used to
build a metadata model. This section explains each of these objects and provides guidance of
how to use them to convey the rules for generating effective queries of your business
intelligence.

3.4.1 Query subjects

A query subject is a set of query items that have an inherent relationship. For example, a table
and its columns in a relational database may be represented in Cognos BI as a query subject
and its query items. You use Framework Manager to modify query subjects to optimize and
customize the data that they retrieve, such as by adding filters or calculations. When you
change the definition of a query subject, Framework Manager regenerates the associated
query items to ensure that any changes to the query subject properties are reflected in all
query items for that query subject.

Various types of query subjects are available in Framework Manager:

� Data source query subjects

� Model query subjects

� Stored procedure query subjects

Data source query subjects
Data source query subjects directly reference data in a single data source. Framework
Manager automatically creates a data source query subject for each table and view that you
import into your model.

For example, if you import the Employee Detail Fact table from the Great Outdoors
Warehouse sample database (included with all Cognos BI products), Framework Manager
creates a query subject using the following SQL statement:

Select * from [go_data_warehouse].EMPLOYEE_DETAIL_FACT

Framework Manager generates query subjects that represent tabular data from the data
source. In this way, a query subject that references an entire table contains query items that
represent each column in the table. If the SQL selects only specific columns, only those
columns are represented as query items.

Unlike model query subjects (described later in this chapter), each data source query subject
can reference data from only one data source at a time. Yet the advantage of data source
query subjects is that you can directly edit the SQL that defines the data to be retrieved. This
means that you can insert parameters to tailor your queries based on variables that are
populated at run time, including attributes of the user that is initiating the query.

Changing the type of SQL entered into data source query subjects
By default, the SQL statement for a data source query subject is Cognos SQL but you have
the option to define it as either native SQL or pass-through SQL. Native and pass-through
SQL statements must be completely self-contained and must not reference anything outside
that SQL, such as database prompts, variables, or native formatting that would normally be
supplied by the calling application. In contrast, Cognos SQL statements are analyzed using
metadata from either the model or the relational data source. By default, Cognos SQL is
case-sensitive, so it looks up metadata using the names as they are displayed in the SQL
statement.
28 IBM Cognos Dynamic Query

If you change an existing query subject to native SQL or pass-through SQL, you must first
ensure that the SQL reflects the rules that apply to the native data source so that your query
runs properly.

Cognos SQL
By default, Cognos SQL is used to create and edit query subjects in Framework Manager.
Cognos SQL adheres to SQL standards and works with all relational and tabular data
sources. The Cognos BI server generates Cognos SQL that is optimized to improve query
subject performance, such as by removing unused elements at query time.

Cognos SQL works with any supported database because it is transformed into the
appropriate native SQL at query time. In this way, working with Cognos SQL is preferable
to the native or pass-through methods.

Native SQL
Native SQL is the SQL that the data source uses, such as DB2 LUW SQL or Oracle SQL. Use
native SQL to pass the SQL statement that you enter to the database. Cognos BI can add
statements to what you enter to improve performance. You cannot use native SQL in a query
subject that references more than one data source in the project.

Pass-through SQL
Use pass-through SQL when the SQL statement that you enter is not valid inside a derived
table or subquery. Pass-through SQL lets you use native SQL without any of the restrictions
that the data source imposes on subqueries. This is because pass-through SQL query
subjects are not processed as subqueries. Instead, the SQL for each query subject is sent
directly to the data source where the query results are generated.

If the SQL you are entering is valid inside a derived table or subquery, identify it as native
instead of pass-through because doing so increases the opportunity for improved
performance when more query processing is performed by the database and less data is
returned from the database to the Cognos BI server. To optimize performance, the Cognos BI
server will always try to submit as much of the processing to the database as possible and will
employ derived tables to do it. Identifying custom SQL as pass-through SQL prevents the
Cognos BI server from submitting this SQL inside of a derived table.

Model query subjects
Model query subjects are not generated directly from a data source but are based on query
items in other query subjects or dimensions, including other model query subjects. By using
model query subjects, you can create a more abstract, business-oriented view of a data
source.

Model query subjects are based on the metadata in your model. This allows you to take the
following actions:

� Rename items in your model and reorganize them into a layer that is appropriately
presented for authors.

� Reuse complex SQL statements that exist elsewhere in the model.

� Reference objects from different data sources in the same query subject.

The SQL for a model query subject is generated by the query service and cannot be edited
directly. If you want to edit the SQL of a model query subject, the preferred method is to copy
the SQL for the model query subject from the query information tab and paste it into a new
data source query subject. Otherwise, you can convert the model query subject into a data
source query subject through the Actions menu.
Chapter 3. Metadata modeling 29

Stored procedure query subjects
Stored procedure query subjects are generated when you import a procedure from a
relational data source. Framework Manager supports only user-defined stored procedures.
System-stored procedures are not supported.

The procedure must be run in Framework Manager to get a description of the result set
that the procedure is expected to return. The stored procedure must return a single uniform
result set. Cognos BI supports only the first result set that is returned. If the procedure can
conditionally return a different result set, the format of that set must be consistent with the
one used to define the metadata in Framework Manager.

Each result set must be returned in the same format, such as the same number and types of
columns and column names. Overloaded signatures are supported by Cognos BI, but each
procedure must be defined with a unique name and a separate query subject for each result
set. Output parameters are not supported.

After you import or create a stored procedure query subject, it displays as a broken object.
You must run it to validate the underlying stored procedure and specify the projection list.
Static metadata often does not exist for the stored procedure in the relational data source that
describes what a result set may look like. The result set may be known only at run time. When
a stored procedure is updated in the data source, running the stored procedure in Framework
Manager updates the query subject using the newly generated query items.

Sometimes, functions are imported as stored procedure query subjects. Review the stored
procedure definition to determine what the procedure expects to be passed and what it
attempts to return. Edit and test each stored procedure query subject that you think can be a
function. If the test fails, the query subject is a function and must be deleted.

As of Cognos BI version 10.2.1, you can specify the type of transaction that is used by stored
procedure query subjects. By default, a query subject that contains a stored procedure is run
in a read-only transaction. However, the stored procedure might include operations that
require a read/write transaction. The transaction access mode property for data sources
specifies the access mode of a new transaction. The options are as follows:

� Unspecified: A new transaction is started in the default mode of the JDBC driver

� Read-Only: A new transaction is started in read-only mode

� Read-Write: A new transaction is started in read/write mode

The transaction statement mode property applies only to the compatible query mode and is
ignored in the dynamic query mode.

3.4.2 Dimensions

Dimensions must be defined to enable the OLAP experience associated with a dimensionally
modeled relational (DMR) package. A dimension is a broad grouping of data about a major
aspect of a business, such as products, dates, or markets. The types of dimensions that you
can work within Framework Manager are regular dimensions and measure dimensions.

Table 3-1 on page 31 presents an example of the dimensions in a project for sales analysis.
30 IBM Cognos Dynamic Query

Table 3-1 Dimensions of a sample project for sales analysis

Query subjects and dimensions serve separate purposes. The query subject is used to
generate relational queries and can be created using star schema rules, while the dimension
is used for DMR analytics, which introduces OLAP behavior. Because query subjects are the
foundation of dimensions, a key part of any dimensional model is a sound relational model.
By creating a complete relational model that delivers correct results and good performance,
you will have a strong foundation for developing a dimensional model.

3.4.3 Determinants

Determinants establish granularity by representing subsets or groups of data in a query
subject and are used to ensure correct aggregation of repeated data. Determinants are
closely related to the concept of keys and indexes in the data source and are imported from
the database based on unique key and index information in the data source. It is preferred
that you always review the determinants that are imported and, if necessary, modify them or
create additional ones. By modifying determinants, you can override the index and key
information in your data source, replacing it with information that is better aligned with your
reporting and analysis needs. By adding determinants, you can represent groups of repeated
data that are relevant for your application.

Determinants affect the grouping and aggregation of data, including other query subjects that
have relationships with the query subject and also the query subject itself. When you define a
non-unique item as a determinant, you should specify the Group by check box. This indicates
to the Cognos BI server that when the keys or attributes associated with that determinant are
repeated in the data, the server should apply aggregate functions and grouping to avoid
double-counting. Do not specify determinants that have either or both of the following check
boxes selected:

� Uniquely identified
� Group by

Determinants for query subjects are not the same as levels and hierarchies for regular
dimensions but they can be closely related to a single hierarchy. If you plan to use your query
subjects as the foundation for dimensions, consider the structure of the hierarchies you
expect to create and ensure that you have created determinants that will support correct
results when aggregating. The query subject should have a determinant specified for each
level of the hierarchy in the regular dimension. Specify the determinants in the same order as
the levels in the regular dimension.

If you expect to have multiple hierarchies that aggregate differently, you might consider
creating an additional query subject with different determinants as the source for the other
hierarchy.

Name Type Description

Time Regular Dates of sales organized into years, quarters, months, weeks, and
days when sales were made

Region Regular Locations of sales grouped into sales regions, countries, and cities

Product Regular Product details organized by product type, brand, model, color, and
packaging

Customer Regular Customer information

Sales Measure Purchase details such as units sold, revenue, and profit
Chapter 3. Metadata modeling 31

Although determinants can be used to solve a variety of problems related to data granularity,
also use them in the following primary cases:

� A query subject that behaves as a dimension has multiple levels of granularity and will be
joined on different sets of keys to fact data. An example is a time query subject that has
multiple levels granularity and it is joined to the inventory query subject on the month key
and to the sales query subject on the day key.

� There is a need to count or perform other aggregate functions on a key or attribute that is
repeated. For example, the time query subject has a month key and an attribute, days in
the month, that is repeated for each day. If you want to use days in the month in a report,
you do not want the sum of days in the month for each day in the month. Instead, you want
the unique value of days in the month for the chosen month key.

� You want to uniquely identify the row of data when retrieving text BLOB data from the
data source. Querying BLOBs requires additional key or index type information. If this
information is not present in the data source, you can add it using determinants.

� A join is specified that uses fewer keys than a unique determinant that is specified for a
query subject. There will be a conflict if your join is built on a subset of the columns that
are referenced by the keys of a unique determinant on the 0..1 or 1..1 side of the
relationship. Resolve this conflict by modifying the relationship to fully agree with the
determinant or by modifying the determinant to support the relationship.

� You want to override the determinants imported from the data source that conflict with
relationships created for reporting. For example, there are determinants on two query
subjects for multiple columns but the relationship between the query subjects uses only a
subset of these columns. If it is not appropriate to use the additional columns in the
relationship, then you must modify the determinant information of the query subject.

Determinants example
Table 3-2 on page 33 presents sample rows from a time query subject with unique foreign
keys. Table 3-3 on page 33 presents sample rows from a time query subject that has
non-unique month keys. These two data sets illustrate the concept of determinants.

In both data sets, the day key is the unique key of the table, so you can associate all of the
columns in the table to this key. Because it is a unique key in both data sets, in both scenarios
you identify the day key as a determinant with the check boxes in the following states:

� Selected: Uniquely identified
� Deselected: Group by

In both scenarios, the year key is not unique so the Uniquely identified box should remain
deselected for this determinant. However, because the year key is all that is needed to identify
a year in the data, the Group by box is selected to ensure that both the select distinct and
group by SQL clauses are used to display individual years in reports instead of repeated
values.

The values of the month key are what provide the difference between the two data sets in this
example. Unlike the month key data in Table 3-2 on page 33, the month key data in Table 3-3
on page 33 is not sufficient to identify a particular month in the data (because January in
different years would have the same month key value). For the Table 3-2 on page 33 scenario,
only the month key is required for the month determinant because each key contains enough
information to identify the group within the data. For the Table 3-3 on page 33 scenario, the
month determinant requires both the month key and the year key to identify months as a
sub-grouping of years. Table 3-4 on page 33 summarizes the determinants of both data sets.
32 IBM Cognos Dynamic Query

Table 3-2 Sample data set with unique month keys

Table 3-3 Sample data set with non-unique month keys

Table 3-4 Determinant settings for table 3-2 and 3-3 data sets

3.4.4 Relationships

A relationship describes how to create a relational query for multiple objects in the model.
Without relationships, these objects are isolated sets of data. Relationships work in both
directions. You often must examine what is happening in both directions to fully understand
the relationship.

When importing metadata, Framework Manager can create relationships between objects in
the model based on the primary and foreign keys in the data source or by matching query
item names. You can create or remove relationships in the model so that the model better
represents the logical structure of your business. After you import metadata, verify that the
relationships you require exist in the project and that the cardinality is set correctly. The data
source might have been designed without using referential integrity. Often, many primary and
unique key constraints are not specified. Without these constraints, Framework Manager
cannot generate the necessary relationships between fact tables and dimension tables.

The cardinality of a relationship is the number of related rows for each of the two query
subjects. The rows are related by the expression of the relationship, which typically refers to
the primary and foreign keys of the underlying tables.

Year key Month key Month name Day key Day name

2013 201301 January 20130101 January 1, 2013

2013 201302 January 20130102 January 2, 2013

Year key Month key Month name Day key Day name

2013 01 January 20130101 January 1, 2013

2013 01 January 20130102 January 2, 2013

Data set Name of
determinant

Key Attributes Uniquely
identified

Group by

Table 3-2 Year Year key None No Yes

Table 3-3 Year Year key None No Yes

Table 3-2 Month Month key Month name No Yes

Table 3-3 Month Year key,
month key

Month name No Yes

Table 3-2 Day Day key Year key,
month name,
day name

Yes No

Table 3-3 Day Day key Year key,
month name,
day name

Yes No
Chapter 3. Metadata modeling 33

The Cognos BI server uses the cardinality of a relationship in the following ways:

� To avoid double-counting fact data

� To support loop joins that are common in star schema models

� To optimize access to the underlying data source system

� To identify query subjects that behave as facts or dimensions. 1 to n cardinality implies fact
data on the n side and implies dimension data on the 1 side

By default, Framework Manager uses Merise notation in relationship diagrams. Merise
notation marks each end of the relationship with the minimum and maximum cardinality of
that end. When you interpret cardinality, you must consider the notation that displays at both
ends of the relationship. Possible end labels are as follows:

� 0..1 (zero or one match)

� 1..1 (exactly one match)

� 0..n (zero or more matches)

� 1..n (one or more matches)

The first part of the notation specifies the type of join for the relationship:

� An inner join (1) shows all matching rows from both objects.

� An outer join (0) shows everything from both objects, including the items that do not
match. An outer join can be qualified as full, left, or right. Left and right outer joins take
everything from the left or right side of the relationship respectively but take only what
matches from the other side.

Users see a different report depending on whether you use an inner or outer join. Consider,
for example, users who want a report that lists sales people and orders. If you use an outer
join to connect sales people and orders, the report shows all salespeople, regardless of
whether they have any orders. If you use an inner join, the report shows only salespeople who
have placed orders.

Data in one object might have no match in the other object. However, if the relationship has a
minimum cardinality of 1, an inner join is always used and these records are ignored.
Conversely, if all items match but the relationship in the model has a minimum cardinality of 0,
an outer join is always used, although the results end up being the same as with an inner join.
For example, the underlying table for one object contains a mandatory (non-NULL) foreign
key for the other object. In this case, you must ensure that the data and cardinalities match.

The second part of the notation defines the relationship of query items between the objects.

Cognos BI supports both minimum-maximum cardinality and optional cardinality.

In a 0..1 relationship, 0 is the minimum cardinality, 1 is the maximum cardinality.

In a 1..n relationship, 1 is the minimum cardinality, n is the maximum cardinality.

A relationship with cardinality specified as being in a range from 1..1 to 1..n is commonly
referred to as 1-to-n when focusing on the maximum cardinalities.

A minimum cardinality of 0 indicates that the relationship is optional. You specify a minimum
cardinality of 0 if you want the query to retain the information on the other side of the
relationship in the absence of a match. For example, a relationship between customer and
actual sales can be specified as 1..1 to 0..n, in which case reports will show the requested
customer information although there might not be any sales data present.
34 IBM Cognos Dynamic Query

This means that a 1-to-n relationship can also be specified as any of the following items:

� 0..1 to 0..n

� 0..1 to 1..n

� 1..1 to 0..n

� 1..1 to 1..n

Use the Relationship impact statement in the Relationship definition dialog box to help you
understand the cardinality of each side of a relationship.

When generating queries, Cognos software follows these basic rules to apply cardinality:

� Cardinality is applied in the context of a query

� A 1-to-n cardinality implies fact data on the n side and dimension data on the 1 side.

� A query subject may behave as a fact query subject or as a dimensional query subject,
depending on the relationships that are required to answer a particular query.

3.5 Organizing relational models

When building a model, it is important to understand that there is no single workflow that will
deliver a model suitable for all applications. Before beginning your model, you must
understand the application’s requirements for functionality, ease of use, and performance.

A well organized model helps users more easily find and understand the data in the model. It
also makes the model easier for you to manage and maintain. By ensuring that a layer of
model objects (either query subjects or dimensions) exists between the data source and the
objects exposed to authors, you are better able to shield users from change.

A good approach is to import and work with small portions of metadata. In this way,
determining how to build relationships and provide a clear view of the data for the users who
will author reports using what you publish is easier.

A leading practice is to create several views, or layers, in the model. For example, depending
on the complexity of your situation, you may not need a presentation view, and it might be
possible to publish your business view for use by users.

Security can be defined in any of the views. The choice depends on your business
requirements. For example, while security is typically applied in the business view, if you must
prevent everyone from viewing an object, you add security to the object in the import view.

3.5.1 Data view

The data view, represented as a namespace, houses your data source-level query subjects
and relationships. This view can be considered the import or physical layer.

Consolidating the creation of relationships in this view will take advantage of optimized
queries in the query engine. If relationships are defined on model query subjects, then all
associated joins and columns will be treated as a view and the Cognos BI server will not try to
minimize the SQL for those items. For this performance reason, relationships should be
defined on data source query subjects in the data view.

Avoid renaming data source query subjects or modifying the SQL in the data view to
maximize the use of caching in the query engine. With minimal renaming the query engine
Chapter 3. Metadata modeling 35

can further cache results, which improves performance by reducing the need to re-query your
data source for metadata.

Create one or more optional namespaces or folders for resolving complexities that affect
querying using query subjects or dimensional objects. To enable an OLAP experience over a
relational database through a DMR package, there must be a namespace or folder in the
model that represents the metadata with dimensional objects.

3.5.2 Business logic view

The business logic view, often referred to as the logical view, is where you can begin to
simplify your data for presentation. This is done by denormalizing your data view by
consolidating snowflake dimensions into one model query subject, or by hiding codes
found in fact query subjects.

This view contains all of your model query subjects, and query items can be renamed to be
more user-friendly. You can add further value with business logic by creating calculations and
filters in this view.

Ideally, this view can provide an insulating layer from changes to the data source, so if the
schema of the underlying database changes, there would be no need to modify any existing
reports based on the business view or the presentation view. When table or other structure
changes occur in the database, you can remap the model query subjects in the business view
or the presentation view to new data source query subjects without any impact to report
authors.

Security can be dynamically applied with calculations, session parameters, parameter maps
and macros.

3.5.3 Presentation view

The presentation view can further simplify and organize your model. Depending on your
audience, you can skip creating a presentation view as the organization and work done in the
business view may suffice.

Using folders to group relevant items, filters, and shortcuts and relate them to the query items
created in the business view allows you to provide a clear and simple view into the data for
report builders.

3.6 Relational modeling for performance

This section provides guidance for creating models that will enable efficient, high performing
reports. The impact of modeling techniques on SQL generation and caching is also
described.

3.6.1 As view versus minimized SQL generation

There are two approaches to SQL generation that the Cognos BI server can employ when
planning queries: minimized SQL and as view. The key difference between these two
approaches is whether the query service is free to optimize SQL generation as it wants to or if
there are constraints imposed by the Framework Manager modeler that must be respected.
36 IBM Cognos Dynamic Query

With minimized SQL, the SQL generated by the Cognos BI server contains only the minimum
set of tables and joins needed to obtain values for the selected query items. If you are
modeling a normalized data source, you might choose to focus on minimized SQL because it
can reduce the number of tables used in some requests and perform better.

With the as view SQL generation type, the SQL stays the same no matter which items in the
query subject are referenced.

Minimized SQL example
Figure 3-2 shows four product tables as four data source query subjects that are joined to
each other. The associated query items are combined into a model query subject, as shown
in Figure 3-3.

Figure 3-2 Product tables as four data source query subjects

Figure 3-3 Model query subject combining all product query items shown in Figure 3-2

If you test the products model query subject depicted in Example 3-1 on page 38 as a whole,
you can see that the four product tables are referenced in the from clause of the query, as
shown in Example 3-1 on page 38.
Chapter 3. Metadata modeling 37

Example 3-1 SQL generated for testing all query items

select
PRODUCT_LINE.PRODUCT_LINE_CODE as Product_Line_Code,
PRODUCT_LINE.PRODUCT_LINE_EN as Product_Line,
PRODUCT_TYPE.PRODUCT_TYPE_CODE as Product_Type_Code,
PRODUCT_TYPE.PRODUCT_TYPE_EN as Product_Type,
PRODUCT.PRODUCT_NUMBER as Product_Number,
PRODUCT_MULTILINGUAL.PRODUCT_NAME as Product_Name
PRODUCT_MULTILINGUAL.DESCRIPTION as Product_Description,
PRODUCT.INTRODUCTION_DATE as Introduction_Date,
PRODUCT.PRODUCT_IMAGE as Product_Image,
PRODUCT.PRODUCTION_COST as Production_Cost,
PRODUCT.MARGIN as Margin

from
gosl..gosl.PRODUCT_LINE PRODUCT_LINE,
gosl..gosl.PRODUCT_TYPE PRODUCT_TYPE,
gosl..gosl.PRODUCT PRODUCT,
gosl..gosl.PRODUCT_MULTILINGUAL PRODUCT_MULTILINGUAL

where
(PRODUCT_MULTILINGUAL."LANGUAGE" - N'EN')

and
(PRODUCT_LINE.PRODUCT_LINE_CODE = PRODUCT_TYPE.PRODUCT_LINE_CODE)

and
(PRODUCT_TYPE.PRODUCT_TYPE_CODE = PRODUCT.PRODUCT_TYPE_CODE)

and
(PRODUCT.PRODUCT_NUMBER = PRODUCT_MULTILINGUAL.PRODUCT_NUMBER

If you test only the product name query item, you can see that the resulting query uses only
the product multilingual table, which is the only table that was required. This is the effect of
minimized SQL generation shown in (Example 3-2).

Example 3-2 SQL generated that has been minimized

select
PRODUCT_MULTILINGUAL.PRODUCT_NAME as Product_Name

from
gosl..gosl.PRODUCT_MULTILINGUAL PRODUCT_MULTILINGUAL

where
(PRODUCT_MULTILINGUAL."LANGUAGE" - N'EN")

Criteria that prevent minimized SQL generation
The following modeling scenarios will cause the corresponding query subject to function as a
view, which means that the associated SQL will not be minimized:

� Modifying the default SQL in the expression of a data source query subject

� Adding filters or calculations to a data source query subject

� Defining relationships on a model query subject

To allow minimized SQL to be generated, relationships and determinants must be defined on
data source query subjects and not model query subjects. When a relationship is defined on
a model query subject, the resultant SQL changes because now it is considered a query and
not only a folder of expressions.
38 IBM Cognos Dynamic Query

Minimized SQL takes better advantage of database optimization than does complex SQL, so
you are advised to avoid the three scenarios just described. However, there might be times
when losing SQL minimization is necessary, such as when you require model query subjects
with overriding relationships to control query execution paths, or you need to change the SQL
on data source query subjects. This keeps the number of rows that are returned from this
query subject stable, regardless of the elements that are reported from the query subject.

3.6.2 Security-aware caching

As detailed in Chapter 1, “Overview of Cognos Dynamic Query” on page 1, the Cognos BI
query service employs a sophisticated cache management system to reuse objects captured
from queries to data sources and use those objects to satisfy subsequent requests for that
information. Caching can drastically reduce user wait times because it will always be faster for
the query service to reuse an object it already has in memory than to go back to the data
source for the information. The performance benefits of caching are clearly noticeable except
for lighter queries where retrieving data from the database is a sub-second operation.

In cases where the underlying relational database responses appear instantaneous to users,
it may be best to disable caching, either at the package level or the level of a particular query
inside of a Report Studio report. Caching can be disabled either in Framework Manager (by
deselecting the Allow usage of local cache check box governor and then republishing the
package), or in Report Studio (by setting the Use Local Cache property of a query in the
query explorer area to No). The DMR cache can consume considerable amounts of memory,
which may initiate internal memory management operations that impact performance. For
DMR and pure relational packages, disabling caching, either in the report or in the model, will
ensure that only the portion of the query service’s Java memory that is required to execute
the largest report is consumed, and nothing more. This keeps the query service’s memory
footprint minimal. When the cache is enabled but is not being utilized, such as might be the
case with complex security requirements, then resource consumption becomes sub-optimal
and may degrade performance. For Report Studio reports, DMR caching is disabled only if
one of the following conditions is present:

� The Use Local Cache property of the query object in the report is set to No

� The Allow usage of local cache governor in the Framework Manager model is deselected
when the package is published

The query service’s caches for DMR and pure relational packages are security-aware in that,
by default, cached metadata and data will not be shared between users with different security
profiles. Users with the same security profiles are also similar in these respects:

� Sign-on information (user name and password) to the data source

� Expanded values of data source connection command blocks

� Model security defined in Framework Manager

� Expanded values of macros within in the queries used to populate the cache

Pure relational caching
Unlike dimensional queries, such as those for DMR packages (which, as of Cognos BI
version 10.2, persist in memory until a manual or scheduled clear cache operation occurs),
results from pure relational queries are retained in memory only while that same data source
connection remains open. Query service data source connections have a default idle timeout
of 300 seconds (5 minutes), but this can be configured to another value using the properties
window of the query service in Cognos Administration, as explained in the product
information center:

http://ibm.co/19eGKCd
Chapter 3. Metadata modeling 39

http://ibm.co/19eGKCd

Results that are cached from one user’s request can be used for a different user’s request
under default settings, if both users have the same data security profiles.

DMR caching
To optimize your use of the DMR cache, it is important to understand its design, including
what triggers the creation of a new cube cache or the reuse of an existing one.

The DMR cache stores members and cell values that combine to make a cube cache. The
DMR cache for a certain package can have one or more cube caches in memory, as shown in
Figure 3-4.

Figure 3-4 DMR cache composition

A cube cache primarily uses a member cache, which is shared by all the cube caches
associated to the same package, and a cell value cache that is exclusively used by the cube
cache.

Not all data requests will be cached because for some types of requests, caching provides no
benefit. For example, very large batch reports that generate hundreds or thousands of pages
of results consume more time writing results to the cache than are consumed by re-executing
the same request multiple times. In addition, some queries perform well when executed on
the underlying data source and may not benefit from using the cache. The query service
automatically determines when to avoid writing results to the cache for queries that would not
benefit from using it.

When using the cache, the query service caches each result in the context of all dimensions
in the published package. Although many factors affect read/write performance from the
cache, having a high number of dimensions negatively affect cache performance. Therefore,
a good practice is to limit the choice of dimensions in a package to those that are required to
satisfy the business requirements. This results in a noticeable performance gain for some
situations.
40 IBM Cognos Dynamic Query

Elements that compose the key to a cube cache
A cube cache is populated on-demand as metadata and cell values are retrieved during the
execution of reports. Before a new cube cache is created, the query service checks to see if it
can reuse an existing cube cache. Each of the cube caches associated with a package has a
key that controls when that cube cache can be reused. If a new request has a key that
matches that of a cache in memory, then that in-memory cache will be used. Otherwise a new
cube cache is created (assuming caching has not been is disabled).

A DMR cube cache is secured by a composite key that requires matches on these elements:

� Package instance

� Data source connection

� Data source sign-on

� Resolved data source command block values

� Detail filters:

– Pre-aggregation filters
– Filters defined in model
– Slicers defined in report
– Model security
– Prompt selections

� Resolved macro values

� Runtime locale

Publishing different packages or versions of the same package from the same model will
create different cube caches. If a version of a package results in multiple cube caches, the
metadata cache will be shared by all of those cube caches through the application of security
context on the metadata. Publishing the same package multiple times without any changes to
the model causes two cube caches to be created, one for each package instance. A cube
cache is reused only if the request originates from the same package instance.

A package references one or more data sources and every report execution is associated
with a data source connection definition. A data source connection definition is composed of
the connection string and, optionally, command blocks. By default, a cube cache is re-used
only if the connection string (as sent to the database) and any resolved command block
values are identical. This condition is also used when the query service is determining if it can
reuse an open connection to a data source.

Pre-aggregation detail filters, which are typically computed by the database, include both
those defined in the report and those defined in the Framework Manager. If the detail filters
applied when populating a cube cache are not the same list of expressions as are in a new
request, the cube cache cannot be reused because the members, cell values, or the
members and cell values might be different. Any slicers, which are also known as context
filters, that are defined in a report are converted into pre-aggregation detail filters but are
applied only to the query against the fact table used to get cell values; they are not applied
when loading members.

A report, the model, or the report and the model might have prompts defined. Not all prompts
are applied to the key of a cache; only the prompts directly referenced in a query or indirectly
referenced from the model (embedded in a query item) affect the cube cache's key. Prompts
that are not referenced at all in the query are ignored with respect to the cache.

A cube cache is reused only if the associated macros whose values are resolved to create the
cube cache are the same as those resolved values in a new query. If the current query has
Chapter 3. Metadata modeling 41

additional macros not present in the original query, the cube cache may be reused and those
new macros are added to the cube cache’s key.

If object security is defined in the Framework Manager model, it implies that certain users do
not have authorization to all objects in the model. In this case, by default, the profile
associated with the object security is added to the key that controls sharing of that cube
cache.

Finally, a cache is reused only if the runtime locale used to create the cache is the same as
the current request's runtime locale.

Governors that control cache sharing sensitivity
Framework Manager offers governors so you can prevent certain elements from affecting a
cache’s key. To ensure confidentiality, the default settings for these governors are the most
restrictive possible. You can change these governor settings to allow for greater cache reuse,
if your security requirements allow you do so. For example, users might have different data
source credentials specifically because the database administrator wants to audit the queries
that are submitted to the database such that there are no data authorization differences
between these database user accounts. In such a scenario, you might want to set the Cache
is sensitive to DB info governor to DB + Connection instead of the default value of DB +
Connection + Signon.

Note: For more details, see the dynamic query mode governor section of the product
documentation at this website:

http://ibm.co/1761dJk
42 IBM Cognos Dynamic Query

http://ibm.co/1761dJk
http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/index.jsp?topic=%2Fcom.ibm.swg.ba.cognos.dyn_q%0Duery.10.2.1.doc%2Fc_dqm_governors.html
http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/index.jsp?topic=%2Fcom.ibm.swg.ba.cognos.dyn_q%0Duery.10.2.1.doc%2Fc_dqm_governors.html

Chapter 4. Macros

This chapter provides guidance on the usage of macro expressions in the metadata modeling
and authoring interfaces of IBM Cognos Business Intelligence (BI).

Macros allow the Cognos BI applications you develop to be dynamically customized to the
needs of the user immediately before the associated queries are submitted to the database.
With the help of macros, you can author a single report that addresses the requirements of
many different business scenarios, instead of authoring separate reports for each scenario.
The chapter also describes ways that you can employ macros, combining macros with
session parameters and parameter maps, and provides a variety of advanced examples.

The chapter contains the following sections:

� 4.1, “Macros explained” on page 44
� 4.2, “Macro language” on page 45
� 4.3, “Parameter maps” on page 47
� 4.4, “Session parameters” on page 49
� 4.5, “Advanced examples” on page 51

4

© Copyright IBM Corp. 2013. All rights reserved. 43

4.1 Macros explained

Macros are fragments of code that you can insert in the expression editor interfaces of
Cognos BI, including within the Select statement that defines a query subject. Macros can
include references to session parameters, parameter maps, and parameter map entries. For
example, you can use the language session parameter to show only the data that matches
the language setting for the current user.

Several facts about macros are summarized in the following list:

� Macros can give significant performance improvements in some reports.

� Macros show up in expressions as the text between two number sign (#) characters.

� An expression can contain more than one macro.

� Macros are expressions that are evaluated during query planning in such a way that the
macro has been fully expanded before query execution.

� Using macros in appropriate places allows the application to be more flexible.

� There are several non-expression areas in Framework Manager where macros can be
used.

� You can use macros in the data source connection command blocks defined in Cognos
Administration.

The expression editors that are part of Report Studio and Framework Manager have a
collection of functions that are categorized as macros. Figure 4-1 shows the macro tab within
the expression editor of Report Studio.

Figure 4-1 Macro tab within the expression editor of Report Studio
44 IBM Cognos Dynamic Query

In working with macros, you might find that writing them is sometimes easier than reading
them. Describing them accurately with comments will significantly help the next user to
understand the intent of the macro.

You can use macros in a variety of ways:

� They can be inserted in SQL, as the following example shows:

Select * from Country where Country.Name = #$myMap{$runLocale}#

� They can supply an argument to a stored procedure query subject. If a value is not
hard-coded for the argument, the stored procedure query subject can be used to return
different data.

� They can be inserted in expressions such as calculations and filters. This filter is an
example:

[gosales].[Sales staff].[Staff name] = #$UserLookUpMap{$UserId}#

� They can be used to dynamically complete the properties of a data source query subject.
This enables different users to supply different connection information and thus access
different data sources. The properties that can contain macros are Content Manager
Datasource, Catalog, Cube, and Schema.

This is an example using the Content Manager Datasource property:

#$DataSourceMap{$UserId}#

� They can be used as a parameter wizard. When used in this context, parameters can
reference other parameters, as in the following example:

Map1, Key = en-us, Value = #$myMap{$UserId}#

4.2 Macro language

This section explains the syntax to follow when writing macro expressions and presents some
options you can use inside your macro expressions.

4.2.1 Operator

The macro language has only one operator, the plus sign (+) character, which is used to
concatenate two strings. So the following example resolves to the value abcxyz:

‘abc’ + ‘xyz’

4.2.2 List separator character

The macro language recognizes both the comma (,) and the semicolon (;) characters as list
separators. This is independent of any locale setting, as in the following example:

array (‘a’ , ‘b’ ; ‘c’)
Chapter 4. Macros 45

4.2.3 Functions

All function names are case-insensitive. Only alpha characters are used in the names
of functions. Some function names are short. Macro functions are used more by
programmer-type report authors than casual report authors.

The expression editors in Report Studio and Framework Manager have a collection of
functions that are categorized as macros and are displayed for drag-and-drop use. All of
these macro functions have screen tips with examples.

4.2.4 Comments

Use comments to explain macros for other individuals who will use them. Adding comments is
useful because they help to more easily maintain and support models. There are two rules for
comments:

� Any text between the /* and */ strings, including new lines, is considered a comment.

� Any text between the // string and the end of a line is considered a comment.

The macro expression in Example 4-1 resolves to the value 2012 and demonstrates how
comments help other users understand the intent of an expression.

Example 4-1 Commenting a macro expression

// a macro is used to get the previous year
timestampMask(// 3: extract the year portion
 _add_years(// 2: subtract one year
 $current_timestamp,// 1: 2013-01-29 22:39:14.135-05:00
 -1),
 'yyyy')
#

4.2.5 Simple case construct

The case construct is used in programming to identify different sets of instructions
corresponding to various conditions. The case macro construct allows you to specify values
or functions to be returned under different conditions or cases.

Using the simple case construct in a macro in combination with the prompt function is
sometimes challenging. Example 4-2, Example 4-3 on page 47, and Example 4-4 on page 47
show three examples of employing the simple case construct.

Example 4-2 Macro prompt with token data type

// example 1
case prompt('option', 'token')
when 3 then '[gosl].[PRODUCT_LINE].[PRODUCT_LINE_CODE] > 3'
else '[gosl].[PRODUCT_LINE].[PRODUCT_LINE_CODE] is not null'
end #
46 IBM Cognos Dynamic Query

Example 4-3 Macro prompt with unspecified data type

// example 2
case substitute("'","",substitute("'","",prompt('option')))
when 3 then '[gosl].[PRODUCT_LINE].[PRODUCT_LINE_CODE] > 3'
else '[gosl].[PRODUCT_LINE].[PRODUCT_LINE_CODE] is not null'
end #

Example 4-4 Macro expecting a specific input value

// example 3
case prompt('option')
when "'3'" then '[gosl].[PRODUCT_LINE].[PRODUCT_LINE_CODE] > 3'
else '[gosl].[PRODUCT_LINE].[PRODUCT_LINE_CODE] is not null'
end #

The prompt macro function returns a string by default. The entered value is surrounded by
single quotation marks, which makes it useful in most expressions. So if the user enters the
value abc, the default result will be 'abc' in this context.

In Example 4-2 on page 46, the data type of the prompt function is specified as token. The
response will not be surrounded by single quotation marks. The literal 3 is used in the when
clause and will match the user-entered value 3. There are circumstances when the token
should not be used to prevent SQL injection, but that is not the case here.

In Example 4-3, the data type of the prompt function is not specified and thus defaults to
string. The code that deals with the quoted return value of the prompt function removes the
single quotes at the beginning and end of the response.

In Example 4-4, the when clause specifies the value 3. The easiest way to do this in the
macro language is to surround the value with double quotation marks, as in the following
example. This value will match the user-entered value 3:

"'3'"

4.3 Parameter maps

Parameter maps are objects that store key-value pairs. Parameter maps are similar to data
source look-up tables. Each parameter map has two columns, one for the key and one for the
value that the key represents.

Parameter maps can be defined in Framework Manager in various ways:

� Manually enter them as name-value pairs
� Load the name-value pairs from a file
� Base them on query items in the current model

To modify the parameter map, you can export the map values to a file, perform any additions
or modifications, and then import the map values back into Framework Manager. This is
especially useful for manipulating large, complex parameter maps.

Normally, parameter map keys must be unique so that the query service can consistently
retrieve the correct value. Do not place quotation marks around a parameter value. You can
use quotation marks in the expression in which you use the parameter.
Chapter 4. Macros 47

You can create a parameter map that is based on query items with different values associated
with the same key. For example, consider the parameter map definition for a parameter map
named PLC2PTName, which is shown in Figure 4-2. This parameter map can be referenced
in the following macro:

#sq(join('---', @PLC2PTName{'1'}))#

It returns the following result:

'Cooking Gear---Lanterns---Packs---Sleeping Bags---Tents'

Note that the at (@) symbol in @PLC2PTName indicates that an array of values is to be returned.

Figure 4-2 Parameter map with multi-valued keys

The value of a parameter can be another parameter. However, you must enclose the entire
value between number sign (#) characters. The limit when nesting parameters as values is
five levels.

When you use a parameter map as an argument to a function, you must use a percent sign
(%) character instead of a dollar sign ($) character.

Do not base a parameter map on a query item or table with a large result set (50,000 rows or
more). Each time you use the parameter map in an expression or in SQL, the query service
executes the large query and performance is slowed. Parameter maps should be used for
smaller lookup tables only.
48 IBM Cognos Dynamic Query

4.4 Session parameters

A session parameter is a variable that Cognos BI associates with a session. For example,
user ID and preferred language are both session parameters. Because session parameters
are key value pairs, you can think of each session parameter as an entry in a parameter map.
You use a session parameter in the same way that you use a parameter map entry, although
the syntax for session parameters is slightly different.

There are two types of session parameters: environment and model. Environment session
parameters are predefined and stored in the Cognos BI content store database. By default,
the following session parameters are displayed in Framework Manager:

� runLocale: Returns the code for the current active language in Framework Manager. The
model content is shown in this language. You can change the active language at any time
for your current session only. In future sessions, the model continues to open in the design
language.

� account.defaultName: Specifies the name of the current user as defined in the
authentication provider (for example, user’s first and last name). If you log on
anonymously, you will see Anonymous.

� account.personalInfo.userName: Specifies the user ID used to log on to Cognos BI. If you
log on anonymously, you will not see this parameter.

� current_timestamp: Specifies the current date and time.

� machine: Specifies the name of the computer where Framework Manager is installed.

If your authentication source supports other parameters and you entered information
about them in the authentication source, you can use other session parameters, such
as account.personalInfo.email or account.personalInfo.surname.

Figure 4-3 depicts some of the session parameters shown in the Insertable objects pane of
the expression editor in Framework Manager.

Figure 4-3 Session parameters shown in Framework Manager

Additional session parameters are available in Report Studio. Similar to the parameters in
Framework Manager, the session parameters in Report Studio give access to information
about the report, such as report start time, report name and report path.
Chapter 4. Macros 49

Table 4-1 shows session parameters that are available to report authors but do not appear in
the Report Studio user interface.

Table 4-1 Additional session parameters not shown in Report Studio interface

You can define additional parameters by using model session parameters. Model session
parameters are stored in a parameter map named _env. They are set in the project and can
be published with a package. Model session parameters must have their values set within the
scope of objects in the Framework Manager model. The scope can include the use of existing
environment session parameters, and also static values.

You can map user attributes from your LDAP authentication provider into new session
parameters. To configure this, you must add these attributes as custom properties for the
LDAP namespace in Cognos Configuration. For the procedure, see the product
documentation at the following location:

http://ibm.co/17qQQfO

Each session parameter must have a name and a default value. You can define an override
value to test the results that the value returns. The override value is valid only when you have
the model open, and it is not saved when you save the model. If no override value exists, the
query service uses the default value when it executes a query that contains a session
parameter.

The following rules, in addition to others, govern the use of parameters:

� All possible return values must have the same data type.

� Only one value can be defined.

Name Sample Value

contextID /content/package[@name='gosales']/report[@name='a_macro_session_par
ms'];reportRender_Request;

reportPath /content/package[@name='gosales']/report[@name='a_macro_session_par
ms']

REMOTE_ADDR 127.0.0.1

HTTP_HOST localhost:81

queryName Query1

report a_macro_session_parms

startTime 2013-01-31T18:21:29.455Z

modelPath /content/package[@name='gosales']/model[@name='model']
50 IBM Cognos Dynamic Query

http://ibm.co/17qQQfO

4.5 Advanced examples

This section describes some advanced ways to use macros effectively, all of which have been
used by Cognos BI customers in the past. The intent of these examples is to give you
inspiration to solve other problems.

4.5.1 Member unique name for next year

This is an example of creating a member unique name (MUN) based on the current year.
Generating a MUN is particularly useful for drill-through or master-detail relationship-based
applications when relating pure relational queries to OLAP queries.

OLAP sources organize data into dimensions. These dimensions contain hierarchies. The
hierarchies contain levels and the levels contain members. An example of a dimension is
Locations. A Locations dimension may contain two hierarchies: Locations by Organization
Structure and Locations by Geography. Either of these hierarchies may contain levels such as
Country and City.

Members are the instances in a level. For example, New York and London are members in the
City level. A member may have multiple properties, such as Population, Latitude, and
Longitude. Internally, a member is identified by a Member Unique Name (MUN). The method
by which a MUN is derived depends on the cube vendor. When authoring reports, referencing
a member through its MUN will typically perform faster than referencing a member through
dimensional (MDX) functions.

The generated MUN for this example needs to be in the format shown in Example 4-5, which
is based on the Great Outdoors Warehouse sample database that is included with all Cognos
BI products.

Example 4-5 Example member unique name (MUN)

[Great Outdoors].[Years].[Years].[Year]->:[PC].[@MEMBER].[20040101-20041231]

The [20040101-20041231] section of the MUN shown in Example 4-5 identifies the member
that represents data for all the days in 2004. This MUN can be generated using the date at
run time with the macro expression shown in Example 4-6.

Example 4-6 Macro expression generating MUN dynamically based on current time

#
'[Great Outdoors].[Years].[Years].[Year]->:[PC].[@MEMBER].['
+
timestampMask(_add_years($current_timestamp,-8),'yyyy')
+
'0101-'
+
timestampMask(_add_years($current_timestamp,-8),'yyyy')
+
'1231]'
#

Chapter 4. Macros 51

4.5.2 Turning promptmany result into a rowset

The result of the macro function promptmany is a single value, not an array of values. This
limitation is a side effect of needing to remain compatible with macros that were written before
the array data structure was introduced.

Therefore, consider the following expression:

join ('**' , promptmany('pp', 'string'))#

When the values for parameter pp are aa and bb, then the result of this expression is as
follows:

'aa';'bb'

Notice that the values are surrounded by quotation marks and separated with a semicolon.
The semicolon is the typical way that the promptmany function generates the list separator. If
the macro had been defined for an SQL statement, then the separator would have been a
comma instead of a semicolon. To get the result 'aa'**'bb' you can use the macro
expression shown in Example 4-7.

Example 4-7 Macro expression joining string values

#
join('**', // 3 -> string 'aa'**'bb'
 split(';',// 2 -> array with 2 elems: 'aa' and 'bb'
 promptmany('pp','string')// 1 -> 'aa';'bb'
)
)
#

Example 4-8 displays the expression for a data source query subject that takes the response
to the promptmany macro function and transposes it into the rows of an inline values clause.

Example 4-8 Macro expression transposing inputted values into rows of a result set

with
inputSet as
(select * from (values
#
'(' +
join ('),(',
split (',', promptmany ('setofdata')) // split on , not on ;
)
+ ')'
#
) T (C1))
select
inputSet.C1 as C1
from
inputSet
52 IBM Cognos Dynamic Query

Assuming that the values for the setofdata parameter from Example 4-8 on page 52 are the
strings FL, NY, BLAH and JAH, the macro will expand to what is shown in Example 4-9.

Example 4-9 Expanded result of the macro expression in Example 4-8 on page 52

with
inputSet as
(select * from (values
('FL'),('NY'),('BLAH'),('JAH')
) T (C1))
select
inputSet.C1 as C1
from
inputSet

You can apply this technique in various circumstances, such as in part of a filter or by
combining it using an EXCEPT operation with another query that is compatible with the union
operation. Bear in mind, however, that this technique is using a row constructor in a select
statement, which IBM DB2 supports but many other database vendors may not. If your
vendor does not support such processing, then the Cognos BI server performs it, although
this action is at a cost to performance.

The split/join macro functions do not allow you to define different leading and trailing
character strings (such as ‘timestamp(‘and ‘)’) so ensure that you embed the appropriate
repeating text in the join, as shown in Example 4-10.

Example 4-10 Macro expression with join and split functions

column in (
#
'timestamp(''' +
join ('''),timestamp(''',
split (',', 'abc,def,ghi,jkl')
)
+ ''')'
)

The code in Example 4-10 expands to what is shown in Example 4-11 before any query is
sent to the database.

Example 4-11 Expanded result of the macro expression in Example 4-10

column in (timestamp('abc'),timestamp('def'),timestamp('ghi'),
timestamp('jkl'))

4.5.3 Dynamic column drill

The scenario in this example requires a list report with hierarchy and measure columns. The
hierarchy column is a dynamic hierarchy using a data item expression. It shows measure
values by different hierarchies based on the user’s selection of a View by prompt. Changing
these measure values can be accomplished either by using a parameter map lookup or a
case statement macro expression.
Chapter 4. Macros 53

Example 4-12 shows a parameter map-based solution that can be called upon by a
calculation in the model or in the report whose expression is as follows:

#$pmap{prompt('View by' ,'string')}#

Example 4-12 Parameter map-based solution

parameterMap : pmap
 default: [Provider].[Provider].[Provider].[Provider]
 key: Provider entry: [Provider].[Provider].[Provider].[Provider]
 key: Practitioner entry: [Practitioner].[Practitioner].[Specialty].[Specialty]

Cognos BI version 10.2 introduced support for a case statement macro function. An
expression such as the one shown in Example 4-13 can be employed instead of the
parameter map.

Example 4-13 Expression to use instead of a parameter map

case prompt('View by', 'string')
when 'Provider'
 then [Provider].[Provider].[Provider].[Provider]
when 'Practitioner'
 then [Practitioner].[Practitioner].[Specialty].[Specialty]
else ([Provider].[Provider].[Provider].[Provider])
end
#

Alternatively, you can use the macro expression shown in Example 4-14.

Example 4-14 Alternate macro expression

case prompt('View by', 'token')
when 'Provider'
 then [Provider].[Provider].[Provider].[Provider]
when 'Practitioner'
 then [Practitioner].[Practitioner].[Specialty].[Specialty]
else ([Provider].[Provider].[Provider].[Provider])
end
#

Note the use of the data type token in the second argument to the prompt function. This is
used to match against the simple strings in the when clauses. The default data type is ‘string,’
which results in a value surrounded by single quotation marks that would not match the
values 'Provider' or 'Practitioner' in the when clauses. The values in the when clauses must be
be changed to ”'Provider'” and ”'Practitioner'” (notice the quotation marks).

The equivalent macro expression using the data type string is shown in Example 4-15.

Example 4-15 Macro based solution with string data type in prompt

case prompt('View by')
when ”'Provider'”
 then [Provider].[Provider].[Provider].[Provider]
when ”'Practitioner'”
 then [Practitioner].[Practitioner].[Specialty].[Specialty]
else ([Provider].[Provider].[Provider].[Provider])
end
#

54 IBM Cognos Dynamic Query

4.5.4 Filtering for internal and external customers

A common scenario is a report that must handle various types of parameters depending
on the privileges of the user who is running the report. This example involves a session
parameter that has the pattern 1234_FMUSER (for external users that have logged in) or
SYSADMIN01 (for internal users that have logged in). For internal users, the application must
prompt the user for the customer number. For external users, the application must restrict all
data to just the leading digits that represent the customer number in the database, so the user
is not prompted for a customer number.

These requirements can be satisfied by creating an embedded filter in a query subject with
the expression shown in Example 4-16.

Example 4-16 Macro expression with case construct based on session parameter

'[gosales_8_2].[CUSTOMER_HEADER_10_2].[CUSTOMER_NUMBER] = ' +
// isolate the customer number from 123_FMUSER or issue a prompt
// when there is no underscore in session parameter pc1
case join('', grep ('_', array($pc1)))
when '' then
 // session parameter pc1 has no underscore
 '?start_number? '
else
 // isolate the number before the underscore e.g. 123 from 123_FMUSER
 'cast (' +
 join ('', grep('!\|', split('_', join('_|', split('_', $pc1))))) +
 ', varchar(10)) '
end
#

Other examples
Additional examples of using macros, session parameters, and parameter maps are in the
product documentation at the following location:

http://ibm.co/17qUwhI
Chapter 4. Macros 55

http://ibm.co/17qUwhI

56 IBM Cognos Dynamic Query

Chapter 5. Report authoring

IBM Cognos Business Intelligence (BI) is an integrated business intelligence suite that
provides a wide range of functionality to help you understand your organization's data.
Everyone in your organization can use Cognos BI to create (or author) and view business
reports, analyze data, and monitor events and metrics so they can make effective business
decisions.

You use the web-based authoring interfaces of Cognos BI to create and update your reporting
and analysis applications. This chapter describes considerations for authoring
high-performing applications that satisfy analytical requirements of users.

The chapter contains the following sections:

� 5.1, “Authoring interfaces” on page 58
� 5.2, “Processing report executions” on page 59
� 5.3, “Database functions” on page 60
� 5.4, “Dimensional and relational reporting styles” on page 61
� 5.5, “Suppression” on page 62
� 5.6, “Dimensional summaries” on page 63
� 5.7, “Advanced features in Report Studio’s Query Explorer” on page 64

5

© Copyright IBM Corp. 2013. All rights reserved. 57

5.1 Authoring interfaces

Cognos BI integrates many business intelligence activities in one web-based solution.
Table 5-1 outlines how the primary Cognos BI user interfaces can help you do your job. The
two most popular authoring interfaces for new applications, Cognos Workspace Advanced
and Report Studio, are described in more detail later in this section.

Table 5-1 Authoring interfaces in Cognos BI

5.1.1 Cognos Workspace Advanced

Cognos Workspace Advanced is used for advanced data exploration and authoring simple
reports.

When you are in Cognos Workspace and want to perform deeper analysis and report
authoring, you can seamlessly graduate to Cognos Workspace Advanced, where you can do
more advanced data exploration, such as adding more measures, conditional formatting, and
advanced calculations. You can also launch Cognos Workspace Advanced directly from the
Cognos Connection portal.

With Cognos Workspace Advanced, you can create reports with relational or dimensional
data sources, and then show that data in lists, crosstabs, and charts.

See the information center for Cognos Workspace Advanced version 10.2.1:

http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/nav/3_7

5.1.2 Cognos Report Studio

With Cognos Report Studio, report authors can create, edit, and distribute a wide range of
professional reports. Report Studio is ideal for certain kinds of reports:

� Reports intended for wide audiences

� Reports that will require maintenance as requirements and data change

� Reports whose appearance must be controlled in fine detail

Interface Activity

Cognos Workspace Create and share interactive dashboards

Cognos Workspace Advanced Author simple reports and explore your data

Report Studio Author professional reports intended for a wide audience

Event Studio Manage events and alerting

Query Studio Query your data on an ad hoc basis

Analysis Studio Explore your dimensional data

Note: For advanced techniques of Cognos BI report authoring, see the Reporting section
of the Business Analytics developerWorks page:

http://www.ibm.com/developerworks/analytics/practices.html
58 IBM Cognos Dynamic Query

http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/nav/3_7
http://www.ibm.com/developerworks/analytics/practices.html
http://www.ibm.com/developerworks/analytics/practices.html

With Report Studio, you can create any reports that your organization requires, such as
invoices, statements, and weekly sales and inventory reports. You can also author
sophisticated, multiple-page, multiple-query reports against multiple data sources.

Report Studio provides powerful functionality, such as bursting, prompts, maps, and
advanced charting, and provides many ways to customize reports. Report Studio is also
where you can author Cognos Active Reports, which enable an interactive analytics
experience in a self-contained application for browsing and exploring data offline.

See the information center for Report Studio version 10.2.1:

http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/nav/3_5

5.2 Processing report executions

When you create a report, you are actually creating an XML report specification. The report
specification defines the queries that are used to retrieve data and the layouts and styles that
are used to present the data. For simplicity, the report specification is named the same as the
report. Figure 1-1 on page 4 presents the workflow of communications when a report is run.

Running reports and performing analysis requires the processing of data that consists of
computing calculations, joins, unions, filters, grouping, sorting, and other operations on data.
The Cognos BI query service, which operates in a Java process, and the underlying data
source are responsible for this data processing.

Further processing is required to render the processed data in the requested format such as
HTML, Adobe PDF, Microsoft Excel, and so on. The report service and batch report service,
which operate within BIBusTKServerMain processes, are responsible for this rendering
activity, which includes rounding and all other data formatting.

When users run reports, users must wait for both data processing and rendering processing
to be completed before the output is displayed. This combined processing time can occur in
less than one second or it can take considerably longer, depending on the complexity of the
operations required and the amount of data involved. Understanding the processing that
occurs when reports are run will help you minimize user wait times.

5.2.1 Local and database processing

Cognos BI supports answering a rich variety of analytical questions. Although the underlying
database may be able to answer some of these questions, many complex questions require
the Cognos server to compensate by performing further data processing locally.

Data processing performed by the Cognos BI server is referred to as local processing. Data
processing performed by the database server is referred to as database processing.

Except for when the requested data already resides within the query service’s in-memory
cache, database processing is typically faster than local processing for the following reasons:

� Database processing can use indexes and other accelerators defined on the stored data.

� Database processing occurs closer to where the data is stored.

� Database processing reduces the amount of data transferred from the database server to
the Cognos BI server.
Chapter 5. Report authoring 59

http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/nav/3_5

To the extent possible, the Cognos BI server exploit the query language supported by the
database. For databases with a limited query language, Cognos BI still allows users to ask
questions of their business data without being restricted by the limitations of their database.
This is because Cognos BI supports many types of queries that many databases do not
support, which enables a consistent experience with the Cognos software regardless of what
technology is storing the data. Users can create reports that require a particular type
processing even if the underlying database does not support that processing; if necessary,
the Cognos BI server will do that processing. As explained previously, there is typically a
performance cost to local processing, usually because unnecessarily large amounts of data
are sent from the database to the Cognos BI server. For these reasons, performance is best
when as much processing as possible is delegated to the database.

IBM InfoSphere® BigInsights™, an enterprise class derivative of Apache Hadoop, can help
illustrate the contrast between local processing and database processing. BigInsights 2.1
includes an Apache Hive 0.9 interface, but for performance reasons, its Big SQL interface is
the preferred way of interoperating Cognos BI and BigInsights. When the Cognos BI server
connects to BigInsights through the Big SQL interface, it uses industry-standard SQL, which
is much richer than Hive query language. This means Cognos can derive more benefit from
the massive parallel processing of a BigInsights cluster than from connecting through the
Hive interface. For example, windowed aggregates is a type of processing where aggregation
is performed on a certain window of data, such as for a particular time period. The concept or
windowed aggregates is common in business intelligence scenarios, so, naturally, the Cognos
BI server supports it locally. However, to optimize performance, Cognos will submit the
windowed aggregate processing to any database that supports it. When windowed
aggregates are required and Hive 0.9 is being used, the Cognos server must compute those
aggregates itself. But if Big SQL is being used, the Cognos server can rely on the BigInsights
cluster to compute the windowed aggregates.

5.3 Database functions

The authoring interfaces that are independent of data source in Cognos BI offer users a
consistent experience across all supported data store technologies. Supporting those
authoring interfaces is a robust query engine that interprets user gestures and report
specifications and translates them into queries that are tailored to the technology being used.
The Cognos BI server optimizes the queries it generates for performance, which typically
involves submitting as much as possible of the necessary data processing down to the
database.

When you connect your Cognos BI server to an analytic data store such as SAP HANA,
Oracle Exadata, or one of the IBM PureData™ systems, the Cognos server detects which
version of the database software has been loaded onto the system. It then employs the native
query functions that are supported by that software, such that the data appliance does as
much of the processing as possible and only a minimized result set is returned. So if you are
using a 2013 version of IBM PureData for Analytics, the Cognos software knows that it is
interoperating with IBM Netezza® version 7 software and will utilize native Netezza 7
functions in its queries.

Most of the authoring interfaces of Cognos BI, including Report Studio and Cognos
Workspace Advanced, offer expression editors. An expression is any combination of
operators, constants, functions, and other components. You build expressions to create
calculation and filter definitions.

When the query service parses an expression that an author entered into a report, it
recognizes scalar functions from its library and then determines if it needs to process a
60 IBM Cognos Dynamic Query

particular function locally or if it can re-map that function to an equivalent native database
function. When an unrecognized function is encountered, the query service s submits it to the
database. If it is a valid function on the database, it is processed successfully, otherwise the
error that is returned from the database is written into the Cognos BI server logs.

You typically do not have to import user-defined scalar database functions into the Framework
Manager model before you can use them in the expressions you compose. An exception is
when the database requires you to qualify the reference and does not provide an
ISO-SQL-style search path with which to locate non-qualified functions, for example
HOTEL.BAR('HELLO') instead of BAR('HELLO').

5.4 Dimensional and relational reporting styles

There are two distinctive report authoring styles in Cognos BI: dimensional style and
relational style.

The relational reporting style is used for the pure relational analytics option, which is
explained in 1.4.1, “Pure relational analytics” on page 7. This style is often used for lists
because lists are consistent with the structure of tables in a relational database. In relational
reporting, you summarize data by using headers and footers in lists, summary functions, and
within detail aggregation. You refine data in relational reporting with summary or detail filters.

The dimensional reporting style is employed for the dimensionally modeled relational (DMR)
option and online analytical processing (OLAP) data sources. Dimensional data is best
represented by crosstabs, maps, and charts. This data is shown in dimensions, hierarchies,
levels, and members. In dimensional reporting, you summarize or roll up data by using
member summaries and within set aggregation. You refine or focus data by adding only the
relevant members to the edge of a crosstab or to the context filter. You can also enable drilling
up and drilling down in dimensional reports.

The preference is that a single reporting style, either relational or dimensional, be used when
developing a query. Unexpected results can occur if you mix the two styles within a query.

When working with DMR or an OLAP data source, the authors recommend that you not use
relational functions, such as substring and concatenation functions, in any report that also
contains a measure with the Aggregate Function property set to Calculated or Automatic. If
you do so, you might encounter unexpected results. For example, some summaries are
calculated using the minimum function instead of the aggregate function derived from the
individual query items.

In the expression editor, an exclamation mark (!) that precedes a function indicates that the
function is not naturally supported for that data source. In such cases, the Cognos BI server
uses a local approximation for the non-supported function. Because an approximation is
used, performance can be degraded and the results may not be what you expect.

Note: For more information about reporting styles, see the following pages in the product
information center:

� Relational reporting:

http://ibm.co/15VQwta

� Dimensional reporting

http://ibm.co/18BxLsK
Chapter 5. Report authoring 61

http://ibm.co/15VQwta
http://ibm.co/18BxLsK

5.5 Suppression

Sparse data can result in crosstabs showing empty cells. For example, a crosstab that
matches employees with products will show multiple empty rows for the revenue measure if
the employee does not sell those products. A product that has no sales for a given quarter
may result in a very large report with thousands of cells that contain no data. So suppressing
rows and columns that contain only null values makes a report more concise and easier to
read.

All authoring interfaces of Cognos BI offer suppression buttons on their toolbars. You can
suppress rows or columns or rows and columns based on divide by zero, missing, and
overflow values.

The time required to evaluate a query to determine which rows and columns contain only null
values is mainly determined by the number of cells in the result set. Other factors such as the
nesting levels on the axes and the use of complex calculated columns might also affect the
time required.

The number of cells in a result set of a dimensional query is determined by the number of
cross joins, which are the Cartesian product of member sets. The number of cross joins are
calculated as follows:

crossjoin ({a1, a2}, {b1,b2}, {c}) = {(a1,b1,c) (a1,b2,c) (a2,b1,c) (a2,b2,c)}

Figure 5-1 presents an example where the resolved edge has 1 × 1 × 170 × 818 × 818 =
113,751,080 tuples, or cells, to process.

Figure 5-1 A crosstab containing five nested sets

The Cognos BI query service applies optimizations for suppression. For example, if a cell's
expression evaluates to null, it does not have to be computed during query evaluation, which
reduces the number of cells that need to be processed.

Avoid requesting large, sparse result sets to prevent long wait times while suppression is
being applied. This will happen naturally if you work only with one meaningful view of your
data at a time. The preferred approach to analysis is to remove any data that is not pertinent
to your review before taking any step that expands the amount of data returned.

If you know which members will have the data of interest, explicitly reference or keep only
those members in your report, particularly when a large majority of cells will be null otherwise.
Likewise, if you are interested in only a slice of the data that involves hierarchies that do not
need to be displayed in the report, add appropriate members to the Context filter or Slicer
areas of the authoring interface.
62 IBM Cognos Dynamic Query

To avoid the lengthy processing times required for large, sparse result sets, use a TopCount()
function for dimensional reports or a rank() function for relational reports to show only the top
values of interest.

Another method for suppressing null cells in reports is the use of filters to ensure that
calculations take suppression into account. You can achieve better report performance
because the filtering is done by the data source. For example, insert a set expression in your
crosstab and use the following expression:

filter (descendants ([Set]) is not null)

If your crosstab includes three or more levels within the same dimension on an edge, use the
following expression:

filter (descendants (currentMember([Hierarchy]) is not null).

If your crosstab includes nested sets, you can improve performance by filtering the sets using
a cascading approach. For example, first filter the outermost (or highest nested level) set and
then proceed inward to filter the remaining sets.

5.6 Dimensional summaries

You summarize data in reports to obtain totals, averages, and so on. All authoring interfaces
of Cognos BI offer toolbar buttons to generate summaries.

Users analyzing OLAP data sources such as IBM Cognos Dynamic Cubes, IBM Cognos
TM1, Microsoft Analysis Services, or Oracle Essbase typically want to see summaries of their
detailed data. However, when applied to large volumes of data, summaries can be expensive
to compute, and in extreme cases can slow response time to the point of becoming unusable.
This is particularly true when the data is sparse and suppression is applied.

This section describes techniques to avoid performance problems from dimensional
summaries.

Remove the summaries
The simplest technique is to remove the summaries if they are not necessary for analytical
needs of users, or if shorter user wait times are more important than the availability of
summary values.

Use parent members
In most dimensions, every non-leaf member is the rollup (the natural summary) of its children.
In most cases, referencing a parent member can perform better than requesting a summary
of that parent member’s child members. If you reference the parent member in your reports,
the value can come directly from the data source, but if you define a summary the value must
be computed at run time. OLAP data sources typically optimize the rollups in each member
for better performance, and in some cases store the pre-aggregated rollups of all non-leaf
members.

Summaries are calculated at run time to ensure that the summary is correct even when the
members that are displayed do not roll up into an accessible parent member. Avoiding such
summaries in favor of using the desired parent member avoids the associated runtime
performance costs.
Chapter 5. Report authoring 63

You cannot use this technique if you need a summary set of members that is not a complete
set of children, for example a TopCount() set. In such scenarios, the summaries must be
computed on demand.

Use automatic summaries
When using the Summary toolbar buttons, requesting an automatic summary instead of an
explicit summary (such as Total) allows the summaries, when possible, to be delegated to
and optimized by the data source system, resulting in better performance. This optimization is
especially useful when detail summaries are required, such as in a list report.

When using the expression editor, the function that computes automatic summaries is
Aggregate().

You cannot use this technique if you need a summary set of members that is not a complete
set of children, for example a TopCount() set. In such scenarios, the summaries must be
computed on demand.

5.7 Advanced features in Report Studio’s Query Explorer

Report Studio offers advanced reporting functionality that is not available in the other
authoring interfaces of Cognos BI, such as the ability to create and modify queries using
Query Explorer. Query Explorer provides an alternative way to modify existing reports or to
author new reports. To enter Query Explorer while in Report Studio, place your mouse pointer
over the Query Explorer button and then click Queries.

You can use Query Explorer for complex tasks and other actions that are difficult to do when
in the regular report layout. Query Explorer can do the following functions, among others:

� Improve performance by changing the order in which items are queried from the database.

� Incorporate SQL statements that come from other reports or reports that you write.

� Create complex queries using union operations and joins.

This section provides details about the most useful Query Explorer features.

5.7.1 Reference queries

Use reference queries to control the order in which items are queried from the underlying data
sources. This can help you to improve performance or generate complex computations in an
order that is tailored to your needs.

To produce reference queries in Query Explorer, create the link between the child query and
the parent query by dragging the parent query to a position on the right side of the child query.
Figure 5-2 on page 65 presents two reference queries. In the first query, Query1 is the parent
query and Query2 is the child query. In the second query, Query1 is the parent query and
Query3 is the child query.
64 IBM Cognos Dynamic Query

Figure 5-2 Two reference queries

With reference queries, you can ensure that a series of calculations and filters are applied in
the order you want, because the parent query is always processed before the child query.

Reference queries also help you control caching and avoid fetching more data from the
database, because child queries are processed from the cached data of parent queries
(except when caching has been disabled). Using the example presented in Figure 5-2, with
default settings, the query from Query1 will be submitted only one time, and Query2 and
Query3 will be based on the cached result set from Query1.

When you create a child query in Report Studio, you can reference items only from its parent
or from other queries. For example, if you add a filter to a child query, the only items that you
can insert into the expression are items that exist in other queries defined in the report.

5.7.2 Union, intersect, and except queries

Create a union query to combine two or more queries into one result set. You can combine
queries that use different data sources. For example, you can combine a query that returns
data from a dimensional data source with a query that returns data from a relational data
source.

An intersect query takes the results of two queries and returns only the rows that appear in
both result sets. An except query evaluates the result set of one query and returns the rows
that do not appear in a second query's result set.

In some scenarios, the union, intersect, and except operations can be delegated to the
underlying data source. More typically, however, these types of set queries must be computed
through local processing and therefore carry a cost in terms of performance. So, avoid these
operations when requirements can be satisfied without them.

Note: For more information about union queries, see the following topic in the product
information center:

http://ibm.co/15rhtBN
Chapter 5. Report authoring 65

http://ibm.co/15rhtBN

5.7.3 Join relationships

A join relationship joins two queries. To avoid the performance cost of local processing, join
relationships are typically created in the IBM Cognos Framework Manager model. But if your
requirement cannot be modeled in Framework Manager, you have the option to create the
necessary join relationship in IBM Cognos Report Studio.

One reason to define a join relationship in Report Studio is so you can initiate the join on the
aggregated values of either or both of the associated queries instead of on the corresponding
detail records.

5.7.4 Master detail relationships

A master detail relationship helps you deliver information that would otherwise require two or
more reports. For example, you can combine a list with a chart. The list can contain product
lines and the chart can show details for each product line.

Master detail relationships must appear in nested frames to produce the correct results. You
can create a master detail relationship in two ways:

� Use a parent frame for the master query and a nested frame for the detail query.

� Associate a report page with the master query and use a data container, such as a list or
crosstab, for the detail query.

You can use a master detail relationship to show data from separate data sources in a single
report. However, the data sources must be contained in the same package.

For dimensional queries, master detail reports with a crosstab report object are optimized to
use a single query whenever possible, rather than using a separate query for each report
object instance. To reduce the required number of queries to the data source and therefore
reduce execution time, the optimization combines the master query with the detail query in a
crosstab. The data that appear in each detail report are now a subset of the result returned by
the new combined query, instead of the result of a separate query with a detail filter to select
the current value from the master.

For relational queries, the master detail relationship definition is used by default to filter the
detail query for every record in the master query, resulting in multiple detail queries being
issued to the underlying database. As the master query record set increases, the number of
detail queries increases also, slowing overall report performance. As of Cognos BI version
10.2.1, there is a governor in Framework Manager called (DQM) Master-detail optimization.
Use this governor to control whether detail query caching occurs for a relational master detail
query. To minimize the amount of SQL execution against the database for detail queries,
cache the detail query. For example, if you have 1,000 detail queries, then only one SQL
execution will occur. By default, detail queries are not cached, so for 1,000 detail queries,
1,000 SQL executions occur.

Note: For more information about join relationships, see the following topic in the product
information center:

http://ibm.co/1cDLN18

Note: For more information about master detail relationships, see the following product
information center page:

http://ibm.co/1dMZOxr
66 IBM Cognos Dynamic Query

http://ibm.co/1cDLN18
http://ibm.co/1dMZOxr

Chapter 6. Optimizing SQL for performance

The IBM Cognos Business Intelligence (BI) server generates Structured Query Language
(SQL) queries to retrieve data from relational databases. Users must wait while the database
responds to such queries. This chapter provides guidance for minimizing these wait times.

The chapter contains the following sections:

� 6.1, “Remember that less is faster” on page 68
� 6.2, “Make use of enforced and non-enforced constraints” on page 68
� 6.3, “Use indexes and table organization features” on page 69
� 6.4, “Review column group statistics” on page 69
� 6.5, “Avoid complex join and filter expressions ” on page 70
� 6.6, “Reduce explicit or implicit conversions” on page 71
� 6.7, “Minimize complexity of conditional query items” on page 71
� 6.8, “Review the order of conjunctions and disjunctions” on page 80
� 6.9, “Avoid performance pitfalls in sub-queries” on page 81
� 6.10, “Avoid unnecessary outer joins” on page 84
� 6.11, “Avoid using SQL expression to transpose values” on page 84
� 6.12, “Apply predicates before groupings” on page 86
� 6.13, “Trace SQL statements back to reports” on page 87

6

© Copyright IBM Corp. 2013. All rights reserved. 67

6.1 Remember that less is faster

The most important aspect to learn from this chapter regarding SQL queries is that less is
faster. If all other factors are the same, a simpler SQL statement is satisfied in less time than
a more complex SQL statement. Likewise, requests for more data take longer than requests
for less data, all else being equal.

As reports are executed, the Cognos query service will plan SQL statements that it requires
to obtain data from one or more relational data sources. The physical SQL statements that
are generated are dependent upon the SQL semantics and data types supported by the
underlying database. The complexity of the generated SQL statements can introduce
performance costs both for the underlying data source and for the Cognos server when it
needs to perform additional processing locally.

Cognos BI applications that are layered on operational databases frequently require complex
joins and expressions to navigate through the data and present values in business terms. In
contrast, applications that are layered on cleansed reporting structures, such as star
schemas, can benefit from the data transformations applied by the publishing extract,
transform, and load (ETL) processes. Reducing the complexity of the joins and expressions in
queries can help the relational database management system (RDBMS) plan queries more
efficiently and, in turn, reduce processor and memory consumption.

Cognos BI administrators can work with their database administrators to determine which
SQL statements return a large number of rows where a small percentage of the row data is
presented in a report. Although such SQL statements might not be complex or expensive for
the RDBMS to process, they can result in large amounts of data being transferred to the
Cognos BI server to be locally processed.

Many of the recommendations in this chapter are also common preferred practices that many
RDBMS vendors suggest to improve runtime performance.

6.2 Make use of enforced and non-enforced constraints

Tables in a database can declare constraints that can be considered by the RDBMS query
engine for strategies such as join eliminations, query rewrites, and expression optimizations.
Primary key, unique key, and foreign key constraints (but not null and table constraints) can be
declared for this purpose. Depending on the vendor, these constraints can be declared as
either non-enforced or enforced. In a normalized table design including snowflake schemas,
non-primary key columns are functionally dependent on the primary key.

To plan SQL statements for the RDBMS to process, the Cognos query service uses enforced
constraints defined in a Framework Manager model, such as determinants and join
relationships between query subjects. These Framework Manager objects are often created
during one of the initial steps of creating a model, but more common is that they are manually
defined by the Framework Manager modeler.

Enforced constraints can be defined in a Framework Manager model using join relationships
between query subjects and determinants, and can be used during SQL planning by the
Cognos query service as it plans SQL statements for the RDBMS to process. These
Framework Manager objects are often created in one of the first steps when creating a
Framework Manager model, but they are more commonly manually defined by the Framework
Manager modeler.
68 IBM Cognos Dynamic Query

A Framework Manager model can also be constructed on top of databases that expose
application objects through SQL views. Those views should be reviewed by the database
administrator with respect to the tables that the views reference, because the Framework
Manager modeler might not be aware of those tables yet.

When an RDBMS does not support ISO SQL windowed aggregates, an SQL statement will
likely be generated using two or more derived tables that include rows at different levels of
grouping. The rows from the derived tables will be joined in the SQL statement with
predicates (the grouping columns). If the database metadata does not use not null
constraints, then the predicate must compare the columns to determine if they are equal in
value or if they are both null values. These additional expressions can affect the performance
in the RDBMS.

6.3 Use indexes and table organization features

A common challenge for a database administrator is to anticipate the ways that applications
attempt to navigate the database. This includes which tables the queries will combine and
which tables predicates will be applied against. Using a representative workload, the
database administrator can review which tables are most frequently accessed and, in
particular, which local set of columns is used to filter and group columns in tables.

Using that knowledge, the database administrator can usually identify indexes or table
organization strategies that enable the database to more efficiently select the required rows.
The candidate workloads must reflect any ad hoc analysis and exploration of data that can
occur within an application. This is important when the database administrator is constrained
in terms of what covering indexes or table organizations they can define, which might bias the
solution toward the most frequent cases. For example, an application might predominantly
categorize measures based on time, customer geography, and product perspectives for which
the database administrator can optimize the table designs.

A Framework Manager model can also be constructed on top of databases that expose
application objects through SQL views. Such views must be reviewed by the database
administrator with respect to the expressions within the view or any projected query items
about which the Framework Manager modeler might not be aware.

6.4 Review column group statistics

Using a representative workload, the database administrator must review any instances
where predicates reference several columns of the same table, such as when data is filtered
by Country, Country-Region, and Country-Region-City.

These local predicates allow the database administrator to consider using multi-column
indexes that improve the performance associated with the predicates, and to gather relevant
statistics to improve cardinality estimation.

Note: A review of column group statistics often identifies predicates with inefficient data
types, such as character strings, as bottlenecks in query processing. To overcome this,
user prompts in models and reports can be configured to display meaningful names
(character strings) while more efficient data types, such as integers, are sent for
processing by the database. Figure 6-11 on page 76 shows a Report Studio dialog where
you set Use and Display values for a prompt. The Use values are what are computations
use; the Display values are what users see.
Chapter 6. Optimizing SQL for performance 69

6.5 Avoid complex join and filter expressions

The complexity of expressions in the where and join on clauses of a SQL statement can
impede planning for the RDBMS, query rewrites to materialized views, or other forms of query
acceleration. This section describes two common types of complex expressions and explains
several important factors to consider when using them.

6.5.1 Temporal expressions

In many applications, data is selected within a calendar context that is either designated by
the user or is based on standard business periods, such as the current month or day. The
input values define the range of data to select either in absolute terms or as expressions that
are applied to values to derive end points. Operational databases and star schemas can
benefit from a common set of extended date attributes that eliminate complex date
expressions in SQL. Models and reports that use these tables and columns can present to
the database simple predicates instead of complex expressions.

The Cognos BI query service exposes a family of functions that provide common user
expressions such as adding and subtracting days and years from dates. These expressions
are remapped to the equivalent expressions in the RDBMS and increase the portability of
common business temporal expressions. Although the SQL standard defines interval types
such as Year_to_Month and Day_to_Second, these interval types might not be supported by
a particular vendor's RDBMS. Expressions that use or result in interval types, especially in
predicates, can cause query decomposition and an increase in compensatory local
processing.

6.5.2 Expressions on table columns in predicates

A predicate is best applied to a table column, not to an expression. If the left side of a
predicate applies expressions to a column, it can impede the use of indexes and produce a
less accurate estimate of selectivity by the database. Figure 6-1 shows the application of a
string scalar function to perform a case-blind string comparison.

Figure 6-1 Applying expressions on columns in predicates
70 IBM Cognos Dynamic Query

You can change the expression so that it uses only functions on the right side of the predicate.
Alternatively, the database tables can be extended with columns to hold the computed value.
Some RDBMS vendors provide the ability to define virtual table columns that are based on
expressions that can be indexed.

6.6 Reduce explicit or implicit conversions

Ideally, an expression that serves as a key in a join relationship between tables resolves to
the same data type as the corresponding key on the opposite side of the join relationship.
This prevents constraining the RDBMS from considering certain join strategies, such as a
hash join, because of incompatible data types. The database administrator can determine if
the data types of the columns used in table joins are of the same type or of types that do not
impede the RDBMS. The Framework Manager modeler must also determine if the join
relationships between query subjects and stand-alone filters include expressions that might
force implicit or explicit data type conversions.

6.7 Minimize complexity of conditional query items

Reports are frequently designed with complex conditions used in predicates, groupings, and
aggregations. Often, conditional expressions are employed so users can choose, at run time,
how they want the information customized. These expressions can result in many large
conditional expressions, which are more costly for the RDBMS to process than simple column
references, literals, or other, more compact expressions.

Cognos BI features, such as Active Reports, can support many interactive user requirements
in a manner that is not dependent on query-based approaches. If the queries cannot be
avoided altogether, then use query items defined in a Framework Manager model or report,
which can eliminate or reduce the complexity of SQL expressions through the use of prompts
and parameter maps,

For example, consider reports that must present grouped data where several aggregates are
dynamically determined based on conditional logic. The conditional logic is repeated within
each aggregate and frequently appears in other predicates and expressions in the statement.
Chapter 6. Optimizing SQL for performance 71

Figure 6-2 shows a simple Cognos SQL statement that generates a set of rows using
row constructors. In turn, the row constructors populate the parameter map presented in
Figure 6-3. Each row returned by the query generates a key that can be referenced by
reports. The values associated with the key will be generated in the query at run time.

Figure 6-2 Cognos SQL generating a set of rows using row constructors

Figure 6-3 Parameter map definition that can be populated by a query
72 IBM Cognos Dynamic Query

Figure 6-4 shows a query subject with expressions that reference the keys of the parameter
map instead of applying an actual calculation on the current date and extracting the year. The
resulting SQL, shown in Figure 6-5, contains case expressions with literal values that were
retrieved from the parameter map.

Figure 6-4 Query subject with conditional query times referencing parameter maps

Figure 6-5 SQL based on parameter map values
Chapter 6. Optimizing SQL for performance 73

The set of keys and values in query-based parameter maps can be dynamically calculated
using SQL concepts supported by a database. For example, Figure 6-6 shows a recursive
common table expression that is used to calculate a parameter map representing a rolling,
12-month period based on the current date. The result set generated by this expression is
presented in Figure 6-7.

Figure 6-6 Recursive common table expression that is used to calculate a parameter map

Figure 6-7 Resulting rolling period of rows from expression in Figure 6-6

Another approach to present grouped data with dynamically determined aggregation is to use
a simple control table with logic to retrieve the requested results from either sets of rows,
stored procedures, or other vendor-specific RDBMS mechanisms to generate the series of
rows you want. As with the previous examples, the intent is to significantly reduce the number
of complex expressions that need to be evaluated in an SQL statement.
74 IBM Cognos Dynamic Query

Query items in a model or report can also use Cognos BI prompt syntax and macro
functionality to reduce expression complexity. A prompt can be defined in terms of values
that are displayed to (and selected by) a business user, such as a country name, and the
value that is passed to a query based on the name the user selected. The displayed value
is typically either a typed-in literal value (such as Market) or a value derived from a query
used to populate the prompt. As a result, prompt values can be presented to users with
friendly business names for sales territories, and the executed query uses more efficient
integer key values that are associated with the display names.

Figure 6-8 shows a simple query item in a report that returns a different column based on the
user’s selection. The query item can be used several times in the query for filtering, grouping,
and sorting the data, but this requires the expression to be repeated multiple times in the SQL
statement, as shown in Figure 6-9.

Figure 6-8 Query item that retrieves data from different columns, depending on user input

Figure 6-9 SQL statement generated from the case expression of Figure 6-8
Chapter 6. Optimizing SQL for performance 75

Another way you can avoid long-running SQL case expressions is by defining prompts that
accept valid Cognos BI expressions (tokens). Figure 6-10 shows a prompt macro that is
defined to accept a token data type. The token type is provided to the macro expression at
run time based on the prompt value the user selects.

Figure 6-10 Prompt macro using token type

Figure 6-11 shows the Static Choices definition screen for a value prompt in Report Studio.
The simple values defined in the Display column are presented to users; the corresponding
expressions for each of the values are defined in the Use column.

Figure 6-11 Defining Use and Display values for a prompt
76 IBM Cognos Dynamic Query

Another form of substitution can be defined using the simple case macro expression, as the
example in Figure 6-12 shows.

Figure 6-12 Case macro expression to ensure substitution occurs before SQL is submitted

When possible, the Cognos BI server attempts to apply dead code elimination techniques
during query planning. In Figure 6-13, the value provided by a prompt is directly compared to
a literal value that can be evaluated during planning.

Figure 6-13 Expression that allows for dead code elimination
Chapter 6. Optimizing SQL for performance 77

The result is a simple column reference in the generated SQL statement, as shown in
Figure 6-14.

Figure 6-14 SQL after code elimination techniques have been applied

This dead code elimination strategy can be used by authors to prune complex branches of
logic from a query. For example, Figure 6-15 shows a complex body of logic in a filter that
combines expressions and prompts. This logical expression is likely to expand into a more
complex expression in the SQL statement that is sent to the RDBMS, as Figure 6-16. shows.

Figure 6-15 Complex expressions with prompts

Figure 6-16 Physical SQL formed from complex expression
78 IBM Cognos Dynamic Query

The original expression from Figure 6-15 on page 78 can be refactored, as shown in
Figure 6-17, to take advantage of constant folding optimizations during query planning that
will simplify the generated expression. In this scenario, the expressions are restructured to
allow simple column and literal evaluations during planning, which result in more compact
SQL at run time.

Figure 6-17 Refactored expression to exploit code elimination

Figure 6-18 shows the simplified SQL that is generated.

Figure 6-18 Simpler generated SQL from re-factored expression
Chapter 6. Optimizing SQL for performance 79

6.8 Review the order of conjunctions and disjunctions

Complex expressions can include terms that are combined with a conjunction (AND), or a
disjunction (OR). Although many expression engines attempt to terminate solving
expressions as early as possible, a concept called early out, the order of the operations can
be optimized by reordering the terms. When rearranging a disjunction, place the most likely
conditions first. For conjunctions, place the least likely conditions first.

For example, Figure 6-19 shows an expression that filters rows based on a state and city
name. The second OR condition will evaluate whether the state is Texas (TX) before
performing potentially long-character comparisons where many of the leading characters of
city names can be similar. Subject to the distribution of the data, the comparisons of the city
names might need to be reordered to maximize performance.

Figure 6-19 Case statement with conjunctions and disjunctions

Queries that allow users to input large in-lists to filter rows should review whether the values
can be expressed using shorter string values or other data types, such as integers, to enable
faster evaluation of the values. Very large in-lists might also indicate a report design issue that
is allowing or causing users to select a large set of values from a data-driven prompt. With
some RDBMS, large in-lists can result in a statement that fails to execute on the database.
80 IBM Cognos Dynamic Query

6.9 Avoid performance pitfalls in sub-queries

Within a query subject, you can define filters that determine if one or more column values
exist in a set of rows returned by one or more sub-queries. For example, a query subject
modeled with two detailed filters, as shown in Figure 6-20, results in multiple sub-queries in
the SQL statement, as shown in Figure 6-21.

Figure 6-20 Multiple detail filters using sub-queries

Figure 6-21 SQL statement with multiple sub-queries in a filter
Chapter 6. Optimizing SQL for performance 81

Many types of RDBMS attempt to apply transformations on statements that use sub-queries
to optimize performance. Your database administrator can review the execution plans for
time-consuming statements involving sub-queries and consider the following information:

� If multiple predicates are used in a filter, consider whether reordering the predicates will
improve execution times.

� If multiple predicates are used in a filter and each predicate references another query,
consider whether modeling a query subject with equivalent join relationships will improve
execution times.

� If a filter uses an equality predicate (=), consider using = ANY() or using IN() instead.

Figure 6-22, Figure 6-23, and Figure 6-24 on page 83 illustrate how defining a relationship
can help prevent costly sub-queries.

Figure 6-22 shows a model query subject that references items from another query subject
that computes a set of keys corresponding to a given time period. The relationship between
the two query subjects is defined with a predicate using two columns. Only one row per key
will be returned in this scenario.

Figure 6-22 Model query subject joined to another query subject

Figure 6-23 shows the other query subject that computes the desired set of stores based on
date criteria provided by the user. The query subject defines a determinant that groups the
data by store and computes the highest applicable key using an aggregate.

Figure 6-23 Query subject that groups data and computes the key using an aggregate
82 IBM Cognos Dynamic Query

The SQL that is generated is shown in Figure 6-24. Sub-queries are avoided because the
query subjects are referenced though a join relationship instead of a detail filter using a
predicate. In more complex statements that reference the effective-date query subject
multiple times, the SQL statement might include a named query within a common table
expression if the RDBMS supports that construct. Otherwise, a new sub-query is generated
several times as a derived table.

Figure 6-24 Generated SQL using query subjects with join relationships

Note: A join to a query must not change the cardinality of the required results. Be sure to
verify whether the query will return distinct rows by default. A sub-query can be changed to
a query subject that generates a derived table that contains a distinct or group by
operation that removes duplicates.
Chapter 6. Optimizing SQL for performance 83

6.10 Avoid unnecessary outer joins

Outer joins enable applications to return result sets when one or more tables in a statement
lack associated data. Queries that use outer joins restrict various join optimization strategies
and join ordering that the RDBMS sometimes uses with inner joins. A model might be
constructed to always use outer joins that may not, in fact, be required by the business
questions posed by a report. In these cases, the model can be extended with additional query
subjects that describe inner join relationships.

Report authors can also consider using master-detail relationships that will retain data from
the master query even if there are no details. This is similar to the intent of a left outer join.

In a star schema design, fact rows should be associated to members in the corresponding
dimensions. In some cases, the actual business key for a fact might not be known as the fact
data is delivered. It is preferred that the dimensions include a designate member that
represents an unknown member. This enables the join relationships to avoid using outer joins
and thus simplify the reporting experience for business users who want to select and group
measures based on the unknown category.

6.11 Avoid using SQL expression to transpose values

Application authors who are familiar with SQL can construct expressions that attempt to
massage database values for display. In several cases, such expressions can be replaced
by using the available data type formatting, layout, and report expression features in the
Framework Manager model and Cognos BI report authoring interfaces. Using the available
formatting and layout facilities can reduce overhead in the RDBMS and provide locale-aware
rendering.

Example 6-1 demonstrates how you can initiate multiple data type conversions, substrings,
and concatenations to display a date value in a particular way rather than using the Data
Format rendering option available in various authoring interfaces.

Example 6-1 Date formatting through data processing instead of rendering processing

Substring(Cast (dateField, char(10)),6,2) || ‘-‘ || Substring(Cast (dateField,
char(10)),9,2) || Substring(Cast (dateField, char(10)),1,4)

Application authors can define data-driven prompts that allow users to input values in a form
that must be converted before the values can be used in a predicate. Ideally, the input values
are transformed within the prompt definitions. Cognos BI provides a set of macro expressions
that enable various forms of string expressions to be parsed and converted into the
appropriate type of literal in the SQL statement.
84 IBM Cognos Dynamic Query

Figure 6-25 shows a macro function that uses a mask specification to extract the year and
month from the current date in a predicate where an application is storing an integer column
that is intended to allow all days in a month to be selected. This solution does not require a
between predicate within a _first_of_month and _last_of_month expression, which can take
a relatively long time to process.

Figure 6-25 Macro function using a mask specification to extract year and month from current date

Note: Although relatively uncommon, the timestampMask() macro can be used for data
sources that do not provide equivalent scalar functions. This is important for many
business reports that frequently filter or group data by a temporal context, because it can
simplify the SQL statements that are submitted to the underlying database.
Chapter 6. Optimizing SQL for performance 85

Figure 6-26 shows how an inputted string value is transformed from dd/mm/yyyy format into
yyyy-mm-dd format to accommodate the method in which a particular application stores
character representations of date values.

Figure 6-26 Macro expression to transform character representations of date values

6.12 Apply predicates before groupings

You can take steps to improve performance even when the RDBMS is unable to apply
predicates prior to a grouping operation, or when the RDBMS ignores candidate materialized
views. The predicate is likely to be applied to a value expression that is computing the
minimum value of an attribute in association with a determinant in the Framework Manager
model.

A Framework Manager model governor, Grouping of measure attributes, can be changed to
include the attributes in the grouping list. Figure 6-27 on page 87 shows a query that projects
three columns from a model query subject. The country and state columns are defined in as a
group by determinant with state as an attribute that is determined by the two columns. Based
on the setting of the model governor, the generated SQL statement can include the attribute
as a column in the group by clause or with an aggregate. If a report attempts to filter data
using that attribute, the RDBMS might not push the predicate ahead of the grouping
operation, or it might be unable to match a materialized view.
86 IBM Cognos Dynamic Query

Figure 6-27 Attribute predicate applied to an aggregated column

6.13 Trace SQL statements back to reports

The SQL statements generated by the Cognos BI query service can optionally contain
embedded comments that can include application context. This enables administrators to
gather workloads and see the reports and packages to which the SQL statements
correspond.

The ability to see comments in dynamic SQL at the database server level depends on
whether the database vendor supports the concept, and requires that the client driver not
remove the comments during parsing.

Many of the macro functions described in Chapter 4, “Macros” on page 43 can be used to
customize the information about the request’s context. You can use macros and session
parameters to tie queries to the particular user that ran the report.

Previously authored reports have user-defined names; ad hoc analysis and query gestures
are assigned system-generated names. Both user-specified names and system-generated
names can help administrators to monitor workloads.

Figure 6-28 on page 88 displays SQL that the Cognos BI query service submitted to a
database. The first line of the SQL is a comment string with the following items:

� The name of the authenticated user, or anonymous when no authentication was used
� The location and name of the report that was executed
� The name of the business query in the executed report
� An internal request identifier that can be used to link to the audit database data
Chapter 6. Optimizing SQL for performance 87

Figure 6-28 Cognos generated SQL with comments appended for auditing purposes

You can enable or disable query service comment logging in SQL statements by using the
Generate comments in native SQL setting that is shown in Figure 6-29. The steps are as
follows:

1. Launch the IBM Cognos Administration portal page.

2. On the Configuration tab, select Dispatchers and Services.

3. Select the Query Service and then select the Set properties action.

4. On the Settings page, select the Logging category and change the value for the
Generate comments in native SQL name.

Figure 6-29 The Generate comments in native SQL setting of the Query Service
88 IBM Cognos Dynamic Query

Chapter 7. Troubleshooting

Troubleshooting is a systematic approach to solving a problem. The goal of troubleshooting is
to determine why something does not work as expected and how to resolve the problem.

This chapter provides guidance on troubleshooting issues related to the dynamic query layer
of IBM Cognos Business Intelligence (BI). Among the topics addressed are problem solving
strategy, error messages, log files, the Cognos Dynamic Query Analyzer, and working with
IBM Technical Support.

The chapter contains the following sections:

� 7.1, “Problem solving strategy” on page 90
� 7.2, “Error messages” on page 92
� 7.3, “Log files and tracing” on page 93
� 7.4, “Dynamic Query Analyzer” on page 95
� 7.5, “IBM technical support” on page 102

7

© Copyright IBM Corp. 2013. All rights reserved. 89

7.1 Problem solving strategy

Cognos BI is typically the user-facing front end of a complex ecosystem of enterprise
software. The complexity of these systems is such that the symptoms of a problem can have
many possible causes.

Sometimes, the solution to a problem is immediately apparent, such as when the details in an
error message sufficiently describe what must be corrected.

For issues where the solution is not immediately apparent, you start by simplifying the
scenario to reduce the number of possible causes. Any variable that is not directly related to
the problem occurrence is a distraction from resolving the problem. A solution can become
apparent most easily when you know the minimum factors under which the problem occurs.

A simple, two-step procedure can help you isolate the specific cause of a problem symptom:

1. Evaluate your most recent changes and find the point where the problem does not exist
and the problem symptoms are not present (values are correct, performance meets
expectations, no errors are returned). One approach to this process is explained in 7.1.1,
“The half-split method” on page 90.

2. Implement your additional application requirements one-by-one, testing after every
change. If you instead test after making multiple changes, you do not always know which
change caused the problem behavior.

7.1.1 The half-split method

In the context of troubleshooting Cognos BI applications, the half-split method is a process of
elimination that involves iteratively removing half or more of the variables until only the
minimum factors under which the problem occurs are present. This approach is particularly
useful if you are troubleshooting an application that you did not develop yourself.

Consider a report that returns an error when executed from IBM Cognos Report Studio.
Under the half-split approach, you delete approximately half of the report objects (such as
queries, charts, pages, or query items) and then execute the report again to test whether the
error still occurs. If the error does not occur, then you restore the previously deleted objects
and delete the others. If the error continues to occur, then delete half of the objects that were
previously retained. If potential solutions are still not clear after you reduce the report to as
few objects as possible under which the same error occurs, you might need to expand your
investigation into the Framework Manager model.

The half-split method is often the most efficient way to identify the root cause of a problem.
The best part of the half-split method is that little technical expertise is required to apply it.
Even the most novice users can make considerable troubleshooting progress with this
approach.

The half-split method can be particularly useful for troubleshooting professionally authored
Report Studio reports that have multiple pages of content. These reports tend to be complex,
which means narrowing the scope of the problem as your first step is even more important.
90 IBM Cognos Dynamic Query

One technique for applying the half-split method in Report Studio is to use the View Tabular
Data operation that is displayed when you right-click a query in the Query Explorer pane. As
shown in Figure 7-1, you can use the View Tabular Data operation to test each query
independently of all other queries in a report. This way can help you determine whether a
particular query is causing the problem.

Figure 7-1 View Tabular Data operation in the Query Explorer pane of Report Studio
Chapter 7. Troubleshooting 91

A similar technique uses the Run Page operation that is displayed when you right-click a page
in the Page Explorer pane of Report Studio. As shown in Figure 7-2, with the Run Page
operation, you can test each page independently of all other pages in a report. This can help
you learn whether the contents of a particular page are causing the problem.

Figure 7-2 Run Page operation in the Page Explorer pane of Report Studio

7.2 Error messages

The first indication of a problem is often an error message. Error messages contain
information that can be helpful in determining the cause of a problem. Example 7-1 shows the
error message generated by the query service for a report with nonadjacent levels from the
same hierarchy.

Example 7-1 Error message generated by the query service

XQE-PLN-0212 The report nests more than one level from the same hierarchy but they
are not adjacent to each other. Please make levels from the same hierarchy
adjacent.

Error messages returned by the Cognos BI server include an error code with characters that
indicate the component and sub-component that encountered a software exception, and a
number that identifies the exception. Error codes that are returned by the query service carry
the prefix XQE. Error codes that are returned by the report service carry the prefix RSV. Other
components within the Cognos BI server have their own error code prefixes. Include any
relevant error codes in your search terms when you seek solutions online.

When you run a report from a browser and get an error, the short version of the error
message is displayed for you. You can click the Details hyperlink to see the full error
message, if one exists, and assuming you have the correct privileges to view error
information. If the troubleshooting details you need are not shown, you can examine
log files to learn details about the failure or exception that occurred.

Error messages submitted to the query service by the underlying data source may be
presented to the user in the details of the XQE error message or recorded in log files on the
Cognos BI server. Error messages from the underlying data source will provide the most
detail about the root cause of the exception that occurred on the data source. Typically, you
see a XQE-DAT-0001 Data source adapter message before any error message generated by
the underlying data source software.
92 IBM Cognos Dynamic Query

7.3 Log files and tracing

Log files can help you troubleshoot problems by recording the activities that take place when
you work with a product. By default, operations performed by the query service are recorded
in various log files in the \c10_location\logs\XQE directory for tracking purposes. An
explanation of how to change the log file output directory for the query service is in the
product information center:

http://ibm.co/17zOyzb

You can troubleshoot query-related issues in the dynamic query mode by using tracing
capabilities that expand the information that is presented in log files. You can access settings
for tracing in the properties of the QueryService service in IBM Cognos Administration, as
described in the product information center:

http://ibm.co/1a79Y75

Because of the complexity of the information contained in query service tracing log files, the
preferred approach is to apply the half-split method to simplify a report as much as possible
before enabling tracing for the report. Analyzing the log files from a simple report is much
easier than for a complex report. Dynamic Query Analyzer, which is described in 7.4,
“Dynamic Query Analyzer” on page 95, can assist you in analyzing query service tracing log
files.

If enable query service tracing is enabled, when a report is executed a new directory is
created with the following naming convention

<yyyy-mm-dd>_<hhhmmmssss>_<reportname>

The first part of the directory name is the date and time on the Cognos BI server where the
report was executed. If the report that was executed has not been assigned a name, the
name of the package is used instead. In the directory is the manifest.xml file, which contains
contextual information related to the report's execution. The manifest.xml file contains the
following information:

� Date: The Cognos BI server date and time when the request was received

� Report Name: The name of the report (if the report has been saved in the content store)

� Report Path: The location of the report in the content store

� Package Name: The name of the package associated with the report

� Model Path: The location of the package in the content store

� Request ID: The request identifier associated with the user-initiated transaction

� Operation Name: The name of the command for the transaction

� Sub-Request Id: An identifier for each sub-request, in cases where a request
(user-initiated transaction) is divided into multiple sub-requests

� Expected Number of Passes: The number of passes used to plan the query

Important: Enabling query service tracing, particularly the query planning trace, results in
the creation of large log files and can affect overall query performance. Avoid enabling
query service tracing in production environments, and disable tracing as soon as you
capture the information you need.
Chapter 7. Troubleshooting 93

http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/index.jsp?topic=%2Fcom.ibm.swg.ba.cognos.dyn_query.10.2.1.doc%2Ft_dqm_chng_dflt_log_dir.html
http://ibm.co/1a79Y75
http://ibm.co/17zOyzb

7.3.1 Query planning trace

The query planning trace writes information related to the transformation of the query to the
plan tree log file. Use the query planning trace when you want to determine how the execution
plan was determined by the query service.

The query planning component is a sophisticated system based on rules. It uses an inference
engine that applies transformations in a sequence of passes. The initial query plan is
transformed into a final execution plan over a series of transformations. The query planning
trace logs contain the following information:

� The query state before the application of a transformation

� The reason a transformation was applied (or not applied)

� Each change that was applied to the query state as a transformation was applied

� The query state after the application of a transformation

When query planning tracing is enabled, log files are generated whenever each report is
executed. The log files follow specific naming conventions:

� Tree log files:

timestamp_reportName\planningLog.xml

� Profiling log files:

timestamp_reportName\planningLog_pass_log_number.xml

For example, executing a report named Retailers results in the following planning log file:

2012-01-10_11h33m700s_Retailers\planningLog.xml

It also results in several pass logs with sequential file names such as these examples:

2012-01-10_11h33m700s_Retailers\planningLog_pass_001.xml
2012-01-10_11h33m700s_Retailers\planningLog_pass_002.xml.

Some reports require the execution of sub-queries. Sub-query trace files, including planning
logs and pass logs, are stored under a separate directory within the main report directory. So,
if the Retailers report requires the execution of one or more sub-queries, the trace files for
those sub-queries are stored in the 2012-01-10_11h33m700s_retailers\subqueries directory.

7.3.2 Query execution trace

The query execution trace writes information such as the native SQL or MDX statements to a
run tree log file. Profile information is written to one or more separate logs. Profiling logs
include execution and waiting-time metrics for query constructs.

The query execution trace logs display execution times in nanoseconds for every unit of
processing over the various nodes of the query execution plan.

Log files are generated every time each report is executed. The log files follow specific
naming conventions:

� Tree log files:

timestamp_reportName\runtreeLog.xml

� Profiling log files:

timestamp_reportName\profilingLog-log_number.xml
94 IBM Cognos Dynamic Query

To extend the previous example, executing a report called Retailers results in the following log
tree file:

2012-01-10_11h33m700s_Retailers\runtreeLog.xml

It also results in several profiling logs with sequential file names such as these examples:

2012-01-10_11h33m700s_Retailers\profilingLog-0.xml
2012-01-10_11h33m700s_Retailers\profilingLog-1.xml

Some reports require the execution of sub-queries. Trace files for sub-queries, including
run tree logs and profiling logs, are stored under a separate directory within the main
report directory. So, if the Retailers report requires the execution of one or more sub-queries,
the trace files for the sub-queries are stored in the following directory:

2012-01-10_11h33m700s_retailers\subqueries.

The following XML element attributes are in the query execution trace log files:

� totalElapsedTime: The total elapsed time in the execution node, including time spent
executing any descendant nodes

� ownElapsedTime: The total elapsed time in the execution node, excluding time spent
executing any descendant nodes

� totalCPUTime: The total time directly attributed to the processing in the node and its
descendants, excluding any other processing the operating system performed on
unrelated activities

� ownCPUTime: The total time directly attributed to the processing of the node, not including
its descendants and excluding any other processing the operating system performed on
unrelated activities

7.4 Dynamic Query Analyzer

Some content in this section was previously published in IBM developerWorks1.

Cognos Dynamic Query Analyzer is a tool that provides graphical representations for the
query tracing logs produced by the query service. Dynamic Query Analyzer includes an
Eclipse-based client user interface. Data is presented in a series of visual components called
views. You can perform operations on the data contained in the active view. The results of
these operations affect the content of other views, or cause new views to be opened
automatically. The following three types of logs can be loaded within the Open Log dialog of
Dynamic Query Analyzer:

� Profile: This is a log of the execution of a report with timing information.

� Runtree: This is a log of the execution of a report with no timing information. This log will
only be shown if there is no profile.

� Plan: This log depicts the initial query and the final query just before an execution was
attempted. The plan log is only loaded if execution fails.

Documentation is available regarding how to open log files and perform other actions with
Dynamic Query Analyzer. See the Cognos BI Information Center:

http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/nav/5_8

1 Source: IBM Cognos Proven Practices: IBM Cognos 10 Dynamic Query Analyzer User Guide
http://www.ibm.com/developerworks/data/library/cognos/infrastructure/cognos_specific/page578.html
Chapter 7. Troubleshooting 95

http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/nav/5_8
http://www.ibm.com/developerworks/data/library/cognos/infrastructure/cognos_specific/page578.html

7.4.1 Graph nodes

The graph that is displayed when a query log file is opened shows a series of linked nodes.
Each node represents either an operation that occurred when the report was run or an
attribute of an operation (such as the data that was being processed). Figure 7-3 defines the
meaning of the various node representations.

Figure 7-3 Node representation definitions

The nodes shown in a Dynamic Query Analyzer log graph are a hierarchical representation of
the XML generated in the log. When the node has information that can be displayed, the node
depiction in the graph is colored or filled with text. When a node has useful information that
can be displayed, the node depiction in the graph is colored and contains text. Colored nodes
represent elements used in the execution of the report. Non-colored nodes are superfluous
data in the logs that are generally not useful for performance analysis. The colors for the node
types can be viewed in the summary view and changed in the Colors and Fonts preference
page. The colors beside the node show the timing information for the node.

Generally, the node properties presented in the graph are the node name and the ID of the
operation the node executed. Square nodes, which are not shown in the graph by default, do
not have an ID because they represent information that was not part of an execution of an
operation. You can make square nodes visible in the graph using the Nodes Filtering page. All
of the properties of the node can be seen in the Properties view. You can also click on the
XML tag to see the contents of the log file as raw XML.
96 IBM Cognos Dynamic Query

7.4.2 Views

Dynamic Query Analyzer offers several views to help you focus on the information that
interests you. All views within Dynamic Query Analyzer can be opened using the Show View
option in the Window menu. Some views are opened by default when a graph opens. This
section describes the views that are available in Dynamic Query Analyzer are described in
this section.

Navigation view
The Navigation view is a tree representation of a graph. Each graph has its own Navigation
view, so the contents do not change when you select another graph. This allows you to
compare graphs by opening multiple Navigation views.

You can enable the Link to editor setting on the toolbar so that the editor reflects what is
selected in the graph, and vice versa. The Navigation view allows you to navigate to entries in
the tree and to focus on them by double-clicking individual entries.

Figure 7-4 shows the Navigation view of a graph. The node that is highlighted in the graph
was selected in the Navigation view because the Link to editor setting is enabled there.

Figure 7-4 Navigation view displaying the graph structure as a tree
Chapter 7. Troubleshooting 97

Summary view
The Summary view shows the overall information about a graph in a succinct format.

The Summary view has four sections:

� The Summary section shows the name, package, and time the report was run, with a
graphic to quickly indicate whether the data source type is relational, OLAP, or
dimensionally modeled relational (DMR).

� The Timing section is where users doing profiling spend most of their time. The working
and waiting time for each node is shown in descending order. Double-clicking on any of
the entries takes you to the named node.

� The Analysis section shows additional information about the report that was run, including
whether planning was successful, any query hints that were applied, and any filters that
were applied. These factors can change the performance of a report significantly; be sure
to check it if two seemingly identical reports have different timing characteristics.

� The Node shapes and colors section is a legend that explains the node types and
colorings used in the Summary view.

Figure 7-5 shows the Summary view as it is opened by default, indicating the summary and
timing information.

Figure 7-5 Summary view displaying execution time information

Note: A system generated name will be assigned to any report that was run before
being saved to the content store.
98 IBM Cognos Dynamic Query

Query view
The Query view shows the MDX or SQL query that was executed to generate a report. For
convenience, you can test the SQL from within Dynamic Query Analyzer by clicking the
Re-run the SQL statement on the server option. The MDX query is much more tightly linked
to the report execution and can be used to find the places in the graph that match the
commands in the MDX. Selecting an MDX command in the Query view will highlight the
corresponding node in the graph, assuming you enabled the Link MDX to graph setting.
Figure 7-6 shows an MDX command selected in the Query view and the corresponding node
highlighted after the Link MDX to graph setting is selected.

Figure 7-6 Query view with MDX command selected in graph
Chapter 7. Troubleshooting 99

Report Logs view
The Report Logs view depicts all of the logs currently available on the Cognos BI server. The
same logs appear when you click File  Open log on the Open Log dialog. The Report Logs
view is a convenient way to locate the log that interests you.

Figure 7-7 shows a report execution log expanded to indicate its main profile and the
sub-queries that occurred during execution of the report.

Figure 7-7 Report log view with command selected in graph
100 IBM Cognos Dynamic Query

Content Store view
The Content Store view shows the reports that are available in your environment and enables
you to run any report directly from Dynamic Query Analyzer. The list of folders and reports is
the same as that in the Cognos Connection web portal. Unlike reports run from the portal,
reports run from Dynamic Query Analyzer can generate logs on a report-by-report basis.

After a report runs, you can see the log for the run under the listing for the report in the
content store view. If you do not see your log, look in the Report Logs view to see if it is there.
Figure 7-8 shows the content store view with the log of a report run beneath the report entry.

Figure 7-8 Content Store view with a report-generated log selected
Chapter 7. Troubleshooting 101

DQM Server Logs view
The DQM Server Logs view shows the contents of the main server logs. These logs are for all
events on the server, not only reports. These logs also provide details about operations that
are not done by the query service. If you want to see if any entries are tied to an open report,
select File  Show in Server Log.

The entries in this view are organized by server session. You can filter the entries appearing
in the DQM Server Logs on any column that appears in this view. These filters can be cleared
using the Clear Filters operation.

Figure 7-9 shows the latest server log expanded to indicate all entries that were written to that
log. A new server log is initiated each time the server is restarted.

Figure 7-9 Server logs view displaying the server entries for the latest session

7.5 IBM technical support

IBM prides itself on delivering world-class software support with effective online resources
and a highly skilled, customer-focused staff. This section describes several important
technical support offerings available to assist you in resolving problems.

7.5.1 IBM Support Portal

The IBM Support Portal is a unified, centralized view of all technical support tools and
information for all IBM systems, software, and services. Find it at this address:

http://www-947.ibm.com/support/entry/portal/overview

The portal lets you access all the IBM support resources from one place. You can tailor the
pages to focus on the information and resources you need for problem resolution and
102 IBM Cognos Dynamic Query

http://www-947.ibm.com/support/entry/portal/overview

prevention. Consider familiarizing yourself with the IBM Support Portal by viewing the
demonstration videos available at the following web address:

http://www.youtube.com/user/IBMElectronicSupport

7.5.2 Service requests and PMRs

Service requests are also known as problem management reports (PMRs). These requests
can be submitted by using the PMRs tool available at this address:

https://www-947.ibm.com/support/servicerequest/Home.action

Before contacting IBM Support, you should attempt to apply the troubleshooting strategy
explained in 7.1, “Problem solving strategy” on page 90 so that you can effectively describe
the scope of the problem. If you can effectively summarize the problem and symptoms before
contacting software support, the problem solving process typically moves faster. Be sure you
are as specific as possible when you explain a problem or question to software support
specialists.

When you work with IBM technical support, you can accelerate the work by providing
information that is detailed enough for the technical support analyst to be able to reproduce
your problem. For issues that can be reproduced with the Cognos BI samples, you can submit
the report specification or Framework Manager model that demonstrates the problem, along
with an indication of sample database you were using. No data is required to reproduce
issues related to Cognos BI SQL generation; submitting scripts to create the empty database
tables should be sufficient. Issues related to data integrity often require you to submit your
data, or a version of your data with the highly confidential elements removed or altered, to
enable IBM technical support to reproduce your problem.

To exchange information with technical support, go to the following address:

http://www-05.ibm.com/de/support/ecurep/index.html

The service request escalation process for IBM Business Analytics products is at the
following web location:

http://www.ibm.com/software/analytics/cognos/customercenter/escalation.html

7.5.3 IBM Fix Central

IBM Fix Central provides fixes and updates for your system’s software, hardware, and
operating system. When you enter Fix Central, use the drop-down menu to navigate the fixes
for your product.

You can access Fix Central at the following address:

http://www-933.ibm.com/support/fixcentral/

Fix lists and release schedules for IBM Fix Packs are at the following address:

http://www.ibm.com/software/analytics/cognos/support/fixpacks.html
Chapter 7. Troubleshooting 103

http://www.ibm.com/software/analytics/cognos/support/fixpacks.html
http://www.youtube.com/user/IBMElectronicSupport
https://www-947.ibm.com/support/servicerequest/Home.action
http://www.ibm.com/software/analytics/cognos/customercenter/escalation.html
http://www-933.ibm.com/support/fixcentral/
http://www-05.ibm.com/de/support/ecurep/index.html

104 IBM Cognos Dynamic Query

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� IBM Cognos Dynamic Cubes, SG24-8064

� Big Data Analytics with IBM Cognos Dynamic Cubes, TIPS0942

� IBM Cognos Business Intelligence V10.1 Handbook, SG24-7912

� Gaining Insight with IBM Cognos Business Intelligence V10.1, TIPS0947

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� IBM Cognos Business Intelligence 10.2.1 Information Center:

http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/index.jsp

� Business analytics proven practices:

http://www.ibm.com/developerworks/analytics/practices.html

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2013. All rights reserved. 105

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://pic.dhe.ibm.com/infocenter/cbi/v10r2m1/index.jsp
http://www.ibm.com/developerworks/analytics/practices.html

106 IBM Cognos Dynamic Query

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

IBM
 Cognos Dynam

ic Query

IBM
 Cognos Dynam

ic Query

IBM
 Cognos Dynam

ic Query

IBM
 Cognos Dynam

ic Query

IBM
 Cognos Dynam

ic Query

IBM
 Cognos Dynam

ic Query

®

SG24-8121-00 ISBN 0738438723

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

IBM Cognos Dynamic Query

Discover how Cognos
accelerates query
performance

Learn how to
administer the
Cognos query service
effectively

Maximize the return
on your analytic
investments

This IBM Redbooks publication explains how IBM Cognos Business
Intelligence (BI) administrators, authors, modelers, and power users
can use the dynamic query layer effectively. It provides guidance for
determining which technology within the dynamic query layer can best
satisfy your business requirements. Administrators can learn how to
tune the query service effectively and preferred practices for managing
their business intelligence content.

This book includes information about metadata modeling of relational
data sources with IBM Cognos Framework Manager. It includes
considerations that can help you author high-performing applications
that satisfy analytical requirements of users.

This book provides guidance for troubleshooting issues related to the
dynamic query layer of Cognos BI.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Overview of Cognos Dynamic Query
	1.1 Introduction
	1.2 Background
	1.3 Architecture
	1.3.1 Planning and executing the query

	1.4 Technology selection guidance
	1.4.1 Pure relational analytics
	1.4.2 OLAP analytics

	Chapter 2. Administration
	2.1 Configuring the query service
	2.1.1 Memory sizing
	2.1.2 Throughput sizing
	2.1.3 Multi-server environments

	2.2 Data source administration
	2.2.1 Connection command blocks
	2.2.2 JDBC drivers
	2.2.3 OLAP connections
	2.2.4 ERP and CRM data sources

	2.3 Cache management
	2.3.1 Priming the cache
	2.3.2 Clearing the cache
	2.3.3 Automating cache operations

	Chapter 3. Metadata modeling
	3.1 Cognos Framework Manager
	3.2 Goals of metadata modeling relational data sources
	3.2.1 Modeling for self-service analysis

	3.3 Framework Manager architecture
	3.4 Key objects of a relational model
	3.4.1 Query subjects
	3.4.2 Dimensions
	3.4.3 Determinants
	3.4.4 Relationships

	3.5 Organizing relational models
	3.5.1 Data view
	3.5.2 Business logic view
	3.5.3 Presentation view

	3.6 Relational modeling for performance
	3.6.1 As view versus minimized SQL generation
	3.6.2 Security-aware caching

	Chapter 4. Macros
	4.1 Macros explained
	4.2 Macro language
	4.2.1 Operator
	4.2.2 List separator character
	4.2.3 Functions
	4.2.4 Comments
	4.2.5 Simple case construct

	4.3 Parameter maps
	4.4 Session parameters
	4.5 Advanced examples
	4.5.1 Member unique name for next year
	4.5.2 Turning promptmany result into a rowset
	4.5.3 Dynamic column drill
	4.5.4 Filtering for internal and external customers

	Chapter 5. Report authoring
	5.1 Authoring interfaces
	5.1.1 Cognos Workspace Advanced
	5.1.2 Cognos Report Studio

	5.2 Processing report executions
	5.2.1 Local and database processing

	5.3 Database functions
	5.4 Dimensional and relational reporting styles
	5.5 Suppression
	5.6 Dimensional summaries
	5.7 Advanced features in Report Studio’s Query Explorer
	5.7.1 Reference queries
	5.7.2 Union, intersect, and except queries
	5.7.3 Join relationships
	5.7.4 Master detail relationships

	Chapter 6. Optimizing SQL for performance
	6.1 Remember that less is faster
	6.2 Make use of enforced and non-enforced constraints
	6.3 Use indexes and table organization features
	6.4 Review column group statistics
	6.5 Avoid complex join and filter expressions
	6.5.1 Temporal expressions
	6.5.2 Expressions on table columns in predicates

	6.6 Reduce explicit or implicit conversions
	6.7 Minimize complexity of conditional query items
	6.8 Review the order of conjunctions and disjunctions
	6.9 Avoid performance pitfalls in sub-queries
	6.10 Avoid unnecessary outer joins
	6.11 Avoid using SQL expression to transpose values
	6.12 Apply predicates before groupings
	6.13 Trace SQL statements back to reports

	Chapter 7. Troubleshooting
	7.1 Problem solving strategy
	7.1.1 The half-split method

	7.2 Error messages
	7.3 Log files and tracing
	7.3.1 Query planning trace
	7.3.2 Query execution trace

	7.4 Dynamic Query Analyzer
	7.4.1 Graph nodes
	7.4.2 Views

	7.5 IBM technical support
	7.5.1 IBM Support Portal
	7.5.2 Service requests and PMRs
	7.5.3 IBM Fix Central

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

