Enriched database functionality and enhanced graphical environments for application developments

Boosted efficiency with enriched virtualization and more effective utilization of system resources

Easier deployment of new features with technology refreshes

Justin C. Haase
Dwight Harrison
Adam Lukaszewicz
David Painter
Tracy Schramm
Jiri Sochr

ibm.com/redbooks
Note: Before using this information and the product it supports, read the information in “Notices” on page xix.

Fourth Edition (December 2014)

This edition applies to Version 7, Release 1, Modification 0 of IBM i (5770-SS1) and related licensed programs.

© Copyright International Business Machines Corporation 2010, 2014. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

Notices ... xix
Trademarks ... xx

IBM Redbooks promotions ... xxiii

Preface ... xxv
Authors ... xxv
Now you can become a published author, too! xxvii
Comments welcome .. xxviii
Stay connected to IBM Redbooks xxx

Summary of changes ... xxx
December 2014, Fourth Edition xxx

Chapter 1. Introduction to IBM i 7.1 and Technology Refreshes ... 1
1.1 Communicating IBM i enhancements .. 2
1.2 Clarification of operating system terminology and supported platforms 4
 1.2.1 Terminology for IBM i naming ... 4
 1.2.2 Terminology for hardware naming ... 4
 1.2.3 IBM i 7.1 on POWER based servers ... 4
1.3 Technology Refresh .. 5
 1.3.1 What a Resave is ... 6
 1.3.2 How it all fits together .. 7
 1.3.3 Installing an IBM i Technology Refresh .. 11
 1.3.4 Additional information about Technology Refreshes 13

Chapter 2. Security enhancements ... 15
2.1 User profile enhancements .. 16
 2.1.1 New USREXPDATE and USREXPITV attributes 16
 2.1.2 CL commands to change and display the User Profile expiration schedule 16
2.2 Object audit enhancements .. 17
 2.2.1 CL retrieve exit programs running after command completion 17
 2.2.2 Extended auditing details for running a CL command 18
 2.2.3 Database object auditing control with the QIBM_DB_OPEN exit program 19
2.3 Data encryption enhancements ... 20
 2.3.1 ASP encryption enhancements .. 20
 2.3.2 Field procedures to encode and decode data 20
2.4 Security enhancements for DB2 for i .. 20
 2.4.1 Query Manager user profile auditing ... 20
 2.4.2 Database Monitor and Plan Cache variable values masking 22
 2.4.3 Security function usage for a database 24
 2.4.4 Simplified DDM and Distributed Database (DRDA) authentication 26
 2.4.5 Authorization list impact on database object access 29
2.5 DB2 for i security services ... 30
 2.5.1 QSYS2.USER_INFO view .. 30
 2.5.2 QSYS2.FUNCTION_INFO view .. 30
 2.5.3 QSYS2.FUNCTION_USAGE view ... 31
 2.5.4 QSYS2.GROUP_PROFILE_ENTRIES view 31
 2.5.5 SQL_CHECK_AUTHORITY() UDF procedure 31
Chapter 3. Backup and recovery

3.1 New and enhanced system save and restore functions
 3.1.1 Fast restore using tape position .. 46
 3.1.2 New ALWOBJDIF (*COMPATIBLE) restore option 47
 3.1.3 Enhanced save and restore limits .. 47
 3.1.4 Save While Active support for integrated VMware ESX servers 48
 3.1.5 Support for journal and journal receiver restore independence 48
 3.1.6 Miscellaneous enhancements ... 49

3.2 New and improved BRMS for IBM i functions 50
 3.2.1 Support for Domino 8.5 Domino Attachment and Object Service (DAOS) 51
 3.2.2 Link list enhancements ... 51
 3.2.3 Support of more than 999,999 objects .. 52
 3.2.4 Start recovery using BRM (STRRCYBRM) command enhancements 53
 3.2.5 Recovery report enhancements ... 55
 3.2.6 Output file support for BRMS restores .. 56
 3.2.7 Ability to select Saved ASP on RSTLIBBRM and RSTOBJBRM commands ... 61
 3.2.8 Distributed backup support .. 62
 3.2.9 Maintenance enhancements ... 66
 3.2.10 Planning Media Movement report ... 67
 3.2.11 Improved clearing of volumes in *ERR status 68
 3.2.12 Protection of volumes that are marked for duplication 69
 3.2.13 Improved recovery times with new media position function 71
 3.2.14 BRMS support for the special value *COMPATIBLE for ALWOBJDIF 71
 3.2.15 Improved control with running non-BRMS saves 72
 3.2.16 RDX and BRMS .. 72
 3.2.17 Allowing volumes that are marked for duplication to be moved 72
 3.2.18 Support for expiration dates greater than year 2038 72
 3.2.19 Setting maximum size for BRMS flight recorders 74
 3.2.20 Using compression for BRMS save files 74
 3.2.21 Improving IFS save performance with the ASYNCBRING parameter 76
 3.2.22 Using STRMNTBRM to initialize media when it is expired 77
 3.2.23 Print Report using BRM (PRTRPTBRM) enhancements 78
 3.2.24 Support of relational database entries and fully-qualified domain names .. 79
 3.2.25 Duplicate Media using BRM (DUPMEDBRM) enhancements 80
 3.2.26 Support for simultaneous batch-mode DUPMEDBRM 81
 3.2.27 Ability to use save files in independent ASPs as targets for save operations 81
 3.2.28 Move media using BRM (MOVMEDBRM) allows for multiple locations 82
 3.2.29 Monitor Save While Active (MONSWABRM) functionality enhancement 83
 3.2.30 Improvements in online Domino save performance 83
 3.2.31 Restores of incrementally-saved objects allowed 83
 3.2.32 Miscellaneous BRMS enhancements ... 84

3.3 BRMS enhancements to GUI and web interfaces 85
 3.3.1 Added support for the IBM Systems Director web browser environment 85
3.3.2 IBM Systems Director navigation to BRMS functions .. 85
3.3.3 IBM Navigator for i navigation to BRMS functions ... 90
3.3.4 Enhancements to the BRMS initial window ... 93
3.3.5 BRMS advanced functions window ... 94
3.3.6 Scheduling support for BRMS ... 94
3.3.7 Added option to the BRMS Log to filter messages by control groups 104
3.3.8 Ability to mark and unmark volumes for duplication .. 107
3.3.9 Multiple email address support ... 114
3.3.10 High availability support for independent ASPs in a BRMS network 116
3.3.11 Enhanced maintenance features in the backup control group 119
3.3.12 BRMS Enterprise function ... 121
3.4 More resources ... 122

Chapter 4. High availability .. 125
4.1 PowerHA SystemMirror for i ... 126
 4.1.1 New PowerHA packaging ... 126
 4.1.2 PowerHA versions ... 127
 4.1.3 PowerHA SystemMirror for i enhancements .. 127
 4.1.4 PowerHA SystemMirror for i graphical interfaces 131
 4.1.5 N_Port ID virtualization support .. 135
 4.1.6 Asynchronous geographic mirroring ... 135
 4.1.7 LUN level switching .. 139
 4.1.8 IBM System SAN Volume Controller and IBM Storwize V7000 split cluster 141
 4.1.9 Space-efficient FlashCopy ... 142
 4.1.10 Reverse FlashCopy .. 143
 4.1.11 FlashCopy at a Global Mirror target ... 143
 4.1.12 Better detection of cluster node outages ... 143
 4.1.13 Improved geographic mirroring full synchronization performance 145
 4.1.14 Geographic mirroring in an IBM i hosted IBM i client partition environment . 145
 4.1.15 Support virtualization capabilities on an active cluster node 146
 4.1.16 Cluster administrative domain enhancements 146
 4.1.17 Working with cluster administrative domain monitored resources 147
 4.1.18 IPv6 support ... 148
 4.1.19 New CL commands for programming cluster automation 148
 4.1.20 Removal of existing command processing restrictions 148
4.2 Journaling and commitment control enhancements ... 149
 4.2.1 Journal management .. 149
 4.2.2 Remote journaling ... 152
 4.2.3 DISPLAY_JOURNAL (easier searches of a journal) 152
 4.2.4 Commitment control and independent ASPs .. 154
 4.2.5 System Managed Access Path Protection ... 155
 4.2.6 Journaling and disk arm usage ... 156
 4.2.7 Range of journal receivers parameter and *CURAVLCHN 156
 4.2.8 Journal management functions: IBM Navigator for i 157
4.3 Other availability improvements ... 157
 4.3.1 Reorganize physical file member .. 157
 4.3.2 LDAP enhancements .. 157
4.4 Additional information .. 157

Chapter 5. IBM DB2 for i .. 159
5.1 Introduction: Getting around with data .. 160
5.2 SQL data description and data manipulation language 160
 5.2.1 XML support ... 161
5.4 New functionality for DB2 developers .. 215
5.4.1 QSYS2.SYSCOLUMNS2 .. 215
5.4.2 QSYS2.SYSPARTITIONDISK and QSYS2.SYSPARTITIONINDEXDISK 215
5.4.3 QSYS2.OBJECT_STATISTICS user defined table function 217
5.4.4 EARLIEST_POSSIBLE_RELEASE ... 218
5.4.5 SIGNAL support for native triggers ... 218
5.4.6 Hierarchical queries through the CONNECT BY clause 219
5.4.7 Parameter marker support (LAND, LOR, XOR, and TRANSLATE) 220
5.4.8 Supporting PROGRAM NAME on CREATE TRIGGER 220
5.4.9 Debug step supported for SQL procedures, functions, and triggers 221
5.4.10 TINYINT in CLI .. 221
5.4.11 CHGPFM and CHGLFM UNIT support .. 221
5.4.12 Live movement of DB2 tables and indexes to SSD 222
5.4.13 SYSTOOLS procedures ... 222
5.4.14 HTTP functions in SYSTOOLS ... 222
5.4.15 QSYS2.TCPIP_INFO view .. 224
5.4.16 Administrative catalog, SYSIBMADM.ENV_SYS_INFO 225
5.4.17 QSYS2.PTF_INFO view ... 226
5.4.18 QSYS2.GROUP_PTF_INFO view ... 231
5.4.19 QSYS2.GET_JOB_INFO() user defined table function 233
5.4.20 Alias interrogation, SYSPROC.BASE_TABLE 234
5.4.21 Number of partition keys added to statistical views 235
5.4.22 QSYS2.DUMP_SQL_CURSORS procedure 236
5.4.23 QIBM_SQL_NO_RLA_CANCEL environment variable 237
5.4.24 CANCEL_SQL and FIND_AND_CANCEL_QSQSRVR_SQL procedures 237
5.4.25 QSYS2.FIND_QSQSRVR_JOBS() procedure 239
5.4.26 SQL server mixed mode for batch processing 241
5.4.27 QDBRPLAY() API: Disable or Enable Constraints option 241
5.4.28 SQL0901 log education ... 241
5.4.29 Retrieving a short name for long schema name (QDBRTVSN) 242
5.4.30 SQL0440 warning on SQL routine build 243
5.4.31 XMLTABLE .. 244
5.4.32 Run SQL (RUNSQL): A new command .. 246
5.4.33 Native JDBC driver support added for J2SE 7 246
5.4.34 QSQPRCED() accepts client special registers 247
5.4.35 STRMQRY command instrumented for client special registers 248
5.4.36 QSYS2.QCMDEXC() procedure no longer requires a command length .. 248
5.4.37 Adding the ORDERBY parameter to the CPYTOIMPF command 249
5.4.38 System naming convention expanded for permit (/) and (.) qualifiers 250
5.4.39 Direct control of system names for tables, views, and indexes 250
5.4.40 Modification of global variables within triggers and functions 251
5.4.41 Multiple events supported in a single SQL trigger 251
5.4.42 New QAQQINI option: SQL_GVAR_BUILD_RULE 252
5.4.43 CPYTOIMPF and CPYFRMIMPF commands include column headings ... 252
5.4.44 Improved performance of privileges catalogs and ODBC/JDBC APIs 253
5.4.45 Show statements: Index creates and statistics advised 254
5.4.46 The RUNSQLSTM command and the OPTION parameter 254
5.4.47 Improved NULLID package management .. 255
5.4.48 Java stored procedures and functions: System naming option 255
5.4.49 Named arguments and defaults for parameters: Procedures 256
5.4.50 Improved catalog management for procedures and functions 258
5.4.51 SQE enhancement for Encoded Vector Indexes defined with INCLUDE ... 259
5.4.52 Navigator: System Name column added to show related and all objects . 259
5.4.53 Navigator – Improved Index Build information ... 260
5.4.54 Improved performance for joins over partitioned tables 260
5.4.55 Navigator: Table list totals ... 261
5.5 DB2 database management and recovery enhancements 261
5.5.1 Preserving the SQL plan cache size across IPLs 261
5.5.2 Plan cache properties ... 262
5.5.3 Prechecking the physical file size during restore 264
5.5.4 Preventing index rebuild on cancel during catch up 264
5.5.5 QSYS2.SYSDISKSTAT view ... 264
5.5.6 STRDBMON: FETCH statement shows failures and warnings 266
5.5.7 STRDBMON: QQI2 result rows for more statements 266
5.5.8 Adding result set information to QUSRJOBI() and Systems i Navigator 266
5.5.9 STRDBMON pre-filtering of QUERY/400 command usage 267
5.5.10 UNIT SSD supported on DECLARE GLOBAL TEMPORARY TABLE 268
5.5.11 Adding Maintained Temporary Indexes ... 268
5.5.12 Adding the QSYS2.REMOVE_PERFORMANCE_MONITOR procedure 269
5.5.13 STRDBMON: QQI1 fast delete reason code 269
5.5.14 Automatically increasing the SQE Plan Cache size 270
5.5.15 Tracking important system limits ... 270
5.5.16 DB2 for i Services ... 272
5.5.17 DISPLAY_JOURNAL (easier searches of Audit Journal) 275
5.5.18 IBM i Navigator improved ability to mine journals 279
5.5.19 Navigator for i: A new look and no client to manage 282
5.6 DB2 for Web Query for i (5733-QU2, 5733-QU3, and 5733-QU4) 282
5.6.1 DB2 Web Query for i (5733-QU2) ... 282
5.6.2 DB2 Web Query Report Broker (5733-QU3) ... 284
5.6.3 DB2 Web Query Software Developer Kit (5733-QU4) 284
5.6.4 DB2 Web Query for i Standard Edition ... 284
5.7 OmniFind Text Search Server for DB2 for i (5733-OMF) 285
5.7.1 OmniFind for IBM i: Searching Multiple Member source physical files 285
5.7.2 Navigator for i - Omnifind Collection Management 286
5.8 WebSphere MQ integration 286
5.9 DB2 Connect system naming attribute .. 290

Chapter 6. Performance tools ... 293
6.1 Introduction to performance tooling ... 294
6.1.1 Gathering data ... 294
6.1.2 Analyzing data .. 295
6.2 Overview of data collection in IBM i 7.1 .. 295
6.2.1 Collection profiles for Collection Services ... 296
6.2.2 Collection Services enhancements ... 298
6.2.3 Collection Services data files .. 302
6.3 IBM Navigator for i Performance Data Investigator 317
6.4 IBM iDoctor for IBM i ... 318

Chapter 7. Virtualization .. 319
7.1 PowerVM enhancements ... 320
7.1.1 Active memory sharing ... 320
7.1.2 Enhanced support for IBM system storage ... 324
7.1.3 PowerVM Virtualization and I/O enhanced with NPIV 326
7.1.4 Expanded HBA and switch support for NPIV on Power Blades 329
7.1.5 PowerVM N_Port ID Virtualization attachment of DS5000 and Storwize 329
7.1.6 Enhanced mirroring algorithms ... 329
Chapter 9. Networking enhancements

9.1 TCP/IP enhancements summary
 9.1.1 IPv6 support enhancements
 9.1.2 ISC-based DHCP server supports IPv6 and failover
 9.1.3 DHCPv6 client
 9.1.4 SNMP
 9.1.5 SMTP
 9.1.6 Async adapter expanded IBM i support
 9.1.7 IPv6 support added for PPP connections
 9.2 HTTP server support for PASE FastCGI PHP processing
 9.2.1 IBM i 6.1 required components
 9.3 Telnet client support for SSL encryption
 9.4 System SSL support for transport layer security version 1.2
 9.5 Sockets programming: New user exits
 9.5.1 Exit points that are defined in the user registry
 9.5.2 Example: User exit program for QIBM_QSO_ACCEPT
 9.6 IKEv2 support
 9.6.1 Enhanced Cryptographic Algorithms
 9.7 IPv6 TCP/IP applications and V6R1 enablement PTFs
 9.8 IBM AnyNet support on IBM i 7.1
 9.9 Ethernet link aggregation
 9.9.1 Overview of Ethernet link aggregation
 9.9.2 Prerequisites for Ethernet link aggregation
 9.9.3 Configuring Ethernet link aggregation
 9.9.4 Example: Configuring four aggregated network links
 9.10 Ethernet Layer-2 bridging
 9.10.1 Introduction to Ethernet Layer-2 bridging
 9.10.2 How Ethernet Layer-2 bridging works on IBM i
 9.10.3 IBM i prerequisites for Ethernet Layer-2 bridging
 9.10.4 Configuring a shared network connection through Ethernet Layer-2 bridging
 9.11 IBM Portable Utilities for i (5733-SC1) supported versions

Chapter 10. Printing enhancements
Chapter 11. Integration with IBM BladeCenter and IBM System x

11.1 iSCSI software targets

11.1.1 IBM i Integrated server object model with a hardware target

11.1.2 IBM i Integrated server object model with a software target

11.1.3 Direct connect software targets.

11.2 Defining iSCSI software target support

11.2.1 CRTDEVNWSH CL command interface

11.2.2 IBM Navigator for i changes for iSCSI software target support.

11.3 Service Processor Manager function

11.4 VMware support changes

11.4.1 New NWSD types

11.4.2 VMware ESX server management

11.4.3 SWA storage spaces for VMware ESX servers

11.5 Microsoft Windows support changes

11.6 New planning worksheets

11.7 IBM Navigator for i

11.7.1 Create Server task

11.7.2 Clone Integrated Windows Server task.

11.7.3 Delete Server task

11.7.4 Launch Web Console

11.7.5 Simplified Windows File Level Backup (FLB) from IBM i

11.8 New IBM i CL commands

11.8.1 Install Integrated Server (INSINTSVR) command.

11.8.2 Delete Integrated Server (DLINTINTSVR) command.

11.9 IBM i changed CL commands

11.9.1 Install Windows Server (INSWNTSVR) CL command

11.9.2 Create NWS Configuration (CRTNWSCFG) and Change NWS Configuration (CHGNWSCFG) CL commands

11.9.3 Install Linux Server (INSLNXSVR) CL command

11.9.4 No new integrated Linux servers.
Chapter 12. IBM Advanced Job Scheduler for i enhancements ... 497
12.1 Advanced Job Scheduler capabilities ... 498
 12.1.1 Scheduling a job ... 498
 12.1.2 Job groups ... 498
 12.1.3 Notification and report distribution .. 498
 12.1.4 Remote command jobs ... 498
 12.1.5 Multiple scheduling environments ... 498
12.2 IBM Navigator for i AJS support .. 499
 12.2.1 Getting to the AJS menu ... 499
 12.2.2 AJS menu ... 505
 12.2.3 AJS properties menu ... 506
 12.2.4 Start Scheduler action .. 511
 12.2.5 Stop Scheduler action .. 512
 12.2.6 Scheduled Jobs menu ... 513
 12.2.7 Using the scheduled jobs actions ... 514
 12.2.8 Using the Scheduled Jobs table ... 516
 12.2.9 Adding a scheduled job ... 517
 12.2.10 Scheduled job activity ... 528
 12.2.11 Activity log ... 530
12.3 Other AJS enhancements ... 531
 12.3.1 Notification enhancements ... 531
 12.3.2 Multiple Scheduling Environments function .. 532
 12.3.3 Scheduling and running jobs ... 534
12.4 References .. 536

Chapter 13. Web serving .. 537
13.1 Triggered cache manager removed ... 538
13.2 Web server search engine and web crawler support removed 538
13.3 Plug-ins and LoadModule directives .. 538
13.4 HTTP Server for i with HA IPv6 support .. 544
13.5 IBM HTTP Server for i support for TLSv1.1 and TLSv1.2 544
13.6 Large file support for IBM HTTP Server for i .. 545

Chapter 14. Web enablers .. 547
14.1 IBM Integrated Web Services for i ... 548
 14.1.1 Integrated Web Services Client for ILE .. 548
 14.1.2 Accessing Web Services using DB2 for i UDFs and UDTFs 548
14.2 Changes in IBM WebSphere Application Server .. 548
 14.2.1 Packaging for WebSphere Application Server ... 549
 14.2.2 IBM WebSphere Liberty Profile ... 549
 14.2.3 IBM WebSphere Application Server family ... 550
 14.2.4 Installation ... 551
 14.2.5 Installation support on IBM Web Administration for i 551
 14.2.6 Alternative and easier installation of WebSphere Application Server 552
 14.2.7 Upgrading to IBM i 7.1 .. 559
 14.2.8 IBM Install Manager for WebSphere Application Server V8 560
Chapter 15. Application development .. 583
15.1 High-level programming languages ... 584
15.2 Control Language (CL) ... 584
 15.2.1 New workload capping commands 584
 15.2.2 Retrieving CL source support for ILE CL 584
 15.2.3 Longer Integer CL variables for ILE CL 585
 15.2.4 Showing DO and SELECT nesting levels in a compiler listing 585
 15.2.5 Encrypting the debug listing view for ILE CL 585
 15.2.6 Nested INCLUDE support .. 586
15.3 PHP and Zend products ... 586
 15.3.1 Zend Server Community Edition for IBM i 587
 15.3.2 Zend Server for IBM i V6.1.0 ... 588
 15.3.3 Zend Studio for IBM i V10 .. 588
 15.3.4 Zend DBi and actual PHP database support 589
15.4 XMLSERVICE for IBM i .. 590
 15.4.1 XMLSERVICE highlights .. 590
 15.4.2 XMLSERVICE start .. 590
15.5 IBM Lotus products for IBM i .. 594
15.6 Native archive and unarchive API support 595
 15.6.1 QZIPZIP API ... 595
 15.6.2 QZIPUNZIP API ... 596
 15.6.3 QZIPUTIL Service program ... 597
15.7 Java for IBM i 7.1 ... 598
 15.7.1 Enabling IBM Technology for Java virtual machine 599
 15.7.2 New Java 7.1 support .. 600
 15.7.3 PTF Groups and latest service releases and fixpacks 600
 15.7.4 Java on IBM i security updates .. 600
15.8 IBM Toolbox for Java JDBC ... 600
 15.8.1 JDBC 4.1 ... 601
 15.8.2 XML Data type support .. 601
 15.8.3 Database metadata updates ... 601
 15.8.4 Currently committed support .. 601
 15.8.5 Array type support ... 601
 15.8.6 Long schema name support ... 602
15.9 JTLite/JTOpenLite Java Classes Library 602
15.10 Application Runtime Expert for i ... 603
 15.10.1 Deployment template ... 603
 15.10.2 Customizing plug-ins for templates 604
 15.10.3 Application Runtime Expert console 609
 15.10.4 Application Runtime Expert requirements 615
 15.10.5 More information .. 615
15.11 Operably .. 615

Chapter 16. IBM Rational products ... 617
16.1 IBM Rational Developer for i .. 618
 16.1.1 IBM Rational Developer for i 9.0 Editions 618
 16.1.2 RPG and COBOL development tools 619
 16.1.3 Modernization tools .. 623
17.7 New journal management enhancements ... 700
17.6 Database enhancements .. 676
17.5 Set target system enhancements .. 675
17.4 5250 emulation-related enhancements ... 674
17.3 Dynamic navigation ... 671
17.2 Signing on to IBM Navigator for i ... 669
17.1.3 Signing on to IBM Navigator for i ... 669
17.1.2 IBM Navigator for i requirements .. 669
17.1.1 IBM i functions available on the IBM Navigator for i 668
17.1 New name: IBM Navigator for i ... 668
17.1.4 Java tools ... 623
17.1.5 EGL tools and IBM Rational Business Developer V9.0 623
16.1.6 Rational Team Concert client integration for IBM i 625
16.1.7 Version 9.0 fix packs .. 625
16.1.8 Migration to Rational Developer for i v9.0 .. 627
16.1.9 Upgrades to Rational Developer for i v9.0 .. 627
16.2 IBM Rational Team Concert .. 628
16.2.1 Integration with Rational Developer for i .. 629
16.2.2 What is new in the latest releases of Rational Team Concert. 632
16.2.3 Rational Team Concert and other Rational products interoperability ... 634
16.2.4 General links for more information about Rational Team Concert 635
16.3 IBM Rational Development Studio for i .. 636
16.3.1 Source code protection option .. 636
16.3.2 ILE RPG IV compiler and programming language 637
16.3.3 Sorting and searching data structures .. 642
16.3.4 ALIAS support ... 643
16.3.5 Performance improvement when returning large values 645
16.3.6 ILE COBOL compiler ... 646
16.3.7 ILE C and ILE C++ .. 649
16.4 IBM Rational Open Access: RPG Edition .. 653
16.4.1 How to use Rational Open Access ... 654
16.4.2 IBM Rational Open Access: RPG Edition withdrawn 657
16.4.3 Open Access requirements .. 658
16.5 Other Rational and RPG related tools - ARCAD 658
16.5.1 ARCAD-Transformer RPG tool ... 658
16.5.2 ARCAD Pack for Rational .. 659
16.6 IBM Rational Application Management Toolset for i 660
16.6.1 Application Management Toolset for i Licensing 662
16.6.2 Application Management Toolset for i Requirements 662
16.6.3 Accessing Application Management Toolset for i 662
16.7 IBM Rational Host Access Transformation Services (HATS) 663
16.7.1 HATS general description .. 663
16.7.2 HATS basic functionality ... 664

Chapter 17. IBM Navigator for i 7.1 ... 667
17.1 New name: IBM Navigator for i ... 668
17.1.1 IBM i functions available on the IBM Navigator for i 668
17.1.2 IBM Navigator for i requirements .. 669
17.1.3 Signing on to IBM Navigator for i ... 669
17.2 Dynamic navigation ... 671
17.3 Independent tabs ... 672
17.3.1 Modern tables ... 673
17.4 5250 emulation-related enhancements ... 674
17.5 Set target system enhancements ... 675
17.6 Database enhancements .. 676
17.6.1 On Demand Performance Center enhancements 677
17.6.2 Health center enhancements ... 683
17.6.3 Database management enhancements .. 684
17.6.4 Database Maintenance category enhancements 696
17.6.5 Long SQL schema names enhancements .. 699
17.6.6 OmniFind text search functions enhancements 699
17.7 New journal management enhancements ... 700
17.7.1 Show Journaled Objects function .. 700
17.12 Disk management enhancements
 17.12.1 Graphical view enhancements
 17.12.2 Start and stop encryption on disk pools enhancements
 17.12.3 Asynchronous delivery for Geographic Mirroring enhancements
17.13 Rebuild data on failed disk unit in parity set
17.14 Creating a logical partition with IBM Navigator for i
17.15 Tape support enhancements
17.16 Performance enhancements
 17.16.1 General health indicators
 17.16.2 Viewing cross-partition processing
 17.16.3 New Database package
 17.16.4 QAPMCONF perspective
 17.16.5 QAPMJOBMI perspective
 17.16.6 Create Performance Data Report function
 17.16.7 Image and file export
 17.16.8 Sizing the next upgrade
 17.16.9 Timeline perspective
 17.16.10 Memory perspective
 17.16.11 Ethernet Link Aggregation Modified perspectives
 17.16.12 Workload Group perspectives
 17.16.13 Java perspectives
 17.16.14 Disk Response Time charts
 17.16.15 Interactive perspective development
 17.16.16 Metric finder
 17.16.17 Performance Explorer content package
 17.16.18 New metrics
 17.16.19 Miscellaneous enhancements
17.17 JS1- Advanced Job Scheduler for i enhancements
17.18 Backup Recovery Media Services: Plug-in enhancements

Chapter 18. IBM i Access

18.1 IBM i Access Client Solutions (ACS)
 18.1.1 Obtaining IBM i Access Client Solution (5733-XJ1)
 18.1.2 Prerequisites
 18.1.3 ACS system configuration
Chapter 20. Upgrading IBM i .. 843
20.1 Planning to upgrade to IBM i 7.1 .. 844
 20.1.1 IBM i 7.1 support for POWER5 and later hardware 844
 20.1.2 Server firmware requirements .. 844
 20.1.3 Supported upgrade paths ... 845
 20.1.4 Preparation documents to upgrade IBM i 845
 20.1.5 Pre-upgrade verification tool 846
 20.1.6 License program releases and sizes 846
 20.1.7 IBM i 7.1 Resaves ... 846
20.2 Upgrading from i5/OS 5.4 to IBM i 7.1 considerations 847
 20.2.1 Object conversions ... 847
 20.2.2 Spooled file conversions .. 848
 20.2.3 Integrated file system conversions 848
 20.2.4 Backup Recovery and Media Services 849
20.3 Media delivery changes ... 849
 20.3.1 IBM i 7.1 multi-language distribution media 849
 20.3.2 IBM i Knowledge Center ... 851
 20.3.3 Expanded Electronic Service Delivery (ESD) support 851
20.4 IBM i network upgrade ... 851
 20.4.1 Client system requirements ... 852
20.5 More considerations for upgrading to IBM i 7.1 853
 20.5.1 IBM i Console changes .. 854
 20.5.2 Full automatic installation and upgrades from optical media .. 855
 20.5.3 IBM i 7.1 5770-SS1 Option 1 installation actions 856
 20.5.4 Adjusting the cluster version of a cluster 856
 20.5.5 Java considerations ... 856
 20.5.6 Miscellaneous changes and withdrawals 857
20.6 Performance improvement to LIC PTF apply 859
20.7 Reference document summary ... 860

Appendix A. IBM i Doctor for IBM i ... 861
Installation ... 862
My Connections View ... 862
Main window ... 864
Collection options ... 867
Data Viewer ... 869
Collection Services Investigator ... 871
Job Watcher .. 871
PEX Analyzer ... 891
Plan Cache Analyzer .. 899
VIOS Investigator .. 903
iDoctor FTP GUI .. 904
MustGather Tools ... 906
HMC Walker ... 908
More information ... 909

Related publications .. 911
IBM Redbooks ... 911
Other publications .. 912
Online resources ... 912
How to get Redbooks ... 915
Help from IBM .. 916

Contents xvii
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

Active Memory™ IMS™ POWER®
AIX 5L™ InfoSphere® Print Services Facility™
AIX® Integrated Language Environment® ProtecTIER®
AnyNet® iSeries® PureFlex®
AS/400e™ Jazz™ Quickr®
AS/400® Language Environment® Rational Team Concert™
DataMirror® Lotus Enterprise Integrator® Rational®
DB2 Connect™ Lotus Notes® Redbooks®
DB2® Notes® Redbooks (logo) ®
developerWorks® OmniFind® RPG/400®
Domino® OS/400® RS/6000®
DRDA® Passport Advantage® Sametime®
DS5000™ POWER Hypervisor™ System i®
DS6000™ Power Systems™ System p®
DS8000® Power Systems Software™ System Storage®
Electronic Service Agent™ Power Systems™ System z®
EnergyScale™ POWER6+™ SystemMirror®
eServer™ POWER® Tivoli®
Express Servers™ POWER7 Systems™ WebSphere®
FlashCopy® POWER7+™ Worklight®
Guardium® POWER7® z/OS®
i5/OS™ PowerHA®
IBM Flex System® PowerSC™
IBM® PowerVM®

The following terms are trademarks of other companies:

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Netezza, and N logo are trademarks or registered trademarks of IBM International Group B.V., an IBM Company.

Worklight is trademark or registered trademark of Worklight, an IBM Company.

Itanium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

LTO, the LTO Logo and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Other company, product, or service names may be trademarks or service marks of others.
Find and read thousands of IBM Redbooks publications

- Search, bookmark, save and organize favorites
- Get up-to-the-minute Redbooks news and announcements
- Link to the latest Redbooks blogs and videos

Get the latest version of the Redbooks Mobile App

Promote your business in an IBM Redbooks publication

Place a Sponsorship Promotion in an IBM Redbooks publication, featuring your business or solution with a link to your web site.

Qualified IBM Business Partners may place a full page promotion in the most popular Redbooks publications. Imagine the power of being seen by users who download millions of Redbooks publications each year!
Preface

This IBM® Redbooks® publication provides a technical overview of the features, functions, and enhancements available in IBM i 7.1, including all the Technology Refresh (TR) levels from TR1 to TR7. It provides a summary and brief explanation of the many capabilities and functions in the operating system. It also describes many of the licensed programs and application development tools that are associated with IBM i.

The information provided in this book is useful for clients, IBM Business Partners, and IBM service professionals who are involved with planning, supporting, upgrading, and implementing IBM i 7.1 solutions.

Authors

This book was produced by a team of specialists from around the world working at the International Technical Support Organization, Rochester Center.

Justin C. Haase is a technical manager for Sirius Computer Solutions headquartered in San Antonio, TX. He works in the Managed Services practice of the company, where Sirius provides system management and technical support for customers running various platforms, including IBM i running on Power Systems™. He has 15 years of experience in service bureau and hosting environments running the IBM i family of operating systems. His first managed system was a 9406-740 12-way IBM AS/400e™ at V4R5 of the OS, the largest AS/400® system IBM produced at the time. Mr. Haase has also assisted IBM in development of Power Systems certification tests as a subject matter expert.

Dwight Harrison is an IBM i hardware remote support specialist at the IBM i Global Support Center in Rochester, Minnesota. After serving in the United States Marine Corps, he started his IBM career in January 1970 in Rochester, Minnesota. One year later he transferred to Omaha, Nebraska, as a customer engineer. In January 1984, he transferred back to the Rochester site as a lab technician. In August 1987, he transferred back to North Platte, Nebraska, as a remote customer engineer where he installed and serviced the AS/400 until January 1993 when he accepted a position in the IBM i Global Support Center in Rochester, Minnesota. From 1993 to present, he assists with world-wide IBM i hardware support. He has helped author several System Handbooks, System Builders, and other Redbooks publications.

Adam Lukaszewicz is an Accredited IT Advisory working in IBM in Global Technology Support in Technical Software Support. He has been with IBM for 14 years. His areas of expertise include IBM i system problem determination and solution implementation. His second profession is delivering technical support for IBM Lotus® Notes® and Domino® products, with a specialization in Domino crash and performance analysis. He works for IBM European Competence Center for Lotus Notes and Domino. He holds a master degree in Faculty of Electrical Engineering, Automatic Control and Informatics from Opole University of Technology.
The fourth edition of this IBM Redbooks project was led by:

Debbie Landon
International Technical Support Organization, Rochester Center

Thanks to the following people for their contributions to this project:

Ann Lund, Linda Robinson, Jenifer Servais
International Technical Support Organization, Rochester Center

David Painter is a part of the IBM Rochester Lab Services team and is based in the United Kingdom. He joined IBM in 2006, working for IBM STG Lab Services as a Senior IT Specialist in IBM Power Systems, high availability, and external storage. Before joining IBM, he set up and built a highly successful Business Partner company in the UK. David has a background in systems, availability, integration, and implementation. Today, David implements high availability solutions across the world in clients that range from SMB accounts to large Enterprise accounts. David also regularly teaches courses in IBM i high availability and external storage for IBM i administrators. He also conducts many availability workshops and holds numerous certifications. David can be reached at davpaint@uk.ibm.com.

Tracy Schramm is a Staff Software Engineer in the IBM i Global Support Center in IBM Rochester, specializing in the database area. Before her assignment in database, she also worked on print and fax. In addition, she has had temporary assignments in development and an international assignment at IBM Mainz in Germany. Tracy holds a Bachelor of Science in Computer Science and a Bachelor of Arts in Spanish from Southwest Minnesota State University. In addition, she holds a Masters of Information Systems and Management from the University of Phoenix. Tracy can be reached by email at tschramm@us.ibm.com.

Jiri Sochr is an IBM Level 2 Expert Certified IT Specialist at IBM Delivery Centre Central Europe in Brno, Czech Republic. He provides third level support for IBM i customers in Europe. He has 24 years experience in AS/400, IBM iSeries®, and Power systems hardware, IBM i software products, application development, workload management, security, performance, and external and internal storage solutions. He has a broad knowledge of other IBM platforms and products. He specializes in IBM i complex problem determination and multiplatform problem solutions. He also works as an IBM i solution designer and IT Architect for projects where IBM i is part of the whole solution. He holds a Doctor degree in Natural Sciences from the Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic. Jiri joined IBM in 2009. Before joining IBM, he worked for an IBM Business Partner company as an IBM i systems engineer and technical leader. Jiri can be reached at Jiri.Sochr@cz.ibm.com.
Now you can become a published author, too!

Here's an opportunity to spotlight your skills, grow your career, and become a published author - all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

Find out more about the residency program, browse the residency index, and apply online at: ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks publications in one of the following ways:

- Use the online Contact us review IBM Redbooks form found at: ibm.com/redbooks
- Send your comments in an email to: redbooks@us.ibm.com
- Mail your comments to:
 IBM Corporation, International Technical Support Organization
 Dept. HYTD Mail Station P099
 2455 South Road
 Rochester, MN 55901

Stay connected to IBM Redbooks

- Find us on Facebook: http://www.facebook.com/IBMRedbooks
- Follow us on Twitter: https://twitter.com/ibmredbooks
- Look for us on LinkedIn: http://www.linkedin.com/groups?home=&gid=2130806
- Stay current on recent Redbooks publications with RSS Feeds: http://www.redbooks.ibm.com/rss.html
Summary of changes

This section describes the technical changes that were made in this edition of the book and in previous editions. This edition might also include minor corrections and editorial changes that are not identified.

Summary of Changes
for SG24-7858-03
for IBM i 7.1 Technical Overview with Technology Refresh Updates
as created or updated on October 29, 2015.

December 2014, Fourth Edition

The first edition of this book included all the new enhancements that were announced at the General Availability of IBM i 7.1 in early 2010. Following the General Availability of IBM i 7.1, IBM i point / modification releases were replaced by a new release delivery mechanism called a Technology Refresh. A Technology Refresh is a collection of operating system software that is developed together, packaged together, tested together, and delivered as a PTF Group for a base release.

The second edition of this book included all the enhancements that were available in the first three Technology Refreshes (TR1, TR2, and TR3) that were made available since the product went to General Availability.

The third edition of this book included all the enhancements that were available in Technology Refreshes TR4 and TR5 that were announced in 2012.

This fourth edition of the book includes all the enhancements that are available in the next two Technology Refreshes (TR6 and TR7) that were announced in 2013. There are enhancements basically in every topic that is related to IBM i. For this reason, every chapter was modified to include these enhancements.
Introduction to IBM i 7.1 and Technology Refreshes

This chapter introduces IBM i 7.1 and describes the function of an important new concept for IBM i, the Technology Refresh (TR). Subsequent chapters in this book provide in-depth information about specific functional areas of IBM i and associated licensed programs. As a technical overview document, detailed instructions or examples are beyond the scope of this publication. The purpose of this document is to consolidate into a single reference a summary of information that is related to IBM i 7.1.

This chapter describes the following topics:

- Communicating IBM i enhancements
- Clarification of operating system terminology and supported platforms
- Technology Refresh

A valuable starting point for readers of this publication, and anyone involved with the installation or an upgrade from a previous release of the IBM i operating system is the IBM i Memo to Users. It is available at the following website:

Make sure that when acquiring the Memo to Users that you always download a current copy. Updates are occasionally made to the document, with the cover page specifying the version with a month and year of publication.

More detailed information about IBM i 7.1 enhancements can be found at these websites:

- IBM i 7.1 Knowledge Center:
 http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp
- Upgrade planning:
- Planning - Customer Notices and information:
1.1 Communicating IBM i enhancements

The way IBM communicates IBM i enhancements has evolved. Formerly, that information was distributed through hardcopy documents and books, many of which were delivered with a new system or an upgrade package. However, for many years the development laboratory has used various methods of electronic distribution to improve the timeliness of information and provide better ease-of-access to customers.

The primary way that information has been communicated to the user community is through the *IBM i Knowledge Center*. The Knowledge Center contains topics that help you with basic and advanced tasks. It remains the reference for the platform. The Knowledge Center is updated periodically, but is not able to react quickly to change. You can find the Knowledge Center for IBM i 7.1 at:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp

The other communication method the IBM i lab uses is the Request for Announcement (RFA). The RFA is the formal document that contains information about a function that is being delivered to the market. For more information and to search for various RFAs, go to the IBM Offering Information - Announcement letters website at:

http://www-01.ibm.com/common/ssi/

Today, the IBM i zone in IBM developerWorks® and social media are part of the platform strategy for getting information to Business Partners and clients. The information in developerWorks is for everyone, not just developers. The IBM developerWorks website can be found at:

http://www.ibm.com/developerworks/ibmi/

With developerWorks, if there is new information to share with IBM customers, it can be shared immediately. The following are different ways that information is delivered through developerWorks:

- **Article-based Information**
 Much of the information about developerWorks is in the form of short articles that define a task or technology. The content provides not only information about a topic, but also tries to answer the question, “Why is this topic important to me?” These articles are written by many developers.

- **Technology Updates Wiki**
 The IBM i Technology Updates page in developerWorks is the home for detailed information about the functions that are delivered with each new Technology Refresh, and the functions that are delivered through other means between releases. The technology updates section is organized for easy navigation, searches, and subscription. At the bottom of these pages is a button that allows you to subscribe to the page so that you are notified when updates are made to it. Because this page is updated every time a new program temporary fix (PTF) Group is updated, you can track and monitor new enhancements and fixes as they are delivered.
Community and Forums

– The Community section is a list of links to help you connect to various things. There are blogs from experts in the development lab, and blogs from others in the industry. They are short articles on a wide array of topics, all aimed at communicating with IBM i users throughout the world. Blogs include:

 • “You and i”: Announcements, strategy, and customer references
 • “i Can”: Tips, techniques, and examples
 • “Modern-i-ization”: Modern application development
 • “DB2fori”: IBM i integrated DB2® and related topics

– The Forums target different topical categories and give you an opportunity to ask IBM i developers questions. These forums are monitored by experts in the development lab.

developerWorks has many links to other topic and technology areas that IBM i users need, and is organized to help you get the information that you need when you need it. It also is a great place for helping you stay informed about what is happening with IBM i.

Figure 1-1 illustrates the various methods that are used to communicate IBM i enhancements to IBM i users.

IBM uses Twitter extensively. Steve Will, Chief Architect for IBM i, uses Twitter to notify followers whenever his blog has something new, what is going on in IBM i development, and to point to a webcast, article, or blog that might be useful. Follow @Steve_Will_IBMi on Twitter.
IBM continues to enhance communication with its users to ensure timely updates with the
details that you need.

1.2 Clarification of operating system terminology and
supported platforms

Various changes to names for both software and hardware have occurred during the life of
this platform. This section clarifies the current product name. It also defines which IBM Power
platforms on which IBM i 7.1 runs.

1.2.1 Terminology for IBM i naming

When referring to operating systems releases, it is important to understand the naming
transition from IBM OS/400® to i5/OS™ to IBM i.

When IBM introduced POWER5 servers, OS/400 was renamed i5/OS. When the IBM
POWER6® platform became available in January 2008, IBM announced a major new release
called i5/OS V6R1. Later that same year, the name was changed to IBM i to disassociate any
presumed dependency of i5/OS on the POWER5 hardware platform. The notations 5.4 and
6.1 were introduced to indicate operating systems release levels V5R4 and V6R1.

User documentation, web page links, and programmed interfaces use IBM i terminology and
others still use the i5/OS nomenclature. This publication uses IBM i terminology, but
occasionally also use i5/OS, typically where it is part of a product name or appears in a
window.

1.2.2 Terminology for hardware naming

The name given the system at its release in 1988 was Application System/400 or AS/400. As
the IBM marketing focus on eBusiness was progressing in the late 1990s, a single letter “e”
was added to the name of new servers to produce AS/400e. The name was changed in the
early 2000s to IBM eServer™ iSeries, along with the other eServer rebranding efforts across
IBM: Mainframe to zSeries, RS/6000® to pSeries, and NetFinity to xSeries.

IBM released POWER5 processor-based servers in 2004. A partial convergence of the
eServer iSeries and eServer pSeries platforms at the time, the systems were functionally
equivalent but still had different machine types and retained either an “i5” or “p5” name, in
addition to their model numbers.

A full convergence of the platforms in 2008 removed the “i” and “p” from the names,
consolidating machine types and redefining the name to be IBM Power Systems. The Power
Systems family of servers can run IBM i, AIX®, and Linux with version requirements for each
OS dependent on the generation of processor that is installed in the system.

1.2.3 IBM i 7.1 on POWER based servers

IBM i 7.1 is supported on the following platforms:

- Power Systems servers with IBM POWER7+™ processors
- Power Systems servers and blades with IBM POWER7® processors
- Power Systems servers and blades with POWER6/6+ processors
- Flex System p260 and p460 compute nodes with IBM POWER7/7+ processors
1.3 Technology Refresh

Following the general availability (GA) of IBM i 7.1, IBM i point or modification releases were replaced by a new release delivery mechanism called a Technology Refresh (TR).

The term Technology Refresh refers to the set of PTFs required to support new hardware and firmware functionality and is one part of the Technology Update. Technology Update refers to multiple PTFs or PTF Groups that provide additional functions in IBM i and related products. Moving up to a Technology Refresh is simpler and cheaper than qualifying a point release, so you can take advantage of new functions and support sooner than in the past.

Backing out of a point or modification release requires a scratch installation of the system. With a Technology Refresh, it is possible to return to an earlier level of IBM i by simply slip installing the Licensed Internal Code only.

For more information, see the IBM i Technology Updates website:

A Technology Refresh can provide the following functions:

- Support for new hardware and firmware (for example, new I/O cards and devices or newly announced models)
- Support for new virtualization functions
- IBM i functional enhancements

You can install the new function for an IBM i 7.1 general availability as a Technology Refresh PTF Group represented by SF99707. The machine code level does not change (V7R1M0). The new hardware-related and firmware-related machine code content is contained within PTFs in this Technology Refresh PTF Group. The content is referred to as IBM i 7.1 Technology Refresh 1, IBM i 7.1 Technology Refresh 2, and so on. The current Technology Refresh level is 7 (TR7) identified by PTF MF99007.

It is important to keep systems up to date with the latest Technology Refresh PTF available. Subsequent PTFs might depend on it, and those PTFs cannot be loaded until the prerequisite Technology Refresh PTF is permanently applied, which requires an IPL. Therefore, it is a preferred practice to keep systems current with the latest Technology Refresh PTFs, whether through the Technology Refresh PTF Group, a Resave, or the Technology Refresh PTF itself. Subsequent Technology Refreshes for a release are supersets of previous ones, so you need apply only the latest Technology Refresh to keep the system current.

Figure 1-2 on page 6 illustrates PTFs dependencies between the individual Technical Refresh (TR) PTFs. The current TR level is TR7 (PTF MF99007 is level 7) with other Technology Refresh Requisite (TR Reqs) and Managed Add Function PTFs with other PTFs, which are include into a group collection called Technology Refresh PTF Group, SF99707.

The following items are described later in this section:

- Technology Refresh PTF (TR PTF MF99007)
- Technology Refresh PTF Group (TR PTF Group SF99707)
- Technology Refresh Requisite (TR Reqs)
- License Internal Code (LIC) Resave
1.3.1 What a Resave is

A Resave, as distinguished from a Technology Refresh, is an updated release of the Machine Code (57xx-999). When IBM introduces new hardware, typically a Resave is needed to support it. New hardware might include new server models, new I/O adapters, new disk drives, and so on. The Resave code is found on the I_BASE_01 DVD that is shipped with a new release of software. The label on this DVD shows the Resave level, such as RS-710-J. This section explains how to order and install Resaves.

For more information about IBM i 7.1 Resaves, see the following IBM i website:

Situations where a customer should use the Resave media include:
- A new partition containing newly purchased hardware is to be installed
- Preparing to upgrade to new processor models or features
- Using an alternative IPL device for recovery for new processor models or features

To determine the minimum Resave levels that are needed for hardware, see the IBM Prerequisite website:
https://www-912.ibm.com/e_dir/eServerPrereq.nsf
Resave media consists of the License Internal Code and B29xx_01 and B29xx_021 for IBM i (57yy-SS1).

Instructions for installing Resaves can be found in the Replacing Licensed Internal Code and IBM i of the same version and release topic in the IBM i 7.1 Knowledge Center:
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzahc%2Fupgradesameversion.htm

1.3.2 How it all fits together

Table 1-1 shows the mapping between Technology Refresh PTF group level, Resave level, Marker PTF, and Technology PTF number. The current version of this table is available on the IBM i Technology Refresh web page:

<table>
<thead>
<tr>
<th>Technology Refresh release date</th>
<th>Description</th>
<th>Technology Refresh PTF Group Level</th>
<th>Corresponding 5770-999 Resave Level and Marker PTF</th>
<th>5770-999 Technology Refresh PTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/15/2013 BM i 7.1 Technology Refresh 7 (TR 7)</td>
<td>SF99707 Level 7</td>
<td>RS-710-J RE13260</td>
<td>MF99007</td>
<td></td>
</tr>
<tr>
<td>02/13/2013 BM i 7.1 Technology Refresh 6 (TR 6)</td>
<td>SF99707 Level 6</td>
<td>RS-710-G RE13015</td>
<td>MF99006</td>
<td></td>
</tr>
<tr>
<td>10/12/2012 IBM i 7.1 Technology Refresh 5 (TR 5)</td>
<td>SF99707 Level 5</td>
<td>RS-710-F RE12249</td>
<td>MF99005</td>
<td></td>
</tr>
<tr>
<td>05/18/2012 IBM i 7.1 Technology Refresh 4 (TR 4)</td>
<td>SF99707 Level 4</td>
<td>RS-710-E RE12066</td>
<td>MF99004</td>
<td></td>
</tr>
<tr>
<td>10/14/2011 IBM i 7.1 Technology Refresh 3 (TR3)</td>
<td>SF99707 Level 3</td>
<td>RS-710-D RE11221</td>
<td>MF99003</td>
<td></td>
</tr>
<tr>
<td>05/13/2011 IBM i 7.1 Technology Refresh 2 (TR2)</td>
<td>SF99707 Level 2</td>
<td>RS-710-C RE11067</td>
<td>MF99002</td>
<td></td>
</tr>
<tr>
<td>09/10/2010 IBM i 7.1 Technology Refresh 1 (TR1)</td>
<td>SF99707 Level 1</td>
<td>RS 710-B RE10187</td>
<td>MF99001</td>
<td></td>
</tr>
</tbody>
</table>

The following list describes the columns in Table 1-1 in more detail:
- Technology Refresh release date
 Date when the Technology Refresh was made available.
- Description
 Description of the Technology Refresh.
Technology Refresh PTF Group Level

Identifies the age of the Technology Refresh PTF Group. The Technology Refresh PTF Group is a PTF Group that contains a Technology Refresh PTF for a particular Technical Refresh.

For more information, see “Determining the Technology Refresh PTF Group level installed” on page 9.

Corresponding 5770-999 Resave Level and Marker PTF

Identifies the 5770-999 Resave level that corresponds to this Technology Refresh. The Resave contains the technology refresh plus related code, including fixes. The name of 5770-999 Resave contains the VRM plus a letter to indicate the Resave level (for example, RS710-A, RS710-B).

For more information, see “Determining the Resave level installed” on page 11.

The marker PTF is a PTF that can appear on a system only if it was installed with an IBM supplied Resave. These markers are cumulative, meaning systems can have more than one of the Marker PTFs available. The highest Marker PTF number that is found can be used to determine what Resave level of the product is installed.

5770-999 Technology Refresh PTF

Identifies the age of the Technology Refresh. A Technology Refresh is a PTF for a specific release/VRM. IBM identifies the Technology Refresh PTF level for 5770-999 by a set of reserved PTF numbers, MF99xxx, with high digits indicating more recent Technology Refreshes.

Later Technology Refresh PTFs for a particular release are supersets of previous Technology Refresh PTFs for that release. Systems can have more than one Technology Refresh PTF installed. Later versions of the Technology Refresh PTF for a release supersede previous versions.

The active version of a Technology Refresh on a system is the PTF with the highest MF99xxx PTF ID in applied status.

For more information, see “Determining the Technology Refresh PTF level installed” on page 10.
Determining the Technology Refresh PTF Group level installed

To determine the Technology Refresh PTF Group level that is installed on a system, you can use the Work with the PTF Groups (WRKPTFGRP) command.

For example, you can run WRKPTFGRP to find the PTF group called SF99707, as shown in Figure 1-3.

Multiple different levels of the group might be installed on the system. The latest level (the one with the highest level number) with the status of Installed is the level of the fix group that is active.

![Table showing Work with PTF Groups for SF99707 group](image-url)

Figure 1-3 Displaying the Technology Refresh PTF Group that is installed
Determining the Technology Refresh PTF level installed

To determine the Technology Refresh PTF level of 5770-999, use the Display PTF Status (DSPPTF) command for product 5770-999, as shown in Figure 1-4.

Technology Refresh PTFs for this product are in the format of MF99nnn. The highest number Technology Refresh PTF on your system, matched with Table 1-1 on page 7, indicates the Technology Refresh level for this product.

![Figure 1-4 Displaying the Technology Refresh PTF level installed](image-url)
Determining the Resave level installed
To determine the Resave level of 5770-999, use the Display PTF Status (DSPPTF) command on product 5770-999, as shown in Figure 1-5.

Marker PTFs for this product are in the format of REnnnnn. The highest number Marker PTF on your system, matched with Table 1-1 on page 7, indicates the Resave level for this product.

```
        Display PTF Status
      Product ID ................... : 5770999
       IPL source  ................... : ##MACH##B
   Release of base option  .......... : V7R1M0 L00

Type options, press Enter.
  5=Display PTF details  6=Print cover letter  8=Display cover letter

   PTF       Opt ID     Status                     IPL  
      RE13260  Permanently applied        None 
      RE13015  Permanently applied         None 
      RE12249  Permanently applied         None 
      RE12066  Permanently applied         None 
      RE11221  Permanently applied         None 
      RE11195  Superseded                None 
      RE11067  Permanently applied         None 
      RE10187  Permanently applied         None

F3=Exit  F11=Display alternate view  F17=Position to  F12=Cancel
```

Figure 1-5 Displaying the IBM i Resave level installed

1.3.3 Installing an IBM i Technology Refresh

To update a system to a new Technology Refresh level, use one of the following methods:

- Install the Technology Refresh PTF Group plus the latest Cumulative PTF package.
- Install the 5770-999 Resave that corresponds with the Technology Refresh level, plus the Technology Refresh PTF Group, plus the latest cumulative PTF package.

Tip: If you are skipping one or more Technology Refresh levels, in certain environments, installation time could be shorter by first installing the latest LIC Resave. For example, when upgrading from TR4 to TR7, first restore LIC from the latest Resave, apply the latest Cumulative PTF package, and then install the Technology PTF Group SF99707.

Ordering and installing an IBM i Technology Refresh PTF

A Technology Refresh is a PTF that can be ordered like any other PTF, using voice support, Fix Central, or the Send PTF Order (SNDPTFORC) command. Instructions for ordering and installing PTFs can be found in the *Maintaining and managing IBM i and related software* topic in the IBM i 7.1 Knowledge Center:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzam8/rzam81.htm
A Technology Refresh PTF is a PTF that can be installed just like any other PTF.

A Technology Refresh PTF must be permanently applied before subsequent PTFs that require it can be applied. It is considered a preferred practice to apply the Technology Refresh PTF permanently when it is first applied.

For more information about how to avoid or reduce the impact of a double IPL during PTF installation, see “Preventing or reducing the impact of a double IPL” on page 13.

Ordering and installing an IBM i Technology Refresh PTF Group
A Technology Refresh PTF Group is a PTF Group that can be ordered like any other PTF Group by using voice support, Fix Central, or the Send PTF Order (SNDPTFORD) command. Instructions for ordering and installing PTFs can be found in the Maintaining and managing IBM i and related software topic in the IBM i 7.1 Knowledge Center:

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzam8%2Frzam8fixobtain1.htm

Tip: Before you order a Technology Refresh PTF Group, verify that the level of the PTF Group you need is not already on your system.

A Technology Refresh PTF Group is a set of PTFs that is installed like any other IBM i PTF Group. You can use the Install Program Temporary Fix (INSPTF) command or Option 8 from the GO PTF menu.

Important: The Technology Refresh PTF must be permanently applied before subsequent PTFs can be loaded, which requires an IPL.

For more information about how to avoid or reduce the impact of a double IPL during PTF installation, see “Preventing or reducing the impact of a double IPL” on page 13.

To install the latest Technology Refresh PTF Group, check the Cover Letter and Preventive Service Planning (PSP) information for SF99707 on the following websites:

- PTF Cover Letters
 http://www-912.ibm.com/a_dir/as4ptf.nsf/as4ptfhome

- Preventive Service Planning - PSP

Ordering and installing an IBM i Resave
Resaves are ordered by requesting a software upgrade from your IBM marketing representative or your IBM Business Partner. They run the IBM eConfiguration Tool, which generates an order for a software upgrade. The latest Resaves are included with each software order.

You install a Resave by following the instructions in the IBM Software Installation Manual.
1.3.4 Additional information about Technology Refreshes

This section provides some additional information about Technology Refreshes.

How a Technology Refresh PTF or PTF Group affects other PTFs

If a later PTF changes a part or module that is contained in the Technology Refresh PTF, the Technology Refresh PTF becomes a special prerequisite for that PTF, called a TRREQ.

The Technology Refresh PTF must be permanently applied on the system before the PTF that requires it can be loaded. It is a preferred practice to keep a system up to date on Technology Refresh PTFs to avoid the additional time it would take to apply the Technology Refresh PTF. PTFs that do not involve parts or modules that are contained in a Technology Refresh PTF do not require the Technology Refresh PTF to be applied before they can be loaded.

Preventing or reducing the impact of a double IPL

You can avoid a double IPL by making sure that the Technology Refresh PTF is permanently applied. Then, if a PTF requires it, the Technology Refresh PTF is already on the system. This setup does not reduce the total number of IPLs required, but it allows the scheduling of IPLs when they are most convenient for the operation of the system.

Ordering and installing the Technology Refresh Resave also ensures that the Technology Refresh PTF is permanently applied and that the double IPL is avoided. The new function PTF SI43585 is available to automate, but not eliminate, any additional IPLs required during PTF installation. When you are installing PTFs, there are two conditions where you must perform an IPL to apply some of the PTFs, which requires a restart of the PTF installation after the first IPL, and then perform another IPL to apply the delayed PTFs:

- When installing a cumulative PTF package that contains special handling pre-apply PTFs
- When installing a technology refresh PTF at the same time as a technology refresh requisite PTF

If an additional IPL is required, the PTF installation parameters are saved and used during the next IPL. Instead of seeing the Confirm IPL for Technology Refresh or Special Handling PTFs window, you see a new message CPF362E: “IPL required to complete PTF install processing”. However, if you select Automatic IPL=Y on the Install Options for PTFs window, you do not see any other messages or windows because a power down then occurs. On the next normal IPL, your second “GO PTF” completes during the “PTF Processing” IPL step in the SCPF job, and then a second IPL of the partition is done automatically. So when the system runs the second IPL to sign on, your PTFs are all activated and ready to go.

If an IPL is required for a technology refresh, PTF SI43585 supports installing only from a virtual optical device or *SERVICE (PTFs downloaded electronically to save files). If you are installing from a physical optical device, you must perform the additional IPL and second GO PTF manually. If you received your PTFs on physical DVDs, create an image catalog from the DVDs and use the new support.
New releases of IBM i
There will still be new releases of IBM i. With a Technology Refresh, only the changed parts that are required for the new hardware / firmware support or function are recompiled and included.

Some large and complex projects are better suited for an actual release, where the entire body of code in IBM i is rebuilt. Developers are working on the next release of IBM i and architects are looking at possible content for the next release.

Now, Technology Refreshes include only LIC. Enhancements for other levels of IBM i require a release. This situation is similar to point/modification releases, which contained only LIC.

Is an IBM i Technology Refresh the same as an AIX Technology Level
These two are not the same. An AIX Technology Level is a separate code stream with its own set of fixes, similar to an IBM i point/modification release. When you install an AIX Technology Level, the release level changes, and a different library of fixes for that particular release level must be used.

A Technology Refresh is an update of an existing release through a PTF Group that contains PTFs in that release’s code stream. When an IBM i Technology Refresh is installed, the release level of the system does not change, and the system continues to use PTFs for that release.

Publications related to Technology Refreshes
For more information about Technology Refreshes, see the following resources:

- IBM Prerequisite Tool for new hardware:

- IBM i Technology Refresh, IBM i 7.1 Information:

- IBM i Resaves IBM i 7.1 Information:

- IBM i 7.1 Technology Refreshes and IBM i 6.1 PTFs on IBM developerWorks:

- Using software fixes:
 http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzam8%2Frzam8fix1.htm

- Planning your fix management strategy:
 http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzam8%2Frzam8fixstrategy.htm

- PTFs - Maintenance Strategy:

- Guide to fixes:
Security enhancements

IT security management is under much pressure today. Security management must deal with an explosion in data growth, a need to access data anytime and from anywhere, more sophisticated hackers, cloud initiatives, and increasing demands from law enforcement and other entities to meet compliance requirements.

IBM i is one of the most secure operating systems in the industry. From the beginning of its development, security has been an important part of its design.

IBM i 7.1 provides an important set of enhancements that, with leading-edge security solutions provided by IBM and Business Partners, reduce risk but also simplify security management and facilitate compliance requirements.

This chapter describes the following security enhancements for IBM i 7.1:

- User profile enhancements
- Object audit enhancements
- Data encryption enhancements
- Security enhancements for DB2 for i
- DB2 for i security services
- Real-time database activity monitoring
- Security enhancements for printing
- TLS V1.1 and V1.2 support
- Java security information
- PowerSC Tools for IBM i

For more information about IBM and Business Partner security solutions for IBM i, go to: http://www-03.ibm.com/systems/power/software/i/security/partner_showcase.html
2.1 User profile enhancements

IBM i 7.1 includes additional attributes in the User Profile object that set an expiration date or a days interval to disable a user profile.

The User Profile controls can be used with the Display Expiration Schedule (DSPEXPSGD) command. This combination simplifies the task of administering temporary user profiles.

2.1.1 New USREXPDATE and USREXPITV attributes

There are two new parameters for the Create User Profile (CRTUSRPRF) and Change User Profile (CHGUSRPRF) commands:

- User expiration date (USREXPDATE)
 This parameter is the date when the user profile expires and is automatically disabled. Possible values are shown in Table 2-1.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*NONE</td>
<td>No expiration date.</td>
</tr>
<tr>
<td>*USREXPITV</td>
<td>Calculated based on the value that is entered in the user expiration interval parameter.</td>
</tr>
<tr>
<td>Date</td>
<td>Specifies a date when the user profile expires. The date must be in the job date format.</td>
</tr>
</tbody>
</table>

- User expiration interval (USREXPITV)
 This parameter specifies the number of days (1 - 366) before the user profile is automatically disabled.

Important: A value must be specified if the USREXPDATE parameter has a value of *USREXPITV. If the USREXPDATE parameter has a value other than *USREXPITV, no value is allowed for this parameter.

Remember: The parameters can be seen only when you use the 5250 user interface.

2.1.2 CL commands to change and display the User Profile expiration schedule

The expiration schedule for a user profile can be set with either the Create User Profile (CRTUSRPRF) or Change User Profile (CHGUSRPRF) commands or the Change Expiration Schedule Entry (CHGEXPSDE) CL command.

Display Expiration Schedule (DSPEXPSGD) shows a list of user profiles and their expiration date (Figure 2-1 on page 17). If no user profiles are set to automatically expire, an empty panel is generated.

Deleting a profile: The option to delete a profile on an expiration date is only available through CHGEXPSDE. Be careful when you use the *DELETE option.
2.2 Object audit enhancements

Several changes are included to improve the auditing capabilities of CL commands and the usage of database objects. The audit journal provides more specific details about the execution environment for CL commands. The QIBM_DB_OPEN exit program is enhanced to provide filtering capabilities to reduce processing impact.

2.2.1 CL retrieve exit programs running after command completion

The IBM i operating system supports two exit points for control language (CL) commands: QIBM_QCA_CHG_COMMAND and QIBM_QCA_RTV_COMMAND.

For each regular CL command, and proxy CL commands in the QSYS library, one exit program can be registered for the Change Exit Point, and up to 10 exit programs can be registered for the Retrieve Exit Point:

- **Change Exit Point**: The exit program is called by the command analyzer before it passes control to the prompter.
- **Retrieve Exit Point**: The exit program is called by the command analyzer before or after execution of the command.

Before this enhancement, QIBM_QCA_RTV_COMMAND exit programs were always called just before control was transferred to the command processing program (CPP) associated with the command that is being run.

You can use the enhancement to register an exit program for the QIBM_QCA_RTV_COMMAND exit point and indicate that you want the exit program to be called after control returns from the CPP.
2.2.2 Extended auditing details for running a CL command

The IBM i operating system can be used to track the CL commands that are run by a user. After the command-level auditing is turned on for a user profile, a CD (Command String) audit record is generated for each CL command that is run by the specified user profile.

To set up the command-level auditing, complete the following steps:

1. Auditing must be active before command-level auditing can be done. Run the Change Security Auditing (CHGSECAUD) command to change the settings for the system values that control what is being audited on the system.

2. Run the Change User Audit (CHGUSRAUD) command and specify the user profile name for the USRPRF parameter and *CMD for the AUDLVL parameter.

These commands generate CD (Command String) audit records for each CL command that is run by the specified user profile. The model file QASYCDJ5 describes the fields in the CD audit records. One of these fields, CDCLP, is redefined to convey more information about how the audited CL command was run.

Before this enhancement, CDCLP had only two possible values, as shown in Table 2-2.

Table 2-2 Original CDCLP field values for a QASYCDJ5 model file

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>If the command was run from a compiled OPM CL program, a compiled ILE CL module that is part of an ILE program or service program, or an interpreted REXX procedure.</td>
</tr>
<tr>
<td>N</td>
<td>In all other cases.</td>
</tr>
</tbody>
</table>

Now, the CDCLP field has the values that are shown in Table 2-3.

Table 2-3 New CDCLP field values for a QASYCDJ5 model file

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>If the CL command is run from a compiled CL object, for instance an OPM CL program or an ILE CL module that is bound into an ILE program or service program.</td>
</tr>
<tr>
<td>R</td>
<td>Indicates that the CL command is being run from an interpreted REXX procedure.</td>
</tr>
<tr>
<td>E</td>
<td>Indicates that the command was submitted by passing the command string as a parameter to one of the Command Analyzer APIs: QCMDXC, QCAPCMD, or QCMAEXEC.</td>
</tr>
<tr>
<td>B</td>
<td>When the command is not being run from compiled CL or interpreted REXX or through a Command Analyzer API, and is in a batch job. The typical case for a B value is when the command is in a batch job stream that is run by using the Start Database Reader (STROBRDR) or Submit Database Job (SBMJOB) command, or is specified for the CMD (Command to run) parameter on a Submit Job (SBMJOB) command.</td>
</tr>
<tr>
<td>N</td>
<td>Indicates that the command was run interactively from a command line or by choosing a menu option that runs a CL command.</td>
</tr>
</tbody>
</table>

The new values for the CDCLP field map to the values for the ALLOW (Where allowed to run) parameter on the Create Command (CRTCMD) command as follows:

- 'Y' maps to *IPGM, *BPGM, *IMOD, and *BMOD
- 'R' maps to *IREXX and *BREXX
- 'E' maps to *EXEC
- 'B' maps to *BATCH
2.2.3 Database object auditing control with the QIBM_DB_OPEN exit program

Various techniques are used by users and third-party software products to add security controls over the security functions built into IBM i.

One primary mechanism that is used to provide this added security is to obtain control through various exit points and to parse the SQL statements. However, SQL parsing is not only complicated, but continually changing as new SQL functions are introduced. In some cases, it is impossible for a SQL parsing solution to handle concepts such as aliases, user-defined functions, and user-defined table functions. For those reasons, this approach is not preferred.

Several releases ago, a single open database exit was implemented in IBM i to relieve user and third-party software from having to parse SQL statements by providing a list of the files that are referenced in the SQL statement. Although this exit solved the parsing problem, the exit was started for every full open. Depending on the amount of resources available and the number of full opens per second in a system, performance can be a problem.

IBM i 7.1 added the capability to have the exit program QIBM_DB_OPEN called only when a full open occurs where at least one of the tables that are referenced by the query has object auditing enabled.

Following are three examples that show how to add the exit program QIBM_DB_OPEN:

- The exit program is called if any object auditing is encountered by specifying *OBJAUD in the PGMDTA parameter:

 ADDEXITPGM EXITPNT(QIBM_QDB_OPEN) FORMAT(DBOP0100) PGMNBR(7)
 PGM(MJATST/OPENEXIT2) THDSAFE(*YES) TEXT('MJA') REPLACE(*NO)
 PGMDTA(*JOB *CALC 'OBJAUD')

- The exit program is called when *ALL object auditing is encountered by specifying *OBJAUD(*ALL) in the PGMDTA parameter:

 ADEXITPGM EXITPNT(QIBM_QDB_OPEN) PGMDTA(*JOB *CALC 'OBJAUD(*ALL)')

- The exit program is called when *CHANGE object auditing is encountered by specifying *OBJAUD(*CHANGE) in the PGMDTA parameter:

 ADEXITPGM EXITPNT(QIBM_QDB_OPEN) PGMDTA(*JOB *CALC 'OBJAUD(*CHANGE)')

Object auditing behavior when using join query
Assume that you have one physical file (FILE1) with object attribute *NONE and a second physical file (FILE2) with object attribute (*CHANGE). When a join query uses these two files, the QIBM_DB_OPEN exit program is called for both FILE1 and FILE2, not just for FILE2.

For performance reasons, the open exit information is using cache today. Whenever a QIBM_DB_OPEN exit point is added or removed, only new jobs pick up the change.
2.3 Data encryption enhancements

This section describes the enhancements to data encryption provided in IBM i 7.1.

2.3.1 ASP encryption enhancements

You can use ASP encryption to protect data regardless of whether it is on disk or it is transferred to and from the disk drive. This encryption is valuable in cases such as a disk replacement or to increase protection in SAN or Geographic Mirror data transmissions. More information about this topic can be found in Security Guide for IBM i V6.1, SG24-7680.

With IBM i 7.1 enhancements, ASP encryption can now be turned on and off and the data encryption key can be changed for an existing user ASP. These changes take a significant amount of time because all the data in the disk pool must be processed. This task is done in the background at low priority with a minimal impact on performance.

For more information about ASP encryption enhancements, see 8.1.4, “Encrypted ASP enhancements” on page 381.

2.3.2 Field procedures to encode and decode data

Field procedures are user-written exit programs that can modify the contents and size of the data on insert, update, and read operations. This capability can be used in many ways, but the most popular way is to provide transparent encryption and masking of data based on business logic. The term transparent encryption is important because it implies the ability to define a data encryption policy without any change in the actual application code.

For more information about field procedures, see 5.2.7, “FIELDPROC support for encoding and encryption” on page 174.

2.4 Security enhancements for DB2 for i

DB2 for i is positioned as self-protecting database because of the object-based structure of IBM i, which DB2 for i uses.

In addition to the self-protecting security features, the operating system and DB2 for i include built-in encryption capabilities that enable customers to add an additional layer of security around their data.

IBM i 7.1 includes significant enhancements in database security, including simplified authority management for DDM and IBM DRDA® environments, and significant improvements in database activity monitoring and auditing.

2.4.1 Query Manager user profile auditing

DB2 Query Manager (QM) is a function that provides a common method for accessing data and reporting the results from a relational database across the different DB2 platforms.

You can use Query Manager to design and format printed reports from processed queries. Those queries can be included in programs that are written in several high-level languages.
QM also provides data edit capabilities that you can use to update and add data to local and remote DB2 for i tables without additional application programs.

For this reason, more user profile support is also provided to allow administrators to tailor QM defaults, limits, and privileges for each user. QM is the only interface on IBM i with the option to grant and revoke permissions to a specific SQL statement (per user); this is a different capability and concept because it is not object based.

Note: The IBM licensed program 5770-ST1 “IBM DB2 Query Manager and SQL Development Kit for IBM i” is required only for Query Manager and SQL application development. After the applications are created, they can be run on other servers that are running IBM i that do not have this product installed by using DB2 for i database manager support.

Figure 2-2 shows an example of the Work with Query Manager profiles option from the STRQM menu. To get there, choose a user profile, select Y in the Select allowed SQL statements parameter, and press Enter.

With IBM i 7.1, you can now audit changes that are made to a Query Manager profile if auditing is enabled for AUDLVL(*SECURITY). A new journal entry type of X2 contains the old and new Query Manager profile values.

An outfile is not provided for this journal entry. Instead, the QSYS2.SQLQMProfilesAudit view can be queried as shown in Example 2-1.

Example 2-1 Creating a permanent table that contains the new journal entries

```
CREATE TABLE mytablename AS (SELECT * FROM QSYS2.SQLQMProfilesAudit) WITH DATA
```
There are two main parts to this solution:

- A new journal entry (X2) is sent to the QAUDJRN any time a Query Manager (QM) profile changes. The journal entry contains the before and after profile information.
- Normally, the way audit journal entries are externalized is that each has an associated output file. A particular audit entry type is output to that output file, which is tailored to the information in that journal entry. However, output files are expensive because of language translation and maintenance effort. Also, the Query Manager profile changes with each release as IBM adds more SQL statements that you can authorize.

The audit journal entry is externalized using a DB2 for i supplied view in QSYS2, similar to how the current values of profiles are provided using the QSYS2.SQLQMPROFILES view.

The view entry returns a set of data that is available for all journal entries that identify when the change was made and by whom:

- Journal entry time stamp
- Current user
- Job name, job user, and job number
- Thread

Most of the values that are stored in the QM profile have only two possible values. For example, the values for the authority to use the INSERT statement are Y or N.

The following QM profile values have more than two possible values:

- Default Library
- Default object creation authority
- Relational database connection
- Sample size of Query
- Maximum records that are allowed on an interactive run
- Default collection for QM tables
- Query Data Output Type
- Table and library for output
- Job description and library for batch run
- Commitment control lock level
- Default printer name

2.4.2 Database Monitor and Plan Cache variable values masking

IBM i 7.1 includes a DB2 system procedure to protect sensitive data. After you set the secure attribute for a column in a specific table, DB2 for i creates the masking for SQL Performance Monitors (Database Monitors) and SQL Plan Cache.

When an SQL statement refers to any column that has the `SECURE` attribute that is set to YES, all host variable values appear as "**SECURE**" when examined from the database monitor and plan cache, unless the security officer has started the database monitor or the security officer is accessing the plan cache.

Access: Only the QSECOFR user can see the variable values. Users that have the *SECOFR user special authority but are not* the QSECOFR user see "**SECURE**" for the variable values.
Example 2-2 illustrates how to secure a column of a particular table.

Example 2-2 Procedure to set a secure column

CALL SYSPROC.SET_COLUMN_ATTRIBUTE(Table_Schema, Table_Name, Column_Name, Attribute);

Here is a description of the parameters that are shown in Example 2-2:

- Table_Schema VARCHAR(10): Contains the system name of a table's schema (library).
- Table_Name VARCHAR(10): Contains the system name of a table (file).
- Column_Name VARCHAR(10): Contains the system column name that is secured.
- Attribute VARCHAR(10): Contains the attribute that is set for the column. The valid values are:
 - 'SECURE NO': This column does not contain data that must be secured in a database monitor or plan cache.
 - 'SECURE YES': This column contains data that must be secured in a database monitor or plan cache.

SECURE column added to QSYS2.SYSCOLUMNS2

QSYS2.SYSCOLUMNS2 is a DB2 catalog that returns more information that is not available in QSYS2.SYSCOLUMNS (such as the allocated length of a varying length column).

The SECURE column externalizes the security setting, if SYSPROC.SET_COLUMN_ATTRIBUTE() is used to configure the security of the column for database performance analysis tasks.

The SECURE column values are:

NULL This column is not the target of a call to SYSPROC.SET_COLUMN_ATTRIBUTE.

'0' This column does not contain data that must be secured in a database monitor or plan cache. This column was a target of a call to SYSPROC.SET_COLUMN_ATTRIBUTE with the ‘SECURE NO’ parameter.

'1' This column contains data that must be secured in a database monitor or plan cache. This column was the target of a call to SYSPROC.SET_COLUMN_ATTRIBUTE with the ‘SECURE YES’ parameter, as shown in Example 2-3.

Example 2-3 Values with ‘SECURE YES’

```sql
-- sample table creation
call qsys.create_sql_sample('PRODLIB');

-- Change attribute on SALARY column
CALL SYSPROC.SET_COLUMN_ATTRIBUTE('PRODLIB', 'EMPLOYEE', 'SALARY', 'SECURE YES');

SELECT Column_name,SECURE FROM qsys2.syscolumns2
WHERE system_table_schema = 'PRODLIB' and system_table_name = 'EMPLOYEE';
```
Figure 2-3 shows the results of the `SELECT` command in Example 2-3 on page 23 that shows `SECURE = '1'` for 'SALARY'.

<table>
<thead>
<tr>
<th>COLUMN_NAME</th>
<th>SECURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMPNO</td>
<td>D</td>
</tr>
<tr>
<td>FIRSTNAME</td>
<td>D</td>
</tr>
<tr>
<td>MIDINT</td>
<td>D</td>
</tr>
<tr>
<td>LASTNAME</td>
<td>D</td>
</tr>
<tr>
<td>WORKDEPT</td>
<td>D</td>
</tr>
<tr>
<td>PHONE NO</td>
<td>D</td>
</tr>
<tr>
<td>HIREDATE</td>
<td>D</td>
</tr>
<tr>
<td>JOB</td>
<td>D</td>
</tr>
<tr>
<td>ELEVEL</td>
<td>D</td>
</tr>
<tr>
<td>SEX</td>
<td>D</td>
</tr>
<tr>
<td>BIRTHDATE</td>
<td>D</td>
</tr>
<tr>
<td>SALARY</td>
<td>1</td>
</tr>
<tr>
<td>BONUS</td>
<td>D</td>
</tr>
<tr>
<td>COMM</td>
<td>D</td>
</tr>
</tbody>
</table>

Figure 2-3 Results of the previous SELECT command that shows the SECURE columns

The database performance analyst sees the output that is shown in Figure 2-4 with the performance analysis results for this query:

```
select * from prodlib.employee where salary > 20000;
```

Figure 2-4 Performance analysis results with SECURE columns

2.4.3 Security function usage for a database

Function usage is a powerful approach to implement a granular security model. Granularity is better for users because they can use IBM i capabilities that are consistent with their job or role in the organization.

Function usage support on IBM i has been in place for many releases, providing an alternative security control for Job Watcher, Cluster Management, IBM Tivoli® Directory Server administration, Backup Recovery and Media Services for i (BRMS), and other components.

DB2 for i includes several functions for database administration, monitoring, and access control.
Function usage can be configured by the Work with Function Usage (WRKFCNUSG) and Change Function Usage (CHGFCNUSG) CL commands, IBM Navigator for i, or through the System i Navigator Application Administration feature as shown in Figure 2-5.

Figure 2-5 System i Navigator window to set up function usage authority

New authority options for SQL analysis and tuning

Before you can use this enhancement, the IBM i system administrator must grant the *JOBCTL user special authority to DB2 administrators and DB2 performance analysts.

Because *JOBCTL authority allows a user to change many system critical settings that are unrelated to database activity, it is not an easy decision for security officers to grant this authority. In many cases, the request for *JOBCTL is not granted to database analysts, thus prohibiting the usage of the full set of database tools.

IBM i 7.1 provides a new function usage group called QIBM_DB. The function IDs included for SQL analysis and tuning are:

- **QIBM_DB_SQLADM** Function usage for IBM i Database Administrator tasks
- **QIBM_DB_SQLMON** Function usage for IBM i Database Information tasks

These new functions allow settings where users with the *ALLOBJ special authority cannot do the DB2 administration or DB2 monitoring tasks. Also, a group profile can be specified in this function's setting. If a user profile is associated with several supplemental group profiles, the access is granted if at least one of these group profiles is set to *ALLOWED in a particular function. The adopted authority from program owner profiles has no effect on allowing access to DB2 administration and DB2 monitoring. Access is always granted according to the user profile under which a program with adopted authority runs.
New authority options for database server inbound connections
These function usage IDs block database server inbound connections and are not based on the communication protocol. The function usage IDs ship with the default authority of *ALLOWED. The security officer can easily deny access to specific users or groups.

QIBM_DB_ZDA Restrict ODBC and JDBC Toolbox from the server side, including RUNSQL scripts, System i Navigator, and DB2 specific portions of IBM Navigator for i.

QIBM_DB_DDMDRDA Lock down DRDA and DDM application server access.

This is an alternative to a user exit program approach. Using a function usage ID has several advantages including the fact that no coding is required, and it is easy to change and is auditable.

2.4.4 Simplified DDM and Distributed Database (DRDA) authentication

In some environments, it is cumbersome to maintain server authentications in DRDA and Relational Database DDM (RDB DDM) file environments. As systems are added to the network topology, per user profile server authentications for every server must be administered. Customers with many users and many servers face the decision of whether to restrict/control access on each server using the Change DDM TCP/IP Attributes (CHGDMDTCPA) command, or on each client using the Add Server Authentication Entry (ADDSVRAUTE) command.

The dilemma that is faced when you choose to enforce password validation on the servers is that every user who needs to connect to the server needs administrative work that is done on their behalf. This work uses Add Server Authentication Entry (ADDSVRAUTE) for every target server, or requires every user to supply a user ID and password on each CONNECT statement.

You can use the special value **QDDMDRDASERVER**, which is added to the Add Server Authentication Entry (ADDSVRAUTE) command SERVER parameter, to simplify this process. This special value allows an administrator to configure a user to work with all possible DDM or DRDA connections to any system in the Internet Protocol network through a common user ID and password. After it is configured for a specific user, no additional changes need to be made for that user, as systems are added to the Relational Database Directory.

As before, this setup does not allow a customer to connect over DRDA/DDM unless they specify a valid user ID and password on the server authentication entry or CONNECT statement.

Server authentication entries
A server authentication entry is a way to define a user ID and password to send through a connect request over TCP/IP. A server authentication list is associated with every user profile on the system. By default, the list is empty, but you can add entries by using the Add Server Authentication Entry (ADDSVRAUTE) command.

When you attempt a DRDA connection over TCP/IP without specifying a user ID and password, the DB2 for i client (AR) checks the server authentication list for the user profile under which the client job is running. If it finds a match between the RDB name on the CONNECT statement and the SERVER name in an authentication entry (which must be in uppercase), the associated USRID parameter in the entry is used for the connection user ID. If a PASSWORD parameter is stored in the entry, that password is also sent on the connection request.
A server authentication entry can also be used to send a password over TCP/IP for a DDM file I/O operation. When you attempt a DDM connection over TCP/IP, DB2 for i checks the server authentication list for the user profile under which the client job is running. If it finds a match between either the RDB name (if RDB directory entries are used) or QDDMSERVER and the SERVER name in an authentication entry, the associated USRID parameter in the entry is used for the connection user ID. If a PASSWORD parameter is stored in the entry, that password is also sent on the connection request.

DDM and DRDA authentication entry management using group profiles

DDM and DRDA also can take advantage of a common user ID and password that are defined in a server authentication entry under a group profile name or supplemental group profile name. The group profile name or supplemental group profile name is specified with the USRPRF parameter of the ADDSVRAUTE command.

System administration of server authentication entries becomes much simpler when a group profile is used. A common user ID and password profile is used when you establish a group profile-based DDM or DRDA connection. Remote connection capability is managed by controlling the users that belong to the group with their authority to the group profile.

QDDMDRDASERVER usage details

The current special value QDDMSERVER allows non-RDB DDM file users to make DDM connections to servers with a common user ID and password. The new special value QDDMDRDASERVER is a superset of QDDMSERVER, expanding this support to RDB DDM files and DRDA connections.

For DRDA connection requests, if a server authentication entry that specifies the system name exists, and a user ID and password are not passed in a CONNECT statement, the user ID and password that are associated with the server authentication entry takes precedence over the server authentication entry for QDDMDRDASERVER.

For DRDA connection requests, if a server authentication entry specifies the system name exists, and a user ID and password are passed in a CONNECT statement, the user ID and password that are associated with the CONNECT statement takes precedence over any server authentication entry.

For RDB DDM file connection requests, the server authentication entry that specifies the system name takes precedence over the server authentication entry for QDDMDRDASERVER. For non-RDB DDM file connection requests, the server authentication entry QDDMSERVER takes precedence over the server authentication entry for QDDMDRDASERVER.

For example, suppose that you have an environment with three systems (SYSA, SYSB, and SYSC), where:

- SYSA is the application requester (AR).
- SYSB and SYSC are the application servers (AS).

You run the following commands on SYSA:

```
ADDSVRAUTE USRPRF(YOURPRF) SERVER(QDDMDRDASERVER) USRID(youruid) PASSWORD(yourpwd)
STRSQL
CONNECT TO SYSB
CONNECT TO SYSC
```
You now have two connections with shared 'youruid' and password 'yourpwd'. You run the following commands on SYSA:

```
ADDSVRAUTE USRPRF('YOURPRF') SBMSRV(SYSA) USRID('youruid') PASSWORD('yourpwd')
ADDSVRAUTE USRPRF('YOURPRF') SBMSRV(SYSB) USRID('yourotheruid') PASSWORD('yourotherpwd')
ADDSVRAUTE USRPRF('YOURPRF') SBMSRV(SYSC) USRID('yourotheruid') PASSWORD('yourotherpwd')
```

You now have two connections with shared 'youruid' and password 'yourpwd'. You run the following commands on SYSA:

```
ADDSVRAUTE USRPRF('YOURPRF') SBMSRV(QDDMDRDASERVER) USRID('youruid') PASSWORD('yourpwd')
ADDSVRAUTE USRPRF('YOURPRF') SBMSRV(SYSB) USRID('yourotheruid') PASSWORD('yourotherpwd')
```

You now have two connections with the user ID 'yourotheruid' and password 'yourotherpwd'. This situation occurs because server authentication entries that specify the real system name take precedence over server authentication entries that specify QDDMDRDASERVER. You run the following commands on SYSA:

```
ADDSVRAUTE USRPRF('YOURPRF') SBMSRV(QDDMDRDASERVER) USRID('youruid') PASSWORD('yourpwd')
ADDSVRAUTE USRPRF('YOURPRF') SBMSRV(SYSB) USRID('yourotheruid') PASSWORD('yourotherpwd')
```

You now have two connections. The connection to SYSB is made with the user ID testuserid using 'testpassword'

```
CONNECT TO SYSB
CONNECT TO SYSC
```

You now have two connections. The connection to SYSB is made with the user ID testuserid using 'testpassword'. This situation occurs because specifying the user ID and password on a CONNECT statement takes precedence over server authentication entries. The connection to SYSC is made with user ID 'youruid' and password 'yourpwd', because it uses the QDDMDRDASERVER authentication entry when no other server authentication entry exists specifying the system name. You run the following commands on SYSA:

```
ADDSVRAUTE USRPRF('YOURPRF') SBMSRV(QDDMDRDASERVER) USRID('youruid') PASSWORD('yourpwd')
ADDSVRAUTE USRPRF('YOURPRF') SBMSRV(QDDMSERVER) USRID('youruid2') PASSWORD('yourpwd2')
ADDSVRAUTE USRPRF('YOURPRF') SBMSRV(SYSC) USRID('yourotheruid') PASSWORD('yourotherpwd')
```

Assume that you use the following statements:

- `SBMRMTCMD CMD('DSPLIB YOURLIB') DDMFILE(QTEMP/DDMF)`
 The connection to SYSB is made with the user ID 'youruid2' and password 'yourpwd2'. This situation occurs because non-RDB DDM files use QDDMSERVER for the user ID AND password at connection time. If QDDMSERVER does not exist, QDDMDRDASERVER is used.

- `SBMRMTCMD CMD('DSPLIB YOURLIB') DDMFILE(QTEMP/DDMF2)`
 The connection to SYSB is made with the user ID 'youruid' and password 'yourpwd'. This situation occurs because the RDB DDM files use the QDDMDRDASERVER for the user ID and password at connection time if a server authentication entry does not exist that specifies the system name.

- `SBMRMTCMD CMD('DSPLIB YOURLIB') DDMFILE(QTEMP/DDMF3)`
 The connection to SYSC is made with the user ID 'yourotheruid' and password 'yourotherpwd'. This situation occurs because the RDB DDM files do not use QDDMDRDASERVER for the user ID and password at connection time if a server authentication entry exists that specifies the system name.
2.4.5 Authorization list impact on database object access

Authorization lists are a useful security mechanism to control object access with a minimum of administration. DB2 for i authorization catalogs have been extended to indicate the name of the authorization list that is related to user access to an object.

The authorization list catalogs are shown in Table 2-4. They are specific for different object types.

Table 2-4 DB2 for i authorization list catalogs

<table>
<thead>
<tr>
<th>Catalog name</th>
<th>Object information</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSYS2/SYSPACKAGEAUTH</td>
<td>*SQLPKG for packages</td>
</tr>
<tr>
<td>QSYS2/SYSUDTAUTH</td>
<td>*SQLUDT for user defined types</td>
</tr>
<tr>
<td>QSYS2/SYSTABAUTH</td>
<td>*FILE for tables</td>
</tr>
<tr>
<td>QSYS2/SYSSSEQUENCEAUTH</td>
<td>*DTAARA for sequences</td>
</tr>
<tr>
<td>QSYS2/SYSSCHEMMAUTH</td>
<td>*LIB for schemas</td>
</tr>
<tr>
<td>QSYS2/SYSROUTINEAUTH</td>
<td>*PGM and *SRVPGM for procedures and functions</td>
</tr>
<tr>
<td>QSYS2/SYSSCOLAUTH</td>
<td>Columns</td>
</tr>
<tr>
<td>QSYS2/SYSSXROBJECTAUTH</td>
<td>*XSROBJ for XML schema repositories</td>
</tr>
<tr>
<td>QSYS2/SYSVARIABLEAUTH</td>
<td>*SRVPGM for global variables</td>
</tr>
</tbody>
</table>

Example 2-4 shows one of the SQL commands that can be used to get data of one of the predefined catalogs listed in Table 2-4.

Example 2-4 Using QSYS2.SYSTABAUTH catalog

```sql
SELECT GRANTEE, TABLE_NAME, PRIVILEGE_TYPE, AUTHORIZATION_LIST
FROM QSYS2.SYSTABAUTH WHERE TABLE_SCHEMA = 'QGPL' AND TABLE_NAME = 'CUST'
ORDER BY GRANTEE DESC
```

Figure 2-6 shows the results. The result shows that QSECOFR, as the owner of the QGPL/CUST SQL table, has all authorities to the table and the authority for user CZZ62690 is derived from the authorization list CUSTAUTL.

Figure 2-6 Results of SQL query in Example 2-4

<table>
<thead>
<tr>
<th>GRANTEE</th>
<th>TABLE_NAME</th>
<th>PRIVILEGE_TYPE</th>
<th>AUTHORIZATION_LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSECOFR</td>
<td>CUST</td>
<td>SELECT</td>
<td>-</td>
</tr>
<tr>
<td>QSECOFR</td>
<td>CUST</td>
<td>INSERT</td>
<td>-</td>
</tr>
<tr>
<td>QSECOFR</td>
<td>CUST</td>
<td>UPDATE</td>
<td>-</td>
</tr>
<tr>
<td>QSECOFR</td>
<td>CUST</td>
<td>DELETE</td>
<td>-</td>
</tr>
<tr>
<td>QSECOFR</td>
<td>CUST</td>
<td>REFERENCES</td>
<td>-</td>
</tr>
<tr>
<td>QSECOFR</td>
<td>CUST</td>
<td>ALTER</td>
<td>-</td>
</tr>
<tr>
<td>QSECOFR</td>
<td>CUST</td>
<td>INDEX</td>
<td>-</td>
</tr>
<tr>
<td>CZZ62690</td>
<td>CUST</td>
<td>SELECT</td>
<td>CUSTAUTL</td>
</tr>
</tbody>
</table>
2.5 DB2 for i security services

The DB2 for i security services listed in Table 2-5 are part of the DB2 for i services. To see a complete list of all DB2 for i services, see the following website:

For more information about DB2 for i services, see 5.5.16, “DB2 for i Services” on page 272.

Table 2-5 DB2 for i security services

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSYS2.USER_INFO</td>
<td>View</td>
<td>This view contains information about user profiles. For more information, see 2.5.1, “QSYS2.USER_INFO view” on page 30.</td>
</tr>
<tr>
<td>QSYS2.FUNCTION_INFO</td>
<td>View</td>
<td>This view contains details about function usage identifiers. For more information, see 2.5.2, “QSYS2.FUNCTION_INFO view” on page 30.</td>
</tr>
<tr>
<td>QSYS2.FUNCTION_USAGE</td>
<td>View</td>
<td>This view contains function usage configuration details. For more information, see 2.5.3, “QSYS2.FUNCTION_USAGE view” on page 31.</td>
</tr>
<tr>
<td>QSYS2.GROUP_PROFILE_ENTRIES</td>
<td>View</td>
<td>This view contains one row for each user profile that is part of a group profile. For more information, see 2.5.4, “QSYS2.GROUP_PROFILE_ENTRIES view” on page 31.</td>
</tr>
<tr>
<td>QSYS2.SQL_CHECK_AUTHORITY()</td>
<td>UDF</td>
<td>This scalar function indicates whether the user is authorized to query the specified *FILE object. For more information, see 2.5.5, “SQL_CHECK_AUTHORITY() UDF procedure” on page 31.</td>
</tr>
<tr>
<td>QSYS2.SET_COLUMN_ATTRIBUTE()</td>
<td>Procedure</td>
<td>This procedure sets the SECURE attribute for a column so variable values used for the column cannot be seen in the database monitor or plan cache. For more information, see 2.4.2, “Database Monitor and Plan Cache variable values masking” on page 22.</td>
</tr>
</tbody>
</table>

2.5.1 QSYS2.USER_INFO view

The result table of the USER_INFO view contains columns that hold values similar to the Retrieve User Information (QSYRUSRI) API.

See the following website for more information about the column names, types, and information returned:

2.5.2 QSYS2.FUNCTION_INFO view

The FUNCTION_INFO view returns function usage identifier detail built on the data that is returned by the Retrieve Function Information (QSYRTVFI or QsysRetrieveFunctionInformation) API.
Any user can examine the function usage identifiers. Each row describes the function usage defined on the system.

See the following website for more information about the column names, types, and information returned:

2.5.3 QSYS2.FUNCTION_USAGE view

The FUNCTION_USAGE view contains function usage configuration details. The detail returned corresponds to the data returned by the Retrieve Function Usage Information (QSYRTFUI or QsyRetrieveFunctionUsageInfo) API.

Only users with *SECADM special authority can examine the function usage configuration details that are returned with this view. Users without *SECADM authority who attempt to reference this view get an SQLCODE -443 error.

See the following website for more information about the column names, types, and information returned:

2.5.4 QSYS2.GROUP_PROFILE_ENTRIES view

The GROUP_PROFILE_ENTRIES view contains one row for each user profile that is part of a group profile. Both group profile (GRPPRF) and supplemental group profile (SUPGRPPRF) information is considered for each user profile.

Table 2-6 describes the columns in the QSYS2.GROUP_PROFILE_ENTRIES view.

Table 2-6 Columns returned by QSYS2.GROUP_PROFILE_ENTRIES

<table>
<thead>
<tr>
<th>Column Name</th>
<th>System Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP_PROFILE_NAME</td>
<td>GROUPNAME</td>
<td>VARCHAR(128)</td>
<td>Group profile name</td>
</tr>
<tr>
<td>USERPROFILE_NAME</td>
<td>USERNAME</td>
<td>VARCHAR(128)</td>
<td>User profile name</td>
</tr>
<tr>
<td>USER_TEXT</td>
<td>USER_TEXT</td>
<td>VARCHAR(50)</td>
<td>User profile text description</td>
</tr>
</tbody>
</table>

Note: A *USRPRF is considered to be a group profile when at least one user profile refers to it by name in the GRPPRF or SUPGRPPRF fields.

2.5.5 SQL_CHECK_AUTHORITY() UDF procedure

The SQL_CHECK_AUTHORITY scalar function returns an indication of whether the user is authorized to query the specified *FILE object.

This function has two parameters, library name and file name, which specify the *FILE object.
Following is the syntax of QSYS2.SQL_CHECK_AUTHORITY:

```plaintext
>>-SQL_CHECK_AUTHORITY--(--library-name--,--file-name--)--><
```

One of the following values is returned:

- 0: The user running this function does not have authority to query the file, the object is not a *FILE object, or the object does not exist.
- 1: The user is authorized to query the file.

2.6 Real-time database activity monitoring

Databases are the primary target for external hackers and insider attacks because databases contain an organization’s most valuable information, including customer records, payment card data, and financial results.

Existing security solutions, such as intrusion detection systems (IDSs), lack knowledge about the database protocols and structures, which is required to detect inappropriate activities. For more information about IDS support on IBM i, go to the following website:

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp

Today, an increasing number of industries ask for compliance mandates that generally require organizations to detect, record, and remediate unauthorized access or changes to sensitive data, including access or changes by privileged users, while providing a secure audit trail to validate compliance.

Information security and database managers struggle to implement these types of controls, especially regarding monitoring privileged users. Heightened focus on business reputation risk and sensitive data protection is also driving closer internal scrutiny of controls. The result is clear: Providing effective database security and compliance is not easy.

DB2 for i includes several enhancements to help administrators in this effort.

2.6.1 Enhanced audit capability for STRDBMON

The database monitor is a valuable tool for database performance analysis, but you can use its capabilities for real-time logging of database auditing and compliance reinforcement. The database monitor can generate significant processor and disk storage impact, so a targeted approach to using the Start Database Monitor (STRDBMON) command is always preferred.

The following sections discuss more logging and prefiltering capabilities that are supplied for the database monitor.

Prefilter: The term prefilter is related to filtering capabilities for a database monitor in the recording process and the term filter is applied to the selection criteria in the collected data.

Prefilters to logging RUNSQL, RUNSQLSTM, and STRSQL

The database monitor, started by Start Database Monitor (STRDBMON), can track Run SQL (RUNSQL), Run SQL Statement (RUNSQLSTM), or Start SQL Interactive Session (STRSQL) activity that is connected to a specific user profile, application, program ID, accounting code, or relational database.
Table 2-7 shows the prefilters available in the Start Database Monitor (STRDBMON) command and the corresponding client registers. Database monitor entries are created for SQL statements that are run where the client special register matches the corresponding prefilter value.

Table 2-7 STRDBMON prefilter options for SQL-related CL commands

<table>
<thead>
<tr>
<th>Client register</th>
<th>STRDBMON prefilter parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account string (ACCTNG)</td>
<td>FTRCLTACG</td>
<td>The user's accounting code (the ACGCDE parameter on the User Profile object)</td>
</tr>
<tr>
<td>Application Name (APPLNAME)</td>
<td>FTRCLTAPP</td>
<td>START SQL INTERACTIVE SESSION or RUN SQL statements</td>
</tr>
<tr>
<td>Program name (PROGRAMID)</td>
<td>FTRCLTPGM</td>
<td>STRSQL, RUNSQLSTM, or RUNSQL</td>
</tr>
<tr>
<td>Client User (USERID)</td>
<td>FTRCLTUSR</td>
<td>The user's name</td>
</tr>
<tr>
<td>Workstation (WRKSTNNAME)</td>
<td>FTRCLTWS</td>
<td>The DB2 for i database name</td>
</tr>
</tbody>
</table>

There is support for a client-specific filter using the COMMENT parameter in Start Database Monitor (STRDBMON). However, this support is limited to only one parameter, which is a character value up to 50 characters long.

Figure 2-7 shows the filter parameters for STRDBMON.

```
Start Database Monitor (STRDBMON)

Type choices, press Enter.

Filter by query governor .... FTRQRYGOVR *NONE
Filter by accounting string .. FTRCLTACG *NONE

Filter by application name ... FTRCLTAPP *NONE

Filter by program name ....... FTRCLTPGM *NONE

Filter by client user ID ....... FTRCLTUSR *NONE

Filter by work station ......... FTRCLTWS *NONE

More...

F3=Exit  F4=Prompt  F5=Refresh  F12=Cancel  F13=How to use this display
F24=More keys
Messages pending on other displays.
```

Figure 2-7 STRDBMON filter parameters
Prefilter for SQLCODEs
The Start Database Monitor (STRDBMON) command is enhanced with a prefilter parameter, FTRSQLCODE, for the results of SQL statements.

There are several prefilters by SQLCODE (FTRSQLCODE) parameter values:

- **NONE** Filtering by SQLCODE is not specified.
- **NONZERO** Any non-zero SQLCODE.
- **ERROR** SQLCODE < 0. The SQL statement has failed.
- **WARN** SQLCODE > 0. A warning condition is indicated.
- **<user specified SQLCODE>** This is your specified SQLCODE.

Example 2-5 shows how to use the FTRSQLCODE parameter to collect QQRID=1000 DBMON records for all instances of SQL failures due to lock contention.

Example 2-5 Using the FTRSQLCODE parameter

```
STRDBMON OUTFILE(DBMONLIB/LOCKMON) JOB(*ALL/*ALL/QZDASOINIT) TYPE(*DETAIL)
FTRSQLCODE(-913)
```

For more information about SQLSTATEs and SQLCODEs for DB2 for IBM i 7.1, see the SQL messages and codes topic in the IBM i 7.1 Knowledge Center:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzala/rzalakickoff.htm

Extending the IP address prefilter to work with non-database clients
Before this enhancement was introduced, support for the Start Database Monitor (STRDBMON) command Filter by IP address (FTRINTNETA) parameter was restricted for work against database initiated connections. This enhancement allows a Filter by IP address to work as a database monitor prefilter against many non-database initiated connections.

Note: TELNET connections are not recognized by this parameter.

Extending support to prefilter against group profiles
The Start Database Monitor (STRDBMON) command has been enhanced to recognize group profile names when you use the FTRUSER(name) command parameter.

When you determine whether the current user’s SQL must be captured in the SQL Performance Monitor (database monitor) output, the command now determines whether the user is a member of the group.

Wildcard group profile names are allowed. For example, if you specify FTRUSER(ADMIN*) and both ADMINGRP and ADMINGRP2 are group profiles, any SQL run by users in either group is captured.

SQL Performance Monitor interface for “User” can be used to specify the group profile.

Identifying Query/400 users
This enhancement delivers a method to easily identify Query/400 users and the queries run. You can use this tool to audit sensitive data consumption and determine queries usage and reporting modernization strategies.

For more information, see 5.5.9, “STRDBMON pre-filtering of QUERY/400 command usage” on page 267.
2.6.2 SQL statement auditing with less resource consumption

Implementing Start Database Monitoring (STRDBMON) through a viewing mechanism enables faster SQL statement auditing.

Two view mechanisms can be used to start a database performance monitor on a view, saving both performance and storage.

Use input only columns to capture only a subset of the monitor data in an underlying table.

In DB2 for i, the database performance monitor table has 276 columns. Assume that an auditing application is interested in collecting only the SQL statement, the variable values, and the information that identifies the user and job information. This information is contained in only 20 out of the 276 columns (the columns QQRID, QQJFLD, and QQI5 must also be added to process the resulting view).

To use the first view mechanism, complete the following steps:

1. Create a table with the 23 columns that you want to view, as shown in Example 2-6. QAQQDBMN is the model monitor file that is included with DB2 for i.

 Example 2-6 Create a table with 23 columns
   ```sql
   CREATE TABLE mjatst.looptable4 AS (SELECT 
   QQSTIM, QQETIM, QQC81, QQ1000L, QQ8CL81,
   QC5001, QC3001, QC3002, QC3003, QC3005,
   QC3006, QQJOB, QQUSER, QQJNUM, QC102,
   QQ9, QC104, QC103, QC183, QC5MIN2, 
   QQRID, QQI5, QQJFLD
   FROM QAQQDBMN) WITH NO DATA;
   ```

2. Create a view that has 276 columns that match the database monitor table columns, as shown in Example 2-7. Only the 23 wanted columns are input/output columns; the others are input only columns (those columns that are just CAST as NULL). The columns must have the same attributes and be in the same order as in the base database monitor table.

 Example 2-7 Create a table with 276 columns
   ```sql
   CREATE VIEW mjatst.loopview4 AS SELECT 
   QQRID AS "Record ID", CAST(NULL AS TIMESTAMP) AS QQTIME,
   QQJFLD AS "Join Field", CAST(NULL AS CHAR(18)) AS QQRBN,
   CAST(NULL AS CHAR(8)) AS QQSYS, QQJOB AS "Job Name",
   QQUSER AS "Job User", QQJNUM AS "Job Number",
   CAST(NULL AS DECIMAL(15,0)) AS QQUCNT, CAST(NULL AS VARCHAR(100)) AS QQUDEF ,
   CAST(NULL AS DECIMAL(15,0)) AS QQSTN, CAST(NULL AS DECIMAL(15,0)) AS QQDTN ,
   CAST(NULL AS DECIMAL(15,0)) AS QQDTL, CAST(NULL AS DECIMAL(15,0)) AS QQMATN ,
   CAST(NULL AS DECIMAL(15,0)) AS QQMATL, CAST(NULL AS CHAR(10)) AS QTILN ,
   CAST(NULL AS CHAR(10)) AS QQTFN, CAST(NULL AS CHAR(10)) AS QQTMN ,
   CAST(NULL AS CHAR(10)) AS QQPTLN, CAST(NULL AS CHAR(10)) AS QQPTMN ,
   CAST(NULL AS CHAR(10)) AS QQPTMN, CAST(NULL AS CHAR(10)) AS QQI1NM ,
   CAST(NULL AS CHAR(10)) AS QQI1MN, CAST(NULL AS CHAR(10)) AS QQNLNM ,
   QQSTIM AS "Start Time", QQETIM AS "End Time",
   CAST(NULL AS CHAR(1)) AS QQKP, CAST(NULL AS CHAR(1)) AS QQKS ,
   CAST(NULL AS DECIMAL(15,0)) AS QQTOR, CAST(NULL AS DECIMAL(15,0)) AS QQTMPR ,
   CAST(NULL AS DECIMAL(15,0)) AS QQJNP, CAST(NULL AS DECIMAL(15,0)) AS QQEPT ,
   CAST(NULL AS CHAR(1)) AS QQIDX ,
   ```
CAST(NULL AS DECIMAL(15,0)) AS QVFILES, CAST(NULL AS DECIMAL(15,0)) AS QVP151,
CAST(NULL AS DECIMAL(15,0)) AS QVP152, CAST(NULL AS DECIMAL(15,0)) AS QVP153,
CAST(NULL AS DECIMAL(15,0)) AS QVP154, CAST(NULL AS DECIMAL(15,0)) AS QVP155,
CAST(NULL AS DECIMAL(15,0)) AS QVP156, CAST(NULL AS DECIMAL(15,0)) AS QVP157,
CAST(NULL AS DECIMAL(15,0)) AS QVP158, CAST(NULL AS DECIMAL(15,0)) AS QVP159,
CAST(NULL AS DECIMAL(15,0)) AS QVP15A, CAST(NULL AS DECIMAL(15,0)) AS QVP15B,
CAST(NULL AS DECIMAL(15,0)) AS QVP15C, CAST(NULL AS DECIMAL(15,0)) AS QVP15D,
CAST(NULL AS DECIMAL(15,0)) AS QVP15E, CAST(NULL AS DECIMAL(15,0)) AS QVP15F,
CAST(NULL AS CHAR(4)) AS QVC41, CAST(NULL AS CHAR(4)) AS QVC42,
CAST(NULL AS CHAR(4)) AS QVC43, CAST(NULL AS CHAR(4)) AS QVC44,
CAST(NULL AS CHAR(8)) AS QVC81, CAST(NULL AS CHAR(8)) AS QVC82,
CAST(NULL AS CHAR(8)) AS QVC83, CAST(NULL AS CHAR(8)) AS QVC84,
CAST(NULL AS CHAR(8)) AS QVC85, CAST(NULL AS CHAR(8)) AS QVC86,
CAST(NULL AS CHAR(8)) AS QVC87, CAST(NULL AS CHAR(8)) AS QVC88,
CAST(NULL AS CHAR(10)) AS QVC101, QVC102 AS "User Name",
CAST(NULL AS CHAR(10)) AS QVC103, CAST(NULL AS CHAR(10)) AS QVC104,
CAST(NULL AS CHAR(10)) AS QVC105, CAST(NULL AS CHAR(10)) AS QVC106,
CAST(NULL AS CHAR(10)) AS QVC107, CAST(NULL AS CHAR(10)) AS QVC108,
CAST(NULL AS VARCHAR(128)) AS QVC1281, CAST(NULL AS VARCHAR(128)) AS QVC1282,
QVC3001 AS "Client Application Name", QVC3002 AS "Client User ID",
QVC3003 AS "Client Workstation Name", CAST(NULL AS VARCHAR(300)) AS QVC3004,
QVC3005 AS "Client Accounting", QVC3006 AS "Client Program Name",
CAST(NULL AS VARCHAR(300)) AS QVC3007, CAST(NULL AS VARCHAR(300)) AS QVC3008,
QVC5001 AS "Interface", CAST(NULL AS VARCHAR(500)) AS QVC5002,
CAST(NULL AS VARCHAR(1000)) AS QVC1000, CAST(NULL AS VARCHAR(1000)) AS QVC1000,
CAST(NULL AS INTEGER) AS QQINT01, CAST(NULL AS INTEGER) AS QQINT02,
CAST(NULL AS INTEGER) AS QQINT03, CAST(NULL AS INTEGER) AS QQINT04,
CAST(NULL AS SMALLINT) AS QQSMINT1, QQSMINT2 AS "IP Port Number",
CAST(NULL AS SMALLINT) AS QQSMINT3, CAST(NULL AS SMALLINT) AS QQSMINT4,
CAST(NULL AS SMALLINT) AS QQSMINT5, CAST(NULL AS SMALLINT) AS QQSMINT6,
QQ1000L AS "Statement Text", CAST(NULL AS CHAR(1)) AS QFC11,
CAST(NULL AS CHAR(1)) AS QFC12, CAST(NULL AS CHAR(1)) AS QFC13,
CAST(NULL AS CLOB(2G)) AS QQCLOB2, CAST(NULL AS CHAR(1)) AS QFC14,
CAST(NULL AS CHAR(1)) AS QFC15, CAST(NULL AS CHAR(1)) AS QFC16,
CAST(NULL AS CLOB(2G)) AS QQCLOB3, CAST(NULL AS CHAR(1)) AS QFC17,
QQBDCLOB AS "Variable Values", CAST(NULL AS CHAR(1)) AS QFC1A,
CAST(NULL AS CHAR(1)) AS QFC1B, CAST(NULL AS CHAR(1)) AS QFC1C,
CAST(NULL AS NCLOB(1G)) AS QQBDCLOB2, CAST(NULL AS CHAR(1)) AS QFC1D,
CAST(NULL AS CHAR(1)) AS QFC1E, CAST(NULL AS CHAR(1)) AS QFC1F,
CAST(NULL AS BLOB(2G)) AS QQBLOB1, CAST(NULL AS CHAR(1)) AS QXC11,
CAST(NULL AS CHAR(1)) AS QXC12, CAST(NULL AS CHAR(1)) AS QXC13,
CAST(NULL AS CHAR(1)) AS QXC14, CAST(NULL AS CHAR(1)) AS QXC15,
CAST(NULL AS CHAR(1)) AS QXC16, CAST(NULL AS CHAR(1)) AS QXC17,
CAST(NULL AS CHAR(1)) AS QXC18, CAST(NULL AS CHAR(1)) AS QXC19,
CAST(NULL AS CHAR(1)) AS QXC1A, CAST(NULL AS CHAR(1)) AS QXC1B,
CAST(NULL AS CHAR(1)) AS QXC1C, CAST(NULL AS CHAR(1)) AS QXC1D,
CAST(NULL AS CHAR(1)) AS QXC1E, CAST(NULL AS CHAR(2)) AS QXC21,
CAST(NULL AS CHAR(2)) AS QXC22, CAST(NULL AS CHAR(2)) AS QXC23,
CAST(NULL AS CHAR(2)) AS QXC24, CAST(NULL AS CHAR(2)) AS QXC25,
CAST(NULL AS CHAR(2)) AS QXC26, CAST(NULL AS CHAR(2)) AS QXC27,
CAST(NULL AS CHAR(2)) AS QXC28, CAST(NULL AS CHAR(2)) AS QXC29,
CAST(NULL AS CHAR(4)) AS QXC41, CAST(NULL AS CHAR(4)) AS QXC42,
CAST(NULL AS CHAR(4) FOR BIT DATA) AS QXC43, CAST(NULL AS CHAR(4)) AS QXC44,
CAST(NULL AS INTEGER) AS QQINT05 , CAST(NULL AS INTEGER) AS QQINT06 ,
CAST(NULL AS INTEGER) AS QQINT07 , CAST(NULL AS INTEGER) AS QQINT08 ,
CAST(NULL AS INTEGER) AS QQINT09 , CAST(NULL AS INTEGER) AS QQINT0A ,
CAST(NULL AS INTEGER) AS QQINT0B , CAST(NULL AS INTEGER) AS QQINT0C ,
CAST(NULL AS INTEGER) AS QQINT0D , CAST(NULL AS INTEGER) AS QQINT0E ,
CAST(NULL AS INTEGER) AS QQINT0F , CAST(NULL AS SMALLINT) AS QQSMINT7 ,
CAST(NULL AS SMALLINT) AS QQSMINT8 , CAST(NULL AS SMALLINT) AS QQSMINT9 ,
CAST(NULL AS SMALLINT) AS QQSMINTA , CAST(NULL AS SMALLINT) AS QQSMINTB ,
CAST(NULL AS SMALLINT) AS QQSMINTC , CAST(NULL AS SMALLINT) AS QQSMINTE ,
CAST(NULL AS SMALLINT) AS QQSMINTF
FROM MJATST.looptable4
RCDFMT QQQDBMN;

3. Start the database monitor view by running the following command:
 STRDBMON mjatst.loopview4;

 By enhancing the database product to allow this view, any data that is written to the database
 performance monitor view results in only 23 columns in the underlying base table
 (mjatst.looptable4). The storage that is used with this technique is a small fraction of a
 traditional monitor, so the performance is better. The resulting smaller table contains only the
 information necessary for auditing.

 For the second view mechanism, use an INSTEAD OF trigger on the view to immediately
 process a row of monitor data without storing any data.

 Complete the following steps:

 1. Create a view using the same technique that is described for the first view mechanism.
 The view can be simplified because in this example, no data is inserted into a table. Run
 the following commands:
 CREATE TABLE mjatst.looptable5 AS (SELECT * FROM qaqqdbmn) WITH NO DATA;
 CREATE VIEW mjatst.loopview5 AS SELECT * FROM mjatst.looptable5;

 2. Create an INSTEAD OF trigger:
 CREATE TRIGGER instead5 INSTEAD OF INSERT ON loopview5
 FOR EACH ROW MODE DB2ROW
 BEGIN ... this is the body of the trigger ... END;

 3. Start the database monitor using the view by running the following command:
 CL: STRDBMON mjatst/loopview5;

 By enhancing the database product to allow this view, any rows that are written to the
 database monitor file are passed directly to the INSTEAD OF trigger so no monitor storage is
 used.
Comparison of the view mechanisms and the traditional database monitor

Figure 2-8 provides a comparison of the elapsed time and the storage that is used by the traditional database monitor and the two view techniques.

For the view with an INSTEAD OF trigger, the elapsed time and the amount of storage that is used is under the control of the INSTEAD OF trigger. For example, in Figure 2-8, the INSTEAD OF trigger sends the data to another system. This action takes some processing time, but no persistent storage is used on the system that is monitored.

2.6.3 InfoSphere Guardium database activity monitoring support for DB2 for i

IBM InfoSphere® Guardium® is an enterprise information database audit and protection solution that helps enterprises protect and audit information across a diverse set of relational and non-relational data sources. These sources include Oracle, Teradata, IBM IMS™, VSAM, Microsoft Sharepoint, IBM Netezza®, DB2 for z/OS®, and DB2 for Linux, UNIX, and Windows.

With InfoSphere Guardium V9.0, DB2 for i can now be included as a data source. You can use this configuration, plus the database security enhancements included in DB2 for i, to monitor database accesses from native interfaces and through SQL in real time without any changes to databases or applications, or impacting performance.

Introduction to InfoSphere Guardium

The IBM InfoSphere Guardium solution evolved to address the particular needs of organizations that must implement more automated and auditable data security practices.

InfoSphere Guardium continuously monitors database transactions through lightweight software probes that are installed on the database server (or file share or Microsoft Sharepoint). These probes (called software taps (S-TAPs)) monitor all database transactions, including those transactions of privileged users. The S-TAPs also do not require any changes to the database or its applications.

The probes forward transactions to a hardened collector in the network, where they are compared to previously defined policies to detect violations. The system can respond with
various policy-based actions, including generating an alert, and for some databases, can block the transaction in real time. (Blocking is not currently available for DB2 for i database activity monitoring.)

InfoSphere Guardium supports a various deployments of large and geographically distributed infrastructures.

Figure 2-9 shows a typical deployment of InfoSphere Guardium database activity monitoring.

![Figure 2-9 InfoSphere Guardium database activity monitoring](image)

New InfoSphere Guardium support for IBM i

InfoSphere Guardium support for IBM i monitoring was previously available through three main methods:

- Import of audit journal entries (QSYS/QAUDJRN) and subsequent analysis and reporting
 Although the audit journal support in IBM i provides good support of auditable events, the amount of detail in the audit entries is minimal compared to other Guardium database product support. For example, SQL statements and variable values are not audited in QAUDJRN. Also, because the support requires an export and import, the support is not optimal as a real-time solution.

- Import of database monitor entries and subsequent analysis and reporting
 A database monitor (STRDBMON) can be used to capture SQL statements and write them to a database table. Then, the table must be imported into the Guardium collector. Although this method captures SQL statements, variables, and more, the database monitor support is primarily designed for performance analysis. The result is that a significant amount of data that is only interesting in a performance analysis context is captured resulting in the consumption of significant storage and processing resources. Also, because the support requires an import, the support is not optimal as a real-time solution. This method does not provide any support for native access to database objects.

- Network monitoring to capture SQL access
 Although this method can capture SQL statements in real time that flowed over a network, any SQL statements run in programs, procedures, functions, and so on, on the IBM i server cannot be monitored. This method does not provide any support for native access to database objects.
InfoSphere Guardium V9.0

The new method that is introduced in Version 9.0 of InfoSphere Guardium provides an integrated solution that overcomes the limitations of the previous methods:

- Any SQL access, whether it is initiated on a client or the IBM i server, can be captured and audited.
- Any native access that is captured in the audit journal can also be captured and sent to the InfoSphere Guardium collector.
- Both SQL access and native access are sent to the InfoSphere Guardium collector in real time.
- Much more detail is captured than is available in the audit journal, including SQL statements, variable values, client special registers, interface information, users, jobs, TCP/IP addresses, and ports. However, unlike the traditional database monitoring, only data that is interesting in a security context is captured and sent to the InfoSphere Guardium collector. This situation reduces the storage and resource consumption that is necessary.
- Filtering can be specified on the IBM i server to capture only the information that is required by auditors. For example, it is simple to set up auditing of any SQL or native access that is performed by privileged users.
- The data that is collected for InfoSphere Guardium is never written to disk on the IBM i server, providing a level of secure logging.

The new method is primarily for auditing database access. If you require auditing on a greater variety of non-database object access, the existing IBM i auditing support of exporting and importing the audit journal can still be used.

More information about the capabilities of InfoSphere Guardium can be found on the following website:

http://www-01.ibm.com/software/data/guardium/

2.7 Security enhancements for printing

Several security enhancements were introduced in IBM i 7.1 for printing. For information about security enhancements for printing, see 10.3.2, “New QIBM_QSP_SECURITY exit point and formats” on page 455.

2.8 TLS V1.1 and V1.2 support

IBM i now offers the support of TLS V1.1 and V1.2. For more information, see 9.4, “System SSL support for transport layer security version 1.2” on page 433.

Also, see the SSL concepts topic in the IBM i 7.1 Knowledge Center:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzain/rzainconcepts.htm
2.8.1 TLS V1.1 and V1.2 support for IBM HTTP Server for i

TLS V1.1 and V1.2 is also supported for IBM HTTPS Server for i.

For more information about how to configure this support, see 13.5, “IBM HTTP Server for i support for TLSv1.1 and TLSv1.2” on page 544.

2.9 Java security information

For Java security updates, see the following website:

For more information about Java for IBM i, see 15.7, “Java for IBM i 7.1” on page 598.

2.10 PowerSC Tools for IBM i

PowerSC™ Tools for IBM i are now offered by IBM as a service offering from IBM Systems Lab Services.

PowerSC tools for IBM i helps IBM i clients to ensure a higher level of security and compliance:

► Simplifying the management and measurement of security and compliance
► Reducing costs of security and compliance
► Reducing security exposures
► Improving audit capabilities to satisfy reporting requirements

Following are the IBM Systems Lab Services that are related to IBM i security:

► IBM i Security Assessment (iSAT)
An experienced IBM i consultant will collect and analyze data using PowerSC Tools for IBM i. The engagement results in a comprehensive report with findings and recommendations for improved compliance and security remediation.

► IBM i Single Sign On (SSO) Implementation
SSO improves user productivity and saves help desk costs. In this services engagement, an experienced IBM consultant will advise you on SSO options and provide implementation assistance on using the SSO suite components of the PowerSC Tools for IBM i.

► IBM i Security Remediation
An experienced IBM consultant will advise you on the best practices to address IBM i security and compliance issues. The consultant will provide remediation assistance on using the PowerSC Tools for IBM i.

► IBM i Encryption
An experienced IBM consultant will advise you on best practices to implement data encryption on IBM i using the PowerSC Tools for IBM i Encryption Suite. Tape encryption implementation services are also available.
Table 2-8 lists the PowerSC Toolkit for IBM i features with their functions and benefits.

<table>
<thead>
<tr>
<th>Tools/Feature</th>
<th>Function</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance Assessment and Reporting Tool</td>
<td>Daily compliance dashboard reports at LPAR, system, or enterprise level.</td>
<td>Enables compliance officer to demonstrate adherence to predefined security polices.</td>
</tr>
<tr>
<td>Privileged Access Control</td>
<td>Controls the number of privileged users.</td>
<td>Ensures compliance with industry guidelines on privileged users.</td>
</tr>
<tr>
<td>Secure Administrator for SAP</td>
<td>Manages and controls access to powerful SAP administrative profiles.</td>
<td>Eliminates sharing of SAP administrative profiles with enhanced security auditing.</td>
</tr>
<tr>
<td>Access Control Monitor</td>
<td>Monitors security deviations from application design.</td>
<td>Prevents user application failures due to inconsistent access controls.</td>
</tr>
<tr>
<td>Network Interface Firewall for IBM Exit Points</td>
<td>Controls access to exit point interfaces such as ODBC, FTP, RMTCMD, and so on.</td>
<td>Reduces threat of unauthorized security breach and data loss.</td>
</tr>
<tr>
<td>Audit Reporting</td>
<td>Consolidates and reduces security audit journal information.</td>
<td>Simplifies audit analysis for compliance officer and auditors.</td>
</tr>
<tr>
<td>Certificate Expiration Manager</td>
<td>Simplifies management of digital certificates expiration.</td>
<td>Helps operators prevent system outages due to expired certificates.</td>
</tr>
<tr>
<td>Password Validation</td>
<td>Enhances IBM i operating system protection with stricter password validation.</td>
<td>Enables security officers to ensure that user passwords are not trivial.</td>
</tr>
<tr>
<td>Single Sign On (SSO) Suite</td>
<td>Simplifies implementation of SSO and password synchronization.</td>
<td>Reduces password resets and simplifies user experience.</td>
</tr>
<tr>
<td>Encryption Suite</td>
<td>Simplifies implementation of cryptography using IBM i operating system capabilities.</td>
<td>Helps application developers meet data security standards and protect critical data.</td>
</tr>
</tbody>
</table>

For more information about PowerSC Tools for IBM i, see the PowerSC Tools for IBM i presentation available at the following website:

Backup and recovery

This chapter describes enhancements to the IBM i backup and recovery functions. This chapter describes the base operating system save and restore functions that are included in the IBM i operating system in 3.1, “New and enhanced system save and restore functions” on page 46.

After it describes the basics, this chapter describes the more advanced Backup Recovery and Media Services (BRMS) product in 3.2, “New and improved BRMS for IBM i functions” on page 50. This chapter then addresses the new BRMS functions and capabilities added to the IBM Navigator for i and the System Director products in 3.3, “BRMS enhancements to GUI and web interfaces” on page 84.

A list of references to more information about these topics is included at the end of the chapter.

This chapter includes the following sections:

- New and enhanced system save and restore functions
- New and improved BRMS for IBM i functions
- BRMS enhancements to GUI and web interfaces
- More resources
3.1 New and enhanced system save and restore functions

This section describes new and enhanced functions for the system save and restore functions in the IBM i 7.1 operating system. Topics include:

- Fast restore using tape position
- New ALWOBJDIF (*COMPATIBLE) restore option
- Enhanced save and restore limits
- Save While Active support for integrated VMware ESX servers
- Support for journal and journal receiver restore independence
- Miscellaneous enhancements

3.1.1 Fast restore using tape position

Fast restore using tape position is a new function that enables object restore to move to the location of a stored object on tape, thus saving time by minimizing searching for the object. You can use this function to restore a single object from a backup much more quickly. There are other scenarios where restoring multiple objects might benefit from this function.

Although restore time savings vary depending on the device, media format, and position of the object on tape, tests restoring the last object from a tape that contains 1.1 million IFS objects reduced object restore time from 22 minutes to less than 3 minutes.

Save operations now track the physical media position of each saved object. This media position is a 32 hex character field in the various save commands output files.

Restores commands have a new POSITION parameter, which is used to specify the hexadecimal position value that appeared in the output files that were previously mentioned. The following restore interfaces support the POSITION parameter:

- Restore Library (RSTLIB), Restore Object (RSTOBJ) and Restore IFS Object (RST) commands.
- QsrRestore and QSRRSTO application programming interfaces.
- QsrCreateMediaDefinition application programming interface to create a media definition for use by parallel restores.
- BRMS supports the POSITION parameter.

The default value for the POSITION parameter is special value named *FIRST, which restores using the current search from the beginning mode. When you use the POSITION (object location) parameter and value, you must also specify the SEQNBR parameter with the correct sequence number of the saved object.

In Example 3-1, the Restore Object (RSTOBJ) command restores the SYSTEMS file to the HARDWARE library. The saved object is sequence number 547 on the tape, the position of the file on tape is 00000000019049000000AB43009CA, and the tape device name is TAP01.

Example 3-1 RSTOBJ command that specifies the POSITION parameter

```
RSTOBJ OBJ(SYSTEMS)
  SAVLIB(HARDWARE)
  DEV(TAP01)
  OBJTYPE(*FILE)
  SEQNBR(547)
  POSITION(00000000019049000000AB43009CA)
```
3.1.2 New ALWOBJDIF (*COMPATIBLE) restore option

A new value, *COMPATIBLE, is added to the Allow Object Differences (ALWOBJDIF) parameter to make restores less confusing and less error-prone for database files.

Using ALWOBJDIF(*ALL) for database files is undesirable for the following reasons:
- When a file-level difference occurs, the original file is renamed and the saved file is restored.
- When a member level difference occurs, the existing member is renamed and the saved member is restored.

Because of the duplicated files and members, system resources are wasted and applications might produce unpredictable results. This situation leaves you with a perplexing choice between the renamed data or the restored data and leaves clean-up activities to perform.

For database objects, ALWOBJDIF(*COMPATIBLE) is equivalent to specifying ALWOBJDIF(*AUTL *OWNER *PGP *FILELVL), which allows the following differences:
- All authorization list differences.
- All ownership differences.
- All primary group differences.
- File level differences where file level and member levels are restored only when the format level identifiers of the file on media match format level identifiers of the file on the system. In brief, the file formats must match.

For non-database objects, ALWOBJDIF(*COMPATIBLE) performs like ALWOBJDIF(*ALL), which allows all object differences to be restored.

The *COMPATIBLE value for the ALWOBJDIF parameter is supported as follows:
- Restore Library (RSTLIB) and Restore Object (RSTOBJ) commands.
- Restore Object (QSRRSTO) API.
- Restore menu options that use RSTLIB and RSTOBJ commands.
- Restore Library using BRM (RSTLIBBRM), Restore Object using BRM (RSTOBJBRM), and Start Recovery using BRM (STRRCYBRM) commands.
- Save Restore Library (SAVRSTLIB), Save Restore Object (SAVRSTOBJ), and Save Restore Changed Objects (SAVRSTCHG) commands.

The following restore menu options now default to ALWOBJDIF(*COMPATIBLE) when you restore to another system:
- 21: Restore entire system
- 22: Restore system data only
- 23: Restore all user data

The Restore Licensed Program (RSTLICPGM) command now internally uses ALWOBJDIF(*COMPATIBLE), but does not include it on the command interface.

3.1.3 Enhanced save and restore limits

Before IBM i 7.1, database files that contained more than 16 MB of descriptive information could not be saved. This limitation was removed, and is the last known limitation for database file save and restore.
3.1.4 Save While Active support for integrated VMware ESX servers

IBM i Integrated Server Support is enhanced to provide Save While Active (SWA) support for integrated VMware ESX servers. Storage spaces for VMware ESX servers can now be saved from IBM i while the ESX server is active. This feature allows a concurrent save of ESX data without requiring the ESX server to be shut down or applications ended.

This function is available in SF99369 - IBM i integration with BladeCenter and System x Group PTF Level 6. For more information, see the IBM i integration with BladeCenter and System x website at:
http://www-03.ibm.com/systems/i/advantages/integratedserver/iscsi/solution_guide.html

3.1.5 Support for journal and journal receiver restore independence

Restore processing has been enhanced to allow the start of journaling to be deferred for database files, data areas, data queues, and libraries when the object or library is restored before the journal. After the journal is restored, the object that deferred start of journaling is reestablished and resumes journaling.

To use this feature, specify the Defer ID (DFRID) parameter on the restore operation. DFRID is an optional parameter on the Restore Library (RSTLIB), Restore Object (RSTOBJ), and Restore Object List API (QSRRSTO) commands.

In previous releases, the Defer ID parameter was used to defer the restore of views (logical files) and Materialized Query Tables (MQTs) that were restored before their based-on files.

There are two ways to use this function:

▶ To explicitly use this enhancement, the Restore Deferred Objects (RSTDFROBJ) command can be called directly using the same DFRID value that was used on the RSTOBJ or RSTLIB commands.

▶ Some restore operations are already configured to use Defer ID automatically. These operations use this improved journal processing with no change required by the user:
 – Base operating system: GO RESTORE option 21 or the RSTLIB command specifying *NONSYS or *ALLUSR for the Saved library (SAVLIB) parameter.
 – Backup, Recovery, and Media Services: STRRCYBRM and all other BRMS restore operations.

Note for BRMS users: If you were using the Recovery Order List to self-manage the order of a BRMS restore to compensate for journal dependencies, that control is no longer needed. Consider changing OVERRIDE(*YES) and RCYORDLST(<user-specified-restore-order>) to RCYORDLST(*NONE).

The following are journal restore considerations:

▶ This enhancement applies to database file, data area, data queue, library objects, or access paths that were explicitly journaled.

▶ If system-managed access-path protection (SMAPP) is being used, the access paths being protected by the system are implicitly journaled and not relevant to this topic.

▶ Journaling for an object resumes when the missing journal is restored or explicitly re-created followed by a call to RSTDFROBJ using the appropriate DFRID.
A new system file, QADBRSDFRJ, is used to track objects that defer start journaling. The file is created in the QRECOVERY library for SYSBAS and the QRCYyyyyy library for independent ASPs (IASP). One record is inserted into the file for each object that defers starting journaling.

The objects that defer start journaling are created. Because the objects are restored before resumption of journaling for the object, the restore and create journal entries for these objects are generated.

If a Defer ID is specified when restoring an object into a journaled library that has a *RESTORE inherit rule defined, the object was journaled at save time, and that journal does not exist on the system, the start of journaling is deferred for the object to the journal that the object was journaled to when it was saved.

If a Defer ID is specified when restoring an object into a library that contains a data area called QDFTJRN that has a *RSTOVRFJRN rule defined, the object attempts to automatically start journaling to the journal specified in the QDFTJRN data area. This occurs regardless of whether or not the object was journaled when it was saved or the journal target at save time. If the journal specified in the QDFTJRN data area does not exist, the start of journaling is deferred.

If a Defer ID is specified when restoring an object into a journaled library that has a *RSTOVRFJRN inherit rule defined, the object attempts to automatically start journaling to the journal being used by the library, regardless of whether or not the object was journaled when it was saved or the object's journal target at save time. For this scenario, the journal for the library exists and therefore deferred journaling does not apply.

3.1.6 Miscellaneous enhancements

There are numerous miscellaneous enhancements:

- Supported Save Target (TGTRLS) releases are V7R1M0, V6R1M0, and V5R4M0.
- SAVLIB and SAVCHGOBJ of the QUSRSYS library now perform RTVSYSINF and save the results.

 If the correct procedures are followed, this information is already saved. Often, this data is inadvertently not saved and cannot be recovered. This change ensures that the system information is saved for later recovery if needed.

 This enhancement is available through PTF SI34094 for V5R4 i5/OS and PTF SI34095 for IBM i 6.1.

- The system name is now included in the headers of the various output files and spool files.

- Save and restore menu options that place the system in a restricted state are enhanced to gracefully end TCP/IP servers, host servers, and TCP/IP before ending in a restricted state.

 Save menu options 21 (Save entire system), 22 (Save system data only), 23 (Save all user data), and 40 (Save all libraries other than the system library), and Restore menu options 21 (Restore entire system), 22 (Restore system data only), 23 (Restore all user data) and 40 (Restore all libraries other than the system library) now run the following commands before the ENDSBS SBS(*ALL) OPTION(*IMMED) command is issued:

 - ENDTCP SVR
 - ENDOHSTSVR
 - DLJOIN JOB(300)
 - ENDTCP
 - DLJOIN JOB(300)

 This enhancement is available through PTF SI35204 for IBM i 6.1.
Improved serviceability

Collection Services data is now collected for specific save/restore events.

Save/restore flight recorder enhancements include a larger default size of 5 MB, more entries to be logged, and the ability to adjust the size of the data.

To change the flight recorder size to 10 MB, run the following command:

```sql
CRTDTAARA DTAARA(QGPL/QSRFRSIZE) TYPE(*CHAR) LEN(4) VALUE('10')
```

In this example, the size is being changed to 10 MB. The QSRFRSIZE data area can be created in either the QTEMP or QGPL library.

- Libraries QPTFOBJ1 and QPTFOBJ2 have been restricted from save operations, much in the same fashion as QRPLOBJ and other system-type libraries. This applies to native OS commands as well as BRMS commands and control groups.

3.2 New and improved BRMS for IBM i functions

This section reviews new and improved functions that are part of the BRMS product:

- Support for Domino 8.5 Domino Attachment and Object Service (DAOS)
- Link list enhancements
- Support of more than 999,999 objects
- Start recovery using BRM (STRRCYBRM) command enhancements
- Recovery report enhancements
- Output file support for BRMS restores
- Ability to select Saved ASP on RSTLIBBRM and RSTOBJBRM commands
- Distributed backup support
- Maintenance enhancements
- Planning Media Movement report
- Improved clearing of volumes in *ERR status
- Protection of volumes that are marked for duplication
- Improved recovery times with new media position function
- BRMS support for the special value *COMPATIBLE for ALWOBJDIF
- Improved control with running non-BRMS saves
- RDX and BRMS
- Allowing volumes that are marked for duplication to be moved
- Support for expiration dates greater than year 2038
- Setting maximum size for BRMS flight recorders
- Using compression for BRMS save files
- Improving IFS save performance with the ASYNCBRING parameter
- Using STRMNTBRM to initialize media when it is expired
- Print Report using BRM (PRTRPTBRM) enhancements
- Support of relational database entries and fully-qualified domain names
- Duplicate Media using BRM (DUPMEDBRM) enhancements
- Support for simultaneous batch-mode DUPMEDBRM
- Ability to use save files in independent ASPs as targets for save operations
- Move media using BRM (MOVMEDBRM) allows for multiple locations
- Monitor Save While Active (MONSWABRM) functionality enhancement
- Improvements in online Domino save performance
- Restores of incrementally-saved objects allowed
- Miscellaneous BRMS enhancements
3.2.1 Support for Domino 8.5 Domino Attachment and Object Service (DAOS)

Domino Release 8.5 contains a new enhancement that is called the Domino Attachment and Object Service (DAOS). DAOS enables more efficient use of storage by reducing the number of redundant attachments by using a separate repository for a Domino server attachment.

Before DAOS, attachments were part of each Domino database (.nsf) file. If a large attachment is sent to 40 mail users, there are 40 occurrences, one in each mail file.

With DAOS, attachments that exceed a configured size are pulled out of the .nsf files and are placed as objects. In the example that is described in the previous paragraph, rather than one occurrence of the attachment being stored in each mail file, there is one NLO stored per Domino server, thus saving storage space.

BRMS is enhanced to handle the NLO objects as follows:

- During Online Domino backups, the presence of NLO objects is determined and are automatically saved at the end of the SAVDOMBRM backups. No BRMS changes are necessary.
- A full save includes the NLO objects.
- An incremental save includes the new and changed NLO objects since the last full save.

BRMS DAOS support was made available through PTFs for V6R1 (SI34918) and V5R4 (SI31916).

When you configure DAOS on Domino servers, be careful with the configuration of attachment sizes that are externalized into NLOs. If you select a small size, many NLO objects can be created, each of which is an IFS object that can significantly lengthen the IFS backup time. The default is 4096, but consider using 1,000,000 or larger.

DAOS references

The following references provide more information about DAOS:

- DAOS Quick Start Guide:
- DAOS Best Practices:
- DAOS Estimator:
- BRMS Online Lotus Server Backup Reference:
 http://www-03.ibm.com/systems/i/support/brms/domdaos.html

3.2.2 Link list enhancements

BRMS has enhanced link lists for ease of use and to ensure complete backups.

The QIBMLINK link list for IBM IFS directories is now automatically added to the supplied system backup control group *SYSGRP for new installations only. In V5R4 i5/OS and IBM i 6.1, QIBMLINK existed, but was not automatically added to *SYSGRP. Add QIBMLINK manually to *SYSGRP in existing installations. QIBMLINK is used to save system IFS files and directories.
List QIBMLINK includes the following directories:

- /QIBM/ProdData
- /QOpenSys/QIBM/ProdData

The QALLUSRLNK link list was added in IBM i 7.1. QALLUSRLNK is used to save user IFS directories and files. QALLUSRLNK is used with the QIBMLINK link list. QALLUSRLNK omits the following directories:

- /QSYS.LIB
- /QDLS
- /TMP/BRMS
- /QIBM/ProdData
- /QOpenSys/QIBM/ProdData

Usage of QIBMLINK followed by QALLUSRLNK enables more granularity than the *LINK control group entry and ensures that IBM directories are restored before user directories if a system restore is necessary. The usage of the QALLUSRLNK link list with the QIBMLINK link list also avoids the duplication of saved data that occurs with the combination of using QIBMLINK and *LINK.

3.2.3 Support of more than 999,999 objects

To support more than 999,999 objects, BRMS has an enhanced WRKMEDIBRM panel and QP1ARCY recovery report.

The WRKMEDIBRM command previously could not show more than 999,999 objects in the saved objects field. In IBM i 7.1, if more than 999,999 objects or files are saved in a single library or save command, BRMS lists the actual number rather than 999,999 objects on the WRKMEDIBRM Object Detail panel.

Figure 3-1 shows a WRKMEDIBRM Object Detail panel. The circled field shows a saved item with more than 999,999 objects.

![Figure 3-1 WRKMEDIBRM Object Detail panel with more than 999,999 objects](image)

The BRMS recovery report QP1ARCY previously could not show more than 999,999 in the saved objects column. In IBM i 7.1, if more than 999,999 objects or files are saved in a single library or save command, BRMS lists the actual number, rather than 999,999 objects on the BRMS recovery report QP1ARCY.
Figure 3-2 shows an excerpt of the BRMS recovery report. The circled data shows greater than 999,999 objects were saved for the *LINK item.

3.2.4 Start recovery using BRM (STRRCYBRM) command enhancements

The STRRCYBRM command was enhanced to use the Defer ID function available for out-of-order restore of specific types of objects and their associated journals. For more information about the Defer ID function, see 3.1.5, “Support for journal and journal receiver restore independence” on page 48.

Additionally, the STRRCYBRM command was enhanced to override specific recovery elements so that they use another time period. This process requires that the override recovery element (OVERRIDE) parameter is set to *YES. This action affects the ACTION parameter values of *REPORT and *RESTORE.

The following recovery elements can be selected for override:

- **ALLSYS**: This element specifies that you want to recover all the system data, which includes *SAVSYS, *SECDTA, and *SAVCFG.
- **SAVSYS**: This element specifies that you want to recover the operating system that is based on the BRMS media content information.
- **SECDTA**: This element specifies that you want to recover the security data.
- **SAVCFG**: This element specifies that you want to recover the configuration data.

The STRRCYBRM command keywords that enable overriding recovery elements are as follows:

- **OVERRIDE**: This keyword specifies whether you want to use another time period for a specific recovery element.
 - **NO**: This keyword indicates that you do not want to specify another date and time range for a specific recovery element. Recovery elements and overrides are ignored if specified.
 - **YES**: This keyword indicates that you want to specify another date and time range for a specific recovery element.
RCYELEM: This keyword specifies a recovery element and its override time period. You can specify as many as three sets of them. Each set has the following parameters:

- Recovery element:
 - *ALLSYS: This element specifies that you want to recover the entire system using an override. If this element is selected, you cannot specify other recovery elements.
 - *SAVSYS: This element specifies that you want to recover the operating system using an override.
 - *SECDTA: This element specifies that you want to recover the security data using an override.
 - *SAVCFG: This element specifies that you want to recover the configuration data using an override.

- Beginning time: This parameter specifies the beginning time at which or after recovery items are included. Any items that are created before the specified time and date are not included in the items that are selected for recovery.
 This parameter uses the BRMS standard methods for specifying times.

- Beginning date: This parameter specifies the beginning date on or after which the recovery items must be saved. Any entries that are saved before the specified date are not included in the recovery.
 This parameter uses the BRMS standard methods for specifying dates.

- Ending time: This parameter specifies the ending time before which recovery items are included. Any items that are created after the specified time and date are not included in the recovery items that are selected for recovery.
 This parameter uses the BRMS standard methods for specifying times.

- Ending date: This parameter specifies the ending date on which or before which the recovery items must be saved. Any recovery items that are created after the specified date are not included in the recovery operation.
 This parameter uses the BRMS standard methods for specifying dates.

In Example 3-2, the STRRCYBRM command selects all restore items that are found regardless of time, except for the operating system restore items, which select nothing newer than 6 p.m. on 03/01/2010 because of the *SAVSYS override.

Example 3-2 STRRCYBRM command using recovery element override of *SAVSYS

```
STRRCYBRM PERIOD((*AVAIL *BEGIN) (*AVAIL *END))
  OVERRIDE(*YES)
  RCYELEM((*SAVSYS ((*AVAIL *BEGIN) ('18:00:00' '03/01/10'))))
```

In Example 3-3, the STRRCYBRM command selects all restore items found up to and including 03/01/2010, except for security data and configuration data, which is restored through the current date.

Example 3-3 STRRCYBRM command using recovery element override of *SECDTA and *SYSCFG

```
STRRCYBRM PERIOD((*AVAIL *BEGIN) (*AVAIL '03/01/10'))
  RCYELEM((*SECDTA ((*AVAIL *BEGIN) (*AVAIL *END)))
  (*SYSCFG ((*AVAIL *BEGIN) (*AVAIL *END))))
```
When overrides are specified, the recovery report QP1ARCY has an attention block that notes the override, which is an indicator to you that the latest saved data is not being used, as shown in Figure 3-3.

![Figure 3-3 BRMS recovery report with override attention block](image)

3.2.5 Recovery report enhancements

The “Verify System Information” step in the recovery report is updated to include new instructions to include the Update System Information (UPDSYSINF) command now that the system information is now saved with the QUSRBRM library. The new instructions are in the red circled area of the recovery report excerpt that is shown in Figure 3-4.

![Figure 3-4 BRMS recovery report with new UPDSYSINF instructions](image)
The “Restoring User Profiles” step is updated to include the new Allow Object Differences *COMPATIBLE value, replacing the *ALL value of previous releases, as shown in the red circle in Figure 3-5.

Figure 3-5 BRMS recovery report updates for support of ALWOBJDIF(*COMPATIBLE) special value

3.2.6 Output file support for BRMS restores

IBM i 7.1 BRMS supports the option to specify an output file when restoring data is saved through BRMS. The *OUTFILE value can be specified with the OUTPUT parameter in these functions:

- BRMS recovery policy

Figure 3-6 shows the third panel of the Change Recovery Policy function.

Figure 3-6 OUTPUT support parameters in the BRMS Change Recovery Policy function
Note the following information in the red box in Figure 3-6 on page 56:

The new “Output options for recoveries” section:

- The new “Output” parameter
- The new “File to receive output” and “Library” fields
- The new “Output member options” fields

The new “Output options for directory object recoveries” section:

- The new “Output” parameter
- This parameter uses IFS directory syntax for the output field.

BRMS Restore commands

- Restore Library using the BRM (RSTLIBBRM) command
- Restore Object using the BRM (RSTOBJBRM) command
- Restore (IFS) Object using the BRM (RSTBRM) command

Figure 3-7 shows the new output keywords of the RSTLIBBRM command. The RSTOBJBRM command is not shown because the keywords are identical. Note the following items in the red box:

- The new OUTPUT keyword
- The new OUTFILE keyword
- The new OUTMBR keyword

The example in Figure 3-7 places the restore output in member RS03012010 of the LIBS file in the RESTORE library.

![Image](image-url)

Figure 3-7 RSTLIBBRM command panel with new output keywords

- In the recovery defaults of the Work with Media Information (WRKMEDIBRM) command.
 The WRKMEDIBRM recovery defaults apply only to the current session and are not permanent.
The following sequence of `WRKMEDIBRM` panels opens the Recovery Defaults panel, which contains the new output parameters. From the Work with Media Information (`WRKMEDIBRM`) panel, select option 7 (Restore) for the library to be restored, as shown in Figure 3-8.

```
Work with Media Information

Position to Date . . . . . .

Type options, press Enter.
2=Change  4=Remove  5=Display  6=Work with media  7=Restore
9=Work with saved objects ...

Saved        Save       Save       Save       Parallel       File       Expire
Opt Item     Date       Time       Type       Devices       Serial       Sequence       Date
-   QIJS       4/03/10   2:59:05   xFULL     LT0581       339      7/12/10
-   QUSRJJS    4/03/10   2:59:19   xFULL     LT0581       340      7/12/10
-   QPFRODATA  4/03/10   2:59:22   xFULL     LT0581       341      7/12/10
-   QLMTCLCL    4/03/10   3:00:13   xFULL     LT0581       343      7/12/10
-   YESFREE    4/03/10   3:00:13   xFULL     LT0581       342      7/12/10
-   *ALLDLO    4/03/10   3:39:40   xFULL     LT0581       344      7/12/10
-   *LINK      4/03/10   3:40:23   xFULL     LT0581       345      7/12/10
-   QUSREMM    4/03/10   4:26:32   xQEREM     LT0581       346      7/12/10
-   MSR3J      4/05/10   9:20:19   xFULL     LT0766       1      4/07/10
-   QUSREMS    4/05/10 18:50:33   xFULL     LT0766       2      4/07/10

F3=Exit  F5=Refresh  F11=Object detail  F12=Cancel
F23=More options
```

Figure 3-8 `WRKMEDIBRM` navigation to Recovery Defaults panel - step 1
This option causes the Select Recovery Items panel to be displayed, as shown in Figure 3-9. On the Select Recovery Items panel, F9 (circled) displays the Recovery Defaults panel.

![Figure 3-9](image)

Figure 3-9 WRKMEDIBRM navigation to Recovery Defaults panel - Step 2

Figure 3-10 is the Recovery Defaults panel. The various output selection fields are in the box. The output fields are nearly identical to the output keywords of the **RSTLIBBRM** command.

![Figure 3-10](image)

Figure 3-10 WRKMEDIBRM Recovery Defaults panel
Start Recovery using the BRM (STRECYBRM) command when the *RESTORE action is also specified.

The WRKMEDIBRM recovery defaults apply only to the current session and are not permanent.

A sequence of STRECYBRM display panels shows how to access the output parameters and the output parameters themselves.

Figure 3-11 shows the Select Recovery Items panel, which is generated by the STRECYBRM command. Pressing F9 on this panel (circled) displays the Restore Command Defaults panel.

```plaintext
Select Recovery Items

Select action ........: *FULL
Select volume ........: 

Type options, press Enter.
1=Select  4=Remove  5=Display  7=Specify object  

Saved     Save    Save    Save    Parallel    Volume    File    Expire
Opt Item   Date     Time    Type    Devices   Serial   Sequence   Date
   #LIBRARY  3/24/19  1:21:23    *FULL  LT0834    5    4/13/10
   ADTSLIB   3/24/19  1:21:23    *FULL  LT0834    7    4/13/10
   AGBTYP    3/24/19  1:21:23    *FULL  LT0834    8    4/13/10
   ALARMSETUP  3/24/19  1:21:23    *FULL  LT0834    9    4/13/10
   APSS.COMMT  3/24/19  1:21:23    *FULL  LT0834   10    4/13/10
   APSS.TIVO   3/24/19  1:21:23    *FULL  LT0834   11    4/13/10
   APSS.UPST   3/24/19  1:21:23    *FULL  LT0834   12    4/13/10
   APSS.F01B   3/24/19  1:21:23    *FULL  LT0834   13    4/13/10
   APSS001B   3/24/19  1:21:23    *FULL  LT0834   14    4/13/10
   APSSPB01.0   3/24/19  1:21:23    *FULL  LT0834   15    4/13/10
   APSSP001B   3/24/19  1:21:23    *FULL  LT0834   16    4/13/10

More...

F3=Exit    F5=Refresh  F9=Recovery defaults  F11=Object View
F12=Cancel  F14=Submit to batch  F16=Select
```

Figure 3-11 STRECYBRM Select Recovery Items panel
On the Restore Command Defaults panel, scroll to the third window, which is shown in Figure 3-12. This panel shows the new output parameters. The output parameters on this panel look and act like the fields in the Change Recovery Policy panel that is shown in Figure 3-6 on page 56, except that they apply only to the current session.

3.2.7 Ability to select Saved ASP on RSTLIBBRM and RSTOBJBRM commands

You can use this new function to specify the auxiliary storage pool (ASP) from which a library is saved when you perform a restore using the Restore Library using BRM (RSTLIBBRM) command and the Restore Object using BRM (RSTOBJBRM) command.

Suppose that a system has a system ASP and three independent ASPs. Each of the ASPs has library TOOLS and the entire system, including the IASPs, was saved. There are three saves of library TOOLS. You can use this function to select which of the saves to restore.

The new keyword is SAVASP. Values for the parameters for the RSTLIBBRM command are as follows:

- *ANY
 The library and objects that are saved is restored from any ASPs save. This value is the default value, which works as it did before IBM i 7.1.

- *SYSTEM
 The saved library and objects are restored from the system ASP save.

- ASP number 1 - 32
 The library and objects are restored from the specified user ASP, or the system ASP if 1 is specified.

- ASP name
 The library and objects are restored from the specified ASP save.
The keyword and values for the RSTOBJBRM command are identical. The function is identical except that only objects are restored.

There are limitations about which objects can be restored to non-system ASPs. These objects are not allowed to be in user or independent ASPs.

The red circle in Figure 3-13 shows the SAVASP keyword for the RSTLIBBRM command.

<table>
<thead>
<tr>
<th>Restore Library using BRM (RSTLIBBRM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type choices, press Enter.</td>
</tr>
<tr>
<td>Library > TOOLS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Device > M05A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Parallel device resources:</td>
</tr>
<tr>
<td>Maximum resources</td>
</tr>
<tr>
<td>Save level</td>
</tr>
<tr>
<td>Save level time reference:</td>
</tr>
<tr>
<td>Save date</td>
</tr>
<tr>
<td>Save time</td>
</tr>
<tr>
<td>Saved auxiliary storage pool</td>
</tr>
<tr>
<td>End of media option</td>
</tr>
<tr>
<td>Option</td>
</tr>
<tr>
<td>Database member option</td>
</tr>
<tr>
<td>SPOOLed file data</td>
</tr>
<tr>
<td>F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display</td>
</tr>
</tbody>
</table>

Figure 3-13 Save ASP (SAVASP) keyword of the BRMS RSTLIBBRM command

3.2.8 Distributed backup support

New options were created for BRMS networking support to control distribution of backup history. In IBM i 6.1, all systems in a BRMS network received all history from other systems in the network.

In IBM i 7.1, there are now options to configure which systems receive information about backups and which do not. Distributed backup support reduces the data on systems that have no need to know about the saved history from other systems. The distributed backup function is available through the Change Network Group menu option of the BRMS System Policy (BRMSSYSPCY) menu.
For IBM i 6.1, the Change Network Group panel (see Figure 3-14) could not be used to receive media information. If the system was in the network group, it received the media information.

![Change Network Group panel from IBM i 6.1](image)
In IBM i 7.1, the Change Network Group panel now has a function key (F11) that displays a new BRMS Media Information panel. The Change Network Group panel in Figure 3-15 no longer shows the Receive Media Information column.

![Change Network Group panel from IBM i 7.1](image-url)

Figure 3-15 Change Network Group panel from IBM i 7.1
The new BRMS Media Information panel replaced the single column Receive Media Information value with a three column set of fields, as shown in Figure 3-16.

![Figure 3-16 Change Network Group BRMS Information panel](image)

Some of the fields in this panel are:

- **Local Receives field**

 This field specifies whether media content information, and at what level, is received by the current system from the specified remote system. Media content information represents files that are on a media volume. You can specify whether media content information is shared with the current system or specify that the current system is not to receive any media content information from the specified remote system in the network group. Media inventory information is always shared between systems that are members of the network group. Possible values are as follows:

 - ***NONE**

 Media content information is not received from the specified remote system on the current system.

 - ***LIB**

 Media content information is received from the specified remote system on the current system. The information includes library level information only.

- **Remote Receives field**

 This value displays whether the remote system is to receive media content information, and at what level, from the current system displayed.

 To change this value, you must go to that remote system and change the value on that system.
Possible values are as follows:

- **NONE**
 Media content information is not sent to the specified remote system.

- **LIB**
 Media content information is sent to the specified remote system. The information includes library level information only.

Remote overrides field

This field represents media information overrides that are in place for the remote system for IASP high availability support that is described in 3.3.10, “High availability support for independent ASPs in a BRMS network” on page 116.

This field cannot be updated from the character-based interface, and must be set through IBM Systems Director, IBM Systems Director Navigator for i, or System i Navigator.

3.2.9 Maintenance enhancements

BRMS added enhancements to enable more concurrent maintenance than was allowed in previous releases. When you perform media moves through the Start Maintenance for BRM (STRMNTBRM) command, you now receive a BRM6717 Volume (volume-ID) was not moved to location warning message when volumes are in use and cannot be moved. The volume move report also lists an alert that the volume was in use.

Suppose that maintenance is running and a second job issues a BRMS command that attempts to use files in the QUSRBRM library that is used by the maintenance job. In this case, a BRM6714 Job (job-name) is being held by job (maintenance-job-name) message is issued to that second job's message queue and is displayed (Figure 3-17).

![Figure 3-17 BRMS6714 message that is displayed](image-url)
When maintenance uses the BRMS files, the held job is sent a BRM6716 BRM restricted procedure ended message. This message is logged in the held job's message queue but is not displayed. The BRM6714 message is no longer displayed, indicating that the job is continuing.

The job that is running the STRMNTBRM command during the period where maintenance requires exclusive use of the BRMS files lists, but does not display, message BRM6715 BRM restricted procedure started and message BRM6716 BRM restricted procedure ended, as shown in Figure 3-18.

```
Display All Messages                  System:  ROHSA04
Job . . . :  JACOBSEN01    User . . . :  MSJJ    Number . . . :  374589
               -  RETURN          /* RETURN due to end of CL program */
               23800 -  RTVSYSVAL SYSTVAL(OHTHPFGM) RTNVAR(0SYSPRG)
               24500 -  SETATPFSM PGM(0SYS/QEZMAIN)
               25600 -  CALL PGM(D$10AIALE)         /* The CALL command contains
               parameters */
               > strmntbrm
      Library QBRM added to library list.
      Journal receiver QJRIAC1552 created in library QUSRBRM.
      Journal receivers QJRIAC1552 and *N datacheck.
      Sequence number not reset. First sequence number is 3124.
      BRM restricted procedure started.
      BRM restricted procedure ended.
      Object QI2AKHALT in QUSRBRM type *DTHFRA deleted.
      BRM restricted procedure started.

Press Enter to continue.
F3=Exit    F5=Refresh    F12=Cancel    F17=Top    F18=Bottom
```

Figure 3-18 BRM restricted procedure messages in the STRMNTBRM job message queue

In a typical maintenance run, you might see several pairs of these messages.

3.2.10 Planning Media Movement report

You can now print a report that can help you plan future moves of BRMS media.

The Print Media Movement (PRTMOVBRM) command has a new *NEXT value on its TYPE parameter. TYPE(*NEXT), combined with a future date specified in the select date (SLTDATE) parameter, generates a report of future media moves.
In Figure 3-19, the Select dates parameters are set to generate the media movement report with moves starting on the current date for seven days. The TYPE parameter is set to *NEXT. This command invocation generates a report that lists all media moves to the next location that are to occur between today and the next seven days.

Tip: The PRTMOVBRM command has multiple functions for date entry and calculations in the “Select dates” section. Be sure to review the details of these options in the help text by pressing F1 with the cursor in the field.

3.2.11 Improved clearing of volumes in *ERR status

Improvements were made to simplify and speed the clearing of tape volumes in error status (*ERR). Prior releases required you to remove the media volume from inventory, add the media volume back in inventory, and then initialize the media.
In IBM i 7.1, instead of the removing and adding the media volume, you can clear the error status using new option 9 (Remove volume error status) of the Work with Media using the BRM (WRKMEDBRM) command. This action changes the media volume status to Requires Initialization (*INZ). See Figure 3-20.

![Figure 3-20 WRKMEDBRM Work with Media Panel with Remove volume error status option](image)

When in the *INZ status, the media volume can be reinitialized by running one of the following commands:

- Work with Media using BRM (WRKMEDBRM) command option 10
- Work with Media Library Media (WRKMLMBRM) command option 5
- Initialize Media using BRM (INZMEDBRM) command

You must verify that the media volume is still usable.

This new function is also available through the IBM System Director Navigator for i web interface and IBM i Access graphical user access (GUI) client.

3.2.12 Protection of volumes that are marked for duplication

BRMS no longer expires media volumes marked for duplication.

When media is marked for duplication, BRMS no longer expires the media when the Start Maintenance for BRM (STRMTBRM) command, the Start Expiration for BRM (STREXPBRM) command, or the Work with Media using BRM (WRKMEDBRM) command option 7 (expire) is run.
The BRM expiration (QP1AEP) report lists warning messages for each volume that did not expire, as shown in Figure 3-21.

<table>
<thead>
<tr>
<th>Volume</th>
<th>Creation</th>
<th>Location</th>
<th>User</th>
<th>Use Count</th>
<th>ACT</th>
<th>EXP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVT021</td>
<td>BRMSSYS</td>
<td>CVT2</td>
<td>BRMSOPR</td>
<td>3</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>LN4807</td>
<td>BRMSSYS</td>
<td>NET3590</td>
<td>BRMSOPR</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

0 Pending volume duplication, cannot expire.
394 Pending volume duplication, cannot expire.

(No volumes expired)

Volumes warned : 0
Volumes expired : 0
Previously expired : 213
Total expired count : 213

* * * * * E N D O F L I S T I N G * * * * *

Figure 3-21 Warning messages in the BRMS expiration report
When you try to expire a volume marked for duplication through WRKMBR option 7, a BRM0010 message (Volume vol-ID cannot be expired.) with reason 2 (The volume has been marked for duplication.) is displayed, as shown in Figure 3-22.

3.2.13 Improved recovery times with new media position function

BRMS supports the new media position function that is described in 3.1.1, “Fast restore using tape position” on page 46.

The media position function is automatically and invisibly used by BRMS, but requires object level detail (*YES, *OBJ, *MBR) specified for the saved items in the control group, or on the Save Library using BRM (SAVLIBBRM) command. BRMS saves retain the media positions in the BRMS database files and BRMS restores retrieve the media positions from the BRMS database files.

The media position function is not supported on the following options:

- WRKMBR option 7 (restore) or 7 (specify object)
- WRKMBR option 9 (Work with Saved Objects) or option 9 (Work with Saved Members), 7 (Restore), or 7 (Specify object)

3.2.14 BRMS support for the special value *COMPATIBLE for ALWOBJDIF

BRMS restore functions support the *COMPATIBLE special value for the ALWOBJDIF parameter described in 3.1.2, “New ALWOBJDIF (*COMPATIBLE) restore option” on page 47.
3.2.15 Improved control with running non-BRMS saves

When you run non-BRMS saves using non-BRMS volumes on a system with BRMS, the save job no longer ends if a BRMS volume is loaded. BRMS posts a BRM1730 BRMS enrolled volume rejected message, giving you the option to load another non-BRMS volume.

3.2.16 RDX and BRMS

RDX drives, a disk-based technology, are positioned for the lower end of performance and capacity requirements. They are faster than a DAT tape, but slower than LTO. The available capacities range from 160 GB to 1.5 TB per removable cartridge.

RDX is available natively attached to an IBM i partition, by using either USB or SATA connectivity, or they also can be virtualized through VIOS or iVirtualization. The SATA support was implemented back to IBM i 6.1 through a PTF. The RDX dock is available in either a 5.25 inch internal (SATA or USB) or external USB version. The dock supports all RDX cartridges. The cartridges are reliable, rugged, and they can be shipped through courier transport. Because the media is not tape-based, there is no requirement to clean the drive.

For more information about the RDX standard, see the RDX consortium website at: http://www.rdxstorage.com/rdx-technology

RDX devices show up as RMSxx devices, but are classified as optical (random access spinning media) devices and can be used by optical, not tape, commands.

BRMS supports these devices as optical devices as well. The following limitations apply:

- The Media Policy option ‘Mark history for duplication’ is restricted to *NO. BRMS does not allow the duplication of optical history items.
- BRMS does not track opposite side volume identifiers or double-sided volumes. Each piece of media is viewed as a single volume.
- There is no optical support for the following BRMS functions: Dump BRMS (DMPBRM), add media information to BRMS (ADDMEDIBRM), extract media information (EXTMEDIBRM), and print media exceptions (PRTMEDBRM). There is no reclaim support for optical / RDX devices.
- You can specify only one device parameter per BRMS operation; optical does not support cascading or parallel devices.
- Optical media also cannot be shared on a BRMS network. Remote duplication is not supported.
- DUPMEDBRM duplicates only entire optical volumes. The output volume must have the exact same physical characteristics as the input volume.
- Optical devices do not support software encryption.

3.2.17 Allowing volumes that are marked for duplication to be moved

In releases IBM i 7.1 and earlier, media movement is not allowed for volumes that are marked for duplication. Use the following interfaces to override this behavior and allow movement for volumes that are marked for duplication. This method is useful for virtual tape libraries, which often require virtual volumes to be moved during the duplication process.
You can perform the following actions:

- To override a move policy to allow movement when a volume is marked for duplication, run the following command:

  ```
  CALL QBRM/Q1AOLD PARM('MOVMRKDUP ' '*SET' 'move policy' 'Y')
  ```

- To remove the override for a move policy that allows movement when a volume is marked for duplication, run the following command:

  ```
  CALL QBRM/Q1AOLD PARM('MOVMRKDUP ' '*SET' 'move policy' 'N')
  ```

- To display all overrides for move policies that allow movement when a volume is marked for duplication, run the following command, as shown in Figure 3-23:

  ```
  CALL QBRM/Q1AOLD PARM('MOVMRKDUP ' '*DISPLAY')
  ```

- To remove all overrides for move policies that allow movement when a volume is marked for duplication, run the following command:

  ```
  CALL QBRM/Q1AOLD PARM('MOVMRKDUP ' '*CLEAR')
  ```

Consideration: In releases IBM i 7.1 and earlier, there is no synchronization of this behavior to other systems in a BRMS network. For each system for which you want to use this new function, you must run the commands individually.

Statement of direction: In releases that follow IBM i 7.1, this limitation will be removed. The function will be integrated into any relevant CL commands and the GUI.

All statements about the future direction and intent of IBM are subject to change or withdrawal without notice, and represent goals only.
3.2.18 Support for expiration dates greater than year 2038

For versioning and media expiration, BRMS currently does not support dates beyond the year 2038. If you need an expiration date beyond 2038, you must set the date to *PERM.

Statement of direction: In releases that follow IBM i 7.1, this limitation will be removed. All statements about the future direction and intent of IBM are subject to change or withdrawal without notice, and represent goals only.

3.2.19 Setting maximum size for BRMS flight recorders

The BRMS flight recorder size for storage can now be changed. To change the maximum flight recorder size, run the following command:

```
CALL PGM(QBRM/Q1AOLD) PARM('FRSIZE ' '*SET ' 'XXX')
```

XXX is equal to 001 - 999 MB.

Leading zeros: XXX must always be three digits, so leading zeros must be added to the front of the numbers.

Statement of direction: In releases that follow IBM i 7.1, interfaces will be provided on the WRKPCYBRM TYPE(*SYS) work panel.

All statements about the future direction and intent of IBM are subject to change or withdrawal without notice, and represent goals only.

The following command can be used to display the maximum flight recorder size:

```
CALL PGM(QBRM/Q1AOLD) PARM('FRSIZE ' '*DISPLAY').
```

3.2.20 Using compression for BRMS save files

BRMS in IBM i 7.1 now supports override for the DTACPR parameter for save file saves within BRMS. The parameters of *HIGH, *MEDIUM, *LOW, *DEV, *N0, and *YES are all valid values. The override is then active for all save file operations in BRMS.

You can perform the following actions:

- To set the new save file DTACPR parameter to *HIGH, run the following command:
  ```
  CALL PGM(QBRM/Q1AOLD) PARM('PARMOV' '*ADD' 'SAVDTACPR' '*HIGH')
  ```

- To set the new save file DTACPR parameter to *MEDIUM, run the following command:
  ```
  CALL PGM(QBRM/Q1AOLD) PARM('PARMOV' '*ADD' 'SAVDTACPR' '*MEDIUM ')
  ```

- To set the new save file DTACPR parameter to *LOW, run the following command:
  ```
  CALL PGM(QBRM/Q1AOLD) PARM('PARMOV' '*ADD' 'SAVDTACPR' '*LOW')
  ```

- To set the new save file DTACPR parameter to *YES, run the following command:
  ```
  CALL PGM(QBRM/Q1AOLD) PARM('PARMOV' '*ADD' 'SAVDTACPR' '*YES')
  ```
To set the new save file **DTACPR** parameter to *NO*, run the following command:

```sh
CALL PGM(QBRM/Q1AOLD) PARM('PARMOVR' '*ADD' 'SAVFDTACPR' '*NO')
```

To set the new save file **DTACPR** parameter to *DEV*, run the following command:

```sh
CALL PGM(QBRM/Q1AOLD) PARM('PARMOVR' '*ADD' 'SAVFDTACPR' '*DEV')
```

To remove the override, run the following command:

```sh
CALL PGM(QBRM/Q1AOLD) PARM('PARMOVR' '*REMOVE ' 'SAVFDTACPR')
```

Significant compression can be reached with the *HIGH* setting, but at the cost of a longer save time.

To show the current override that is being used, run the following command:

```sh
CALL PGM(QBRM/Q1AOLD) PARM('PARMOVR' '*DISPLAY' 'SAVFDTACPR')
```

The command output is shown in Figure 3-24.

```
Command Entry

Previous commands and messages:
  > CALL PGM(QBRM/Q1AOLD) PARM('PARMOVR' '*DISPLAY' 'SAVFDTACPR')
  SAVFDTACPR: *HIGH.

Type command, press Enter.
```
3.2.21 Improving IFS save performance with the ASYNCBRING parameter

Statement of direction: In releases that follow IBM i 7.1, the function will be integrated into any relevant CL commands and the GUI.

All statements about the future direction and intent of IBM are subject to change or withdrawal without notice, and represent goals only.

In releases V6R1M0 and later, the ASYNCBRING parameter can be overridden to help improve IFS save performance. To use the ASYNCBRING parameter, run the following commands:

- To override the new ASYNCBRING parameter, run the following command:

  ```
  CALL PGM(QBRM/Q1AOLD) PARM('PARMOVR' '*ADD' 'ASYNCBRING' '*YES')
  ```

- To disable the ASYNCBRING parameter, run the following command:

  ```
  CALL PGM(QBRM/Q1AOLD) PARM('PARMOVR' '*ADD' 'ASYNCBRING' '*NO ')
  ```

- To remove the override for the ASYNCBRING parameter, run the following command:

  ```
  CALL PGM(QBRM/Q1AOLD) PARM('PARMOVR' '*REMOVE' 'ASYNCBRING')
  ```

- To show the current override for the ASYNCBRING parameter, as shown in Figure 3-25, run the following command:

  ```
  CALL PGM(QBRM/Q1AOLD) PARM('PARMOVR' '*DISPLAY' 'ASYNCBRING')
  ```

Figure 3-25 Displaying the ASYNCBRING parameter

Statement of direction: In releases that follow IBM i 7.1, interfaces will be provided on BRMS commands and on the control groups to use the new Asynchronous Bring parameters and these calls will not work. If *YES was set in the call statement, then the backup policy reflects that action on a new field after the upgrade finishes.

All statements about the future direction and intent of IBM are subject to change or withdrawal without notice, and represent goals only.
3.2.22 Using STRMNTBRM to initialize media when it is expired

A new option was added to the Start Maintenance for BRM (STRMNTBRM) command to initialize enrolled BRMS media when it is expired. When the option is enabled, it requires media that is expired to be mounted on a device. The function is intended for use in environments that contain virtualized tape. The feature to initialize expired media allows disk storage consumed by virtual volumes that contain expired data to be freed.

You can perform the following actions:

- To enable this option, run the following command:

 \[
 \text{CALL QBRM/Q1AOLD PARM('INZONEXP ' '*SET ' 'xxxxxxxxxx ' 'Y')}
 \]

 xxxxxxxxxx is a media class name.

- To disable this option, run the following command:

 \[
 \text{CALL QBRM/Q1AOLD PARM('INZONEXP ' '*SET ' 'xxxxxxxxxx ' 'N')}
 \]

 xxxxxxxxxx is a media class name.

- To display all media classes that have this option turned on, as shown in Figure 3-26, run the following command:

 \[
 \text{CALL QBRM/Q1AOLD PARM('INZONEXP ' '*DISPLAY ')}
 \]

\[
\begin{array}{|c|}
\hline
\text{Command Entry} & \text{ITSOP2} \\
\hline
\text{Request level:} & 4 \\
\hline
\text{Previous commands and messages:} \\
> \text{CALL QBRM/Q1AOLD PARM('INZONEXP ' '*DISPLAY ')} \\
> \text{MEDCLS1} \\
> \text{MEDCLS2} \\
> \text{MEDCLS3} \\
\hline
\text{Bottom} \\
\text{Type command, press Enter.} \\
\text{===>} \\
\text{F3=Exit} & \text{F4=Prompt} & \text{F9=Retrieve} & \text{F10=Include detailed messages} \\
\text{F11=Display full} & \text{F12=Cancel} & \text{F13=Information Assistant} & \text{F24=More keys} \\
\hline
\end{array}
\]

Figure 3-26 Displaying media classes with initialize on expiration

- To disable this option for all media classes that have this option enabled, run the following command:

 \[
 \text{CALL QBRM/Q1AOLD PARM('INZONEXP ' '*CLEAR ')}
 \]
Consideration: In releases IBM i 7.1 and earlier, there is no synchronization of this behavior to other systems in the BRMS network. If you want each system to use this new function, you must run the commands that are shown above.

Initializing volumes: For IBM ProtecTIER® or other virtual tape library technologies, if volumes are initialized when they expire, performance for operations using the library might be temporarily degraded as the device frees the storage that was being used by the volume.

For native IBM i virtual tape, if volumes are initialized when they expire, system performance might be temporarily degraded as the system frees the storage that was being used by the volume.

For native IBM i virtual tape, if multiple virtual tape devices are registered with BRMS, the STRMNTBRM job log might contain CPF41B0 (*Incorrect image catalog name specified.*) messages. These messages can be safely ignored.

3.2.23 Print Report using BRM (PRTRPTBRM) enhancements

The Print Report using BRM (PRTRPTBRM) command is enhanced to support the *CTLGRPSTAT value on the Report type (TYPE) parameter. The *CTLGRPSTAT report gives you information about backup control groups, which are specified on the Control group (CTLGRP) parameter, that is processed by BRMS, and meet the other selection criteria that are specified with the PRTRPTBRM command.

The following values can be specified for the CTLGRP parameter:

- **ALL**: All backups that are produced by running STRBKUBRM are included in this report. The output that is generated by CTLGRP(*NONE) is not included in this report.
- **SYSTEM**: Backups that are produced by running STRBKUBRM for the *SYSTEM control group are included in the report.
- **BKUGRP**: Backups that are produced by running STRBKUBRM for the *BKUGRP control group are included in the report.
- **SYSGRP**: Backups that are produced by running STRBKUBRM for the *SYSGRP control group are included in the report.
- **NONE**: Backups that are produced by running SAVxxxBRM commands are summarized in the report.
- **Generic name**: Specify the generic name of the control group to be included in the report. A generic name is a character string that contains one or more characters followed by an asterisk (*). If an * is not specified with the name, the name is assumed to be a complete control group name.
- **Name**: Specify the name of a control group. All backups that are produced by running STRBKUBRM for the named control group are included in the report.

The following values can be specified for the FROMSYS parameter:

- **LCL**: Data returned are from the local system.
- **Remote System Name**: Data returned are from the specified remote system.
Additionally, the PRTRPTBRM TYPE(*CTLGRPSTAT) includes a retention section if a value other than *NONE is specified for the CTLGRP parameter and an optional data area is created before running the command.

The retention section starts on a new page with a heading of *RETENTION. Each control group has an entry with full and incremental media retention information.

To have the retention section included by PRTRPTBRM, data area QTEMP/Q1ARPTRETN must exist for the job that is generating the report. Use the following command to create the data area:

```
CRTDTAARA DTAARA(QTEMP/Q1ARPTRETN) TYPE(*CHAR)
```

See Figure 3-27 for an example of the output.

Considerations: To run PRTRPTBRM TYPE(*CTLGRPSTAT) in release IBM i 7.1, the following PTF or its superseding PTFs are required: SI46340.

To run PRTRPTBRM TYPE(*CTLGRPSTAT) with a FROMSYS parameter other than *LCL, the following PTFs are required: IBM i 7.1: SI50292, IBM i 6.1: SI50291.

Additionally, for systems other than *LCL, the BRMS Network Feature licensed program is required.

PRTRPTBRM TYPE(*CTLGRPSTAT) CTLGRP(<name>) summarizes only information about control groups that are run after the PTFs are applied.

PRTRPTBRM TYPE(*CTLGRPSTAT) CTLGRP(*NONE) summarizes information about backups that are run before or after the PTFs are applied.

The CTLGRP parameter is ignored if the TYPE parameter is not *CTLGRPSTAT.

Additionally, the PRTRPTBRM TYPE(*CTLGRPSTAT) includes a retention section if a value other than *NONE is specified for the CTLGRP parameter and an optional data area is created before running the command.

The retention section starts on a new page with a heading of *RETENTION. Each control group has an entry with full and incremental media retention information.

To have the retention section included by PRTRPTBRM, data area QTEMP/Q1ARPTRETN must exist for the job that is generating the report. Use the following command to create the data area:

```
CRTDTAARA DTAARA(QTEMP/Q1ARPTRETN) TYPE(*CHAR)
```

See Figure 3-27 for an example of the output.

3.2.24 Support of relational database entries and fully-qualified domain names

BRMS has supported using relational database (RDB) entries for some of its communications in the past. It now supports usage of RDB entries for all communications between systems. In addition, it also allows for usage of fully-qualified domain names (FQDN) within the RDB. This applies to BRMS networking in general, and communication for BRMS Enterprise.
To use this new function, run the command **WRKPCYBRM TYPE(*SYS)** and select option 4 for Change Network Group. On the Change Network Group panel displayed, set the Communications Method field to *RDB* as shown in Figure 3-28.

Tip: Be aware that *RDB* does not appear as an option and is not listed in the online help text, but it is a valid entry and functions as described here.

```
Change Network Group

Network group .... :  *MEDINV           Position to .... :
FlashCopy state ... :  *ENDPRC
Notify period .... :   30            30-99999 seconds

Figure 3-28    Configuring system to use RDB for BRMS communications
```

Use the **WRKRDBDIRE** command to add or modify existing remote database entries as needed.

3.2.25 Duplicate Media using BRM (DUPMEDBRM) enhancements

BRMS can be configured to allow multiple parallel input volumes to be appended to the same target volume when running a DUPMEDBRM command. If the **TOSEQNBR** parameter is 1, then the first volume starts on a scratch volume and all other volumes in the parallel set are appended to that volume until it is full.

This function can be useful in an environment where the initial save is performed in a multi-stream method to a virtual tape library with multiple virtual tape drives. In many cases, saving to multiple virtual tape drives within a VTL can provide better performance. However, duplicating those virtual tapes to the same quantity of physical media might not be wanted, cost-effective, or a good use of high-capacity media.

To enable this function, create a data area using the following command:

```
CRTDTAARA QUSRBRM/Q1AALWMFDP TYPE(*CHAR) LEN(1)
```

Note these considerations when using this command:

- When doing restores from the duplicated single volume, the parallel resources parameter needs to be set to a minimum and maximum of 1, **PRLRSC(1 1)**.
- Ensure that only expired media is available in the media class specified in the **MEDPCY** parameter on the **DUPMEDBRM** command. If there are any active volumes in that media class, they will have data appended to them.
- Restores from the duplicate media can potentially take longer than using the original media.

Tip: To revert BRMS back to the prior method of duplication (a one-to-one volume relationship), delete the **QUSRBRM/Q1AALWMFDP** data area.
3.2.26 Support for simultaneous batch-mode DUPMEDBRM

The Duplicate Media using BRMS (DUPMEDBRM) command supports using multiple batch jobs to asynchronously duplicate media sets. The batch jobs used for duplication are submitted using the Job description and Job queue fields in the BRMS submitted jobs section of the BRMS system policy.

The job log from the DUPMEDBRM command contains messages that indicate which batch jobs are running the duplication. Each of these duplication jobs sends completion or error messages to the BRMS log, so monitor the BRMS log to verify that each of the duplication jobs has completed successfully.

To enable DUPMEDBRM batch job options for the current job, run the following command:

```
CALL PGM(QBRM/Q1AOLD) PARM('DUPBATCH' '*SET' 'nn')
```

Where `nn` is the number of batch jobs to use. This value must be greater than or equal to '00', and less than or equal to the number of device resources available to be used during the duplication. The value of '00' indicates to use the default behavior.

To display the current job's DUPMEDBRM batch job options, run the following command:

```
CALL PGM(QBRM/Q1AOLD) PARM('DUPBATCH' '*DISPLAY')
```

To remove the current job's DUPMEDBRM batch job options, run the following command:

```
CALL PGM(QBRM/Q1AOLD) PARM('DUPBATCH' '*REMOVE')
```

The command has these restrictions:

- This call to DUPBATCH applies only to the current job.
- The number of values that are specified for the Input volume list (FROMVOL) parameter on the DUPMEDBRM command must include more that one volume identifier to be duplicated.
- If needing to submit the DUPMEDBRM to batch, a program must be created that has the call to the DUPBATCH and the DUPMEDBRM command in it. This program can then be submitted to batch.
- Batch jobs can be used only when a volume name, *LIST, or *SEARCH is specified for the From volume identifier (VOL) parameter. Batch jobs are not used when *SCHHST or *RESUME is specified for the From volume identifier (VOL) parameter.
- If the media being duplicated was created during a parallel save, restores from the duplicated media require the same or fewer number of resources used during the DUPMEDBRM command.
- The Output volume list (TOVOL) parameter must be *MOUNTED. Specifying output volumes is not supported.
- This feature is not supported when using the AUTODUP function within media policies.

3.2.27 Ability to use save files in independent ASPs as targets for save operations

Media policies that have the “Save to save file” field set to *YES allows independent auxiliary storage pools (IASP) names to be specified for the ASP for save files field.

The IASP that is specified for the ASP for save files field must have an ASP number in the range 33 - 99.
When running a backup or recovery using a save file on an IASP, the IASP must be in the job's name space. The IASP can be added to the name space by using the SETASPGRP command or adding a *SETASPGRP entry to a control group. See Figure 3-29.

![Change Media Policy](image)

Note: If the IASP did not exist before installation and configuration of BRMS, running either the DSPASPBRM or WRKASPBRM command is necessary to make the IASP known to BRMS. After it is known to BRMS, the IASP name can be specified in the “ASP for save files” parameter.

3.2.28 Move media using BRM (MOVMEDBRM) allows for multiple locations

The From location (LOC) parameter on the MOVMEDBRM command allows multiple values (up to 10) to be specified.
Using multiple From location values allows one MOVMEDBRM command to be run from a central system even if the central system is not connected to the devices that are used by the other systems in the BRMS network. See Figure 3-30.

```
Move Media using BRM (MOVMEDBRM)
Type choices, press Enter.
Move policy ................. *ALL       *ALL, OFFSITE
From location .............. > LOCATION1 *ALL, *HOME, TAPMLB01, TAPM...
                               > LOCATION2
                               > LOCATION3
                               > LOCATION4
                               > LOCATION5
                               > LOCATION6
                               > LOCATION7
                               > LOCATION8
                               > LOCATION9
                               > LOCATION10
Container .................. *ALL       Name, *ALL
Media class ................. *ALL       *ALL, FMTOPTUDF, SAVSYS, UL...
System name ............... *ALL
File group ................ *ALL       *ALL, *NONE, *SYSTEM, *BKUG...
File group type ............ *ALL       *ALL, *NONE, *BKU, *ARC
Output ........................*PRINT     *PRINT, *OUTFILE
```

Figure 3-30 Up to 10 locations can be specified on the MOVMEDBRM command

3.2.29 Monitor Save While Active (MONSWABRM) functionality enhancement

The Monitor Save While Active (MONSWABRM) command now monitors all checkpoint messages from more than one save. Before this enhancement, the MONSWABRM command only monitored for a save-while-active message from one save even if there was more than one save associated with the backup.

Tip: To revert to the previous MONSWABRM behavior, run the following commands:

```
CRTDTAARA DTAARA(QUSRBRM/Q1ASYNCMSG) TYPE(*CHAR)
CHGOBJOWN OBJ(QUSRBRM/Q1ASYNCMSG) OBJTYPE(*DTAARA) NEWOWN(QBRMS)
```

3.2.30 Improvements in online Domino save performance

Support to use the IFS API pattern key instead of traversing for online Lotus Domino directories has been added to improve Domino online save performance.

3.2.31 Restores of incrementally-saved objects allowed

Support has been added to allow incremental saves to be restored, without restoring a full save, when *SAVDATE is specified for the Save level (SAVLVL) parameter on the Restore Library using the BRM (RSTLIBBRM) command.
To enable this function in the current job, run the following command:

```
CRTDTAARA DTAARA(QTEMP/Q1ADMEDPCY) TYPE(*CHAR) LEN(1)
```

To enable this function in all jobs, run the following command:

```
CRTDTAARA DTAARA(QUSRBRM/Q1ADMEDPCY) TYPE(*CHAR) LEN(1)
```

3.2.32 Miscellaneous BRMS enhancements

Following are miscellaneous BRMS enhancements:

- Support of *ULTRIUM6 tape format.
- Additional diagnostic information is provided for media with mount issues.
- Inquiry messages that have been responded to now remain in BRMS job logs.
- Automatic duplication to media setting within a media policy can be overridden on a per-job basis.
- Duplicate Media using BRM (DUPMEDBRM) parameter VOL(*SCHHST) handles more volume sequences.
- BRMS has enhanced processing of inquiry messages related to media issues, and now allows all volumes to be revalidated for use. That way, if a volume was previously rejected for an operation due to incorrect location, media class, or some other value that has since been changed, that media now has an opportunity to be used.

3.3 BRMS enhancements to GUI and web interfaces

As an alternative to the BRMS character-based interface, BRMS provides a full function graphical user interface (GUI). System i Navigator is a client-based GUI system management console that uses a BRMS plug-in to offer full-featured BRMS capabilities.

IBM Navigator for i and IBM Systems Director are web-based interfaces that had limited BRMS function in IBM i 6.1. The capabilities of these interfaces were greatly expanded into a full-featured BRMS interface, bringing these web interfaces into parity with the client-based System i Navigator product.

Note: IBM Navigator for i is the current name for the product that was previously known as IBM Systems Director Navigator for i.

This section describes the new capabilities and changes in the System Director web interfaces and points out which ones are also new to the System i Navigator product. This section describes the following enhanced functions:

- Added support for the IBM Systems Director web browser environment:
 - IBM Systems Director navigation to BRMS functions
 - IBM Navigator for i navigation to BRMS functions
- Enhancements to the BRMS initial window
- BRMS advanced functions window
- Scheduling support for BRMS
- Added option to the BRMS Log to filter messages by control groups
- Ability to mark and unmark volumes for duplication
- Multiple email address support
- High availability support for independent ASPs in a BRMS network
3.3.1 Added support for the IBM Systems Director web browser environment

Functions previously available and new IBM i 7.1 functions accessible through IBM Navigator for i are now also available through IBM Systems Director.

Both products’ BRMS functions are almost functionally and visually identical. The major differences are the navigation steps to get to the BRMS functions and the main BRMS window.

IBM Systems Director is intended for multiple systems and multiple system platforms. IBM Navigator for i is intended for managing environments that are running IBM i.

3.3.2 IBM Systems Director navigation to BRMS functions

IBM Systems Director, being a multiplatform and multiple system environment, requires navigation steps to select an IBM i system and to navigate to the BRMS functions. This section describes how this task is done. This section also describes the main BRMS window functions.

To access the BRMS functions for a particular IBM eServer iSeries or IBM i, complete the following steps:
1. Log on to IBM Systems Director.
2. Select a system resource that is an IBM i system or partition.
3. Access the IBM i resource.
4. Navigate to the BRMS function.

Required features: To use the IBM i 7.1 enhancements, you must install the BRMS 7.1 plug-ins. There are instructions at the following link for installing the plug-ins for the client-based System i Navigator:

http://www-03.ibm.com/systems/i/support/brms/pluginfaq.html

Also in IBM i 7.1, management of tape devices and libraries were added to IBM Systems Director and IBM Navigator for i. For more information, see 17.7, “New journal management enhancements” on page 700.
5. After logging in to the IBM Systems Director, you see the Systems Director Welcome window. In the view pane, at the upper left corner, is the Navigate Resources link, as shown in Figure 3-31. Click **Navigate Resources**.

![IBM Systems Director Welcome window](image-url)

Figure 3-31 IBM Systems Director Welcome window
6. The Navigate Resources pane lists the various resource groups (Figure 3-32). Although you can select several of the groups to select an IBM i system, for this example click All Operating Systems.

![IBM Systems Director Navigate Resources group list window](image)
7. As shown in Figure 3-33, a list of member systems in the group is displayed. Note the OS Type column at the right of the display. Identify an IBM i system, and click its link.

![Figure 3-33 IBM Systems Director Navigate Resources Operating System group list](image-url)
8. After selecting a particular system, the resource window that is shown in Figure 3-34 is displayed. When you select the **Actions** menu, the first drop-down menu is displayed. When you move your cursor to IBM i Management, another menu of management functions is displayed. Backup Recovery and Media Services is at the top of the list of management functions, as shown in Figure 3-34. Select the **Backup Recovery and Media Services** link.

![Figure 3-34](image) Navigation from selected system to the BRMS function
9. The BRMS initial window opens, as shown in Figure 3-35. The initial window is described in 3.3.4, “Enhancements to the BRMS initial window” on page 93.

Figure 3-35 IBM Systems Director BRMS initial window

3.3.3 IBM Navigator for i navigation to BRMS functions

IBM Navigator for i, being a single IBM i environment, has much simpler navigation for accessing the BRMS function than the IBM Systems Director product. Although this function is not a new function, it is included here for reference. This section reviews how this navigation is done and describes changes to the main window of the BRMS functions.

To access the IBM Navigator for i Welcome window (Figure 3-37 on page 91), you must meet the following conditions:

- The *ADMIN HTTP server must be started on the IBM i system.
- Open a web browser to http://system-name:2001 (where system-name is the host name of the IBM i system).
- Log on with an IBM i user profile with sufficient privileges.
Run the following steps:

1. When accessing the IBM Navigator for i Welcome page, you see a window similar to that shown in Figure 3-36. Enter your user name and password and click **Log In**.

![Figure 3-36 IBM Navigator for i logon](image)

2. After successfully logging in, the Welcome window opens, as shown in Figure 3-37. If the section for “IBM i Management” is collapsed, click the plus to the left of the text to expand the list.

![Figure 3-37 IBM Navigator for i Welcome window](image)
3. After you expand the IBM i Management item, you see a list of links to IBM i management functions (Figure 3-38). At the bottom of the list is the Backup, Recovery and Media Services option. Click this link and a tab opens that shows the BRMS initial window.

Figure 3-38 IBM Navigator for i - BRMS initial window
3.3.4 Enhancements to the BRMS initial window

This section describes changes to the initial window of the BRMS functions when it is accessed through IBM Systems Director and IBM Navigator for i. The BRMS tab with the initial window is nearly identical for both.

Here is what is new on the window, as shown in Figure 3-39:

- The date, time, and status of the most recent save of all system and user data. The date, time, and status reported here are for the last run of the *SYSTEM control group. If your total system saves are run under your own backup group, they are not shown here.
- Buttons to view the BRMS log and to view BRMS history. If the system has never run the *SYSTEM backup control group, the preceding items are not shown.
- The check box to enable skipping of the initial window and to go directly to the advanced functions window.

![Figure 3-39 Enhancements to BRMS web initial window as shown in IBM Systems Director](image)

Figure 3-39 Enhancements to BRMS web initial window as shown in IBM Systems Director
3.3.5 BRMS advanced functions window

To access the BRMS advanced functions from the initial window, click Advanced. The BRMS advanced functions window opens, as shown in Figure 3-40.

The format of the window is a page with a tab. Selecting the tab (top arrow) brings that page to the foreground and places the others in the background.

The arrow at the left points to an object that, when clicked, can hide the left navigation pane. The remaining figures in this chapter do not show the navigation pane.

The small circled icon, when selected, opens a menu of actions. In Figure 3-40, the menu is shown for the BRMS Backup Control Groups field.

3.3.6 Scheduling support for BRMS

Scheduling support was added to IBM Systems Director and IBM Navigator for i. The following actions can be scheduled:

- Back up and archive control groups
- Maintenance activities, including:
 - Media maintenance, such as expiration and moves
 - Reporting, such as expired media, media audit, media information, system information, and recovery reports
 - BRMS file management, such as journal receiver changes, data cleanup, and BRMS file reorganization
To schedule a backup control group to run, open the menu for Backup Control Groups from the BRMS advanced menu, as shown in Figure 3-41.
Open Backup Control Groups
To open backup control groups, complete the following steps:

1. Select the **Open** action. A table of backup control groups (Figure 3-42) opens.

![Figure 3-42 Selecting schedule on a backup control group](image)

<table>
<thead>
<tr>
<th>Select</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Backup</td>
<td>Backs up all user data</td>
</tr>
<tr>
<td></td>
<td>System</td>
<td>Backs up all system data</td>
</tr>
<tr>
<td></td>
<td>System</td>
<td>Backs up the entire system</td>
</tr>
<tr>
<td></td>
<td>Backup</td>
<td>Save the 2.95 IFS data</td>
</tr>
<tr>
<td></td>
<td>Backup</td>
<td>Backup of various items</td>
</tr>
<tr>
<td></td>
<td>Backup</td>
<td>Save the 2.95 IFS data</td>
</tr>
</tbody>
</table>

Figure 3-42 Selecting schedule on a backup control group
2. Open the menu for the control group that is to be scheduled. Select **Schedule** from the menu. You are presented with a window offering overrides as shown in Figure 3-43. Modify any overrides as needed and click **OK**.
3. The Schedule Information window opens, as shown in Figure 3-44. Schedule the backup control group to run once and click **OK**.
Scheduling BRMS maintenance

The following procedure describes one way of scheduling BRMS maintenance:

1. From the BRMS advanced menu, click **Select Action** to display a menu, as shown in Figure 3-45. From the menu, select **Run Maintenance** and click **Go**.

![Figure 3-45 Selecting Run Maintenance from the Select Action drop-down menu](image)

The Run Maintenance window (Figure 3-46) opens.

![Figure 3-46 Run Maintenance window](image)
2. Clicks **Options**. The Run Maintenance Options window (Figure 3-47) opens. The Run Maintenance Options window has three options to choose from:

- Media (as shown in Figure 3-47)
- Print (shown in Figure 3-48)
- File Management (shown in Figure 3-49 on page 101)

Select maintenance options as required.

Click **OK** and the Run Maintenance window shown previously (Figure 3-46 on page 99) is displayed.

Figure 3-47 Run Maintenance Options - Media options window

Figure 3-48 shows the Print options.

Figure 3-48 Run Maintenance Options - Print options window
Figure 3-49 shows the File Management options.

3. Click **Schedule**. The Schedule Information window (Figure 3-50) opens.
This Schedule Information window looks identical and operates identically to the Schedule Information window that is used when you schedule a backup control group. The differences are with the Task name and Task Description field contents at the upper left of the window.

If the task is already scheduled, the current values are shown. If you make no changes and click **OK**, the maintenance is not scheduled because it is already scheduled. An error window opens.

If you change the schedule, then click **OK**, a Run Maintenance confirmation window (Figure 3-51) opens, giving you a chance to change any options, cancel the request, or accept the Run Maintenance as configured.

![Figure 3-51 Run Maintenance Confirmation window](image)

4. Click **OK** to complete scheduling maintenance.

Viewing scheduled tasks

To view scheduled tasks, complete the following steps:

1. Expand the menu for Tasks from the list column of the BRMS advanced menu.
2. From the menu, select **Open**, as shown in Figure 3-52 on page 103.
Chapter 3. Backup and recovery

Figure 3-52 Task List menu with Open selected

Figure 3-53 shows the window that opens, which is a list of scheduled BRMS maintenance tasks.

In IBM i 6.1, only active or completed tasks can be viewed or monitored. In IBM i 7.1, scheduled tasks can be viewed, including those tasks that are scheduled by System i Navigator.

BRMS 5250 support lists System i Navigator, IBM Systems Director, and IBM Navigator for i BRMS tasks and jobs.
3.3.7 Added option to the BRMS Log to filter messages by control groups

In IBM i 7.1, the BRMS Log can now be filtered by control group. You can filter by one control group at a time. Similar functionality is now available in the System i Navigator client.

To use this option, you can select **BRMS Log** from the BRMS initial menu that is shown in Figure 3-38 on page 92. You can also navigate to the Task list menu shown in Figure 3-52 on page 103, except that instead of clicking **Open**, click **BRMS Log**.

Another way that you can accomplish the same objective is by choosing **BRMS Log** from the **Select Action** menu of the BRMS advanced function menu page, as shown in Figure 3-54.

Note: Enhancements in IBM i 7.1 allows for the following items to be scheduled using the IBM Navigator for i web interface:

- Backups using control groups
- Media movement
- Save of all save files
Regardless of the method that is used to access the BRMS log, the BRMS Log - Include window opens, as shown in Figure 3-55.

![Figure 3-55 New Control group selection of BRMS Log - Include window](image)

The new control group selection parameters are shown. The **Browse** button displays a list of controls groups from which you can make selections.
A partial view of the resulting control group for BRMS log listing is shown in Figure 3-56.

![BRMS Log list - Filtered by control group TOIASP](image)

Figure 3-56 BRMS Log list - Filtered by control group TOIASP
3.3.8 Ability to mark and unmark volumes for duplication

IBM Navigator for i has the same mark and unmark for duplication functions as WRKMEDBRM options 18 and 19. In this section, the navigation is described.

In Figure 3-57, the Volume list menu is displayed with the Open option specified.

Figure 3-57 Opening the volume list
When you click **Open**, the volumes table is displayed. From the volume table, open the menu for a specific volume, as shown in Figure 3-58.

Figure 3-58 Volumes table with the menu displayed for volume GEN008
You can tell that the volume is not marked for duplication because the **Mark volume(s) for duplication** option exists in the menu. Select the mark option, and the Confirm Volume Action window (Figure 3-59) opens.

![Confirm Volume Action window](image)

Click **OK** and the volume is marked duplication. The Volumes window opens again.
You cannot tell from the Volumes table window whether the volume is marked. One way to verify that the volume is marked is to select the volume, open its menu, and look at its contents, as shown in Figure 3-60.

Because the **Unmark volume(s) for duplication** option is shown, you know that the volume is marked for duplication.

If you want to unmark the volume, click the **Unmark** option.
Suppose that you do a significant amount of marking and unmarking for duplication. You can modify the volume table and add the “Marked for Duplication” column to the table view. In the following scenario, you remove the “Image Catalog” column to keep the table narrow enough to fit on the window. To accomplish this task, open the Select Action menu, as shown in Figure 3-61, and select Columns and Sorts.

Figure 3-61 Select Action menu - Columns and Sorts action
When Columns and Sorts is selected, the Set Columns to Display and Sort window opens. Figure 3-62 shows a “Show Column” column in which the columns are selected for display.

![Set Columns to Display and Sort window](image-url)

Figure 3-62 Set Columns to Display and Sort window
You do not want the Image Catalog column to be displayed, so you click to clear that check box. You want the Marked for Duplication column to display, so you select the check box to include that column for display. When you click **OK**, the listing displayed in Figure 3-63 is shown.

![Figure 3-63 Volume table with column changes](image)

The Image Catalog column is removed and the Marked for Duplication column is shown. You can now see the Marked for Duplication status of each volume without selecting each one.
3.3.9 Multiple email address support

Multiple email addresses can now be specified for sending BRMS alerts. This function is not available under 5250 emulation, but is supported by System i Navigator, IBM Systems Director and IBM Navigator for i interfaces.

To configure this support, access the Global Policy Properties menu from the BRMS advanced menu, as shown in Figure 3-64.

![Selecting Global Policy Properties](image-url)
The Global Policy Properties window opens, as shown in Figure 3-65.
Click **Network**. In the email address field, multiple email addresses can now be entered (separated by commas), as shown in Figure 3-66.

![Figure 3-66 Email address field with multiple entries on the Network policy properties window](image)

3.3.10 High availability support for independent ASPs in a BRMS network

This function runs an incremental save from any system in the BRMS network for IASPs using the IBM i Clustering technology. Suppose that System A has run a full backup of an IASP and the save information that is stored in BRMS databases is synchronized to System B in the BRMS network. Because System B has System A’s save information, System B can do an incremental save using reference dates from that save information.

This feature is only available through the BRMS graphical user interfaces of IBM Systems Director web environment, IBM i Navigator web environment, or System i Navigator running on a PC.

To configure this function, complete the following steps:

1. Click **Backup, Recovery, and Media Services** → **Global Policy Properties**. The window that is shown in Figure 3-65 on page 115 opens.
2. On the Global Policy Properties window, select the **Network** tab.
3. Click **Manage Disk Pool History** as shown in Figure 3-67. The BRMS graphical interface refers to IASPs as disk pools.

4. On the Manage Disk Pool History to Send window, click **List actions** from the menu bar and select **New**, as shown in Figure 3-68.
5. Enter the disk pool name, the system name, and network identifier of the system to which you want the history information to be sent (Figure 3-69).

Decide whether to use the BRMS media information remote receives value that is defined by “Send to system”. You can override that systems value by selecting the **Always send** option.

![Figure 3-69 Send Disk Pool History Properties](image)

To determine what the Remote Receives value is for the remote system, view it by going back to the Global Policy Properties window, clicking **Network properties**, and clicking **Manage Systems**. The value is listed under the Remote Receives column for that remote system, as shown in Figure 3-70.

![Figure 3-70 Checking a System’s Remote Receives value](image)

6. Return to the Send Disk Pool History addition of a new disk pool window and click **OK** to complete the addition.
3.3.11 Enhanced maintenance features in the backup control group

You can now use the BRMS maintenance features in the backup control group to run movement, expire partial volume sets, and reorganize BRMS database files.

Figure 3-71 shows the Global Policy Properties - Backup Maintenance Options window. The new Run move policies and Expire partial volume sets are circled.
Click **File Management** and the new Reorganize BRMS database option becomes available, as shown in Figure 3-72.

![Figure 3-72 Global Policy Properties - Backup Maintenance Options, Reorganize BRMS database option](image)
3.3.12 BRMS Enterprise function

BRMS now includes the new BRMS enterprise function that you can use to centralize your daily BRMS chores that you have on multiple systems on one central system. You can do this task with either individual BRMS systems, one BRMS network, multiple BRMS networks, or any combination thereof, as shown in Figure 3-73.

The central “Enterprise System” (HUB) pulls important information from systems (NODES) defined in its “Enterprise” network. From this information, specific notifications, verifications, and various other functions can be made and help an administrator manage the health of their BRMS backups/recoveries from one central server. This situation is beneficial for customers with multiple BRMS systems or BRMS networks.
This feature is available in the IBM Navigator for i and System i Navigator. To use it, you need a valid license for 5770 BR1 features *BASE (BRMS), 1 (BRMS-Network Feature), and 3 (BRMS-Advanced Functions Feature). Your HTTP *ADMIN server also must be up and running.

To access this feature, point your web browser to http://<systemname>:2001. Sign on with your IBM i user profile and password, then click IBM i Management → Backup, Recovery and Media Services → Advanced → Enterprise Services. You can see the initial Enterprise Network window in Figure 3-74.

For more information about what you can do with BRMS Enterprise, see BRMS Enterprise Enhancements, REDP-4926.

![BRMS Enterprise initial window](image)

3.4 More resources

For more information about the topics in this chapter, see the following resources:

- IBM i 7.1 Knowledge Center:
 http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp

- *IBM i Backup, Recovery, and Media Services for IBM i 7.1,* SC41-5345-07

- BRMS for IBM i website on developerWorks:

- BRMS GUI documentation:

- BRMS Enterprise:

- DAOS Quick Start Guide:
- DAOS Best Practices:
- DAOS Estimator:
 http://www.ibm.com/support/docview.wss?rs=463&uid=swg24021920
- BRMS Online Lotus Server Backup Reference:
 http://www-03.ibm.com/systems/i/support/brms/domdaos.html
High availability

This chapter covers the following high availability (HA)-related enhancements of IBM i:

- PowerHA SystemMirror for i
- Journaling and commitment control enhancements
- Other availability improvements
4.1 PowerHA SystemMirror for i

This section describes the following enhancements included with IBM PowerHA® SystemMirror® for i, which is the strategic IBM high availability product for IBM i:

- New PowerHA packaging
- PowerHA versions
- PowerHA SystemMirror for i enhancements
- PowerHA SystemMirror for i graphical interfaces
- N_Port ID virtualization support
- Asynchronous geographic mirroring
- LUN level switching
- IBM System SAN Volume Controller and IBM Storwize V7000 split cluster
- Space-efficient FlashCopy
- Reverse FlashCopy
- FlashCopy at a Global Mirror target
- Better detection of cluster node outages
- Improved geographic mirroring full synchronization performance
- Geographic mirroring in an IBM i hosted IBM i client partition environment
- Support virtualization capabilities on an active cluster node
- Cluster administrative domain enhancements
- Working with cluster administrative domain monitored resources
- IPv6 support
- New CL commands for programming cluster automation
- Removal of existing command processing restrictions

4.1.1 New PowerHA packaging

IBM PowerHA for i was renamed to IBM PowerHA SystemMirror for i to align with the corresponding Power Systems PowerHA family product PowerHA SystemMirror for AIX.

IBM PowerHA SystemMirror for i is offered in two editions for IBM i 7.1:

- IBM PowerHA SystemMirror for i Standard Edition (5770-HAS *BASE) for local data center replication only
- IBM PowerHA SystemMirror for i Enterprise Edition (5770-HAS option 1) for local or multi-site replication

Customers already using PowerHA for i with IBM i 6.1 are entitled to an upgrade to PowerHA SystemMirror for i Enterprise Edition with IBM i 7.1.
The functional differences between the IBM PowerHA SystemMirror for i Standard and Enterprise Edition are summarized in Figure 4-1.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized cluster management</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cluster resource management</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Centralized cluster configuration</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Automated cluster validation</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cluster admin domain</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cluster device domain</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Integrated heartbeat</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Application monitoring</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IBM i event/error management</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Automated planned switch over</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Managed unplanned fail over</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Centralized FlashCopy</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LUN level switching</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GeoMirror sync delivery</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GeoMirror async delivery</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Multi-Site HA/DR management</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>DS8000/DS6000 Metro Mirror</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>DS8000/DS6000 Global Mirror</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>SVC/V7000 Metro Mirror</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>SVC/V7000 Global Mirror</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Figure 4-1 PowerHA SystemMirror for i editions

4.1.2 PowerHA versions

To use any of the new PowerHA SystemMirror for i enhancements, all nodes in the cluster must be upgraded to IBM i 7.1. Before this upgrade, both the cluster version and the PowerHA version must be updated to the current cluster Version 7 and PowerHA Version 2 by running the following CL command:

```
CHGCLUVER CLUSTER(cluster_name) CLUVER(*UP1VER) HAVER(*UP1VER)
```

As PowerHA SystemMirror for i now has N-2 support for clustering, it is possible to skip one level of IBM i just by running the earlier command twice. As such, a V5R4M0 system within a clustered environment can be upgraded towards IBM i 7.1 by skipping IBM i 6.1.

4.1.3 PowerHA SystemMirror for i enhancements

This section describes the enhancements in IBM i 7.1 regarding Power SystemMirror for i.

Enhancements that are delivered with 5799-HAS PRPQ

In April 2012, IBM PowerHA SystemMirror for i started to support the following new functions. Some of these functions were covered with 5799-HAS Program Request Pricing Quotation (PRPQ). Therefore, the requirement of 5799-HAS PRPQ for using these functions has been eliminated:

- Support for managing IBM System Storage® SAN Volume Controller and IBM Storwize® V7000 Copy Services with IBM PowerHA SystemMirror for i 5770-HAS PTF SI45741
IBM i command-line commands for configuring an independent auxiliary storage pool (\texttt{CFGDEVASP}) with 5770-SS1 PTF SI44141

IBM i command-line command for configuring geographic mirroring (\texttt{CFGGEOMIR}) with PTF SI44148

PowerHA GUI in IBM Navigator for i

The following subsections provide a brief overview of these enhancements. For more information, see \textit{PowerHA SystemMirror for IBM i Cookbook}, SG24-7994.

\textbf{Support for SAN Volume Controller and V7000 Copy Services}\n
PowerHA SystemMirror for i now also supports Metro Mirror, Global Mirror, IBM FlashCopy® and LUN level switching for the IBM System Storage SAN Volume Controller, and IBM Storwize V7000.

The available commands are similar to the ones that you use for IBM DS8000® Copy Services, but some parameters are different:

- Add SVC ASP Copy Description (\texttt{ADDSVCCPYD}): This command is used to describe a single physical copy of an auxiliary storage pool (ASP) that exists within an SAN Volume Controller and to assign a name to the description.
- Change SVC Copy Description (\texttt{CHGSVCCPYD}): This command changes an existing auxiliary storage pool (ASP) copy description.
- Remove SVC Copy Description (\texttt{RMYSVCCPYD}): This command removes an existing ASP copy description. It does not remove the disk configuration.
- Display SVC Copy Description (\texttt{DSPSVCCPYD}): This command displays an ASP copy description.
- Work with ASP Copy Description (\texttt{WRKASPCPYD}) shows both DS8000 and SAN Volume Controller / V7000 copy descriptions.
- Start SVC Session (\texttt{STRSVCSSN}): This command assigns a name to the Metro Mirror, Global Mirror, or FlashCopy session that links the two ASP copy descriptions for the source and target IASP volumes and starts an ASP session for them.
- Change SVC Session (\texttt{CHGSVCSSN}): This command is used to change an existing Metro Mirror, Global Mirror, or FlashCopy session.
- End SVC ASP Session (\texttt{ENDSVCSSN}): This command ends an existing ASP session.
- Display SVC Session (\texttt{DSPSVCSSN}): This command displays an ASP session.

\textbf{Configure Device ASP (\texttt{CFGDEVASP}) command}\n
The Configure Device ASP (\texttt{CFGDEVASP}) command is part of the IBM i 7.1 base operating system and is available with PTF SI44141. It is used to create or delete an independent auxiliary storage pool (IASP).

If you use this command with the \texttt{*CREATE} action, it does the following actions:

- Creates the IASP using the specified non-configured disk units.
- Creates an ASP device description with the same name if one does not exist yet.

If you use this command with the \texttt{*DELETE} action, it does the following actions:

- Deletes the IASP.
- Deletes the ASP device description if it was created by this command.
Figure 4-2 shows creating or deleting an IASP through the command-line interface (CLI).

Configure Device ASP (CFGDEVASP)

Type choices, press Enter.

<table>
<thead>
<tr>
<th>Choice</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASP device</td>
<td>ASPDEV > IASP1</td>
</tr>
<tr>
<td>Action</td>
<td>ACTION > *CREATE</td>
</tr>
<tr>
<td>ASP type</td>
<td>TYPE > *PRIMARY</td>
</tr>
<tr>
<td>Primary ASP device</td>
<td>PRIASPDEV</td>
</tr>
<tr>
<td>Protection</td>
<td>PROTECT > *NO</td>
</tr>
<tr>
<td>Encryption</td>
<td>ENCRYPT > *NO</td>
</tr>
<tr>
<td>Disk units</td>
<td>UNITS > *SELECT</td>
</tr>
<tr>
<td></td>
<td>+ for more values</td>
</tr>
<tr>
<td>Confirm</td>
<td>CONFIRM > *YES</td>
</tr>
</tbody>
</table>

CFGGEOMIR command

The Configure Geographic Mirror (CFGGEOMIR) command that is shown in Figure 4-3 can be used to create a geographic mirror copy of an existing IASP in a device cluster resource group (CRG).

The command can also create ASP copy descriptions if they do not exist yet and can start an ASP session. It performs all the necessary configuration steps to take an existing stand-alone IASP and create a geographic mirror copy. To obtain this command, the 5770-HAS PTF SI44148 must be on the system that is running IBM i 7.1.

Configure Geographic Mirror (CFGGEOMIR)

Type choices, press Enter.

<table>
<thead>
<tr>
<th>Choice</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASP device</td>
<td>ASPDEV</td>
</tr>
<tr>
<td>Action</td>
<td>ACTION</td>
</tr>
<tr>
<td>Source site</td>
<td>SRCSITE > *</td>
</tr>
<tr>
<td>Target site</td>
<td>TGTSITE > *</td>
</tr>
<tr>
<td>Session</td>
<td>SSN</td>
</tr>
<tr>
<td>Source ASP copy description</td>
<td></td>
</tr>
<tr>
<td>Target ASP copy description</td>
<td></td>
</tr>
<tr>
<td>Transmission delivery</td>
<td>DELIVERY > *SYNC</td>
</tr>
<tr>
<td>Disk units</td>
<td>UNITS > *SELECT</td>
</tr>
<tr>
<td></td>
<td>+ for more values</td>
</tr>
<tr>
<td>Confirm</td>
<td>CONFIRM > *YES</td>
</tr>
<tr>
<td>Cluster</td>
<td>CLUSTER > *</td>
</tr>
<tr>
<td>Cluster resource group</td>
<td>CRG > *</td>
</tr>
</tbody>
</table>

Figure 4-2 Configure Device ASP (CFGDEVASP) command

Figure 4-3 Configure Geographic Mirror (CFGGEOMIR) command
PowerHA GUI in IBM Navigator for i

PowerHA GUI is available in IBM Navigator for i. It supports switched disk and geographic mirroring environments, and DS8000 FlashCopy, Metro Mirror, and Global Mirror technologies. The PowerHA GUI provides an easy to use interface to configure and manage a PowerHA high availability environment. It can configure and manage cluster nodes, administrative domain, and independent auxiliary storage pools (IASPs).

Section 4.1.4, “PowerHA SystemMirror for i graphical interfaces” on page 131 introduces GUIs that are associated with a high availability function, including two existing interfaces and the PowerHA GUI.

N-2 support for clustering

Before the release of 5770-SS1 PTF SI42297, PowerHA and clustering supported only a difference of one release, which meant that the nodes within the cluster needed to be within one release, and a node within the cluster could be upgraded only one release at a time.

After this PTF is installed, a 7.1 node can be added to a 5.4 cluster. A node can also be upgraded from a 5.4 cluster node directly to a 7.1 cluster node if this PTF is installed during the upgrade.

The main intent of this enhancement is to ensure that nodes can be upgraded directly from 5.4 to 7.1. PowerHA replication of the IASP still does not allow replication to an earlier release, so for a complete high availability solution, other than during an upgrade of the HA environment, keep all nodes at the same release level.

Duplicate library error handling

Duplicate libraries and spool files are not allowed between SYSBAS and an IASP. When the IASP is available, the operating system prevents a duplicate library or spool file from being created. However, if a duplicate library or spool file is created in SYSBAS while the IASP is unavailable, the next varyon of the IASP fails.
With this enhancement, the message ID CPDB8EB and CPF9898, shown in Figure 4-4, is displayed in the QSYSOPR message queue at the IASP varyon time when a duplicate library is found in SYSBAS and the IASP. The varyon of the IASP can be continued or canceled after the duplicate library issue is resolved.

This enhancement is available in both 6.1 with 5761-SS1 PTF SI44564 and 7.1 with 5770-SS1 PTF SI44326.

Additional Message Information
- **Message ID**: CPDB8EB
- **Severity**: 30
- **Date sent**: 10/10/12
- **Time sent**: 09:30:30

Message: Library TESTLIB01 exists in *SYSBAS and ASP device IASP01.

Cause: Auxiliary storage pool (ASP) device IASP01 cannot be varied on to an available status because the ASP contains a library named TESTLIB01 and a library by the same name already exists in the system ASP or a basic user ASP (*SYSBAS).

Recovery: Use the Rename Object (RNMOBJ) or Delete Library (DLTLIB) command to rename or delete library TESTLIB01 from ASP IASP01 or *SYSBAS to remove the duplicate library condition. Vary ASP device IASP01 off and retry the vary on.

Additional Message Information
- **Message ID**: CPF9898
- **Severity**: 40
- **Date sent**: 10/10/12
- **Time sent**: 09:30:30

Message: See previous CPDB8EB messages in MSGQ QSYSOPR. Respond (C).

Cause: This message is used by application programs as a general escape message.

4.1.4 PowerHA SystemMirror for i graphical interfaces

With IBM i 7.1, there are three different graphical user interfaces (GUIs) within IBM Navigator for i:

- Cluster Resource Services GUI
- High Availability Solutions Manager GUI
- PowerHA GUI
Cluster Resource Services GUI
You can access this GUI by completing the steps shown in Figure 4-5:

1. Expand IBM i Management.

![Figure 4-5 Cluster Resource Services GUI](image)

The Cluster Resource Services GUI has the following characteristics:

- Supports the existing environment
- Limited Independent ASP (IASP) function
- Cannot manage from one node
- Difficult to determine the status

Removed feature: The clustering GUI plug-in for System i Navigator from High Availability Switchable Resources licensed program (IBM i option 41) was removed in IBM i 7.1.
High Availability Solutions Manager GUI

You can access this GUI by completing the steps shown in Figure 4-6:
1. Expand **IBM i Management**.
2. Select **High Availability Solutions Manager**.

![High Availability Solutions Manager GUI](image)

The High Availability Solutions Manager GUI has the following characteristics:

- "Dashboard" interface
- No support for existing environments
- Cannot choose names
- Limited to four configurations
New PowerHA SystemMirror for i GUI

In IBM PowerHA SystemMirror for i, there is a new interface available for PowerHA within IBM Navigator for i. This new PowerHA GUI was already supported by the October 2011 PRPQ announcement of 5799-HAS, but it supported only an English GUI at that level. With the April 2012 enhancement of IBM PowerHA SystemMirror for i, it supports multiple languages in the GUI.

You can access the new GUI by completing the following steps, as shown in Figure 4-7:

1. Expand **IBM i Management**.
2. Select **PowerHA**.

![Image of PowerHA GUI](image)

Figure 4-7 PowerHA SystemMirror for i GUI

The PowerHA GUI handles the high availability solution from one single window. It supports the following items:

- Geographic mirroring
- Switched disk (IOA)
- SVC/V7000/DS6000/DS8000 Metro Mirror
- SVC/V7000/DS6000/DS8000 Global Mirror
- SVC/V7000/DS6000/DS8000 FlashCopy
- SVC/V7000/DS6000/DS8000 LUN level switching

For more information about the PowerHA GUI, see Chapter 9, “PowerHA User Interfaces” in the *PowerHA SystemMirror for IBM i Cookbook*, SG24-7994.
Differences between the three graphical interfaces

Figure 4-8 shows the main differences between the three available graphical interfaces.

<table>
<thead>
<tr>
<th></th>
<th>Cluster Resource Services GUI</th>
<th>High Availability Solutions Manager GUI</th>
<th>PowerHA GUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Node Management</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Quick Problem Determination</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Flexible Configuration</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>IASP Configuration and Management</td>
<td>Limited</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Add/Remove Multiple Monitored Resources</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Guided Wizards</td>
<td>✓</td>
<td>Limited</td>
<td>✓</td>
</tr>
</tbody>
</table>

Note: As the PowerHA GUI is a combination of the two other ones, those GUIs will be withdrawn in a later release.

4.1.5 N_Port ID virtualization support

The new N_Port ID Virtualization (NPIV) support made available with IBM i 6.1.1 or later is fully supported by IBM PowerHA SystemMirror for i for IBM System Storage DS8000 series storage-based replication.

Using NPIV with PowerHA SystemMirror for i does not require dedicated Fibre Channel IOAs for each SYSBAS and IASP because the (virtual) IOP reset that occurs when you switch the IASP affects the virtual Fibre Channel client adapter only, instead of all ports of the physical Fibre Channel IOA, which are reset in native-attached storage environment.

For an overview of the new NPIV support by IBM i, see Chapter 7, “Virtualization” on page 319.

For more information about NPIV implementation in an IBM i environment, see *DS8000 Copy Services for IBM i with VIOS*, REDP-4584.

4.1.6 Asynchronous geographic mirroring

Asynchronous geographic mirroring is a new function supported by PowerHA SystemMirror for i Enterprise Edition with IBM i 7.1 that extends the previously available synchronous geographic mirroring option, which, for performance reasons, is limited to metro area distances up to 30 km.

The asynchronous delivery of geographic mirroring (not to be confused with the asynchronous mirroring mode of synchronous geographic mirroring) allows IP-based hardware replication beyond synchronous geographic mirroring limits.

Asynchronous delivery, which also requires the asynchronous mirroring mode, works by duplicating any changed IASP disk pages in the *BASE memory pool on the source system and sending them asynchronously while you preserve the write-order to the target system.
Therefore, at any time, the data on the target system (though not up-to-date) still represents a so-called crash-consistent copy of the source system.

With the source system available, you can check the currency of the target system and memory impact on the source system because of asynchronous geographic mirroring. Use the Display ASP Session (DSPASPSSN) command to show the total data in transit, as shown in Figure 4-9.

![Display ASP Session](image)

Figure 4-9 DSPASPSSN command data in transit information
For ASP sessions of type *GEOMIR, the changing of geographic mirroring options requires that the IASP be varied off. The option for asynchronous delivery can be enabled through the Change ASP Session (CHGASPSSN) command's new **DELIVERY(*ASYNC)** parameter, as shown in Figure 4-10.

<table>
<thead>
<tr>
<th>Type choices, press Enter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session SSN</td>
</tr>
<tr>
<td>Option OPTION</td>
</tr>
<tr>
<td>ASP copy: ASPCOPY</td>
</tr>
<tr>
<td>Preferred source *SAME</td>
</tr>
<tr>
<td>Preferred target *SAME</td>
</tr>
<tr>
<td>+ for more values</td>
</tr>
<tr>
<td>Suspend timeout SSPTIMO *SAME</td>
</tr>
<tr>
<td>Transmission delivery DELIVERY *ASYNC</td>
</tr>
<tr>
<td>Mirroring mode MODE *SAME</td>
</tr>
<tr>
<td>Synchronization priority .. PRIORITY *SAME</td>
</tr>
<tr>
<td>Tracking space TRACKSPACE *SAME</td>
</tr>
<tr>
<td>FlashCopy type FLASHTYPE *SAME</td>
</tr>
<tr>
<td>Persistent relationship ... PERSISTENT *SAME</td>
</tr>
<tr>
<td>ASP device ASPDEV *ALL</td>
</tr>
<tr>
<td>+ for more values</td>
</tr>
<tr>
<td>Track TRACK *YES</td>
</tr>
</tbody>
</table>

*Figure 4-10 CHGASPSSN command - *ASYNC Transmission delivery parameter*
This setting can also be seen and changed through the IBM Navigator for i GUI by clicking **PowerHA → Independent IASPs → Details** in the menu that is displayed by clicking next to the IASP name. Click the menu under the large arrow in the middle of the topic pane and select **Mirroring Properties**, as shown in Figure 4-11.

Note: You must stop the geographic mirroring session by running the **ENDASPSSN** command before you change this setting.

![Image of PowerHA GUI showing Independent ASP details](image)

Figure 4-11 Independent ASP details in PowerHA GUI
Figure 4-12 shows the changed setting.

![Image](image)

Figure 4-12 Independent ASP Mirroring Properties in PowerHA GUI

Geographic mirroring synchronization priority

It is now possible to adjust the priority of the synchronization while the IASP is in use. Previously, this required that the IASP was varied off to be adjusted.

4.1.7 LUN level switching

LUN level switching is a new function that is provided by PowerHA SystemMirror for i in IBM i 7.1. It provides a local high availability solution with IBM System Storage DS8000 or DS6000™ series, IBM Storwize V7000 or V3700, or IBM System Storage SAN Volume Controller similar to what used to be available as switched disks for IBM i internal storage.

With LUN level switching single-copy (that is, non-replicated) IASPs that are managed by a cluster resource group device domain and in a supported storage can be switched between IBM i systems in a cluster.

A typical implementation scenario for LUN level switching is where multi-site replication through Metro Mirror or Global Mirror is used for disaster recovery and protection against storage subsystem outages. When this scenario happens, additional LUN level switching at the production site is used for local high availability protection, eliminating the requirement for a site-switch if there are IBM i server outages.
Implementing on IBM System Storage DS8000 or DS6000

To implement LUN level switching on an IBM System Storage DS8000 or DS6000, create an ASP copy description for each switchable IASP using the Add ASP Copy Description (ADDASPCPYD) command, which is enhanced with recovery domain information for LUN level switching, as shown in Figure 4-13.

![Add ASP Copy Description (ADDASPCPYD)](image)

Figure 4-13 IBM i ADDASPCPYD enhancement for DS8000, DS6000 LUN level switching

An ASP session is not required for LUN level switching, as there is no replication for the IASP involved.

Important: For LUN level switching, the backup node host connection on the DS8000 or DS6000 storage system must not have a volume group (VG) assigned. PowerHA automatically unassigns the VG from the production node and assigns it to the backup node at site-switches or failovers.
Implementing on IBM Storwize V7000, V3700 or IBM System Storage SAN Volume Controller

To implement LUN level switching on an IBM Storwize V7000, V3700, or IBM System Storage SAN Volume Controller, create an ASP copy description for each switchable IASP by using the Add SVC Copy Description (ADDSVCCPYD) command. This command is enhanced with recovery domain information for LUN level switching, as shown in Figure 4-14.

![Figure 4-14 IBM i ADDSVCCPYD enhancement for V7000, V3700, SVC LUN level switching](image)

An ASP session is not required for LUN level switching, as there is no replication for the IASP involved.

Important: For LUN level switching, the backup node host connection on the V7000, V3700, or SAN Volume Controller storage system must not have a host connection assigned. PowerHA automatically unassigns the host connection from the production node and assigns it to the backup node at site-switches or failovers.

4.1.8 IBM System SAN Volume Controller and IBM Storwize V7000 split cluster

Support is now also added to use the split cluster function of the IBM System Storage SAN Volume Controller and IBM Storwize V7000. The split cluster environment is commonly used on other platforms. This support enables IBM i customers to implement the same mechanisms as they use on those platforms.

A split-cluster setup uses a pair of storage units in a cluster arrangement. These storage units present a copy of an IASP to one of two servers on their local site, with PowerHA managing the system side of the takeover. As with any split cluster environment, you can end up with a “split brain” or partitioned state. To avoid this, the split cluster support requires the use of a
quorum device preferably on a third site with separate power. The storage unit automatically uses this quorum device to resolve the split brain condition.

For more information, see *IBM i and IBM Storwize Family: A Practical Guide to Usage Scenarios*, SG24-8197.

4.1.9 Space-efficient FlashCopy

PowerHA for SystemMirror for i with IBM i 7.1 now supports space-efficient FlashCopy of the IBM System Storage DS8000 series.

You can use the IBM System Storage DS8000 series FlashCopy SE licensed feature to create space-efficient FlashCopy target volumes that can help you reduce the required physical storage space for the FlashCopy target volumes. These volumes are typically needed only for a limited time (such as during a backup to tape).

A space-efficient FlashCopy target volume has a virtual storage capacity that is reported to the host that matches the physical capacity of the fully provisioned FlashCopy source volume, but no physical storage space is ever allocated. Physical storage space for space-efficient FlashCopy target volumes is allocated in 64-KB track granularity. This allocation is done on demand for host write operations from a configured repository volume that is shared by all space-efficient FlashCopy target volumes within the same DS8000 extent pool, as shown in Figure 4-15.

![Figure 4-15 DS8000 Space-Efficient FlashCopy](image)

From a user perspective, the PowerHA setup (not the DS8000 FlashCopy setup) for space-efficient FlashCopy is identical to the setup for traditional FlashCopy with the `nocopy` option. The reason for this situation is PowerHA SystemMirror for i internally interrogates the DS8000 to determine the type of FlashCopy relationship and makes sure that it uses the corresponding correct DS CLI command syntax. The syntax check is done for either traditional FlashCopy or FlashCopy SE when you run the `mkflash` and `rmflash` commands.
4.1.10 Reverse FlashCopy

The use of reverse FlashCopy is now supported from a FlashCopy Target to a FlashCopy Source that is also the source of the Metro Mirror or Global Mirror relationship. Any changes that result from this operation are then replicated to the target of the replication relationship.

The reverse of the FlashCopy is performed by using the Change ASP Session (CHGASPSSN) command with OPTION(*REVERSE) as shown in Figure 4-16.

Note: The ability to reverse the FlashCopy is also available with the “no copy” option, in which case the FlashCopy relationship is removed as well.

4.1.11 FlashCopy at a Global Mirror target

It is now possible to take a FlashCopy at the target of a Global Mirror relationship with a single command. Use the Start ASP Session (STRASPSSN TYPE(*FLASHCOPY)) command to run the FlashCopy operation.

This improvement removes the need to manually detach and reattach the Global Mirror session that existed on previous releases. PowerHA now handles the entire process in a single command.

4.1.12 Better detection of cluster node outages

There are situations where a sudden cluster node outage, such as a main storage memory dump, an HMC immediate partition power-off, or a system hardware failure, results in a partitioned cluster. If so, you are alerted by the failed cluster communication message CPFBB22 sent to QHST and the automatic failover not started message CPFBB4F sent to the QSYSOPR message queue on the first backup node of the CRG.
You must determine the reason for the cluster partition condition. This condition can be caused either by a network problem or a sudden cluster node outage. You must either solve the network communication problem or declare the cluster node as failed, which can be done by running Change Cluster Node Entry (CHGCLUNODE) in preparation of a cluster failover.

With IBM i 7.1, PowerHA SystemMirror for i now allows advanced node failure detection by cluster nodes. This task can be accomplished by registering with an HMC or Virtual I/O Server (VIOS) management partition on IVM managed systems. The clusters are notified when severe partition or system failures trigger a cluster failover event instead of causing a cluster partition condition.

For LPAR failure conditions, it is the IBM POWER® Hypervisor™ (PHYP) that notifies the HMC that an LPAR failed. For system failure conditions other than a sudden system power loss, it is the flexible service processor (FSP) that notifies the HMC of the failure. The CIM server on the HMC or VIOS can then generate a power state change CIM event for any registered CIM clients.

Whenever a cluster node is started, for each configured cluster monitor, IBM i CIM client APIs are used to subscribe to the particular power state change CIM event. The HMC CIM server generates such a CIM event and actively sends it to any registered CIM clients (that is, no heartbeat polling is involved with CIM). On the IBM i cluster nodes, the CIM event listener compares the events with available information about the nodes that constitute the cluster to determine whether it is relevant for the cluster to act upon. For relevant power state change CIM events, the cluster heartbeat timer expiration is ignored (that is, IBM i clustering immediately triggers a failover condition in this case).

Using advanced node failure detection requires SSH and CIMOM TCP/IP communication to be set up between the IBM i cluster nodes and the HMC or VIOS. Also, a cluster monitor must be added to the IBM i cluster nodes, for example, through the new Add Cluster Monitor (ADDCLUMON) command, as shown in Figure 4-17. This command enables communication with the CIM server on the HMC or VIOS.

```
Add Cluster Monitor (ADDCLUMON)

Type choices, press Enter.

Cluster ................. HASM_CLU Name
Node identifier .......... CTCV71 Name
Monitor type ............ *CIMSVR *CIMSVR
CIM server:
  CIM server host name .... HMC1
  CIM server user id ....... hmcuser
  CIM server user password .... password

F3=Exit  F4=Prompt  F5=Refresh  F12=Cancel  F13=How to use this display
F24=More keys
```

Figure 4-17 Add Cluster Monitor (ADDCLUMOD) command
For more information about configuring clustering advanced node failure detection, see the Advanced node failure detection topic in the IBM i 7.1 Knowledge Center:
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzaue%2Frzaueconceptnodefailedetection.htm

4.1.13 Improved geographic mirroring full synchronization performance

Performance improvements were implemented in IBM i 7.1 for geographic mirroring full synchronization.

Changes within the System Licensed Internal Code (SLIC) provide more efficient processing of data that is sent to the target system if there is a full resynchronization. Even with source and target side tracking, some instances require a full synchronization of the production copy, such as any time that the IASP cannot be normally varied off, because of a sudden cluster node outage.

The achievable performance improvement varies based on the IASP data. IASPs with many small objects see more benefit than those IASPs with a smaller number of large objects.

4.1.14 Geographic mirroring in an IBM i hosted IBM i client partition environment

In an IBM i hosted IBM i client partition environment, you can replicate the whole storage spaces of the IBM i client partition by configuring *NWSSTG for the client partition in an IASP of the IBM i host partition and using the geographic mirroring between the IBM i host partitions, as shown in Figure 4-18.

![Figure 4-18 Geographic mirroring for an IBM i hosted IBM i client partition environment](image)

The advantage of this solution is that no IASP is needed on the production (client) partition, so no application changes are required.
Conversely, the following two considerations are part of this solution:

- It is a cold-standby solution, so an IPL on the backup IBM i client partition is required after you switch to the backup node.
- Temporary storage spaces on the IBM i client partition are also transferred to the backup node side.

In October 2012, geographic mirroring of PowerHA SystemMirror for i can eliminate the transfer of temporary storage spaces for the IBM i client partition. This enhancement reduces the amount of a network traffic between IBM i host partition on the production node side and on the backup node side.

4.1.15 **Support virtualization capabilities on an active cluster node**

IBM i 7.1 supports Suspend/Resume and Live Partition Mobility, which are provided by the IBM PowerVM® virtualization technology stack. If your IBM i 7.1 partition is a member of an active cluster, you cannot suspend this partition, but can move it to another Power Systems server by using Live Partition Mobility.

For more information about Suspend/Resume and Live Partition Mobility, see Chapter 7, “Virtualization” on page 319.

4.1.16 **Cluster administrative domain enhancements**

The IBM cluster administrative domain support was enhanced in IBM i 7.1 with the following two new monitored resource entries (MREs):

- Authorization lists (*AUTL)
- Printer device descriptions (*PRTDEV) for LAN or virtual printers

PowerHA SystemMirror for i is required to support these two new administration domain monitored resource entries.

For a complete list of attributes that can be monitored and synchronized among cluster nodes by the cluster administrative domain see the Attributes that can be monitored topic in the IBM i 7.1 Knowledge Center:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzaig/rzaigrefattribmon.htm

Additional enhancements are made to adding and removing monitored resource entries in the cluster administrative domain:

- When adding new entries to the administrative domain, this can now be done even if the object cannot be created on all nodes. If the creation is not possible on all of the nodes in the administrative domain, the MRE will be in an inconsistent state to remind you that the object must still be manually created.
- When removing entries from the administrative domain from the cluster administrative domain, you are now able to do this when some of the nodes in the administrative domain are not active.

The processing that is associated with cluster administrative domains has also been enhanced by the use of the QCSTJOBID job description. This allows any IBM initiated jobs to be run in the QSYSWRK subsystem from the job queue QSYSNOMAX. It improves processing by eliminating potential issues caused by contention that might exist with customer jobs when using the QBATCH subsystem and job queue.
4.1.17 Working with cluster administrative domain monitored resources

A new CL command, Work with Monitored Resources (WRKADMRE), has been introduced to provide easier management of cluster administrative domain MREs, including sorting and searching capabilities. See Figure 4-19.

```
Work with Monitored Resources (WRKADMRE)

Type choices, press Enter.

Cluster administrative domain . * Name, *
```

Figure 4-19 Work with Monitored Resources (WRKADMRE) command

The default for the ADMDMN parameter is to use the administrative domain that the current node is a part of. You are then presented with the panel shown in Figure 4-20. From this list, you can sort the entries or go to an entry of interest.

```
Work with Monitored Resources

System: DEMOAC710

Administrative domain . . . . . . . . : ADMDMN
Consistent information in cluster . . : Yes
Domain status . . . . . . . . . . . . : Active

Type options, press Enter.
1=Add 4=Remove 5=Display details 6=Print 7=Display attributes
Opt Resource Type Library Status
CHRIS *PRTDEV QSYS Consistent
LILYROSE *PRTDEV QSYS Consistent
NEAL *PRTDEV QSYS Consistent
NELLY *PRTDEV QSYS Consistent
DPAINTER *USRPRF QSYS Consistent
```

Figure 4-20 Example of output from WRKADMRE command
4.1.18 IPv6 support

PowerHA SystemMirror for i on IBM i 7.1 now fully supports IPv6 or a mix of IPv6 and IPv4. All HA-related APIs, commands, and GUIs are extended for field names that hold either a 32-bit IPv4 or a 128-bit IPv6 address, as shown for the Change Cluster Node Entry (CHGCLUNODE) command in Figure 4-21. An IPv6 IP address is specified in the form x:x:x:x:x:x:x:x, with x being a hexadecimal number 0 - FFFF, and “::” can be used once in the IPv6 address to indicate one or more groups of 16-bit zeros.

```
Change Cluster Node Entry (CHGCLUNODE)

Type choices, press Enter.

Cluster . . . . . . . . . . . . > HASM_CLU  Name
Node identifier . . . . . . . . > CTCV71  Name
Option . . . . . . . . . . . . > *CHGIFC  *ADDIFC, *RMVIFC, *CHGIFC...
Old IP address . . . . . . .

New IP address . . . . . .

: New IP address (NEWINTNETA) - Help :
: Specifies the cluster interface address which is being :
: added to the node information or replacing an old cluster :
: interface address. The interface address may be an IPv4 :
: address (for any cluster version) or IPv6 address (if :
: current cluster version is 7 or greater).
: More...

F2=Extended help  F10=Move to top  F12=Cancel
F3=Exit  F4=  F13=Information Assistant  F20=Enlarge  F24=More keys
F24=More keys

Figure 4-21 IBM i change cluster node entry
```

4.1.19 New CL commands for programming cluster automation

With PowerHA SystemMirror for i, the following new CL commands are introduced in IBM i 7.1 to better support CL programming for cluster automation management:

- Retrieve Cluster (RTVCLU) command
- Retrieve Cluster Resource Group (RTVCRG) command
- Retrieve ASP Copy Description (RTVASPCPYD) command
- Retrieve ASP Session (RTVASPSSN) command
- Print Cluster Administrative Domain Managed Resource Entry (PRTCADMRE) command

4.1.20 Removal of existing command processing restrictions

A number of commands have been changed to allow them to run from any active node in the cluster, providing that at least one eligible node is active. A parameter has been added to each command to specify to which device domain they should apply, with the default being the device domain of the current node.
The commands that are listed in Table 4-1 are enhanced by this change.

Table 4-1 Cluster commands enabled to run from any active cluster node

<table>
<thead>
<tr>
<th>Command</th>
<th>Command</th>
<th>Command</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDASPCPYD</td>
<td>ADDSVCCPYD</td>
<td>CHGASPSSN</td>
<td>CHGSVCSSN</td>
</tr>
<tr>
<td>CHGASPCPYD</td>
<td>CHGSVCCPYD</td>
<td>DSPASPSSN</td>
<td>ENDSVCSSN</td>
</tr>
<tr>
<td>DPSASPCPYD</td>
<td>DPSVCCPYD</td>
<td>ENDSASPSSN</td>
<td>STRSVCSSN</td>
</tr>
<tr>
<td>RMVASPCPYD</td>
<td>RMVSVCCPYD</td>
<td>STRASPSSN</td>
<td></td>
</tr>
<tr>
<td>WRKASPCPYD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition, the administrative domain commands listed in Table 4-2 have been enhanced to run from any active node in the cluster, providing that at least one eligible node is active. A parameter has been added to these commands to specify the active cluster node to be used as the source for synchronization to the other nodes in the administrative domain.

Table 4-2 Administrative domain commands enabled to run from any active cluster node

<table>
<thead>
<tr>
<th>Command</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDCADMRE</td>
<td>RMVCADMRE</td>
</tr>
<tr>
<td>WRKCADMRE</td>
<td>PRTCADMRE</td>
</tr>
</tbody>
</table>

4.2 Journaling and commitment control enhancements

Journaling and commitment control are the base building blocks for any HA solution, as they ensure database consistency and recoverability.

Several enhancements were made in the area of the integrity preservation and journaling. The main objectives of these enhancements are to provide easier interfaces for the setup and monitoring of the database's persistence, including HA setups.

4.2.1 Journal management

Journals (more familiarly known as logs on other platforms) are used to track changes to various objects. Although the OS has built-in functions to protect the integrity of certain objects, use journaling to protect the changes to objects, to reduce the recovery time of a system after an abnormal end, to provide powerful recovery and audit functions, and to enable the replication of journal entries on a remote system.

The Start Journal Library (STRJRNLIB) command was introduced in IBM i 6.1. This command defines one or more rules at a library or schema level. These rules are used, or inherited, for journaling objects.
In the IBM i 7.1 release, `STRJRNLIB` (see Figure 4-22) now provides two new rules:

- If these objects are eligible for remote journal filtering by object (*OBJDFT*, *NO*, or *YES*).
- A name filter to associate with the inherit rule. This filter can be specified with a specific or generic name. The default is to apply the rule to all objects that match the other criteria that are specified in the inherit rule regardless of the object name. You can use this filter to start journaling on new production work files, but not journal temporary work files if they have unique names.

<table>
<thead>
<tr>
<th>Start Journal Library (STRJRNLIB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type choices, press Enter.</td>
</tr>
<tr>
<td>Library > LIBA</td>
</tr>
<tr>
<td>+ for more values</td>
</tr>
<tr>
<td>Journal > QSQRJN</td>
</tr>
<tr>
<td>Library > AJRNLIB</td>
</tr>
<tr>
<td>Inherit rules:</td>
</tr>
<tr>
<td>Object type > *FILE</td>
</tr>
<tr>
<td>Operation > *ALLOPR</td>
</tr>
<tr>
<td>Rule action > *INCLUDE</td>
</tr>
<tr>
<td>Images > *OBJDFT</td>
</tr>
<tr>
<td>Omit journal entry > *OBJDFT</td>
</tr>
<tr>
<td>Remote journal filter . . . > *OBJDFT</td>
</tr>
<tr>
<td>Name filter > *ALL</td>
</tr>
<tr>
<td>+ for more values</td>
</tr>
<tr>
<td>Logging level > *ERRORS</td>
</tr>
</tbody>
</table>

Figure 4-22 STRJRNLIB command prompt
If the library is journaled already and you want to define one of the new inherit rules, run the Change Journaled Object (CHGJRNOBJ) command. If the library is not already journaled, the new rules can be specified by running the Start Journal Library (STRJRNLIB) command. To view the inherit rules that are associated with a journaled library, run the Display Library Description (DSPLIBD) command, and then click F10 - Display inherit rules.

There is an equivalent in the IBM Navigator for i to do the same task. Click Expand File Systems → Select Integrated File System → Select QSYS.LIB. Select the library that you want to journal, as shown in Figure 4-23.

![Figure 4-23 Select a library for Journaling](image)

Select the Journaling action, as shown in Figure 4-24.

![Figure 4-24 Setting a rule](image)
4.2.2 Remote journaling

When a remote journal connection ends with a recoverable error, you can now specify that the operating system try to restart the connection automatically. This action is done by identifying the number of attempts and the time, expressed in seconds, between restart attempts. These settings can be set by running the Change Remote Journal (CHGRMTJRN) command or with the Change Journal State (QJOCHANGEJOURNALSTATE) API. For a list of errors for which an automatic restart attempt is made, see the Journal management topic collection in the IBM i 7.1 Knowledge Center at:

You can also run this command to filter the remote journals. Filtering out journal entries that are not needed on the target system can decrease the amount of data that is sent across the communication line.

This remote journal filtering feature is available with option 42 of IBM i, that is, feature 5117 (HA Journal Performance). Ensure that critical data is not filtered when you define remote journal filtering. Three criteria can be used to filter entries sent to the remote system:

- Before images
- Individual objects
- Name of the program that deposited the journal entry on the source system

The filtering criteria are specified when you activate a remote journal. Different remote journals that are associated with the same local journal can have different filtering criteria. Remote journal filtering can be specified only for asynchronous remote journal connections. Because journal entries might be missing, filtered remote journal receivers cannot be used with the Remove Journaled Changes (RMVJRNCCHG) command. Similarly, journal receivers that filtered journal entries by object or by program cannot be used with the Apply Journaled Change (APYJRNCCHG) command or the Apply Journaled Change Extend (APYJRNCCHGX) command.

The Work with Journal Attributes (WRKJRNA) command can now monitor, from the target side, how many seconds the target is behind in receiving journal entries from the source system. Also, new in IBM i 7.1 is the ability, from the source side, to view the number of retransmissions that occur for a remote journal connection.

4.2.3 DISPLAY_JOURNAL (easier searches of a journal)

Displaying a journal entry from a GUI interface either requires using APIs or writing the journal entries to an outfile. The APIs are labor-intensive and the outfile is restrictive and slower because a copy of the data required.

QSYS2.Display_Journal is a new table function that you can use to view entries in a journal by running a query.

There are many input parameters of the table function that can (and should) be used for best performance to return only those journal entries that are of interest. For more information about the special values, see the QjoRetrieveJournalEntries API topic in the IBM i 7.1 Knowledge Center:

Unlike many other UDTFs in QSYS2, this one has no DB2 for i provided view.
Here is a brief summary of the parameters:

- **Journal_Library and Journal_Name**
 The Journal_Library and Journal_Name must identify a valid journal. *LIBL* and *CURLIB* are not allowed as values of the Journal_Library.

- **Starting_Receiver_Library and Starting_Receiver_Name**
 If the specified Starting_Receiver_Name is the null value, an empty string, or a blank string, *CURRENT* is used and the Starting_Receiver_Library is ignored. If the specified Starting_Receiver_Name contains the special values *CURRENT*, *CURCHAIN*, or *CURAVLCHN*, the Starting_Receiver_Library is ignored. Otherwise, the Starting_Receiver_Name and Starting_Receiver_Library must identify a valid journal receiver. *LIBL* and *CURLIB* can be used as a value of the Starting_Receiver_Library. The ending journal receiver cannot be specified and is always *CURRENT*.

- **Starting_Timestamp**
 If the specified Starting_Timestamp is the null value, no starting time stamp is used. A value for Starting_Timestamp and Starting_Sequence cannot both be specified at the same time. However, both values can be queried when querying the table function.

- **Starting_Sequence**
 If the specified Starting_Sequence is the null value, no starting sequence number is used. If the specified Starting_Sequence is not found in the receiver range, an error is returned. A value for Starting_Timestamp and Starting_Sequence cannot both be specified at the same time. However, both values can be queried when querying the table function.

- **Journal_Codes**
 If the specified Journal_Codes is the null value, an empty string, or a blank string, *ALL* is used. Otherwise, the string can consist of the special value *ALL*, the special value *CTL*, or a string that contains one or more journal codes. Journal codes can be separated by one or more separators. The separator characters are the blank and comma. For example, a valid string might be 'RJ', 'R J', 'R,J', or 'R, J'.

- **Journal_Entry_Types**
 If the specified Journal_Entry_Types is the null value, an empty string, or a blank string, *ALL* is used. Otherwise, the string can consist of the special value *ALL*, the special value *RCD*, or a string that contains one or more journal entry types. Journal entry types can be separated by one or more separators. The separator characters are the blank and comma. For example, a valid string might be 'RJ', 'R J', 'R,J', or 'R, J'.

- **Object_Library, Object_Name, Object_ObjType, and Object_Member**
 If the specified Object_Name is the null value, an empty string, or a blank string, no object name is used and the Object_Library, Object_ObjType, and Object_Member are ignored. Otherwise, if the specified Object_Name contains the special value *ALL*, the Object_Library must contain a library name and Object_ObjType must contain a valid object type (for example, *FILE*).

 Otherwise, only one object can be specified and the Object_Library, Object_Name, Object_ObjType, and Object_Member must identify a valid object. *LIBL* and *CURLIB* can be used as a value of the Object_Library.

 The Object_ObjType must be one of *DTAARA*, *DTAQ*, *FILE*, or *LIB* (*LIB* is 6.1 only). The Object_Member can be *FIRST*, *ALL*, *NONE*, or a valid member name. If the specified object type is not *FILE*, the member name is ignored.
User
If the specified user is the null value, an empty string, or a blank string, *ALL is used. Otherwise, the user must identify a valid user profile name.

Job
If the specified job is the null value, an empty string, or a blank string, *ALL is used. Otherwise, the job must identify a valid job name, that is, a specific job where the first 10 characters are the job name, the second 10 characters are the user name, and the last six characters are the job number.

Program
If the specified program is the null value, an empty string, or a blank string, *ALL is used. Otherwise, the program must identify a valid program name.

Example 4-1 gives a possible usage of the DISPLAY_JOURNAL function.

Example 4-1 Possible usage of DISPLAY_JOURNAL function

```sql
set path system path, jsochr; -- Change jsochr to your library you chose above
-- Select all entries from the *CURRENT receiver of journal mjatst/qsqjrn.

select * from table (Display_Journal( 'JSOCHR', 'QSQJRN', -- Journal library and name
    '', '', -- Receiver library and name
    CAST(null as TIMESTAMP), -- Starting timestamp
    CAST(null as DECIMAL(21,0)), -- Starting sequence number
    '','', -- Journal codes
    '', -- Journal entries
    '', -- Object library, Object name, Object type, Object member
    '', -- User
    '', -- Job
    '' -- Program
)) as x;
```

This function provides a result table with data similar to what you get from using the Display Journal Command (DSPJRN) command.

4.2.4 Commitment control and independent ASPs

You can use commitment control to define the boundaries of a business or logical transaction, identifying when it starts and where it ends, and to ensure that all the database changes are either applied permanently or removed permanently. Furthermore, if any process or even a complete system performs such transactions ends abnormally, commitment control provides recovery of pending transactions by bringing the database contents to a committed status, and identifies the last transactions that were pending and recovered.

With commitment control, you have assurance that when the application starts again, no partial updates are in the database because of incomplete transactions from a prior failure. As such, it is one of the building blocks of any highly available setup and it identifies the recovery point for any business process.

If your application was deployed using independent ASPs (IASPs), you are using a database instance that is in that IASP. This situation has an impact on how commitment control works.
When a process starts commitment control, a commitment definition is created in a schema (QRECOVERY) that is stored in the database to which the process is connected. Assuming that your process is connected to an IASP, commitment control is started in the database that is managed by the IASP. When your process is running commitment control from an IASP (that is, it has its resources registered with commitment control on that disk pool), switching to another disk pool fails and throws message CPDB8EC (The thread has an uncommitted transaction).

However, if you switch from the system disk pool (ASP group *NONE), commitment control is not affected. The commitment definitions stay on the system disk pool. A new feature in IBM i 7.1 is that if you later place independent disk pool resources under commitment control before system disk pool resources, the commitment definition is moved to the independent disk pool. This situation means that if your job is not associated with an independent ASP, the commitment definition is created in *SYSBAS; otherwise, it is created in the independent ASP. If the job is associated with an independent ASP, you can open files under commitment control that are in the current library name space. For example, they can be in the independent ASP or *SYSBAS.

If the first resource that is placed under commitment control is not in the same ASP as the commitment definition, the commitment definition is moved to the resource’s ASP. If both *SYSBAS and independent ASP resources are registered in the same commitment definition, the system implicitly uses a two-phase commit protocol to ensure that the resources are committed atomically in the event of a system failure. Therefore, transactions that involve data in both *SYSBAS and an independent ASP have a small performance degradation versus transactions that are isolated to a single ASP group.

When recovery is required for a commitment definition that contains resources that are in both *SYSBAS and an independent ASP, the commitment definition is split into two commitment definitions during the recovery. One is in *SYSBAS and one in the independent ASP, as though there were a remote database connection between the two ASP groups. Resynchronization can be initiated by the system during the recovery to ensure that the data in both ASP groups is committed or rolled back atomically.

4.2.5 System Managed Access Path Protection

You can use System Managed Access Path Protection (SMAPP) to reduce the time for the system or independent disk pool to restart after an abnormal end. When the system must rebuild access paths, the next restart takes longer to complete than if the system ended normally. When you use SMAPP, the system protects the access paths implicitly and eliminates the rebuild of the access paths after an abnormal end.

SMAPP affects the overall system performance. The lower the target recovery time that you specify for access paths, the greater this effect can be. Typically, the effect is not noticeable, unless the processor is nearing its capacity.
Another situation that can cause an increase in processor consumption is when local journals are placed in standby state and large access paths that are built over files that are journaled to the local journal are modified. Using the F16=Display details function from the Display Recovery for Access Paths (DSPRCYAP) or Edit Recovery for Access Paths (EDTRCYAP) panels shows the internal threshold that is used by SMAPP (see Figure 4-25). This panel was added in IBM i 7.1. All access paths with estimated rebuild times greater than the internal threshold are protected by SMAPP. The internal threshold value might change if the number of exposed access paths changes, the estimated rebuild times for exposed access paths changes, or if the target recovery time changes.

<table>
<thead>
<tr>
<th>Display Details</th>
<th>CTCV71</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASP</td>
<td>*SYSTEM</td>
</tr>
<tr>
<td>Internal threshold</td>
<td>00:52:14</td>
</tr>
<tr>
<td>Last retune:</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>03/09/10</td>
</tr>
<tr>
<td>Time</td>
<td>06:54:58</td>
</tr>
<tr>
<td>Last recalibrate:</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>02/24/10</td>
</tr>
<tr>
<td>Time</td>
<td>08:19:44</td>
</tr>
</tbody>
</table>

Figure 4-25 Display Details from the Edit and Display Recovery for Access Paths panel

4.2.6 Journaling and disk arm usage

Starting in IBM i 7.1 with PTF MF51614, journal receivers are spread across all disk arms in the disk pool. Journaling no longer directs writes to specific arms.

The journal receiver threshold value influences the number of parallel writes that journal allows. The higher the journal receiver threshold value, the more parallel I/O requests are allowed. Allowing more parallel I/O requests can improve performance.

For more information, see the TechDocs “IBM i 7.1 and changes for journaling” at:
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD105661

4.2.7 Range of journal receivers parameter and *CURAVLCHN

In IBM i 6.1 with DB2 PTF Group SF99601 Level 28 and IBM i 7.1 with DB2 PTF Group SF99701 Level18, the Range of Journal Receivers parameter (RCVRNG) is extended to allow a *CURAVLCHN option with the RTVJRNE, RCVJRNE, and DSPJRN commands.

If you saved any journal receivers using SAVOBJ or SAVLIB with the STG(*FREE) option, the receiver chain is effectively broken and the *CURCHAIN option fails to retrieve journal entries.

By specifying the *CURAVLCHN option, if journal receivers exist in the receiver chain that are not available because they were saved with the storage freed option, those journal receivers are ignored and the entries are retrieved starting with the first available journal receiver in the chain.

The *CURAVLCHN option is already supported on the QjoRetrieveJournalEntries() API. With these enhancements, the three journal commands have the same capability.
4.2.8 Journal management functions: IBM Navigator for i

IBM Navigator for i now supports more journal management functions. With IBM i 7.1, the following functions were added:

- Change journal receivers and attributes that are associated with a journal.
- View the properties that are associated with a journal receiver.
- View the objects that are journaled to a specific journal.
- Add and remove remote journals.
- View the list of remote journals that are associated with a specific journal.
- Activate and deactivate remote journals.
- View the details of a remote journal connection.

For more information, see Chapter 17, “IBM Navigator for i 7.1” on page 667.

4.3 Other availability improvements

A number of other enhancements to availability have been made in the areas of reorganize physical file member (RGZPFM) and Lightweight Directory Access Protocol (LDAP).

4.3.1 Reorganize physical file member

In addition to the improvements listed previously in this chapter, there have been changes made to the ability of RGZPFM to enable it to be used concurrently with normal system operations.

For more information, see 5.3.25, “Database reorganization” on page 205.

4.3.2 LDAP enhancements

LDAP has been enhanced to allow configuration libraries and IFS directories to be in an independent auxiliary storage pool as well as the previously available instance database and change log libraries.

This allows the entire LDAP instance to be switchable by PowerHA.

4.4 Additional information

For more information and in-depth details about the latest enhancements in IBM PowerHA SystemMirror for i, see the PowerHA SystemMirror for IBM i Cookbook, SG24-7994.

For more information about external storage capabilities with IBM i, see IBM i and IBM Storwize Family: A Practical Guide to Usage Scenarios, SG24-8197.
IBM DB2 for i

This chapter describes what is new for DB2 for i and discusses the following topics:

- Introduction: Getting around with data
- SQL data description and data manipulation language
- Performance and query optimization
- New functionality for DB2 developers
- DB2 database management and recovery enhancements
- DB2 for Web Query for i (5733-QU2, 5733-QU3, and 5733-QU4)
- OmniFind Text Search Server for DB2 for i (5733-OMF)
- WebSphere MQ integration
- DB2 Connect system naming attribute
5.1 Introduction: Getting around with data

DB2 for i is a member of the IBM leading-edge family of DB2 products. It has always been known and appreciated for its ease of use and simplicity. It supports a broad range of applications and development environments.

Because of its unique and self-managing computing features, the cost of ownership of DB2 for i is a valuable asset. The sophisticated cost-based query optimizer, the unique single level store architecture of the OS, and the database parallelism feature of DB2 for i allow it to scale almost linearly. Rich SQL support makes not only it easier for software vendors to port their applications and tools to IBM i, but it also enables developers to use industry-standard SQL for their data access and programming. The IBM DB2 Family has this focus on SQL standards with DB2 for i, so investment in SQL enables DB2 for i to use the relational database technology leadership position of IBM and maintain close compatibility with the other DB2 Family products.

Reading through this chapter, you find many modifications and improvements as part of the new release. All of these features are available to any of the development and deployment environments that are supported by the IBM Power platforms on which IBM i 7.1 can be installed.

Many DB2 enhancements for IBM i 7.1 are also available for Version 6.1. If you must verify their availability, go to:

https://www.ibm.com/developerworks/ibmi/techupdates/db2

This link takes you to the DB2 for i section of the IBM i Technology Updates wiki.

5.2 SQL data description and data manipulation language

There are several changes and additions to the SQL language:

- XML support
- The MERGE statement
- Dynamic compound statements
- Creating and using global variables
- Support for arrays in procedures
- Result set support in embedded SQL
- FIELDPROC support for encoding and encryption
- Miscellaneous
- Generating field reference detail on CREATE TABLE AS
- Qualified name option added to generate SQL
- New generate SQL option for modernization
- OVRDBF SEQONLY(YES, buffer length)
5.2.1 XML support

Extensible Markup Language (XML) is a simple and flexible text format that is derived from SGML (ISO 8879). Originally designed to meet the challenges of large-scale electronic publishing, XML is also playing an increasingly important role in the exchange of a wide variety of data on the web and elsewhere.

For more information about XML, go to:
http://www.w3.org/XML/

Previously, XML data types were supported only through user-defined types and any handling of XML data was done using user-defined functions. In IBM i 7.1, the DB2 component is complemented with support for XML data types and publishing functions. It also supports XML document and annotation, document search (IBM OmniFind®) without decomposition, and client and language API support for XML (CLI, ODBC, JDBC, and so on).

For more information about moving from the user-defined function support provided through the XML Extenders product to the built-in operating support, see the Replacing DB2 XML Extender With integrated IBM DB2 for i XML capabilities white paper:
https://www-304.ibm.com/partnerworld/wps/servlet/ContentHandler?contentId=K$63TzTFk2WiPCAScnt&roadMapId=1b0toNReUYN4MDADrdm&roadMapName=Education+resources+for+IBM+i+systems&locale=en_US

XML data type

An XML value represents well-formed XML in the form of an XML document, XML content, or an XML sequence. An XML value that is stored in a table as a value of a column that is defined with the XML data type must be a well-formed XML document. XML values are processed in an internal representation that is not comparable to any string value, including another XML value. The only predicate that can be applied to the XML data type is the IS NULL predicate.

An XML value can be transformed into a serialized string value that represents an XML document using the XMLSERIALIZE (see “XML serialization” on page 163) function. Similarly, a string value that represents an XML document can be transformed into an XML value using the XMLPARSE (see “XML publishing functions” on page 162) function. An XML value can be implicitly parsed or serialized when exchanged with application string and binary data types.

The XML data type has no defined maximum length. It does have an effective maximum length of 2 GB when treated as a serialized string value that represents XML, which is the same as the limit for Large Object (LOB) data types. Like LOBs, there are also XML locators and XML file reference variables.

With a few exceptions, you can use XML values in the same contexts in which you can use other data types. XML values are valid in the following circumstances:

- **CAST** a parameter marker, XML, or NULL to XML
- **XMLCAST** a parameter marker, XML, or NULL to XML
- **IS** NULL predicate
- **COUNT** and **COUNT_BIG** aggregate functions
- **COALESCE**, **IFNULL**, **HEX**, **LENGTH**, **CONTAINS**, and **SCORE** scalar functions
- **XML** scalar functions
- **A** **SELECT** list without **DISTINCT**
- **INSERT VALUES** clause, **UPDATE SET** clause, and **MERGE**
- **SET** and **VALUES INTO**
Procedure parameters
- User-defined function arguments and result
- Trigger correlation variables
- Parameter marker values for a dynamically prepared statement

XML values cannot be used directly in the following places. Where expressions are allowed, an XML value can be used, for example, as the argument of XMLSERIALIZE.

- A SELECT list that contains the DISTINCT keyword
- A GROUP BY clause
- An ORDER BY clause
- A subselect of a fullselect that is not UNION ALL
- A basic, quantified, BETWEEN, DISTINCT, IN, or LIKE predicate
- An aggregate function with the DISTINCT keyword
- A primary, unique, or foreign key
- A check constraint
- An index column

No host languages have a built-in data type for the XML data type.

XML data can be defined with any EBCDIC single byte or mixed CCSID or a Unicode CCSID of 1208 (UTF-8), 1200 (UTF-16), or 13488 (Unicode-specific version). 65535 (no conversion) is not allowed as a CCSID value for XML data. The CCSID can be explicitly specified when you define an XML data type. If it is not explicitly specified, the CCSID is assigned using the value of the SQL_XML_DATA_CCSID QAQQINI file parameter (5.3.17, “QAQQINI properties” on page 200). If this value is not set, the default is 1208. The CCSID is established for XML data types that are used in SQL schema statements when the statement is run.

XML host variables that do not have a DECLARE VARIABLE that assigns a CCSID have their CCSID assigned as follows:

- If it is XML AS DBCLOB, the CCSID is 1200.
- If it is XML AS CLOB and the SQL_XML_DATA_CCSID QAQQINI value is 1200 or 13488, the CCSID is 1208.
- Otherwise, the SQL_XML_DATA_CCSID QAQQINI value is used as the CCSID.

Because all implicit and explicit XMLPARSE functions are run by using UTF-8 (1208), defining data in this CCSID removes the need to convert the data to UTF-8.

XML publishing functions

Table 5-1 describes the functions that are directly used in a SQL query.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xmlagg</td>
<td>Combines a collection of rows, each containing a single XML value to create an XML sequence that contains an item for each non-null value in a set of XML values.</td>
</tr>
<tr>
<td>xmlattributes</td>
<td>Returns XML attributes from columns, using the name of each column as the name of the corresponding attribute.</td>
</tr>
<tr>
<td>xmlcomment</td>
<td>Returns an XML value with the input argument as the content.</td>
</tr>
<tr>
<td>xmlconcat</td>
<td>Returns a sequence that contains the concatenation of a variable number of XML input arguments.</td>
</tr>
<tr>
<td>xmldocument</td>
<td>Returns an XML document.</td>
</tr>
</tbody>
</table>
You can use the `SET CURRENT IMPLICIT XMLPARSE OPTION` statement to change the value of the `CURRENT IMPLICIT XMLPARSE OPTION` special register to `STRIP WHITESPACE` or to `PRESERVE WHITESPACE` for your connection. You can either remove or maintain any white space on an implicit `XMLPARSE` function. This statement is not a committable operation.

XML serialization

XML serialization is the process of converting XML data from the format that it has in a DB2 database to the serialized string format that it has in an application.

You can allow the DB2 database manager to run serialization implicitly, or you can start the `XMLSERIALIZE` function to request XML serialization explicitly. The most common usage of XML serialization is when XML data is sent from the database server to the client.

Implicit serialization is the preferred method in most cases because it is simpler to code, and sending XML data to the client allows the DB2 client to handle the XML data properly. Explicit serialization requires extra handling, which is automatically handled by the client during implicit serialization.

In general, implicit serialization is preferable because it is more efficient to send data to the client as XML data. However, under certain circumstances (for example, if the client does not support XML data) it might be better to do an explicit `XMLSERIALIZE`.

With implicit serialization for DB2 CLI and embedded SQL applications, the DB2 database server adds an XML declaration with the appropriate encoding specified to the data. For .NET applications, the DB2 database server also adds an XML declaration. For Java applications, depending on the SQLXML object methods that are called to retrieve the data from the SQLXML object, the data with an XML declaration added by the DB2 database server is returned.

After an explicit `XMLSERIALIZE` invocation, the data has a non-XML data type in the database server, and is sent to the client as that data type. You can use the `XMLSERIALIZE` scalar function to specify the SQL data type to which the data is converted when it is serialized (character, graphic, or binary data type) and whether the output data includes the explicit XML declaration.
encoding specification (**EXCLUDING XMLDECLARATION** or **INCLUDING XMLDECLARATION**). The best data type to which to convert XML data is the BLOB data type because retrieval of binary data results in fewer encoding issues. If you retrieve the serialized data into a non-binary data type, the data is converted to the application encoding, but the encoding specification is not modified. Therefore, the encoding of the data most likely does not agree with the encoding specification. This situation results in XML data that cannot be parsed by application processes that rely on the encoding name.

Although implicit serialization is preferable because it is more efficient, you can send data to the client as XML data. When the client does not support XML data, you can consider doing an explicit **XMLSERIALIZE**. If you use implicit XML serialization for this type of client, the DB2 database server then converts the data to a **CLOB** (Example 5-1) or **DBCLOB** before it sends the data to the client.

```
Example 5-1  XMLSERIALIZE
SELECT e.empno, e.firstnme, e.lastname,
    XMLSERIALIZE(XMLELEMENT(NAME "xmp:Emp",
                       XMLNAMESPACES('http://www.xmp.com' as "xmp"),
                       XMLATTRIBUTES(e.empno as "serial"),
                       e.firstnme, e.lastname
                       OPTION NULL ON NULL))
    AS CLOB(1000) CCSID 1208
    INCLUDING XMLDECLARATION) AS "Result"
FROM employees e WHERE e.empno = 'A0001'
```

Managing XML schema repositories (XSR)
The XML schema repository (XSR) is a set of tables that contain information about XML schemas. XML instance documents might contain a reference to a Uniform Resource Identifier (URI) that points to an associated XML schema. This URI is required to process the instance documents. The DB2 database system manages dependencies on externally referenced XML artifacts with the XSR without requiring changes to the URI location reference.

Without this mechanism to store associated XML schemas, an external resource might not be accessible when needed by the database. The XSR also removes the additional impact that is required to locate external documents, along with the possible performance impact.

An XML schema consists of a set of XML schema documents. To add an XML schema to the DB2 XSR, you register XML schema documents to DB2 by calling the DB2 supplied stored procedure SYSPROC.XSR_REGISTER to begin registration of an XML schema.

The SYSPROC.XSR_ADDSCHEMADOC procedure adds more XML schema documents to an XML schema that you are registering. You can call this procedure only for an existing XML schema that is not yet complete.

Calling the SYSPROC.XSR_COMPLETE procedure completes the registration of an XML schema. During XML schema completion, DB2 resolves references inside XML schema documents to other XML schema documents. An XML schema document is not checked for correctness when you register or add documents. Document checks are run only when you complete the XML schema registration.

To remove an XML schema from the DB2 XML schema repository, you can call the SYSPROC.XSR_REMOVE stored procedure or use the **DROP XSROBJECT** SQL statement.
Annotated XML schema decomposition

Annotated XML schema decomposition, also referred to as decomposition or shredding, is the process of storing content from an XML document in columns of relational tables. Annotated XML schema decomposition operates based on annotations that are specified in an XML schema. After an XML document is decomposed, the inserted data has the SQL data type of the column into which it is inserted.

An XML schema consists of one or more XML schema documents. In annotated XML schema decomposition, or schema-based decomposition, you control decomposition by annotating a document's XML schema with decomposition annotations. These annotations specify the following details:

- The name of the target table and column in which the XML data is to be stored
- The default SQL schema for when an SQL schema is not identified
- Any transformation of the content before it is stored

The annotated schema documents must be stored in and registered with the XSR. The schema must then be enabled for decomposition. After the successful registration of the annotated schema, decomposition can be run by calling the decomposition stored procedure SYSPROC.XDBDECOMPXML.

The data from the XML document is always validated during decomposition. If information in an XML document does not comply with its specification in an XML schema, the data is not inserted into the table.

Annotated XML schema decomposition can become complex. To make the task more manageable, take several things into consideration. Annotated XML schema decomposition requires you to map possible multiple XML elements and attributes to multiple columns and tables in the database. This mapping can also involve transforming the XML data before you insert it, or apply conditions for insertion.

Here are items to consider when you annotate your XML schema:

- Understand what decomposition annotations are available to you.
- Ensure, during mapping, that the type of the column is compatible with the XML schema type of the element or attribute to which it is being mapped.
- Ensure complex types that are derived by restriction or extension are properly annotated.
- Confirm that no decomposition limits and restrictions are violated.
- Ensure that the tables and columns that are referenced in the annotation exist at the time the schema is registered with the XSR.

XML decomposition enhancements (order of result rows)

In IBM i 7.1, a series of decomposition annotations are provided to define how to decompose an XML document into relational database tables, such as db2-xdb:defaultSQLSchema or db2-xdb:rowSet, db2-xdb:column.
In one XSR, multiple target tables can be specified, so data in an XML document can be shredded to more than one target tables using one XSR. But the order of insertion into tables cannot be specified with existing decomposition annotations. Therefore, if the target tables have a reference relationship, the insertion of dependent row fails if its parent row is not inserted before it.

Two new annotations are supported:

- **db2-xdb:order**

The db2-xdb:order annotation specifies the insertion order of rows among different tables.

- **db2-xdb:rowSetOperationOrder**

The db2-xdb:rowSetOperationOrder annotation is a parent for one or more db2-xdb:order elements.

Using db2-xdb:order and db2-xdb:rowSetOperationOrder is needed only when referential integrity constraints exist in target tables and you try to decompose to them using one XSR.

5.2.2 The MERGE statement

This statement enables the simplification of matching rows in tables so that you can use a single statement that updates a target (a table or view) using data from a source (result of a table reference). Rows might be inserted, updated, or deleted in the target row, as specified by the matching rules. If you insert, update, or delete rows in a view, without an **INSTEAD OF** trigger, it updates, deletes, or inserts the row into the tables on which the view is based.

More than one modification-operation (**UPDATE**, **DELETE**, or **INSERT**) or signal-statement can be specified in a single **MERGE** statement. However, each row in the target can be operated on only once. A row in the target can be identified only as MATCHED with one row in the result table of the table-reference. A nested SQL operation (RI or trigger except **INSTEAD OF** trigger) cannot specify the target table (or a table within the same hierarchy) as a target of an **UPDATE**, **DELETE**, **INSERT**, or **MERGE** statement. This statement is also often referred to as an **upsert**.

Using the **MERGE** statement is potentially good in a Business Intelligence data load scenario, where it can be used to populate the data in both the fact and the dimension tables upon a refresh of the data warehouse. It can also be used for archiving data.

In Example 5-2, the **MERGE** statement updates the list of activities that are organized by Group A in the archive table. It deletes all outdated activities and updates the activities information (description and date) in the archive table if they were changed. It inserts new upcoming activities into the archive, signals an error if the date of the activity is not known, and requires that the date of the activities in the archive table be specified.

Example 5-2 UPDATE or INSERT activities

```sql
MERGE INTO archive ar
USING (SELECT activity, description, date, last_modified
       FROM activities_groupA) ac
ON (ar.activity = ac.activity) AND ar.group = 'A'
WHEN MATCHED AND ac.date IS NULL THEN
  SIGNAL SQLSTATE '70001'
  SET MESSAGE_TEXT =
    ac.activity CONCAT ' cannot be modified. Reason: Date is not known'
WHEN MATCHED AND ac.date < CURRENT DATE THEN
  DELETE
WHEN MATCHED AND ar.last_modified < ac.last_modified THEN
```
UPDATE SET
description, date, last_modified) = (ac.description, ac.date, DEFAULT)
WHEN NOT MATCHED AND ac.date IS NULL THEN
 SIGNAL SQLSTATE '70002'
 SET MESSAGE_TEXT =
 ac.activity CONCAT ' cannot be inserted. Reason: Date is not known'
WHEN NOT MATCHED AND ac.date >= CURRENT DATE THEN
 INSERT
description, date)
VALUES ('A', ac.activity, ac.description, ac.date)
ELSE IGNORE

Each group has an activities table. For example, activities_groupA contains all activities
Group A organizes, and the archive table contains all upcoming activities that are organized
by groups in the company. The archive table has (group, activity) as the primary key, and date
is not nullable. All activities tables have activity as the primary key. The last_modified column
in the archive is defined with CURRENT_TIMESTAMP as the default value.

There is a difference in how many updates are done depending on whether a NOT ATOMIC
MERGE or an ATOMIC MERGE was specified:

- In an ATOMIC MERGE, the source rows are processed as though a set of rows is processed
 by each WHEN clause. Thus, if five rows are updated, any row level update trigger is fired
 five times for each WHEN clause. This situation means that n statement level update triggers
 are fired, where n is the number of WHEN clauses that contain an UPDATE, including any WHEN
 clause that contains an UPDATE that did not process any of the source rows.
- In a NOT ATOMIC MERGE setting, each source row is processed independently as though a
 separate MERGE statement ran for each source row, meaning that, in the previous case, the
 triggers are fired only five times.

After running a MERGE statement, the ROW_COUNT statement information item in the SQL
Diagnostics Area (or SQLERRD(3) of the SQLCA) is the number of rows that are operated on
by the MERGE statement, excluding rows that are identified by the ELSE IGNORE clause.

The ROW_COUNT item and SQLERRD(3) do not include the number of rows that were operated
on as a result of triggers. The value in the DB2_ROW_COUNT_SECONDARY statement information
item (or SQLERRD(5) of the SQLCA) includes the number of these rows.

No attempt is made to update a row in the target that did not exist before the MERGE statement
ran. No updates of rows were inserted by the MERGE statement.

If COMMIT(*RR), COMMIT(*ALL), COMMIT(*CS), or COMMIT(*CHG) is specified, one or more
exclusive locks are acquired during the execution of a successful insert, update, or delete.
Until the locks are released by a commit or rollback operation, an inserted or updated row can
be accessed only by either the application process that ran the insert or update or by another
application process using COMMIT(*NONE) or COMMIT(*CHG) through a read-only operation.

If an error occurs during the operation for a row of source data, the row being processed at
the time of the error is not inserted, updated, or deleted. Processing of an individual row is an
atomic operation. Any other changes that are previously made during the processing of the
MERGE statement are not rolled back. If CONTINUE ON EXCEPTION is specified, execution
continues with the next row to be processed.
5.2.3 Dynamic compound statements

A dynamic compound statement starts with a BEGIN, has a middle portion similar to an SQL procedure, and ends with an END. It can be executed through any SQL dynamic interface such as the Run SQL Statements (RUNSQLSTM) command or IBM i Navigator's Run SQL scripts. It can also be executed dynamically with PREPARE/EXECUTE or EXECUTE IMMEDIATE. Variables, handlers, and all normal control statements can be included within this statement. Both ATOMIC and NOT ATOMIC are supported.

Example 5-3 shows a code of example of a dynamic compound statement.

Example 5-3 Dynamic compound statement code sample

```
BEGIN
DECLARE V_ERROR BIGINT DEFAULT 0;
DECLARE V_HOW_MANY BIGINT;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SET V_ERROR = 1;
SELECT COUNT(*) INTO V_HOW_MANY FROM STAFF
WHERE JOB = 'Clerk' AND SALARY < 15000;
IF (V_ERROR = 1 OR V_HOW_MANY = 0)
THEN RETURN;
END IF;
UPDATE STAFF SET SALARY = SALARY * 1.1
WHERE JOB = 'Clerk';
END
```

Programming considerations are as follows:

- If your compound statement is frequently started, an SQL Procedure is the better choice.
- A Dynamic Compound statement is a great match for situations where you do not want to build, deploy, authorize, and manage a permanent program, but you do want to use the extensive SQL logic and handling that is possible within a compound statement.
- When a Dynamic Compound is prepared and executed, the statements within are processed as static statements. Because a DC statement is a compiled program, the parser options at the time of execution are used with the same rules in place for compile programs.
- Result sets can be consumed, but cannot be returned to the caller or client.
- The subset of SQL statements that are not allowed in triggers and routines are also not allowed within a Dynamic Compound statement. Additionally, the following statements are not allowed:
 - SET SESSION AUTHORIZATION
 - SET RESULT SET
- There is support for Parameter Markers on a DC statement.
- If you want to parameterize a DC statement, use Global Variables in place of the parameter markers.
- Within the Database Monitor, a Dynamic Compound statement surfaces with QQC21 = 'BE'.
- The SQL Reference for 7.1 is updated with information for this new statement. Search for “Compound (dynamic)”.
Figure 5-1 shows the dynamic compound statement implementation.

![Dynamic compound statement implementation](image)

5.2.4 Creating and using global variables

You can use global variables to assign specific variable values for a session. Use the `CREATE VARIABLE` statement to create a global variable at the server level.

Global variables have a session scope, which means that although they are available to all sessions that are active on the database, their value is private for each session. Modifications to the value of a global variable are not under transaction control. The value of the global variable is preserved when a transaction ends with either a `COMMIT` or a `ROLLBACK` statement.

When a global variable is instantiated for a session, changes to the global variable in another session (such as `DROP` or `GRANT`) might not affect the variable that is instantiated. An attempt to read from or to write to a global variable created by this statement requires that the authorization ID attempting this action holds the appropriate privilege on the global variable. The definer of the variable is implicitly granted all privileges on the variable.

A created global variable is instantiated to its default value when it is first referenced within its given scope. If a global variable is referenced in a statement, it is instantiated independently of the control flow for that statement.

A global variable is created as a *SRVPGM object. If the variable name is a valid system name but a *SRVPGM exists with that name, an error is generated. If the variable name is not a valid system name, a unique name is generated by using the rules for generating system table names.

If a global variable is created within a session, it cannot be used by other sessions until the unit of work is committed. However, the new global variable can be used within the session that created the variable before the unit of work commits.
Example 5-4 creates a global variable that defines a user class. This variable has its initial value set based on the result of starting a function that is called `CLASS_FUNC`. This function is assumed to assign a class value, such as administrator or clerk that is based on the USER special register value. The `SELECT` clause in this example lists all employees from department A00. Only a session that has a global variable with a `USER_CLASS` value of 1 sees the salaries for these employees.

Example 5-4 Creating and using global variables

```sql
CREATE VARIABLE USER_CLASS INT DEFAULT (CLASS_FUNC(USER))
GRANT READ ON VARIABLE USER_CLASS TO PUBLIC
SELECT EMPNO, LASTNAME, CASE WHEN USER_CLASS = 1 THEN SALARY ELSE NULL END FROM EMPLOYEE WHERE WORKDEPT = 'A00'
```

5.2.5 Support for arrays in procedures

An array is a structure that contains an ordered collection of data elements in which each element can be referenced by its ordinal position in the collection. If \(N \) is the cardinality (number of elements) of an array, the ordinal position that is associated with each element is an integer value greater than or equal to 1 and less than or equal to \(N \). All elements in an array have the same data type.

An array type is a data type that is defined as an array of another data type. Every array type has a maximum cardinality, which is specified on the `CREATE TYPE (Array)` statement. If A is an array type with maximum cardinality \(M \), the cardinality of a value of type A can be any value 0 - \(M \) inclusive. Unlike the maximum cardinality of arrays in programming languages such as C, the maximum cardinality of SQL arrays is not related to their physical representation. Instead, the maximum cardinality is used by the system at run time to ensure that subscripts are within bounds. The amount of memory that is required to represent an array value is proportional to its cardinality, and not to the maximum cardinality of its type.

SQL procedures support parameters and variables of array types. Arrays are a convenient way of passing transient collections of data between an application and a stored procedure or between two stored procedures.

Within SQL stored procedures, arrays can be manipulated as arrays in conventional programming languages. Furthermore, arrays are integrated within the relational model in such a way that data represented as an array can be easily converted into a table, and data in a table column can be aggregated into an array.
Example 5-5 shows two array data types (intArray and stringArray), and a persons table with two columns (ID and name). The processPersons procedure adds three more persons to the table, and returns an array with the person names that contain the letter 'a', ordered by ID. The IDs and names of the three persons to be added are represented as two arrays (IDs and names). These arrays are used as arguments to the UNNEST function, which turns the arrays into a two-column table, whose elements are then inserted into the persons table. Finally, the last set statement in the procedure uses the ARRAY_AGG aggregate function to compute the value of the output parameter.

Example 5-5 Support for arrays in procedures

```sql
CREATE TYPE intArray AS INTEGER ARRAY[100]
CREATE TYPE stringArray AS VARCHAR(10) ARRAY[100]
CREATE TABLE persons (id INTEGER, name VARCHAR(10))
INSERT INTO persons VALUES(2, 'Tom'),
(4, 'Gina'),
(1, 'Kathy'),
(3, 'John')
CREATE PROCEDURE processPersons(OUT witha stringArray)
BEGIN
  DECLARE ids intArray;
  DECLARE names stringArray;
  SET ids = ARRAY[5,6,7];
  SET names = ARRAY['Denise', 'Randy', 'Sue'];
  INSERT INTO persons(id, name)
  (SELECT t.i, t.n FROM UNNEST(ids, names) AS t(i, n));
  SET witha = (SELECT ARRAY_AGG(name ORDER BY id)
    FROM persons
    WHERE name LIKE '%a%');
END
```

If **WITH ORDINALITY** is specified, an extra counter column of type BIGINT is appended to the temporary table. The ordinality column contains the index position of the elements in the arrays. See Example 5-6.

The ARRAY UNNEST temporary table is an internal data structure and can be created only by the database manager.

Example 5-6 UNNEST temporary table WITH ORDINALITY

```sql
CREATE PROCEDURE processCustomers()
BEGIN
  DECLARE ids INTEGER ARRAY[100];
  DECLARE names VARCHAR(10) ARRAY[100];
  set ids = ARRAY[5,6,7];
  set names = ARRAY['Ann', 'Bob', 'Sue'];
  INSERT INTO customerTable(id, name, order)
  (SELECT Customers.id, Customers.name, Customers.order
   FROM UNNEST(ids, names) WITH ORDINALITY
   AS Customers(id, name, order) );
END
```
5.2.6 Result set support in embedded SQL

You can write a program in a high-level language (C, RPG, COBOL, and so on) to receive results sets from a stored procedure for either a fixed number of result sets, for which you know the contents, or a variable number of result sets, for which you do not know the contents.

Returning a known number of result sets is simpler. However, if you write the code to handle a varying number of result sets, you do not need to make major modifications to your program if the stored procedure changes.

The basic steps for receiving result sets are as follows:

1. Declare a locator variable for each result set that is returned. If you do not know how many result sets are returned, declare enough result set locators for the maximum number of result sets that might be returned.

2. Call the stored procedure and check the SQL return code. If the SQLCODE from the CALL statement is +466, the stored procedure returned result sets.

3. Determine how many result sets the stored procedure is returning. If you already know how many result sets the stored procedure returns, you can skip this step.

Use the SQL statement `DESCRIBE PROCEDURE` to determine the number of result sets. The `DESCRIBE PROCEDURE` places information about the result sets in an SQLDA or SQL descriptor.

For an SQL descriptor, when the `DESCRIBE PROCEDURE` statement completes, the following values can be retrieved:

- `DB2_RESULT_SETS_COUNT` contains the number of result sets returned by the stored procedure.
- One descriptor area item is returned for each result set:
 - `DB2_CURSOR_NAME` This item contains the name of the cursor that is used by the stored procedure to return the result set.
 - `DB2_RESULT_SET_ROWS` This item contains the estimated number of rows in the result set. A value of -1 indicates that no estimate of the number of rows in the result set is available.
 - `DB2_RESULT_SET_LOCATOR` This item contains the value of the result set locator that is associated with the result set.

For an SQLDA, make the SQLDA large enough to hold the maximum number of result sets that the stored procedure might return. When the `DESCRIBE PROCEDURE` statement completes, the fields in the SQLDA contain the following values:

- `SQLDA` contains the number of result sets returned by the stored procedure.
- Each SQLVAR entry gives information about a result set. In an SQLVAR entry, the following information is in effect:
 - The `SQLNAME` field contains the name of the cursor that is used by the stored procedure to return the result set.
 - The `SQLIND` field contains the estimated number of rows in the result set. A value of -1 indicates that no estimate of the number of rows in the result set is available.
The SQLDATA field contains the value of the result set locator, which is the address of the result set.

4. Link result set locators to result sets.

You can use the SQL statement `ASSOCIATE LOCATORS` to link result set locators to result sets. The `ASSOCIATE LOCATORS` statement assigns values to the result set locator variables. If you specify more locators than the number of result sets returned, the extra locators are ignored.

If you ran the `DESCRIBE PROCEDURE` statement previously, the result set locator values can be retrieved from the DB2_RESULT_SET_LOCATOR in the SQL descriptor or from the SQLDATA fields of the SQLDA. You can copy the values from these fields to the result set locator variables manually, or you can run the `ASSOCIATE LOCATORS` statement to do it for you.

The stored procedure name that you specify in an `ASSOCIATE LOCATORS` or `DESCRIBE PROCEDURE` statement must be a procedure name that was used in the `CALL` statement that returns the result sets.

5. Allocate cursors for fetching rows from the result sets.

Use the SQL statement `ALLOCATE CURSOR` to link each result set with a cursor. Run one `ALLOCATE CURSOR` statement for each result set. The cursor names can differ from the cursor names in the stored procedure.

6. Determine the contents of the result sets. If you already know the format of the result set, you can skip this step.

Use the SQL statement `DESCRIBE CURSOR` to determine the format of a result set and put this information in an SQL descriptor or an SQLDA. For each result set, you need an SQLDA large enough to hold descriptions of all columns in the result set.

You can use `DESCRIBE CURSOR` only for cursors for which you ran `ALLOCATE CURSOR` previously.

After you run `DESCRIBE CURSOR`, if the cursor for the result set is declared `WITH HOLD`, for an SQL descriptor DB2_CURSOR_HOLD can be checked. For an SQLDA, the high-order bit of the eighth byte of field SQLDAID in the SQLDA is set to 1.

Fetch rows from the result sets into host variables by using the cursors that you allocated with the `ALLOCATE CURSOR` statements. If you ran the `DESCRIBE CURSOR` statement, complete these steps before you fetch the rows:

a. Allocate storage for host variables and indicator variables. Use the contents of the SQL descriptor or SQLDA from the `DESCRIBE CURSOR` statement to determine how much storage you need for each host variable.

b. Put the address of the storage for each host variable in the appropriate SQLDATA field of the SQLDA.

c. Put the address of the storage for each indicator variable in the appropriate SQLIND field of the SQLDA.

Fetching rows from a result set is the same as fetching rows from a table.

7. Close the cursors.
Example 5-7 gives you an idea on how to implement this process in an RPG program.

Example 5-7 Result set support in an RPG program

D MYRS1 S SQLTYPE(RESULT_SET_LOCATOR)
D MYRS2 S SQLTYPE(RESULT_SET_LOCATOR)

C/EXEC SQL CALL P1(:parm1, :parm2, ...)
C/END-EXEC

C/EXEC SQL DESCRIBE PROCEDURE P1 USING DESCRIPTOR :MYRS2
C/END-EXEC

C/EXEC SQL ASSOCIATE LOCATORS (:MYRS1,:MYRS2) WITH PROCEDURE P1
C/END-EXEC

C/EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :MYRS1
C/END-EXEC

C/EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :MYRS2
C/END-EXEC

C/EXEC SQL ALLOCATE DESCRIPTOR 'SQLDES1'
C/END-EXEC

C/EXEC SQL DESCRIBE CURSOR C1 INTO SQL DESCRIPTOR 'SQLDES1'
C/END-EXEC

5.2.7 FIELDPROC support for encoding and encryption

You can now specify a FIELDPROC attribute for a column, designating an external program name as the field procedure exit routine for that column. It must be an ILE program that does not contain SQL. It cannot be a *SRVPGM, *OPM *PGMs, or a Java object. Field procedures are assigned to a table by the FIELDPROC clause of the CREATE TABLE and ALTER TABLE statements. A field procedure is a user-written exit routine that transforms values in a single column.

This procedure allows for transparent encryption / decryption or encoding / decoding of data that is accessed through SQL or any other interface. It allows for transparent encryption or encoding of data that is accessed through SQL or natively.

When values in the column are changed, or new values are inserted, the field procedure is started for each value, and can transform that value (encode it) in any way. The encoded value is then stored. When values are retrieved from the column, the field procedure is started for each value, which is encoded, and must decode it back to the original value. Any indexes that are defined on a non-derived column that uses a field procedure are built with encoded values.

The transformation your field procedure performs on a value is called field-encoding. The same routine is used to undo the transformation when values are retrieved, which is called field-decoding. Values in columns with a field procedure are described to DB2 in two ways:

- The description of the column as defined in CREATE TABLE or ALTER TABLE appears in the catalog table QSYS2.SYSCOLUMNS. This description is the description of the field-decoded value, and is called the column description.

- The description of the encoded value, as it is stored in the database, appears in the catalog table QSYS2.SYSFIELDS. This description is the description of the field-encoded value, and is called the field description.
The field-decoding function must be the exact inverse of the field-encoding function. For example, if a routine encodes ALABAMA to 01, it must decode 01 to ALABAMA. A violation of this rule can lead to unpredictable results.

The field procedure is also started during the processing of the CREATE TABLE or ALTER TABLE statement. That operation is called a field-definition. When so started, the procedure provides DB2 with the column's field description. The field description defines the data characteristics of the encoded values. By contrast, the information that is supplied for the column in the CREATE TABLE or ALTER TABLE statement defines the data characteristics of the decoded values.

The data type of the encoded value can be any valid SQL data type except ROWID or DATALINK. Also, a field procedure cannot be associated with any column that has values that are generated by IDENTITY or ROW CHANGE TIMESTAMP.

If a DDS-created physical file is altered to add a field procedure, the encoded attribute data type cannot be a LOB type or DataLink. If an SQL table is altered to add a field procedure, the encoded attribute precision field must be 0 if the encoded attribute data type is any of the integer types.

A field procedure cannot be added to a column that has a default value of CURRENT DATE, CURRENT TIME, CURRENT TIMESTAMP, or USER. A column that is defined with a user-defined data type can have a field procedure if the source type of the user-defined data type is any of the allowed SQL data types. DB2 casts the value of the column to the source type before it passes it to the field procedure.

Masking support in FIELDPROCs
FIELDPROCs were originally designed to transparently encode or decode data. Several third-party products use the support in 7.1 to provide transparent column level encryption. For example, to allow a credit card number or social security number to be transparently encrypted on disk.

The FIELDPROC support is extended to allow masking to occur to that same column data (typically based on what user is accessing the data). For example, only users that need to see the actual credit card number see the value, whereas other users might see masked data. For example, XXXX XXXX XXXX 1234.

The new support is enabled by allowing the FIELDPROC program to detect masked data on an update or write operation and returning that indication to the database manager. The database manager then ignores the update of that specific column value on an update operation and replaces it with the default value on a write.

A new parameter is also passed to the FIELDPROC program. For field procedures that mask data, the parameter indicates whether the caller is a system function that requires that the data are decoded without masking. For example, in some cases, RGZPFM and ALTER TABLE might need to copy data. If the field procedure ignores this parameter and masks data when these operations are run, the column data is lost. Hence, it is critical that a field procedure that masks data properly handles this parameter.

Parameter list for execution of field procedures
The field procedure parameter list communicates general information to a field procedure. It signals what operation is to be done and allows the field procedure to signal errors. DB2 provides storage for all parameters that are passed to the field procedure. Therefore, parameters are passed to the field procedure by address.
When you define and use the parameters in the field procedure, ensure that no more storage is referenced for a parameter than is defined for that parameter. The parameters are all stored in the same space and exceeding a parameter's storage space can overwrite another parameter's value. This action, in turn, can cause the field procedure to see invalid input data or cause the value returned to the database to be invalid. The following list details the parameters you can pass:

- A 2-byte integer that describes the function to be run. This parameter is input only.
- A structure that defines the field procedure parameter value list (FPPVL).
- The decoded data attribute that is defined by the Column Value Descriptor (CVD). These attributes are the column attributes that were specified at `CREATE TABLE` or `ALTER TABLE` time. This parameter is input only.
- The decoded data.
 The exact structure depends on the function code.
 - If the function code is 8, then the `NULL` value is used. This parameter is input only.
 - If the function code is 0, then the data to be encoded is used. This parameter is input only.
 - If the function code is 4, then the location to place the decoded data is used. This parameter is output only.
- The encoded data attribute that is defined by the Field Value Descriptor (FVD). This parameter is input only.
- The encoded data that is defined by the FVD. The exact structure depends on the function code. This parameter is input only.
- The `SQLSTATE` (character(5)). This parameter is input/output. This parameter is set by DB2 to 00000 before it calls the field procedure. It can be set by the field procedure. Although the `SQLSTATE` is not normally set by a field procedure, it can be used to signal an error to the database.
- The message text area (varchar(1000)). This parameter is input/output.

5.2.8 Miscellaneous

A number of functions are aggregated under this heading. Most are aimed at upscaling or improving the ease of use for existing functions.

Partitioned table support

A partitioned table is a table where the data is contained in one or more local partitions (members). This release allows you to partition tables that use referential integrity or identity columns.

If you specify a referential constraint where the parent is a partitioned table, the unique index that is used for the unique index that enforces the parent unique constraint must be non-partitioned. Likewise, the identity column cannot be a partitioned key.

Partitioned tables with referential constraints or identity columns cannot be restored to a previous release.
Parameter markers
You can use this function to simplify the definition of variables in a program. Example 5-8 shows how you can write it.

Example 5-8 Parameter markers

```sql
SELECT stmt1 =
    'SELECT * FROM t1
    WHERE c1 = CAST(? AS DECFLOAT(34)) + CAST(? AS DECFLOAT(34));
PREPARE prestmt1 FROM STMT1;
#Replace this with:
SET STMT1 = 'SELECT * FROM T1 WHERE C1 > ? + ? ';
PREPARE PREPSTMT1 FROM STMT;
```

Expressions in a CALL statement
You can now call a procedure and pass as arguments an expression that does not include an aggregate function or column name. If extended indicator variables are enabled, the extended indicator variable values of `DEFAULT` and `UNASSIGNED` must not be used for that expression. In Example 5-9, PARAMETER1 is folded and PARAMETER2 is divided by 100.

Example 5-9 Expressions in a CALL statement

```sql
CALL PROC1 ( UPPER(PARAMETER1), PARAMETER2/100 )
```

Three-part names support
You can use three-part names to bypass the explicit `CONNECT` or `SET CONNECTION`. Statements that use three-part names and see distributed data result in IBM DRDA access to the remote relational database. When an application program uses three-part name aliases for remote objects and DRDA access, the application program must be bound at each location that is specified in the three-part names. Also, each alias must be defined at the local site. An alias at a remote site can see yet another server if a referenced alias eventually refers to a table or view.

All object references in a single SQL statement must be in a single relational database. When you create an alias for a table on a remote database, the alias name must be the same as the remote name, but can point to another alias on the remote database. See Example 5-10.

Example 5-10 Three-part alias

```sql
CREATE ALIAS shkspr.phl FOR wllm.shkspr.phl
SELECT * FROM shkspr.phl
```
RDB alias support for 3-part SQL statements
As an alternative to using the CREATE ALIAS SQL statement to deploy database transparency, the Relational Database Directory Entry Alias name can be used instead.

To do this, the SQL statement is coded to refer to the RDB directory entry alias name as the first portion (RDB target) of a 3-part name. By changing the RDB directory entry to have a different destination database using the Remote location (RMTLOCNAME) parameter, the SQL application can target a different database without having to change the application.

Figure 5-2 shows the effect of redefining an RDB alias target.

Figure 5-2 Effect of redefining an RDB alias target

Example 5-11 shows some sample code that pulls daily sales data from different locations.

Example 5-11 Sample code pulling data from different locations

ADDRDBDIRE RDB(X1423P2 MYALIAS) RMTLOCNAME(X1423P2 *IP)
INSERT INTO WORKTABLE SELECT * FROM MYALIAS.SALESLIB.DAILY_SALES

CHGRDBDIRE RDB(LP13UT16 MYALIAS) RMTLOCNAME(LP13UT16 *IP)
INSERT INTO WORKTABLE SELECT * FROM MYALIAS.SALESLIB.DAILY_SALES

Concurrent access resolution
The concurrent access resolution option can be used to minimize transaction wait time. This option directs the database manager how to handle record lock conflicts under certain isolation levels.

The concurrent access resolution option can have one of the following values:

- Wait for outcome
 This value is the default. This value directs the database manager to wait for the commit or rollback when it encounters locked data that is being updated or deleted. Locked rows that are being inserted are not skipped. This option does not apply for read-only queries that are running under COMMIT(*NONE) or COMMIT(*CHG).

- Use currently committed
 This value allows the database manager to use the currently committed version of the data for read-only queries when it encounters locked data being updated or deleted. Locked rows that are being inserted can be skipped. This option applies where possible when it is running under COMMIT(*CS) and is ignored otherwise. It is what is referred to as “Readers do not block writers and writers do not block readers.”
Skip locked data

This value directs the database manager to skip rows in the case of record lock conflicts. This option applies only when the query is running under COMMIT(*CS) or COMMIT(*ALL).

The concurrent access resolution values of USE CURRENTLY COMMITTED and SKIP LOCKED DATA can be used to improve concurrency by avoiding lock waits. However, care must be used when you use these options because they might affect application functions.

You can specify the usage for concurrent access resolution in several ways:

- By using the concurrent-access-resolution clause at the statement level for a select-statement, SELECT INTO, searched UPDATE, or searched DELETE
- By using the CONACC keyword on the CRTSQLxxx or RUNSQLSTM commands
- With the CONACC value in the SET OPTION statement
- In the attribute-string of a PREPARE statement
- Using the CREATE or ALTER statement for a FUNCTION, PROCEDURE, or TRIGGER

If the concurrent access resolution option is not directly set by the application, it takes on the value of the SQL_CONCURRENT_ACCESS_RESOLUTION option in the QAQQINI query options file.

CREATE statement

Specifying the CREATE OR REPLACE statement makes it easier to create an object without having to drop it when it exists. This statement can be applied to the following objects:

- ALIAS
- FUNCTION
- PROCEDURE
- SEQUENCE
- TRIGGER
- VARIABLE
- VIEW

To replace an object, the user must have both *OBJEXIST rights to the object and *EXECUTE rights for the schema or library, and privileges to create the object. All existing privileges on the replaced object are preserved.

BIT scalar functions

The bitwise scalar functions BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT operate on the “two’s complement” representation of the integer value of the input arguments. They return the result as a corresponding base 10 integer value in a data type based on the data type of the input arguments. See Table 5-2.

Table 5-2 Bit scalar functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>A bit in the two’s complement representation of the result is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BITAND</td>
<td>Runs a bitwise AND operation.</td>
<td>1 only if the corresponding bits in both arguments are 1</td>
</tr>
<tr>
<td>BITANDNOT</td>
<td>Clears any bit in the first argument that is in the second argument.</td>
<td>Zero if the corresponding bit in the second argument is 1; otherwise, the result is copied from the corresponding bit in the first argument</td>
</tr>
<tr>
<td>BITOR</td>
<td>Runs a bitwise OR operation.</td>
<td>1 unless the corresponding bits in both arguments are zero</td>
</tr>
</tbody>
</table>
The arguments must be integer values that are represented by the data types SMALLINT, INTEGER, BIGINT, or DECFLOAT. Arguments of type DECIMAL, REAL, or DOUBLE are cast to DECFLOAT. The value is truncated to a whole number.

The bit manipulation functions can operate on up to 16 bits for SMALLINT, 32 bits for INTEGER, 64 bits for BIGINT, and 113 bits for DECFLOAT. The range of supported DECFLOAT values includes integers \(-2^{112} \leq \text{DECFLOAT} \leq 2^{112} -1\), and special values such as NaN (Not a Number) or INFINITY are not supported (SQLSTATE 42815). If the two arguments have different data types, the argument that is supporting fewer bits is cast to a value with the data type of the argument that is supporting more bits. This cast affects the bits that are set for negative values. For example, -1 as a SMALLINT value has 16 bits set to 1, which when cast to an INTEGER value has 32 bits set to 1.

The result of the functions with two arguments has the data type of the argument that is highest in the data type precedence list for promotion. If either argument is DECFLOAT, the data type of the result is DECFLOAT(34). If either argument can be null, the result can be null. If either argument is null, the result is the null value.

The result of the `BITNOT` function has the same data type as the input argument, except that DECIMAL, REAL, DOUBLE, or DECFLOAT(16) returns DECFLOAT(34). If the argument can be null, the result can be null. If the argument is null, the result is the null value.

Because of differences in internal representation between data types and on different hardware platforms, using functions (such as HEX) or host language constructs to view or compare internal representations of BIT function results and arguments is data type dependent and not portable. The data type- and platform-independent way to view or compare BIT function results and arguments is to use the actual integer values.

Use the `BITXOR` function to toggle bits in a value. Use the `BITANDNOT` function to clear bits. `BITANDNOT(val, pattern)` operates more efficiently than `BITAND(val, BITNOT(pattern))`. Example 5-12 is an example of the result of these operations.

Example 5-12 BIT scalar functions

```sql
# Return all items for which the third property bit is set.
SELECT ITEMID FROM ITEM
  WHERE BITAND(PROPERTIES, 4) = 4

# Return all items for which the fourth or the sixth property bit is set.
SELECT ITEMID FROM ITEM
  WHERE BITAND(PROPERTIES, 40) <> 0

# Clear the twelfth property of the item whose ID is 3412.
UPDATE ITEM
  SET PROPERTIES = BITANDNOT(PROPERTIES, 2048)
  WHERE ITEMID = 3412

# Set the fifth property of the item whose ID is 3412.
UPDATE ITEM
  SET PROPERTIES = BITOR(PROPERTIES, 16)
  WHERE ITEMID = 3412
```

Table: BIT scalar functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>A bit in the two’s complement representation of the result is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BITXOR</td>
<td>Runs a bitwise exclusive OR operation.</td>
<td>1 unless the corresponding bits in both arguments are the same</td>
</tr>
<tr>
<td>BITNOT</td>
<td>Runs a bitwise NOT operation.</td>
<td>Opposite of the corresponding bit in the argument</td>
</tr>
</tbody>
</table>
Toggle the eleventh property of the item whose ID is 3412.
UPDATE ITEM

 SET PROPERTIES = BITXOR(PROPERTIES, 1024)
 WHERE ITEMID = 3412

Switch all the bits in a 16-bit value that has only the second bit on.
VALUES BITNOT(CAST(2 AS SMALLINT))

#returns -3 (with a data type of SMALLINT)

Encoded vector index

When you create an encoded vector index (EVI), you can now use an `INCLUDE` statement in the index option of the `CREATE ENCODED VECTOR INDEX` command, specifying an aggregate function to be included in the index. These aggregates make it possible for the index to be used directly to return aggregate results for a query. The aggregate function name must be one of the built-in functions `AVG`, `COUNT`, `COUNT_BIG`, `SUM`, `STDDEV`, `STDDEV_SAMP`, `VARIANCE`, or `VARIANCE_SAMP`, or a sourced function that is based on one of these built-in functions.

`INCLUDE` is only allowed for an encoded vector index.

This change has the potential of improving performance on queries that make this type of calculations. Example 5-13 shows the syntax for constructing a simple `INCLUDE` statement when you create such an index.

Example 5-13 Aggregate function support for EVI

```sql
CREATE ENCODED VECTOR INDEX GLDSTRN.RSNKRNZ_EVI1  
  ON GLDSTRN.HMLT (JOB_TYPE, JOB_CATEGORY)  
  INCLUDE (AVG(WORK_TIME))
```

Inlining of scalar functions

In cases of simple SQL scalar functions, instead of starting the function as part of a query, the expression in the `RETURN` statement of the function can be copied (inlined) into the query itself. Such a function is called an *inline function*. A function is an inline function if the following criteria are met:

- The SQL function is deterministic.
- The SQL-routine-body contains only a `RETURN` statement.
- The `RETURN` statement does not contain a scalar subselect or fullselect.

INSERT with remote SUBSELECT

`INSERT` with `SUBSELECT` is enhanced to allow the select to reference a single remote database that is different from the current server connection.

An implicit remote connection is established and used by DB2 for i.

This enhancement is the second installment in extending DB2 for i on 7.1 to use implicit or explicit remote three-part names within SQL.

Example 5-14 declares the global temporary table from a remote subselect, which is followed by the insert.

Example 5-14 Usage of INSERT with remote SUBSELECT

```sql
DECLARE GLOBAL TEMPORARY TABLE SESSION.MY_TEMP_TABLE (SERVER_NAME VARCHAR(40), DATA_VALUE CHAR(1)) WITH REPLACE
```
Figure 5-3 displays the output that is generated from Example 5-14 on page 181.

Figure 5-3 Clearly showing the result was from a remote subselect

SQL procedure and function obfuscation

Obfuscation provides the capability of optionally obscuring proprietary SQL statements and logic within SQL procedures or functions.

ISVs can use this support to prevent their customers from seeing or changing SQL routines that are delivered as part of their solution.

Example 5-15 demonstrates how obfuscation is performed.

Example 5-15 Example of obfuscation

```sql
CALL SYSIBMADM.CREATE_WRAPPED('CREATE PROCEDURE UPDATE_STAFF (  
    IN P_EmpNo CHAR(6),  
    IN P_NewJob CHAR(5),  
    IN P_Dept INTEGER)  
    LANGUAGE SQL  
    TR : BEGIN  
    UPDATE STAFF  
    SET JOB = P_NewJob  
    WHERE DEPT = P_Dept and ID = P_EmpNo; END TR ');  

SELECT ROUTINE_DEFINITION FROM QSYS2.SYSROUTINE WHERE  
ROUTINE_NAME = 'UPDATE_STAFF';
```

The output in Figure 5-4 clearly shows the result of obfuscation.

Figure 5-4 Output of routine clearly showing obfuscation
System i Navigator can also be used to obfuscate SQL through the Generate SQL option by selecting **Obfuscate (for SQL function, and procedures)** as shown in Figure 5-5.
Figure 5-6 shows an example of obfuscated code after the option to obfuscate is selected.

Important: The obfuscate option is not available for triggers.
CREATE TABLE with remote SUBSELECT

One of the enhancements in the CREATE TABLE command in IBM i 7.1 is the capability of creating a table based on a remote table.

- CREATE TABLE AS and DECLARE GLOBAL TEMPORARY TABLE are enhanced to allow the select to reference a single remote database that is different from the current server connection.
- An implicit remote connection is established and used by DB2 for i.
- The remote query can reference a single remote homogeneous or heterogeneous table.

This enhancement is the third installment for extending DB2 for i on 7.1 to use implicit or explicit remote three-part names within SQL.

A table is created based on a remote table, as shown in Example 5-16.

Example 5-16 Create a table in the local database that references a remote database with the AS clause

```sql
CREATE TABLE DATALIB.MY_TEMP_TABLE AS (SELECT CURRENT_SERVER CONCAT ' is the Server Name', IBMREQD FROM X1423P2.SYSIBM.SYSDUMMY1) WITH DATA

SELECT * FROM DATALIB.MY_TEMP_TABLE
```

Running the example SQL produces the output that shows that a remote table was accessed, as shown in Figure 5-7.

Figure 5-7 Output from the SQL showing that the remote table was accessed

5.2.9 Generating field reference detail on CREATE TABLE AS

Impact Analysis tools use reference field information to identify tables and programs that need to be modified. Before this enhancement, SQL tables did not propagate reference information.

CREATE TABLE AS is enhanced to store the originating column and table as the reference information in the file object.

When using LIKE to copy columns from another table, REFFLD information is copied for each column that has a REFFLD in the original table.

When using AS to define a new column, any column that directly references a table or view (not used in an expression) has a REFFLD defined that refers to that column. A simple CAST also generates REFFLD information (that is, CAST (PARTNAME as varchar(50)))

As an example, if the following table is created:

```sql
create table slr/base (a int, b int, c int)
create table slr/as1 as (select * from slr/base) with no data
create table slr/like1 like slr/as1
```
The improved field reference detail is as shown in Figure 5-8.

![Figure 5-8 CREATE TABLE AS field reference detail](image)

5.2.10 Qualified name option added to generate SQL

Today, generated SQL includes schema/library qualification of objects.

System i Navigator and the QSQGNDCL() are enhanced to include the qualified name option, making it easier to redeploy generated SQL. Any three-part names (object and column) are left unchanged. Any schema qualification within the object that does not match the database object library name are left unchanged.

The qualified name option specifies whether qualified or unqualified names should be generated for the specified database object. The valid values are:

‘0’ Qualified object names should be generated. Unqualified names within the body of SQL routines remain unqualified (by default).

‘1’ Unqualified object names should be generated when a library is found that matches the database object library name. Any SQL object or column reference that is RDB qualified is generated in its fully qualified form. For example, rdb-name.schema-name.table-name and rdb-name.schema-name.table-name.column-name references retain their full qualification. This option also appears on the Generate SQL dialog within System i Navigator, as shown in Figure 5-9 on page 187. The default behavior is to continue to generate SQL with schema qualification.
5.2.11 New generate SQL option for modernization

Today, an SQL view is generated for DDS-created keyed physical, keyed logical, or join logical files. With this enhancement, IBM i Navigator has more generate SQL options. The options are mutually exclusive options and have been added to QSQGNDDL and IBM i Navigator.

This enhancement makes it easier to proceed with DDS to SQL DDL modernization.

The following examples provide samples of the new generate SQL option for modernization. There is a generate additional indexes option for keyed physical and logical files whether more CREATE INDEX statements are generated for DDS created keyed physical, keyed logical, or join logical files.
Example 5-17 shows a sample DDS for join logical file.

Example 5-17 Sample DDS for a join logical file

<table>
<thead>
<tr>
<th>R</th>
<th>JFILE(MJATST/GT MJATST/GT2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>JFLD(F1_5A F1_5A)</td>
</tr>
<tr>
<td>F1_5A</td>
<td>JREF(1)</td>
</tr>
<tr>
<td>F2_5A</td>
<td>JREF(2)</td>
</tr>
<tr>
<td>K</td>
<td>F1_5A</td>
</tr>
</tbody>
</table>

The resulting v statement after using the generate SQL for modernization option is shown in Example 5-18.

Example 5-18 Resulting CREATE VIEW statement after using Generate SQL for modernization option

```
CREATE VIEW MJATST.GVJ ( F1_5A , F2_5A )
AS
SELECT Q01.F1_5A , Q02.F2_5A
FROM MJATST.GT AS Q01 INNER JOIN MJATST.GT2 AS Q02 ON ( Q01.F1_5A = Q02.F1_5A )
RCDFMT FMT;
```

CREATE INDEX MJATST.GVJ_QSQGNDDL_00001
ON MJATST.GT (F1_5A ASC);

CREATE INDEX MJATST.GVJ_QSQGNDDL_00002
ON MJATST.GT2 (F1_5A ASC);

There is also a generate index instead of view option, which specifies whether a CREATE INDEX or CREATE VIEW statement is generated for a DDS-created keyed logical file. Example 5-19 shows the DDS created keyed logical file.

Example 5-19 DDS created keyed logical file

<table>
<thead>
<tr>
<th>R</th>
<th>PFILE(MJATST/GT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3_10A</td>
<td></td>
</tr>
<tr>
<td>F2_5A</td>
<td></td>
</tr>
<tr>
<td>F1_5A</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>F3_10A</td>
</tr>
</tbody>
</table>

Example 5-20 shows the resulting CREATE INDEX statement

Example 5-20 Resulting CREATE INDEX statement

```
CREATE INDEX MJATST.GV2
ON MJATST.GT ( F3_10A ASC )
RCDFMT FMT;
```
5.2.12 OVRDBF SEQONLY(YES, buffer length)

OVRDBF adds support to allow the user to specify the buffer length rather than the number of records for OVRDBF SEQONLY(*YES N). N can be:

- *BUF32KB
- *BUF64KB
- *BUF128KB
- *BUF256KB

This setting means that the number of records are the number of records that fit into a 32 KB, 64 KB, 128 KB, or 256 KB buffer.

5.3 Performance and query optimization

In the IBM i 7.1 release of DB2 for i, a considerable effort was undertaken to enhance the runtime performance of the database, either by extending existing functions or by introducing new mechanisms.

Runtime performance is affected by many issues, such as the database design (the entity-relationship model, which is a conceptual schema or semantic data model of a relational database), the redundancy between functional environments in composite application environment, the level of normalization, and the size and volumes processed. All of these items influence the run time, throughput, or response time, which is supported by the IT components and is defined by the needs of the business. Performance optimization for database access must address all the components that are used in obtained acceptable and sustainable results, covering the functional aspects and the technical components that support them.

This section describes the query optimization method. It describes what is behind the changes that are implemented in the database management components to relieve the burden that is associated with the tools and processes a database administrator uses or follows to realize the non-functional requirements about performance and scalability. These requirements include the following:

- Global Statistics Cache (GSC)
- Adaptive Query Processing
- Sparse indexes
- Encoded vector index-only access, symbol table scan, symbol table probe, and INCLUDE aggregates
- Keeping tables or indexes in memory

5.3.1 Methods and tools for performance optimization

Typically, the autonomous functions in IBM i, and the new ones in IBM i 7.1, all strive to obtain the best possible performance and throughput. However, you can tweak settings to pre-emptively enhance the tooling of IBM i.

In today's business world, the dynamics of a business environment demand quick adaptation to changes. You might face issues by using a too generic approach in using these facilities. Consider that you made the architectural decision for a new application to use a stateless runtime environment and that your detailed component model has the infrastructure for it. If the business processes it supports are changing and require a more stateful design, you
might face an issue if you want to preserve information to track the statefulness in your transactions. Then, the database where you store information about these transactions might quickly become the heaviest consumer of I/O operations. If your infrastructure model did not consider this factor, you have a serious issue. Having high volumes with a low latency is good. However, this situation must be balanced against the effort it takes to make it sustainable and manageable throughout all of the IT components you need to support the business.

When you define components for a database support, develop a methodology and use preferred practices to obtain the best results. Any methodology must be consistent, acceptable, measurable, and sustainable. You want to stay away from ad hoc measures or simple bypasses.

IBM i provides statistics about I/O operations, provided by the database management function. These statistics show accumulated values, from which you can derive averages, on the I/O operations on tables and indexes. These statistics do not take into account the variability and the dynamic nature of the business functions these objects support. So if you want to use these statistics to define those objects to be placed either in memory or on faster disks, you must consider a larger scope.

For example: Since the introduction of solid-state drives (SSD), which have a low latency, the IBM i storage manager has awareness about this technology and uses it as appropriate. Since release 6.1, you can specify the media preference on the `CREATE TABLE/INDEX` and `ALTER TABLE/INDEX` commands along with the `DECLARE GLOBAL TEMPORARY TABLE` (see 5.3.9, “SQE optimization for indexes on SSD” on page 196). The SYSTABLESTAT and SYSINDEXSTAT catalog tables provide more I/O statistics (SEQUENTIAL_READS and RANDOM_READS) in release 7.1 on these objects. These statistics, generated by the database manager, indicate only possible candidates to be housed on SSD hardware. Further investigation of the run time and the contribution to the performance and capacity or the infrastructure reveals whether they are eligible for those settings.

For more information about SSDs, see Chapter 8, “Storage and solid-state drives” on page 373.

Finally, and as a last resort, there is now a stored procedure available that you can use to cancel long running SQL jobs using the `QSYS2.CANCEL_SQL` procedure.

5.3.2 Query optimization

Whenever a query is submitted, the database engine creates an artifact that allows the query to trigger a set of events and processes that allows it to run the request with the lowest cost. In this context, cost is expressed as the shortest time possible to run the query. This cost calculation is done on a number of both fixed and variable elements. The fixed cost elements are attributes, such as both the hardware components (processor, memory, and disks) and in the instruments or methods that can be used to handle rows and columns in a (set of) database files. These methods are known as using indexes (binary radix index or encoded vector index), index or table scan, hashing, sorting, and so on. The variable elements are typically the volume of data (that is, the number or rows) to be handled and the join functions that are required by the query. Based on these methods, the database query engine builds an access plan that targets reduction of cost.

Even with all the technologies that are used, the access plans might still yield an incorrect (that is, not obeying the rule of capping the cost) result. This situation can, for example, be the result of not having an index to navigate correctly through the data. For that reason, IBM i supports the technology to create temporary indexes autonomically until the system undergoes an IPL. This index can be used by any query that might benefit from its existence. These autonomous indexes can be viewed and carry information that a database
administrator can use to decide whether to make it a permanent object by using the definition of the temporary index.

Other elements that can contribute to incorrect access plans are as follows:

- Inclusion of complex or derivated predicates, which are hard to predict without running the query about the existence of stale statistics on busy systems
- Hidden correlations in the data, often because of a poor design, data skew, and data volatility
- Changes in the business or infrastructure environment

In the last case, this situation is more likely to happen with variations in both memory and processor allocations on partitioned systems, which are reconfigured using dynamic partitioning. It can also be caused when the data is changed frequently in bulk.

If you want to read more about the database query engine, see *Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS*, SG24-6598.

5.3.3 Global statistics cache

There are several process models to reduce the impact of managing the dynamics of a database structure and its content. Moreover, this database is often deployed on a system that is subject to many changes. These tasks can be a wide array of non-automated interventions, including the setup of a validation process of access plans, manually tuning the query, or having the access plans invalidated and re-created. It can also include a reset of the statistics information or an extensive review of the query functions to achieve a higher degree of expected consumability by the system. These actions are typically post-mortem actions and are labor-intensive.

To reduce this labor-intensive work, the DB2 Statistics Manager was revised. By default, it now collects data about observed statistics in the database and from partially or fully completed queries. This data is stored in the Global Statistics Cache (GSC), which is a system-wide repository, containing those complex statistics. The adaptive query processing (AQP) (see 5.3.4, “Adaptive query processing” on page 192) inspects the results of queries and compares the estimated row counts with the actual row counts. All of the queries that are processed by the SQL Query Engine (SQE) use this information to increase overall efficiency. One of the typical actions the SQE can take is to use the live statistics in the GSC, compare the estimated row count with the actual row count, and reoptimize and restart the query using the new query plan. Furthermore, if another query asks for the same or a similar row count, the Storage Manager (SM) can return the stored actual row count from the GSC. This action allows generating faster query plans by the query optimizer.

Typically, observed statistics are for complex predicates, such as a join. A simple example is a query that joins three files, A, B, and C. There is a discrepancy between the estimate and actual row count of the join of A and B. The SM stores an observed statistic into the GSC. Later, if a join query of A, B, and Z is submitted, SM recalls the observed statistic of the A and B join. The SM considers that observed statistic in its estimate of the A, B, and Z join.

The GSC is an internal DB2 object, and the contents of it are not directly observable. You can harvest the I/O statistics in the database catalog tables SYSTABLESTAT and SYSINDEXSTAT or by looking at the I/O statistics using the Display File Description (DSPFD) command. This command provides only a limited number of I/O operations. Both counters (catalog tables and the object description) are reset at IPL time.
The statistics collection is defined by the system value Data Base file statistics collection (QDBFSTCCOL). The SM jobs that update the statistics carry the same name.

5.3.4 Adaptive query processing

The SQE uses statistics to build the mechanism to run an SQL statement. These statistics come from two sources:

- Information that is contained in the indexes on the tables that are used in the statement
- Information that is contained in the statistics tables (the GSC)

When the query compiler optimizes the query plans, its decisions are heavily influenced by statistical information about the size of the database tables, indexes, and statistical views. The optimizer also uses information about the distribution of data in specific columns of tables, indexes, and statistical views if these columns are used to select rows or join tables. The optimizer uses this information to estimate the costs of alternative access plans for each query.

In IBM i 7.1, the SQE query engine uses a technique called adaptive query processing (AQP). AQP analyzes actual query runtime statistics and uses that information to correct previous estimates. These updated estimates can provide better information for subsequent optimizations. It also focuses on optimizing join statements to improve the join orders and minimizing the creation of large dials for sparsely populated join results. This inspection is done during the run of a query request and observes its progress. The AQP handler wakes up after a query runs for at least 2 seconds without returning any rows. Its mission is to analyze the actual statistics from the partial query run, diagnose, and possibly recover from join order problems. These join order problems are because of inaccurate statistical estimates. This process is referred to as the AQP Handler.

After a query completes, another task, the AQP Request Support, starts and runs in a system task so that it does not affect the performance of user applications. Estimated record counts are compared to the actual values. If significant discrepancies are noted, the AQP Request Support stores the observed statistic in the GSC. The AQP Request Support might also make specific recommendations for improving the query plan the next time the query runs.

Both tasks collect enough information to reoptimize the query using partially observed statistics or specific join order recommendations or both. If this optimization results in a new plan, the old plan is stopped and the query is restarted with the new plan, provided that the query has not returned any results. The restart can be done for long running queries during the run time itself.

AQP looks for an unexpected starvation join condition when it analyzes join performance. Starvation join is a condition where a table late in the join order eliminates many records from the result set. In general, the query can run better if the table that eliminates the large number of rows is first in the join order. When AQP identifies a table that causes an unexpected starvation join condition, the table is noted as the forced primary table. The forced primary table is saved for a subsequent optimization of the query. That optimization with the forced primary recommendation can be used in two ways:

- The forced primary table is placed first in the join order, overriding the join order that is implied by the statistical estimates. The rest of the join order is defined by using existing techniques.
- The forced primary table can be used for LPG preselection against a large fact table in the join.
The database monitor has a new set of records to identify the action that is undertaken with by the AQP.

Figure 5-10 provides a sample of how a join can be optimized. The estimated return of rows on table C proved to be much smaller during the execution of the query, forcing the SQE to recalculate the number of rows that are returned and dramatically reduced the size of the result set.

5.3.5 Sparse indexes

Starting from the IBM i 6.1 release, you can create a sparse index by using a **WHERE** condition. In IBM i 7.1, the query optimizer inspects those indexes and uses them where appropriate.

The reason for creating a sparse index is to provide performance enhancements for your queries. The performance enhancement is done by precomputing and storing results of the **WHERE** selection in the sparse index. The database engine can use these results instead of recomputing them for a user-specified query. The query optimizer looks for any applicable sparse index and can choose to implement the query by using a sparse index. The decision is based on whether using a sparse index is a faster implementation choice.
To use a sparse index, the WHERE selection in the query must be a subset of the WHERE selection in the sparse index. The set of records in the sparse index must contain all the records to be selected by the query. It might contain additional records. This comparison of the WHERE selection is performed by the query optimizer during optimization. It is like the comparison that is run for Materialized Query Tables (MQT).

Besides the comparison of the WHERE selection, the optimization of a sparse index is identical to the optimization that is run for any Binary Radix index.

Example 5-21 shows creating a sparse index over a table in which events are stored. These events can be of four types:

- On-stage shows (type OSS)
- Movies (type MOV)
- Broadcasts (BRO)
- Forums (FOR)

Example 5-21 Sparse indexes

```sql
CREATE INDEX EVENTS/OSS_MOV_BRO on EVENTS/OSS_MOV_BRO_FOR (EVTYPE)
   WHERE EVTYPE in ('OSS', 'MOV', BRO');
CREATE INDEX EVENTS/OSS_MOV_BRO_FOR on EVENTS/OSS_MOV_BRO_FOR (EVTYPE)
   WHERE EVTYPE in ('OSS', 'MOV', BRO', 'FOR');
```

In the first index, select type OSS, MOV, and BRO, and in the second index, all of the types. In the first index, the query selection is a subset of the sparse index selection and an index scan over the sparse index is used. The remaining query selection (EVTYPE=FOR) is run following the index scan. For the second index, the query selection is not a subset of the sparse index selection and the sparse index cannot be used.

5.3.6 Encoded vector index

Section “Encoded vector index” on page 181 described the enhancements for encoded vector indexes (EVIs). The EVI can be used for more than generating a bitmap or row number list to provide an asynchronous I/O map to the wanted table rows. The EVI can also be used by two index-only access methods that can be applied specifically to the symbol table itself. These two index-only access methods are the EVI symbol table scan and the EVI symbol table probe.

These two methods can be used with GROUP BY or DISTINCT queries that can be satisfied by the symbol table. This symbol table-only access can be further employed in aggregate queries by adding INCLUDE values to the encoded vector index.

EVI symbol table scan

An encoded vector index symbol table scan operation is used to retrieve the entries from the symbol table portion of the index. All entries (symbols) in the symbol table are sequentially scanned if a scan is chosen. The symbol table can be used by the optimizer to satisfy GROUP BY or DISTINCT portions of a query request.

Selection is applied to every entry in the symbol table. The selection must be applied to the symbol table keys unless the EVI was created as a sparse index with a WHERE clause. In that case, a portion of the selection is applied as the symbol table is built and maintained. The query request must include matching predicates to use the sparse EVI.
All entries are retrieved directly from the symbol table portion of the index without any access to the vector portion of the index. There is also no access to the records in the associated table over which the EVI is built.

The advantages of this setup are obvious:

- Pre-summarized results are readily available.
- There is a need to process only the unique values in the symbol table, thus avoiding processing table records.
- It extracts all the data from the index unique key values or INCLUDE values, thus eliminating the need for a Table Probe or vector scan.
- With INCLUDE providing ready-made numeric aggregates, it eliminates the need to access corresponding table rows to run the aggregation.

However, for grouping queries where the resulting number of groups is relatively small compared to the number of records in the underlying table, the performance improvement is low. Even more, it can perform poorly when many groups are involved, making the symbol table large. You are likely to experience poor performance if a large portion of the symbol table is put into the overflow area. Alternatively, you experience a significant performance improvement for grouping queries when the aggregate is specified as an INCLUDE value of the symbol table.

INCLUDE aggregates

To enhance the ability of the EVI symbol table to provide aggregate answers, the symbol table can be created to contain more INCLUDE values. These results are ready-made numeric aggregate results, such as SUM, COUNT, AVG, or VARIANCE values that are requested over non-key data. These aggregates are specified using the INCLUDE keyword on the CREATE ENCODED VECTOR INDEX request.

These included aggregates are maintained in real time as rows are inserted, updated, or deleted from the corresponding table. The symbol table maintains these additional aggregate values in addition to the EVI keys for each symbol table entry. Because these results are numeric results and finite in size, the symbol table is still a desirable compact size.

The included aggregates are over non-key columns in the table where the grouping is over the corresponding EVI symbol table defined keys. The aggregate can be over a single column or a derivation.

Encoded vector index symbol table probe

The encoded vector index symbol table probe operation is used to retrieve entries from the symbol table portion of the index, which avoids scanning the entire symbol table. The symbol table can be used by the optimizer to satisfy GROUP BY or DISTINCT portions of a query request.

The optimizer attempts to match the columns that are used for the selection against the leading keys of the EVI index. It then rewrites the selection into a series of ranges that can be used to probe directly into the symbol table. Only those symbol table pages from the series of ranges are paged into main memory. The resulting symbol table entries that are generated by the probe operation can then be further processed by any remaining selection against EVI keys. This strategy provides for quick access to only the entries of the symbol table that satisfy the selection.
Similar to an encoded vector symbol table scan, a symbol table probe can return ready-made aggregate results if INCLUDE is specified when the EVI is created. All entries are retrieved directly from the symbol table portion of the index without any access to the vector portion of the index. In addition, it is unnecessary to access the records in the associated table over which the EVI is built.

5.3.7 Preserving EVI indexes on ALTER enhancement

Before this enhancement, an ALTER TABLE or fast delete under commitment control required any encoded vector indexes on the table to be altered to be rebuilt.

This enhancement allows encoded vector indexes on the table being altered to be preserved if the data type or other attribute of a key column of the index is not changed by the ALTER.

5.3.8 Keeping tables or indexes in memory

The KEEPINMEM parameter specifies whether the data or an access for a file member is brought into a main storage pool by the SQL Query Engine (SQE) when the data is used in the query to improve the performance. When you specify *YES for this parameter, the Query Options File (QAQQINI) parameter MEMORY_POOL_PREFERENCE (see 5.3.17, “QAQQINI properties” on page 200) specifies the preferred main storage pool to be used.

This function applies only during the run time of a query, and might therefore be substituted for the Set Object Access (SETOBJACC) command that puts the table or index in memory in a static function. After the query completes, the memory might be freed again, contrary to the effects of the Set Object Access (SETOBJACC), where you must clear it using the *PURGE option on the Storage Pool (POOL) parameter of the command.

Similarly, the DB2 database manager reduces the amount of storage that is occupied by a table that does not contain any data. This reduces the storage space that is needed for unused objects. This situation is also referred to as deflated table support.

5.3.9 SQE optimization for indexes on SSD

The query optimizer now recognizes that indexes might potentially be on SSDs and prioritizes usage of those indexes higher than indexes on spinning disk when you order the indexes during optimization.

Indexes must have the SSD attribute specified through the UNIT(*SSD) parameter on the Create Logical File (CRTLF) or Change Logical File (CHGLF) CL commands, or by using the UNIT SSD clause on the SQL CREATE INDEX statement. For more information, see 5.4.11, “CHGPFM and CHGLFM UNIT support” on page 221.

5.3.10 SQE support of simple logical files

SQE supports simple logical files in IBM i 7.1. SQE support of simple logical files has the following restrictions:

- No SQE support of OmniFind using logical files.
- No SQE support of multi-data space logical files.
- No SQE support of logical files over a partition table.
- SQE supports only read-only queries. There is no SQE support of insert, update, or delete using logical files.
The QAQQINI file option 'IGNORE_DERIVED_INDEX' continues to be supported. If \texttt{IGNORE_DERIVED_INDEX(*NO)} is specified, and a select / omit logical file exists based on file of the simple logical file, then SQE does not process the query of the simple logical file.

5.3.11 Maximum size of an SQL index increased to 1.7 TB

The maximum size of an SQL index has been increased to 1.7 TB. Few indexes approach 1 TB today. However, this enhancement extends an important limit for Very Large Database (VLDB) considerations. See Figure 5-11.

5.3.12 QSYS2.INDEX_ADVICE procedure

This procedure is useful to anyone who wants to analyze index advice from different systems or from different points in time.

The DB2 for i index advice condenser is externalized through the QSYS2.CONDENSEDINDEXADVICE view. The view and underlying user-defined table function are hardwired to use the raw index advice that is stored within the QSYS2/SYSIXADV file. Some users must use the index advice condenser against a file that was saved and restored from a different system.

A new database supplied procedure (\texttt{QSYS2.INDEX_ADVICE}) was added. The procedure establishes the QTEMP/CONDENSEDINDEXADVICE view over a user supplied library and file name. After this is established, the user can query QTEMP/CONDENSEDINDEXADVICE to condense the index advice against the target index advice file.

The \texttt{QSYS2.INDEX_ADVICE} procedure also has options to return the index advice as a result set, either in raw advice format or in condensed format. When the job ends or disconnects, the objects in QTEMP are automatically removed. The \texttt{QSYS2.INDEX_ADVICE} procedure also has options to return the index advice as a result set, either in raw advice format or in condensed format.

Example 5-22 illustrates the usage of the INDEX_ADVISE procedure.

\textbf{Example 5-22 Usage of QSYS2.INDEX_ADVICE procedure}

```sql
#Procedure definition:
create procedure QSYS2.INDEX_ADVICE(
in advice_library_name char(10),
in advice_file_name char(10),
in advice_option integer)
#Advice_option values:
#if advice_option=0 then setup for targeted condensed index advice, do not return a result set
#if advice_option=1 return condensed index advice as a result set
```
When the procedure is called with \texttt{advice_option=0}, the index advice level of the target file is determined. If the advice file originated from an IBM i 5.4 or 6.1 system, the file is altered to match the 7.1 advice format. This alteration is a one time conversion of the advice file. After this is established, the user can query \texttt{QTEMP_CONDENSEDINDEXADVICE} to condense the index advice against the target index advice file.

5.3.13 Improved index advice generation to handle OR predicates

Index Advisor has been extended for include queries which OR together local selection (WHERE clause) columns over a single table. OR advice requires two or more indexes to be created as a set.

If any of the OR'ed indexes are missing, the optimizer is not able to use the indexes for implementation of the OR-based query. This relationship is surfaced within the QSYS2/SYSIXADV index advice table within a new \texttt{DEPENDENT_ADVICE_COUNT} column. This column has a data type of BIGINT and the column value means the following:

- **Zero**: This advised index stands on its own, no OR selection.
- **Greater than zero**: Compare this column against the \texttt{T Imes_Advised} column to understand how often this advised index has both OR and non-OR selection. Dependent implies it depends on other advised indexes and all of the advised indexes must exist for a bitmap implementation to be used.

When Index Advisor shows highly dependent advice, use the Exact Match capability from Show Statements to find the query in the plan cache. Additional information about the exact match capability can be found on the following website:

After it is found, use Visual Explain to discover the dependent index advice specific to that query. Some restrictions with this support are as follows:

- OR'ed predicate advice appears only if no other advice is generated
- Maximum of five predicates OR'ed together
- Advised for files with OR'd local selection that gets costed in the primary (first) join dial when optimizing a join query
Example 5-23 shows advise indexes over all three OR'ed predicate columns. Also, all three advised indexes have DEPENDENT_ADVICE_COUNT > 0.

Example 5-23 Index OR Advice example

```sql
select orderkey, partkey, suppkey, linenumber, shipmode orderpriority
from ABC_ITEM_fact
where OrderKey <= 10 OR SuppKey <= 10 OR PartKey <= 10
optimize for all rows
```

Figure 5-12 shows the execution of the query with the advised indexes and no new advice are registered.

5.3.14 SKIP LOCKED DATA and NC or UR

You can use the `SKIP LOCKED DATA` clause to fetch rows from a table or view without waiting for row locks. When the option is specified, any row that is already locked by another job is skipped. This behavior is typically wanted for tables or views that are used as a queue. `SKIP LOCKED DATA` can be used only when isolation level NC, UR, CS, or RS is in effect. The `SKIP LOCKED DATA` clause is ignored when used when isolation level RR is in effect.

Before this enhancement, `SKIP LOCKED DATA` was allowed only when the isolation level was CS or RS.

For more information about this topic, go to:
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/db2/rbafz.skiplocked
5.3.15 SQL routine performance integer arithmetic (requires re-create)

This procedure improves the performance of the generated code within LANGUAGE SQL routines. When you add and subtract a positive integer from an SQL smallint, integer, and bigint variable in a LANGUAGE SQL procedure, function, or trigger, the assignment is accomplished directly within the generated ILE C code. This improvement is not observed when you build SQL routines for previous releases (for example, when you use SET OPTION TGTRLS=V6R1M0 or V5R4M0).

To achieve the improved code generation, SQL procedures, functions, and trigger routines must be re-created after you upgrade the operating system to IBM i 7.1.

This improvement applies to the following usage of the SQL SET statement:

- SET v1 = v1 + <in lit> where v1 is a smallint, in, and bigint
- SET v1 = v1 - <in lit> where v1 is a smallint, in, and bigint
- The following statements will generate inline ILE C code:
 - SET v1 = v1 + <integer literal>
 - SET v1 = v1 + <bigint literal>
 - SET v1 = v1 + <negative integer literal>
 - SET v1 = <any literal> + v1
 - SET v1 = <any literal> +/- <any literal>

These statements do not generate inline ILE C code:

- SET v1 = v2 + <integer literal>
- SET v2 = v1 + <bigint literal>

5.3.16 Automatic cancellation of QSQSRVR jobs when an application ends

When an application using SQL Server Mode is stopped and the SQL Server Mode connections are not ended, the termination of the application job might completely end while the QSQSRVR job remains active running a long running system operation.

Job termination is improved to signal an SQL Cancel request to any QSQSRVR jobs that being used by the application. The cancellation interrupts some long running operations, allowing the QSQSRVR job to observe that the application is ending.

SQL Server Mode users must apply only the PTF to receive the improved cancel handling support.

5.3.17 QAQQINI properties

Table 5-3 lists the new parameters and their values that can be put in the QAQQINI file, which is used to define settings for processes that run queries. These changes are in line with the new features in the DB2 for i.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOW_ADAPTIVE_QUERY_PROCESSING</td>
<td>Specifies whether AQP processing is done for a query.</td>
</tr>
<tr>
<td>(For more information, see 5.3.4, “Adaptive query processing” on page 192.)</td>
<td></td>
</tr>
<tr>
<td>ALLOW_ARRAY_VALUE_CHANGES</td>
<td>Specifies whether changes to the values of array elements are visible to the query when the query is running.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>DETERMINISTIC_UDF_SCOPE</td>
<td>Specifies the scope or lifetime of the deterministic setting for user-defined functions (UDFs) and user-defined table functions (UDTFs).</td>
</tr>
<tr>
<td>FIELDPROC_ENCODED_COMPARISON</td>
<td>Specifies the amount of optimization that the optimizer might use when queried columns have attached field procedures.</td>
</tr>
<tr>
<td>MEMORY_POOL_PREFERENCE</td>
<td>Specifies the preferred memory pool that database operations use. This option does not ensure usage of the specified pool, but directs database to run its paging into this pool when supported by the database operation.</td>
</tr>
</tbody>
</table>
| PSEUDO_OPEN_CHECK_HOST_VARS | This parameter can be used to allow SQE to check the selectivity of the host variable values at pseudo-open time. If the new set of host variable values requires a different plan to perform well, SQE reoptimizes the query. The possible values are:
 - *DEFAULT*: The default value is *NO*.
 - *NO*: Do not check host variable selectivity at pseudo-open time. This behavior is compatible with the previous behavior.
 - *OPTIMIZE*: The optimizer determines when host variable selectivity should be checked. In general, the SQE engine monitors the query. If, after a certain number runs, the engine determines that there is no advantage to checking host variable values (the selectivity is not changing enough or selectivity changes result in the same plan), the optimizer will stop checking for host variable selectivity changes at pseudo-open time. Full opens do the normal plan validation.
 - *YES*: Always check host variable selectivity at pseudo-open time.

If the `REOPTIMIZE_ACCESS_PLAN QAQQINI` option is set to *ONLY_REQUIRED*, the `PSEUDO_OPEN_CHECK_HOST_VARS` option has no effect. |
SQL_CONCURRENT_ACCESS_RESOLUTION	Specifies the concurrent access resolution to use for an SQL query.
SQL_XML_DATA_CCSID	Specifies the CCSID to be used for XML columns, host variables, parameter markers, and expressions, if not explicitly specified.
TEXT_SEARCH_DEFAULT_TIMEZONE	Specifies the time zone to apply to any date or dateTime value that is specified in an XML text search using the CONTAINS or SCORE function. The time zone is the offset from Coordinated Universal Time (Greenwich mean time). It is only applicable when a specific time zone is not given for the value.
SQL_GVAR_BUILD_RULE	Influences whether global variables must exist when you build SQL procedures, functions, triggers, or run SQL precompiles. For more information, see 5.4.42, “New QAQQINI option: SQL_GVAR_BUILD_RULE” on page 252.
5.3.18 ALTER TABLE performance

ALTER TABLE can be a long running operation. The general performance of ALTER TABLE was improved (although it can still be long running) by reducing the path length of the operation and by reducing lock contention. Lock contention is reduced when multiple tables are referenced by one or more views and the related tables are altered or dropped concurrently in different jobs.

5.3.19 Avoiding short name collisions

When the SQL routines CREATE PROCEDURE (SQL), CREATE FUNCTION (SQL), and CREATE TRIGGER are created using a long name, the database generates the system name of the routine. For long names, the first five characters of the long name are combined with '00001'. If an object with that system name exists, the second half of the name is incremented by one and the create is tried again.

If you have many SQL routines whose names begin with common first five characters, the creation of the routines is slowed down by name conflicts and rebuild attempts that determine whether a system name has been used.

The QGENOBJNAM data area can be used to control the system name that is generated by DB2 for i for SQL routines. Through use of the data area, the performance of the SQL routine creation can be greatly improved.

To be effective, the data area must be created as CHAR(10) and must be within a library that is in the library list.

The user that creates the routine must have *USE authority to the data area.

When the PROGRAM NAME clause is used on CREATE TRIGGER to specify the system name of the program, the data area has no effect on the operation.

In Example 5-24, MNAME123 is always used for the system name of the trigger program.

Example 5-24 Using the system name of the program in CREATE TRIGGER command

```
create trigger newlib/longname_trig123 after insert on newlib/longname_table123
program name mname123 begin end
```

There are two ways to use the QGENOBJNAM data area:

1. Use question marks and a starting value ('?????xxxx'), where x is a number digit, and the generated name begins with xxxx instead of 00001. For example, if the value of the data area was '?????50000' and a procedure named ProductionProcedure1 was being created. The first generated system name would be PRODU5000.

2. Use '*GEN00' for the data area value to direct the database to use the first three characters of the long name, and the last four digits from the job number and '000'. For example, if the value of the data area was '*GEN00', the job number was 098435, and a procedure named ProductionProcedure1 was being created, the first generated system name would be PRO08435000. *GEN00 can be used to improve SQL routine creation throughput by spreading the creates across multiple jobs.
You can automatically assign trigger system programs according to the value of QGETNOBJNAM, as shown in Example 5-25. This command shows you the short names that are assigned to trigger programs.

Example 5-25 Automatically assigned trigger system programs according to the value of QGETNOBJNAM

create schema newlib;
c1: CRTDTAARA DTAARA(NEWLIB/QGENOBJNAM) TYPE(*CHAR) LEN(10) ;
c1: CHGDTAARA DTAARA(NEWLIB/QGENOBJNAM *ALL) VALUE('?????50000');

create procedure newlib.longname_proc123 () language sql begin end;
create procedure newlib.longname_proc123a () language sql begin end;
create procedure newlib.longname_proc123b () language sql begin end;
create procedure newlib.longname_proc123_srv () PROGRAM TYPE SUB language sql begin end;
create procedure newlib.longname_proc123_srva () PROGRAM TYPE SUB language sql begin end;
create procedure newlib.longname_proc123_srvb () PROGRAM TYPE SUB language sql begin end;
create function newlib.longname_func123() returns int language sql begin return(10); end;
create function newlib.longname_func123a() returns int language sql begin return(10); end;
create function newlib.longname_func123b() returns int language sql begin return(10); end;
create table newlib.longname_table123 (c1 int);
create trigger newlib.longname_trig123 after insert on newlib.longname_table123 begin end;
create trigger newlib.longname_trig123a after insert on newlib.longname_table123 begin end;
create trigger newlib.longname_trig123b after insert on newlib.longname_table123 begin end;

select routine_name, external_name from qsys2.sysroutines where specific_schema = 'NEWLIB';
select TRIGGER_NAME,TRIGGER_PROGRAM_NAME from qsys2.systriggers where TRIGGER_SCHEMA = 'NEWLIB';

5.3.20 CREATE PROCEDURE (SQL) PROGRAM TYPE SUB

A simple action that improves the performance of SQL procedures is using the PROGRAM TYPE SUB clause. When omitted or PROGRAM TYPE MAIN is used with the CREATE PROCEDURE (SQL) statement, an ILE C program (*PGM) is built for the procedure. PROGRAM TYPE SUB results in an ILE C service program (*SRVPGM) being built for the procedure. The usage of PROGRAM TYPE SUB is most relevant for procedures that are frequently called within a performance critical application.

PROGRAM TYPE SUB procedures perform better because ILE service programs are activated a single time per activation group, whereas ILE programs are activated on every call. The cost of an ILE activation is related to the procedure size, complexity, number of parameters, number of variables, and the size of the parameters and variables.

The only functional difference to be noted when you use PROGRAM TYPE SUB is that the QSYS2.SYSROUTINES catalog entry for the EXTERNAL_NAME column is formatted to show an export name along with the service program name.
5.3.21 Referential integrity and trigger performance

When a database DELETE, UPDATE, or INSERT operation is run on behalf of a referential constraint or a trigger, the operation runs in a nested transaction. Before this enhancement, if many operations and nested transactions were run as part of the outer transaction (because of multiple levels of cascading constraints), performance might suffer. With this enhancement, the larger the number of operations and nested transactions, the larger the performance improvement.

5.3.22 QSQBIGPSA data area

For some DB2 for i SQL applications, it is natural to accumulate and reuse *DUMMY cursors. The default threshold for *DUMMY cursors is 150, but can be configured to be a higher threshold through the QSQCSRTH data area.

*DUMMY cursors exist when unique SQL statements are prepared using a statement name that is not unique. The SQL cursor name is changed to "*DUMMY" to allow the possibility of the cursor being reused in the future.

Prepared SQL statements are maintained within a thread scoped internal data structure that is called the Prepared Statement Area (PSA). This structure is managed by the database and can be compressed. The initial threshold of the PSA is small and gradually grows through use. For an application with heavy *DUMMY cursor use, you observe *DUMMY cursors being hard closed at each PSA compression.

This type of application is gaining little value from the PSA compression and must endure the performance penalty of its *DUMMY cursors being hard closed.

A new data area control is being provided for this type of user. QSQBIGPSA indicates that the application wants to start with a large size for the PSA threshold. By using this option, the application skips all the PSA compressions that it takes to reach a large PSA capacity. Use this control with care, as PSA compression has value for most SQL users.

One way to determine the value of this data area for an application is to use the Database Monitor and look for occurrences of QQRID=1000 & QQC21='HC' & QQC15 = 'N'. To use this control, the QSQBIGPSA data area must exist within the library list for a job when the first SQL PREPARE statement is ran. The data area merely needs to exist; it does not need to be set to any value.

5.3.23 Validating constraints without checking

In IBM i 7.1, a new CHECK parameter was added to the Change PF Constraint (CHGPFCST) command to allow a user to enable a constraint without checking. By default, when a referential or check constraint that is in a disabled state is enabled, DB2 verifies that the table’s data conforms to the constraint definition.

This operation can be a long running one. CHECK(*NO) enables the constraint without checking. If the data is not checked when the constraint is enabled, it is the responsibility of the user to ensure that the data in the file is valid for the constraint.

Before Version 7.1, a data area can be created to enable a constraint without checking. When Change PF Constraint (CHGPFCST) is run, DB2 searches for a data area in QTEMP called QDB_CHGPFCST. If the data area is found and its length is exactly nine characters and contains the value ‘UNCHECKED’, DB2 enables the constraint without validation.
5.3.24 Limiting the amount of processing on an RGZPFM cancel

A Reorganize Physical File Member (RGZPFM) command with an ALWCANCEL(*YES) parameter can be canceled and then later restarted where it left off.

Before this enhancement, a significant amount of processing was run during the cancel to allow the Reorganize Physical File Member (RGZPFM) to be restarted later and to return as much storage to the system as possible.

With this enhancement, the amount of time processing that is run at cancel time is minimized, allowing the Reorganize Physical File Member (RGZPFM) to be canceled in a reasonable amount of time. The processing that is bypassed is run later when the Reorganize Physical File Member (RGZPFM) is restarted.

5.3.25 Database reorganization

The Reorganize Physical File Member (RGZPFM) command removes deleted records from (compresses) one member of a physical file in the database, and optionally reorganizes that member. This reorganize support has been enhanced in the following ways:

- Improved performance. The FROMRCD keyword specifies which records in the file are to be reorganized. Only records from the specified record to the end of the file are reorganized. Using the new FROMRCD parameter provides better pre-bring of the rows processed during reorganize and suspended statistics during reorganization.
- Improved concurrency provides a limit on the number of rows changed in a reorganize transaction so that typically no row is locked for a time larger than the file or override WAITRCD value. This reduces the possibility of conflict with concurrent applications.
- Improved Information. A CPD319B message is sent if the amount of storage returned was less than expected (this is an estimate). In addition, a status file row stores information about the truncate. Also, IBM i Navigator reorganize status shows how many deleted rows were recovered, the space returned (if any), and the RRN that was used to start the reorganize.

FROMRCD parameter details

The FROMRCD parameter specifies which records in the file are reorganized. Only records from the specified record to the end of the file are reorganized. The following are possible values:

- *START: All records in the file are reorganized.
- *PRVRGZ: If the previous reorganize of this file was unable to remove some or all of the deleted records, the reorganize begins at the record that would have been the last record in the file if a concurrent insert had not prevented the deleted records from being removed. If the previous reorganize completed normally and was able to remove the deleted records, the reorganize begins with the first record in the file.

Note: The *PRVRGZ value is ignored if the reorganize is continued from a previously canceled reorganize. If *PRVRGZ is specified, ALWCANCEL(*YES) must be specified and either KEYFILE(*RPLDLTRCD) or KEYFILE(*NONE) must be specified.
Figure 5-13 shows a worst case example of a database reorganization.

![Database reorganization example](image)

5.3.26 CPYFRMIMPF performance

Before this enhancement, when you issue the Copy from Import File (**CPYFRMIMPF**) command from an IFS file into a database file, the data in the IFS file for each character-string column of the database file was converted separately. Typically, all character-string columns of a table or physical file have the same CCSID. With this enhancement, the data for all the character-string columns of such a table or physical file can be converted in one operation rather than separately. This action can drastically reduce the processor that is used and the elapsed time for the Copy from Import File (**CPYFRMIMPF**). The more columns the table or physical file has, the larger the performance benefit.

5.3.27 QJOSJRN API option to force journal entries without sending an entry

This enhancement provides a new option to force the journal receiver without sending an entry. If key 4 (FORCE) has a value of 2, the journal receiver is forced without sending an entry. If option 2 is specified, then key 4 must be the only key specified and the length of the entry data must be zero.

A *force journal entry* is an entry where the journal receiver is forced to auxiliary storage after the user entry is written to it. Possible values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The journal receiver is not forced to the auxiliary storage. This value is the default value if the key is not specified.</td>
</tr>
<tr>
<td>1</td>
<td>The journal receiver is forced to the auxiliary storage.</td>
</tr>
<tr>
<td>2</td>
<td>The journal receiver is forced to the auxiliary storage, but no journal entry is sent. When this value is specified, key 4 can be the only key specified and zero must be specified for the length of entry data. Specifying any other keys or a value other than zero for the length of entry data results in an error.</td>
</tr>
</tbody>
</table>
5.3.28 QDBRTVSN API performance

Before this enhancement, finding the short name for a given long name of a table or view was processed by enqueuing a request to the database cross-reference job. That job looks up the short name in the cross-reference.

The QDBRTVSN() API now finds the short name in most cases without enqueuing a request to the database cross-reference.

5.3.29 Control blocking for a file using QSYS2.OVERRIDE_TABLE()

Controlling the blocking size is important for data intensive, performance critical applications.

The Override with Data Base File (OVRDBF) command can be used to tune sequential read-only and write-only applications. A specific byte count can be supplied, or the *BUF32KB, *BUF64KB, *BUF128KB, *BUF256KB special values can be specified.

The OVERRIDE_TABLE() procedure is an easy approach for SQL applications to control blocking programmatically.

Example 5-26 shows overriding a table to use 256K blocking for sequential processing.

Example 5-26 Overriding a table to use 256K blocking for sequential processing

CALL QSYS2.OVERRIDE_TABLE('CORPDATA', 'EMP', '*BUF256KB');

Example 5-27 shows discarding the override.

Example 5-27 Discarding the override

CALL QSYS2.OVERRIDE_TABLE('CORPDATA', 'EMP', 0);

5.3.30 Improving JDBC performance with JTOpen

This JTOpen enhancement improves JDBC performance by allowing blocked fetches to be used with asensitive cursors for all cursor ResultSet types.

In JDBC, a cursor ResultSet type can be declared as TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE, or TYPE_SCROLL_SENSITIVE.

Before the JTOpen 7.9 version of the Toolbox JDBC driver, the DB2 engine only fetched rows in block for the TYPE_FORWARD_ONLY and TYPE_SCROLL_INSENSITIVE types when asensitive was specified for the cursor sensitivity connection property.

This enhancement in JTOpen 7.9 allows the Toolbox JDBC driver to use block fetches with the TYPE_SCROLL_SENSITIVE ResultSet type.

The following is a comparison of the different JDBC cursor ResultSet type settings:

- **TYPE_FORWARD_ONLY**: Result set can be read only in the forward direction.
- **TYPE_SCROLL_INSENSITIVE**: Defines the result set as scrollable that allows data to be read from the cursor in any order. The insensitive result set type indicates that recent changes to the rows in the underlying tables should not be visible as the query is executed. The DB2 engine often ensures the insensitive nature of the result set by making a copy of the data before it is provided to the JDBC client. Making a copy of the data can affect performance.
TYPE_SCROLL_SENSITIVE: Defines the result set as scrollable that allows data to be read from the cursor in any order. The sensitive result type indicates that recent changes to the rows in the underlying table are visible as the query is executed.

The cursor sensitivity setting of asensitive allows DB2 to choose the best performing method when implementing the specified cursor definition. The resulting cursor implementation is either sensitive or insensitive.

In the JTOpen 7.9 version of the toolbox JDBC driver, rows for asensitive cursors are fetched in blocks regardless of the value that is specified for the cursor ResultSet type. This enhancement ensures that when the cursor sensitivity setting of asensitive is specified, both the DB2 engine and the toolbox JDBC driver can use implementations that deliver the best performance.

Example 5-28 shows an example of the JTOpen asensitive cursor.

```
Example 5-28   JTOpen asensitive cursor

Connection connection =
DriverManager.getConnection("jdbc:as400://hostname;cursor sensitivity=asensitive",
userId, password);

Statement s =
connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY);

ResultSet rs = s.executeQuery("SELECT col1, col2 FROM mytable");
```

Using this JTOpen enhancement, IBM i Navigator and Navigator for i performance was improved when working with large data sets within the On Demand Performance Center:

- Data is blocked when client communicates with IBM i host.
- Ordering of data occurs on the host instead of on the client.
- Object lists within a schema are also improved.

5.3.31 Adding total DB opens job level instrumentation to Collection Services

Collection Services can be used to observe the total number of SQL full opens, SQL pseudo-opens, and the total number of databases full opens (SQL and native I/O). The database has instrumented the number of full opens that occur within a job. This metric is reported by Collection Services in the QAPMJOBOS file.

The new and existing fields contain the total number of times the specific operation occurred within the job during the Collection Services time interval.

Here are the new fields:

Field Name - JBNUS The number of native database (non-SQL) files and SQL cursors that are fully opened. Subtracting the value within field JBLBO from JBNUS yields the number of non-SQL full opens.
Here are the existing fields (for SQL Cursors):

Field Name - JBLBO The cumulative number of SQL cursors that are fully opened.

Field Name - JBLBS The cumulative number of SQL cursors that are pseudo-opened. Pseudo-opens are also known as reused SQL cursors.

5.3.32 SYSTOOLS.REMOVE_INDEXES procedure

You can automate changes to the index strategy by using DB2 for i supplied examples within SYSTOOLS. You can use the DB2 for i procedures directly and pass hardcoded criteria or use the SYSTOOLS source as a fast-start to building your own procedures to manage indexes.

Creating indexes using **ACT_ON_INDEX_ADVICE** is demonstrated in Example 5-29, which creates permanent SQL indexes from instances of index advice where an MTI was used more than 1000 times.

Example 5-29 Example of index creation

```
CALL SYSTOOLS.ACT_ON_INDEX_ADVICE('PRODLIB',NULL,NULL,1000,NULL)
```

The call in Example 5-30 finds indexes that are created by **ACT_ON_INDEX_ADVICE** that are at least 7 days old. For any index that was used less than 500 times by the Query engine, drop the index.

Example 5-30 Example of index removal

```
CALL SYSTOOLS.REMOVE_INDEXES('PRODLIB', 500, ' 7 days ')
```

5.3.33 Improved SQE statistics for INSERT, UPDATE, and DELETE statements

The SQL Query Engine statistics processing now includes a proactive response to data changes as they happen to a database file, rather than just when the file is queried by SQE. The query engine checks for stale statistics during file inserts, updates, or deletes, including **INSERT**, **UPDATE**, or **DELETE** SQL statements.

When stale statistics are detected, a background statistics refresh is initiated, and statistics are refreshed before subsequent query processing, avoiding performance degradation that might occur because of stale statistics being used during query optimization.

This improvement is most beneficial in batched data change environments, such as a data warehouse, where many data change operations occur at one time and are followed by the execution of performance critical SQL queries.

5.3.34 QSYS2.Reset_Table_Index_Statistics procedure

This procedure zeros the QUERY_USE_COUNT and QUERY_STATISTICS_COUNT usage statistics for indexes over the specified tables.

These counts are also zeroed by the **CHGOBJD** command, but the command requires an exclusive lock. This procedure does **not** require an exclusive lock.

LAST_QUERY_USE, LAST_STATISTICS_USE, LAST_USE_DATE, and NUMBER_DAYS_USED are not affected.
The same wildcard characters (._ and %) allowed in the SQL LIKE predicate are supported.

The procedure writes information that is related to any index processed into an SQL global temporary table.

The following query displays the results of the last call to the procedure:

```
select * from session.SQL_index_reset;
```

In Example 5-31, calls are made to zero the statistics for all indexes over a table, followed by a call to zero the statistics for all indexes over a table, starting with CAT and using the wildcard %.

```
Example 5-31 Using Reset_Table_Index_Statistics
The following call will zero the statistics for all indexes over table
STATST.CATHDANAA
call QSYS2.Reset_Table_Index_Statistics ('STATST', 'CATHDANAA')

The following call will zero the statistics for all indexes over any table in schema STATST whose name starts with the letters CAT
call QSYS2.Reset_Table_Index_Statistics ('STATST', 'CAT%')
```

5.3.35 Performance enhancements for large number of row locks

Performance of row locking is enhanced for cases where a transaction or job acquires many locks.

Before this enhancement, the more row locks that were acquired on a table, the slower each additional row lock was acquired.

A marked improvement is seen in performance, as shown in Figure 5-14.

![Row Lock Performance Chart](image-url)

Example:
- Four way 595 partition
- Four jobs
- Ten million rows in each job
- Minimal impact to other running jobs

Figure 5-14 Row lock performance enhancement
5.3.36 Improved DSPJOB and CHKRCDLCK results for many row locks

The Check Record Locks (CHKRCDLCK) command returns the number of record locks in the current job. The performance of CHKRCDLCK is improved when many record locks are held by the job.

The Display Job (DSPJOB) command allows you to return the locks that are held by a job. If more records are held than can be displayed, a CPF9898 message is sent that indicates the number of record locks that are held by the job.

When a job holds more than 100,000 record locks, both of these commands run for a long time before they fail. The enhancement quickly recognizes the existence of a great number of record locks and returns the record lock count.

5.3.37 Chart-based graphical interface SQL performance monitors

This enhancement allows you to view several high-level charts for specific SQL performance monitors, SQL plan cache snapshots, or SQL plan cache event monitors.

Starting the Investigate Performance Data action from System i Navigator or IBM Navigator for i displays the new graphical interface for SQL Performance monitors, as shown in Figure 5-15.

Figure 5-15 SQL performance monitors

5.3.38 Enhanced analyze program summary detail

The IBM i Navigator SQL Performance Monitor (also known as Database Monitor) Analyze facility is enhanced to produce summarized I/O detail by Program Name.

To see a break-down of I/O activity by program name, analyze a SQL performance monitor and select the program summary. Then, look for the following new columns:

- Synchronous Database Reads
- Synchronous Database Writes
- Asynchronous Database Reads
- Asynchronous Database Writes
5.3.39 Performance Data Investigator

This section covers enhancements to the Performance Data Investigator.

New Database perspective

The New Database perspective is a robust graphical interface that is enabled by Collection Services Support. The new breakdown makes it easier to view changes, as shown in Figure 5-17.
SQL Overview
The SQL Overview contains 11 views. Figure 5-18 illustrates the Query Time Summary view, which is one of the 11 views.

![SQL Overview: Query Time Summary view](image)

SQL Attribute Mix
The SQL Attribute Mix contains nine views. Figure 5-19 shows the SQL Statement view.

![SQL Attribute Mix: Statement summary view](image)
5.3.40 Index Advisor: Show Statements - Improved query identification

The Show Statements view of the Index Advisor now uses precise filtering of the SQL Plan Cache. Before this enhancement, the Show Statements view showed all the queries that referenced the target table where the index advice was generated.

Show Statements finds queries based on how it is started:

- If you start it from Index Advice (exact match), it shows Keys Advised, Leading Order Independent Keys, NLSS Table and Schema, Index Type, and Page Size.
- If you use direct Show Statements (table match), you can select the index advice and table name filters.

An advanced form of the SQL Plan cache statements filter is populated by IBM i Navigator, as shown in Figure 5-20.

![Figure 5-20 An advanced form of the SQL Plan Cache Statements filter populated by IBM i Navigator](image)

These attributes cannot be directly modified by the user.

5.3.41 Performance improvements for temporary tables

The DECLARE GLOBAL TEMPORARY TABLE WITH REPLACE SQL statement might complete much faster when the same table is created again in the same job. In most cases, if the SQL statement text is identical to the previous table, the table is cleared instead of dropped and re-created.

Also, the SQL Plan Cache is improved to recognize the cases where the temporary table is reused with an identical table format. The plan cache plan and statistics management is improved to retain and reuse plans for temporary tables.

Although the overall performance characteristics of temporary tables continue to improve, it is not the best performing choice when you deal with large amounts of data in a performance critical environment.
5.4 New functionality for DB2 developers

This section covers the new functionality for DB2 for i developers.

5.4.1 QSYS2.SYSCOLUMNS2

QSYS2.SYSCOLUMNS2 is a view that is based on a table function that returns more information that is not available in SYSCOLUMNS (such as the allocated length of a varying length column). Because it is based on a table function, it typically returns results faster if a specific table is specified when querying it.

For more information about the view, go to:
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Fdb2%2Fbafzcatsyscol12.htm

5.4.2 QSYS2.SYSPARTITIONDISK and QSYS2.SYSPARTITIONINDEXDISK

These two catalog views return allocation information for tables and indexes. The views can be useful in determining how much storage for a partition of index is allocated on an SSD.

For more information, see the SQL Reference at:
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Fdb2%2Fbafzcatsyspdisk.htm

Example 5-32 shows the return allocation information for DB2 tables and physical files in MJATST.

Example 5-32 Return allocation information for DB2 tables and physical files in MJATST

```sql
SELECT MAX(table_schema) AS table_schema, MAX(table_name) AS table_name,
MAX(table_partition) AS table_partition,
SUM(CASE WHEN unit_type = 1 THEN unit_space_used ELSE null END) AS ssd_space,
SUM(CASE WHEN unit_type = 0 THEN unit_space_used ELSE null END) AS non_ssd_space
FROM qsys2.syspartitiondisk a
WHERE system_table_schema = 'MJATST'
GROUP BY a.table_schema, a.table_name, table_partition
ORDER BY 1,2,3;
```
Figure 5-21 shows the results of Example 5-32 on page 215.

<table>
<thead>
<tr>
<th>TABLE_SCHEMA</th>
<th>TABLE_NAME</th>
<th>TABLE_PARTITION</th>
<th>SSD_SPACE</th>
<th>NON_SSD_SPACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJATST</td>
<td>/BIC/FZAWPARTX</td>
<td>PART000001</td>
<td>-</td>
<td>4096</td>
</tr>
<tr>
<td>MJATST</td>
<td>/BIC/FZAWPARTX</td>
<td>PART000002</td>
<td>-</td>
<td>4096</td>
</tr>
<tr>
<td>MJATST</td>
<td>t</td>
<td>t</td>
<td>-</td>
<td>4096</td>
</tr>
<tr>
<td>MJATST</td>
<td>A</td>
<td>A</td>
<td>-</td>
<td>4096</td>
</tr>
<tr>
<td>MJATST</td>
<td>ABADMON</td>
<td>ABADMON</td>
<td>-</td>
<td>1613824</td>
</tr>
<tr>
<td>MJATST</td>
<td>ABCSRC</td>
<td>ABCSRC</td>
<td>-</td>
<td>4096</td>
</tr>
<tr>
<td>MJATST</td>
<td>ACHRIS</td>
<td>ACHRIS</td>
<td>-</td>
<td>552960</td>
</tr>
<tr>
<td>MJATST</td>
<td>ADATES</td>
<td>ADATES</td>
<td>-</td>
<td>4096</td>
</tr>
<tr>
<td>MJATST</td>
<td>ADC_MANO</td>
<td>ADC_MANO</td>
<td>-</td>
<td>7273971712</td>
</tr>
<tr>
<td>MJATST</td>
<td>ADC_SHORT</td>
<td>ADC_SHORT</td>
<td>-</td>
<td>714398288</td>
</tr>
<tr>
<td>MJATST</td>
<td>ADC_010606</td>
<td>ADC_010606</td>
<td>-</td>
<td>1091567616</td>
</tr>
<tr>
<td>MJATST</td>
<td>AGDBWE02</td>
<td>AGDBWE02</td>
<td>-</td>
<td>57671680</td>
</tr>
<tr>
<td>MJATST</td>
<td>AGTDTL</td>
<td>AGTDTL</td>
<td>-</td>
<td>4096</td>
</tr>
</tbody>
</table>

Figure 5-22 shows the results of Example 5-33.

Example 5-33 shows the return allocation information for DB2 indexes (keyed files, constraint, and SQL indexes) in MJATST.

Example 5-33 Return allocation information for DB2 indexes (keyed files, constraint, and SQL indexes) in MJATST

```
SELECT index_schema, index_name, index_member, index_type,
SUM(CASE unit_type WHEN 1 THEN unit_space_used ELSE 0 END)/COUNT(*) AS ssd_space,
SUM(CASE unit_type WHEN 0 THEN unit_space_used ELSE 0 END)/COUNT(*) AS nonssd_space
FROM qsys2.syspartitionindexdisk b
WHERE system_table_schema = 'MJATST'
GROUP BY index_schema, index_name, index_member, index_type;
```

Figure 5-22 shows the results of Example 5-33.

<table>
<thead>
<tr>
<th>INDEX_SCHEMA</th>
<th>INDEX_NAME</th>
<th>INDEX_MEMBER</th>
<th>SSD_SPACE</th>
<th>NON_SSD_SPACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJATST</td>
<td>QZG000155_QINX4</td>
<td>QZG0010014</td>
<td>0</td>
<td>139264</td>
</tr>
<tr>
<td>MJATST</td>
<td>Q_MJATST_MYSPI2_C1_00001</td>
<td>-</td>
<td>0</td>
<td>139264</td>
</tr>
<tr>
<td>MJATST</td>
<td>RPT_INDEX</td>
<td>PART000001</td>
<td>0</td>
<td>139264</td>
</tr>
<tr>
<td>MJATST</td>
<td>QZG0001566_QINX6</td>
<td>QZG0010004</td>
<td>0</td>
<td>139264</td>
</tr>
<tr>
<td>MJATST</td>
<td>MYSI</td>
<td>MYSI</td>
<td>0</td>
<td>139264</td>
</tr>
<tr>
<td>MJATST</td>
<td>QIDCTP31</td>
<td>QIDCTP31</td>
<td>0</td>
<td>24576</td>
</tr>
<tr>
<td>MJATST</td>
<td>Q_MJATST_UNT1_C1_00001</td>
<td>-</td>
<td>0</td>
<td>139264</td>
</tr>
<tr>
<td>MJATST</td>
<td>I2BRCDFMT</td>
<td>I2BRCDFMT</td>
<td>0</td>
<td>139264</td>
</tr>
<tr>
<td>MJATST</td>
<td>END_JI</td>
<td>END_JI</td>
<td>0</td>
<td>139264</td>
</tr>
<tr>
<td>MJATST</td>
<td>PK_KEY</td>
<td>-</td>
<td>0</td>
<td>139264</td>
</tr>
<tr>
<td>MJATST</td>
<td>KEYSTRRN_FK1</td>
<td>-</td>
<td>0</td>
<td>139264</td>
</tr>
<tr>
<td>MJATST</td>
<td>Q_MJATST_DFRCST2_C1_00001</td>
<td>-</td>
<td>0</td>
<td>69632</td>
</tr>
</tbody>
</table>

Figure 5-22 Results of Example 5-33
5.4.3 QSYS2.OBJECT_STATISTICS user defined table function

The OBJECT_STATISTICS table function returns information about objects in a library. The schema is QSYS2. Following is the format of the OBJECT_STATISTICS table function:

```
OBJECT_STATISTICS (library-name, object-type-list )
```

Where:
- library-name is a character or graphic string expression that identifies the name of a library. It can be either a long or short library name.
- object-type-list is a character or graphic string expression that contains one or more system object types separated by either a blank or a comma. The object types can include or exclude the leading * character. For example, either FILE or *FILE can be specified.

Following are some examples of using OBJECT_STATISTICS table function:
- Find all journals in library MJATST:
  ```
  SELECT * FROM TABLE (QSYS2.OBJECT_STATISTICS('MJATST','JRN') ) AS X
  or
  SELECT * FROM TABLE (QSYS2.OBJECT_STATISTICS('MJATST','*JRN') ) AS X
  ```
- Find all journals and journal receivers in library MJATST:
  ```
  SELECT * FROM TABLE (QSYS2.OBJECT_STATISTICS('MJATST','JRN JRNRCV') ) AS X
  or
  SELECT * FROM TABLE (QSYS2.OBJECT_STATISTICS('MJATST','*JRN *JRNRCV') ) AS X
  ```

The result of the function is a table that contains a row for each object with the format shown in Table 5-4. All the columns are nullable.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJNAME</td>
<td>VARCHAR(10)</td>
<td>System name of the object.</td>
</tr>
<tr>
<td>OBJTYPE</td>
<td>VARCHAR(8)</td>
<td>System type of the object.</td>
</tr>
<tr>
<td>OBJOWNER</td>
<td>VARCHAR(10)</td>
<td>User profile that owns the object.</td>
</tr>
<tr>
<td>OBJDEFINER</td>
<td>VARCHAR(10)</td>
<td>User profile that created the object.</td>
</tr>
<tr>
<td>OBJCREATED</td>
<td>TIMESTAMP</td>
<td>Timestamp of when the object was created.</td>
</tr>
<tr>
<td>OBJSIZE</td>
<td>DECIMAL(15,0)</td>
<td>Size of the object, in bytes.</td>
</tr>
<tr>
<td>OBJTEXT</td>
<td>VARCHAR(50)</td>
<td>Description of the object.</td>
</tr>
<tr>
<td>OBJLONGNAME</td>
<td>VARCHAR(128)</td>
<td>Long description of the object.</td>
</tr>
<tr>
<td>LAST_USED_TIMESTAMP</td>
<td>TIMESTAMP</td>
<td>Date the object was used last.</td>
</tr>
<tr>
<td>DAYS_USED_COUNT</td>
<td>INTEGER</td>
<td>Number of days an object has been used on the system.</td>
</tr>
<tr>
<td>LAST_RESET_TIMESTAMP</td>
<td>TIMESTAMP</td>
<td>Date when the days used count was last reset to zero.</td>
</tr>
<tr>
<td>IASP_NUMBER</td>
<td>SMALLINT</td>
<td>Auxiliary storage pool (ASP) where storage is allocated for the object.</td>
</tr>
<tr>
<td>OBJATTRIBUTE</td>
<td>VARCHAR(5)</td>
<td>Attribute for this objects type, if any.</td>
</tr>
</tbody>
</table>
5.4.4 EARLIEST_POSSIBLE_RELEASE

DB2 for i now provides a way to see the earliest IBM i release that can be used for any SQL statement or program. The SQL statement level detail is available through Database Monitor. The program level detail is available through the QSYS2.SYSPROGRAMSTAT and QSYS2.SYSPACKAGESTAT catalogs. In both cases, you must capture the DBMON or rebuild the program after you apply the latest DB Group PTFs.

Database Monitor and the QSYS2.SYSPROGRAMSTAT and QSYS2.SYSPACKAGESTAT catalogs can be used to evaluate SQL application deployment possibilities per operating system releases. The QQC82 column contains the earliest IBM i OS release level where this SQL statement is supported. This information can be used to assess whether applications can be deployed on earlier IBM i releases or whether they are using SQL functions unique to IBM i 6.1 or 7.1.

This field applies only if the SQL statement is dynamic (QQC12= 'D').

Possible values for QQC82 are:

' ' The statement release level is not determined.

'ANY' The statement is valid on any supported IBM i OS release,

'V6R1M0' The statement is valid on IBM i 6.1 or later.

'V7R1M0' The statement is valid on IBM i 7.1 or later.

The QSYS2.SYSPROGRAMSTAT and QSYS2.SYSPACKAGESTAT column name is EARLIEST_POSSIBLE_RELEASE. The System column name is MINRLS.

5.4.5 SIGNAL support for native triggers

INSERT, UPDATE, and DELETE SQL statements were changed to recognize when system triggers use the SIGNAL SQL statement to communicate failure details to the application.

If the system trigger runs the SIGNAL statement and sends an escape message to its caller, the SQL INSERT, UPDATE, or DELETE statement fails with MSGSQL0438 (SQLCODE=-438) instead of MSGSQL0443.

The SQLSTATE, MSG, and other values within the SQL diagnostics area or SQLCA contain the values that are passed into the SIGNAL statement.

For more information, go to:
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/dbp/rbaforzahrftrm.htm

The website contains recommendations for native trigger programs. Here is an example:

“Signal an exception if an error occurs or is detected in the trigger program. If an error message is not signaled from the trigger program, the database assumes that the trigger ran successfully. This might cause the user data to end up in an inconsistent state.”

The SIGNAL SQL statement provides the SQL linkage between the native trigger and the application that causes the trigger to be fired by using SQL.
The **SIGNAL** SQL statement does not signal an exception, so be sure to use the QMHSNDPM() API to send an escape message after you run the **SIGNAL** statement, as shown in Example 5-34.

Example 5-34 JDBC failure

```java
*** SQLException caught ***
Statement was insert into mylib.mytable values(1)
SQLState: IWF99
Message: [SQL0438] DOCUMENT NOT FOUND
Vendor: -438
java.sql.SQLException: [SQL0438] DOCUMENT NOT FOUND
at com.ibm.as400.access.JDError.throwSQLException(JDError.java:650)
```

etc....

5.4.6 Hierarchical queries through the CONNECT BY clause

DB2 for i has had recursive query support since V5R4. Another recursive query technique called **hierarchical query** was added. This technique is a more concise method of representing a recursive query.

For more information, see the IBM i 7.1 Knowledge Center at the following websites:

- http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/sqlp/rbafrecursivequeries.htm
- [http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/db2/rbafz_hierquery.htm](http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/db2/rbafzhierquery.htm)

Example 5-35 shows a hierarchal query example.

Example 5-35 Hierarchical query example

```sql
CALL QSYS.CREATE_SQL_SAMPLE('MYDB');
SET CURRENT SCHEMA MYDB;
SET CURRENT PATH MYDB;

SELECT LEVEL,
    CAST((SPACE((LEVEL - 1) * 4) || '/' || DEPTNAME AS VARCHAR(40)) AS DEPTNAME
FROM DEPARTMENT
START WITH DEPTNO = 'A00'
CONNECT BY NOCYCLE PRIOR DEPTNO = ADMRDEPT
```
Figure 5-23 shows the result of Example 5-35 on page 219.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>DEPTNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/SPIFFY COMPUTER SERVICE DIV.</td>
</tr>
<tr>
<td>2</td>
<td>/SUPPORT SERVICES</td>
</tr>
<tr>
<td>3</td>
<td>/BRANCH OFFICE J2</td>
</tr>
<tr>
<td>3</td>
<td>/BRANCH OFFICE I2</td>
</tr>
<tr>
<td>3</td>
<td>/BRANCH OFFICE H2</td>
</tr>
<tr>
<td>3</td>
<td>/BRANCH OFFICE G2</td>
</tr>
<tr>
<td>3</td>
<td>/BRANCH OFFICE F2</td>
</tr>
<tr>
<td>3</td>
<td>/SOFTWARE SUPPORT</td>
</tr>
<tr>
<td>3</td>
<td>/OPERATIONS</td>
</tr>
<tr>
<td>2</td>
<td>/DEVELOPMENT CENTER</td>
</tr>
<tr>
<td>3</td>
<td>/ADMINISTRATION SYSTEMS</td>
</tr>
<tr>
<td>3</td>
<td>/MANUFACTURING SYSTEMS</td>
</tr>
<tr>
<td>2</td>
<td>/INFORMATION CENTER</td>
</tr>
<tr>
<td>2</td>
<td>/PLANNING</td>
</tr>
<tr>
<td>2</td>
<td>/SPIFFY COMPUTER SERVICE DIV.</td>
</tr>
</tbody>
</table>

Figure 5-23 Result of hierarchical query

5.4.7 Parameter marker support (LAND, LOR, XOR, and TRANSLATE)

Before IBM i 7.1, there were many restrictions on where a parameter marker was allowed in an SQL statement. Many of these restrictions were removed in IBM i 7.1.

The LAND, LOR, XOR, and TRANSLATE scalar functions were enhanced by removing similar restrictions.

Example 5-36 shows the possible usage of parameter markers.

Example 5-36 Possible usage of parameter markers

```
PREPARE s1 FROM 'SELECT TRANSLATE(c1,?,?,?) FROM t1'
PREPARE s1 FROM 'SELECT LAND(c2,?,?,?), LOR(c2,?,?,?), XOR(c2,?,?,?) FROM t1'
```

5.4.8 Supporting PROGRAM NAME on CREATE TRIGGER

It is now possible to specify a short name for the created trigger program. When this specification is not supplied, the database determines the system name, which might lead to differences in the system name for the trigger program across different systems.

Example 5-37 shows the usage of PROGRAM NAME in the CREATE TRIGGER definition. If a program name is not specified, then the system generates one, such as TR1_U00001 or TR1_U00002.

Example 5-37 Usage of PROGRAM NAME in the CREATE TRIGGER definition

```
CREATE TRIGGER TR1_UPDATE_TRACKER
AFTER UPDATE OF c1 ON TR1
REFERENCING OLD AS o NEW AS n
FOR EACH ROW MODE DB2ROW
PROGRAM NAME TR1_UPTRIG
BEGIN ATOMIC
```
5.4.9 Debug step supported for SQL procedures, functions, and triggers

SQL procedures, functions, and triggers created with SET OPTION DBGVIEW = *SOURCE can be debugged using the following:

- Using the Start Debug (STRDBG) command
- Using IBM i Navigator System Debugger

When an SQL procedure, function, or trigger is built for debug, two debug views can be used:

- SQL Object Processor Root View (default)
- Underlying ILE C listing view

Before this enhancement, when the Step function (F10=Step when using STRDBG or F11=Step Over when using System Debugger) was used within either of the IBM i debuggers at the SQL view debug level, the Step action applied to the underlying ILE C listing view. It normally takes many steps at the SQL debug view level to get to the next statement, making the SQL debug view difficult to use.

After this enhancement is installed, the Step action applies at the SQL Statement view level. This enhancement makes it much easier to debug SQL procedures, functions, and triggers.

5.4.10 TINYINT in CLI

This SQL Call Level Interface (CLI) enhancement allows applications using CLI APIs for binding parameters and output fields for result sets to accept a new bind type named SQL_C_UTINYINT, Unsigned TINYINT. This bind type represents a 1-byte unsigned integer value with values 0 - 255.

For more information, see the IBM i 7.1 SQL CLI documentation at:

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/cli/rzadpwhatsnew.htm

5.4.11 CHGPFM and CHGLFM UNIT support

Change Physical File Member (CHGPFM) and Change Logical File Member (CHGLFM) commands can now be used to move an individual member to or from an SSD by changing the media preference. One of the main benefits of using these commands is that they do not require a LENR lock. However, they conflict with another job that has an *SHRNUP, *EXCLRD, or *EXCL lock on the data. The syntax of these commands is as follows:

- CHGPFM t1 UNIT(*SSD)
- CHGLFM v1 UNIT(*SSD)

If the user is using logical replication, you need the PTFs on the target and the source systems.
5.4.12 Live movement of DB2 tables and indexes to SSD

The media preference on a DB2 for i tables, views, and indexes can be changed without requiring an exclusive, no read lock on the file. The change can be made when shared read locks (*SHRRD) exist on the file.

After *SSD has been specified as the preferred storage media, the file data is asynchronously moved to the SSD.

This enhancement applies to the following SQL and IBM i command interfaces:
- `ALTER TABLE STORE123.EMPLOYEE ALTER UNIT SSD`
- `CHGPF FILE(STORE123/EMPLOYEE) UNIT(*SSD)`
- `CHGLF FILE(STORE123/XEMP2) UNIT(*SSD)`

For more information about SSDs, see the following references:
- How to boost application performance using Solid State Disk drives
- DB2 for i Hitting the Mark - Again
 http://db2fori.blogspot.com/2013/08/db2-for-i-hitting-mark-again.html

5.4.13 SYSTOOLS procedures

SYSTOOLS is a set of DB2 for i supplied examples and tools. SYSTOOLS is the name of a database supplied schema (library). SYSTOOLS differs from other DB2 for i supplied schemas (QSYS, QSYS2, SYSIBM, and SYSIBMADM) in that it is not part of the default system path. As general-purpose useful tools or examples that are built by IBM, they are considered for inclusion within SYSTOOLS. SYSTOOLS provides a wider audience with the opportunity to extract value from the tools.

It is the intention of IBM to add content dynamically to SYSTOOLS, either on base releases or through PTFs for field releases. A preferred practice for customers who are interested in such tools is to periodically review the contents of SYSTOOLS.

For more information, see the IBM i 7.1 Knowledge Center at:
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzajq/rzajqsystools.htm

5.4.14 HTTP functions in SYSTOOLS

HTTP is the preferred way for communicating in resource-oriented architecture (ROA) and service-oriented architecture (SOA) environments. You can use these RESTful services to integrate information sources that can be addressed using a URL and accessed using HTTP.

The DB2 for i HTTP functions are defined in the SYSTOOLS schema (home of DB2 for i supplied tools and examples) and are not covered by IBM Software Maintenance and Support. These functions are ready for use and provide a fast start to building your own applications.

These DB2 for i HTTP functions require Java 1.6 (5761-JV1).

The functions are also visible with IBM Navigator for i.
Following are the HTTP UDF names:

- `httpGetBlob`
- `httpGetClob`
- `httpPutBlob`
- `httpPutClob`
- `httpPostBlob`
- `httpPostClob`
- `httpDeleteBlob`
- `httpDeleteClob`
- `httpBlob`
- `httpClob`
- `httpHead`

Example 5-38 shows an example of the using the DB2 for i HTTP functions to consume information from a blog.

The following steps show you how to use the DB2 for i HTTP functions to consume information from a URL. In this example, information from the DB2 for i blog is consumed.

1. Build a utility function to manage the content time stamp:

   ```sql
   CREATE OR REPLACE FUNCTION QGPL.RFC339_DATE_FORMAT(in_time TIMESTAMP)
   RETURNS VARCHAR(26)
   LANGUAGE SQL
   RETURN CAST(DATE(in_time) AS CHAR(10)) || 'T' || CHAR(TIME(in_time), JIS)
   ```

2. Use XML features on DB2 for i 7.1 to query the blog content and return the blog posts for the last 6 months. (order the rows by reader responses). See Example 5-38.

Example 5-38 Using DB2 for i HTTP functions to consume information from a blog

```sql
-- Blog Posts for the last 6 months, order by reader responses
SELECT published, updated, author, title, responses, url, author_bio,
    html_content, url_atom
FROM
XMLTABLE(  
    XMLNAMESPACES(DEFAULT 'http://www.w3.org/2005/Atom',
    'http://purl.org/syndication/thread/1.0' AS "thr"),
    'feed/entry'
PASSING XMLPARSE(DOCUMENT
SYSTOOLS.HTTPGETBLOB(
    -- URL --
    'http://db2fori.blogspot.com/feeds/posts/default?published-min=' ||
    SYSTOOLS.URLENCODE(QGPL.RFC339_DATE_FORMAT(CURRENT_TIMESTAMP - 6 MONTHS), 'UTF-8') ||
    '&published-max=' || SYSTOOLS.URLENCODE(QGPL.RFC339_DATE_FORMAT(CURRENT_TIMESTAMP + 1 DAYS), 'UTF-8'),
    -- header --
    '<httpHeader> <header name="Accept" value="application/atom+xml"/> </httpHeader>'
  ) )
COLUMNS
    published TIMESTAMP PATH 'published',
    updated TIMESTAMP PATH 'updated',
    author VARCHAR(15) CCSID 1208 PATH 'author/name',
    title VARCHAR(100) CCSID 1208 PATH 'link[@rel="alternate" and @type="text/html"]/@title',
    responses INTEGER PATH 'thr:total',
    author_bio VARCHAR(4096) CCSID 1208 PATH 'author/url',
```
3. Examine the output as shown in Figure 5-24.

![Figure 5-24](results_from-consuming-information-from-a-blog.png)

For more information about DB2 for i HTTP functions, see the following websites:
- Accessing web services: Using IBM DB2 for i HTTP UDFs and UDTFs:
 https://www-304.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp_access_web_service_db2_i_udf
- Accessing HTTP and RESTful services from DB2: Introducing the REST user-defined functions for DB2:

5.4.15 QSYS2.TCPIP_INFO view

The TCPIP_INFO view contains TCP/IP information for the current host connection.

Note: This support does not cover when TELNET is used to form the connection.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>System Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLLECTED_TIME</td>
<td>COLLE00001</td>
<td>TIMESTAMP</td>
<td>Timestamp indicating when this row of information was collected.</td>
</tr>
<tr>
<td>LOCAL_HOST_NAME</td>
<td>LOCAL00001</td>
<td>VARCHAR(255)</td>
<td>TCP/IP host name of the local system.</td>
</tr>
<tr>
<td>CLIENT_IP_ADDRESS_TYPE</td>
<td>CLIEN00001</td>
<td>VARCHAR(10)</td>
<td>TCP/IP address version of client.</td>
</tr>
</tbody>
</table>
The following statement shows usage of QSYS2.TCPIP_INFO:

```sql
SELECT * FROM QSYS2.TCPIP_INFO
```

Figure 5-25 shows the results of using QSYS2.TCPIP_INFO.

![Figure 5-25: Results of QSYS2.TCPIP_INFO](image)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>System Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT_IP_ADDRESS</td>
<td>CLIENT00002</td>
<td>VARCHAR(45)</td>
<td>TCP/IP address of the client.</td>
</tr>
<tr>
<td>CLIENT_PORT_NUMBER</td>
<td>CLIENT00003</td>
<td>INTEGER</td>
<td>TCP/IP port of the client.</td>
</tr>
<tr>
<td>SERVER_IP_ADDRESS_TYPE</td>
<td>SERVE00001</td>
<td>VARCHAR(10)</td>
<td>TCP/IP address version of the server.</td>
</tr>
<tr>
<td>SERVER_IP_ADDRESS</td>
<td>SERVE00002</td>
<td>VARCHAR(45)</td>
<td>TCP/IP address of the server.</td>
</tr>
<tr>
<td>SERVER_PORT_NUMBER</td>
<td>SERVE00003</td>
<td>INTEGER</td>
<td>TCP/IP port number of the server.</td>
</tr>
<tr>
<td>HOST_VERSION</td>
<td>HOST_00001</td>
<td>VARCHAR(10)</td>
<td>Operating system version.</td>
</tr>
</tbody>
</table>

The following statement shows usage of QSYS2.TCPIP_INFO:

```sql
SELECT * FROM QSYS2.TCPIP_INFO
```

Figure 5-25 shows the results of using QSYS2.TCPIP_INFO.

![Figure 5-25: Results of QSYS2.TCPIP_INFO](image)

5.4.16 Administrative catalog, SYSIBMADM.ENV_SYS_INFO

The ENV_SYS_INFO view contains information about the current server.

Table 5-6 describes the columns in the ENV_SYS_INFO view. The schema is SYSIBMADM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>System Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS_NAME</td>
<td>OS_NAME</td>
<td>VARCHAR(256)</td>
<td>Operating system name</td>
</tr>
<tr>
<td>OS_VERSION</td>
<td>OS_VERSION</td>
<td>VARCHAR(256)</td>
<td>Operating system version</td>
</tr>
<tr>
<td>OS_RELEASE</td>
<td>OS_RELEASE</td>
<td>VARCHAR(256)</td>
<td>Operating system release</td>
</tr>
<tr>
<td>HOST_NAME</td>
<td>HOST_NAME</td>
<td>VARCHAR(256)</td>
<td>Name of the system</td>
</tr>
<tr>
<td>TOTAL_CPUS</td>
<td>TOTAL_CPUS</td>
<td>INTEGER</td>
<td>Total number of physical CPUs on the system</td>
</tr>
</tbody>
</table>
Figure 5-26 shows an example of the output from ENV_SYS_INFO.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>System Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGURED_CPUS</td>
<td>CONFIGCPUS</td>
<td>INTEGER</td>
<td>Total number of configured CPUs on the system</td>
</tr>
<tr>
<td>TOTAL_MEMORY</td>
<td>TOTAL_MEM</td>
<td>INTEGER</td>
<td>Total amount of memory on the system, in megabytes</td>
</tr>
</tbody>
</table>

Table 5-7 describes the columns in the PTF_INFO view. The schema is QSYS2.

<table>
<thead>
<tr>
<th>Column name</th>
<th>System Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTF_PRODUCT_ID</td>
<td>LICPGM</td>
<td>VARCHAR(7)</td>
<td>Product identifier.</td>
</tr>
<tr>
<td>PTF_PRODUCT_OPTION</td>
<td>PRODOPT</td>
<td>VARCHAR(6)</td>
<td>Product option.</td>
</tr>
<tr>
<td>PTF_PRODUCT_RELEASE_LEVEL</td>
<td>PRODRLS</td>
<td>VARCHAR(6)</td>
<td>Product release level.</td>
</tr>
<tr>
<td>PTF_PRODUCT_DESCRIPTION</td>
<td>PRODDESC</td>
<td>VARCHAR(132)</td>
<td>Product description.</td>
</tr>
<tr>
<td>PTF_IDENTIFIER</td>
<td>PTFID</td>
<td>VARCHAR(7)</td>
<td>The identifier of the PTF.</td>
</tr>
<tr>
<td>PTF_RELEASE_LEVEL</td>
<td>PTFRLS</td>
<td>VARCHAR(6)</td>
<td>The release level of the PTF.</td>
</tr>
<tr>
<td>PTF_PRODUCT_LOAD</td>
<td>PRODLOAD</td>
<td>VARCHAR(4)</td>
<td>The load ID of the product load for the PTF.</td>
</tr>
</tbody>
</table>

5.4.17 QSYS2.PTF_INFO view

The PTF_INFO view in QSYS2 contains information about PTFs for the server. The data that are returned by this view corresponds to the data returned by the List Program Temporary Fixes (QpzListPTF) API.

For more information about the QpzListPTF) API, see the List Program Temporary Fixes (QpzListPTF) API topic in the IBM i 7.1 Knowledge Center:
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Fapis%2Fqpzlstf
x.htm

Table 5-7 describes the columns in the PTF_INFO view. The schema is QSYS2.
<table>
<thead>
<tr>
<th>Column name</th>
<th>System Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTF_LOADED_STATUS</td>
<td>LOADSTAT</td>
<td>VARCHAR(19)</td>
<td>The current loaded status of the PTF:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nullable</td>
<td>• NOT LOADED - The PTF has never been loaded.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• LOADED - The PTF has been loaded.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• APPLIED - The PTF has been applied.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PERMANENTLY APPLIED - The PTF has been applied permanently.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PERMANENTLY REMOVED - The PTF has been permanently removed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• DAMAGED - The PTF is damaged. An error occurred while applying the PTF. The PTF needs to be reloaded and applied again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• SUPERCEDED - The PTF is superseded. A PTF has a status of superseded when one of the following situations occurs:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Another PTF with a more recent correction for the problem has been loaded on the system. The PTF ID that has been loaded can be found in the PTF_SUPERCEDED_BY_PTF column.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The PTF save file for another PTF with a more recent correction for the problem has been logged in to *SERVICE on the system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTF_SAVE_FILE</td>
<td>SAVF</td>
<td>VARCHAR(3)</td>
<td>Indicates whether a save file exists for the PTF:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nullable</td>
<td>• NO - The PTF has no save file.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• YES - The PTF has a save file.</td>
</tr>
<tr>
<td>PTF_COVER lettre</td>
<td>COVER</td>
<td>VARCHAR(3)</td>
<td>Indicates whether a cover letter exists for the PTF:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nullable</td>
<td>• NO - The PTF has no cover letter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• YES - The PTF has a cover letter.</td>
</tr>
<tr>
<td>PTF_ON_ORDER</td>
<td>ONORD</td>
<td>VARCHAR(3)</td>
<td>Indicates whether the PTF has been ordered.:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nullable</td>
<td>• NO - The PTF has not been ordered or has already been received.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• YES - The PTF has been ordered.</td>
</tr>
<tr>
<td>Column name</td>
<td>System Column Name</td>
<td>Data Type</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| PTF_LOADED_STATUS | LOADSTAT | VARCHAR(19) Nullable | The current loaded status of the PTF:
 - NOT LOADED - The PTF has never been loaded.
 - LOADED - The PTF has been loaded.
 - APPLIED - The PTF has been applied.
 - PERMANENTLY APPLIED - The PTF has been applied permanently.
 - PERMANENTLY REMOVED - The PTF has been permanently removed.
 - DAMAGED - The PTF is damaged. An error occurred while applying the PTF. The PTF needs to be reloaded and applied again.
 - SUPERCEDED - The PTF is superseded. A PTF has a status of superseded when one of the following situations occurs:
 - Another PTF with a more recent correction for the problem has been loaded on the system. The PTF ID that has been loaded can be found in the `PTF_SUPERCEDED_BY_PTF` column.
 - The PTF save file for another PTF with a more recent correction for the problem has been logged in to `*SERVICE` on the system. |
| PTF_SAVE_FILE | SAVF | VARCHAR(3) Nullable | Indicates whether a save file exists for the PTF:
 - NO - The PTF has no save file.
 - YES - The PTF has a save file. |
| PTF_COVER LETTER | COVER | VARCHAR(3) Nullable | Indicates whether a cover letter exists for the PTF:
 - NO - The PTF has no cover letter.
 - YES - The PTF has a cover letter. |
| PTF_ON_ORDER | ONORD | VARCHAR(3) Nullable | Indicates whether the PTF has been ordered:
 - NO - The PTF has not been ordered or has already been received.
 - YES - The PTF has been ordered. |
<table>
<thead>
<tr>
<th>Column name</th>
<th>System Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| PTF_IPL_ACTION | PLACT | VARCHAR(19) | Nullable | The action to be taken on this PTF during the next unattended IPL:
 - NONE - No action occurs at the next IPL.
 - TEMPORARILY APPLIED - The PTF is temporarily applied at the next IPL.
 - TEMPORARILY REMOVED - The PTF is temporarily removed at the next IPL.
 - PERMANENTLY APPLIED - The PTF is permanently applied at the next IPL.
 - PERMANENTLY REMOVED - The PTF is permanently removed at the next IPL. |
| PTF_ACTION_PENDING | ACTPEND | VARCHAR(3) | Nullable | Indicates whether a required action has yet to be run to make this PTF active:
 - NO - No required actions are pending for this PTF.
 - YES - A required action needs to occur for this PTF to be active. Check the Activation Instructions section of the cover letter to determine what the action is. If the PTF_ACTION_REQUIRED column is set to IPL and the activation instructions have been performed, then the PTF is active. However, this column is not updated until the next IPL. |
| PTF_ACTION_REQUIRED | ACTREQ | VARCHAR(12) | Nullable | Indicates whether an action is required to make this PTF active when it is applied. See the cover letter to determine what action needs to be taken.
 - NONE - No activation instructions are needed for this PTF.
 - EXIT PROGRAM -, This PTF was included with activation instructions in the cover letter. This value is returned for all PTFs that have an exit program to update the status of the PTF after the activation instructions have been performed.
 - IPL - This PTF was included with activation instructions in the cover letter. No exit program exists to verify that the activation instructions were performed. |
<table>
<thead>
<tr>
<th>Column name</th>
<th>System Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| PTF_IPL_REQUIRED | PLREQ | VARCHAR(9) Nullable | Indicates whether an IPL is required to apply this PTF:
| | | | ▶ DELAYED - The PTF is delayed. The PTF must be applied during an IPL.
| | | | ▶ IMMEDIATE - The PTF is immediate. No IPL is needed to apply the PTF.
| | | | ▶ UNKNOWN - The type of the PTF is not known. |
| PTF_IS_RELEASED | RELEASED | VARCHAR(3) Nullable | Indicates whether the PTF save file is available for distribution to another system. This is set to YES only when the system manager for the IBM i licensed program is on the system and the product is supported. The PTF_SAVE_FILE column must have a value of YES before using the value in this column:
| | | | ▶ NO - The PTF save file cannot be distributed.
| | | | ▶ YES - The PTF save file is released and can be distributed to another system. |
| PTF_MINIMUM_LEVEL | MINLVL | VARCHAR(2) Nullable | The indicator of the lowest level of the product to which this PTF can be applied. The level can be AA to 99. Contains the null value if the product does not have a level. |
| PTF_MAXIMUM_LEVEL | MAXLVL | VARCHAR(2) Nullable | The indicator of the highest level of the product to which this PTF can be applied. The level can be AA to 99. Contains the null value if the product does not have a level. |
| PTF_STATUS_TIMESTAMP | STATTIME | TIMESTAMP Nullable | The date and time that the PTF status was last changed. Contains the null value when the status date and time is not available. |
| PTF_SUPERCEDED_BY_PTF | SUPERCEDE | VARCHAR(7) Nullable | The identifier of the PTF that has replaced this PTF. This field is blank when the PTF is not superseded or when the superseding PTF has not been loaded on the system. |
| PTF_CREATION_TIMESTAMP | CRTTIME | TIMESTAMP Nullable | The date and time that the PTF was created. Contains the null value when the creation date and time cannot be determined. |
Example 5-39 and Example 5-40 provide some examples of how the PTF_INFO view can be used. Example 5-39 shows an example when PTFs are impacted by the next IPL.

Example 5-39 Discovering which PTFs are impacted by the next IPL

```
SELECT PTF_IDENTIFIER, PTF_IPL_ACTION, A.*
FROM QSYS2.PTF_INFO A
WHERE PTF_IPL_ACTION <> 'NONE'
```

Example 5-40 shows an example when the PTFs are loaded but not applied.

Example 5-40 Discovering which PTFs are loaded but not applied

```
SELECT PTF_IDENTIFIER, PTF_IPL_REQUIRED, A.*
FROM QSYS2.PTF_INFO A
WHERE PTF_LOADED_STATUS = 'LOADED'
ORDER BY PTF_PRODUCT_ID
```

5.4.18 QSYS2.GROUP_PTF_INFO view

You can use the QSYS2.GROUP_PTF_INFO view to retrieve IBM i Group PTF information. The data that is returned is similar to output of the Work with PTF Groups (WRKPTFGRP) command.

For example, the Technology Refresh (TR) level on your system can be determined by using the view definition that is shown in Example 5-41.

Example 5-41 Determining the Technology Refresh (TR) level

```
COLLECTED_TIME FOR COLUMN COLLE00001 TIMESTAMP
PTF_GROUP_NAME FOR COLUMN PTF_G00001 VARCHAR(60) ALLOCATE(60)
PTF_GROUP_DESCRIPTION FOR COLUMN PTF_G00002 VARCHAR(100) ALLOCATE(100)
PTF_GROUP_LEVEL FOR COLUMN PTF_G00003 INTEGER DEFAULT NULL
PTF_GROUP_TARGET_RELEASE FOR COLUMN PTF_G00004 VARCHAR(6) ALLOCATE(6)
PTF_GROUP_STATUS FOR COLUMN PTF_G00005 VARCHAR(20) ALLOCATE(20)
```

Run the following command:

```
select * from QSYS2.GROUP_PTF_INFO order by PTF_GROUP_LEVEL DESC;
```
The result of the command is shown in Figure 5-27.

```
<table>
<thead>
<tr>
<th>COLLECTED_TIME</th>
<th>PTF_GROUP_NAME</th>
<th>PTF_GROUP_DESCRIPTION</th>
<th>PTF_GROUP_LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-09-30 11:04:19...</td>
<td>SF99710</td>
<td>... CUMULATIVE PTF PACKAGE C1116710</td>
<td>11116</td>
</tr>
<tr>
<td>2011-09-30 11:04:19...</td>
<td>SF99709</td>
<td>... GROUP HIPER</td>
<td>40</td>
</tr>
<tr>
<td>2011-09-30 11:04:19...</td>
<td>SF99701</td>
<td>... DB2 FOR IBM I</td>
<td>11</td>
</tr>
<tr>
<td>2011-09-30 11:04:19...</td>
<td>SF99362</td>
<td>... 710 BACKUP RECOVERY SOLUTIONS</td>
<td>10</td>
</tr>
<tr>
<td>2011-09-30 11:04:19...</td>
<td>SF99368</td>
<td>... IBM HTTP SERVER FOR I</td>
<td>10</td>
</tr>
<tr>
<td>2011-09-30 11:04:19...</td>
<td>SF99701</td>
<td>... DB2 FOR IBM I</td>
<td>10</td>
</tr>
<tr>
<td>2011-09-30 11:04:19...</td>
<td>SF99369</td>
<td>... IBM I INTEGRATION WITH BLADECENTER AND SYSTEM X</td>
<td>8</td>
</tr>
<tr>
<td>2011-09-30 11:04:19...</td>
<td>SF99708</td>
<td>... GROUP SECURITY</td>
<td>8</td>
</tr>
<tr>
<td>2011-09-30 11:04:19...</td>
<td>SF99363</td>
<td>... WEBSPHERE APP SERVER V7.0</td>
<td>6</td>
</tr>
<tr>
<td>2011-09-30 11:04:19...</td>
<td>SF99572</td>
<td>... JAVA</td>
<td>6</td>
</tr>
<tr>
<td>2011-09-30 11:04:19...</td>
<td>SF99617</td>
<td>... DB2 WEB QUERY FOR IBM I V1.1.1</td>
<td>6</td>
</tr>
<tr>
<td>2011-09-30 11:04:19...</td>
<td>SF99359</td>
<td>... WEBSPHERE MQ FOR 15/OS -V7.0.1</td>
<td>5</td>
</tr>
<tr>
<td>2011-09-30 11:04:19...</td>
<td>SF99627</td>
<td>... 7.1 ELECTRONIC SERVICES GROUP PTF</td>
<td>5</td>
</tr>
<tr>
<td>2011-09-30 11:04:19...</td>
<td>SF99364</td>
<td>... WEBSPHERE APP SERVER V6.1</td>
<td>4</td>
</tr>
</tbody>
</table>
```

Figure 5-27 Results from QSYS2.GROUP_PTF_INFO call

The PTF group status messages are:

UNKNOWN The PTF’s group status cannot be resolved because a related PTF group is either not found on the system or is in error.

NOT APPLICABLE All PTFs in the PTF group and related PTF groups are for products that are not installed or supported on this system.

SUPPORTED ONLY There are no PTFs in the PTF group or related PTF groups that are for installed products on this system. There is at least one PTF that is for a product, release, option, and load identifier that is supported on this system.

NOT INSTALLED There is at least one PTF that is for an installed product on this system, and not all of the PTFs or their superseding PTFs are temporarily or permanently applied.

INSTALLED All PTFs for products that are installed on this system are temporarily or permanently applied. If a PTF is superseded, a superseding PTF is either temporarily or permanently applied.

ERROR The PTF group information is in error. Either delete the PTF group or replace the PTF group information that is on the system.
APPLY AT NEXT IPL All PTFs for the installed products on the system are either set to be applied at the next IPL, or are temporarily or permanently applied.

RELATED GROUP The PTF group does not have any PTFs for products that are installed or supported on the system. However, it is identified in another PTF group as a related PTF group. Deleting a PTF group in this status causes the other PTF group to have a status of Unknown.

ON ORDER There is at least one PTF in the group that is on order and has not yet been installed on the system. It can be delivered on either physical or virtual media.

5.4.19 QSYS2.GET_JOB_INFO() user defined table function

The GET_JOB_INFO table function returns one row that contains information about a specific job. Where job-name is a character or graphic string expression that identifies the name of a job. The schema is QSYS2.

```
>>-GET_JOB_INFO--(--job-name--)--------------------------------><
```

To start the GET_JOB_INFO table function, the caller must have *JOBCTL user special authority or QIBM_DB_SQLADM or QIBM_DB_SYSMON function usage authority.

The result of the GET_JOB_INFO function is a table that contains a single row with the format shown in Table 5-8. All the columns are nullable.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_JOB_STATUS</td>
<td>CHAR(10)</td>
<td>Status of the job.</td>
</tr>
<tr>
<td>V_ACTIVE_JOB_STATUS</td>
<td>CHAR(4)</td>
<td>To understand the values that are returned in this field, see this reference and search on “Active job status”: Work Management API Attribute Descriptions. For more information, go to: http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Fapis%2FWMAttrDesc.htm</td>
</tr>
<tr>
<td>V_RUN_PRIORITY</td>
<td>INTEGER</td>
<td>The highest run priority allowed for any thread within this job.</td>
</tr>
<tr>
<td>V_SBS_NAME</td>
<td>CHAR(10)</td>
<td>Name of subsystem where job is running.</td>
</tr>
<tr>
<td>V_CPU_USED</td>
<td>BIGINT</td>
<td>The amount of CPU time (in milliseconds) that has been used by this job.</td>
</tr>
<tr>
<td>V_TEMP_STORAGE_USED_MB</td>
<td>INTEGER</td>
<td>The amount of auxiliary storage (in megabytes) that is allocated to this job.</td>
</tr>
<tr>
<td>V_AUX_IO_REQUESTED</td>
<td>BIGINT</td>
<td>The number of auxiliary I/O requests run by the job across all routing steps. This includes both database and nondatabase paging. This is an unsigned BINARY(8) value.</td>
</tr>
<tr>
<td>V_PAGE_FAULTS</td>
<td>BIGINT</td>
<td>The number of times an active program referenced an address that is not in main storage during the current routing step of the specified job.</td>
</tr>
<tr>
<td>V_CLIENT_WRKSTNNAME</td>
<td>CHAR(255)</td>
<td>Value of the SQL CLIENT_WRKSTNNAME special register.</td>
</tr>
<tr>
<td>V_CLIENT_APPLNAME</td>
<td>CHAR(255)</td>
<td>Value of the SQL CLIENT_APPLNAME special register.</td>
</tr>
</tbody>
</table>
Figure 5-28 shows the results of the GET_JOB_INFO function,

```
SELECT * FROM TABLE(QSYS2.GET_JOB_INFO('347117/Quser/Qzdasoinit')) A;
```

```
<table>
<thead>
<tr>
<th>V_JOB_STATUS</th>
<th>V_ACTIVE_JOB_STATUS</th>
<th>V_RUN_PRIORITY</th>
<th>V_SBS_NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVE</td>
<td>RUN</td>
<td>20</td>
<td>QUSRWRK</td>
</tr>
</tbody>
</table>
```

Figure 5-28 GET_JOB_INFO output

5.4.20 Alias interrogation, SYSPROC.BASE_TABLE

The SYSPROC.BASE_TABLE UDTF function provides a cross DB2 method to identify the actual table or view an alias is based on. The following unique DB2 for i information can also be accessed:

- System names
- Member names (for aliases that point to a single member)
- Database name (for aliases that point to a remote object)

For more information about the BASE_TABLE function, see the SQL Reference documentation:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Fdb2%2Frbafzsca\nbasetable.htm

The BASE_TABLE function returns the object names and schema names of the object found for an alias.

Example 5-42 shows an example of determining the base objects for all aliases within the schemas that have “MJATST” somewhere in the schema name

Example 5-42 Using the BASE_TABLE function

```
SELECT A.TABLE_SCHEMA AS ALIAS_SCHEMA, A.TABLE_NAME AS ALIAS_NAME, c.*
FROM QSYS2.SYSTABLES A,
LATERAL (SELECT * FROM TABLE(SYSPROC.BASE_TABLE(A.TABLE_SCHEMA,A.TABLE_NAME)) AS X)
AS C
WHERE A.TABLE_TYPE='A' and upper(table_schema) like 'MJATST%'
```
5.4.21 Number of partition keys added to statistical views

Two of the DB2 for i statistical catalogs have been extended to include the NUMBER_PARTITIONING_KEYS column. This column returns the number of partitioning keys to make it easier for other IBM and third-party products to process the partitioning keys.

The NUMBER_PARTITIONING_KEYS column has been added to the following statistical catalogs:

- QSYS2 and SYSIBM: SYSPARTITIONSTAT
- QSYS2 and SYSIBM: SYSTABLESTAT
Figure 5-32 shows the output for the number of partition keys.

![Sample output for the number of partition keys](image)

5.4.22 QSYS2.DUMP_SQL_CURSORS procedure

It is now possible to capture the list of open cursors for a job in IBM i. The QSYS2.DUMP_SQL_CURSORS are:

- **Job_Name** VARCHAR(28),
- **Library_Name** CHAR(10),
- **Table_Name** CHAR(10),
- **Output_Option** integer)

Where:

- **Job_Name** is a qualified job name or a special value of '*' to indicate the current job.
- **Library_Name** is an optional library name for the procedure output.
- **Table_Name** is an optional table name for the procedure output.

Output_Option has these choices:

- Ignore **Library_Name** and **Table_Name** inputs and return a result set.
- Ignore **Library_Name** and **Table_Name** inputs and place the results in table QTEMP/SQL_CURSORS (no result set).
- Place the results in table in **Library_Name** and **Table_Name** (no result set). If the table does not exist, the procedure creates it. If the table does exist, the results are appended to the existing table.
- Place the results in table in **Library_Name** and **Table_Name** (no result set). If the table does not exist, do not create the table.

Example 5-43 shows a possible invocation of the QSYS2.DUMP_SQL_CURSORS procedure.

Example 5-43 Possible invocation

```sql
-- populate QGPL.SQLCSR1 table with open SQL cursors in this job
call qsys2.DUMP_SQL_CURSORS('*', 'QGPL', 'SQLCSR1', 3);

-- return a result set with open SQL cursors in this job
call qsys2.DUMP_SQL_CURSORS('*', '', '', 1);

-- populate QGPL.SQLCSR1 table with open SQL cursors for a target job
call qsys2.DUMP_SQL_CURSORS('724695/QUSER/QZDASOINIT', '', '', 1);
```

Table/Result Set format:
SQL_IDENTITY FOR COLUMN SQL_IDENTITY INTEGER,
DUMPTIME TIMESTAMP,
DUMP_BY_USER FOR COLUMN DUMPUSER VARCHAR(18),
CURSOR_NAME FOR COLUMN CURSORNAME VARCHAR(128),
PSUEDO_CLOSED FOR COLUMN PSUEDO VARCHAR(3),
STATEMENT_NAME FOR COLUMN STMTNAME VARCHAR(128),
OBJECT_NAME FOR COLUMN OBJNAME CHAR(10),
OBJECT_LIBRARY FOR COLUMN OBJLIB CHAR(10),
OBJECT_TYPE FOR COLUMN OBJTYPE CHAR(10),
JOBNAME CHAR(28)

5.4.23 QIBM_SQL_NO_RLA_CANCEL environment variable

The SQL Cancel support includes logic to ensure that DB2 for i programs is active on the
stack of the initial thread in the target job for the cancel request. Applications that use Native
DB I/O can observe cases where the cancel request is processed and a record level access
operation ends with MSGCPF5257 followed by MSGCPF9999.

An environment variable can be used by the customer to direct DB2 for i to avoid canceling
RLA access operations. Upon the first cancel request for a specific job, the environment
variable QIBM_SQL_NO_RLA_CANCEL is accessed. If the environment variable exists, the
cancel request is not honored when RLA is the only database work ongoing within the initial
thread at the time the cancel request is received.

The environment variable is the SQL Cancel operational switch. The variable can be created
at the job or system level. Creating it once at the system level affects how SQL Cancels are
processed for all jobs.

Possible invocations of this variable are:

- ADDENVVAR ENVVAR(QIBM_SQL_NO_RLA_CANCEL)
- ADDENVVAR ENVVAR(QIBM_SQL_NO_RLA_CANCEL) LEVEL(*SYS)

5.4.24 CANCEL_SQL and FIND_AND_CANCEL_QSQSRVR_SQL procedures

This section describes the QSYS2.FIND_AND_CANCEL_QSQSRVR_SQL and QSYS2.CANCEL_SQL
procedures.

QSYS2.CANCEL_SQL procedure

The IBM supplied procedure, QSYS2.CANCEL_SQL(), can be called to request the cancellation
of an SQL statement for a target job.

SQL Cancel support provides an alternative to end job immediate when you deal with an
orphaned or runaway process. End job immediate is like a hammer, where SQL Cancel is
more like a tap on the shoulder. Before this improvement, the SQL Cancel support was only
available for ODBC, JDBC, and SQL CLI applications. The QSYS2.CANCEL_SQL() procedure
extends the SQL Cancel support to all application and interactive SQL environments.

When an SQL Cancel is requested, an asynchronous request is sent to the target job. If the
job is processing an interruptible, long-running system operation, analysis is done within the
job to determine whether it is safe to cancel the statement. When it is determined that it is
safe to cancel the statement, an SQL0952 escape message is sent, causing the statement to
end.
If it is not safe to end the SQL statement, or if there is no active SQL statement, the request to cancel is ignored. The caller of the cancel procedure observes a successful return code that indicates that only the caller had the necessary authority to request a cancel and that the target job exists. The caller of the QSYS2.CANCEL_SQL() procedure has no programmatic means of determining that the cancel request resulted in a canceled SQL statement.

Procedure definition
The QSYS2.CANCEL_SQL procedure is defined as follows:

```
CREATE PROCEDURE QSYS2.CANCEL_SQL (  
  IN VARCHAR(28) )  
LANGUAGE PLI  
SPECIFIC QSYS2.CANCEL_SQL  
NOT DETERMINISTIC  
MODIFIES SQL DATA  
CALLED ON NULL INPUT  
EXTERNAL NAME 'QSYS/QSQSSUDF(CANCEL_SQL)'  
PARAMETER STYLE SQL ;
```

Example 5-44 shows the calling of the procedure.

```
Example 5-44   CALL QSYS2.CANCEL_SQL procedure
  CALL QSYS2.CANCEL_SQL('483456/QUSER/QZDASOINIT');
```

Authorization
The QSYS2.CANCEL_SQL procedure requires that the authorization ID associated with the statement have *JOBCTL special authority.

Description
The procedure has a single input parameter, that is, the qualified job name of the job that should be canceled. The job name must be uppercase. If that job is running an interruptible SQL statement or query, the statement is canceled. The application most likely receives an SQLCODE = SQL0952 (-952) message. In some cases, the failure that is returned might be SQL0901 or the SQL0952 might contain an incorrect reason code.

This procedure takes advantage of the same cancel technology that is used by the other SQL cancel interfaces:

- System i Navigator's Run SQL Scripts: Cancel Request button
- SQL Call Level Interface (CLI): SQLCancel() API
- JDBC method: Native Statement.cancel() and toolbox com.ibm.as400.access.AS400JDBCStatement.cancel()
- Extended Dynamic Remote SQL (EDRS): Cancel EDRS Request (QxdaCancelEDRS) API
- QSYS2.CANCEL_SQL() procedure

If the cancel request occurs during the act of committing or rolling back a commitment-control transaction, the request is ignored.

Failures
The procedure fails with a descriptive SQL0443 failure if the target job is not found.

The procedure fails with SQL0443 and SQL0552 if the caller does not have *JOBCTL user special authority.
Commitment control

When the target application is running without commitment control (that is, COMMIT = "NONE" or "NC"), the canceled SQL statement stops without rolling back the partial results of the statement. If the canceled statement is a query, the query ends. However, if the canceled statement was a long-running INSERT, UPDATE, or DELETE SQL statement, the changes that are made before cancellation remain intact.

If the target application is using transaction management, the SQL statement is running under the umbrella of a transaction save point level. When those same long running INSERT, UPDATE, or DELETE SQL statements are canceled, the changes that are made before cancellation are rolled back.

In both cases, the application receives back control with an indication that the SQL statement failed. It is up to the application to determine the next action.

Useful tool

The QSYS2.CANCEL_SQL() procedure provides a useful tool to database administrators for IBM i systems. After you have the latest DB Group PTF installed, you can start calling this procedure to stop long-running or expensive SQL statements.

QSYS2.FIND_AND_CANCEL_QSQSRVR_SQL procedure

The QSYS2.FIND_AND_CANCEL_QSQSRVR_SQL() procedure uses the QSYS2.FIND_QSQSRVR_JOBS and QSYS2.CANCEL_SQL() procedures that are derived from the set of jobs that has active SQL activity, given a target application job. Each job found is made a target of an SQL Cancel request.

Example 5-45 shows an example of the procedure.

Example 5-45 Using the QSYS2.FIND_AND_CANCEL_QSQSRVR_SQL procedure

CALL (QSYS2.FIND_AND_CANCEL_QSQSRVR_SQL('564321/APPUSER/APPJOBNAME');

5.4.25 QSYS2.FIND_QSQSRVR_JOBS() procedure

Anyone responsible for administering, tuning, or explaining the SQL Server Mode (for example, QSQSRVR jobs) activity might find the QSYS2.FIND_QSQSRVR_JOBS() procedure a useful tool. This procedure was added to QSYS2 after the application of PTFs. The procedure has a single parameter, which is the qualified job name of an application job. If the target job is active and is set up to use SQL Server Mode, the procedure determines which QSQSRVR jobs are being used by the application, in the form of active SQL Server Mode connections. The procedure collects and returns work management, performance, and SQL information and returns two SQL result sets:

- Summary information
- Detailed SQL Server Mode job information

How is this procedure useful? When you have an important application instance (job) that uses QSQSRVR jobs, it can be difficult to determine the “total system impact” of the application. How many SQL Server Mode jobs are in use at that moment? Is this application responsible for a QSQSRVR job that is consuming many processor cycles or holding onto object locks? The FIND_QSQSRVR_JOBS() procedure provides some of these answers by tying together the application and its SQL Server Mode job usage.
Example 5-46 shows an invocation of QSYS2.FIND_QSQSRVR_JOBS.

Example 5-46 Invocation of QSYS2.FIND_QSQSRVR_JOBS

```sql
call QSYS2.FIND_QSQSRVR_JOBS('566463/EBERHARD/QP0ZSPWP ')
```

Procedure definition

QSYS2.FIND_QSQSRVR_JOBS is defined as follows:

```sql
CREATE PROCEDURE QSYS2.FIND_QSQSRVR_JOBS( JOB_NAME VARCHAR(28) )
NOT DETERMINISTIC
MODIFIES SQL DATA
CALLED ON NULL INPUT
DYNAMIC RESULT SETS 2
SPECIFIC FINDSRVR
EXTERNAL NAME 'QSYS/QSQSSUDF(FINDSRVR)'
LANGUAGE C PARAMETER STYLE SQL;
```

Authorization

On IBM i 6.1, to start QSYS2.FIND_QSQSRVR_JOBS, you need *JOBCTL special authority.

On IBM i 7.1, to start QSYS2.FIND_QSQSRVR_JOBS, you need *JOBCTL special authority, QIBM_DB_SQLADM Function usage, or QIBM_DB_SYSMON Function usage. Otherwise, you receive the following message:

```sql
call QSYS2.FIND_QSQSRVR_JOBS('650261/SCOTTF/QP0ZSPWP ')
SQL State: 38501
Vendor Code: -443
Message: [CPF43A4] *JOBCTL special authority, QIBM_DB_SQLADM or QIBM_DB_SYSMON Function usage is required. Cause......: The user profile is required to have *JOBCTL special authority or be authorized to either the QIBM_DB_SQLADM or QIBM_DB_SYSMON Function through Application Administration in System i Navigator. The Change Function Usage (CHGFCNUSG) command can also be used to allow or deny use of the function.
```

Usage

The procedure can be called from any environment. The input parameter is the application qualified job name. When called from within System i Navigator's Run SQL Scripts, two results sets are displayed. When called from Start SQL Interactive Session (STRSQL) or elsewhere, you must query the temporary tables to see the data, as shown in Example 5-47.

Example 5-47 Usage for STRSQL

```sql
select * from qtemp.QSQSRVR_DETAIL order by TOTALCPU desc;
select * from qtemp.QSQSRVR_SUMMARY;
#Use this query to see the summary information in the same form that is returned
#within the result set:
SELECT SERVER_MODE_JOB,count(*) AS "QSQSRVR JOB COUNT",
SERVER_MODE_CONNECTING_JOB, SUM(TOTAL_PROCESSING_TIME) AS "CPU USED
(MILLISECONDS)", SUM(TEMP_MEG_STORAGE) AS "TEMP STORAGE USED (MB)",
SUM(PAGE_FAULTS) AS "PAGE FAULTS", SUM(IO_REQUESTS) AS "I/O REQUESTS" from
SESSION.QSQSRVR_SUMMARY GROUP BY GROUPING SETS (SERVER_MODE_JOB ,
SERVER_MODE_CONNECTING_JOB) ORDER BY 1;
```
5.4.26 SQL server mixed mode for batch processing

SQL Server Mode is extended to allow an application to direct the database to run SQL statements within an SQL trigger program within the SQL Server Mode client job instead of rerouting the SQL to a QSQSRVR server job.

The change affects only SQL triggers fired through native database I/O operations.

To enable the new function, an environment variable must exist before any SQL statements are run within the client job. An easy way to deploy the environment variable is to define it at the system level as follows:

```
ADDENVVAR ENVAR(QIBM_DB2_MIXED_SERVER_MODE) LEVEL(*SYS)
```

Restrictions and usage information

The environment variable just needs to exist; it does not need to be assigned a specific value. After a job chooses to use this mixed mode support, it cannot turn off the choice.

The SQL triggers must not be built to use commitment control.

The SQL triggers must not use statement level isolation level support to run statements using commitment control.

The SQL triggers must not directly or indirectly use Java/JDBC or CLI.

The triggers must not use DRDA.

If the client job is multi-threaded and triggers are fired in parallel over different threads, the mixed-mode server mode solution serializes the execution of the triggers. Only one trigger is allowed to run at a time.

The solution does not apply to native triggers, such as Add Physical File Trigger (ADDPFTRG), built over programs that use SQL. The solution does not include SQL triggers that call procedures, fire user-defined functions, or cause nested triggers to run.

5.4.27 QDBRPLAY() API: Disable or Enable Constraints option

A new option was added to the QDBRPLAY() API that, similar to the Disable triggers option, allows the user of the API to specify a Disable constraints option. This option can improve performance of logical replication products by disabling any constraints on a backup system.

A new CHAR(1) option is added to the beginning of the Reserved area.

The disable constraints indicator controls whether constraints that are added or changed as a result of replaying a CT, AC, or GC journal entry should be automatically disabled. The disable constraint indicator does not apply to unique constraints. It has two settings:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Do not disable constraints.</td>
</tr>
<tr>
<td>1</td>
<td>Disable constraints.</td>
</tr>
</tbody>
</table>

5.4.28 SQL0901 log education

SQL0901 is a message that is generated by DB2 for i when SQLCODE = -901 indicates that an unexpected error was encountered. Sometimes (for example, when the job has no job log), it is difficult to find the cause of such a failure. This situation is why just before the SQL0901 message is generated, DB2 for i creates a record for this incident at the QRECOVERY.QSQ901S table. A unique instance of the job log logs three SQL0901 failures.
Any subsequent failures for the job are not logged because in most cases they are uninteresting and do not provide more detail. It is possible to disable this logging by setting the environment value QIBM_NO_901_LOGGING.

The QRECOVERY.QSQ901S table has the following definitions:

- **SERVERNAME - VARCHAR(18)**: The server name.
- **FAILTIME - TIMESTAMP**: The time when the failure occurred.
- **FAILRSN - INTEGER(9)**: The unique failure reason that appeared in the SQL0901 message. This reason code is necessary for IBM service and is not documented externally.
- **CURUSER - VARCHAR(18)**: The user who encountered the SQL0901 failure.
- **JOBNAME - CHAR(28)**: The qualified job name, which encountered the SQL0901 failure.
- **MSGS - VARCHAR(3000)**: N/A.
- **APPLIB - CHAR(10)**: The library name of the application.
- **APPNAME - CHAR(10)**: The name of the application.
- **APPTYPE - CHAR(10)**: The type of the application.

The values of APPTYPE are as follows:

- ***PGM**: APPNAME is a program.
- ***SRVPGM**: APPNAME is a service program.
- ***SQLPKG**: APPNAME is an SQL package.
- ***PROCESS**: APPNAME refers to a process (job).
- **DYNAMIC**: There is no application name.

There are other functions to help you identify the cause of the failure:

- SELECT * FROM qsys2.syscolumns WHERE TABLE_SCHEMA = 'QRECOVERY' and TABLE_NAME = 'QSQ901S' ORDER BY ORDINAL_POSITION;
- SELECT * FROM qsys2.syscolumns2 WHERE TABLE_SCHEMA = 'QRECOVERY' and TABLE_NAME = 'QSQ901S' ORDER BY ORDINAL_POSITION;

These functions help you get information about the contents of the QRECOVERY.QSQ901S table.

The records in the QRECOVERY.QSQ901S table likely show the internal failures inside DB2 for i. Use the data from this table when you report a problem to IBM, which helps with searching for PTFs for DB2 for i problems.

The SQL0901 logging file can be found in a different library when you use IASPs: QRCYnnnnn/QSQ901S *FILE, where nnnnn is the iASP number.

5.4.29 Retrieving a short name for long schema name (QDBRTVSN)

This enhancement provides a non-SQL based approach to retrieving the library name for an SQL schema.

To retrieve the library name, specify the SQL schema name for the input long object name and blank for the input library name. The first 10 bytes of the output qualified object name contains the short library name and the second 10 bytes are QSYS.
The SQL-based approach is to query the QSYS2/SYSSCHEMAS catalog or start the OBJECT_STATISTICS UDTF. The UDTF performs better, so use it when you know the library or schema name.

In Example 5-48, a schema is created and the methods of accessing the long name with a short name and the short name with a long name using SQL by querying the QSYS2.OBJECT_STATISTICS catalog is shown.

Example 5-48 Using QSYS2.OBJECT_STATISTICS

```
CREATE SCHEMA DANS_LONG_SCHEMA

To get the short name given the long name
SELECT OBJNAME FROM TABLE(QSYS2.OBJECT_STATISTICS('DANS_LONG_SCHEMA','LIB')) AS A

To get the long name of a schema given a short name
SELECT OBJLONGNAME FROM TABLE(QSYS2.OBJECT_STATISTICS('DANS_00001','LIB')) AS A
```

Using the SYSSCHEMAS view touches every library object. The following queries are identical:

```
SELECT OBJLONGNAME FROM TABLE(QSYS2.OBJECT_STATISTICS('QSYS ','LIB ')) AS A WHERE OBJNAME LIKE 'CATH%';
SELECT SCHEMA_NAME FROM QSYS2.SYSSCHEMAS WHERE
SYSTEM_SCHEMA_NAME LIKE 'CATH%';
```

5.4.30 SQL0440 warning on SQL routine build

When a LANGUAGE SQL procedure includes an incorrectly coded static CALL statement, the build succeeds, but returns a warning:

```
SQLCODE = SQL0440 (+440)
SQLSTATE = '0168L'
```

Consider the following two CREATE PROCEDURE statements:

```
CREATE PROCEDURE ProcPRG1(INOUT parm1 varchar(255)) LANGUAGE SQL PROGRAM TYPE
SUB BEGIN RETURN 0; END;
CREATE PROCEDURE ProcPRG2()LANGUAGE SQL PROGRAM TYPE SUB BEGIN CALL ProcPRG1();
/* incorrect number of parameters?*/ END;
```

The message SQL0440 as in Example 5-49 is generated when you run the previous CREATE PROCEDURE statements.

Example 5-49 SQL0440 message

```
Message: [SQL0440] Routine PROCPRG1 in not found with specified parameters.
Cause......: A function or procedure with the specified name and compatible arguments was not found. Recovery ......: Specify the correct number and type of parameters on the CALL statement or function invocation. Try the request again.
```
5.4.31 XMLTABLE

XMLTABLE is a table function that evaluates an XQuery expression and returns the result as a relational table.

The XMLTABLE built-in table function can be used to retrieve the contents of an XML document as a result set that can be referenced in SQL queries.

The addition of XMLTABLE support to DB2 for i users makes it easier for data centers to balance and extract value from a hybrid data model where XML data and relational data coexist.

In Example 5-50, the row-generating expression is the XPath expression $d/dept/employee. The passing clause refers to the XML column doc of the table EMP.

Example 5-50 XMLTABLE example

For example, if the EMP table has an XML column called DOC:

```
SELECT X.*
FROM emp, XMLTABLE ('$d/dept/employee' passing doc as "d"
                       COLUMNS empID INTEGER PATH '@id',
                       firstname VARCHAR(20) PATH 'name/first',
                       lastname VARCHAR(25) PATH 'name/last') AS X
```
The output is shown in Figure 5-33.

An XML value in DOC:

```xml
<dept bldg="101">
  <employee id="901">
    <name>
      <first>John</first>
      <last>Doe</last>
    </name>
    <office>344</office>
    <salary currency="USD">55000</salary>
  </employee>
  <employee id="902">
    <name>
      <first>Peter</first>
      <last>Pan</last>
    </name>
    <office>216</office>
    <phone>905-416-5004</phone>
  </employee>
</dept>
```

Results in:

<table>
<thead>
<tr>
<th>EMPID</th>
<th>FIRSTNAME</th>
<th>LASTNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>John</td>
<td>Doe</td>
</tr>
<tr>
<td>902</td>
<td>Peter</td>
<td>Pan</td>
</tr>
</tbody>
</table>

Figure 5-33 XMLTABLE Query output example

The output in Figure 5-34 shows an XML document along with a sample SQL to produce the output in table format.

XML Document

```xml
<Receipt>
  <item>
    <Type> Camera </Type>
    <Brand> Canon </Brand>
    <MegaPics> 10 </MegaPics>
    <Cost> 1000 </Cost>
    <Tax> 6.875 </Tax>
  </item>
  <item>
    <Type> Memory </Type>
    <Brand> Scan Disk </Brand>
    <Storage> 16 </Storage>
    <Cost> 50 </Cost>
    <Tax> 6.875 </Tax>
  </item>
</Receipt>
```

SQL Query

```sql
select * from STORE41.SALES S,
XMLTABLE('$R/Receipt' PASSING S.receipt_column AS "R"
COLUMNS
  Items_Purchased INTEGER PATH 'fn:count(.//item)',
  Total_Cost REAL PATH 'fn:sum(.//item/(Cost + Cost * Tax div 100))')
) X
```

<table>
<thead>
<tr>
<th>Items_Purchased</th>
<th>Total_Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1122.19</td>
</tr>
</tbody>
</table>

Figure 5-34 Query the total cost of all items that are purchased on each receipt
The SQL/XML support that is included in DB2 for i 7.1 offers a built-in and standardized solution for working with XML from within SQL. **XMLTABLE** adds significant value by allowing SQL queries to query both XML and relational data in the same query. Working XML data within a relational model is often times a non-trivial task. **XMLTABLE** offers a high degree of flexibility by supporting a wide range of XPath step expressions, predicates, and built in functions that can be used within the row and column generating expressions.

5.4.32 Run SQL (RUNSQL): A new command

The Run SQL (RUNSQL) command runs a single SQL statement without having to construct a source physical file member or write a program. No spool file is generated. Upon failure, the specific SQL failure message is returned to the command caller.

In other SQL interfaces, an SQL statement is limited to 2 MB in length. The limit on this command is 5000 bytes.

The command has many parameters that are similar to the ones used with the **RUNSQLSTM** command. **RUNSQL** runs SQL statements in the invoker's activation group. If **RUNSQL** is included in a compiled CL program, the activation group of the program is used.

Two examples of using **RUNSQL** on the command line are shown in Example 5-51. The example also shows how **RUNSQL** can be used within a CL program.

Example 5-51 Usage of RUNSQL from the command line

```sql
RUNSQL   SQL('INSERT INTO prodLib/work_table VALUES(1, CURRENT_TIMESTAMP)')
/* In a CL program, use the Receive File (RCVF) command to read the results of the query */
RUNSQL   SQL('CREATE TABLE QTEMP.WorkTable1 AS (SELECT * FROM qsys2.systables WHERE table_schema = ''QSYS2'') WITH DATA')
COMMIT(*NONE) NAMING(*SQL)
```

Example 5-52 shows how **RUNSQL** can be used within a CL program. Use the **RCVF** command if you must read the results of the query.

Example 5-52 Usage of RUNSQL within a CL program

```sql
RUNSQL1: PGM  PARM(&LIB)
DCL  &LIB TYPE(*CHAR) LEN(10)
DCL  &SQLSTMT TYPE(*CHAR) LEN(1000)
CHGVAR  VAR(&SQLSTMT) + VALUE('DELETE FROM QTEMP.WorkTable1 + WHERE table_schema = ' + &LIB + ' ') RUNSQL   SQL(&SQLSTMT) COMMIT(*NONE) NAMING(*SQL)
ENDSQL1: ENDPGM
```

5.4.33 Native JDBC driver support added for J2SE 7

With the availability of J2SE 7, the native JDBC driver is enhanced to meet the new JDBC 4.1 specification.
The new support for native JDBC on IBM i 7.1 includes:

- `java.sql.CallableStatement.getObject(int parameterIndex, java.lang.Class<T> type)`
- `java.sql.CallableStatement.getObject(java.lang.String parameterName, java.lang.Class<T> type)`
- `java.sql.Connection.abort(java.util.concurrent.Executor executor)`
- `java.sql.Connection.setSchema(java.lang.String schema)`
- `java.sql.Connection.getSchema()`
- `java.sql.DatabaseMetaData.generatedKeyAlwaysReturned()`
- `java.sql.Statement.closeOnCompletion()`
- `java.sql.Statement.isCloseOnCompletion()`

Because the native JDBC driver does not typically use a network connection, the `Connection.getNetworkTimeout()` and `Connection.setNetworkTimeout()` methods are not implemented.

5.4.34 QSQPRCED() accepts client special registers

Before this enhancement, the QSQPRCED() Process Extended Dynamic API did not allow the caller direct control over the client special registers. As a result, QSQPRCED() based workloads could not take advantage of client special register branding to improve serviceability.

With this enhancement, the QSQPRCED() SQLP0410 format has been extended to allow any or all of the client special registers to be passed. The new fields are optional and are allowed to vary from one QSQPRCED() call to the next. The values are not bound into the Extended Dynamic SQL package (*SQLPKG). Each client special register value is character data type, varying in length up to a maximum of 255.

QSYSINC/H(QSQPRCED) include details:

```c
typedef struct Qsq_SQLP0410 {
    char Function;
    char SQL_Package_Name[10];
    char Library_Name[10];
    char Main_Pgm[10];
    char Main_Lib[10];

    int Cursor_Index; /* @C5A*/
    int Statement_Index; /* @C5A*/
    int Extended_Cursor_Name_Length; /* @C5A*/
    int Extended_Cursor_Name_Offset; /* @C5A*/
    int Extended_Statement_Name_Length; /* @C5A*/
    int Extended_Statement_Name_Offset; /* @C5A*/
    char Concurrent_Access; /* @C8A*/
    char Reserved_Space2[15]; /* @C8A*/
    int Client_Info_Userid_Length; /* @C9A*/
};
```
int Client_Info_Userid_Offset; /* @C9A*/
int Client_Info_Wrkstnname_Length; /* @C9A*/
int Client_Info_Wrkstnname_Offset; /* @C9A*/
int Client_Info_Applname_Length; /* @C9A*/
int Client_Info_Applname_Offset; /* @C9A*/
int Client_Info_Programid_Length; /* @C9A*/
int Client_Info_Programid_Offset; /* @C9A*/
int Client_Info_Acctstr_Length; /* @C9A*/
int Client_Info_Acctstr_Offset; /* @C9A*/
/*char Statement_Data[];*/ /* Varying length @B5C*/
/*char Extended_User_DEFINED_Field[]; */
/* CHAR[] @C5A*/
/*char Extended_Statement_Name[];*/
/* CHAR[] @C5A*/
/*char Extended_Cursor_Name[];*/
/* CHAR[] @C5A*/
/*char Client_Info_Userid[];*/
/* CHAR[] @C9A*/
/*char Client_Info_Wrkstnname[];*/
/* CHAR[] @C9A*/
/*char Client_Info_Applname[];*/
/* CHAR[] @C9A*/
/*char Client_Info_Programid[];*/
/* CHAR[] @C9A*/
/*char Client_Info_Acctstr[];*/
/* CHAR[] @C9A*/
}Qsq_SQLP0410_t;

5.4.35 STRQMQR Y command instrumented for client special registers

Similar to RUNSQLSTM, STRSQL, and other database commands, the Start Query Management
Query (STRQMQR Y) command has been instrumented to use default values for the client special
registers. These registers can be used to identify workloads, track usage and more.

Following are the client special register values:

- CURRENT CLIENT_APPLNAME: "START QUERY MANAGEMENT QUERY"
- CURRENT CLIENT_PROGRAMID: "STRQMQR Y"
- CURRENT CLIENT_USERID: <actual user ID that called the command>
- CURRENT CLIENT_WRKSTNNAME: <database name>
- CURRENT CLIENT_ACCTNG: - <accounting code of the command user>

These values are used in SQL performance monitors, SQL details for jobs, Visual Explain,
and elsewhere within the OnDemand Performance Center.

The Start Database Monitor (STRDBMON) command pre-filters can be used to target STRQMQR Y
command usage.

5.4.36 QSYS2.QCMDEXC() procedure no longer requires a command length

The QSYS2.QCMDEXC() procedure can be used to run IBM i commands. This enhancement
delivers a variant of this procedure where the only parameter passed is the command string.
The previous style of QCMDEXC procedure remains valid and supported, but the new version
of the QCMDEXC procedure is simpler to use.
The QCMDEXC procedure runs a CL command, where **CL-command-string** is a character string expression that contains a CL command. The CL-command-string is run as a CL command.

```
>>-QCMDEXC--(--CL-command-string--)----------------------------><
```

The schema is QSYS2.

Example 5-53 and Example 5-54 show examples of using the QCMDEXC procedure.

Example 5-53 Using SQL naming, adding a library to the library list

```cl
CALL QSYS2/QCMDEXC('ADDLIB ' CONCAT V_LIBRARY_NAME);
```

Example 5-54 Using SYSTEM naming, adding a library to the library list using an expression

```cl
DECLARE V_LIBRARY_NAME VARCHAR(10);
SET V_LIBRARY_NAME = 'PRODLIB2';
CALL QSYS2/QCMDEXC('ADDLIB ' CONCAT V_LIBRARY_NAME);
```

5.4.37 Adding the ORDERBY parameter to the CPYTOIMPF command

The new (optional) **ORDERBY** parameter specifies the order of the records that the records are inserted in the file. Here are the **ORDERBY** parameter values:

- **NONE**: No specific order requested. This value is the default value for the command.
- **ARRIVAL**: The records are inserted in the order they were inserted in to the file.
- **character-value**: Specifies an SQL **ORDER BY** clause that is used for ordering the records in to the file.

The usage of the **ORDER BY(ARRIVAL)** parameter and **ORDER BY(character-value)** examples are shown in Example 5-55, where the Stream File is copied and ordered according to the **ORDER BY** parameter value.

Example 5-55 Usage of the ORDERBY clause

```cl
CPYTOIMPF FROMFILE(CORPDB1/DEPARTMENT) TOSTMF('/iddtdept.file') RCDDLM(*LF)
ORDERBY('DEPTNO ASC FETCH FIRST 5 ROWS ONLY ')
```

In addition to the **ORDER BY** parameter, you can use the following parameters:

- **FETCH FIRST n ROWS**
- **OPTIMIZE FOR n ROWS**
- **FOR UPDATE**
- **FOR READ ONLY**
- **WITH <isolation-level>**
- **SKIP LOCKED DATA**
- **USE CURRENTLY COMMITED**
- **WAIT FOR OUTCOME**
5.4.38 System naming convention expanded for permit (/) and (.) qualifiers

Historically, system naming qualification of names required a slash(/) only between the schema-name and the SQL identifier.

Now, when you use system naming, both the slash(/) and dot(.) can be used for object qualification. This change makes it easier to adapt to system naming, as the SQL statement text does not need to be updated.

This enhancement makes it easier to use system naming. Object references can vary and SQL UDFs can now be library qualified with a “.” when you use system naming.

NAMING(*SYS) can be used with (/) and (.), as shown in Example 5-56. However, if the example is used with NAMING(*SQL), it fails.

Example 5-56 Using NAMING(*SYS)

```sql
SELECT a.ibmreqd, b.ibmreqd FROM sysibm.sysdummy1 a, sysibm/sysdummy1 b
```

5.4.39 Direct control of system names for tables, views, and indexes

The FOR SYSTEM NAME clause directly defines the system name for these objects, eliminating the need to run a RENAME after the object is created to replace the system generated name.

The name provided in the FOR SYSTEM NAME clause must be a valid system name and cannot be qualified. The first name that is provided for the object cannot be a valid system name.

The optional FOR SYSTEM NAME clause has been added to the following SQL statements:

- CREATE TABLE
- CREATE VIEW
- CREATE INDEX
- DECLARE GLOBAL TEMPORARY TABLE

Use the FOR SYSTEM NAME clause to achieve direct control over table, view, and index system names, making it simpler to manage the database. This support eliminates the need to use the RENAME SQL statement or the Rename Object (RNMOBJ) command after object creation. Additionally, the Generate SQL / QSQGNDDL() interface uses this enhancement to produce SQL DDL scripts that produce identical object names.

When QSQGNDDL() is called using the System_Name_Option = '1', whenever the table, view, or index objects has a system name that differs from the SQL name, the FOR SYSTEM NAME clause is generated. For IBM i Navigator users, you control the System Name Option by selecting the System names for objects option as shown in Figure 5-35.

```
<table>
<thead>
<tr>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ Statements formatted for readability</td>
</tr>
<tr>
<td>✔ System names for objects</td>
</tr>
<tr>
<td>✔ Drop statements</td>
</tr>
<tr>
<td>✔ Labels and comments</td>
</tr>
<tr>
<td>✔ Associated constraints and triggers (for table objects)</td>
</tr>
<tr>
<td>✔ Informational messages</td>
</tr>
</tbody>
</table>

Figure 5-35 Selecting system names for objects
Example 5-57 and Example 5-58 show examples of using the FOR SYSTEM NAME clause.

**Example 5-57**  COMP_12_11 *FILE object created instead of COMPA00001, COMPA00002, and so on*

```
CREATE OR REPLACE VIEW
PRODLIB/COMPARE_YEARS_2012_AND_2011
FOR SYSTEM NAME COMP_12_11
AS SELECT ...
```

Example 5-58 shows a table with a specific system name.

**Example 5-58**  Generated table with system name of SALES, instead of generated name CUSTO00001

```
CREATE TABLE CUSTOMER_SALES FOR SYSTEM NAME SALES (CUSTNO BIGINT...
```

### 5.4.40 Modification of global variables within triggers and functions

SQL global variables are a useful construct to achieve session-specific inter-application communication.

Before this change, triggers and functions were allowed to only reference global variables. SQLCODE = -20430 and SQLSTATE = “428GX” were returned to a trigger or function that attempted to modify a global variable.

Global variables are modified as shown in Example 5-59, which shows the modification of a global variable.

**Example 5-59**  Usage of a global variable modification

```
CREATE VARIABLE PRODLIB.MOST_RECENT_ORDER BIGINT DEFAULT 0

CREATE TRIGGER PRODLIB.INSERT_ORDER
BEFORE INSERT ON PRODLIB.ORDER_TABLE
REFERENCING NEW AS N
FOR EACH ROW
MODE DB2ROW
IE:BEGIN ATOMIC
SET PRODLIB.MOST_RECENT_ORDER = NEW_ORDER_VALUE();
SET N.ORDER_VALUE = PRODLIB.MOST_RECENT_ORDER;
END IE
```

### 5.4.41 Multiple events supported in a single SQL trigger

Native triggers already can handle INSERT, UPDATE, and DELETE triggering events within a single program. By allowing SQL trigger programs to handle multiple events, the management, installation, and maintenance are improved.

A multiple event trigger is a trigger that can handle INSERT, UPDATE, and DELETE triggering events within a single SQL trigger program. The ability to handle more than one event in a single program simplifies management of triggers. In the body of the trigger, the INSERTING, UPDATING, and DELETING predicates can be used to distinguish between the events that cause the trigger to fire. These predicates can be specified in control statements (like IF) or within any SQL statement that accepts a predicate (like SELECT or UPDATE).
For example, the trigger shown in Example 5-60 does the following:

- Increments the number of employees each time a new person is hired
- Decrements the number of employees each time an employee leaves the company
- Raises an error when a salary increase is greater than ten percent

Example 5-60  Multiple events in a trigger

```sql
CREATE TRIGGER HIRED
AFTER INSERT OR DELETE OR UPDATE OF SALARY ON EMPLOYEE
REFERENCING NEW AS N OLD AS O FOR EACH ROW
BEGIN
IF INSERTING
THEN UPDATE COMPANY_STATS SET NBREMP = NBREMP + 1;
END IF;
IF DELETING
THEN UPDATE COMPANY_STATS SET NBREMP = NBREMP - 1;
END IF;
IF UPDATING AND (N.SALARY > 1.1 * O.SALARY)
THEN SIGNAL SQLSTATE '75000'
SET MESSAGE_TEXT = 'Salary increase > 10%'
END IF;
END
```

For more information about multiple events supported in a single SQL trigger, see the following resources:

- SQL Programming Guide
- CREATE TRIGGER SQL statement
- Trigger Event Predicates

### 5.4.42 New QAQQINI option: SQL_GVAR_BUILD_RULE

This option influences whether global variables must exist when you build SQL procedures, functions, triggers, or running SQL precompiles. Its supported values are:

- **DEFAULT**: The default value is set to **DEFER**.
- **DEFER**: Global variables do not need to exist when an SQL routine is created or the SQL precompiler is run. Because global variables are not required to exist, the create does not fail when an incorrect column name or routine variable is encountered because it is not known at create time whether the name is a global variable. Incorrect name usage results in SQL0206 - “Column or global variable &1 not found.” failures when the statement is run.
- **EXIST**: Global variables that are referenced by SQL must exist when the SQL routine is created or the SQL precompiler is run. Using this option, an SQL0206 is issued at create time. This choice is similar to the behavior of previous releases, where incorrect name usage fails at create time with either SQL0312 - “Variable &1 not defined or not usable.” or SQL5001 - “Column qualifier or table &2 undefined”
5.4.43  CPYTOIMPF and CPYFRMIMPF commands include column headings

The CPYTOIMPF and CPYFRMIMPF commands are enhanced with the following features:

- **ADDCOLNAM ("*NONE" or "*SYS" or "*SQL")**:
  - "*NONE": This option is the default. When it is used, the column names are not included.
  - "*SQL": The column SQL names are used to populate the first row.
  - "*SYS": The column System names are used to populate the first row.

- **RMVCOLNAM ("*NO" or "*YES")**:
  - "*NO": This option is the default. When it is used, the first row is not skipped.
  - "*YES": Remove the column names form the file that is being imported by skipping the first row of data.

5.4.44  Improved performance of privileges catalogs and ODBC/JDBC APIs

The performance is improved for the following items.

- **JDBC**: DatabaseMetaData.getColumnPrivileges() and DatabaseMetaData.getTablePrivileges()
- **SQL CLI and ODBC**: SQLColumnPrivileges() and SQLTablePrivileges()
- **DB2 for i Catalogs in SYSIBM**: Variable_Privileges, Usage_Privileges, Routine_Privileges, UDT_Privileges, SQLTablePrivileges, and SQLColPrivileges

The SQL in Example 5-61 produces the output that is shown in Figure 5-36, which clearly shows the privileges by GRANTEE over the selected schema and table.

**Example 5-61   Who is allowed to modify this table**

```
SELECT GRANTEE, PRIVILEGE FROM SYSIBM.SQLTablePrivileges
WHERE TABLE_SCHEM = 'PRODLIB' AND
 TABLE_NAME = 'DEPARTMENT' AND
 PRIVILEGE IN ('UPDATE','INSERT','DELETE')
ORDER BY GRANTEE
```

```
<table>
<thead>
<tr>
<th>GRANTEE</th>
<th>PRIVILEGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRTEAM</td>
<td>UPDATE</td>
</tr>
<tr>
<td>SCOTTF</td>
<td>INSERT</td>
</tr>
<tr>
<td>SCOTTF</td>
<td>UPDATE</td>
</tr>
<tr>
<td>SCOTTF</td>
<td>DELETE</td>
</tr>
<tr>
<td>SLFUSER</td>
<td>INSERT</td>
</tr>
<tr>
<td>SLFUSER</td>
<td>UPDATE</td>
</tr>
<tr>
<td>SLFUSER</td>
<td>DELETE</td>
</tr>
</tbody>
</table>
```

**Figure 5-36   List of users with their relevant privileges**
5.4.45  Show statements: Index creates and statistics advised

These two new columns appear when show statements are used against a plan cache snapshot or SQL performance monitor. These two new columns do not require a System i Navigator update. The two new columns can be added to your view by clicking Columns in the SQL Plan Cache Snapshots window, as shown in Figure 5-37.

Figure 5-37  Two new columns available for show statements

5.4.46  The RUNSQLSTM command and the OPTION parameter

The OPTION parameter of RUNSQLSTM provides direct control over the command output file. There is no unnecessary spool file accumulation.

The values for the OPTION parameter are:

- **LIST** (default): A complete listing with the contents of the source and all errors is generated.
- **NOSRC**: A listing with only the messages is generated.
- **ERRLIST**: A complete listing is generated only if errors greater than the ERLVL parameter are encountered during processing.
- **NOLIST**: No listing is generated. If errors greater than the ERLVL parameter are encountered during processing, the messages are sent to the job log.
Running the statement as shown in Example 5-62 obtains a complete listing only if errors greater than the **ERRLVL** parameter are encountered during processing.

**Example 5-62  Obtaining a complete listing**

```
RUNSQLSTM SRCFILE(CLIVEG/QSQLSRC) SRCMBR(STA1) OPTION(*ERRLIST)
```

An example output of **ERRLIST** is shown in Figure 5-38.

![Figure 5-38  *ERRLIST output highlighting error details](image_url)

### 5.4.47 Improved NULLID package management

NULLID package management automates the creation of necessary objects (collections and dynamic packages) to more seamlessly allow applications using DB2 family database connectivity methods to access data in DB2 for i.

DB2 for Linux, UNIX, and Windows, IBM DB2 Universal Driver for SQLJ and JDBC, ODBC, CLI, IBM DB2 Connect™, and other application requesters rely upon SQL package (**SQLPKG**) objects within the NULLID collection.

The NULLID enhancements include:

- The NULLID collection is created automatically upon the first attempt by a DRDA client to bind or run using a package within NULLID.
- The ownership of the NULLID collection is assigned to the QSYS user profile and **PUBLIC** is granted **CHANGE** authority by default when the system automatically creates the NULLID collection.
- DB2 for i also automatically creates the dynamic packages that are used by JDBC, ODBC, and CLI. These packages are named SYSzcxy, SYSzcxyy, and SYSzTAT.

Before you use these clients to access data on IBM i, you must create IBM i SQL packages for these application programs.

### 5.4.48 Java stored procedures and functions: System naming option

The Native JDBC driver is enhanced to include a new method to allow the specification of system naming.
The method can be used to turn system naming mode ON and OFF. To use this method, an appropriate cast of the java.sql.Connection object must be made to the com.ibm.db2.jdbc.DB2Connection class.

Before you exit the method, the method returns the connection to the default value. Failure to do so might cause unexpected behavior in other Java stored procedure and Java user-defined functions.

Example 5-63 shows an example of how system naming is enabled in a Java stored procedure.

Example 5-63   How system naming can be enabled in a Java stored procedure

Parameter style DB2GENERAL:

DB2Connection connection = (DB2Connection) getConnection();
connection.setUseSystemNaming(true);
....
.... do work using the connection
....
connection.setUseSystemNaming(false);

Parameter style JAVA:

DB2Connection connection = (DB2Connection)
DriverManager.getConnection("jdbc:default:connection");
connection.setUseSystemNaming(true);
....
.... do work using the connection
....
connection.setUseSystemNaming(false);

Before you exit the method, the method returns the connection to the default value. Failure to do so might cause unexpected behavior in other Java stored procedure and Java user-defined functions.

Use *LIBL (Library List) in Java procedures and functions.

5.4.49 Named arguments and defaults for parameters: Procedures

There are some enhancements to the named arguments and defaults for parameters on procedures:

- Named and default parameters are supported for SQL and external procedures that make it possible to run more SQL applications on IBM i.
- You can extend procedures without fear of breaking existing callers and simplify the calling requirements by adding default values.
- Procedure call invocation has the same type of support as CL commands.

With this enhancement:

- Parameters can be omitted if the routine was defined with a default value.
- Parameters can be specified in any order by specifying the name in the call.
- This enhancement works with LANGUAGE SQL and EXTERNAL procedures.
Usage of the named arguments and default parameters is shown in Example 5-64.

**Example 5-64  Parameter usage**

CREATE PROCEDURE p1 (i1 INT, i2 INT DEFAULT 0, i3 INT DEFAULT -1)...
CALL p1(55)
CALL p1(55, i3=>33)

Figure 5-39 shows the **DEFAULT** clause and its options.

![default-clause](image)

**Figure 5-39  The default clause**

### 5.4.50  Improved catalog management for procedures and functions

When an SQL or external procedure or function is created, the routine information is stored within the *PGM or *SRVPGM. Previously, when Librarian commands were used to copy, move, or rename the object, the QSYS2/SYSROUTINE, SYSPARMS, and SYSRTNDEP catalogs were left unchanged.

The following commands (and their API counterparts) were changed to keep the catalogs in sync with the executable object for procedures and functions:

- **Create Duplicate Object** (**CRTDUPOBJ**): The routine catalog information is duplicated and the SYSROUTINE EXTERNAL_NAME column points to the newly duplicated executable object.
- **Copy Library** (**CPYLIB**): The routine catalog information is duplicated and the SYSROUTINE EXTERNAL_NAME column points to the newly duplicated executable object.
- **Rename Object** (**RNMOBJ**): The routine catalog information is modified with the SYSROUTINE EXTERNAL_NAME column, which points to the renamed executable object.
- **Move Object** (**MOVOBJ**): The routine catalog information is modified with the SYSROUTINE EXTERNAL_NAME column, which points to the moved executable object

There is coverage for Librarian APIs or other operations that are built upon these commands.

The changed behavior can be partially disabled by adding an environment variable. If this environment variable exists, Move Object and Rename Object operations do not update the catalogs. The environment variable has no effect on the **CPYLIB** and **CRTDUPOBJ** commands.

Setting the environment variable is shown in Example 5-65.

**Example 5-65  Setting the environment variable to partially disable the function**

```
ADDENVVAR
ENVAR(QIBM_SQL_NO_CATALOG_UPDATE)
LEVEL(*SYS)
```
5.4.51 SQE enhancement for Encoded Vector Indexes defined with INCLUDE

Taking advantage of the IBM patented EVI indexing technology, and analytics routines using SQL Constructs such as ROLLUP, CUBE, and Grouping Sets, can produce performance benefits.

SQE is enhanced to make Grouping Set queries aware of EVI INCLUDE as an optimization possibility.

Defining an EVI with INCLUDE is shown in the Example 5-66, which also shows an example SQL to query the EVI.

Example 5-66 Encoded Vector Index (EVI) INCLUDE example

```sql
CREATE ENCODED VECTOR INDEX GS_EVI01 ON STAR1G.ITEM_FACT
 (YEAR ASC, QUARTER ASC, MONTH ASC)
 INCLUDE (SUM(QUANTITY),
 SUM(REVENUE_WO_TAX),
 COUNT(*))

SELECT YEAR, QUARTER, MONTH, SUM(QUANTITY) AS TOTQUANTITY, SUM(REVENUE_WO_TAX)
FROM ITEM_FACT WHERE YEAR=2012
GROUP BY GROUPING SETS ((YEAR, QUARTER, MONTH),
 (YEAR,QUARTER),
 (YEAR),
 ())
```

Fast Index-Only access is possible for CUBE(), ROLLUP(), and GROUPING SETS().

5.4.52 Navigator: System Name column added to show related and all objects

When you use System i Navigator to observe the objects that are related to a table, only the SQL names of those objects appear. The same situation is true when you use the All Objects view under the Schemas folder.

The System i Navigator 7.1 client is enhanced to include the “System Name” column. This information is useful when long names are used and the system name is not obvious, as shown in Figure 5-40.

![Image of System name column included](image-url)
5.4.53 Navigator – Improved Index Build information

The IBM i Navigator Database Maintenance folder has been enhanced to include two new columns of information:

- Partition: Indexes over a single partition or spanning indexes
- Constraint: Constraint name or NULL

This detail is helpful to fully identify long running index builds for partitioned indexes and constraints. See Figure 5-41.

![Figure 5-41 Database maintenance index build status](image)

5.4.54 Improved performance for joins over partitioned tables

Before this introduction of this enhancement, data skew (uneven distribution of data values) was not factored in when creating access plans for queries that joined columns in a partitioned table.

This enhancement enables the query statistics engine to detect data skew in the partitioned table if accurate column statistics are available for the partitions. Allowing column level statistics to be automatically collected is the default behavior and a preferred practice.

This enhancement might improve the performance of joins when multiple partitions are queried. An example of multiple partition joins is shown in Example 5-67.

**Example 5-67  Multiple partitions join example**

Assume the ITEM table (A) contains the product list and the ORDERS table (B) contains sales order details, partitioned by some date range. Several products are particularly heavy sellers, making them skewed in the sales order list.

```sql
SELECT B.ITEMNO, SUM(B.QUANTITY) AS Total_Sold
FROM ITEM A LEFT OUTER JOIN
 ORDERS B ON A.ITEMNO=B.ITEMNO
GROUP BY B.ITEMNO
ORDER BY TOTAL_SOLD DESC
```
5.4.55 Navigator: Table list totals

New columns under the Schemas folder now show an aggregate set of information for all members and partitions. You must add these columns by clicking View → Customize this View → Columns. Add the required columns to your view. The following are the new columns:

- Number of rows
- Number of deleted rows
- Partitions
- Size

An example of how to configure your client to show that these new column are shown in Figure 5-42.

5.5 DB2 database management and recovery enhancements

This section describes the database management and recovery enhancements to DB2 for i.

5.5.1 Preserving the SQL plan cache size across IPLs

DB2 for i on IBM i 6.1 and 7.1 are enhanced to preserve the SQL Plan Cache size across IPLs and slip installations of the operating system. A scratch installation of the OS resets the SQL Plan Cache size to the default size.

You can explicitly increase the size of the SQL Plan Cache to allow more plans to be saved in the plan cache. This action can improve performance for customers that have many unique queries.

During an IPL, the SQL Plan Cache is deleted and re-created. Before this enhancement, when the plan cache was re-created, it was re-created with the default size of 512 MB, even if
you explicitly specified a larger plan cache. Now, the size that is specified by you is preserved and used when it is re-created during any subsequent IPL.

After the latest DB2 Group PTFs are installed, you must change the plan cache size one more time (even if it is changed to the same size as its current size) for the size to be persistently saved.

This `CHANGE_PLAN_CACHE_SIZE` procedure can be used to change the size of the plan cache. The procedure accepts a single input parameter, that is, the wanted SQL Plan Cache size in megabytes. If the value passed in is zero, the plan cache is reset to its default value. To use the procedure, run the command that is shown in Example 5-68.

```
Example 5-68 Usage of QSYS2.CHANGE_PLAN_USAGE procedure

CALL qsys2.change_plan_cache_size(1024);
```

It also possible to get information about Plan Cache properties by using the procedure shown in Example 5-69.

```
Example 5-69 QSYS2.DUMP_PLAN_CACHE_PROPERTIES

call qsys2.dump_plan_cache_properties('QGPL', 'SQECACHE1');
select heading,value from qgpl.sqecache1
where heading like '%%Time%';
```

### 5.5.2 Plan cache properties

This section describes enhancements to the SQL plan cache properties, `QSYS2.DUMP_PLAN_CACHE_PROPERTIES()`. Detail is returned either graphically by using IBM i Navigator or programmatically.

**Job scope plan metrics**

Job scope plans are a measurement of the use of DECLARED GLOBAL TEMPORARY TABLES (QTEMP). See Figure 5-43.

![SQL plan cache properties and job scoped plans](image-url)

Figure 5-43  SQL plan cache properties and job scoped plans
Greater insight and control

Following are configuration controls available for use that provide greater plan cache insight and attributes:

- **Autosizing enhancement.** The ability for the database to automatically adjust the size of the plan cache was first provided in an earlier PTF group. Autosizing relies heavily on measuring and reacting to the hit ratio of the plan cache.
  - The hit ratio is defined as the percentage of time that a search of the plan cache by the query optimizer results in finding a plan to use. The default target hit ratio, which was previously set to 70%, is now set to 90% to better reflect more optimal performance, based on customer feedback.
  - The maximum size allowed for autosizing, which was previously set to a hard-coded value, is now calculated based on partition size. The more CPUs and storage assigned to a partition, the larger the plan cache is allowed to grow.
  - Both the target hit ratio and maximum size are now externalized through the properties and can be adjusted.

  **Note:** If the plan cache threshold is explicitly set by the user, autosizing is disabled and is indicated as such with the keyword *DISABLED.

- **Slowest runs information.** For each plan in the plan cache, the database retains information for up to three of the slowest runs of the plan. This value is now externalized through the properties and can be adjusted higher or lower.

- **Plan cache activity thresholds.** This section shows the highest point for various metrics tracked for either plan cache activity or query activity. These thresholds can be reset (to zero) to restart the threshold tracking. Each threshold has both the high point value and the time stamp when that high point occurred.

- **Default values.** Default values now show as *DEFAULT or *AUTO, clarifying whether the plan cache threshold is system managed or has been overridden by the user.

- **Temporary object storage information.** Besides storing the SQL query plans, the plan cache is also used to cache runtime objects so that they can be used across jobs. These runtime objects provided both the executable code for queries and the storage for runtime objects such as hash tables and sorted results. When one job is finished using a runtime object, it is placed in the cache so that another job can pick it up and use it. Two properties are provided which show both the number of these runtime objects cached and the total size of all runtime objects cached in the plan cache.

The following items are customizable:

- Maximum autosize
- Target hit ratio
- Number of longest runs to keep for each query
5.5.3 Prechecking the physical file size during restore

Before this enhancement, when you run a restore of a large physical file, if the available free space on the target ASP was not sufficient to contain the physical file, the restore used all the available storage and caused a system crash. A precheck is now run to ensure that enough storage exists on the target ASP.

5.5.4 Preventing index rebuild on cancel during catch up

When a delayed maintenance index is not open, any changes to rows are recorded, but the update of the index binary tree is delayed until the index is next opened. This action improves the performance of row change operations when the index maintenance is delayed.

Before this enhancement, if a job was canceled while it was opening a delayed maintenance index, the entire index was invalidated and had to be rebuilt from scratch. On large indexes, this operation can be a lengthy operation. This enhancement ensures that in this case that the cancel does not cause the entire index to be invalidated.

5.5.5 QSYS2.SYSDISKSTAT view

The SYSDISKSTAT view can be used to quickly and easily understand disk information using SQL.
Table 5-9 describes the columns in the view. The schema is QSYS2.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>System Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASP_NUMBER</td>
<td>ASP_NUMBER</td>
<td>SMALLINT</td>
<td>The independent auxiliary storage pool (IASP) number.</td>
</tr>
<tr>
<td>DISK_TYPE</td>
<td>DISK_TYPE</td>
<td>VARCHAR(4)</td>
<td>Disk type number of the disk.</td>
</tr>
<tr>
<td>DISK_MODEL</td>
<td>DISK_MODEL</td>
<td>VARCHAR(4)</td>
<td>Model number of the disk.</td>
</tr>
<tr>
<td>UNITNBR</td>
<td>UNITNBR</td>
<td>SMALLINT</td>
<td>Unit number of the disk.</td>
</tr>
<tr>
<td>UNIT_TYPE</td>
<td>UNIT_TYPE</td>
<td>SMALLINT</td>
<td>Type of disk unit:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ 0 = Not solid-state disk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ 1 = Solid-state disk (SSD)</td>
</tr>
<tr>
<td>UNIT_STORAGE_CAPACITY</td>
<td>UNITSCAP</td>
<td>BIGINT</td>
<td>Unit storage capacity has the same value as the unit media capacity for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>configured disk units. This value is 0 for non-configured units.</td>
</tr>
<tr>
<td>UNIT_SPACE_AVAILABLE</td>
<td>UNITSPACE</td>
<td>BIGINT</td>
<td>Space (in bytes) available on the unit for use.</td>
</tr>
<tr>
<td>PERCENT_USED</td>
<td>PERCENTUSE</td>
<td>DECIMAL(7,3)</td>
<td>Percentage that the disk unit has used.</td>
</tr>
<tr>
<td>UNIT_MEDIA_CAPACITY</td>
<td>UNITMCAP</td>
<td>BIGINT</td>
<td>Storage capacity (in bytes) of the unit.</td>
</tr>
<tr>
<td>LOGICAL_MIRRORED_PAIR_STRING</td>
<td>MIRRORPS</td>
<td>CHAR(1)</td>
<td>Status of a mirrored pair of disks:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nullable</td>
<td>▶ 0 = One mirrored unit of a mirrored pair is not active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ 1 = Both mirrored units of a mirrored pair are active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Null if the unit is not mirrored.</td>
</tr>
<tr>
<td>MIRRORED_UNIT_STATUS</td>
<td>MIRRORUS</td>
<td>CHAR(1)</td>
<td>Status of a mirrored unit:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nullable</td>
<td>▶ 1 = This mirrored unit of a mirrored pair is active (online with current</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>data).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ 2 = This mirrored unit is being synchronized.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ 3 = This mirrored unit is suspended.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contains null if the unit is not mirrored.</td>
</tr>
</tbody>
</table>

If you query the UNIT_TYPE field, you can identify information about installed SSD media, as shown in Example 5-70, which shows the relevant SQL to query information for all disks or just for the SSDs.

Example 5-70  Usage of the QSYS2/DISKSTAT catalog for analysis of disk usage

Query information for all disks.
SELECT * FROM QSYS2.SYSDISKSTAT

Query information for all SSD units
SELECT * FROM QSYS2.SYSDISKSTAT WHERE unit_type = 1
5.5.6 STRDBMON: FETCH statement shows failures and warnings

The database monitor accumulates information about fetch requests. The fetch monitor record is written after the cursor is closed. This enhancement tracks the first warning or failure observed during the fetch requests and uses that information about the monitor fetch record.

Here the columns from the monitor that include this information:

- QQI8 (SQLCODE)
- QQC81 (SQLSTATE)

This enhancement enables the use of the STRDBMON FTRSQLCODE() pre-filter as a technique to isolate application fetch-time failures or warnings.

5.5.7 STRDBMON: QQI2 result rows for more statements

Database monitor and SQL performance monitor users can see the number of result rows for DML statements by examining the QQI2 column, where QQRID=1000 (INSERT/UPDATE/DELETE/MERGE).

The monitor support is enhanced to return result rows information for other statements.

Here are some considerations about the number of result rows that are returned for QQI2:

- SQL DML statements (INSERT, UPDATE, DELETE, or MERGE) show the total number of rows that are changed.
- CREATE TABLE AS and DECLARE GLOBAL TEMPORARY TABLE with the WITH DATA parameter shows the total number of rows that are inserted into the table.
- Any other query-based statement shows the estimated number of rows for the resulting query.
- All remaining statements show either -1 or 0.

5.5.8 Adding result set information to QUSRJOBI() and Systems i Navigator

Two new fields are returned by QUSRJOBI() and SQL Details for jobs:

- Available result sets: Shows the number of result sets that are currently available to the job.
- Unconsumed result sets: Shows the cumulative number of result sets in the job that were not used by the calling program and were discarded by the system.
The two new result sets returned by **QUSRJOBI**() are displayed in IBM i Navigator within the SQL details for jobs, as shown in Figure 5-45.

![Figure 5-45](image_url)

**Figure 5-45  Two new result sets returned by QUSRJOBI() displayed in SQL details for jobs**

### 5.5.9 STRDBMON pre-filtering of QUERY/400 command usage

Query/400 commands Run Query (**RUNQRY**), Work With Queries (**WRKQRY**), and Start Query (**STRQRY**) generate database monitor records. This enhancement can easily identify Query/400 users and the queries run through the Filter by Client Program database monitor pre-filter.

STRQRY and WRKQRY activity looks similar to the following output:

```
QQC21 QQ1000
QR QUERY/400 LIBRARY/FILENAME.MBRNAME
QR QUERY/400 LIBRARY/FILENAME.MBRNAME
```

RUNQRY activity looks similar to the following output:

```
QQC21 QQ1000
QR RUNQRY CLIVEG/QUERY1
QR RUNQRY CLIVEG/QUERY2
```

Example 5-71 shows an example of how to run the filter by client program pre-filter.

**Example 5-71   Examples of using STRDBMON with the filter by client to identify QUERY/400 usage**

<table>
<thead>
<tr>
<th>IBM i 6.1 Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRDBMON OUTFILE(LIBAARON/QRY400mon)</td>
</tr>
<tr>
<td>JOB(*ALL)</td>
</tr>
<tr>
<td>COMMENT('FTRCLTPGM(RUNQRY)')</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IBM i 7.1 Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRDBMON OUTFILE(LIBAARON/QRY400mon)</td>
</tr>
</tbody>
</table>
5.5.10 UNIT SSD supported on DECLARE GLOBAL TEMPORARY TABLE

Support was added for the media preference to the DECLARE GLOBAL TEMPORARY TABLE statement. You can place the temporary table directly on to the SSD. The default media preference setting remains UNIT ANY.

The SQL shown in Example 5-72 places the temporary table on the SSD. The existence of this table can be confirmed by using the SQL in Example 5-73. The actual preferences for the table can be identified by the SQL in Example 5-74.

Example 5-72 Placing a global temporary table on an SSD

```
DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_DAN
 (EMPNO CHAR(6) NOT NULL,
 SALARY DECIMAL(9, 2),
 BONUS DECIMAL(9, 2),
 COMM DECIMAL(9, 2))
ON COMMIT PRESERVE ROWS
WITH REPLACE
UNIT SSD
```

The QSYS2.PARTITION_DISKS table can be queried to determine which media the queried table is on (Example 5-73).

Example 5-73 Determine whether the table is on the SSD

```
SELECT UNIT_TYPE FROM TABLE(QSYS2.PARTITION_DISKS('QTEMP ','TEMP_DAN ')) AS X
-- indicates the type of disk unit
-- 0 - Not Solid State Disk (SSD)
-- 1 - Solid State Disk (SSD)
```

The QSYS2.PARTITION_STATISTICS table can be queried to determine the media preference of the queried table (Example 5-74).

Example 5-74 Determine the media-preference setting for the table

```
SELECT MEDIA_PREFERENCE FROM
TABLE(QSYS2.PARTITION_STATISTICS('QTEMP ','TEMP_DAN ')) AS X
--0 - No media preference
--255 - The table should be allocated on Solid State Disk (SSD), if possible.
```

5.5.11 Adding Maintained Temporary Indexes

The SQL Query Engine is enhanced to use Maintained Temporary Indexes (MTIs) as a source for statistics, which improves the performance of some queries.
The Index Advisor is enhanced to externalize the count (number of times) the MTI is used as a source of statistics and the time stamp of the last time the MTI was used as a source of statistics. This enhancement provides more information that you can use to decide whether to create permanent indexes for MTIs.

Table 5-10 shows the new column definitions for the MTIs.

Table 5-10  MTI column definitions

<table>
<thead>
<tr>
<th>Column name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTI_USED_FOR_STATS</td>
<td>BIGINT</td>
<td>The number of times that this specific MTI is used by the optimizer for statistics.</td>
</tr>
<tr>
<td>LAST_MTI_USED_FOR_STATS</td>
<td>TIMESTAMP</td>
<td>The time stamp that represents the last time that this specific MTI was used by the optimizer to obtain statistics for a query.</td>
</tr>
</tbody>
</table>

5.5.12 Adding the QSYS2.REMOVE_PERFORMANCE_MONITOR procedure

DB2 for i Plan Cache snapshots and performance monitors are in physical files and are tracked for System i Navigator users within the QUSRSYS/QAUGDBPMD2 *FILE.

When the DUMP_PLAN_CACHE procedure is called to create an SQL Plan Cache snapshot, a procedure interface is needed to later remove the snapshot file object and any entries for the file object from the System i Navigator tracking table.

REMOVE_PERFORMANCE_MONITOR() accepts two parameters and removes the SQL table matching that name and associated entries from the QUSRSYS/QAUGDBPMD2 *FILE:

- IN FILESCHEMA VARCHAR(10)
- IN FILENAME VARCHAR(10)

SQL Plan Cache snapshots can be maintained by using the CALL statement, as shown in Example 5-75.

Example 5-75  Removing the SQL Plan Cache snapshot and Performance Monitor file

```
CALL QSYS2.DUMP_PLAN_CACHE('CACHELIB','NOV2011')
CALL QSYS2.REMOVE_PERFORMANCE_MONITOR('CACHELIB','MAY2010')
```

5.5.13 STRDBMON: QQI1 fast delete reason code

When the DELETE SQL statement is used to remove all records from the table in a performance critical environment, you can use the database monitor to understand when fast delete was used and why fast delete did not occur.

The QQI1 column contains this reason code when QQRID=1000 and QQC21='DL'.

The QQI1 values are documented in the IBM i Database Performance and Query Optimization document:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzajq/rzajq.pdf
In addition to the monitor support, a CPF9898 diagnostic message appears in the job log and QHST, if either:

- The number of rows in the table is greater than or equal to 100,000.
- The SQL_FAST_DELETE_ROW_COUNT QAQQINI option is set to a non-default value and the # of rows in the table is greater than or equal to that QAQQINI value.

5.5.14 Automatically increasing the SQE Plan Cache size

DB2 for i automatically increases the SQE Plan Cache size unless the plan cache is explicitly set by the user. This enhancement has the following considerations:

- When processing is initiated to remove plans in the cache because of a size constraint, the efficiency rating of the cache is checked. If the rating is too low, the database automatically increases the plan cache size.
- The database auto-sizing does not exceed a certain maximum size.
- The automatic plan cache size decreases the size if the temporary storage on the system exceeds a certain percentage.
- The auto-sized value does not survive an IPL. The default plan cache size is used after an IPL and auto sizing begins again.
- If you explicitly control the plan cache size and want to turn over control of the plan cache size management, set the plan cache size to zero by using the following statement:
  ```sql
 CALL qsys2.change_plan_cache_size(0);
  ```

5.5.15 Tracking important system limits

A new type of health indicator is available to help you understand when the system is trending towards an outage or serious condition. Automatic tracking of system limits enables you to do the following:

- Understand when an application is trending towards a failure
- Gain insight regarding application or system outages
- Identify applications that are operating inefficiently
- Establish a general use mechanism for communicating limit information

Automatic tracking of important system limits is a new health touchpoint on IBM i. The system instrumentation for automated tracking focuses on a subset of the system limits. As those limits are reached, tracking information is registered in a DB2 for i system table called QSYS2/SYSLMTBL. A view called QSYS2/SYSLIMITS is built over the SYSLMTBL physical file and provides a wealth of contextual information about the rows in the table.

Example 5-76 provides an example of examining active jobs over time and determining how close you might be coming to the maximum active jobs limit.

```
Example 5-76 Examining active job levels over time

SELECT SBS_NAME, SIZING_NAME, CURRENT_VALUE, MAXIMUM_VALUE , A.*
FROM QSYS2.SYSLIMITS A
WHERE LIMIT_ID= 19000
ORDER BY CURRENT_VALUE DESC
```
The output of Example 5-76 on page 270 is shown in Figure 5-46.

![Figure 5-46 Example output from the qsys2/syslimits view](image)

Figure 5-46 Example output from the qsys2/syslimits view

Figure 5-47 shows the QSYS2/SYSLIMITS view definition.

![Figure 5-47 QSYS2/SYSLIMITS view definition](image)

Table 5-11 shows the QSYS2/SYSLIMITBL table definition.

![Table 5-11 QSYS2/SYSLIMITBL table definition](image)

```
<table>
<thead>
<tr>
<th>SQL long name</th>
<th>Field name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAST_CHANGE_TIMESTAMP</td>
<td>LASTCHG</td>
<td>TIMESTAMP</td>
<td>Timestamp when this row was inserted into the QSYS2/SYSLIMITBL table.</td>
</tr>
<tr>
<td>LIMIT_CATEGORY</td>
<td>CATEGORY</td>
<td>SMALLINT</td>
<td>The category of limit corresponding to this instance of System Limits detail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This smallint value maps to the following categories:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 0 = DATABASE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 1 = JOURNAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 2 = SECURITY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 3 = MISCELLANEOUS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 4 = WORK MANAGEMENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 5 = FILE SYSTEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 6 = SAVE RESTORE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 7 = CLUSTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 8 = COMMUNICATION</td>
</tr>
</tbody>
</table>
```
Table 5-12 on page 273 provides a list of the DB2 for i Services available. For the most current list of services, see the following website:

Table 5-12  DB2 for i services

<table>
<thead>
<tr>
<th>DB2 for i service</th>
<th>Type of service</th>
<th>Reference for more information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PTF Services</td>
<td></td>
</tr>
<tr>
<td>QSYS2.PTF_INFO</td>
<td>View</td>
<td>5.4.17, “QSYS2.PTF_INFO view” on page 226</td>
</tr>
<tr>
<td>QSYS2.GROUP_PTF_INFO</td>
<td>View</td>
<td>5.4.17, “QSYS2.PTF_INFO view” on page 226</td>
</tr>
<tr>
<td></td>
<td>Security Services</td>
<td></td>
</tr>
<tr>
<td>QSYS2.USER_INFO</td>
<td>View</td>
<td>2.5.1, “QSYS2.USER_INFO view” on page 30</td>
</tr>
<tr>
<td>QSYS2.FUNCTION_INFO</td>
<td>View</td>
<td>2.5.2, “QSYS2.FUNCTION_INFO view” on page 30</td>
</tr>
<tr>
<td>QSYS2.FUNCTION_USAGE</td>
<td>View</td>
<td>2.5.3, “QSYS2.FUNCTION_USAGE view” on page 31</td>
</tr>
<tr>
<td>QSYS2.GROUP_PROFILE_ENTRIES</td>
<td>View</td>
<td>2.5.4, “QSYS2.GROUP_PROFILE_ENTRIES view” on page 31</td>
</tr>
<tr>
<td>QSYS2.SQL_CHECK_AUTHORITY()</td>
<td>UDF</td>
<td>2.5.5, “SQL_CHECK_AUTHORITY() UDF procedure” on page 31</td>
</tr>
<tr>
<td>QSYS2.SET_COLUMN_ATTRIBUTE()</td>
<td>Procedure</td>
<td>2.4.2, “Database Monitor and Plan Cache variable values masking” on page 22</td>
</tr>
<tr>
<td></td>
<td>Work Management Services</td>
<td></td>
</tr>
<tr>
<td>QSYS2.SYSTEM_VALUE_INFO</td>
<td>View</td>
<td>“QSYS2.SYSTEM_VALUE_INFO view” on page 274</td>
</tr>
<tr>
<td>QSYS2.GET_JOB_INFO()</td>
<td>UDTF</td>
<td>5.4.19, “QSYS2.GET_JOB_INFO() user defined table function” on page 233</td>
</tr>
<tr>
<td></td>
<td>TCP/IP Services</td>
<td></td>
</tr>
<tr>
<td>SYSIBMADM.ENV_SYS_INFO</td>
<td>View</td>
<td>5.4.16, “Administrative catalog, SYSIBMADM.ENV_SYS_INFO” on page 225</td>
</tr>
<tr>
<td>QSYS2.TCPIP_INFO</td>
<td>View</td>
<td>5.4.15, “QSYS2.TCPIP_INFO view” on page 224</td>
</tr>
<tr>
<td></td>
<td>Storage Services</td>
<td></td>
</tr>
<tr>
<td>QSYS2.USER_STORAGE</td>
<td>View</td>
<td>“QSYS2.USER_STORAGE view” on page 274</td>
</tr>
<tr>
<td>QSYS2.SYSDISKSTAT</td>
<td>View</td>
<td>5.5.5, “QSYS2.SYSDISKSTAT view” on page 264</td>
</tr>
<tr>
<td></td>
<td>Object Services</td>
<td></td>
</tr>
<tr>
<td>QSYS2.OBJECT_STATISTICS()</td>
<td>UDTF</td>
<td>5.4.3, “QSYS2.OBJECT_STATISTICS user defined table function” on page 217</td>
</tr>
<tr>
<td></td>
<td>System Health Services</td>
<td></td>
</tr>
<tr>
<td>QSYS2.SYSLIMTBLS</td>
<td>Table</td>
<td>5.5.15, “Tracking important system limits” on page 270</td>
</tr>
<tr>
<td>QSYS2.SYSLIMITS</td>
<td>View</td>
<td>5.5.15, “Tracking important system limits” on page 270</td>
</tr>
<tr>
<td></td>
<td>Journal Services</td>
<td></td>
</tr>
<tr>
<td>QSYS2.DISPLAY_JOURNAL()</td>
<td>UDTF</td>
<td>5.5.17, “DISPLAY_JOURNAL (easier searches of Audit Journal)” on page 275</td>
</tr>
<tr>
<td></td>
<td>Application Services</td>
<td></td>
</tr>
<tr>
<td>QSYS2.QCMDEXC()</td>
<td>Procedure</td>
<td>5.4.36, “QSYS2.QCMDEXC() procedure no longer requires a command length” on page 248</td>
</tr>
</tbody>
</table>
The following sections provide details for those DB2 for i services that are not previously covered in this document.

**QSYS2.SYSTEM_VALUE_INFO view**

The `SYSTEM_VALUE_INFO` view returns the names of system values and their values. The list of system values can be found in the Retrieve System Values (QWCRSVAL) API. For more information about the QWCRSVAL API, see the following website:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Fapis%2Fqwcrsva1.htm

You must have *ALLOBJ or *AUDIT special authority to retrieve the values for QAUDCTL, QAUDENDACN, QAUDFRCLVL, QAUDLVL, QAUDLVL2, and QCRTOBJAUD. The current value column contains '*NOTAVL' or -1 if accessed by an unauthorized user.

Table 5-13 describes the columns in the view. The schema is QSYS2.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>System Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM_VALUE_NAME</td>
<td>SYSVALNAME</td>
<td>VARCHAR(10)</td>
<td>Name of the system value.</td>
</tr>
<tr>
<td>CURRENT_NUMERIC_VALUE</td>
<td>CURNUMVAL</td>
<td>BIGINT</td>
<td>Contains a value if the system value is numeric data, otherwise, contains a null value.</td>
</tr>
<tr>
<td>CURRENT_CHARACTER_VALUE</td>
<td>CURCHARVAL</td>
<td>VARGRAPHIC(1280)</td>
<td>Contains a value if the system value is character data, otherwise, contains a null value.</td>
</tr>
</tbody>
</table>

The following statement examines the system values that are related to maximums:

```sql
SELECT * FROM SYSTEM_VALUE_INFO
WHERE SYSTEM_VALUE_NAME LIKE 'MAX%'
```

Which returns the following information:

<table>
<thead>
<tr>
<th>SYSTEM_VALUE_NAME</th>
<th>CURRENT_NUMERIC_VALUE</th>
<th>CURRENT_CHARACTER_VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>QMAXACTLVL</td>
<td>32,767</td>
<td>-</td>
</tr>
<tr>
<td>QMAXSIGN</td>
<td>-</td>
<td>000005</td>
</tr>
<tr>
<td>QPDMAXLEN</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>QMAXSGNACN</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>QMAXJOB</td>
<td>163,520</td>
<td>-</td>
</tr>
<tr>
<td>QMAXSPLF</td>
<td>9,999</td>
<td>-</td>
</tr>
</tbody>
</table>

**QSYS2.USER_STORAGE view**

The `USER_STORAGE` view contains details about storage by user profile. The user storage consumption detail is determined by using the Retrieve User Information (QSYRUSRI) API. For more information about the QSYRUSRI API, see the following website:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Fapis%2Fqyusrir.htm
The following are details about the USER_STORAGE view:

- You must have *READ authority to a *USRPRF or information is not returned.
- User storage is broken down by SYSBAS and iASPs.
- To see information for independent ASPs (iASPs), the iASP must be varied on.

Table 5-14 describes the columns in the view. The schema is QSYS2.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>System Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHORIZATION_NAME</td>
<td>USER_NAME</td>
<td>VARCHAR(10)</td>
<td>User profile name.</td>
</tr>
<tr>
<td>ASPGRP</td>
<td>ASPGRP</td>
<td>VARCHAR(10)</td>
<td>Name of the independent ASP or *SYSBAS.</td>
</tr>
<tr>
<td>MAXIMUM_STORAGE_ALLOWED</td>
<td>MAXSTG</td>
<td>BIGINT</td>
<td>Maximum amount of auxiliary storage (in kilobytes) that can be assigned to store permanent objects owned by the user. Contains null if the user does not have a maximum amount of allowed storage.</td>
</tr>
<tr>
<td>STORAGE_USED</td>
<td>STGUSED</td>
<td>BIGINT</td>
<td>Amount of auxiliary storage (in kilobytes) occupied by the user's owned objects for this ASPGRP.</td>
</tr>
</tbody>
</table>

The following example shows determining how much storage user SCOTTF has consumed:

```
SELECT * FROM QSYS2/USER_STORAGE
WHERE USER_NAME = 'SCOTTF'
```

Figure 5-48 shows the output from this example.

<table>
<thead>
<tr>
<th>AUTHORIZATION_NAME</th>
<th>ASPGRP</th>
<th>MAXIMUM_STORAGE_ALLOWED</th>
<th>STORAGE_USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOTTF</td>
<td>*SYSBAS</td>
<td>-</td>
<td>7932652</td>
</tr>
<tr>
<td>SCOTTF</td>
<td>DBTEST</td>
<td>-</td>
<td>145926</td>
</tr>
<tr>
<td>SCOTTF</td>
<td>DBTESTP</td>
<td>-</td>
<td>336344</td>
</tr>
<tr>
<td>SCOTTF</td>
<td>IASPONE</td>
<td>-</td>
<td>34140</td>
</tr>
<tr>
<td>SCOTTF</td>
<td>IASPTHREE</td>
<td>-</td>
<td>2364</td>
</tr>
</tbody>
</table>

Figure 5-48 USER_STORAGE example output

5.5.17 DISPLAY_JOURNAL (easier searches of Audit Journal)

Displaying a journal entry from a GUI interface today requires using APIs or writing the journal entries to an outfile. The APIs are labor-intensive and the outfile is somewhat restrictive and slower because a copy of the data required.

QSYS2/DISPLAY_JOURNAL is a new table function that allows the user to view entries in a journal by running a query. There are many input parameters of the table function that can be used for best performance to return only those journal entries that are of interest.

For more information about the special values, see the Retrieve Journal Entries (QjoRetrieveJournalEntries) API in the IBM i 7.1 Knowledge Center. Unlike many other UDTFs in QSYS2, this one has no DB2 for i provided view.

http://pic.dhe.ibm.com/infocenter/series/v7r1m0/index.jsp?topic=%2Fapis%2FQJORJRN

E.htm
The following is a brief summary of the parameters:

- **Journal_Library and Journal_Name**
  
The Journal_Library and Journal_Name must identify a valid journal. *LIBL and *CURLIB are NOT allowed as a value of Journal_Library.

- **Starting_Receiver_Library and Starting_Receiver_Name**
  
  If the specified Starting_Receiver_Name is the null value, an empty string, or a blank string, *CURRENT is used and the Starting_Receiver_Library is ignored.

  If the specified Starting_Receiver_Name contains the special values *CURRENT, *CURCHAIN, or *CURAVLCHN, the Starting_Receiver_Library is ignored.

  Otherwise, the Starting_Receiver_Name and Starting_Receiver_Library must identify a valid journal receiver.

  *LIBL and *CURLIB can be used as a value of the Starting_Receiver_Library.

  The ending journal receiver cannot be specified and is always *CURRENT.

- **Starting_Timestamp**
  
  If the specified Starting_Timestamp is the null value, no starting time stamp is used. A value for Starting_Timestamp and Starting_Sequence cannot be specified at the same time. However, both values can be queried when querying the table function.

- **Starting_Sequence**
  
  If the specified Starting_Sequence is the null value, no starting sequence number is used. If the specified Starting_Sequence is not found in the receiver range, an error is returned. A value for Starting_Timestamp and Starting_Sequence cannot be specified at the same time. However, both values can be queried when querying the table function.

- **Journal_Codes**
  
  If the specified Journal_Codes is the null value, an empty string, or a blank string, *ALL is used. Otherwise, the string can consist of the special value *ALL, the special value *CTL, or a string that contains containing one or more journal codes. Journal codes can be separated by one or more separators. The separator characters are the blank and comma. For example, a valid string can be ‘RJ’ or ‘R J’ or ‘R,J’ or ‘R, J’.

- **Journal_Entry_Types**
  
  If the specified Journal_Entry_Types is the null value, an empty string, or a blank string, *ALL is used. Otherwise, the string can consist of the special value *ALL, the special value *RCD, or a string that contains one or more journal entry types. Journal entry types can be separated by one or more separators. The separator characters are the blank and comma. For example, a valid string can be ‘RJ’ or ‘R J’ or ‘R,J’ or ‘R, J’.

- **Object_Library, Object_Name, Object_ObjType, and Object_Member**
  
  If the specified Object_Name is the null value, an empty string, or a blank string, no object name is used and the Object_Library, Object_ObjType, and Object_Member are ignored.

  If the specified Object_Name contains the special value *ALL, Object_Library must contain a library name and Object_ObjType must contain a valid object type (for example, *FILE).

  Otherwise:
  
  - Only one object can be specified and the Object_Library, Object_Name, Object_ObjType, and Object_Member must identify a valid object.
  - *LIBL and *CURLIB can be used as a value of the Object_Library.
– The Object_ObjType must be one of *DTAARA, *DTAQ, *FILE, or *LIB (*LIB is version 6.1 only).
– The Object_Member can be *FIRST, *ALL, *NONE, or a valid member name. If the specified object type was not *FILE, the member name is ignored.

► User
If the specified User is the null value, or an empty string or a blank string, *ALL is used. Otherwise, you must identify a valid user profile name.

► Job
If the specified Job is the null value, or an empty string, or a blank string, *ALL is used. Otherwise, the Job must identify a valid job name of a specific job where the first 10 characters are the job name, the second 10 characters are the user name, and the last 6 characters are the job number.

► Program
If the specified Program is the null value, an empty string, or a blank string, *ALL is used. Otherwise, the Program must identify a valid program name.

See Example 5-77 for an example of querying a data journal.

**Example 5-77 Querying a data journal**

```sql
set path system path, mjatst; -- Change mjatst to your library you chose above
-- Select all entries from the *CURRENT receiver of journal mjatst/qsqjrn.
select * from table (Display_Journal('MJATST', 'QSQJRN', -- Journal library and name
'', '', -- Receiver library and name
CAST(null as TIMESTAMP), -- Starting timestamp
CAST(null as DECIMAL(21,0)), -- Starting sequence number
'', -- Journal codes
'', -- Journal entries
'', '', '', -- Object library, Object name, Object type, Object member
'', -- User
'', -- Job
'') -- Program
) as x;
```
Figure 5-49 shows the results of Example 5-77 on page 277.

These are enhancements to the security audit journal (QAUDJRN):

- Search capability for object names
- New columns to identify the object:
  - Library objects:
    - OBJECT_SYSTEM_SCHEMA
    - OBJECT_SYSTEM_NAME
    - MEMBER_NAME
    - OBJECT_ASP_NUMBER
    - OBJECT_ASP_DEVICE
  - DLO objects:
    - DLO_NAME
    - FOLDER_PATH
  - IFS objects:
    - PARENT_FILE_ID
    - OBJECT_FILE_ID
    - RELATIVE_DIRECTORY_FILE_ID
    - OBJECT_FILE_NAME
    - PATH_NAME
    - OBJECT_ASP_NUMBER
    - OBJECT_ASP_DEVICE

These are enhancements for data journals:

- Search capability for IFS names
- New columns to identify the object:
  - Journal code B:
    - PARENT_FILE_ID
    - OBJECT_FILE_ID
    - RELATIVE_DIRECTORY_FILE_ID
    - OBJECT_FILE_NAME
    - PATH_NAME
Example 5-78 shows an example of querying a data journal using filtering criteria to find changes made by SUPERUSER against the PRODDATA/SALES table.

Example 5-78 Query a data journal using filtering criteria

```sql
select journal_code, journal_entry_type, object, object_type, X.* from table (QSYS2.Display_Journal('PRODDATA', 'QSQJRN', -- Journal library and name '', '', -- Receiver library and name CAST(null as TIMESTAMP), -- Starting timestamp CAST(null as DECIMAL(21,0)), -- Starting sequence number '', -- Journal codes '', -- Journal entries 'PRODDATA','SALES','*FILE','SALES', -- Object library, Object name, Object type, Object member '', -- User '', -- Job '' -- Program)) as x
WHERE journal_entry_type in ('DL', 'PT','PX', 'UP') AND "CURRENT_USER" = 'SUPERUSER'
order by entry_timestamp desc
```

Figure 5-50 shows the results of the query in Example 5-78.

<table>
<thead>
<tr>
<th>JOURNAL_CODE</th>
<th>JOURNAL_ENTRY_TYPE</th>
<th>OBJECT</th>
<th>OBJECT_TYPE</th>
<th>ENTRY_TIMESTAMP</th>
<th>SEQUENCE_NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>UP</td>
<td>SALES</td>
<td>PRODDATA</td>
<td>2013-10-02 09:44:19</td>
<td>204304</td>
</tr>
<tr>
<td>R</td>
<td>PX</td>
<td>SALES</td>
<td>PRODDATA</td>
<td>2013-10-02 09:43:18</td>
<td>219744</td>
</tr>
<tr>
<td>R</td>
<td>DL</td>
<td>SALES</td>
<td>PRODDATA</td>
<td>2013-10-02 09:42:17</td>
<td>115424</td>
</tr>
</tbody>
</table>

Figure 5-50 Data journal queried by object

5.5.18 IBM i Navigator improved ability to mine journals

IBM i Navigator has been enhanced to make it easier to analyze audit and data journals.

Following are enhancements to improve the ability to mine the security audit journal (QAUDJRN):

- New default columns displayed
- New columns to identify the object
- Search capability for object names based on names in the Entry Specific Data Object type
- Generic library name
- Generic file name
- Search capability for IFS names (or any other column) available in the Additional filters box
Figure 5-51 shows using IBM i Navigator to view security audit journal (QAUDJRN) data.

Following are enhancements to improve the ability to mine data journals:

- New default columns displayed
- New columns to identify the IFS objects
- Search capability for object names based on Journal ID (existing support)
- Search capability for IFS names (or any other column) available in the Additional filters box

Figure 5-52 shows using IBM i Navigator to view data journals.
Figure 5-53 shows a graphical alternative to using the DISPLAY_JOURNAL user-defined table function. In this example, IBM i Navigator is used to do journal data dynamic filtering and improved journal data segregation. This alternative makes it easy to work with entries, reorder columns, and understand entry-specific data.

On the Journal Viewer window, click **Columns** to see the columns available for display and to be able to add new columns. See Figure 5-54.
5.5.19 Navigator for i: A new look and no client to manage

You can use the new look for IBM Navigator for i to perform enhanced database management without client software to manage. The following are some of the enhanced functions:

- A new dynamic navigation area allows for easy navigation to folders and areas in the database.
- New tab support provides improved object list viewing and interaction.
- There is improved performance and fewer clicks to reach endpoints.
- New database capabilities include procedure/function creation/definition and view/edit table contents.

An advanced drill-down using the new look of IBM Navigator for i is shown in Figure 5-55.

![Enhanced drill-down using the new look of IBM Navigator for i](image)

5.6 DB2 for Web Query for i (5733-QU2, 5733-QU3, and 5733-QU4)

DB2 Web Query for i consists of a foundation product, 5733-QU2, and two more optional products, 5733-QU3, and 5733-QU4. The latest version of these products is Version 1.1.2. IBM introduced a packaging option that includes elements from all three of these products into a new bundle called DB2 Web Query for i Standard Edition.

5.6.1 DB2 Web Query for i (5733-QU2)

This product provides several easy to use, web-based tools for building reports and Business Intelligence applications. Report “authors” can choose from Report and Graph Assistant tools that can web enable Query/400 reports or the new InfoAssist report builder that provides a highly intuitive, drag interface for reporting functions. You can build dashboards, integrate
data with new or existing spreadsheets, or choose to deliver reports in an analytical form that you can use to slide and dice through the data interactively. DB2 Web Query for i can either be ordered as modules, or you can choose a Standard Edition for a predefined package of components that provide a robust set of components.

The modules are as follows:

- **The base module** provides the foundation for DB2 Web Query, including the reporting server and the web-based authoring tools. A Query/400 import function allows you to take Query/400 definitions and transform them using the web-based Report Assistant tool. You can use DB2 Web Query to leave your data in DB2 for i and use all security and availability features of the IBM i platform. This base module is priced per processor tier and includes a minimum number of users. Most clients are able to upgrade to the base product at no charge if they own Query/400 and have the latest level of the IBM i software.

- **Active Technologies** can combine the results of queries and create HTML reports that can be made available to users without needing to be connected to the DB2 for i server. Designed for users “on the go”, the reports contain query results. The data can be viewed in various ways from a browser, including functions to sort, filter the data by different criteria, a calculated field, and chart information for visual impact.

- **The DB2 Web Query Developer Workbench** feature is an open and intuitive environment that you can use for rapid development of more customized web-based reports and metadata. It includes an HTML layout painter for building dashboards, combining multiple reports into a single view. It is a critical component for developing and managing the metadata that is used to shield the complexities of the database from report authors and users.

- **The OLAP Module** provides an interactive visualization of the data that you can use to drill down or slice and dice to find trends or exceptions in an analytical process. A single report can be a starting point for complex data analysis. Setting up dimensional definitions in DB2 Web Query Developer Workbench is a prerequisite to using an OLAP report.

- **Without Runtime User Enablement**, each individual user must be licensed to the base product. With the Runtime User Enablement feature, one or more user licenses can now be defined as a group of runtime only users. If you are familiar with Group Profiles, this concept is a similar concept. Each member of the group is able to run reports concurrently, and each group can contain thousands of users, providing an almost unlimited runtime user licensing model. Users that are defined as runtime users cannot create or edit report definitions, but have full functionality in running reports, including parametrized dashboards, OLAP reports, and more.

- **DB2 Web Query Spreadsheet Client** provides enhanced capabilities for users of Microsoft Excel. With the Spreadsheet Client, users can create templates or regularly used spreadsheets that can be repopulated with data from DB2 for i (or Microsoft SQL Server with the following noted adapter feature). Users with the appropriate authority can start the Report Assistant component of the BASE product to build their own query to populate spreadsheet cells. Data computations and totals are brought into Excel as native formulas, and you can add data filtering and style the output to further enhance the data within Excel.

- **DB2 Web Query Adapter for Microsoft SQL Server** provides connectivity from DB2 Web Query to remote SQL server databases. Many IBM i customers have most of their data in DB2 for i, but occasionally want to get real-time access to data in a SQL server database for reporting purposes. The new adapter for SQL server provides access to multiple remote SQL server databases if wanted, and provides seamless access to this data for report authors and users.

- **DB2 Web Query Adapter for Oracle JD Edwards** allows DB2 Web Query to report on data that is stored in World or EnterpriseOne databases within DB2 for i. The adapter provides
a level of seamless integration that simplifies authoring of reports. The adapter also preserves data integrity and security during report execution by automatically interfacing to the application's metadata and security layers.

5.6.2 DB2 Web Query Report Broker (5733-QU3)

This product provides automated report execution and distribution. Use the scheduling facilities to run reports in batch on a daily or weekly basis, on specific dates, or to add blackout dates.

Deliver reports in formats such as PDF, spreadsheet, or other PC file formats and automate report distribution through an email distribution list.

5.6.3 DB2 Web Query Software Developer Kit (5733-QU4)

This product is targeted at application developers. The DB2 Web Query SDK provides a set of web services that you can use to integrate DB2 Web Query functions into applications or to customize an interface into DB2 Web Query or DB2 Web Query Report Broker functions.

The web services allow web applications to authenticate users, view domains and folders, determine report parameters, run DB2 Web Query reports, and more. Simplify the programming effort by using the application extension, now part of the SDK. This extension can eliminate the need for programming to the web services and allow you to create a URL interface to report execution that you can embed in an existing or new application.

When you develop using the SDK, the DB2 Web Query BASE product is required and Developer Workbench feature is recommended. Deployment (runtime) environments require the BASE product and the Runtime User Enablement feature of DB2 Web Query.

5.6.4 DB2 Web Query for i Standard Edition

DB2 Web Query, Standard Edition simplifies the decision process of which features to order by including the most popular features in a single package. You can order more features, such as the SQL Server or JDE adapter to the Standard Edition if wanted, but the intent is to combine the most commonly chosen functions into a single order. The DB2 Web Query Standard Edition contains these functions:

- DB2 Web Query for i BASE with the number of users included based on processor group
- Four more User Licenses (that can be used as individual users or as a group of runtime users)
- One PC license of Developer Workbench
- Active Technologies
- OLAP
- Runtime User Enablement
- Spreadsheet Client
- DB2 Web Query Report Broker
- DB2 Web Query Software Developer Kit
5.7 OmniFind Text Search Server for DB2 for i (5733-OMF)

The OmniFind Text Search Server for DB2 for i product available for IBM i 7.1 is enhanced to include more SQL programmable interfaces that extend its support beyond traditional DB2 tables. These interfaces allow text indexing and searching of IBM i objects, such as spool files in an output queue or stream file data in the integrated file system.

A text search collection describes one or more sets of system objects that have their associated text data indexed and searched. For example, a collection might contain an object set of all spool files in output queue QUSR SYS/QEZJOBLOG, or an object set for all stream files in the /home/alice/text_data directory.

The text search collection referred to in this documentation should not be confused with a DB2 schema (sometimes also referred to as a collection), or a Lucene collection (part of the internal structure of a DB2 text search index).

When a text search collection is created, several DB2 objects are created on the system:

- SQL schema with the same name as the collection
- Catalogs for tracking the collection’s configuration
- Catalogs for tracking the objects that are indexed
- SQL Stored procedures to administer and search the collection
- A DB2 text search index for indexing the associated text

Administration of the collection is provided with stored procedures, most of which are created in the schema.

5.7.1 OmniFind for IBM i: Searching Multiple Member source physical files

The OmniFind Text Search Server for DB2 for i product (5733-OMF) for IBM i 7.1 is enhanced to include more SQL programmable interfaces that extend its support beyond traditional DB2 tables.

Multiple Member source physical files are added one at a time to the OmniFind collection. The members from source physical file are retrieved and treated as separate objects.

During the OmniFind update processing, new, changed, or removed members are recognized and processed appropriately.

Two types of instrumentation are available:

- `<collection>.ADD_SRCPF_OBJECT_SET (IN SRCPF_LIB VARCHAR(10) CCSID 1208, IN SRCPF_NAME VARCHAR(10) CCSID 1208, OUT SETID INTEGER) CALL UPDATE`
- `<collection>.ADD_SRCPF_OBJECT_SET (IN SRCPF_LIB VARCHAR(10) CCSID 1208, IN SRCPF_NAME VARCHAR(10) CCSID 1208) CALL UPDATE`

For more information about this topic and the OmniFind for i product, see the topic “Searching Spool Files and IFS Stream Files” at developerWorks at:


You can also find updates for OmniFind at:

5.7.2 Navigator for i - Omnifind Collection Management

Within the browser-based version of Navigator for i, controls are available for adding IFS subdirectories and Multiple Member Source Physical Files to a text search collection. See Figure 5-56.

![Figure 5-56](image)

**Figure 5-56** Navigator for i improved controls for OmniFind collections

5.8 WebSphere MQ integration

IBM WebSphere® MQ is a family of network communication software products that allow independent and potentially non-concurrent applications on a distributed system to communicate with each other.

The implementation described here provides a set of scalar functions and table functions to provide the integration with DB2.

**Scalar functions**

The **MQREAD** function returns a message in a VARCHAR variable from a specified WebSphere MQ location, which is specified by receive-service, using the policy that is defined in service-policy, starting at the beginning of the queue but without removing the message from the queue. If no messages are available to be returned, a null value is returned.

Example 5-79 reads the first message with a correlation ID that matches 1234 from the head of the queue that is specified by the MYSERVICE service using the MYPOLICY policy.

```
Example 5-79 MQREAD Scalar
```

```
SELECT MQREAD ('MYSERVICE','MYPOLICY','1234')
FROM SYSIBM.SYSDUMMY1
```

The **MQREADCLOB** function returns a message in a CLOB variable from a specified WebSphere MQ location, which is specified by receive-service, using the policy that is defined in
service-policy, starting at the beginning of the queue but without removing the message from
the queue. If no messages are available to be returned, a null value is returned.

Example 5-80 reads the first message with a correlation ID that matches 1234 from the head
of the queue that is specified by the MYSERVICE service using the MYPOLICY policy.

Example 5-80   MQREADCLOB Scalar

```
SELECT MQREADCLOB ('MYSERVICE','MYPOLICY','1234')
 FROM SYSIBM.SYSDUMMY1
```

The MQRECEIVE function returns a message in a VARCHAR variable from a specified WebSphere
MQ location, which is specified by receive-service, using the policy that is defined in
service-policy. This operation removes the message from the queue. If a correlation-id is
specified, the first message with a matching correlation identifier is returned. If a correlation-id
is not specified, the message at the beginning of queue is returned. If no messages are
available to be returned, a null value is returned.

Example 5-81 receives the first message with a correlation-id that matches 1234 from the
head of the queue that is specified by the MYSERVICE service using the MYPOLICY policy.

Example 5-81   MQRECEIVE Scalar

```
SELECT MQRECEIVE ('MYSERVICE','MYPOLICY','1234')
 FROM SYSIBM.SYSDUMMY1
```

The MQRECEIVECLOB function returns a message in a CLOB variable from a specified
WebSphere MQ location, which is specified by receive-service, using the policy that is
defined in service-policy. This operation removes the message from the queue. If a
correlation-id is specified, the first message with a matching correlation identifier is returned.
If a correlation-id is not specified, the message at the beginning of queue is returned. If no
messages are available to be returned, a null value is returned.

Example 5-82 receives the first message with a correlation-id that matches 1234 from the
head of the queue that is specified by the MYSERVICE service using the MYPOLICY policy.

Example 5-82   MQRECEIVECLOB Scalar

```
SELECT MQRECEIVECLOB ('MYSERVICE','MYPOLICY','1234')
 FROM SYSIBM.SYSDUMMY1
```

If for all of the previously mentioned scalars the receive-service is not specified or the null
value is used, the DB2.DEFAULT.SERVICE is used.

The MQSEND function sends the data in a VARCHAR or CLOB variable msg-data to the WebSphere
MQ location specified by send-service, using the policy that is defined in service-policy. An
optional user-defined message correlation identifier can be specified by correlation-id. The
return value is 1 if successful, or 0 if not successful. If the send-service is not specified or the
null value is used, the DB2.DEFAULT.SERVICE is used.

On all of these functions, you can specify a correlation-id (correl-id) expression. The value of
the expression specifies the correlation identifier that is associated with this message. A
correlation identifier is often specified in request-and-reply scenarios to associate requests
with replies. The first message with a matching correlation identifier is returned.
Table functions

The **MQREADALL** function returns a table that contains the messages and message metadata in **VARCHAR** variables from the WebSphere MQ location that is specified by receive-service, using the policy that is defined in service-policy. This operation does not remove the messages from the queue. If num-rows is specified, a maximum of num-rows messages is returned. If num-rows is not specified, all available messages are returned.

Example 5-83 reads the head of the queue that is specified by the default service (DB2.DEFAULT.SERVICE) using the default policy (DB2.DEFAULT.POLICY). Only messages with a CORRELID of 1234 are returned. All columns are returned.

**Example 5-83  MQREADALL table function**

```sql
SELECT *
FROM TABLE (MQREADALL ()) AS T
WHERE T.CORRELID = '1234'
```

The **MQREADALLCLOB** function returns a table that contains the messages and message metadata in **CLOB** variables from the WebSphere MQ location that is specified by receive-service, using the policy that is defined in service-policy. This operation does not remove the messages from the queue. If num-rows is specified, a maximum of num-rows messages is returned. If num-rows is not specified, all available messages are returned.

Example 5-84 receives the first 10 messages from the head of the queue that is specified by the default service (DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY). All columns are returned.

**Example 5-84  MQREADALLCLOB table function**

```sql
SELECT *
FROM TABLE (MQREADALLCLOB (10)) AS T
```

The **MQRECEIVEALL** function returns a table that contains the messages and message metadata in **VARCHAR** variables from the WebSphere MQ location that is specified by receive-service, using the policy that is defined in service-policy. This operation removes the messages from the queue. If a correlation-id is specified, only those messages with a matching correlation identifier are returned. If a correlation-id is not specified, all available messages are returned. If num-rows is specified, a maximum of num-rows messages is returned. If num-rows is not specified, all available messages are returned.

Example 5-85 receives all the messages from the head of the queue that is specified by the service MYSERVICE, using the default policy (DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are returned.

**Example 5-85  MQRECEIVEALL table function**

```sql
SELECT T.MSG, T.CORRELID
FROM TABLE (MQRECEIVEALL ('MYSERVICE')) AS T
```

The **MQRECEIVEALLCLOB** function returns a table that contains the messages and message metadata in **CLOB** variables from the WebSphere MQ location that is specified by receive-service, using the policy that is defined in service-policy. This operation removes the messages from the queue. If a correlation-id is specified, only those messages with a matching correlation identifier are returned. If a correlation-id is not specified, all available messages are returned. If num-rows is specified, a maximum of num-rows messages is returned. If num-rows is not specified, all available messages are returned.
Example 5-86 receives all the messages from the queue that is specified by the default service (DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY). The messages and all the metadata are returned as a table.

Example 5-86  MQRECEIVEALLCLOB table function

```
SELECT *
FROM TABLE (MQRECEIVEALLCLOB ()) AS T
```

If for all of the previously mentioned table functions the receive-service is not specified or the null value is used, the DB2.DEFAULT.SERVICE is used.

**DB2 WebSphere MQ tables**
The DB2 WebSphere MQ tables contain service and policy definitions that are used by the DB2 WebSphere MQ functions. The DB2 WebSphere MQ tables are SYSIBM.MQSERVICE_TABLE and SYSIBM.MQPOLICY_TABLE. These tables are user-managed. The tables are initially created by DB2 and populated with one default service (DB2.DEFAULT.SERVICE) and one default policy (DB2.DEFAULT.POLICY). You can modify the attributes of the default service and policy by updating the rows in the tables. You can add more services and policies by inserting more rows in the tables.

**DB2 WebSphere MQ CCSID conversion**
When a message is sent, the message can be converted to the job CCSID by DB2. When a message is read or received, it can be converted to a specified CCSID by WebSphere MQ.

The msg-data parameter on the `MQSEND` function is in the job CCSID. If a string is passed for msg-data, it is converted to the job CCSID. For example, if a string is passed for msg-data that has a CCSID 1200, it is converted to the job CCSID before the message data is passed to WebSphere MQ. If the string is defined to be bit data or the CCSID of the string is the CCSID of the job, no conversion occurs.

WebSphere MQ does not run CCSID conversions of the message data when `MQSEND` is run. The message data that is passed from DB2 is sent unchanged along with a CCSID that informs the receiver of the message and how to interpret the message data. The CCSID that is sent depends on the value that is specified for the CODEDCHARSETID of the service that is used on the `MQSEND` function. The default for CODEDCHARSETID is -3, which indicates that the CCSID passed is the job default CCSID. If a value other than -3 is used for CODEDCHARSETID, the invoker must ensure that the message data passed to `MQSEND` is not converted to the job CCSID by DB2, and that the string is encoded in that specified CCSID.

When a message is read or received by a WebSphere MQ scalar or table function, the msg-data return parameter (and the MSG result column for the WebSphere MQ table functions) is also defined in job default CCSID. DB2 does no conversions and relies on WebSphere MQ to perform any necessary conversions. Whether WebSphere MQ converts the message data can be controlled by setting the RCV_CONVERT value to N in the specified policy.

If the specified service has a value for CODEDCHARSETID of -3, DB2 instructs WebSphere MQ to convert any message that is read or received into the job CCSID. If a value other than -3 is used for CODEDCHARSETID, DB2 instructs WebSphere MQ to convert any message that is read or received into that CCSID. Specifying something other than -3 for CODEDCHARSETID in a service that is used to read or receive messages is not a preferred practice because the msg-data return parameter and MSG result column are defined by DB2 in job default CCSID.
When you read or receive a message, truncation can occur. If the specified policy has a value for RCV_ACCEPT_TRUNC_MSG of Y, the message can be truncated without any warning. If the value for RCV_ACCEPT_TRUNC_MSG is N and the message is too long, the function ends with an error.

5.9 DB2 Connect system naming attribute

DB2 Connect V10.1 and IBM i 7.1 have been enhanced to provide naming mode control.

SQL_ATTR_DBC_SYS_NAMING is used on the sqlsetconnectattr() API where:
- SQL_TRUE switches the connection to SYSTEM naming
- SQL_FALSE switches the connection to SQL naming

The sqlsetconnectattr() API can be called before or after a connection is made.

SET PATH = *LIBL can be used to reset the path for system naming use. This support is implemented using a special package flow that is begun at run time.

For more information, see the Call level interface (CLI) driver enhancements topic in the DB2 Knowledge Center:

Example 5-87 shows a typical execution.

Example 5-87 Typical execution

> > > quickc 1 1 sysnam rwpgrmr rwp2grmr

> sqlallocstmt 1 1

> sqlsetconnectattr 1 SQL_ATTR_DBC_SYS_NAMING SQL_TRUE

> sqlexecdirec 1 "create schema ashok" -3
> sqlexecdirec 1 "set current schema ashok" -3

> sqlexecdirec 1 "create table ashok/emp1 (id1 int)" -3

Date and Time Format Controls

DB2 Connect V10.5 and IBM i 6.1 and 7.1 have been enhanced to provide DATE/TIME/DECIMAL format and separator control by supporting environment level and connection level attributes.

- Attribute names:
  - SQL_ATTR_DATE_FMT
  - SQL_ATTR_DATE_SEP
  - SQL_ATTR_TIME_FMT
  - SQL_ATTR_TIME_SEP
  - SQL_ATTR_DECIMAL_SEP

- Date format values:
  - SQL_IBMi_FMT_YMD
  - SQL_IBMi_FMT_MDY
– SQL_IBMi_FMT_DMY
– SQL_IBMi_FMT_JUL
– SQL_IBMi_FMT_ISO
– SQL_IBMi_FMT_EUR
– SQL_IBMi_FMT_JIS
– SQL_IBMi_FMT_JOB

➤ Date separator values:
– SQL_SEP_SLASH
– SQL_SEP_COMMA
– SQL_SEP_PERIOD
– SQL_SEP_BLANK
– SQL_SEP_DASH
– SQL_SEP_JOB

➤ Time format values:
– SQL_IBMi_FMT_HMS
– SQL_IBMi_FMT_ISO
– SQL_IBMi_FMT_USA
– SQL_IBMi_FMT_EUR
– SQL_IBMi_FMT_JIS
– SQL_IBMi_FMT_JOB

➤ Time separator values:
– SQL_SEP_COLON
– SQL_SEP_PERIOD
– SQL_SEP_COMMA
– SQL_SEP_BLANK
– SQL_SEP_JOB

➤ Decimal separator values:
– SQL_SEP_PERIOD
– SQL_SEP_COMMA
– SQL_SEP_JOB

**Programming Notes:** The sqlsetenvattr() API is called before a connection is made, and the sqlsetconnectattr() API can be called before or after a connection is made.

Example 5-88 shows an example of finding employees with less than two years of tenure.

*Example 5-88  Finding employees with less than two years of tenure*

```
sqlsetconnectattr 1 SQL_ATTR_DATE_FMT SQL_IBMi_FMT_EUR
sqlsetconnectattr 1 SQL_ATTR_DATE_SEP SQL_SEP_PERIOD
sqlexecdirect 1 "SELECT EMPNO FROM CORPDATA.EMP
WHERE HIREDATE > '09.23.2013' – 2 YEARS
ORDER BY LASTNAME, FIRSTNAME, MIDINIT" -3
```
Performance tools

The IBM i operating system and its licensed products include various applications for collecting, analyzing, and reporting performance data that are generically called performance tools or performance analysis tooling. There are basically two components in the product:

- The collection services that capture data about how the hardware resources of a physical and virtual system are used by the various user and system functions that support the business of a client.
- The tools for viewing, modeling, aggregating, and analyzing data. Although these tools still support a fixed function terminal (for example, 5250 or a telnet client), most of them are using either a browser-based or a specific client software.

Important: Do not confuse the term performance tools with the licensed product 5770-PT1 Performance Tools.

These performance tools cover three areas of systems management:

- Performance and capacity management
- Diagnostic analysis of processes within a system context
- Specific diagnostic tests for the IBM support organization

With these functions, you can set up practices for monitoring and managing your system performance to ensure that your IT infrastructure is aligned with the changing demands of your business.

This chapter describes how the Collection Services and the Analysis Tooling changed.

Requirement: To take advantage of all the Performance Tools enhancements that are described in this chapter, the system must have the latest levels of PTFs installed.

This chapter describes the following topics:

- Introduction to performance tooling
- Overview of data collection in IBM i 7.1
- IBM Navigator for i Performance Data Investigator
- IBM iDoctor for IBM i
6.1 Introduction to performance tooling

This chapter starts with a brief review of how the available tools for performance and capacity management are structured.

6.1.1 Gathering data

Four distinct functions collect data on IBM i:

- **Collection Services**
  
  This function provides for the collection of generic system management data. It is the primary collector of system data. You can run this function continuously to know what is happening with your system. Collection Services data is deposited into a management collection object and then converted and put into database files.

  The interval data that is collected is specified by either application-defined or user-defined interval data. This Collection Services is part of the IBM i operating system code. This chapter refers to these Collection Services as a separate entity.

- **IBM i Job Watcher**

  This function uses additional instrumentation for the collection of job data for any or all jobs, threads, and tasks on the system. It provides call stacks, SQL statements, objects that are being waited on, JVM statistics, wait statistics, and more, which are used to diagnose job-related performance problems.

- **IBM i Disk Watcher**

  This function provides for the collection of disk performance data to diagnose disk-related performance problems.

- **Performance Explorer**

  This function provides for the collection of detailed data at a program and application level to diagnose problems. It also traces the flow of work in an application and can be used to diagnose difficult performance problems.

  Application-defined performance explorer trace points, such as with Domino, NetServer, or WebSphere servers, specify the data that is collected. It is intended to be used as directed by IBM. Performance Explorer data is deposited into a management collection object and then converted and put into database files.

You can use data from all of these collectors and combine it to allow for an in-depth analysis of jobs and processes and how they use system resources.

**Operating system functionality:** All of the functions that allow the configuration of data collection, to start and end data collection, and to manage the collection objects, are part of the operating system.
6.1.2 Analyzing data

There are several tools and options to view, understand, and analyze data from the collection services. These tools and options are either built into the Performance Tools product, or delivered as an option or a service. This overview excludes any vendor tools or the analysis you can run using your own developed application:

- You can use the Display Performance Data GUI to view performance data that is generated by the collection services through a 5250 interface.
- The Reports function organizes Collection Services performance data and trace data in to a logical and useful format. In this release, there are no changes to this function.
- You can use the Performance Tools Graphics function to work with performance data in a graphical format. You can display the graphs interactively, or you can print, plot, or save the data to a graphics data format (GDF) file for use by other utilities.
- You can use the Investigate Data function of the IBM Navigator for IBM i to perform deep analyses of the data from a browser-based interface. For more information, see 17.16, “Performance enhancements” on page 722.
- System i Navigator provides not only an interface to view and analyze data, but you can use it to define monitoring functions for resource usage by individual, all, or selected jobs.
- The Job Watcher function of the IBM Navigator for i Performance interface is also included in Performance Tools as an option.
- The Disk Watcher function of the IBM Navigator for i Performance interface is included in Performance Tools.
- IBM iDoctor for IBM i provides a separate GUI interface to analyze Collection Services, Job Watcher, Disk Watcher, and Performance Explorer data.
- IBM Performance Management for Power Systems. The support for the IBM i offering automates the collection, archival, and analysis of system performance data and returns reports to help you manage system resources and capacity.

The Performance Management for Power Systems offering includes the Performance Management Agent (PM Agent). The PM Agent is a function of the operating system that provides automated collection of non-proprietary collection services data, reduces the data, and sends the data to IBM. When you send your data to IBM, you eliminate the need to store all the trending data yourself. IBM stores the data for you and provides you with a series of reports and graphs that show your server's growth and performance. You can access your reports electronically using a traditional browser.

This offering, when used with the IBM Systems Workload Estimator, allows you to understand how your business trends relate to the timing of required hardware upgrades, such as processor or disk. The IBM Systems Workload Estimator can size a systems consolidation or evaluate upgrading a system with logical partitions by having PM Agent send the data for multiple systems or partitions to the IBM Systems Workload Estimator.

6.2 Overview of data collection in IBM i 7.1

This section describes the changes in the collection profiles and in the data file that is kept when you collect performance information with the following details:

- These items are adapted to allow an in-depth analysis of the activities on the system to set up the preferred practices to analyze the behavior of applications on a system.
These items provide valuable information about how the workload is built up and how to create a workload management practice to reduce contention and avoid possible conflict situations.

This information can also be used to define how to instrument and document capacity management practices of your IT infrastructure.

You can use the IBM i performance tools to track how the performance and capacity objectives are met in an end-to-end approach.

You can use the detailed information in different perspective that these collection services generate to shape not only the workload management of a system, but also to analyze issues that can be caused by many events.

### 6.2.1 Collection profiles for Collection Services

The existing collection profiles (*MINIMUM, *STANDARD, *STANDARDP and *CUSTOM) stay the same in release 7.1, but there are several categories (except for the *MINIMUM and *ENHPCPLN profiles) added to them:

- The Standard profile now has the following additional functions:
  - External storage, containing non-standardized data for disk units that are externally attached to an IBM i partition (QAPMXSTGV).
  - System internal data, containing internal data for the system (QAPMSYSINT).
  - Removable storage, containing data about removable storage devices that are connected to the system, more specifically, tape device data.

- The Standard Plus profile contains the same functions as the STANDARD profile with the addition of the communication protocol data and IPCS, DSP, and TCPIFC.

- For the Custom profile, which already allows for the customization of the categories, you can now also specify the intervals. This specification means that you can have different categories of data that is collected at different intervals.
Figure 6-1 shows you how to access the Configure Collection Services option.

Figure 6-2 is an example of how you can configure the Custom collection profile.
6.2.2 Collection Services enhancements

Table 6-1 lists the enhancements that were made to the Collection Services component of Performance Tools.

<table>
<thead>
<tr>
<th>Collection Services Enhancements</th>
<th>Changed File</th>
<th>7.1 PTFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-IOV Ethernet physical ports</td>
<td>QAPMETHP</td>
<td>TR6 and SI47870</td>
</tr>
<tr>
<td>Job level SQL metrics</td>
<td>QAPMJOBMI</td>
<td>SI47594</td>
</tr>
<tr>
<td>IBM Storwize V7000</td>
<td>QAPMDISK</td>
<td>TR6</td>
</tr>
<tr>
<td>Active memory sharing deduplication</td>
<td>QAPMSHRMP</td>
<td>SI45848</td>
</tr>
<tr>
<td>DMPMEmINF updated to indicate page size</td>
<td></td>
<td>SI44192</td>
</tr>
<tr>
<td>SQL full open count</td>
<td>QAPMJOBOS</td>
<td>SI44183</td>
</tr>
<tr>
<td>Ethernet link aggregation</td>
<td>QAPMETH</td>
<td>SI43661</td>
</tr>
<tr>
<td>12X and P7IOC internal bus data</td>
<td>QAPMBUS QAPMBUSINT</td>
<td>SI43661</td>
</tr>
<tr>
<td>Workload groups</td>
<td>QAPMSYSWLC QAPMJOBMI</td>
<td>SI39804</td>
</tr>
<tr>
<td>TLBIE metrics</td>
<td>QAPMSYSINT</td>
<td>MF56871 and SI49418</td>
</tr>
</tbody>
</table>

SR-IOV Ethernet physical ports

Single Root I/O Virtualization (SR-IOV) Ethernet physical ports is a new feature that includes the following functions:

- SR-IOV virtualizes the physical ports of an adapter so that the ports can be shared by multiple partitions that are running simultaneously.

- A partition typically only has access to performance metrics for its own portion of the adapter. These partition metrics are reported by Collection Services the same way as any other Ethernet port and reported in the QAPMETH database file.

- Physical port data is reported only if the collecting partition has been authorized to obtain it. This authorization is a partition configuration attribute set on the Hardware Management Console (HMC).

- The physical port metrics are the aggregate of all the partitions using the physical port. These physical port data for Ethernet ports is now stored in the new QAPMETHP file.

- There is one record per interval per port. Port resource name can be used to uniquely associate records across intervals and to join with the records containing the virtual port Ethernet protocol statistics in the QAPMETH file.

- New metrics stored in the QAPMETHP file for Ethernet physical ports include the following data:
  - Port resource name
  - Frames transmitted without error
  - Frames received without error
  - CRC error
  - More than 16 retries
  - Out of window collisions
– Alignment error
– Carrier loss
– Discarded inbound frames
– Receive overruns
– Memory error
– Signal quality
– More than one retry to transmit
– Exactly one retry to transmit
– Deferred conditions
– Total MAC bytes received okay
– Total MAC bytes transmitted okay
– Transmit frames discarded
– Unsupported protocol frames

IBM i 7.1 TR6 and PTF SI47870 are required to collect these new data.

**Job level SQL metrics**

An updated template file for QAPMJOBMI is included with QSYS with the additional fields. This template file is only used when creating a new QAPMJOBMI file in libraries where it does not exist. Existing collection libraries (for example, QPFRDATA) that contain a prior version of QAPMJOBMI are not affected by the PTF.

The following metrics are being added to the job performance data *JOBMI category of Collection Services.

- SQL clock time (total time in SQ and below) per thread (microseconds)
- SQL unscaled CPU per thread (microseconds)
- SQL scaled CPU per thread (microseconds)
- SQL synchronous database reads per thread
- SQL synchronous nondatabase reads per thread
- SQL synchronous database writes per thread
- SQL synchronous nondatabase writes per thread
- SQL asynchronous database reads per thread
- SQL asynchronous nondatabase reads per thread
- SQL asynchronous database writes per thread
- SQL asynchronous nondatabase writes per thread
- Number of high-level SQL statements per thread

See the SI47594 PTF Cover letter special instructions at the following website:


**IBM Storwize V7000**

Collection Services added support in 7.1 TR6 for IBM Storwize V7000. A new flag in the QAPMDISK disk unit category (DSCAT) field indicates when a non-preferred path is in use.

The DSCAT field indicates whether the disk unit has some special characteristics that might require a special interpretation of its performance data. Each bit in this field has an independent meaning:

- **X’00’** = No special category applies.
- **X’01’** = This disk unit is in external storage media. This can also be determined by examining the device type and model for this disk unit.
- **X’02’** = Data on this disk unit is encrypted.
- **X’04’** = This is a virtual disk unit. This can also be determined by examining the device type and model for this disk unit.
Active memory sharing deduplication

Active memory sharing (AMS) is a function that is provided on POWER7 by PowerVM. For more information about AMS, see the IBM PowerVM Active Memory™ Sharing topic in the Systems Hardware Knowledge Center:


Collection Services supports data for AMS using the file QAPMSHRMP.

AMS was later enhanced to support deduplication of active memory. Collection Services supports deduplication metrics in QAPMSHRMP using the following existing reserved fields:

- SMFIELD1: Partition logical memory deduplicated. The amount of the partition’s logical memory (in bytes) mapped to a smaller set of physical pages in the shared memory pool because it was identical to other pages in the shared memory pool.
- SMFIELD4: Pool physical memory deduplicated. The amount of physical memory (in bytes) within the shared memory pool that logical pages of memory from the partitions sharing the pool have been mapped to because of deduplication.
- MPFIELD1: Unscaled deduplication time. The amount of processing time, in microseconds, spent deduplicating logical partition memory within the shared memory pool.
- MPFIELD2: Scaled deduplication time. The amount of scaled processing time, in microseconds, spent deduplicating logical partition memory within the shared memory pool.

The Collection Services support was added to 7.1 in PTF SI45848.

DMPMEMINF updated to indicate page size

The Dump Main Memory Information (DMPMEMINF) command dumps information about pages of main memory to a file. In 7.1 PTF SI44192, the output of this command has been updated to indicate whether the size of the page is 4 K or 64 K.

For more information about DMPMEMINF, see the Dump Main Memory Information (DMPMEMINF) topic in the IBM i 7.1 Knowledge Center:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Fcl%2Fdmpmeminf.htm

SQL full open count

Database is instrumenting a new metric for the number of full opens that occur within a job. This metric is reported by Collection Services in the QAPMJOBOS file. An existing reserved field (JBNUS) now contains this new metric.

The new and existing fields contain the total number of times the specific operation occurred within the job during the Collection Services time interval:

- New field: JBNUS

  The number of native database (non-SQL) files and SQL cursors that have been fully opened. Subtracting the value within field JBLBO from JBNUS yields the number of non-SQL full opens.
Existing fields (for SQL Cursors): JBLBO
The cumulative number of SQL cursors that have been full opened.

Existing fields (for SQL Cursors): JBLBS
The cumulative number of SQL cursors that have been pseudo-opened. Pseudo-opens are also known as reused SQL cursors.

This support was added to 7.1 in PTF SI44183.

Ethernet link aggregation
In preparation for the Ethernet link aggregation function, the Collection Services protocol files (example QAPMETH) were updated in the base 7.1 release to provide the port resource name that is associated with the reported line. These changes are documented for each affected Collection Services file in the Collection Services data files topic in IBM i 7.1 Knowledge Center:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzahx%2Frzahxq.apmeth.htm

Collection Services support for Ethernet link aggregation was added in 7.1 PTF SI43661. With this PTF applied, the protocol files contain one record per interval for each port that is associated with a line. Therefore, multiple records for the same line occur each interval if Ethernet link aggregation is used. Each record reports data unique to activity on that port.

For more information about Ethernet link aggregation, see 9.9, “Ethernet link aggregation” on page 438.

12X and P7IOC internal bus data
The support to collect 12X and P7IOC performance data in IBM i Collection Services occurred in stages where 12X was supported first in the base 7.1 release and was followed by P7IOC support.

Data is collected and the CRTPFRDTA function exports the new data to a new file called QAPMBUSINT.

Support for P7IOC data was built on top of the 12X support. P7IOC support was added to 7.1 in PTF SI43661 and has the following parts:

- Data for the internal bus. These data were added to QAPMBUSINT with a new value for bus type (BUTYPE field) to identify these records.
- Hardware data are available for PCI buses that are attached to a P7IOC. These new PCI data are provided in the QAPMBUS file.

Workload groups
Collection Services added the support to report system-wide usage data for workload groups and thread-level data to help understand performance issues that are related to workload grouping. This support was added in 7.1 PTF SI39804.

The *JOBMI data category and QAPMJOBMI file supports more metrics that identify the group that a thread was associated with at sample time along with how much time that thread was not able to run due to workload grouping constraints. Descriptions of the QAPMJOBMI fields JBFLDR2 and JBFLDR3 can be found in the IBM i 7.1 Knowledge Center:

The *SYSLVL collection category now collects workload group data for groups that are in use. The new QAPMSYSWLC file or member is only created if the source *MGTCOL collection contains data for workload groups. Field descriptions for the new QAPMSYSWLC file can be found in the IBM i 7.1 Knowledge Center:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzahx%2Frzahxg
 apmsyswlc.htm

**TLBIE metrics**

Collection Services added support to capture statistics for the TLBIE instructions that are frequently needed by IBM support to help investigate performance issues. Support was added in PTFs MF56871 and SI49418. After the PTFs are applied, file QAPMSYSINT contains additional data in record type 3. Field descriptions for this file are not available in the IBM i 7.1 Knowledge Center, but are described in “QAPMSYSINT” on page 315.

6.2.3 Collection Services data files

You can generate database files from the collection objects that are maintained by Collection Services.

Performance data is a set of information about the operation of a system (or network of systems) that can be used to understand response time and throughput. You can use performance data to adjust programs, system attributes, and operations. These adjustments can improve response times and throughputs. Adjustments can also help you to predict the effects of certain changes to the system, operation, or program.

Collection Services collects performance data into a management collection object (*MGTCOL). The Create Performance Data (CRTPFRDTA) command processes data from that collection object and stores the result in performance database files. Figure 6-3 shows how to create performance data in IBM Navigator for i.

![Figure 6-3 Creating performance data in IBM Navigator for i](image)
Extra field information, such as number of bytes and buffer position, is available by using the Display File Field Description (DSPFFD) command. For example:

```
DSPFFD FILE(QSYS/QAPMCONF)
```

- Collection Services data files that contain time interval data. These files contain performance data that is collected for each interval.
- Field data for configuration database files. Configuration data is collected once per session. You can find the QAPMCONF, QAPMHDMWR, and QAPMSBSD files in the configuration data files.
- Field data for trace database files. Trace data is collected only when you choose to do so. You can find the QAPMDMPT file in the trace data files.
- System category and file relationships. When you collect performance data using Collection Services, the data is stored in a management collection (*MGTCOL) object.
- Task type extender. A task type extender identifies the area of functional support that is provided by the task.

The following sections discuss some of the Collection Services data files.

For more information about the Collection Services data files, see the IBM i 7.1 Knowledge Center:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzahx%2Frzahxp erdatafiles1a.htm

**QAPMBUS**

This database file contains data for external system buses.

Support for a particular bus and what metrics are supported for that bus depends on the type of bus, how that bus connects to the system, and whether it is assigned to the partition.

Historically, records were produced for all PCI buses even though data was instrumented only for bus usage within the collecting partition. For that situation now, data is captured only for those buses that have activity within the collecting partition.

For newer technologies, the hardware might provide more instrumentation. Hardware metrics represent bus usage by all partitions. The collecting partition must be authorized to obtain these data (see the “Allow performance information collection” option within the HMC partition configuration). If the collecting partition is authorized, buses that support hardware metrics are reported independent of partition assignments.

Table 6-2 shows the contents of the QAPMBUS table.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTNUM</td>
<td>Interval number: The nth sample database interval that is based on the start time in the Create Performance Data (CRTPFRTA) command.</td>
</tr>
<tr>
<td>DATETIME</td>
<td>Interval date (mmddyy) and time (hhmmss): The date and time of the sample interval.</td>
</tr>
<tr>
<td>INTSEC</td>
<td>Elapsed interval seconds: The number of seconds since the last sample interval.</td>
</tr>
<tr>
<td>BUIOPB</td>
<td>System bus number: Bus numbering begins with one. Before V5R4, bus numbering began with zero.</td>
</tr>
<tr>
<td>BUOPSR</td>
<td>Number of OPSTARTs received: RRCH in server storage.</td>
</tr>
<tr>
<td>Column name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>BUSGLR</td>
<td>Signals received.</td>
</tr>
<tr>
<td>BUOPSS</td>
<td>Number of OPSTARTs sent.</td>
</tr>
<tr>
<td>BUSGLS</td>
<td>Signals sent.</td>
</tr>
<tr>
<td>BURSTQ</td>
<td>Restart queues that are sent.</td>
</tr>
<tr>
<td>BUNAR</td>
<td>Occurrences of BNA received.</td>
</tr>
<tr>
<td>BUTPKT</td>
<td>Total packets (sent or received).</td>
</tr>
<tr>
<td>BUKBYO</td>
<td>Kilobytes DMAed out.</td>
</tr>
<tr>
<td>BUKBYI</td>
<td>Kilobytes DMAed in.</td>
</tr>
<tr>
<td>BUNOSR</td>
<td>Normal flow OPSTARTs received.</td>
</tr>
<tr>
<td>BUNRDR</td>
<td>Reserved.</td>
</tr>
<tr>
<td>BUORQS</td>
<td>OPSTART requests sent.</td>
</tr>
<tr>
<td>BUTIMO</td>
<td>Reserved.</td>
</tr>
<tr>
<td>BUNAS</td>
<td>Reserved.</td>
</tr>
<tr>
<td>BUQSAS</td>
<td>Queue space available sent.</td>
</tr>
</tbody>
</table>
| BUTYPE     | Bus type. Supported values are:  
|            | ‣ 'S' = SPD bus (no longer supported).  
|            | ‣ 'P' = PCI bus.  
|            | ‣ 'V' = Virtual bus. |
| BUCAT      | Bus category. This field indicates if this bus record has some special characteristics, which might require a special interpretation of its performance data. Each bit in this field has an independent meaning:  
|            | ‣ X'00' = No special category applies.  
|            | ‣ X'01' = This bus is attached to an I/O hub.  
|            | (Note: The following might be used depending on what happens with switches.)  
|            | ‣ X'02' = This record represents a switch. The data that is reported is the sum of all buses under the switch. The bus number that is reported is the first bus under the switch. |
| BUHUB      | Hub number. If this bus is associated with an I/O hub, this number is the number of that hub. (Note: An I/O hub can be embedded in the backplane.) |
| BUMAXRATE  | Maximum byte rate. When available from hardware, this rate is the estimated maximum rate that data might be both sent and received in bytes per second through the hardware port. |
| BUCBSND    | Command bytes sent. When available from hardware, this number is the number of command bytes sent through the hardware port. |
| BUDBSBD    | Data bytes sent. When available from hardware, this number is the number of data bytes sent through the hardware port. |
| BUCBRCV    | Command bytes received. When available from hardware, this number is the number of command bytes received through the hardware port. |
| BUDBRCV    | Data bytes received. When available from hardware, this number is the number of data bytes received through the hardware port. |
QAPMBUSINT

This file contains data for internal system buses.

The metrics that are supported depend on the instrumentation within the hardware chips. Support for a particular bus depends on both the type of bus and the chip family.

There might be one or more records for each interval for a reported bus. The number of records and the metrics that are supported depend on both the bus type and chip type.

These metrics are instrumented in the hardware and represent bus usage by all partitions. The collecting partition must be authorized to obtain these data (see “Allow performance information collection” option within the HMC partition configuration.

Table 6-3 shows the contents of the QAPMBUSINT table.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUNBR</td>
<td>The hardware assigned number that is associated with the bus or hub.</td>
</tr>
</tbody>
</table>
| BUTYPE      | Bus type. The supported bus types are:  
  - 4 - 12X loop.  
  - 6 - I/O hub (might be embedded in the backplane). |
| INTNUM      | Interval number: The nth sample database interval based on the start time specified in the Create Performance Data (CRTPFRDTA) command. |
| DTETIM      | Interval date and time. The date and time of the sample interval. |
| INTSEC      | Elapsed interval seconds: The number of seconds since the last sample interval. |
| BUNBR       | Bus number. The hardware assigned number that is associated with the bus or hub. |
| BUTYPE      | Bus type. Supported bus types are:  
  - 4 - 12X Loop  
  - 6 - I/O hub (might be embedded in the backplane) |
| BUDFMT      | Bus data format. This field is provided to help you understand what data are instrumented by the hardware components of the bus if there are future differences. |
| BUATTR1     | Bus attribute 1. The meaning of this field depends on the bus type. One row is present for each bus type (BUTYPE) field:  
  - Type 4: Port identifier. One record is present for each supported port.  
    - 0 = even port  
    - 1 = odd port  
  - Type 6: Category.  
    - 0 = Topside port |
| BUPKTSND    | Packets sent. Not supported for type 6. |
| BUPKTRCV    | Packets received. Not supported for type 6. |
| BUBYTESND   | Data bytes sent. Not supported for type 6. |
| BUYTERCV    | Data bytes received. Not supported for type 6. |
| BUMAXRATE   | Maximum byte rate. The estimated maximum rate that data can be both sent and received in bytes per second. |
| BUDATA1     | The meaning of this field depends on the type (BUTYPE) field:  
  - Type 4: Reserved.  
  - Type 6: Command bytes sent. |
You find new entries in this table that detail, per path, the total read and write operations and worldwide node names for external disks. Table 6-4 shows the added columns.

**Table 6-4   New columns in the QAPMDISK table**

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSPTROP</td>
<td>The path total read operations reports the number of read requests that are received by internal machine functions, which is not the same as the device read operations reported in the DSDROP field.</td>
</tr>
<tr>
<td>DSPTWOP</td>
<td>The path total write operations reports the number of write requests that are received by internal machine functions, which is not the same as the device write operations that are reported in the DSDWOP field.</td>
</tr>
<tr>
<td>DSWWNN</td>
<td>The worldwide node name is a unique identifier that represents the external storage subsystem that the disk belongs to. This value is null for non-external disks.</td>
</tr>
</tbody>
</table>

**QAPMDISKRB**

Up to release 6.1, the QAPMDISK table contained a detailed set of data about the performance of the disk unit. This design was kept, but complemented with a new table (QAPMDISKRB) that contains only the disk operations per interval. At the same time, it increases the number of bucket definition boundaries reported from 6 to 11, separates the read and write operations in different counters, and reports the bucket definition boundaries in microseconds instead of in milliseconds. These changes apply to all disks, internal or external. Each entry in the QAPMDISKRB table contains the number of I/O operations, the response time, and the service time. The associated disk response time boundaries (in microseconds) are reported in the QAPMCONF file in GKEY fields G1–GA, for which there is no interface to change them.

You can find the breakouts for those buckets in Table 6-5. Both QAPMDISK and QAPMDISKRB tables carry the same columns for each row (interval number and device resource name), so they can be joined for analysis.

**Table 6-5   Boundaries per bucket in the QAPMDISKRB and QAPMDISK tables**

<table>
<thead>
<tr>
<th>Bucket</th>
<th>QAPMDISKRB (microseconds)</th>
<th>QAPMDISK (milliseconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&gt;</td>
<td>&lt;</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>250</td>
</tr>
<tr>
<td>3</td>
<td>250</td>
<td>1,000</td>
</tr>
<tr>
<td>4</td>
<td>1,000</td>
<td>4,000</td>
</tr>
<tr>
<td>5</td>
<td>4,000</td>
<td>8,000</td>
</tr>
<tr>
<td>6</td>
<td>8,000</td>
<td>16,000</td>
</tr>
<tr>
<td>7</td>
<td>16,000</td>
<td>64,000</td>
</tr>
</tbody>
</table>
This database file includes the physical port Ethernet protocol statistics for active Ethernet line descriptions that are associated with an Ethernet port on a Single Root I/O Virtualization (SR-IOV) adapter (Table 6-6).

Physical port data is reported only if the collecting partition has been authorized to obtain it. This authorization is a partition configuration attribute set on the Hardware Management Console (HMC).

There is one record per interval per port. Port resource name can be used to uniquely associate records across intervals and to join with the records that contain the virtual port Ethernet protocol statistics in the QAPMETH file.

### Table 6-6 New columns in the QAPMETH table

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTNUM</td>
<td>Interval number: The nth sample database interval based on the start time specified in the Create Performance Data (CRTPFRTA) command.</td>
</tr>
<tr>
<td>DATETIME</td>
<td>Interval date (yymmdd) and time (hhmm: ss): The date and time of the sample interval.</td>
</tr>
<tr>
<td>INTSEC</td>
<td>Elapsed interval seconds: The number of seconds since the last sample interval.</td>
</tr>
<tr>
<td>ETMPORT</td>
<td>Port resource name.</td>
</tr>
<tr>
<td>ETMFTG</td>
<td>Frames transmitted without error.</td>
</tr>
<tr>
<td>ETMFRG</td>
<td>Frames received without error.</td>
</tr>
<tr>
<td>ETMCRE</td>
<td>CRC error: Checksum errors detected by the receiver.</td>
</tr>
<tr>
<td>ETMEXR</td>
<td>More than 16 retries: Frame unsuccessfully transmitted due to excessive retries.</td>
</tr>
<tr>
<td>ETMOWC</td>
<td>Out of window collisions: Collision occurred after slot time of channel elapsed.</td>
</tr>
<tr>
<td>JBINDCPU</td>
<td>The amount of unscaled processor time (in µs) that represents the work that is done solely within this thread without regard for how server task work is charged.</td>
</tr>
<tr>
<td>ETMALE</td>
<td>Alignment error: Inbound frame contained non-integer number of bytes and a CRC error.</td>
</tr>
<tr>
<td>ETMCRCL</td>
<td>Carrier loss: Carrier input to the chipset on the IO adapters is false during transmission.</td>
</tr>
<tr>
<td>ETMDIF</td>
<td>Discarded inbound frames: Receiver discarded frame due to lack of AIF entries.</td>
</tr>
<tr>
<td>ETMROV</td>
<td>Receive overruns: Receiver has lost all or part of an incoming frame due to buffer shortage.</td>
</tr>
<tr>
<td>ETMMEE</td>
<td>Memory error: The chipset on the IO adapters is the bus master and did not receive ready signal within 25.6 microseconds of asserting the address on the DAL** lines.</td>
</tr>
</tbody>
</table>
The QAPMJOBMI table now has information about lock counts on a thread basis, providing details about which locks are held (seizes, process scoped locks, thread scoped locks, process scoped database record locks, and thread scoped database record locks held). It also holds information about the resource affinity status changes of a thread or process.

**Cache memory access:** On Power Systems, all of the processor cores on any chip can access any of the cache memory in the entire system. The management of the relationship between the processor or “node” where a task runs and the “nodal” location where that task finds its data is called **Memory Resource Affinity**.

Collection Services now includes physical I/O breakdown by SQL activity. These metrics are included in the *JOBMI collection category and reported by Collection Services in the QAPMJOBMI file. An updated template file for QAPMJOBMI is included with QSYS with the additional fields. This template file is used only when you create QAPMJOBMI file in libraries where it does not exist. This enhancement enables improved native database versus SQL database performance isolation.
Table 6-7 lists the new columns in the QAPMJOBMI table.

Table 6-7  New columns in the QAPMJOBMI table

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JBNFHN</td>
<td>The identifier of a resource affinity domain that this software thread or task is associated with. A thread or task is associated with the resource affinity domain at a create time, but the operating system can decide to move it to another resource affinity domain later.</td>
</tr>
<tr>
<td>JBNFLVL</td>
<td>The resource affinity level specifies the relative strength of the binding between a thread and the internal machine resources with which it has affinity (processors and main storage). The strength is expressed as:</td>
</tr>
<tr>
<td></td>
<td>• X'00' = Processor normal, main storage normal</td>
</tr>
<tr>
<td></td>
<td>• X'01' = Processor normal, main storage high</td>
</tr>
<tr>
<td></td>
<td>• X'10' = Processor high, main storage normal</td>
</tr>
<tr>
<td></td>
<td>• X'11' = Processor high, main storage high</td>
</tr>
<tr>
<td></td>
<td>• X'03' = Processor normal, main storage none</td>
</tr>
<tr>
<td></td>
<td>• X'20' = Processor low, main storage normal</td>
</tr>
<tr>
<td>JBNFGRP</td>
<td>The identifier of a resource affinity group or resource affinity domain. This identifier specifies how threads or tasks are related to other threads or tasks in their use of internal machine processing resources, or how they are related to specific resource affinity domains.</td>
</tr>
<tr>
<td>JBNFHNC</td>
<td>The amount of processor time that is used by the thread on the resource affinity domain that this thread is associated with. The time is reported in internal model-independent units. This time is called the <strong>Local Dispatch Time</strong>.</td>
</tr>
<tr>
<td>JBNFFNC</td>
<td>The amount of processor time that is used by the thread on resource affinity domains other than the one that this thread is associated with, but within the same group. The time is reported in internal model-independent units. This time is called the <strong>Non-Local Dispatch Time</strong>.</td>
</tr>
<tr>
<td>JBNFHNP</td>
<td>The number of 4-K page frames that are allocated for this thread during this interval from the resource affinity domain that this thread is associated with. These frames are called <strong>Local page frames</strong>.</td>
</tr>
<tr>
<td>JBNFFNP</td>
<td>The number of 4-K page frames that are allocated for this thread during this interval from resource affinity domains other than the one that this thread is associated with, but within the same group. These frames are called <strong>Non-local page frames</strong>.</td>
</tr>
<tr>
<td>JBTNAME</td>
<td>Identifies the name of secondary thread at sample time. The field is blank for primary threads, tasks, and unnamed secondary threads.</td>
</tr>
<tr>
<td>JBSLTCNT</td>
<td>If the short lifespan entry count is greater than zero, the entry does not represent a particular task or secondary thread. Instead, it is a special record that is used to report data that is accumulated for tasks and threads whose lifespan was shorter than the reporting threshold that was in effect when the collection started. Short lifespan tasks are reported for the processor node that they were associated with and short lifespan secondary threads are reported for the job to which they belong.</td>
</tr>
<tr>
<td>JBSACPU</td>
<td>The accumulated job scaled processor time that is charged (in microseconds). The accumulated scaled interval processor time that is charged for all threads of the job since the job started. This field is provided for primary threads only.</td>
</tr>
<tr>
<td>JBINDCPU</td>
<td>The amount of unscaled processor time (in µs) that represents the work that is done solely within this thread without regard for how server task work is charged.</td>
</tr>
<tr>
<td>JBSINDCPU</td>
<td>Thread scaled processor time that is used (in microseconds). The amount of scaled processor (in µs) time that represents the work that is done solely within this thread without regard for how server task work is charged.</td>
</tr>
<tr>
<td>JBCPUWC</td>
<td>The elapsed processor time (in µs) that a task runs.</td>
</tr>
<tr>
<td>Column name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>JBVPDLY</td>
<td>The elapsed delay time (in microseconds) because virtualization for a task when it was running. The virtual processor delay time includes virtual processor thread wait event time, virtual processor thread wait ready time, and virtual processor thread dispatch latency.</td>
</tr>
<tr>
<td>JBSEIZECNT</td>
<td>The number of seizes held by this thread at the time that the data was sampled.</td>
</tr>
<tr>
<td>JBPSLCKCNT</td>
<td>The number of process scoped locks that are held by this thread at the time that the data was sampled.</td>
</tr>
<tr>
<td>JBTSLCKCNT</td>
<td>The number of thread scoped locks that are held by this thread at the time that the data was sampled.</td>
</tr>
<tr>
<td>JBTSRCDLCK</td>
<td>The number of thread scoped database record locks held by this thread at the time that the data was sampled.</td>
</tr>
<tr>
<td>JBNFOGDT</td>
<td>The amount of processor time that is used by the thread in a resource affinity group other than the one that this thread is associated with. The time is reported in internal model-dependent units.</td>
</tr>
<tr>
<td>JBNFOGMA</td>
<td>The number of 4-K page frames that are allocated for this thread during this interval from a resource affinity group other than the one that this thread is associated with.</td>
</tr>
<tr>
<td>JBFLDR2</td>
<td>Workload capping group delay time (in microseconds). The amount of time that this thread could not be dispatched because of workload capping.</td>
</tr>
<tr>
<td>JBFLDR3</td>
<td>Workload capping group. The identifier for the workload capping group that this thread belonged to at the time these data were sampled. A value of zero is reported when no group was assigned.</td>
</tr>
<tr>
<td>JBSQLCLK</td>
<td>SQL clock time. The amount of clock time (in microseconds) this thread has spent running work that was done on behalf of an SQL operation.</td>
</tr>
<tr>
<td>JBSQLCPU</td>
<td>Thread unscaled SQL CPU time used. The amount of unscaled processor time (in microseconds) this thread has used running work that was done on behalf of an SQL operation</td>
</tr>
<tr>
<td>JBSQLSCPU</td>
<td>Thread scaled SQL processor time used. The amount of scaled processor time (in microseconds) that this thread used running work that was done on behalf of an SQL operation.</td>
</tr>
<tr>
<td>JBSQLDBR</td>
<td>SQL synchronous database reads. The total number of physical synchronous database read operations that are done on behalf of an SQL operation.</td>
</tr>
<tr>
<td>JBSQLNDBR</td>
<td>SQL synchronous nondatabase reads. The total number of physical synchronous non-database read operations that are done on behalf of an SQL operation.</td>
</tr>
<tr>
<td>JBSQldbW</td>
<td>SQL synchronous database writes. The total number of physical synchronous database write operations that are done on behalf of an SQL operation.</td>
</tr>
<tr>
<td>JBSQlndbW</td>
<td>SQL synchronous nondatabase writes. The total number of physical synchronous non-database write operations that are done on behalf of an SQL operation.</td>
</tr>
<tr>
<td>JBSQLADBR</td>
<td>SQL asynchronous database reads. The total number of physical asynchronous database read operations that are done on behalf of an SQL operation.</td>
</tr>
<tr>
<td>JBSQLANDBR</td>
<td>SQL asynchronous nondatabase reads. The total number of physical asynchronous non-database read operations that are done on behalf of an SQL operation.</td>
</tr>
<tr>
<td>JBSQLADBW</td>
<td>SQL asynchronous database writes. The total number of physical asynchronous database write operations that are done on behalf of an SQL operation.</td>
</tr>
</tbody>
</table>
This file contains data for jobs that run save or restore operations. It contains one record per job for each operation type that is run.

If you click Collection Services → Collection Services Database Files, and then select QAPMJOBSR in Performance Data Investigator (PDI), you see an overview of the data that looks like Figure 6-4.

**QAPMJOBSR**

This file contains data for jobs that run save or restore operations. It contains one record per job for each operation type that is run.

If you click Collection Services → Collection Services Database Files, and then select QAPMJOBSR in Performance Data Investigator (PDI), you see an overview of the data that looks like Figure 6-4.

---

**QAPMSHRMP**

The QAPMSHRMP table reports shared memory pool data (refer to as Active Memory Sharing in PowerVM). This data is generated only when a partition is defined to use a shared memory pool. Data is reported for both the partition's use of the pool and pool metrics that are the sum of activity that is caused by all partitions using the pool. You must have a POWER6 system and firmware level xx340_075 or later for this data to be available. See Table 6-8 for the data that is kept in this table, which shows the interval number (INTNUM), date and time (DTETIM), and the seconds in the interval (INTSEC) columns.

---

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPOOLID</td>
<td>Shared memory pool identifier. The identifier of the shared memory pool that this partition is using.</td>
</tr>
<tr>
<td>SMWEIGHT</td>
<td>Memory weight. Indicates the variable memory capacity weight that is assigned to the partition. Valid values are hex 0 - 255. The larger the value, the less likely this partition is to lose memory.</td>
</tr>
</tbody>
</table>
The QAPMSYSTEM reports system-wide performance data. In IBM i 7.1, columns are added, as shown in Table 6-9.

### Table 6-9  New columns in QAPMSYSTEM

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMREALUSE</td>
<td>Physical real memory used. The amount of shared physical real memory, in bytes, that was being used by the partition memory at the sample time.</td>
</tr>
<tr>
<td>SMACCDLY</td>
<td>Real memory access delays. The number of partition processor waits that occurred because of page faults on logical real memory.</td>
</tr>
<tr>
<td>SMACCWAIT</td>
<td>Real memory access wait time. The amount of time, in milliseconds, that partition processors waited for real memory page faults to be satisfied.</td>
</tr>
<tr>
<td>SMENTIOIC</td>
<td>Entitled memory capacity for I/O. The amount of memory, in bytes, assigned to the partition for usage by I/O requests.</td>
</tr>
<tr>
<td>SMMINIOIC</td>
<td>Minimum entitled memory capacity for I/O. The minimum amount of entitled memory, in bytes, needed to function with the current I/O configuration.</td>
</tr>
<tr>
<td>SMOPTIOIC</td>
<td>Optimal entitled memory capacity for I/O. The amount of entitled memory, in bytes, that allow the current I/O configuration to function without any I/O memory mapping delays.</td>
</tr>
<tr>
<td>SMIOCUSE</td>
<td>Current I/O memory capacity in use. The amount of I/O memory, in bytes, currently mapped by I/O requests.</td>
</tr>
<tr>
<td>SMIOCMAX</td>
<td>Maximum I/O memory capacity used. The maximum amount of I/O memory, in bytes, that was mapped by I/O requests since the partition last had an IPL or the value was reset by an explicit request.</td>
</tr>
<tr>
<td>SMIOMDLY</td>
<td>I/O memory mapping delays. The cumulative number of delays that occurred because insufficient entitled memory was available to map an I/O request since the partition last underwent an IPL.</td>
</tr>
<tr>
<td>MPACCDLY</td>
<td>Pool real memory access delays. The number of virtual partition memory page faults within the shared memory pool for all partitions.</td>
</tr>
<tr>
<td>MPACCWAIT</td>
<td>Pool real memory access wait time. The amount of time, in milliseconds, that all partitions processors spent waiting for page faults to be satisfied within the shared memory pool.</td>
</tr>
<tr>
<td>MPPHYMEM</td>
<td>Pool physical memory. The total amount of physical memory, in bytes, assigned to the shared memory pool.</td>
</tr>
<tr>
<td>MPLOGMEM</td>
<td>Pool logical memory. The summation, in bytes, of the logical real memory of all active partition active partitions that are served by the shared memory pool.</td>
</tr>
<tr>
<td>MPENTIOIC</td>
<td>Pool entitled I/O memory. The summation, in bytes, of the I/O entitlement of all active partitions that are served by the shared memory pool.</td>
</tr>
<tr>
<td>MPIOCUSE</td>
<td>Pool entitled I/O memory in use. The summation, in bytes, of I/O memory that is mapped by I/O requests from all active partitions that are served by the shared memory pool.</td>
</tr>
</tbody>
</table>

**QAPMSYSTEM**

Virtual processor thread wait event time. The elapsed time in microseconds that blocked threads of the partition’s virtual processors were waiting for an event that caused them to become ready to run.

Virtual processor thread wait ready time. The elapsed time in microseconds that ready to run threads of the partition’s virtual processors waited to be dispatched when entitled capacity was exhausted.
### Column name Description

SYPTLATEN	Virtual processor thread dispatch latency. The elapsed time in microseconds that ready to run threads of the partition's virtual processors waited to be dispatched when entitled capacity was not exhausted and a physical processor was not available.
SYPTACT	Virtual processor thread active time. The elapsed time in milliseconds summed for all threads of a virtual processor for the time that the virtual processor is active in the partition. A virtual processor that is active is one that is varied on; a virtual processor that is not active is either varied off or not installed.
SYPTIDLE	Virtual processor thread idle time. The elapsed time in milliseconds summed for all threads of a virtual processor for the time that thread is idle in the partition. A processor thread that is idle is one that is varied on and running the partition's idle loop.
SYPTINTR	Virtual processor thread interrupt time. The elapsed time in milliseconds summed for all threads of a virtual processor for the time that thread is handling interrupts in the partition.
SYFRMCPU	Processor firmware time used (in microseconds). The amount of processor firmware time that is used by this partition.
SYFRMSCPU	Processor scaled firmware time that is used (in microseconds). The amount of scaled processor firmware time that is used by this partition.
SYEMMAJCDE	Energy management major code.
SYEMMINCDE	Energy management minor code.
SYEMPWRLMT	Energy management power draw limit in watts.

---

### Processor Folding

- Processor folding enhances the use of the shared processor pools by minimizing the usage of idle virtual processors (VP). This configuration allows virtual partitions to be configured with more VPs to take better advantage of the shared processor pool. It does so by allowing you to increase the number of VPs on your configuration without a performance impact. It also increases the average VP dispatch cycle. This results in better cache use and reduced workload in the Hypervisor.

- **Notes:**
  
  a. Maj 0, Min 0 = Unspecified or unavailable; Maj 0, Min 2 = Disabled (nominal performance); Maj 0, Min 1 = Enabled (maximum performance); Maj 0, Min 3 = Enabled (power saver); Maj 1, Min 0-127 = Enabled (dynamic power optimizer).
QAPMSYSWLC
This database file reports workload capping group data. Data is generated only when one or more workload capping groups were in use during the collection. A record is written for each group that is active. Table 6-10 shows the columns in QAPMSYSWLC.

Table 6-10  Columns in QAPMSYSWLC

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTNUM</td>
<td>Interval number. The nth sample database interval that is based on the start time that is specified in the Create Performance Data (CRTPFRDTA) command.</td>
</tr>
<tr>
<td>DATETIME</td>
<td>Interval date and time. The date and time of the sample interval.</td>
</tr>
<tr>
<td>INTSEC</td>
<td>Elapsed interval seconds. The number of seconds since the last sample interval.</td>
</tr>
<tr>
<td>SWGROUP</td>
<td>Group ID. The identifier for the workload group.</td>
</tr>
<tr>
<td>SWGNAME</td>
<td>Group Name. The name that is assigned to the workload group when it is allocated by License Management.</td>
</tr>
<tr>
<td>SWPRCASN</td>
<td>Processors assigned. The maximum number of processors that can be used concurrently by all threads of all processes that are associated with the workload group. This value is the value that is associated with the group at the time data was sampled.</td>
</tr>
<tr>
<td>SWPRCAVL</td>
<td>Processor time available (in microseconds). The amount of processor time that this group had available to it based on the number of processors that are assigned to the group over time.</td>
</tr>
<tr>
<td>SWPRCUSE</td>
<td>Processor unscaled time used (in microseconds). The amount of unscaled processor time that is used within the threads that are assigned to this group. This value does not include the time that is charged to a thread by server tasks.</td>
</tr>
<tr>
<td>SWSPRCUSE</td>
<td>Processor scaled time that is used (in microseconds). The amount of scaled processor time that is used within threads that are assigned to this group. This value does not include the time that is charged to a thread by server tasks.</td>
</tr>
<tr>
<td>SWDELAY</td>
<td>Dispatch latency time. The amount of time ready to run threads could not be dispatched because of the group's maximum concurrent processor limit.</td>
</tr>
<tr>
<td>SWPRCADD</td>
<td>Processes added. The number of process instances that became associated with this group during the interval.</td>
</tr>
<tr>
<td>SWPRCRMV</td>
<td>Processes removed. The number of process instances that were disassociated from this group during the interval.</td>
</tr>
</tbody>
</table>

QAPMTAPE
The QAPMTAPE table contains the tape device data that is collected in the Removable storage (*RMVSTG) collection category. It contains one record per interval per tape device that is connected to the system. Besides the data about the interval, it contains the columns in Table 6-11.

Table 6-11  New columns in QAPMTAPE

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPRDS</td>
<td>Number of reads</td>
</tr>
<tr>
<td>TPWRTS</td>
<td>Number of writes</td>
</tr>
<tr>
<td>TPBRD</td>
<td>Bytes read</td>
</tr>
<tr>
<td>TPBWRT</td>
<td>Bytes written</td>
</tr>
<tr>
<td>TPWREQ</td>
<td>Time spent waiting for a request from the client (in milliseconds)</td>
</tr>
</tbody>
</table>
In IBM i 7.1, the QAPMXSTGD table was added with performance data of external storage systems (DS8000 and DS6000 storage servers). These data can be analyzed with iDoctor - Collection Services Investigator. The table contains mainly volume and LUN-oriented statistics and can also get advanced Logsensestats from those storage servers. The support for *EXTSTG is disabled when sent. For more information, see the Memo to Users and APAR SE41825 for PTF information at:


For more information, see Chapter 8, “Storage and solid-state drives” on page 373.

### QAPMXSTGD

Table 6-12 shows the contents of the QAPMXSTGD table for record type 3, SIDID 1.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPWRESP</td>
<td>Time spent waiting for a response from the drive (in milliseconds)</td>
</tr>
<tr>
<td>TPSFMCMD</td>
<td>Space by file mark commands</td>
</tr>
<tr>
<td>TPFLMRKSPC</td>
<td>File marks spaced</td>
</tr>
<tr>
<td>TPSBCMD</td>
<td>Space block commands</td>
</tr>
<tr>
<td>TPBLCKSPC</td>
<td>Blocks spaced</td>
</tr>
<tr>
<td>TPWFMCMCD</td>
<td>Write file mark commands</td>
</tr>
<tr>
<td>TPFLMRKWRT</td>
<td>File marks written</td>
</tr>
<tr>
<td>TPSEODCMD</td>
<td>Space to EOD commands</td>
</tr>
<tr>
<td>TPWBCMD</td>
<td>Write buffer commands</td>
</tr>
<tr>
<td>TPRELEASES</td>
<td>Release commands</td>
</tr>
<tr>
<td>TPREWINDS</td>
<td>Tape rewinds</td>
</tr>
<tr>
<td>TPUNLOADS</td>
<td>Tape unloads</td>
</tr>
<tr>
<td>TPSTPOSCMD</td>
<td>Set tape position commands</td>
</tr>
<tr>
<td>TPRDPOSCMD</td>
<td>Read tape position commands</td>
</tr>
</tbody>
</table>

### QAPMSYSINT

This database file contains data for IBM support use when investigating performance on IBM POWER7 Systems™. With PTFs MF56871 and SI49418, support was added to view metrics for the TLBIE instruction on Power Systems. The data in this file varies based on the record type. Record type 3 contain the two types of TLBIE records needed to present all the data. The two types are distinguished by the SIDID field 1 and 2.

Table 6-12 shows the contents of the QAPMSYSINT table for record type 3, SIDID 1.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTNUM</td>
<td>Interval number. The nth sample database interval that is based on the start time in the Create Performance Data (CRTPFRTDA) command.</td>
</tr>
<tr>
<td>DATETIME</td>
<td>Interval date (mmddyy) and time (hhmmss). The date and time of the sample interval.</td>
</tr>
</tbody>
</table>
Table 6-13 shows the contents of the QAPMSYSINT table for record type 3, SIDID 2.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTSEC</td>
<td>Elapsed interval seconds. The number of seconds since the last sample interval.</td>
</tr>
<tr>
<td>SITYPE</td>
<td>Record type. Always 3 for the values shown in this table.</td>
</tr>
<tr>
<td>SIDID</td>
<td>Internal record identifier. Always 1 for the values shown in this table.</td>
</tr>
<tr>
<td>SIDATA01</td>
<td>Total TLBIEs</td>
</tr>
<tr>
<td>SIDATA02</td>
<td>The number of ticks of the time base special purpose register spent processing TLBIEs this interval. On POWER7, there are 512 ticks in a microsecond. Divide the value in this record by 512 to get the total time spent processing TLBIEs in microseconds. Note: SIDATA02 / SIDATA01 = “Average TLBIE time”</td>
</tr>
<tr>
<td>SIDATA03</td>
<td>TLBIE stats start time. Not used by iDoctor.</td>
</tr>
<tr>
<td>SIDATA04</td>
<td>Total TLBIEs with a duration &lt; 1 microsecond. Note: On fields SIDATA04-SIDATA09, divide by 1,000,000 to get the value in millions.</td>
</tr>
<tr>
<td>SIDATA05</td>
<td>Total TLBIEs with a duration between 1 and &lt; 10 microseconds.</td>
</tr>
<tr>
<td>SIDATA06</td>
<td>Total TLBIEs with a duration between 10 and &lt; 1000 microseconds.</td>
</tr>
<tr>
<td>SIDATA07</td>
<td>Total TLBIEs with a duration between 1 and &lt; 10 milliseconds.</td>
</tr>
<tr>
<td>SIDATA08</td>
<td>Total TLBIEs with a duration between 10 and &lt; 100 milliseconds.</td>
</tr>
<tr>
<td>SIDATA09</td>
<td>Total TLBIEs with a duration &gt; 100 milliseconds.</td>
</tr>
<tr>
<td>SIDATA10</td>
<td>Average time that is spent processing TLBIEs (in ticks) in the last 10 milliseconds. Divide by 512 to get this value in microseconds.</td>
</tr>
<tr>
<td>SIDATA11</td>
<td>Average time that is spent processing TLBIEs (in ticks) in the last 100 milliseconds. Divide by 512 to get this value in microseconds.</td>
</tr>
<tr>
<td>SIDATA12</td>
<td>Average time that is spent processing TLBIEs (in ticks) in the last 1 second. Divide by 512 to get this value in microseconds.</td>
</tr>
<tr>
<td>SIDATA13</td>
<td>Average time that is spent processing TLBIEs (in ticks) in the last 10 seconds. Divide by 512 to get this value in microseconds.</td>
</tr>
<tr>
<td>SIDATA14</td>
<td>Average time that is spent processing TLBIEs (in ticks) in the last 100 seconds. Divide by 512 to get this value in microseconds.</td>
</tr>
<tr>
<td>SIDATA15</td>
<td>Average time that is spent processing TLBIEs (in ticks) in the last 1000 seconds. Divide by 512 to get this value in microseconds.</td>
</tr>
<tr>
<td>INTRNUM</td>
<td>Interval number. The nth sample database interval that is based on the start time in the Create Performance Data (CRTPFRTDA) command.</td>
</tr>
<tr>
<td>DATETIME</td>
<td>Interval date (mmdyy) and time (hhmmss). The date and time of the sample interval.</td>
</tr>
<tr>
<td>INTSEC</td>
<td>Elapsed interval seconds. The number of seconds since the last sample interval.</td>
</tr>
<tr>
<td>SITYPE</td>
<td>Record type. Always 3 for the values that are shown in this table.</td>
</tr>
<tr>
<td>SIDID</td>
<td>Internal record identifier. Always 2 for the values that are shown in this table.</td>
</tr>
<tr>
<td>SIDATA01</td>
<td>Total add HPTE requests.</td>
</tr>
<tr>
<td>SIDATA02</td>
<td>Total remove HPTE requests.</td>
</tr>
</tbody>
</table>
6.3 IBM Navigator for i Performance Data Investigator

Several enhancements were made to Performance Data Investigator (PDI), which can be accessed by selecting the Investigate Data task:

- Integration with Database
- Performance Reports
- Collections List Changes
- Drilldown Information now provided
- Job Watcher – Display Holder Information
- Show SQL Error Messages Option for ModifySQL
- System Information window available for CS
- Added Java Perspectives
- Workload Group Perspectives
- Timeline Overview Perspective
- Memory Perspectives

**Important:** Major enhancements have been made to IBM Navigator for i and the Performance Data Investigator, so ensure that you have the latest group PTFs installed for the following groups:

- HTTP Server group, PTF SF99368
- Java group, PTF SF99572
- Database group, PTF SF99701
- Performance Tools group, PTF SF99145

For a full overview of all the functions of the Performance Investigator and Collection management interface, see Chapter 17, “IBM Navigator for i 7.1” on page 667.
Authority to the database files and members used in Performance Data Investigator

The user profile that performs work with the database files and members for PDI requires a specific level of object authority. See the following website for details:

6.4 IBM iDoctor for IBM i

This section describes the changes in IBM iDoctor for IBM i in IBM i 7.1:

- Investigator is now available for version 7.1 and version 6.1.
- Heap Analyzer is not available for 7.1.
- VIOS Investigator is a new component that uses NMON data to analyze VIOS performance using the power of the DB2 database on IBM i. This component is available for version 6.1 and version 7.1.
- HMC Walker is a new component that allows a user to monitor all LPARs and physical systems that are attached to their HMC. This provides configuration and high-level metrics from the HMC that can be used to drill down into the LPARs for more detail.
- The MustGather Tools component is now available. This component is designed to help with data collection during problem analysis.
- A new no additional cost FTP client component is now part of iDoctor. From the connection view, you can choose the connection type (IBM i) or FTP. If you have an IBM i connection and want to try the FTP support, right-click and use the Start FTP session menu. For IBM i FTP support, you have access to both the IFS and libraries. You can download, upload, or cause a transfer of the selected files to another system.

For more information about IBM iDoctor for IBM i, see Appendix A, “IBM i Doctor for IBM i” on page 861.
Virtualization

This chapter describes the following topics:

- PowerVM enhancements
- More OS level combinations of server and client logical partitions
- Hardware Management Console virtual device information
- IBM i hosting IBM i - iVirtualization
- Virtual Partition Manager enhancements
- Partition suspend and resume
- HEA Daughter cards
- 10 Gb FCoE PCIe Dual Port Adapter
- Live Partition Mobility
7.1 PowerVM enhancements

The following sections summarize recent PowerVM enhancements for IBM i, and include the following topics:

- Active memory sharing
- Enhanced support for IBM system storage
- PowerVM Virtualization and I/O enhanced with NPIV
- Expanded HBA and switch support for NPIV on Power Blades
- PowerVM N_Port ID Virtualization attachment of DS5000 and Storwize
- Enhanced mirroring algorithms
- PCIe2 Riser Card (Gen2) (#5685) direct support
- Redundant VIOS partitions support
- Shared storage pools
- More partitions per core
- Virtualization of USB-attached storage for IBM i

7.1.1 Active memory sharing

Active memory sharing (AMS) enables the sharing of a pool of physical memory among IBM i, AIX, and SUSE Linux logical partitions on a single IBM Power Systems server POWER6 or later, helping to increase memory use and drive down system costs. The memory is dynamically allocated among the partitions as needed, to optimize the overall physical memory usage in the pool. Instead of assigning a dedicated amount of physical memory to each logical partition that uses shared memory (referred to as shared memory partitions), the hypervisor provides the physical memory from the shared memory pool to the shared memory partitions as needed. The Power hypervisor provides portions of the shared memory pool that are not being used by shared memory partitions to other shared memory partitions that must use the memory.

When a shared memory partition needs more memory than the current amount of unused memory in the shared memory pool, the hypervisor stores a portion of the memory that belongs to the shared memory partition in an auxiliary storage space that is known as a paging space device. Access to the paging space device is provided by a Virtual I/O Server (VIOS) logical partition that is known as the paging service partition. When the operating system of a shared memory partition accesses data that is in a paging space device, the hypervisor directs the paging service partition to retrieve the data from the paging space device. The partition then writes it to the shared memory pool so that the operating system can access the data.
For an illustration of these AMS concepts, see Figure 7-1.

The PowerVM Active Memory Sharing technology is available with the PowerVM Enterprise Edition hardware feature, which also includes the license for the VIOS software.

Paging service partitions must be VIOS. Logical partitions that provide virtual I/O resources to other logical partitions can be VIOS or IBM i. They must be dedicated memory partitions, but their client partitions are shared memory partitions.

**Important:** Logical partitions that have dedicated physical resources cannot be shared memory partitions.
In general terms, the setup of AMS includes using the HMC to create a shared memory pool, selecting a paging service partition, selecting a paging space device, and changing the IBM i client partition profile to use shared memory pool. See Figure 7-2.

**Figure 7-2  AMS setup using the HMC**
You can configure two paging service partitions to access the same, or common, paging space devices. In this configuration, the two paging service partitions provide redundant access to the paging space devices (see Figure 7-3). This function is known as redundant paging service partitions. When one paging service partition becomes unavailable, the hypervisor sends a request to the other paging service partition to retrieve the data on the paging space device. For more information about redundant VIOS partitions support, see 7.1.8, “Redundant VIOS partitions support” on page 330.

Figure 7-3  Redundant paging service partitions

For IBM i client partitions where the disk storage is virtualized using VIOS partitions and storage area network (SAN) Disk Storage, NPIV and multipath I/O support is available with IBM i 6.1.1 or later. For more information about NPIV, see 7.1.3, “PowerVM Virtualization and I/O enhanced with NPIV” on page 326. For multipath I/O for IBM i client partitions, see 8.3.2, “Multipathing for virtual I/O” on page 396.

Requirement: When you use redundant paging service partitions, common paging space devices must be on SAN Disk Storage to enable symmetrical access from both paging service partitions.
The system requirements for AMS are as follows:

- IBM Power Systems server or blade with POWER6 processors
- Virtual I/O Server (VIOS) 2.1.0.1 Fix Pack 21 or later
- System Firmware level 340_075 or later
- HMC V7.342 or later
- IBM i 6.1 plus PTF SI32798 or later
- AIX V6.1 TL3
- SUSE Linux Enterprise Server 11

**Solid-state disk usage:** A solid-state disk (SSD) on VIOS can be used as a shared memory pool paging space device. For more information, see 8.4, “SSD storage management enhancements” on page 407.

For an overview of AMS, go to:

For more detailed information about AMS, see *IBM PowerVM Virtualization Active Memory Sharing*, REDP-4470.

### 7.1.2 Enhanced support for IBM system storage

Over the past few years, IBM has announced additional connectivity methods for IBM i to use various types of external storage. As these methods and supported devices are constantly changing and expanding, check online resources for the latest compatibility and support statements as provided by IBM.

A significant enhancement for IBM i 7.1 includes connectivity to the IBM Storwize Family and SAN Volume Controller as shown in Figure 7-4.

![Figure 7-4](image)

**Figure 7-4** New enhancements available for IBM i connectivity to Storwize and SAN Volume Controller
A summarization of connectivity methods and supported devices is shown in Figure 7-5.

<table>
<thead>
<tr>
<th>Rack / Tower Systems</th>
<th>IBM i Version</th>
<th>IBM i Attach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>6.1/7.1</td>
<td>VIOS VSCSI</td>
</tr>
<tr>
<td>Not DS3200, Yes DS3500##</td>
<td>POWER5/7</td>
<td>Direct** or VIOS VSCSI and NPIV%</td>
</tr>
<tr>
<td>IBM i Attach VIOS VSCSI</td>
<td>Direct or VIOS – VSCSI and NPIV%</td>
<td>VIOS VSCSI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Blades</th>
<th>IBM i Version</th>
<th>IBM i Attach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>6.1/7.1</td>
<td>VIOS VSCSI</td>
</tr>
<tr>
<td>POWER5/7 &amp; #</td>
<td>Direct** or VIOS VSCSI and NPIV%</td>
<td>VIOS VSCSI</td>
</tr>
<tr>
<td>IBM i Attach VIOS VSCSI</td>
<td>Direct or VIOS – VSCSI and NPIV%</td>
<td>VIOS VSCSI</td>
</tr>
</tbody>
</table>

Figure 7-5  Supported IBM i and external storage combinations

For more information about storage area networks and IBM i, see Chapter 8, “Storage and solid-state drives” on page 373.

**Support availability:** NPIV support has been expanded in IBM i 7.1. For more information about NPIV, see 7.1.3, “PowerVM Virtualization and I/O enhanced with NPIV” on page 326.

For an overview of IBM i System Storage solutions, see IBM i Virtualization and Open Storage read-me first, found at:
http://www-03.ibm.com/systems/resources/systems_i_Virtualization_Open_Storage.pdf

For more information about IBM i and supported connectivity methods to various types of IBM external storage, including available SAN Storage solutions for Power Systems and IBM i, see the System Storage Interoperation Center at:
http://www-03.ibm.com/systems/support/storage/config/ssic/
7.1.3 PowerVM Virtualization and I/O enhanced with NPIV

N_Port ID Virtualization (NPIV) is an industry-standard Fibre Channel (FC) protocol that allows the VIOS to share an NPIV-capable FC adapter among multiple client partitions. For NPIV, the VIOS server acts as an FC pass-through instead of a SCSI emulator, such as when you use Virtual SCSI (see Figure 7-6).

Figure 7-6 Comparing PowerVM storage virtualization with VSCSI and NPIV
With NPIV, a port on the physical FC adapter is mapped to a Virtual Fibre Channel (VFC) server adapter in VIOS, which in turn is mapped to a VFC client adapter in the IBM i client partition, as shown in Figure 7-7.

![Figure 7-7  VIOS VFC server adapter and IBM i VFC client adapter](image)

Two unique worldwide port names (WWPNs) are generated for the VFC client adapter, which is available on the SAN so that storage can be mapped to them as you can to any other FC ports. The following issues must be considered when you use NPIV:

- There is one VFC client adapter per physical port per partition, to avoid a single point of failure.
- A maximum of 64 active VFC client adapters are permitted per physical port. This number can be less because of other VIOS resource constraints.
- There can be only 32,000 unique WWPN pairs per system platform.
  - Removing an adapter does not reclaim WWPNs. Can be manually reclaimed through the CLI (`mksyscfg`, `chhwres`, and so on) or through the “virtual_fc_adapters” attribute.
  - If the capacity is exhausted, you must purchase an activation code for more capacity.

**Important:** Only one of the two WWPN ports is used (port 0). The second WWPN port is not used.
IBM i 6.1.1 supports NPIV, providing direct Fibre Channel connections from i 6.1.1 client partitions to SAN resources. The IBM i clients see the SAN resources with their native device type as though they were natively attached (see Figure 7-8).

### Logical Hardware Resources Associated with IOP

<table>
<thead>
<tr>
<th>Opt</th>
<th>Description</th>
<th>Type-Model</th>
<th>Status</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Virtual IOP</td>
<td>6B25-001</td>
<td>Operational</td>
<td>CM002</td>
</tr>
<tr>
<td>2</td>
<td>Virtual Storage IOA</td>
<td>6B25-001</td>
<td>Operational</td>
<td>DC02</td>
</tr>
<tr>
<td></td>
<td>Disk Unit</td>
<td>2107-A85</td>
<td>Operational</td>
<td>DD004</td>
</tr>
<tr>
<td>4</td>
<td>Disk Unit</td>
<td>2107-A85</td>
<td>Operational</td>
<td>DD002</td>
</tr>
<tr>
<td>5</td>
<td>Tape Library</td>
<td>3584-032</td>
<td>Operational</td>
<td>TAPMLB02</td>
</tr>
<tr>
<td>7</td>
<td>Tape Unit</td>
<td>3580-003</td>
<td>Operational</td>
<td>TAP01</td>
</tr>
</tbody>
</table>

F3=Exit F5=Refresh F6=Print F8=Include non-reporting resources
F9=Failed resources F10=Non-reporting resources
F11=Display serial/part numbers F12=Cancel

Figure 7-8  SAN resources as seen by IBM i client partitions when you use NPIV

The 6B25-001 shows a single port (0). The worldwide port name is how the SAN recognizes the Virtual IOA, as shown in Figure 7-9.

---

**Figure 7-9  Virtual Storage IOA 6B25-001 details**
The following are supported tape and tape media library devices and their requirements when attaching them using NPIV:

- 3573 (TS3100/TS3200) with LTO3, LTO4, LTO5, and LTO6 tape drives
- 3576 (TS3310) with LTO3, LTO4, LTO5, and LTO6 tape drives
- 3577 (TS3400) with TS1120 and TS1130 tape drives
- 3584 (TS3500) with LTO3, LTO4, LTO5, LTO6, TS1120, TS1130, TS1140, and 3592-J1A tape drives
- TS7610 (ProtecTIER) with software version v2.1 or later
- TS7620 (ProtecTIER) with software version v2.1 or later
- TS7650 (ProtecTIER) with software version v2.4 or later
- TS1130 and TS1140 stand-alone drives
- FC 8248 HH-LTO5 FC in 7226 enclosure (IBM Flex systems only)
- FC 8348 HH-LTO6 FC in 7226 enclosure

LTO6 support in IBM i 7.1 requires PTFS MF55886 and MF55967, and if using BRMS, SI47039 or its superseding PTF.

**Note:** The devices cannot be directly attached. They must be attached through an NPIV-capable switch. Plan for a performance degradation of about 10% or more for devices that are attached using NPIV compared to the same devices attached in a native IOP-less configuration.

### 7.1.4 Expanded HBA and switch support for NPIV on Power Blades

Power Blades running PowerVM VIOS 2.2.0 with IBM i 7.1 partitions support the QLogic 8 Gb Blade HBAs to attach DS8100, DS8300, and DS8700 storage systems through NPIV. This support allows easy migration from existing DS8100, DS8300, and DS8700 storage to a blade environment. Full PowerHA support is also available with virtual Fibre Channel and the DS8100, DS8300, and DS8700, which includes Metro Mirroring, Global Mirroring, FlashCopy, and LUN level switching.

### 7.1.5 PowerVM N_Port ID Virtualization attachment of DS5000 and Storwize

IBM i 7.1 partitions on POWER6 or POWER7 rack and tower systems now support N_Port ID Virtualization attachment of DS5100 and DS5300 storage systems, as well as IBM Storwize Family systems. Setting up configurations to share adapters is simpler with NPIV. This support also allows the usage of a Lab Services toolkit to access copy services for the storage.

For compatibility information, consult the Storage Systems Interoperability Center at:

http://www.ibm.com/systems/support/storage/ssic/interoperability.wss

### 7.1.6 Enhanced mirroring algorithms

IBM i mirroring algorithms are enhanced to consider any N_Port ID Virtualization (NPIV) attached disks. The locations of the virtual disks are considered when the pairs of mirror disk units are calculated bus level statistics for 12x loops.
7.1.7 PCIe2 Riser Card (Gen2) (#5685) direct support

IBM i now provides direct support for the PCIe Riser Card (Gen2), without the use of VIOS, with IBM i 7.1. This riser card is used in the IBM Power 720 and IBM Power 740 Express to provide greater bandwidth with a smaller number of PCI slots or adapters. It is an optional feature, containing four PCIe Gen2 low-profile (LP) slots for Gen1 or Gen2 adapters. It is physically similar to the PCIe Riser Card (Gen1) (#5610).

For more information about N_Port ID Virtualization (NPIV) for IBM i, see the IBM i Virtualization and Open Storage read-me first topic, found at:
http://www-03.ibm.com/systems/resources/systems_i_Virtualization_Open_Storage.pdf

For more information about SAN Storage solutions for Power Systems and IBM i, see the System Storage Interoperation Center at:
http://www-03.ibm.com/systems/support/storage/config/ssic/

7.1.8 Redundant VIOS partitions support

For enhanced availability in a PowerVM VIOS environment, IBM i 6.1.1 or later client partitions can be configured in multipath configurations where one partition uses redundant VIOS partitions to connect to the same IBM System Storage device, as shown in Figure 7-10.

**Important:** Redundant VIOS support is available on POWER6 or later processor-based servers. It is not supported by BladeCenter and Power Blades.
IBM i 6.1.1 or later IBM i clients support Redundant VIOS partitions and N_Port ID Virtualization (NPIV) for attachment to IBM System Storage DS8000 solutions, as shown in Figure 7-11.

For more information about Redundant VIOS partitions, see the IBM i Virtualization and Open Storage read-me first topic, found at:

http://www-03.ibm.com/systems/resources/systems_i_Virtualization_Open_Storage.pdf

### 7.1.9 Shared storage pools

Shared storage pools are a new capability that is available with Virtual I/O Server Version 2.2.0.11, Fix Pack 24, Service Pack 1. Shared storage pools provide the following benefits:

- Simplifies the aggregation of many disks across multiple Virtual I/O Servers.
- Improves the usage of the available storage.
- Simplifies administration tasks.

**Shared storage pool architecture overview**

A shared storage pool is a pool of SAN storage devices that can span multiple Virtual I/O Servers. It is based on a cluster of Virtual I/O Servers and a distributed data object repository with a global namespace. Each Virtual I/O Server that is part of a cluster represents a cluster node.
When you use shared storage pools, the Virtual I/O Server provides storage through logical units that are assigned to client partitions. A logical unit is a file backed storage device that is in the cluster file system in the shared storage pool. It appears as a virtual SCSI disk in the client partition, in the same way as a, for example, virtual SCSI device that is backed by a physical disk or a logical volume.

Prerequisites
A shared storage pool requires the following prerequisites:

- POWER6 (and later) based servers (including blades).
- Virtual I/O Server requirements:
  - Version 2.2.0.11, Fix Pack 24, Service Pack 1, or later.
  - Processor entitlement of at least one physical processor.
  - At least 4 GB memory.
- Client partition operating system requirements:
  - IBM AIX 5L V5.3 or later.
  - IBM i 6.1.1 or later with the latest PTF.
- Local or DNS TCP/IP name resolution for all Virtual I/O Servers in the cluster.
- Minimum storage requirements for the shared storage pool:
  - One Fibre Channel attached disk that acts as a repository, with at least 20 GB of disk space.
  - At least one Fibre Channel attached disk for shared storage pool data. Each disk must have at least 20 GB of disk space.
- All physical volumes for the repository and the shared storage pool must have redundancy at the storage level.

Virtual I/O Server storage clustering model
The Virtual I/O Servers that are part of the shared storage pool are joined to form a cluster. A Virtual I/O Server that is part of a cluster is also referred to as cluster node. Only Virtual I/O Server partitions can be part of a cluster.

The Virtual I/O Server clustering model is based on Cluster Aware AIX (CAA) and RSCT technology. The cluster for the shared storage pool is an RSCT Peer Domain cluster. Therefore, a network connection is needed between all the Virtual I/O servers that are part of the shared storage pool.

Each Virtual I/O Server in the cluster requires at least one physical volume for the repository that is used by the CAA sub system and one or more physical volumes for the storage pool.

All cluster nodes in a cluster can see all the disks. Therefore, the disks must be zoned to all the cluster nodes that are part of the shared storage pools. All nodes can read and write to the shared storage pool. The cluster uses a distributed lock manager to manage access to the storage.

The Virtual I/O Servers in the cluster communicate with each other using Ethernet connections. They share the repository disk and the disks for the storage pool through the SAN.
Shared storage pool layout
The shared storage pool manages logical units as a file. Portions of the logical unit are cached on the client node in a cluster. The logical unit consists of virtual blocks and has a virtual block address space.

The physical volumes in the shared storage pool are managed as an aggregation of physical blocks and user data is stored in these blocks. These physical blocks are managed by a metadata area on the physical volumes. Therefore, the physical volumes in the shared storage pool consist of physical blocks and have a physical block address space.

The translation from a virtual block address to a physical block address is done by the Virtual Address Translation Lookaside (VATL).

The system reserves a small amount of each physical volume in the shared storage pool to record metadata. The remainder of the shared storage pool capacity is available for client partition user data. Therefore, not all of the space of physical volumes in the shared storage pool can be used for user data.

Thin provisioning
A thin-provisioned device represents a larger image than the actual physical disk space it is using. It is not fully backed by physical storage if the blocks are not in use.

A thin-provisioned logical unit is defined with a user-specified size when it is created. It appears in the client partition as a virtual SCSI disk with that user-specified size. However, on a thin-provisioned logical unit, blocks on the physical disks in the shared storage pool are allocated only when they are used.
Compared to a traditional storage device, which allocates all the disk space when the device is created, this situation can result in significant savings in physical disk space. It also allows overcommitting of the physical disk space.

For an overview of thin provisioning of a shared storage pool, see Figure 7-13.

![Thin-provisioned devices in the shared storage pool](image)

### 7.1.10 More partitions per core

POWER7+ processor-based systems can run up to 20 partitions per core (.05 core per LPAR) versus the previous limitation of 10 (.10 core per LPAR).

### 7.1.11 Virtualization of USB-attached storage for IBM i

See 8.1.18, “VIOS support for RDX USB docking station for removable disk cartridge” on page 391 for a more detailed description of this enhancement.
7.2 More OS level combinations of server and client logical partitions

IBM PowerVM continues to enable Power Systems with IBM i to achieve higher resource usage by supporting more OS level combinations of server and client logical partitions, as shown in Figure 7-14.

<table>
<thead>
<tr>
<th>IBM i 5.4.5</th>
<th>AIX</th>
<th>AIX</th>
<th>Linux</th>
<th>Linux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM i 6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM i 7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**POWER6**

**New!**

<table>
<thead>
<tr>
<th>IBM i 6.1</th>
<th>IBM i 7.1</th>
<th>IBM i 6.1</th>
<th>AIX</th>
<th>Linux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**POWER6 & POWER7**

**New!**

<table>
<thead>
<tr>
<th>IBM i 7.1</th>
<th>IBM i 7.1</th>
<th>IBM i 6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**POWER6 & POWER7**

**New!**

<table>
<thead>
<tr>
<th>VIOS</th>
<th>IBM i 7.1</th>
<th>IBM i 6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**POWER6 & POWER7**

**New!**

- IBM i 6.1 server partition can provide virtual I/O resources to the following elements:
  - IBM i 6.1 and 7.1 or later client partitions
  - AIX V5.2, V5.3, and V6.1, and SLES and Red Hat Linux client partitions
  - iSCSI-attached IBM System x and BladeCenter
- IBM i 7.1 server partition can provide virtual I/O resources to the following elements:
  - IBM i 6.1 and 7.1 or later client partitions
  - AIX V5.2, V5.3, and V6.1, and SLES and Red Hat Linux client partitions
  - iSCSI attached System x and BladeCenter
- PowerVM VIOS 2.1.3 server partition can provide virtual I/O resources to the following elements:
  - IBM i 6.1 and 7.1 or later client partitions
  - AIX and Linux client partitions

*Figure 7-14  OS level combinations of server and client for IBM i and VIOS*
The following list describes the benefits of using IBM i hosting IBM i:

- Uses the same technology as IBM i hosting AIX, Linux, and iSCSI x86 servers.
- Uses the existing hardware investment. You can create new IBM i partitions using only virtual hardware (no IOAs, IOPs, disk units, or I/O slots are necessary for client partitions), but you can also use physical I/O.
- Rapidly deploy new workloads.
  - You can create a virtual disk with one command or several clicks in IBM Navigator for i.
  - You can deploy new partitions and virtual resources dynamically.
  - You can create test environments without hardware provisioning.
  - Virtual resources allow new test environments of exact sizes to be created and deleted without moving hardware.
  - You can test new applications, tools, and fixes in a virtual test partition.
  - You can test the next release in the client partition.

For more information about PowerVM, see IBM PowerVM Virtualization Introduction and Configuration, SG24-7940.

For more information about IBM i client partitions, see the IBM i Knowledge Center: http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i/welcome

### 7.3 Hardware Management Console virtual device information

Virtual device information is now available on the Hardware Management Console (HMC) for VIOS logical partitions. The HMC can now display a list of the virtual SCSI adapters for a VIOS logical partition, as shown in Figure 7-15.
The following list describes the information that is displayed in the HMC:

- **Virtual Adapter.** This column displays the name of each virtual server SCSI adapter.
- **BackDevice.** This column displays the name of the storage device whose storage capacity can be used through a virtual SCSI connection to this virtual server SCSI adapter. This storage device is on the same logical partition as the virtual server SCSI adapter.
- **Remote Partition.** This column displays the partition name and partition ID (in parentheses) of the logical partition to which each virtual server SCSI adapter is set to connect. If this column is blank, then the virtual server SCSI adapter is set to connect to any logical partition.
- **Remote Adapter.** This column displays the virtual slot ID of the virtual client SCSI adapter to which each virtual server SCSI adapter is set to connect. If this column contains none, then the virtual server SCSI adapter is set to connect to any virtual client SCSI adapter.
- **Remote Backing Device.** This column displays the name of the virtual disks (or logical volumes) that display on the logical partition with the virtual client SCSI adapter when a virtual SCSI connection exists. The logical partition with the virtual client SCSI adapter can use these virtual disks to store information about the storage device that is owned by the logical partition with the virtual server SCSI adapter. This column contains a value only if the virtual server SCSI adapter is connected to a virtual client SCSI adapter.

**Consideration:** You can create virtual server SCSI adapters only for Virtual I/O Server and IBM i logical partitions. This window is always blank for AIX and Linux logical partitions.

The following list details the requirements for virtual device information:

- POWER6 or later rack / tower systems
- BladeCenter H
- System firmware level 350_038 or later
- HMC V7.3.5 or later
- VIOS V2.1.2 (FP 22.1) or later
- IBM i 6.1.1 or later (+latest fixes)

Similar information is available by running `lshwres` on the HMC or Integrated Virtualization Manager (IVM) by using the new attribute topology on the `-F` flag.

Example 7-1 lists the Virtual SCSI Adapter attributes in the form of a slash delimited list.

**Example 7-1   List Virtual SCSI Adapter attributes**

```
Command:
lshwres -m <system name> -r virtualio --subtype scsi --level lpar -F
lpar_name,remote_lpar_name,topology
Results:
za6bp10,za6bvios2,"OPT01/Active/DC01/vhost6/""/var/vio/VMLibrary/slic611190004AMSTAPE.iso"",TAP
01/Active/DC01/vhost6//rmt1"
za6bp11,za6bvios2,"OPT01/Active/DC01/vhost9/""/var/vio/VMLibrary/slic611190004AMSTAPE.iso""
za6bp12,za6bvios2,"OPT01/Active/DC01/vhost10/""/var/vio/VMLibrary/slic611190004AMSTAPE.iso"",DP
H001/Active/DC01/vhost10//hdisk28"
```
Example 7-2 lists the Virtual Fibre Channel Adapters attributes for each logical partition in the form of a slash delimited list.

Example 7-2   Virtual Fibre Channel Adapters attributes

#Command:
lshwres -m <system name> -r virtualio --rsubtype fc --level lpar -F
lpar_name,remote_lpar_name,topology

#Results:
za6bp10,za6bvios3, /Active/DC04/vfchost7/fcs0
za6bp10,za6bvios2, /Active/DC03/vfchost4/fcs4, DD002/Missing/DC03/vfchost4/fcs4
za6bp10,za6bvios3, /Active/DC02/vfchost0/fcs1, DD001/Active/DC02/vfchost0/fcs1
za6bp11,za6bvios2, /Active/DC03/vfchost7/fcs4, DD001/Active/DC03/vfchost7/fcs4
za6bp11,za6bvios3, /Active/DC02/vfchost2/fcs1
za6bp12,za6bvios2, /Active/DC03/vfchost8/fcs4, DD001/Active/DC03/vfchost8/fcs4, DD003/Active/DC03/vfchost8/fcs4
za6bp12,za6bvios3, /Active/DC02/vfchost4/fcs1
za6bp13,za6bvios2, unavailable
za6bp13,za6bvios2, unavailable
za6bp15,za6bvios2, /Active/DC02/vfchost1/fcs3, DD002/Active/DC02/vfchost1/fcs3, DD007/Active/DC02/vfchost1/fcs3
za6bvios2,za6bp13, /vfchost5/fcs3
za6bvios2,za6bp10, /vfchost4/fcs4
za6bvios2,za6bp6, /vfchost3/fcs3
za6bvios2,za6bp18, /vfchost2/fcs3
za6bvios2,za6bp13, /vfchost13/fcs4

Example 7-3 lists the Virtual Ethernet Adapter attributes.

Example 7-3   Virtual Ethernet Adapter attributes

#Command:
lshwres -m <system name> -r virtualio --rsubtype eth --level lpar -F
lpar_name,connect_status,device_name,drc_name,shared_adapter,backing_device

#Results:
za6bp10,active,CMN01,U9406.675.107074C-V10-C2-T1,,
za6bp10,none,CMN02,U9406.675.107074C-V10-C3-T1,,
za6bp12,active,CMN01,U9406.675.107074C-V12-C2-T1,,
za6bp12,active,CMN02,U9406.675.107074C-V12-C3-T1,,
za6bp15,active,CMN03,U9406.675.107074C-V15-C2-T1,,
za6bp15,active,CMN04,U9406.675.107074C-V15-C3-T1,,
za6bvios,active,ent2,U9406.675.107074C-V16-C11-T1,ent4,ent0
za6bvios,active,ent3,U9406.675.107074C-V16-C12-T1,,
za6bvios2,active,ent2,U9406.675.107074C-V17-C11-T1,ent4,ent0

For more information about the lshwres command, go to the Hardware Knowledge Center at:
7.4 IBM i hosting IBM i - iVirtualization

An IBM i 6.1 or 7.1 partition can host one or more IBM i partitions, which are known as virtual client partitions. Virtual client partitions typically have no physical I/O hardware that is assigned and instead use virtual I/O resources from the host IBM i partition. The types of hardware resources that can be virtualized by the host partition are disk, tape, optical, and networking. The capability of IBM i to provide virtual I/O resources was used successfully for several years to integrate AIX, Linux, and Microsoft Windows workloads on the same platform. The same virtualization technology, which is part of the IBM i operating system, can now be used to host IBM i partitions, as shown in Figure 7-16.

![Figure 7-16 IBM i hosting IBM i components](image)

IBM i hosting IBM i (iVirtualization) uses an existing function of the system firmware, or IBM Power Hypervisor, which can create VSCSI and Ethernet adapters in a partition.

**iVirtualization:** The term being used for describing the hosting of IBM i client partitions with IBM i serving as the host is iVirtualization. The term might be used interchangeably with the phrase “IBM i hosting IBM i” in documentation and websites. It is important to note that iVirtualization is not the same as IBM i with its storage hosted from VIOS.

Virtual adapters are created for each partition in the Hardware Management Console (HMC) or virtual server in the Systems Director Management Console (SDMC). VSCSI adapters are used for storage and optical virtualization, virtual Ethernet adapters are used for network virtualization. POWER6 or later and IBM i 6.1 or later is required to support IBM i client partitions.

**Tip:** VIOS server partitions can also virtualize a natively attached storage device to IBM i 6.1 or later client partitions. For more information, see IBM PowerVM Virtualization Managing and Monitoring, SG24-7590.
### 7.4.1 Disk virtualization

To virtualize integrated disks (SCSI, SAS, or SSD) or LUNs from a SAN system to an IBM i client partition or virtual server, both HMC/SDMC and IBM i objects must be created:

- One VSCSI server adapter on the host partition
- One VSCSI client adapter on the client partition

This VSCSI adapter pair allows the client partition to send read and write I/O operations to the host partition. More than one VSCSI pair can exist for the same client partition in this environment.

To create Virtual SCSI adapters for the IBM i host partition and IBM i client partition, complete the following steps:

1. Use the managing HMC to create a VSCSI server adapter on the IBM i host partition:
   a. In the navigation pane, click **Systems Management → Servers**, and click the managed system on which the server IBM i host partition is on.
   b. Select the IBM i host partition, click **Tasks**, and click **Dynamic Logical Partitioning → Virtual Adapters**.
   c. Click **Actions** and click **Create → SCSI Adapter**.
   d. Use the default VSCSI adapter number or provide your own number. Write down the VSCSI adapter number, as you need it in a later step.

   In Figure 7-17, the number 31 was provided as the Virtual SCSI adapter number. In the Type of adapter field, select **Server**, and click **OK**.

   ![Figure 7-17 Creating a VSCSI server adapter](image)

   e. Save the current configuration for the IBM i host partition so that the VSCSI adapter continues to exist after you restart the partition.
2. Create the VSCSI client adapter in the IBM i client partition, as shown in Figure 7-18:
   a. In the navigation pane, click **Systems Management → Servers**, and click the managed system on which the IBM i client logical partition is on.
   b. Select the IBM i client partition, click **Tasks**, and select **Dynamic Logical Partitioning → Virtual Adapters**.
   c. Click **Actions** and select **Create → SCSI Adapter**.
   d. Use the default VSCSI adapter number or provide your own number. In this example, the number 31 was provided as this number. In the **Type of adapter** field, select **Client**.
   e. Select the IBM i server partition that provides the virtualized optical device as the server partition and specify the **Server adapter ID** from step 1d on page 340, as shown in Figure 7-18, where 31 was used. Click **OK**.
   f. Create the VSCSI adapter within the partition profile for the IBM i client partition so that the VSCSI adapter continues to exist after you restart the partition.

![Figure 7-18 Creating a VSCSI client adapter](image)

No additional configuration is required in IBM i in the virtual client partition. In the host partition, the minimum required IBM i setup consists of the following requirements:

- One network server description (NWSD) object
- One network server storage space (NWSSTG) object

The NWSD object associates a VSCSI server adapter in IBM i (which in turn is connected to a VSCSI client adapter in the HMC/SDMC) with host storage resources. At least one NWSD object must be created on the host for each client, although more are supported. One or more NWSSTG objects can be linked to the NWSD, where the NWSSTG objects represent virtual disks that are provided to the client IBM i partition. They are created from available physical storage on the host partition. In the client, they are recognized and managed as standard DDxx disk devices (with a different type and model). The IBM i CL commands **WRKNWSSTG** and **CRTNWSSTG** can be used to manage or create the NWSSTG.
To link an NWSD object with an NWSSTG, complete the following steps:

1. Create a network server description (NWSD). On the IBM i host partition, enter `CRTNWSD` to create a network server description, and press F4 for prompt to prompt the command, then press F9 to display all the parameters.

Enter the following values:

- **Network Server Description**: Provide a name. CLIENT31 was used in the example in Figure 7-18 on page 341, which corresponds to the name of the IBM i client partition in this example.
- **Resource Name**: Provide the resource name. CTL05 was used in this example.
- **Network server type**: *GUEST
- **Server operating system**: *OPSYS
- **Online at IPL**: *NO
- **Partition**: Specify IBM i client partition name.
- **Partition number**: Specify IBM i client partition number.
  The Partition and Partition number parameters cannot both be specified. Also these specifying these parameters is unnecessary unless *YES is used on the Power Control parameter.
- **Code page**: 437
- **Restricted device resources**: Use *NONE if the NWSD will provide all the optical and tape device resources to the client partition, otherwise specify *ALL.
- **Power Control**: Only the NWSD that provides the load source disk to the client should specify Power Control *YES (if desired), all others should specify *NO for this parameter.
Run the Create Network Server Desc (CRTNWSD) command as shown in Figure 7-19.

![Figure 7-19 Specifying the NWSD name, resource, server type, and OS](image)

2. Create an NWS Storage Space in the IBM i host partition by running the Create NWS Storage Space (CRTNWSSTG) command as shown in Figure 7-20.

![Figure 7-20 Creating an NWSSTG](image)
3. Link the NWSD and NWSSTG. The new NWSSTG cannot be used until it has a link to NWSD. Run the Add Server Storage Link (ADDNWSSTGL) command as shown in Figure 7-21.

```
Add Server Storage Link (ADDNWSSTGL)
Type choices, press Enter.

Network server storage space . . NWSSTG > ITSOSTG1
Network server description . . . NWSD > ITSOP1
Dynamic storage link DYNAMIC *NO
Network server type TYPE *NWSD
Access ACCESS *UPDATE
Drive sequence number DRVSEQNBR *CALC
Storage path number STGPTHNBR *DFTSTGPTH
```

Figure 7-21  Adding the Server Storage Link

Storage spaces for an IBM i client partition do not have to match physical disk sizes; they can be created from 160 MB - 1 TB, if there is available storage on the host. The 160 MB minimum size is a requirement from the storage management Licensed Internal Code (LIC) on the client partition. For an IBM i client partition, up to 16 NWSSTGs can be linked to a single NWSD, and therefore to a single VSCSI connection. Up to 32 outstanding I/O operations from the client to each storage space are supported for IBM i clients. Storage spaces can be created in any existing auxiliary storage pool (ASP) on the host, including Independent ASPs. Through the usage of NWSSTGs, any physical storage that is supported in the IBM i host partition on a POWER6 based system can be virtualized to a client partition.

For performance reasons, you might consider creating multiple storage spaces that are associated with multiple NWSDs. The rule of thumb is 6 - 8 storage spaces for each client partition. This setup implies that you are also creating multiple sets of VSCSI adapter pairs between the hosting partition and the client partition. Associate each hosting partition’s server VSCSI adapter with a separate NWSD by referencing the VSCSI adapter’s resource name in the NWSD, and then link storage spaces to the NWSDs. This action supplies multiple disk arms for the client partition to use.

### 7.4.2 Optical virtualization

Any optical drive that is supported in the IBM i host partition can be virtualized to an IBM i client partition. An existing VSCSI connection can be used, or a connection can be created explicitly for optical I/O traffic. By default, an NWSD makes all physical (OPTXX) and virtual (OPTVRTxx) optical drives on the host available to the client, where they are presented as OPTxx devices. The NWSD parameter Restricted device resources can be used to specify which optical devices on the host a client partition cannot access.

A virtualized optical drive on the host partition can be used for a D-mode Initial Program Load (IPL) and installation of the client partition, as well as for installing Program Temporary Fixes (PTFs) or upgrades to applications. If the optical drive is writable, the client partition can write to the physical media in the drive.
To locate the optical device in the IBM i client partition, enter the `WRKHDWRSC *STG IBM i CL` command and complete the following steps:

1. Enter option 7 to display the resource details next to each of the CMBxx resources that are listed, as shown in Figure 7-22.

```
<table>
<thead>
<tr>
<th>Opt</th>
<th>Resource</th>
<th>Type-model</th>
<th>Status</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>CMB01</td>
<td>290A-001</td>
<td>Operational</td>
<td>Storage Controller</td>
</tr>
<tr>
<td></td>
<td>DC01</td>
<td>290A-001</td>
<td>Operational</td>
<td>Storage Controller</td>
</tr>
<tr>
<td></td>
<td>CMB03</td>
<td>268C-001</td>
<td>Operational</td>
<td>Storage Controller</td>
</tr>
<tr>
<td></td>
<td>DC02</td>
<td>6802-001</td>
<td>Operational</td>
<td>Storage Controller</td>
</tr>
<tr>
<td></td>
<td>CMB06</td>
<td>290A-001</td>
<td>Not detected</td>
<td>Storage Controller</td>
</tr>
<tr>
<td></td>
<td>DC03</td>
<td>290A-001</td>
<td>Not detected</td>
<td>Storage Controller</td>
</tr>
</tbody>
</table>
```

2. Look at the last digits for the location code Cxx, where xx corresponds to the virtual adapter number, as shown in Figure 7-23.

```
<table>
<thead>
<tr>
<th>Resource name</th>
<th>CMB01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>Storage Controller</td>
</tr>
<tr>
<td>Type-model</td>
<td>290A-001</td>
</tr>
<tr>
<td>Serial number</td>
<td>00-00000</td>
</tr>
<tr>
<td>Part number</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>U8233.E8B.100417P-V131-C31</td>
</tr>
<tr>
<td>Logical address:</td>
<td></td>
</tr>
<tr>
<td>SPD bus:</td>
<td></td>
</tr>
<tr>
<td>System bus</td>
<td>255</td>
</tr>
<tr>
<td>System board</td>
<td>128</td>
</tr>
</tbody>
</table>
```

Note: A particular optical resource on the server should only be presented once to the client partition. By default, an NWSD allows all eligible optical and tape resources to be virtualized (Restricted device resources = *NONE). Therefore, if multiple NWSDs are used for a single client, all the `secondary` NWSDs should be changed to prevent optical and tape resources from being virtualized multiple times (Restricted device resources = *ALL).

Also, any optical resources shared with client partitions should be in the VARIED ON state on the server (host) partition.
3. When you find the correct CMBxx resource, look for the DC0xx resource and specify option 9 to work with resources, as shown in Figure 7-24.

![Figure 7-24 Using option 9 to work with resources](image)

The optical device that is provided by the IBM i server partition is shown in the IBM i client partition, as shown in Figure 7-25.

![Figure 7-25 Virtualized optical device that is shown on IBM i client partition as type 632C-002](image)

For more information about image catalog, search for “Virtual optical storage” in the IBM i Knowledge Center at:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i/welcome

### 7.4.3 Tape virtualization

Some DAT and LTO tape drives that are supported in the IBM i host partition can be virtualized to an IBM i client partition. An existing VSCSI connection can be used, or a connection can be created explicitly for tape I/O traffic.

By default, an NWSD makes all eligible physical TAPxx drives on the host available to the client, where they are presented as TAPxx devices. The NWSD parameter `Restricted device resources` can be used to specify which tape devices on the host a client partition cannot access.
A virtualized tape drive on the host partition can be used for a D-mode initial program load (IPL) and installation of the client partition or applications. The client partition can write to the physical media in the drive.

For more information about which tape drives are eligible for virtualization, refer to the Client virtual devices (optical and tape) topic in the IBM i 7.1 Knowledge Center:


Image catalog based virtual tape devices (TAPVRTxx) cannot be virtualized to IBM i client partitions.

**Note:** A particular tape resource on the server should only be presented once to the client partition. By default, an NWSD allows all eligible optical and tape resources to be virtualized (Restricted device resources = *NONE). Therefore, if multiple NWSDs are used for a single client, all the ‘secondary’ NWSDs should be changed to prevent optical and tape resources from being virtualized multiple times (Restricted device resources = *ALL). Also, any tape resources shared with client partitions should be in the VARIED OFF state on the server (host) partition.

### 7.4.4 Networking virtualization

Virtualizing a network adapter and using a virtual LAN (VLAN) for partition-to-partition communication within a system are existing IBM i capabilities. In order for a client to use a host's physical network adapter, a virtual Ethernet adapter must be created in the HMC in both partitions.

To be on the same VLAN, the two virtual Ethernet adapters must have the same Port Virtual LAN ID (PVID). This type of adapter is recognized by IBM i as a communications port (CMNxx) with a different type (268C). In the host partition, the virtual Ethernet adapter is then associated with the physical network adapter through a routing configuration, either Ethernet Level-2 Bridging or network address translation (NAT). This routing configuration allows the client partition to send network packets through the VLAN and the physical adapter to the outside LAN. The physical adapter can be any network adapter that is supported by IBM i 6.1 and later, including Integrated Virtual Ethernet (IVE) ports, also known as Host Ethernet Adapter (HEA) ports.

For more information about Ethernet Level-2 Bridging, see 7.5.1, “Ethernet Layer-2 bridging” on page 349. For more information about network address translation (NAT), see the IBM i 7.1 Knowledge Center:


### 7.4.5 Support for embedded media changers

Embedded media changer support extends the automatic media switching capability of virtual optical device type 632B on virtual I/O serving partitions to the client partitions virtual optical device type 632C. One application of this new function is the usage of image catalogs for unattended installations of client partitions. You can use this switching capability to manually switch media in a client virtual optical device without requiring the authority to access the serving partition. You can accomplish this action by using the image catalog interface `WRKIMGCLGE *DEV` command interface on the client partition.
7.4.6 Performance considerations

In IBM i host IBM i environment, disk I/O operations in an IBM i virtual client partition result in I/O requests to the physical disk adapters and drives that are assigned to the host partition. Therefore, the preferred way to ensure that good disk performance in the client partition is to create a well-performing disk configuration on the host partition. As the host partition is a standard IBM i partition, all the recommendations in the Performance Capabilities Reference manual (see http://www.ibm.com/systems/i/solutions/perfmgmt/resource.html) apply to it. Use the suggestions that are provided in the manual for maximizing IBM i disk performance for the type of physical storage that is used on the host, whether it is integrated disk or SAN.

If only the system ASP exists on the host partition, NWSSTG objects are created on the same physical disk units as all other objects. If the host partition is running production applications in addition to providing virtual storage to client partitions, there is disk I/O contention as both client partitions and IBM i workloads on the host send I/O requests to those disk units. To minimize disk I/O contention, create storage space objects in a separate ASP on the host (Independent ASPs are supported). Performance on the clients then depends on the disk adapter and disk configuration that is used for that ASP. If the host partition is providing virtual storage to more than one client partition, consider using separate ASPs for the storage space objects for each client. Weigh this preferred practice against the concern of ending up with too few physical disk arms in each ASP to provide good performance.

Disk contention from IBM i workloads on the host partition and virtual client partitions can be eliminated if a separate IBM i partition is used just for hosting client partitions. Another benefit of this configuration is the fact that an application or OS problem that is stemming from a different workload on the host cannot negatively affect client partitions. Weigh these benefits against the following items:

- The license cost that is associated with a separate IBM i partition
- The maintenance time that is required for another partition, such as applying Program Temporary Fixes (PTFs)
- The ability to create well-performing physical disk configurations in both partitions that meet the requirements of their workloads

If the host partition runs a heavy-I/O workload and the client partitions also have high disk response requirements, consider using a separate hosting partition, unless separate ASPs on the host are used for storage space objects. If the host partition's workload ranges from light to moderate regarding disk requirements and the client partitions are used mostly for development, test or quality assurance (QA), it is acceptable to use one IBM i partition for both tasks.

7.4.7 Dual hosting

An IBM i client partition has a dependency on its host. If the host partition fails, IBM i on the client loses contact with its disk units. The virtual disks become unavailable if the host partition is brought down to a restricted state or shut down for scheduled maintenance or to apply PTFs. To remove this dependency, two host partitions can be used to simultaneously provide virtual storage to one or more client partitions.
The configuration for two hosts for the same client partition uses the same concepts as for a single host, as described in the 7.4.1, “Disk virtualization” on page 340. In addition, a second VSCSI client adapter exists in the client partition, which is connected to a VSCSI server adapter in the second host partition. The IBM i configuration of the second host mimics that of the first host, with the same number of NWSD and NWSSTG objects, and NWSSG objects of the same size. As a result, the client partition recognizes a second set of virtual disks of the same number and size. To achieve redundancy, adapter-level mirroring is used between the two sets of storage spaces from the two hosts. Thus, if a host partition fails or is taken down for maintenance, mirroring is suspended, but the client partition continues to operate. When the inactive host is either recovered or restarted, mirroring can be resumed.

**Note:** Be careful when adding disk units to the client ASP configuration in order to get the wanted level of mirrored protection across servers. The system currently does not distinguish between client adapters that are associated with different server (host) partitions and client adapters that are associated with a single server (host) partition. Therefore, simply mirroring at the adapter/IOP level might result in virtual disks being mirrored to disks from the same server (host) partition, which is not the wanted pairing.

### 7.5 Virtual Partition Manager enhancements

The Virtual Partition Manager (VPM) is a partition management tool that supports the creation of partitions that use only virtual I/O and does not require the Hardware Management Console (HMC), Systems Director Management Console (SDMC), or Integrated Virtualization Manager (IVM). In addition to being able to manage Linux guest partitions, the VPM now supports creation and management of IBM i partitions. The VPM function is available on IBM POWER6 and POWER7 Express Servers™ that do not have an external management console.

With this enhancement to IBM i 7.1, the ability to create up to four IBM i partitions is enabled in VPM. Client IBM i partitions, which are created with VPM, use virtual I/O to connect back to the IBM i I/O server partition to access the physical disk and network. VPM in the IBM i I/O server partition is used to create the virtual SCSI and virtual Ethernet adapters for the client partitions. You can then use Network Storage Spaces (NWSSTG) and Network Storage Descriptions (NWSD) in the IBM i I/O server partition to define the storage for the client partitions. Tape, disk, and optical can be virtualized to the client partitions. The client IBM i partitions can be IBM i 7.1 or IBM i 6.1 with either 6.1 or 6.1.1 machine code.

#### 7.5.1 Ethernet Layer-2 bridging

IBM i V7R1 has new support for Ethernet Layer-2 bridging between a physical network and the Power Systems virtual Ethernet. Using Layer-2 bridging, one Ethernet port in an IBM i partition can provide network access for other logical partitions on the same platform. This support is similar in function to the Shared Ethernet Adapter (SEA) support provided by a Power Systems Virtual I/O Server (VIOS) partition.

This situation puts two Ethernet adapters (one physical and one virtual) into a mode where they can receive traffic that is not destined for their address. It selectively sends those frames onto the other network according to the IEEE 802.1D standard ("bridging" the frames). Frames that are transmitted by virtual Ethernet adapters on the same VLAN as the bridging virtual Ethernet adapter can be sent to the physical network, and frames from the physical network can be received by adapters on the virtual network.
7.5.2 Preparing for Ethernet Layer-2 bridging

Select a physical Ethernet resource to use for Layer-2 bridging with the following criteria:

- Any Ethernet resource that supports line speeds of 1 Gbps or greater is supported, except for Host Ethernet Adapter (HEA) resources. (Host Ethernet Adapter supports the ability for multiple partitions to use a single physical port by assigning each partition a logical port.)
- Layer-2 bridging must not be in use by any varied-on line description, LAN console, or remote support.
- An aggregate line description can also be used to bridge traffic to the external network.
- Create a virtual Ethernet resource to use for Layer-2 bridging, and record its resource name.
- If you are using a Hardware Management Console, create a virtual Ethernet adapter for the wanted VLAN ID. Then select **Access external network** to indicate that this virtual Ethernet adapter is used to bridge traffic to the physical network.
- If you are using the IBM i Virtual Partition Manager, the virtual Ethernet adapter is created automatically and can access the external network.
- Choose an alphanumeric name (up to 10 characters) for the bridge itself, and make it unique from any existing bridge names.

7.5.3 Preferred practices

Selected Ethernet resources should be used only for Layer-2 bridging (not for the IBM i TCP/IP configuration). There is a processing impact for any host traffic that uses bridged resources.

7.5.4 Configuring Ethernet Layer-2 bridging

Create an Ethernet line description for the physical Ethernet resource, and set its Bridge identifier (BRIDGE) to your chosen bridge name.

Create an Ethernet line description for the selected virtual Ethernet resource, and set its Bridge identifier (BRIDGE) to the same bridge name.

When both line descriptions are varied on, traffic is bridged between the two networks. Any other partitions with virtual Ethernet adapters on the same VLAN as the new virtual Ethernet resource are able to access the same network as the physical Ethernet resource.

7.5.5 Common errors

**CHGLINETH** cannot be used to change the Bridge identifier of a line description that was created before the latest Technology Refresh. If equivalent behavior is wanted, complete the following steps:

1. Use the **Copy** option on **WRKLIND** to make a temporary copy of the line description.
2. Delete the existing line description.
3. Use the **Copy** option again on **WRKLIND** to replicate the original line description, specifying the wanted bridge identifier.
4. Delete the temporary line description.
No more than one physical Ethernet adapter's line description with a single bridge identifier can be varied on at the same time. Likewise, no more than one virtual Ethernet adapter's line description with a single bridge identifier can be varied on at the same time. An error is returned when you try to vary on any more line descriptions with that bridge identifier, indicating that the configuration is in error. For a bridge, select one physical Ethernet line description and one virtual line description to be bridged. If more than one bridge is required, use a different bridge identifier for each additional bridge.

The selected virtual Ethernet resource must be marked as allowing access to the external network. If an incorrect virtual Ethernet resource is selected, an error is returned when you try to vary on its line description, indicating that the selected resource cannot enable promiscuous mode. Create a virtual Ethernet resource that can be used to access the external network.

### 7.5.6 Managing Ethernet Layer-2 bridging

While an Ethernet line description is varied off, its bridge identifier (BRIDGE) can be changed to a different name (or to *NONE, indicating that it is not to be used for bridging).

**Remember:** In IBM i V7R1, an Ethernet line description's bridge identifier is not visible from DSPLIND. Use the CHGLINETH command and prompt to see the bridge identifier for an Ethernet line description.

### 7.6 Partition suspend and resume

PowerVM now includes support for an IBM i 7.1 partition to be suspended, and later resumed. Using Suspend / Resume, you can perform long-term suspension of partitions, freeing server resources that were in use by that partition, and later resume operation of that partition and its applications on the same server. During the Suspend operation, the partition state (memory, NVRAM, and Virtual Service Processor state) is saved on persistent storage. The Resume operation restores that saved partition state to the server resources. Suspend / Resume can be used to save energy or to allow other partitions to use the resources from the suspended partition.

#### 7.6.1 Requirements for Suspend / Resume

The following items are requirements for Suspend / Resume:

- All I/O resources must be virtualized using VIOS.
- All partition storage must be external.
- Either an HMC or SDMC must be used to manage the partitions.
- The partition must be resumed on the same server on which it was suspended.
- POWER7 firmware Ax730_xxx, or later, is required.
- VIOS 2.2.0.12-FP24 SP02, or later, is required.
- AIX Version 7.1 Technology Level 0 Service Pack 2 is required.
- AIX Version 6.1 Technology Level 6 Service Pack 3 is required.
- For an IBM i logical partition, the logical partition must be running IBM i 7.1 with the latest Technology Refresh.
When a logical partition is suspended, the reserved storage device contains the state that is required to resume the logical partition. Therefore, the reserved storage device must be kept persistently associated with the logical partition.

- The HMC ensures that the reserved storage device pool is configured with at least one active Virtual I/O Server partition available in the pool.
- You can create or edit the partition profile of a logical partition that can suspend without any restrictions. However, when you activate a logical partition with a specific profile, checks are run for any of the restrictions that are associated with suspending the logical partition.
- For NPIV, you must zone both of the WWPNs associated with a Virtual Fibre Channel adapter.

### 7.6.2 Considerations for Suspend / Resume

The following items are considerations that apply to Suspend / Resume:

- The logical partition must not have physical I/O adapters that are assigned to the logical partition.
- The logical partition must not be a full system partition or a Virtual I/O Server partition.
- The logical partition must not be an alternative error logging partition.
- The logical partition must not have a barrier-synchronization register (BSR).
- The logical partition must not have huge pages (applicable only if PowerVM Active Memory Sharing is enabled).
- The logical partition must not have its rootvg volume group on a logical volume or have any exported optical devices.
- You cannot suspend an IBM i logical partition while it is active in a cluster.
- The logical partition must not have a virtual SCSI optical or tape device that is assigned to the logical partition.

The following considerations apply for IBM i logical partitions that are enabled for suspension:

- You cannot activate the logical partition with a partition profile that has a virtual SCSI server adapter.
- You cannot activate the logical partition with a partition profile that has a virtual SCSI client adapter that is hosted by another IBM i logical partition.
- You cannot dynamically add any virtual SCSI server adapter.
- You cannot dynamically add any virtual SCSI client adapter that is hosted by another IBM i logical partition.
- You cannot dynamically add any physical I/O adapters.
- You cannot suspend an IBM i logical partition with a varied NPIV attached tape device.
- All IBM i virtual disks must be backed by physical volumes.

For the latest information about prerequisites, see IBM Prerequisites at:

https://www-912.ibm.com/e_dir/eserverprereq.nsf
For the latest information about the configuration requirements and restrictions for suspending a logical partition, see the Knowledge Center at:

http://publib.boulder.ibm.com/infocenter/powersys/v3r1m5/topic/p7hat/iphatphibreqs.htm

7.7 HEA Daughter cards

POWER7 HEA Daughter cards provide integrated I/O connectors for a CPC enclosure. The connections can be virtualized into the system partitions. All of the connectors are on the rear bulkhead of the CPC enclosure. Choices of features are:

- #1824 and #1832 for a 1-Gb HEA daughter card with four ports
- #1825 and #1833 for a Fibre 10-Gb HEA daughter card with two ports
- #1826 and #1837 for a Copper 10-Gb HEA daughter card with two ports

7.8 10 Gb FCoE PCIe Dual Port Adapter

The 10 Gb FCoE PCIe Dual Port Adapter (#5708) is a high-performance, 10 Gb, dual port, PCIe Converged Network Adapter (CNA) using SR optics. Each port can provide Network Interface Card (NIC) traffic and Fibre Channel functions simultaneously. IBM i supports the usage of this adapter through VIOS.

7.9 Live Partition Mobility

Live Partition Mobility (LPM) is a powerful function that is delivered by PowerVM Enterprise Edition. Using LPM, a running IBM i 7.1 partition can be moved from one POWER7 processor-based server to another server with no application downtime. The migration operation, which takes just a few seconds, maintains complete system transactional integrity. The migration transfers the entire system environment, including processor state, memory, attached virtual devices, and connected users.

IBM Power Systems servers are designed to offer the highest stand-alone availability in the industry. Enterprises must occasionally restructure their infrastructure to meet new IT requirements. By allowing you move your running production applications from one physical server to another, LPM allows for nondisruptive maintenance or modification to a system without your users noticing anything. LPM mitigates the impact on partitions and applications that was formerly caused by the occasional need to shut down a system.

Even small IBM Power Systems servers frequently host many logical partitions. As the number of hosted partitions increases, finding a maintenance window acceptable to all becomes increasingly difficult. You can use LPM to move partitions around so that you can run previously disruptive operations on the system at your convenience, rather than when it causes the least inconvenience to the users.
Figure 7-26 shows basic hardware infrastructure of LPM.

LPM helps you meet increasingly stringent service-level agreements (SLAs) because you can proactively move running partitions and applications from one server to another server.

The ability to move running partitions from one server to another server means that you can balance workloads and resources. If a key application's resource requirements peak unexpectedly to a point where there is contention for server resources, you might move it to a more powerful server or move other, less critical, partitions to different servers, and use the freed resources to absorb the peak.

LPM can also be used as a mechanism for server consolidation because it provides an easy path to move applications from individual, stand-alone servers to consolidation servers. If you have partitions with workloads that have widely fluctuating resource requirements over time (for example, with a peak workload at the end of the month or the end of the quarter), you can use LPM to consolidate partitions to a single server during the off-peak period so that you can turn off unused servers. Then, move the partitions to their own, adequately configured servers just before the peak. This approach also offers energy savings by reducing the power to run systems and the power to keep them cool during off-peak periods.
LPM can be automated and incorporated into system management tools and scripts. Support for multiple concurrent migrations allows you to liberate system resources quickly. For single-partition, point-in-time migrations, the Hardware Management Console (HMC) interface offers easy-to-use migration wizards.

LPM contributes to the goal of continuous availability:

- Reduces planned downtime by dynamically moving applications from one server to another server
- Responds to changing workloads and business requirements when you move workloads from heavily loaded servers to servers that have spare capacity
- Reduces energy consumption by allowing you to easily consolidate workloads and turn off unused servers

LPM is the next step in the IBM PowerVM continuum. It can be combined with other virtualization technologies to provide a fully virtualized computing platform that offers the degree of system and infrastructure flexibility that is required by today’s production data centers.

### 7.9.1 Requirements for Live Partition Mobility

The following items are requirements for LPM:

- The HMC must be used to manage both source and destination systems.
- HMC Version 7 Release 5 or later is required.
- Both source and destination systems must be an IBM Power Systems POWER7 technology-based model with firmware service pack 730_51, 740_40, or later.
- Both source and destination systems must have the PowerVM Enterprise Edition license code installed.
- All I/O resources of the mobile partition must be virtualized using VIOS, whether they are VSCSI, NPIV, or Virtual Ethernet.
- VIOS 2.2.1.4 or later is required.
- Both source and destination systems must use same external storage.
- An IBM i mobile partition must be running IBM i 7.1 with the latest Technology Refresh.

### 7.9.2 Considerations for Live Partition Mobility

The following items are considerations for LPM:

- The mobile partition must have all disks backed by physical volumes.
- The mobile partition must not be assigned a virtual SCSI optical or tape device or have an NPIV attached tape device that is varied on.
- The mobile partition cannot be activated with a partition profile that has a virtual SCSI server adapter, and it cannot be host another partition.
- The mobile partition cannot be activated with a partition profile that has a virtual SCSI client adapter that is hosted by another IBM i logical partition.
- No virtual SCSI server adapters can be dynamically added to the mobile partition.
- No virtual SCSI client adapters that are hosted by another IBM i logical partition can be dynamically added to the mobile partition.
- The mobile partition must not be an alternative error logging partition.
An alternative error logging partition is a target from the HMC for error logs.

- The mobile partition cannot collect physical I/O statistics.
- The mobile partition must not be a time reference partition. The VIOS synchronizes the time between partitions automatically as part of the migration.

### 7.9.3 Preparing Live Partition Mobility

To prepare for LPM, complete the following steps:

1. Ensure that both source and destination systems have capabilities for LPM, as shown in Figure 7-27.

![Power system Capabilities of LPM](image)

*Figure 7-27  Power system Capabilities of LPM*
2. Set the VIOS logical partitions to **Mover service partition**, as shown in Figure 7-28.

![Figure 7-28 Set VIOS as Mover Service Partition](image)

3. Ensure that Resource Monitoring and Control (RMC) connections are established between both the source and destination VIOS logical partitions and HMC.

Sign on HMC with the correct authority and run `lspartition -dlpar`, as shown in Example 7-4, to check the RMC connection between the HMC and VIOS.

**Example 7-4  Check the RMC connection between the HMC and VIOS**

```bash
commands:
lspartition -dlpar
Results:
<#23> Partition:<5*8205-E6C*06523ER, , 172.16.26.99>
 Active:<1>, OS:<AIX, 6.1, 6100-07-04-1216>, DCaps:<0x4f9f>,
 CmdCaps:<0x1b, 0x1b>, PinnedMem:<799>
```

Active:<1> in the results means that the RMC connection is activated.

4. Verify that the same SAN disks that are used as virtual disks by the IBM i mobile partition are assigned to the source and destination VIOS logical partitions. Also, ensure that the `reserve_policy` attributes of the shared physical volumes are set to `no_reserve`. Sign on both source and destination VIOS logical partitions with the correct authorities and run the commands that are shown in Example 7-5.

**Example 7-5  Verify that the physical volumes on external storage are set correctly**

List attributes of a physical volume, use the following command:
```
lsdev -dev hdiskX -attr
```

If `reserve_policy` is not set to `no_reserve`, use the following command:
```
chdev -dev hdiskX -attr reserve_policy=no_reserve
```
5. Ensure that the IBM i mobile partition has no physical I/O resources, and check the **RestrictedIOPartition** check box, as shown in Figure 7-29.

![Figure 7-29 Set the IBM i mobile partition as RestrictedIOPartition](image)

7.9.4 Validating Live Partition Mobility

Before you run a migration, complete the validation steps. These steps are optional, but can help eliminate errors. This section shows how to complete the validation steps by using the HMC GUI.

1. In the navigation pane, expand **Systems Management → Servers**, and select the source system.
2. In the upper right of the Hardware Management Console (Workplace), select the partition that you will migrate to the destination system.
3. Click View and select Operations → Mobility → Validate, as shown in Figure 7-30, to start the validation process.

![Figure 7-30 Validate option on HMC](image1)

4. Select the destination system, specify Destination profile name and Wait time (in min), and then click Validate, as shown in Figure 7-31.

![Figure 7-31 Input information for validation](image2)
5. Check for errors or warnings in the Partition Validation Errors/Warnings window, and eliminate any errors.

6. The validation window opens and with information about the destination VIOS logical partition, Virtual Storage, and VLAN, as shown in Figure 7-32. It is ready for migration.

![Figure 7-32 Validation window with readiness for Live Partition Mobility](image)

### 7.9.5 Running Live Partition Mobility

After the validation completed, you can run LPM. This scenario shows how to migrate a IBM i logical partition named IBMi_lpm from the source system (SVRI7740-01-SN06523ER) to the destination system (SVRI7740-01-SN065264R) by using HMC. Complete the following steps:

1. In the navigation pane, expand **Systems Management → Servers**, and select the source system.
2. Click **View** and select **Operations → Mobility → Migrate** to start the Partition Migration wizard, as shown in Figure 7-33.

![Figure 7-33  Migration menu on HMC](image)

3. Check the migration information in the Partition Migration wizard, as shown in Figure 7-34.

![Figure 7-34  Migration Information](image)
4. Specify the New destination profile name in the Profile Name window, as shown in Figure 7-35. If you leave the name blank or do not specify a unique profile name, the profile on the destination system is overwritten.

![Figure 7-35 Specify destination profile name](image-url)
5. Enter the Remote HMC network address and Remote User. In our example, we use a single HMC. Click **Next** (Figure 7-36).

*Figure 7-36  Specify the remote HMC IP address and user*
6. Specify the destination system for migration, as shown in Figure 7-37. The HMC validates the partition migration environment.

![Partition Migration - SVR17740-01-SN06523ER - Mozilla Firefox](image)

**Figure 7-37 Specify destination system for migration**

7. Check errors or warnings in the Partition Validation Errors/Warnings window and eliminate any errors. This step was skipped in the example because there were no errors or warnings.
8. Specify the mover service partitions to be used for migration in both source and destination systems, as shown in Figure 7-38. In this example, one Virtual I/O Server partition is configured on the destination system, so the wizard window shows only one mover service partition candidate. If you have more than one Virtual I/O Server partition on the source or on the destination system, you can select which mover server partitions to use.

![Figure 7-38 Specify MSP partitions](image-url)
9. Confirm the VLAN configuration, as shown in Figure 7-39.

![Figure 7-39  Confirm the VLAN configuration](image)
10. Select the virtual storage adapter assignment, as shown in Figure 7-40. In this example, one Virtual I/O Server partition is configured on each system, so this wizard window shows one candidate only. If you have more than one Virtual I/O Server partition on the destination system, you can choose which Virtual I/O Server to use as the destination.

![Select virtual storage adapters](image-url)

*Figure 7-40  Select virtual storage adapters*
11. Select the shared processor pools to be used by the mobile partition in the destination system, as shown in Figure 7-41.

![Figure 7-41 Select Shared Processor](image-url)
12. Specify the wait time in minutes, as shown in Figure 7-42. The wait time value is passed to the commands that are started on the HMC and run migration-related operations on the relevant partitions using the Remote Monitoring and Control (RMC).

![Figure 7-42 Specify Waiting time](image)

**Figure 7-42 Specify Waiting time**
13. Check the settings that you specified for this migration in the Summary window, and then click **Finish** to begin the migration, as shown Figure 7-43.

![Partition Migration Summary](image)

**Figure 7-43**  Partition Migration Summary

14. The Migration status and Progress are shown in the Partition Migration Status window, as shown in Figure 7-44.

![Partition Migration Status](image)

**Figure 7-44**  Partition Migration Status

15. When the Partition Migration Status window indicates that the migration is 100% complete, you will find that the mobile partition is running in the destination system.
7.9.6 Considerations about Live Partition Mobility

This section describes some considerations about IBM i LPM:

- **Performance considerations**
  
  Active partition migration involves moving the state of a partition from one system to another system while the partition is still running. The partition memory state is tracked while it transfers the memory state to the destination system. Multiple memory transfers are done until enough clean pages are moved.

  Providing a high-performance network between the source and destination mover partitions and reducing the partition’s memory update activity before migration improves the latency of the state transfer phase of migration. As a preferred practice, use a dedicated network for state transfer, with a nominal bandwidth of at least 1 Gbps.

- **Licensing considerations**
  
  For a permanent partition migration, the requirements are the same as for a manual migration to a new system. For a temporary partaking migration:

  - If software entitlements were acquired on all systems, move partitions where and when they are needed.
  
  - If the software entitlements of the IBM i operating system or standard set of IBM i licensed program products are not acquired on the destination systems, you can temporarily move the partition for up to 70 days to a destination system.

  You must purchase software entitlements on the source system. The source system must be equal or larger in the processor group than any destination system. After 70 days, you must acquire the entitlements on the destination system, move the entitlements back to the source system, or move the entitlements to another destination system.

- **Application considerations**
  
  In general, applications and the operating system are unaware that the partition is moved from one system to another. There are some exceptions for applications that recognize system serial number, logical partition ID, and system type/model. When the partition is running on the target system, the Collection Services collector job cycles the collection so that correct hardware information is recorded on the target system.

- **Exit program considerations**
  
  Two Work Management exits were added: QIBM_QWC_RESUME and QIBM_QWC_SUSPEND. There is no restriction on the number of programs register against these exit points.

  - **QIBM_QWC_RESUME**

    The Resume System exit program is called when the system becomes available again after the partition was migrated to another system or the partition resumes after hibernation.

  - **QIBM_QWC_SUSPEND**

    The Suspend System exit program is called before the system becomes temporarily unavailable because the partition is migrating to another system or the partition is hibernating.
Storage and solid-state drives

This chapter describes the enhancements in recent IBM i releases i 6.1.1 and i 7.1 in the following areas:

- General and direct-attached storage management enhancements
  This section describes enhancements in the areas of disk management, ASP encryption, performance instrumentation, and tape applicable to IBM i internal direct-attached and possibly external storage.

- Using IBM i 520-byte sector SAS disk through VIOS
  This section describes the sector format that supports the unique requirements for IBM i Single Level Storage architecture.

- SAN storage management enhancements
  This section summarizes the enhancements that are related to IBM i storage area network-attached storage systems, such as native and direct attachment of IBM SAN Volume Controller and IBM Storwize storage, redundant Virtual I/O Server (VIOS) multipathing support, IBM DS5000™ native attachment, changes with IOP-less IOA attached tape libraries, and new DS8000/DS6000 performance metrics.

- SSD storage management enhancements
  This section describes IBM i solid-state drive (SSD) management improvements that are related to DB2 media preference, ASP balancer, and user-defined file systems.
8.1 General and direct-attached storage management enhancements

In this section, the following general storage management enhancements that are applicable to IBM i internal direct-attached storage (DAS) and possibly external storage area network (SAN) storage are described:

- Concurrent removal of disk units
- Hot spare for mirroring
- Dual storage I/O adapters
- Encrypted ASP enhancements
- Disk response time buckets enhancements
- Central processor complex node level mirroring
- EXP24S SFF Gen2-bay drawer (#5887)
- Higher capacity 10 K RPM SFF SAS disk drives
- Higher performance 387 GB SFF SSD with eMLC
- 775 GB SFF SSD with eMLC
- 1.2 TB / 1.1 TB 10K RPM SAS HDD
- Tape performance instrumentation
- Tape library resource name changes for IOP-less IOA attachment
- Tape library unreadable barcode changes for IOP-less IOA attachment
- DVD / Tape SAS External Storage Unit for Power 795 CPC Rack
- RDX support
- 1.5 TB RDX removable disk cartridge
- VIOS support for RDX USB docking station for removable disk cartridge
- Use of USB flash drive for IBM i
- POWER7+ 770/780 Native I/O support

8.1.1 Concurrent removal of disk units

Concurrent removal of disk units with IBM i 7.1 is now supported for SYSBAS (for example, system ASP and user ASP disk units), eliminating the need for downtime to run an IPL to the DST for removing disk units from the configuration.
Figure 8-1 shows the new Work with Removing Units From Configuration panel in System Service Tools. This panel can be accessed by clicking **System Service Tools → Work with disk units → Work with disk configuration**.

<table>
<thead>
<tr>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3=Exit F12=Cancel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Work with Removing Units From Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>1. Display disk configuration</td>
</tr>
<tr>
<td>2. Display status of remove operation</td>
</tr>
<tr>
<td>3. <strong>Remove units from configuration</strong></td>
</tr>
<tr>
<td>4. Pause the remove operation</td>
</tr>
<tr>
<td>5. Resume the remove operation</td>
</tr>
<tr>
<td>6. Cancel the remove operation</td>
</tr>
<tr>
<td>7. Cancel the remove operation and balance data in the ASP</td>
</tr>
</tbody>
</table>

*Figure 8-1  IBM i SST Work with Removing Units from Configuration panel*
Figure 8-2 shows the Remove units from configuration panel with the example of disk unit 11 from ASP1 selected to be removed. This unit can become unconfigured after the removal action.

<table>
<thead>
<tr>
<th>OPT Unit</th>
<th>ASP Number</th>
<th>Type</th>
<th>Model Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>21-DC78C</td>
<td>4328 072</td>
<td>DD006</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>21-DD464</td>
<td>4328 072</td>
<td>DD004</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>21-E72DE</td>
<td>4328 072</td>
<td>DD008</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>21-E7A8D</td>
<td>4328 072</td>
<td>DD005</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>21-E7CB9</td>
<td>4328 072</td>
<td>DD007</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>21-DCA21</td>
<td>4328 072</td>
<td>DD003</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>21-E7B11</td>
<td>4328 072</td>
<td>DD011</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>21-DD3DA</td>
<td>4328 074</td>
<td>DD012</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>21-E7046</td>
<td>4328 074</td>
<td>DD010</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>21-E7557</td>
<td>4328 074</td>
<td>DD009</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>21-E786C</td>
<td>4328 074</td>
<td>DD002</td>
</tr>
</tbody>
</table>

Important: The disk unit remove function in System Service Tools, which supports concurrent disk unit removal with applications by using the ASP, does not allow removal of all the disk units from the ASP. An IPL to DST is required to delete the ASP.
8.1.2 Hot spare for mirroring

The usage of hot spare disk units for mirroring is supported by IBM i 6.1.1 and later. The benefit of using hot spares is that a non-degraded array or active mirrored pair state is reached more quickly again after a disk unit failure. No manual intervention is required for resuming drive protection. Although the hot spare selection algorithm selects the hot spare resulting in the highest mirroring protection level, there are situations for which the hot spare configuration does not permit the original protection level. In this case, you might still want to manually replace the newly used hot spare with a replacement drive to reestablish the original protection level, for example, bus level mirroring protection.

For a RAID configuration, the hot spare disk unit is used as a replacement for similar or lower capacity drives. For mirroring, the capacity requirement is more stringent. The hot spare must be the same size or bigger (within 25 GB).

When a disk unit is configured as a hot spare, as shown in Figure 8-3, it is no longer visible as a non-configured or configured disk unit in the System Service Tools → Work with disk units panels. However, it still shows up in the Hardware Service Manager under the disk IOA as a unique model 51 representing a hot spare disk unit.

Start Hot Spare

Selecting a disk unit will start using the selected disk unit as a hot spare.

Type option, press Enter.
1=Start Hot Spare

<table>
<thead>
<tr>
<th>IOA Serial</th>
<th>IOA Resource Serial</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opt Number</td>
<td>Name</td>
<td>Number</td>
</tr>
<tr>
<td>1C-3300176</td>
<td>DC06</td>
<td>68-0E7A6</td>
</tr>
<tr>
<td>1C-3300176</td>
<td>DC06</td>
<td>68-0C3CF93</td>
</tr>
<tr>
<td>1C-3300176</td>
<td>DC06</td>
<td>68-0C357DB</td>
</tr>
<tr>
<td>1C-3300176</td>
<td>DC06</td>
<td>68-0C36C54</td>
</tr>
</tbody>
</table>

Figure 8-3 IBM i Start Hot Spare panel

The disk IOA does not control mirror protection, so when a mirror protected disk unit fails, the System Licensed Internal Code (SLIC) detects that the failed drive and completes the following recovery steps (not apparent to the user):

1. SLIC tells IOA to disable the hot spare.
2. The hot spare becomes non-configured.
3. The replace configured unit function is run to replace the failed drive with the now non-configured previous hot spare.
4. The failed drive becomes non-configured for safe physical replacement.

8.1.3 Dual storage I/O adapters

With IBM i 6.1.1 or later, any of the following IBM i serial-attached SCSI (SAS) adapters with write cache that is used for internal disk attachment on POWER6 server or later are supported as dual SAS adapters. Both adapters of the dual SAS adapter pair must have the same size of write cache.
PCIe2 1.8 GB Cache RAID SAS Adapter Tri-Port 6 Gb CR sales feature #ESA3

The PCIe2 1.8 GB Cache RAID SAS Adapter Tri-Port 6 Gb CR (#ESA3) is a low-cost version of the large-cache PCIe SAS adapter (#5913). It provides high-performance capabilities for large quantities of solid-state drives (SSD) or hard disk drives (HDD). This newer version has lower energy requirements and lower cost than the #5913, yet provides about the same performance. POWER7+ servers are supported initially, with POWER7 support intended to follow.

#5913/ESA1/ESA2 SAS Adapter Performance Boost with VIOS

Performance is boosted in a configuration of IBM i client with VIOS for the #5913/ESA1/ESA2 adapters. With this support, there is better handling of “write” workloads.

For any existing configurations with these adapters, the HDD/SSD disk drives need to be reformatted to get the boost. Another benefit is that the usable capacity on the SAS disk drives is also increased.

**Note:** VIOS 2.2.3.0 is required. For boot device support, FW780 is also required.

For more information about Adapter Performance Boost with VIOS, see the IBM Hardware Announcement letter 113-171 on the following website:


PCIe2 1.8 GB Cache RAID SAS Adapter Tri-Port 6 Gb sales feature #5913

The PCIe2 1.8 GB Cache RAID SAS Adapter Tri-Port 6 Gb (#5913) is a large-cache PCIe SAS adapter that provides high-performance capabilities for large quantities of solid-state drives (SSD) or hard disk drives (HDD). Although this adapter is supported on IBM i in a VIOS configuration, caution is recommended with workloads that are heavy on writes.

The new dual SAS adapter support provides adapter redundancy with an active and passive I/O path per RAID set, or a mirrored side in a two pair (four adapters) dual SAS adapter configuration with IBM i mirroring. Read and write disk I/O operations are sent by the system only down the active path. The passive path is used only after controller failovers (for example, if the active path fails). Dual SAS adapters are redundantly interconnected through a SAS adapter-to-adapter (AA) cable that connects the top ports of the SAS adapters, and a SAS X cable that attaches to the disk expansion drawer, as illustrated in Figure 8-4.

---

![Figure 8-4](image-url)
Both SAS adapters of a dual storage IOA configuration can perform I/O to the attached disk array units. The SAS adapter that is optimized for a configured RAID set is the one driving the I/O to the disk array units. In Figure 8-4 on page 378, one SAS adapter is optimized for RAID set 0 and the other is optimized for RAID set 1.

**Remember:** For IBM i mirroring configurations, the disk units that are attached to a dual SAS adapter are each treated as a one-drive parity set.

For a dual SAS adapter pair, there are primary and secondary adapter roles. Only the primary adapter can perform disk management functions (such as creating a RAID array). If the primary adapter becomes unavailable, an automatic failover to the secondary adapter occurs, which becomes the primary adapter. There is no fallback to the original primary adapter when it comes back operational. The current role of a SAS adapter (as the primary or secondary adapter) can be seen by navigating to **System Service Tools → Start a service tool → Hardware service manager → Logical hardware resources** from the panel that shows the details for a dual SAS storage IOA. Select F14=Dual Storage IOA Configuration, as shown in Figure 8-5.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Opt Name</th>
<th>Type-Model</th>
<th>Status</th>
<th>Serial Number</th>
<th>Operating Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC07</td>
<td>DC07</td>
<td>572F-001</td>
<td>Operational</td>
<td>YL3229019FB5</td>
<td>Secondary Storage IOA</td>
</tr>
<tr>
<td>DC04</td>
<td>DC04</td>
<td>575C-001</td>
<td>Operational</td>
<td>YL3229019FB5</td>
<td>Auxiliary IOA</td>
</tr>
<tr>
<td>DC06</td>
<td>DC06</td>
<td>572F-001</td>
<td>Operational</td>
<td>YL3229021017</td>
<td>Primary Storage IOA</td>
</tr>
<tr>
<td>DC05</td>
<td>DC05</td>
<td>575C-001</td>
<td>Operational</td>
<td>YL3229021017</td>
<td>Auxiliary IOA</td>
</tr>
</tbody>
</table>

**Figure 8-5  IBM i dual storage IOA configuration panel**
You can view the disk unit paths for dual SAS adapter connected disk units that are reported as DMP.xxx multipath disk unit resources. Navigate to System Service Tools → Work with disk units → Display disk unit configuration → Display disk unit path status (Figure 8-6).

<table>
<thead>
<tr>
<th>Serial ASP Unit Number</th>
<th>Type Model</th>
<th>Resource Name</th>
<th>Path Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>Y2103LM0ACE5 433D 050</td>
<td>DMP147</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMP148</td>
<td>Passive</td>
</tr>
<tr>
<td>1 8</td>
<td>Y2103LN0868T 433C 050</td>
<td>DMP197</td>
<td>Passive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMP198</td>
<td>Active</td>
</tr>
<tr>
<td>2 2</td>
<td>Y6800000FA16A 433C 050</td>
<td>DMP129</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMP130</td>
<td>Passive</td>
</tr>
<tr>
<td>2 3</td>
<td>Y6800024F6C9 433B 050</td>
<td>DMP131</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMP132</td>
<td>Passive</td>
</tr>
<tr>
<td>2 4</td>
<td>Y6800000F12FD 433C 050</td>
<td>DMP115</td>
<td>Passive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMP116</td>
<td>Active</td>
</tr>
<tr>
<td>2 5</td>
<td>Y68000267272 433B 050</td>
<td>DMP135</td>
<td>Passive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMP136</td>
<td>Active</td>
</tr>
<tr>
<td>2 9</td>
<td>Y680000356821 433B 050</td>
<td>DMP170</td>
<td>Passive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMP169</td>
<td>Active</td>
</tr>
</tbody>
</table>

Press Enter to continue.

F3=Exit  F5=Refresh  F9=Display disk unit details
F11=Display encryption status  F12=Cancel

*Figure 8-6  IBM i dual SAS adapter disk unit path status*
You can get the best performance without compromising the availability in a dual SAS adapter RAID configuration by balancing the RAID parity sets across both adapters so that each adapter is assigned an equal amount of RAID parity sets with active paths to the disk units. To achieve this availability, the parity optimization method must be set to Performance before you create any RAID 5 or RAID 6 parity sets for dual SAS RAID adapters. See Figure 8-7.

You can change the parity optimization method using the following menu:

**Select Parity Optimization**

Select how you want the parity set optimized:

The current parity optimization is: Performance

Type choice, press Enter.

Select parity optimization

1. Availability
2. Balance
3. Capacity
4. Performance

Selection 4

F3=Exit F12=Cancel

**Figure 8-7  IBM i parity optimization selection menu**

For more information about IBM i dual SAS adapter support, see the “Dual storage IOA configurations” topic in the IBM Systems Hardware Knowledge Center at:


### 8.1.4 Encrypted ASP enhancements

The following new functions were implemented in IBM i 7.1 for ASP encryption supported by option 45 “Encrypted ASP Enablement”, which was originally introduced with IBM i 6.1:

- Start or stop ASP encryption for existing user ASPs or IASPs.

  The changed encryption mode setting is applied for user ASPs when the system undergoes an IPL past DST and for IASPs when they are varied on. This situation does not mean that an IPL is required, but that the asynchronously run encryption or decryption tasks run only on a system that has undergone an IPL past DST.

**Important:** For geographic mirroring environments, encryption can be started or stopped only on the production IASP. Data is sent either encrypted or unencrypted to the backup node's mirror copy IASP. This IASP ensures that the encryption attribute is set.
Figure 8-8 shows the new encryption options available by navigating to **System Service Tools → Work with disk units → Work with disk configuration → Work with encryption.**

<table>
<thead>
<tr>
<th>Selection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Display encryption status</td>
</tr>
<tr>
<td>2.</td>
<td>Create encrypted ASPs</td>
</tr>
<tr>
<td>3.</td>
<td>Add units to encrypted ASPs</td>
</tr>
<tr>
<td>4.</td>
<td>Start encryption on ASPs</td>
</tr>
<tr>
<td>5.</td>
<td>Stop encryption on ASPs</td>
</tr>
<tr>
<td>6.</td>
<td>Change data encryption key for basic ASPs</td>
</tr>
<tr>
<td>7.</td>
<td>Change data encryption key for independent ASPs</td>
</tr>
</tbody>
</table>

---

\[\text{Figure 8-8} \quad \text{IBM i work with encryption menu}\]
Change the data encryption key on existing encrypted user ASPs or IASPs.

The randomly generated 256-bit AES key for user ASP encryption (for example, the ASP master key that is used for IASP encryption) is securely stored in System Licensed Internal Code. This situation is the reason why a SAVSYS is preferred after you start encryption or change the encryption key, as shown in Figure 8-9.

![Confirm Change Data Encryption Key for Basic ASPs]

Note: This function may take a significant amount of time to complete. During this function, the partition performance may be degraded.

You should perform a Save System (SAVSYS) operation after the data encryption key is changed.

Data will be processed on all encrypted basic ASPs.

Do not change the data encryption key for basic ASPs again until this operation has completed. Do not stop encryption on basic ASPs until this operation has completed.

Press Enter to change the data encryption key.

F3=Exit     F12=Cancel

Figure 8-9  IBM i change data encryption key confirmation panel

**Requirement:** For a clustering environment, an identical ASP master key, which protects the IASP data keys, must be manually created using the same parameter on each cluster node in the device domain to allow the IASP to be varied on.
8.1.5 Disk response time buckets enhancements

For a more granular disk I/O performance analysis, the disk response time buckets that were introduced with IBM i 6.1 (Table 8-1) were extended in IBM i 7.1 from six buckets to 11 buckets (Table 8-2). Although the performance data for the existing six buckets is still stored in the QAPMDISK file, the new buckets are stored separately in the new QAPMDISKRB database file.

Table 8-1 IBM i 6.1 disk response time buckets

<table>
<thead>
<tr>
<th>IBM i 6.1 disk response time bucket</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 &lt; 1 ms</td>
</tr>
<tr>
<td>2</td>
<td>1 ms &lt; 16 ms</td>
</tr>
<tr>
<td>3</td>
<td>16 ms &lt; 64 ms</td>
</tr>
<tr>
<td>4</td>
<td>64 ms &lt; 256 ms</td>
</tr>
<tr>
<td>5</td>
<td>256 ms &lt; 1024 ms</td>
</tr>
<tr>
<td>6</td>
<td>&gt;= 1024 ms</td>
</tr>
</tbody>
</table>

Table 8-2 shows the buckets extended to 11.

Table 8-2 IBM i 7.1 disk response time buckets

<table>
<thead>
<tr>
<th>IBM i 7.1 disk response time bucket</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 &lt; 15 us</td>
</tr>
<tr>
<td>2</td>
<td>15 us &lt; 250 us</td>
</tr>
<tr>
<td>3</td>
<td>250 us &lt; 1000 us</td>
</tr>
<tr>
<td>4</td>
<td>1000 us &lt; 4000 us</td>
</tr>
<tr>
<td>5</td>
<td>4000 &lt; 8000 us</td>
</tr>
<tr>
<td>6</td>
<td>8000 us &lt; 16000 us</td>
</tr>
<tr>
<td>7</td>
<td>16000 us &lt; 64000 us</td>
</tr>
<tr>
<td>8</td>
<td>64000 us &lt; 256000 us</td>
</tr>
<tr>
<td>9</td>
<td>256000 us &lt; 500000 us</td>
</tr>
<tr>
<td>10</td>
<td>500000 us &lt; 1024000 us</td>
</tr>
<tr>
<td>11</td>
<td>&gt;= 1024000 us</td>
</tr>
</tbody>
</table>

The Performance Data Investigator in IBM Systems Director Navigator for i and the Collection Services Investigator in IBM iDoctor for IBM i are enhanced with new collection services disk response time graphs for the new buckets in IBM i 7.1.
Chapter 8. Storage and solid-state drives

Figure 8-10 shows the disk response time bucket visualization from the IBM Systems Director Navigator for i perspective. You can access this view by navigating to Collection Services → Disk → Disk Response Time → Detailed → Disk I/O Rates Overview – Detailed.

For more information about the new disk response time buckets in QAPMDISKRB, see the IBM i 7.1 Knowledge Center at:
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzahx%2Frzahxqapmdiskrb.htm

8.1.6 Central processor complex node level mirroring

A system that has multiple central processor complex (CPC) nodes now mirrors disk units in a way that allows it to survive a node outage and that allows a concurrent maintenance repair of a CPC node.

When you start mirroring, the operating system considers the CPC node under which the disks are, and attempts to place the two subunits of a mirror protected pair under different CPC nodes. This action allows concurrent maintenance of a CPC node because the two subunits of each mirrored disk unit pair are under a different CPC node. This configuration allows at least one subunit of each mirrored disk unit pair to remain operational during the maintenance operation.

After you install the PTF Group that contains this function, you might want to consider ending and restarting mirroring to recalculate the mirror protected pairs. You can use an Advanced Analysis macro named LEVELOFPROTECTION, which is accessible through SST or DST, to verify the level of protection for each mirrored pair.
The LEVELOFPROTECTION macro is accessed from either the Dedicated Service Tools (DST) menu or the System Service Tools (SST) menu:

- To access the LEVELOFPROTECTION macro, select System Service Tools → Start a service tool → Display/Alter/Dump → Licensed Internal Code (LIC) data → Advanced Analysis.

- On the Select Advanced Analysis Command panel, there is a blank line at the top. Type a 1 in the Option column to select the blank line, then type LEVELOFPROTECTION, as shown in Figure 8-11. You can also scroll down the list and select the macro.

```
Output device : Display
Type options, press Enter.
1=Select

Option Command
1 LEVELOFPROTECTION
 QUEUESPACE
 RMTMTIME
 SANITIZE
 SEIZEINFO
 SEMAPHOREINFO
 SERVICEDOC
 DUMPTRC
 LEVELOFPROTECTION
 SMARTCHAIN
 SPINLOCKTRACE
 SSDSANITIZE
 SYNCTOKENINFO

F3=Exit F12=Cancel

Figure 8-11 Selecting the LEVELOFPROTECTION macro
```
Press Enter twice on the Select Advanced Analysis Command panel and the help panel is displayed, as shown in Figure 8-12.

Figure 8-12  LEVELOFPROTECTION macro help

In Figure 8-13, the -UNIT parameter is chosen and disk unit 12 is entered.

Figure 8-13  Specifying the -UNIT parameter to specify a disk unit
The macro runs and displays the panel that is shown in Figure 8-14.

![Figure 8-14: Level of protection display](image)

The line at the bottom of the display in the box indicates the level of disk protection, which in this case is CecNodeLevelOfProtection.

### 8.1.7 EXP24S SFF Gen2-bay drawer (#5887)

The EXP24S is a high-density, high-performance SFF drive drawer, holding up to 24 SAS drives in 2U of 19-inch rack space. It has 6 Gb of SAS I/O capability.

The #5887 drawer has double the number of drives than the EXP12S I/O drawer (#5886), and the SFF drives provide significant energy savings compared to the EXP12S 3.5-inch drives.

For more information, see IBM Hardware Announcement letter 111-065 at:


### 8.1.8 Higher capacity 10 K RPM SFF SAS disk drives

283 GB and 571 GB 10 K RPM SFF disk drives are available, offering a lower cost per gigabyte and more gigabytes per rack space than previous technology. These drives are available in Gen1 and Gen2 features.

For more information, see IBM Hardware Announcement letter 111-065.
8.1.9 Higher performance 387 GB SFF SSD with eMLC

Advances in technology now allow a new 387 GB SFF SSD to have more I/O operations per second (IOPS) and improved latency. IBM i support is provided for both POWER7 and POWER7+ servers, and for both IBM i 7.1 and IBM i 6.1 with 6.1.1 machine code.

For more information, see IBM Hardware Announcement letter 113-171 at the following website:

8.1.10 775 GB SFF SSD with eMLC

The new 775 GB SFF SSD, using the same technology as the new higher performance 387 GB disk drive, doubles the capacity that can fit in a single slot. IBM i support is provided for both POWER7 and POWER7+ servers, and for both IBM i 7.1 and IBM i 6.1 with 6.1.1 machine code.

For more information, see IBM Hardware Announcement letter 113-171 at the following website:

8.1.11 1.2 TB / 1.1 TB 10K RPM SAS HDD

The 1.2 TB / 1.1 TB 10k RPM SAS HDD offers lower cost per gigabyte and better storage density compared to smaller HDDs. IBM i 7.1 TR 7 supports these new drives directly. IBM i 6.1 is supported by VIOS. Both POWER7 and POWER7+ servers are supported.

For more information, see IBM Hardware Announcement letter 113-171 at the following website:

8.1.12 Tape performance instrumentation

A new Collection Services *RMVSTG category was introduced in IBM i 7.1 for performance data collection for removable media tape storage devices (for internal and external tape devices).

The tape performance statistics data are stored in the QAPMTAPE structured database file, including physical tape performance I/O statistics counts, such as number of reads and writes, bytes read and written, and number of tape marks and blocks spaced. These data are tracked by the IBM i tape code when you send requests to the tape device driver. Currently, for reviewing the data that are collected in QAPMTAPE, either a user-defined SQL query or a GUI, such as the Systems Director Navigator for i with its Investigate Data function must be used.

For more information about the structured QAPMTAPE database file performance data, see the IBM i 7.1 Knowledge Center at:
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzahx%2Frzahxqapmtape.htm
8.1.13 Tape library resource name changes for IOP-less IOA attachment

When you upgrade a system to IBM i 7.1, a new hardware resource name is assigned to the tape library devices attached through an IOP-less Fibre Channel or SAS adapter. You must ensure that the tape library device description points to the correct hardware resource after the upgrade. Either the hardware resource name must be changed through the System Service Tools Hardware Resource Manager, or the device description's resource name field must be updated (for example, by running CHGDEVMLB) with the new tape library resource name, which was assigned with IBM i 7.1.

8.1.14 Tape library unreadable barcode changes for IOP-less IOA attachment

Before IBM i 7.1, if, at varyon of the tape library, tape cartridges with unreadable barcodes are found, each of these tape cartridges is loaded into a drive to read the volume ID. The volume ID is used to generate a corresponding cartridge ID for the unreadable barcode.

This method ensures, for IBM standard labeled (VOL1) tapes, that the volume ID matches the cartridge ID, which is a requirement for IBM i to allow write operations to a tape cartridge. The downside of this approach is the time that is required to load and read each cartridge, especially if the library barcode reader itself failed. Also, problems with the barcode label or barcode reader are not made apparent to the user.

With IBM i 7.1 and IOP-less IOA attached tape libraries, if a tape cartridge with an unreadable or missing barcode is manually added, a cartridge ID with a format of UNKXXX is fabricated, with XXX being a sequential decimal number that starts with UNK001. If a cartridge is found in a storage slot with an unreadable barcode, a cartridge ID is fabricated with the format of U@XXXX, with XXXX reflecting the SCSI element address when the tape device driver discovers an unreadable barcode in a slot.

This handling of unreadable barcodes in IBM i 7.1 reveals barcode problems and allows you to read from tapes without barcode labels (which are removed from the library again) quicker, without requiring a tape drive for generating cartridge IDs.

**Consideration:** With the IBM i 7.1 IOP-less IOA tape library attachment, you should not use cartridges without barcode labels if they are supposed to remain in the library. To write or append to a standard labeled cartridge in a library, a barcode label that matches the volume ID must be stuck on the cartridge.

8.1.15 DVD / Tape SAS External Storage Unit for Power 795 CPC Rack

The #5274 DVD / Tape SAS External Storage Unit for Power 795 CPC Rack is a 1U storage unit that can hold HH DAT160 drives, the #5638 1.5 TB / 3.0 TB LTO-5 SAS Tape Drive, or slimline DVD drives.

For more information, see IBM Hardware Announcement letter 111-065 found at: http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=ca&infotype=an&appname=iSource&supplier=897&letternum=ENUS111-065

8.1.16 RDX support

RDX drives are positioned as an entry tape alternative to VXA-2, VXA-320, DAT72, DAT160, DAT320, or 8 mm, but they are not intended as an alternative to LTO. The offered capacities are 160 GB - 1 TB per removable cartridge.
RDX drives are available through native attach in IBM i 7.1 TR5 with either USB or SATA.
SATA support will be added to 6.1.1 through a PTF. The drives are available for POWER7
systems only.
For a USB attach to a Version 7.1 system, you can either use F/C #EU03 (USB) or #EU04
(USB). For a Version 6.1.1 system, you must use F/C #EU07 (SATA).
The RDX dock is available in either 5.25-inch internal (SATA or USB) format or external USB
format. The dock supports all RDX cartridges, which have 30+ years of reliability and are
rugged.

8.1.17 1.5 TB RDX removable disk cartridge
A 1.5 TB RDX cartridge feature #EU15 delivers 50% more capacity than the largest cartridge
previously available. It is supported in the #EU03/EU04/EU23 and #1103/1104/1123 RDX
docking stations.
For more information, see IBM Hardware Announcement letter 113-006 at the following
website:
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=8
97/ENUS113-006

8.1.18 VIOS support for RDX USB docking station for removable disk cartridge
Native and iVirtualization support has been offered since late 2012 for RDX technology. The
USB RDX technology is also being supported in VIOS configurations for the same USB
hardware that was supported natively. The virtual RDX device is shown in an IBM i partition
as an optical device, so the same command set applies. This virtual support is useful for
virtual client partition back-up, save/restore, install, and so on.
Note: VIOS 2.2.3.0 is required. For boot device support, FW780 or FW770.30 is also
required.
Support is for same devices as native-attached USB RDX (#EU03 and #EU04).
For more information about RDX removable disk drives, see the following link in the IIBM
Power Systems Hardware documentation:
3.htm&resultof%3D%2522%2545%2555%2530%2533%2522%2520%2522%2565%2575%2530%2533%2522
%2520

Chapter 8. Storage and solid-state drives

391


Figure 8-15 shows a comparison matrix between low end tape drives and RDX.

<table>
<thead>
<tr>
<th></th>
<th>USB Removable Disk Drive (RDX)</th>
<th>Tape Drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price drive / dock</td>
<td>Much lower</td>
<td>Higher</td>
</tr>
<tr>
<td>Maintenance drive/dock</td>
<td>Zero</td>
<td>Not zero</td>
</tr>
<tr>
<td>Price cartridge</td>
<td>Higher</td>
<td>Lower</td>
</tr>
<tr>
<td>Able to add next higher capacity cartridge</td>
<td>Use same docking station</td>
<td>Need new drive</td>
</tr>
<tr>
<td>Capacity</td>
<td>Up to 1 TB</td>
<td>DAT only up to 80 GB uncompressed</td>
</tr>
<tr>
<td>Compression</td>
<td>Done by server, not docking station</td>
<td>Most drives have built in compression</td>
</tr>
<tr>
<td>Auto loader</td>
<td>No</td>
<td>Not offered on lower end drives</td>
</tr>
<tr>
<td>Susceptible to dirt/dust</td>
<td>Very resistant</td>
<td>Susceptible</td>
</tr>
<tr>
<td>Random access to middle or end of cartridge</td>
<td>Yes (with UDF file system)</td>
<td>No</td>
</tr>
<tr>
<td>Rugged (drop and contamination resistant)</td>
<td>Yes</td>
<td>Less rugged</td>
</tr>
<tr>
<td>Encryption</td>
<td>Done by server application, not docking station</td>
<td>Lower end drives use server application, not drive</td>
</tr>
<tr>
<td>Head cleaning and cleaning cartridge</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Backup/Restore time</td>
<td>Somewhat faster than entry</td>
<td>Somewhat slower than RDX</td>
</tr>
<tr>
<td>External packaging/attachability</td>
<td>Small, mobile, easy USB attach</td>
<td>Larger, SAS/SATA PCI adapter attachment. DAT160 has USB attach option.</td>
</tr>
</tbody>
</table>

Figure 8-15  RDX versus low end tape

Although RDX is a tape replacement, when you configure or operate RDX on IBM i, think of it as a DVD. The devices do not show up as TAP devices. Instead, look for a Removable Mass Storage (RMS) device.

**Note:** IBM i 7.1 can virtualize RMS devices to other IBM i partitions. VIOS does not virtualize RDX.

### 8.1.19 Use of USB flash drive for IBM i

IBM i on POWER7+ and POWER7 Systems support the use of USB attached flash drives for both native attach and iVirtualization configurations (where IBM i is serving I/O to a virtual client IBM i partition or where IBM i is a virtual client of an IBM i partition) with current PTFs.

Flash drives, also referred to as memory keys or thumb drives, are small pluggable devices that do not have removable media. The intent is to provide generic support for a USB 2.0 device (up to 32 GB in capacity) so that the USB flash vendor of choice can be used. A single flash drive can hold a large amount of data that would otherwise have needed multiple DVDs, and can typically access the data much faster.

On IBM i, these are “optical class” devices whose main purpose is data movement such as IFS copy, save/restore operations directly to/from the device, or D-mode IPL when the server is HMC managed. Due to lack of reliability of flash drives in general, they are not recommended as backup devices, but they are useful for the following types of operations:
- Copying a file (for example PTF fix, database file, or spool file) from one IBM i partition to another.
- Copying a file from an IBM i partition to another type of system, for example, a Windows 7 or Apple PC.
- Copying a mainstore dump and other debug information from an IBM i partition and taking it to another partition, or even a PC, to send it in to IBM service.
- Installing PTFs or an IBM i application.
- ISV software distribution.
- Performing a D mode IPL when managed by an HMC when an alternate IPL device is configured.
- Used as an alternative to sending files over a network.

For more information about USB attached flash drives, see the following website:

When a USB flash drive is inserted into the operator panel USB port or the Flexible Service Processor (FSP) USB ports, a storage resource type of 63BC is created. Use the WRKHDWRSC *STG command to see the created resource as shown in Figure 8-16.

<table>
<thead>
<tr>
<th>Opt</th>
<th>Resource</th>
<th>Type-model</th>
<th>Status</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMB08</td>
<td>57D3-001</td>
<td>Operational</td>
<td>Storage Controller</td>
<td></td>
</tr>
<tr>
<td>DC05</td>
<td>57D3-001</td>
<td>Operational</td>
<td>Storage Controller</td>
<td></td>
</tr>
<tr>
<td>RMS01</td>
<td>63BC-005</td>
<td>Operational</td>
<td>Optical Storage Unit</td>
<td></td>
</tr>
</tbody>
</table>

When a flash drive is initialized (INZOPT) on IBM i, it is initialized with the UDF file system. If a flash drive is inserted that has files on it, but displays on the system as an unknown format, it is most likely formatted with a file system that IBM i does not recognize (for example, Microsoft NTFS).

Save/restore operations are run as with a DVD, for example SAVLIB DEV(RMS01). Because it is an optical class device, you can also use IFS to manage data by using the command WRKLNK OBJ('/QOPT/REDXVOL'). IBM i commands are the normal optical storage commands (INZOPT, WRKOPTVOL, and so on).
8.1.20 POWER7+ 770/780 Native I/O support

For POWER7+ 770 or 780 systems, native I/O attach is supported only for IBM i 7.1. IBM i 6.1 partitions can use native I/O only if virtualized by a VIOS or a Version 7.1 partition, as shown in Figure 8-17.

Although this virtualization is easily done for disk, SAN, Tape, LAN, and optical devices, there is no virtualization support for WAN or crypto cards.

8.2 Using IBM i 520-byte sector SAS disk through VIOS

Historically, virtual SCSI disk devices presented to client operating systems from both the Virtual I/O Server (VIOS) and the IBM i (when acting as a virtual storage server) have always been formatted to use a 512-byte sector size. Because of the unique requirements to implement its Single Level Storage architecture, for every 512 bytes of data written to disk, an IBM i partition must also store 8 bytes of additional data. Some storage devices, such as the DS8000 family of storage servers when attached directly to the IBM i partition, provide a 520-byte sector format to support this requirement. However, when using 512-byte sector devices, the IBM i operating system instead must use an additional sector for every eight sectors written to disk. This requirement consumes 4608 bytes of disk space for every 4096 bytes of user data written. This additional sector is used to store the additional data that would otherwise have been written in each 520-byte sector by devices capable of that support.

The latest generation of IBM Serial-Attached SCSI (SAS) adapters are optimized for disk operations with data aligned on 4096-byte boundaries. This decision ended up producing a noticeable degradation of the performance of disk requests with data that was not aligned on such a boundary. Specifically, virtual disk units provided to an IBM i client partition from a VIOS server using SAS hdisks as the backing storage devices. In this configuration, the 4608 byte-aligned I/O requests initiated by the IBM i are passed to the SAS adapter with no change in alignment, resulting in less than optimal performance.

IBM has addressed this performance issue by enabling the VIOS to provide a 520-byte sector format virtual disk when backed by SAS hardware that is capable of supporting that format, and enabling the IBM i operating system to format and use these virtual disks like they would other 520-byte sector disks. The SAS adapter then optimizes the I/O as though it was attached directly to the IBM i partition instead of being attached to a VIOS.
8.3 SAN storage management enhancements

This section describes the following IBM i storage management enhancements specific to IBM i external storage area network (SAN) storage:

- IBM SAN Volume Controller and IBM Storwize storage systems
- Multipathing for virtual I/O
- DS5000 native attachment
- Level of protection reporting for multipath disk units
- Library control paths for IOP-less Fibre Channel IOA tape attachment
- External disk storage performance instrumentation
- Thin provisioning for DS8700, DS8800, and VIOS shared storage pools

8.3.1 IBM SAN Volume Controller and IBM Storwize storage systems

IBM SAN Volume Controller and IBM Storwize V7000, IBM Storwize V3700, and IBM Storwize V3500 storage systems are supported for both fabric and direct attached configurations. Loadsource device support is included, as is the full use of PowerHA for i, including Logical Unit (LUN) level switching.

For more information about PowerHA support, see the following website:

Support is for all models of the IBM SAN Volume Controller and IBM Storwize storage systems that have IBM SAN Volume Controller code level 6.4.1.4, or later.

Following are some configuration tips:

- Each host Fibre Channel port can be configured to support 1 or 2 paths to a maximum of 64 LUNs.
- Each IBM i Fibre Channel port logs in to one port on each of the controller nodes.
- The recommended switch zoning is to have one host Fibre Channel port and one port from each node included in the same zone.
- There is support for variable sized LUNs on the IBM Storwize storage systems, but 80 GB is the recommended minimum LUN size to create.
- Having a few large LUNs is not considered a best practice because better performance is achieved when data can be spread across multiple LUNs. Use Disk Magic to characterize your workload to understand how many LUNs are required.
- When setting up the configuration, formatting the LUNs before assigning them to the IBM i host partition is recommended when reusing storage that had an IBM i LUN that was deleted.
- Because there is no support for host side SSD identification, the IBM i ASP balancer function does not recognize the IBM Storwize LUNs as SSD. Therefore, the IBM Storwize storage system should be configured for EasyTier. See the following techdoc for a summary of IBM i supported storage:
  http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS4563

For compatibility and availability information about IBM SAN Volume Controller, see the IBM System Storage SAN Volume Controller website:
http://www-03.ibm.com/systems/storage/software/virtualization/svc/
8.3.2 Multipathing for virtual I/O

IBM PowerVM Virtual I/O Server IBM i client support was introduced with IBM i 6.1.

With IBM i 6.1.1 or later, a redundant VIOS configuration (Figure 8-18) is supported by IBM i multipathing across two or more VIOS on the same IBM Power Systems server for protection against VIOS outages because of VIOS updates.

This new IBM i multipathing support for virtual I/O eliminates the need to use IBM i mirroring for a redundant VIOS configuration, which required duplicate storage capacity.

For further IBM i virtualization enhancements, such as Active Memory Sharing or N_port ID virtualization support, see Chapter 7, “Virtualization” on page 319.
8.3.3 DS5000 native attachment

IBM i SAN storage support is extended with IBM i 6.1.1 to support native attachment of the IBM System Storage DS5100 and DS5300 systems to IBM Power Systems POWER6 or later servers. This new native attached DS5100 and DS5300 storage support provides an easier storage setup (see Figure 8-19) and configuration without needing to deploy the IBM PowerVM VIOS. It is only if some other advanced virtualization functions are being used on IBM i that you must configure a VIOS.

![Figure 8-19 IBM i DS5000 native attachment](image)

Figure 8-19 IBM i DS5000 native attachment

Figure 8-20 shows how the native attached DS5000 LUNs, created for the IBM i host, report on an IBM i host as device type D818.

![Figure 8-20 Native attached DS5000 LUNs on IBM i](image)

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Type</th>
<th>Model</th>
<th>Name</th>
<th>Capacity</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y2103LQOWGLC</td>
<td>433B</td>
<td>050</td>
<td>DPH001</td>
<td>69793</td>
<td>Non-configured</td>
</tr>
<tr>
<td>Y2103LQ1J064</td>
<td>433B</td>
<td>050</td>
<td>DPH002</td>
<td>69793</td>
<td>Non-configured</td>
</tr>
<tr>
<td>Y2103LQ1J06H</td>
<td>433B</td>
<td>050</td>
<td>DPH003</td>
<td>69793</td>
<td>Non-configured</td>
</tr>
<tr>
<td>Y2103LQ0P0BE</td>
<td>433B</td>
<td>050</td>
<td>DPH004</td>
<td>69793</td>
<td>Non-configured</td>
</tr>
<tr>
<td>Y2103LQ1HV0C</td>
<td>433B</td>
<td>050</td>
<td>DPH005</td>
<td>69793</td>
<td>Non-configured</td>
</tr>
<tr>
<td>Y2103LQ1J6M8</td>
<td>433B</td>
<td>050</td>
<td>DPH006</td>
<td>69793</td>
<td>Non-configured</td>
</tr>
<tr>
<td>Y0C44AC5B4F6</td>
<td>D818</td>
<td>099</td>
<td>DPH007</td>
<td>265333</td>
<td>Non-configured</td>
</tr>
<tr>
<td>Y0C14AC5A32B</td>
<td>D818</td>
<td>099</td>
<td>DPH008</td>
<td>265333</td>
<td>Non-configured</td>
</tr>
</tbody>
</table>

Press Enter to continue.

F3=Exit       F5=Refresh       F9=Display disk unit details
F11=Display device parity status  F12=Cancel

Figure 8-20 Native attached DS5000 LUNs on IBM i
IBM i DS5000 native attachment has these requirements:

- IBM i POWER6 or later servers only
- IBM i 6.1.1 (OS resave RS610-10, SLIC RS611-A, or cumulative PTF C9279610) or later
- IOP-less Fibre Channel IOA (#5774, #5749, or #5735)
- DS5100 or DS5300 only
- DS5000 FW 7.60.28.00 or later (including NVSRAM N1818D51R1060V08 for DS5100 and N1818D53R1060V08 for DS5300 or later)
- DS5000 Storage Manager 10.60.x5.17 or later
- DS5000 IBM i Host Kit Feature Code 7735

The following considerations apply for IBM i DS5000 native attachment:

- The maximum supported LUN size for IBM i is less than 2 TB.
- The usable IBM i net capacity is 8 / 9 of the configured DS5000 LUN capacity.
- A maximum of 64 LUNs per IBM i Fibre Channel IOA port is allowed.
- Unprotected arrays (RAID 0) are not supported for IBM i.
- IBM i mirroring is not supported for DS5000.
- Multipathing on a single dual-port Fibre Channel IOA is not supported.
- DS5000 Dynamic Volume Expansion (DVE) is not supported for IBM i.
- SSDs in DS5000 are not supported for IBM i.

From an IBM i disk I/O performance perspective, the following preferred practices should be followed:
- To balance workload across both DS5000 controllers, LUNs should be evenly assigned regarding preferred controller affinity to controller A and B.
- The LUN size for IBM i IOP-less Fibre Channel of 70 GB applies for DS5000 native attachment.
- A DS5000 segment size of 128 KB is generally a good compromise for both IBM i transaction and save / restore workload.

For more information about the IBM System Storage DS5000 series, see the following IBM Redbooks publications:
- IBM Midrange System Storage Hardware Guide, SG24-7676
- IBM System Storage DS Storage Manager Copy Services Guide, SG24-7822

For more information about IBM support statements about DS5000 Copy Services support with IBM i native attached DS5000, see IBM i Virtualization and Open Storage read-me first, found at: http://www-03.ibm.com/systems/resources/systems_i_Virtualization_Open_Storage.pdf

IBM STG Lab Services developed a Copy Services Tool Kit offering Advanced Copy Services for PowerHA - DS5000 Edition for DS5000 native-attachment to support IASP storage-based replication solutions with FlashCopy / VolumeCopy and Enhanced Remote Mirroring. For more information about this Copy Services Tool Kit offering for DS5000, see IBM STG Lab Services at: http://www-03.ibm.com/systems/services/labservices

### 8.3.4 Level of protection reporting for multipath disk units

With IBM i 7.1, the level of protection for multipath attached external disk units is now reported for any multipath disk unit devices from either a natively or VIOS-attached disk storage system. The reported levels of multipath protection reflect the component that can fail without jeopardizing I/O access to the disk units and are the same as the ones used for mirrored protection:
- Remote Bus
- Ring (HSL / 12X Loop)
- Tower
- Bus
- IOP
- IOA
- IOA-Bus
Figure 8-22 shows the new multipath protection level reporting for the example of DS8000 disk units each attached through three paths. To view this panel, select System Services Tools → Work with disk units → Display disk unit configuration → Display protection for multiple connection disk units.

<table>
<thead>
<tr>
<th>ASP Unit Number</th>
<th>Type Model Name</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 11 50-70005F0</td>
<td>2107 A04 DMP007</td>
<td>Ring</td>
</tr>
<tr>
<td>7 11 50-70005F0</td>
<td>2107 A04 DMP012</td>
<td>Ring</td>
</tr>
<tr>
<td>7 11 50-70005F0</td>
<td>2107 A04 DMP009</td>
<td>Ring</td>
</tr>
<tr>
<td>7 14 50-53007F0</td>
<td>2107 A04 DMP407</td>
<td>Bus</td>
</tr>
<tr>
<td>7 14 50-53007F0</td>
<td>2107 A04 DMP111</td>
<td>Bus</td>
</tr>
<tr>
<td>7 14 50-53007F0</td>
<td>2107 A04 DMP208</td>
<td>Bus</td>
</tr>
</tbody>
</table>

Press Enter to continue.
F3=Exit                                F5=Refresh
F11=Display disk configuration status  F12=Cancel

Figure 8-22  IBM i protection level reporting for multipath disk units

8.3.5 Library control paths for IOP-less Fibre Channel IOA tape attachment

Tape library devices that are attached to a dual-port Fibre Channel I/O adapter with IBM i 7.1 require at least one control path drive to be attached to each port. This configuration is required because the design changed from an adapter-centric to a port-centric control path architecture.

The tape device driver ensures that, from a user perspective, only one library resource per Fibre Channel IOA port is presented for the same logical library, even if multiple control paths are defined. IBM i pools these libraries so all the TAPxx resources for the library are in one TAPMLBxx device description.

**Requirement:** For IBM i 7.1, a second library control path must be added, preferably before the upgrade to IBM i 7.1, for the second port of a dual-port IOP-less Fibre Channel IOA. Otherwise, the tape drives on the second port can become stand-alone devices without library capability.

Before IBM i 7.1, only one control path drive was required per Fibre Channel IOA for drives in the same logical library. Only one library resource per Fibre Channel IOA is presented for the same logical library, even if multiple control paths are defined.
8.3.6 External disk storage performance instrumentation

New external disk storage performance metrics for IBM System Storage DS8000 and DS6000 series are available with Collection Services in IBM i 7.1. This new data is collected with the new *EXTSTG category and stored in the QAPMXSTGD database file.

Because of a minimum DS8000 Release 4 microcode requirement to support this new external storage performance data collection, the *EXTSTG category is not included in any default collection profile to prevent Product Activity Log (PAL) hardware failure information entries if this DS8000 code requirement is not met. To enable QAPMXSTGD external storage performance data collection with the *STANDARD or *STANDARDP default collection profiles, the following steps as are required to add the *EXTSTG category to these profiles:

1. Run **ENDPFRCOL FRCCOLEND(*YES)**.
2. Run **RNMOBJ OBJ(QUSRSYS/QPFRCOLDTA) OBJTYPE(*USRSPC) NEWOBJ(QPFRCOLDT2)**.
3. Run **CALL QSYS/QYPSCOLDTA PARM('*EXTSTG')**.
4. Run **STRPFRCOL**.

For more information about these DS8000 external storage performance data collection requirements, see the IBM i Memo to Users 7.1 at:

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/rzaq9/rzaq9.pdf

**Requirement:** DS8000 Microcode Release 4 or later is required for the QAPMXSTGD external storage performance data collection.

This new QAPMXSTGD database file contains DS8000 or DS6000 external storage subsystem performance data, including Fibre Channel link statistics and rank (RAID array) statistics. The QAPMXSTGV database file that was introduced in IBM i 6.1.1 and part of the *DISK category included in all default collection profiles contains volume level (that is, logical unit (LUN)) cache statistics performance data.

Both the QAPMXSTGD and QAPMXSTGV files store vendor-specific SCSI Log Sense page data in unstructured large data fields. Access to at least a single IBM i LUN on the DS8000 or DS6000 storage system is required to retrieve this log sense data from it when the SCSI Log Sense command is issued against a LUN.
IBM iDoctor for IBM i external storage performance analysis functions

The IBM iDoctor for IBM i suite of analysis tools is recommended for analyzing the external storage performance data. IBM iDoctor for IBM i build C00777 or later is required. This suite has new functions for visualizing and analyzing DS8000 or DS6000 storage performance data.

The new iDoctor Collection Services Investigator functions for analyzing the external storage performance log sense data that is stored in QAPMXST6V (Log sense page 0x32) and QAPMXST6D (Log sense pages 0x33 and 0x34) are shown in Figure 8-23.
Before you use iDoctor to analyze the external storage performance data, click **Analyses → Run External Storage** to generate structured SQL tables from the Log Sense data and the new “External storage cache statistics” and “External storage link and rank statistics” report folders. A refresh of the view might be required to display them.

Newly available external storage cache statistics data are shown in Figure 8-24 from the report that is generated by clicking **External storage cache statistics → by time interval → IO rates totals with cache hits**. The read cache hit% information was available from the QAPMDISK data, but the newly reported write cache hit% from QAPMXSTGV data can check for any potential storage subsystem write cache overruns. These overruns are indicated by write cache hits% < 100%, and might warrant changes in the workload schedule or a cache size upgrade.

![Figure 8-24 iDoctor external storage cache statistics](image-url)
Valuable analysis functions for DS8000 or DS6000 rank and link performance data are available from the External storage link and rank statistics reports.

For example, potential rank overuse issues can easily be visualized and analyzed by using a ranking view of the rank IDs based on total I/O. To do so, click Rank graphs → By rank ID → Ranks IO rates totals. Then, from this view, select one or more ranks with a high I/O rate for a more detailed analysis by selecting Selected Ranks → Ranks IO rates from the right-click menu, as shown in Figure 8-25.

![Figure 8-25 iDoctor rank I/O rates ranking](image)
The read and write rank I/O rates over time for the individually selected rank IDs 5 and 6 from the example are shown in Figure 8-26. If these were RAID 10 instead of RAID 5 ranks, you also could have chosen the option to display the disk IO rates. This option is not available for RAID 5 because their disk I/O rates cannot be determined accurately from the rank read and write I/O rates.

Figure 8-26  iDoctor rank I/O rates for selected ranks
Similar to the rank I/O performance analysis, reports with graphing functions for host (SCSI) or Peer-to-Peer Remote Copy (PPRC) link performance analysis were added to iDoctor, as shown in Figure 8-27.

![Figure 8-27 iDoctor link I/O rates](image)

For more information about the IBM iDoctor for IBM i powerful suite of performance tools, go to the iDoctor website, which offers a 45-day trial version, at:


8.3.7 Thin provisioning for DS8700, DS8800, and VIOS shared storage pools

Thin provisioning for DS8700 and DS8800 storage servers, and for VIOS shared storage pools, allows configurations to be set up with a small amount of real disk storage. This storage can be increased later without changing the partition's view of the storage LUN. Before this enhancement, the full amount of configured storage was allocated at LUN initialization time.

Here are the thin provisioning requirements:

- **Hardware requirements:**
  
  Thin provisioning enhancement for DS8000 storage servers requires a DS8700 or DS8800 with Release 6.2, available from IBM through FC #1723, or through bundles:
  
  - IBM System Storage DS8700 - level 7.6.2.xx.xx (bundle version 76.20.xxx.xx), or later
  
  - IBM System Storage DS8800 - level 7.6.2.xx.xx (bundle version 86.20.xxx.xx), or later

- **Software requirements:** IBM i 7.1 with the newest Technology Refresh PTF Group
8.4 SSD storage management enhancements

IBM i with its single-level storage architecture, integrated DB2 database, storage performance analysis, and storage management capabilities is an industry-leading platform for SSD hierarchical storage management.

The integrated hierarchical storage management functions for SSDs in IBM i, such as the DB2 for i and UDFS media preferences or the ASP balancer enhancements for SSDs, allow for an easy and efficient implementation of SSDs on the IBM i platform.

SSDs based on flash memory are considered a revolutionary technology for disk I/O performance and energy efficiency compared to traditional spinning disk drives. SSD I/O response times can be over 200 faster than for spinning disk drives. SSDs are supported in IBM i 6.1.1 for internal storage plus PTF MF47377 or later if used in IBM System Storage DS8000 series with R4.3 code or later.

For more information about the benefits and usage of SSDs with IBM i, see Performance Value of Solid State Drives using IBM i, which is available at the following website:

The SSD Analyzer Tool for IBM i is a good tool to use for a first analysis about whether SSDs can help improve performance for a particular IBM i system. The tool queries existing Collection Services performance data for retrieving the average system and optional job level disk read I/O response times to characterize whether the workload is a good candidate for SSDs. It can be downloaded as an IBM i save file from the following website:
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3780

For a reference about the IBM i PTF requirements for SSDs, see the IBM i Software Knowledge Base topic “Requirements for Solid State Drives (SSD)”, which is available at the following website (search for KBS document number 534676318):

The following subsections describe recent enhancements for management of SSDs in an IBM i environment:
- DB2 media preference
- ASP balancer enhancements for SSDs
- User-defined file system media preference
- 177 GB SFF SSD with eMLC
- IBM Disk Sanitizer PRPQ extended to include SSD devices

8.4.1 DB2 media preference

DB2 for i was extended with support for database object placement on SSDs or HDDs. This new function, called DB2 media preference, allows the user to have control over which media type selected database files are stored so that DB files that are known to be I/O performance critical can be placed explicitly on high performing SSDs.
Physical and logical DB files (table and indexes) are enhanced with a preferred media attribute that can be set through the `-UNIT` parameter for a certain media preference of either SSDs. You can use UNIT parameter values *SSD (CL commands) or SSD (SQL) for i 6.1 and later, or HDDs with UNIT parameter values *ANY (CL commands) or ANY (SQL) when you create or change these files through the following CL commands or SQL statements:

- CRTPF, CRTLF, CRTSRCPF, CHGPF, CHGLF, and CHGSRCPF
- CREATE TABLE, CREATE INDEX, and ALTER TABLE

**Parameter usage:**
- The UNIT parameter for the SQL statements is supported by IBM i 6.1 or later.
- For a partitioned SQL table, the ALTER TABLE statement can be used to set a media preference on a partition (member) level.

Figure 8-28 shows the new preferred storage unit parameter (UNIT keyword) for the CHGPF command.

Dynamic data movement
Enhancements were implemented for dynamically changing the DB2 media preference, which starts a dynamic data move done synchronously.

For releases before IBM i 7.1, the following PTFs are required for a dynamic move of physical or logical database files after you change their media preference attribute. Otherwise, a save and restore of those changed database files is required to make the media preference change effective.

- IBM i 6.1.0 PTFs MF47888, MF47892, and MF47879
- IBM i 6.1.1 PTFs MF47889, MF47893, and MF47877
DB2 random and sequential reads statistics
To help with SSD media management from a database business logic perspective for determining which database files are good candidates for placement on SSDs, two new fields (RANDOM_READS and SEQUENTIAL_READS) were introduced in IBM i 7.1 for each keyed logical and physical database file. These two 8-byte counters are used to track the amount of random and sequential logical read I/O for each database file, and are continuously updated by the database and reset only at IPL. Because a single logical read I/O can lead to more than one random I/O (for example, because of variable length fields (> 32 KB) or large objects (LOBs)), the new RANDOM_READS and SEQUENTIAL_READS usually do not sum up to the reported LOGICAL_READS.

The preferred procedure (after database performance optimization is completed from an application and system perspective and further optimization is warranted at the storage hardware level) is to help determine which database files are good candidates for placement on SSDs as follows:

1. Look at a storage I/O performance critical time period.
2. Compare the RANDOM_READS numbers at the start and end of the time period.
3. Determine the DB files with highest RANDOM_READS I/O count differences, and if these files are critical from a business perspective, they might be good candidates for using DB2 media preference to move them to SSDs.

To query the RANDOM_READS counter for database files, a SQL query against QSYS2/SYSPARTITIONSTAT for physical file statistics or SYSINDEXSTAT for keyed logical file statistics (Example 8-1) or the System i Navigator's Health Center activity tab (Figure 8-29) can be used. Save the query results and use the View History function to compare the results that are retrieved for the start and the end of the critical time period.

Example 8-1   SQL query for physical database file random reads

```
SELECT table_name, logical_reads, random_reads, sequential_reads FROM QSYS2.SYSPARTITIONSTAT WHERE logical_reads > 0 ORDER BY random_reads DESC
```
Figure 8-29 shows the System i Navigator’s Health Center activity tab.
Macro for changing storage management SSD allocations
To prevent newly created objects without a media preference from being placed on SSDs in a hybrid ASP with HDDs and less capacity used SSDs, run the `smgetstayoffssd` macro. After you run the macro, storage management tries to stay away from SSDs for non-media preference objects, as shown in Example 8-2. The `smresetstayoffssd` macro resets the storage allocation setting back to the default setting of "Non-media preference will go to best unit", that is, the lowest percent capacity unit.

Example 8-2  Macro `smgetstayoffssd`

```
DISPLAY/ALTER/DUMP
Running macro: SMGETSTAYOFFSSD
Non-media preference will try to stay off SSD.
```

In Example 8-3, the `smgetstayoffssd` macro is used to reset the storage allocation setting back to the default for a specific independent ASP. For IASPs, the ASP number in hex is required on the `smsetstayoffssd` macro.

Example 8-3  Storage allocation setting

```
DISPLAY/ALTER/DUMP
Running macro: SMGETSTAYOFFSSD 91
Non-media preference will try to stay off SSD for ASP 0x91.
```

Statistical view for reporting unit allocations
A new view named SYSPARTITIONDISK, which is used to support reporting of SSD versus HDD space usage for SQL tables and native tables (physical files), is available through PTFs for IBM i 6.1, and 7.1.
Figure 8-30 shows a query result example from the new SYSPARTITIONDISK view after you use the ASP balancer to move DB files to SSD and manually move the HSTRY01 table to SSD through DB2 media preference. For each table, the columns SSD_SPACE versus NON_SSD_SPACE show its storage space in bytes allocated on SSDs and non-SSDs (HDDs).

Figure 8-30 SYSPARTITIONDISK view query result

For more information about the new SYSPARTITIONDISK view and function, see the topic “IBM DB2 for i Statistical View for Solid State Drive Storage Usage Reporting” at:
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD105463

8.4.2 ASP balancer enhancements for SSDs

The ASP balancer function for hierarchical storage management (HSM), which traditionally supports data migration between high performance and low performance (that is, compressed) hard disk drives (HDDs), is extended to support data migration between SSDs and HDDs.
Based on the read I/O count statistics for each 1 MB auxiliary storage extent of an ASP collected during a preceding TRCASPBAL run, the ASP balancer enhanced HSM function supports migration of frequently accessed hot extents from HDDs to SSDs and rarely accessed cold extents from SSDs to HDDs. By default, the ASP balancer tries to place all those frequently accessed extents on SSDs, which account for 50% of the total read I/O count.

Typically, the ASP balancer tracing function TRCASPBAL is run over a critical I/O workload period, such as a batch processing window, which is optimized for performance when using SSDs. Afterward, the ASP balancer HSM function is started to migrate both the cold data from SSDs and the hot data to SSDs. TRCASPBAL can be accumulative. Users might clear data at the start of the week, collect the trace across the nightly batch work load window for the week, and balance on the weekend.

Example 8-4 illustrates a typical usage of the ASP balancer tracing and migration functions by clearing the trace statistics first, collecting new trace statistics, starting the migration, and monitoring its completion with the CHKASPBAL command.

Example 8-4   ASP balancer tracing and migration

```
TRCASPBAL SET(*CLEAR) ASP(1)
TRCASPBAL SET(*ON) ASP(1) TIMLMT(*NOMAX)
...
TRCASPBAL SET(*OFF) ASP(1)
STRASPBAL TYPE(*HSM) ASP(1) TIMLMT(*NOMAX)
CHKASPBAL
```

The initial ASP balancer accounting only for the extent read I/O counts is enhanced with a more efficient migration algorithm in the weighted ASP balancer version and more functions regarding SSD media management.

**Weighted ASP balancer**

Enhancements were implemented for the HSM function of the ASP balancer for migration of frequently accessed hot data to SSDs and infrequently accessed cold data to HDDs for hybrid ASPs consisting of SSD and HDD disk units.

With IBM i 6.1 plus supersede PTF MF49399, IBM i 6.1.1 plus supersede PTF MF48544, and with IBM i 7.1 base code, the ASP balancer’s decision for moving hot or cold data to and from SSDs is now based on a weighted disk read I/O count for the 1 MB auxiliary storage segments to be moved. Not only is the amount of read I/O accesses to a segment counted as before, but its read service time is considered for the migration decision.

This weighted ASP balancer enhancement accounting for the read service times provides more efficient data media placement. For example, frequently accessed data that is derived mainly from read cache hits can no longer be prioritized for migration to SSDs, as it cannot benefit from being placed on SSDs.
ASP balancer migration priority

In IBM i 7.1, the ASP balancer is enhanced with an option that allows the user to specify the migration priority for *MOVDTA, *HSM, or *MP operations at levels of either *LOW, *MEDIUM, or *HIGH (as shown in Figure 8-31). This option influences the number of SLIC internal data moving tasks that are used for the migration. This option is subject to an inherent trade-off between speed of data migration and its effect on disk usage.

Also, the STRASPBAL command syntax has changed in IBM i 7.1 to include a new subtype parameter that, for the *HSM balance type, now allows data migration between up to three storage tiers. Tiered storage is the assignment of different categories of data to different types of storage media to reduce total storage cost. You can have the following types of data migration:

- With subtype *SSD, you can have data migration between SSDs and high performance HDDs.
- With subtype *HDD, you can have data migration between high performance HDDs and low performance (compressed) HDDs.

Unless an ASP has disk units from all three storage tiers, the default subtype *CALC can be used.

Data migration with the *HSM balance type is run in two phases, with cold data moved off from SSDs first, and then hot data moved to SSDs.
ASP balancer media preference balance type

The *MP balance type is a new ASP balancer function in IBM i 7.1 that helps correct any issues with media preference flagged DB objects or UDFS files not on their preferred media type, which is either SSDs or HDDs. This sweeper function moves objects that are marked with a media preference attribute to SSDs and non-media preference objects to HDDs when you use the default subtype *CALC. To limit the scope of media preference migration to only one direction, either the *SSD or *HDD subtype can be used for specifying the source media type for the migration.

For earlier releases, this media preference sweeper function is available with the following SST Advanced Analysis interface macros in IBM i 6.1.1 through PTF MF49299 and in IBM i 6.1.0 through PTF MF49371:

- **movemediapreference asp_num priority [L M H]** (The default is low.)
  This macro moves data that is marked with a media preference attribute to the SSDs and non-media preference data off the SSDs.

- **movemediapreferencecotossd asp_num priority [L M H]** (The default is low.)
  This macro moves data that is marked with a media preference attribute to the SSDs.

- **movemediapreferenceoffssd asp_num priority [L M H]** (The default is low.)
  This macro moves data that does not have the media preference attribute off the SSDs.

- **movemediapreferencestatus asp_num**
  This macro sets the status of the sweeping.

- **movemediapreferencestop asp_num**
  This macro ends the sweeping.

The ASP number in the `asp_num` variable must be specified in hex format.

A scenario for using the media preference sweeper function is after disk units are added to an ASP, then choosing the add and balance option, which does not respect the media preference. It can also be used when disk units are removed from the configuration because of media type capacity constraints within an ASP. The sweeper function can be used to correct these media preference issues after the capacity constraints are solved.

Script for ASP balancer scheduling

The CL script in Example 8-5 is provided to help set up a TRCASPBL and STRASPBL configuration that runs repeatedly to allow for continuous autonomous IBM i hot and cold data migration for SSD and HDD hybrid ASPs.

**Example 8-5  CL script for ASP balancer scheduling**

```cl
/* This program runs continuously until the job in which it runs is ended. */
/* Inputs to this program are type of balance that is to be run, the number */
/* of minutes the trace is to run, and the number of minutes the balance is */
/* to run. Once a trace and balance cycle is complete, another trace and */
/* balance cycles is started. */
/* */
/* Parameter declares. The parameters are: */
/* The balance type to run. */
/* The number of minutes the trace is to run. */
/* The number of minutes the balance is to run. */

PGM PARM(&BALTYPE &TRACEMIN &BALMIN)
DCL VAR(&BALTYPE) TYPE(*CHAR) LEN(10)
DCL VAR(&TRACEMIN) TYPE(*CHAR) LEN(4)
```
For the ASP balancer SSD enhancements, run TRCASPBAL for the period of the critical workload, such as a batch window that is to be optimized by using SSDs. The provided CL script might be an alternative if no specific time frame can be identified for optimization.

### 8.4.3 User-defined file system media preference

You can specify that storage for objects that are created in user-defined file systems (UDFS) should be allocated from SSDs, if available. This support is provided with PTF SI39439 and all of its requisite PTFs. This support includes changes to various commands and APIs.
A new preferred storage unit (UNIT) keyword was added to the Create User-Defined FS (CRTUDFS) command, as shown in Figure 8-32. The default value is UNIT(*ANY), which indicates that there is no preferred storage media and that storage for objects in the UDFS are allocated from any available storage media. Specifying UNIT(*SSD) indicates that storage for objects in the UDFS are allocated from SSD storage media, if available. Online help text for the new keyword is not included in the PTF.

Changes were made to Qp0lGetAttr()--Get Attributes, Perform File System Operation (QP0LFLOP), and statvfs()--Get File System Information, and related APIs to provide support for determining the preferred storage media for a file system. The Retrieve Directory Information (RTVDIRINF) CL command also was enhanced to provide this information. For more information about these changes, see the PTF special instructions.

The following considerations apply when you specify a storage media preference for a UDFS:

- Specifying a media preference does not ensure that storage for objects is allocated from the preferred storage media.
- The preferred storage media attribute of a UDFS cannot be changed.
- All objects in a particular UDFS have the same preferred storage media.
- You can display or retrieve only the storage media preference of a user-defined file system, not the individual objects within a file system.
- Objects that are copied or restored into a UDFS are assigned the preferred storage media of the UDFS, regardless of the original object's preferred storage media.
- When you restore a new UDFS to a system, the original storage media preference of the UDFS is retained.
8.4.4 177 GB SFF SSD with eMLC

SAS bay-based SSD options are enhanced with a 177 GB SSD, which provides 2.5 times more capacity per drive than the current 69 GB SSD. The 177 GB drive provides an improved cost per gigabyte and requires a smaller number of SAS bays for the same number of gigabytes.

Enterprise Multi-level Cell technology (eMLC) enables enterprise-level performance and reliability while being more cost-effective than previous technology.

This option is supported on Power 710, 720, 730, 740, 750, 755, 770, 780, and 795 models.

For more information, see IBM Hardware Announcement letter 111-132 at:

8.4.5 IBM Disk Sanitizer PRPQ extended to include SSD devices

The IBM Disk Sanitizer for i5/OS PRPQ, 5799-SD1 is enhanced to sanitize SSD devices.

The Disk Sanitizer is accessed through a macro interface from either the Dedicated Service Tools (DST) menu or the System Service Tools (SST) menu. To access the Disk Sanitizer, complete the following steps:
1. From DST or SST, select 'Start a service tool'.
2. Select 'Display/Alter/Dump'.
3. Select 1 - 'Display/Alter storage'.
4. Select 2 - 'Licensed Internal Code (LIC) data'.
5. Select 14- 'Advanced Analysis' (you must scroll down to see this option).
6. On the Select Advanced Analysis Command panel, there is a blank line at the top. Type a 1 in the Option column to select the blank line, then type SSDSANITIZE, as shown in Figure 8-33. The SSDSANITIZE macro may also be selected from the list of macros.

![Select Advanced Analysis Command]

7. Press the Enter key twice and a help panel is displayed, as shown in Figure 8-34.

![Display Formatted Data]

The sanitizing SSD units function is nearly identical to sanitizing HDD units from a user interface perspective.
To enable this function, the following PTFs are required:

- IBM i 7.1: MF52834
- IBM i 6.1.1: MF50873
- IBM i 6.1.0: MF50875
Networking enhancements

This chapter describes the following topics that are related to networking enhancements enabled in IBM i 7.1:

- TCP/IP enhancements summary
- HTTP server support for PASE FastCGI PHP processing
- Telnet client support for SSL encryption
- System SSL support for transport layer security version 1.2, OCSP support
- Sockets programming: New user exits
- IKEv2 support
- IPv6 TCP/IP applications and V6R1 enablement PTFs
- IBM AnyNet support on IBM i 7.1
- Ethernet link aggregation
- Ethernet Layer-2 bridging
- IBM Portable Utilities for i (5733-SC1) supported versions
9.1 TCP/IP enhancements summary

The following sections summarize the key TCP/IP enhancements in IBM i 7.1. These enhancements include the following topics:

- Additional TCP/IP application enablement for IPv6
- ISC-based DHCP server
- Enhancements in HTTP adding support for FastCGI PHP processing
- TELNET client SSL enablement
- Addition of SNMP version 3 (SNMPv3) support
- IKEv2
- Several new sockets programming user exits

9.1.1 IPv6 support enhancements

Although support for IPv6 was first introduced in IBM i 5.4, it existed primarily at the user application socket level. In IBM i 6.1, many of the standard IBM applications were enhanced to support either Internet Protocol version 4 (IPv4) or version 6 (IPv6). For more information, see 9.7, “IPv6 TCP/IP applications and V6R1 enablement PTFs” on page 437.

IBM i 7.1 extends this support by adding IPv6 for the following applications:

- DHCP Server
- DHCP Client
- SNMP
- SMTP
- PPP

9.1.2 ISC-based DHCP server supports IPv6 and failover

With IBM i 7.1, you have the option of using the new DHCP server that is based on the open source code that is provided by the Internet Systems Consortium (ISC). Existing customers can continue to use the old DHCP server that is supplied by IBM in previous releases or replace it with the ISC-based version.

The ISC-based server has several advantages. In addition to supporting IPv4, it also supports IPv6 and DHCP server failover. The DHCP server attributes can be set to run either an IPv4 or IPv6 server or both. There is no GUI support for managing the ISC DHCP server configuration files or for monitoring leases, such as with the old DHCP server. Therefore, by default, the old DHCP server is used.

If you want use the ISC DHCP server, you must add the QIBM_ISC_DHCP environment variable, as described in “Using the ISC DHCP IPv6 server on IBM i” on page 423. Then, stop your DHCP server by running the ENDTCPSVR command (if it is running) and start the ISC DHCP server with the STRTCPSVR command. The IBM i activation code attempts to migrate the old configuration file to the new ISC configuration file the first time that DHCP-related code is run (through CHGDHCPA or STRTCPSVR). The old configuration file is left unchanged after the migration. Any changes that are made to the old configuration file are not moved to the new one after the initial migration. The new configuration file might require editing to operate properly. The current leases file is also migrated to the ISC leases file. The migration is just a way to get started with the new server. Certain functions that are provided by the old server are not available with the ISC server, so you must weigh the benefits and differences between these two servers and choose which one is best for your environment.
If you want to switch back to the old DHCP server, delete the environment variable, or set the value to 'N', and then stop and restart the DHCP server. If the ISC DHCP server assigned any IP addresses when it was running, those leases are not available to the old DHCP server. There is no backward migration.

Using the ISC DHCP IPv6 server on IBM i

DHCP moved from the base OS to 5770-SS1 Option 31 and requires that 5770-SS1 Option 33 be installed. To use the ISC DHCP IPv6 server on IBM i, complete the following steps:

1. Ensure that IBM i option 31 (Domain Name System (DNS)) and option 33 (Portable Application Solutions Environment (PASE)) are installed on the system.

2. Define an environment variable to tell the operating system to use the ISC DHCP server by running the following command:

```bash
ADDENVVAR ENVVAR('QIBM_ISC_DHCP') VALUE('Y') LEVEL(*SYS)
```

3. Run the Change DHCP Attributes (CHGDHCPA) command.

   This command migrates any existing DHCP configuration into the configuration files that are used by the ISC DHCP server. Determine if you want to run an IPv4, IPv6, or both. This setting is managed by setting the DHCP attribute for IPVERSION. The *ALL special value enables support for both IPv4 and IPv6.

   ```bash
 CHGDHCPA IPVERSION(*IPV6)
   ```

4. Edit the newly created configuration files.

   **Access to the ISC DHCP server:** A graphical interface is not provided for managing the ISC DHCP server and monitoring the leases that it manages. All associated configuration files must be edited manually.

There are several considerations to make when migrating from the existing IBM i DHCP server to the ISC DHCP server. For example, IBM Navigator for i does not provide an interface for configuring the ISC DHCP server in IBM i 7.1. To configure the ISC DHCP IPv6 server, edit the `/QIBM/UserData/OS400/DHCP/ETC/DHCPD6.CONF` configuration files manually. Example 9-1 shows an example.

**Example 9-1  Edited configuration file**

```bash
authoritative;

subnet6 1ffe:31::/64 {
 default-lease-time 120;
 max-lease-time 86400;
 range6 1ffe:31::d0:ca1 1ffe:31::d0:cef;
}
```

Copy the above into `/QIBM/UserData/OS400/DHCP/ETC/DHCPD6.CONF`. Make sure that you have at least one line that is enabled for IPv6 on your system and configured with an IPv6 address, for example something like: `1ffe:31::d0:ccc` so that the line description of the address can be listened and that subnet6 would not be ignored.

Two more files might need to be configured depending on your configuration requirements:

- `/QIBM/UserData/OS400/DHCP/ETC/DHCRELAY6.CONF`
- `/QIBM/UserData/OS400/DHCP/ETC/DHCPD6.LEASES`
For further information, there are Linux / AIX man pages available for the ISC DHCP server and books such as *The DHCP Handbook*, by Drom, et al, which provides detailed descriptions for the configuration statements available. ISC also has information at the following web page:

http://www.isc.org/software/dhcp

### 9.1.3 DHCPv6 client

The DHCPv6 client is also new in IBM i 7.1. It is not explicitly configured, but is enabled by adding and starting a *IP6SAC interface as follows:

```
ADDTCPIFC *IP6SAC LIND(line-name)
```

The system tries to acquire only IPv6 addresses through DHCPv6 if an IPv6 router on the link tells the system (by turning on the 'M' bit in the Router Advertisement flags) to use the managed configuration to obtain IP addresses. The DHCPv6 client sends multicast messages to find a DHCPv6 server and to request IPv6 address assignment. The DHCPv6 server sends a reply with the addresses assigned. IP addresses obtained from the DHCPv6 server have a preferred and valid lifetime, just like stateless auto configured addresses. Before the preferred lifetime expires, the DHCPv6 client renews the addresses. When the *IP6SAC interface is ended, any DHCP addresses are released.

If the Privacy Extension parameter is enabled on the *IP6SAC interface, you also request temporary addresses from the DHCPv6 server. The request for temporary addresses is sent separately from the request for non-temporary addresses. Temporary addresses are never renewed; when the preferred lifetime is about to be reached, you request new temporary addresses. The old temporary addresses remain until either their valid lifetime is reached or the *IP6SAC interface is ended. The preferred and valid lifetime of DHCP temporary addresses is limited by the IPv6 temporary address valid and preferred lifetimes that are configured through CHGTCPA.

To identify itself to the DHCPv6 server, the client uses a DHCP Unique Identifier (DUID). This DUID is generated automatically from a MAC address on the system and a time stamp, and is saved by the TCP/IP configuration. This identifier is a system-wide identifier; the same DUID is used by DHCP on all lines. To identify separate lines, the DHCP message also contains an identity association identifier (IAID), which is a unique value for each separate line (generated and saved by the TCP/IP configuration). The current DUID can be viewed by using the CHGTCPA command. The value cannot be changed by the user, but the user can force generation of a new DUID if necessary, by using the *GEN option.

As with the DHCPv4 client, more configuration information can be obtained from the DHCPv6 server beyond just addresses. For DHCPv6, it supports the DNS Server List and Domain Search List options and adds received DNS servers and domains to the configuration when the DHCPv6 client is active.

Additionally, DHCPv6 supports an option to receive configuration information without allocating addresses. This option is automatically selected if the router on the link sends a router advertisement with the O flag (Other configuration) set rather than the M flag. In that case, you request just the DNS Server List and Domain Search List options from the DHCPv6 server.

Support added: IBM i 6.1 added DHCPv4 client support for IPv4 with PTF SI31800.
9.1.4 SNMP

In release 7.1, the IBM i SNMP agent provides basic SNMP version 3 (SNMPv3) support. SNMP version 3 incorporates the use of user-based authentication and data privacy. The IBM i 7.1 SNMP also includes support for IPv6. It is possible to configure SNMP manager IP addresses for both traps and communities through the CHGSNMPA and ADDCOMSNMP commands. IPv6 support for various MIBs, including RFCs 4022 and 4013, were added.

Enabling the agent to handle SNMPv3 requests

To enable the agent to handle SNMPv3 requests, complete the following steps:

1. If the SNMP server is running, stop it by running ENDTCPVR *SNMP.
2. Change the SNMP server attributes to allow version 3 by running CHGSNMPA ALWSNMPV3(*YES).
3. Check the engine identifier that is supplied by the SNMP Agent after it is started for the first time after ALWSNMPV3(*YES) is set.

In most cases, this engine identifier does not need to be changed. If the generated engine ID must be changed, do so by running CHGSNMPA. However, there are caveats. The engine identifier is created using a vendor-specific formula and incorporates the IP address of the agent. Any engine identifier that is consistent with the snmpEngineID definition in RFC 3411 and that is also unique within the administrative domain can be specified.

For example, the identifier 80000002010A010203 is a valid engine ID for an IBM i agent with an IP address of 10.1.2.3. The first byte, '80'X, indicates that the engine ID complies with the architecture defined in RFC 3411. The next four bytes, '00000002'X, indicate the private enterprise number for IBM as assigned by the Internet Assigned Numbers Authority (IANA). The next byte, '01'X, indicates that the remaining portion of the engine ID is an IPv4 address. The last four bytes, '0A010203'X, is the hexadecimal representation of the IP address. The CHGSNMPA SNMPENGID('80000002010A010203') command is run to specify the engine ID.

Supported functionality: The SNMP agent is still able to receive and handle packets and requests from older versions of SNMP v1 even after you change the SNMP attributes to specify ALWSNMPV3(*YES).

Important: An invalid SNMP engine ID can prevent an SNMP manager from communicating with the agent.

Important: Another new SNMPv3 parameter, SNMPENGID, was added to the CHGSNMPA command, and is the SNMP engine boots counter. Do not manually change this parameter unless you must reset it to a value of zero. This parameter indicates the number of times that the SNMP engine (agent) was started. Each time the STRTCPSVR *SNMP command is successfully run, this value increments automatically. Changing the SNMPENGID parameter when the agent is active can cause SNMPv3 authentication failures.
4. Add an SNMP user using the Add User for SNMP command, with encryption and privacy options that match your SNMP manager.

An SNMP user is not the same as an IBM i user profile. SNMP users must be added and maintained separately. For example, the following command adds an SNMP user who requires authentication using the HMAC-SHA authentication protocol and privacy using the CBC-DES encryption protocol:

```
ADDUSERSNMP USRNAME(testuser) AUTPCL(*HMACSHA) AUTPWD(authpassword) PVYPCL(*CBCDES) PVYPWD(privpassword)
```

The `USRNAME`, `AUTPWD`, and `PVYPWD` parameters are case-sensitive, so take care when you add SNMP users. The output of the `ADDUSERSNMP` is an entry in the SNMPv3 configuration file.

The configuration file `/QIBM/USERDATA/OS/SNMP/SNMP.CONF` contains the SNMP user information and their generated keys. The passwords that are specified are not stored.

The `SNMP_USER` statements in the configuration file are never edited manually. Instead, the `ADDUSERSNMP`, `CHGUSERSNMP`, and `RMUSERSNMP` commands are used for maintaining the SNMP users. The `CFGTCPNSNMP` command can be run to display and maintain the list of SNMP users.

5. Start the SNMP server by running `STRTCPVR *SNMP`.

6. Start an SNMPv3 manager application and configure it for the SNMP user that was added in step 4.

**Support of functionality:** The IBM i 7.1 SNMP manager APIs `snmpGet`, `snmpSet`, and `snmpGetnext` do not support SNMPv3, so a non-native manager such as a PC-based manager must be used. There are a number of these managers available for download, including both no-cost and for-purchase options.

**Resolving time synchronization errors**

When an SNMPv3 manager first communicates with an SNMPv3 agent, it goes through a discovery process that involves the determination of the agent's SNMP engine ID and SNMP engine boot values. It addition, time synchronization occurs. These steps are necessary before you do any actual SNMP operations, such as Get or GetNext. If you have problems with these initial steps, the SNMP manager can indicate that a time synchronization error occurred. If this error occurs, complete the following steps:

1. Stop the SNMP agent and manager.
2. Run the following command:

```
ADVENVVAR ENVVAR('QIBM_SNMPV3_AUTH') VALUE('1') LEVEL(*SYS)
```
3. Restart the SNMP agent and manager and try the request again.

**9.1.5 SMTP**

IPv6 support was added in IBM i 7.1. Currently, there is no IPv6 standard for Real-time Black holes Lists (RBL). The RBL works only for IPv4 addresses. SMTP uses the getaddrinfo() API to look up email DNS records. They are looked up first as IPv6 and then as IPv4, which is different from what RFC 3974 recommends. Parts of the DNS resolver were fixed in IBM i 7.1 to be more correct.
SMTP support for RFC 821 and RFC 822 were removed. Starting in IBM i 7.1, Simple Mail Transfer Protocol (SMTP) supports only RFC 2821 and 2822. RFC 2821 and RFC 2822 deprecate many parts of the RFC 821 and RFC 822 email standards. Behavior for SMTP routes, SMTP alias shadowing, and processing mail through Mail Service Framework (MSF) are not compatible with the RFC 2821 and RFC 2822 standards, and are to be used on an as is basis. The first part of a source route is still honored from RFC 821; other parts of the source route are not contacted. The absolute address is the best way to send email.

The MAILROUTER feature before IBM i 7.1 can, in instances, forward all mail to the mail router even if the email address can be resolved. In IBM i 7.1, MAILROUTER correctly forwards to the mail router only when the email address does not resolve.

The FWDMAILHUB feature was added in IBM i 6.1, and allowed the forwarding of email to a single address. FWDMAILHUB always forwards the email and does not attempt a resolve.

MAILROUTER supports only A and AAAA records, when FWDMAILHUB supports MX, CNAME, AAAA, and A.

The resolve path is shown in Example 9-2.

Example 9-2  Resolve path

| Forwarding Mail hub(if defined) -> |
| Absolute Address/First part of source route -> |
| mailrouter(if same domain) -> |
| mailrouter(different domain) if FIREWALL(*YES). |

9.1.6 Async adapter expanded IBM i support

IBM i 7.1 TR7 delivers PPP support to the existing 2-port asynchronous communications adapter, the PCIe 2-Port Async EIA-323 Adapter (#5289 and #5290). Previously, IBM i 7.1 TR5 had provided non-PPP support for POWER7/POWER7+ servers. Non-PPP enables connecting with async terminals, workstations, printers, manufacturing devices, time clocks, handling faxes, and pagers. PPP enables applications such as IBM Electronic Customer Support (ECS), IBM Electronic Service Agent™ (ESA), and the IBM iGSC Remote support tool.

The IBM i 2-port communications adapter (#2893/#2894 with CCIN 576C) remains available to enable bisync support for those clients who still use this older protocol and to support MES orders for POWER5/POWER6 servers.

Communication ports are not virtualized by IBM i. IBM i 7.1 does not virtualize the adapter for other IBM i partitions, nor does VIOS virtualize async ports for other partitions.

9.1.7 IPv6 support added for PPP connections

Starting in IBM i 7.1, Point-to-Point (PPP) can support both IPv4 and IPv6 addresses. A PPP connection profile can have only IPv4 enabled, only IPv6 enabled, or both IPv4 and IPv6 enabled. By default, both IPv4 and IPv6 are enabled for a PPP connection profile.

Note the following items:
- IPv6 can be enabled in connection profiles to allow remote workers to use IPv6 to access the company network.
- If your ISP supports IPv6 addressing, you can also enable IPv6 in the originator profile.
If the **Enable IPv6** check box is checked in the TCP/IP IPv6 Settings section of a connection profile, then when the connection profile is activated, IPv6 Stateless Address Auto configuration assigns an IPv6 link-local address to the PPP link. In many cases, this configuration is all that is required to use IPv6 over a PPP link.

More IPv6 configuration options are available if IP forwarding is enabled in the TCP/IP IPv6 Settings section of a connection profile. Enabling IPv6 datagram forwarding also enables the system to run router functions for this link, including sending Router Advertisement messages and responding to Router Solicit messages.

Figure 9-1 highlights the configuration changes that are required to enable IPv6 for a connection profile.

**Feature availability:** PPP configuration enhancements for IPv6 are only available using IBM Navigator for i. It is not available using the PC-based client System i Navigator.

If you want your remote workers to use IPv6 to access the company network, you must enable IPv6 in the connection profile. You do not need to assign a specific IPv6 address. However, if you want the remote workers to have more than the default link-local IPv6 address assigned, you must either configure an IPv6 address prefix or set the appropriate options if a DHCPv6 server is available in the company network.
For this example, assume that you want to advertise an address prefix of 2001:DBA::, a default route, and that a DHCPv6 server in your network can provide IP addresses. A global IPv6 address must be configured in the connection profile to allow the DHCPv6 server to return information to the remote dial-in client. This address can be configured in the Receiver Connection Profile using IBM Navigator for i, as shown in Figure 9-2.

Click Network → Remote Access Servers → Receiver Connection Profiles, and in the right pane, click Action → New Profile.

Select Protocol type, Connection type, and Link configuration for the new profile, and click OK, as shown in Figure 9-3.
Click **Create Receiver Connection Profile**, and then **TCP/IP IPv6 Settings**. See Figure 9-4.

![Figure 9-4](PPP_-_Create_Receiver_Connection_profile_window_with_the_IPv6_option)

To advertise an address prefix of 2001:DBA::, a default route, and that a DHCPv6 server in your network can provide IP addresses, configure a global IPv6 address in the connection profile as follows (see Figure 9-5 on page 431):

1. Select **Enable IPv6**.
2. Specify a global IPv6 address for **Fixed local IP address**. This address must be compatible with the DHCPv6 server configuration for distributing IPv6 addresses. For this example, click **None**.
3. Click **Generate** for the **Interface identifier** field.
4. Select **Yes** for the **Allow remote system to access other networks (IP forwarding)** check box.
5. Set the **Address prefix** to 2001:DBA::
6. Select **Advertise IPv6 default route**.
7. Select **Advertise DHCPv6** and **Managed address configuration**.
8. Click **OK** to complete the profile.
9.2 HTTP server support for PASE FastCGI PHP processing

FastCGI is an open standard that extends the Common Gateway Interface (CGI) standard that is supported by many common web servers today. This standard defines how information is exchanged between a web server and FastCGI programs that are isolated in external processes. On IBM i 7.1, these external processes are provided by a FastCGI Apache module that makes external PASE programs (FastCGI programs) available as CGI jobs. These jobs can then be used by the native ILE environment, which results in faster HTTP request processing.

Further implementation details are available at:
http://www-03.ibm.com/systems/resources/systems_i_software_http_docs_pase_config.pdf

Software updates that enable FastCGI PHP Processing in IBM i 6.1 were also included in the HTTP Group PTF package for January 2010.

The required components and PTF information for 6.1 is shown in 9.2.1, “IBM i 6.1 required components” on page 431.

9.2.1 IBM i 6.1 required components

This section lists the IBM i 6.1 required components:

- Products
  - 5761SS1 30 Qshell (only needed to create CCSID 819 files)
  - 5761SS1 33 Portable App Solutions Environment
  - 1ZCORE5 *BASE Zend Core for IBM i (Version 2.6.1 or later) (only for FastCGI PHP support)
9.3 Telnet client support for SSL encryption

Although the Telnet server for IBM i has long supported SSL for remote clients, IBM i 7.1 can support SSL as a client. This capability was also enabled for IBM i 5.4 and 6.1 through PTFs, and activated using the QIBM_QTV_TELNET_CLIENT environment variable. With this new feature enabled, the TELNET command can now connect to a remote telnet server that supports implicit SSL/TLS.

The PORT parameter of the TELNET command prompt was moved to a new location in the parameter string, and a new parameter, Secure Connection (SSL), was added to the command format. If the environment variable was set up for a secure connection, or the SSL(*YES) parameter is selected, the target port number defaults to 992.

The requirements are as follows:
- You must have the Digital Certificate Manager (5770-SS1 Option 34) installed.
- You must have certificates that are set up for the client application QIBM_QTV_TELNET_CLIENT. Either a trust list or the remote server certificates must be assigned to this application. The trust list must have the certificate authorities of the wanted remote servers added.

If you want all telnet client users on your system to use SSL, set the QIBM_TELNET_CLIENT_SSL as a system level environment variable.

Encryption is provided by using either SSL or Transport Layer Security (TLS) based on negotiation between the Telnet client and the server.

The TELNET client must be assigned an appropriate certificate in the Digital Certificate Manager (DCM) or the connection fails. See Figure 9-6.

![Figure 9-6 New parameter of the STRTCPTELN command for SSL enablement](image-url)
9.4 System SSL support for transport layer security version 1.2

IBM i 7.1 Secure Sockets Layer (SSL) now supports the latest industry standards of Transport Layer Security version 1.2 (TLSv1.2) and Transport Layer Security version 1.1 (TLSv1.1) protocols. The TLSv1.2 protocol uses SHA2 hashing algorithms. System SSL also supports the Online Certificate Status Protocol (OCSP) during the certificate validation process. OCSP is used for checking the revocation status of end entity certificates.

Digital Certificate Manager (DCM) options on the Application Definition configuration panels allow many of the core IBM networking applications (Telnet, FTP, and so on) to use these new protocols and to enable OCSP. Applications using a system SSL programming interface or the Global Secure Toolkit (GSKit) system SSL programming interface can switch to the new protocols by making changes to the code and recompiling.

Following are the prerequisites for this support:

- 5770SS1 option 34 - Digital Certificate Manager must be installed
- PTF 5770-SS1 SI48659 must be installed
- PTF 5770-SS1 SI48539 must be installed

New TLSv1.1 and TLSv1.2 support allows set up by changing the QSSLPCL system variable; then applications must be configured in DCM to use specific versions of TLS and ciphers suites.

More on this topic can be found at the following website:
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/IBM%20i%20Technology%20Updates/page/System%20SSL%20support%20for%20transport%20layer%20security%20version%201.2

Also, see the DCM Application Definitions topic in the IBM i Knowledge Center:
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzain%2Frzainappdefs.htm

9.5 Sockets programming: New user exits

Functional enhancements to sockets programming include three sockets-related user exit points. These enhancements were added to give a user-defined exit program the ability to control connections that are based on specific runtime characteristics. User-defined exit programs that are registered with the exit points defined in the user registry are able to limit incoming and outgoing connections.
9.5.1 Exit points that are defined in the user registry

User-defined exit programs that are registered with the exit points defined in the user registry are able to limit incoming and outgoing connections. The return codes of the user-defined exit programs indicate whether to allow successful completion to `connect()`, `listen()`, `accept()`, `accept_and_recv()`, or `QsoStartAccept()`. See Table 9-1.

Table 9-1  User exit points

<table>
<thead>
<tr>
<th>User exit point</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QIBM_QSO_ACCEPT</td>
<td>Enables a custom exit program to allow or deny incoming connections that are based on the restrictions that are set by the programs.</td>
</tr>
<tr>
<td>QIBM_QSO_CONNECT</td>
<td>Enables a custom exit program to allow or deny outgoing connections that are based on the restrictions that are set by the programs.</td>
</tr>
<tr>
<td>QIBM_QSO_LISTEN</td>
<td>Enables a custom exit program to allow or deny a socket the ability to listen for connections that are based on the restrictions that are set by the programs.</td>
</tr>
</tbody>
</table>

Sockets APIs considerations:

- By default, the sockets APIs accepting connections silently ignore rejected connections and wait for the next incoming connection. To give an application the ability to be informed about rejected connections, a socket option is provided. The socket option is enabled by `setsockopt()` with a level of `SOL_SOCKET` and option name `SO_ACCEPTPERM`. When the socket option is enabled, sockets APIs accepting connections fail with EPERM for each incoming connection that is rejected by the user exit program that is registered for `QIBM_QSO_ACCEPT`.
- Any user that tries to add or remove a sockets-related user exit program is required to have *IOSYSCFG, *ALLOBJ, and *SECADM authority.

9.5.2 Example: User exit program for QIBM_QSO_ACCEPT

This section illustrates an example of the user exit program for the QIBM_QSO_ACCEPT user exit point.

The program in Example 9-3 rejects all incoming connections to the Telnet server that come from a particular remote IP address between the hours of 12 a.m. - 4 a.m. The program determines whether the incoming connection can be accepted by the socket API accepting connections or will be rejected.

Example 9-3  Socket program example using the QIBM_QSO_ACCEPT user exit

```c
#include stdio.h
```
```c
#include string.h
#include esoextpt.h /* Exit program formats */

int main(int argc, char *argv[]) {
 Qso_ACPT0100_Format input; /* input format */
 struct in_addr addr;
 char return_code;

 /**/
 /* Initialize the address to compare to 1.2.3.4 */
 /**/
 addr.s_addr = 0x01020304;

 /**/
 /* By default allow the connection. */
 /**/
 return_code = '0';

 /**/
 /* Copy format parameter to local storage. */
 /**/
 memcpy(&input, (Qso_ACPT0100_Format *) argv[1],
 sizeof(Qso_ACPT0100_Format));

 /**/
 /* If the local port is the telnet server */
 /**/
 if((input.Local_Incoming_Address_Length == sizeof(sockaddr_in) &&
 input.Local_Incoming_Address.sinstruct.sin_port == 23) ||
 (input.Local_Incoming_Address_Length == sizeof(sockaddr_in6) &&
 input.Local_Incoming_Address.sin6struct.sin6_port == 23))
 {
 /**/
 /* And the incoming connection is from 1.2.3.4 */
 /**/
 if(input.Remote_Address_Length == sizeof(sockaddr_in) &&
 (memcmp(&input.Remote_Address.sinstruct.sin_addr,
 addr, sizeof(struct in_addr)) == 0))
 {
 /**/
 /* And the time is between 12 A.M. and 4 A.M. */
 /**/
 if(IsTimeBetweenMidnightAnd4AM())
 return_code = '1';
 }
 }

 *argv[2] = return_code;
 return 0;
}
```

**Important:** By using the example that is shown in Example 9-3 on page 434, you agree to the terms of the code license and disclaimer information that is available at:

[https://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahg/legalnoticesSW.htm](https://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahg/legalnoticesSW.htm)
9.6 IKEv2 support

You can now use the enhanced IKE version 2 when you run dynamic key connection. Enhanced Cryptographic Algorithms are also available for use with VPN key exchange policy and data policies. Existing objects were used as much as possible to enable either IKEv1 or IKEv2 exchanges. This design was used to minimize the impacts to the current GUI interface and VPN configuration objects when you enable IKE version 2. See Figure 9-7.

Note the following items:

- To enable IKEv2, an IKE Version setting is provided on the Dynamic Connection definition.
- Key Exchange policies can be used for either IKEv1 or IKEv2.
- There are no more differences to other attributes, such as Key Exchange policy identifiers (all are still supported) and transforms.
- Main mode / aggressive mode settings are ignored if the Key Exchange Policy is used for IKEv2.
- Systems IBM Navigator for i is required to configure an IKEv2 connection.

![Connection Scenario](image)

Figure 9-7 Internet Key Exchange V2 enablement for VPN

9.6.1 Enhanced Cryptographic Algorithms

Enhanced Cryptographic Algorithms were added to IBM i 7.1.

Key exchange policy

Note the following items for the key exchange policy:

- Encryption: AES-CBC – 128 bits
- Hash/PRF
  - AES-XCBC-MAC (HASH 96 bits; PRF 128 bits)
  - HMAC-SHA-256
- Diffie-Hellman
  - Group 14
  - Group 24

**Data policy**

Note the following authentication items for the data policy:

- AES-XCBC-MAC
- HMAC-SHA-256

**Diffie-Hellman for PFS**

Note the following items for Diffie-Hellman for PFS:

- Group 14
- Group 24

For more information and configuration details, see the Virtual Private Networking, available at:

https://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzaja/rzajagetstart.htm

### 9.7 IPv6 TCP/IP applications and V6R1 enablement PTFs

Support for IPv6 is being added incrementally to TCP/IP applications and protocols for the IBM i operating system. The following Knowledge Center entry provides a complete list of which applications and protocols that support IPv6 in IBM i 6.1 and 7.1:


This website is updated as PTFs are made available for more applications or protocols. As of this publication, the following list identifies IBM i 6.1 applications and protocols that support IPv6:

- IBM Online Help and Eclipse Knowledge Center (IBMHELP) - PTF SI31014
- INETD - PTF SI29701
- SNTP - PTF SI30112
- TFTP - PTF SI30868
- LPD - PTF SI31015
- Remote Journal - PTF SI31713
- Remote Journal - PTF MF44589
- IPP printer driver - PTF SI31910
- LPR and Remote output queues - PTF SI31363
- Enterprise Extender 1 (MSCP) - PTF MF44318
- Enterprise Extender 2 (HPR) - PTF MF44355
- Enterprise Extender 3 (HPR) - PTF MF44356
- Enterprise Extender 4 (DC) - PTF SI31250
- Enterprise Extender 5 (SW) - PTF SI31223
- Enterprise Extender 6 (Comm Trace) - PTF SI30790
- Management Central - PTF SI31888
- Management Central - PTF SI31892
- Management Central - PTF SI32720
- Management Central - PTF SI32721
9.8 IBM AnyNet support on IBM i 7.1

Enterprise Extender was introduced with IBM i 5.4 and was identified then as the strategic direction for replacing IBM AnyNet®. Although AnyNet was removed in IBM i 7.1, IBM stated that there are no further enhancements beyond IBM i 6.1 and IBM no longer offers support for it on 7.1.

The IBM i 7.1 Knowledge Center topic “Migrating from IBM AnyNet to Enterprise Extender” provides detailed migration considerations and requirements, and is available at:
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzajt/rzajtanytoee.htm

9.9 Ethernet link aggregation

The following sections describe the IBM i Ethernet link aggregation function available in IBM i 7.1:

- Overview of Ethernet link aggregation
- Prerequisites for Ethernet link aggregation
- Configuring Ethernet link aggregation
- Example: Configuring four aggregated network links

9.9.1 Overview of Ethernet link aggregation

Link aggregation binds several full-duplex Ethernet links that run at the same speed together into one logical link with a single Media Access Control (MAC) address. This aggregation is known by several other names, including IEEE 802.3ad or 802.1ax, Cisco Etherchannel, or the names teaming or trunking.

With the Ethernet link aggregation function available in IBM i 7.1, up to eight Ethernet links can be bound together in a single-line description.

The advantages of this function are:

- Simplified redundancy and reliability
  By binding multiple Ethernet links to a single-line description, if a link fails, the others remain active and the network load is rebalanced across the active links without requiring any system or network administrator actions.
  Before this function, if a line failed, IP configuration changes and a manual switch to another line description and link were required.

- Capacity
  By aggregating multiple links to a single-line description, outgoing traffic is spread across the links as determined by a user-selected policy and incoming traffic by a policy that is configured at the network switch. This configuration also enables more capacity for a certain IP address.
  For example, two aggregated 1 Gbps links can carry up to 2 Gbps for the same IP interface without any additional configuration.
9.9.2 Prerequisites for Ethernet link aggregation

To use Ethernet link aggregation, the environment must have:

- Up to eight Ethernet ports, 10 Gbps or 1 Gbps-capable, on an IBM i partition not in use for other purposes.
- The ports must be on the same network switch and be in a static configuration.
- The newest IBM i 7.1 Technology Refresh PTF and PTF Group (SF99707).
- A Cisco Catalyst switch with an aggregate in Etherchannel mode that is enabled for static configuration.

Unsupported switches: Other switches that support static aggregation configurations might also work, but they were not tested and are not officially supported.

9.9.3 Configuring Ethernet link aggregation

The following steps are used to configure Ethernet line aggregation. See the example command in Figure 9-8.

![Create Line Desc (Ethernet) (CRTLINETH)](image)

1. The Create Line Desc (Ethernet) (CRTLINETH) and Change Line Desc (Ethernet) (CHGLINETH) commands are used to manage Ethernet line descriptions, including aggregate line descriptions (indicated by Resource name (RSRCNAME) *AGG). For an aggregate line description, the Aggregate policy (AGGPCY) has two elements:
   - Standard, which controls negotiation with the link partner, usually a switch
   - Policy type, which controls which Ethernet port is used to send each outgoing frame
Before IBM i 7.1 TR7, only static aggregation was supported, with the documentation stating that the standard must be set to *ETHCHL. With TR7, IBM i adds support for the Link Aggregation Control Protocol (LACP) with the *LNKAGG option. For environments that support it, LACP offers two key benefits of detection and tolerance of incorrect configurations (like invalid cabling or link partner settings) and easier switch configuration.

Specifying *ETHCHL as the standard uses static aggregation, which does no negotiation with the link partner. The link partner must also be configured for static aggregation. The Ethernet ports in the Aggregated Resource List (AGGRSCL) and the set of ports configured at the link partner should correspond exactly. If they do not, some Ethernet packets might not get to the correct destination.

There are several opportunities for error:

- Having ports in AGGRSCL that are connected to a different link partner or to the wrong ports in the correct link partner.
- Having ports selected in the link partner's aggregate that are connected to ports not in AGGRSCL.

The second element specifies the Policy type. Here are the allowed special values and their meanings:

- *DFT: The adapter selection algorithm uses the last byte of the Destination IP address (for TCP/IP traffic) or MAC address (for ARP and other non-IP traffic). This mode is typically the best initial choice for a server with many clients.
- *SRCPORT: The adapter selection algorithm uses the source TCP/IP or UDP port value.
- *DESTPORT: The outgoing adapter path is selected through an algorithm using the destination TCP/IP or UDP port value.
- *SRCDESTP: The outgoing adapter path is selected through an algorithm using the combined source and destination TCP or UDP port values.
- *RNDRBN: Outgoing traffic is spread evenly across all the adapter ports in the Etherchannel. This mode is the typical choice for two hosts connected back-to-back (that is, without an intervening switch).

Specifying *LNKAGG forces the use of the Link Aggregation Control Protocol (LACP) as described in the IEEE 802.3ad standard. This negotiation detects the identity of the link partner for each Ethernet port in the Aggregated Resource List (AGGRSCL). This process requires that the link partner enable LACP with common identification information about all ports that are connected to ports in AGGRSCL. In order for a port to aggregate and be used for Ethernet traffic, its partner port must respond to the LACP negotiation, and the response must match the identifying information to all other aggregated ports. The aggregation panel in Display Line Description (DSPLIND) shows the aggregation status of each port. For any port that has not joined the aggregate, the status should help determine why.

2. Choose a list of the communication resources that should be aggregated and specify them in the Aggregated resource list parameter.

3. You must select a single speed for all of the adapters as specified in the Line speed parameter.

4. You must set the DUPLEX parameter to full-duplex (*FULL). Then, create the aggregated line description.

5. The corresponding ports on the switch must be bound together into an aggregate according to the switch's configuration manual. The configuration must indicate that all of the ports are always aggregated (as opposed to being negotiated according to some protocol).
9.9.4 Example: Configuring four aggregated network links

A logical view of another example is shown in Figure 9-9.

Figure 9-9 Logical view of example with four aggregated links

In the example, four links and IBM i communication resources (CMN14, CMN17, CMN08, and CMN11) are aggregated together with one line description named ETHLINE.

The command that is shown in Figure 9-10 creates the line description for the aggregated configuration.

```sql
CRTLINETH LIND(ETHLINE)
 RSRCNAME(*AGG)
 AGGPCY(*ETHCHL *RNDRBN)
 AGGRSCL(CMN14 CMN17 CMN08 CMN11)
 LINESPEED(1G)
 DUPLEX(*FULL)
 TEXT('Four link aggregated line')
```

Figure 9-10 Example CRTLINETH command for four aggregated links

For more information about configuring Ethernet resources and link aggregation, see the IBM i Knowledge Center at the following website. For Ethernet requirements, see the hardware requirements section.

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i/welcome
9.10 Ethernet Layer-2 bridging

The following sections describe the sharing of physical Ethernet connections through Ethernet Layer-2 bridging using IBM i 7.1:

- Introduction to Ethernet Layer-2 bridging
- How Ethernet Layer-2 bridging works on IBM i
- IBM i prerequisites for Ethernet Layer-2 bridging
- Configuring a shared network connection through Ethernet Layer-2 bridging

9.10.1 Introduction to Ethernet Layer-2 bridging

Logical partitions in a Power Systems system typically need access to an IP network, usually through Ethernet. However, it is not always possible or cost-effective to assign a physical Ethernet adapter to every logical partition in a Power Systems system.

One answer to this dilemma is the new Ethernet Layer-2 bridging function in IBM i 7.1. Although similar in concept to the Shared Ethernet Adapter (SEA) support provided by a Power Systems Virtual I/O Server (VIOS) partition, this IBM i function enables a single physical LAN connection to be shared by multiple logical partitions on a physical system without using Virtual I/O Server (VIOS).

With IBM i 7.1, an IBM i partition can bridge a physical Ethernet port to the virtual LAN. This function reduces costs in the following ways:

- Sharing an Ethernet port means fewer Ethernet cards on the server.
- Fewer ports are needed at the network switch and fewer cables are required.
- There might be reduced administration costs because there are fewer physical resources to manage.
- Complexity might be reduced because no Virtual I/O Server partition is needed to manage the port sharing.

9.10.2 How Ethernet Layer-2 bridging works on IBM i

Ethernet Layer-2 bridging on IBM i works as follows:

1. A single partition is defined to have a physical Ethernet adapter.
2. A bridge using the IEEE 802.1D standard is configured to link a virtual Ethernet LAN to the physical Ethernet adapter.
3. Frames that are transmitted by virtual Ethernet adapters on the same VLAN as the bridging virtual Ethernet adapter can be sent to the physical network.
4. Frames that are sent from the physical network can be received by adapters on the virtual network.
5. After the bridge is in place, other partitions can access the physical network by using virtual Ethernet adapters on the bridged virtual LAN.
A logical view of the Layer-2 bridging as implemented on IBM i is shown in Figure 9-11.

![Layer 2 Bridging Logical View](image)

**Figure 9-11  Ethernet Layer-2 bridging logical view on IBM i**

**9.10.3 IBM i prerequisites for Ethernet Layer-2 bridging**

To use Ethernet Layer-2 bridging, you must have the following prerequisites in place:

- A partition with the newest IBM i 7.1 Technology Refresh PTF and PTF Group installed
- An unused 10 Gbps or 1 Gbps-capable Ethernet adapter in the IBM i partition (excluding Host Ethernet Adapter logical ports)
- Access to the management console for the system, which can be either:
  - The Hardware Management Console
  - The IBM i Virtual Partition Manager

**Tip:** Use the selected Ethernet resources only for Layer-2 bridging and not for IBM i TCP/IP configuration, as there is a significant increase in processor usage for any host traffic that uses bridged resources.
9.10.4 Configuring a shared network connection through Ethernet Layer-2 bridging

To configure Ethernet Layer-2 bridging to share a network card, complete the following steps:

1. As the administrator, use the management console to create a virtual Ethernet adapter in the IBM i partition, indicating that the adapter is used for external access.

   - Configuring a virtual adapter using a Hardware Management Console

     If you are using a Hardware Management Console, click **Systems Management → Servers → Configuration → Manage Profiles → Edit profile → Virtual Adapters** to reach the window that is shown in Figure 9-12.

![Figure 9-12 Select Create Virtual Adapter - Ethernet Adapter on an HMC](image-url)
When you create the virtual Ethernet adapter, select the **Access external network** check box to indicate that this virtual Ethernet adapter is used to bridge traffic to the physical network, as shown in Figure 9-13.

![Figure 9-13  Creating the virtual Ethernet adapter on an HMC](image)
Configuring a virtual adapter by using IBM i Virtual Partition Manager

If you are using the IBM i Virtual Partition Manager, the virtual Ethernet adapter is automatically created with the ability to access the external network. To create the adapter, go to the Change Partition Configuration panel by clicking **STRSST → Work with system partitions → Work with partition configuration → Change**. Create the virtual adapter by changing one or more of the virtual Ethernet identifiers to 1 (Yes), as shown in Figure 9-14.

![Change Partition Configuration](image)

Figure 9-14  Virtual Partition Manager with virtual Ethernet ID1 activated

2. On the IBM i partition with the physical adapter, create two Ethernet line descriptions:
   a. Create a one line description for the Ethernet link (physical communications resource CMN09) connected to the physical network, as shown in Figure 9-15.

   ```
 CRTLINETH LIND(ETHLINEP) RSRCNAME(CMN09) BRIDGE(COVERED) LINESPEED(1G) DUPEX(*FULL) TEXT('Line for physical Ethernet link')
   ```

   Figure 9-15  Command to create line description for the physical link

   b. Create a one line description for the new virtual Ethernet adapter (virtual resource CMN14), as shown in Figure 9-16.

   ```
 CRTLINETH LIND(ETHLINEB) RSRCNAME(CMN14) BRIDGE(COVERED) LINESPEED(1G) DUPEX(*FULL) MAXFRAME(8996) TEXT('Line for virtual Ethernet bridge')
   ```

   Figure 9-16  Command to create the virtual line description for the bridge link

   The resource name for a virtual adapter is found by selecting a CMNnn resource with type of 268C. Communications resources can be displayed through the Work with Hardware Resources (**WRKHDWRSC**) command by specifying the **TYPE(**CMN**)** parameter.
3. To establish the bridge, the user gives the two line descriptions the same bridge name, which is a new parameter on the **CRTLINETH** and **CHGLINETH** commands for the purposes of this support. In the example commands above, the bridge name is “COVERED”.

4. When both line descriptions are active, traffic is bridged between the physical network and the virtual networks.

5. On any IBM i partition that uses the bridged connection, a line description must be created by specifying a virtual communications resource and the bridge name of “COVERED”. The command to do this task is shown in Figure 9-17.

```
CRTLINETH LIND(ETHLINVRT) RSRNAME(CMNxx) BRIDGE(COVERED) LINESPEED(1G)
 DUPLEX(*FULL) MAXFRAME(8996) TEXT('Line for virtual Ethernet')
```

Figure 9-17  Command to create a virtual line description on another partition to use the bridge

For more information about configuring Ethernet resources and Layer-2 bridging, see the IBM i Knowledge Center at the following website address. For Ethernet requirements, see the hardware requirements section.


### 9.11 IBM Portable Utilities for i (5733-SC1) supported versions

License Program Offering 5733-SC1 - IBM Portable Utilities for i contains the OpenSSH, OpenSSL, and zlib open source packages that are ported to IBM i by using the PASE for i runtime environment.

For IBM i 7.1 and IBM i 6.1, the most current versions are listed along with their respective PTFs in Table 9-2.

**Table 9-2  IBM Portable Utilities function, version, and PTFs**

<table>
<thead>
<tr>
<th>Function</th>
<th>Version</th>
<th>Version 7.1 PTFs</th>
<th>Version 6.1 PTFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenSSH</td>
<td>4.7p1</td>
<td>SI38685, SI39965</td>
<td>SI40092</td>
</tr>
<tr>
<td>OpenSSL</td>
<td>0.9.8</td>
<td>SI41724</td>
<td>SI36892</td>
</tr>
<tr>
<td>zlib</td>
<td>1.2.3</td>
<td>None, in base</td>
<td>None, in base</td>
</tr>
</tbody>
</table>
Printing enhancements

This chapter describes the following topics that are related to printing and output that were enhanced in IBM i 7.1:

- Printing overview
- Overview of IBM i 6.1 print enhancements
- Enhancements to base print functions
- Print Services Facility for IBM i enhancements
- Transform Services enhancements
- IBM Navigator for i print enhancements
- IBM i Access for web print enhancements
- Host Print Transform enhancements
10.1 Printing overview

IBM i has powerful printing and output functions. You can present information using overlays, bar codes, graphics, images, and more. IBM i supports various industrial-type printing and presentation solutions.

Choosing and implementing a printing and presentation solution requires you to be familiar with both your organization's requirements and resources, and the capabilities that are provided by IBM i.

IBM i has both Basic Printing and Advanced Function Presentation (AFP). AFP is an architecture-based system of hardware and software for creating, formatting, viewing, retrieving, printing, and distributing information using a wide variety of printer and display devices. AFP is the original, integrated data stream on IBM i for generating fully composed pages of data.

The following list offers a high-level overview of the IBM i printing process:

1. The printing process starts when an application program runs. The application program creates output data. The output data is based on the application program and information that is contained in the printer file.
2. If print spooling is selected, the output data is placed in a spooled file and the spooled file is placed in an output queue. If direct printing is selected, the output data is sent directly to the printer.
3. The destination of the output data is based on values that are stored in several printing elements, such as job description, user profile, workstation description, printer file, and system values. Output queues are used to manage spooled files.
4. Spooled files in output queues can be used in the following ways:
   - Printed
   - Kept as records
   - Used as input to other applications
   - Transferred to other output queues
   - Sent as email
   - Used to create PDF files
5. The printer writer program interacts between the output queue and the printer and can be used to convert the printer data stream.
6. The printer writer program included in IBM i supports various printer data streams. IBM Print Services Facility™ for IBM i provides an additional function that provides support for the Advanced Function Presentation (AFP) Intelligent Printer Data Stream (IPDS).
   Each printer must have a printer device description. The printer device description contains a configuration description of the printer. Printers can be attached by using various attachment methods.
7. You can use a remote writer to route spooled files from an output queue on your system to another system.
Figure 10-1 shows the IBM i printing process.

10.2 Overview of IBM i 6.1 print enhancements

Major enhancements to print were made in IBM i 6.1:

- Date and time stamps in the spooling function were changed to Coordinated Universal Time. This change also required enhancements in data queue formats and addition of a third format that supports the Coordinated Universal Time time / date format.

- System i Navigator and IBM Navigator for i were enhanced with the addition of an Add Printer wizard.

- The ability to generate PDF documents directly from IBM i applications with only a minor change or override to your existing printer files was added. This function includes the following elements:
  - New IBM Transform Services for i5/OS 5761TS1 - option 1, which provides the AFP to PDF transform.
  - New printer file parameter enhancements to direct output to IFS stream files and to request that data be transformed.

For more information about the IBM i 6.1 print enhancements, see the IBM i 6.1 Technical Overview, SG24-7713.
10.3 Enhancements to base print functions

The sections that follow describe the following enhancements, which were made to the system base print functions:

- CPYSPLF command enhancements for copying to PDF or TIFF stream files
- New QIBM_QSP_SECURITY exit point and formats
- Encryption of PDF output (Infoprint Server LP)

10.3.1 CPYSPLF command enhancements for copying to PDF or TIFF stream files

The Copy Spoolfile (CPYSPLF) command was enhanced to greatly simplify copying of spooled files to the Integrated File System (IFS) as PDF or TIFF stream files.

The command interface changes are:

- Added a special value *TOSTMF to the To database file (TOFILE) parameter, which specifies the command output is to go to a stream file.
- Added the To stream file (TOSTMF) parameter, which is used to specify the stream file to which the output is directed.
- Added the Workstation customizing object (WSCST) parameter, which specifies the Workstation customizing object, which specifies the conversion to be done.
- Added the Stream file option (STMFOPT) parameter, which specifies whether the target stream file is to be replaced.

The detailed syntax for the new parameters follows:

- **To stream file (TOSTMF)**
  
  Specifies the stream file where the output data is written. All directories in the path name must exist. New directories are not created. This parameter must specify a value other than *NONE if the To database file (TOFILE) parameter is *TOSTMF.
  
  - *NONE
    
    The output is written to a user-defined physical file. This value is only valid if the To database file (TOFILE) parameter specifies a user-defined physical database file.
  
  - path-name
    
    Specify the path name for the stream file where the output data is to be written. This value is only valid if the To database file (TOFILE) parameter specifies *TOSTMF.
    
    If the stream file exists, the CCSID associated with the stream file is not changed.

- **Workstation customizing object (WSCST)**
  
  Specifies the workstation customizing object to use to transform the spooled file output to its final form before it is written to a stream file. If the To database file (TOFILE) parameter specifies a physical database file, the WSCST parameter is ignored. To convert a spooled file by using the (WSCST) parameter, the device type (DEVTYPE) of the spooled file must be *SCS or *AFPDS.
  
  - *NONE
    
    Specifies that no workstation customizing object is used.
If the To database file (TOFILE) parameter specifies *TOSTMF and the device type of the spooled file is *AFPDS or *USERASCII, the spooled file data is copied directly to the stream file. If the stream file does not exist, the associated CCSID of the stream file is set to 65535.

For other types of spooled files, the spooled file data is copied to the stream file using the Control character (CTLCHAR) parameter to format the data. Lines end with carriage return and line feed controls to indicate record boundaries. If the stream file does not exist, a CCSID obtained from the spooled file attributes is associated with the stream file.

If the spooled file has a CHRID attribute other than *DEVD, the CHRID attribute is used to select the CCSID to be associated with the stream file. If the spooled file has a CHRID attribute of *DEVD, the CCSID of the job that created the spooled file is used.

– *PDF

The output is transformed to Portable Document Format (PDF) before it is written into a stream file. If the stream file does not exist, the CCSID associated with the stream file is set to 65535.

– Qualifier 1: Workstation customizing object name

Specify the name of the customizing object. When a named customizing object is used and the stream file does not exist, the CCSID associated with the stream file is set to 65535.

– Qualifier 2: Library

• *LIBL

All libraries in the library list for the current thread are searched until the first match is found.

• *CURLIB

The current library for the job is used to locate the customizing object. If no current library entry exists in the library list, QGPL is used.

• name

Specify the name of the library where the customizing object is located.

▶ Stream file option (STMFOPT)

Specifies whether the copy operation replaces or fails to copy the records to the stream file if a stream file with the specified name exists. If the stream file does not exist, it is created.

– *NONE

No records are copied and the operation fails.

– *REPLACE

The records replace the existing stream file records.

Because this function is implemented by PTF, there is no online or prompter help for the new parameters and the new *TOSTMF value.
In Figure 10-2, the **CPYSPLF** command prompter is displayed and F11 was pressed to display the parameter names. The *TOSTMF* value is specified for the **TOFILE** parameter, as shown in the red box. This setting directs the copy function to copy a spooled file to a stream file.

**Copy Spooled File (CPYSPLF)**

<table>
<thead>
<tr>
<th>Type choices, press Enter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spooled file ............. FILE</td>
</tr>
<tr>
<td>To data base file ........ TOFILE</td>
</tr>
<tr>
<td>Library .........................</td>
</tr>
<tr>
<td>Job name ................. JOB</td>
</tr>
<tr>
<td>User .........................</td>
</tr>
<tr>
<td>Number .........................</td>
</tr>
<tr>
<td>Spooled file number ........ SPLNBR</td>
</tr>
<tr>
<td>Job system name .......... JOBSYNAME</td>
</tr>
<tr>
<td>Spooled file created: .......... CRTDATE</td>
</tr>
<tr>
<td>Creation date ............. *ONLY</td>
</tr>
<tr>
<td>Creation time .............</td>
</tr>
<tr>
<td>To member ................. TOMBR</td>
</tr>
<tr>
<td>Replace or add records .......... MBROPT</td>
</tr>
<tr>
<td>Control character .......... CTLCHRR</td>
</tr>
</tbody>
</table>

More...

F3=Exit  F4=Prompt  F5=Refresh  F12=Cancel  F13=How to use this display  F24=More keys

*Figure 10-2  Copy spooled file command prompt - TOFILE parameter with *TOSTMF value*
In Figure 10-3, the next panel of the CPYSPLF command is shown. In the red box, the specification of the new TOSTMF, WSCST, and STMFOPT parameters is shown.

- The TOSTMF parameter directs to copy output to the /pdfoutput file.
- The WSCST parameter specifies a conversion to a PDF file.
- The STMFOPT parameter specifies the replacement of the current stream file.

<table>
<thead>
<tr>
<th>Copy Spooled File (CPYSPLF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type choices, press Enter.</td>
</tr>
<tr>
<td>Channel values: CHLVAL</td>
</tr>
<tr>
<td>Channel . . . . . . . .</td>
</tr>
<tr>
<td>Line . . . . . . .</td>
</tr>
<tr>
<td>+ for more values</td>
</tr>
<tr>
<td>To stream file . . . . . .</td>
</tr>
<tr>
<td>/pdfoutput</td>
</tr>
<tr>
<td>Workstation customizing object</td>
</tr>
<tr>
<td>Library . . . . . .</td>
</tr>
<tr>
<td>Stream file option . . . .</td>
</tr>
<tr>
<td>&gt; *REPLACE</td>
</tr>
</tbody>
</table>

**Figure 10-3  Copy spooled file command prompt**

PTFs and licensed programs: This function requires PTF SI43471 for IBM i 7.1 and the 5770TS1 IBM Transform Services for i and Transforms – AFP to PDF Transform licensed program.

### 10.3.2 New QIBM_QSP_SECURITY exit point and formats

Spooled file security is primarily controlled through the output queue that contains the spool file. In V6R1, there were four main ways in which a user can be authorized to control a spooled file:

- The user is assigned spool control authority (SPCAUT(*SPLCTL)) in the user profile.
- The user is assigned job control authority (SPCAUT(*JOBCTL)) in the user profile, the output queue is operator-controlled (OPRCTL(*YES)), and the user has *EXECUTE authority to the library that the output queue is in.
- The user has the required object authority for the output queue.
- The user is always allowed to control the spooled files that are created by that user.

Spooled file security is enhanced through the addition of a spooled file security exit point. This exit point can be used with a spooled file security exit program to allow more granular access to individual spooled files based on the operation to be run.
This new exit point changes the access criteria in the following ways:

- The user is granted authority by the use of a spooled file security exit program. A user can be granted or denied access to any spooled file for one or several operations by the exit program.
- The last two access methods that are mentioned in the previous list can be overridden by the spooled file security exit program.

This feature is another way to access spool files for the Copy Spooled File (CPYSPLF), Display Spooled File (DSPSPLF), and Send Network Spooled File (SNDNETSPLF) commands. If DSPDTA(*YES) is specified when the output queue is created, any user with *USE authority to the output queue is allowed to copy, display, send, or move spooled files.

If the user is authorized to control the file by one of the ways that are already listed, using DSPDTA(*NO) when you create the output queue does not restrict the user from displaying, copying, or sending the file. DSPDTA authority is checked only if the user is not otherwise authorized to the file. All of the previous access methods override DSPDTA(*NO).

Exit Point QIBM_QSP_SECURITY allows registered exit programs to control access to spooled files on a file-by-file basis. The exit programs are called at the beginning of each IBM i spool command or API, except under any of the following conditions:

- The job or thread has spool control (*SPLCTL) special authority. The special authority can originate from the user profile, group profile, or adopted authority.
- The job or thread has job control (*JOBCTL) special authority and the spooled file is on an output queue with OPRCTL(*YES). The special authority can originate from the user profile, group profile, or adopted authority.
- The command or API is run in a system job (including SCPF), a subsystem monitor job, or any job that is running under one of the system user profiles that are listed in Table 10-1.

<table>
<thead>
<tr>
<th>Table 10-1   System user profiles</th>
<th>QAUTPROF</th>
<th>QCLUMGT</th>
<th>QCOLSrv</th>
<th>QDBSHR</th>
<th>QDBSHRD0</th>
</tr>
</thead>
<tbody>
<tr>
<td>QAUTPROF</td>
<td>QCLUMGT</td>
<td>QCOLSrv</td>
<td>QDBSHR</td>
<td>QDBSHRD0</td>
<td></td>
</tr>
<tr>
<td>QDFTOWN</td>
<td>QDIRSRV</td>
<td>QDLFM</td>
<td>QDOC</td>
<td>QDSNX</td>
<td></td>
</tr>
<tr>
<td>QFNC</td>
<td>QGATE</td>
<td>QLPAUTO</td>
<td>QLPIINSTALL</td>
<td>QMSF</td>
<td></td>
</tr>
<tr>
<td>QNETSPLF</td>
<td>QNFSPANON</td>
<td>QNTP</td>
<td>QPEX</td>
<td>QPM400</td>
<td></td>
</tr>
<tr>
<td>QRJE</td>
<td>QSNADS</td>
<td>QSPL</td>
<td>QSPLJOB</td>
<td>QSRVAGT</td>
<td></td>
</tr>
<tr>
<td>QSYS</td>
<td>QTCP</td>
<td>QTFTP</td>
<td>QTSTRQS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following commands use the exit point

- CHGSPLFA: Change Spooled File Attributes
- CPYSPLF: Copy Spooled File
- DLTSPLF: Delete Spooled File
- DSPSPLF: Display Spooled File
- EXPORT: System i Navigator API to export an EBCDIC spooled file to an ASCII desktop
- HLSPLF: Hold Spooled File
- QGSLRSC: List Spooled File AFPDS Resources API
- QSPMVSP: Move Spooled File API
- QSPQNSP: Open Spooled File API
- QUSRSPAFA: Retrieve Spooled File Attributes API
- RLSSPLF: Release Spooled File
- RST: Restore Object, Restore Library, or QSRRSTO API
- SAV: Save Object, Save Library, or QSRSAVO API
More details about the exit program format names, formats, and parameters are available in the IBM i 7.1 Knowledge Center at:

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp

An example of creating an exit program and using the QIBM_SP_SECURITY exit point is available in IBM Software Technical Document 560810071 - "QIBM_QSP_SECURITY Exit Point: Let's See How it Works" at:

http://www-912.ibm.com/s_dir/SLKBase.nsf/1ac66549a21402188625680b0002037e/4dce2d7df8415e9c862577230076acdd?OpenDocument

### 10.3.3 Encryption of PDF output (Infoprint Server LP)

In IBM i 7.1, when you transform an Intelligent Printer Data Stream (IPDS) file to PDF, you can now encrypt the PDF stream or spooled file.

**PDF encryption**: PDF encryption is a feature of the Infoprint Server license program.

There is a new **PDFENCRYPT** parameter for the user-defined data **USRDFNDTA** parameter, which is used to specify whether to encrypt an output PDF stream file or spooled file and whether to send it as email. There are several ways to specify the **USRDFNDTA** parameter with the **PDFENCRYPT** parameter:

- It can be specified for an existing spool file using the Change Spooled File Attributes (**CHGSPLFA**) command.
- It can be specified in a printer file using the Create Printer File (**CRTPRTF**) command.
- It can be specified by using the Override Printer File (**OVRPRTF**) command.

Values for the **PDFENCRYPT** parameter are as follows:

- **NONE**
  
  Encryption and email distribution options are not specified at the spooled file level. The encryption values specified in a PDF map object are used. Specifying **PDFENCRYPT(**NONE) is the same as not specifying **PDFENCRYPT**. A value of **NONE** cannot not be specified with any other values. If other values are specified with **NONE**, they are ignored.

- **NOMAIL**
  
  The email is not sent. If this value is not specified, the email is sent. Use **NOMAIL** to encrypt a stream file or spooled file without sending an email.

- **STMF**
  
  The generated PDF file that is placed in a stream file is encrypted. If this value is not specified and a stream file is generated, the stream file is not encrypted. If the stream file distribution option is not specified, this value is ignored.

- **SPLF**
  
  The PDF file that is placed in a spooled file is encrypted. If this value is not specified and a spooled file is generated, the spooled file is not encrypted. If the spooled file distribution option is not specified, this value is ignored.
Generating encrypted PDF output
To encrypt the output PDF file, complete the following steps:

1. Specify the email distribution option in a PDF map object entry or segment.
2. Specify encryption values for the email distribution option.
3. Specify the name of the PDF map object with the PDFMAP parameter in the Print Services Facility (PSF) configuration object.
4. Specify the default IBM-supplied user program with the PDFMAPPGM parameter in the PSF configuration object.
5. Specify the PDFENCRYPT parameter on the printer file’s or spooled file’s USRDFNDSA parameter.

The following list details examples of this procedure:

- To convert a spooled file to an encrypted PDF, send it as email, and write it as an encrypted PDF file to the integrated file system, complete the following steps:
  a. Specify the stream file distribution option in the PDF map object entry or segment.
  b. Specify this parameter on the printer file or spooled file’s attributes:
     USRDFNDSA('PDFENCRYPT(*STMF) ')

- To convert a spooled file to an encrypted PDF file and spool it as an encrypted PDF file without sending it as email, complete the following steps:
  a. Specify the spooled file distribution option in the PDF map object entry or segment.
  b. Specify this parameter on the printer file or spooled file’s attributes:
     USRDFNDSA('PDFENCRYPT(*SPLF *NOMAIL) ')

- To convert a spooled file to an encrypted PDF file, spool it, and write it as an encrypted PDF file to the integrated file system without sending it as email, complete the following steps:
  a. Specify the stream file distribution option in the PDF map object entry or segment.
  b. Specify the spooled file distribution option in the PDF map object entry or segment.
  c. Specify this parameter on the printer file or spooled file’s attributes:
     USRDFNDSA('PDFENCRYPT(*NOMAIL *STMF *SPLF) ')

- To convert a spooled file to an encrypted PDF file, spool it, and write it as an encrypted PDF file to the integrated file system without sending it as email, complete the following steps:
  a. Specify the stream file distribution option in the PDF map object entry or segment.
  b. Specify the spooled file distribution option in the PDF map object entry or segment.
  c. Specify this parameter on the printer file or spooled file’s attributes:
     USRDFNDSA('PDFENCRYPT(*STMF *NOMAIL) ')
10.4 Print Services Facility for IBM i enhancements

This section describes the Print Services Facility for IBM i (PSF) enhancements in IBM i 7.1. They include:

- Disabling offset stacking and edge mark printing.
- Specifying public data authority for directories created by PSF.
- Improved PSF debugging capabilities.

10.4.1 Disabling offset stacking and edge mark printing

PSF enables disabling offset stacking on cut-sheet printers and edge mark printing on continuous forms printers through a new PSF Defined Option (PSDFNOPT) parameter named OFFSTACK:

- PSDFNOPT (OFFSTACK(*YES))
  This command is the default. It specifies that there is no change to offset stacking and edge marking. Offset stacking and edge marking occurs between each spooled file. All offset stacking and edge mark changes in the form definition are honored.

- PSDFNOPT (OFFSTACK(*NO))
  This command specifies that no offset stacking or edge marking is done, which includes offset stacking and edge marking done between spooled files and through the form definition.

This parameter is specified within a PSF configuration object that is either created through the Create PSF Configuration (CRTPSFCFG) command or specified by using the Change PSF Configuration (CHGPSFCFG) command.

10.4.2 Specifying public data authority for directories created by PSF

PSF is enhanced to enable specification of the public data authority for any directories that PSF creates when a mapping program specifies that PDF files are to be written to the Integrated File System. This enhancement applies to customer-written PDF mapping programs and to map objects. This function is enabled through a new PSF Defined Option (PSDFNOPT) parameter named PDF Data Authority (PDFDTAAUT).

The various PDFDTAAUT values and their functions are as follows:

- PSDFNOPT (PDFDTAAUT(*INDIR))
  The authority for the directory to be created is determined by the directory in which it is created. The directory immediately preceding the new directory determines the authority.

  A directory that is created in the root (/), QOpenSys, or user-defined file system is assigned the same public, private, and primary group authority, authorization list, and primary group as the directory in which it is created.

  A directory that is created in QDLS for a folder defaults to *EXCLUDE for a first-level folder. If created in the second level or higher, the authority of the previous level is used.

  The QOpenSys and root (/) file systems use the parent directory IFS Data Authority value. If the value *INDIR is specified, PSF specifies the value *INDIR for the *PUBLIC object authority.
PSFDNFOPT (PDFDTAAUT(*RWX))

You can change the object and run basic functions on the object except those functions that are limited to the owner or controlled by object existence (*OBJEXIST), object management (*OBJMGT), object alter (*OBJALTER), and object reference (*OBJREF) authorities. Read, write, execute (*RWX) authority provides object operational (*OBJOPR) and all data authorities.

PSFDNFOPT (PDFDTAAUT(*RW))

You can view and change the contents of an object. Read, write (*RW) authority provides *OBJOPR and data read (*READ), add (*ADD), update (*UPD), and delete (*DLT) authorities.

PSFDNFOPT (PDFDTAAUT(*RX))

You can run basic operations on the object, such as run a program or display the contents of a file. You cannot change the object. Read, execute (*RX) authority provides *OBJOPR and data *READ and execute (*EXECUTE) authorities.

PSFDNFOPT (PDFDTAAUT(*WX))

You can change the contents of an object and run a program or search a library or directory. Write, execute (*WX) authority provides *OBJOPR and data *ADD, *UPD, *DLT, and *EXECUTE authorities.

PSFDNFOPT (PDFDTAAUT(*R))

You can view the contents of an object. Read (*R) authority provides *OBJOPR and data *READ authorities.

PSFDNFOPT (PDFDTAAUT(*W))

You can change the contents of an object. Write (*W) authority provides *OBJOPR and data *ADD, *UPD, and *DLT authorities.

PSFDNFOPT (PDFDTAAUT(*X))

You can run a program or search a library or directory. Execute (*X) authority provides *OBJOPR and data *EXECUTE authorities.

PSFDNFOPT (PDFDTAAUT(*EXCLUDE))

You cannot access the object. The OBJAUT value must be *NONE, if this special value is used. The value *NONE is not supported for PDFDTAAUT.

If you specify a value for PDFDTAAUT that is not supported, PSF issues PQT0038 with reason code 5 and ends. Message PQT0038 is: Printer writer ended because of an error. Reason code 5 is: Value not recognized.

This parameter is specified within a PSF configuration object that is either created through the Create PSF Configuration (CRTPSFCFG) command or specified by using the Change PSF Configuration (CHGPSFCFG) command.

10.4.3 Improved PSF debugging capabilities

PSF added diagnostic trace files and new reason codes to aid in troubleshooting mapping problems. The new PSFTRACE diagnostic spool file contains in-depth information about your mapping program. It can be used with the reason codes issued with messages PQT4140 and PQT4151 (Incorrect data was returned by mapping program) to diagnose problems with your mapping program.
Although the PSFTRACE spool file is automatically generated if PQT4140 or PQT4151 is issued (except when the reason code is 15 for PQT4140), you might want to force creation of the PSFTRACE spool file. To do so, create a data area in library QGPL or QTEMP with the same name as the printer device, using the example command that is shown in Example 10-1.

Example 10-1  Command to create a data area to force a PSFTRACE spool file

```sql
CRTDTAARA DTAARA(library/printer_device_name)
TYPE(*CHAR)
LEN(40)
AUT(*ALL)
VALUE(X'E6E6D7C4E3D9C8D9800000000008000000000003200000000000000000000000000000000')
```

The data area must be created before you start the printer writer, must be created in the QGPL library, and the name must match the printer device description name. When the PSFTRACE file is no longer needed, delete the data area with the Delete Data Area (DLTDTAARA) command.

For more information about PSFTRACE and interpreting the data within it, see the “Troubleshooting Mapping Problems” section of the Advanced Function Presentation PDF at the IBM i 7.1 Knowledge Center, which can be found at:


The following error codes were added to the PQT4151 (Incorrect data was returned by mapping program) error message to support new function:

- 43: Value for PDF Email Comma Delimiter must be '0' or X'00' when SNDDST is the mail server.
- 44: Encryption of stream file or spooled file requested but encryption settings not specified.
- 45: Value for Encrypt PDF stream file must be '0' or '1'.
- 46: Value for Encrypt PDF spooled file must be '0' or '1'.

## 10.5 Transform Services enhancements

The following Transform Services functional enhancements are described in this section:

- Generating PDFs from existing spooled files
- PDF transform enhancements

### 10.5.1 Generating PDFs from existing spooled files

Before IBM i 7.1, data was sent to directly to Transform Services. If the job that is generating the spool file ended abnormally without closing the spool file, no PDF output was generated.

In IBM i 7.1, the user can now generate PDF output from a spooled file. If the job ends after the spooled file is generated and closed, the user can generate the PDF from the spooled file, regardless of whether the spool file was closed before the job ended.

This capability is covered in more detail in 10.8, “Host Print Transform enhancements” on page 471.
10.5.2 PDF transform enhancements

The following sections describe enhancements to the PDF transform.

Additional bar code support
Bar code support of the PDF transform was enhanced to render all bar code types that are listed for the DDS bar code keyword, including intelligent USPS bar codes and two-dimensional codes.

A CPD6DF0 diagnostic message, bar code data did not print correctly due to errors, is logged if invalid data or parameters are specified.

AFP font support improvements
The PDF transform now converts Advanced Function Presentation fonts to PDF Type 1 or Type 3 fonts and embeds them to preserve text appearance and text content.

The transform continues to revert to the PDF standard font references if font resources are not available in font libraries and the library list. The text is limited to ANSI characters.

Improved globalization
Eastern European languages require embedded fonts to display all the characters.

Non-Latin1 character identifiers (CHRIDs) are now automatically mapped to the appropriate AFP font resources.

Where possible, font attributes such font size, bold fonts, italic fonts, and so on, are honored. Font mapping can be customized through a workstation customization (WSCST) object.

For these languages and character sets, the following products might be required:
- 5648-B45 AFP Font Collection for i V3.1
- 5648-E77 InfoPrint Fonts for Multi-platform

10.6 IBM Navigator for i print enhancements

IBM Navigator for i has the following enhancements that are related to printing:

- The View as PDF task was added to enable viewing spooled files as PDFs, which include AFPDS and SCS printer output files. You can use this function to open and view the contents of a printer output file using Acrobat Reader.
- The Export task was replaced with an “Export as” menu. The menu adds the ability to export spooled files as PDF files. You can use the new export of PDF files function to save the contents of a printer output file to your client desktop, to the integrated file system (IFS), to an output queue, or to an email.

Both the “View as PDF” and “Export as PDF to client” desktop tasks use Transform Services for the AFPDS and SCS conversions to PDF.

**Requirement:** The “Export as PDF” to IFS, to an output queue, and to an email require the 5722IP1 Infoprint Server for iSeries licensed program.
10.6.1 Viewing printer output in PDF format

To view printer output in PDF format, you must first go to the printer output.

Figure 10-4 shows the navigation to access the Printer Output function. In the IBM i Management list, the first arrow points to the Basic Operations link. When that link is selected, the Basic Operations menu opens.
The second arrow in Figure 10-4 on page 463 points to the Printer Output menu item on the Basic Operations menu. When selected, a list of printer output is displayed, as shown in Figure 10-5.

Select a file and right-click, or click the Actions menu, and select **View as PDF**.

When the View PDF task is selected, you see the output as a PDF, as shown in Figure 10-6.
10.6.2 Exporting the printer output in PDF format

Print functions of IBM Navigator for i now use Transform Services and Infoprint Server to export spooled files in PDF format. The output can be processed as one of these options:

- Export to the client’s file system
- Export to an output queue
- Export to the Integrated File System (IFS)
- Export to email

**Requirement:** For the latter three options, the Infoprint Server licensed program (5722-IP1) is required. Users can use the native IBM Transform Services for i (5770-TS1) licensed program to export to the IFS, but they must map a network drive to the IFS and then select the first option.

The option to use the Infoprint Server licensed program to convert spooled files to PDF remains.

The navigation to a specific printer output file is identical to what is shown in Figure 10-4 on page 463. Select a file and right click, or click the **Actions** menu. The menu opens, as shown in Figure 10-7.

![Figure 10-7 Printer output list with Export PDF options shown](image)

Select **Export as**. A menu with PDF options opens, as shown in Figure 10-7. Click **PDF using Transform Services** or **PDF using Infoprint Server**. In the next menu that opens, click the appropriate export option.
10.6.3 System i Navigator and exporting printer output in PDF format

To export printer output in PDF format using Transform Services, complete these steps:

1. In the navigation pane, click **Basic Operations → Printer Output**. Right-click a file and select **Convert to PDF**, as shown in Figure 10-8.

![System i Navigator](image)

**Figure 10-8  Convert to PDF using System i Navigator**
2. The Convert Printer Output to PDF wizard window (Figure 11-9) opens.

![Figure 10-9  Convert Printer Output to PDF wizard](image)

The arrow points to **Store in Stream File**, which is consistent with saving the output in the IFS.

3. Click **Next** to have the wizard request a printer, as shown in Figure 10-10. Because the system has no active printers capable of PDF conversion, the printer selection is disabled and **Create new printer** is automatically selected.

![Figure 10-10  Convert Printer output to PDF - select printer](image)
4. Click **Next**. You are prompted for a printer name and port, as shown in Figure 10-11. The Port defaults as shown.

![Figure 10-11 Creating a PDF printer](image)

5. Set the printer name to PDFPRINTER, and click **Next**.

6. Specify advanced configuration parameters in the printer configuration window, as shown in Figure 10-12. Click **Next**.

![Figure 10-12 Specify advanced configuration parameters](image)
The advanced parameters window (Figure 10-13) opens.

![Advanced PDF printer configuration parameters](image)

The arrow in Figure 10-13 points to an important function that minimizes the PDF size. Transform Services embed the PDF fonts in the PDF to preserve text appearance and text content. This action increases the size of the PDF file. This option directs transforms to not embed the PDF fonts.

7. Click **Next**. Another advanced parameters window (Figure 10-14) opens. Accept the defaults and click **Next**.

![Advanced parameters](image)
Enter the IFS path where the PDF is to be stored (Figure 10-15).

8. Create and secure the directories in the IFS, according to the following rules:
   – The directories must exist.
   – The QSPLJOB user (or *PUBLIC) must have *RWX (read / write / execute) authority to the root (/) directory.
   – The QSPLJOB user must have a minimum of *X (execute) authority to the directories in the path.
   – The QSPLJOB user must have *RWX (read / write / execute) authority to the directory where the files are stored.

9. Click **Next** to continue, and click **Finish** in the confirmation window to print.

10.7 IBM i Access for web print enhancements

IBM i Access now uses Transform Services to view spooled files in PDF format.

Support was added for the AFP to PDF Transform (option 1) of the IBM Transform Services for i (5770-TS1) licensed program when you view printer spool output as a PDF document.

Output can be viewed in a browser or placed in the IBM i integrated file system (IFS).

For more information, see the “IBM i Access for Web” topic in the IBM i 7.1 Knowledge Center, or the IBM i Access for web PDF at:

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/rzamm/rzamm.pdf

**Change in requirements:** System i Navigator and IBM i Access for Web previously required the 5722-IP1 IBM Infoprint Server for iSeries product to view output as PDF. This option is still usable for users that have the software, but it is no longer required.
10.8 Host Print Transform enhancements

Host Print Transform now uses Transform Services. The following sections explain the changes with examples.

10.8.1 The Host Print Transform API and Transform Services

The Host Print Transform (QwpzHostPrintTransform) API now uses Transform Services to convert existing *SCS and *AFPDS spooled files to PDF.

The function behavior is directed by a Workstation Customization Object (WSCST), which must specify the CTXFORM attribute. Three such WSCST objects with CTXFORM attribute are included with the system. One of these objects can be used, or you can create your own using the Create WSCST (CRTWSCST) command. The following three WSCST objects are included:

- **QSYS/QCTXPDF**
  This WSCST object includes tags to map all of the CJK World Type fonts included in IBM i option 43 to corresponding registered CMaps and character collections. This object allows ideographic characters to be rendered without embedding these large fonts within the document. The smaller World Type fonts are not mapped by this object and are embedded within the output document to allow non-Latin1 SBCS languages to be presented.

- **QSYS/QCTXPDFWT**
  This WSCST object contains tags to map all of the World Type fonts included with IBM i option 43 to corresponding Type 1 fonts or registered CMaps and character collections. This situation generally results in the smallest possible PDF file size, but only reliably presents Latin and CJK languages.

- **QSYS/QCTXPDFMBD**
  This WSCST is the minimal PDF object. It omits all font tags, so that the default font mapping is used for all font references. The default behavior is to embed all TrueType font references.

When the API is started with a WSCST object with the CTXFORM attribute, the job reads the input data stream from the spooled file that is specified in the API. Transform Services is called to generate the PDF output from the input spooled file data. Transform Services returns the PDF output in the output buffer that is provided on the API. For more information, see the API documentation in the IBM i 7.1 Knowledge Center at:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzahg%2Ficmain.htm

10.8.2 Example: Host Print Transform API with Transform Services

This sample flow illustrates the usage of the API to transform a spooled file to a PDF by using a workstation customization object of type CTXFORM:

1. The Host Print Transform API is called with the initialize (10) process option.
   The Host Print Transform API sets any initial information and returns to the caller. The first eligible spooled file is selected for processing.

2. The Host Print Transform API is called with the process file (20) process option.
   The name and identifier of the spooled file is passed in the input information. A workstation customization object of type *CTXFORM is passed in.
The Host Print Transform API checks to see that the iCTT transform service is available and determines whether it transforms the spooled file. It returns to the caller an indication whether it transforms the spooled file. It also passes back an indication that it reads the spooled file directly and the caller does not pass it any data. The end file (40) process option must be used before another process file (20) process option is allowed.

3. The Host Print Transform API is called with the transform data (30) process option.

   The Host Print Transform API reads the spooled file data, transforms the data, and passes back the transformed data to the caller. If the buffer used by the caller cannot hold all of the transformed data, the Host Print Transform API indicates to the caller that it is not done transforming the file. The caller must call the API again with another transform data (30) process option. This step happens repeatedly until the entire transformed file is passed back to the caller, at which point the Host Print Transform API indicates that it is done transforming the file.

4. The Host Print Transform API is called with the end file (40) process option.

   The Host Print Transform API returns to the caller any remaining data to be sent to the printer.

5. The caller selects the next eligible spooled file to be transformed.

   Steps that start with the process file (20) process option are repeated.

6. All transformation is completed.

   The Host Print Transform API is called with the terminate (50) process option. The Host Print Transform API cleans up any workspaces that it created and returns to the caller.

10.9 References

The following references have more information about IBM i printing:

- IBM i Printing Basic Printing, found at:
  http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/rzalu/rzalu.pdf
- IBM i Printing Advanced Function Presentation, found at:
- IBM Advanced Function Printing Utilities for iSeries: User's Guide, found at:
  http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/books_web/s5445349.pdf
- IBM i Files and File Systems Spooled Files, found at:
  http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/rzata/rzata.pdf
- System i Programming - DDS for Printer Files, found at:
  http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/rzakd/rzakd.pdf
- iSeries Guide to Output, found at:
  http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/rzalu/s5445319.pdf
- InfoPrint AFP Font Collection, found at:
  http://www-03.ibm.com/systems/i/software/print/afpfonthome_m_ww.html
► InfoPrint AFP Print Utilities for System i, found at:
   http://www-03.ibm.com/systems/i/software/print/afputilhome_i_ww.html

► Print Services Facility for IBM i for i5/OS, found at:
   http://www-03.ibm.com/systems/i/software/print/ipfontscomp_m_ww.html
Integration with IBM BladeCenter and IBM System x

This chapter describes the new enhancements to the integration with BladeCenter and System x with IBM i 7.1.

This chapter describes the following topics:

- iSCSI software targets
- Defining iSCSI software target support
- Service Processor Manager function
- VMware support changes
- Microsoft Windows support changes
- New planning worksheets
- IBM Navigator for i
- New IBM i CL commands
- IBM i changed CL commands
- Install Linux Server (INSLNXSVR) CL command
- No new integrated Linux servers
- Fewer IBM i licensed programs are required
- Changes to IBM i integration with BladeCenter and System x documentation
11.1 iSCSI software targets

With i 7.1, IBM i now supports iSCSI software targets using standard Ethernet Network Interface Cards (NICs), as shown in Figure 11-1. Software targets provide additional flexibility for the IBM iSCSI target solution.

![Figure 11-1: Attaching servers to IBM i by using iSCSI](image)

Within the IBM i Integrated Server Environment, you are limited to 1 Gb connectivity if you use physical iSCSI Target HBAs.

With the new software target solution, you can now use dedicated Ethernet ports with 1 Gb or 10 Gb connectivity. It is now possible to intermix hardware and software target adapter environments.

However, if you are using an iSCSI software initiator in combination with an iSCSI software target, you have full 10 Gb connectivity.

11.1.1 IBM i Integrated server object model with a hardware target

With a physical iSCSI Target HBA, the NWSH object identifies the hardware resource and configures the IP address information (and other attributes), as shown in Figure 11-2.

![Figure 11-2: NWSH object for a physical iSCSI target HBA](image)
11.1.2 IBM i Integrated server object model with a software target

In IBM i 7.1, with a software iSCSI Target, the NWSH object, along with a line description and TCP interface, identify the hardware resource and configure the IP address information (and other attributes), as shown in Figure 11-3.

![Figure 11-3 NWSH object for a software target](image)

The physical iSCSI HBA is replaced by an Ethernet NIC, which is defined in the Ethernet line description.

Within the TCP/IP interface, configure the IP address for this Ethernet NIC.

This same IP address is also used in the local SCSI interface parameter for the NWSH configuration object.

11.1.3 Direct connect software targets

IBM i Integrated Server Support is enhanced to provide support for iSCSI direct connect when you use an IBM i software target (Ethernet NIC). This enhancement eliminates the requirement for a switch between an IBM i iSCSI software target and a BladeCenter blade or System x iSCSI initiator. This support is provided in IBM i 7.1 with IBM i integration with BladeCenter and System x Group PTF SF99369 Level 12 or later.

11.2 Defining iSCSI software target support

In IBM i 7.1, it is possible to define iSCSI software target support in a text-based interface and by using IBM Navigator for i.
11.2.1 CRTDEVNWSH CL command interface

To define an iSCSI software target (Figure 11-4), you must specify *VRT for the resource parameter for the Create Device Description for a Network Server Host (CRTDEVNWH) command.

```
Create Device Desc (NWSH) (CRTDEVNWSH)

Type choices, press Enter.

Device description DEVD > SWTARGET
Resource name RSRCNAME > *VRT
Local (target) interface: LCLIFC
 Subnet mask > *NONE
 Port speed > *AUTO
 Duplex > *AUTO
Local SCSI interface:
 Internet address > 172.16.211.100
 Gateway address > *NONE
SCSI TCP port > 3260
Local LAN interface:
 Internet address > *IPSCSI
 Gateway address > *NONE
 Virtual Ethernet base UDP port > 8801
 Cable connection > *NETWORK
Online at IPL ONLINE *NO

More...

F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
```

Figure 11-4  CRTDEVNWSH command

For the LCLIFC parameter, specify the *IPSCSI option, which indicates that the local LAN interface IP address is the same as the local SCSI interface IP address.
11.2.2 IBM Navigator for i changes for iSCSI software target support

It is possible to define the iSCSI software target support by using IBM Navigator for i. You can use the **New Network Server Host Adapter** option in the Integrated Server Administration window, as shown in Figure 11-5.

![Network server host adapter - virtual resource](image)

*Figure 11-5  Network server host adapter - virtual resource*

Here you can specify the Virtual for the Hardware resource parameter to create the Network server host adapter device description for the iSCSI software target.
Within IBM Navigator for i, it is possible to create a TCP/IP interface and a corresponding line description when you create an NWSH configuration object. You can do this task by clicking New, as shown in Figure 11-6.

![Figure 11-6 Create a TCP/IP interface for an NWSH configuration object](image)

### 11.3 Service Processor Manager function

With IBM i 7.1, the Service Processor Manager function of IBM i Integrated Server Support is now used for integrated server management connections and power control.

Before IBM i 7.1, this function was provided by IBM Director (5722-DR1), which is no longer used for this purpose.

### 11.4 VMware support changes

With IBM i 7.1, VMware ESX 4, ESXi 4, ESXi 5, and ESXi 5.1 are now supported on iSCSI-attached integrated servers. ESXi 4 or later also includes support for iSCSI software initiators.

For the specific OS versions that are supported by each IBM i release, see the “Integrated Server Operating System (Server OS) Versions” section of the IBM i iSCSI Solution Guide at: [http://www.ibm.com/systems/i/advantages/integratedserver/iscsi/solution_guide.html](http://www.ibm.com/systems/i/advantages/integratedserver/iscsi/solution_guide.html)
11.4.1 New NWSD types

New network server description (NWSD) types are provided for VMware ESX servers. The new types eliminate the requirement for an “install” drive (the second drive) on ESX servers.

Figure 11-7 shows the new *ESX Server operating system Network server type for the CRTNWSD command.

```
Create Network Server Desc (CRTNWSD)

Type choices, press Enter.

Network server description . . . > VMWESX Name
Resource name > *NONE Name, *NONE, *AUTO
Network server type:
 Server connection > *ISCSI *IXSVR, *ISCSI, *GUEST...
 Server operating system ... > *ESX *WIN32, *AIXPPC, *ESX...
Storage path:
 Network server host adapter . Name, *NONE
 IP security rules:
 Remote interface 1 rule . . > DFTSECRLU 1-16, *DFTSECRLU, *NONE
 Remote interface 2 rule . . > DFTSECRLU 1-16, *DFTSECRLU, *NONE
 Remote interface 3 rule . . > DFTSECRLU 1-16, *DFTSECRLU, *NONE
 Remote interface 4 rule . . > DFTSECRLU 1-16, *DFTSECRLU, *NONE
 + for more values
 Default IP security rule . . *NONE 1-16, *NONE
 Multi-path group > *NONE 1-4, *NONE
 + for more values
More...
```

Figure 11-7 CRTNWSD command for the *ESX Server operating system

For VMware ESXi embedded servers, the system drive (the first drive) is no longer required.

**Requirement:** VMware ESX servers that were installed on prior IBM i releases must be changed to the new NWSD type after you install IBM i 7.1.

11.4.2 VMware ESX server management

With VMware ESX Server, the IBM i Integrated Server Support software (including the administration functions, such as shutdown) does not run directly on the VMware ESX server. Instead, an iSCSI-attached integrated Windows server serves as a management server for the VMware ESX server.

An integrated Windows server can serve as the management server for any number of integrated VMware ESX servers in the same IBM i logical partition. At least one integrated Windows server is required in each IBM i logical partition that hosts integrated VMware ESX servers.
11.4.3 SWA storage spaces for VMware ESX servers

With IBM i 7.1, save while active (SWA) support is provided for integrated VMware ESX servers. Storage spaces for VMware ESX servers can be saved from IBM i while the ESX server is active. This setup allows a concurrent save of ESX data without requiring the ESX server to be shut down or applications ended.

For more information, see the IBM i iSCSI Solution Guide, found at: http://www.ibm.com/systems/i/advantages/integratedserver/iscsi/solution_guide.html

11.5 Microsoft Windows support changes

Windows Server 2012 is now supported on selected System x and blade servers when connected to IBM i 7.1 with IBM i Integration with BladeCenter and System x Group PTF SF99369 Level 13 or later.

See Figure 11-8 for an example of the window that shows the new OS support when creating a server in IBM i Navigator.

![IBM i Navigator window when creating an integrated server](image)

For the equivalent 5250 interface using the Install Integrated Server (INSINTSVR) command, see Figure 11-9 on page 483.

For the specific OS versions that are supported by each IBM i release, see the Integrated Server Operating System (Server OS) Versions section of the IBM i iSCSI Solution Guide, which is located at the following website:

11.6 New planning worksheets

New planning worksheets were added to IBM i iSCSI Solution Work Sheets PDF:

- IBM i TCP/IP interface worksheet
  This worksheet is used when you plan iSCSI software targets.

- IBM i line description worksheet
  This worksheet is used when you plan iSCSI software targets.

- Integrated server installation worksheet
  This worksheet replaces the Install Windows Server (INSWNTSVR) command worksheet.

- VMware ESX post-installation worksheet
  This worksheet is used for VMware ESX server postinstallation tasks.

In addition, these worksheets are enhanced to allow them to be completed and saved as softcopies.

The instructions for filling out these worksheets are in the IBM i iSCSI Solution Guide PDF. Both PDFs are available at:


The instructions and worksheets were previously part of the iSCSI Network Planning Guide topic in the Knowledge Center.
11.7 IBM Navigator for i

The IBM Navigator for i web GUI is now the preferred user interface for managing integrated servers. Therefore, most integrated server management tasks are documented using the web GUI.

**GUI tasks:** The System i Navigator GUI that runs on a client workstation is still available in IBM i 7.1 and works for many tasks. However, the new GUI tasks that are listed in the following paragraphs and support for IBM i 7.1 enhancements are not available in the System i Navigator GUI.

New GUI tasks are available within the IBM Navigator for i web GUI, and are described in the following sections:

- Create Server task
- Clone Integrated Windows Server task
- Delete Server task
- Launch Web Console

11.7.1 Create Server task

This task, as shown in Figure 11-10, creates an iSCSI-attached integrated server.

![IBM Navigator for i](image)

**Figure 11-10 Create Server option in the IBM Navigator for i web GUI**

To create a server in an IBM i Integrated Server environment, use IBM Navigator for i for a walk-through of a server installation.

You must configure the following objects on the IBM i side:

- A network server host adapter (NWSH) configuration object
- A remote system configuration for iSCSI attached servers
- A service processor configuration for iSCSI attached servers
In the window that is shown in Figure 11-10 on page 484, click **Create Server**. This action starts the Create Server wizard that is shown in Figure 11-11. This wizard is helpful for creating a server that uses IBM i virtual storage.

![Create Server wizard](image)

The wizard guides you through the following tasks:

- Selecting a supported operating system
- Allocating IBM i virtual storage for the server operating system, if necessary
- Selecting the hardware for the server
- Selecting an IBM i iSCSI target to use for I/O
- Selecting an IBM i memory pool to use for I/O
- Providing a name to identify the server configuration on IBM i

**Tip:** Review the “Server installation roadmap and checklist” chapter of the **IBM i iSCSI Solution Guide** before you use this wizard. This guide can be found at:

http://www-03.ibm.com/systems/resources/systems_power_ibmi_iscsi_solution_guide.pdf

For more information, go to:

11.7.2 Clone Integrated Windows Server task

The New Based On (cloning) task, which is shown in Figure 11-12, creates an iSCSI-attached integrated Windows server that is based on one that was previously installed.

![Figure 11-12 New Based On...(cloning) option in the IBM Navigator for i web GUI](image-url)
In Figure 11-12 on page 486, click **New Based On**. This action starts the Create Server Based On (cloning) wizard that is shown in Figure 11-13.

The cloning wizard guides you through the following tasks:

- Providing a name to identify the clone server configuration on IBM i
- Selecting virtual storage to copy from the base server to the clone server
- Selecting the hardware for the clone server

The server cloning process is provided for integrated servers that are running supported Windows Server editions. The cloning process requires that you prepare the base server for cloning before you use the cloning task. Additional configuration is required after the server is cloned.

11.7.3 Delete Server task

This new task deletes an integrated server configuration, as shown in Figure 11-14.

![Figure 11-14 Delete Server option in the IBM Navigator for i web GUI](image)

This option is only available when the server is not active or starting.
11.7.4 Launch Web Console

This new task starts the service processor web console for an iSCSI-attached BladeCenter blade or System x server. An IBM BladeCenter can start the Advanced Management Module web interface, as shown in Figure 11-15.

Figure 11-15  Starting the web console from the IBM Navigator for i web GUI
11.7.5 Simplified Windows File Level Backup (FLB) from IBM i

The IBM Navigator for i web GUI is enhanced to simplify the task to enable which Windows share names under the IBM i /QNTC/servername directory can be saved from IBM i. The web GUI now provides a File Level Backup tab on the integrated server properties page, as shown in Figure 11-16.

![Figure 11-16  File Level Backup tab on the integrated server properties](image)

This new tab provides a way to select share names to enable for backup. It eliminates the need to manually add a member to the QAZLCSAVL file in QUSRSYS and then manually edit the file member to list the share names to enable for backup.

For more information about this topic, see 7.7.2, “Enabling Windows share names for file level backup from IBM i” in the IBM i iSCSI Solution Guide PDF. This guide can be found at: http://www.ibm.com/systems/i/advantages/integratedserver/iscsi/solution_guide.html

11.8 New IBM i CL commands

The following new IBM i control language (CL) commands are available for integrated servers:

- Install Integrated Server (INSINTSVR)
- Delete Integrated Server (DLTINTSVR)
11.8.1 Install Integrated Server (INSINTSVR) command

The INSINTSVR command shown in Figure 11-17 installs an iSCSI-attached integrated Windows Server 2012, Windows Server 2008, or VMware ESX server.

![Install Integrated Server (INSINTSVR)](image)

For more information about this topic, see the IBM i 7.1 Knowledge Center:
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/cl/insintsvr.htm

11.8.2 Delete Integrated Server (DLTINTSVR) command

The DLTINTSVR command, which is shown in Figure 11-18, deletes an integrated server configuration.

![Delete Integrated Server (DLTINTSVR)](image)
11.9 IBM i changed CL commands

The following new IBM i control language (CL) commands are changed for integrated servers:

- Install Windows Server (INSWNTSVR) CL command
- Create NWS Configuration (CRTNWSCFG) and Change NWS Configuration (CHGNWSCFG) CL commands

11.9.1 Install Windows Server (INSWNTSVR) CL command

The Install Windows Server (INSWNTSVR) command has a number of parameter changes that might require you to recompile any existing CL programs that use this command:

- The Windows server version (WNTVER) parameter no longer supports the installation of Windows 2000 Server. Related to this change is the removal of the *TSENABLE special value for element 3 of the License mode (LICMODE) parameter.
- The Installation type (INSTYPE) parameter is obsolete and was removed. ServerGuide assisted installations are no longer supported.
- The Install option (OPTION) parameter is obsolete and was removed. No supported upgrades can be processed using the Install Windows Server (INSWNTSVR) command.
- The Enable unicast (ENBUNICAST) parameter is obsolete and was removed. Communication with the service processor is configured by specifying a value for Service processor name (SPNAME) or SP Internet Address (SPINTNETA) parameter.
- The Boot device ID (BOOTDEVID) parameter is obsolete and was removed.
- The Remote (initiator) interfaces (RMTIFC) parameter, SCSI, and LAN Gateway addresses are not supported. The iSCSI attached servers do not support bridged networks that require the gateway address. These elements were removed.

11.9.2 Create NWS Configuration (CRTNWSCFG) and Change NWS Configuration (CHGNWSCFG) CL commands

The Enable Unicast (ENBUNICAST) parameter was removed from the Create NWS Configuration (CRTNWSCFG) and Change NWS Configuration (CHGNWSCFG) commands. This parameter change might require you to recompile any existing CL programs that use these commands.

In IBM i 7.1, iSCSI-attached integrated servers no longer support the multicast discovery method for the remote server service processor. Instead, unicast discovery of the remote server service processor must be used. Existing network server configurations of type *SRVPRC that have Enable Unicast (ENBUNICAST) configured to *NO must use the Change NWS Configuration (CHGNWSCFG) command to specify either the Service Processor Name (SPNAME) or Service Processor IP Address (SPINTNETA) parameter.

iSCSI-attached network server descriptions cannot vary on until the network server configurations of type *SRVPRC with ENBUNICAST configured to *NO are changed.
11.9.3 Install Linux Server (INSLNXSVR) CL command

The Install Linux Server (INSLNXSVR) CL command is no longer supported in IBM i 7.1. The INSLNXSVR command was used for Linux and VMware ESX server installations on prior IBM i releases.

**Tip:** There are no alternatives available for Linux server installs. For VMware ESX server installs, use the Create Server web GUI task or the INSINTSVR command.

11.9.4 No new integrated Linux servers

New integrated Linux servers cannot be installed on IBM i 7.1. Integrated Linux servers that were installed on prior IBM i releases and upgraded to IBM i 7.1 can continue to run as is, but without service support. The suggested migration path for these servers is to install an integrated VMware ESX server and run the Linux server as a virtual machine under VMware ESX.

11.10 Fewer IBM i licensed programs are required

The following IBM i licensed programs are no longer needed for integrated server functions:

- IBM Extended Integrated Server Support for i5/OS (5761-LSV)
- IBM Director (5722-DR1)
- Qshell (5770-SS1 option 30)

11.11 Changes to IBM i integration with BladeCenter and System x documentation

The following sections list the changes that were implemented in the supporting documentation that is available.

11.11.1 A new IBM i iSCSI Solution Guide PDF

A new *IBM i iSCSI Solution Guide* PDF and associated planning worksheets are now available at:


This guide provides the information that you need to plan for and install an IBM BladeCenter blade or System x server that is attached to IBM i using an iSCSI network (iSCSI). This guide contains the following information:

- iSCSI solution support matrixes: See the capabilities that the solution provides, which IBM BladeCenter and System x server models and operating systems are supported, and much more.
- Concepts: Learn about how the solution works.
- Server installation roadmap and checklist: Required information to install a server that is integrated with IBM i.
Server cloning roadmap and checklist: Required information to clone a Windows server that is integrated with IBM i.

BladeCenter and System x configuration: iSCSI configuration tasks for BladeCenter blade and System x servers.

Additional topics: Other topics that are related to the iSCSI solution.

This guide consolidates and replaces the following information:

- iSCSI installation roadmap PDFs for IBM i
- iSCSI Initiator Hardware Configuration PDF
- iSCSI Install Read Me First website
- BladeCenter and System x models that are supported by the iSCSI website
- iSCSI target and iSCSI initiator tables that were formerly on the iSCSI solution (iSCSI) website
- Ethernet switches for the iSCSI website
- Ordering channels for the iSCSI website
- Various websites that are related to tape and optical device support
- Various websites that are related to migration

11.11.2 IBM i 7.1 Knowledge Center

The IBM i integration with BladeCenter and System x topic in the IBM i 7.1 Knowledge Center was updated at:

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahq/rzaqhntspo.htm

Here are the most significant updates to this topic:

- Information that is related to various IBM i 7.1 enhancements was added.
- The following documentation was moved to the IBM i iSCSI Solution Guide PDF:
  - The Integrated server installation roadmap chapter
  - BladeCenter and System x hardware installation and configuration information
  - Microsoft Windows Server and VMware ESX Server installation and configuration information
- The iSCSI network planning worksheets were moved to the IBM i iSCSI Solution Work Sheets PDF.
- Integrated Windows servers that run on an Integrated IBM eServer xSeries Server (IXS) or a server that is attached using an Integrated xSeries Adapter (IXA) are no longer documented.
- Because the new Create Server task is now available within IBM Navigator for i, the Windows server installation advisor is no longer provided.
- Integrated Linux servers are no longer documented
- Network server description configuration files are no longer documented.
11.11.3 IBM i integration with BladeCenter and System x on IBM developerWorks

This IBM developerWorks group is the place where developers and IT professionals who work with the IBM i iSCSI solution congregate to connect, share, and collaborate. The website can be found at:

http://www.ibm.com/developerworks/groups/IBMiIntegratedServer

This group provides:

- A message board
- Bookmarks for important websites and reference material
- A set of Wiki pages, including:
  - Documentation
  - Learning Resources
  - Service and support (including required group PTFs for each IBM i release)

11.11.4 New IBM i Technology Updates page on developerWorks

The new Integration with BladeCenter and System x page on the IBM i Technology Updates Wiki lists the latest integrated server enhancements, including the required group PTF levels. It can be found at:


11.11.5 IBM i integration with BladeCenter and System x Marketing website

This Marketing website was streamlined and can be found at:

http://www.ibm.com/systems/i/advantages/integratedserver

Most of the technical content that was previously on this website (for example, the iSCSI Install Read Me First web page) was moved to the IBM i iSCSI Solution Guide or to developerWorks. For more information, see the previous sections.
IBM Advanced Job Scheduler for i enhancements

This chapter describes the new functions available in IBM i 7.1 that are related to job scheduling, through the 5770-JS1 IBM Advanced Job Scheduler for i licensed program.

This chapter describes the following topics:

- Advanced Job Scheduler capabilities
- IBM Navigator for i AJS support
- Other AJS enhancements
- References
12.1 Advanced Job Scheduler capabilities

The IBM Advanced Job Scheduler for i (AJS) can be used to schedule complex batch job flow, distribute spooled files as an email attachment, and send job status notifications. Jobs can run based on a schedule or an event. Jobs can run on local or remote IBM i systems and commands can be processed on non-IBM i platforms.

12.1.1 Scheduling a job

Jobs can be scheduled with a simple schedule (such as every week Monday through Friday) or more complex schedules (such as the seventh working day every month). If the standard scheduling conventions within the AJS are not enough, you can create a scheduling calendar that contains all the dates that a job is to run. Holiday calendars can be used for holidays or exceptions to the normal scheduling. These dates are the dates that you do not want a job to run. These calendars can be used in multiple jobs.

12.1.2 Job groups

Job groups are made up of AJS jobs that are grouped to run consecutively in the order that is specified in the group sequence field. This dependency is one form of dependency in the AJS. A normal completion is required before the next job in the group is submitted.

12.1.3 Notification and report distribution

You can use the notification feature in the AJS to notify people of the status of jobs by email. Important messages can be sent with an escalation list attached that specifies the length of time that passes before the next person in the list is notified. Escalation continues until someone stops escalation. You can use notification, which is coupled with report distribution, to distribute spooled files to one or more email addresses or to one or more output queues automatically.

12.1.4 Remote command jobs

Commands can run on non-IBM i platforms such as PCs. They can be processed on a single system or a group of systems. The Run Remote (RUNRMTCMD) command is used to run the commands on the remote systems. You can run RUNRMTCMD to run a command on a remote system that is running the target portion of this function. The target portion of this function can be a Remote Executing Daemon (REXECD). Use the incoming remote command (IRC) service of the IBM i Access for Windows on the remote systems to process the commands.

12.1.5 Multiple scheduling environments

The AJS manages multiple scheduling environments. A scheduling environment is all the objects in the QUSRIJS data library that is duplicated into another library. QUSRIJS is the main data library that is created during the installation of AJS. It contains the physical files that store all the information about the scheduled jobs. Each scheduling environment is its own entity and can be accessed and managed by using the AJS interfaces. When you define a scheduling environment within the AJS, a monitor switch is available to designate whether the scheduling environment can be active. A scheduling environment must be active to submit jobs automatically.
12.2 IBM Navigator for i AJS support

IBM Navigator for i (formerly known as IBM Systems Director Navigator for i5/OS) is a web console interface for IBM i administration where you can work with the web-enabled actions of the System i Navigator client.

IBM Navigator for i includes a number of welcome pages that enable the user to find the action that they want to perform quickly. Most functions found in IBM Navigator for i are also found in IBM Systems Director, which handles multiple IBM i systems and non-IBM i system platforms.

In IBM i 6.1, the AJS function in IBM Systems Director for i5/OS was limited to viewing. Viewing options include the following elements:

- Activity logs for the system, for a scheduled job, and for a specific execution of a job
- Configured jobs, their properties, and their status
- Configured groups, their properties, and their status
- Scheduled jobs and their status

The major limitation of the IBM i 6.1 function was that it could not change anything, and it could not add, change, hold, or remove scheduled jobs.

The new IBM i 7.1 AJS functions in the IBM Navigator for i interface now include most of the same functions that are found in the System i Navigator Windows client, with the advantage that the interfaces are web-based, not client-based. Additionally, as IBM i 7.1 has matured since release, more improvements to navigation and function have been implemented.

The rest of this section walks through the AJS web pages and describes the new functions during the walkthrough.

12.2.1 Getting to the AJS menu

The link to access the Advanced Job Scheduler menu is at the bottom of the Work Management menu. It is not shown on the left navigation bar, so detailed instructions follow.
IBM Navigator for i navigation

After you log on to the IBM Navigator for i web page, the Welcome window opens, as shown in Figure 12-1. On initial access, the IBM i Management option (indicated by the top arrow) might be collapsed. When this option is expanded, the list of IBM management functions is shown. One of these functions is Work Management, indicated by the second arrow.

Figure 12-1   Welcome window with IBM i Management item expanded
When the Work Management function is selected, the Work Management main menu that is shown in Figure 12-2 opens. The Work Management menu includes many of the operations-level actions of IBM i work management. To access the Advanced Job Scheduler functions, click **Advanced Job Scheduler**.

![Figure 12-2  Work Management main menu](image)
The Advanced Job Scheduler main menu is shown in Figure 12-3. See 12.2.2, “AJS menu” on page 505, for details of each of these tasks.

IBM i Advanced Job Scheduler allows you to schedule IBM i jobs to perform a wide variety of tasks.

- **Properties**
  Allows you to set the overall properties for Advanced Job Scheduler.
- **Start Scheduler**
  Allows you to start the scheduler.
- **Stop Scheduler**
  Allows you to stop the scheduler.
- **Scheduled Jobs**
  Allows you to manage the current scheduled jobs.
- **Scheduled Job Activity**
  Allows you to monitor scheduled job activity.
- **Activity Log**
  Allows you to view the activity log for your scheduled jobs.

*Figure 12-3  Advanced Job Scheduler main menu*
IBM Systems Director navigation
After you log on to the IBM Systems Director, you must navigate to an IBM i system. Complete the following steps:

1. Click the **Navigate Resources** task in the Navigation window.
2. Select the **All Systems** systems group from the Navigate Resources window, as shown in Figure 12-4.

![Figure 12-4: Selecting Navigate Resources and the All Systems resource group](image-url)
3. Select an IBM i system from the All Systems group list window.

In the example, the **All Systems** group shown in Figure 12-4 on page 503 is selected and the All Systems group systems window is opened. You can then scrolled down in search of a specific IBM i system.

Figure 12-5 shows the All Systems group list, with the check box selected for the wanted IBM i system.

4. Click **Actions** after the system is selected. A drop-down menu opens.
5. Select the **IBM i Management** item from the **Actions** menu. A second menu opens. On this second menu, select **Work Management**, as shown in Figure 12-6.

![Figure 12-6 Selecting Work Management from the Actions drop-down menu](image)

When you click **Work Management**, the remaining function and steps are similar in look and feel to those in IBM i Navigator.

### 12.2.2 AJS menu

The Advanced Job Scheduler menu that is shown in Figure 12-3 on page 502 contains the following tasks:

- Properties
- Start Scheduler
- Stop Scheduler
- Scheduled Jobs
- Scheduled Job Activity
- Activity Log

The AJS menu contains items of system-wide scope, rather than of individual job scope. This menu is the location where the job scheduler functions themselves are configured and maintained. Deeper within various sections, more specific and granular definitions of jobs and actions are performed. In the following sections, the Advanced Job Scheduler menu actions are reviewed.
12.2.3 AJS properties menu

Click the picture of the single gear or the word “Properties” to access the section of Advanced Job Scheduler that allows for administration of global settings.

The AJS properties are divided into six tabs in the left pane as shown in Figure 12-7. The following sections describe each tab.

![Advanced Job Scheduler Properties](image)

**General tab**

The General tab that is shown in Figure 12-7 is used to view and set the general properties of the job scheduler. You can specify the following options:

- How long to retain activity
- How long the log remains
- The period during which scheduled jobs are not allowed to run
- The working days that jobs are allowed to process
- The notification command that sends a notification whenever a job completes successfully or fails
Schedules tab
The Schedules tab that is shown in Figure 12-8 provides a display of the existing schedules on your system. The buttons at the right of the page provide the following functions

- **New**: Enables you to create a schedule.
- **New Based On**: Enables you to create a schedule that is based on an existing one.
- **Remove**: Removes an existing schedule.
- **Properties**: Enables modification of an existing schedule.

![Figure 12-8  AJS Properties - Schedules tab](image)

Clicking **New** in Figure 12-8 opens the New Schedules window that is shown in Figure 12-9. A schedule is a specification of days on which a job can run. No times are listed. With scheduled jobs and group jobs, you can select a schedule rather than make one when you create the jobs.

![Figure 12-9  AJS Properties - New Schedule window](image)
**Data Libraries tab**

The Data Libraries tab displays all job scheduler data libraries. As shown in Figure 12-10, you can add, remove, and modify a data library, and can start and end the job scheduler monitor job for a specific data library.

![Figure 12-10  AJS Properties - Data Libraries tab](image)

Clicking *Add* opens the New Data Library window that is shown in Figure 12-11.

![Figure 12-11  AJS New Data Library window](image)

From the New Data Library window, you can accomplish the following tasks:

- Create a jobs scheduler data library.
- Specify a job scheduler monitor.
- Specify a monitor job’s name.
- Start the job scheduler monitor automatically.

A system can have multiple job scheduler data libraries, and each library can have a monitor job that is running simultaneously. You can switch from one job scheduler that is running a production environment to the other job scheduler library that is running a test environment. This capability is covered in more detail in 12.3.2, “Multiple Scheduling Environments function” on page 532.
Systems & Groups tab
You can use the Systems & Groups tab (Figure 12-12) to add, remove, and change existing IP addresses and other information for IBM i and non-IBM i systems that are used by the AJS.

![Figure 12-12 Job Scheduler properties - Systems and Groups tab](image)

Users tab
The Users tab (Figure 12-13) enables maintenance of a list of job scheduler users that are associated with a job scheduler data library. The Add button adds users, the Properties button changes the properties of a user, and the Remove button removes a user.

![Figure 12-13 AJS Properties - Users tab](image)

Suppose that there is a system with multiple applications and each application's personnel are not allowed to access the scheduled jobs of other applications. The system administrator can set up each application with their own job scheduler data library.

The system administrator uses the Users tab function to assign each application's personnel to their own job scheduler data library. Because a user can access only one job scheduler data library, the administrator effectively locks the users to their own application's job scheduler while locking access to the others. Other security considerations should also be implemented, but this is an additional layer of protection and segregation available within AJS.
Calendars tab

The buttons in the right pane of Figure 12-14 provide the following functions:

- New: Create a calendar.
- New Based On: Create a calendar that is based on an existing one.
- Remove: Remove calendars.
- Properties: Maintain calendars.

Scheduling calendars and holiday calendars use different windows because they have different parameters.

Figure 12-14   AJS properties - Calendars tab
The Holiday Calendar Properties window is shown in Figure 12-15.

![Holiday Calendar Properties window](image)

**Figure 12-15  Holiday Calendar Properties window**

### 12.2.4 Start Scheduler action

Complete the following steps to start the AJS monitor:

1. In the Advanced Job Scheduler menu, click the green arrow icon or **Start Scheduler**.
2. The Advanced Job Scheduler Properties window contains a list of monitored libraries. The default installation of Advanced Job Scheduler provides only one called QUSRIJS. An example is shown in Figure 12-16.

![Advanced Job Scheduler Properties window](image)

**Figure 12-16  Advanced Job Scheduler Properties window with a stopped default instance**
3. Ensure the radio button to the left of the scheduler you want to start is selected and click **Start Scheduler** on the right side of the window.

4. A confirmation window like the one shown in Figure 12-17 is displayed. Clicking **Yes** starts the monitor. Clicking **No** returns you to the window shown in Figure 12-16 on page 511.

![Figure 12-17 Start AJS monitor confirmation window](image)

### 12.2.5 Stop Scheduler action

Complete the following steps to stop the AJS monitor:

1. In the Advanced Job Scheduler menu, click the red stop sign icon or **End Scheduler**.

2. The Advanced Job Scheduler Properties window contains a list of monitored libraries. The default installation of Advanced Job Scheduler provides only one called QUSRIJS. An example is shown in Figure 12-18.

![Figure 12-18 Advanced Job Scheduler Properties window with a running default instance](image)

3. Ensure that the radio button to the left of the scheduler you want to start is selected, and click **Stop Scheduler** on the right side of the window.

4. After clicking **Stop Scheduler**, the confirmation window shown in Figure 12-19 is displayed. Clicking **Yes** stops the monitor. Clicking **No** returns you to the window shown in Figure 12-18.

![Figure 12-19 Stop AJS monitor confirmation window](image)
12.2.6 Scheduled Jobs menu

This section reviews the various actions of the Scheduled Jobs menu. This menu is accessed through the Advanced Job Scheduler menu (Figure 12-3 on page 502) by clicking the icon that looks like gears or **Scheduled Jobs**.

The Scheduled Jobs menu is shown in Figure 12-20. The menu offers the following options with the row of icons that are located near the top:

- **Refresh**: Click the blue swirling arrows to refresh the view of the data.
- **Export**: Click the icon with a small grid and a green swooping arrow to export the list data in HTML format.
- **Configure options**: Click the icon with a small grid and a picture of sliders to choose which fields are displayed on the view of the scheduled jobs.
- **Actions**: Click **Actions** to see these additional options:
  - New
  - Reset scheduled jobs
  - Properties
  - Refresh
  - Advanced Filter
  - Export
  - Configure options

**Note**: The options available when clicking **Actions** is different based on if a job, multiple jobs, or no jobs are selected. The above listing of available actions is for when no jobs are selected.

- **Filter and Advanced Filter**
  - Use the text box to filter based on simple text.
  - Use the Advanced Filter icon (blue and green offset arrows) to filter with greater precision.

![Scheduled Jobs - Sample window](image)

*Figure 12-20  Sample display of the Scheduled Jobs window*
12.2.7 Using the scheduled jobs actions

In Figure 12-20 on page 513, the Scheduled Jobs window is shown. After selecting a job and clicking Actions, a list of available functions are displayed as shown in Figure 12-21.

![Scheduled Jobs window](image)

You can select multiple jobs by selecting their check boxes. There are options that enable selection of all jobs. For now, review what you can do to a specific job.

To illustrate the many tasks you can accomplish in a specific job, see the menu for the MYJOB01 job that is shown in Figure 12-21. Although it is beyond the scope of this book to describe each of these actions in detail, a brief description of each action follows:

- **Job Dependencies**: This action enables the display and updating of job dependencies, including predecessors and successors, and whether all or just one dependency must be met.

- **Activity**: This action enables listing of the job activity (history) for a specific job scheduler entry. A specific job can be selected from the job activity, which has another menu of actions.
- Activity Log: This action enables listing of entries in the job scheduler log for a specific job scheduler entry.
- New Based on: This action creates a new scheduled job that is based on the selected job. You can override any of the based on job’s parameters.
- Add Selected Job to Group: You can use this action to add the selected job to a job group.
- Permissions: You can use this action to set the permissions and authorities to the scheduled job, including which users can submit, manage, and set permissions.
- Hold: This action allows a scheduled job to be held. This action is shown only for jobs that are not already held.
- Release: This action allows a held scheduled job to be released. This action is shown only for jobs that are held.
- Skip Next Run: You can use this action to skip (omit) the next scheduled run for the job.
- Run Now: You can use this action to run a scheduled job now. You can also use it to run a job at a specified date and time and at a certain number of minutes from now. The action can also override the first command to be run and the last command to be run. You can also check and update job dependencies.
- Reset Scheduled Job: This action resets the selected scheduled job.
- Status: This action is available when a job is running and shows the following status items: Job name, group name, sequence in group, started, running time, command sequence number, command, command step, and estimated completion time.
- Rename: This action renames the selected scheduled job.
- Delete: This action deletes the selected scheduled job.
- Properties: You can use this action to view and change virtually every parameter and value for a scheduled job. The parameters are divided into nine pages of parameters:
  - General: Specifies the type of scheduled job, job name, job (text) description, and the commands and sequence to be run.
  - Schedule: Specifies when the job is to be run.
  - Batch Information: Specifies the information that is required to submit the job, such as run on a single system or system group; basic submission parameters such as the job queue, job description, and job user; and advanced submission parameters such as job accounting code, job and run priorities, routing data, and command logging.
  - Notification: Specifies options and parameters for the notification of the job status.
  - Documentation: Provides a field for the job documentation.
  - Problem Recovery: Specifies the maximum run time, alternative job in case of failure, action to take when a job cannot be started at the specified time, handling of inquiry messages, and message logging parameters to be used when a job fails.
  - Communication: Specifies communications parameters, such as local device, local location name, remote device, and remote location name.
  - Local Data Area: Specifies what the scheduled job places in the local data area when run.
  - Last Run: Shows the last run details.

The Scheduled Jobs properties and display windows are described in 12.2.9, “Adding a scheduled job” on page 517.
12.2.8 Using the Scheduled Jobs table

This section reviews the Scheduled Jobs table shown in Figure 12-22 (including the sorting, changing columns, and using filtering tasks).

- Basic sorting: Each column can be sorted by clicking the particular section of the header row. Each click toggles between ascending and descending sort.
- Quick filter: Entering data in the field in the upper right of the scheduled jobs table immediately subsets the listing. The text is searched in all visible columns. No further action is necessary other than entering text for this basic filter function. To remove the filter, either delete the text or click the small X that appears after text has been entered in the field.
- Advanced filter: Clicking the arrows icon in the upper-right portion of the scheduled jobs table or to the left of the “no filter applied” text produced a smaller window showing filtering options. You can add multiple levels of filtering based on your needs.
- Clear filter: If a filter is active, a link with the words “clear filter” is visible at the top of the listing in the place of “no filter applied”. Click the Clear Filter text to perform the action.

Resizing columns
Columns can be resized by dragging the column separator in the table column header line.

Configuring table columns
The table in its initial format includes all columns. However, you can remove columns and change the order of the columns by using the Configure Options option of the Table actions menu or by clicking the Configure Options icon. When Configure Columns is clicked, a small pane is displayed with the columns available for use as shown in Figure 12-23.
The window has a slide, which is used to scroll through the list.

If you want a selected column to not appear in the table, click to clear the corresponding check box. Alternatively, to have it appear in the table, ensure that the check box is selected. To select all, click the icon at the upper left of the pane. To clear all entries, click the icon without the check picture.

Clicking **OK** puts the column changes into effect and the table is displayed again.

To return the table back to its original format, close the page and reopen it.

### 12.2.9 Adding a scheduled job

This section describes the functions and windows that are used to add a scheduled job.

To add a scheduled job, complete the following steps:

1. Click the **New** action from the Scheduled Job menu as shown in Figure 12-24.

![Figure 12-24 Preparing to create a new scheduled job](image)

To return the table back to its original format, close the page and reopen it.
2. In Figure 12-25, the job name is set to NEWJOB. The job is a scheduled job (not an alternate job or non-scheduled job), and the job (text) description is entered. Add one or more commands by clicking Add.

3. In the Command Properties window (Figure 12-26), specify the command. In this example, RTVDSKINF is entered into the Command box and there are no messages to monitor, so those fields are left blank. To check the RTVDSKINF command parameters, click Prompt.
4. On the Retrieve Disk Information (RTVDSKINF) window (Figure 12-27), check the RTVDSKINF command parameters. There is one field, ASP Device, with a default value of *SYSBAS. This window shows only the basic parameters.

![Figure 12-27  Basic parameters window](image)

5. Check the advanced parameters by clicking Advanced. The window Refreshes with another RTVDSKINF command parameter displayed with a default value, as shown in Figure 12-28.

![Figure 12-28  Advanced parameters window](image)

6. Click View. The View menu opens, as shown in Figure 12-29.

![Figure 12-29  View menu](image)
7. Click the **Keywords** option. If you want to see the keywords rather than the text descriptions for the fields, or see all parameters, or see the command string, select those options. The window refreshes and the window that is shown in Figure 12-30 opens.

![Keywords option window](image)

*Figure 12-30  Keywords option window*

8. The last thing of note about command prompting is the command help. Figure 12-31 shows the Help menu.

![Help menu](image)

*Figure 12-31  Help menu*
9. Click **Help** and the command help window opens as shown in Figure 12-32.

![Figure 12-32](image)

### Retrieve Disk Information (RTVDISKINF)

**Where allowed to run:**
- iSeries/TSO
- Basic operator (RACF)
- Basic operator (RACF)
- Basic operator (RACF)
- ASP/SHARE system (QASB/SHARE/IBMQ)

**Threadsafe:** No

The *Retrieve Disk Information (RTVDISKINF)* command is used to collect disk space information. Disk space information can then be printed using the *Print Disk Information (PRTVDISKINF)* command. If the collected information is stored in a database file in library QUSRSYS, the file name depends on the auxiliary storage pool (ASP) device for which disk space information is retrieved. If the information was retrieved from the system and basic ASPs, the collected information will be stored in file QAEZDISK. If the information was retrieved from an independent ASP device, the collected information will be stored in file QAEZdsnm, where 'dsnm' is the ASP name of the independent ASP. The information will be stored in a database file member named QCURRENT.

Each time this command is run, existing information in QCURRENT is written over. To save existing information in member QCURRENT, rename file QAEZDISK or QAEZdsnm, or copy the member to another file.

**Note:** Do not rename member QCURRENT within file QAEZDISK or QAEZdsnm. If there is more than one member in QAEZDISK or QAEZdsnm, the results of running this command can be unpredictable.

To get the most accurate and complete results, avoid running this command when the system is very busy. Collecting disk information can take longer when the system is busy and can slow the performance of other applications that are running.

**Restrictions:**
1. You must have all object (*ALLOBJ*) special authority to collect disk space information.
2. You must be enrolled in the system distribution directory to collect folder and document information. Use the *Work with Directory Entries (WRKDIR) command* to enroll.

<table>
<thead>
<tr>
<th><strong>Keyword</strong></th>
<th><strong>Description</strong></th>
<th><strong>Choices</strong></th>
<th><strong>Notes</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPEV</td>
<td>ASP device</td>
<td>*none, *SYSBAS</td>
<td>Optional, Positional 1</td>
</tr>
<tr>
<td>DLTRCLOP</td>
<td>Delete option</td>
<td>*NO, *YES</td>
<td>Optional, Positional 2</td>
</tr>
</tbody>
</table>

10. Now that the correct command is specified, click **OK** to close the Help window. Click **OK** on the *RTVDISKINF* command prompt display to accept the *RTVDISKINF* command. Click **OK** on the Command Properties window to accept the command properties for *RTVDISKINF* usage. The General window of the New Scheduled Job function opens.
11. In Figure 12-33, two more commands were added to the scheduled job, but the second command (CHGJOB) is out-of-order. It needs to be the first command to be run. Select the radio button next to the out-of-order second command, and click Move Up to move the second command to the first run position.

Figure 12-33 Moving a command to change the run order

12. Figure 12-34 shows the three commands in the wanted order. Now that the command order is correct, click OK.

Figure 12-34 Commands shown in the correct order
New scheduled job: Schedule window

The New Schedule window is shown in Figure 12-35. It is used to specify when and how often the scheduled job runs. There are many detailed scheduling options that are beyond the scope of this book and are included in documentation of the product. For a simple example, the job being defined here is scheduled to run every Sunday at 6:00 am system time.

To make this occur, complete the following steps as indicated in the Schedule window:

1. Click Weekly for the frequency.
2. Click Sunday for the details.
3. In the Times to run section, enter the time (6:00 AM) and click Add.

In the upper-right corner of the window, in addition to basic scheduling by time, you can specify to repeat a run periodically during a time range. You can also apply a schedule name, which uses a previously created schedule.

The Dates to run section has a set of radio buttons to specify the frequency at which the job is to run. The Details section varies depending on the selected Frequency button. In this example, the options were selected to run the scheduled job at 6:00 AM weekly and on Sundays.

If you have other changes to make to the jobs, use the selections along the left side of the pane. If you click OK on this window, you are brought back to the main listing of all scheduled jobs. If you inadvertently clicked OK, select the new job in the list of scheduled jobs and use the Properties action to come back to this view.
New Scheduled Job: Batch Information window

Typically, when a job is submitted, a host of parameters must be specified for the job to run. Use the Batch Information window that is shown in Figure 12-36 to set these parameters for the new scheduled job.

In the Batch Information window, the fields have drop-down options and, in most cases, include a blank field to enter the correct values manually. Parameters such as Job description and User have Browse buttons that open a list window from which a selection can be made.

If you have other changes to make to the jobs, use the selections along the left side of the pane. If you click OK on this window, you are brought back to the main listing of all scheduled jobs. If you inadvertently clicked OK, select the new job in the list of scheduled jobs and use the Properties action to come back to this view.
New Scheduled Job: Notification window

You can use the Notification window that is shown in Figure 12-37 to set up various methods of notification for various job conditions.

![Scheduled Job Properties](image)

There are five notification options in the Notification window. Each option has a check box for enabling or disabling the notification.

The drop-down menus prevent you from entering incorrect options.

If you have other changes to make to the jobs, use the selections along the left side of the pane. If you click OK on this window, you are brought back to the main listing of all scheduled jobs. If you inadvertently clicked OK, select the new job in the list of scheduled jobs and use the Properties action to come back to this view.
New Scheduled Job: Documentation window
The Documentation window, which is shown in Figure 12-38, has a large text field that can be used for job documentation (such as who owns the job, what the job actually does, and what an operator does when it fails).

![New Scheduled Job Documentation window](image)

Figure 12-38  New Scheduled Job Documentation window

New Scheduled Job: Problem Recovery window
The Problem Recovery window is shown in Figure 12-39. On this window, the user specifies problem handling parameters and the message logging parameters for the scheduled job.

![New Scheduled Job Problem Recovery window](image)

Figure 12-39  New Scheduled Job Problem Recovery window

If you have other changes to make to the jobs, use the selections along the left side of the pane. If you click OK on this window, you are brought back to the main listing of all scheduled jobs. If you inadvertently clicked OK, select the new job in the list of scheduled jobs and use the Properties action to come back to this view.
New Scheduled Job: Communication window
Figure 12-40 shows the New Scheduled Job Communications window.

![New Scheduled Job Communication window](image)

If you have other changes to make to the jobs, use the selections along the left side of the pane. If you click OK on this window, you are brought back to the main listing of all scheduled jobs. If you inadvertently clicked OK, select the new job in the list of scheduled jobs and use the Properties action to come back to this view.

New Scheduled Job: Local Data Area window
Figure 12-41 shows the New Scheduled Job Local Data Area window.

![New Scheduled Job Local Data Area window](image)

If you have other changes to make to the jobs, use the selections along the left side of the pane. If you click OK on this window, you are brought back to the main listing of all scheduled jobs. If you inadvertently clicked OK, select the new job in the list of scheduled jobs and use the Properties action to come back to this view.

The same sets of options are available to you when changing properties of an existing scheduled job.
12.2.10 Scheduled job activity

Click the picture of the single gear or Scheduled job activity to access the section of Advanced Job Scheduler that allows for viewing activities of all scheduled jobs.

The window that appears is similar in format and function to the Scheduled Jobs window shown in Figure 12-24 on page 517, but contains different options for the listed items. The filtering and sorting functions are the same. Figure 12-42 shows an example of the Scheduled Jobs Activity window.

![Scheduled Job Activity Window](image)

*Figure 12-42  Options available from the Scheduled Job Activity window*
The options available for the selected job or jobs vary based on if they are active or completed, and whether they produced a job log. They are still shown in the list, but are unavailable for selection if they are not applicable to the situation.

- Printer Output: Opens new window with a listing of printer output if it exists. See a sample view of this window in Figure 12-43. In addition to the functions available, the output is in the same type of table as the rest of AJS, so it can be sorted and filtered in an identical manner.

![Figure 12-43 Printer output available options](image)

- Activity Log: Opens a view of the AJS log with all entries subsetted for this job only.
- Job Log: Opens a new window with a job log for this job, if it exists.
- Hold, release, and end: Available for jobs that are currently active. Holds, releases, or ends the selected jobs.
- Distribute reports: This option gives the ability to distribute spooled files created by the job to a distribution list.
- Status: Available only for active jobs, this shows the status of the scheduled job.
Delete: This option deletes the history of the selected job. You are asked to confirm deletion of the history before the system removes it.

### 12.2.11 Activity log

To access the activity log, from the AJS main entry page in IBM i Navigator, click the yellow scroll with a small blue gear, or click **Activity Log**.

The window that appears has the same sorting and filtering functions as the other AJS tables. These functions have been described in previous sections of this chapter.

The output provided on this window as shown in Figure 12-44 is the same as produced when running the Display Log for Job Scheduler (DSPLOGJS) command. It can be filtered and sorted in different ways using the web interface versus the character-based interface.

![Activity Log - Sapsediims](image)

**Figure 12-44** View of the activity log along with a selected entry and its available action.
The only available option for selected entries is the Properties action. Figure 12-45 shows the results of viewing the properties of an entry.

![Detailed Message Information](Image)

**12.3 Other AJS enhancements**

This section covers other IBM Advanced Job Scheduler for i enhancements.

### 12.3.1 Notification enhancements

Notification capabilities are enhanced by the ability to send a spooled file to an IFS path name with the option to replace the file if it exists. You can use replacement variables to make the file and the path unique. The path name is specified in a recipient file, as shown in Figure 12-46 on page 532.

The window in the background shows the New Recipient menu and its General window, as accessed through IBM Navigator for i. The window in the foreground shows the New Recipient Path window and the path parameter. The path value shows the use of substitution variables. This function is also available through IBM i Access client, but is not available through the character-based interface.
12.3.2 Multiple Scheduling Environments function

With the Multiple Scheduling Environments (MSE) function, you can set up any number of scheduling environments that run at the same time. The environments use different job scheduler data libraries. This function is helpful for having a test and production set of scheduled jobs or when you replicate live data from a production system to a backup system.
In the character-based interface, use the Change Data Library using JS (CHGDLJS) command to start more environments, as shown in Figure 12-47.

![Figure 12-47](image)

You can also specify which users can use which job scheduler environment by issuing the Set Data Library (SETDLJS) command, as shown in Figure 12-48.

![Figure 12-48](image)
12.3.3 Scheduling and running jobs

This section describes the enhancements for scheduling and running jobs.

Predefined schedules

Jobs in a group with a sequence number greater than 1 (jobs other than the first one in a group) can now use a predefined schedule. This option is helpful when you have a group of jobs where you want a subset of the jobs in the group to run on another schedule than the rest. For example, if you have a group of jobs that run on a daily schedule, but one in the group must run on Fridays only, a schedule can be used for the Friday job that overrules the daily schedule of the group. The schedule can also be a holiday calendar. This function adds flexibility for configuring which jobs in a group run on different days and dates without breaking up the group.

Start Group job enhancements

Starting group jobs was enhanced to add new “Based on” parameters to enable the user to specify an override capability of which jobs are run in a group.

The Start Group using JS (STRGRPJS) command was changed to add “Based on” parameters, as shown in Figure 12-49.

 adicion de parámetros "Based on" para permitir a el usuario especificar una capacidad de sobreescritura de qué trabajos se ejecutan en un grupo.

La orden de iniciar un grupo usando JS (STRGRPJS) fue modificada para añadir parámetros "Based on", como se muestra en la Figura 12-49.
The “Based on” parameters enable you to use the day of week, the date, or both to override which jobs are run in the group job.

If *FRI (Friday) is specified for the “Based on day of week” parameter, the group jobs, other than the first one, run as though the day were a Friday. Jobs in the group that list *FRI as a day to run and jobs in the group that use a predefined schedule specifying to run on *FRI run even if the STRGRPJS command was issued on a Wednesday.

The “Based on date” parameter works similarly. If the specified date is December 1, 2009, the job scheduler determines which of the jobs in the group can run on that date and runs them when the STRGRPJS command is run.

The new “Based on” function is also found in the System i Access (GUI) and IBM Systems Director Navigator for i (web) interfaces.

**New time offset added to the Submit Scheduled Job function**

When you submit a scheduled job manually, you can now specify a submit time offset. Suppose that it is 6 p.m., and you want to submit a scheduled job to run at 9 p.m., but do not want to change the job’s schedule, as this job is a one-time need. You can specify a time offset of 180 minutes, causing the job to run at 9 p.m.

The Submit Job using Job Scheduler (SBMJOBJS) command in Figure 12-50 has a new “Submit time offset” parameter.

```
Submit Job using Job Scheduler (SBMJOBJS)

Type choices, press Enter.

Job entry:

Job: [entry] ESP1DFTOWN Normal
Group: [entry] *NONE Normal, *NONE
Submit sequence: [entry] *NONE 1-99, *NONE
Submit time: [entry] *SCHED Time, *SCHED, *IMMED, *OFFSET
Submit time offset: 180 Minutes, 1-720
Submit date: *CURRENT Date, *CURRENT
Starting sequence: *FIRST Number, *FIRST
Ending sequence: *LAST Number, *LAST
Check for dependencies: *YES *YES, *NO
Update dependencies: *NO *NO, *YES, *GRP
```

Figure 12-50  Submit Job using Job Scheduler with new Submit time offset parameter
The user can specify the amount of time in minutes 1 - 720 to determine the submit time. A similar function is available as the Minutes from new parameter through IBM Navigator for i, as shown in Figure 12-51. This function is also available through the System i Access.

![Figure 12-51 Run scheduled job minutes from now](image)

**Job dependency enhancements**

Jobs can now depend on the contents of a data area or a value that is returned from a program. When you specify a resource dependency for an object type data area, you can specify a value that must exist in the data area before the associated job runs. A starting position and a length can be used in case the value to be checked is smaller than the data in the object. The value can be up to 50 alphanumeric characters. This new function is found in the System i Access (GUI), IBM Navigator for i (web) interfaces, and character-based interfaces.

### 12.4 References

For more information about the topics that are covered in this chapter, see the following IBM i 7.1 Knowledge Center topics:

- **Advanced Job Scheduler**
  
  [http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzaks/rzaksajsmanage.htm?cp=ssw_ibm_i_71%2F5-2-4-4-10&lang=en](http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzaks/rzaksajsmanage.htm?cp=ssw_ibm_i_71%2F5-2-4-4-10&lang=en)

- **System i Navigator**
  
Web serving

This chapter provides an overview of the changes that are made to the IBM HTTP Server for i (5770-DG1).

This chapter describes the following topics:

- Triggered cache manager removed
- Web server search engine and web crawler support removed
- Plug-ins and LoadModule directives
- HTTP Server for i with HA IPv6 support
- IBM HTTP Server for i support for TLSv1.1 and TLSv1.2
- Large file support for IBM HTTP Server for i
13.1 Triggered cache manager removed

Triggered cache manager support (option 1 of 5770-DG1) was removed from the licensed products list in IBM i 7.1.

13.2 Web server search engine and web crawler support removed

The web server search engine and crawler support was removed in IBM i 7.1.

The following commands were removed:
- Configure HTTP Search (CFGHTTPSCH)
- Start HTTP Crawler (STRHTTPCRL)
- End HTTP Crawler (ENDHTTPCRL)
- Resume HTTP Crawler (RSMHTTPCRL)

Any existing CL programs that use these commands might need to be modified. Any web interfaces that use the search support must be modified so it no longer uses this removed option.

13.3 Plug-ins and LoadModule directives

These directives apply to all IBM HTTP servers that are associated with WebSphere Application Server Version 6.1 (5733-W61) or Version 7 (5733-W70) when you upgrade to IBM i 7.1.

All Application Server service programs that implement the HTTP plug-ins might need to be updated before you start the HTTP servers on IBM i 7.1.

For more information related to WebSphere Application Server in IBM i 7.1, see 14.1, “IBM Integrated Web Services for i” on page 548.

In IBM i 7.1, the LoadModule directives that are used by external HTTP servers that are associated with WebSphere Application Server Version 6.1 and WebSphere Application Server Version 7 changed.

For HTTP servers that are associated with WebSphere Application Server Version 6.1 or Version 7, the LoadModule directive must be changed to match the following format:

```
LoadModule was_ap20_module /QSYS.LIB/<product_library>.LIB/QSVTAP22.SRVPGM
```

Where `<product_library>` is the product library for the Application Server installation.

The product library for each WebSphere Application Server installation on your system contains the program and service program objects for the installed product:
- For WebSphere Application Server V6.1:
  - The product library name for Version 6.1 is QWAS61x (where x is A, B, C, and so on).
  - The product library for the first WebSphere Application Server V6.1 product that is installed on the system is QWAS61A.
For WebSphere Application Server V7:
  – The product library name for Version 7 is QWAS7x (where x is A, B, C, and so on).
  – The product library for the first WebSphere Application Server V7 product that is installed on the system is QWAS7A.

The product library can be determined by examining the `<profile_root>/properties/.instance.properties` file, where `<profile_root>` is the root directory of the associated WebSphere Application Server profile.

In the `.instance.properties` file, `<product_library>` is specified by the `was.install.library` property.

The `LoadModule` directive can be modified from the IBM Web Administration for i window.

The following example assumes that a WebSphere Application Server 7 server instance WAS70TOMV was created on IBM i 6.1:

1. Start the IBM Systems Director Navigator for i and click the IBM i Tasks Page link on the Welcome window, as shown in Figure 13-1.

![Figure 13-1 IBM i Navigator - Welcome window](image)
2. The window that is shown in Figure 13-2 opens. Click IBM Web Administration for i.

![IBM Web Administration for i](image)

Figure 13-2  IBM Web Administration for i

The IBM Web Administration for i window opens, as shown in Figure 13-3.

![IBM Web Administration for i - Manage HTTP Servers](image)

Figure 13-3  IBM Web Administration for i - Manage HTTP Servers
Complete the following steps:

1. From the Manage tab, click **HTTP Servers**.
2. Select your server from the **Server** menu.
3. Click **Edit Configuration file** in the navigation frame.

Figure 13-4 shows the configuration file of the corresponding HTTP server instance WEB_TOMV that was configured.

```
Display Configuration File
HTTP server: WEB_TOMV
Selected file: /www/web_tomv/conf/httpd.conf

1 WebSpherePluginConfig
/QIBM/UserData/WebSphere/AppServer/V7/Base/profiles/WAS70TOMV/config/cells/MERCURE_WAS70TOMV/nodes/MERCURE.BE.IBM.COM-node/servers/IHS_WEB_TOMV/plugin-config.xml
2 LoadModule was_ap20_module /QSYS.LIB/QHTTPSVR.LIB/QSVT2070.SRVPGM
3 # HTTP server (powered by Apache) configuration
4 DocumentRoot /www/web_tomv/htdocs
5 ServerRoot /www/web_tomv
6 Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes -MultiViews
7 Listen *:10000
8 LogFormat "%h %T %l %u %t "%r" %>s %b "%{Referer}i" "%{User-Agent}i"
9 LogFormat "%{Cookie}n "%r" %t cookie
10 LogFormat "%{User-agent}i" agent
11 LogFormat "%{Referer}i -> %U" referer
12 LogFormat "%h %l %u %t "%r" %>s %b" common
13 CustomLog logs/access_log combined
14 SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
15 SetEnvIf "User-Agent" "JDK/1.0" force-response-1.0
16 SetEnvIf "User-Agent" "Java/1.0" force-response-1.0
17 SetEnvIf "User-Agent" "RealPlayer 4.0" force-response-1.0
18 SetEnvIf "User-Agent" "MSIE 4.0b2;" nokeepalive
19 SetEnvIf "User-Agent" "MSIE 4.0b2;" force-response-1.0
20 <Directory />
21 Order Deny,Allow
22 Deny From all
23 </Directory>
24 <Directory /www/web_tomv/htdocs>
25 Order Allow,Deny
26 Allow From all
27 </Directory>
```

Figure 13-4  WEB_TOMV HTTP server configuration file
4. Look for the library name that is associated with the WebSphere Application Server instance within the .instance.properties file at following path within the IFS, \QIBM\UserData\WebSphere\AppServer\V7\Base\profiles\WAS7OTOMV\properties, as shown in Figure 13-5.

```java
instance.name=WAS7OTOMV
instance.type=appserver
instance.creating.product=BASE
instance.use.j9=false
instance.j9.path=$(j9path)
instance.j9.version=classic
default.server.name=WAS7OTOMV
was.install.library=QWAS7A
was.install.path=/QIBM/ProdData/WebSphere/AppServer/V7/Base
```

Figure 13-5  was.install.library property within the .instance.properties file

5. Update the LoadModule directive by changing QHTTPSVR to QWAS7A and change QSVT2070 to QSVTAP22, as shown in Figure 13-6.

```apache
WebSpherePluginConfig
/QIBM/UserData/WebSphere/AppServer/V7/Base/profiles/WAS7OTOMV/config/cells/MERCURE_WAS7OTOMV/nodes/MERCURE.BE.IBM.COM-node/servers/IHS_WEB_TOMV/plugin-config.xml

LoadModule was_ap20_module /QSYS.LIB/QWAS7A.LIB/QSVTAP22.SRVPGM
HTTP server (powered by Apache) configuration
DocumentRoot /www/web_tomv/htdocs
ServerRoot /www/web_tomv
Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes
-IncludesNoExec -Indexes -MultiViews
Listen *:10000
LogFormat "%h %T %l %u %t "%r" %>s %b "%{Referer}i" "%{User-Agent}i"
"%{client}i"%n "%r" %t" cookie
LogFormat "%{User-Agent}i" agent
LogFormat "%{Referer}i -> %U" referer
LogFormat "%h %l %u %t "%r" %>s %b" common
CustomLog logs/access_log combined
SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
SetEnvIf "User-Agent" "JDK/1.0" force-response-1.0
SetEnvIf "User-Agent" "Java/1.0" force-response-1.0
SetEnvIf "User-Agent" "RealPlayer 4\0.0" force-response-1.0
SetEnvIf "User-Agent" "MSIE 4\0.0b2:" nokeepalive
SetEnvIf "User-Agent" "MSIE 4\0.0b2:" force-response-1.0
</Directory>

<Directory /www/web_tomv/htdocs>
 Order Allow,Deny
 Allow From all
</Directory>
```

Figure 13-6  LoadModule Directive
6. On the IBM Web Administration for i window, which is shown in Figure 13-7, click **Apply** to change the configuration file.

![IBM Web Administration for i - Applying changes to the configuration file](image)

7. You now get a message that the configuration was successfully changed. Do not restart the server now. Click **OK** and from now on you can start the upgrade from IBM i 6.1 towards IBM i 7.1. After the upgrade, the HTTP server can be successfully started on IBM i 7.1.

**Note:** The above example shows a manual update of IBM i 6.1 httpd.conf configuration file to support the WebSphere Application Server Plug-in path change in IBM i 7.1. PTF SI44746 is now available that does this update automatically when you start the HTTP server.
13.4 HTTP Server for i with HA IPv6 support

Highly available HTTP servers take advantage of IBM i clustering technology and make it possible to build a highly available website. High availability improves the availability of business-critical web applications that are built with static Hypertext Markup Language (HTML) pages or Common Gateway Interface (CGI) programs.

Before IBM i 7.1, only IPv4 addresses were supported by PowerHA. Now PowerHA for i on IBM i 7.1 fully supports IPv6 address (including all HA-related APIs, commands, and GUIs), so HA IPv6 support was added to HTTP Server for i on IBM i 7.1. You can use IPv6 addresses to configure all web servers in the cluster and access your web applications that are running in the highly available web server environment.

**Network requirement:** The IPv6 network among the clients and the cluster must be set up already and available for access. Every client must be able to ping through the clustered IPv6 address.

HTTP Server for i with HA IPv6 support has the following requirements:

- **Software requirements:**
  - 5770SS1 40 HA Switchable Resources
  - 5770DG1 *BASE HTTP Server for i
  - 5770HAS *BASE IBM PowerHA for i Standard Edition
  - 5770HAS 1 PowerHA for i Enterprise Edition
- **Required PTFs:** Current Group PTF for 5770DG1 SF99368 (minimum level 10)

13.5 IBM HTTP Server for i support for TLSv1.1 and TLSv1.2

IBM HTTP Server for i (5770-DG1) now supports Transport Layer Security Protocol (TLS) v1.1 and v1.2.

For details about configuring TLSv1.1 and TLSv1.2 see 9.4, “System SSL support for transport layer security version 1.2” on page 433. You can also refer to the following Secure Sockets Layer (SSL) topic in the IBM i 7.1 Knowledge Center:


The system value, QSSLPCL, must be changed to include the TLSV1.2 value if you want to use this version of TLS.

For configuring SSL and TLS, use the following directives in the HTTP Server configuration file (httpd.conf):

- SSLVersion
- SSLProxyVersion
- SSLCipherSpec
- SSLCipherBan
- SSLCipherRequire
- SSLProxyCipherSpec
TLSv1.1 or TLSv1.2 can be specified by using SSLVersion or SSLProxyVersion directives. Other directives in the list can specify the ciphers used from the Table 13-1.

Table 13-1  List of TLS ciphers now supported for IBM i SSL based applications

<table>
<thead>
<tr>
<th>HEX</th>
<th>Short Name</th>
<th>Key Size</th>
<th>Long Name</th>
<th>SSL V3</th>
<th>TLS v1.0</th>
<th>TLS v1.1</th>
<th>TLS v1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x01</td>
<td>31</td>
<td>0</td>
<td>TLS_RSA_WITH_NULL_MD5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>0x02</td>
<td>32</td>
<td>0</td>
<td>TLS_RSA_WITH_NULL_SHA</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>0x03</td>
<td>33</td>
<td>40</td>
<td>TLS_RSA_EXPORT_WITH_RC4_40_MD5</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x04</td>
<td>34</td>
<td>128</td>
<td>TLS_RSA_WITH_RC4_128_MD</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>0x05</td>
<td>35</td>
<td>128</td>
<td>TLS_RSA_WITH_RC4_128_SHA</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>0x06</td>
<td>36</td>
<td>40</td>
<td>TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x09</td>
<td>39</td>
<td>56</td>
<td>TLS_RSA_WITH_DES_CBC_SHA</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0A</td>
<td>3A</td>
<td>168</td>
<td>TLS_RSA_WITH_3DES_EDE_CBC_SHA</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>0x2F</td>
<td>X2F</td>
<td>128</td>
<td>TLS_RSA_WITH_AES_128_CBC_SHA</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>0x35</td>
<td>X35</td>
<td>256</td>
<td>TLS_RSA_WITH_AES_256_CBC_SHA</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>0x3B</td>
<td>X3B</td>
<td>0</td>
<td>TLS_RSA_WITH_NULL_SHA256</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>0x3C</td>
<td>X3C</td>
<td>128</td>
<td>TLS_RSA_WITH_AES_128_CBC_SHA256</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>0x3D</td>
<td>X3D</td>
<td>256</td>
<td>TLS_RSA_WITH_AES_256_CBC_SHA256</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

For example, the HTTP Server configuration file (httpd.conf) can include the following directives:

SSLVersion TLSv1.2
SSLCipherSpec TLS_RSA_WITH_AES_256_CBC_SHA256

The latest enhancement for TLSv1.1 and TLSv1.2 added the last three ciphers:

TLS_RSA_WITH_NULL_SHA256
TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256

For more information about the IBM HTTP Server for i, see the IBM i 7.1 Knowledge Center:

13.6 Large file support for IBM HTTP Server for i

IBM HTTP Server for i was enhanced to support files larger than 2 GB. Complete details, prerequisites, and impact for modules and plug-ins is described in the following IBM HTTP Server for i - Large File Support Overview article in IBM developerWorks:
For clients that still require functionality from plug-ins that were added before the December 2012 PTF groups, they might need to recompile those plug-ins to enable the new support.

For clients using IBM WebSphere Application Server on IBM i, installing the latest fix packs provides the corrected HTTP server plug-in. For more information, see the IBM i Technology Updates, Web integration on i wiki on IBM developerWorks:

Web enablers

This chapter describes the following topics:

- IBM Integrated Web Services for i
- Changes in IBM WebSphere Application Server
- IBM Web Administration for i
14.1 IBM Integrated Web Services for i

Integrated Web Services for i enables IBM integrated Language Environment® (ILE) applications to work in the web services and service-oriented architecture (SOA) arena with little effort, knowledge, and resources on your part. The convergence of web service and IBM i technologies can help you liberate these core business assets by making it easier to enrich, modernize, extend, and reuse them well beyond their original scope of design.

The IBM i operating system integrates software technologies that support the externalization of an ILE program object as a web service and the consumption of a web service by an ILE program object. These technologies are the integrated web services server and the integrated web services client for ILE.

The following sections describe enhancements that were made to the integrated web services support on IBM i.

For the latest news about Integrated Web Services for i support, go to:  

14.1.1 Integrated Web Services Client for ILE

The Integrated Web Services Client for ILE provides a set of libraries and Java tools that enable you to build web service client applications from existing Web Service Description Language (WSDL) files. You use the tools to generate code that can be called from ILE applications to use a web service.

In the past, the tools supported only the generation of C and C++ code, and you had to manually generate the program or service program that contained the generated code. The tools were enhanced to generate RPG code in addition to automatically creating the service program that contains the generated code.

To use this support, ensure that you have the latest PTFs or the latest replacement PTFs. At the time of publication, the latest PTFs are SI44364 and SI44363.

More information can be found in the Web Services Client for ILE Programming Guide at: 

14.1.2 Accessing Web Services using DB2 for i UDFs and UDTFs

It is now possible to access Web Services using user-defined functions (UDF) and user-defined table functions (UDTF) from DB2 for i. See the Accessing web services: Using IBM DB2 for i HTTP UDFs and UDTFs article at the following website: 
http://www-304.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp_acce ss_web_service_db2_i_udf

14.2 Changes in IBM WebSphere Application Server

The following sections describe enhancements that were made to WebSphere Application Server.
14.2.1 Packaging for WebSphere Application Server

In IBM i 7.1, IBM Web Enablement for IBM i (5722-WE2) includes the following products:

- IBM WebSphere Application Server - Express V6.1
- IBM WebSphere Application Server - Express V7.0
- IBM WebSphere Application Server - Express V8.0
- IBM WebSphere Application Server - Express V8.5
- IBM WebSphere Application Server - Express V8.5.5

Note: IBM WebSphere Application Server Express V6.0 is not included because it is not supported and is not operational on IBM i 7.1.

14.2.2 IBM WebSphere Liberty Profile

IBM WebSphere Liberty Profile is a lightweight low-cost Liberty profile based offering (not a full-profile WebSphere Application Server) that provides the ability to rapidly build and deliver web applications that do not require the full Java EE stack.

Figure 14-1 shows the WebShpere Liberty profile 8.5.5 functions.

---

The Lightweight WAS Liberty Profile

First delivered in WebSphere Application Server v8.5, the Liberty Profile is a highly composable, dynamic Server runtime. Enhanced feature coverage and management in v8.5.5.

- **Dynamic Server Profile**: Not static like Web Profile – configured by app at a fine-grained level
- **Developer First Focus**: Simplified, shareable server config (like a dev. artifact). One XML file or several to simplify sharing & reuse of config. Adds MAC OS for development
- **Start fast, run efficiently**: Starts in <3s, Memory footprint: <50MB (TradeLite benchmark)
- **Small Download**: 50MB for Web Profile features
- **WAS v8.5 Liberty Profile & WebSphere Developer Tools for Eclipse (WDT)**
- **Integrated Tooling**: Powerful tools in WDT, Eclipse feature. Maven plugin goals for build, test and deploy
- **Dynamically Extensible**: Install new features from a repository (local or remote) without server restart
- **Unzip Install & Deploy**: IMF or unzip to install. Option to deploy "server package" of app + config + required subset of server runtime for highest density deployment.
- **New features**: CDI, JMS, JAX-WS, local EJB, OAuth, federated user repository, MongoDB, clustering, WebCache
- **Fidelity to full profile WAS**: Same reliable containers & QOS. Develop on Liberty profile and deploy to Liberty or full-profile WAS

---

Figure 14-1 IBM WebSphere Liberty profile 8.5.5 functions diagram
14.2.3 IBM WebSphere Application Server family

Figure 14-2 shows an overview of the latest version of IBM WebSphere V8.5.5 family. Notice that there are several editions of WebSphere Application Server:

- WebSphere Liberty Profile - Lightweight
- WebSphere Application Server - Express, delivered with IBM i as part of the Web Enablement product (5722-WE2)
- WebSphere Application Server - Base
- WebSphere Application Server - Network Deployment
- WebSphere Application Server for Developers

Figure 14-2 The WebSphere v8.5.5 family
Figure 14-3 shows the development path of IBM WebSphere Application Server, which is interesting especially to see how and when WebSphere Liberty Profile was introduced to the family after several versions of WebSphere Integrated.

14.2.4 Installation

Installing IBM WebSphere Application Server V6.1 on IBM i 7.1 requires a refreshed installation version of the product. The refreshed installation version of IBM WebSphere Application Server V6.1 is based on fix level 6.1.0.29. For ordering information, go to:

http://www.ibm.com/systems/i/software/websphere

For IBM WebSphere Application Server V7.0, apply Fix Pack 7 (7.0.0.7) or later after you complete the installation.

14.2.5 Installation support on IBM Web Administration for i

WebSphere Application Server V8.0 and later is installed and managed by the IBM Installation Manager tool. Although this tool is available for IBM i, there is no GUI support on the platform. Therefore, WebSphere Application Server V8.0 and later can be installed only through the command line.
To address this problem, IBM Web Administration for i now provides a GUI interface for WebSphere Application Server to provide the following actions:

- Install product.
- Uninstall product.
- Update the installation with interim fixes or fix packs.
- View interim fixes on the installation.
- Delete interim fixes.

To use the installation management support, your IBM HTTP Server for i DG1 must be at the following minimum Group PTF levels:

- For IBM i 7.1: SF99368 level 16

Ensure that your user profile has at least the *ALLOBJ, *IOSYSCFG, and *SECADM special authorities.

### 14.2.6 Alternative and easier installation of WebSphere Application Server

Because IBM Installation Manager is available only in command-line mode for IBM i, IBM Web Administration for i provides a GUI interface for Installation Manager to support the following functions:

- Install a new WebSphere Application Server installation.
- Update an existing installation with interim fixes or fix packs.
- Uninstall a WebSphere Application Server installation.
- View the installed interim fixes.
- Delete the interim fixes from the installation.

Verify that your HTTP Admin server is active by running `WRKACTJOB SBS(QHTTPSVR)`. The displayed jobs should look as shown in Figure 14-4.

<table>
<thead>
<tr>
<th>Opt</th>
<th>Subsystem/Job</th>
<th>User</th>
<th>Type</th>
<th>CPU %</th>
<th>Function</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QHTTPSvr</td>
<td>QSYS</td>
<td>SBS</td>
<td>0</td>
<td>DEQW</td>
<td></td>
</tr>
<tr>
<td>ADMIN</td>
<td>QTMHHTTP</td>
<td>BCH</td>
<td>0</td>
<td>PGM-QZHBMAIN</td>
<td>SIGW</td>
<td></td>
</tr>
<tr>
<td>ADMIN</td>
<td>QTMHHTTP</td>
<td>BCI</td>
<td>0</td>
<td>PGM-QZSRLOG</td>
<td>SIGW</td>
<td></td>
</tr>
<tr>
<td>ADMIN</td>
<td>QTMHHTTP</td>
<td>BCI</td>
<td>0</td>
<td>PGM-QZSRHTTP</td>
<td>SIGW</td>
<td></td>
</tr>
<tr>
<td>ADMIN</td>
<td>QLWISVR</td>
<td>BCI</td>
<td>0</td>
<td>JVM-com.ibm.lw THDW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADMIN</td>
<td>QLWISVR</td>
<td>BCI</td>
<td>0</td>
<td>JVM-com.ibm.lw THDW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADMIN</td>
<td>QWEBADMIN</td>
<td>BCI</td>
<td>0</td>
<td>JVM-com.ibm.lw THDW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 14-4  QHTTPSvr subsystem
To access your web admin GUI, enter http://<your_system>:2001/HTTPAdmin in your browser, and then click Manage → Installations to open the Manage Installations functions window that is shown in Figure 14-5.

![Image of Manage installations](image1)

**Figure 14-5   Manage installations**

In this window, you can install, update, uninstall, and review the fix level of WebSphere Application Server V8.0 and later.

You can use the Install button to install a new WebSphere Application Server product on your system. If the Installation Manager tool is not on your system, the wizard helps you install or update it to the required level.

Complete the following steps:

1. Start the wizard by clicking Install WebSphere Application Server in the left navigation pane or by clicking Install as shown in Figure 14-6.

![Image of Start the installation](image2)

**Figure 14-6   Start the installation**
2. After the welcome window opens, specify the Installation Manager installation packages location, as shown in Figure 14-7.

The installation package location can either be in your IFS or on a Network File System (NFS) share. You can obtain the Installation Manager packages from the physical installation media or download them from the Installation Manager website found at:


![Figure 14-7  Installation Manager location](Image)

3. Specify the location of your WebSphere installation files, as shown in Figure 14-8. The product packages can be on your local system or a remote server. To access the packages on the local system, enter the location of the packages into the **Location** field or click **Browse** to find the location. If accessing the packages' location requires authentication, select **Specify authentication to access the install location** and complete the **User** and **Password** fields. Click **Next**.

![Figure 14-8  Product install packages](Image)
4. Figure 14-9 shows the Liberty profile. The Liberty profile is a new feature in WebSphere Application Server V8.5. You can select to install it or not.

![Image](Figure_14-9_Liberty_Profile.png)

5. The next two steps (5 and 6) are just verification steps that are not described here. In the final window, click **Finish** to start the installation, as shown in Figure 14-10.

![Image](Figure_14-10_Finish_Installation.png)
To uninstall a WebSphere product, select the version that you want to uninstall and click **Uninstall**, as shown in Figure 14-11.

![Manage Installations](image.png)

**Figure 14-11 Uninstall**

The product and all profiles that are based on it are deleted from the system.
To update a WebSphere Application Server installation with interim fixes or fix packs, click **Update** in Figure 14-11 on page 556 instead. You must specify a location for your fixes, as shown in Figure 14-12.
Click **Finish** to complete the installation, as shown in Figure 14-13.

![Update Installation](image)

*Figure 14-13 Finish updating*

To see the installed fix levels, select the installation and click **View Fix**, as shown in Figure 14-14.

![Manage Installations](image)

*Figure 14-14 View fixes*

You can also delete fixes through the View Fix function. This topic is not described in this book.
For more information about the topics in this section, see the following resources:

- IBM Web Administration for IBM i:
  http://www-03.ibm.com/systems/i/software/http/examples/getting_started.html
- WebSphere Application Server V8.5 Knowledge Center:
- IBM Installation Manager Knowledge Center:

### 14.2.7 Upgrading to IBM i 7.1

If you are using IBM WebSphere Application Server V6.0 and upgrading to IBM i 7.1, you must upgrade to the WebSphere Application Server V6.1.0.29 or V7.0.0.7 products. Migration can occur before or after you upgrade to IBM i 7.1.

Before you upgrade to IBM i 7.1, ensure that all WebSphere Application Server installations meet the minimum required fix levels. The version identifier is contained in the `<app_server_root>/properties/version/WAS.product` file, where `<app_server_root>` is the root directory of the IBM WebSphere Application Server installation. The version is also displayed on the IBM Web Administration GUI. It is listed on the introduction page under the Properties link. For WebSphere Application Server V6.1, apply Fix Pack 29 (6.1.0.29) or later if needed. For WebSphere Application Server V7.0, apply Fix Pack 7 (7.0.0.7) or later if needed.

**Tip:** Switch any WebSphere servers that are running classic to J9 before the OS upgrade. You can accomplish this task by running the following command:

```
/qibm/proddata/websphere/appserver/<version>/<edition>/bin/enablejvm -jvm std32
```

When you upgrade to IBM i 7.1, enable WebSphere Application Server to use IBM Technology for Java virtual machine. The classic Java virtual machine is not available for IBM i 7.1. It is not operational until it is enabled to use IBM Technology for Java virtual machine.

After you upgrade to IBM i 7.1, if you upgraded from V5R4 or earlier, update the WebSphere Application Server service programs for IBM i 7.1. To update the programs, complete the following steps:

1. Start the Qshell interpreter.
2. Change the directory to `<app_server_root>/bin`.
3. Run `export OSVER=V7R1M0` to export the OSVER environment variable to the Qshell environment.
4. Run the `_postfpexit` script as follows:

```
_postfpexit<app_server_root><product_library>.
```

`<product_library>` is the product library for the WebSphere Application Server installation that is listed in `<app_server_root>/properties/product.properties`.

5. Upload the LoadModule directives. LoadModule directives are used by external HTTP servers that are associated with WebSphere Application Server V6.1 and WebSphere Application Server V7. For more information about updating the LoadModule directives, see 13.3, “Plug-ins and LoadModule directives” on page 538.

### 14.2.8 IBM Installation Manager for WebSphere Application Server V8

WebSphere Application Server V8 is the first full version to be installed by Installation Manager rather than by the programs that are used to install, update, and uninstall previous versions. Installation Manager is a single installation program that can use remote or local software repositories to install, modify, or update new WebSphere Application Server products. It determines available packages (including products, fix packs, interim fixes, and so on), checks prerequisites and interdependencies, and installs the selected packages. You can also use Installation Manager to uninstall the packages that it installed.

#### Considerations

Note the following items:

- Do not use the same response files that are used with WebSphere Application Server V7 or earlier to install or uninstall Version 8 and later. Use response files that are based on Installation Manager to install, update, or uninstall Version 8 and later.
- The Installation Manager GUI is not available on IBM i; all interaction with Installation Manager on IBM i is done through the command line or response files.

#### Overview of Installation Manager

Installation Manager is a general-purpose software installation and update tool that runs on a range of computer systems. Installation Manager can be started through a command-line interface. You can also create response files in XML and use them to direct the performance of Installation Manager tasks in silent mode.

For more information about Installation Manager, go to the IBM Installation Manager Version 1.4 Knowledge Center at:

```
http://publib.boulder.ibm.com/infocenter/install/v1r4/index.jsp
```

#### Packages and package groups

Each software product that can be installed with Installation Manager is referred to as a package. An installed package has a product level and an installation location. A package group consists of all of the products that are installed at a single location.

#### How many Installation Managers do you need

You must run Installation Manager only on those systems on which you install or update product code. You normally need only one Installation Manager on a system because one Installation Manager can track any number of product installations.
Installing an Installation Manager
When the installation kit is available on your system, you can install an Installation Manager. An Installation Manager consists of a set of binary files that are copied from the installation kit and a set of runtime data that describes the products that are installed by this particular Installation Manager. Before you install an Installation Manager, you must decide in which mode the Installation Manager runs and where the binary files and runtime data, called “agent data” or “appdata” are located. Then, issue the Installation Manager installation command from the appropriate user ID to install the Installation Manager.

Accessing product repositories
All software materials that are installed with Installation Manager are stored in repositories. Each repository contains program objects and metadata for one or more packages, that is, software products at a particular level. Repositories can also contain product maintenance, such as fix packs and interim fixes. Whenever you install a new product, you can choose from any of the available product levels in any accessible repository.

Installing the product
After you install an Installation Manager and have access to all necessary product repositories, you can use Installation Manager command-line commands or response files to run the actual product installations. When you install a product, you provide the package name, optionally the product level to be installed, the product location, and any other optional properties. For example, some products have optional features that you can select at installation time or a list of optional supported language packs from which you can select.

Working with installed products
You can use Installation Manager commands to list installed products and product levels. You can also obtain this information for installed copies of WebSphere Application Server V8 products by issuing versionInfo from the product file system. You can use Installation Manager commands or response files to install a new product level, roll back to a previous level, or modify the product by adding or removing optional features or language packs.

14.3 IBM Web Administration for i
IBM Web Administration for i is an integrated management interface for creating many types of servers, including web servers and application servers. These include WebSphere Application Server for i, WebSphere Portal Server, IBM Integrated Web Application Server for i, and IBM Integrated Web Services Server for i.

IBM Web Administration for i has several wizards that guide you through a series of advanced steps to accomplish a task. With a few clicks, you can have a web server or web application server running in no time.

Enhancements were made to IBM Web Administration for i to include a web log monitor and permissions.

14.3.1 Web Log Monitor
In today’s web application environment, notices and error messages that appear in the web servers logging files can be easily lost or missed. This situation leads to you to missing important information. This support is included as part of the IBM Web Administration for i interface.
You can use Web Log Monitor to monitor the contents of log files for any web-related server, such as Integrated Web Application Server, Integrated Web Services Server, WebSphere Application Server, WebSphere Portal, and IBM HTTP Server.

Users can set rules that Web Log Monitor inspects. If a match is found, a notification is sent to one of the following sources:

- The *QSYSOPR system message queue
- One or more email addresses
- Both the *QSYSOPR system message queue and email addresses

Web Log Monitor ensures that important messages are not lost or missed.

**Remember:** Web Log Monitor inspects the log files if Web Administration for i is started. The minimum OS supported is IBM i 6.1 PTF SF99115 level 12 or later.

**Configuring Web Log Monitor**

To activate Web Log Monitor, complete the following steps:

1. Start the IBM Systems Director Navigator for i by accessing the following URL from a web browser, where your_system is your IBM i server host name:

   http://your_system:2001

2. From the IBM Systems Director Navigator for i welcome window (Figure 14-15), click the IBM i Tasks Page link.

   ![IBM Systems Director Navigator for i](image)

   **Figure 14-15  IBM Systems Director Navigator for i**
3. Click the **IBM Web Administration for i** link (Figure 14-16).
4. Click **Manage** (Figure 14-17).
5. Click **Application Servers** (Figure 14-18).
6. Click **Web Log Monitor** under the Problem Determination link in the left navigation window (Figure 14-19).
7. Click **Enable Web Log Monitor** (Figure 14-20).

8. Specify the log file to monitor. Click **Browse** to select the log file (Figure 14-21). Only log files that you are authorized to use are shown in the browser window. Select the log file and click **Next**.
When the log file is selected, you can use the Basic tab (Figure 14-22) or the Advanced tab to configure the rule.

You can use keywords to filter the content of specified log file. To specify more than one keyword, use a comma or semicolon to separate each key word. Three modes are provided:

- **Match any keyword**
  
  For example, if the monitored file contains a line such as “JVMDUMP0061 Processing Dump Event gpf.detail- Please wait” and the keywords that are specified here are Dump, Failed, and Error, then the line is considered a match.

- **Match all keywords**
  
  For example, if the monitored file contains a line such as “JVMDUMP0061 Processing Dump Event gpf.detail- Please wait” and if the keywords specified here are Dump, Event, and Wait, then this line is not considered a match. The white space or blank character in front of Wait is also treated as part of the keyword. If the specified keywords are Dump, Event, and Wait, then this line is considered a match, as all three specified keys are in the line.

- **Keyword A+any string+Keyword B**
  
  For example, if the monitored file contains a line such as “JVMDUMP0061 Processing Dump Event gpf.detail- Please wait” and the keywords that are specified here are Dump and detail, then this line is considered a match.
The Advanced Tab (Figure 14-23) specifies the complex patterns that are used in the rule:

- Exclude the following keywords
  This option specifies whether to ignore a line that contains any of the keywords that follow.
- Configure regular expressions
  You can use this option to customize the rule by using a regular expression.
9. If you have multiple log files to monitor, click Add in the File and Rule Tab, as shown in Figure 14-24.
10. When the rules are set, define where the notification text is sent when a match is found by clicking the **Notification** tab (Figure 14-25). Here are the choices that you can use:

- Send message to QSYSOPR message queue
  
  When selected, the notification text is sent to the “QSYSOPR system message queue when a match is found for a specified log file.

- Send email to
  
  A notification is sent to the specified email address. More than one email address can be specified. Use a comma to separate multiple email addresses.

- Sender’s email address
  
  Specifies the email address that is used to send the notification.

- SMTP server
  
  Specifies the Simple Mail Transfer Protocol (SMTP) server that is used to send the mail notification.

- Account
  
  Specifies the account that is used to log on to the SMTP server.

- Password
  
  Specifies the password of the account that is used to log on to the SMTP server.

![Figure 14-25  Notification tab](image-url)
11. On the Miscellaneous tab, specify the interval in minutes and the maximum number of notifications to be sent per hour to prevent notification flood (Figure 14-26):

- **Monitor interval**
  
  This option specifies the frequency of checking the log file. Set the interval to a small value when log files are updated frequently and a large value when the specified log files are updated infrequently.

- **Notification flood prevention**
  
  This option specifies the maximum permitted number of notifications to be sent per hour to prevent notification flood. If the specified maximum number is exceeded, no notification is sent even when a match is found.

![Figure 14-26 Miscellaneous tab](image)

To disable Web Log Monitor, click **Disable Web Log Monitor** on the Web Log Monitor introduction window.

**Requirement:** Only users who have Developer or higher authority can configure Web Log Monitor.

### 14.3.2 Permissions

By default, only users with *IOSYSCFG and *ALLOBJ special authority can manage and create web-related servers on the system through IBM Web Administration for i. To get to the Permission tab, go to the IBM i Task window and click **IBM Web Administration for i** → **Advanced** → **Permissions**.
The Manage Permissions form allows administrators to give permissions to users without *IOSYSCFG and *ALLOBJ. There are two roles that can be granted:

- Operators
- Developers

A permission is the ability to perform an operation on a server. The ability for a user to perform operations on a server is determined by the role they are assigned for the server. The Web Administration for i roles are defined with the permissions listed in Table 14-1.

Table 14-1 Permissions corresponding to each role

<table>
<thead>
<tr>
<th>Permissions</th>
<th>Administrator</th>
<th>Developer</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start/Stop server</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Delete server</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Install/Remove applications(^a)</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Install/Remove web services(^a)</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Start/Stop applications</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Start/Stop web services(^a)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Modify server attributes</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modify application attributes</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create database connections</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete database connections</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Modify server tracing</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Use Web Performance Advisor</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use Web Performance Monitor</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use Web Log Monitor</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create Server(^b)</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Web services that are deployed with integrated web services servers.
\(^b\) An administrator that grants permissions to a user profile must explicitly grant the create-server permission.

A new feature, group profile support, adds the ability to grant or revoke permissions to a group of all users all at the same time. Otherwise, these users must be granted or revoked permissions separately, which is time consuming and error prone. When you use this feature, when a user has one or more supplemental groups, you combine the permissions that the individual has and the ones from its groups. The cumulative and highest permissions are granted when the user needs appropriate permissions to perform an operation through the Web Administration Interface.

The group profile support applies only to IBM i 6.1 and later.
Adding permissions

The Add Permissions wizard considers all aspects of a selected server. If a selected application server is associated with an HTTP Server, the Add Permissions wizard takes this situation into account and recommends that permissions are specified correctly for that web environment. This specification ensures that the specified user can successfully manage the server that is based on granted permissions.

Users who are granted permission to servers can be given a different role for each server. When a user is granted permission to create new servers, any server that they do create is automatically updated to give them developer permission to that newly created server.

To add permissions for a user ID, complete the following steps:

1. Click **Add Permissions** (Figure 14-27). Select the user ID to which you want to give permission. Click >> and click **Next**.

![Figure 14-27 Add Permissions - step 1](image)
2. Click **Server** and select the permissions that you want to grant to the user. Select the role and select the **Create server** check box if you want to grant the user the ability to create servers (see Figure 14-28). The options are explained as follows:

   - **Server**: Specifies how the server's category is to be handled. There are three values:
     - *ALL*: The users that are specified in step 1 on page 574 are granted permission to all the servers for this category, including all existing servers and any other server that is created in the future.
     - *NONE*: The users that are specified in step 1 on page 574 have no permission to the servers for this category.
     - Specify: When this option is selected, an additional interface is displayed when **Next** is clicked. The **Specify** interface allows the Administrator to specify a list of existing servers that the specified users can work with.

   - **Role**: Lists the permissions that are granted to a user for a server. There are three values:
     - Operator: Basic permission to the server. See Table 14-1 on page 573 for details.
     - Developer: All permissions to the server. See Table 14-1 on page 573 for details.
     - Create Server: The specified users can be granted permission to create servers for this category.

---

![Figure 14-28  Add Permissions - step 2](image-url)
3. When you have defined the correct authority and role, click **Next**. Check what is displayed (Figure 14-29). If you must change anything, click **Back**; otherwise, click **Finish**.

![Figure 14-29 Add Permissions - step 3](image)

**Modifying permissions**

The Modify Permissions wizard allows an administrator to modify permissions for a specified server or user. The Modify Permissions wizard guides the administrator through this process.

The Modify Permissions wizard considers all aspects of a selected server. If a selected application server is associated with an HTTP Server, the Modify Permissions wizard considers this situation and recommends that permissions are specified correctly for that entire web environment. Either add or remove the permissions for all servers within that specified web environment. This action ensures that the specified user can either successfully manage the server based on the granted permissions or no longer successfully manage the server.
There are two ways to modify the permissions:

- Modify the permissions for a specific server (Figure 14-30). This action is started from the By Server view on the Manage Permissions window when you choose a specific server.

![Figure 14-30  Modify permissions by Server view](image)
Modify the permissions for a specific user (Figure 14-31). This action is started from the By User view on the Manage Permissions window when you select a specific user.

![Modify Permissions by User view](image)

**Removing permissions**

The Remove Permissions wizard provides an administrator with the ability to remove the permissions for a specified server or user. The removing of permissions removes the ability of the specified user to work with and manage a server within the IBM Web Administration for i interface.

The Remove Permissions wizard considers all aspects of a selected server. If a selected application server is associated with an HTTP Server, the Remove Permissions wizard takes this situation into account and also removes the permissions for all servers within that specified web environment. This action ensures that the specified user no longer successfully manages the server.
There are two ways to remove the permissions:

- Remove all permissions for a specific server and the other servers from the same web environment (Figure 14-32). This action is run from the By Server view on the Manage Permissions window when you select a specific server.

Figure 14-32  Remove permissions by Server view
- Remove all the permissions for a specific user (Figure 14-33). This action is performed from the By User view on Manage Permissions window when you choose a specific user.

![Remove Permissions by User view](image)

Click **Remove** to remove the permissions. This operation cannot be undone.
14.3.3 Web Performance Advisor

Web Performance Advisor (Figure 14-34) provides a consolidated place to review, evaluate, and modify the performance attributes for your web environments on IBM i. This tool is a great first stop to ensure that you are running at a reasonable set of performance-related settings. It is updated to include the latest performance settings for IBM i 7.1 as it relates to each of the supported web-based servers. WebSphere Portal Server V6.1.5 is now supported on Web Performance Advisor.

If you are using WebSphere Application Server V6 and upgrading to IBM i 7.1, you must update the web performance profile. The classic Java virtual machine is not available for IBM i 7.1. If your WebSphere Application Server installation is enabled to use classic Java, it is not operational until it is enabled to use IBM Technology for Java virtual machine. For more information, see 15.7.1, “Enabling IBM Technology for Java virtual machine” on page 599.
Application development

This chapter describes the following topics:

- High-level programming languages
- Control Language (CL)
- PHP and Zend products
- XMLSERVICE for IBM i
- IBM Lotus products for IBM i
- Native archive and unarchive API support
- Java for IBM i 7.1
- IBM Toolbox for Java JDBC
- JTLite/JTOpenLite Java Classes Library for mobile application development
- Application Runtime Expert for i
- Operably
15.1 High-level programming languages

IBM i has a suite of IBM Integrated Language Environment® (ILE) compilers that include RPG, COBOL, C, C++, and CL. IBM Rational® Development Studio for i V7.1 delivers significant enhancements to the compilers.

For more information about ILE Compilers, see 16.3, “IBM Rational Development Studio for i” on page 636.

15.2 Control Language (CL)

This section covers the following topics:
- New workload capping commands
- Retrieving CL source support for ILE CL
- Longer Integer CL variables for ILE CL
- Showing DO and SELECT nesting levels in a compiler listing
- Encrypting the debug listing view for ILE CL
- Nested INCLUDE support

15.2.1 New workload capping commands

New workload capping commands were added to the IBM i commands. You can use workload capping to set a usage limit for a licensed program by restricting the number of processor cores that are available to be used by the licensed program.

Here are the new workload capping commands:
- Add Workload Capping Group (ADDWLCLGRP)
- Add Workload Capping Product Entry (ADDWLCPRE)
- Change Workload Capping Group (CHGWLCGRP)
- Display Workload Capping Group (DSPWLCGRP)
- Remove Workload Capping Group (RMWLCGRP)
- Remove Workload Capping Product Entry (RMVWLCPRE)

For more information about these commands, see the following website:
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frbam6%2Frbam6whatsnew.htm

15.2.2 Retrieving CL source support for ILE CL

Developers can move to IBM Integrated Language Environment (ILE) without fear of not being able to retrieve their source statements. IBM i 7.1 included this enhancement with the ILE module. For completeness, even the Declare Processing Options (DCLPRCOPT) command was updated to reflect that the ALWRTVSRC keyword now applies to ILE program as well.

The Retrieve CL Source (RTVCLSRC) command can be used to retrieve control language CL source statements from an Integrated Language Environment ILE module. The module must be created with the Create CL Module (CRTCLMOD) command or the Create Bound CL program (CRTBNDCL) command by specifying *YES for the ALWRTVSRC parameter. The module that contains the CL source to be retrieved can be a module (*MODULE) object or a module within an ILE program (*PGM) or service program (*SRVPGM) object.
The ability to retrieve the CL source from a CL program or CL module can make it easier to diagnose and fix problems in CL code on systems where the original CL source code is not available.

The following command retrieves the CL source from module MOD1 in the ILE program MYCLPGM:

```
RTVCLSRC PGM(MYCLPGM) MODULE(MOD1) SRCFILE(MYLIB/QCLSRC)
```

The retrieved CL source is stored in member MOD1 of the source physical file QLCSRC in library MYLIB. The default value for the ALWRTVSR parameter is *YES.

### 15.2.3 Longer Integer CL variables for ILE CL

All variables must be declared to the CL program or procedure before they can be used by the program or procedure.

The Declare CL variable (DCL) command supports a value of 8 for the LEN parameter for signed integer *INT and unsigned integer *UINT variables if the CL source is compiled using the CRTCLMOD or the CRTBNDCL commands. This capability is useful when you call API programs and API procedures that define 8-byte integer fields in input or output structures.

**Important:** LEN(8) can be specified only if the CL source is compiled with the Create CL Module (CRTCLMOD) or the Create Bound CL Program (CRTBNDCL) command.

### 15.2.4 Showing DO and SELECT nesting levels in a compiler listing

You can specify a CL compiler option to see the nesting level for all types of DO and SELECT commands.

CL source programs contain DO and SELECT commands where these commands are nested several levels deep. For example, between a DO command and the corresponding ENDDO command can be a DOFOR and another ENDDO command. The CL compiler supports up to 25 levels of nesting for DO commands and SELECT commands.

You can specify OPTION(*DOSLTLVL) and the Create CL Program (CRTCLPGM) command or the CRTCLMOD or the CRTBNDCL commands.

This compiler option adds a column to the compiler listing, which shows the nesting levels for the following elements:

- Do DO
- Do For DOFOR
- Do Until DOUNTIL
- Do While DOWHILE
- SELECT

If you do not want to see this nesting level information, you can specify *NODOSLTLVL for the OPTION parameter.

### 15.2.5 Encrypting the debug listing view for ILE CL

You can create a compiler listing view of the ILE CL procedure in a CL module by specifying *LIST for the Debugging view DBGVIEW parameter on the CRTCLMOD or the CRTBNDCL command.
The listing view can be seen by anyone with sufficient authority to the program or service program object that contains the CL module.

In IBM i 7.1, a new keyword parameter Debug encryption key `DBGENCKEY` was added to the `CRTCLMOD` and the `CRTBDNCL` commands. Specifying an encryption key value for the `DBGENCKEY` parameter and `*LIST` for the `DBGVIEW` parameter causes the debug listing data to be encrypted before it is stored with the module `*MODULE` or ILE program `*PGM` object. To see the listing view during debugging, you must provide the same encryption key value.

When you start the debug session, you are prompted for the encryption key value. If the same value is not specified for the debug session that was specified when the CL module was created, no listing view is shown.

### 15.2.6 Nested INCLUDE support

You can use the Include CL Source (`INCLUDE`) command to split your CL source code so that the CL source code can be compiled across multiple source file members.

The CL source to be embedded can be in another member of the same source file that is identified on the Source file `SRCFILE` parameter of the CL compiler commands or another source file. The CL compiler commands include `CRTCLPGM`, `CRTCLMOD`, and the `CRTBDNCL` Program.

You can run the `RTVCLSRC` command later to retrieve either the original CL source (which contains just the `INCLUDE` commands) or the expanded CL source (which contains the embedded CL source commands).

### 15.3 PHP and Zend products

PHP stands for PHP Hypertext Preprocessor. PHP is an open source scripting language that is designed for web application development and enables simple scripting.

PHP applications are easily integrated with data in IBM DB2 for i, RPG, COBOL, and other business applications that are running on IBM i.

PHP is used for content management, customer relationship management, database access, e-commerce, forums, blogs, wikis, and other web-based applications.

Zend and IBM worked together to deliver Zend Solutions for IBM i, a complete PHP development and production environment solution for the IBM i platform.

Here are the Zend Solutions for IBM i:

- Zend Server Community Edition for IBM i (one year Silver Support from Zend)
- Zend Server for IBM i
- Zend Studio for IBM i (One year of Silver Support from Zend)
- Zend DBi


**Tip:** Always use the distribution downloaded from the Zend website, which ensures that you have the latest version of the Zend Server Community Edition.
Zend Solutions for IBM i can be downloaded from the Zend website at:

Figure 15-1 shows the Zend application development and deployment architecture for IBM i.

The following sections summarize features and enhancements of Zend products for IBM i.

15.3.1 Zend Server Community Edition for IBM i

Zend Server Community Edition (CE) is a fully tested and enhanced version of the open source PHP. It provides the PHP run time and is packaged to make the software installation easier and faster with the instant PHP setup. It is enhanced to take advantage of IBM i specific resources and capabilities.

Zend Server CE for IBM i is a lightweight version of Zend Server, and replaces Zend Core. It offers the following features:

- Preinstalled on IBM i 6.1 and IBM i 7.1 starting April 2010.
- Includes extensions and a toolkit that provides the following functions:
  - Enables PHP application to easily access DB2 for i data
  - Takes advantage of RPG and COBOL applications in IBM i
  - Supports for Program call, Procedure call, Data Area, Data Queue, Message Queue, Commands, and System values
Simple to install and to use, and provides basic performance optimization.
Available at no charge for using in development or in production, and it comes with an initial year of Silver Support that is provided by IBM.
Zend Server is the only Zend certified and supported version of PHP for IBM i.

15.3.2 Zend Server for IBM i V6.1.0

Zend Server is a robust PHP production environment that helps ensure that applications written in PHP run smoothly at all time. It is designed for IT personnel and businesses that require commercial grade web applications in highly reliable production environments.

Zend Server replaces the Zend platform. It offers all the features that are provided in Zend Server CE for IBM i and the following additional features:
- High performance and scalability to provide customers with an improved web experience and response time.
- Delivers application uptime and reliability through enhanced PHP monitoring and immediate problem resolution.
- Includes the Java Bridge for integrating PHP application with Java application.
- Includes 5250 bridge for integrating 5250 applications with PHP applications. The 5250 bridge allows running interactive IBM i based applications from a web browser.
- Cloud connected Mobile Deployment
- Zend Framework 2, Zend Server Gateway
- PHP 5.4, PHP 5.3 are supported, PHP 5.2 is not supported
- Side by side Migration of Zend Server 5.6 and 6.0
- Improved User Interface, role-based access
- Global monitoring rules by application
- Shared Memory Toolkit option improves speed 30%+

The following website shows a comparison between the features that are offered in Zend Server CE for IBM i and Zend Server for IBM i:

15.3.3 Zend Studio for IBM i V10

Zend Studio for IBM i is an industry-leading Eclipse-based PHP integrated development environment (IDE) designed for professional developers. It includes all the development components necessary for the full PHP application lifecycle and simplifies complex projects. It now supports development for mobile devices as well using PHP REST XML Web Services.

Zend Studio for IBM i includes the following features and enhancements:
- Enhanced to work with the integration toolkit provided with Zend Server and Zend Server CE for IBM i
- Includes a comprehensive set of editing, debugging, analysis, optimization, database, and testing tools
- Toolkit support for easy integration with earlier IBM i applications and data
- Customizable and context-sensitive templates for IBM i Toolkit functions
Create / generate PHP Toolkit code quickly
Call an RPG/CL/COBOL program, run a CL command, retrieve Spooled file entries, and access Data Area, Data Queue, and User Space.
Zend Studio allows development for mobile clients:
  - Web
  - Native i/OS (Mac)
  - Android
  - Windows Mobile

15.3.4 Zend DBi and actual PHP database support

The Zend DBi product provides MySQL implementation for IBM i. DB2 Storage Engine enables MySQL data storage in DB2.

Zend DBi provides support for Open Source based applications. The application uses MySQL data commands against Zend DBi or MySQL database. The storage engine translates the commands, then passes them to DB2 for i. With this solution, there is only one database to manage, backup, and protect. See Figure 15-2.

![Figure 15-2  Zend DBi and MySQL using DB2 Storage engine](image)

PHP now supports the following database connectivity:

- Local DB support for MySQL and DB2
- Remote DB support for MySQL and Oracle

For more information about Zend products for IBM i, see the following websites:

- Zend and IBM i:
- Zend Products for IBM i:
- Zend Studio:
- Zend DBi:
15.4 XMLSERVICE for IBM i

XMLSERVICE is open source RPG code that enables web XML scripting calls of IBM System i resources, such as PGM, SRVPGM, CMD, PASE utilities, and SQL DB2, over various driver transports (DRDA, ODBC, and REST) through 1-tier (IBM i) or 2-tier clients (Linux/Windows).

XMLSERVICE can be accessed from PHP, Java, Ruby, RPG, Groovy, or other languages that can work with XML.

All the information, including several demonstrations, can be found at the following website:
http://www.youngiprofessionals.com/wiki/XMLSERVICE

For more information about XML or open source programming languages, see:
http://www.iprodeveloper.com/article/associate/unleash-your-ibm-i-with-xmlservice-65781

15.4.1 XMLSERVICE highlights

Here are some highlights of XMLSERVICE:

- The code is developed in RPG.
- XMLSERVICE can be licensed to be used at no additional cost (XMLSERVICE library download).
- XMLSERVICE can be deployed as either PC (2-tier) or IBM i (1-tier).
- All communication is through XML documents.
- The called RPG programs can maintain state, commit boundaries, and so on.
- XMLSERVICE provides an interprocess communication (IPC) mechanism that synchronizes multiple web client sources.
- There is traditional DB2 connection security 1–2 tier (when you use the provided DB2 stored procedures).
- XMLSERVICE handles the conversions of XML string text to and from the actual program required parameter type (packed decimal 12p2, zoned decimal 7s2, integer 10i0/5i0, float 4f2/8f4, or hex binary 400b), and character data is converted automatically to ASCII/EBCDIC (1024A/10a varying='on').
- Arrays of data structures are allowed both as parameters and return, including nested data structures or arrays of data structures.

15.4.2 XMLSERVICE start

There are several options to start XMLSERVICE. It can be called from a web server, any application server that handles HTML or REST web services, through the ODBC Driver, or through the PHP toolkit.

To start XMLSERVICE, complete the following steps:
1. Install the XMLSERVICE programs.
2. Define the communication method to use:
   - 1 Tier: Apache Web Server or PHP (Zend Server)
   - 2 Tier: ODBC Driver or Web Application Server / PHP Server in the middle tier
Installing XMLSERVICE

The XMLSERVICE Library is on your IBM i systems if you apply the latest HTTP Server PTF Group:

- IBM i 7.1: 5770-SS1 SF99368 HTTP PTF Group Level 16, or later
- IBM i 6.1: 5761-SS1 SF99115 HTTP PTF Group Level 28, or later

XMLSERVICE can be downloaded from the Young IBM i Professionals website at:
http://www.youngiprofessionals.com/wiki/XMLSERVICE

After you have the XMLSERVICE package, upload it into your IBM i System by running the commands that are shown in Example 15-1.

**Example 15-1  Uploading the XMLSERVICE.zip file**

```bash
IBM i CL Command:
CRTSAVF FILE(QGPL/XMLSERVICE)
PC:
unzip xmlservice-rpg-1.7.3.zip
ftp IBMiHostName ...
bin
cd QGPL
put /path/xmlservice.savf XMLSERVICE
```

The commands that are shown in Example 15-2 finish the installation process.

**Example 15-2  CL Commands to install XMLSERVICE and test programs**

```bash
IBM i CL Commands:
RSTLIB SAVLIB(XMLSERVICE) DEV(*SAVF) SAVF(QGPL/XMLSERVICE)
ADDLIBLE XMLSERVICE
CRTCLPGM PGM(XMLSERVICE/CRTXML) SRCFILE(XMLSERVICE/QCLSRC)
CALL CRTXML
If you want to create some optional programs for testing and demo, execute the following commands:
CRTCLPGM PGM(XMLSERVICE/CRTTEST) SRCFILE(XMLSERVICE/QCLSRC)
CALL CRTTEST
CRTCLPGM PGM(XMLSERVICE/CRTTEST6) SRCFILE(XMLSERVICE/QCLSRC)
CALL CRTTEST6

Do not forget to provide the corresponding authorization:
CHGAUT OBJ('/qsys.lib/XMLSERVICE.lib') USER(QTMHHTTP) DTAAUT(*RWX) OBJAUT(*ALL) SUBTREE(*ALL)
CHGAUT OBJ('/qsys.lib/XMLSERVICE.lib') USER(QTMHTTP1) DTAAUT(*RWX) OBJAUT(*ALL) SUBTREE(*ALL)
```

**CCSIDs:** If you are running an IBM system with CCSID 65535 (hex), you must set the Apache web server to a valid CCSID (such as 37 or 284) by running this command:

DefaultFsCCSID 37  CGIJobCCSID 37
Configuring the HTTP Server
To configure the XMLSERVICE REST, open the HTTP administrative console session by using the URL http://hostname:2001/HTTPAdmin and add the interface by using the RPG CGI (xmlcgi.pgm), as shown in Figure 15-3.

Figure 15-3  HTTP Server configuration to add XMLSERVICE
Testing XMLSERVICE
You can create a few HTML files, including XML tags to call IBM i resources. Figure 15-4 shows a program call example using XMLSERVICE.

```html
<html>
<body>
<!-- call XMLSERVICE/Z3CALL(sch:111111;232:2320:record); (post or get) -->
<form name="input" action="http://192.168.144.10/cgi-bin/xml1pg1.pgm" method="post">
 <input type="hidden" name="db2" value="90GR6">
 <input type="hidden" name="uid" value="*NONE">
 <input type="hidden" name="pwd" value="*NONE">
 <input type="hidden" name="ip" value="/isp/obastas091">
 <input type="hidden" name="cl" value="name">
 <input type="hidden" name="xmlin" value="<?xml version='1.0'>">
 <script>
 <param name='ECRTE1' list='XMLSERVICE'>
 <param data-type='13'>ax</param>
 <param data-type='13'>bx</param>
 <param data-type='7p4'>11.1111</param>
 <param data-type='12p2'>222.22</param>
 </script>
 <param name='ECRTE1' list='XMLSERVICE'>
 <param data-type='13'>ax</param>
 <param data-type='13'>bx</param>
 <param data-type='7p4'>66.6666</param>
 <param data-type='12p8'>77777.77</param>
 </param>
 <return data-type='1010'>00</return>
 </script>
</form>
</body>
</html>
```

Figure 15-4  HTML file with XML tags to call an IBM i program

User ID and password: Depending on your security setup, you might need to change the session parameters “uid” and “pwd” to a valid user ID and password.

To start the program through the web browser, enter the IBM i URL address or host name and the previous HTML file name:

http://HostName/yourhtmlfilename.html
The resulting XML document is shown in Figure 15-5. It is a basic sample of a Program call. However, you can use a rich set of XML tags with other IBM i resources, such as <cmd>, <sh>, <pgm>, and <sql>.

![Figure 15-5  Returned XML file by XMLSERVICE](image)

For more information about XMLSERVICE commands, parameters, and reserved words, see:
http://www.youngprofessionals.com/wiki/XMLSERVICE

### 15.5 IBM Lotus products for IBM i

Lotus software delivers robust collaboration software that empowers people to connect, collaborate, and innovate when optimizing the way they work. With Lotus, you can achieve better business outcomes through collaboration. The following Lotus Software products are supported on IBM i 7.1:

- IBM Lotus Domino V8.5.1, 8.5.2, and 8.5.3
- IBM Domino 9.0
- IBM Notes Traveller 9.0
- IBM Connections 4.5
- IBM Sametime® V8.5.1, 8.5.2
- IBM Lotus Quickr® 8.5 and 8.5.1 for Domino
- IBM Lotus Enterprise Integrator® (LEI) V8.5.2, 8.5.3
- IBM Enterprise Integrator 9.0
- IBM Lotus Workflow V7.0 or later
- IBM Forms Server V8.0 or later
- IBM Forms Server V4.0 or later
- IBM Lotus Forms Server V3.5.1 FP2 or later
- IBM Integrated Domino Fax for i5/OS V4R5
Product withdrawal: Domino Fax for i5/OS V4R5 was withdrawn from worldwide marketing on January 14, 2011 and end of support was on April 30, 2012.

Only specific releases of these products are supported on IBM i 7.1. Before you upgrade to IBM i 7.1, check the most current details about the product releases supported at the following website:

http://www-03.ibm.com/systems/resources/systems_power_ibmi_lotus_release_support.pdf

15.6 Native archive and unarchive API support

IBM i 7.1 now supports both native creation and extraction of archive files.

This support includes the following native APIs and a service program to create archive files:

- QZIPZIP API
- QZIPUNZIP API
- QZIPUTIL Service program

15.6.1 QZIPZIP API

Multiple files and directories within IBM i can be compressed and packaged into a single archive file using the QZIPZIP() API.

The QZIPZIP syntax is as follows:

```c
#include <qziputil.h>
void qzipZip(
 Qlg_Path_Name_T * fileToCompress,
 Qlg_Path_Name_T * compressedFileName,
 char * formatName,
 char * zipOptions,
 char * errorStruct)
```

Parameters

Table 15-1 shows the list of QZIPZIP API parameters.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fileToCompress</td>
<td>Input</td>
<td>The name of the file or directory that is to be compressed into an archive file. The path name must be in Qlg_Path_Name_T structure.</td>
</tr>
<tr>
<td>CompressedFileName</td>
<td>Input</td>
<td>The name of the compressed archive file. This file is created by the API. The path name must be in Qlg_Path_Name_T structure.</td>
</tr>
<tr>
<td>formatName</td>
<td>Input</td>
<td>The format name to pass the user's options for compressing a file or a directory to an archive file. For more information, see “ZIP00100 format description” on page 596.</td>
</tr>
</tbody>
</table>
Authors and locks
The user must have at least the following authorities to be able to use the API:

- *R data authority to the file that is to be compressed
- *R data authority to each directory in the path name that precedes that file
- *W data authority to the directory where the compressed file is written

During the time the API reads a file before compressing it, the file is locked and shared with read only mode. The API releases the lock on the file after it reads the file. If the file that is to be compressed is locked, then an error message is sent. Further compression is stopped.

ZIP00100 format description
Table 15-2 shows the format for passing the user’s options to compress files or directories.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zipOptions</td>
<td>Input</td>
<td>This pointer passes in the user’s options to the QZIPZIP API in ZIP00100 format.</td>
</tr>
<tr>
<td>errorStruct</td>
<td>Input/output</td>
<td>This item is a pointer to an error code structure to receive error information.</td>
</tr>
</tbody>
</table>

15.6.2 QZIPUNZIP API

The contents of the (.zip) archive file can be extracted by running QZIPUNZIP on the target IBM i system.

The QZIPUNZIP syntax is as follows:

```c
#include <qziputil.H>
void QzipUnzip(
 Qlg_Path_Name_T * compressedFileName,
 Qlg_Path_Name_T * dirToPlaceDecompFiles,
 char * formatName,
 char * unzipOptions,
 char * errorStruct)
```
Parameters
Table 15-3 shows the list of QZIPUNZIP API parameters.

Table 15-3   Parameters for QZIPZIP API

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompressedFileName</td>
<td>Input</td>
<td>The name of the archive file that is to be extracted. The path name must be in the Qlg_Path_Name_T structure.</td>
</tr>
<tr>
<td>dirToPlaceDecompFiles</td>
<td>Input</td>
<td>The directory in which you place the contents of the archive file. The path name must be in the Qlg_Path_Name_T structure.</td>
</tr>
<tr>
<td>formatName</td>
<td>Input</td>
<td>The format name to pass the user's options for extracting an archive file. See “UNZIP100 format description” for a description of this format.</td>
</tr>
<tr>
<td>unzipOptions</td>
<td>Input</td>
<td>This item is a pointer that passes in the user's options to the QZIPUNZIP API in UNZIP100 format.</td>
</tr>
<tr>
<td>errorStruct</td>
<td>Input/output</td>
<td>This item is a pointer to an error code structure to receive error information.</td>
</tr>
</tbody>
</table>

Authorities and locks
The user must have at least the following authorities to be able to use the API:

- *R data authority to the file that is to be decompressed
- *R data authority to each directory in the path name that precedes that file
- *W data authority to the directory where the decompressed file is written

During the time, this API reads a compressed archive file for extracting it, and the file is locked and shared for reading only. The API releases the lock on the file after it reads the file completely. If the file that is to be extracted is locked, then an error message is sent. Further extracting is stopped.

UNZIP100 format description
Table 15-4 shows the format for passing the user's options to compress files or directories.

Table 15-4   Format description

<table>
<thead>
<tr>
<th>Offset</th>
<th>Type</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec</td>
<td>Hex</td>
<td>Field</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>CHAR(10)</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>CHAR(6)</td>
</tr>
</tbody>
</table>

15.6.3  QZIPUTIL Service program
The service program QZIPUTIL has entry points that can be called by any other ILE program to create and extract archive files. It is a system state user domain service program that adopts *USER authority.

The QZIPUTIL service program exported QZIPZIP and QZIPUNZIP APIs.
### 15.7 Java for IBM i 7.1

For the latest news on Java for IBM i see the following website:


Java Developer Kit 1.4, 5.0 and 6 (5761JV1 options 6, 7, and 10), which are referred to as *classic Java*, are no longer supported in IBM i 7.1 and were replaced by IBM Technology for Java. If your applications are still using classic Java, you must upgrade to IBM Technology for Java, but before you do, be aware of the following information (also see Table 15-5):

- **Classic Java virtual machine (JVM)** is a 64-bit virtual machine. Migrating to the 32-bit IBM Technology for Java (default JVM) reduces the Java object heap to no larger than 3 GB, which is approximately 1000 threads. If you require more than 1000 threads or a Java object heap larger than 3 GB, use the 64-bit version of the IBM Technology for Java.

- If you have ILE programs that use Java Native Interface functions, you must compile these programs with teraspace storage enabled.

- Adopted authority for Java program is not supported by IBM Technology for Java virtual machine.

- PASE for i now enforces stack execution disable protection.

- You must install the latest Group PTF for Java SF99572.

**Table 15-5 Classic Java levels and the suggested IBM Technology for Java replacement**

<table>
<thead>
<tr>
<th>Current product classic Java</th>
<th>Option</th>
<th>Replacements of IBM Technology for Java</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java Developer Kit 1.4 - 5761JV1</td>
<td>6</td>
<td>Java SE 6 32 bit - 5761JV1&lt;sup&gt;a&lt;/sup&gt;</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Java SE 6 64 bit - 5761JV1&lt;sup&gt;a&lt;/sup&gt;</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J2SE 5.0 32 bit - 5761JV1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J2SE 5.0 64 bit - 5761JV1</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J2SE 1.4 64 bit - 5761JV1</td>
<td>13</td>
</tr>
<tr>
<td>Java Developer Kit 5.0 - 5761JV1</td>
<td>7</td>
<td>Java SE 6 32 bit - 5761JV1&lt;sup&gt;a&lt;/sup&gt;</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Java SE 6 64 bit - 5761JV1&lt;sup&gt;a&lt;/sup&gt;</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J2SE 5.0 32 bit - 5761JV1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J2SE 5.0 64 bit - 5761JV1</td>
<td>9</td>
</tr>
<tr>
<td>Java Developer Kit 6 - 5761JV1</td>
<td>10</td>
<td>Java SE 6 64 bit - 5761JV1</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Java SE 6 64 bit - 5761JV1</td>
<td>12</td>
</tr>
</tbody>
</table>

* Use Java SE 6 when migrating from Java Developer Kit 1.4 or 5.0.

For more information about Java for IBM i 7.1, see the IBM i 7.1 Knowledge Center:


**Supported options:** Licensed program product 5761-JV1 options 6, 7, and 10 are the only options that are not supported in IBM i 7.1.
15.7.1 Enabling IBM Technology for Java virtual machine

IBM Technology for Java virtual machine is available in both 32-bit and 64-bit versions and is included in the licensed program 5761-JV1 as part of standard distribution set.

To install the IBM Technology for Java virtual machine option, complete the following steps:
1. Enter the Go Licensed Program (GO LICPGM) command and select Option 10.
2. If you do not see the program listed, then complete the following steps:
   a. Enter the GO LICPGM command on the command line.
   b. Select Option 11 (Install licensed program).
   c. Choose option 1 (Install) for licensed program 5761-JV1 ‘BASE and select the option that you want to install.
3. Load the latest Java PTF group.
4. Set the JAVA_HOME environment variable to the home directory of the Java Development Kit that you want to use. As an example, enter one of the following commands from the command line to select correct Java Development Kit (JDK). Full list of Java Development Kits supported is in the Table 15-6.
   - ADDENVVAR ENVVAR(JAVA_HOME) VALUE('/QOpenSys/QIBM/ProdData/JavaVM/jdk14/64bit')
   - ADDENVVAR ENVVAR(JAVA_HOME) VALUE('/QOpenSys/QIBM/ProdData/JavaVM/jdk50/32bit')
   - ADDENVVAR ENVVAR(JAVA_HOME) VALUE('/QOpenSys/QIBM/ProdData/JavaVM/jdk50/64bit')
   - ADDENVVAR ENVVAR(JAVA_HOME) VALUE('/QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit')
   - ADDENVVAR ENVVAR(JAVA_HOME) VALUE('/QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit')
   - etc for other JVMs. See Table 15-6.

**Suggestion:** Upgrade to IBM Technology for Java before you migrate to IBM i 7.1.

Supported options of 5761-JV1 IBM Developer Kit for Java product are listed in Table 15-6. Table 15-6 shows that a single 5761-JV1 option (like options 11, 12, 14, and 15) can hold 2 different JDKs, like Java 6.0 and 6.2.6 in options 11 and 12, or Java 7.0 and 7.1 in options 14 and 15.

**Table 15-6  Supported options of 5761-JV1 IBM Developer Kit for Java product**

<table>
<thead>
<tr>
<th>Option</th>
<th>JDK</th>
<th>JAVA_HOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>IBM Technology for Java 5.0 32bit</td>
<td>/QOpenSys/QIBM/ProdData/JavaVM/jdk50/32bit</td>
</tr>
<tr>
<td>9</td>
<td>IBM Technology for Java 5.0 64bit</td>
<td>/QOpenSys/QIBM/ProdData/JavaVM/jdk50/64bit</td>
</tr>
<tr>
<td>11</td>
<td>IBM Technology for Java 6.0 32bit</td>
<td>/QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit</td>
</tr>
<tr>
<td>11</td>
<td>IBM Technology for Java 6.2.6 32bit</td>
<td>/QOpenSys/QIBM/ProdData/JavaVM/jdk626/32bit</td>
</tr>
<tr>
<td>12</td>
<td>IBM Technology for Java 6.0 64bit</td>
<td>/QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit</td>
</tr>
<tr>
<td>12</td>
<td>IBM Technology for Java 6.2.6 64bit</td>
<td>/QOpenSys/QIBM/ProdData/JavaVM/jdk626/64bit</td>
</tr>
</tbody>
</table>
15.7.2 New Java 7.1 support

Java 7.1 is supported as part of option 15 (See Table 15-6 on page 599). It is a hybrid JDK which takes advantage of the J9 JVM. This updated JVM leverages the same class libraries as Java 7 but provides better performance and cloud support.

For more information, see the following website:

15.7.3 PTF Groups and latest service releases and fixpacks

The following website contains the latest updated information for PTF groups and the latest service releases and fixpacks:

15.7.4 Java on IBM i security updates

See the following website for information about Java on IBM i security:

This page also points to the Common Vulnerabilities and Exposures (CVE) web pages.

15.8 IBM Toolbox for Java JDBC

JDBC is an API included in the Java platform that enables Java programs to connect to a wide range of databases.

You can use the IBM Toolbox for Java JDBC driver to use JDBC API interfaces to issue Structured Query Language (SQL) statements to and process results from databases on the server.

The following sections describe the enhancements that are done to IBM Toolbox for Java JDBC support for IBM i 7.1.
15.8.1 JDBC 4.1

Java JDBC interface now supports several features of the latest JDBC 4.1 definitions with DB2 i. Java developers can use this enhancement to continue to use the latest defined options for JDBC.

15.8.2 XML Data type support

The JDBC 4.0 interface specification adds new methods and classes for XML Data type support. IBM Toolbox for Java implements XML support in its JDBC 4.0 driver.

This enhancement allows JDBC clients easy access to IBM i 7.1 XML support.

15.8.3 Database metadata updates

Database metadata is obtained by calling methods of the AS400JDBCDatabaseMetaData class. Starting with IBM i 7.1, the default behavior of IBM Toolbox for Java JDBC is to obtain this metadata from a set of standard system stored procedures.

This enhancement brings IBM Toolbox for Java into alignment with IBM i native JDBC support in addition to JDBC drivers on other platforms.

To provide compatibility with earlier versions of the metadata functionality, a new connection property, “metadata source”, can be used to force IBM Toolbox for Java JDBC to use the old method of retrieval of database metadata.

15.8.4 Currently committed support

Lock timeouts and deadlocks can occur under the isolation levels that perform row-level locking, especially with applications that are not designed to prevent such problems. Some high throughput database applications cannot tolerate waiting on locks that are issued during transaction processing, and some applications cannot tolerate processing uncommitted data, but still require non-blocking behavior for read transactions.

Under the new currently committed semantics, if currently committed is enabled, then only committed data is returned, as was the case previously, but now readers do not wait for writers to release row locks. Instead, the data that is returned to readers is based on the currently committed version, that is, data before the start of the write operation.

This feature also implements a way to direct the database manager to wait for the outcome when it encounters data while being updated.

15.8.5 Array type support

IBM Toolbox for Java supports the IBM i 7.1 SQL array data type in stored procedure parameters. Arrays of all of the various DB2 types are supported, except for data that is returned in a locator.

IBM Toolbox for Java JDBC adds support for arrays as IN, OUT, and INOUT parameters to stored procedures. However, ResultSets returned from stored procedures or other queries that contain arrays is not supported.

JDBC supports the calling of stored procedures in the java.sql.CallableStatement class, which IBM Toolbox for Java implements in AS400JDBCCallableStatement.
15.8.6 Long schema name support

IBM i 7.1 DBMS added support for 128 byte schema names. IBM Toolbox for Java JDBC is adding support for long schema names.

15.9 JTLite/JTOpenLite Java Classes Library

JTLite is an alternative to the JT400 and JTOpen Java toolkits, and provides a small footprint (about 420 KB) and good performance that is focused on application development for mobile devices.

The Lite version of the Java toolbox for IBM i provides a new smaller foot print toolkit for accessing IBM i native objects from Java running on mobile devices. Table 15-7 shows the difference between both Java libraries.

Table 15-7 Differences between JTOpen and JTOpen Lite

<table>
<thead>
<tr>
<th>JTOpen and JT400</th>
<th>JTOpenLite and JTLite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database - JDBC (SQL) and record-level access (DDM)</td>
<td>Database - JDBC (SQL) and record-level access (DDM)</td>
</tr>
<tr>
<td>Integrated File System</td>
<td>Integrated File System - Open, Read, Write, Delete</td>
</tr>
<tr>
<td>Program calls (RPG, COBOL, Service Programs, and so on)</td>
<td>Program calls (RPG, COBOL, Service Programs, and so on)</td>
</tr>
<tr>
<td>Commands</td>
<td>Commands</td>
</tr>
<tr>
<td>Data Queues</td>
<td></td>
</tr>
<tr>
<td>Data Areas</td>
<td></td>
</tr>
<tr>
<td>Print/Spool resources</td>
<td></td>
</tr>
<tr>
<td>Product and PTF information</td>
<td></td>
</tr>
<tr>
<td>Job and Joblogs</td>
<td>Job information</td>
</tr>
<tr>
<td>Messages, messages queue, message files</td>
<td></td>
</tr>
<tr>
<td>Data Queues</td>
<td></td>
</tr>
<tr>
<td>Users and groups</td>
<td>User and Group information</td>
</tr>
<tr>
<td>User spaces</td>
<td></td>
</tr>
<tr>
<td>System values</td>
<td></td>
</tr>
<tr>
<td>System status</td>
<td></td>
</tr>
</tbody>
</table>

For access to the project, go to the following website:

http://jtlite.sourceforge.net/
15.10 Application Runtime Expert for i

IBM Application Runtime Expert for i (ARE) is a new product that has the potential to revolutionize how you do application service and support. ARE can help you ensure consistent performance and deployment for any workload that is running on your system. You can use ARE to build and maintain an application knowledge base that can be used to automatically apply its knowledge to verify a system.

ARE provides a GUI that you can use to collect and verify a customized set of information, system settings, and attributes about the following items:

- Applications
- An IBM i system
- A runtime environment

ARE collects the needed information and builds it into a template. This template can then be used in verifying the application and its environment, on the same system where the template was built, or any other IBM i system.

When you run a template against an IBM i system, the system is verified against the information that is stored in the template, and the results are documented in a set of reports. These reports give a clear and concise view of what changed, or what is different.

Templates can be updated easily to include new information and settings from the ARE GUI.

15.10.1 Deployment template

A deployment template represents the expected attributes and state of a deployment and its environment. Typically, a deployment consists of application attributes and attributes of the environment the application runs in. Users can customize different plug-ins by defining what information to include in the deployment template using the Deployment Template Editor. Each plug-in can verify a different aspect of a deployment.

Here are common examples of a deployment:

- IBM i products
- Applications on IBM i:
  - ISV application
  - WebSphere Application Server
  - Integrated WebSphere Application Server
  - RPG application
  - Directory tree in IFS
- Custom selection of software products, system, and environment information

The deployment template is used as an input to the ARE Core. ARE Core uses the deployment template as the basis for comparison for the attributes and state of the deployment on the system that is being verified.

Deployment Template Editor

You can use the Deployment Template Editor to create, edit, import, and export deployment templates. Users can use the editor to customize their templates. Templates that are created or edited can be used to verify systems using the console.
15.10.2 Customizing plug-ins for templates

IBM Application Runtime Expert for i has a wide array of application attributes and settings it can collect, along with many of the system settings and values that are most critical for your applications. After the template customization is complete, you can build it by using the Build template button.

The following sections describe some of the possible attributes and values that can be collected by ARE:
- Files and directories
- Software requirements
- Network
- System Environment
- Advanced

Files and directories
You can customize the template to verify various files and directories settings:
- File and Directory Attributes
- File and Directory Authorities
- Configuration Files
- Resource Collector

File and Directory Attributes plug-in
The File and Directory Attributes plug-in verifies attributes such as existence, creation date, last modification date, size, and CCSID. Attributes can be verified for files and directories in IFS, and objects in the Library file system. The precise file and directory attributes that are verified by this plug-in are fully customizable.

This plug-in can also verify that a symbolic link is truly a symbolic link and not a real file. This plug-in is useful to detect cases where a symbolic link was replaced by an actual copy of the file that it is supposed to be a link to.

File and Directory Authorities plug-in
The File and Directory Authorities plug-in verifies authority attributes, such as owner, authorization list, primary group, and private data and object authorities. Authority attributes can be verified for files and directories in IFS, and objects in the Library file system. The precise authority attributes verified by this plug-in are fully customizable.

Configuration Files plug-in
The Configuration Files plug-in verifies that the contents of configuration files are correct.

The following configuration file types are supported:
- XML configuration files
- Property files
- Apache HTTP configuration files
The items to check in a configuration file are fully customizable, as are the types of checks performed (equals, does not equal, contains, exists, exclude, and more). The expected value for configuration items can also be customized, as shown in Figure 15-6.

![Figure 15-6  Edit Expected Value](image)

**Resource Collector plug-in**

You can use the Resource Collector plug-in to collect and package files and objects from the target system into an archive file for more review. This feature allow Application Runtime Expert to verify specific files and attributes and to collect the data that is needed to review and possibly debug an issue on a system.

The plug-in allows specific files and directories from IFS to be collected and packaged into a single archive file. You can also use it to gather native IBM i objects and libraries by saving these native object and libraries into SAVF objects that can then be included in the specified archive file.

**Software requirements**

You can customize the template to verify various software requirements and prerequisites:

- IBM i Products
- PTFs

**IBM i products**

You can use this feature to select specific IBM i products from the list of all IBM i products. The selected products are added to the list of products to verify in the template.
You can use the Check Product Option (CHKPRDOPT) CL command during product verification to provide useful, product-specific information. Select the CHKPRDOPT check box to enable this feature, as shown in Figure 15-7.

When a problem is found during product verification, the problem is added to the IBM i product verification section of the report. The severity of the problem, which determines how the problem is recorded in the report, can be customized for each product verified.

To select an IBM i product that is not installed on the system, click the Filter button and select the Show all products supported by IBM I option, as shown in Figure 15-8.

**PTFs**

The PTFs plug-in verifies the status of individual and group PTFs on an IBM i system. It also lists all group PTF levels on the system, which is equivalent to the information displayed by the WRKPTFGRP CL command. The specific PTFs and group PTFs that are verified are fully customizable. This plug-in can verify that a group PTF level meets both a minimum and recommended level.
Network
You can use this feature to verify various TCP/IP configuration settings, network characteristics, and ports status:
- Network Configuration
- Port validation

Network Configuration plug-in
The Network Configuration plug-in verifies various TCP/IP configuration settings and network characteristics. Much of the TCP/IP configuration that is verified are the configuration settings viewable by running the `CFGTCP` CL command.

The primary purpose of this plug-in is to attempt to verify that the system's network configuration is such that applications that require frequent access to the network, such as web applications, can do so in a fast, reliable, and repeatable manner.

Port validation plug-in
The Port validation plug-in verifies whether one or more specified ports are active or inactive on the system. The plug-in can verify whether one or more specified ports are restricted.

Ports on the system can be restricted by running `CFGTCP` and selecting option 4 - Work with TCP/IP port restrictions. If an application requires a port that is already in use or is restricted, the application might fail to start or not work correctly.

System Environment
You can use this feature to verify various system environments settings, including network attributes, environment variables, and user IDs:
- System Values and Network Attributes
- Environment Variables
- User IDs
- Scripts and Commands
- SQL Query Verifier

System Values and Network Attributes plug-in
The System Values and Network Attributes plug-in verifies system values and that network attributes are configured as a deployment expects. The expected value for a system value or network attribute is customizable, including the capability to specify a single value, list of possible values, a range of possible values, and more.

There is also the option to list, but not check, a value in the report, which is a useful mechanism to automate the collection of system configuration information.

Environment Variables plug-in
The Environment Variables plug-in collects and optionally verifies system-wide environment variables. System-wide environment variables can affect the runtime attributes of any job on the system, so their existence, and their values, are an important part of the environment on which any application runs.
**User IDs plug-in**

The User IDs plug-in verifies attributes of one or more IBM i user profiles. Over 20 different attributes can be verified, such as special authorities, group profile, supplemental group, profile enabled, and more. The exact attributes to check are customizable, as shown in Figure 15-9.

![Edit User ID Collection](image)

**Scripts and Commands plug-in**

You can use the Scripts and Commands plug-in to verify the results of Qshell scripts or CL commands on a remote system. This plug-in provides a powerful and simple way to extend the base verification function that is provided by Application Runtime Expert for i. The results of each verification are customizable, including the capability to specify the source of a result, expected value, a range of expected values, and more.

**SQL Query Verifier plug-in**

The SQL Query Verifier plug-in can verify database information using SQL statements. An SQL statement can be specified to be run on the target system. The results of this SQL query can be verified. The verification of specific column data or the number of records that are returned can be verified. The complete query results can also be returned as part of the ARE report.
Advanced
ARE offers some advanced features for plug-in customization:

- Custom plug-ins
- Other Resources
- Plug-in Configuration

Custom plug-ins
You can use this feature to manage custom plug-ins that are included in the deployment template. Custom plug-ins are Java classes that can augment the verification that is performed by a deployment template. Anyone can write a custom plug-in, and after the plug-in is created, it can be added to any deployment template.

A custom plug-in plugs into the IBM Application Runtime Expert for i environment, and is run along with the other plug-ins selected and customized using the deployment template editor.

Other Resources plug-in
You can use this feature to manage other resources, which are any items that are not a custom plug-in and are included in the deployment template. Other resources are commonly needed with a custom plug-in. For example, a custom plug-in might require several other Java classes for it to run. These additional Java classes can be added to the deployment template using the Other Resources window.

Plug-in Configuration
Several advanced plug-in features can be edited through the Plug-in Configuration window. Additionally, any plug-in that can be used by a template, including plug-ins that are not configured elsewhere in the GUI, can be configured and added to a template using the Plug-in Configuration window.

15.10.3 Application Runtime Expert console

After a template is built, there are two ways it can be used to verify a system:

- Use the console web user interface.
- Use a script that can be run from Qshell.

This section describes using the console to verify IBM i systems.

The console is a web user interface that enables a system, or group of systems, to be verified using a deployment template that was created or imported by using the deployment template editor.

Systems are verified by the following sequence of events:

- The console remotely logs in to the system.
- The console starts the ARE to perform the verification, using the specified deployment template.
- The results of the verification go back to the console so that they can be reviewed.

Requirement: A valid, enabled user profile name and password for the target system must be provided. The user profile must have *ALLOBJ special authority on the target system because the verification of the target system might involve the inspection of many different files, authorities, PTFs, user profiles, and other items.
The Groups feature provides a way to group one or more systems into a discrete entity. Groups are useful for creating different sets of systems to verify, especially when each set of systems needs a different deployment template for verification as shown in Figure 15-10.

**Console**

The IBM Application Runtime Expert for i5 is capable of verifying multiple IBM i systems using a deployment template created or imported using the deployment template editor. Learn more...

Groups:

- Default
- Systems to verify:

<table>
<thead>
<tr>
<th>System name</th>
<th>User ID</th>
<th>Password</th>
<th>Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 52 0.3</td>
<td>qsecofr</td>
<td></td>
<td>US Template</td>
</tr>
<tr>
<td>10 52 3.3</td>
<td>qsecofr</td>
<td></td>
<td>US Template</td>
</tr>
</tbody>
</table>

Operations: Add, Remove, Select all, Deselect all, Runtime properties

Note: Only selected systems are verified. Schedule runs only if IBMi is running.

Launch deployment template editor, Import and view report

Figure 15-10  Application Runtime Expert console

**Verifying systems**

Verification can be done for all systems that are specified in the console panel. They can even have different templates. User IDs and passwords for individual systems can be set up directly in the console window, or you can have one general User ID and password for all systems. Such a User ID must have *ALLOBJ authority on all systems where verification must run. This can be set up using the Runtime properties button. The Console Runtime Properties window (Figure 15-11) is then shown. You then can specify a general User ID.

Figure 15-11  Runtime Properties window
Scheduling verification tasks

Notice the Schedule icon in the lower-right corner of the Figure 15-10 on page 610. Clicking Schedule displays the window shown in Figure 15-12.

Figure 15-12 Schedule window

After the system verification is complete, a Complete icon is shown in the status column for that system and a brief summary of its verification is shown in the result column. If the console failed to perform the verification on a target system, a red icon is shown followed by a brief reason description of why the verification cannot be performed as shown in Figure 15-13.

Figure 15-13 System verification status

More details about the failure can be found by clicking the View log link in the result column.
Reports
For systems that were verified, the results column contains a brief summary of the verification results. The summary text in the result column is also a link. This link provides access to the verification reports generated by the ARE core during the verification of the target system, as shown in Figure 15-13 on page 611.

All three ARE reports (summary, detailed, and XML) are available through the link in the result column. You can also download all the reports in an archive file by clicking the Download Archive link.

Summary report
The summary report contains a summary of all problems that are detected during the verification of a system. Each row in the summary table contains the results for a specific plug-in, such as the “Authority Verifier” or “System Value Verifier” plug-ins. The icon directly before the plug-in name indicates the highest severity problem that was found by that plug-in. The other items in each row indicate the number of attributes that are verified by the plug-in, and the number of problems that are found at each severity level (Error, Warning, and Info). The final item in each row, the “Fix actions” column, indicates how many of the detected problems can be fixed directly from the console web interface.

Figure 15-14 and Figure 15-15 show examples of two summary reports.

![Figure 15-14] (Summary report 1)

![Figure 15-15] (Summary report 2)
**Detailed report**
The detailed report is a text report that contains every status and problem message reported during verification. This report is a complete record of everything that was checked during verification and the result of each check, even if the check did not detect a problem.

**XML report**
The XML report is an XML formatted report that contains every status and problem message reported during verification. This report is a complete record of everything that was checked during verification and the result of each check, even if the check did not detect a problem. In this regard, the XML report is exactly like the detailed report, except in an XML format instead of plain text.

**XML report details:** XML reports include information about how to fix detected problems. ARE Core uses an XML report as a guide for automatically fixing detected problems.

**Verification status history**
From the console window, it is possible to get the history of verifications done in the past (especially if automatic scheduling is in place). History can be displayed by clicking the View previous results. A sample of the status history is shown in Figure 15-16.

![History of status](image)

**Automatic fixes**
IBM Application Runtime Expert for i offers another important feature, which is the ability to automatically fix problems that are detected by ARE.
The “Fix actions” column in the summary report allows certain problems that were detected during verification to be fixed directly from the console web interface. You can use this convenient feature to solve certain problems without logging in to a different system.

The following list shows some of the problems that ARE can automatically fix:

- Authority: This category includes ownership, primary group, authorization list, and private authority.
- User Profiles: Some, but not all, user profile attributes can be fixed.
- Symbolic Links: If ARE detects that a symbolic link is missing, it can re-create the link.

**Important:** It is important to understand that only certain types of detected problems can be fixed directly from the console.

Figure 15-17 shows a summary report in which the “Authority Verifier” plug-in has a fix action available.

![Figure 15-17 Summary report fix action](image)

Clicking the Fix action link opens a new window that summarizes all of the problems that are detected by that plug-in that can be fixed directly from the console. You can select which problems to fix by selecting the check box that precedes each problem description, and then clicking Fix, as shown in Figure 15-18.

![Figure 15-18 Fix plug-in problem](image)
The console begins the process of fixing the selected problems on the target system. After the problems are fixed, a second table is displayed that shows the fix results.

Other than the console web user interface, ARE can also fix detected problems using a script. For more information, see the “areFix.sh” script section in the document found at:
http://www-03.ibm.com/systems/resources/systems_i_are_script_interfaces.pdf

15.10.4 Application Runtime Expert requirements

The IBM Application Runtime Expert for i product (5733ARE) requires several IBM i products and PTFs to be installed on the system before you install ARE.

Prerequisite products
Here is the list of required software products on IBM i 7.1:
- 5770SS1 option 3 - Extended Base Directory Support
- 5770SS1 option 12 - Host Servers
- 5770SS1 option 30 - Qshell
- 5770SS1 option 33 - PASE
- 5761JV1 option 11 - J2SE 6 32 bit
- 5770DG1 - IBM HTTP Server for i

PTF requirements
The latest Group PTF level must be installed on the system before you install ARE. For up-to-date PTF requirements, go to:
http://www-03.ibm.com/systems/power/software/i/are/gettingstarted.html

To benefit from the latest ARE enhancements, you must install the latest PTF. For the latest PTFs, see the ARE support that is found at:
http://www-03.ibm.com/systems/power/software/i/are/support.html

15.10.5 More information

For more information about Application Runtime Expert, see Uncovering Application Runtime Expert, REDP-4805.

15.11 Operably

Operably is a freely available and commercially supported port of the Ruby language. It is a web application development framework (Rails) written in the Ruby language.

This product is available for download from the following website:
http://powerruby.com/

PowerRuby does include the native DB2 driver. This means that the use of the MySQL database is not necessary on IBM i. It integrates with XMLSERVICE for access to IBM i programs and objects. For more about XMLSERVICE, see 15.4, “XMLSERVICE for IBM i” on page 590.

To learn more about PowerRuby, see the following website:
https://twitter.com/rubyonpower
IBM Rational products

This chapter describes the latest Rational products for IBM Power Systems Software™ and IBM i, and covers the following topics:

- IBM Rational Developer for i
- IBM Rational Team Concert
- IBM Rational Development Studio for i
- IBM Rational Open Access: RPG Edition
- Other Rational and RPG related tools - ARCAD
- IBM Rational Application Management Toolset for i
- IBM Rational Host Access Transformation Services (HATS)
16.1 IBM Rational Developer for i

IBM Rational Developer for i is an integrated development environment (IDE) built on the Eclipse platform. It is designed for creating and maintaining applications on IBM i systems. It is on the developer's desktop, supporting development in both host-connected and disconnected modes. It supports development of RPG, COBOL, C, C++, SQL, and CL applications on IBM i, including the DDS (for instance display and printer files).

The current version of IBM Rational Developer for i product is V9.0. This version is built on Eclipse V4.2.2.

16.1.1 IBM Rational Developer for i 9.0 Editions

IBM Rational Developer for i 9.0 is available in three editions:

- RPG and COBOL Tools edition
  The RPG and COBOL Tools edition allows development of RPG, COBOL, C, C++, SQL, and CL applications on IBM i, using Remote System Explorer and debugger. IDE is able to connect to IBM i V6.1.x and V7.1.

- RPG and COBOL + Modernization Tools, Java edition
  The RPG and COBOL + Modernization Tools, Java edition contains all the features of the RPG and COBOL Tools edition, plus it contains a rich subset of IBM Rational Application Developer for WebSphere Software offering, including the following functions:
  - Support of Java development
  - Support of the WebSphere Application Server Liberty profile
  - Enhancements to tools for developing web and mobile web application front ends
  This edition also includes IBM Data Studio. There is an IBM Worklight® Studio 6.0 to support development of hybrid mobile applications. This combined set of tools provides capabilities for developing multitier, enterprise mobile applications that integrate with back-end systems deployed on IBM i.

  **Note:** This edition of IBM Rational Developer for i is a replacement of the IBM Power Tools feature of the former IBM Rational Developer for Power Software V8.x.

- RPG and COBOL + Modernization Tools, EGL edition
  The RPG and COBOL + Modernization Tools, EGL edition contains all features of the RPG and COBOL Tools edition, plus it contains the functions of the Rational Business Developer 9.0, which is the EGL development tools.
  This edition is a replacement of IBM Developer for i for SOA Construction 8.x.

  **Note:** The RPG and COBOL + Modernization Tools, EGL edition does not include the HATS toolkit as the former IBM Developer for i for SOA Construction 8.x product did. However, the HATS toolkit 9.0 can be downloaded at no additional charge from this website:
These three editions of IBM Rational Developer for i represent the evolutions of products that were previously marketed under the following names:

- IBM Rational Developer for Power Systems Software RPG and COBOL Tools for i V8.x
- IBM Rational Developer for Power Systems Software Power Tools for i V8.x
- IBM Rational Developer for i for SOA Construction v8.x

When used in combination with IBM i compilers (which is part of the 16.3, “IBM Rational Development Studio for i” on page 636 and 16.2, “IBM Rational Team Concert” on page 628), IBM Rational Developer for i provides a comprehensive application development environment, including compilers, development tools, and collaborative application lifecycle management.

The following sections focus on Rational Developer for i features for the IBM i platform:

- RPG and COBOL development tools
- Modernization tools
- Java tools
- EGL tools and IBM Rational Business Developer V9.0
- Rational Team Concert client integration for IBM i
- Version 9.0 fix packs
- Migration to Rational Developer for i v9.0
- Upgrades to Rational Developer for i v9.0

### 16.1.2 RPG and COBOL development tools

Rational Developer for i offers the following RPG and COBOL development tools:

- Remote System Explorer
- IBM i Projects
- Application Diagram
- Screen Designer
- Report Designer
- Integrated i Debugger

#### Remote System Explorer

The Remote System Explorer, which is shown in Figure 16-1 on page 620, is an enhanced and more flexible workstation version of the Programming Development Manager. It is a workbench perspective that provides access to all development resources of your IBM i server. The Remote System Explorer is able to search and manage server-side files and run server scripts.

Remote System Explorer allows effective management and organization of IBM i through these features:

- Remote Connection to IBM i server
- Manage IBM i objects
- Manage library lists
- Manage jobs
- Manage commands and shells
- Manage user actions
- Manage objects in “Object Table View”
- Editing, compiling, and debugging applications
IBM i Projects

IBM i Projects, which is shown in Figure 16-2 on page 621, allows for disconnected development. A network connection is required only when code updates or a build are needed, or when you must view remote resources for a project.

In disconnected mode, you work on files locally, and upload them to the server after you finish. Working in disconnected mode, you can still check source code for syntax and semantic error and connect only to submit a compile when you are ready to create the program object.
**Application Diagram**

Application Diagram provides a graphical view of the different resources in an IBM i native application and their relationships to each other.

There are two different diagrams that you can look at in the Application Diagram view:

- **Source Call Diagram**
  
  This diagram takes ILE RPG, ILE COBOL, and CL sources as input and displays a call graph that shows the subroutine and procedure calls.

- **Program Structure Diagram**
  
  This diagram takes program and service program objects as input and displays the binding relationships between them and the modules that are bound to each program and service program.
**Screen Designer**

Screen Designer is now an official component. It provides the capability to graphically design and modify the content of DDS display files. Screen Designer, shown in Figure 16-3, provides an integrated palette for easy access to design items, and a preview page.

![Figure 16-3 Screen Designer](image)

**Report Designer**

You can use the Report Designer to graphically design and modify the content of DDS printer files. The Report Designer window provides an integrated palette for easy access to design items.

You can use the Report Designer to group individual records and see how this group of records will appear on the printed page. In addition, you can specify default data for each output field, and specify which indicators are on or off.

**Integrated i Debugger**

You can use Integrated i Debugger to debug an application that is running on an IBM i system. It provides an interactive graphical interface that makes it easy to debug and test your IBM i programs.
Integrated i Debugger provides many program debugging control features, including breakpoints setup, watching variables, step through program instructions, examining variables, and examining the call stack.

16.1.3 Modernization tools

Modernization tools contain the following features (examples):

- Complete IDE for IBM i programming languages based on the Eclipse environment that allows integration of plug-ins for other programming languages and development tools.
- Support for the latest version of the WebSphere Application Server Liberty profile.
- New enhancements to tools for developing web and mobile web application front ends.
- Web Services wizards (for RPG/COBOL/HATS) to refactor-wrap IBM i business logic.

**IBM i Web Services and Java Tools**

You can use IBM i web development tools to create new e-business applications that use a web-based front end to communicate with the business logic in an ILE or non-ILE language program on an IBM i server.

The Web Services wizard works in the context of a web project and allows for creation, deployment, testing, generation of a proxy, and publication to a Universal Description, Discovery, and Integration (UDDI) registry of Web Services.

**Note:** The IBM i Web Services and Java Tools are part of Rational Developer for i 9.0 - RPG and COBOL + Modernization Tools, Java edition. Web Services wizards can be found in Modernization Tools in both Java and EGL editions.

16.1.4 Java tools

Java tools contain the following features (examples):

- Complete Eclipse-based IDE for Java/JEE
- Servlets
- SOA (Web Services, SCA)
- Full Java Platform, Enterprise Edition Development
- JSF
- Web/Web 2.0 SOA (Web Services, SCA)

All Java tools are optimized for WebSphere Application Server runtimes.

16.1.5 EGL tools and IBM Rational Business Developer V9.0

EGL tools contain the following features (examples):

- Complete IDE for EGL development (IBM Rational Business Developer 9.0 functionality)
- Limited Java and web development

IBM Rational Business Developer is an Eclipse-based integrated development environment (IDE) that simplifies the development of service-oriented architecture (SOA) applications using the Enterprise Generation Language (EGL).

Developers can now deliver web, Web 2.0, and mobile applications and services without having to master Java and SOA programming. This allows them to create, test, and debug
EGL applications while generating Java, JavaScript, or COBOL code for deployment. RPG and COBOL developers can change to EGL easily because it allows them to create portable applications with modern architectures and user interfaces, without having to learn concepts of object-oriented languages.

Following are the main features of IBM Rational Business Developer (and also EGL tools):

- **EGL transformation**
  - Transforms EGL source into Java, JavaScript, or COBOL code that is optimized for deployment to application hosting environments that include Java EE servers and traditional transactional systems.
  - Streamlines development by using a single, high-level language for complete development of the business application.
  - Generates different languages for a single application, such as JavaScript for an application user interface and Java or COBOL for the application back end.
  - Increases productivity and reduces the technology learning curve to improve business agility and competitiveness.

- **Simplified service creation**
  - Simplifies service creation, concealing the technical complexity of SOA. Multiplatform deployment deploys applications and services on many platforms either as web services or natively.
  - Provides built-in service constructs and a facility for service generation, allowing business-oriented developers to create SOA applications without extensive training.
  - Creates EGL services and automates generation of web services from EGL services.
  - Supports development and deployment of services to IBM WebSphere Application Server on multiple platforms.
  - Allows developers to work within the familiar Eclipse-based environment using their existing development skills.

- **UML support**
  - Supports Unified Modeling Language (UML) to EGL transformations, allowing complex applications to be modeled graphically.
  - UML supports a model-driven approach that streamlines the creation of Java and Web 2.0 applications and services.
  - UML supports the implementation of EGL services.
  - UML supports full Create, Read, Update, Delete applications without the need for manual coding.

- **Extensible platform**
  - Integrates with several IBM products to extend support for IBM i and expand software lifecycle functionality.
  - Extends existing IT assets and provides the extensibility, scalability, and productivity features of an Eclipse-based platform.
  - Integrates with IBM Rational Developer for i for SOA Construction and IBM Rational Software Architect.
For more information about EGL, see the following websites:

- **EGL Cafe:**
  
  https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=3e2b35ae-d3b1-4008-adee-2b31d4be5c92

- **IBM Rational Business Developer Version 9.0 Knowledge Center:**
  

### 16.1.6 Rational Team Concert client integration for IBM i

Rational Developer for i provides support for integration with the Rational Team Concert™ client for IBM i.

When Rational Developer for i is used in combination with IBM Rational Development Studio for i compilers and Rational Team Concert, it provides a comprehensive application development environment, including compilers, development tools, and collaborative application lifecycle management.

For more information about Rational Team Concert, and integration with Rational Developer i, see 16.2, “IBM Rational Team Concert” on page 628.

**Requirement:** The IBM Rational Team Concert V4.0.3 client product must be installed before you install the client integration.

### 16.1.7 Version 9.0 fix packs

Information about any required Power Systems server PTFs can be found by completing the following steps in IBM Rational Developer for Power Systems Software:

1. Open the Remote System Explorer perspective by clicking **Window → Open Perspective → Other → Remote System Explorer**.
2. Create a connection to your IBM i by expanding **New Connection** and double-clicking **IBM i**.
3. In Remote System Explorer, expand your connection, right-click **Object**, and click **Verify Connection**, as shown in Figure 16-4.

![Figure 16-4 Verify connection](image-url)
4. A window opens that shows which required PTFs are installed on the system and which ones are missing, as shown in Figure 16-5.

![Verify Connection](image)

**Figure 16-5** Verify PTFs

For information about the latest product fix packs, see the Rational Developer for Power Systems Software Support website (Downloads tab):


### 16.1.8 Migration to Rational Developer for i v9.0

You can upgrade projects to Rational Developer for Power Systems v9.0 from previous versions. The migration process is seamless and transparent; you must use only your existing workspace and continue working with your projects with the new software version.

Upgrade to v9.0 can be done through Rational Developer for Power i. Migration is supported from Version 7.5.x, Version 7.6.x, Version 8.0.x, and Version 8.5.x.

Migration of projects from earlier releases is not supported because of additional features that were added.

### 16.1.9 Upgrades to Rational Developer for i v9.0

IBM Rational Developer for i Version 9.0 introduces new repackaging of Rational Products that are used for IBM i development, and products that are used for AIX/Linux on Power development.

Upgrades are possible from the following products:

- IBM Rational Developer for Power Systems v8.x
- IBM Rational Developer for i for SOA Constructions v8.x
Table 16-1 shows the basic upgrade paths.

<table>
<thead>
<tr>
<th>Original V8.x product</th>
<th>Product Feature</th>
<th>Upgrade to</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Rational Developer for Power Software</td>
<td>RPG and COBOL Tools</td>
<td>IBM Developer for i v9.0, RPG and COBOL Tools Edition</td>
</tr>
<tr>
<td>IBM Rational Developer for Power Software</td>
<td>Power Tools</td>
<td>IBM Developer for i v9.0, RPG and COBOL + Modernization Tools, Java Edition</td>
</tr>
<tr>
<td>IBM Rational Developer for i for SOA Construction</td>
<td>N/A</td>
<td>IBM Developer for i v9.0, RPG and COBOL + Modernization Tools, EGL Edition</td>
</tr>
</tbody>
</table>

IBM Rational HATS Toolkit is not included in any of the editions of IBM Rational Developer for i v9.0. It is available at no additional charge to download from the following website:  

A full HATS runtime license must be purchased to be able to run applications that are modernized by IBM Rational Host Access Transformation Toolkit v9.0. This has not changed from older versions of Rational Developer tools.

Other features of IBM Rational Developer for Power Software (for example COBOL, C/C++, Power Tools for AIX, or Linux) can be upgraded to IBM Rational Developer for AIX and Linux v9.0.

16.2 IBM Rational Team Concert

The Rational solution for Collaborative Lifecycle Management (CLM) provides integrations across the Change and Configuration Management, Requirements Management, and the IBM Quality Management Jazz™-based applications, to connect the work of analysts with development and test teams.

Rational Team Concert is the core of the Rational CLM solution. Rational Team Concert is a team collaboration tool that supports cross-platform development and features native hosting of the Jazz Team Server. Rational Team Concert includes an integrated set of collaborative software delivery lifecycle tools for development, including source control, change management, and build and process management.

Rational Team Concert is offered for several platforms including IBM i, AIX, z/OS, Red Hat (RHEL) and SUSE (SLES) Linux distributions, and Windows 2003 and 2008 Server. Implementations can have different limitations on different platforms. Such limitations are described in the Rational System Requirements webpage. For example, for latest 4.0.3 and 4.0.4 versions of Rational Team Concert, see the following website:  
https://jazz.net/wiki/bin/view/Deployment/CLMSystemRequirements403

**Note:** For access to jazz.net webpages, you must register yourself.
Rational Team Concert has an open, extensible architecture that supports a broad range of desktop clients, IDEs, languages, and platforms, as shown in the Rational Team Concert architecture diagram in Figure 16-6.

![Rational Team Concert architecture diagram](image)

**Figure 16-6  Rational Team Concert architecture**

### 16.2.1 Integration with Rational Developer for i

Rational Team Concert integrates with Rational Developer for i to provide IBM i developers an integrated collaborative application development environment. This integrated solution provides the value of the team collaboration capabilities of Rational Team Concert with the individual development environment of Rational Developer for i product.

Using Rational Team Concert and Rational Developer for i together, software development teams can develop IBM i applications using the tools that are provided by Rational Developer for i and the planning, team collaboration, build, source control management, defect tracking, and deployment tools that are provided by Rational Team Concert.

Using the IBM i Projects perspective available with Rational Developer for i, Rational Team Concert and Rational Developer for i work together so that you can share and modify files that are managed by Jazz based source control, in addition to files on the remote IBM i system.

**Installing and configuring the integration**

Additional installation and configuration steps are required to integrate Rational Developer for Power Systems Software and Rational Team Concert.
You can install the two products in two different ways by using IBM Installation Manager:

- Installing the two products at the same time or in the following order:
  a. Install Rational Team Concert.
  b. Install Rational Developer for i with Rational Team Concert client integration for IBM i feature.

- Installing the products in the following order:
  a. Install Rational Developer for i.

**Remember:** You cannot install the Rational Team Concert client integration for IBM i feature because the feature is not available if Rational Team Concert is not yet installed.

b. Install Rational Team Concert.

c. Start IBM Installation Manager and use the **Install** option to add Rational Team Concert client integration for IBM i feature to Rational Developer for i product, as shown in Figure 16-7.

![IBM Installation Manager](image)

**Figure 16-7 Installing Rational Team Concert Support for RDi v9.0**
Sharing i Projects in Rational Team Concert

Sharing IBM i Projects in Rational Team Concert is no different from sharing any other type of Eclipse project. You can manage IBM i source code with the IBM i Projects feature.

To make your IBM i Project available to other team members, complete the following steps:

1. From the menu for your i Project, click Team → Share Project, as shown in Figure 16-8.

![Figure 16-8 Share IBM i project](image-url)
2. Select **Jazz Source Control**, as shown in Figure 16-9, and click **Next**.

![Jazz Source Control Repository](image)

*Figure 16-9  Jazz Source Control Repository*

3. Specify the repository workspace to use.

4. Click **Finish**.

**Consideration:** If your IBM i Project contains any file types or folders that are ignored by Eclipse, the wizard prompts you to review them.

The IBM i Project is now added to a component in a repository workspace. Changes that you make in the i Project are copied to the repository workspace when you check them in.

**16.2.2 What is new in the latest releases of Rational Team Concert**

Several releases of IBM Rational Team Concert can be used together with other Rational tools to develop applications for IBM i 7.1.

For version 3, there are v3.0.0, 3.0.1 releases, and for version 4 there are v4.0.1, 4.0.2, 4.0.3, and 4.0.4 releases. Each release provides new functions and interoperability to the Rational Team Concert product.

For the latest information, see the following websites:

https://jazz.net/products/rational-team-concert/whatsnew/
https://jazz.net/downloads/rational-team-concert/
https://jazz.net/downloads/rational-team-concert/releases/4.0.4?p=news
As shown in Figure 16-10, select the version/release you are interested in (for example 4.0.4).
On the web page shown in Figure 16-11, click **New and Noteworthy**.

![Figure 16-11 Rational Team Concert V4.0.4 News](image)

### 16.2.3 Rational Team Concert and other Rational products interoperability

Rational Team Concert is a composition of numerous features and functions. It has its own versioning scheme, different from other Rational Development Tools such as IBM Rational Developer for i, IBM Rational Business Developer, IBM Rational Developer for Power Software (RDP), or IBM Rational Application Developer for WebSphere Software.

The support is mainly based on the version of the Eclipse environment, Rational Team Concert clients support, and the version of Rational Development Tools. Table 16-2 can be used as initial rough reference of interoperability.

<table>
<thead>
<tr>
<th>Rational Team Concert Version</th>
<th>Supported Eclipse Environments</th>
<th>Supported version of Rational Development tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0.3/4.0.4</td>
<td>Eclipse 3.6.2.3+/3.7.2+/4.2+</td>
<td>Version 9.0,</td>
</tr>
<tr>
<td>4.0.1/4.0.2</td>
<td>Eclipse 3.7.2/3.6.2</td>
<td>Version 8.5, 8.5.1</td>
</tr>
<tr>
<td>3.0.0/3.0.1</td>
<td>Eclipse 3.5.2/3.5.1/3.6.2</td>
<td>Version 8.0</td>
</tr>
</tbody>
</table>

**Attention**: Because Rational Team Concert is a rich set of functions and Rational Development products are generally complex, it is necessary to go to the actual requirements for individual Rational Team Concert and Rational Development products. There are many other factors like Eclipse version, JVM used, and server and client requirements. It is usually necessary to verify compatibility of all functions.
Following are some interesting Rational Team Concert requirements websites:

- System requirements for Collaborative Lifecycle Management 4.0.3 and 4.0.4
  https://jazz.net/wiki/bin/view/Deployment/CLMSystemRequirements403
- System requirements for the Rational Collaborative Lifecycle Management 4.0.1 and 4.0.2
  https://jazz.net/library/article/1109
- System requirements for Rational Team Concert 3.0.1.x, Rational Quality Manager 3.0.1.x, and Rational Requirements Composer 3.0.1.x (and Jazz Foundation 3.0.1.x)
  https://jazz.net/library/article/632
- IBM Software products installed together that share a common environment
  http://www-01.ibm.com/support/docview.wss?rs=2042&uid=swg21279139
- Limitations for sharing a common environment between IBM products based on Eclipse
  http://www-01.ibm.com/support/docview.wss?rs=&uid=swg27014124

16.2.4 General links for more information about Rational Team Concert

For more information about Rational Team Concert, see the following websites:

- Projects on jazz.net
  http://jazz.net/projects/rational-team-concert/
- Wiki that includes tutorials and articles on various topics
  https://jazz.net/wiki/bin/view/Main/RTCHome
- End to end tutorial
  https://jazz.net/wiki/bin/view/Main/RTCpHome
- ALM on IBM developerWorks
16.3 IBM Rational Development Studio for i

IBM Rational continues to have a tight collaboration with IBM Systems Technology Group (STG), IBM Software Group (SWG), and IBM Research Group to provide compilers that use the underlying hardware and operating systems for the Power architecture. The RPG, COBOL, C, and C++ ILE compilers for IBM i are enhanced for IBM i 7.1 with new features and functions. On April 13, 2010, the WebSphere Development Studio for IBM i was rebranded into Rational Development Studio for i (5770-WDS), as illustrated in Figure 16-12.

- RPG, COBOL, C, and C++ compilers for IBM i
  - Green screen development tools

![Figure 16-12  Rebranding the WebSphere Development Studio product](image)

Application Development ToolSet (ADTS) and Original Program Model (OPM) Compilers were previously stabilized. However, Rational Development Studio for i V7.1 does include enhancements for the ILE RPG and ILE COBOL compilers.

16.3.1 Source code protection option

Protecting your code is essential. Unfortunately, there are times when one of your customers encounters a problem. The easiest way to figure out the problem is to put a version of your code onto the system that can be debugged. However, this leaves your code unprotected. You can either expose your code or figure out another way to diagnose the problem.

In Version 7.1, the ILE compilers (RPG, COBOL, CL, C, and C++) and precompilers have a new parameter that you can use to encrypt your debug views. You can send code that can be debugged and know that your code is not exposed.

With the `DBGENCKEY` compiler option, you can specify the encryption key that is used to encrypt the program source that is embedded in debug views. The debugger requires the user to
enter the debug encryption key before the views are decrypted. The length of the key can be 1 - 16 bytes. A key of length of 1 - 15 bytes is padded to 16 bytes with blanks for the encryption. Specifying a key of length zero is the same as specifying *NONE. If the key contains any characters that are not invariant over all code pages, the user must ensure that the target system uses the same code page as the source system. Otherwise, the key might not match and decryption might fail. If the encryption key must be entered on systems with different code pages, the key must be made of characters from the (EBCDIC) invariant character.

To use this capability to protect data source code and at the same time allow the usage of the debug view, complete the following steps:

1. Encrypt the debug view so that the debug view is only visible if the person knows the encryption key by running the following command:

   ```
 CRTBNDRPG MYPGM DBGENCKEY('my secret code')
   ```

2. Then, either run `STRDBG MYPGM DBGENCKEY('my secret code')` or `STRDBG MYPGM` and wait to be prompted for the encryption key.

### 16.3.2 ILE RPG IV compiler and programming language

The following list details the ILE RPG compiler enhancements available with Rational Development Studio for i V7.1:

- ILE RPG IV as a modern programming language
- XML processing support with new ILE RPG options for XML-INTO for improved flexibility
- Increased developer productivity with ILE RPG built-in support for searching and sorting data structure arrays
- New built-in functions
- Support for ALIAS names
- Optional prototypes
- Implicit parameter conversion between alphanumeric, USC-2, and graphic data types

**Important:** For customers using Source Entry Utility (SEU) to edit the ILE RPG source, the syntax checkers do not recognize any features that were added after V6R1. All new and subsequent updates to the ILE RPG IV language will be made only for Rational Developer for i product. They will not be available in ADTS SEU editor.

**ILE RPG IV as a modern programming language**

The following changes have been made to the ILE RPG IV language:

- ILE RPG IV language now supports more free form RPG specifications. Today all specifications except for I and O (no longer used) are supported as free format.
- Embedded SQL statements can be now used in free format.
- There is no need for use of `/FREE .... /END-FREE` in almost every procedure.
- Better token-colorization in the RDi editor (RDi - Rational Developer for i v9.0), allowing programmers to have the same look-and-feel for RPG code as for other languages like Java or PHP.
Currently, there are several goals for current and future development of the RPG language:

- **Interoperability**
  - Java
  - XML
  - SQL
- **Readability**
  - Free form
  - Blank lines
  - Comments
- **Functionality**
  - Procedures
  - Data areas
  - Data structures
  - More data types
  - Extended file support
- **Modern tooling**
  - Rational Developer for i

Figure 16-13 shows an example ILE RPG program before the latest enhancements and updates.

```
FCUSTFILE E DISK
FREPORT O E PRINTER
ICUSTDS E DS
/COPY GETCURDAT
/COPY INVOICE
C READ CUSTFILE
C *INLR DOWNE*KON
C DUEDAT IFGT CURDAT
C EXSR SNOVDU
C WRTREPORTFM
C EXEC SQL INSERT :NAME, :DUEDATE INTO
C+ MYLIB/MYFILE
C/END-EXEC
C ENDFIF
C READ CUSTFILE LR
C ENDDO
C SNOVDU BEGSR
C CALL 'SNDINVCE'
C PARM CUSTDS
C PARM ISOVDU OVERDU 10
C ENDSR
```

*Figure 16-13  OPM IBM RPG/400® (RPG III) from OS/400 V2R3*
Figure 16-14 shows the example ILE RPG program after the latest V5R3 ILE RPG updates.

<table>
<thead>
<tr>
<th>H bnddir('ACCRCV') dftactgrp(*no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fcustfile uF e disk</td>
</tr>
<tr>
<td>Freport o e printer</td>
</tr>
<tr>
<td>D custDs e ds</td>
</tr>
<tr>
<td>D sendOverdueNotice...</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>/free</td>
</tr>
<tr>
<td>read custfile custDs;</td>
</tr>
<tr>
<td>dow not %eof;</td>
</tr>
<tr>
<td>if dueDate &gt; %date(); // overdue?</td>
</tr>
<tr>
<td>sendOverdueNotice ();</td>
</tr>
<tr>
<td>write reportFmt;</td>
</tr>
<tr>
<td>exec sql insert :name, :duedate into</td>
</tr>
<tr>
<td>mylib/myfile;</td>
</tr>
<tr>
<td>endif;</td>
</tr>
<tr>
<td>read custfile custDs;</td>
</tr>
<tr>
<td>enddo;</td>
</tr>
<tr>
<td>*inlr = '1';</td>
</tr>
<tr>
<td>/end-free</td>
</tr>
<tr>
<td>P sendOverdueNotice...</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>/copy invoices</td>
</tr>
</tbody>
</table>

Figure 16-14   ILE RPG Program example as it looked after V5R3 ILE RPG updates
Figure 16-15 shows the example ILE RPG program after the latest V7R1 ILE RPG enhancements.

```
ctl-opt bnddir('ACCRCV');
dcl-f custfile usage(*update);
dcl-ds custDs;
dcl-f report printer;

read custfile custDs;
dow not %eof;
 if dueDate > %date(); // overdue?
 sendOverdueNotice();
 write reportFmt;
 exec sql insert :name, :duedate into
 mylib/myfile;
 endif;
read custfile custDs;
enddo;
inlr = '1';

dcl-proc sendOverdueNotice;
 /copy invoices
 sendInvoice (custDs : IS_OVERDUE);
end-proc;
```

Figure 16-15 ILE RPG program example as it looks after latest V7.1 ILE RPG enhancements

The following article describes the free-form RPG:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/We13116a562db_467e_bcd4_862013aec57a/page/New%20with%20IBM%20i%207.1%20TR%20-%20Free-form%20H,%20F,%20D%20and%20P%20statements%20for%20RPG
Chapter 16. IBM Rational products

Figure 16-16 shows a picture of modern RPG possibilities and tools today.

For more information about RPG, see the following RPG Café website:

**New options for XML-INTO**

There are two new options for XML-INTO (also available through a PTF for IBM i 6.1):

- **datasubf** You can use this option to name a subfield that receives the text data for an XML element that also has attributes. Here is an example:
  
  ```rpg
 <emp type="regular" ID="13573">John Smith</emp>
  ```

- **countprefix** This option reduces the need for you to specify the `allowmissing=yes` option. It specifies the prefix for the names of the additional subfields that receive the number of RPG array elements or non-array subfields that are set by the XML-INTO operation.
New options for XML-INTO are shown in Example 16-1.

Example 16-1  New options for XML-INTO

D* RPG coding to get the information with one XML-INTO operation:
D* xml file content: <emp type="regular" id="13573">John Smith</emp>

D emp ds
D id 7p 0
D type 10a
D value 100a
/free
XML-INTO emp %xml('emp.xml' :
: 'datasubf=value doc=file');
// emp.id = 13573
// emp.type = 'regular'
// emp.value = 'John Smith'

16.3.3 Sorting and searching data structures

You can sort and search data structure arrays using one of the subfields as a key, as shown in Example 16-2.

Example 16-2  Sort and search data structures

#Sort a data structure array using one subfield as a key
// sort by name
SORTA info(*).name;

// sort by due date
SORTA info(*).dueDate;

#Search a data structure array using one subfield as a key
// search for a name
pos = %LOOKUP('Jack' : info(*).name);

// search for today’s date
pos = %LOOKUP(%date() : info(*).dueDate);

An array can be sorted in ascending order by using SORTA(A) and descending order by using SORTA(D). The array cannot be a sequenced array (ASCEND or DESCEND keyword), as shown in Example 16-3.

Example 16-3  Sort an array in descending order

//Sort the salary in descending order
SORTA(D) salary;

New and updated built-in functions

Several updated built-in functions can help simplify string management tasks:

%SCANRPL  Scans and replaces values.
%LEN      Gets and sets variable lengths.
%PARMNUM  Gets the parameter position.
The %SCANRPL built-in function scans for all occurrences of a value within a string and replaces them with another value, as shown in Example 16-4.

**Example 16-4  %SCANRPL**

```plaintext
// Replace NAME with 'Tom'
string1 = 'See NAME. See NAME run. Run NAME run.';
string2 = %ScanRpl('NAME' : 'Tom' : string1);
// string2 = 'See Tom. See Tom run. Run Tom run.'
```

The %LEN function can be used with a new optional second parameter *MAX to obtain the maximum number of characters for a varying-length character, UCS-2, or Graphic field.

The %PARMNUM built-in function returns a parameter's position in the parameter list, as shown in Example 16-5.

**Example 16-5  %PARMNUM**

```plaintext
CEEDOD (2 : more parms); // hard to understand
CEEDOD (%PARMNUM(city) : more parms); // better
```

Soft-coding the parameter's number makes the code easier to read and maintain.

### 16.3.4 ALIAS support

The prototypes are supported on D specs for any externally described data structure. There is the following ALIAS support:

- As shown in Example 16-6, you can use the ALIAS keyword on a Definition specification to indicate that you want to use the alternative names for the subfields of externally described data structures.

- You can use the ALIAS keyword on a File specification to indicate that you want to use the alternative names for LIKEREC data structures that are defined from the records of the file.

**Example 16-6  ALIAS keyword**

```plaintext
A R CUSTREC
A CUSTNM 25A ALIAS(CUSTOMER_NAME)
A CUSTAD 25A ALIAS(CUSTOMER_ADDRESS)
A ID 10P 0

D custDs e ds ALIAS
D QUALIFIED EXTNAME(custFile)
/free
 custDs.customer_name = 'John Smith';
 custDs.customer_address = '123 Mockingbird Lane';
 custDs.id = 12345;
```
Optional prototypes

If a program or procedure is not called by another RPG module, it is optional to specify the prototype. The prototype can be omitted for the following types of programs and procedures:

- A program that is intended to be used only as an exit program or as the command-processing program for a command.
- A program that is intended to be called only from another programming language.
- A procedure that is not exported from the module.
- A procedure that is exported from the module but intended to be called only from another programming language.

Here are some programs and procedures that do not require a prototype:

- An exit program, or the command-processing program for a command
- A program or procedure that is never intended to be called from RPG
- A procedure that is not exported from the module

Example 16-7 shows an example of an optional prototype.

Example 16-7  Optional prototypes

```
H main(hello)
P hello b
D pi expgm('HELLO')
D name 10a const
 /free
 sayHello();
...

P sayHello b
 /free
 dsply ('Hello ' + name);
```

Implicit Unicode conversion for parameters

Implicit CCSID conversion is now supported for prototyped parameters that are passed by VALUE and by a read-only reference (CONST). This conversion reduces the number of code changes that must be made when a database field is changed from alphanumeric or DBCS to Unicode (UCS-2 or UTF-16).

In Example 16-8, there is only a “makeTitle” procedure with a UCS-2 parameter and a return value. If the passed parameter is alpha or DBCS, it is converted to UCS-2 on the call. The procedure works with the UCS-2 parameter and returns a UCS-2 value. This returned value can then be converted on assignment to alpha or DBCS, if necessary.

Example 16-8  Implicit Unicode conversion for parameters

```
// makeTitle() upper-cases the parameter
// and centers it within the provided length

alphaTitle = makeTitle(alphaValue : 50);
ucs2Title = makeTitle(ucs2Value : 50);
dbcsTitle = makeTitle(dbcsValue : 50);
```
16.3.5 Performance improvement when returning large values

To obtain faster return values, you can now define a procedure with the RTNPARM keyword (see Example 16-9) to handle the return value as a hidden parameter. The RTNPARM keyword applies both to a prototype definition and to a procedure-interface definition.

Example 16-9  RTNPARM keyword

```
D getFileData pr a varying len(1000000)
D rtnparm
D file a const varying len(500)
D data S a varying len(1000)
D file a const varying len(500)
D data S a varying len(1000)
/free
 data = getFileData ('/home/mydir/myfile.txt');
```

When a procedure is prototyped to return a large value, especially a large varying value, the performance for calling the procedure can be improved by defining the procedure with this keyword.

The impact on performance because of the RTNPARM keyword varies from having a small negative impact to having a large positive impact. There can be a small negative impact when the prototyped return value is relatively small, such as an integer, or a small data structure. There is improvement when the prototyped return value is a larger value, such as a 32767-byte data structure. The performance improvement is most apparent when the prototyped return value is a large varying length string, and the actual returned value is relatively small. For example, the prototype defines the return value as a 1 million byte varying length character string, and the value ‘abc’ is returned.

Using RTNPARM for a procedure prototype can also reduce the amount of automatic storage that is required for other procedures that contain calls to that procedure. For example, if procedure MYCALLER contains a call to procedure MYPROC that returns a large value, procedure MYCALLER requires more automatic storage (even if MYCALLER does not call procedure MYPROC at run time). In certain cases, procedure MYCALLER cannot compile because of excessive automatic storage requirements; in other cases, MYCALLER is not able to be called because the total automatic storage on the call stack exceeds the maximum. Using RTNPARM avoids this problem with additional automatic storage.
**Teraspace storage model**

**Definition:** *Teraspace* is a large temporary space that is local to a job. A teraspace provides a contiguous address space but might consist of many individually allocated areas, with deallocated areas in between. Teraspace exists no longer than the time between job start and job end. A teraspace is not a space object, which means that it is not a system object, and that you cannot refer to it by using a system pointer. However, teraspace is addressable with space pointers within the same job.

The teraspace storage model has the following features:

- Much higher limits for automatic storage.
- Can compile *CALLER* programs with `STGMDL(*INHERIT)` so that they can be called from either single-level or teraspace programs.
- RPG’s `%ALLOC` and `%REALLOC` can allocate teraspace with a much higher limit.
- Teraspace allocations are the default in the teraspace storage model.
- You can specify H-spec `ALLOC(*TERASPACE)` to have teraspace allocations in any storage model.

**16.3.6 ILE COBOL compiler**

Here are the ILE COBOL compiler enhancements available with Rational Development Studio for iV7.1:

- The new COMP-5 data type is supported.
- You can use a non-numeric literal in the VALUE clause for a national data item.
- There are new `PROCESS` statement options:
– **ACTGRP**
  This option is now available as a **PROCESS** statement parameter with the option values of STGMDL, NEW, or CALLER.

– **NEVEROPTIMIZE**
  This option is now available as a **PROCESS** statement option.

– **STGMDL**
  This option is now available as a **PROCESS** statement parameter with the option values of INHERIT, SNGLVL, or TERASPACE.

– **XMLGEN**
  This option is now available as a **PROCESS** statement parameter with the option values of NOKEEPFILEOPEN / KEEPFILEOPEN or NOASSUMEVALIDCHARS / ASSUMEVALIDCHARS.

**Using SEU:** For customers using SEU to edit ILE COBOL source, the syntax checkers do not recognize any features that were added after V6R1.

### COMPUTATIONAL-5 or COMP-5 now supported

COBOL supports the COMP-4 binary type, which does not handle the full range of the binary value. For example, a 2 byte COMP-4 supports values -9999 - 9999, when a 2-byte integer supports values -32768 - 32767. The **NOSTDTRUNC** process option can be specified to force all COMP-4 values to be treated as true integers.

The COMP-5 type is a true integer. This type is a native binary data type that is supported by the **USAGE** clause. COMP-5 data items are represented in storage as binary data, and can contain values up to the capacity of the native binary representation (2, 4, or 8 bytes).

When numeric data is moved or stored into a COMP-5 item, truncation occurs at the binary field size rather than at the COBOL picture size limit. When a COMP-5 item is referenced, the full binary field size is used in the operation.

COMP-5 is supported by COBOL on IBM System z®. This support enhances portability to or from COBOL on other IBM platforms and operating systems.

Table 16-3 shows the equivalent SQL data types for the COBOL COMP-5 data type.

**Table 16-3 SQL equivalent data types**

<table>
<thead>
<tr>
<th>COBOL data type</th>
<th>SQL data type</th>
<th>SQL description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 name PIC S9(4) COMP-5.</td>
<td>SMALLINT</td>
<td>16-bit signed integer</td>
</tr>
<tr>
<td>01 name PIC S9(9) COMP-5.</td>
<td>INTEGER</td>
<td>32-bit signed integer</td>
</tr>
<tr>
<td>01 name PIC S9(18) COMP-5.</td>
<td>BIGINT</td>
<td>64-bit signed integer</td>
</tr>
</tbody>
</table>

- Encrypted debug view (see 16.3.1, “Source code protection option” on page 636).
  Allows programmers to include a debug view with their application that is only visible with an encryption key.

### OPTIMIZE(*NEVER) support to compile large programs

The new COBOL compiler command parameter **OPTIMIZE(*NEVER)** allows large COBOL programs to be compiled. This parameter is present in both **CRTBNDCBL** and **CRTCBLMOD** CL commands.
The **PROCESS** option **NEVEROPTIMIZE** is also added, and can be specified within the COBOL source file.

**OPTIMIZE(*NEVER)** and **NEVEROPTIMIZE** reduces the size of the generated code by preventing the COBOL compiler from generating the information necessary to optimize the program.

### Teraspace storage model

The storage model for a program or module can now be specified using the new **CRTCBLMOD** parameter **STGMDL** with the following values:

- **/SM590000**
  - ***SNGLVL**
    - This value specifies that the program / module is to be created with a single-level storage model.
  - **/SM590000**
    - ***TERASPACE**
      - This value specifies that the program / module is to be created with the teraspace storage model.
  - **/SM590000**
    - ***INHERIT**
      - This value specifies that the program / module is to inherit the storage model of its caller so that they can be called from either single-level or teraspace programs.

Additionally, the activation group parameter **ACTGRP** on the **CRTBNDCBL** command now has a new default option value. When you specify **STGMDL(*TERASPACE)**, the program is activated in the QILETS activation group. For all other storage models, the program is activated in the QILE activation group when it is called.

### XML GENERATE performance improvements

Performance improvements were made for **XML GENERATE** when the **APPEND** option is specified. Users who have many data records to be appended to a data structure or to a stream file benefit from these changes. The improvements include the addition of the new **PROCESS** statement parameter **XMLGEN** with the following option values:

- **NOKEEPFILEOPEN / KEEPFILEOPEN**
  - Specify **KEEPFILEOPEN** to indicate that the XML stream file is to be left open and not closed when the **XML GENERATE** statement is complete. This allows subsequent **XML GENERATE FILE-STREAM APPEND** statements to quickly append data to the stream file.
- **NOASSUMEVALIDCHARS / ASSUMEVALIDCHARS**
  - Specify **ASSUMEVALIDCHARS** to have **XML GENERATE** bypass the checking for special characters (less than “<”, greater than “>”, ampersand “&”, and the single and double quotation mark symbols), and for characters that are not supported by XML that must be generated as hexadecimal. Otherwise, normal checking is done with the default **NOASSUMEVALIDCHARS**.

Example 16-10 shows the usage of a **PROCESS** statement with **XML GENERATE**.

**Example 16-10   Improved performance for XML GENERATE**

```
PROCESS XMLGEN(KEEPFILEOPEN).
...
 * write out XML records to the stream file
 perform until DONE = 1
 read MYFILE next record into CUST-INFO
 ...
xml generate file-stream 'cust.xml' append from cust-info
```
16.3.7 ILE C and ILE C++

For ILE C and ILE C++ compilers, the following additions and modifications were made in IBM i 7.1:

- ILE C/C++ predefined macros
- do_not_instantiate and namemanglingrule pragmas
- ILE C++ decimal floating-point support
- ILE C++ compiler other enhancements
  - __func__ predefined identifier.
  - Hexadecimal floating-point literals
  - Variable length arrays
  - Empty arguments for function-like macros
  - Variable number of arguments for function-like macros

For more information about Rational Development Studio for i, go to:

Predefined macros

These macros can be grouped either for C or for C++. Most of them are new, and others were modified.

**C macros**

Here are the predefined macros for C:

- __C99_CPLUSCMT indicates support for C++ style comments. You can define it when the LANGLVL(*EXTENDED) compiler option is in effect.
- __IBMC__ indicates the version of the C compiler. It returns an integer of the form VRM, where V represents the version, R the release, and M the modification level. For example, using the IBM i 7.1 compiler with the TGTRLS(*CURRENT) compiler option, __IBMC__ returns the integer value 710.
- __ILEC400__ indicates that the ILE C compiler is being used.
- __ILEC400_TGTVRM__ is functionally equivalent to the __OS400_TGTVRM__ macro.
- __SIZE_TYPE__ indicates the underlying type of size_t on the current platform. For IBM i, it is unsigned int.

**C++ macros**

Here are the predefined macros for C++:

- __BOOL__ indicates that the bool keyword is accepted.
- __cplusplus98__interface__ can be defined when the LANGLVL(*ANSI) compiler option is specified.
- __C99_COMPOUND_LITERAL indicates support for compound literals and can be defined when the LANGLVL(*EXTENDED) compiler option is in effect.
- __C99_FUNC__ indicates support for the __func__ predefined identifier and can be defined when the LANGLVL(*EXTENDED) compiler option is in effect.
__C99_HEX_FLOAT_CONST indicates support for hexadecimal floating constants and can be defined when the LANGLEVEL(*EXTENDED) compiler option is in effect.

__C99_PRAGMA_OPERATOR indicates support for the _Pragma operator and can be defined when the LANGLEVEL(*EXTENDED) compiler option is in effect.

__C99_RESTRICT indicates support for the C99 restrict qualifier and can be defined when the LANGLEVEL(*EXTENDED) compiler option is in effect.

__C99_VARIABLE_LENGTH_ARRAY indicates support for variable length arrays and can be defined when the LANGLEVEL(*EXTENDED) compiler option is in effect.

__IBM_CPP__ indicates the version of the AIX Xpertise Library C++ compiler upon which the ILE C++ compiler is based. It returns an integer that represents the compiler version. For example, using the IBM i 7.1 compiler with the TGTRLS(*CURRENT) compiler option, __IBM_CPP__ returns the integer value 900, which means the ILE C++ compiler is based on the Xpertise Library C++ V9.0 compiler.

__IBM_ALIGN indicates support for the __align specifier.

__IBM_ATTRIBUTES indicates support for type, variable, and function attributes and can be defined when the LANGLEVEL(*EXTENDED) compiler option is in effect.

__IBM_COMPUTED_GOTO indicates support for computed GOTO statements and can be defined when the LANGLEVEL(*EXTENDED) compiler option is in effect.

__IBM_EXTENSION_KEYWORD indicates support for the __extension__ keyword and can be defined when the LANGLEVEL(*EXTENDED) compiler option is in effect.

__IBM_LABEL_VALUE indicates support for labels as values and can be defined when the LANGLEVEL(*EXTENDED) compiler option is in effect.

__IBM_LOCAL_LABEL indicates support for local labels and can be defined when the LANGLEVEL(*EXTENDED) compiler option is in effect.

__IBM_MACRO_WITH_VA_ARGS indicates support for variadic macro extensions and can be defined when the LANGLEVEL(*EXTENDED) compiler option is in effect.

__NO_RTTI__ can be defined when the OPTION(*NORTTI) compiler option is in effect.

__OPTIMIZE__ indicates the level of optimization in effect. The macro is undefined for OPTIMIZE(10). For other OPTIMIZE settings, the macro is defined with 2 for OPTIMIZE(20), 3 for OPTIMIZE(30) and 4 for OPTIMIZE(40).

__RTTI_DYNAMIC_CAST__ can be defined when the OPTION(*RTTIALL) or OPTION(*RTTICAST) compiler option is specified.

__RTTI_TYPE_INFO__ can be defined when the OPTION(*RTTIALL) or OPTION(*RTTITYPE) compiler option is specified.

### C and C++

Here are the predefined macros for C and C++:

__BASE_FILE__ indicates the fully qualified name of the primary source file.

__IBM_DFP__ indicates support for decimal floating-point types and can be defined when the LANGLEVEL(*EXTENDED) compiler option is in effect.

__IBM_INCLUDE_NEXT indicates support for the #include_next preprocessing directive.

__IBM_TYPEOF__ indicates support for the typeof keyword. This macro is always defined for C. For C++, it is defined when the LANGLEVEL(*EXTENDED) compiler option is in effect.

__IFS_IO__ can be defined when the SYSIFCOPT(*IFSIO) or SYSIFCOPT(*IFS64IO) compiler option is specified.
__IFS64_IO__ can be defined when the SYSIFCOPT(*IFS64IO) compiler option is specified. When this macro is defined, _LARGE_FILES and _LARGE_FILE_API are also defined in the relevant IBM-supplied header files.

__LONGDOUBLE64__ indicates that the size of a long double type is 64 bits. This macro is always defined.

LONG_LONG indicates support for IBM long long data types and can be defined when the LANGLVL(*EXTENDED) compiler option is in effect.

__POSIX_LOCALE__ can be defined when the LOCALETYPE(*LOCAL), LOCALETYPE(*LOCALEUCS2), or LOCALETYPE(*LOCALEUTF) compiler option is specified.

__UCS2__ can be defined when the LOCALETYPE(*LOCALEUCS2) compiler option is specified.

__UTF32__ can be defined when the LOCALETYPE(*LOCALEUTF) compiler option is specified.

__C99_MACRO_WITH_VA_ARGS__ indicates support for function-like macros with variable arguments. It is defined when the LANGLVL(*EXTENDED) compiler option is in effect.

__DIGRAPHS__ indicates support for digraphs.

Pragmas
The #pragma preprocessor directive allows each compiler to implement compiler-specific features that can be turned on and off with the #pragma statement. The do_not_instantiate and namemanglingrule pragmas are included in IBM i 7.1.

do_not_instantiate
The #pragma do_not_instantiate directive suppresses the instantiation of a specified entity. It is typically used to suppress the instantiation of an entity for which a specific definition is supplied. If you are handling template instantiations manually (that is, compiler options TEMPLATE(*NONE) and TMPLREG(*NONE) are in effect), and the specified template instantiation exists in another compilation unit, using #pragma do_not_instantiate ensures that you do not get multiple symbol definitions during the link step.

namemanglingrule
Name mangling or name decoration is a technique that is used to solve various problems that are caused by the need to resolve unique names for programming entities. You can use it to encode additional metadata information in the name of a function, structure, class, or another data type to pass more semantic information from the compilers to linkers. Most of the time, you need it when the language allows entities to be named with the same identifier if they occupy another namespace, which is typically defined by a module, class, or explicit namespace directive.

The #pragma namemanglingrule directive provides fine-grained control over the name mangling scheme in effect for selected portions of source code, specifically regarding the mangling of cv-qualifiers in function parameters. You can use it to control whether top-level cv-qualifiers are mangled in function parameters or whether intermediate-level cv-qualifiers are considered when the compiler compares repeated function parameters for equivalence.

Definition: cv stands for constant and volatile.

ILE C++ decimal floating-point support
Decimal (the classic day-to-day base 10) data is widely used in commercial and financial applications. However, most computer systems have only binary (base two) arithmetic, using 0 and 1 to represent numbers. There are two binary number systems in computers: integer
(fixed-point) and floating-point. Unfortunately, decimal calculations cannot be directly implemented with binary floating-point. For example, the value 0.1 needs an infinitely recurring binary fraction, but a decimal number system can represent it exactly as one tenth. So, using binary floating-point cannot ensure that results are the same as those using decimal arithmetic.

In general, decimal floating-point operations are emulated with binary fixed-point integers. Decimal numbers are traditionally held in a binary-coded decimal (BCD) format. Although BCD provides sufficient accuracy for decimal calculation, it imposes a heavy cost in performance because it is usually implemented in software.

IBM POWER6 and POWER7 processor-based systems provide hardware support for decimal floating-point arithmetic. POWER microprocessor core includes the decimal floating-point unit that provides acceleration for the decimal floating-point arithmetic.

ILE C++ compiler enhancements that are available with Rational Development Studio for iV7.1 include decimal floating-point support. The support has the following features:

- Allows floating-point computations to be performed by using decimal arithmetic (base 10).
- Avoids potential rounding errors when you convert binary floating-point data to / from human readable formats.
- Conforms to the decimal formats and arithmetic that is described in the IEEE 754-2008 Standard for Floating-Point Arithmetic.
- Adds support to the ILE C++ compiler, which is based on Draft Technical Report 24732 submitted to the ISO/IEC JTC1/SC22/WG14 Programming Language C committee.
- New data types:
  - _Decimal32, 4 bytes, 7 digits precision, and -95/+96 exponent
  - _Decimal64, 8 bytes, 16 digits precision, and -383/+384 exponent
  - _Decimal128, 16 bytes, 34 digits precision, and -6143/+6144 exponent
- Provides conversions to / from C++ built-in data types, such as integers and binary floating-point types
- Includes the DECFLTRND option for the C++ compiler commands (CRTCPPMOD and CRTBNDCPP) to control compile-time decimal floating-point rounding mode.

**ILE C/C++ compile-time round options**

With the DECFLTRND compiler option, you can specify the compile-time rounding mode for the evaluation of constant decimal floating-point expressions. This option does not affect the runtime decimal floating-point rounding mode, which is set using the setca built-in function.

Here are the possible values for this option:

- **HALF-EVEN**
  This setting is the default setting. It rounds to the nearest value, but, when in a tie, it chooses an even number. For example, 5.22 rounds to 5.2, 5.67 rounds to 5.7, and 5.55 and 5.65 round to 5.6.

- **DOWN**
  This value rounds toward zero, or truncates the result. For example, 5.22 rounds to 5.2, 5.67 rounds to 5.6, 5.55 rounds to 5.5, and 5.65 rounds to 5.6.

- **UP**
  This value rounds toward away from zero. For example, 5.22 rounds to 5.3, 5.67 rounds to 5.7, 5.55 rounds to 5.6, and 5.65 rounds to 5.7.
This value rounds toward the nearest value and, in a tie, rounds away from zero. For example, 5.22 rounds to 5.2, 5.67 rounds to 5.7, 5.55 rounds to 5.6, and 5.65 rounds to 5.7.

This value rounds toward the nearest value and, in a tie, rounds toward zero. For example, 5.22 rounds to 5.2, 5.67 rounds to 5.7, 5.55 rounds to 5.5, and 5.65 rounds to 5.6.

This value rounds toward negative affinity. For example, 5.22 rounds to 5.2, 5.67 rounds to 5.6, 5.55 rounds to 5.5, and 5.65 rounds to 5.6.

This value rounds toward positive infinity. For example, 5.22 rounds to 5.3, 5.67 rounds to 5.7, 5.55 rounds to 5.6, and 5.65 rounds to 5.7.

16.4 IBM Rational Open Access: RPG Edition

Rational Open Access: RPG Edition provides a way for RPG programmers to use the simple and well-understood RPG I/O model to access resources and devices that are not directly supported by RPG.

Open Access opens RPG's file I/O capabilities, allowing anyone to write innovative I/O handlers to access other devices and resources, such as:

- Browsers
- Mobile devices
- Cloud-computing resources
- Web services
- External databases
- XML files
- Spreadsheets

An Open Access application has three parts:

1. An RPG program that uses normal RPG coding to define an Open Access file and use I/O operations against the file.
2. A handler procedure or program that is called by Open Access to handle the I/O operations for the file.
3. The resource or device that the handler is using or communicating with.

Open Access is the linkage between parts 1 and 2. Licensed program 5733-OAR is required to use Open Access at run time.
Open Access does not provide handlers. A handler can be customer-developed or it can be provided by another provider, such as an ISV. The following list details the characteristics of a handler:

- A handler is a program or a procedure in a service program.
- A handler can be a generic handler that can handle any file of that device type, or it can be a handler that is specifically written to handle a particular “file”.
- A handler is not required to support every operation that RPG allows for that type of file. If the handler does not support a specific operation, then the RPG programmer must not code that operation. For example, for a PRINTER file, if the handler does not support the Force-End-Of-Data operation, then the RPG programmer does not code an FEOD operation for the file.

### 16.4.1 How to use Rational Open Access

There are two ways to use Rational Open Access: RPG Edition:

- Handler After
- Handler First

The following two sections describe how each approach is done.
**Handler After**
The handler is written after the application is written. For example, an existing application that uses 5250 display files is modified to use Open Access for the WORKSTN files, where:

- The RPG program is modified by adding the **HANDLER** keyword to the WORKSTN files.
- The handler must handle all the operations and requirements of the existing RPG program.
- This type of handler is often provided by an outside expert, such as a software tool vendor or IBM Business Partner.

**Handler First**
The handler is written before the application is written. For example, the RPG programmer wants to use a web service that returns information for a specific set of criteria, where:

- The handler provider creates a keyed database file that matches the web service.
- The handler provider can tell the RPG programmer what I/O operations that the handler supports.
- The RPG programmer codes the RPG program, using the file as an externally described keyed DISK file, with the **HANDLER** keyword to identify the Open-Access handler.
- The handler uses externally described data structures that are defined from the same file.
- This type of handler can be written by the same RPG programmer who uses the Open Access file, or it can be provided by an outside expert.

**Open Access Example**
Example 16-11 illustrates a web service that provides the weather based on City Name.

```plaintext
Example 16-11 Web service example
* Define the Open I/O file to use handler cityWeather
* in service program WEBSVCS/CITYWTHR
FweatherF IF E K DISK HANDLER('WEBSVCS/CITYWTHR(cityWeather)' (2) and (3)
F : commArea)
F EXTDESC('WEBSVCS/CITYWTHR') (4)
* Data structure to receive the weather information
D weatherDs ds likerec(wthrRec)
* Definitions for communication-area parameter that allows the RPG
* programmer to communicate directly with the handler
/copy WEBSVCS/QRPGLESRC,CITYWTHR
D commArea ds likeds(cityWeatherComm_t)
/free
// set up communication area parameter; Programmer is telling
// handler to deliver temperature in Celcius
commArea.temperatureUnit = CITYWTHR_CELCIUS;
// the CHAIN operation will call the handler
chain ('Chicago') wthrRec weatherDs; (1)
if %found;
 // process the data in weatherDs
```

Where:

1. A city name is input as a key.
2. An RPG keyed DISK “file” is used as the interface to the web service.
3. The handler provider chooses to handle OPEN, CLOSE, and CHAIN.
4. The handler provider puts all the required objects into library WEBSVCS, including:
   – A service program that contains the handler procedure
   – A binding directory for the RPG program to locate the service program with the handler
   – A /copy file to define the handler-specific information

An RPG program using PF CITYWTHR defines records and key information.

The following actions then occur:
1. RPG implicitly opens the “file” and calls handler cityWeather to handle the
   CHAIN operation.
2. The handler sets up information that is needed by the handler-specific data structure so
   that it can handle the CHAIN operation correctly. In this case, perhaps a socket to the web
   service URL is used.
3. When the RPG program does a CHAIN operation, RPG calls the handler again to handle
   the CHAIN operation.
4. After the handler returns, RPG determines the value of %FOUND according to the
   feedback from the handler.
5. When the RPG program ends with LR on, RPG implicitly closes the file and calls the
   handler again to handle the CLOSE operation. The handler closes the socket to the web
   service URL.

The handler service program uses PF CITYWTHR to define the records and key information, as
shown in Example 16-12.

Example 16-12  Handler service program

```rpg
H NOMAIN
/copy WEBSVCS/QRPGLESRC,CITYWEATHER
/copy QOAR/QRPGLESRC,QRNOPENACC
D wthrKey e ds extname('WEBSVCS/CITYWTHR':*KEY)
D wthrData e ds extname('WEBSVCS/CITYWTHR':*INPUT)
* The Handler:
P cityWeather...
P b export
D cityWeatherChain...
D pi
D info ds likeds(QrnOpenAccess_T)
D wthrInfo ds likeds(cityWeatherComm_t)
D key ds likeds(wthrKey)
D data ds likeds(wthrData)
D ds based(info.inputBuffer)
/free
...
if info.rpgOperation == QrnOperation_CHAIN;
 . . . call the web service using the key ... (not shown here) . . .
if an error occurred . . .
 info.rpgStatus = 1299;
else;
 // set the data values from the info returned by the web service
 data.precip = . . .
 data.temp = . . .
```
16.4.2 IBM Rational Open Access: RPG Edition withdrawn

Effective May 8, 2012, IBM withdrew from marketing the following programs and features, which were licensed under the IBM International Program License Agreement:

- 5733-OAR 1.1.0 IBM Rational Open Access: RPG Edition
- 5733-OAR 1.1.1 IBM Rational Open Access: RPG Edition

To encourage the adoption of the technology of Rational Open Access: RPG Edition and enhance the value of the IBM i platform and the RPG language, IBM removed the additional license entitlement requirement for Rational Open Access: RPG Edition for customers of IBM i and IBM Rational Development Studio for i. IBM i 6.1 and 7.1 program temporary fixes (PTFs) are available to enable Open Access: RPG Edition applications to run in the absence of a Rational Open Access runtime license, and to move the technology of Open Access: RPG Edition into Rational Development Studio for i. Here are descriptions of the relevant PTFs:

- A PTF for the RPG runtime function that checks for the 5733-OAR license: With this PTF, the function does not check for the 5733-OAR license, but instead returns the value that indicates that the license is valid.
- A PTF for the RPG compiler: With this PTF, the compiler does not generate a call to the RPG runtime license-checking function as part of the generated code for opening an Open Access file.
- A PTF to make the QOAR library part of the Rational Development Studio for i product: If you do not have 5733-OAR, you must apply this PTF to obtain the include files that are used for developing handlers. If you have 5733-OAR, it is not necessary to apply this PTF. However, any further updates or fixes to the include files are available only through more PTFs for the compiler product 57xx-WDS. 5733-OAR must be removed from the system before the PTF is applied.

As of February 1, 2012, running an ILE RPG program using an Open Access file is available, at no additional charge, to everyone who is licensed to use IBM i 6.1 and 7.1. Also, compiling an ILE RPG program using an Open Access file is available, at no additional charge, to everyone who is licensed to use the ILE compilers feature of either IBM Rational Development Studio for i 7.1 or IBM WebSphere Development Studio for i 6.1.

For the announcement letter and more PTF information, see the RPG Cafe at:

16.4.3 Open Access requirements

Here are the Open Access requirements for IBM i 6.1 and IBM 7.1:

- **IBM i 6.1:** IBM WebSphere Development Studio for i V6.1 (5761-WDS) or RPG runtime V6.1 (5761-SS1) with applicable PTFs
- **IBM i 7.1:** IBM Rational Development Studio for i V7.1 (5770-WDS) or RPG runtime V7.1 (5770-SS1) with applicable PTFs
- For IBM i 6.1
  - POWER5/5+: 9407-515, 9406-520, 9406-525, 9406-550, 9406-570, 9406-MMA, 9406-595, 9406-800, 9406-810, 9406-825, 9406-870, and 9406-890
  - BladeCenter: 7998-61X
- For IBM i 7.1
  - POWER7: 8233-E8B, 9117-MMB, 9179-MHB, 8406-70Y, or 8406-71Y
  - BladeCenter: 7998-60X, 7998-61X, or 7778-23X
  - POWER5/5+: 9405-520, 9407-515, 9406-520, 9406-525, 9406-550, 9406-570, or 9406-595

For more information about Open Access RPG Edition, go to:

16.5 Other Rational and RPG related tools - ARCAD

As part of the IBM application development tools strategy there are also available tools from open source community as well from third-party providers. One third-party-provided tool is ARCAD-Transformer RPG product.

16.5.1 ARCAD-Transformer RPG tool

Because ILE RPG IV language (its syntax) has been modernized in the terms of allowing most of RPG specifications (except for I and O) to be free format, there was space opened for a tool that can convert old ILE RPG IV fixed format source code to free format.

Such a tool is now available from ARCAD software called ARCAD-Transformer RPG. This tool is able to convert RPG IV code, including calculation specifications (C) and declaration specifications (H, F, D, P).

The ARCAD-Transformer tool is delivered and maintained by ARCAD software. The product is also sold by IBM as part of the ARCAD Pack for Rational under the name ARCAD Converter.

Prerequisites for this tool are IBM Rational Developer for Power Software V8.5 or IBM Developer for i V9.0. ARCAD-Transformer RPG works as an Eclipse plug-in for these Rational tools. For more information, see the Arcad website:
http://www.arcadsoftware.com/
16.5.2 ARCAD Pack for Rational

IBM has become a reseller of ARCAD Pack for Rational, which is an extension to the IBM Rational Developer for i and IBM Rational Team Concert.

ARCAD Pack for Rational provides modern development enhancements to Rational Team Concert and Rational Developer for i. Designed specifically to complement these Rational products, ARCAD Pack provides a modern collaborative development environment, supporting both agile and traditional methods. ARCAD Pack for Rational uses deep dependency analysis to provide audit, impact analysis, intelligent build, and deployment capabilities. It also allows RPG code to be converted to the latest free format RPG specifications.

ARCAD Pack for Rational helps IBM i development teams deliver high-quality software faster based on six main components:

- **ARCAD-Observer** provides in-depth application analysis and visualization.
  - Provides deep dependency analysis and powerful change impact analysis coupled with graphical presentation and reporting, giving analysts and developers a much faster understanding of applications.
  - Automates program and application documentation production.
  - Synchronizes dependency information with code that is in Rational Team Concert.
  - Integrates with Rational Developer for i for making dependency information available to developers when and where they need it.

- **ARCAD-Builders** supports complex integration builds of composite IBM i applications.
  - Automate 100 percent of the build process for any type of IBM i component.
  - Manage and save data, and automatically restore into a new file structure.
  - Automate the recompilation sequencing of dependent components.
  - Manage all compilation specifics, such as SQL and ILE compilations.
  - Use ARCAD-Builders with Rational Team Concert.

- **ARCAD-Deliver** automates and synchronizes deployment across multiple platforms with automatic rollback on error.
  - Deploys any type of files to any number of servers that host UNIX, AIX, Linux, Windows, and IBM i operating systems.
  - Coordinates deployment of all platform components in a single transfer.
  - Allows return to the previous release at any stage during the implementation, using automatic rollback.
  - Provides validated integration with Rational Team Concert.

- **ARCAD-Audit**: provides IBM i code audit and restructuring.
  - Analyzes libraries and source code to identify relationships between components (such as programs and files), databases, and work fields.
  - Identifies application components that are no longer used.
  - Provides tools for rapid clean-up of applications: compare, archive, compile, and delete obsolete components with full traceability and security.
  - Cleans applications before loading Rational Team Concert.
► **ARCAD-Converter** (also known as **ARCAD Transformer RPG**) converts RPG to free form RPG.
- Converts RPG to free form RPG.
- Supports the latest language specifications.
- Includes Rational Developer for i plug-in.
- Provides one-off or bulk conversion.

► **CASE and 4GL support** allows CASE/4GL environments to be managed.
- Allows CASE and 4GL tools to be managed.
- Supports CA 2E (SYNON), LANSA, Adelia, and JDE (JE Edwards) tools.
- Provides integration with native development IDEs.
- Is integrated with Rational Team Concert.

More information can be found on the following website:

The ARCAD Software web page contains information about the ARCAD Pack for Rational and ARCAD tools included in this product:
http://www.arcadsoftware.com/products-scm-rational

16.6 IBM Rational Application Management Toolset for i

Rational Application Management Toolset for i provides IBM i system administrators and other advanced users with a lightweight set of tools for the common tasks of working with library file system objects, and for creating and maintaining Command Language (CL) programs.

Application Management Toolset for i is a subset of the Application Development Toolset (ADTS), which is sold as part of WebSphere Development Studio for i V6.1 or as part of Rational Development Studio for i V7.1. Two of the key components of ADTS are Programming Development Manager (commonly known as PDM) and Source Entry Utility (commonly known as SEU).
The new Application Management Toolset for i includes these two components, in modified form, as illustrated in Figure 16-18.

![Application Development Toolset (ADTS) and Application Management Toolset (AMTS)](image)

**Figure 16-18** Application Management Toolset for i includes modified components of ADTS

The version of SEU that is included in Application Management Toolset for i supports only editing of the CL source. It does not support editing of source members that are written in other languages, such as RPG, COBOL, C, C++, or DDS. Like SEU, this editor provides language-sensitive features, such as syntax checking and prompting for CL source members.

Application Management Toolset for i supports the operating system member types CL, CLLE, CLP, TXT, and CMD in the `EDTCLU` (same as `STRSEU`) command.

The version of PDM that is included in Application Management Toolset for i can be used to browse, move, filter, and manipulate objects of any type. However, it enables only software development options (such as Edit and Compile) for CL objects.

Application Management Toolset for i supports the following functions from PDM:

- All the menu functions of `STRPDM` (new command `STRMT`)
- All the functions of `WRKLIBPDM` (new command `WRKLIBAMT`)
- All the functions of `WRKOBJPDM` (new command `WRKOBJAMT`), including `FNDSTRPDM` (new command `FNDSTRAMT`), except for:
  - No option 18 to call DFU.
  - No option 34 to call ISDB.
  - No option 54 to call CMPPFM.
- All the functions of `WRKMBRPDM` (new command `WRKMBRAMT`), including `FNDSTRPDM` (new command `FNDSTRAMT`), with the following exceptions:
  - Option 2 (Edit) uses the new command `EDTCLU`, which supports only the CL, CLLE, CLP, TXT, and CMD member types.
  - No option 17 to call SDA.
  - No option 19 to call RLU.
– No option 54 to call CMPPFM.
– No option 55 to call MRGSRC.

None of the other components from ADTS are included with Rational Application Management Toolset for i.

### 16.6.1 Application Management Toolset for i Licensing

IBM Rational Application Management Toolset for i V6.1.0 (5761-AMT) is licensed per processor, for unlimited usage on that processor by any number of persons. The license is priced according to the software tier of the system on which Application Management Toolset for i is used.

Like WebSphere Development Studio for i and Rational Development Studio for i, ongoing maintenance and support costs for Application Management Toolset for i are included in the IBM i system Software Maintenance agreement (SWMA).

### 16.6.2 Application Management Toolset for i Requirements

- **Hardware requirements:**
  
  IBM Rational Application Management Toolset for i V6.1 supports all the hardware models that support IBM i 6.1 and 7.1.

- **Software requirements:**
  
  IBM Rational Application Management Toolset for i V6.1 supports IBM i 6.1 and 7.1.

### 16.6.3 Accessing Application Management Toolset for i

The main menu for Application Management Toolset for i (AMT) (Figure 16-19) can be accessed by running `STRAMT`.

```
Application Management Toolkit (AMT)

Select one of the following:

1. Work with libraries
2. Work with objects
3. Work with members

9. Work with user-defined options

Selection or command
 ==> F3=Exit F4=Prompt F9=Retrieve F10=Command entry
 F12=Cancel F18=Change defaults
```

*Figure 16-19  Main menu for Application Management Toolkit for i*
16.7 IBM Rational Host Access Transformation Services (HATS)

IBM Rational Host Access Transformation Services (HATS) is a tool that allows you to transform applications using text-based 5250 user interface into web pages. HATS allows you to quickly create a web application from an existing 5250 application without manually changing the source code. It is also able to connect to IBM Mainframe 3270 screens at the same time, and general UNIX VTY screens, run macros there, gather the data, and present data from multiple system them in a single webpage.

16.7.1 HATS general description

The HATS tool is based on the Eclipse environment like other Rational development tools. The latest version v9.0 uses Eclipse 4.2.2.

As a prerequisite for development activity it needs one of the following Rational products:

- Rational Developer for i V9.0
- Rational Business Developer V9.0
- Rational Application Developer for WebSphere Software V9.0
- Rational Software Architect for WebSphere Software V9.0
- Rational Developer for AIX and Linux V9.0

The following are the supported runtime Java application servers:

- IBM i - Release Overview V7.1 and future modification levels and their fix packs
- IBM i - Release Overview V6.1 and future modification levels and their fix packs
- IBM i - Release Overview V5.4 and future modification levels and their fix packs
- Apache Geronimo 2.2.1 and future modification levels and fix packs
- Apache Geronimo 2.1.7 and future modification levels and fix packs
- WebSphere Application Server - different versions of Express/Base/Network Deployment editions from version 7.0 to the latest 8.5.5.
- Oracle WebLogic server 12c (12.1.1) and future modification levels and their fix packs

Note: Any of the WebSphere, WebLogic, and Apache Geronimo technologies can run on a different platform from where they are supported (IBM i is not mandatory). These servers then connect using telnet, or secure telnet protocol to the IBM i server where the original 5250 application runs.

HATS V9.0 can create two types of clients, the first is web based running in a web browser, and the second is a client/server based client running either in Lotus Notes, Lotus Expeditor environment, or in Eclipse SDK environment.

Supported web browsers include the following:

- Mozilla Firefox
- Android
- Google Chrome
- Apple Safari
- Apple Safari on iOS
- Microsoft Internet Explorer
- Microsoft Internet Explorer mobile browser
- Konqueror
- Opera
Rational HATS can also create portlets when used with IBM Rational Application Developer for WebSphere Software. It supports different IBM WebSphere Portal Server Editions from version 7.0 to version 8.0.

For detailed system requirements and possible limitations, see the following website:
http://www-01.ibm.com/support/docview.wss?uid=swg27011794

16.7.2 HATS basic functionality

IBM Rational Host Access Transformation Services (HATS) transforms traditional text-based interfaces, such as 3270 and 5250 green-screen applications, into web, portlet, rich client, or mobile device user interfaces. It also extends 3270, 5250, and virtual terminal (VT) applications as standard web services. With Rational HATS, you can easily convert traditional text-based host application screens to user-friendly GUIs.

Rational HATS is available in the following packages:
- Rational HATS for Multiplatforms and HATS for Linux on zSeries
- Rational HATS for 5250 Applications on Multiplatforms
- Rational HATS for 5250 Applications on i5/OS

Note: Rational HATS for Multiplatforms can create applications using IBM i 5250, IBM Mainframe 3270, and UNIX VT based screens (VT is only for capturing data, not screens). Rational HATS for 5250 can only use IBM i 5250 screens.

The Rational HATS product provides both a HATS Toolkit (Windows Eclipse based plug-in for development of HATS applications) and a HATS run time. The HATS toolkit can be downloaded for no extra cost from the Rational HATS product web page.

Rational HATS allows you to reuse your existing assets in the following innovative ways:
- **Terminal applications**
  - Transforms the user interface of your 3270 and 5250 green-screen applications.
  - Allows tunable default rendering of all non-customized panels of the application.
  - Transforms specific panels using panel customizations and transformations.
  - Transforms terminal application components, such as function keys and menu items, into intuitive links, buttons, or text with images.
- **Web services**
  - Extends 3270, 5250, and VT application core business logic as web services or JavaBeans.
  - Captures panel flows, inputs, and outputs with a wizard-based macro recorder. Allows you to edit what is captured with the Visual Macro Editor, and creates integration objects and web services from the screen flows.
  - Reuses terminal application business logic in new business processes and applications.
► **Customization**

- Provides customizable workflow and application navigation.
- Rational HATS simplifies panel navigation with macros and screen combinations.
- Uses global variables to store data, pre-fill drop-down menus or pop-up windows, and input information for the user.
- Can transform a text-based user interface with a rich set of GUI widgets, such as drop-down menus, calendars, tables, pop-up windows, and radio buttons.
- Using business logic, Rational HATS augments terminal applications by aggregating terminal application data with other data sources.

► **HATS Toolkit**

- Provides wizard-based, visual development including visual page design and macro editing.
- Works with a supported Rational IDE environment, such as IBM Rational Application Developer for WebSphere Software, or Rational Business Developer, or Rational Developer for i V9.0 + Modernization Tools, EGL Edition.
- Provides access to standard Eclipse features such as Java development tools.
- Features a wizard-based development process for creating Rational HATS applications.

► **Deployments**

- Routes applications to IBM WebSphere Application Server and IBM WebSphere Portal Server, as well as a number of devices and clients.
- Creates standard web applications for deployment to WebSphere Application Server.
- Customizes portlets with the Rational HATS Toolkit for deployment to WebSphere Portal Server.
- Optimizes web applications for mobile devices running Apple iPhone OS or Microsoft Windows Mobile.
- Creates a standard Eclipse rich client application for deployment to IBM Lotus Notes, Lotus Expeditor, or Eclipse Rich Client Platform.

For more information about the IBM Rational HATS product, see the following websites:

► Rational HATS product web page:

► IBM Rational Host Access Transformation Services (HATS) V9.0 Knowledge Center:
IBM Navigator for i 7.1

This chapter introduces the following enhancements for IBM Navigator for i:

- New name: IBM Navigator for i
- Dynamic navigation
- Independent tabs
- 5250 emulation-related enhancements
- Set target system enhancements
- Database enhancements
- New journal management enhancements
- Integrated Server Administration enhancements
- Printer output enhancements
- File system enhancements
- Networking enhancements
- Disk management enhancements
- Rebuild data on failed disk unit in parity set
- Creating a logical partition with IBM Navigator for i
- Tape support enhancements
- Performance enhancements
- JS1- Advanced Job Scheduler for i enhancements
- Backup Recovery Media Services: Plug-in enhancements
17.1 New name: IBM Navigator for i

The interface that was previously known as IBM Systems Director Navigator for IBM i underwent a significant transformation and now has tremendous usability and performance enhancements. Its new name is IBM Navigator for i.

**Note:** IBM Navigator for i is the strategic application for IBM i administration tasks. New administration tasks are supported only by the web application and will no longer be added to the System i Navigator Windows client application.

17.1.1 IBM i functions available on the IBM Navigator for i

Most of the functions, including plug-ins, are available through the web interface (IBM Navigator for i) and Windows client interface (System i Navigator), with the following exceptions:

- **Available tasks:** The following tasks are only available in IBM Navigator for i:
  - Performance Data Investigator (PDI)
  - PowerHA
  - Clustering resource services
  - Internet configuration
    - IBM Web Administration for i: Allows you to manage and configure HTTP servers and application servers.
    - Digital Certificate Manager: Allows you to create, distribute, and manage digital certificates.
  - IBM IPP Server for i: Allows you to configure the IBM IPP server.

- **Unavailable tasks:** The following tasks are *not* available within IBM Navigator for i:
  - Run SQL scripts
  - Visual Explain
  - Database Navigator maps
  - SQL assist
  - AFP manager

- **Available plug-ins to IBM Navigator for i:**
  - IBM Advanced Job Scheduler for the System i server
  - Backup Recovery and Media Services (BRMS)
  - Performance Tools for System i
  - System i High Availability Solutions Manager (5761-HAS)
  - DB2 Content Manager OnDemand for System i
  - Lotus Domino for System i servers

**Cluster Resource Services plug-in:** The Cluster Resource Services plug-in for System i Navigator from the High Availability Switchable Resources licensed program (IBM i option 41) was removed in IBM i 7.1.

For more information, see the IBM Navigator for i website:

http://www-03.ibm.com/systems/i/software/navigator/availplugins.html
17.1.2 IBM Navigator for i requirements

IBM Navigator for i is installed as part of the IBM i operating system. It is part of SS1 option 3. The following list of IBM i license programs is recommended to use with IBM Navigator for i:

- 5770SS1 option 1, Extended Base Support
- 5770SS1 option 3, Extended Base Directory Support
- 5770SS1 option 12, Host Servers
- 5770SS1 option 30, Qshell
- 5770SS1 option 33, Portable App Solutions Environment
- 5770DG1 value *BASE, IBM HTTP Server for i
- 5761JV1 value *BASE, IBM Developer Kit for Java
- 5761JV1 option 8, J2SE 5.0 32 bit

The actual PTFs are all packaged and delivered as part of the HTTP PTF group. In addition, a number of other PTF groups are required to ensure that all parts of the IBM Navigator for i interface function properly:

- SF99368 level 18, HTTP Server group
- SF99145 level 4, Performance Tools group
- SF99701 level 22, Database Group PTF
- SF99572 level 12, Java Group PTF

For the most current list of required PTFs for IBM Navigator for i, see the following website:


Internet configuration tasks: Using IBM Navigator for i to perform Internet configuration tasks using the Internet Configurations option requires additional IBM i installed licensed programs and PTFs. This is a similar requirement to IBM i Access for Web. For more information, see 18.5.1, “Requirements for using IBM i Access for Web” on page 825.

17.1.3 Signing on to IBM Navigator for i

You can access the IBM Navigator for i interface by typing in the URL address field of your browser:

http://systemname:2001

A sign-on window is displayed as shown in Figure 17-1.

![IBM Navigator for i sign-on window](image-url)
If your password is expired, you can update the password on the IBM Navigator for i sign-on window, as shown in Figure 17-2.

![IBM Navigator for i expired password](image)

Figure 17-2  IBM Navigator for i expired password

After you sign on, the Welcome window opens, as shown in Figure 17-3.

![IBM Navigator for i Welcome page](image)

Figure 17-3  IBM Navigator for i Welcome page
17.2 Dynamic navigation

With IBM Navigator for i, you have a quick and dynamic navigation vehicle with performance and usability that is similar to the IBM i Navigator client environment, but without the need to do an installation or do any management on the client side.

The containers open quickly, and you can reach endpoints with fewer clicks. It is also possible to dynamically update the content by clicking the **Reload** icon as shown in Figure 17-4.

Previously, the left navigation was a static list with only core functionality enabled. Now the interface has dynamic navigation, making the left frame a true navigation area.
17.3 Independent tabs

Because there are independent tabs that have their page contents cached, you can quickly switch back and forth between tabs without a refresh on the server side. You can also open a tab in a new window, as shown in Figure 17-5. Right-click the **Active Jobs** tab and click **Open in a new window**. A new browser window opens and displays the Active Jobs.

![Figure 17-5 Active Jobs tab opening in a new window](image)
17.3.1 Modern tables

IBM Navigator for i has the following new features that are related to tables and filters, as shown in Figure 17-6:

- Click column to sort.
- Right-click any row to display a list of functions.
- Fast filtering (by selecting the quick filter option).
- Hover on any row to see details.
- Select how many entries to show.
- Fast path to the page you want to see.

![Figure 17-6   Enhancements to tables and filters]

Note: Do not press Enter when you use the Quick filter option, as the window updates automatically when you enter the filtering argument. If you press Enter, you discard the search argument and do not get the correct output.
17.4 5250 emulation-related enhancements

You can now access the same 5250 emulation portlet that is included with IBM i Access for Web by using the System option within IBM i management in IBM Navigator for i, as shown in Figure 17-7. This option makes it easier to use a single interface for managing IBM i systems and partitions.

![System option in IBM i management](image)

Figure 17-7  5250 emulation using the System option in IBM i management
However, as you can see in Figure 17-8, you cannot customize the 5250 emulation portlet from within the IBM Navigator for i console.

![IBM Navigator for i 5250 emulation session]

**Figure 17-8  IBM Navigator for i 5250 emulation session**

### 17.5 Set target system enhancements

IBM Navigator for i is enhanced so that you can work with multiple systems from a single interface using the Set Target System feature. You can manage an IBM i system or partition by selecting the target system. After this system or partition is selected, all data that are returned to the IBM Navigator for i interface is for this system or partition.

IBM Navigator for i can manage a target IBM i 6.1, or 7.1 system or partition. The options that are available on that target partition or system can vary depending on the IBM i release that is on that target system or partition.
As shown in Figure 17-9, click the **Set Target System** task in the task navigation area to specify the system or partition to be managed. Select the system or partition name, the corresponding user ID and password, and click **OK**.

![Figure 17-9  Setting the target system to manage another system or partition](image)

The example in Figure 17-9 shows IBM Navigator for i on a IBM i 7.1 system and shows that the select target system selection changed to another system IBM i 7.1.

With the Set Target System feature, the IBM Navigator for i management server runs in one place. One single browser can be used to manage multiple environments and management is extended to previous IBM i environments.

### 17.6 Database enhancements

This section describes the following database enhancements:

- On Demand Performance Center enhancements
- Health center enhancements
- Database management enhancements
- Database Maintenance category enhancements
- Long SQL schema names enhancements
- OmniFind text search functions enhancements

Other database enhancements are discussed in other various locations in this book:

- 5.3.38, “Enhanced analyze program summary detail” on page 211
- 5.4.53, "Navigator – Improved Index Build information" on page 260
- 5.5.18, “IBM i Navigator improved ability to mine journals” on page 279
- 5.7.2, “Navigator for i - Omnifind Collection Management” on page 286
- 5.2.11, “New generate SQL option for modernization” on page 187
- QSYS2.SYSLIMITS in 5.5.15, “Tracking important system limits” on page 270
17.6.1 On Demand Performance Center enhancements

This section describes the following enhancements:

- New centralized authority model
- Enhanced filtering support
- SQL performance monitor enhancement
- Enhancements to Index Advisor and the indexes list

New centralized authority model

Support is added in IBM i 7.1 for a centralized authority model that is used when you work with all the SQL performance tools.

Previously, a system security officer needed to grant the *JOBCTL user special authority so that database analysts and database administrators could use the database tools. Because the *JOBCTL authority allows a user to change many system critical settings that are unrelated to database activity, it was not an easy decision for security officers to grant this authority. In certain cases, *JOBCTL was not granted to database analysts, thus prohibiting the usage of the full set of database tools.

In IBM i 7.1, the security officer can authorize access to the database analysis tools, and the SQL Plan Cache. DB2 for i takes advantage of the function usage capability available in the operating system.

A function usage group that is called QIBM_DB was created. In IBM i 7.1, there are four function IDs in the QIBM_DB group:

- QIBM_DB_SQLADM (IBM i Database Administrator tasks)
- QIBM_DB_SYSMON (IBM i Database Information tasks)
- QIBM_DB_DDMDRDA (DDM and DRDA Application Server Access)
- QIBM_DB_ZDA (Toolbox Application Server Access)

The security officer can grant authorities by using either of the following methods:

- Granting *JOBCTL special authority
- Authorizing a user or group to the IBM i Database Administrator Function through Application Administration in IBM Navigator for i
To authorize a user or group within IBM Navigator for i, complete the following steps, as shown in Figure 17-10:

1. Expand **IBM i Management**.
2. Click the **System** category.
3. Click **Application Administration**.

![Figure 17-10 Application Administration](image)

In the Application Administration window, complete the following steps, as shown in Figure 17-11:

1. Click **Host Applications** on the left side menu.
2. Expand **IBM i**.
3. Expand **Database**.
4. Click **Customize** from the menu to the right of Database Administrator.

![Figure 17-11 Database Administrator - Customize](image)
You can customize the access to the Database Administrator functions, as shown in Figure 17-12.

Tip: You can use the Change Function Usage (CHGFCNUSG) command, with a function ID of QIBM_DB_SQLADM, to change the list of users that are allowed to perform database administration operations. The function usage controls which groups or specific users are allowed or denied authority. The CHGFCNUSG command also has a parameter (ALLOBJAUT(*USED)) that can be used to grant function usage authority to any user who has *ALLOBJ user special authority.

The access customization configuration for the database administration operations can also be performed in a similar way for database information-related operations. The same is true for the DDM and DRDA Application Server Access and the Toolbox Application Server Access.
**Enhanced filtering support**

There are more filters for the SQL performance monitors. The new filters include the client registers filters that are shown in Figure 17-13. They allow even more granularity to help reduce the amount of data collected.

![Figure 17-13 Filter the database monitor collection](image)

**SQL performance monitor enhancement**

SQL Details for a Job can start a SQL Performance Monitor from the jobs list. You can select **Start SQL Performance Monitor** from the **Select Action** menu on the SQL Details for Jobs window, as shown in Figure 17-14.

![Figure 17-14 Start SQL Performance Monitor from SQL details for a job](image)
Enhancements to Index Advisor and the indexes list

Within IBM Navigator for i, there are several enhancements to Index Advisor and the indexes list.

**Index Advisor enhancements**

IBM Navigator for i has the following maintained temporary index (MTI) information within the Index Advisor, which is shown in Figure 17-15:

- **First Advised**
  Date / time when a row is first added to the Index Advisor table for this advice.

- **MTI Created**
  Number of times that this specific MTI was created by the optimizer. MTIs do not persist across system IPLs.

- **MTI Used**
  Number of times that this specific MTI was used by the optimizer.

- **MTI Last used**
  The time stamp that represents the last time this specific MTI was used by the optimizer to improve the performance of a query. This field can be blank, indicating that an MTI that exactly matches this advice was never used by the queries that generated this index advice.

- **MTI Used for Statistics**
  The number of times that this specific MTI was used by the optimizer for statistics.

- **MTI Last Used for Statistics**
  The time stamp that represents the last time that this specific MTI was used by the optimizer to obtain statistics for a query.

![Index Advisor - MTI information](image)
**Indexes list enhancements**

The indexes list includes information for the last time the index was built, as shown in Figure 17-16.

![Figure 17-16 Last built index information](image)

The indexes list also includes columns for SSD (Media Preference) and Keep In Memory values, as shown in Figure 17-17.

![Figure 17-17 Index columns for SSD and Keep In Memory values](image)

For more information related to the DB2 Media Preference, see 8.4.1, “DB2 media preference” on page 407.

**Tip:** You might need to add the columns so that they show up, as they are not displayed by default. Select the **Columns** option in the Actions menu to add those columns.
17.6.2 Health center enhancements

Figure 17-18 shows an example where an SQL0901 category was added to the Environmental Limits tab, which helps to log situations where the database engine has an unknown error and more data must be collected.
Random and sequential I/O counts are collected and displayed in the Activity tab, as shown in Figure 17-19.

**Sequential reads:** The sequential reads are available on the next page of the Activity tab.

17.6.3 Database management enhancements

Support was added in IBM i 7.1 for the following new database features:

- XML Data type column support
- XML schema repository
- Global variables
- Array support
- FIELDPROC support
- Three-part names support
- Procedure creation and definition
- Function creation and definition
- Viewing and editing table contents
XML Data type column support
Support is now available for XML Data type column within the IBM Navigator for i interface, as shown in Figure 17-20.

Figure 17-20 XML Data type column support

For more information related to this support, see 5.2.1, “XML support” on page 161.

XML schema repository
An XML schema repository (XSR) was introduced to store information about an XML schema to allow for document validation or decomposition (shredding).

With IBM i 7.1, support was added for listing and working with XSRs. However, there is no support to create an XSR using this IBM Navigator for i interface.
Global variables
Support is available for global variables within the IBM Navigator for i interface, as shown in Figure 17-21.

For more information related to global variables, see 5.2.4, “Creating and using global variables” on page 169.
Array support

Figure 17-22 shows the support that is available for array types within the IBM Navigator for i interface.

For more information related to array support, see 5.2.5, “Support for arrays in procedures” on page 170.
FIELDPROC support

IBM i 7.1 has FIELDPROC support at the column level. To use this support, select the Implements Field procedure option when you define the column when you create or alter a table. As shown in Figure 17-23, specify the schema and the corresponding procedure name.

![Figure 17-23 FIELDPROC column support](image)

For more information related to FIELDPROC support, see 5.2.7, “FIELDPROC support for encoding and encryption” on page 174.
Three-part names support

Figure 17-24 shows an example of how to define a three-part alias by referencing a table on a remote system. The corresponding SQL statement is also displayed.

Support availability: This support is available for a table, a view, or an alias.
Procedure creation and definition

You can create and define a procedure from within the Actions menu, as shown in Figure 17-25.

There are two options available:

- SQL procedure
- External procedure

**New menu option:** There is also a new menu option called “New based on...”, which you can use to build a similar procedure from an existing one.
Function creation and definition
It is possible to create a function from within the Actions menu, as shown in Figure 17-26.

There are three options available:
- Sourced
- SQL
- External
Viewing and editing table contents

You can view and edit table contents from within the **Actions** menu, as shown in Figure 17-27.

![Figure 17-27](image_url)
SQL privilege statements

Generate SQL supports the option to include SQL privilege statements. This output option is on by default, as shown in Figure 17-28.

Figure 17-28  Generate SQL - including SQL privileges
Several usability enhancements

In IBM i 7.1, it is possible to save list contents to various output formats. In Figure 17-29, the list contents of all schemas within the database is saved into a comma-separated value file within the IFS of the system.

Figure 17-29  Save list contents
Figure 17-30 shows an example where it is specified that, from the list of procedures within a library, only those containing a specific text string within their name are displayed.

**List support:** This list support is also available for Tables, Indexes, Aliases, Views, Functions, Triggers, Index Advice, Condensed Index Advice, SQL Plan Cache Snapshots, SQL Plan Cache Event Monitors, Schemas, Database Transactions, and Global Transactions.
17.6.4 Database Maintenance category enhancements

Figure 17-31 shows the new Database Maintenance category that you can use to organize database maintenance lists for table reorganizations, index builds, text search index builds, table alters, and check pending constraints.

Figure 17-31  New maintenance category for database maintenance
Progress pages were added for index builds, text search index builds, and table alters. The window that is shown in Figure 17-32 shows the progress that occurs as the index is built.

**Figure 17-32**  Progress page for index builds

**Work with Job:** From within this same interface, you can get to the corresponding job by clicking the **Work with Job** button.
In addition, history information is shown in the table reorganization progress window, as shown in Figure 17-33.

The Total Elapsed Time field shows the time of all the history entries plus the current entry. For example, if you start reorganizing a table, you see an entry in the history section for the current run. It is updated and shows in green.

If you choose to suspend that instance of the reorganization and resume it later, you see a row in the history section for the previous instance, and a new row for this instance.

The Total elapsed time value then includes both the previous instance of the reorganization, plus this current instance of the reorganization. The history applies to only the history of the reorganization for one instance of the reorganization of this table. It does not show the prior history of completed reorganizations of this table.

From within this same interface, you can now further drill down into the corresponding job by clicking the **Work with Job** button.

**Improved functionality:** The reorganize progress in releases before IBM i 7.1 required that you find the table and select to reorganize it to see whether it is being reorganized. This process is an easier way to accomplish the same task because the **Table Reorganizations** option in the Database Maintenance category is now available.
17.6.5 Long SQL schema names enhancements

Support for long schema names was added throughout the database pages to support the porting of database applications from other databases, and to support more descriptive schema names.

Figure 17-34 defines a new Long Schema Name within an IBM i 7.1 database.

![Figure 17-34](image.png)

Figure 17-34 Long name support for schemas

17.6.6 OmniFind text search functions enhancements

OmniFind is a text search product that IBM i users can use to search through unstructured text that is stored in a column of a DB2 for i table. The text that is stored in the column can be either simple character text, an XML document, or any of several types of rich text documents, such as a PDF or a .doc file. You can use this product to index unstructured data without parsing it into a structured form, such as an SQL table.

Figure 17-35 shows the support that enables the management of OmniFind text search servers and indexes.

![Figure 17-35](image.png)

Figure 17-35 OmniFind text search support

The support for OmniFind text search in DB2 adds simpler access to non-structured data that is often stored in XML format.
For more information about OmniFind as a text search product, see 5.7, “OmniFind Text Search Server for DB2 for i (5733-OMF)” on page 285.

For more information, see the OmniFind Text Search Server for DB2 for i topic in the IBM i 7.1 Knowledge Center:
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzash%2Frzashkickoff.htm

17.7 New journal management enhancements

You can now manage journal environments through IBM Navigator for i. Following is a list of the additional functions added to journal management in IBM i 7.1:

- Show Journaled Objects function
- Change Receivers function
- Remote Journals function
- Add Remote Journal function
- Properties function
- Activate function
- Deactivate function
- Remove function
- Properties function

For more information related to journal management capabilities and enhancements, see 5.3, “Performance and query optimization” on page 189.

17.7.1 Show Journaled Objects function

The **Show Journaled Objects** function is added for a journal, as shown in Figure 17-36. This function displays the objects that are added to the journal, including files, data areas, data queues, libraries, and integrated file system objects.

![Figure 17-36   Showing journaled objects](image-url)
17.7.2 Change Receivers function

The **Change Receivers** function is added for a journal, as shown in Figure 17-37. You can use this function to attach a new journal receiver to the journal and change the attributes of a journal, including the fixed-length data values, receiver maximum option, minimize options, and other options.

![Figure 17-37 Changing receiver](image)

17.7.3 Remote Journals function

The **Remote Journals** function is added for a journal, as shown in Figure 17-38. You can use this function to see a list of all the remote journals that are associated with a journal. Included in the list are the remote journal state and the delivery mode.

![Figure 17-38 Remote journals related information](image)
17.7.4 Add Remote Journal function

The Add Remote Journal function was added for a journal, as shown in Figure 17-39. You can use this function to define a remote journal environment.

![Figure 17-39 Adding remote journal](image)

17.7.5 Properties function

The Properties function was added for a journal receiver, as shown in Figure 17-40. You can use this function to view the attributes of a journal receiver. Included in the attributes are the sequence number of the first entry in the journal receiver, the minimize options, the fixed-length data options, and other options.

![Figure 17-40 Properties action for a journal receiver](image)
17.7.6 Activate function

The **Activate** function was added for remote journals, as shown in Figure 17-41. You can use this function to activate a remote journal and specify options.

![Figure 17-41 Activating a remote journal](image)

17.7.7 Deactivate function

The **Deactivate** function was added for remote journals, as shown in Figure 17-42. You can use this function to deactivate a remote journal.

![Figure 17-42 Deactivating a remote journal](image)
17.7.8 Remove function

The **Remove** action was added for remote journals, as shown in Figure 17-43. You can use this function to remove a remote journal environment.

![Figure 17-43  Removal of a remote journal](image)

17.7.9 Properties function

The **Properties** function was added for remote journals, as shown in Figure 17-44. You can use this function to view the properties of a remote journal connection, which includes the delivery mode, remote journal type, connection statistics, and so on.

![Figure 17-44  Properties for a remote journal](image)

17.8 Integrated Server Administration enhancements

The following Integrated Server Administration topics were added to IBM Navigator for i in IBM i 7.1:

- Create Server function
- Creating a server based on an existing server (cloning)
- Delete Server function
- Launch Web Console function

For more information related to Integrated Server Administration, see Chapter 11, “Integration with IBM BladeCenter and IBM System x” on page 475.
17.8.1 Create Server function

The Create Server function was added so that you can create the IBM i hosting environment for an iSCSI attached BladeCenter or System x server, as shown in Figure 17-45.

The Create Server wizard starts. This function is described in more detail in 11.7.1, “Create Server task” on page 484.
17.8.2 Creating a server based on an existing server (cloning)

It is also possible to create a server that is based on an existing one. The New Based on option (cloning) is shown in Figure 17-46. It starts the Create Server wizard and creates an iSCSI-attached integrated Windows server that is based on one that was previously installed.

Figure 17-46 New Based On option (cloning) a server task
17.8.3 Delete Server function

The **Delete Server** function was added for deleting the IBM i hosting environment for an integrated server, as shown in Figure 17-47.

![Figure 17-47 Deleting a server](image)
17.8.4 Launch Web Console function

The Launch Web Console function was added for launching the service processor web console for an iSCSI attached integrated server, as shown in Figure 17-48.

Starting with IBM i 7.1, several iSCSI configuration functions were simplified. For more information about these functions, see 11.7, “IBM Navigator for i” on page 484.

17.9 Printer output enhancements

In IBM i 7.1, new functions were added to the View as PDF and Export as PDF functions.
17.9.1 View as PDF function

The View as PDF function was added so that you can view an AFPDS or SCS printer output file, as shown in Figure 17-49. You can use this function to open and view the contents of a printer output file using Adobe Acrobat Reader.

Figure 17-49 Printer output - View as PDF

17.9.2 Export as PDF function

The Export as PDF function was added to export an AFPDS or SCS printer output file, as shown in Figure 17-50.

Figure 17-50 Printer output - Export as PDF

You can use the Export as PDF function to save the contents of a printer output file to the following sources:
- Your client desktop or file system
- An output queue
- The Integrated File System (IFS)
- An attachment to an email
If more spool files are selected, output can be saved to an archive file, see Figure 17-51.

![Figure 17-51 Export more spools to archive file](image.png)

**Requirement:** For the last three options listed, the Infoprint Server licensed program 5722-IP1) is required. Users can use the native IBM Transform Services for i (5770-TS1) licensed program to export to the IFS, but they must map a network drive to the IFS and then select the first option, as shown in Figure 17-50 on page 709.

### 17.10 File system enhancements

Improvements have been made to the file system interface in the navigation area. The ability to drill down to find the content you are after quickly and easily is one of the most useful updates to the entire interface. If you click a folder in left navigation area, the content under that folder is shown in the right work area. You can then perform various operations on selected files or folders by right-clicking them.

In addition, a couple new features have been added:

- **Editing a file.** IBM Navigator for i now can do simple edits within the browser for some file types. When you right-click the file you want to edit in the right work area, the action menu is displayed. If the selected file is one that is editable, the **Edit** option is active. Select **Edit** and the selected file is displayed in a simple text editor. Make the updates that you require and save the document, or you can save the document as a new file.
Figure 17-52 shows editing a file.

Figure 17-52   IFS editing a file

- **Downloading and uploading files.** One of the features that many clients like about the client Navigator is the ability to easily move files from your PC or network drivers to your IBM i file system. IBM Navigator for i now has two new functions. You can now download or upload files to your IBM i.

  Right-click the file of choice, or you can highlight multiple files and right-click, to display the action list. Select **Download** and the download interface is shown with all the files that you have selected as shown in Figure 17-53. When you click the **Download** button, these selected files are downloaded to your PC. You can then determine where you want them to be located.

Figure 17-53   IFS download feature
Figure 17-54 shows the IFS upload feature.

- **A temporary file system is supported.** The temporary file system can be created by creating a user-defined file system (UDFS) by specifying .TMPUDFS= as the extension instead of the default .UDFS for the UDFS name field as shown in Figure 17-55.

  For more information about temporary user-defined file system support, see 19.3, “Temporary user-defined file systems” on page 831.
17.11 Networking enhancements

Internet Protocol version 6 (IPv6) is enabled for Remote Access Services as shown in Figure 17-56.

![IPv6 support for remote access services](image)

IKE version 2 is enabled for VPN, as shown in Figure 17-57.

![Internet key exchange V2 enablement for VPN](image)

For more information related to networking enhancements in IBM i 7.1, see Chapter 9, “Networking enhancements” on page 421.
17.12 Disk management enhancements

There are several enhancements within IBM Navigator for i within IBM i 7.1 that are related to disk management:

- Graphical view enhancements
- Start and stop encryption on disk pools enhancements
- Asynchronous delivery for Geographic Mirroring enhancements

Tip: You must follow these procedures before you can perform any disk management tasks using IBM Navigator for i or System i Navigator. For more information, see the Requirements for disk management topic in the IBM i 7.1 Knowledge Center: http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzaly/rzalyplanning.htm?lang=en

17.12.1 Graphical view enhancements

To access the graphical view, complete the following steps:

1. From the IBM Navigator for i Welcome window (Figure 17-3 on page 670), click Configuration and Service → Disk Units.
2. Access to the Disk Unit function requires you to log in to system service tools (SST) as shown in Figure 17-58.

Figure 17-58 Logging in to system service tools
3. From the **Actions** menu, click **Graphical View** as shown in Figure 17-59.

![Figure 17-59  Disk Units - Graphical View menu](image-url)
4. The Disk Units graphical view opens as shown in Figure 17-60.

Figure 17-60  Disk Units graphical view
17.12.2 Start and stop encryption on disk pools enhancements

The Start / Stop encryption on disk pools feature is now enabled within IBM Navigator for i. You can use a change encryption key when the encryption starts as shown in Figure 17-61.

![Figure 17-61  Disk management - Start / Stop encryption](image)

17.12.3 Asynchronous delivery for Geographic Mirroring enhancements

IBM Navigator for i also provides asynchronous communications between the source and target servers for geographic mirroring, as shown in Figure 17-62.

![Figure 17-62  Asynchronous delivery mode](image)

For more information related to asynchronous transmission delivery for geographic mirroring, see 4.1.6, “Asynchronous geographic mirroring” on page 135.
17.13 Rebuild data on failed disk unit in parity set

IBM Navigator for i has added a rebuild data action for the disk units list. This action provides the user the ability to rebuild data on failed disk units that belong to a failed parity set and also allows the user to easily recover from the failure.

This function is similar to the Work with Disk Unit Recovery function to rebuild device parity disk unit data. The rebuild function is now part of the web navigator interface. Figure 17-63 illustrates the rebuild data on failed disk unit in parity set.

![Image](image1)

**Figure 17-63** New action of rebuild data

Figure 17-64 shows confirming the rebuild.

![Image](image2)

**Figure 17-64** Rebuild data on a disk unit confirmation window
Figure 17-65 shows the rebuild status.

![Figure 17-65 Status of the rebuild process](image)

### 17.14 Creating a logical partition with IBM Navigator for i

Virtual Partition Manager provides the capability to create and manage Linux or IBM i partitions without the use of the Hardware Management Console (HMC). Virtual Partition Manager supports the needs of small and medium customers who want to add simple Linux or IBM i workloads to their server. In addition, they can isolate Linux and IBM i workloads into separate partitions.

The Virtual Partition Manager supports environments with a hosting IBM i partition and up to four client Linux or IBM i partitions. The hosting IBM i partition must own and manage all of the I/O resources. The logical partition uses virtual I/O to access disk, tape, DVD, and Ethernet resources that are owned by the hosting partition.

**Assigning physical I/O resources:** Assignment of physical I/O resources to client partitions and dynamic movement of virtual I/O resources is not supported. You must power off the client partition to move the virtual I/O resources. Memory and processor resources can be added or removed when the partition is powered on, but that requires an IPL to take effect.

**HMC consideration:** You cannot use Virtual Partition Manager on an IBM i server that is configured using an HMC. This means that you must disconnect your IBM i server from the HMC before you can use the Virtual Partition Manager. You can only use Virtual Partition Manager on the hosting IBM i partition. PowerVM Standard or Enterprise edition is required to support four client partitions.

IBM Navigator for i provides a graphical interface for Virtual Partition Manager. This function requires IBM i 7.1 Technology Refresh 6 and PTFs SI48848 and SI49568.
To create a logical partition using IBM Navigator for i, complete these steps:

1. From the IBM Navigator for i navigation area, select Configuration and Services → All Tasks → Partition Management → Create Partition. From the Partitions window, select Create Partition as shown in Figure 17-66.

   ![Figure 17-66 Navigator for i, Partition Management, Partitions](image)

2. Follow the Create Partition wizard instructions, which create an IBM i or Linux partition as shown in Figure 17-67.

   The Create Partition function associates virtual Ethernet connections between client partitions and the hosting partition. This association is done by specifying the same VLAN ID for virtual Ethernet adapters in both the client and hosting partitions.

   IBM Navigator for i also creates and associates the required network server description (NWSD) and network storage space (NWSSTG) objects in the hosting partition. There are several options for implementing virtual Ethernet. For more information, see the following publications:

   - Virtual Partition Manager A Guide to Planning and Implementation, REDP-4013, Chapter 6 “Establishing Network Connectivity for Linux Partitions” shows the proxy ARP method.

   - Creating IBM i Client Partitions Using Virtual Partition Manager, REDP-4806, section entitled “Ethernet Layer-2 Bridging” shows how to set up layer-2 bridging.

   ![Figure 17-67 Navigator for i, Create Partition wizard](image)

3. The last step of creating logical partition is to install operating system on your logical partition.
17.15 Tape support enhancements

To access the new Tape Devices option, in the IBM Navigator for i Welcome window, click Configuration and Service then select All Tasks, shown in Figure 17-68.

![Figure 17-68 Selecting tape device options](image)

In the Tape Devices menu, you have the following options available:

- **Stand-Alone Devices** offers the following possibilities:
  - Make (un)available
  - Look into the properties
  - Upgrade the firmware

- **Tape Image Catalogs** offers the following possibilities:
  - Add or list volumes
  - Look at the properties

- **Tape Libraries** offers the following possibilities:
  - Make (un)available
  - Look into the properties

- **Create Image Catalog**
- **Create Virtual Device**
17.16 Performance enhancements

When discussing the performance enhancements within IBM Navigator for i, it is assumed that the IBM HTTP Server for i 7.1 Group PTF (SF99368) is installed on your system. More information is available on the Preventive Service Planning website:

http://www-912.ibm.com/s_dir/sline003.nsf/554c38c4848b77f2862567bd0046e003/56ff79c9506270c98625771400478c7f?OpenDocument

Figure 17-69 shows the IBM Navigator for i interface that is used to work with performance-related tasks within IBM i 7.1.

![Performance tasks within IBM Navigator for i](image)

Several enhancements were made to the Performance Data Investigator (PDI), which can be accessed by selecting the **Investigate Data** task, shown in Figure 17-70.

![Investigate Data option](image)
17.16.1 General health indicators

This content package helps a system administrator, an IBM i performance specialist, or a general user learn whether the partition is performing properly from a general performance management perspective or if areas of the system need to be investigated.

Main system resources and components (such as processor, DASD, and memory) and communications are analyzed. The results are displayed graphically. The main source of data for analysis is the Collection Services performance data files.

The new content package, which deals with the general health of your partition, is shown in Figure 17-71.

![Figure 17-71 Health indicators](image)

The following subsets of information are now available:

- System Resources Health Indicators
- CPU Health Indicators
- Disk Health Indicators
- Memory Pools Health Indicators
- Response Time Health Indicators
System Resources Health Indicators
You can use this perspective to determine the general health of the main system resources according to the defined thresholds. Figure 17-72 shows health indicators for CPU, Disk, Memory, and communications for the entire selected collection.

![System Resources Health Indicators](image)

Figure 17-72  System Resources Health Indicators

You can use this perspective to quickly determine the percentage of intervals that exceeded the various defined thresholds for CPU, Disk, Memory Pools, and Response Time.

From the System Resources Health Indicators perspective, you can open the following new perspectives:

- CPU Health Indicators
- Disk Health Indicators
- Memory Pools Health Indicators
- Response Time Health Indicators
Each of these perspectives consists of key metrics that are associated with the system resource that is being investigated. The perspectives are available through the Actions menu, as shown in Figure 17-73, and are described in more detail in the following sections.

Figure 17-73  System Resources Health Indicators menu
CPU Health Indicators

You can use this perspective to determine the proportion of intervals where processor health indicators exceeded the defined thresholds. The chart in Figure 17-74 shows you processor health indicators by analyzing all collection time intervals according to the defined thresholds for processors.

From the CPU Health Indicators perspective, you can open the following perspectives:

- CPU Utilization and Waits Overview
- CPU Utilization Overview
- Interactive Capacity CPU Utilization
At the top of the CPU Utilization and Waits Overview window, you can click View→Show System Information to get the system-related information displayed in the heading of the window, as shown in Figure 17-75.
Disk Health Indicators
The perspective in Figure 17-76 shows disk health indicators by analyzing all collection time intervals according to the defined thresholds for the disk. This chart can be used to determine the proportion of intervals where the disk health indicators exceeded the defined thresholds.

From the Disk Health Indicators perspective, you can open the following perspectives:

- Resource Utilization Overview
- Disk Overview by Disk Pools
- Disk Details by Disk Pools
Memory Pools Health Indicators

The perspective in Figure 17-77 shows memory pools health indicators by analyzing all collection time intervals according to the defined thresholds for memory pools. This chart can be used to determine the proportion of intervals where the memory pools health indicators exceeded the defined thresholds.

![Memory Pools Health Indicators](image)

**Figure 17-77 Memory Pools Health Indicators**

From the Memory Pools Health Indicators perspective, you can open the following perspectives:

- Resource Utilization Overview
- Page Faults Overview
Response Time Health Indicators
Figure 17-78 shows response time health indicators by analyzing all collection time intervals according to the defined thresholds for response time. This chart can be used to determine the proportion of intervals where the response time exceeded the defined thresholds.

From this perspective, you can open the 5250 Display Transactions Overview perspective.
Defining the health indicators thresholds
With IBM i 7.1, the health indicators can be user-defined if the IBM defaults do not meet your business requirements. They can be configured by selecting the Define Health Indicators action from the Select Action list, as shown in Figure 17-79.

Figure 17-79   Defining the disk health indicators threshold

This new action is available from the following perspectives:
- System Resources Health Indicators
- CPU Health Indicators
- Disk Health Indicators
- Memory Pools Health Indicators
- Response Time Health Indicators

Figure 17-79 shows how to modify the disk health indicators thresholds by specifying the current threshold values as 10 for the Warning field and 20 for the Action field for the Average Disk Response Time.
By correctly defining those threshold values, you have a point of reference to visually determine whether the system is between its defined control limits. Figure 17-80 has an overview with the following Average Disk Response Time information:

- The green area shows the percentage of intervals where the Average Disk Response Time is below the defined Warning Threshold value.
- The yellow area shows the percentage of intervals where the Average Disk Response Time is above the defined Warning Threshold value and below the defined Action Threshold value.
- The red area shows the percentage of intervals where the Average Disk Response Time is above the defined Action Threshold value.

![Figure 17-80 Threshold that is reached for average disk response time](image-url)
It is possible to define various thresholds for a specific Graphical Health Indicator graph. Figure 17-81 shows an example of the CPU Health Indicators, where thresholds for each of the following are defined:

- Partition CPU Utilization
- Jobs CPU Utilization
- Interactive CPU Utilization

![Figure 17-81  Multiple thresholds can be defined](image)

All the individual thresholds can be added, removed, and tailored to your own specifications.

### 17.16.2 Viewing cross-partition processing

Collection Services can collect high-level cross-partition processor performance metrics for all logical partitions on the same single physical server regardless of the operating system that is running.
Collection Services are available on POWER6 and later servers with a minimum firmware level of x340_061. When this data is available, it can be viewed through several perspectives that are found under the Physical System menu, which is shown in Figure 17-82.

![Perspectives - Physical System Diagram]

There are several perspectives available under Physical System:

- Logical Partitions Overview
- Donated Processor Time by Logical Partition
- Uncapped Processor Time Used by Logical Partition
- Virtual Processor Pool Utilization
- Physical Processors Utilization by Physical Processor
- Dedicated Processors Utilization by Logical Partition
- Physical Processors Utilization by Processor Status Overview
- Physical Processors Utilization by Processor Status Detail
- Shared Memory Overview
Attention: Collection Services can collect high-level cross-partition processor performance metrics for all logical partitions when enabled. The performance information collection must be turned on on one of the IBM i partitions to collect the data. That partition collects data from all partitions on the same server. The setting is not required on each partition. Setting is done on the HMC Console, which is shown in Figure 17-83.

To turn on this option, from the HMC, complete the following steps:

1. Select **Systems Management ➔ Servers**.
2. Click your IBM i system.
3. Select the partition profile.
4. Click **Properties**.
5. Click the **Hardware** tab.
6. Click **Processors**.
7. Check box **Allow performance information collection**.
8. Click **OK**.
Logical Partitions Overview

Figure 17-84 shows configuration data and processor usage for all logical partitions on the system, including operating system, number of virtual processors, partition memory, donated processor time, uncapped processor time that is used, and so on.

![Logical Partitions Overview](image)
Donated Processor Time by Logical Partition

Figure 17-85 shows the processor time that is donated by dedicated processor logical partitions that are configured to donate unused processor cycles.

Figure 17-85  Donated Processor Time by Logical Partition
Uncapped Processor Time Used by Logical Partition

Figure 17-86 shows the uncapped processor time that was used by logical partitions in excess of their entitled processing capacity.

Figure 17-86  Uncapped Processor Time Used by Logical Partition
Virtual Shared Processor Pool Utilization

Figure 17-87 shows the processing capacity available and processing capacity usage for virtual shared processor pools.
Physical Processors Utilization by Physical Processor

Figure 17-88 shows the usage percentage for each physical processing unit.

Figure 17-88  Physical Processor Utilization by Physical Processor
Dedicated Processors Utilization by Logical Partition

Figure 17-89 shows the dedicated processor usage by logical partitions.
Physical Processors Utilization by Processor Status Overview

Figure 17-90 shows a summary of processors usage for the entire collection, identifying usage for dedicated processors and for shared processors.
Physical Processors Utilization by Processor Status Detail

Figure 17-91 shows processor usage over time. It shows the dedicated processors and the shared processors.
Shared Memory Overview

Figure 17-92 shows shared memory pool use by the partition on an interval-by-interval basis. This information can be used to find the partition's usage of the memory shared pool and metrics that are the sum of the activity that is caused by all partitions using the memory shared pool.

Figure 17-92  Shared memory overview
17.16.3 New Database package

There is now a robust graphical interface for the Database perspective that is enabled by Collection Services support, as shown in Figure 17-93:

- New perspectives are available within the Database perspective
- Support for SQL Plan Cache and SQL Performance Monitor database performance files
- Collection services include physical I/O breakdown by SQL activity

**Required program:** IBM i 7.1 5770-PT1 licensed program Performance Tools - Manager Feature - Option 1 must be installed to use this interface.

**Database I/O**

For the Physical I/O perspective, the following detailed views are available:

- Physical Database I/O Overview
- Physical Database I/O by Job or Task
- Physical Database I/O by Thread or Task
- Physical Database I/O by Generic Job or Task
- Physical Database I/O by Job User Profile
- Physical Database I/O by Job Current User Profile
- Physical Database by Subsystem
- Physical Database by Server Type
Physical Database I/O Overview
This chart shows physical database I/O by SQL-related and non-SQL related synchronous and asynchronous read and write rates per second.

Physical Database I/O by Job or Task
This chart shows the breakdown of SQL-related and non-SQL related, synchronous and asynchronous, and read and write physical database I/O requests as an I/O rate per second grouped by job or task and ranked by the largest contributors. Use this chart to select contributors for further detailed investigation.

Physical Database I/O by Thread or Task
This chart shows the breakdown of SQL-related and non-SQL related, synchronous and asynchronous, and read and write physical database I/O requests as an I/O rate per second grouped by thread or task and ranked by the largest contributors. Use this chart to select contributors for further investigation.

Physical Database I/O by Generic Job or Task
This chart shows the breakdown of SQL-related and non-SQL related, synchronous and asynchronous, and read and write physical database I/O requests as an I/O rate per second grouped by the first six characters of the job or task name and ranked by the largest contributors. Use this chart to select contributing groups for further investigation.

Physical Database by Job Current User Profile
This chart shows the breakdown of SQL-related and non-SQL related, synchronous and asynchronous, and read and write physical database I/O requests as an I/O rate per second grouped by the job user profile and ranked by the largest contributors. Use this chart to select contributing groups for further investigation.

Physical Database by Subsystem
This chart shows the breakdown of SQL-related and non-SQL related, synchronous and asynchronous, and read and write physical database I/O requests as an I/O rate per second grouped by subsystem and ranked by the largest contributors. Use this chart to select contributing groups for further investigation.

Physical Database by Server Type
This chart shows the breakdown of SQL-related and non-SQL related, synchronous and asynchronous, and read and write physical database I/O requests as an I/O rate per second grouped by server type and ranked by the largest contributors. Use this chart to select contributing groups for further investigation.

This new breakdown makes it definitely much easier to notice what changed.
The graph in Figure 17-94 shows an example of the Physical Database I/O Overview chart.
The graph in Figure 17-95 shows an example of the Physical Database I/O by Job or Task chart.

![Physical Database I/O by Job or Task](image)

**Figure 17-95  Physical Database I/O by Job or Task**

**SQL Performance Data**

You can now find SQL Plan Cache Snapshot, SQL Plan Cache Event Monitor, and SQL Performance Monitor database files under the PDI Collection Name List, as shown in Figure 17-96.

![Collection Name list](image)

**Figure 17-96  Collection Name list**

Select these collections with the SQL Performance Data perspectives to view several high-level charts for a specific SQL Performance Monitor, SQL Plan Cache Snapshot, or SQL Plan Cache Event Monitor.
The SQL Plan Cache and SQL Performance Monitor folders each have two perspectives:

- SQL Overview
- SQL Attribute Mix

**SQL Overview perspective**

This perspective gives a comprehensive picture of how queries are running overall. The SQL Overview perspective for both SQL Plan Cache and SQL Performance Monitor database performance files has 11 views:

- Query Time Summary
- Open Summary
- Open Type Summary
- Statement Usage Summary
- Index Used Summary
- Index Create Summary
- Index Advised
- Statistics Advised
- MQT Use
- Access Plan Use
- Parallel Degree Usage
In Figure 17-97, you can see an example of the Query Time Summary view with a corresponding Open Type summary view.

**SQL Attribute Mix Perspective**

This perspective provides an indication of the nature of the users applications and queries by displaying the attribute mix. The Attribute Mix perspective has the following views available:

- Statement Summary
- Statement Type Summary
- Isolation Level Summary
- Allow Copy Data Summary
- Sort Sequence Summary
- Close Cursor Summary
- Naming Summary
- Optimization Goal
- Blocking Summary
In Figure 17-98, you can see an example of the Statement Summary view with a corresponding Statement Type Summary view.

Figure 17-98  SQL Attribute Mix perspective - views
17.16.4 QAPMCONF perspective

A new perspective view of the QAPMCONF database file was added. It can be found within the Collections Services content package under the Collection Services Database Files folder, as shown in Figure 17-99.

![Figure 17-99  QAPMCONF perspective view](image)
The window that is shown in Figure 17-100 contains general information about the collections options and information about the system on which the data was collected.

![QAPMCONF perspective](image)

**Figure 17-100  QAPMCONF perspective**
17.16.5 QAPMJOBMI perspective

New fields are added to the QAPMJOBMI database file. These fields can be found within the Collections Services content package under the Collection Services Database Files folder, as shown in Figure 17-101.

![Figure 17-101  QAPMJOBMI perspective](image-url)
The window that is shown in Figure 17-102 contains more information that enables improved Native versus SQL database performance isolation:

- SQL clock time (total time in SQ and below) per thread (microseconds)
- High Level SQL Statement count
- SQL unscaled CPU per thread (microseconds)
- SQL scaled CPU per thread (microseconds)
- SQL synchronous database reads per thread
- SQL synchronous non-database reads per thread
- SQL synchronous database writes per thread
- SQL synchronous non-database writes per thread
- SQL asynchronous database reads per thread
- SQL asynchronous non-database reads per thread
- SQL asynchronous database writes per thread
- SQL asynchronous non-database writes per thread

Figure 17-102  QAPMJOBMI - Native versus SQL Database performance isolation
17.16.6 Create Performance Data Report function

Within the Performance category, there is a new Create Performance Data Report function. To use this function, from the left navigation pane, click Performance → All Tasks → Reports → Create Performance Data Report as shown in Figure 17-103.

You have definitions that provide predefined sets of perspectives to create for a specific collection. A report definition can be selected along with the collection you are interested in to generate a .pdf or a .zip file of the perspectives, as shown in Figure 17-104. This definition makes it easy to export multiple charts or tables for collection at one time.
17.16.7 Image and file export

Within Performance Data Investigator, you can now export an image (charts only), a comma delimited file, or a tab delimited file. Figure 17-105 shows an example of exporting CPU Utilization and Waits Overview information to a comma delimited file. You can insert this data into a spreadsheet for later manipulation.

Figure 17-105 Exporting an image, comma delimited file, or a tab delimited file
This feature makes it possible to print or export your data to store it for later reference.

The export window has two main choices:

- **Format**, which has three options that can be specified by the user:
  - An image (*.png or .jpeg) file.
  - Comma-separated values (CSV), which is the default format.
  - A tab delimited (*.txt) file.

- **Data Range**, which has three options that can be specified by the user:
  - All data
    This option exports the entire data set to the chosen format.
  - Displayed data
    This option is the default and produces smaller results, but can omit off-window information.
  - User-defined range
    You can use this option to specify which records and which series you want to export.

### 17.16.8 Sizing the next upgrade

The Investigate Data feature can now send data from your session to the Workload Estimator for use in sizing a future system using current performance characteristics.

The IBM Systems Workload Estimator is a web-based sizing tool for IBM Power Systems, System i, System p®, and System x, and is available at the following website:

http://www.ibm.com/systems/support/tools/estimator

Use this tool to size a new system, to size an upgrade to an existing system, or to size a consolidation of several systems.
Figure 17-106 shows an example where measured data is taken from the collection services (in this case, from CPU Utilization and Waits Overview) and **Size next upgrade** is selected from the **Actions** menu. This action opens the IBM Systems Workload Estimator window.
It is possible to use filters to have only a subset of collected performance data sent to the Workload Estimator. The filtering can be done by time range. Complete the following steps to accomplish this task:

1. From the CPU Utilization Overview perspective that is shown in Figure 17-107, click the first icon at the upper left of the chart to enable the select tool.

2. Select minimum and maximum points in the chart. These points are shown as two red signs that are selected, in this example, at 6:15 a.m. and 12:15 a.m.

**Important:** You must select bars of the same metric (the color / pattern must match) or each selection clears the previous selections.

![CPU Utilization Overview](image)

Figure 17-107  Time range
3. Select the **Size next upgrade** from the **Action** menu as shown in Figure 17-108.

A window where the time range is defined as filtered before opens.

![Figure 17-108 Subset of performance-related data sent to WLE](image)

4. Click **OK** to send this subset of the data to Workload Estimator.

**Note:** The **Size Next Upgrade** action to start Workload Estimator (WLE) is now updated so that the metrics for Disk Read IO (bytes) and Write IO (bytes) calculations give more accurate information.
17.16.9 Timeline perspective

The timeline bars on the Timeline Overview for Threads or Tasks chart (Figure 17-109) represent the elapsed time of threads or tasks, the timeline bars are as follows:

- Dispatched CPU Time
- CPU Queuing Time
- Other Waits Time (proportions)

This perspective gives you an easy visual context of the (run time) length for jobs and the concurrency of workload on the system. Select a thread or task to view its detailed run and wait contributions.

Figure 17-109 Timeline Overview graph
Timeline Overview for Threads or Tasks

Select one thread or task and see the details as shown in Figure 17-110.

Figure 17-110  Timeline Overview for Threads or Task

Figure 17-111 shows the Waits by Job or Task. You can select the following actions:

- Waits for One Job or Task
- All Waits by Thread or Task

Figure 17-111  Wait by Job or Task
17.16.10 Memory perspective

This section shows three views or charts in each perspective

- Memory Pool Sizes and Fault Rates:
  - View 1: Memory Pool Sizes and Fault Rates (001-004) as seen in Figure 17-112
  - View 2: Memory Pool Sizes (All Pools)
  - View 3: Fault Rates (All Pools)

Figure 17-112 Memory Pool Sizes and Fault Rates, view one: (Pools 001-004)

- Memory Pool Activity Levels
  - View 1: Memory Pool Activity Levels and Ineligible Transitions Per Second (001-004)
  - View 2: Memory Pool Activity Levels (All Pools)
  - View 3: Ineligible Transitions Per Second (All Pools)
Figure 17-113 shows the Memory Metric Overview for One Pool display.

- DB and Non-DB Page Faults
  - View 1: DB and Non-DB Page Faults Overview (All Pools) as seen in Figure 17-114
– View 2: DB Page Faults (All Pools) as seen in Figure 17-115

![DB Page Faults (All Pools)](image)

Figure 17-115  DB Page Faults (All Pools)

– View 3: Non-DB Page Faults (All Pools) as shown in Figure 17-116

![Non-DB Page Faults (All Pools)](image)

Figure 17-116  Non-DB Page Faults (All Pools)

- Memory Metrics for One Pool
  - View 1: Memory Metrics Overview for One Pool
  - View 2: DB and Non-DB Page Faults for One Pool
  - View 3: DB and Non-DB Pages Read/Written for One Pool

### 17.16.11 Ethernet Link Aggregation Modified perspectives

The Ethernet Protocol Overview perspective is available in the Collection Services package under the Communications folder. The perspective charts now use a breakdown dimension to distinguish different lines as shown in Figure 17-117 on page 767.
In the Ethernet Lines Overview chart, you can click **Communications Overview for One Ethernet Line** from the **Actions** menu as shown in Figure 17-118.
Port Resource Names: Within the QAPMETH file, the Port Resource Name is added to the end of the file after the ETMUPF field. There is one record per line per port per interval. With the introduction of link aggregation, line names do not need to be unique within an interval. Use a Port Resource Name to uniquely associate records across intervals.

For more information related to Ethernet Link Aggregation, see 9.9, “Ethernet link aggregation” on page 438.

17.16.12 Workload Group perspectives

A new perspective named Dispatch Latency Totals by Workload Group is available in the Collection Services package under the Workload Group folder.

This chart shows an overview of workload group dispatch latency. It shows the total delay time for each workload group, which is the amount of time that threads that were ready to run could not be dispatched because of the group’s maximum concurrent processor limit.

It has two available views (graphs):

- Dispatch Latency by Workload Group
- Dispatch Latency by Workload Group and Processors Assigned

The Display Latency Totals by Workload Group view is shown in Figure 17-119.

Figure 17-119 Display Latency Totals by Workload Group
The Dispatch Latency Totals by Workload Group and Processors Assigned view is shown in Figure 17-120.

From these views, you can select a Workload Group and drill down to either of the following views:

- Dispatch Latency Totals by Thread for one Workload Group.
- Dispatch Latency for One Workload Group.

The workload capping function prevents a subsystem from getting more than the capacity of the number of cores that are allocated to that workload capping group. There is nothing that causes or ensures that the threads of a capped subsystem receive the full throughput allowed. The data can be analyzed to determine whether the workload capping group limit on the number of processors that are assigned is causing wait time for the threads to complete. This function does not ensure that adding more processor cores will prevent the workload group from encountering other bottlenecks because the system is busy with other uncapped subsystem threads.

The purpose of the PDI perspectives is to show the statistics of the Workload Groups as collected by Collection Services.

For more information about Workload Groups, see 19.7, “IBM i workload groups” on page 838 and the IBM i developerWorks Wiki - IBM i Technology Updates - IBM i workload groups at: https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/IBM%20i%20Technology%20Updates/page/IBM%20i%20workload%20groups
17.16.13 Java perspectives

You now have the following available Java perspectives:

- IBM Technology for Java Memory Overview
- IBM Technology for Java Memory by Job

The charts contain general information for active Java virtual machines (JVM).

Figure 17-121 shows the IBM Technology for Java Memory Overview perspective that shows average heap sizes and memory over the entire time of the collection broken down by job. You can use this perspective to discover what jobs are using the memory so that you can look at them in more depth afterward.

![IBM Technology for Java Memory Overview](image-url)
You can now select the perspective IBM Technology for Java Average Memory by Job from the Java folder and also as a drill-down menu under the existing IBM Technology for Java Memory Overview, as shown in Figure 17-122.

This chart shows the average heap sizes and memory over the entire time of the collection broken down by job. You can use this chart to discover what jobs are using the memory so you can look at them later.
A new perspective named IBM Technology for Java Memory for One Job is available as a drill-down menu under the IBM Technology for Java Average Memory by Job perspective. You can use this perspective to look at the heap and memory usage over time for one selected job, as shown in Figure 17-123.

Figure 17-123 IBM technology for Java - Memory for one job
17.16.14 Disk Response Time charts

The Disk Response Time charts are a new addition to the IBM i 7.1 Collection Services Perspectives. These charts can be accessed by clicking Disk → Disk Response Time → Detailed as shown in Figure 17-124. The charts show disk I/O metrics segmented by response time and are only available for data that is collected on IBM i 7.1 or later.

![Figure 17-124 Disk Response Time charts](image)

Within this perspective, the following detailed options are available:

- Disk I/O Rates Overview
- Disk I/O Rates Overview with Cache Statistics
- Disk I/O Average Response Time Overview
- Disk I/O Total Response Time Overview
- Disk I/O Total Service Time Overview
Disk I/O Rates Overview

Figure 17-125 shows the disk I/O that is segmented by the number of I/Os that occurred when the response time was in specific ranges, and the average response time and average service time.

Figure 17-125 Disk I/O Rates Overview - detailed
Disk I/O Rates Overview with Cache Statistics

Figure 17-126 shows the disk I/O that is segmented by the number of I/Os that occurred when the response time was in specific ranges, and cache statistics.
Disk I/O Average Response Time Overview

Figure 17-127 shows the disk average response time that is segmented by the number of I/Os that occurred when the response time was in specific ranges, and average response time and average service time.
Disk I/O Total Response Time Overview

Figure 17-128 shows the disk total response time that is segmented by the number of I/Os that occurred when the response time was in specific ranges, and average response time and average service time.
Disk I/O Total Service Time Overview

Figure 17-129 shows the disk total service time that is segmented by the number of I/Os that occurred when the response time was in specific ranges, and average response time and average service time.

For more information about these enhancements, see “QAPMDISKRB” on page 306.

17.16.15 Interactive perspective development

You can develop new charts and tables in Investigate Data. You can add views, modify data series information, and modify SQL statements without leaving the Investigate Data window.
Adding views

To add views, complete the following steps:

1. At the bottom of the Investigate Data Perspectives window, click Options. The window that is shown in Figure 17-130 opens.

![Investigate Data perspective - Options](image)

2. Select the **Enable Design Mode** option and click OK. The options that are chosen here are persistent across connections for the user.
3. Select the **New Package** icon at the top of the window that is shown in Figure 17-131.

![Creating a custom content package](image)

*Figure 17-131 Creating a custom content package*

4. In the New Package window, specify a name, and click **OK**. The package is created and displayed.
5. Click **New Perspective**. The New Perspective window (Figure 17-132) opens.

6. Specify a name and a description for the perspective and click **Add** to add a view (Table or Chart) with a Data series and a corresponding Threshold.
7. Click **OK** in the Add View window and click **OK** in the New Perspective window. The customized perspective is saved and shows up in the main perspective tree list for further reference, as shown in Figure 17-133.

![Figure 17-133 Customized package and perspectives added to the main perspective tree list](image-url)
Modifying Data Series information

It is also possible to modify the Data Series information, as shown in Figure 17-134, by clicking **Edit** in the View pane in the Edit Perspective window.

After you modify the view, click **OK** to save the view with the changed information.
Modifying an SQL statement

You can use this feature to view and modify the current SQL and rerender its output to the window. Figure 17-135 shows an example where Modify SQL is selected from the Actions menu on the CPU Utilization and Waits Overview chart. A window opens, where the user can modify the SQL statements. Click OK to save the modifications.

![Figure 17-135 Modifying the SQL](image)

Formatting enhancements were made to the Modify SQL window, making the text easier to read and understand. The Modify SQL action is available for charts and tables.
A new option is available on the Options window that you can use to see SQL error messages when you use the Modify SQL function, as shown in Figure 17-136.

![Investigate Data - Performance Data Investigator](image1)

**Figure 17-136   Modify SQL - new option**

### 17.16.16 Metric finder

With the significant number of metrics that are provided by the Investigate Data feature, sometimes knowing which perspective contains the metric you want to see is not a simple task.

You can use the Metric Finder function to display perspectives that are based on a specific metric. This function is useful when you know what type of information you are looking for but do not know where to start, or where certain metrics are included.
To start this feature, click **Search** when you start Investigate Data, as shown in Figure 17-137. Then, choose your perspective by searching for a metric name.

**Tip:** You can specify a filter to limit the metric names included in the menu. The filter facilitates your search for one specific metric without knowing its exact name. After you enter a filter, click **Apply Filter** to update the metric name list. After a perspective is selected, you can display it by clicking **Display**.

![Figure 17-137 Metric finder](image-url)

The tree-format of perspectives is replaced with the new search function. The **Search** button is replaced by a **List** button that is used to revert to the normal window afterward.
17.16.17 Performance Explorer content package

A simple Performance Explorer content package is included to start the analysis of Performance Explorer data, as shown in Figure 17-138. You can use this feature to analyze the performance of an application program. You can use the Performance Explorer content package to view the PEX database files.

The following PEX Profile perspectives provide functions that are similar to what Profile Data Trace Visualizer (PDTV) offers:

- Profile by Procedure
- Profile by Component
- Hierarchical Trace Profile
- Job/Thread List

17.16.18 New metrics

Many perspectives were added to Investigate Data, and many new metrics were added to existing perspectives:

- SAN
- Virtual I/O
- Energy Management
- Communication data
SAN metrics

The Disk Response Time Charts are new in IBM i 7.1 Collection Services Perspectives, as shown in Figure 17-139. This feature is accessed by clicking Disk → Disk Response Time → Detailed. The charts show disk I/O metrics (including SAN-attached disks) that are segmented by response time and are only available for data that is collected on IBM i 7.1 or later.

For more information about these buckets, see “QAPMDISKRB” on page 306.
Virtual I/O metrics

These charts show I/O operations rates and throughput for virtual I/O devices. Figure 17-140 shows a view of virtual I/O devices categories (Adapter, Disk, Optical, and Type).
Figure 17-141 shows a chart with the Virtual I/O Overview displayed by device type.

**Energy management metrics**

POWER6 systems had IBM EnergyScale™ features available (such as Power Saver Mode), which made the processor frequency and voltage vary over time.

For more information about EnergyScale functionality on POWER6 and POWER7 processor-base systems, see the following website:

http://www-03.ibm.com/systems/power/hardware/whitepapers/energyscale.html

Use Active Energy Manager V4.2 (AEM) with IBM Systems Director 6.1 to set the power savings value for IBM Power Systems running IBM i 7.1. This power savings value is then used to achieve a balance between the power consumption and the performance of the Power Systems system.

For more information about AEM, see the following website:

Charts now have the Scaled CPU time displayed along with the CPU time. This metric is shown in the CPU Utilization Overview, as shown in Figure 17-142.

Figure 17-142  CPU use overview

Figure 17-143 shows the CPU rate (Scaled CPU: Nominal CPU Ratio) for a specific period.

Figure 17-143  CPU rate (Scaled CPU: Nominal CPU Ratio)
Communication metrics
These charts show communication lines traffic and errors for the active protocols on the partition. You can use them for a view of communication protocols and specific line information about the partition. Figure 17-144 has an example of the Ethernet Protocol Overview, where the kilobytes transmitted and received per second are shown for all Ethernet lines on the system, and the number of retries of frame and MAC errors.

![Ethernet protocol overview](image)

Figure 17-144  Ethernet protocol overview

17.16.19 Miscellaneous enhancements

Miscellaneous changes were made to improve the overall capabilities of the performance tasks:

- Added date and time information to the Collection Name list.
- Improved integration with Active Jobs.
- Improved integration with System and Disk Status.
- New collection information at the top of each perspective.
- A new menu bar that allows for quicker navigation.
- More complete history data.
- Drill-down information is as follows:
  - Job Watcher – Show Holder Information
  - Job Watcher - Interval Details movement
Added date and time information to the Collection Name list
The date and time information is added to the Collection Name list on the main Investigate Data window when you select a collection, as shown in Figure 17-145.

![Figure 17-145 Collection name - date and time information](image)

Improved integration with active jobs
To use this enhancement, from within the Performance category, select All Tasks and select Active Jobs from the list, as shown in Figure 17-146.

![Figure 17-146 Improved integration with active jobs](image)
From within the Active Jobs window, it is possible to go directly to performance-related information for a selected job, as shown in Figure 17-147.

**Figure 17-147** Active Jobs Integration

**Remember:** When you click **Investigate Job Wait Data**, the chart that is rendered includes only data that pertain to that specific job. If you click **Investigate Jobs Wait Data**, the chart that is rendered includes all jobs that were active during that collection.
The following performance-related selections are available either from the menu at the right side of the selected job or from the Actions list at the top:

- Elapsed Performance Statistics
- Investigate Job Wait Data
- Start Job Watcher

Improved integration with system status and disk status
To use this enhancement, from the Performance category, click All Tasks and then either click Disk Status or System Status from the list, as shown in Figure 17-148.

![Figure 17-148 Improved integration with disk status and system status](image)
From within System Status and Disk Status, you can go directly to the performance-related information, as shown in Figure 17-149.

The following performance-related options are available:

- System Resources Health Indicators (from the General Tab on System Status)
- CPU Health Indicators (from the Processors tab on System Status)
- Memory Pools Health Indicators (from the Memory Tab on System Status)
- CPU Health Indicators (from the Processors Tab on System Status)
- Disk Health Indicators (from the Disk Space Tab on System Status)
- Investigate Disk Data (from the Actions list on Disk Status)
- Start Disk Watcher (from the Actions list on Disk Status)
New collection context at the top of each perspective
A new feature in Performance Data Investigator is that display collection information or collection details information can be displayed when you view a specific perspective.

By default, the name of the viewed perspective is shown as the title of the perspective window.

You might not want this information to be displayed. If so, see the View menu that has the Show Context check box, as shown in Figure 17-150. If you clear this check box, this information is hidden. This choice is preserved across sessions.

![Collection information and collection details information](image)

Figure 17-150   Collection information and collection details information
New menu bar

In IBM i 7.1, a menu system was added at the top of every perspective, which allows for quicker navigation, as shown in Figure 17-151.

The new menu at the top of the perspective has the same actions available as the one at the bottom. However, it is available without needing to scroll down because the actions are sometimes rendered off-window. As such, it improves the availability of the options.
More complete history data
In IBM i 7.1, the complete History data is available, as shown in Figure 17-152, when you click History in the menu bar at the top. Start from the Memory Pools Health Indicators perspective, then drill down to the Page Faults Overview perspective and then to the Page Faults by Job User Profile perspective.

![Figure 17-152 History data](image)

From within that menu bar, it is possible to go back to the previous perspectives by clicking the corresponding item in the History Data.

Displaying holder information
From within the IBM Navigator for i, the Display holder information is available after you identify a thread or task that is holding others.
Within Investigate Data, you can click **Job Watcher → Waits → All Waits by thread or task Sorted by Non-idle waits**, as shown in Figure 17-153.

![Figure 17-153 All Waits by thread or task Sorted by Non-idle waits](image-url)
You can select one thread or task and click **All Waits for One Thread or Task** from the **Actions** menu, as shown in Figure 17-154.

*Figure 17-154  All Waits for One Thread or Task*
You now select one interval and perform the following actions, as shown in Figure 17-155:

- Click **Interval Details for One Thread or Task**.
- Click the **Show Holder** button for the thread or task.

*Figure 17-155  Show holder information*

When you click **Show Holder**, the holding job or task information is displayed.

**Selected items on charts:** On certain charts (for example, Waits for one job or task), you see which job, task, or thread was selected for drill down.
Job Watcher - Interval Details movement

In Job Watcher, when looking at All Waits for One Thread or Task and then Interval Details for one Thread or Task, the Interval Number (Figure 17-156) can now be changed to view Interval Details for another valid interval in the collection.

![Figure 17-156 Job Watcher - Interval Details movement](image)

17.17 JS1- Advanced Job Scheduler for i enhancements

In IBM i 7.1, IBM Navigator for i has an Advanced Job Scheduler function that is equivalent to the System i Navigator client.

For more information that is related to Advanced Job Scheduler enhancements, see Chapter 12, “IBM Advanced Job Scheduler for i enhancements” on page 497.

17.18 Backup Recovery Media Services: Plug-in enhancements

IBM Navigator for i had limited Backup Recovery Media Services (BRMS) functionality in IBM i 6.1. Its capabilities were expanded into a full-featured BRMS interface, effectively bringing this web interface into parity with the client-based System i Navigator product.

For more information related to Backup Recovery Media Services enhancements, see Chapter 3, “Backup and recovery” on page 45.
IBM i Access

This chapter describes the following IBM i Access topics for IBM i 7.1:

- IBM i Access Client Solutions (ACS)
- IBM i Access for Windows
- IBM Navigator for i
- System i Navigator
- IBM i Access for Web
- IBM System i Access for Wireless
- IBM i Access reference web-based information
18.1 IBM i Access Client Solutions (ACS)

IBM i Access Client Solutions (5733-XJ1) is the newest member of the IBM i Access Family.

A video that demonstrates features of ACS is available at the following website:
https://www.youtube.com/playlist?list=PLe6bSlRgc9DEVN1oacTzbqSW51DHz0hnu

ACS provides the following advantages:

- Provides a Java-based, platform-independent interface that runs on most operating systems that support Java 6.0 or later, including Linux, Mac, and Windows.
- You do not need to install code to run it.
- It can be run from any media.
- Configuration can be storage on media (same configuration files regardless of client workstation OS).

Figure 18-1 shows the IBM i ACS web interface.

Figure 18-1  Main ACS web interface window including information about the ACS version
ACS consolidates the most commonly used tasks for managing your IBM i into one simplified location. ACS has the following features:

- 5250 display and printer emulation that is based on IBM Host-on-Demand.
- 5250 Session Manager support that is modeled after IBM Personal Communications Session Manager.
- Multiple language support for concurrent 5250 emulation sessions on the same client.
- Data Transfer similar to IBM i Access for Windows Data Transfer plus support for OpenDocument spreadsheet (*.ods), Microsoft Excel Workbook (*.xlsx), and other file formats.
- Data Transfer integration with Microsoft Excel and OpenOffice.
- Download and viewing of spool files.
- Virtual Control Panel with a graphical interface to the IBM i control panel.
- 5250 emulation for LAN Console.
- Consolidation of hardware management interface configurations, including Advanced System Management Interface (ASMI), Integrated Virtualization Manager (IVM), and Hardware Management Console (HMC).

ACS uses the same IBM i host servers as the other IBM i Access Family products and requires the same IBM i Access Family license (XW1) to use the 5250 emulation and Data Transfer features.

ACS also provides two optional platform-specific packages that include middleware for using and developing client applications:

- **ACS - Windows Application Package for Windows** operating systems, which includes these features:
  - Connectivity to IBM DB2 for i using open database connectivity (ODBC), .Net, and OLE DB
  - Programming Toolkit for accessing IBM i system objects
  - Support for Transport Layer Security (TLS) / Secure Sockets Layer (SSL) connections
  - Advanced function printing (AFP) printer driver

- **ACS - Linux Application Package for Linux** operating systems, which includes these features:
  - Connectivity to DB2 for i using ODBC
  - Full support for 64-bit ODBC data types
  - TCP/IP connectivity

### 18.1.1 Obtaining IBM i Access Client Solution (5733-XJ1)

IBM i Access Client Solution (ACS) supports connection to IBM i 6.1 and IBM i 7.1.

ACS uses the same IBM i host servers as the other IBM i Access Family products and requires the same IBM i Access Family license (5761-XW1 or 5770-XW1) to use the 5250 emulation and Data Transfer features.

The General Availability (GA) version of ACS is available to customers with an IBM i software maintenance contract. It can be downloaded from the Entitled Software Support (ESS) website under 5761-SS1 (feature codes 5817, 5818, 5819) or 5770-SS1 (feature codes 5817, 5818, or 5819). Using the hide/show option on the ESS website allows you to download just the specific parts that you need.
The following website provides an example of downloading ACS:
http://www-01.ibm.com/support/docview.wss?uid=nas8N1010355

The IBM Entitled Software Support (ESS) is available at the following website:

A technology preview of ACS is available for an evaluation period of 120 days, at the following website:

### 18.1.2 Prerequisites

This section discusses ACS prerequisites.

**Workstation prerequisites**

ACS runs on most operating systems that support Java V6.0 or later, including various versions of Linux, Mac OS, and Windows.

One of the ways to check the version of Java that is installed on your system is to open a command prompt and run the following command:

```
Java -version
```

Detailed instructions for running ACS are in the GettingStarted.txt file included in the archive file of the product.

The ESS version is **IBM_i_Access_Client_Solutions_LCD8_2010_02.zip**.

The Preview version of ACS archive file name is **IBMiAccessT_v1r1.zip**.

**IBM i Server prerequisites**

If you use the 5250 Console or the Virtual Control Panel feature for IBM i 7.1, load and apply the PTFs MF55485 and MF55538.

### 18.1.3 ACS system configuration

The main window of ACS is designed to easily navigate and configure all of its functions. Use the System Configurations window (Figure 18-2 on page 809) to store connection information on the IBM i systems. The create, edit, or delete connection information for IBM i systems that are used is available.
The following is the information presented in Figure 18-2:

- **System Name**: Entered by the user to connect to this host
- **Internet Protocol (IP) Address**: The PC's DNS environment last returned when connecting to the System Name
- **Service Host Name**: The System’s Console host name or IP address as configured
- **Description**: Defined by the user when created

*Figure 18-2  ACS system configuration*
The Preference display (Figure 18-3) provides the following capabilities:

- Enable tool tip messages provides tip text when you hover over a portion of the window.
- Enable description window determines whether a description of the function is displayed in the main window when highlighted.
- Enable accessibility mode turns on other tabs and accessibility features.

![Figure 18-3 ACS Preferences window](image)

### 18.1.4 5250 Display Emulation

The 5250 Display Emulation provides nearly identical interaction and look and feel to the IBM i Access for Windows PC5250 emulator.

An example of an ACS 5250 display is shown on Figure 18-4 on page 811.

The features of the 5250 Display Emulation include the following:

- Switch 5250 display emulator between languages without rebooting your workstation
- Have multiple concurrent sessions with different host code pages
- Keyboard mapping
- New History support
- 5250 Session Manager
- Migrate PCOM-based configurations
- Keyboard support for Hex mode
- Single button to combine disconnect followed by reconnect
- Key stroke buffering that allows users to key ahead while input is inhibited
- Certificate authority detection with optional download
- Command-line option for starting in full screen mode
- Send/Receive file from Host
- Copy 5250 panel as an image
- Option to disable menu bar updates
- Save/Restore 5250 View
- Scratch pad
- Macro conversion from IBM i Access for Windows (beta)
Figure 18-4  5250 emulation

Session Manager

The Session Manager supports these capabilities:

► Start a saved session.
► Create a display or printer session.
► Create a multiple session start batch file from existing saved sessions.
► Convert Macro (beta version).
► Full migration support for .ws, .bch, .kmp, and .pmp files from IBM i Access for Windows.
► Import colors from IBM i Access for Windows.

Figure 18-5 shows the 5250 Session Manager option to import a profile.

Figure 18-5  5250 Session Manager option to import a profile
Session history

Figure 18-6 shows the 5250 display emulation with enabled option session history.

Figure 18-6  5250 emulation session with history
Using SSL in a 5250 emulation session
Secure Sockets Layer (SSL) in a 5250 emulation session specifies that the connection is secure. If the certificate authority negotiated is not trusted, the user is prompted to add to trusted list. There is still a Key Management utility if needed.

Figure 18-7 illustrates ACS settings for configuring the SSL feature that is used by 5250 sessions.
Watermark in session 5250

Figure 18-8 shows how to set up a watermark in a 5250 session. This feature provides the capability for IBM i administrators to easily mark and identify specific 5250 sessions.
18.1.5 5250 Data transfer

All active Data Transfer requests are displayed in a tab on the Data Transfer window that you can use to enable the following capabilities:

- Open saved requests
- Save requests
- Create IBM i files
- Set an output device to any of these options: Display, File, Active Excel Spreadsheet, and Active Calc Spreadsheet
- Get full migration support for .dtf and .dtt files from IBM i Access for Windows

Figure 18-9 shows data transfer with output device set to display.

![Data Transfer Window](image)

Figure 18-9  Data transfer with output device set to display
Figure 18-10 shows Data Transfer by selecting the From IBM i tab. On the Output device option, select **Active Excel Spreadsheet**. Data Options can be used to modify a query.

*Figure 18-10  Data Transfer mechanism to interact directly with a spreadsheet*
18.1.6 Printing

You can download and view spool files. Figure 18-11 shows the printer output window where you can choose the format of the output file (in format .txt and .pdf), which can be saved to a PC.

![Printing output](image)

*Figure 18-11 Printing output*
18.1.7 5250 HMC console

The 5250 emulation for HMC console opens an interactive console to the current system shown in Figure 18-12. There is also 5250 emulation for LAN console.

18.1.8 Virtual Control Panel

If a LAN Console is used for the system, viewing a Virtual Control Panel is possible. A sample of this view is shown in Figure 18-13. The save option is enabled when you right-click in the System Reference Codes area.
18.1.9 Hardware Management Interface

To access the Hardware Management Interface, open a web browser to the management console specified for the current system (Figure 18-14).

Figure 18-14   HMC Pre-Login Monitor

The latest updates for ACS features are available at the following website:

http://www-03.ibm.com/systems/power/software/i/access/solutions.html

18.1.10 ACS mobile solutions to connect to IBM i, real example

Because most mobile devices do not support Java J2SE, IBM i Access Client Solutions is not able to run on them. If the mobile device supports Secure Shell (SSH) or Virtual Network Computing (VNC), you might be able to use the mobile device to display and run the product on the IBM i. The product would actually be running on the IBM i and only using the mobile device for display. Some features of the product that require interaction with the desktop (for example, starting a browser) might not work. With minor limitations, running on your mobile device might be possible.

Figure 18-15 shows a simple solution running ACS on IBM i.

Figure 18-15   Example solution of running ACS on IBM i
Figure 18-16 is an image of ACS running on IBM i and using the iPad as a display over SSH.

For more information about configuring ACS for mobile devices, see the following website:

18.2 IBM i Access for Windows

IBM i Access for Windows is a key offering of the IBM i Access Family. It provides Microsoft Windows connectivity to IBM i platforms. It extends IBM i applications and resources to a Windows desktop through a graphical user interface (GUI). This section describes the IBM i Access for Windows changes for IBM i 7.1.

18.2.1 Installation enhancements

The following list details installation enhancements for IBM i Access for Windows for IBM i 7.1:

- Help files were converted to HTML help format. A separate download is no longer required on Windows Vista and later operating systems to display the help.
- New SSL signer certificates are merged automatically into the certificate management key database file during an upgrade installation.
- Install Language support was expanded. Secondary languages can be selected during the custom installation, and Arabic language support was added.
18.2.2 .NET Data Provider enhancements

The IBM i Access for Windows .NET Data Provider allows .NET managed programs to access the IBM i database files using SQL.

The following are the .NET Data Provider enhancements for IBM i Access for Windows for IBM i 7.1:

- 128-byte schema names
- Support for the IBM i XML data type
- Connection property to configure Concurrent Access Resolution
- Support for multi-row UPDATE, DELETE, and MERGE statements
- Support Visual Studio 2008
- Online help through Visual Studio

18.2.3 OLE Data Provider enhancements

The IBM i Access for Windows OLE Data Provider supports record-level access and SQL access to IBM i database files. The following list details the OLE Data Provider enhancements for IBM i Access for Windows for IBM i 7.1:

- 128-byte schema names
- Support for the IBM i XML data type
- The connection property that is used to configure Concurrent Access Resolution

18.2.4 Windows ODBC Driver enhancements

The IBM i Access for Windows ODBC Driver provides the application programming interfaces to connect to a database management system, run SQL statements, and retrieve data. The ODBC Driver enhancements for IBM i Access for Windows for IBM i 7.1 are as follows:

- 128-byte schema names
- Support for the IBM i XML data type
- The connection property that is used to configure Concurrent Access Resolution
- Support for multi-row UPDATE, DELETE, and MERGE statements

18.2.5 Data Transfer enhancements

The IBM i Access for Windows Data Transfer function is enhanced to support 128-byte schema names on IBM i 7.1.

18.2.6 Personal Communications Emulator enhancements

IBM i Access for Windows includes a 5250 emulator to access and run host applications on a Windows desktop. The 5250 emulator included with IBM i Access for Windows for IBM i 7.1
provides updated Display and Printer Emulation that are based on Personal Communications V6, with the following additional functions:

- **Autocopy**
  
  Automatically copies the selected text to the clipboard.

- **Copy As Image**
  
  Copies the marked area in the presentation space as a bitmap into the clipboard.

- **Find text in Presentation Space**
  
  Finds text in the Presentation Space of a display session. The text that is found is highlighted on the window. The search can be case-sensitive.

- **Quick connect for Telnet connections**
  
  You can connect a Telnet session quickly through the Quick Connect Bar by configuring only the Host, Port, and LU Name/Workstation ID.

For more information, see *Personal Communications for Windows Administrator's Guide and Reference*, available at the following website:


### 18.2.7 Direct Attach Operations Console withdrawal

Support for local console direct attach was removed from the Operations Console for IBM i Access for Windows for IBM i 7.1. IBM i 7.1, Operations Console only supports the local console on a network (LAN) configuration.

For more information, go to the IBM i Planning website at the following address:


### 18.3 IBM Navigator for i

The IBM i long-term strategy for Systems Management is provided by IBM Navigator for i web-based console. Its latest enhancements include better performance and a renewed leading web interface. This new interface has undergone a significant update. The following new features have been included:

- **Improved dynamic navigation function**

- **Open component contents to drill down quickly and easily**

- **Rich dynamic tables that include these types:**
  
  - Quick filter
  - Advanced filter
  - Number of entries to view
  - Quick table page controls
  - Table configuration options
  - Actions list
  - Detailed hover text

- **User profile management from signon window. User IDs can be updated as needed from the Navigator signon window. Users with expired passwords might update the password and then sign in to the interface from a single location.**
Chapter 18. IBM i Access

- Integrated File System enhancement
- Performance tools on the web; for more details, see 6.2.2, “Collection Services enhancements” on page 298 and 6.3, “IBM Navigator for i Performance Data Investigator” on page 317.
- The following new database (DB2 for i) features are discussed in the Chapter 5, “IBM DB2 for i” on page 159:
  - Navigator - Enhanced Analyze Program Summary detail
  - Navigator - Improved Index Build information
  - Navigator - Improved ability to mine Journals
  - Plan Cache properties - Job Scope Plan metrics
  - Plan Cache properties - Greater insight and control
  - Navigator for i - Improvement for OmniFind Collection management
  - New Generate SQL option for modernization
  - QSYS2.SYSLIMITS
- Disk management has the following capabilities:
  - Rebuild data on failed disk unit in parity set; for more details, see 17.13, “Rebuild data on failed disk unit in parity set” on page 718
  - Access Disk Management function in IBM Navigator for i is easier to use
  - Create logical partition with IBM Navigator for i; for more information, see 17.14, “Creating a logical partition with IBM Navigator for i” on page 719

For more details about new Navigator for i features, see Chapter 17, “IBM Navigator for i 7.1” on page 667.

18.4 System i Navigator

System i Navigator is the Windows client for IBM i Systems Management. It is packaged as part of the IBM i Access for Windows product. It is the more traditional Systems Management console, but continues to be supported and enhanced.

The following IBM i functions are available in the Windows Client interface only compared to IBM Navigator for i:
- Management Central functions
- Database functions that involve graphics and charts:
  - SQL Scripts
  - Visual Explain
  - Database Navigator
  - SQL Assist
- AFP Manager capabilities:
  - Resources
  - PSF configurations
  - Font Mapping tables
IBM Systems Director: IBM Systems Director is the alternative to Management Central for multisystem tasks on the web.

Notice: The Windows client is supported when connecting to N±2 releases. The 57xx-XE1 licensed program can be installed on N-1 releases. For more information, see the following website:
http://www-03.ibm.com/systems/power/software/i/access/resources/connections.htm

18.5 IBM i Access for Web

IBM i Access for Web (5770-XH2) belongs to the IBM i Access Family (5770-XW1). It offers web browser-based access to IBM i resources on IBM i systems. IBM i Access for Web enables users to use business information, applications, and resources across an enterprise by extending the IBM i resources to the client desktop through a web browser.

**IBM i Access for Web enhancement**

The IBM i Access for Web enhancements are as follows:

- System-based so that no code runs on the desktop.
- Implemented using Java Servlet technology.
- Uses industry standard protocols such as HTTP, HTTPS, and HTML.
- Is lightweight, requiring only a browser on the client.
- Runs batch commands, and provides access to database, integrated file system, printers, printer output, and messages, and a 5250 interface.

**IBM i Access for Web servlets**

IBM i Access for Web servlets are supported by these web application servers:

- Integrated Web Application Server for i
  - WebSphere Application Server (WAS) - Express V8.5 for IBM i, WAS V8.5 for IBM i, and WAS V8.5 Network Deployment for IBM i
  - WebSphere Application Server (WAS) - Express V8.0 for IBM i, WAS V8.0 for IBM i, and WAS V8.0 Network Deployment for IBM i
  - WebSphere Application Server (WAS) - Express V7.0 for IBM i, WAS V7.0 for IBM i, and WAS V7.0 Network Deployment for IBM i
  - WAS - Express V6.1 for i5/OS, WAS V6.1 for i5/OS, and WAS V6.1 Network Deployment for i5/OS

- In addition to the web application servers listed above, the IBM i Access for Web portlet code can be used with any of the following portal servers:
  - WebSphere Portal V8.0
  - WebSphere Portal V7.0
  - WebSphere Portal for Multiplatforms V6.1
18.5.1 Requirements for using IBM i Access for Web

Before installing and using IBM i Access for Web, ensure that you have the appropriate software installed. For more information about the software requirements, see this website:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzamm%2Frzamms
softwarerequirements.htm

You can use the following access path through the IBM i 7.1 Knowledge Center to get to the prerequisites: IBM i 7.1 Knowledge Center → Connecting to your system → IBM i Access → IBM i Access for Web → Planning → Prerequisites for installing IBM i Access for Web.

Refer to the service pack PTFs page for PTF requirements, available at the following website:

http://www-03.ibm.com/systems/power/software/i/access/web_sp.html

For more information about IBM i Access for Web, go to the following website:

http://www.ibm.com/systems/i/software/access/web

18.5.2 AFP to PDF transform

IBM i Access for Web offers an alternative for generating a PDF document from a spooled file through the AFP to PDF Transform support on target systems with IBM i 7.1 or later. The following list details requirements for the AFP to PDF Transform support:

- The target system has IBM i 7.1 or later.
- 5770-TS1 *BASE (IBM Transform Services for i) and option 1 (Transforms – AFP to PDF Transform) are installed on the target system.
- 5770XH2 IBM i Access for Web or later is installed on the target system.

For IBM i Access for Web in a web application server environment, a new preference that is called Use AFP to PDF Transform is available to control whether the administrator or user can use the AFP to PDF Transform. The possible values are Yes or No (the default is Yes). To see this new preference, click Customize → Preferences → View all preferences and look under the Print category. The usage of this preference is similar to the usage of the “Use Infoprint Server if installed” preference in versions earlier than IBM i 7.1.

For IBM i Access for Web in a Portal environment, the JSR168 Print portlets are enhanced to use the AFP to PDF Transform. The PDF Output Settings (available in edit mode) have two new options:

- Use Infoprint Server, if installed
  The possible values are “Yes” and “No” (the default value is “Yes”).
- Use AFP to PDF Transform, if installed
  The possible values are “Yes” and “No” (the default value is “Yes”).

These options control the usage of Infoprint Server and the AFP to PDF Transform. They are similar to the policies and preferences that are used with the servlets. The IBM specification portlets are not enhanced.
The various methods of generating a PDF document from a spooled file are used in the following order:

- Infoprint Server is used if allowed (policy/preference) and if 5722IP1 *BASE is installed on the target system.
- AFP to PDF Transform is used if allowed (policy/preference) and if the target system has the following releases:
  - V7R1 or later IBM i
  - V7R1 or later 5770TS1 *BASE and option 1
  - V7R1 or later 5770XH2
- A built-in transformation that generates a PDF document with each page of the spooled file as an image.

To use the AFP to PDF Transform, click **Print → Printer output** and select the **View PDF** icon, as shown in Figure 18-17.

![Figure 18-17 AFP to PDF Transform View PDF icon](image-url)
The PDF Output Settings window opens (Figure 18-18).

The **Destination** menu offers the following options:

- **Browser**
  The PDF document is sent to the browser. Based on the browser's settings, the document is either displayed by a plug-in or a File Save window opens.

- **Personal folder**
  The PDF document is sent to one or more IBM i Access for Web Personal folders.

- **Output Queue**
  The PDF document is sent to an output queue. Use the **Settings** button to specify the target output queue.

For more information about IBM i Access for Web AFP to PDF Transform, go to the IBM i 7.1 Knowledge Center web page:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzamm/rzammhprint.htm

---

**18.6 IBM System i Access for Wireless**

System i Access for Wireless (5722-XP1) is not supported on IBM i 7.1. For more information about this topic, go to the IBM i Upgrade Planning website at the following address:

18.7 IBM i Access references

The following web addresses provide more IBM i Access information:

- IBM i Access
  http://www-03.ibm.com/systems/power/software/i/access/index.html
- Navigator for i
  http://www-03.ibm.com/systems/i/software/navigator/index.html
- IBM i 7.1 Knowledge Center
  http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frah%2Frahica.htm
- IBM i Access - End of service dates
  http://www-03.ibm.com/systems/power/software/i/access/resources/endservice.html
This chapter describes the following IBM i 7.1 changes or enhancements:

- Licensed product structures and sizes
- Changed or new CL commands and APIs
- Temporary user-defined file systems
- Watch for Event function (message enhancements)
- IBM Tivoli Directory Server for IBM i enhancements
- Automating multiple IPLs for PTF installation
- IBM i workload groups
- IBM i on a Flex Compute Node
19.1 Licensed product structures and sizes

The IBM i 7.1 operating system and licensed product (LPP) sizes are documented in the IBM i 7.1 Knowledge Center in the section Licensed program releases and sizes:

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/rzahc/rzahcswslpsze.htm

The DVD installation media is consolidated for IBM i 7.1 into three sets of multiple language version media that support a total of 51 globalizations.

With IBM i 7.1, there is no offline installation version of the IBM i Knowledge Center that is included on physical media. The IBM i 7.1 Knowledge Center is available online:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/welcome.html

The following changes to the licensed product (LPP) structure are implemented in IBM i 7.1:

- DHCP moved from the base OS to option 31 “Domain Name System”.
- The Clusters GUI was withdrawn from option 41 “HA Switchable Resources” and is available with PowerHA for i (5770-HAS).
- IBM HTTP Server i (DG1) option 1 “Triggered Cache Manager” was removed.
- IBM Toolbox for Java (JC1) moved to 5770-SS1 option 3 “Extended Base Directory Support”.
- IBM Developer Kit for Java (JVI1) options 6 (JDK 1.4) and 7 (JDK 5.0) are no longer supported. JSE 6.0 32 bit is the default JVM in IBM i 7.1.
- Extended Integrated Server Support for IBM i (5761-LSV) is no longer supported. Option 29 “Integrated Server Support” is available as a replacement.
- IBM System i Access for Wireless (5722-XP1) was withdrawn. The IBM Systems Director family provides similar systems management functionality.
- IBM Secure Perspective for System i (5733-PS1 and 5724-PS1) was withdrawn, although it continues to be available as a custom service offering only.
- The IBM WebSphere Application Server (5733-W61 and 5733-W70) minimum required levels for IBM i 7.1 are 6.1.0.29 and 7.0.0.7.

For more information about LPP changes, see the IBM i Memo to Users at:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzahg/rzahgmtu.htm

Before you plan an IBM i release upgrade, see the IBM i upgrade planning website, which provides planning statements about IBM i product changes or replacements:


19.2 Changed or new CL commands and APIs

For a list with detailed information about changed or new CL commands and APIs in IBM i 7.1, see the CL command finder and API finder section in the IBM i 7.1 Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/clfinder/finder.htm
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/apifinder/finder.htm
19.3 Temporary user-defined file systems

New support for temporary user-defined file systems (UDFSs) is included in the IBM i 7.1 base code and available for IBM i 6.1 through PTF SI34983.

Temporary UDFSs can increase performance by reducing auxiliary storage operations. Applications that create and delete many temporarily used stream files can most benefit from using temporary UDFSs.

For temporary UDFSs, the system allocates only temporary storage. These temporary files and directories are automatically deleted after an IPL, unmount, or reclaim storage operation. Although regular (that is, permanent) UDFSs can be created in any ASP or IASP, the temporary UDFSs are supported in the system ASP only.

Normally, the /tmp IFS directory contains permanent objects that are not cleared when the system is restarted. To have /tmp on IBM i behave more like other platforms, a temporary UDFS can be mounted over /tmp so that it is cleared at system restarts. The files in a temporary UDFS should not contain critical data because it is not persistent.

The CRTUDFS command and IBM Navigator for i are enhanced to support the creation of temporary UDFSs through a new naming convention. Although names for permanent UDFSs must end with .udfs, the names for the new temporary UDFSs adhere to the naming convention of /dev/QASP01/newname.tmpudfs, as shown in Figure 19-1.

![Create User-Defined FS (CRTUDFS)](CreateUserDefinedFS.png)

Figure 19-1 IBM i CRTUDFS command for creating temporary file systems

The following considerations apply for using temporary file systems:

- Temporary objects cannot be secured by authorization lists.
- User journaling of temporary objects is not allowed.
Objects cannot be saved from or restored to a temporary file system.
Extended attributes are not supported for temporary objects.
Object signing of temporary objects is not allowed.
Read-only mount of a temporary file system is not supported.
The storage that is used for temporary objects is not accounted to the owning user profile or to any process.

For more information about temporary user-defined file systems, see the IBM i 7.1 Knowledge Center at the following web address:
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/ifs/rzaaxudftempudfs.htm

19.4 Watch for Event function (message enhancements)

The Watch for Event function allows a user exit program to be started in a server job when certain events occur. The watch exit program does not run in the source job where the event occurs; it runs in a QSCWCHPS job in subsystem QUSRWRK. The following events can be watched:
- Messages sent to a program message queue (job log) of a job
- Messages sent to a nonprogram message queue (for example, a standard message queue such as QSYSOPR or a user profile message queue)
- LIC log entry (VLOG)
- Product Activity Log (PAL) entry

The function can also be used to end a trace when a watched event occurs. Watch parameters exist for the following trace CL commands:
- Start Trace (STRTRC)
- Start Communications Trace (STRCMNTRC)
- Trace Internal (TRCINT)
- Trace TCP/IP Application (TRCTCPAPP)
- Trace Connection (TRCCNN)

The Watch for Event function was initially available for the trace commands in V5R3M0 of IBM i. Watches were generalized in the following release, in V5R4M0, so that the watches were no longer tied only to trace commands. The Start Watch (STRWCH) and Start Watch API (QSCSWCH) commands were created for the generalized support. Additionally, the Work with Watch (WRKWCH) command was created to view watches, and the End Watch (ENDWCH) and End Watch API (QSCEWCH) commands were created to end watches. Support to watch for messages and LIC log entries was added in V5R4M0. Support to watch for PAL entries was added in V6R1M0.

The IBM i Knowledge Center contains exit program information to describe all the parameters that are passed to a watch or trace exit program.
19.4.1 Advantages of using watches

Watches can be used to accomplish the following tasks:

- Capture data for program debugging.
- Automate system management by running a corrective action or start / end functions without human intervention.
- Stop a trace when an event occurs to minimize the amount of data that is collected and minimize the amount of time trace active and slowing performance.
- Real-time notification of events can replace functions that used a periodic polling technique.

19.4.2 New Watch for Event function for IBM i 7.1

The message portion of the Watch for Event function has several enhancements that are described in the following sections. In addition, two new APIs to obtain watch information programmatically were created. The End Watch command and API were expanded to allow generic names, including *ALL.

Watch for Message enhancements

Functions were added to expand the message attributes that are allowed when you start a watch. There are new options for the message ID, message type, and severity in Version 7.1. These new attributes pertain to watching for messages, not LIC log or PAL entries, and allow specific watches to be created:

- Previously, a specific message ID needed to be specified when you watch for a message. Now, immediate or impromptu messages can be watched. The text of an immediate message does not exist in a message file. An example of an immediate message is The order application is down for 5 minutes starting at 11PM to load a fix. or Are you ready to go to lunch?
- Because immediate messages are now supported, this situation enabled support to watch for *ALL messages sent to a nonprogram message queue (such as QSYSOPR) or all messages sent to a program message queue for a job (job log).
- For predefined messages (that exist in a message file), a generic message ID can be specified, such as CPF18*, which allows messages CPF1806, CPF1808, and CPF1809 to be handled by starting one watch session.
- Message Type is a new attribute that is used for watching for messages. It allows certain message types to be watched with or without regard to other watch attributes.
  
  For example, a message ID can be sent as a diagnostic and escape message, but if you want to act only when the message is sent as an escape, a watch can be tailored to that condition.
  
  Another example is the need to be notified when any message is sent to a nonprogram (standard) message queue that was created with the Create Message Queue (CRTMSGQ) command. A watch can be started to watch for *ALL messages sent to the standard message queue. In the past, a program used the receive message function with a wait time to obtain the next message sent to a standard message queue.
- Messages can be watched based on message severity. Valid message severities values are 0 – 99. Five relational operators can be specified with a severity value:
  
  - Equal to (*EQ)
  - Greater than (*GT)
  - Less than (*LT)
– Greater than or equal to (*GE)
– Less than or equal to (*LE)

For example, if you care only about messages of severity 99, you can now watch for only those messages.

Figure 19-2 shows the Watch for Message keyword with the STRWCH command for IBM i 7.1, with the new message type, relational operator, and severity code fields near the bottom portion of the window.

![Start Watch (STRWCH)](image)

**Two new APIs**

The new watch APIs are Retrieve Watch List (QSCRWCHL) and Retrieve Watch Information (QSCRWCHI). QSCRWCHL obtains a list of watches on the system. Previously, the list of watches were viewed by using the Work with Watches (WRKWCH) command. QSCRWCHI returns information about a specific watch session. The information that is returned is similar to the data seen by running the WRKWCH command and using option 5 to display the details of a watch session.

**End Watch additions**

The End Watch function requires a session ID to be specified. The End Watch (ENDWCH) command and End Watch (QSCEWCH) API are enhanced to accept a generic session ID, including a value of *ALL. Previously, the valid values included a specific session ID name and the special value *PRV, which represented the watch session that was started most recently by the same user who is running the End Watch function. In IBM i 7.1, a generic name (such as TSTMSG*, WCH*, or *ALL) can be specified. The new values make it easier to end a group of watches. For example, a generic name of TSTMSG* specifies that all watch sessions with identifiers that begin with the prefix TSTMSG will be ended.

---

834 IBM i 7.1 Technical Overview with Technology Refresh Updates
Recursive watches

Recursive watches do not watch for common or high use events. For example, if the job started message (CPF1124) or job ended message (CPF1164) are watched, the system is significantly affected. This watch never ends because when a watch exit program is called in the server job, that job ends and a new job is started to handle subsequent processing for watches. The ending of the job and starting of the new job causes the CPF1164 and CPF1124 to be generated, so a never-ending loop begins. A similar thing happens if *ALL messages in QHST were watched because those job messages for watch processing go to QHST. To prevent this recursive problem, start watches for specific message IDs or specify compare data or additional selection criteria to restrict the occurrence of the event.

19.5 IBM Tivoli Directory Server for IBM i enhancements

This section covers the enhancements to the IBM Tivoli Directory Server for IBM i (LDAP).

19.5.1 Creating suffix entries automatically when they are needed

The directory administrator can configure a new suffix dynamically and start adding entries beneath it. If the suffix entry does not exist, it is created when the first child entry is added.

19.5.2 Administrative roles

IBM Tivoli Directory Server for IBM i now implements a scheme where the root administrator can delegate tasks at a more granular level. This scheme is based on the administrative roles of the users that are defined in the configuration file. These roles are applicable only to the admin group members. Six roles are supported by IBM i:

- Audit Administrator (AuditAdmin)
- Directory Data Administrator (DirDataAdmin)
- No Administrator (NoAdmin)
- Replication Administrator (ReplicationAdmin)
- Schema Administrator (SchemaAdmin)
- Password Administrator (PasswordAdmin)

19.5.3 User interface enhancements

Tivoli includes the Web Administration Tool interface with Version 6.2. The Web-enablement for LDAP interface on IBM i Navigator enhancement enables the usage of an LDAP management tool on IBM Navigator for i and IBM i Navigator Tasks for the web.

19.5.4 Security enhancements

Attribute encryption can encrypt arbitrary attributes when they are stored in the underlying directory database.

19.5.5 New password encryption options

Two new password encryption options are supported:
- Salted SHA
- MD5
19.5.6 Pass-through authentication

If an LDAP client tries to bind to the Tivoli Directory Server and the credential is not available locally, the server attempts to verify the credential from an external directory server on behalf of the client.

19.5.7 Enhanced password policy to use global date and time for initialization

The proposed design change for the initialization of password policy attributes when the Password Policy function is first turned on is to introduce a new password policy entry attribute, `ibm-pwdPolicyStartTime`, that is added to the `cn=pwdPolicy` entry. This attribute is generated by the server when the administrator sends a request to turn on the Password Policy function. The current time is put into this attribute. This attribute is an optional attribute that cannot be deleted by a client request. It cannot be modified by a client request, except by administrators with administrative control. It can be replaced by a master server-generated request. The value of this attribute is changed when the Password Policy function is turned off and on by an administrator.

19.5.8 Multiple password policies

In this release, more options are available. In addition to the global password policy, each user in the directory can have their own individual password policy. Furthermore, to assist administrators, a group password policy is supported to enable effective password management.

19.5.9 Policy that is enforced for Digest-MD5 binds

The implementation of this feature ensures password policy rules such as account lockout, usage of grace logins, and a password expiration warning message is sent to a user when it uses DIGEST-MD5 bind as authentication mechanism.

In addition, the `ibm-slapdDigestEnabled` configuration option is added to enable and disable the DIGEST-MD5 bind mechanism.

19.5.10 Persistent search

Persistent search provides a function for clients to receive notification of changes that occur in the directory server by altering the standard LDAP search operation so that it does not end after the initial set of entries that match the search criteria are returned. Instead, LDAP clients can keep an active channel through which information about entries that change is communicated.

19.5.11 Replication configuration enhancements

The server configuration attributes master DN and password in the consumer server's configuration is now dynamic. For the extended operation readconfig, addition, deletion, or modification of entries that have an objectclass of `ibm-slapdReplication/ibm-slapdSupplier` is supported for the scopeValues of `entire/entry/subtree`.
19.5.12 Filtered replication

This enhancement allows the directory administrator to control what data is replicated to consumer servers by specifying which entries and attributes are to be replicated, based on the filters that are defined by the directory administrator.

19.5.13 Limiting the number of values that are returned by a search

The LDAP server provides a control that can be used on a search operation to limit the total number of attribute values that are returned for an entry and to limit the number of attribute values that are returned for each attribute in the entry.

19.5.14 Enhanced syntaxes and matching rules

Additional matching rule and syntax support (24 syntaxes and 17 matching rules) were added for new syntaxes and matching rules from RFC 2252, RFC 2256, and RFC 3698. Matching rules are not defined in any RFC, but are referenced in RFC 2798.

19.5.15 IASP enablement for Directory Server on IBM i

From IBM i 7.1 onward, the Directory Server on IBM i supports private IASPs, where:

- The support database library is in the IASP.
- The support change log library is in the IASP.

19.5.16 The ldapcompare utility

The ldapcompare utility compares the attribute value of an entry with a user provided value.

19.5.17 Providing a re-entrant LDAP C client library

The LDAP C client library is now re-entrant.

19.6 Automating multiple IPLs for PTF installation

A new function in IBM i 6.1 and IBM i 7.1 automates any additional IPLs that are required for a technology refresh PTF or special handling of pre-apply PTFs during the PTF installation process. If an additional IPL is required for a technology refresh PTF, your PTF installation parameters are saved and used during the next IPL. Instead of seeing the “Confirm IPL for Technology Refresh or Special Handling PTFs” panel, you see a new English message CPF362E: “IPL required to complete PTF install processing”. If you select Automatic IPL=Y on the “Install Options for PTFs” panel, you do not see any messages or panels; the server shuts down. On the next normal IPL, your second “GO PTF” occurs during the “PTF Processing” IPL step in the SCFP job, and then a second IPL of the partition occurs automatically. So when the system undergoes an IPL the second time, all the way up to sign on, your PTFs are all activated and ready to go.

Your total PTF installation time is shorter because none of the system jobs start during the first IPL when the partition restarts. However, you have a longer IPL time because the system is doing the work you previously did interactively, that is, the second GO PTF to set all PTFs for delayed applies.
If you wonder why the IPL is taking so long and what it is doing, you can always open the console. When you open the console, you can open the “Operating System IPL in Progress” panel, which shows the “PTF Processing” IPL step as active. Previously, the “Applying PTFs” for the Activity were shown in this step, but now you also see “Loading PTFs” or “Setting IPL Action for PTFs” if the previous PTF installation was incomplete.

When all PTFs are set for delayed apply, you see the IPL requested by PTF processing status message at the bottom of the panel and then the partition restarts to apply the delayed LIC PTFs. The next time that you reach the “PTF Processing” IPL step, you see the usual “Applying PTFs” step and the IPL continues.

To take advantage of this new function, you must have the following PTF (PTF management code) temporarily applied before you run your PTF installation:

- Version 7.1: SI43585 in HIPER PTF group SF99709 level 30 or higher
- Version 6.1: SI43939 in HIPER PTF group SF99609 level 94 or higher

For Version 7.1, if an IPL is required for a technology refresh PTF, the new function supports installing only from a virtual optical device or *SERVICE (PTFs downloaded electronically to save files). If you are installing from a physical optical device, you still must run the additional IPL and second GO PTF manually. So, if you received your PTFs on physical DVDs, create an image catalog from the DVDs and use the new support.

### 19.7 IBM i workload groups

IBM i 7.1 now provides workload groups, which were formerly called workload capping. Workload groups can restrict a workload to a specified maximum number of processor cores within the partition it is running in.

A workload is defined as a job, subsystem, or product that is running on the IBM i system. The user or system administrator can define a workload group, assigning a specified number of processing cores to that group. The workload group is then assigned to a job or subsystem. After the assignment is done, the workload is limited to the defined number of processing cores. The system enforces this processing core assignment, ensuring that a job or all the jobs that are running (and threads) under the subsystem are not allowed to run on more processing cores than are designated.
An example is shown in Figure 19-3. The number of processing cores of the subsystem for Application #1 is set to three and for Application #2 is set to six. No matter how much Application #1 needs processing capabilities that exceed three, it is not allowed to run on more processing cores than three cores, even though IBM i has eight cores. The general concept is if a workload is designated to use a single core, the workload behaves as through it is actually running on a single processor core system.

**Figure 19-3  Concept of Workload Groups**

### IBM i without Workload Groups

- Application #1 = 8 Cores
- Application #2 = 8 Cores
- IBM i = 8 Cores

**IBM i System / Partition**

### IBM i with Workload Groups

- Application #1 = 3 Cores
- Application #2 = 6 Cores
- IBM i = 8 Cores

**IBM i System / Partition**

#### 19.7.1 Example of how Workload Group works

A user has a batch job that is processor intensive. This user must run this job during the day but cannot afford to impact the performance of the production system. By assigning this batch job to a workload group, this job can be put into a “processing container” to help ensure that this job is kept to a limited amount of system capacity. If the workload group has a processor core limit of one, then the batch job and any threads that are running under that job are allowed to run only on a single processor core. If this job is running on a multiple threaded core, multiple threads can be running for that designated batch job, but only a single core is used at a time. This same concept also applies to jobs that are running under a subsystem that is assigned to a workload group. All jobs and their associated threads are limited to the number of processor cores that are specified in the workload group.

This new capability can help users get better control of the workloads on their systems along with ensuring products are using only a designated number of processor cores. Software vendors can take advantage of the workload group support as a new virtualization technology. A workload can be virtualized and licensed within a virtualized system. Product entitlements can be specified based on the usage of the product instead of the total processor cores of the LPAR.

Customers who want to take advantage of the enhanced licensing controls must register the specified products with the native IBM i License Management tool that facilitates both the registering and management of the enforcement of the workload groups. To help users
manage and understand the performance of jobs that are running in a workload group, the performance metrics are updated to include metrics on workload groups.

To learn more about the workload groups support, see the IBM i 7.1 Knowledge Center:

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/rzaks/rzaksworkloadcapping.htm

19.7.2 IBM Passport Advantage Sub-capacity Licensing support

IBM i Workload Groups is now an Eligible Virtualization Technology for IBM Passport Advantage® Sub-capacity Licensing. You can use Passport Advantage Sub-capacity Licensing to license an eligible software product for less than the full capacity of a server. It provides the licensing granularity that is needed to use various multi-core chip and virtualization technologies. As more customers take advantage of virtualization technologies in their server environments, IBM continues to introduce enhancements to the Sub-capacity Licensing offering.

For details and current information about Sub-capacity Licensing terms, go to these websites:

Configuring WebSphere MQ to use workload groups

You can learn how to configure your systems to use workload groups for the WebSphere MQ product. You can limit the amount of processing capacity available to this product to better fit your licensing needs based on the capacity that is being used for this product.

To see the details, see WebSphere MQ and Workload Groups Final, found at the following web address:


19.8 IBM i on a Flex Compute Node

IBM i can run on a Flex Compute Node since April 2012.

The following two models of the POWER processor-based Flex Compute Node support IBM i.

- IBM Flex System® p260 Compute Node Model 7895-22X
- IBM Flex System p460 Compute Node Model 7895-42X

For the hardware details, see the following website:


The following releases of IBM i are supported on the POWER processor-based Flex Compute Node.

- IBM i 6.1 Resave RS610-10 with License Internal Code 6.1.1 Resave RS-611-H or later
- IBM i 7.1 with Technology Refresh 4 or later
To configure an IBM i environment on those Compute Nodes, VIOS is required. Any physical
adapters that are installed on the node are owned by VIOS, which is also the case with
POWER processor-based blade servers. To see the details of IBM i on a Flex Compute Node,
including configuring IBM i, go to the developerWorks website at the following web address:

You can also run IBM i on the POWER processor-based Compute Node in the IBM
PureFlex® System. When you order IBM PureFlex System, a dedicated management
appliance, which is called Flex System Manager (FSM), is bundled with the IBM PureFlex
System. FSM is used for managing and operating an IBM PureFlex System, including
hardware, firmware, virtualization environment, and operating systems environment on a
POWER processor-based Compute Node.
Chapter 20. Upgrading IBM i

Consistent with OS/400 and i5/OS in the past, IBM i 7.1 supports n-2 for previous release compatibility. More importantly, this support is also what allows IBM i 5.4 and IBM i 6.1 to have an upgrade path to IBM i 7.1. However, when you upgrade from IBM i 5.4 to IBM i 7.1, special considerations pertain to object conversions, which are much the same as when you upgrade to IBM i 6.1 from a previous release. This chapter highlights key planning details. For more details, see the i5/OS V6R1 Memo to Users and IBM i Program Conversion: Getting Ready for 6.1 and Beyond, REDP-4293, that provides a complete set of planning considerations.

This chapter also covers new features and enhancements available in IBM i 7.1, relating to installing, upgrading, distributing software and maintenance options for IBM i. The following are changes in licensed programs (LPP) support when you upgrade to IBM i 7.1:

- Planning to upgrade to IBM i 7.1
- Upgrading from i5/OS 5.4 to IBM i 7.1 considerations
- Media delivery changes
- IBM i network upgrade
- More considerations for upgrading to IBM i 7.1
- Performance improvement to LIC PTF application

**Important:** Important software and service support information includes:


20.1 Planning to upgrade to IBM i 7.1

The following sections describe planning considerations when upgrading to IBM i 7.1, additional information is available at the following website:


When you are planning upgrades, consider software, hardware, and the strategy for connecting a console to your system or logical partition.

20.1.1 IBM i 7.1 support for POWER5 and later hardware

Proper planning for hardware is crucial to the successful installation or upgrade of the operating system. To determine whether your existing hardware is supported by IBM i 7.1, review Figure 20-1. IBM i 7.1 supports POWER5 and later hardware.

For detailed information, review the document System to IBM i maps available at the following website:

http://www-01.ibm.com/support/docview.wss?uid=ssm1platformibmi

<table>
<thead>
<tr>
<th>Servers</th>
<th>IBM i 5.4</th>
<th>IBM i 6.1</th>
<th>IBM i 7.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER7 BladeCenter PS700, PS701, PS702, PS703, PS704</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>POWER7 Power 710, 720, 730, 740, 750, 770, 780, 795</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>POWER6 BladeCenter JS12, JS22, JS23, JS43</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>POWER6/6+ Power 520, 550*, 560, 570, 595</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>POWER5/5+ 515, 520, 525, 550, 570, 595</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>800, 810, 825, 870, 890</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>270, 820, 830, 840</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

Figure 20-1 IBM i 7.1 hardware model support

Requirement: IBM i 6.1 is required to upgrade to IBM i 7.1 for a POWER6+™ 550 system.

For enterprise clients, IBM i 7.1 is now supported on the 16-way through 256-way POWER7 795. IBM i supports up to 32 cores in a single partition. You can contact IBM Lab Services about an offering to grow beyond 32 cores in a single partition.

20.1.2 Server firmware requirements

Before you upgrade, verify the server firmware level that is supported on your POWER5, POWER6, or POWER7 processor-based server. This firmware must be at a certain minimal level to support IBM i 7.1.
To help you plan a successful system upgrade (necessary firmware level and IBM i operating system levels), the IBM Prerequisite website provides you with the prerequisite information for features you currently have or plan to add to your system:

https://www-912.ibm.com/e_dir/eserverprereq.nsf

### 20.1.3 Supported upgrade paths

IBM i 7.1 supports n-2, which means a direct upgrade to IBM i 7.1 from IBM i 5.4 or IBM i 6.1 is supported. See Figure 20-2.

Figure 20-2  Supported upgrade paths to IBM i 7.1

### 20.1.4 Preparation documents to upgrade IBM i

The following are preparation documents that will help you upgrade IBM i:

- Fast path for software installation, upgrade, and deletion tasks procedure:
  
  http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=Frzahc(Fastpathrzahc.htm

- Checklist: IBM i software upgrade or replacement readiness:
  
  http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=FrzahcChecklist.htm

- Checklist: Completing the IBM i upgrade or replacement:
  
  http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=Frzahc(completeupgradechecklist.htm

- The following essential websites and documents relate to IBM i 7.1 upgrade:
  
  - *IBM i 7.1 Memo to Users:*
    
    http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzahg/rzahgmtu.htm
20.1.5 Pre-upgrade verification tool

The IBM Pre-Upgrade Verification Tool for IBM i (initially introduced with IBM i 6.1) has been updated for IBM i 7.1. The tool runs on a Windows client and checks the IBM i environment to ensure that all requirements are completed, helping to ensure a successful upgrade. The tool is available at the following website:

http://www-01.ibm.com/support/docview.wss?uid=nas8N1014074

20.1.6 License program releases and sizes

Operating system and license program sizes are documented in the “License program releases and sizes” section of the IBM i 7.1 Knowledge Center:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzahc/rzahcswlpsze.htm

20.1.7 IBM i 7.1 Resaves

IBM periodically releases new Resave media. Resaves are often Machine Code (57xx-999), but occasionally a Resave is made available for IBM i (formerly known as i5/OS) (57xx-SS1).

To map between the SLIC Resave level and the IBM i Resave level, see Table 20-1.

IBM i Resave information for IBM i 7.1 is available on this website:


For more information about Resave, see 1.3.1, “What a Resave is” on page 6.

<table>
<thead>
<tr>
<th>Resave release date</th>
<th>Description</th>
<th>5770-999 Resave level marker PTF</th>
<th>5770-SS1 Resave level marker PTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/15/2013</td>
<td>IBM i 7.1 Technology Refresh 7 (TR7), Support for new POWER7 hardware and other features announced on 7 October 2013.</td>
<td>RS-710-J RE13260</td>
<td>RS 710-10 AP11067(*BASE) RS00106 (Option 0003)</td>
</tr>
<tr>
<td>05/31/2013</td>
<td>Provides IBM i native attach support for IBM SAN Volume Controller, IBM Storwize V7000, and IBM Storwize V3700.</td>
<td>RS-710-H RE13106</td>
<td>RS 710-10 AP11067(*BASE) RS00106 (Option 0003)</td>
</tr>
<tr>
<td>02/13/2013</td>
<td>IBM i 7.1 Technology Refresh 6 (TR6), Support for new POWER7 hardware and other features announced February 5, 2013.</td>
<td>RS-710-G RE13015</td>
<td>RS 710-10 AP11067(*BASE) RS00106 (Option 0003)</td>
</tr>
<tr>
<td>10/12/2012</td>
<td>IBM i 7.1 Technology Refresh 5 (TR5), Support for new POWER7 hardware and other features announced October 3, 2012.</td>
<td>RS-710-F RE12249</td>
<td>RS 710-10 AP11067(*BASE) RS00106 (Option 0003)</td>
</tr>
</tbody>
</table>
Chapter 20. Upgrading IBM i

20.2 Upgrading from i5/OS 5.4 to IBM i 7.1 considerations

For i5/OS 5.4 to IBM i 7.1 upgrades, unique conversions occur within the programs in libraries, Java programs in directories, spooled files, and integrated file system names in file systems that are not case-sensitive.

20.2.1 Object conversions

A requirement for program conversions was introduced with IBM i 6.1. If your system is on release 6.1, there is no additional program conversion requirements for upgrading to IBM i 7.1.

If you are upgrading from i5/OS 5.4 to IBM i 7.1, the same object conversion considerations apply as though the target release were IBM i 6.1. Read the “Program conversion” section in *PSP SF98026 - i5/OS Memo To Users, V6R1,* available at this web address:

https://www-912.ibm.com/s_dir/sline003.nsf/3a8f58452f9800bc862562900059e09e/1ba9eae00b72a0ea8625772e00713d0?OpenDocument

The program conversions refresh programs to take advantage of the latest system enhancements. Program conversion includes the conversion of programs in libraries and
conversion of Java programs in directories. However, the conversions of Java programs in directories do not affect the actual IBM i upgrade time.

When you upgrade from IBM i 5.4, allow more time to analyze your system and adjust your programs for conversions. The length of time that is required to run the analysis varies based on the individual system environment. Program conversion can also affect vendor software. These vendors are contacted as part of the upgrade planning, as they might need to verify their applications support IBM i 6.1 or 7.1.

The **ANZOBJCVN** command was introduced for i5/OS 5.3 and i5/OS 5.4 to help object conversion planning for upgrades to IBM i 6.1. This command can also be used for upgrades to IBM i 7.1. The command is available through a set of PTFs. Information APAR II14306 provides a brief description of **ANZOBJCVN** and PTF requirements. For IBM i 5.4, PTF SI39402 adds the option to specify a target release of V7R1M0. To review Information APAR II14306, go to the following web page:


For complete preparation and planning details, see *IBM i Program Conversion: Getting Ready for 6.1 and Beyond*, REDP-4293.

For more reference materials related to conversion, see *Integrated file system conversions (V5R4 to IBM i 7.1 upgrade)* in the IBM i 7.1 Knowledge Center:


### 20.2.2  Spooled file conversions

When you upgrade from IBM i 5.4 to IBM i 7.1, spooled file operations are processed more efficiently than in previous releases. This event occurs because conversions can be done either during the release upgrade or after the upgrade.

By default, conversion occurs during the upgrade, which can add a significant amount of time. **ANZOBJCVN** can help by identifying the number of spool files and providing an estimate for conversion time, helping you determine your best options. Spooled files that are restored to the IBM i 7.1 release are automatically converted. The time for the spooled file conversion process can be reduced by saving and deleting the spooled files before you upgrade from IBM i 5.4 and then restoring them after you have IBM i 7.1 installed.

More options are available for managing the spool file conversion after the upgrade. Detailed options and instructions are available in the IBM i 7.1 Knowledge Center section *Spooled file conversions (V5R4 to IBM i 7.1 upgrade)* at:

[http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzahc/rzahcspooledfileconversions.htm](http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzahc/rzahcspooledfileconversions.htm)

**Important action:** Only newly created spooled files or spooled files that were converted can be seen and used after the upgrade. Until the conversion is complete, unconverted spooled files appear not to exist. If a data area is used to direct the conversion, delete the data area after the conversion occurs.

### 20.2.3  Integrated file system conversions

As of IBM i 6.1, file systems that are not case-sensitive in the integrated file system support Unicode Standard 4.0 for names that are stored in directories.
In IBM i 5.4, the integrated file system stores all names in Unicode and supported Unicode Standard 2.0. After you upgrade from IBM i 5.4, an automatic conversion runs to update the integrated file system directories, in file systems that are not case-sensitive, to support Unicode Standard 4.0. Unicode Standard 4.0 defines more characters and updated casing rules. The file systems included in this conversion are “root” (/) and user-defined file systems (UDFS). These file systems can exist in any auxiliary storage pool that is created with the parameter value CASE(*MONO) on the Create User-defined File System (CRTUDFS) command.

Before you upgrade from IBM i 5.4, review Information APAR II14306 and IBM i Program Conversion: Getting Ready for 6.1 and Beyond, REDP-4293. These resources help you analyze your system and help identify objects that are going to be affected by the Unicode conversion. You can then decide whether you want to change the names of the affected objects before you upgrade or allow the automatic conversion to occur.

The conversion of the directories automatically begins shortly after IBM i 7.1 is installed. This conversion runs in the background during normal operations and does not significantly affect your system activity.

The IBM i 7.1 Knowledge Center section Integrated file system conversions (V5R4 to IBM i 7.1 upgrade) section has detailed options and instructions:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzahc/ifsconv.htm

20.2.4 Backup Recovery and Media Services

If you are upgrading Backup Recovery and Media Services (BRMS), 5770-BR1, product initialization is required before you can use the BRMS functions. BRMS product initialization was removed from the installation process to improve the time that is required to complete software upgrades that include BRMS.

The IBM i 7.1 Knowledge Center has detailed options and instructions in the section IBM Backup Recovery and Media Services for i conversions (V5R4 to IBM i 7.1 upgrade) at:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/topic/rzahc/br1conv.htm

20.3 Media delivery changes

IBM i 7.1 provides a simplified ordering and software delivery process. Additional secondary language media can still be ordered, if wanted. There is no change for LPPs that are ordered and shipped individually; they continue to ship with all NLVs.

20.3.1 IBM i 7.1 multi-language distribution media

DVD installation media is consolidated. Previously, there were 51 sets of unique language version media. These sets were reduced to three pre-packaged sets of multiple language version media.

IBM i 7.1: Three language groups for a keyed media set
This package has the following characteristics. See Table 20-2 on page 850.

- One language group delivers 11 - 21 NLVs, depending on the group ordered.
- US English is included in each language group.
- Install as many primary and secondary languages as wanted from the group.
- For a release upgrade, the upgrade installs the same language that is used with the current release.
- On a manual installation, select the language wanted and then proceed with the installation.
- Full automatic installation and upgrades from optical media that are changing the primary language must set the installation language using the QINSTLNG API.
- You can order more than one group, if wanted, using 5770-NLV.

Table 20-2  IBM i 7.1 media language groups

<table>
<thead>
<tr>
<th>Group 1 - 5770-SS1 Feature 5817</th>
<th>Group 2 - 5770-SS1 Feature 5818</th>
<th>Group 3 - 5770-SS1 Feature 5819</th>
</tr>
</thead>
<tbody>
<tr>
<td>2924 English</td>
<td>2924 English</td>
<td>2924 English</td>
</tr>
<tr>
<td>2963 Belgian Dutch MNCS</td>
<td>2995 Albanian</td>
<td>2938 English DBCS</td>
</tr>
<tr>
<td>2909 Belgium English</td>
<td>2954 Arabic</td>
<td>2984 English DBCS</td>
</tr>
<tr>
<td>2966 Belgian French MNCS</td>
<td>2974 Bulgarian</td>
<td>2930 Japanese Universal</td>
</tr>
<tr>
<td>2980 Brazilian Portuguese</td>
<td>2912 Croatian</td>
<td>2962 Japanese Katakana</td>
</tr>
<tr>
<td>2981 Canadian French MNCS</td>
<td>2975 Czech</td>
<td>2986 Korean</td>
</tr>
<tr>
<td>2926 Danish</td>
<td>2903 Estonian</td>
<td>2906 Laotian</td>
</tr>
<tr>
<td>2923 Dutch Netherlands</td>
<td>2998 Farsi</td>
<td>2989 Simplified Chinese</td>
</tr>
<tr>
<td>2925 Finnish</td>
<td>2957 Greek</td>
<td>2987 Traditional Chinese</td>
</tr>
<tr>
<td>2928 French</td>
<td>2961 Hebrew</td>
<td>2972 Thai</td>
</tr>
<tr>
<td>2940 French MNCS</td>
<td>2976 Hungarian</td>
<td>2905 Vietnamese</td>
</tr>
<tr>
<td>2929 German</td>
<td>2904 Latvian</td>
<td></td>
</tr>
<tr>
<td>2939 German MNCS</td>
<td>2903 Lithuan</td>
<td></td>
</tr>
<tr>
<td>2958 Icelandic</td>
<td>2913 Macedonian</td>
<td></td>
</tr>
<tr>
<td>2932 Italian</td>
<td>2978 Polish</td>
<td></td>
</tr>
<tr>
<td>2942 Italian MNCS</td>
<td>2992 Romanian</td>
<td></td>
</tr>
<tr>
<td>2933 Norwegian</td>
<td>2979 Russian</td>
<td></td>
</tr>
<tr>
<td>2922 Portuguese</td>
<td>2914 Serbian</td>
<td></td>
</tr>
<tr>
<td>2996 Portuguese MNCS</td>
<td>2994 Slovakian</td>
<td></td>
</tr>
<tr>
<td>2931 Spanish</td>
<td>2911 Slovenian</td>
<td></td>
</tr>
<tr>
<td>2937 Swedish</td>
<td>2956 Turkish</td>
<td></td>
</tr>
</tbody>
</table>

For more information, see the section Media labels and their contents in the IBM i 7.1 Knowledge Center:

http://pic.dhe.ibm.com/infocenter/eries/v7r1m0/index.jsp?topic=/rzahc/rzahcswmedialabel.htm
20.3.2 IBM i Knowledge Center

The IBM i Knowledge Center (previously known as the IBM i Information Center) is no longer available on physical media that allows it to be installed on a System i system, a Power Systems system, or a personal computer. You can access the IBM i Knowledge Center at the following website:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp

20.3.3 Expanded Electronic Service Delivery (ESD) support

IBM continues to expand the countries for which electronic delivery is supported. For a complete list, and instructions for using the ESD website, go to the following website:


Additionally, a new API called Fill Image Catalog (QVOIFIMG) was made available for IBM i 5.4, IBM i 6.1, and IBM i 7.1 through PTFs. This API makes it easier to use image catalogs when you work with images that are downloaded through the ESD process. Information APAR II14482 Required PTFs for Upgrading to V7R1MX includes the specific PTF numbers for each of these releases. To review Information APAR II14482, go to the following website:

http://www-01.ibm.com/support/docview.wss?uid=nas200630d41e1453ee6862575ab003c6e30

20.4 IBM i network upgrade

In October 2009, IBM announced that an IBM i 6.1 environment on a POWER6 processor-based server can be upgraded to IBM i 6.1.1 or IBM i 7.1 remotely using installation images on a network file server. This enhancement extends the ability to perform not only upgrades, but installations and maintenance activities for remote systems.

Before this enhancement, you needed physical media or virtual media locally on the system that is being upgraded. Using virtual media used to require using FTP to manually download the virtual images across the network to the individual systems to be installed.

The Network File System (NFS) system is the repository for the virtual images, and can be any NFS system that can meet the basic requirements. On the IBM i client system, this new function takes advantage of the 632B-003 virtual optical device that supports virtual image files on a remote system in a network. An image directory identifies a network path on the central system that contains the virtual image files that are prepared for use with a target system.

IBM i network installation or upgrade has these advantages:

- Quick, easy, and efficient.
- You can install multiple partitions at the same time from the same image server.

Important: Effective April 13, 2010, IBM charges a $50 USD fee for orders on physical media. This fee applies to all initial and upgrade orders for currently available releases of IBM i, which includes IBM i 5.4, IBM i 6.1, and IBM i 7.1. Each additional order for physical media also incurs an extra $50 USD fee. There is no media charge if you use electronic software delivery (ESD).
You do not need to manually change the panel functions in the partition properties on the HMC. This approach is great for users that have large hardware configurations with multiple partitions that share physical DVD devices.

Setup and configuration are simple.

The steps to prepare for an IBM i network upgrade are available in the IBM i 7.1 Knowledge Center in the section Preparing to upgrade or replace software with virtual optical storage using the Network File System:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzahc%2Frzahcp
repairingtoupgradevirtoptnfs.htm

For complete details about IBM i network upgrade, review IBM i Network Install using Network File System available at the following website:

20.4.1 Client system requirements

The client system (the system to be installed) accesses virtual optical images through a network and must meet the following requirements:

- The system must be at IBM i 6.1 or greater.
- The system must be POWER6 or later.
- The installation media must be IBM i 6.1.1 or later.
- PTFs are required for IBM i 6.1. For more information, see II14482 - REQUIRED PTFS FOR UPGRADING TO V7R1MX, available at the following website:
  http://www-01.ibm.com/support/docview.wss?uid=nas200630d41e1453ee6862575ab003c6e30
- A client partition with virtual optical device type 632B model 003 can access images on a server by using the NFS. This device can be used to install Licensed Internal Code, operating system, licensed programs, and PTFs (Figure 20-3 on page 853). The client must meet the following requirements:
  - Either a service tools server or a LAN console connection must be configured.
  - The Internet Protocol (IP) must be Version 4.
Figure 20-3   Remote installation or upgrade by using NFS

The 632B-003 optical device is created by using the Create Device Description Optical (CRTDEVOPT) command:

```
CRTDEVOPT DEVD(virtual_device_name)
 RSRCNAME(*VRT)
 LCLINTNETA(*SRVLAN)
 RMTINTNETA('X.X.XXX.XXX')
 NETIMGDIR('/catalog_directory ')
```

Parameter definitions:
- **RMTINTNETA** is the remote IP address of the NFS server where this virtual optical device looks for virtual image files.
- The **NETIMGDIR** parameter specifies the network path on the NFS server that contains the virtual image files that were prepared for use with this device.

Determine whether you must configure a service tools server. The type of system and configuration determines what type of setup might be required. If a LAN console is configured, no further setup is required. For more information about configuring the Service Tools Server, see the following website:


### 20.5 More considerations for upgrading to IBM i 7.1

Upgrading to IBM i 7.1 allows the users to benefit from the enhancements that were made to the operating system. Users must ensure that the system is ready to be upgraded. The following sections describe necessary changes.
20.5.1 IBM i Console changes

Operations Console Direct attached is not supported by IBM i 7.1. If you have an Operations Console that is directly attached to the system, you must change the console to one of the supported console options before you start the upgrade. Failure to do so causes the installation to fail with unpredictable results.

Supported console options for IBM i 7.1
On POWER5 or POWER6 systems, supported console interfaces include these options:

- Operations Console LAN attached
- Twinax console (which is IOP-based)
- HMC managed console

POWER6 does not support any IOPs in the central processor complex. Therefore, any IOP-based interface, such as Twinax, must be placed in an HSL attached IO drawer and an HMC is required to tag the console location.

Support: Operations Console Direct attached and Twinax console are not supported on any POWER7 processor-based server. IBM i console options on POWER7 consist of either Operations Console LAN attached or HMC managed console.

For more information about changing consoles, see the IBM i 7.1 Knowledge Center: http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp?topic=/iphca/chgconsol es.htm

The new enhancements on IBM i 7.1 for console support are as follows:

- Auto-create service tools device IDs remote panel (RCP) privilege
  By default, IBM i 7.1 sets the default value of the Auto-create service tools device IDs remote panel (RCP) privilege to be revoked. To view or change this default, go to Work with Service Tools Security Data–Option 12.

- Console takeover / recovery status panel
  The new default for IBM i 7.1, after you enter a Service Tool user ID and password, is that the Console Take Over Status panel is skipped and the previously displayed console panel is displayed. To view or change this default, go to Work with Service Tools Security Data–Option 13.

- Console takeover F18
  In IBM i 7.1, you can take over a console type or console device type by using the PF key 18. This key allows temporary switching of the console type from HMC console to LAN console without changing the tagging or resetting the operations console session. To view or change this default, go to Work with Service Tools Security Data–Option 14.

- Connecting LAN operations console for uninitialized Load Source (LS)
  For a Manufacturing Default Configuration (MDC) system that does not have a preinstalled image, and is not HMC managed, the console type must be set to LAN by the Using the Console Service functions. For more information about changing consoles, see the “Changing consoles” topic in the IBM systems Hardware Knowledge Center.

  Additionally, if a LAN console uses the embedded Ethernet ports, then the Enable Ethernet embedded port (E1) function must be set through the console service functions.
Chapter 20. Upgrading IBM i

855

Using the console service functions (65+21)

Console service functions (65+21) are the emergency console recovery functions. For more information, see the Using the console service functions (65+21) topic in the IBM i Knowledge Center:


Changes in DST/SST console security

Changes in the DST/SST console security are shown in Figure 20-4.

20.5.2 Full automatic installation and upgrades from optical media

These changes are documented in the IBM i 7.1 Knowledge Center section, Upgrading or replacing software using automatic installation:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzahc%2Fautoins.htm

If you plan to change the primary language during the upgrade or installation, set the preferred installation language by using the QINSTLNG API. This new API was introduced with IBM i 7.1.

For details about using this API, see the Set Install National Language Version (NLV) (QINSTLNG) API topic in the IBM i 7.1 Knowledge Center:

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Fapis%2Fqinstlng.htm
20.5.3 IBM i 7.1 5770-SS1 Option 1 installation actions

Several database files within QSYS2 might not be fully updated during a slip installation of Option 1 during an upgrade to IBM i 7.1. For the steps to complete before you do the upgrade, review the Memo to Users 7.1 available at the following website:
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzahg/rzahgmtu.htm

20.5.4 Adjusting the cluster version of a cluster

The cluster version defines the level at which all the nodes in the cluster are actively communicating with each other. Cluster versioning is a technique that allows the cluster to contain systems at multiple release levels and fully interoperate by determining the communications protocol level to be used.

Before you upgrade to IBM i 7.1, ensure that the node has the appropriate cluster version. Clusters support only a one version difference. If all the nodes in the cluster are at the same release, upgrade to the new release before you change the cluster version. This upgrade ensures that all functions associated with the new release are available.

For detailed actions for an upgrade to a new release, see Scenario: Upgrading operating system in a high-availability environment at the IBM i 7.1 Knowledge Center:
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzaig/rzaigscenu pgrade.htm

To verify and change the cluster version for a node, complete the following steps:
1. In a web browser, enter http://myhostname:2001, where myhostname is the host name of the system.
2. Log in to the system with your user profile and password.
3. Click Cluster Resource Services on the IBM Systems Director Navigator for i5/OS window.
5. On the Cluster Properties window, click the General tab.
6. Verify the cluster version setting or change the version to the wanted setting.

20.5.5 Java considerations

The following sections detail changes that were made to Java.

IBM Toolbox for Java - 5771-JC1
In IBM i 7.1, the IBM Toolbox for Java is now included with 5770-SS1 Option 3 of IBM i - Extended Base Directory Support. All functions and features that were available in the original (5761-JC1) product are available and supported in 5770-SS1 - Option 3. The installation process automatically removes 5761-JC1 if it is installed on the system.

Java Developer Kit 1.4 - 5761-JV1 Option 6
The upgrade to IBM i 7.1 automatically removes 5761-JV1 Option 6 and replaces it with 5761-JV1 Option 13 - J2SE 1.4 64 bit.
Java Developer Kit 5.0 - 5761-JV1 Option 7
The upgrade to IBM i 7.1 automatically removes 5761-JV1 Option 7 and replaces it with 5761-JV1 Option 8 - J2SE 5.0 32 bit and Option 9 - J2SE 5.0 64 bit.

Java SE Developer Kit 6 - 5761-JV1 Option 10
The upgrade to IBM i 7.1 automatically removes 5761-JV1 Option 10 and replaces it with 5761-JV1 Option 11 - Java SE 6 32 bit and Option 9 - Java SE 6 64 bit.

IBM Toolbox for Java - 5771-JC1
This function was moved to 5761-SS1 Option 3.

IBM Adopt Authority for Java for i5/OS - 5799-AAJ
This PRPQ provided support for Adopted Authority for Java for the Classic JVM. IBM i 7.1 supports only J9 VM and no longer supports Classic JVM.

For the latest PTFs group for JAVA, see the following website:

20.5.6 Miscellaneous changes and withdrawals
This section covers changes and withdrawals to the following elements:
- Dynamic Host configuration Protocol
- System i Access for Wireless 5722XP1
- IBM Extended Integrated Server support for i 5761LSV
- IBM Secure Perspective for IBM i 5733PS1
- Performance Viewer open source Components
- IBM WebSphere Application Server Version 6
- Lotus Domino 7 and Lotus Domino 8
- IBM DataMirror® iCluster SMB 5733ICS
- IBM Eclipse Help System

Dynamic Host Configuration Protocol (DHCP)
DHCP in IBM i 7.1 was moved from the base OS to 5770-SS1 option 31 (Domain Name System) and requires that 5771-SS1 Option 33 (Portable App Solutions Environment) be loaded. This feature includes the standard IBM i DHCP server and the new ISC DHCP server. For more information, see Chapter 9, “Networking enhancements” on page 421.

System i Access for Wireless - 5722-XP1
The product to replace the System i Access for Wireless is a browser-based alternative for System i Access for Web for 250 session or IBM System Director Navigator for system management functions.

IBM Extended Integrated Server Support for i - 5761-LSV
This product provided integrated server support for VMware ESX on iSCSI-attached BladeCenter and System x server, Linux on iSCSI attached BladeCenter, and System x server, and Linux running in IBM i hosted logical partitions.

VMware ESX on iSCSI attached BladeCenter and System x server are supported by IBM i 7.1 - 5770-SS1 Option 29 - Integrated Server Support.
**Changes for Linux support**
For Linux on iSCSI-attached BladeCenter and System x servers, 5761-LSV provides Linux operating system installation, save when active support for virtual disk (storage spaces), file level backup of files on the Linux server, dynamic linking and unlinking of virtual disk, and virtual optical and tape support. These functions are not supported in IBM i 7.1.

**Suggested replacement**
Use IBM i support for VMware ESX on iSCSI-attached BladeCenter or System x server to host Linux servers. However, save when active, file level backup, and virtual optical and tape are not supported.

Linux running in IBM i hosted partitions continue to be supported in IBM i 7.1, but save when active and file level backups are not supported.

**IBM Secure Perspective for IBM i - 5733-PS1**
Secure Perspective for IBM i (sold as 5733-PS1 and 5724-PS1) continues to be available from IBM System Lab Services. For more information, see the following website:
[http://www-03.ibm.com/systems/services/labservices/platforms/labservices_power.html](http://www-03.ibm.com/systems/services/labservices/platforms/labservices_power.html)

**Performance Viewer Open Source Components - 5761-SS1 option 46**
This function was moved. It is included in IBM i 7.1 - 5770-SS1 option 3. No action is required.

**IBM WebSphere Application Server Version 6 - 5733-W60**
Replace this product with WebSphere Application Server V7.

**Lotus Domino 7 for i5OS - 5733-LD7**
Upgrade to Domino V8.5.2 (or later) 5733-LD8.

**Lotus Domino 8 for System i - 5733-LD8**
Upgrade to Domino V8.5.2 (or later) 5733-LD8.

**IBM DataMirror iCluster SMB - 5733-ICS change**
Use IBM DataMirror iCluster for System i - 5733-ICL. It has the same or lower price and more functionality than SMB.

**IBM Eclipse Help System removed**
The IBMHELP server was removed in IBM i 7.1. Previously, this TCP server was packaged with 5761-SS1 option 3 (Extended Base Directory Support).
Figure 20-5 provides a summary of the withdrawals of IBM features related to IBM i.

<table>
<thead>
<tr>
<th>Function / Product</th>
<th>Notes</th>
<th>Recommended Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Attach Ops Console</td>
<td>Not supported with i 7.1</td>
<td>LAN Console or HMC</td>
</tr>
<tr>
<td>Java Developer Kit (Classic)</td>
<td>Not included with i 7.1</td>
<td>IBM Technology for Java</td>
</tr>
<tr>
<td>Extended Integrated Server Support</td>
<td>Not support on i 7.1 (5761-LSB) Linux not supported on iSCSI attached systems IBM i no longer supports save while active and File Level Backup for Linux partitions</td>
<td>IBM i in Option 29 - Integrated Server Support</td>
</tr>
<tr>
<td>IBM i Information Center Media</td>
<td>Physical Media no longer available</td>
<td>Use the online version of the Information Center</td>
</tr>
<tr>
<td>AnyNet</td>
<td>Still included in i 7.1, but no longer supported</td>
<td>Enterprise Extenders function of IBM i</td>
</tr>
<tr>
<td>System i Access for wireless</td>
<td>Not supported on i 7.1 (5722-XP1)</td>
<td></td>
</tr>
<tr>
<td>Secure Perspectives</td>
<td>Not supported on i 7.1 (5733-PS1)</td>
<td>Lab Services offering</td>
</tr>
<tr>
<td>Rational Developer for i</td>
<td>Withdraw Feb 9 effective May 11 (5733-RDI)</td>
<td>Rational Developer for Power – RPG and COBOL Development for i</td>
</tr>
<tr>
<td>Zend Core for i</td>
<td>5639-ZC1 product renamed to Zend Server Community Edition for i</td>
<td>Zend Server Community Edition for i</td>
</tr>
<tr>
<td>Zend Platform for i</td>
<td>Withdraw 4/13 effective 7/17 (5619-ZP1, 5771-ZP1)</td>
<td>Zend Server Support for i 5771-ZC1</td>
</tr>
<tr>
<td>Zend and MySQL Value Pack</td>
<td>Withdraw 4/13 effective 7/17 (5639-MVP)</td>
<td>Zend Server Support for i 5771-ZC1</td>
</tr>
</tbody>
</table>

*Figure 20-5  Withdrawal notes summary*

### 20.6 Performance improvement to LIC PTF apply

Apply time has been improved for both PERM and TEMP apply LIC PTFs with IBM i 7.1 TR 6 and IBM i 6.1 on some configurations. This particular benefit is likely to be noticed mainly on smaller partitions and systems because they are more likely to be constrained in memory and processing power, though individual results vary. Partitions and systems that are not constrained in memory or processing power are not likely to see any noticeable benefit.

For IBM i functional enhancement details, see the following website:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/IBM%20i%20Technology%20Updates/page/IBM%20i%20Functional%20Enhancements%20Details

This enhancement is part of the IBM i 7.1 TR 6 PTF Group. If you have a configuration that you believe would see some potential performance benefit and you already have IBM i 7.1 TR 5 PTF Group on your partition, you would see that benefit while applying the IBM i 7.1 TR 6 PTF Group. If you do not already have IBM i 7.1 TR 5 PTF Group on your system, you would experience the benefit with subsequent PTF applies, IBM i 7.1 PTF MF56423 and IBM i 6.1 PTF MF45484.
20.7 Reference document summary

The reference documents are in the IBM Technical Databases, available on the website:

Information is grouped by major areas of interest, as follows:

- **Authorized Problem Analysis Reports (APARs)**
  Access the database of resolved Software Problems.

- **Preventive Service Planning (PSP)**
  Access the database of Preventive Service Planning information including Cumulative PTF Packages, HIPER PTFs, and Group PTFs.

- **PTF Cover Letters**
  Access the database of PTF Cover Letters. PTF Cover Letters are documents that are associated with specific PTFs and provide a wealth of information about those PTFs such as description, problem fixed, related APARs, pre/co-requisite PTFs, and more.

- **Software Knowledge Base (including Entitled content)**
  Access the database that contains the latest system service information in the IBM i 7.1 Knowledge Center:
  http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp
IBM i Doctor for IBM i

This appendix describes the changes in IBM iDoctor for IBM i for IBM i 7.1.

The following topics are described:

- Installation
- My Connections View
- Main window
- Collection options
- Data Viewer
- Collection Services Investigator
- Job Watcher
- PEX Analyzer
- Plan Cache Analyzer
- VIOS Investigator
- iDoctor FTP GUI
- MustGather Tools
- HMC Walker
- More information
Installation

The following functions were added to the installation process:

- The save files that are used to install the server builds are now downloaded on demand when running the installation. These can be downloaded through a proxy server if necessary using the settings on the Welcome page of the installation.
- Sending the save files to the IBM i now includes an option to use SSL FTP.
- Validation checks were added for each specified partition to ensure that the partition is able to install iDoctor.
- The default installation directory is now `C:\Program Files\IBM\iDoctor` on 32-bit Windows and `C:\Program Files (x86)\IBM\iDoctor` on 64-bit Windows.
- A check was added for installing Job Watcher at the 6.1 and 7.1 releases to ensure that the Job Watcher definitions file (`QAPYJWDFN`) exists in QUSRSYS and contains the IBM-supplied definitions.
- In the installation, an option on the Component Selection window that is called Create user profile QIDOCTOR (applies to Base support only) with the default cleared was added.

The iDoctor GUI now requires the Visual Studio 2012 Update 1 or later redistributable package and .NET 4.0 or later. More information about these requirements can be found on the following website:


My Connections View

My Connections View, which is shown in Figure A-1 on page 863, provides the following enhancements:

- Added columns to show access code expiration dates, missing PTFs, ASP group name, and relational database name (if the connection uses an independent ASP).
- New menu options added to Check Expiration Dates or Check PTFs against the wanted partitions. Check PTFs includes checking for the latest Performance Group PTF levels.
- Added menus to Load and Remove all iDoctor Stored Procedures.
- Added Uninstall iDoctor option.
- Added an option to Edit an existing connection.
- Deleted obsolete analysis files for each component.
When you sign on to a system, iDoctor uses the configured sign-on setting defined in System i Navigator (you can access this setting by clicking Properties and clicking the Connection tab for a system). You can use options such as Use Windows user name and password to avoid needing to sign on through iDoctor if your Windows password matches the user name and password of the System i to which you are connecting. iDoctor also uses the System i Access for Windows password cache to avoiding prompting for a password unless needed. If you still want to be prompted for a password every time you start iDoctor, set the Prompt every time option within System i Navigator.

Support was added to view collections that are stored in libraries that are created in Independent ASPs. Use the Add connection menu or Edit menu from the My Connections View to specify the appropriate ASP group name and relational DB name, as shown in Figure A-2. These values cause the QZRCSRVS and QZDASOINIT jobs that are created by iDoctor to recognize data that is stored in the Independent ASP.

You can also create connections of type HMC, AIX, or VIOS. Doing so enables appropriate options for each.
Main window

On the main window toolbar, a button was added that enables / disables the display of situational analysis background colors in graphs. A simple click of the button turns it on / off for all graphs (even open ones). Another click of the graph or legend redraws the graph with or without the situations (if found in the data), as shown in Figure A-3.

![Figure A-3 Button to enable or disable situations analysis background colors](image)

On the main window, which is shown in Figure A-4, the clock icon can now be used from any component to set the preferred time range interval size. The clock icon now has the following additional time grouping options: one-tenth-second, five-second, fifteen-second, five-minute, four-hour, eight-hour, twelve-hour, and twenty-four-hour. The small groupings are useful in PEX Analyzer and the large groupings are useful in Collection Services. More checking was added to the GUI to ensure that only relevant time grouping options are shown for the current data.

![Figure A-4 Main window](image)

You can save a URL for libraries, collections, call stacks, and so on, in iDoctor using the Copy URL menu option or button. The URL can then be pasted into a web browser or saved for future use. The URL shown in Example A-1 opens library COMMON within Job Watcher on system Idoc610.

Example A-1 Opening the COMMON library within Job Watcher on system Idoc610

idoctor:///viewinfo1[type=CFolderLib,sys=Idoc610,lib=COMMON,comp=JW]
All components now provide several common options (folders) for working with data or parts of the system in various ways:

- The Libraries folder displays the libraries on the system that contain data for the current component. You can filter the libraries by owner or library name by using the Filter libraries menu.

- The SQL Tables folder is a repository in iDoctor for working with the tables created by the iDoctor analyses. Comparison options are available by right-clicking more than one SQL table.

- A new Browse Collections option was added that provides alternative ways of looking at the collections that are stored on the system. This function is built from a repository that must be updated periodically by the user using the options that are found when you right-click the **Browse Collections** folder.

You can use the Browse Collections option to find collections on the system in several ways:

- Partition Name
- Partition Name and VRM
- Partition and collection type
- Library
- Library and collection type
- Collection type
- Collection type and VRM
- VRM
- Month created
- Month created and collection type

Each of the views gives the total size of all collections (in MBs) in each group and the total number, as shown in Figure A-5.

```
Figure A-5 Browse collections
```

- Added a Super collections folder that you can use to work with the super collections that exist on the system. These collections contain a folder for each collection type that is collected within the super collection.

- You can use the Saved collections folder to work with any save files that are found on the system that contain iDoctor collections that were saved previously using the iDoctor GUI.
You can use the Work Management folder to work with scheduled iDoctor jobs, work with active jobs, or work with the subsystems. Within the subsystems folder are options to work the iDoctor subsystems or all subsystems.

The iDoctor components now contain two new folders that show the ASPs and disk units that are configured on the current system. You can use the ASPs folder to drill down to view the disk units within an ASP. The Disk Units folder provides WRKDSKSTS type of statistics with updates provided with each refresh (it also includes total I/O and total sizes), as shown in Figure A-6.

Right-click the Disk Units or ASP folder and click Reset Statistics to restart the collection of disk statistics. You can also use the Select fields menu option when you right-click the folder to rearrange fields or add more fields. The status bar of the main window shows the times for first disk statistics snapshot, and the last one.

Similarly, you find an Active Jobs (see Figure A-4 on page 864) folder on the same window, which provides WRKACTJOB-like function from the iDoctor client, as shown in Figure A-7. You can also sort by a statistic and refresh to keep tabs on the top processor users, and so on. There is also a filter option to filter the list by name, user, number, current user, or minimum processor percentage. Click the Select fields menu option when you right-click the folder to rearrange fields or add more fields. Expanding a job shows the threads and the thread statistics available for each job. You can start Job Watcher or PEX Analyzer collections or add Job Watcher / PEX definitions using the selected jobs within the Active jobs folder. You can also end the selected jobs or view job logs.
You can use the objects that are owned by a user folder to manage (view / delete) the objects on the system that are owned by the current user. This function is primarily intended to aid in disk space cleanup and options are provided to view only iDoctor objects, or all objects that are owned by the current user.

**Collection options**

The Collection menu now contains an Analyses menu for all components. Choosing an option under this menu runs a program that creates SQL tables that are needed for further analysis. In most cases, more reports become available after the analysis completes and the collection is refreshed (by pressing F5.)

The Summarize menu option in CSI and Job Watcher moved to Analyses - Run Collection Summary. Choosing this option now displays a window that you can use to filter the collection data by job name, job user, job number, current user, subsystem, or time range. Filtered results can be viewed under the SQL tables folder. By not filtering the data, the summarized results are accessible using the graphing options that are provided under the collection.

The Create Job Summary menu option in CSI and Job Watcher moved to Analyses - Run Create Job Summary.

There is a new iDoctor Report Generator for all collections (Figure A-8 on page 868). To access it, right-click a collection and click the **Generate Reports**. The default web browser is opened to show the HTML report after the reports are captured to JPG files. As reports are running, you can switch to other windows, but before screen captures are taken, the data viewer must be moved to the front of all windows. This action happens automatically, but might look strange the first time you use it.
With the **Save** option (see Figure A-9), you can save multiple collections or monitors. After you use this option, the new Saved collections folder shows a record that identifies the save file, which you can use to restore the data or distribute it.
The **Transfer to** option now supports all collection types. It was modified as follows:

- PEX collections, PEX MGTCOL objects, CS collections, CS MGTCOL objects, DW collections, and Job Watcher collections all now support the transfer option.
- When sending data to IBM, the IBMSDDUU tool is now used.
- When you transfer multiple collections, they are saved and sent using the same save file instead of different ones.
- Monitors (or multiple monitors) can now be transferred.
- Path / file names increased to 100 chars from 50.
- You have complete control to set the file name to whatever you want, but the recommended format is given.
- You now have an option in the action list to FTP the collections to ECuRep.
- Mixed case passwords, user names, and file names are now supported, which fixes problems when you send data to and from AIX.
- The `QIDRGUI/FTPFILE` command now supports a GET action instead of the default of PUT. This command allows an iDoctor i user to receive data from another system (such as NMON data from an AIX box).

In all components that support copying a collection, you can now specify the collection name in the target library. You can use this function to copy a collection to a new name in the same library.

**Data Viewer**

The Data Viewer toolbar has a toolbar that shows all the idle waits (include all buckets) for wait bucket *jobs* and larger grouping graphs in CSI and Job Watcher. This toolbar is a toggle button that you can use to see the idle waits and click again to see the interesting waits. Previously, the idle waits were not shown for job or higher groupings. Figure A-10 shows an example.

![Idle waits toggle button](image)

*Figure A-10  Idle waits toggle button*

There is a new menu, **Choose Database Members**, in the SQL editor that clears the current member selections and opens the member selection window.

In the record quick view, you can see the table alias name before the column name if it is known.

You can now click **Save** on the Data Viewer toolbar to save the current graph and legend as a JPG image.

You can click **File → Create Shortcut** to save a Data Viewer graph or table as a shortcut file (* .idr). The file can be sent to other users or saved on the PC to revisit the report later.

The interval grouping option on the Clock icon now has a five-minute and four-hour time interval specification.
The Data Viewer has a button, represented by the sum symbol, to run math over cells from the selected rows in a flyover as the user moves their mouse pointer over the data. The options are as follows:

- None (normal flyover behavior)
- Sum
- Average
- Minimum and Maximum
- Percent of, Delta (current - prior)
- Delta (prior - current)

There are also changes to the design of graphs and reports.

**Side-by-side comparisons**
You can use the side-by-side comparisons to sync up the scrolling and Y-axis scaling of any two graphs (or tables) in a Data Viewer.

When two or more graphs or tables exist in a Data Viewer, the buttons are ready for use. See Figure A-11.

![Side by side comparisons](http://www.youtube.com/watch?v=OHIZPzHgYsk)

**Table filtering options**
Right-click the column that you want to filter. Set the wanted operator and value and click **Apply** to refresh immediately. See Figure A-12.

![Filter](http://www.youtube.com/watch?v=OHIZPzHgYsk)

More options are found by right-clicking a column:

- Sort
- Remove filter
Graph filter options
You can use new graph filtering options to define a filter over the wanted column that is shown in the legend. Right-click the wanted column description and click Add Filter. See Figure A-13.

Collection Services Investigator
The folders available in the Collection Services Investigator (CSI) component changed. Instead of showing libraries that contain CS data, new folders are available, as shown in Figure A-14:

- Libraries containing CS database file collections (filterable)
- Historical summaries that contain broader periods of CS performance data (weeks / months)
- CS objects for a list of all CS management collections objects on the system

The rest of the folders are described in “Main window” on page 864.
Historical summaries

Historical summaries consist of consolidated or reduced sets of Collection Services data for graphing many days, weeks, or months of data at one time.

Figure A-15 gives an example of a Historical Summary Collection Overview Time Signature graph over 12 days of data.

These data can be created in two possible ways:

1. Run the STRCSMON command (or use the Start Monitor menu option from the Historical Summaries folder), which summarizes new Collection Services data every day at a certain time and adds it to the system’s default Historical Summary repository.

2. Right-click one or more libraries and click Analyses → Run Historical Summary.

Use the one-hour grouping option when you create the Historical Summary.

Historical summaries provide a complete set of graphs similar to the graphs provided under normal collections. A full set of “average day” and “average week” graphs are also supplied.

More information about historical summaries can be found at:

Capacity planning
You can now capture the selected collection’s information and import it into the Workload Estimator. Use the Launch Workload Estimator menu on a collection, as shown in Figure A-16. A window opens with the average processor and disk statistics for the collection.

Figure A-16  Start the Workload Estimator
When you click **Submit** (Figure A-17), the data is sent to Workload Estimator for further analysis.

![Launch WLE](image)

**Figure A-17  Submit to WLE**

**Managing collections**

On the same drop-down menu that is shown in Figure A-16 on page 873, you see that a **Copy** function was added. You can also use the Copy Performance Data (**CPYPFRTA**) command to obtain the same result. The Delete function now uses the Delete Performance Data (**DLTPFRDTA**) command.

The import data to WLE option is accessible from a CSI graph if a time range is selected. The numbers that are provided to WLE are based on the selected time period.

A search function, similar to the one in Job Watcher, is now available in this window. You can use it to generate a report that shows job records that are based on a specific job name, user, number, subsystem, pool ID, or current user profile. From these reports, you can drill down into the graphs for the wanted job over time. You can also search over multiple collections at one time by selecting the wanted collections in the CSI component view's list side and then using the **Search** menu. After the search results are shown, you can drill down on the same set of collections that are provided for the wanted job or thread.

You can create graphs over multiple collections at one time in the same library. Select the wanted collections from the CSI component view's list side and then right-click and choose the graph of interest. Click **Yes** when prompted if the graph is to be created for all collections selected. From then on, any drill down that you do on rankings and the single object over time graphs apply to this same set of collections.
In CSI and PEX, you now have a Wait Buckets tab that shows the wait buckets or ENUM mapping. Right-click and select **Collection → Properties → Wait Buckets**, as shown in Figure A-18.

![Figure A-18: Wait and ENUM display](image)

**Interval detail pages**

The interval details property pages in CSI show key information for a thread/job and interval. These pages are like the ones in Job Watcher, and have a common ‘general’ section.
Situational analysis
To start a situational analysis, right-click the collection and click Analyses → Run Situational Analysis. You can also right-click the collection, click Analyses → Analyze Collection, and click Situations to configure the default situations to be used by CSI. See Figure A-19.
All the time interval-based Wait graphs include different background colors, each identifying a situation, as shown in Figure A-20.

The current list of situations and the default minimum thresholds are shown in the following list:

- Interactive feature use high: 100%
- Write cache overruns: 20%
- High disk response times: 15 ms
- High faulting in the machine pool: 10 faults per second
- High disk storage consumed: 90%
- Jobs ineligible to run: Three instances for a job per interval
- Significant changes in pool size: 25% change from one interval to the next

**External storage analysis**

For an in-depth overview of this instrumentation, see 8.3.6, “External disk storage performance instrumentation” on page 401.

**IASP Bandwidth analysis**

The purpose of the IASP Bandwidth analysis is to analyze the Collection Services data with the intent to determine whether the system is a good candidate for migrating to Independent ASPs.
Right-click the collection and click **Run IASP Bandwidth** to kick off the analysis. When you run the analysis, you are prompted for several parameters:

- **Compression rate**: The estimated network (comm line) compression rate (between the system and the IASP). A value of 1 means no compression. 1.5 (the default) means 50% compression. Do not use values less than 1.
- **Full system bandwidth**: Estimated bandwidth that is required by system without IASPs (in megabits per second). Depending on the system or data, you might want to adjust this value to be much higher.
- **IASP bandwidth**: Estimated bandwidth that is required by system with IASPs implementation (in megabits per second). Depending on the system or data, you might want to adjust this value to be much higher.
- **ASP filtering**: You can use this option to select which ASPs to include when you run the analysis.

After you run the analysis, a new IASP bandwidth estimations folder is available that contains the generated table and a subfolder with graphs.

The IASP bandwidth estimate table represents the statistics that are generated by the analysis. The statistics that are generated include the number of blocks, writes, database write percentage, and various bandwidth estimates (all in megabits per second).

The IASP bandwidth overview graph displays the database writes for IASPs and the full system writes.

The IASP bandwidth overview graph with lag includes how much bandwidth lag there would be based on the parameter estimation values given when the analysis was created.

**SSD candidate screening**

Available at 7.1 or higher, SSD Candidate Screening helps determine whether SSDs might improve performance, as shown in Figure A-21. It uses data from QAPMDISKRB. It is similar to the SSD Analyzer tool.
If you select **SSD screening summary for ASP** from the right pane, a graph opens in Data Viewer, as shown in Figure A-22.

![Figure A-22 SSD screening summary for ASP](image)

**Physical system graphs**
You can now view what was collected by the IBM System Director tool for all partitions on which it was running, as shown in Figure A-23.

![Figure A-23 Physical system statistics](image)
These tools support all Power Systems as of V5R4.
- Processor use
- I/O counts
- I/O rates
- Disk space
- Memory

The information from the hypervisor for systems that are running release 6.1 or higher can now be viewed in the new System Graphs HMC folder (see Figure A-24).

The graphs shown vary depending on the data available. The QAPMLPARH file is required for the CPU graphs and in IBM i 7.1, the file QAPMSYSINT is required for the TLBIE graphs.

It includes the following graphs:
- LPAR CPU time: Shows the processor time that is used for all partitions (Figure A-25).
  - LPAR cycles per instruction and CPU time: Same as previous but includes CPI on Y2.
  - LPAR instructions per second and CPU time: Same as first graph but includes IPS on Y2.
  - LPAR entitled CPU time: This graph breaks down the CPU time by entitled time versus uncapped time in excess of entitled capacity.
- LPAR memory allocated: Shows the memory consumption for all partitions (Figure A-26).

![Figure A-26 LPAR memory allocated](image)

- Virtual shared processor pool utilization.

- Physical processor utilization overview: Shows the average processor utilization for each physical processor over time (Figure A-27).

![Figure A-27 Physical processor utilization overview](image)
If the system is running IBM i 7.1 and file QAPMSYSINT exists, then a set of TLBIE graphs is shown (Figure A-28).

![Figure A-28  System graphs (HMC), TLBIE graphs](image)

An example of one of the TLBIE graphs is shown in Figure A-29.

![Figure A-29  TLBIE totals per partition](image)

The Rankings folder contains the following graphs that rank the LPARs in various ways:

- LPAR CPU time
- LPAR cycles per instruction and CPU time
- LPAR instructions per second and CPU time
- LPAR advanced CPU time
- LPAR memory allocated
- LPAR donated processor time
- Physical processor utilization
- LPAR dedicated processor utilization
Shared memory graphs
If the QAPMSHRMP file is available, a shared memory graphs subfolder is available that contains the following additional graphs:

- Shared memory overview (Figure A-30)
Shared memory pool page faults (Figure A-31)

Figure A-31  Shared memory pool page faults
Memory for I/Os overview (Figure A-32)

Disk graph updates
New types of graphs have been added that show a different color per ASP, disk type, disk group, or IOA type as shown in Figure A-33.
Job counts graphs

If you right-click a collection and select **Collection → Job counts graphs**, the following options are available:

- Job counts (Figure A-34)
  - Net jobs created
  - Net jobs breakdown
  - Job created / destroyed
  - Job counts rankings (by job grouping) as shown in Figure A-35

Figure A-34  Job counts

- Job counts rankings (by job grouping) as shown in Figure A-35

Figure A-35  Job Counts by generic job name

- Net jobs breakdown rankings (by job grouping)
Memory pool graphs
If you right-click and select Collection → Memory pool graphs, you can generate graphs that contain the following information:

- Memory pool consumption (by percentage) (Figure A-36)

![Figure A-36 Memory pool consumption](image)

- Memory pool sizes (by percentage)
- Memory pool consumption
- Memory pool sizes
- Machine pool sizes and rates
- 64K versus 4K page faults for pool <<JBPOOL>>

Additional graphs are also available under these folders:
- Flattened type (with pool filtering on drill down)
- Memory pool graphs (for pool sizes > 1 TB)

You can use the memory pool graphs to right-click the wanted pool and time range to drill down and see the jobs within the wanted pool in various ways.

There is also support to allow multiple collections to be graphed at the same time to compare the evolution in memory use. You can either select multiple collections and right-click and select the wanted memory pool graph, or use the Historical Summary analysis to graph multiple collections more easily.
Disk configuration reports
A new Disk configuration folder under the Collection menu contains information about the ASPs, IOPs, IOAs, and units on the system. This information includes information about the IOAs, including the read / write cache sizes. The first report provides a breakdown of disk capacity.

Two more reports show the same disk configuration data, where one is a flat table and the other is a tree. The tree provides counts and percentages of the units, IOAs, IOPS, and ASPs within each prior level grouping. To access these reports, right-click and select Collection → Disk configuration. The window that is shown in Figure A-37 opens.

A report called Capacity (in GBs) by ASP with paths is also provided.
**Advanced disk graphs**
As explained in “QAPMDISKRB” on page 306, there is a new structure for reporting the disk response times in a new set of buckets. These new statistics can be found by right-clicking and selecting **Collection → Disk graph → Advanced**. An example is shown in Figure A-38.

![Advanced I/O totals for ASP 1, 2](image)

**Figure A-38** Advanced disk graphs

**12X loops and I/O hubs graphs**
The 12x loops and I/O hubs folder (under the Communication graphs folder) contains three styles of graphs.

- **Summarized**: Summarizes the loop data over time.
  - Summarized loops/hubs traffic
  - Summarized 12x loops traffic
  - Summarized I/O hub traffic
  - Total traffic breakdown
  - Send and receive traffic breakdown
  - 12x loops traffic breakdown
  - I/O hub traffic breakdown
- **Rankings**: Ranks each loop/port by throughput.
- **Advanced**: These graphs show every loop/hub (above the filter threshold) over time.

The seven summarized graphs provide drill downs into seven ranking graphs for the wanted time period.
Ethernet graphs
A new series of Ethernet graphs have been added under the Communication graphs folder as shown in Figure A-39.

![Ethernet LAN graph](image)

Figure A-39   Ethernet LAN graph

J9 JVM graphs
A set of J9 JVM graphs at 6.1 and higher have been added. This includes overview graphs (all JVMs combined), rankings (by thread), and selected thread over time. The graphs included at each level are:

- J9 JVM heap sizes (includes allocated, heap in use, malloc, JIT, and internal sizes)
- J9 JVM allocated heap size
- J9 JVM heap in use size
- J9 JVM malloc memory size
- J9 JVM internal and JIT memory sizes

Enhanced graphs
Changes were applied to a number of graphing capabilities that support Version 6.1 and later:

- The communication graphs folder shows the following information:
  - Average IOP uses
  - Maximum IOP uses
  - SSL authentications
- Under Disk graphs, new graphs named I/O size and Ethernet rates and Buffer overruns/underruns are now available.
- The collection overview wait graphs now show batch and interactive processor usage on the second Y axis.
- The wait bucket counts are added to the overview graphs for a single thread/job.
- The IP address family and formatted IP address is added to the end of the job search report.
- Flattened type graphs provide the capability to customize graph labels, hide values on the Y1/Y2 axis, change scaling, and use the graph definition interface to change the fields that are used, scaling, colors, and sizes.
Starting with Version 6.1, you now have the following information:

- A new graph for the selected job/user level called “Total pages allocated for <<OBJTYPE>> <<OBJDESC>>,” showing the total pages that were allocated and deallocated for the entire lifespan of the job.
- A new series of graphs under the I/O graphs folder shows the net pages that are allocated and net page frames that are requested. Net pages that are allocated are shown in megabytes and assume that the page size is 4 KB. Both sets of graphs include the usual rankings graphs to graph the data by thread, job, generic job, user, and so on.

Starting with Version 7.1, seizes and locks graphs were added over the 7.1 lock count fields in the QAPMJOBMI file. Run the Collection Summary analysis and then access the graphs by clicking Wait graphs and looking under the Seizes and locks folder.

**Job Watcher**

The folders available in the Job Watcher component changed. Instead of showing libraries that contain Job Watcher data, new folders are available, as shown in Figure A-40:

- Libraries containing Job Watcher database file collections (filterable).
- A definitions folder provides a list of Job Watcher definitions on the system.
- The rest of the folders are covered in 6.4, “IBM iDoctor for IBM i” on page 318.

![Figure A-40  Job Watcher folders](image)

**Monitors**

In the window to start a Job Watcher (or Disk Watcher) monitor, you can specify the maximum collection size (in megabytes) for each collection that is running in the monitor.

The next set of changes applies to the following monitor commands: STRJWMON, STRPAMON, and STRDWMON. These options can also be found in the GUI when you start a monitor.

The Collection Overlap (OVRLAP) parameter is no longer used. The monitor now detects that a new collection started before the previous one ended.

The Collection Duration (MAXSIZE) parameter can now be specified in minutes with a decimal point (for example, 59.5 minutes).
When you restart a monitor, if the Maximum Historical Collections (\texttt{COLNS}) parameter is reduced, there are added checks to delete the additional ones.

Deleting collections in a monitor is now done in a submitted job.

The following changes apply only to \texttt{STRJWMON}:

- Added a Resubmit Collections (\texttt{RESUBMIT}) parameter to submit new collections if a collection fails to start or quits early.
- Added a Max Consecutive Resubmits (\texttt{MAXTRIES}) parameter to indicate the number of times collections are resubmitted if the \texttt{RESUBMIT} parameter is set to \texttt{YES} and the current collection ended prematurely.

**Create Job Summary analysis**

Right-click and select \texttt{Collection} \rightarrow \texttt{Analysis} \rightarrow \texttt{Create Job Summary} to produce job totals for the wanted jobs that are based on any filters, as shown in Figure A-41.

![Create Job Summary analysis](image)

**Collection Summary analysis**

A collection is summarized by right-clicking and selecting \texttt{Collection} \rightarrow \texttt{Analyses} \rightarrow \texttt{Analyze Collection} (for full options) or by clicking \texttt{Collection} \rightarrow \texttt{Run Collection Summary}. This new analysis is greatly simplified and many options that were previously on the Summarize Collection window were removed.
The Analyze Collection(s) window now has a new **Situations** button, which you can use to customize which situational analysis option to run, and the limits that are used for the situations (Figure A-42). The selected analysis can now run as a batch job. You can use a check box on the Analyze Collection(s) window to indicate whether this analysis is done instead of running it in the Remote SQL statement status view (a separate GUI QZDASOINIT job). The same analysis and similar options are found in the CSI component.

**Figure A-42  Analyze Collection(s) window**

There are advantages to running in batch:

- You can run start many analyses simultaneously.
- You can start the analysis, end your GUI session, and it keeps running.
- You can start multiple analyses on multiple systems without waiting on the remote SQL statement status view to run them in order.

Within the list of collections, the status field indicates which files are not yet created.

**Situational analysis**

This option can be found by clicking **Collection → Wait graphs**. It has new situations:

- Concurrent write not enabled
- Journal caching that are not properly used
- Jobs ineligible to run
- Long sync write response times
- Fixed allocated length setting on a varchar or lob type column is defaulted to 0 or is set too small
- Contention on DB in use table possibly because of a high number of opens and closes
- High number of creates and deletes by multiple jobs where all of the objects are owned by the same user profile
- Potentially large number of locks
- Deadlock because of DB record locks

**Top threads and tasks graphs**
These graphs can be found by clicking **Collection → Wait graphs → Top threads over time**. It displays the threads or tasks that spent the most time in the wanted wait bucket (such as processor) over time.

**Objects waited on tab**
The Objects waited on tab within the Interval Summary interface now includes the list of jobs that are waiting on an object but did not use processing time in the interval. Previously, only jobs that used processing time in the interval were shown. There is also a check box to show segments that are waited on.

**Single interval rankings identifying flags**
In Job Watcher, if you drill down into a wait bucket rankings graph on a single (job/thread) interval, you see the new flags field at the end of the job/thread name that contains the following possible values and meanings:
- W: Has a wait object.
- H: Holder.
- B: The current wait bucket is the same as current sort/filter bucket.
- S: Has an SQL client job (applies to 6.1 and higher only).

A wait object, holder, and a SQL client job are added to the flyover (if one exists).

**SQL server mode job information**
For Job Watcher 6.1 (with PTFs) or 7.1 only, the interval details property page now includes the SQL server mode client job if found, with the option to drill down and graph the job. See Figure A-43.

---

**Status views**
The Remote SQL Statement Status view was updated with new options:
- Remove/Cancel Selected cancels or removes running SQL statements.
- Copy Selected SQL Statement(s) to Clipboard.
Appendix A. IBM i Doctor for IBM i

Add SQL Statement defines more statements to run in the view.

The Remote Command Status view was updated with new options:

- Remove/Cancel Selected cancels or removes running commands.
- Copy Selected Commands to Clipboard.
- Add Command defines more commands to run in the view.

Additional reporting options

There are several new reporting options for situational analysis, similar to the call stack reports based on the selected situation. From these options, you can double-click a job or thread to get into the call stack or run further drill down.

You can find JVM statistics on the Java virtual machine interval details tab and J9 call stacks on the Call Stack tab. The J9 Java entries are embedded within the regular Job Watcher call stacks. J9 Java call stack entries are not usable with the call stack reports.

You find a Situations tab in the Collection Properties (Figure A-44), showing all situation types known to Job Watcher and how many occurred in the collection.

![Figure A-44  Collection situations](image)

In the Interval Details interface, a button was added to go to the primary thread from a secondary thread.

A new Call Stack Summary analysis was added to identify the call stacks, waits, and objects that are associated with the most frequently occurring call stacks that are found in the collection.

Reports were added under the Detail reports menu that show the top programs causing DB opens for the selected time period in a graph. The Detail reports - Call stack summary menu now has the following options:

- 50 level call stacks,
- 50 level call stacks with wait objects only
- 50 level call stacks CPU current state only
Disk Watcher
The folders available in the Disk Watcher (DW) component changed. Instead of showing libraries that contain Disk Watcher data, new folders are available, as shown in Figure A-45:

- Libraries containing DW database file collections (filterable).
- A definitions folder that provides a list of DW definitions on the system.
- The rest of the folders are covered in “Main window” on page 864.

![Figure A-45  Disk Watcher](image)

Collections
In the Start Disk Watcher Wizard (Figure A-46), you now can collect the hardware resource file, schedule the collections, and check whether there are any PTFs. You can use another parameter in this window to set the maximum collection size (in MB) for each collection.

![Figure A-46  Start a Disk Watcher monitor](image)
A copy function for Disk Watcher collections was added. The CPYPFRCOL command (included with the OS) can also be used for this purpose.

The Change SQL Parameters interface now has options for changing the library and collection currently being used to display the graph.

**Monitors**
Disk Watcher monitor server commands were added. These commands are similar to the Job Watcher monitor commands and include STRDWMON, HLDDWMON, RLSDWMON, ENDDWMON, and DLTDWMON.

Support was added in the GUI to work with or start monitors in Disk Watcher for either Job Watcher or Disk Watcher. The same Monitors folder is also available in Job Watcher, which you can use to work with Disk Watcher monitors from the Job Watcher component.

**Definitions**
New iDoctor supplied Disk Watcher definitions are available.
- QFULLO
- QFULL1MINO
- QTRCO
- QTRC1MINO

The reload IBM-supplied definitions option must be used on systems that have definitions so that the new definitions are visible.

**Reporting**
The graph titles match the naming convention that is used by the trace graphs. The word pool was changed to disk pool, and disk unit to disk path.
A new trace Disk Watcher menu shows the top 25 I/Os rates. The graphs in Disk Watcher trace mode include the following (Figure A-47) information:

- I/O counts categorized totals
- I/O counts categorized writes
- I/O counts categorized reads
- I/O time categorized totals
- I/O time categorized writes
- I/O time categorized reads

---

Figure A-47  Statistical graphs - By disk unit
Figure A-48 shows an example of these charts.

**PEX Analyzer**

The folders available in the PEX Analyzer component were changed. Instead of showing libraries that contain PEX Analyzer data, new folders are available, as shown in Figure A-49 on page 900:

- **Libraries:** This folder displays libraries that contain PEX collections or libraries where active PEX collections created with the `STRPACOL` command (or the Start Collection Wizard) are running.
- **Active collections:** You can use this folder to work with any active PEX sessions on the system. This function is similar to the `ENDPEX` command that lists the active PEX sessions.
- **PEX objects:** You can use this folder to work with the PEX *MGTCOL objects on the system.
- **Definitions:** You can use this folder to work with PEX definitions.
- **Filters:** You can use this folder to work with PEX filters.

The rest of the folders are covered in “Main window” on page 864.
The Add PEX Definition Wizard supports defining statistics counters into buckets 5 - 8.

The PEX Analyzer Add/Change PEX Definition interface supports the latest event additions and removals at 6.1/7.1:

- Program events that are removed as of 6.1+: *MIPRECALL, *MIPOSTCALL, *JVAPRECALL, and *JVAPOSTCALL
- Base event *CPUSWT added as of 6.1+
- Base events that are added as of 7.1: *PRCFLDSUSPEND, *PRCFLDRESUME, *LPARSUSPEND, and *LPARRESUME
- Storage event *CHGSEGATR added as of 7.1
- OS *ARMTRC event added as of 6.1
- Sync event *MTXCLEANUP added as of 6.1

Because collecting DASD start events is no longer necessary for PDIO analysis, the Start PEX Analyzer Collection (`STRPACOL`) command now makes sure that the *PDIO_TIME event type always collects the *READEND, *WRTEND, *RMTWRTSTR, and *RMTWRTEND events.

The `STRPACOL` command (and the Start Collection Wizard) now includes Format 2 events for all MI user problem types (*DB_OPEN, *DB_LDIO, and so on) and the Netsize problem type. Not collecting with Format 2 now requires you to create your own PEX definition.

In PEX Analyzer in the Start Collection Wizard, and when you use one of the iDoctor problem types, the default event format value for PMCO and Taskswitch is now Format 2.

When you create a collection, a QSTATSOPEN problem type collects DB opens into statistics counter #1. It runs concurrently with the QSTATSOPEN filter to ensure that only the user application program opens are counted. You can use this function to determine which programs or procedures caused the most opens by looking at the inline counter 01. The QSTATSOPEN problem type is a PEX definition that is created using ADDPEXDFN by the GUI before `STRPACOL` is run.

You can divide a large PEX collection into a more manageable size by using the Split option.
Monitors

PEX monitors can be started for systems that are licensed to both Job Watcher and PEX Analyzer. On the server side, there is a new set of commands for PEX monitors in the library QIDRWCH: STRPAMON, ENDPAMON, HLDPAMON, RLSPAMON, and DLTPAMON.

The Start iDoctor Monitor Wizard supports the creation of PEX monitors into *MGTCOL objects. There is an ENDPEX option, on the basic options window of the wizard, with three possible values: Create DB files, Create *MGTCOL, and Suspend.

Analyses

Several changes were implemented in this menu.

Classic analyses and support for the green panel QIDPRA/G* analysis commands was removed and replaced by the SQL-based analyses (SQL stored procedures).

The Analyses menu, found by right-clicking a collection, contains a list of all available analyses (Figure A-50). The menu also contains the Analyze Collection option, which allows a user to kick off several analyses at once.

The Trace details analysis is available for any PEX collection that contains trace events and produces a SMTRMOD-like file. It handles retrieving and formatting event information from many of the PEX files including QAYPETIDX, QAYPEASM, QAYPESAR, QAYPEDASD, QAYPEPGFLT, QAYPETASKI, QAYPETSKSW, QAYPEPROCI, QAYPSEG1, QAYPEMBRKT.

The Call stacks analysis displays the most commonly occurring call stacks for each event type collected. This analysis includes options to show the top programs causing opens and closes. Options are also available to view the call stacks by job and event type.

The TPROF analysis now has the tree table views that display the percentage of processor hits in various ways.

The TPROF analysis folder contains more reports to support MCLI analysis if format 4 PMCO events were collected.
A PDIO analysis is available and provides many graphs and drill downs for analyzing disk performance, including SSD performance. ASP prompting and comparisons are supported when you open a graph that contains data from more than one ASP.

PEX Analyzer has a new analysis called *Hot Sectors*. This SQL-based analysis is only available if the PDIO analysis was run. It allows disk activity to be measured by portions of the disk address of the I/O in megabyte chunks of either 1, 16, 256, or 4096.

A Data Area analysis is available for collections that collected data area events. It provides an SQL-based report similar to the SMTRDTAA file. A similar analysis for data queue events is available.

A CPU Profile by Job analysis is available if PMCO events were collected. It shows the estimated processor consumption during the collection over time and processor thread rankings for the wanted time periods.

The MI user event analyses (LDIO and data area) now resolve the user program if Format 2 events were collected. These analyses allow for MI entry / exit events to be excluded.

A database opens analysis, similar to the database LDIO analysis, provides statistics about the user program that is associated with the DB open events and reports 16 call level stacks, if DBOPEN FMT2 events are collected.

The new IFS analysis is equivalent to the classic version, except it also provides user program names for either MI entry / exit or FMT 2 call stacks, depending on what is available.

There is a new Netsize analysis for 6.1 and higher PEX Analyzer, including several new graphs with drill downs.

A save / restore analysis runs save / restore event parsing in the QAYPEMIUSR table into several reports.

In the Taskswitch analysis, added graphs show what the wait bucket time signature looks like for the wanted thread / task (also known as TDE). See Figure A-51. More drill downs and reporting options are also provided.

---

**Figure A-51**  Taskswitch run / wait time signature graph for a single job / thread / task (or TDE)
Reports
The Summarized CPU and I/O by job /pgm / MI instruction report contains two new fields:

- Inline CPU percent of job-thread total
- Inline elapsed time percent of job-thread total

The Summarized CPU and I/O by pgm / MI instruction report contains the inline processor percent of total and the inline elapsed time percent of total information.

Plan Cache Analyzer

Plan Cache Analyzer collects and analyzes snapshots of the system's SQL Plan Cache. It complements the features that are available in System i Navigator for analyzing the Plan Cache by providing several graphs and drill-down options that are not available there.

The plan cache is a repository that contains the access plans for queries that were optimized by SQE.

Starting Plan Cache Analyzer

Plan Cache Analyzer is included with a Job Watcher license and is a component of the IBM iDoctor for i suite of tools. iDoctor can be started by clicking Start → Programs → IBM iDoctor for IBM i. After the IBM iDoctor for IBM i application opens, you can start the Plan Cache Analyzer component from the Connection List View by double-clicking the correct system.

A list of available components appears in the next window. Double-click the Plan Cache Analyzer component or select Plan Cache Analyzer and click Launch to continue, as shown in Figure A-52.

Figure A-52  iDoctor Components window
Plan Cache Analyzer: Plan Cache Analyzer is a subcomponent of Job Watcher and is only available if Job Watcher is installed correctly and a valid access code for Job Watcher is applied. This component is included with the Job Watcher license.

For more information about how to use Plan Cache Analyzer, see the IBM iDoctor for IBM i documentation at:

VIOS Investigator

VIOS Investigator combines NMON data and a VIOS to IBM i disk mapping process to help analyze the performance of your VIOS using the power of the DB2 database on IBM i.

You can use VIOS Investigator to import one or more NMON files into the tool. The NMON CSV files are converted and expanded into DB2 SQL tables, which are used to produce graphs with several drill-down options.

Graphing Options:
- Disk graphs (% busy, counts, sizes, rates, block sizes, service times, and response times)
- System configuration
- System graphs (Processor, memory, kernel, paging statistics, and processes)
- Processor graphs (Processor usage)
- TOP graphs (Processor usage, paging size, character IO, memory usage, and faults for the top processes)

If a valid disk mapping was created, then you can use the disk graphs to rank the data by disk name, disk unit, disk path, ASP, or disk type. Without the disk mapping, only rankings by disk name can be performed.

VIOS Investigator can also be used to analyze AIX and Linux systems using NMON data, but the focus is primarily on VIOS analysis with an emphasis on usage by IBM i customers.

VIOS Investigator is a no additional cost tool that is offered as-is and does not require an access code. To download VIOS Investigator, you must first accept the license agreement.

NMON

The VIOS Investigator data is created by the NMON or Topas_NMON command that is found in AIX.

On AIX V6.1 TL02 and Virtual I/O Server (VIOS) V2.1 (or higher), NMON is installed by default with AIX and the Topas_NMON command should be used for collecting data for use with VIOS Investigator.

NMON is the primary/preferred collection tool of AIX performance statistics. NMON is similar in nature to Collection Services on IBM i. Both tools use time intervals and collect high-level statistics for processor usage, disk, memory and much more.
NMON data is collected into CSV (comma-separated values) files, and Collection Services uses DB2 tables. CSV files are difficult to analyze, especially if you want to analyze many of them. VIOS Investigator simplifies this issue by allowing users to import and then analyze multiple NMON files at once.

**Disk mappings**

Disk mappings (also known as *correlations*) refer to the VIOS to IBM i correlations between hDisks and IBM i disk unit numbers and disk path names that are assigned to them.

For comparison purposes with the Collection Services Investigator, whenever possible, the disk graphs in VIOS Investigator use the same colors, labels, and field names as the disk graphs in Collection Services Investigator. However, the number of disk metrics that are provided by NMON are far fewer than those disk metrics found in Collection Services (see the QAPMDISK file.)

In most cases, especially if there are any known hardware/system changes, collect the disk mapping before or immediately after you collect the NMON data on your VIOS. This action provides more graphing options (for example, rankings by unit, path, ASP, or disk type) that are otherwise not available.

Disk mappings are collected by using a program that is written on the IBM i that interrogates the HMC to acquire disk information that is useful when you perform the analysis that otherwise would not be available with just the NMON data.

**Starting VIOS Investigator**

VIOS Investigator is a component of the IBM iDoctor for IBM i suite of tools. iDoctor can be started by clicking **Start → Programs → IBM iDoctor for IBM i**. After the IBM iDoctor for IBM i application opens, the VIOS Investigator component is started from the Connection List View by double-clicking the system.

A list of available components appear in the next window. Double-click the VIOS Investigator component or select **VIOS Investigator** and click the **Launch** button to continue, as shown in Figure A-53.

![Figure A-53 iDoctor Components window](image-url)
For more information about how to use VIOS Investigator, see the IBM iDoctor for IBM i documentation at:

iDoctor FTP GUI

A no additional cost GUI exists that provides FTP access to IBM i or other types of FTP servers. This GUI was created primarily for use with VIOS Investigator to ease the sending and receiving of performance data (such as NMON) to and from AIX (or VIOS) systems. It was tested only with connections to IBM i, AIX, or VIOS systems.

FTP connections: The FTP connections are provided through the Windows WININET APIs, which do not support any options for FTP using SSL or other secure FTP modes.

The FTP GUI is similar to other iDoctor components and can be accessed through the My Connections view. From the My Connections view, you can access this option by right-clicking the correct system and selecting Start FTP session from the menu, as shown in Figure A-54.

![Figure A-54  Start FTP Session](image)

You can also access the option from the Connection List View by double-clicking the system.
A list of available components appears in the next window. Double-click the iDoctor FTP GUI component or select **iDoctor FTP GUI** and click **Launch** to continue, as shown in Figure A-55.

![iDoctor Components window](image)

Figure A-55  iDoctor Components window

The FTP GUI window opens, as shown in Figure A-56.

![iDoctor FTP GUI window](image)

Figure A-56  iDoctor FTP GUI window

**IBM i system:** If you connect to an IBM i system, you see subfolders to work with (either the Integrated File System (IFS) or the Libraries on the system). These options are not present for other types of connections.

There are several options available to you when you right-click a file or folder from the FTP GUI, including Upload, Download to PC, and Transfer to another system.

For more information about how to use the iDoctor FTP GUI, see the IBM iDoctor for IBM i documentation at:

**MustGather Tools**

The MustGather Tools GUI is an iDoctor GUI over library QMGTOOLS and the MG menu options provided on the green screen. The MustGather Tools were created by IBM Support to help automatically collect the many pieces of debug data critical to fixing complex problems more quickly.

More information about QMGTOOLS can be found on the following website:

http://www-01.ibm.com/support/docview.wss?uid=nas8N1011297

**HMC Walker**

HMC Walker is a new option currently in beta test that uses the HMC lslparutil data to provide big picture views of performance across all LPARs attached to the HMC. If you want to join the beta test program contact:

idoctor@us.ibm.com

HMC Walker provides views that display the configuration for the HMC and VIOS details. Several graphs are available with drill down into the LPARs using the appropriate iDoctor components (for VIOS, IBM i and AIX depending on the LPAR type.)

Figure A-57 shows the CPU used by several physical systems over 60 days.

![Figure A-57 Several physical systems over 60 days](image-url)
Figure A-58 shows the CPU time for all LPARs across all of the physical systems. These LPARs are a mix of VIOS, AIX, and IBM i, and allow a user to pinpoint which LPARs are using the most CPU and drill down for further investigation.

![Figure A-58](image)

**More information**

For more information about the new features in iDoctor, go to:

https://www-912.ibm.com/i_dir/idoctor.nsf

You can also contact iDoctor team at: idoctor@us.ibm.com

Presentations are created every few months with in-depth explanations of the latest features. You can find these presentations at:


Videos are available on the IBM iDoctor website at:


They can also be viewed directly on the YouTube Channel (20+ videos) for IBM iDoctor at:

http://www.youtube.com/user/IBMiDoctorForIBMi
Related publications

The publications listed in this section are considered suitable for a more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on page 915. A few of the documents referenced here might be available in softcopy only.

- **DS8000 Copy Services for IBM i with VIOS**, REDP-4584
- **End to End Performance Management on IBM i**, SG24-7808
- **Getting Started with DB2 Web Query for i**, SG24-7214
- **IBM Power Systems HMC Implementation and Usage Guide**, SG24-7491
- **IBM BladeCenter JS23 and JS43 Implementation Guide**, SG24-7740
- **IBM i 6.1 Independent ASPs: A Guide to Quick Implementation of Independent ASPs**, SG24-7811
- **IBM i 6.1 Technical Overview**, SG24-7713
- **IBM i and Midrange External Storage**, SG24-7668
- **IBM i Program Conversion: Getting Ready for 6.1 and Beyond**, REDP-4293
- **IBM Power 520 and Power 550 (POWER6) System Builder**, SG24-7765
- **IBM Power 520 Technical Overview**, REDP-4403
- **IBM Power 550 Technical Overview**, REDP-4404
- **IBM Power 710 and 730 (8231-E2B) Technical Overview and Introduction**, REDP-4636
- **IBM Power 720 and 740 (8202-E4B, 8205-E6B) Technical Overview and Introduction**, REDP-4637
- **IBM Power 750 and 755 (8233-E8B, 8236-E8C) Technical Overview and Introduction**, REDP-4638
- **IBM Power 770 and 780 (9117-MMB, 9179-MHB) Technical Overview and Introduction**, REDP-4639
- **IBM Power 795 (9119-FHB) Technical Overview and Introduction**, REDP-4640
- **IBM PowerVM Virtualization Active Memory Sharing**, REDP-4470
- **IBM PowerVM Virtualization Introduction and Configuration**, SG24-7940
- **IBM System i5, eServer i5, and iSeries Systems Builder IBM i5/OS Version 5 Release 4 - January 2006**, SG24-2155
- **IBM System i5 V5R4 Technical Overview Redbook**, SG24-7271
- **IBM System i Security: Protecting i5/OS Data with Encryption**, SG24-7399
- **IBM Systems Director Navigator for i**, SG24-7789
- **Implementing IBM Systems Director 6.1**, SG24-7694
- **Implementing PowerHA for IBM i**, SG24-7405
Other publications

These publications are also relevant as further information sources:

- *Rational Development Studio for i ILE RPG Language Reference*, SC09-2508

Online resources

These web pages are also relevant as further information sources.

- AFP Font Collection page
  http://www-03.ibm.com/systems/i/software/print/afpfonthome_m_ww.html
- Application Runtime Expert for IBM i page
  http://www-03.ibm.com/systems/power/software/i/are
- Backup Recovery & Media Services page
  http://www-03.ibm.com/systems/i/support/brms/index.html
- *Connecting to IBM i - IBM Systems Director Navigator for i*
  http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/rzatg/rzatgdirector.pdf
- IBM i Access page
  http://www-03.ibm.com/systems/i/software/access/
- IBM i Access for Web page
  http://www-03.ibm.com/systems/i/software/access/web/
- IBM Advanced Job Scheduler for i
  http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzaks/rzaksajsmanage.htm?cp=ssw_ibm_i_71%2F5-2-4-4-10&lang=en
- IBM Advanced Job Scheduler for i page
  http://www-03.ibm.com/systems/i/software/jscheduler/index.html
- IBM DB2 for i
  http://www-03.ibm.com/systems/i/software/db2/index.html
- IBM DB2 Web Query for i
  http://www-03.ibm.com/systems/i/software/db2/webquery/index.html
- IBM i 7.1 Knowledge Center
  http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp
- IBM Navigator for i:
  http://www-03.ibm.com/systems/i/software/navigator/availplugins.html
- IBM i 7.1 Technical Overviews
- IBM i 7.1 Upgrade Planning
  - Upgrade Planning - Software
  - Upgrade Planning - Hardware
    http://www-947.ibm.com/systems/support/i/planning/upgrade/v7r1/hardware.html
  - Upgrade Planning - Statements of Direction
  - Upgrade Planning - Planning Statements
  - Upgrade Planning - Future Software / Hardware
  - Upgrade Planning - Release Life Cycle
  - Upgrade planning IBM i, i5/OS and OS/400 level mapping
  - Pre-upgrade verification tool
    http://www-01.ibm.com/support/docview.wss?uid=nas8N1014074
- IBM i integration with BladeCenter and System x page
- IBM i Memo to Users 7.1
  http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/rzaq9/rzaq9.pdf
- IBM i on a POWER Blade Read-me First
  http://www-03.ibm.com/systems/resources/systems_power Hardware_blades_i_on_blade_readme.pdf
- IBM Power Blade Servers - IBM i
  http://www-03.ibm.com/systems/power/hardware/blades/ibmi.html
- IBM PowerHA SystemMirror for i
  http://www-03.ibm.com/systems/power/software/availability/i/index.html
- IBM Power Systems Hardware Knowledge Center
  http://publib.boulder.ibm.com/infocenter/powersys/v3r1m5/index.jsp
IBM PowerVM Active Memory Sharing: An Overview
http://www-03.ibm.com/systems/power/software.virtualization.whitepapers/ams.html

IBM Rational Developer for Power Systems Software page

IBM Rational Development Studio for IBM i page
http://www-01.ibm.com/software/awdtools/wds400/

IBM Rational Host Access Transformation Services page
http://www-01.ibm.com/software/awdtools/hats/

IBM Rational Software Delivery Platform for Power
http://www-03.ibm.com/systems/power/software/i/rational/index.html

IBM Rational Team Concert for Power Jazz project page
http://jazz.net/projects/rational-team-concert-power/

IBM Rational Team Concert for Power Systems Software page

IBM Systems Director page
http://www-03.ibm.com/systems/software/director/index.html

IBM Systems Director Active Energy Manager V4.3

IBM Systems Management solutions for Power Servers
http://www-03.ibm.com/systems/power/software/management/

IBM Systems Software Knowledge Center
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp

IBM Systems Workload Estimator page
http://www.ibm.com/systems/support/tools/estimator

IBM i Virtualization and Open Storage Read-me First
http://www-03.ibm.com/systems/resources/systems_i_Virtualization_Open_Storage.pdf

InfoPrint AFP Utilities for IBM i page
http://www-03.ibm.com/systems/i/software/print/afputilhome_i_ww.html

Installing, upgrading, or deleting IBM i and related software 7.1
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/rzahc/sc415120.pdf
Related publications

- Licensed program releases and sizes
  http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahc/rzahcswslpsze.htm
- Lotus Enterprise Integrator for IBM i page
- Lotus Products for IBM i page
  http://www-03.ibm.com/systems/i/software/domino/index.html
- Lotus Software for IBM i operating system Compatibility Guide
- Online Lotus Server Backup page
  http://www-03.ibm.com/systems/i/support/brms/domino.html
- Online Lotus Server Backup - DAOS page
  http://www-03.ibm.com/systems/i/support/brms/domdaos.html
- Performance Management on IBM i page
  http://www-03.ibm.com/systems/i/advantages/perfmgmt/ptools.html
- PM for Power Systems page
  http://www-03.ibm.com/systems/power/support/perfmgmt
- Power Systems Logical partitioning
- Print Services Facility for IBM i page
  http://www-03.ibm.com/systems/i/software/print/psfhome_i_ww.html
- System Storage Interoperation Center page
  http://www-03.ibm.com/systems/support/storage/config/ssic/displayesssearchwithouts whipping.html
- Virtualization with IBM i, PowerVM and Power Systems page
  http://www-03.ibm.com/systems/i/os/index.html
- WebSphere Application Server for IBM i
  http://www-03.ibm.com/systems/i/software/websphere/
- Zend Products page

How to get Redbooks

The linked Redbooks publication material listed in the previous section is available in softcopy on the internet from the IBM Redbooks server.

Using the web browser of your choice, go to the following website:
http://www.redbooks.ibm.com/

At the upper right corner of the IBM Redbooks web page, there is a search window. You can search for a specific book by book ID or by title text using that search capability.
At the left is a navigation menu. Advance search, Software, Storage, and Systems & Servers are helpful options.

The easiest way to download a Redbooks publication is to complete the following steps:
1. Locate the book through one of the menu or search options,
2. Select the Redbooks publication. This action opens a summary page for the book.
3. Select the Download PDF link. You then have two options:
   – Right-click the link and click Save target as. This action downloads and saves the PDF.
   – Click the link. This action displays the PDF. Select the Save file icon.

Help from IBM

IBM Support and downloads
ibm.com/support

IBM Global Services
ibm.com/services
IBM i 7.1 Technical Overview with Technology Refresh Updates

Enriched database functionality and enhanced graphical environments for application developments

Boosted efficiency with enriched virtualization and more effective utilization of system resources

Easier deployment of new features with technology refreshes

This IBM Redbooks publication provides a technical overview of the features, functions, and enhancements available in IBM i 7.1, including all the Technology Refresh (TR) levels from TR1 to TR7. It provides a summary and brief explanation of the many capabilities and functions in the operating system. It also describes many of the licensed programs and application development tools that are associated with IBM i.

The information provided in this book is useful for clients, IBM Business Partners, and IBM service professionals who are involved with planning, supporting, upgrading, and implementing IBM i 7.1 solutions.

For more information: ibm.com/redbooks